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SUMMARY

This thesis describes the study of the human cognitive detection of road surfaces based on

the feedback vibrations provided by the automobile steering wheel. It introduces the

possibility of measuring the effects of various forms of steering wheel vibration signal on

the human detection of road surface type. The identification of the key parameters which

are controlling the human detection of road type might serve as the basis for the

development of a steering perception enhancement system, which would act as interface

between the driver and the mechanical and electromechanical elements of the steering

system.

The steering wheel is commonly considered the most important source of haptic feedback

information for the automobile driver. This is due to the great sensitivity of the skin tactile

receptors of the hand, as well as the lack of intermediate structures such as shoes and

clothing which can act to attenuate the transmission of vibrational stimuli to the driver.

However, the achievement of higher levels of comfort in modem automobiles has

sometimes come at the expense of a lack of driver involvement since new mechanisms are

not carrying meaningful stimuli to the driver, and this in terms of safety is not good. The

issue of driver involvement can become critical in the case of by-wire systems since these

systems do not necessarily have a predetermined path, or transfer mechanism, for carrying

stimuli to the driver. The question of what stimuli should reach the driver and the search

of understanding how drivers perceive the information received by means of the steering

wheel vibrational stimuli has therefore assumed great importance. Towards this goal the

research performed a series of tests in which human subjects were exposed to rotational

stimuli in a laboratory test rig (steering wheel) in order to identify which are the
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parameters used by the drivers to detect the road surface type. Eight different tests were

conducted in which a group of fifteen different test subjects took part for the overall thesis

work.

Chapter 1 gives an overview of the automotive steering vibration as a research problem

and the need of evaluating the human ability to cognitively detect road surfaces. This

chapter, additionally, presents the different architectures of conventional steering systems

which are currently in mass production. This part of the chapter explains the mechanical

structure of the steering systems in common use, the types of power assist steering and a

brief description of the nearest future of the steering system. The aspects affecting the

human perception of steering vibrations are described in this chapter: discomfort caused

by automotive steering vibration, the existing methods for the description and the

evaluation of the steering vibrations and the description of a perception enhancement for

automotive steering system. This chapter also introduces the objectives of the research

and their possible contribution to the industry.

Chapter 2 provides the definitions, techniques and algorithms from the field of digital

signal processing fundamental towards the understanding of the experiments performed

during the research. Chapter 3, instead, provides the definitions from the field of human

cognition.

Chapter 4 describes the steering wheel acceleration data used in the research presented in

this thesis. Three measurement tests are described from which were obtained the steering

vehicle vibration. Each of the three measurement test describes: the steering acceleration

measurement, the characteristics and specifications of the automobile used during the test,

the type of road surfaces measured and the signal processing analysis of each steering

data.

In chapter 5 is investigated the effect of the steering wheel acceleration magnitude on the

human ability to detect road surface type. Four different road surfaces were employed as

test stimuli. They were a cobblestone surface, a concrete surface, a low bump surface and

a tarmac surface, each of which was rescaled to six acceleration magnitudes (0.8, 0.9, 1.0,

2.0, 3.0 and 4.0).
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The results from the acceleration magnitude experiment establish that a single, optimal,

vibration magnitude does not exist which is valid for all road surfaces. The optimal

vibration magnitude for detection appears to be related to the characteristics of the

cognitive model which the test subjects associate with the surface in question. The results

also suggest that detection is not strictly optimal at the natural vibration magnitude

encountered in automobiles.

In Chapter 6 is investigated the effect of steering wheel acceleration frequency

distribution on human detection of road type in order to identify which energy band is

most used by drivers to detect road surface type. Two different experiments are described

in this chapter. The first experiment investigates the effect of frequency bandwidth. Two

different road surfaces were employed, a cobblestone surface and a tarmac surface. For

each road type, five frequency bandwidths of 0-20 Hz, 0-40 Hz, 0-60 Hz, 0-80 Hz and 0-

100 Hz were achieved by means of frequency domain filtering. The original stimuli were

filtered such that the effect of the frequency bandwidth of the stimuli on the human

cognitive response could be studied. The second experimental test described in Chapter 6

investigates the effect of vibrational energy distribution of road surface stimuli on the

human ability to detect road surface type. Three different road surfaces were employed, a

motorway surface, a broken concrete surface and a broken lane surface. Each road stimuli

was manipulated by means of digital Butterworth filters in order to eliminate five

frequency ranges from the steering wheel acceleration spectrum which were considered

important subdivisions of the vehicle's vibrational energy. Selected frequency ranges

were from 0-6,6-13, 13-27,27-60 and 60-150 Hz for the motorway stimuli, 0-6, 6-12, 12-

27, 27-53 and 53-150 Hz for the broken concrete stimuli and 0-6, 6-9, 9-22, 22-58 and 58-

150 Hz for the broken lane stimuli.

From both experiments, the results suggest that the perceptual and cognitive mechanisms

used by the test subjects require vibrational information which contains the higher energy

level approximately from 20 Hz to 80 Hz. These results provide a clear indication of the

frequency band used by humans to judge road surface type when driving current

production automobiles.

In chapter 7 is investigated the effect of steering wheel acceleration compression and

expansion on human detection of road type in order to determine if some effects used in

v



the music field could improve the steering stimuli for the detection task. Three different

road surfaces were employed as test stimuli. They were a cobblestone surface, a concrete

surface, and a tarmac surface, each of which was compressed and expanded by means of

scale values of 0.40, 0.60, 0.80 and 0.90 which were selected as compressor factors; and

of 1.10, 1.50, 2.00 and 2.50 which were selected as expander factors. The selected

compressor and expander factors include the common values used for music enhancement

which are approximately 0.40 when compressing and 1.10 when expanding.

The results suggest that a single, optimal and fixed compression factor of 0.90 exists

which is valid for all three road surfaces. The results suggest that the highest peaks which

occur in a steering wheel time history several times act as masking for parts of the

steering wheel stimuli which are vital clues for an automobile driver.

In Chapter 8 is investigated the effect of the transient events, in terms of number and size,

which are contained in the steering wheel acceleration stimuli. Three different road

surfaces were employed as test stimuli which were a cobblestone surface, a concrete

surface and a tarmac surface, each of which was manipulated by means of the Mildly

Non-stationary Mission Synthesis (MNMS) algorithm in order to produce test stimuli

which were selectively modified in terms of the number, and size, of the transient

vibration events they contained. Test stimuli contained transient events which were

chosen using trigger values in the range from 2.4 to 3.4 standard deviations. Test stimuli

were also produced from each of the three experimentally acquired signals using four

time compression ratios of 1.0, 2.0, 3.0 and 4.0 and five transient event scale factors of

0.8, 1.0, 2.0, 3.0 and 4.0.

The results suggest that the average driver require vibrational information which content

transient events with a standard deviation spanning from 2.6 to 3.2. The results suggest

that no single time compression ratio and no single bump scale factor exists which is valid

for all driving conditions. The results suggest, however, that controlling the number and

the scale of the transient events large detection improvements could be achieved.

In the Chapter 9 is investigated if the implementation of the most promising feedback

settings which were found in the various individuals tests performed in this research could

optimise the automotive steering vibration feedback for the purposes of road surface
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detection. A group of ten different road surfaces were employed as test stimuli which

were a broken surface, a broken concrete surface, a broken lane surface, a cobblestone

surface, a cobblestone city, a concrete surface, a country lane, motorway surface, a noise

surface and a tarmac surface. Each road surface was manipulated by means of the MNMS

algorithm using the settings found to achieve general improvements in the rate of road

surface detection. These settings include: 1) Test stimuli should contain transient events

which are extracted from the key frequency band in the range from approximately 20 Hz

to 60; 2) The steering vibration should contain transient events which are chosen using a

trigger value of 2.6; 3) Test stimuli from each of the ten experimentally acquired signals

should be produced by implementing a time compression ratio of 2.0 and also a bump

scale factor of 2.0.

The results present improvements in detection of eight of the ten stimuli investigated,

however, degradation in detection was found for the remaining two surfaces in the study.

This result makes this first approach of steering vibration feedback guidelines no optimal

to define the system specifications for a Perception Enhancement System (PES) for an

automobile steering system.

The conclusions of the research are presented in Chapter 10 in which are also included the

suggestions for further research activities.

The following findings can be drawn from the research:

• the human road detection is not strictly optimal at the natural vibration magnitude

encountered in automobiles.

• a single, fixed, feedback gain from the vehicle to the steering wheel will result

optimal in only a small number of driving conditions.

• the long term memory model used by drivers to judge road surface type contains

information about oscillatory frequencies in excess of 60 - 80 Hz in order to

guarantee efficient detection of the road surface by the driver.

• the 20 to 80 Hz frequency interval was found to provide vital clues to automobile

drivers regarding the roads over which they drive and the dynamic response of the

vehicle.
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• music effects such as compressors and expanders widely used in the music field to

enhance the human perception of the music recording can also enhance the human

perception in the case of steering vibrational signals.

• a single, optimal and fixed compression factor of 0.90 exists which is valid for all

driving condition tested.

• individual transient vibration events playa key role in the human detection of road

surface type in driving situations achieving large improvements in the rate of

correct detection by means of selective manipulation of the steering vibration

stimuli.

• the first set of guidelines for automotive steering vibration feedback proposed by

the research was found to clearly improve the human road detection in many

driving scenarios, however, degradation in detection in a few cases make it not

possible to be implemented as a PES for an automobile steering system.
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I.Automotive Steering Vibration as a
Research Problem

Vibration stimuli reach automobile drivers by means of the pedals, the gearshift, the seat,

the floor and the steering wheel, being this last one the principal sensory link between the

driver and the automobile (Amman et al., 2005; Bianchini, E., 2005; Giacomin and

Abrahams, 2000; Pak et al., 1991). In this context the word stimuli is taken to mean

something external that elicits or influences a psychological activity or response on the

part of the subject (Oxford English Dictionary, 2000). According to this definition,

vibrational stimuli could help to the driver in the interpretation of many things including

the type of road surface, the presence of water or snow, tyre slip and the dynamic state of

subsystems such as the engine, the steering and the brakes (Giacomin and Woo, 2004).

The stimuli are perceived, compared to models from long term memory and interpreted,

with the consequent interpretation then influencing decision making.

Automobile manufacturers dedicate significant attention to noise and vibration

suppression (Harrison, 2004) since high levels of noise and vibration for many people

mean less vehicle quality and greater discomfort, but have they thought about the

information that people receive through both sound and vibration? Many scenarios can be

imagined in which the suppression of stimuli can result in a suppression of information.

For many years, psychologists, cognitive scientists, and others have established the

relation between stimuli and information (Newell, 1990, Simon, 1979, Gibson, 1969,

Gibson and Gibson, 1955; Loomis, and Lederman, 1996). Given the above, the question

of what information an automobile subsystem should transmit to the driver is not a simple

one.
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People attach great value to vision and to hearing due to the roles they play in making

them aware of their surroundings. Therefore much research has been performed to

understand the way in which people interpret the world through these two senses. The

sense of touch is, however, a different matter because people often underestimate the role

of touch in their perception of the world. In many cases, as it was stated above, touch

could play the main role in the interpretation of an event. Loomis and Lederman (1996)

have suggested that touch facilitates or makes possible virtually all motor activity, permits

the perception of nearby objects, supports the understanding of spatial layout when

viewing is not feasible, and informs of object properties such as temperature which are

not accessible by means of the other senses. In this context, haptic perception has been

defined by Loomis and Lederman (1996) as "the tactual perception in which both the

cutaneous sense and kinesthesis convey significant information about distal objects and

events". Most tactually based perceptual and motor activity involves both cutaneous and

kinesthetic information. The cutaneous sense is considered as the faculty of touch, while

kinesthesis is considered instead to provide information about the relative positions and

movements of the parts of the body as well as about muscular effort. Of specific interest

to the automobile driver is the haptic information which is transmitted to the driver by

means of the steering wheel vibration.

With the advent of electronically assisted steering and 'by-wire' technologies the question

of what stimuli should reach the driver assumes great importance (Bretz, 2001; Jurgen,

1999; Ueki et al., 2004). From a comfort point of view, less steering vibration should be

judged as better. Existing methodologies for estimating vibrational comfort (hand-arm or

whole-body) based on the use of frequency weightings (ISO 5349-1, 2001; BS 6842-1,

2001), as well as those methodologies for evaluating vehicle drivability (Schoeggl, 2001)

are all structured in such a way as to suggest that less vibration should be judged as better.

This may not be appropriate in the case of information perceived by means of the steering

wheel vibration, however, since scenarios can be imagined in which an increase in

vibration level can help to clarify the nature of the road surface or the vehicle dynamic

state (Giacomin and Woo, 2004). Although it is clear that not all vibration must be

retained to clarify to the driver the environmental conditions, it is probable that some of

the vibration must be maintained. Given the above, a methodology for quantifying the

human ability to cognitively detect a road surface appears useful. Such a methodology

could evaluate how people assimilate the information transmitted by means of the
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vibrational stimuli occurring in automobile subsystems. Towards this goal several

laboratory-based experiments were performed in order to achieve a first methodology for

identifying which are the parameters or features used by the drivers to detect the road

surface type. The experimental results are useful for both future steer-by-wire systems

and also for current steering power systems.

Studies have shown that the global performance of a coupled person-machine system can

be improved when certain low level perceptual and cognitive functions are assigned to the

machine (Quek and Petro, 1993). In the past it has been argued that technology

dehumanized life, but as people become committed to person-enhancing objects, this

argument will need to be revisited. Making technology personable will entail learning

about the human being. In the coming decades, converging technologies promise to

increase significantly people's level of understanding, transform human sensory and

physical capabilities, and improve interactions between mind and tool (Turkle, 2002;

Roco and Bainbridge, 2002). The automotive steering is one important example of a

person-machine interface which requires further research and understanding.

1.1 Automotive Steering System Architectures

Steering is the term applied to the collection of components, linkages, etc. which allow an .

automobile or other type of vehicle to follow a course determined by its driver. Gillespie

(1992) stated that the most conventional steering arrangement is to turn the front wheels

using a hand-operated steering wheel which is positioned in front of the driver, via the

steering column, which may contain universal joints to allow it to deviate from a straight

line. Two variants of conventional steering system are in common use, these being, the

rack and pinion steering (see Figure 1.1) and the ball-and-nut steering. The latter is used

when higher steering forces are required. Both systems are purely mechanical, with the

steering wheel turning the pinion gear which moves the rack from side to side. As shown

in Figure 1.1 this motion applies steering torque to the kingpins of the steered wheels via

the tie rods and a short lever arm called the steering arm.
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Steering Wheel

Figure 1.1 Mechanical Steering System (Adapted from Wolfgang, 2000).

Power steering is defined by the Bosch Automotive Handbook (2004) as "a system for

reducing the steering effort on automobiles by using a power source to assist in turning

the wheels". Three types of power steering system are currently in mass production

(Wolfgang, 2000; Ueki et al., 2004):

1) Hydraulic Power Steering (HPS),

2) Electro-Hydraulic Power Steering (EHPS), a hybrid system, and

3) Electric Power Steering (EPS).

For many years power steering technology has consisted of HPS which is based on the

components of the mechanical steering systems with the addition of hydraulic pressure

supplied by an engine-driven pump (Wong, 2001; Wang et al., 2005) as shown in Figure

1.2. These systems achieve a high level of performance in terms of ride and handling, cost

and comfort.

Pump
<,

Figure 1.2 Hydraulic Power Steering System (Adapted from Wolfgang, 2000).
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Current steering systems are more and more based on the use of electrical components.

This is mainly because of two reasons: energy saving and installation simplification by

modular design. In the case of EHPS systems such as the one shown in Figure 1.3a, the

hydraulic pump is driven by an electric motor and runs independently from the engine.

Since the speed of the pump is not subjected to the wide range of engine speeds, this

reduces the power demand of the system and maintains all the basic properties of a

hydraulic system.

Motor and Pump
I

(b)

Figure 1.3 Current Steering Systems (Wolfgang, 2000): (a) Electro Hydraulic Power Steering System
and (b) Electric Power Steering System.

EPS system as shown in Figure 1.3b consists of (Ueki et al., 2004):

1) a torque sensor located in the steering gearbox;

2) an electronic control unit which calculates signals from the torque sensor and

supplies the necessary energy to the motor;

3) a motor that conveys an assisting force to a pinion shaft through a reduction gear

mechanism; and

4) a rack-and-pinion type steering gearbox.

The electronic control unit determines the speed sensitive power assistance by processing

the vehicle speed and engine rotational signals. A Speed Sensitive Power Steering (SSPS)

system is defined by Ueki (2004) as "a system capable of adjusting steering force

according to vehicle speed". In addition, a torque limiter is positioned between the

reduction gear mechanism and the pinion shaft, to protect the gear mechanism from road

surface pressure. The arrival of EPS systems has brought several advantages. Electric

actuation is a proven technology which offers several benefits including reliability, energy
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efficiency and precise controllability (Iles-Klumpner et al., 2005). EPS is currently being

applied widely in order to reduce fuel consumption and decrease installation costs.

In recent years important efforts have also been made in the area of by-wire technologies.

The automotive industry is introducing decoupled actuators in order to improve driving

comfort and safety and to reduce automobile cost by means of the greater design and

installation flexibility offered by these systems. Steer-By-Wire (SBW) is a technology

which replaces the mechanical interface between the steering wheel and the vehicle front

wheels. SBW system has no direct mechanical link between the steering angle input of

the driver and the direction in which the road wheels turn, as shown in Figure 1.4. Wires

relay signals from the automobile's steering wheel to its front wheels by means of an

electrically actuated motor.

Steering Wheel

Control Unit

.Connect to wires

Figure 1.4 A steer by-wire system in an automobile.

Steer by wire systems offer a number of advantages in terms of packaging, noise

performance and occupant crash protection due to the elimination of the steering column.

The advantages also open the possibility for an alternative to the traditional steering

wheel (Ward and Woodgate, 2004).

1.2 Discomfort Caused by Automotive Steering Vibration

Discomfort has been defined as any perceived disturbance to the well being of the subject

(Costa, 1997; Griffin, 1990; Quehl, 2001). It is normally assumed that discomfort is

associated with poor biomechanical factors (joint angles, muscle contractions, pressure
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distribution) that produce feelings of pain, soreness, numbness, fatigue, and the like.

Discomfort can often be alleviated by eliminating physical constraints. However, the

elimination of physical constraints does not necessarily produce comfort (Griffin, 1990;

Quehl, 2001). Comfort, instead, is defined by the Oxford English Dictionary (2000) as

"the state of being physically relaxed and having a pleasant life". The optimal condition

of comfort can be defined as the neutral sensory condition, corresponding to the absence

of discomfort stimuli. Researchers have questioned the common, unidimensional,

definition of discomfort and comfort as representing the opposites of a continuous bipolar

scale which ranges from a state of extreme discomfort through a neutral state to a state of

extreme comfort (Quehl, 2001). Even though some motions may be the source of pleasure

or satisfaction, and hence produce no discomfort, according to Griffin (1990) the study of

human vibration has mainly concerned the extent to which motions are responsible for

displeasure, dissatisfaction and discomfort.

As was stated in the first part of this chapter, the discomfort caused by vibration of the

steering wheel is an important property for the acceptability of an automobile (Harrison,

2004). Vibration is transmitted to the hands and arms by means of the steering wheel. It

may also be transmitted through the hand and arm to the shoulder and beyond (Giacomin

and Abrahams, 2000). Griffin (1990) stated that automobile steering wheel vibration

exposure of the hand normally occurs at low magnitudes or for short durations, and that

these exposures are more reasonably associated with discomfort than injury or disease.

According to Reynolds and Angevine (1977) hand-arm vibration (HAV) occurs when the

palm of the hand or the fingers are in contact with a vibrating surface. HAV often occurs

along three translational axes, it may differ at the two hands, and it may vary along the

length of the tool or workpiece handle. Further, the dependence of vibratory discomfort

upon vibration frequency differs for the various directions of vibration. The human hand

has been shown to be capable to discriminating the motion along three axis (Miwa, 1967;

Mishoe and Suggs, 1977; Reynolds and Keith, 1977, Reynolds and Soedel, 1972).

The orientation of the coordinate system used to measure hand-arm vibration is normally

be defined with reference to an appropriate basic-centric coordinate system (ISO 5349-1,

2001; BS 6842, 2001). This system is defined according to the orientation of the hand

with respect to specific directions of the tool or workpiece (see Figure 1.5). According to
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the BS 6842 (2001) measurements along the three aXIS should be made using an

accelerometer which should be placed at or near the surface of the hand(s), the resulting

signals being labelled as aX,hw, ay,hw, and aZ,hw.

Figure 1.5 Coordinate system for the hand. Anatomical Coordinate System and Basic-
centric Coordinate System (Adapted from ISO 5349, 2001 and BS 6842. 2(01).

In order to assess the vibration felt, the acceleration values are usually weighted according

to the frequency and the direction in which the vibration is applied. Frequency weightings

are applied to convert the physical input acceleration into the human perceived

acceleration. ISO 5349-1 (2001) and BS 6842 (2001) specify frequency weighting Wh for

use along the standardized axis of measurement. The same frequency weighting is used

for each of the three axes of vibration at the point of entry to the hand. Figure 1.6 shows

how Wh is defined by the hand-transmitted vibration standards (ISO 5349-1, 2001 and BS .

6842, 2001).

The evaluation of steering wheel vibrational discomfort by means of the Wh has often

been performed in the automobile industry (Pak et al., 1991; Isomura et al., 1995).

However, Giacomin et al. (2004) proposed a frequency weighting for evaluating the

human subjective discomfort response to the rotational vibrations specifically

encountered in automobiles. Figure 1.6 shows the comparison between the proposed

frequency weighting Ws and the standard weighting Who The comparison suggests

important differences, with a particularly note worthy point being the lower human

sensitivity to vibration indicated by Wh at frequencies which are lower than 6.3 Hz.
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Figure 1.6 Comparison between the proposed frequency weighting Ws for rotational steering wheel
vibration and frequency weighting Wh (Adapted from Giacomin et. aI, 2004).
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The magnitude of a vibration can be quantified by either, its displacement, its velocity or

its acceleration. For practical convenience, the vibration intensity is commonly expressed

in terms of acceleration, which is normally expressed in meters per second squared (m/s'').

BS 6842 (1997) requires that the vibration magnitude be calculated as an average value of

frequency-weighted acceleration, using a root mean square (1".111.':'.) acceleration value.

The measurement of the r.m.s. acceleration is convenient because accelerometers are

currently the cheapest and most widely utilised transducers, and instrumentation for the

calculation of r.m.s. values is readily available.

Besides the magnitude, frequency, direction and duration of an applied vibration the

subjective discomfort is also effected by the posture and orientation of the hand-arm and

body (BS 6842, 2001), which may cause differences in the response of the same person

on different occasions (intra subject variability).

The field of psychophysics (Geschieder, 1997) provides perceptual response models

which are applicable to all sensory modalities including vibration. Psychophysical theory

suggests that the most basic relation between vibration level and discomfort is given by

the Steven's power law:

(1.1)
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where If! is level of sensation, ap is the acceleration amplitude (stimulus intensity), k is a

constant which depends on the specific measurement scale used to define the sensation

and on the units used to express the acceleration, and finally, n is the exponent that

determines the increase in feeling. The well-known Steven's Power Law has been used in

many research studies to model the human subjective response to both whole-body

vibration (Hacaambwa and Giacomin, 2005) and to hand-arm vibration (Ajovalasit and

Giacomin, 2005).

1.3 Feel and Information Arising from Automotive Steering Vibration

The top design priorities for power-assisted steering are traffic safety and driving

discomfort. Legal limits of steering-assistance attempt to define safety standards; more

power assistance eases control of the automobile, but excessive assistance leads to lack of

'feel' for the road, in other words, to lack of information. The driver's feeling during

steering is related to characteristics such as the steering torque, yaw rate and lateral

acceleration generated according to the steering angle. Fujinami et al. (1995) states that

the steering feel is classified accordingly into the three categories: steering effort; steering

returnability; and steering torque. Steering roughness and steering feel are major aspects

in which automobile manufacturers can distinguish their products with respect to their

competitors (Verhoeff et aI., 2004).

Although there are several points of contact between the driver and the automobile

through which the driver perceives vibration, the steering wheel is commonly considered

the most important source of feedback information. This is due to the great sensitivity of

the skin tactile receptors of the hand (Lee, 1998; Morioka, 1999), as well as the lack of

intermediate structures such as shoes and clothing which can act to attenuate the

transmission of vibrational stimuli to the driver.

In this context 'feel' is taken to mean something that people perceive by the sense of

touch. It can be assumed that drivers 'feel' the road through the mechanical link to the

wheels. For example, a grooved pavement makes the wheels vibrate, hence the

mechanical links between the wheels and steering wheel vibrate in tum. Similarly, the

mechanical links provide a certain feel to the steering wheel when the driver turns it. In

the case of a steer-by-wire system which needs to emulate the feel of a traditional
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mechanical steering system, it must use sensors on the wheel hub and suspension

components and its electrical motor to produce realistic and informative steering wheel

motion. That requires an active system which is constantly changing its response based on

the road conditions.

According to both Verhoeff et al. (2004) and Giacomin (2005) the main challenge for

electrical steering systems and for steer-by-wire systems is to achieve a steering feel

similar or better than that of conventional systems. The idea should be to re-create the

driving feel by providing feedback.

1.4 Perception Enhancement for Automotive Steering Systems

Giacomin (2005) has stated that the concept of Perception Enhancement Systems (PES)

"emerges from the observation that not all machine emissions are informative, and that

only certain cognitively-relevant features from the environment have meaning for

humans". In this light, the goal is therefore to design engineering systems which

selectively amplify the key environmental phenomena so that humans can better interact

with their machines.

Giacomin (2005) proposed a definition for an automotive steering perception

enhancement system as any device which optimises the feedback to the driver of

information about the interaction between the automobile and its surrounding

environment. Such a system treats the data from an information theoretic point of view,

and optimises the person-machine interface so as to make the vehicle feel more like an

extension of the driver's body. Such a system might be composed of electronic systems

(see Figure 1.7) which have the function of identifying the significant vibration stimuli,

occurring at the tyres and suspensions, which are required by the driver, and of

transferring and transforming the stimuli in order to optimise detection and awareness

(Giacomin and Woo, 2004).

A question that requires further research is: what steering hardware and software is

required to achieve 'the highest possible rate of detection of the current driving situation

and of the dynamic state of the automobile'? The answer is not a simple one, but it can be

suggested that such a system would necessarily require measurement sensors, electronics
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for signal processing, machine intelligence and actuators for delivering stimuli to the

automobile driver. If the system is designed based on knowledge of the human

psychophysical and cognitive response, a steering perception enhancement system for an

automobile can be achieved.

Drive-by-wire system:
I = steering position/force sensor
2 = steering rack actuator

Perception enhancement system:
3 = wheel position/force sensor
4 = steering actuation unit
5 = EPSA controller

Perception
enhancement feedback

.,''''_"i -~~::~e~~~b- -[:J-,
t t
I

I

Drive-by-wire control from
steering wheel

Figure 1.7 An approach of a perception enhancement system for a 'by-wire'
steering (Giacornin and Woo, 2004)

1.5 The Objectives of the Research

According to Lakoff (1987) the technical specifications for interfaces such as Perception

Enhancement System depend critically on the perceptual and cognitive characteristics of

humans. Focussing on human steering perception, three questions naturally arise which

can be defined as the issue of scale, the issue of frequency distribution and the issue of

transient events. A detailed understanding of how human situational awareness changes as

a function of the steering vibration scale, frequency distribution and transient events is

required in order to define the technical specifications for an automotive steering

perception enhancement system.

In order to understand the issues involved road surface detection was chosen as a test of

the human cognitive response to steering wheel vibration. Road surface information is

often gathered by means of the vision sense modality, but many driving scenarios exist in

which the steering vibration feedback plays the leading role in the detection task. Night
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time driving or driving in fog or rain are examples of situations in which the tactile

perception can become dominant.

The detection problem may be of relevance to the designers of both traditional and by-

wire steering systems since careful considerations are and will be necessary when

choosing the specifications of the steering feedback for each driving condition. When

considering current steering system technology in road vehicles, quantities of primary

interest are the feedback gains and the feedback bandwidth over which the steering

systems should operate. Particularly, the feedback frequency band over which the steering

systems should operate may be of great importance since some by-wire steering actuators

do not reach high response frequencies.

Since the human nervous system pays great attention to high amplitude event it might be

the case that the human cognitive mechanism to detect road type uses individual transient

features of the time history. The possibility of measuring the sensitivity of the human

detection task to changes in the number or scale of individual transient events of the

vibration stimuli offers to steering designers information which could be used to design

the feedback characteristics of the steering system. Knowledge about human reactions to

individual characteristics of the transient events would permit designers to tailor the

system so as to optimise the useful information carrying events.

In order to investigate the relationship between steering vibration and the human detection

of the road surface type, several research objectives were defined to:

1. Determine the effect of steering wheel acceleration magnitude on the human ability to

detect road surface type, adopting the theory of signal detection as the analytical

framework for the analysis.

2. Determine how the human detection of road surface type improves or degrades as a

function of the frequency distribution of the steering acceleration signal, adopting the

theory of signal detection as the analytical framework for the analysis.
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3. Determine if signal transformations used in the field of music such as compressors or

expanders improve or degrade the detection of road surface type, adopting the theory

of signal detection as the analytical framework for the analysis.

4. Determine how the human detection of road surface type improves or degrades as a

function of the number and size of the individual transient events which are contained

in the steering acceleration signal, adopting the theory of signal detection as the

analytical framework for the analysis.

5. Define a first set of guidelines for the feedback properties which an automotive

system should have.
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2. Signal Processing Methods
The primary goal of this chapter is to provide an introduction to the definitions,

techniques and algorithms from the field of digital signal processing which are

fundamental towards the understanding of the experiments performed during the research

which is described in this thesis.

2.1 Classification of signals

McClellan et al. (2003) defines signals as patterns of variations that represent or encode

information. For most purposes a signal can be defined simply as a mathematical function

y=f{x} (2.1)

which can be classified into the categories of deterministic and random (Newland, 1993;

Peebles, 1993; Mallat, 1998; Kudritzki, 2001). According to Newland (1993) a

deterministic signal is one which is fully predictable given the existence of underlying

physical laws while Peebbles (1993) defines a random signal as a time waveform that can

be characterized only in some probabilistic manner. A generally accepted system of signal

classification is presented in Figure 2.1.

A deterministic signal can further be characterized as being periodic or a non periodic. A

signal is periodic if it repeats with a characteristic period for all time. A signal is non

periodic, instead, if it only exist for a finite time range (transient signal) or when one or

more of the signal statistical parameters change with time (aperiodic). Periodic signals

can further be characterized by having one single frequency (sinusoidal signal) or being a

superposition of two or more harmonic waves (complex periodic). When the value of the
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excitation at a given time cannot be fully predicted, the excitation is instead said to be non

deterministic or random.

SIGNALS

Figure 2.1 The classification of random signals.

2.1.1 The Random Process

The term random or stochastic refer to a general class of time waveforms which is

frequently encountered in practical systems. The term 'stochastic' is derived from the

Greek word fur 'by trial and error' or 'hit and miss'. Such a signal can be described only

in terms of a probability distribution and of statistical averages computed over the

ensemble of the sample records representing the random process. The probability

distribution P(x) for a random process is defined as (Bendat and Piersol, 1986):

x+dx

p{x) = Jp{x}Lx (2.2)
x

where p(x) is the Probability Density Fuction (PDF) expressing the probability that the

random variable takes a value between x and x + dx.

2.1.1.1 The Gaussian Distribution

A commonly used model of a stationary random process is the Gaussian distribution,

which occurs when random signal amplitudes follow the well known 'bell-shaped'

probability distribution illustrated in Figure 2.2.
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Figure 2.2 The Gaussian distribution

In this case the distribution of amplitudes is described by the mathematical expression

where p(x) is the probability of occurrence of the amplitude x and where m and o are

constants (the mean value and the variance, respectively). Newland (1993) suggests that

the normal or Gaussian probability distribution is extensively used in random vibration

theory to approximate the characteristics of random excitation. The function is symmetric

about the mean value m, where it achieves its maximum value.

2.1.1.2 Stationarity and Ergodicity

A stationary random process is defined by Newland (1993) as one for which the

probability distribution obtained for a sample data ensemble does not depend on time.

According to Bendat and Piersol (1986) stationary signals exhibit constant statistical

properties across the signal length. Specifically, global statistics such as the mean value,

the root mean square value, the variance and the standard deviation value are independent

of time. The statistics of non-stationary signals, on the other hand, are highly dependant

on the measure of time. If only the mean and standard deviation are constant, a signal is

considered to be weakly stationary. A process in which all probability distributions are

invariant with time is considered to be strictly stationary.

Another term for describing a random process is that of ergodicity. An ergodic random

process is one for which the ensemble averages can be exchanged for the time averages

(Harris and Ledwidge, 1974; Peebbles, 1993). An ergodic signal is one for which a single

sample, or single experimental measurement, is statistically representative of all possible

measurements. Ergodicity is a very restrictive form of stationarity, and it is often difficult
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to prove that it constitutes a reasonable assumption In many physical situations.

Nevertheless, a process is often assumed to be ergodic in practice in order to simplify

problems. It is important to note however that if a process is ergodic it must also be

stationary. Harris and Ledwidge (1974) have stated that all ergodic processes are

stationary, but that the converse is not necessarily true.

According to Giacomin et a1. (1999) non-stationary signals can be further divided into

two categories, mildly non-stationary and heavily non-stationary. Figure 2.3 presents

automobile steering acceleration signals which exhibit stationary, mildly non-stationary

and heavily non-stationary characteristics.

..
Time (I)

(a) (b) (c)

Figure 2.3 Examples of a stationary and non-stationary time histories: (a) stationary Gaussian signal
(Highway Surface), (b) Mildly Non-stationary signal (Speed Circuit Surface) and (c) Heavily Non-

stationary signal (Bump).

A mildly non-stationary signal is defined by Priestley (1988) as a random process with

stable mean, variance and root-mean-square values for most of the record, but with short

periods of changed signal statistics due to the presence of transient behaviour. A heavily

non-stationary signal is defined in a similar manner to mildly non-stationary signals, but

is characterised by the presence of more transient events.

2.2 Global Signal Statistical Parameters

Many authors have suggested the use of global signal statistics for the purpose of

summarising and classifying random signals (Bendat and Piersol, 1986; Erdreich, 1986).

In the field of vibro-acoustics the most commonly used statistics are the mean value, the

standard deviation (SD) value, the root-mean-square (r.m.s.) value, the skewness value,

the kurtosis value, the Crest Factor (CF) value and the Vibration Dose Value (VDV).

For a time series sampled for a period of time T, at Is samples per second, with a total of

N=Tsfs sampled data values xii), the global statistical parameters are defined as follows.

18



2.2.1 Mean Value and Standard Deviation Value

The mean value x is given by,

(2.4)

while for the same time series the Standard Deviation (SO) value o is given by,

{

N }1/2
U= ~~[X(i)-XY (2.5)

The mean and the SD value are considered the first and the second statistical 'moments'

of the random process.

2.2.2 Root Mean Square Value

The overall energy associated with a signal is normally quantified by means of the root-

mean-square (r.m.s.) value. For a time series, the r.m.s. value is defined as

{ }
1/2

1 N 2
r.m.s. = - LXj

N j=l

(2.6)

In the case of a zero mean process, the standard deviation and the r.m.s. are equal.

2.2.3 Skewness Value

The skewness value A. of a random process is defined as the average of the instantaneous

vibration values cubed. In dimensionless form it is defined as

1 N (X. _X)3A=-L-'-
N j=l CT

(2.7)

In the case of a normal distributed random process with zero mean, the skewness value

results as zero. The skewness, which is a third statistical moment, characterises the degree

of asymmetry of a distribution around its mean value. As illustrated in Figure 2.4, a

positive skewness indicates a distribution with an asymmetric tail extending toward more
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positive values, while a negative skewness indicates a distribution with an asymmetric tail

extending toward more negative values.
r~)
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/
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/,

/,,
~,...~--------~~--~--~--------~x

Figure 2.4 Comparisons of Skewness (Adapted from Harris and Ledwidge, 1974).

2.2.4 Kurtosis Value

The kurtosis value r of a random process is defined as the average of the fourth power of

the instantaneous vibration values and can be expressed in dimensionless form as

_ 1 n (Xj - X)4r--L-
N j=1 a

(2.8)

Kurtosis is highly sensitive to outlying data and as such can be thought of as the relative

'peakedness' of the vibration signal as shown in Figure 2.5. The importance of kurtosis as

a metric is because it helps to quantify the extent of departure from stationary Gaussian

distribution, for which the kurtosis value should be approximately 3.0. Higher kurtosis

values indicate that there are more extreme values present in the data than would be

expected from a Gaussian distribution (Harris and Ledwidge, 1974; MalIat, 1998;

Newland, 1993).

/ \ leptokurtic. ~

Figure 2.5 Comparisons of Kurtosis (Adapted from Harris and Ledwidge, 1974).

2.2.5 Crest Factor Value

The Crest Factor (CF) is defined as the ratio of the maximum instantaneous value of a

sampled signal and the calculated r.m.s. value.
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CF = xjrnax

r.m.s.
(2.9)

Crest factors can be either positive or negative depending on the sign of the maximum

instantaneous value. For a Gaussian distribution the crest factor should normally lie in the

range 3.5 to 4.5.

2.2.6 Vibration Dose Value

In signal processing applications involving the evaluation of human exposure to vibration,

the vibration dose value is commonly used. The vibration dose value (VDV) of an

acceleration time series is given by

(2.10)

The evaluation of vibration severity is defined in the British Standards (BS EN 590, 2005;

ISO 8041, 2005) as

I

VDV = [J: a4 {t)tit Ji (2.11)

where T is the duration over which the VDV value is determined and a (t) is the

instantaneous acceleration. The VDV 'value provides a cumulative measure of the

vibration exposure. From equation 2.10 it can be noted that exists a close correspondence

between kurtosis and the VDV.

2.3 Frequency Domain Analysis

2.3.1 The Fourier Transform

Spectral analysis is widely used to analyse vibration signals (Piersol, 1992; Rahnejat,

1998). The mathematical function used to transform a time data series x(t) into the

frequency domain is called the Fourier Transform. The Fourier transform is used to

convert a non-periodic function of time, x(t), into a continuous function of frequency. The

Fourier Transform of x(t) is defined by the expression
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x{{()) = r~x{t ) e -ica dt (2.12)

where i= ~ and ro is called the frequency variable, which is in units of rad/s in SI

units. From a Fourier transformed dataset X(m) it is also possible to reverse the

transformation by obtaining its inverse;

(2.13)

Equations 2.12 and 2.13 are called the Fourier Transform pairs, and they exist if x(t) is

continuous and integrable as defined by the admissibility condition

(2.14)

2.3.2 The Discrete Fourier Transform (DFT)

Frequency analysis is concerned with the estimating of the spectrum of a random process

xit) by analysing the discrete time series (see Figure 2.6) obtained by sampling a finite

length of the sample function.

xiI)

t

Figure 2.6 Sampling a continuous function of time at regular intervals (Newland, 1993).

In most applications the Fourier transform is applied to sampled data on a digital

computer. The digital interpretation of the Fourier transform is called the Discrete Fourier

Transform (OFT) and is defined for N discrete samples of x(t)as

1 s-: .
X({()) = -Lx(t) e-1f1J1/N (2.15)

N 0
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for (J)=0, 1,2, ... , N-l. The inverse of the discrete Fourier transform is defined by

N-I

x{t)= IX«(J)) eiaJ1
/
N (2.16)

o

for x = 0, 1, 2, ... , N-l. Again, the continuity and differentiability of the underlying

processes are necessary conditions for the existence of the transform and of its inverse.

2.3.3 The Fast Fourier Transform (FFT)

The DFT makes possible the computer implementation of the Fourier Transform, but it is

not efficient. The number of complex multiplications and additions required to implement

equations 2.15 and 2.16 is proportional to the square of the number of data points N. For

every Xuo) which is calculated, it is necessary to use all x(O), ... , x(N-l) data points.

It has been shown, however, that the decomposition of equation 2.15 can be achieved

using a number of multiplication and addition operations which is proportional to N log»

N. The decomposition procedure in question is called the Fast Fourier Transform (FFf)

algorithm. The FFT works by partitioning the full sequence x, into a number of shorter

sequences, it then combines together in a way which takes advantage of the symmetry of

the matrix of reduction operations so as to yield the full DFT of x;

If the full sequence x, (see Figure 2.7a) is partitioned into two shorter sequences y, and z-

(Figure 2.7b), two half sequences are yielded. The half sequence are expressed as

Yr = x2r and z, = X2r+1 when r=0,1,2, ... , (N12 - 1).

(8)

(b)

'0 •• , ', •• ,

?rl\. :2"
'lII/''1-"

Figure 2.7 Partioning the sequences x, into two half sequences Yr and Zr (Newland. 1993).
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The DFT's of these two short sequences, Y, and Zk, after simplification of the expression

2.15 are found to be
ill) r1 NIH --

Y = ~ y e (N/2)
k (N 12) ~ r

k = 0, 1, 2, ... , (N 12 -1)

itu r1 N/2-J --
Z = ~ z e (NI2)

k (N 12) ~ r

(2.17)

Returning to the DFT of the original sequence and considering rearranging the summation

into two separate sums similar to those occurring in equation 2.17, the resultant equation

is the heart of the FFT method, mathematically expressed as

(2.1S)

A useful representation in the case of random vibration signals is the autospectral density

function which is commonly referred to as the Power Spectral Density (PSD) (Bendant

and Piersol, 1986). The PSD represents the mean squared value as a function of

frequency. It avoids the problem that random signals, producing a continuous frequency

spectra, have the signal energy measured within a certain frequency band which depends

on the width of that band (Bendant and Piersol, 1986). Because the Fourier Transform

(equation 2.15) is computed only on one time interval, the spectrum is not typical of the

complete time history. Averaging of the spectra from different intervals of the signal is

thus necessary in order to obtain a more accurate representation. The PSD of a time series

is thus defined as:

/>0 (2.19)

where Xi (/, T) is the FFT of the signal computed over the i th data interval of duration T

and nd is the number of averages used in the calculation. The segment duration T

determines the frequency resolution 11/= IIT= I/Ndata'1s for the FFT computation, and is

normally chosen based on the characteristics of the type of data being analysed.

2.4 Time-Frequency Domain Analysis: The Wavelet Transform

The averaging process associated with the methods described in the previous sections can

lead to a loss of information regarding the transient events present in the signal. An
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extension of the classical analysis which is based on the assumption of the stationarity of

the signal, to the analysis of a signal whose characteristics change in time, leads to the

definition of time-frequency analysis (Piersol, 1992; Newland, 1994; MalIat, 1998). The

most commonly used forms of time-frequency analysis are the Short Time Fourier

Transform (STFT) (Hodges et al., 1985; Lim and Witer, 2000), the Wigner-Ville

Distribution (WVD) (Staszewski et al., 1997) and the Wavelet Transform (Li et al., 1999).

Of these methods, the wavelet transform has the advantage of a linear representation and

offers the advantage of a multi-resolution analysis over the time-frequency plane (MalIat,

1998).

The wavelet transform is a linear transformation that decomposes a given function x(t)

into an infinite number of localised functions IfI(t) called wavelets. Wavelets are

mathematical tools for the analysis of non-stationary signals which perform multi-

resolution analysis in both the time and frequency domains (Chui, 1992; Newland, 1994;

MalIat, 1998). Wavelets have advantages over traditional Fourier methods in analyzing

physical situations where the signal contains discontinuities, abrupt changes and sharp

spikes (McHutchon, 2005). A wavelet is a function which adheres to the following

admissibility condition (Chui, 1991; MalIat, 1998).

0< C", = JI'¥(ff df < 00

-~ f
(2.20)

where '¥(j) is the Fourier transform of IfI(t). To guarantee that this integral is finite the

wavelet function must be defined in such a way that '¥(O) is equal to zero, such that the

wavelet has a mean value of zero. If '¥(O) is zero the function is continuously

differentiable, then the admissibility condition reduce to the condition that the wavelet

function be of finite energy, meaning

(2.21)

The transform based on wavelets trades resolution in a manner that varies over the time-

frequency plane, in contrast to other type of analysis in which time-frequency resolution

is uniform. The wavelet transform has a wide variety of applications including time-

frequency analysis, graphical and audio data compression, noise filtering, feature

extraction and fault detection (Wang and Me Fadden, 1995; Lee and White, 2000).
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Depending on the type of information that is required, two different forms of the wavelet

transform are used: the Continuous Wavelet Transform (CWT) and the Orthogonal

Wavelet Transform (OWT).

2.4.1 The Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is a linear transformation that decomposes an

arbitrary signal xit) of one variable into a superposition of elementary functions of two

variables a and b. The CWT is based upon a family of equally shaped functions which

can be generated from a basis wavelet by means of dilating and translating. The

continuous wavelet transform is defined by the expression

Wa,b(t) = };;I/f C :b)' a >0, bE~. (2.22)

where 'I/(t) is a fixed function called the 'mother wavelet' which is localized both in time

and frequency. A family of time-frequency functions is obtained by scaling '1/ (t) by a;

and translating '1/ (t) by b. The most commonly used mother wavelet is the Morlet

wavelet:

(2.23)

where lLb is the wavelet frequency. The Morlet wavelet is a common choice for the

mother wavelet because it permits a direct frequency interpretation of the scale parameter

and because it is the function that is most compact in the time-frequency plane (Lee and

White, 2000; Staszewski, 1998). The idea of the CWT is to discompose a signal x(t) into

wavelet coefficients (Wx",)(a,b) using the basis of wavelet functions 1p(t). This

decomposition can be expressed mathematically as

1 -J (t-b)W: (a,b)= .Ja _ x(t)I/f· -a- dt (2.24)

where Ip(t) is an analysing or elementary wavelet and 1If*(-) is the complex conjugate of

Ip(.). Each value of the wavelet transform W/'(a,b) is usually normalized by the factor

1/Fa . This normalization ensures the integrated energy given by each wavelet 1p(t) is

independent of the dilation value a.
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2.4.2 The Orthogonal Wavelet Transform

The representation given by the continuous wavelet transform contains redundancy. A

natural extension of continuous analysis is therefore the discretisation of time b' and scale

a according to the relationship a = ao m, b = nao nbo where m and n are integers, bo #= 0 is

the translation step. This implies the construction of a time-scale grid (Daubechies,

1992), thus producing a discrete wavelet transform

-
WII'(mn)= Jx(t)"':.n(t)dt (2.25)

(2.26)

The higher the subsampling on this grid, the smaller the redundancy of the wavelet

transform. When the wavelet functions I/fm,n(t) form a set of orthonormal functions, there

is no redundancy present in the analysis. A discrete wavelet transform based on such

wavelet functions is called an Orthogonal Wavelet Transform (OWT).

The orthogonal wavelet transform uses a different basis function in order to analyse non

stationary data at varying resolutions by decomposing the signal into their frequency

bands (Hubbard, 1996). Any arbitrary signal x(t) can be represented as a weighted sum of

orthogonal wavelets,

x{t) =L L WII' (rn, n)1fIm.n (t) (2.27)
m n

This shows that the analysed signal x(t) can be represented as a sum of m wavelet levels

given by,

n

where the coefficients ao' at, a2, ••• quantify the amplitude of all contributing wavelets.

The sum of all levels recreates the original signal, i.e.,
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(2.30)
m

Although the wavelet levels are in the time domain, this orthogonal decomposition allows

not only for time domain localisation of different events but also for frequency

decomposition of different signal components (Steinwolf, et al., 2002). A vast literature

exists treating the application of wavelets to damage detection (Staszewski and

Tomlinson, 1994; Wang and Me Fadden, 1995; Staszewski, et al., 1997) and to

automotive vibration analysis (Giacomin, et. al., 1999; Staszewski, et. al., 1997; Lee and

White, 2000).

2.5 Signal Processing Techniques used in Audio Mastering

Signal processing has become an increasingly important part of the world of music. Audio

mastering makes use of the applied practices of signal processing to augment or modify

an audio signal in either the analog or digital domain (Huber and Runstein, 2005; Katz,

2002). It is considered the last opportunity for fixing any problems in a music recording

before an album is sent for manufacturing. Audio mastering has traditionally been

considered more of an art than a science, because the optimal sound signal

transformations depend on the desired emotional response of the listener (Katz, 2002).

Audio mastering typically involves a set of specific effects, some of the most common

signal processing operations being:

• Analog to digital conversion

Digital to analogue conversion

Noise reduction

Equalizers which are used to shape the tonal balance

Compressors, limiters, expanders and gates which are used to adjust the dynamics

of a mix.

•
•
•
•

• Addition of special effects

2.5.1 Gain Changers

An important step of the mastering process occurs when the signal level is adjusted in a

music recording by means of dynamic range processors, such as compressors and
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expanders. An example of waveforms before and after use of gain changers is presented

in Figure 2.8. One of the benefits when the signal level is adjusted, it is achieved when a

signal is boosted to regain maximum signal level becoming the low-level signals much

more audible and understandable. The small difference among all the peaks (the highest

points and the average levels) in the waveforms after mastering reduces drastically the

difference between the loudest part and the quietest parts of the music recording

enhancing it.

Figure 2.8 Comparison between waveforms before and after Mastering.

2.5.2 Compressors

Compressors can be considered systems for performing automated volume control. They

are used to proportionately reduce the amplitude of a signal that rise above a known

threshold level. When a compressor receives an abundance of signal level, it triggers an

automatic level control to decrease the signal strength, resulting in a decrease in volume.

When the amplitude of the signal reaches a certain level, it surpasses a user-set threshold.

As signal exceeds this threshold, an amplifier turns the signal level down according to the

compressor settings. The most common parameters to control for a compressor includes:

the input signal level which determines how much signal is sent to the compressor's input

stage; the threshold level is a setting which determines the level at which the compressor

will begin proportionally reduce the incoming signal; the output signal level which

determines how much signal will be sent to the device's output; and the slope ratio which

determines the amount of input signal level that is needed to cause a decrease at the

compressor's output (see Figure 2.9).
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Figure 2.9 The output of a compressor is linear below the threshold and follows an input/output gain
reduction ratio above this point (Adapter from Huber and Runstein, 2(05).

When a compressor has extreme compression, with ratios large enough such as 10:1,20:1

or more, the compressor becomes a limiter (see Figure 2.10). This kind of extreme

compression results in an output signal level which does not appreciably alter as the input

signal level changes. A limiter is used to keep signal peaks from exceeding a certain level

in order to prevent the overloading of amplifier signals.

Linear (1:1) limit slope(20:1)'iiic:
C)

US-=Q.-=o
Input Signal Level

Figure 2.10 The output of a limiter is linear below the threshold and follows a high input/output gain
reduction ratio (10:1, 20:1, or more) above this point (Adapter from Huber and Runstein, 2(05).

2.5.3 Expander

An expander works in a similar way to a compressor, however, it works in an opposite

manner. While with a compressor the signal over the threshold level is attenuated; for the

expander the threshold is set and any part of the signal dropping below this threshold will

be affected by the expander and this level will be raised. The expander therefore like the

30



compressor balances out the signal making it sound more professional. Expanders can be

used to emphasize different parts of the signal levels from those affected by downward

compressors. For example, upward expansion is great for restoring the liveliness of

typical uninterested musical samples from samplers (Katz, 2002). The parameters which

can be controlled for an expander are the same to those controlled for the compressor (see

Figure 2.11). Both compressors and expanders have a voltage-controlled amplifier (VCA)

circuitry, in the analog domain, in order to have the capability of turning the signal level.

When the voltage level exceeds the threshold, in the case of the compressors, the signal

level is decreased according to the processor settings, the opposite occur when the VCA

circuitry is set as an upward expander.

Linear (1 :1)

Threshold

Input Signal Level

Figure 2.11 Typical expansion curves for expanders: output level versus Input level.

When the expansion ratio slope is low enough, as seen in Figure 2.12, it corresponds to

extreme expansion and is often known as gating. This dynamic range processor allows a

signal above a selected threshold to pass through to the output at unity gain and without

signal level processing; however, once the input signal level falls below the threshold

level, the gate acts as an infinite expander and effectively mutes the signal by fully

attenuating. As presented in Figure 2.12 the output of a gate is linear above the threshold

and follows an infinite expansion slope (is turned off) below this point (Huber and

Runstein, 2005).
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Figure 2.12 The output of a gate is linear above the threshold and follows an
infinite expansion slope below this point gate (Huber and Runstein, 2(05).

2.6 Signal Processing Techniques used in Vibro-accoustic Mission Synthesis

This section describes the signal processing fundamentals used into the Mildly Non-

stationary Mission Synthesis (MNMS) algorithm. This algorithm was developed for the

purpose of producing shortened vibration mission signals which are representative

experimentally measured vibro-accoustic data. The algorithm uses the Discrete Fourier

Transform (DFT), the Orthogonal Wavelet Transform (OWT) and bump (shock)

extraction and reinsertion techniques.

2.6.1 The Mildly Non stationary Mission Synthesis Algorithm

The Mildly Non stationary Mission Synthesis Algorithm (MNMS) was developed to aid

engineers in defining vibration mission signals for vehicle components (Giacomin et al.,

1999). According to Giacomin "it represents a method of summarising mildly non

stationary vibration records to obtain short mission signals that can be used for

experimental or numerical testing purposes". The MNMS algorithm creates mission

signal by inserting characteristic bumps (shock events) from an original recorded signal

into a synthesised background signal which equivalent to the underlying random Gaussian

vibration of the original process. In this context the word 'bump' is taken to mean a high

amplitude transient event which can cause the overall time history to deviate from a

stationary Gaussian model. The output mission signals replicate the fundamental vibration

characteristics of the input signal in terms of the fundamental global signal statistics such

as r.m.s., skewness, kurtosis, CF and the PSD (Giacomin et al., 1999; Grainger, 2001;

Abdullah et al., 2004). The signal processing tools used in the MNMS algorithm are the
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Discrete Fourier Transform (DFT), the Orthogonal Wavelet Transform (OWT) and data

correlation functions. The algorithm consists of three main processing stages which are:

1. Application of the Discrete Fourier Transform (DFT) to the original vibration time

history, and use of the resulting spectra to generate a short artificial background

signal by means of Fourier inversion which has the same Power Spectral Density

(PSD) as the input vibration data;

2. Application of the Orthogonal Wavelet Transform (OWT) to the steering vibration

data, and grouping of wavelet levels to represent a small number of filter banks

that subdivide the vibrational energy;

3. Identification of bump events within each wavelet group, and the reintroduction of

bumps into the short Fourier background signal so as to peak correct it, returning a

mission signal that replicates the non-Gaussian vibrational behaviour of the

original steering vibration signal.

Each stage of the MNMS algorithm will be explained in depth into the next sections. The

performance of the algorithm is dependent on the degree of non-stationary behaviour of

the input road data. Giacomin et al. (1999) have published some results for seat guide

vertical acceleration data, producing mission signals which are representative of the

original road data in terms of PSD, r.m.s. value, kurtosis and crest factor values with

mission signals statistics being typically within 5% of the input signal values in terms of

r.m.s. and within 20% of the Kurtosis. Instead, Grainger (2001) has studied the

algorithm's performance when it is applied to automobile wheel hub acceleration data

containing a high number of high amplitude transient events. Results suggested the

algorithm's performance is degraded when applied to wheel hub data containing

increasing numbers of high amplitude transients with kurtosis and Crest Factors being

underestimated by up to 60% in the worst case. On the other hand, Abdullah et al. (2004)

applied the MNMS algorithm to fatigue mission synthesis of road vehicle suspension arm

strain histories. For both strain time histories which were considered, all mission RMS

values were found to be within the range ± 5%. For the kurtosis values, however, the

tensile mean strain loading missions were in the range ±25% while the compressive

means strain loading missions were in the range from -26% to 217%.
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2.6.2 The First Stage: Synthetic Fourier Base Signal

The first stage in the MNMS algorithm is to synthesise a random time history which has

the same PSD as the original vibration data. The Discrete Fourier Transform is used to

obtain a spectral estimate of the vibration time history. Each frequency step value of the

PSD is characterised by amplitude,

(2.31)

where S(fk) is the underlying PSD of the Gaussian signal, fl.! is the frequency step and

!k is the frequency of the harmonic in question. The amplitudes Ak are used to generate a

short synthetic signal which serves as the basis for constructing the vibration mission

signal. The Fourier synthetic signal is generated from a Fourier series expansion using a

large number N of harmonics, expressed as
N

x(t) =L Ak cos (27£I,+ ¢Jk ) (2.32)
k=!

where the phase angles ¢Jk are chosen in a random manner, in-line with the traditional

assumption of stationary Gaussian hehaviour. The approach guarantees that the short test

signal accurately reproduces the PSD of the original steering data.

2.6.3 The Second Stage: Wavelet Decomposition and Wavelet Level Grouping

In order to construct a vibration mission signal, high amplitude bump events from the

original vibration data are identified and saved so as to be used later for correction of the

synthetic background signal. For this purpose, the recorded vibrational data is separated

into a number of frequency intervals, each of which is related to physical phenomenon

that occurs during the motion, i.e. the resonance of the automobile body as an entire mass,

torsion and bending of the chassis in multiple directions, tyre resonances, etc. By treating

each of the constituent vibration components separately, the bump events occurring in the

different frequency intervals do not cover each other or interfere with each other in any

way during the signal processing. Figure 2.13 illustrates schematically the operations

performed by the second stage of the MNMS algorithm.
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Figure 2_13 Schematic representations of the wavelet decomposition and

grouping procedure (Adapted from Giacomin et al., 1999).

2.6.4 The third stage: bump event selection and processing

The third processing stage of the MNMS algorithm seeks to locate bump events in each

wavelet group of the original vibrational data. These high amplitude events must be

reinserted into the synthetic background history in order to 'correct' it, returning a

mission signal that replicates the non Gaussian vibrational behaviour of the original

vibration signal.

Bump events are identified by searching the wavelet group time histories for outlying data

points which exceed a prescribed threshold, or trigger level, which must be defined

manually individually for each wavelet group. Each trigger level is specified by the user

in terms of a multiple of the standard deviation (r.m.s. value) of the wavelet group under

consideration as illustrated in Figure 2.14(a).
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Figure 2.14 (a) Schematic diagram of bump identification using trigger levels and (b) Schematic diagrams
of the determination of a temporal bump time extent (Adapted from Abdulla et al. 2004).

Once a bump event exceeding a specified trigger level has been identified, its time

duration must be determined by the software algorithm. The determination of bump time

extent is performed by means of a search which identifies the points at which the signal

envelope inverts from decay behaviour. By considering the decay envelope at either side

of the maximum peak of a transient, the end points of the bump can be defined as shown

in Figure 2.14(b).

2.6.5 The Fourth Stage: Bump Reinsertion

After all the bumps have been identified in the respective wavelet groups the MNMS

algorithm provides two methods for bump reinsertions which are: proportional reinsertion

and maximum reinsertion.

2.6.5.1 Proportional Reinsertion
The proportional reinsertion introduces a number of bump events in proportion to the

signal compression ratio (Giacomin et al., 1999). In this context, the compression ratio is

defined as the ratio between the time extent of the original road signal and the time extent

of the shortened mission sequence. After identifying and defining the time length of each

bump the bumps were counted and sorted. For each wavelet group, each bump was

ranked by its maximum peak amplitude (absolute CF) and then sorted by rank into

descending order. Having sorted all bump events within their respective wavelet groups,

bump events were selected for reintroduction into the synthetic signal wavelet groups by

moving down the sorted list in steps equal to CR, the compression ratio. In doing this,

bump events of various intensities appeared in the output mission signals.
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2.6.5.2 Maximum Reinsertion

On the other hand, the maximum reinsertion introduces all bump events (beginning with

the most severe) which can fit into the synthetic signal within the space available, in an

attempt to more closely reproduce the kurtosis, or relative peakedness, of the original

data. The scheme of non-proportional reinsertion leads to issues regarding the amount of

space available in the synthetic signal with mission signal time compression. For the first

(lowest frequency) wavelet group, not all of the smaller bumps can be fitted to the

synthetic signal as the compression ratio increases because the base signal becomes

saturated, and there is insufficient space available to fit all bumps. For the wavelet groups

with higher dominant frequencies, most or all bumps can be fitted to the short test signals

at high compression ratios as the transient events extracted from the original data wavelet

groups are much shorter in duration.

2.6.5.3 Reinsertion correlation procedure

In order to reduce the impact of bump correction on the PSD of the synthetic Fourier

background signal, each selected bump event is introduced at a location in time where the

synthetic signal most closely resembles the transient event. This location is determined

by means of a correlation procedure in which the bump event is moved along the whole

time history of the synthetic signal, and the two signals are compared in terms of a root

mean square difference at each position which is evaluated as

{ }

-1/2
1 M 2a diff = M f,; (xj - X Fourier .] ) (2.33)

where M is the number of data points of the bump event. The point in the background

signal with the lowest root mean square difference (corresponding to the highest

correlation) is selected as the insertion point, and the bump event of time extent (M -1)at
then substitutes the similar event in the synthetic signal.

2.6.6 Synchronisation Procedures

After being decided the method of bump reinsertion the MNMS algorithm provides three

different procedures to reinsert the bump event which are: non-synchronisation procedure,

synchronisation procedure 1 and synchronisation procedure 2 (see Figures 2.15 to 2.17).
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2.6.6.1 Non-synchronised procedure

The non-synchronised procedure treats each wavelet group independently assuming that

transient events occurring in one wavelet group bear no relation to those of another (see

Figure 2.15). Firstly, the synthetic signal is decomposed and grouped according to the

wavelet grouping strategy applied to the original vibration data. Bumps are then

reinserted independently at the point of closest similarity (highest correlation) between

the transient events and their respective wavelet groups of the synthetic Fourier signal.

<Dill
Extract bumps from
individual wavelet
groups

®CB
Rank bumps by
maximum absolute
CF within their
wavelet groups

Insert bumps
individually into their
respective wavelet
group of the synthetic
signal at the point of
closest similarity
(highest correlation)

WG1

Figure 2.15 Non-synchronised bump reinsertion procedure (Adapted from Giacomin et al., 1999).

2.6.6.2 Synchronisation procedure 1: wavelet group synchronisation

The synchronisation procedure 1 involves the synchronisation of bump events across

wavelet groups (see Figure 2.16). The logic behind this method is the observation that a

single sharp road irregularity will approximate an impulse function. In the frequency

domain energy would be present in the input spectrum up to a critical cut-off frequency.

For an input signal of this type, the vibrational energy would be spread across many, if

WG1
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not most, wavelet groups. The bump events in the various wavelet groups would

therefore be expected to occur together (in time). Because of this, non-synchronised

reinsertion of such events would smooth the peaks of the overall mission time history,

formed by the summation of the peak corrected wavelet groups, and would not correctly

represent the characteristics of the original road data.

(i)GJ
Extract bumps from
individual wavelet
groups

Check for
synchronisation with
wavelet group 1

@ill
Combine all bumps
occurring
simultaneous to a WG
1 bump into a single
cluster, and insert the
duster into the
synthetic signal at
point of greatest
similarity to the WG 1
bump

WGl

Figure 2.16 Synchronised bump reinsertion procedure 1 (Adapted from Giacomin et al., 1999).
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Synchronisation procedure 1 attempts to alleviate this problem by reinserting together (in

time) those bump events from various wavelets groups that occur simultaneously, due to

impulsive inputs to the vehicle owing to road irregularities. Wavelet group 1, which spans

the lowest frequency range under consideration, is used as the basis for the

synchronisation check. Specifically, the check returns a positive result if the sampled

point of the maximum peak of a transient is located within the limits of a wavelet group 1

WGl
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bump event. A negative result is returned if a bump is found not to be synchronised with

any of the lowest frequency (group 1) transients. All bumps from wavelet groups 2 and

above that are found to occur at the same time as a wavelet group 1 event are then

clustered together with that bump. These clusters of synchronised bumps are reinserted

into their respective groups of the synthetic Fourier signal at the point of closest similarity

between each wavelet group 1 transient and wavelet group 1 of the synthetic Fourier

signal. Independent bumps, which have returned a negative result for synchronisation,

are then fitted in the remaining unoccupied space in each of the Fourier wavelet groups.

2.6.6.3 Synchronisation procedure 2

The synchronisation procedure 2 involves reinsertion into the Fourier signal of whole

segments of the original overall time history (see Figure 2.17). This procedure is

considered the most conservative of the bump reinsertion strategies in which has been

retained all of the original amplitude and phase relationships of a bump event extracted

from the original data.

0) Determine position of
each bump event from
the individual wavelet
group signals

Extract a section of the
original time history (all
wavelet groups) which
covers the time extent of
the bump event

""'t. -,fy 1/'-" -"I/V' .-IV' /\.I\, AnyWG
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Original
Road Signal
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® Fit the section of the

original time history to the
synthetic signal

Figure 2.17 Synchronised bump reinsertion procedure 2 (Adapted from Giacomin et al., 1999).

Synchronisation procedure 2 firstly identifies bump events on a wavelet group by wavelet

group basis in the same way as the previous two procedures. The procedural difference

involved is in defining the length of a bump, and the subsequent cutting operation to

remove the transient events from the overall time history. The start and finish points of

all bumps identified within the individual wavelet groups are firstly compared, and bumps

that overlap are concatenated to define a single transient event in the overall time history.

Complete segments are removed from the original vibration data time history, rank them

by peak Crest Factor, and finally, reintroduce them one by one into the overall synthetic
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Fourier signal utilising a least-squares correlation procedure. By reinserting a segment of

the original time history which has been identified as owing to the presence of shock

transients, issues regarding the synchronisation of individual bump events are bypassed

thus preserving all of the original amplitude and phase relationships of the original data.

2.6.7 Mission Synthesis Results

The flow chart for the complete MNMS algorithm as it is shown in Figure 2.18. User

inputs can be performed either directly from terminal or by means of a parameter file. The

program is written in Salford Software (Fortran), and runs on Windows-compatible pes.

Calculate and visualise the PSD of the Road Data

Perform and Visualise the Wavelet Decomposition of the Road Data

Fourier Synthetic Signal Generation at Desired Compression Ratio

Wavelet Decomposition of the Fourier Synthetic Signal

Bump Selection on each Wavelet Group

Bump Ordering from SmaUest to Largest Based on Peak Amplitude

Smoothing of end transitions at each Bump Reinserlion Point

Calculation of Global Statistics of the Corrected Synthetic Signal

Figure 2.18 MNMS algorithm flowchart (Adapted from Giacomin et al, 1999).



3. Considerations from Human Cognition

The goal of this chapter is to provide an introduction to the definitions from the field of

human cognition which are fundamental towards the understanding of the experimental

protocols used during the research, as well as to the methods used when evaluating the

experimental responses in this thesis.

3.1 Human Perception

How people understand, process ami collect the information depends on how it is

compared against information already stored in memory (Kosslyn et al., 1994; Me Adams

et aI, 1993). Human cognition is a set of complex and interactive processes (Loomis and

Lederman, 1998) because each cognitive system is intertwined and interacts with a range

of other systems. Cognitive processes involve perceptual processes by which a stimulus is

detected. The stimulus can be perceived as a discrete event or as a stream of events.

According to Dror (2005) perceptual mechanisms can be adjusted in terms of sensitivity

thresholds, stimulus segmentation and other parameters. Therefore, much of what humans

perceive is dependent on the perceiver rather than the object of perception (Dror and

Dascal, 1997). The way in which a vibrational stimulus is experienced depends therefore

upon several factors amongst are the person's past experiences, the person's memory and

on a large variety of other psychological variables.

The mind and the brain are dynamic systems that play active roles in how people perceive

and detect. Human perception depends on a range of factors, such as mental states, which

play a critical role in how perceptual information is processed. Hopes, fears, and
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expectations affect what people detect. There are numerous phenomena that can illustrate

how the mind plays an active role in how humans perceive and construct reality, such as

motivation, wishful thinking, cognitive dissonance, self-fulfilling prophecies, and

confirmation bias (Darley and Gross, 1983; Snyder et al., 1977).

Dror (2005) stated that there are different people, with different experiences, different

brains and different sensory mechanisms. This entails that people have different

perceptions. Even if people perceive the exact same thing, that percept is not necessarily a

true and accurate reflection of the 'objective reality'. This individualization of perception

derives from the active nature of cognition and the wide range of factors that affect what

and how people perceive.

3.2 Human Memory

Human memory is normally categorised as being of one of three different classes, these

being Sensory Memory (SM), Short Term Memory (STM) and Long Term Memory

(LTM) (Anderson, 1980; Baddeley, 1986; Tulving, 1972). Human memory is a series of

systems which store and retrieve information gathered through the senses. The systems

range in storage duration from fractions of a second to a whole lifetime, in capacity from

tiny buffers to vast storage areas of the long term memory system (Miller, 1956).

Atkinson and Shiffrin (1968) assumed that the progress of information through these

stores can be referred to as the Information Processing Model, which is presented in

Figure 3.1.

Rehearsed.............· .· .· .•Transferre !.~~~~~~~Long Term
Retrieved............. Memory

Environmenta...... Sensory
Stimuli Memory

.............. Short Term
Memory

Sensory Register
Perception

Temporary Storage
Consciousness

Permanent Storage

Figure 3.1 The flow of information through the memory system as proposed
by Atkinson and Shiffrin (1968).

Sensory Memory (SM) is taken to mean a holding system where information from the

environment enters the human information processing system. Modality specific sensory

registers exist in SM, and their function is to perceive information from the environment.

Miller (1956) stated that the sensory information store has unlimited capacity, and reacts
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to both visual and auditory information. Norman (1970) assumed that these registers have

the capacity to transform physical environmental stimuli into physiological

representations. In this form information is capable of being temporarily retained in the

memory system.

Within Short Term Memory (STM) there are three basic subdivisions: iconic memory,

acoustic memory, and working memory (WM) (McMahon and McMahon, 1982). Iconic

memory refers to the ability to hold visual images, while acoustic memory refers to the

ability to hold sounds. Webster's New World Medical Dictionary (2006) defines working

memory as "a system for temporarily storing and managing the information required to

carry out complex cognitive tasks such as learning, reasoning, and comprehension". This

term came into use with the publication of the book Plans and the Structure of Behavior

by Miller, Galanter, and Pribram (1960). Baddeley (2002) has described the use of this

term and its applications. Working memory is regarded as the major information

processor responsible for both high-level cognitive processing, such as constructing

mental models, integrating different mental representations, and short-term maintenance

of information involved in those processes (Baddeley, 1986; Miyake and Shah, 1999).

However, working memory has a very limited capacity and duration when people are

dealing with unfamiliar information. For example, according to an accepted cognitive

theory people are assumed to have a limited capacity of around seven chunks (Miller,

1956), where the term chunk is taken to mean a familiar pattern which is stored in LTM

for no longer than several seconds (Brown, 1958; Peterson and Peterson, 1959).

The Webster's New World Medical Dictionary (2006) defines long term memory as "a

system for permanently storing, managing, and retrieving information for later use. Items

of information stored as long-term memory may be available for a lifetime". Anders

(2002) stated that LTM is characterized by a lack of restrictions in two critical respects.

Firstly, LTM has the capability to store information in a relatively permanent manner, and

secondly, it seems to have a vast, virtually unlimited capacity to store information. People

are generally unaware of the vast bulk of information they have stored in LTM because

this information does not enter into conscious awareness until required. When certain

information is required, it is retrieved back into consciousness from LTM stores. The

knowledge is stored in LTM in the form of hierarchically organized, domain-specific

structures called schemas (Simon, 1974). In this context schemas can be generally viewed

44



as cognitive constructs that allow people to treat multiple elements of information in

terms of larger higher-level units. The performance of LTM suggests that people

continually store enormous amounts of information.

3.3 Parameters Affecting Decision Making

Decisions are the outcomes that result from assessing and evaluating factors, while

decision making is defined by Simon (1957) as the cognitive process leading to the

selection of a course of action among alternatives. These decisions are affected by the

way in which the decisions are made. A decision maker is thought to act according to his

or her understanding of the given situation; therefore the source of any error is to be found

in the person's previous knowledge or in the logical process followed when reaching the

decision. Often, decisions are said to be made based on instinct or intuition (Bannister and

Remenyi, 1999). Limitations of knowledge, personal experience, habits, cognitive ability,

culture or religious system can represent obstacles towards reaching a decision. However,

the effects on the decision making process and the relationships between these factors are

not fully understood.

Decision Making can be categorized as either rational decision making, which is

considered a logical process, or judgment decision making, which is considered a non-

logical (Simon, 1967a). In the first case a decision maker is considered as an expert, in

other words, the person who has all the knowledge relevant to make a decision. It is

assumed that the rational decision maker uses this information to form assessment criteria

which are used to assess decision alternatives. In this case, the decision maker seeks to

optimize his or her decision alternatives (Simon, 1967b). On the other hand, judgment

decision making deals with intuition and instinct (Simon, 1987). Moreover, for both types

of decision making there exist a number of cognitive and environmental influences which

affect the final decision. Among these are:

I. Information bias. This can occur when a subject is asked to choose among

alternatives which he or she has had previous experience of Russo et al. (1998)

affirmed that subjects unconsciously distort information. In his study, he found

that the formation of preferences occurs without instruction and this led to

subsequent predecisional distortion of product information.
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2. Cognitive biases. This can occur when the amount of information available

exceeds a decision maker' cognitive processing limits (Duhaime and Schwenk,

1985). A decision maker is often unable to cope with all the information relevant

to a decision, so he or she simplifies the decision making process by applying

cognitive filters or biases.

3. Time Stress. Time constraints can have a critical influence on a decision process

(Orasanu and Martin, 1998). The level of time stress within a situation dictates the

level of mental processes incorporated into the decision process. Relative to the

amount of information presented, Wright (1974) notes that under high time stress,

decision-making performance deteriorates when more rather than less information

is provided. In high time stress situations people tend to restrict their range of

focus on the environmental cues. Manipulating a large amount of data is not

consistent with human information processing capability, especially under stress

(Stokes, et al, 1992).

4. Risk. According to Miller (2006) the perception of risk is a feeling which is

psychologically linked to emotion, and these emotions are affected by how

decisions are framed. According to Miller's decision making theory, a choice is

the result of a weighting between a risk and an expected gain.

5. Uncertainty. The level of uncertainty surrounding a decision creates a bias that

alters the way in which information is gathered and the decision is made.

Uncertainty is the perceived gap between the information available and the

information a decision maker wants to have (Buchanan and Kock, 2000).

Uncertainty influences both the decision maker and the outcome of the decision.

3.4 Theory of Signal Detection

Theory of Signal Detection (TSD) is an approach which facilitates the quantification of

how people behave in detection situations (Tanner and Swets, 1954). TSD emerged as a

method for investigating the assumption that expectancy and payoff have a significant

influence on people in detection situations. Described in detail by Green and Swets

(1966), TSD is a model based on statistical decision theory and certain ideas about

electronic signal detecting devices. The starting point for signal detection theory is the

assumption that nearly all reasoning and decision making takes place in the presence of

some uncertainty. There are many applications for the Theory of Signal Detection in the
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fields of sensory detection (Palmer, 1994), recognition memory (Yonelinas et al., 1996)

and monitoring (De Carlo, 2003).

Theory of Signal Detection is applicable in any situation which can be considered to

consist of two discrete states of the world, signal and noise, which cannot be easily

discriminated (Green and Swets, 1966). In the detection situation, the observer must first

make an observation (x) and then make a decision about the observation. On each trial,

the observer must decide whether x is due to a signal which is present in a noise

background or to the noise alone. According to Gescheider (1997), when the signal is

weak the decision becomes difficult and errors are frequent. Figure 3.2 represents

graphically two distributions describing the random variation of the noise and of the

signal plus noise. Since the signal is added to the noise, the average sensory observation

magnitude will be greater for the signal plus noise distribution than for the noise

distribution. When the distributions are essentially the same, as seen in Figure 3.2 where a

signal plus noise distribution is indicated by a dotted line, they greatly overlap and the

decision making becomes difficult due to the lack of separation between the two stimuli.

! d' II.. ..I
j I

.J~(;L I
1 : !

NOISE
SIGNAL

+NOISE

Magnitude of sensory observation

Figure 3.2 Theoretical probability distributions of a "noise" and of a "signal - plus - noise"
for two different values of signal strength (Adapted from Baird and Noma, 1978).

The conceptual innovation of TSD was to consider as part of the testing and analysis the

effects of cognitive factors such as an observer's expectations and desires (Baird and

Noma, 1978).

3.4.1 Ideal Observers

Research has demonstrated that if a subject is attempting to maximize signal identification

the best decision strategy that he or she could employ would be that of an ideal observer

(Baird and Noma, 1978; Lapsley Miller, 1999). The concept of an ideal observer (Lawson
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and Uhlenbeck, 1950; Peterson et al., 1954) originated from detection tasks such as those

involved in radar operation. The ideal observer is a mathematical theory of a detection

task where the signal to be detected is noise degraded, and the observation of the signal is

limited to a finite period of time. The aim of the theory is to determine to what extent

noise limits the detection of the signal.

In order to behave as an ideal observer a subject must have stored in memory the signal

and noise distributions, or have some other way to gain access to them. In particular, an

ideal observer maps the external stimulus (a "noise" or a "signal plus noise") onto a value

x on the evidence axis and determines the probability of obtaining x from a noise and

signal plus noise distribution, independently. The detectability of the signals is quantified

by measuring how the errors are traded off as a function of the subject's. The TSD

assumes that an observer establishes a particular value as a cut-off point, or criterion, and

that the decision is determined by whether a particular observation is above or below the

criterion. According to Green and Swets (1966) no observer can make perfect detections

of a signal masked by noise if there is overlap between the evidence distributions

associated with a noise and a signal plus noise events, an example in this context was

presented in Figure 3.2 when a signal plus noise distribution is drawn with a dotted line.

Peterson et al. (1954) derived the theory of Signal Detection and showed that the optimal

observer used the likelihood ratio decision axis, or a decision axis strictly monotonic with

likelihood ratio, as a basis for decisions about the existence of the signal. If the signal is

known to the observer exactly, and the observer can transform the evidence to a quantity

monotonic with likelihood ratio, then the observer is considered to be an ideal Signal-

Known-Exactly (SKE) observer. If the observer does not have an exact representation of

a signal, or if the observer is unable to use information about some property of a

deterministic signal, the observer is considered to be a signal-known-statistically (SKS)

observer.

The early radar engineers considered the ideal observer as a mathematical theory that

predicted the best possible performance for a particular class of signals, with particular

restrictions on the information the observer had about the signals (Peterson et al., 1954).

When the theory was extended to psychophysics, the emphasis changed. Unlike

engineers, psychophysicists were not interested in designing detection systems but were
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trying instead to understand existing biological systems that did not necessarily perform

ideally, and whose internal processes were usually inaccessible.

3.4.2 Detectability Measure, d'

According to Theory of Signal Detection (TSD) the separation of the noise and the signal

plus noise distribution along the evidence axis is an indication of the level of sensory

discrimination. In this context the term detectability refers to how well a stimulus can be

discriminated from a noise, thus an observer with a high sensitivity is one who can easily

distinguish a stimulus. The detectability measure normally adopted in TSD is known as

the d', which is determined by the separation between the mean of a noise and a signal-

plus-noise distributions, as shown in Figure 3.2.

When an observer is asked to chose between the two possible states (noise and signal-

plus-noise) during the course of a sensory exposure the combination of two stimulus and

two response categories produces a 2x2 matrix (see Table 3.1). It involves four classes of

joint events which are labelled as hits, misses, false alarms, and correct rejections.

Table 3.1 The four response outcomes of signal detection.

Responses

Yes No

Hit Miss

.e Signal +Noise
(Correct detection) (Incorrect rejection)

=j False alarm Correct rejection
Cl} Noise

(Incorrect detection) (Correct denial)

Figure 3.3 shows the relations between the presence and absence of a stimulus, random

variability and the decision criterion. The separation between the means of the two

standardized distributions is a measure of detectability which indicates how well the

subject can discriminate between the two events, and it is denoted as d'. The detection

task is easier for cases characterized by large separations and/or small variances.
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Figure 3.3 The signal detection diagram (Adapter from Heeger, 2(03).

For experimental protocols in which observers are requested to provide a simple "yes" or

"no" response, the detectability index d' can be estimated from the experimentally

determined hit rates and false alarm rates by means of the associated Z score values (see

Appendix C.l) using the relations below (Gescheider, 1997). The Z transformation

converts a hit or false alarm rate to a Z score (Le. to standard deviation units). /\ rate of

0.5 is converted into a Z score of 0, larger rates into positive Z scores, and smaller rates

into negative ones.

P (hit) = "number of yes" counted during signals present
number of signals

(3.1)

P (fi I I )
" number of yes" counted during signals present

aseaarm =------~~------------~~--~-----
number of non - signals

(3.2)

Z n = 1.0 - P (false alarms)

z; = 1.0- P(hit)

(3.3)

(3.4)

(3.5)where d' = Z Zn - sn

Figure 3.4 presents an example of distributions of a "noise" and a "signal-plus-noise"

expressed in Z scores values. Once the P(hit) and P(Jalse alarm) are determined, the

location of the criterion in both distributions is found by the subtraction of the P(hit) and

P(false alarm) from 1.0 and converting this value in Z scores (see Equations 3.3 and 3.4).
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The value of d', a measure of the observer's sensitivity to the signal, IS found by

subtracting ZSN from ZN (see Equation 3.5).

-3

I Criterion
I
~d'.: 1.66
~I

-3 -2

Figure 3.4 Distributions of a "noise" and a "signal plus noise" expressed
in Z score values (Gescheider, 1997).

3.4.3 The ROC curve

One of the most important concepts to come out of the Theory of Signal Detection (TSD)

is the Receiver Operating Characteristic (ROC) curve (Green and Swets, 1966; Swets,

1973) which was initially named an isosensitivity curve by Luce (1963) because all points

on the curve have the same sensitivity value. The ROC graphs are two-dimensional

graphs in which hit rate is plotted on the y-axis and false alarm rate is plotted on the x-axis

(see Figure 3.5).

0.4
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0.2

o 0.2 0.4 0.6 0.8

False Alarm

Figure 3.5 ROC curves for different detection criteria.
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The ROC curve summarises the observer's performance as a function of the observer's

decision criterion for all possible criteria (Green and Swets, 1966). As an example, Figure

3.5 shows different ROC curves in which detectability index values range from 0 to 3.0.

An individual ROC curve reflects the response of an observer to a single strength of

signal. If signal strength is increased, the ROC curve will have a more pronounced bow,

as seen in Figure 3.5. If signal strength is decreased, the ROC curve becomes flatter and

approaches the 45-degree diagonal line. Thus the amount of bow in the curve serves as a

measure of the perceived signal strength. Variations in the observer's criterion result in

different points along the ROC curve (see Figure 3.6). A single ROC curve is therefore a

representation of detection performance for a situation characterised by a constant

detectability index d' between a noise and a signal plus noise, but by changing values of

the receiver detection criterion. Figure 3.6 presents the relationship between an individual

ROC data point and the position of a noise and a signal plus noise distributions. The

points on the curve indicate the mapping of hits and false alarms for different positions of

the observer's criterion, while the dotted diagonal line represents the case where d'= 0,

when a noise and a signal-plus-noise distributions are identical.
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Figure 3.6 ROC curve for the signal plus noise and the noise distribution shown (d'= 1) obtained over
different observer's criterion.

Algebraically, an ROC curve is calculated by solving Equation 3.5 which means different

curves represent different values of detectability index. The prediction of the Theory of

Signal Detection states that if a subject in a discrimination experiment produce a (False-

alarm, Hit) pair which belongs on a particular ROC curve (i.e. [0.2, 0.6], d'=l), the same
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subject should be able to display any other (False-alarm, Hit) pair on the same curve (i.e.

[0.4,0.8], d'=l) (Macmillan and Creelman, 2005).

Discrete observers are those whose outputs produce only a (False-alarm, Hit) pair which

corresponds to a single point in the ROC space similar to those shown in Figure 3.7.

Using the ROC point method each observer sets a criterion value which will determine a

point in the ROC space. Points appearing close to the left-hand side upper comer of the

ROC space are associated with classifications characterised by only a few false positive

errors, while points appearing on the right-hand side lower comer are associated with

classifications producing frequent false alarms.
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Figure 3.7 A basic ROC points graph showing four observers' pair responses.
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4. Steering Vibration Measured from Road
Testing

The objective of this chapter is to describe the steering wheel acceleration data which was

used in the research presented in this thesis. As stated in Chapter 1, steering wheel

vibration can be considered an important source of information to the driver (Pak et al.,

1991). The acceleration level and spectral content of steering wheel vibration depend on

several factors including the direction of vibration, the nature of the road surface, the

dynamic characteristics of the tyres, the automobile speed and the design of the vehicle

main suspension and steering mechanism. Vibrational energy at the steering wheel can

reach frequencies of up to 300 Hz (Giacomin et al., 2004) and vibrational modes of the

steering wheel and column can produce large resonant peaks in the steering wheel power

spectrum at frequencies from 20 to 50 Hz (Pottinger et al., 1986).

Steering wheel acceleration data from tests performed on several road surfaces and

several automobiles were used during the research described in this thesis to provide a

wide statistical base of signals from which to define test stimuli. In particular, signal

analysis was applied to quantify the typical statistical variation which occurred in the

steering wheel vibration when driving over different road surfaces. Variations in the

magnitude of the steering acceleration signals are chiefly caused by variations of the road

roughness and by variations of the automobile speed (Gillespie and Sayers, 1983;

Rouillard and Sek, 2002), where road roughness has been defined by the ASTM E1364-

95 (2005) as "the deviation of a surface from a true planar surface with characteristic

dimensions that affect vehicle dynamics, ride quality, dynamic loads, and drainage".

While the data presented in this chapter cannot be considered to be a definitive scientific

analysis of road vehicle vibration, the values obtained can be considered to be typical of
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the automotive vibration problem, thus useful for the purpose of defining specific

laboratory-based experiments which can be considered representative of the automobile

environment.

4.1 Experimental Vibration Tests

Before performing any laboratory tests of human ability to detect road surface type, or of

human sensitivity to changes in the statistical properties of the steering acceleration

signals, typical test stimuli from real automobiles had to be selected which could serve as

the base stimuli for use in the research.

From a review of the available literature treating automotive vibration and from a review

of the aims and objectives of the planned experimentation it was decided that the group of

steering acceleration signals which could be used to study the human ability to detect road

surface type should satisfy a set of logical conditions which can be summarised as the

following:

1. The stimuli should come from normal production automobiles of the most

commonly encountered manufacturers such as Ford, Renault, Toyota and

Volkswagen and from the most commonly encountered market segments defined

by the International Organization of Motor Vehicle Manufacturers, "Organisation

Internationale des Constructeurs d' Automobiles" (OICA, 2008).

2. The stimuli should have been produced by commonly encountered road surfaces

such as city asphalt, pave', potholes, bumps, country asphalt and smooth

motorway surfaces, so as to be representative of ordinary driving conditions

(Giacomin and Gnanasekaran, 2005).

3. The automobile test speeds should be reasonable values which are commonly used

when driving over each specific type of surface (Department of Transport, 2006).

4. Where possible, the choices described by points 1 through 3 above should be

made in such a way as to be as close as possible to the values used by the testing

programmes of the major European automobile manufacturers, given their vast

experience in the field of testing.

5. Where possible, the choices described by points 1 through 3 above should be

made in such a way as to widen the amplitude range, the frequency range and the

frequency distribution of the stimuli so as to produce the widest operational

envelope of test stimuli.

55



4.2 MIRA Tests

Some of the steering wheel acceleration signals used in the research were provided by

MIRA (Motor Industry Research Association). These acceleration measurements were

performed at MIRA's proving ground in Nuneaton, Warwickshire, UK, which has a

comprehensive range of circuits and facilities which are used to carry out a wide range of

tests (MIRA Ltd, 2006).

4.2.1 Acceleration Measurement

Acceleration measurements were made at the automotive steering wheel. The

measurement point was on the surface of the steering wheel at the 60° position (two

o'clock position) with respect to top centre. This location coincides with a typical grip

position of the driver's hand when holding an automotive steering wheel (Giacomin and

Gnanasekaran, 2005).

All data were measured using an accelerometer which was clamped to the steering wheel

measurement position by means of a mounting bracket of sufficient stiffness to guarantee

accurate measurements to frequencies in excess of 500 Hz. The steering wheel

acceleration time histories were digitally acquired using a PC-based digital data

acquisition system running MIRA's own in-house software. The data acquisition system

was placed inside the vehicle, and the data acquisition was triggered by the driver when

driving over each road surface at a single constant speed. The sensors used in the road test

data acquisition were Kyowa model AS-5GB accelerometers. The calibration of the

MIRA measurement equipment was guaranteed by regularly scheduled calibration tests

and by an internal quality assurance scheme.

4.2.2 Automobile Specifications

The automobile used by MIRA during the experimental vibration test was an Audi A4

model year 2000, type 4/5S SAL (4 doors, 5-speed manual transmission, saloon sedan).

The engine was a turbocharged diesel 4-cylinder 1.8L with an EFi (Electronic Fuel

injection) fuel system. The Audi A4 steering system was a rack and pinion Power Assist

Steering (PAS) (see Chapter 1). The front suspension was an independent. four-link,

double wishbone, and anti-roll bar (commonly abbreviated as I.4Li.DW.ARB.), while the

rear suspension was an independent, trapezoidal link and anti-roll bar (commonly

abbreviated as I.TzLi.ARB.). The front and rear tyres specifications were P195/65 R 15
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meaning tyres from a passenger car (P), nominal section width in mm of 195, an aspect

ratio of 65 for the ratio of the height to the total width of the tyre, Radial (R) construction

of the fabric carcass of the tyre and a rim diameter in inches of 15.

4.2.3 Description of Road Surfaces

The road surfaces used to measure the test stimuli were a Cobblestone surface, a Concrete

surface, a Low Bump and a Tarmac surface. Figure 4.1 presents the four road surfaces as

viewed from directly above and as seen from a distance as when driving, along with the

automobile velocity at which they were measured.

Cobblestone Road (vehicle speed 30 Kmlh)

Concrete Road (vehicle speed 96 Km/h)

Low Bump (vehicle speed 50 Km/h)

Tarmac Road (vehicle speed 96 Km/h)

Figure 4.1 Road surfaces used by MIRA for their steering wheel vibration tests.
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The four surfaces can be divided into two major categories, surfaces which produce a

transient or impulsive input to the automobile and surfaces which produce a nearly

stationary stochastic input (Giacomin and Masoero, 1993; Brucella et aI., 1999; Rouillard

et aI., 2000). The first category includes the low bump which is basically an obstacle

placed across a surface in the path of the automobile which produces an impulsive input.

According to the Department of Transport (2006) in the UK this kind of obstacle is used

in urban areas such as town centres, high streets, residential roads and in the vicinity of

schools, therefore the automobile speed should be less than 40kph when driving over the

obstacle.

The remaining surfaces measured by MIRA belong to the second category. The

cobblestone surface is formed of rectangular stones such as those found in many Italian

and French cities or in the city centre road surfaces in UK. The Department of Transport

(2006) in the UK establishes a speed of less than 40kph to drive over such surfaces, the

aim of this limit is to reduce vehicle speed due to the possible presence of vulnerable road

users such as cyclists, children or the elderly. The concrete surface is formed by pieces of

plain concrete which are coupled by means of expansion joints. The Tarmac surface,

properly referred to as bituminous macadam or "Bitmac" for brevity, has the characteristic

of being a smooth surface which is widely used to surface pavements, highways and even

internal floors. The term bituminous refers to the product called bitumen which is

produced by the oil-refining and petro-chemical industries, while the term macadam

refers to the process of binding together smaller aggregates (BS 13108-1, 2006). The

smoothness of the surface is determined by the aggregate type. The concrete surface and

the tarmac surface are predominately used in non-built up areas or in built up areas where

a higher speed is both safe and appropriate. Speeds above 90kph are common for these

two types of road surfaces (Department of Transport, 2006). The four road surfaces

measured by MIRA are of different nature thus they produce steering acceleration

measurements of different amplitude and frequency distribution.

4.2.4 Signal Processing Analysis

Steering wheel tangential acceleration time histories were measured for the Audi A4

when driving over the four surfaces shown in Figure 4.1. For each road surface a 2 minute

data recording was available from experimental testing. From each 2 minute recording a

10 second data segment of the tangential direction steering wheel acceleration time
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history was extracted from each data set to serve as test stimuli. The individual segment

for each surface type was selected such that the root mean square value, kurtosis value

and power spectral density were statistically close to those of the complete 2 minute

recording. Figure 4.2 presents the single 10 second time history segment of each of the

four test roads.
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Figure 4.210 second segments of the tangential acceleration time history measured at the steering wheel
for each of the four road surfaces (The MIRA test).

8 9 10

The global statistical properties calculated for the complete original 2 minute recording of

each road surface is presented in Table 4.1 along with the automobile speed used during

the measurement. The global statistical properties were calculated using the equations

described in Chapter 2 (see Equations from 2.6 to 2.10). Results from Table 4.1 suggest

that vibration at the steering wheel achieved root mean square (r.m.s.) acceleration levels

from a minimum of 0.056 mJs2 (for the tarmac surface) to a maximum of 0.287 mJs2 (for

the cobblestone surface). The kurtosis values were close to 3.0, suggesting a Gaussian

distributed process, in all cases except for the low bump which had instead a kurtosis

value of 12.672. The acceleration stimuli had skewness values which were close to 0.0

suggesting a Gaussian distributed process, in all cases except for the low bump which had

a skewness value of -0.401. The maximum crest factor (CF) was obtained in the case of

the low bump which produced a value of 7.485, while the minimum CF was found for the

tarmac surface with a value of 3.872. Results for the vibration dose value (VDV) varied

from 0.130 ms-1.75for the tarmac surface to 0.838 ms-1.75for the low bump.
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Table 4.1 Global statistical properties of the four road stimuli (The MIRA test).

Global Statistics and Characteristics
Type of Road r.m.s Kurtosis Skewness CF VDV Speed

Surface (m/s2) (dimensionless) (dimensionless) (dimensionless) (ms·J•7S) (km/h)

Cobblestone 0.287 3.465 -0.002 4.710 0.736 30
Concrete 0.099 3.114 0.073 4.280 0.222 96
Low bump 0.216 12.672 -0.401 7.485 0.838 50
Tarmac 0.056 2.997 0.052 3.872 0.130 96

The power spectral density (PSD) of each of the two minute acceleration signals was

calculated and the results are presented as Figure 4.3. Observation of the results suggests

that the principal frequency content is mostly in the range from 0 to 80Hz for all four road

surfaces. The highest peaks in the vibrational energy were found for the cobblestone

surface, while the lowest peaks were found for the tarmac surface. The frequency

distributions suggest that the higher peaks of energy correspond to the typical automobile

resonance frequencies (Hamilton, 2000; Kulkarni and Thyagarajan, 2001; Pottinger and

Marshall, 1986). The first region of resonance behaviour in the region from 0 to 5 Hz is

common in any road data due to rigid body motion of the automobile chassis on the main

suspensions. The second broader resonance region covering frequencies from 5 to 13 Hz

can be associated with the behaviour of suspension units separately or with the rigid body

motion of the engine/transmission unit. The third region resonance behaviour distributed

between 13 and 22 Hz may reflect low frequency flexible body modes of the chassis.

Finally, the fourth region from 22 to 100 Hz is probably mostly defined by higher-

frequency modes of the chassis and by tire resonances (Giacomin and Lo Faso, 1993;

Pottinger and Marshall, 1986).
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Figure 4.3 Power Spectral Densities (PSD) calculated from the four tangential acceleration time histories of
the 2 minute duration which were measured at the steering wheel (The MIRA test).

4.3 Michelin Tests

Some of the steering wheel acceleration signals used in the research described in this

thesis were provided by the Michelin Group. The acceleration measurements were

performed at the Claremont-Ferrand proving ground in the province of Auvergne, France,

which has a comprehensive range of circuits and facilities which are used to carry out a

wide range of tests.

4.3.1 Acceleration Measurement

Acceleration measurements were made at the steering wheel in the same manner as the

MIRA test which was described above in section 4.2.1. The steering wheel vibrations

were measured by means of a tri-axial piezoresistive accelerometer (Entran EGAS3-CM-

25). The acceleration signals were amplified by means of an Entran MSC6 signal-

conditioning unit, and stored using 6 channels of a Sony PC 216A Digital Audio Tape

(DAT) recorder and monitored by a Tektronix TDS 210 digital oscilloscope. The DAT

sampling rate chosen for the vibration measurements was 5 kHz. The steering wheel

acceleration time histories were digitally acquired using a PC-based digital data

acquisition system running Michelin's own in-house software.
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4.3.2 Automobile Specifications

The automobile used by Michelin during the acceleration measurements was a Renault

Megane 1.9 dTi model year 1996, type 2+2 FHC (Fixed-Head Coupe), with 3 doors and a

5-speed manual transmission. The engine was a turbocharged diesel direct injection

system (dTi) 4-cylinder 1.9 1. The Renault steering system was a rack and pinion Power

Assist Steering (PAS). The front suspension was an independent and Macpherson strut

(commonly abbreviated as 1.MS.), while the rear suspension was an independent

(commonly abbreviated as 1.). The front and rear tyre specifications were P175/65 R 14

(for tyre code description see section 4.2.2).

4.3.3 Description of Road Surfaces

The road surfaces used by Michelin to measure the steering wheel acceleration stimuli

were officially named harsh surface and noise surface by the Michelin test centre. Figure

4.4 presents these two road surfaces as viewed from directly above, and as seen from a

distance as when driving, along with the automobile test velocity. The harsh surface

produced a transient or impulsive input to the automobile, while the noise surface

produced a nearly stationary vibrational input.

Harsh Road (vehicle speed 40 Km/h)

Noise Road (vehicle speed 80 Kmlh)

Figure 4.4 Road surfaces used by Michelin for their steering wheel vibration tests.

The harsh surface is a rectangular obstacle which produces impulsive input. This obstacle

is basically a metal bar which is placed across an asphalt surface in the path of the
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vehicle. The dimension of the bar is 100 mm in length by 25 mm in height. Given the

nature of the bar, which resembles certain traffic calming measures adopted in cities, test

speeds are normally less than 40 kph. The noise surface is a form of asphalt road which is

widely encountered on pavements and highways. Speeds above 90kph are common for

this kind of road surface. The two road surfaces were chosen because they represent a

type of commonly encountered driving condition and because one of them, the harsh

surface, produces great amounts of low frequency vibration while the other, the noise

surface, produces great amounts of high frequency vibration.

4.3.4 Signal Processing Analysis

For each road surface a 1 minute data recording was available from experimental testing.

A 10 second data segment of the tangential direction steering wheel acceleration time

history was extracted from each data set to serve as test stimuli. The segments were

selected such that the root mean square value, kurtosis value and power spectral density

were statistically close to those of the complete recording. Figure 4.5 presents the time

history segments selected for each of the road surfaces. As expected, different shapes and

different acceleration levels are observed between the two road surfaces.
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Figure 4.5 10 second segments of the tangential acceleration time history measured at the steering wheel
for each of the two road surfaces (The Michelin test).

The global statistical properties calculated for the complete original 1 minute recording

over each road surface is presented in Table 4.2 along with the automobile speed used

during the measurement. Global statistical results were calculated using the equations

described in Chapter 2 (see Equations from 2.6 to 2.10). Table 4.2 suggests that vibration

at the steering wheel achieved root mean square (r.m.s.) acceleration levels of 0.710 rn/s2

for the noise surface and of 1.121 rn/s2 for the harsh surface. As occurs with Gaussian

distributed processes, the noise surface had a kurtosis value close to 3.0 and a skewness

value close to 0.0. The harsh surface, instead, produced a kurtosis value of 17.133 and a
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skewness value of 0.986, which suggests that its acceleration data is not Gaussian

distributed. The harsh surface also had the higher crest factor (CF) and VDV values

compared with those obtained for the noise surface. The acceleration levels achieved for

these two road surfaces were higher than those achieved in the MIRA measurements,

where the acceleration level achieved by all the road surfaces was below 0.3 rnIs2•

Table 4.2 Global statistical properties of the two road stimuli measured (Michelin test)

Global Statistics and Characteristics
Type of Road r.m.s Kurtosis Skewness CF VDV Speed

Surface (m/s2) (dimensionless) (dimensionless) (dimensionless) (ms·1.7S) (kmlh)

Harsh 1.121 17.133 0.986 8.312 4.031 40
Noise 0.710 2.726 0.092 3.200 1.620 80

The power spectral density (PSD) calculated for each acceleration measurement is

presented in Figure 4.6. As with the MIRA road surfaces (see section 4.2.4), the principal

frequency content is in the range from 0 to 80 Hz for both road surfaces. The PSDs

suggest that the highest peaks in the vibrational energy were found for the harsh surface,

while lower peaks were found for the noise surface. The acceleration power spectral

densities were found to be different between these two road surfaces, and also different

from those produced by the MIRA road surfaces shown in Figure 4.3.
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Figure 4.6 Power Spectral Densities (PSD) calculated from the two tangential acceleration time histories of
the 2 minute duration which were measured at the steering wheel (The Michelin test).

4.4 Uxbridge Tests

In order to provide the widest possible statistical base of steering wheel acceleration

signals a small number of measurements were also performed by the author over local

roads whose characteristics differed from those which are typically found at the testing

facilities of the motor vehicle manufacturers. The acceleration measurements were
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performed over road surfaces in and around Uxbridge, West London, UK. The road

surfaces were chosen due to their appearance and physical composition, which differed

significantly from the MIRA and the Michelin road surfaces.

4.4.1 AccelerationMeasurement

Acceleration measurements were made at the steering wheel as described previously in

section 4.2.1. An example of the accelerometer position (two o'clock position) adopted

for the Uxbridge measurements is presented in Figure 4.7. The direction of measurement

for the steering wheel was taken along the tangential axis of the steering wheel.

Figure 4.7 Test measurements point for the accelerometer position at the steering wheel.

The steering wheel acceleration was measured by means of a SVAN 947 Sound and

Vibration Level Meter and Analyser manufactured by SVANTEK Ltd., which uses a Low

Impedance Voltage Mode (LIVM) accelerometer 3055Bl. The specifications of the

accelerometer and the test equipment are provided in Appendix A. The accelerometer at

the steering wheel measurement position was fixed by means of an aluminum clamp and

mounting screws which guaranteed sufficient coupling stiffness to perform acceleration

measurements in excess of 300 Hz. The geometrical dimensions of the steering wheel

clamp are provided in Appendix B. The acceleration signals were stored using the SVAN

947 by means of its fast USB 1.1 interface (with 12MHz clock) which created a real time

link for the application of the SVAN 947 as a PC front-end.

The SVAN 947 was run using a battery so as to eliminate electronic noise from vehicle

systems. The sampling rate chosen for the acceleration measurements was 1 kHz. The rate

of 1 kHz was sufficient to ensure that the acceleration stimuli were recorded with

65



adequate definition at the maximum frequency of interest of 512 Hz. The maximum

analysis frequency of 512 Hz was chosen based on the assumption that the vibrational

energy transmitted to the steering wheel can reach frequencies of up to 300 Hz when

driving over certain road asperities and that the largest resonances are presented in the

frequency range from 20 to 50 Hz (Pottinger and Marshall, 1986). The recorded signals

were reacquired and analyzed at the Perception Enhancement Systems Laboratory by

means of the T-MON module of the LMS CADA-X 3.5E software (LMS International,

2002), where signals were read as WAV files, transferred and converted to TDF (Test

Data File) files into the LMS software. The signals were then resample at 512 Hz.

4.4.2 Automobile Specifications

The automobile used for the steering wheel tangential acceleration acquisition was a VW

Golf 1.9 TDI model year 2005, type 5/5S HBK (5 doors, 5-speed manual transmission,

Hatchback). The engine was a turbocharged diesel direct injection (TDI) 4-cylinder 1.91.

The steering system was a rack and pinion Power Assist Steering (PAS). The front

suspension was an Independent, Macpherson Strut, Coil Spring with an Anti-Roll Bar

(commonly abbreviated as I.MS.CS.ARB), while the rear suspension was an Independent,

Torsion Bar, Coil Spring with an Anti-Roll Bar (commonly abbreviated as

I.TB.CS.ARB.). The front and rear tyres specifications were P205/55 R 16 (for tyre code

description see section 4.2.2).

4.4.3 Description of Road Surfaces

The eight road surfaces were used for the steering acceleration tests are shown in Figure

4.8. They were named by the author as: Broken, Broken Concrete, Broken Lane, Bump,

Cat's eyes, Cobbleston city, Country Lane and Motorway.
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Broken (vehicle speed 40 Km/h)

Broken Concrete (vehicle speed 50 Kmlh)

Broken Lane (vehicle speed 40 Km/h)

Bump (vehicle speed 60 KmIh)

Cats-rhs (vehicle speed 40 Km/h)

Figure 4.8 Road surfaces used by the author for the Uxbridge steering wheel test.
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Country Lane (vehicle speed 40 Km/h)

Motorway Road (vehicle speed 110 Km/h)

Cobblestone City Road (vehicle speed 40 Km/h)

Figure 4.8 Road surfaces used by the author for the Uxbridge steering wheel test (continuation).

Damaged surfaces such as the Broken, Broken Concrete and Broken Lane are asphalt or

concrete surfaces which are commonly found in many areas in the UK. The Bump and the

Cat's eyes are types of surfaces which produce impulsive input, and as stated in previous

sections of the chapter are basically obstacles placed across a surface in the path of the

automobile in order to force drivers to either decrease the speed (i.e. bump) or to avoid to

lane changing (i.e. eat's eyes). Speeds to drive over damaged surfaces can reach levels of

up to 50kph, while the speed in the case of surfaces with obstacles such as the eat's eyes

depends on the type of road surface on which they are placed (Department of Transport,

2006).

The country lane surface and the motorway surface are asphalt road surfaces which

produce a nearly stationary acceleration signal. The country lane surface, which is

commonly found in rural areas, is a type of road where stones and pieces of wood can be

found across the asphalt surface. According to the Department of Transport, in the UK the

speed limit in rural areas can vary from 32 kph to 50 kph. The motorway surface, on the
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other hand, is a smoother type of asphalt road. The speed limits to drive over this kind of

road surface can reach levels of up to 110 kph in the UK.

The cobblestone city surface has similar characteristics to those found for the cobblestone

surface which was described in section 4.2.3. The city cobblestone surface is formed of

rectangular stones and is the kind of surface which is found in many city centres in the

UK. The recommended speed to drive over this road surface is less than 40kph for safety

and security purposes (Department of Transport, 2006).

4.4.4 Signal Processing Analysis

Steering wheel tangential acceleration time histories were measured using a VW Golf

automobile which was driven over the eight surfaces shown in Figure 4.8. For each road

surface a 1 minute data recording was made. Figure 4.9 presents the 10 second data

segment which was extracted from the tangential direction steering wheel acceleration

time history of each data set so as to serve as test stimuli. The segments were selected

such that the root mean square value, the kurtosis and the power spectral density were

statistically close to those of the complete recording. From Figure 4.9 it can be observed

that each road surface achieved a rather different acceleration level.
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Figure 4.9 10 second segments ofthe tangential acceleration time history measured at the steering wheel
for each of the eight road surfaces (The Uxbridge test).

Table 4.3 presents the global statistical properties determined from the data of each of the

road surfaces. Root mean square (r.m.s.) acceleration levels from a minimum of 1.147

m1s2 (for the motorway surface) to a maximum of 2.355 m1s2 (for the broken lane surface)

were found. Kurtosis value larger than 3.0 were found for those road surfaces which

produced an impulsive input to the vehicle subsystems (i.e. the bump and the eat's eyes),

while the remaining road surfaces had kurtosis values close to 3.0. The largest skewness

value was found for the eat's eyes surface with a value of -0.266, while the remaining

road surfaces had skewness values close to 0.0. The bump had the highest crest factor

(CF) at approximately 7.330, and the eat's eyes had the highest VDV at approximately

5.946 ms-1.75.The root mean square (r.m.s.) acceleration levels achieved with these eight
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road surfaces were higher than those achieved for both the MIRA test and the Michelin

test.

Table 4.3 Global statistical properties of the eight road stimuli measured (The Uxbridge test)

Global Statistics and Characteristics
Type of Road r.m.s Kurtosis Skewness CF VDV SpeedSurface (m/s2) (dimensionless) (dimensionless) (dimensionless) (ms,l.7S) (km/h)

Broken 1.230 3.775 -0.048 3.920 3.200 40
Broken 2.028 3.2lD O.OlD 3.360 4.127 50Concrete

Broken Lane 2.355 3.630 -0.030 4.400 4.380 40
Bump 1.860 7.660 -0.056 7.330 2.655 60

Cat's Eyes 2.048 6.800 -0.266 4.260 5.946 40
Country Lane 2.180 3.630 -0.030 4.400 4.897 40
Motorway 1.147 3.080 0.030 3.550 2.783 IlD
Paveb 2.161 3.423 -0.078 3.462 5.377 40

Power spectral densities (PSD) were calculated for the eight acceleration measurements

and are shown in Figure 4.10. The principal frequency content is in the range from 0 to 80

Hz as was previously seen in the MIRA and Michelin tests. The highest peaks in the PSD

energy were found for the eat's eyes surface, while the lowest peaks were found for the

motorway surface and the broken surface. The acceleration PSDs were found to be

different across the eight road surfaces, and also different from those produced by the

MIRA road surfaces and the Michelin road surfaces, as seen in Figure 4.3 and Figure 4.6.
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Figure 4.10 Power Spectral Densities (PSD) calculated from the four tangential acceleration time histories
of the 1minute duration which were measured at the steering wheel (The Uxbridge test).

4.5 The Selected Steering Wheel Vibration Stimuli

Although the data presented in this chapter cannot be considered to be a definitive

scientific analysis of road vehicle vibration, the values obtained can be considered to be

typical of the automotive vibration problem, thus useful for the purpose of defining

specific laboratory-based experiments which can be representative of the automobile

environment. The selected group of test stimuli provide data sets which achieved the five

72



criteria established at the beginning of the chapter in order to obtain steering wheel

vibration to use in the study of human ability to detect road surface type.

The global statistical properties of all fourteen road surfaces analysed in this chapter and

summarised in Tables 4.1 to 4.3 showed that although the majority of the road surfaces

obtained statistical values close to those observed for a Gaussian distributed process,

differences are presented across all road surfaces in two of their main statistical values.

These differences were presented for the root mean square value and for the VDV value.

Figure 4.11 presents the distribution of the fourteen road surfaces based on these two

statistical properties which suggested that the steering wheel acceleration data from the

tests performed in this chapter provided a wide statistical based of signals. Due to they are

covering a wide range of root mean square (r.m.s.) acceleration levels from a minimum

approximately of 0.06 mls2 to a maximum approximately of 2.4 mls2, and also a wide

range of VDV values from a minimum approximately of 0.13 ms-1.75to a maximum

approximately of 6.00 ms-1.75.
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Figure 4.11 Distribution of the statistical values of the fourteen road surfaces:
r.m.s. acceleration level against VDV value.
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5.Test to evaluate the Effect of Steering
Wheel Acceleration Magnitude on the
Human Detection

Due to the lack of scientific literature concerning human cognitive detection in vibrational

scenarios, the possible influence of several factors had to be evaluated so as to understand

the mechanisms involved. The experimental testing activities described here were

performed in order to measure the sensitivity of the human detection task to changes in

the primary characteristic (scale) of the steering wheel acceleration stimuli. The main

objectives of the study were:

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration.

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration when it has been scaled.

• To verify if one single scale value could improve the human detection for all road

surface types.

The results of the experiment tests were plotted using the Theory of Signal Detection as

the analytical framework and were summarised by means of both the detectability index

d' and receiver operating curve (ROC) points.
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5.1 Experimental Apparatus

5.1.1 Test Facility Specifications

The test facility adopted in this study for applying rotational vibration to a seated test

subject used an existing steering wheel test rig, shown in Figure S.la, which was built in

the Perception Enhancement Systems laboratory. A schematic representation of the

steering wheel test rig and of the associated signal conditioning and data acquisition

system is shown in Figure 5.lh.

(a)

Figure 5.1 Steering wheel rotational vibration test facility

(b)

The rotational system consisted of a 325mm diameter aluminium steering wheel attached

to a steel shaft which was in tum mounted to two SKF bearings. The shaft was connected

to the electro-dynamic shaker head by means of a copper stinger-rod. Table 5.1 presents

the main geometric dimensions of the test rig, which were chosen based on data from a

small European automobile. The seat was fully adjustable in terms of horizontal position

and back-rest inclination as in the original vehicle.

Table 5.1 Geometric dimensions of the steering wheel rotational vibration test rig

ValueGeometric Parameter

Steering column angle (Hi8)
Steering wheel hub centre height above floor (HI7)

Steering wheel diameter (W9)
Steering wheel tube diameter

Horizontal distance from H point to steering wheel hub centre (d= LlI-L5I)
Seat H point height from floor (H30)

230
710 mm
325 mm
25 mm

390-550 mm
275 mm
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Rotational vibration was applied by means of a G&W V20 electro dynamic shaker driven

by PAlOO amplifier (Gearing & Watson Electronics Ltd, 1995). The steering wheel

tangential acceleration was measured by means of an Entran EGAS-FS-25 accelerometer

attached to the top left side of the wheel. The specifications of the accelerometer and of

the vibration equipment are provided in Appendix C. The accelerometer signal was

amplified by means of an Entran MSC6 signal conditioning unit (Entran Devices Inc.,

1991). Control and data acquisition are performed by means of the LMS TMON software

system coupled to a DIFA SCADASIII unit (LMS International, 2002). The car seat was

directly taken from a 1997 Fiat Punto and was fully adjustable in terms of horizontal

position and back-rest inclination as in the original vehicle. Test rig usage conformed to

the health and safety recommendations of British Standards Institution BS7085 (2001).

5.1.2 Accuracy of the Steering Wheel Test Rig

In order to determine the stimuli reproduction accuracy of the test rig facility an

evaluation was performed. The procedure evaluated the complete chain composed of the

LMS software, the front end electronics unit, the electro-dynamic shaker, the

accelerometer and the signal conditioning unit. The accuracy of the target stimuli

reproduction was quantified by measuring the r.m.s. difference between the actuated

signal and the target signal. Steering vibration stimuli to be used as the target signals were

selected from four of the fourteen base stimuli described in Chapter 4 (tarmac, concrete,

cobblestone and low bump). Six copies of each of the four selected acceleration time

histories were constructed by rescaling the data using factor values of 0.8, 0.9, 1.0, 2.0,

3.0 and 4.0 obtaining a total of 24 target signals. The r.m.s. values of the target calibration

stimuli ranged from a minimum of 0.045 mls2 (r.m.s.) to a maximum 1.116 mls2 (r.m.s.).

Pretesting revealed that the power spectral densities of the reproduced stimuli did not

match the target values due to the frequency response of the shaker and the bench

mechanical components. Also, a maximum r.m.s. acceleration level difference between

the actuated signal and the target signal was found to be approximately 32%.

Digital filters were therefore defined which compensated the effect of the frequency

response of the shaker and mechanical components. A digital filter is an analytical

expression which can transform a sampled, discrete-time signal to reduce, enhance or

compensate certain aspects of the signal (Lyons, 2004; Strum and Kirk, 1988). As an

example of the process, Figure 5.2 presents the PSD of the target stimuli and of the test

76



rig response signal for a cobblestone surface at the original scale value of 1.0 for both the

non-filtered (Figure 5.2a) and the filtered (Figure 5.2b) steering signals. Figure 5.2

suggests that the energy level and distribution is almost the same when a digital filter is

applied to compensate the signal. In this case, r.m.s. acceleration level difference between

the actuated signal and the target signal was found to be less than 3%.
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Figure 5.2 Use of compensator digital filter:
a) Comparison between target and test rig acceleration PSDs before filtering
b) Comparison between target and test rig acceleration PSDs after filtering.

Each of the 24 target stimuli was filtered and used in a pre-test in order to calculate the

absolute maximum percentage of error between the r.m.s. acceleration level of the target

signal and the actuated signal. Each stimulus was used three times during which the

actuated acceleration response was recorded by means of the Entran EGAS-FS-25

accelerometer placed on the top left side of the steering wheel. Eight participants were

used in the pre-test process so as to consider also the possible differences in bench

response which are caused by differences in impedance loading on the steering wheel

from people of different size. The subjects who participated in the acceleration magnitude

experiment consisted of 4 males and 4 females. The physical characteristics of the group

are summarised in Table 5.2, the mean values and standard deviations of all three

measures can be seen to be near the UK population values for the height and mass.

Results presented in Table 5.3 suggested that the maximum percent of error was found to

be less than 5% for all stimuli used in the pre-test. This value is less than just noticeable

difference for human perception of hand-arm vibration.
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Table 5.2 Physical characteristics of the group of pre-test participants
involved in the laboratory experiments (n=8)

Characteristics Mean STD Minimum Maximum

Age (years) 29.25 3.92 24 37
Height (m) 1.71 0.10 1.58 1.82
Mass (kg) 70.13 9.51 55 85

(STD) Standard Deviation

Table 5.3 Steering wheel test rig stimulus reproduction accuracy for four scaled steering signals (using six
scale values 0.8, 0.9, 1.0,2.0, 3.0 and 4.0), three repetitions of each of the 24 stimuli were performed (n=8)

Steering Actuated Signals Absolute
Acceleration Scale Original (r.m.s.) mlsz Maximum
Stimuli from Factor Signal Percent
different road Value (r.m.s.) mlsz Mean Subjects Error (%)

t~ee (n= 8)
0.8 0.045 0.044 2.22
0.9 0.050 0.050 0.00

TARMAC
1.0 0.056 0.058 3.57
2.0 0.112 0.113 0.89
3.0 0.168 0.167 0.60
4.0 0.224 0.225 0.45
0.8 0.079 0.079 0.00
0.9 0.089 0.087 2.25

CONCRETE
1.0 0.099 0.101 2.02
2.0 0.198 0.198 0.00
3.0 0.298 0.296 0.67
4.0 0.397 0.396 0.25
0.8 0.223 0.229 2.69
0.9 0.251 0.259 3.19

COBBLESTONE 1.0 0.279 0.282 1.08
2.0 0.558 0.543 2.69
3.0 0.837 0.803 4.06
4.0 1.116 1.109 0.63
0.8 0.240 0.235 2.08
0.9 0.260 0.254 2.31

BUMP 1.0 0.272 0.274 0.74
2.0 0.564 0.563 0.18
3.0 0.780 0.801 2.69
4.0 1.075 1.099 2.23

5.2 Experiment to Measure the Effect of Acceleration Magnitude

By measuring the sensitivity of the human detection task to changes in the primary

characteristics of the scale of the steering acceleration stimuli the research attempted to

define one of the basic dynamic characteristics that an automotive steering system should

have in order to be capable of applying low level perceptual assistance to the driver. A
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natural question which arises in the case of the steering system is if one single, fixed,

feedback gain is optimal and improves the human detection for all road surface types.

A group of four road surfaces was selected to be tested in the study, which were: a

Tarmac surface, a Concrete surface, a Cobblestone surface and a low bump. These road

surfaces were selected in order to remain consistent with a previous study by Giacomin

and Woo (2004). Due to the lack of information in this field it was considered important

to perform a check and validation of the previous results obtained by Giacomin and Woo.

5.2.1 Test Subjects

The experiment involved the participation of 15 university staff and students. Upon

arriving in the laboratory each participant was issued information and a consent form as

well as an explanation about the experimental method and the laboratory safety features.

Age, gender, height, and mass data were then collected and each participant was also

requested to state whether he or she had any physical or mental condition which might

effect perception of hand-arm vibration, and whether he or she had ingested coffee within

the 2 hours previous to arriving in the laboratory. No participant declared any condition

which might affect the perception of hand-arm vibration, and none declared having

ingested coffee prior to their tests. The subjects who participated in the acceleration

magnitude experiment consisted of 8 males and 7 females. The physical characteristics of

the group are summarised in Table 5.4, the mean values and standard deviations of all

three measures can be seen to be near the UK population values for the height and mass,

but lower than the mean and standard deviation of the UK population in age.

Table 5.4 Physical characteristics of the group of test participants
involved in the laboratory experiments (n=15)

Characteristics Mean STD Minimum Maximum

Age (years) 27.73 5.06 20 40
Height (m) 1.71 0.08 1.57 1.82
Mass (kg) 71.67 10.87 55 90

(STD) Standard Deviation

79



5.2.2 TestStimuli

The stimuli actuated at the wheel during experiment consisted of scaled signals taken

from all four road surface types. Six scale factors were used for this purpose, which are

0.8, 0.9, 2.0, 3.0 and 4.0. The selection of these scale factors was based on the results

from previous experiment carried out by Giacomin and Woo (2004) in which the authors

selected scale values of 0.6, 0.8, 1.0, 4.0 and 7.0 so as to remain within the operational

limits of the test equipment and to remain within realistic limits for real automobile. The

r.m.s. acceleration values of the scaled stimuli ranged from a minimum of 0.045 rnIs2

(r.m.s.) to a maximum 1.116 rnIs2 (r.m.s.), all acceleration levels for the manipulated and

un-manipulated stimuli were presented in Table 5.3. The mathematical operation of

scaling was chosen so as to not affect spectral or phase relationships of the stimuli.

5.2.3 TestProtocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the four road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the four stimuli types which would be used later, in order to become acquainted

with the detection task.

The detection task was to state by means of "yes" or "no" whether the actuated

acceleration stimulus was from the road surface whose photograph was shown on the

board directly in front of the test bench. When the response and the stimulus matched, the

event was taken to be a correct detection. False alarms, on the other hand, were taken to

be those situations when the participant responded "yes" to a stimulus which was not

derived from the displayed road surface. During the course of the test no feedback was

provided by the experimenter to the test participant at any point regarding whether the

detection were correct or incorrect.

The experiment was performed in four parts, one for each road surface studied. Each

involved five repetitions of each of un-manipulated and manipulated stimuli from the

displayed road surface. In addition, twenty four stimuli were chosen randomly from the
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stimuli sets of the other road surfaces which were used as background noise stimuli. The

time duration of each individual test stimuli was chosen to be 10 seconds based on the

knowledge that the tactile system of the hand does not present temporal integration

properties below approximately 40 Hz (Gescheider et al., 1994). Six different series of

nine acceleration stimuli were applied for each road surface type. In each series, each

stimulus was separated from each other stimulus by a 5 second gap in which the

participant was asked to state his or her judgment of road surface type. The order of

stimuli presentation was fully randomised for each participant in each series in order to

reduce learning effects. Each participant performed 54 detections for each road surface

type, and a total of 216 detections in the complete experiment.

5.2.4 Results from the Experiment to Measure the Effect of Steering Wheel

Acceleration Magnitude

Figure 5.3 presents the results obtained from the experiment to determine the effect of the

steering wheel acceleration magnitude on the human ability to detect road surface type.

The results are presented in terms of percent correct detection, from 0 to 100 percent

Percent correct detection is presented along the ordinate, while the scaled values are

presented along the abscissa. The original base stimuli are labelled as x1.0 which means

that all data points in the acceleration time history remain with the same acceleration

magnitude since they are multiplied by the unity, while the five scaled values used are

labelled as xO.8, xO.9, x2.0, x3.0 and x4.0. The percentage of correct detection responses

for the four road surfaces were analysed in a between/within-subjects by means of the one

factor repeated measures ANOV A. Statistical significance effect in the responses were

found in all surfaces tested at a p=O.Ol of significance level with a F(5,70) value spanning

from 7.76 to 38.51.
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Figure 5.3 Results of the experiment to measure the effect of steering wheel acceleration magnitude on the
human 'detection of road surface type in terms of percent correct detection (n=15).

As shown in Figure 5.3, the percentage of correct detection for the original base stimuli

for the current experiment was approximately 90% for the tarmac stimuli, 78% for the

concrete stimuli, 80% for the cobblestone stimuli and 79% for the low bump stimuli.

These values can be compared to the values of approximately 82%, 46%, 48% and 60%

respectively obtained by Giacomin and Woo (2004) for the same four surfaces. The

higher percentages of correct detection found in the current study can be partially

attributed to the fact that smaller and larger multiplication factors were used in the

previous study (xO.6 and x7.0), thus creating a situation where the detection task was

performed against a less complicated background noise. Nonetheless, the curves of

percent correct detection from both experiments showed similar qualitative behaviour for

each road surface tested.

As shown in Figure 5.3 by the results obtained for acceleration level x 1.0, the use of the

mathematical operation of scaling to manipulate the signals produced only mixed results.

Although the Cobblestone stimuli, the Tarmac stimuli and the Concrete stimuli were

categorised into the group of surfaces which produce a nearly stationary stochastic input

to the automobile (section 4.2.3), three distinct behaviours can be identified from the
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results of the three road surfaces: 1) The percentage of correct detection decreased for the

Tarmac stimuli; 2) The percentage of correct detection increased and after decreased for

the concrete stimuli; and 3) The percentage of correct detection increase for the

cobblestone stimuli. The low bump road, instead, categorised into the group of surfaces

which produce a transient or impulsive input to the automobile (section 4.2.3) increased

the percentage of correct detection as a function of scale. The results show, however, that

the percentage of correct detection of the low bump did not decrease below 73% at any

scale factor tested. It suggests that the type of surfaces which produces transient or

impulsive events are more easy to be detected by the driver due to the great attention that

the human nervous system pays to high amplitude events.

Figure 5.3 suggests that a single, optimal, acceleration level does not exist which is valid

for all road surfaces. The highest detection rate for the tarmac stimuli was found for scale

factors of 0.9 and 1.0; this surface can be assumed to be representative of a category of

surfaces whose correct detection is reduced by increases in the size of the acceleration

stimuli. The highest detection rate for the concrete stimuli was found for acceleration

level scaled by 1.0 and 2.0, while detection rates decrease with both increases and

decreases in feedback gain. Important increases in correct detection occurred for the

cobblestone stimuli and low bump stimuli for almost all scale factors greater than 1.0. The

results for the cobblestone stimuli and for the low bump stimuli suggested that human

memory and human expectations associate these two surfaces with large vibration

amplitudes.

Current results are also presented in terms of detectability index d' value in Figure 5.4,

from -1 to 3 determined from the hit and false alarm rates obtained from all sessions.

Detectability index d' value is presented along the ordinate, while the scaled values are

presented along the abscissa. Both the detection rate and the detectability results suggest

similar human response to all stimuli types. For all road surfaces the result suggests that

greater detection does not occur at the natural level of the steering acceleration measured

in the road automobile.
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Figure 5.4 Results of the experiment to measure the effect of steering wheel acceleration magnitude on the
human detection of road surface type in detectability index d' value (n=15).

As explained in section 3.4.3, the performance of each participant, specified as a hit rate

and a false alarm rate, can also be represented as a single point on a receiver operating

(ROC) space. Figures 5.5 to 5.8 present the ROC point graphs for the four surface stimuli

and the six scale values used, in which each participant provides a single point into the

ROC space as a result of his or her signal detection, having a total of 15 points for each

ROC point graph.

Results from the Figure 5.5 to 5.8 confirms the improvement in detection where occurred

at the level explained before for each stimuli. The tarmac stimuli results presented in

Figure 5.5 suggest a decrease in detectability with the feedback gain in which the ROC

points were found more close to the left-hand side lower comer of the ROC space, scale

values of 0.90 and 1.0 were found the optimum for this type of road. The ROC points for

the concrete stimuli (see Figure 5.6) were found more close to the left-hand side lower

corner of the ROC space with both the decreased and increased of the feedback gain

obtaining the highest detectability for the scale values of 1.0 and 2.0. The cobblestone and

low bump results in Figures 5.7 and 5.8 suggest a progressive change in detectability with

the feedback gain in which the ROC points were found more close to the left-hand side
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upper comer of the ROC space. The data confirms the improvement in detection for the

cobblestone stimuli and low bump stimuli were occurred for all scale values greater than

1.0. The results suggest that the long term memory model used by average drivers to

judge road surface type does not have a single and optimum signal scale value for all road

types, thus the optimal scale value appears to depend on the type of road surface.

02

ROCpoints fDrTarrrac RDad (0.8 x)~-----------.
OB •••••

O~--~--~----+---~--~
o 02 0.4 0.6 OB

False Alarm Rate

ROCpoints fDrTarrrac RDad(2.0 x)

0.4

OB ••• 00

0.6 0.0

02

ROC coints for Tarrrac Road (0.9 xl ROC points for Tarmac Road (1.0 x)

OB ••• • OB •••••
~ 0.6 ~ 0.6
a: a:
Of 0.4 I 0.4

02 02

0 0
0 02

Fal~'~Alarni>~ate
OB 0 02

Falg: Alarni>~ate
OB

ROC points for Tarmac Road (3.0 x) ROC points for Tarmac Road (4.0 x)

OB OB

206 s 06~ ~
I 0.4 0 I 0.4

02 00000 02 00000

o 0 O~--_''_~----~---+--~
02 0.4 OS OB 0 02 0.4 06 08 0 02 0.4 OS OB

False Alarm Rate False Alarm Rate False Alarm Rate

Figure S.S ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration magnitude on the human detection of road surface type (n=15).
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Figure 5.6 ROC points of concrete surface for the laboratory experiment to measure the effect of steering
wheel acceleration magnitude on the human detection of road surface type (n=15).
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Figure 5.7 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
steering wheel acceleration magnitude on the human detection of road surface type (n=15).
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Figure 5.8 ROC points of low bump surface for the laboratory experiment to measure the effect of steering
wheel acceleration magnitude on the human detection of road surface type (n=15).

5.2.5 Observations and Discussion

Comparison of the current results to similar data previously published by Giacomin and

Woo (2004) suggests similarities. The curves of percent correct detection which are

presented in the current study show similar qualitative behaviour to the curves obtained

by Giacomin and Woo as a function of overall signal scale. For example, the monotonic

improvement in detection rate as a function of increasing scale value found for the

cobblestone surface in this study mirrors the monotonic increase obtained in the previous
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study as a function of overall signal scale, but with small changes in detection across the

various test conditions. The changes in detection can be partially attributed to the fact that

smaller and larger multiplication factors were used in the previous research by Giacomin

and Woo, thus creating a situation where the detection task, in the current study, was

performed against a less complicated background noise.

The results of both the previous study reported by Giacomin and Woo (2004) and the

current study suggest that the manipulation of steering wheel vibrational feedback can

improve driver detection of the road surface and that correct detection is not strictly

optimum at the natural acceleration level encountered in automobiles. This aspect of the

detection problem may be of relevance to the designers of both traditional and by-wire

steering systems since careful considerations appears to be necessary when choosing the

target level of steering feedback for each driving condition. The results suggested that a
single, fixed, feedback gain from the automobile to the steering wheel will result optimal

in only a small number of driving conditions and that individual road surface types appear

to require individual signal manipulation settings.

The optimum acceleration magnitude for detection appeared to be related to the cognitive

model or cognitive interpretation mechanism which the participants associated with the

surface in question (Giacomin and Gnanasekaran, 2005). As described above, at least

three memory models, or categories, of road surface type appear to exist. Human

perceptual characteristics and the human a priori knowledge of the road surface produce·

detection characteristics which are not simply related to the test stimuli in terms of

amplitude. The complexity of the measured response suggests the need of further research

to determine the optimal range of feedback gains for steering systems.

87



6.Test to determine the Effect of Steering
Wheel Acceleration Frequency Distribution
on the Human Detection

This chapter describes experimental testing activities performed in order to measure the

effect of frequency bandwidth and the effect of the vibrational energy distribution, on the

human ability to detect road surface type based on steering wheel vibration. The reason

for studying both effects was the need to identify which energy band is most used by

drivers to detect road surface type. Conceptually similar studies have been performed in

the field of the Auditory Scene Analysis (ASA) (Bregman, 1999; Wright, 1986) and in the

field of Music (Plomp and Levelt, 1965) using stimuli in which an important modification

arising from the influence of critical bands. Results of studies in these fields suggest that

human hearing has the ability to decompose a stimulus into separate neural patterns which

approximately represent the different frequencies bands in the signal (Moore and

Patterson, 1986). The research which is described in this chapter was performed based on

the assumption that if the decomposition into different frequency bands is an ability that

the human being has when discriminating different sounds, this kind of ability can also be

present in the case of haptic perception. Further, the research described in this chapter

assumed that specific frequency bands of the vibrational energy of the steering wheel are

being used by the human in the detection task of road surface type, and not the complete

frequency spectrum. In order to investigate if different manipulations of the frequency

content of the steering wheel acceleration stimuli could affect the decision making the

main objectives of the study were:
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• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration.

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration when it has been filtered so as

to have vibrational energy only in specific frequency intervals.

• To verify if one specific frequency band contains most of the vibrational information

that the human uses to perform the detection for all road surface types.

The results of the experiment tests were plotted using the Theory of Signal Detection as

the analytical framework and were summarised by means of both the detectability index

d' and receiver operating curve (ROC) points.

6.1 Two experiments in the Detection of Road Surface Type

Two laboratory-based experiments were carried out in this chapter, the first experiment

was called the effect of frequency bandwidth and the second the effect of elimination of

vibrational energy. Both experiments were performed in the Perception Enhancement

Systems laboratory in order to measure the human cognitive response to changes in the

steering wheel acceleration frequency distribution. The test facility used to perform the

laboratory experiments was the same which was previously described in this thesis in

secti on 5.1.1.

6.1.1 Test subjects

For each of the two experiments an independent group of 15 individuals was tested. The

test groups consisted of university staff and students. Upon arriving in the laboratory each

participant was issued information and a consent form as well as an explanation

describing the experimental method and the laboratory safety features. Age, gender,

height, and mass data were then collected, and the participant was requested to state

whether he or she had any physical or mental condition which might affect perception of

hand-arm vibration, and whether he or she had ingested coffee within the 2 hours

previous to arriving in the laboratory. No test participant declared any condition which

might affect the perception of hand-arm vibration, and none declared having ingested

coffee prior to their tests.
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The participants in the frequency bandwidth experiment (First Experiment) consisted of

11 males and 4 females, while the participants in the vibrational energy distribution

experiment (Second Experiment) consisted of 9 males and 6 females. Table 6.1 presents

the mean, standard deviation (STD), minimum and maximum values of age, height and

mass encountered in the test groups. The values can be considered relatively

representative of UK drivers in all values except age, which is below the natural average.

Table 6.1 Physical characteristics of the two groups of test participants
involved in the laboratory experiments (n=15)

Characteristics Mean STD Minimum Maximum

5.50· 18 42
0.04 1.58 1.82
11.10 54 85

Frequency Bandwidth EXperiment
Age (years) 27.10

Height (m) 1.69
Mass (kg) 72.00

Vibrational EnerlY EXperiment
Age (years)

Height (m)
Mass (kg)

27.20
1.75
72.60

4.50
0.06
12.70

17
1.55
52

40
1.92
95

(STD) Standard Deviation

6.2 Experiment to Measure the Effect of Frequency Bandwidth

This experiment involved steering acceleration stimuli which were modified by means of

digital low-pass filters (Hamming, 1989; Strum and Kirk, 1988). Different cutoff

frequencies were selected with this purpose which should span in the range from 0 to 100

Hz due to the principal frequency content of the steering signals was normally found in

that range (see Chapter 4).

The results from the previous experiment (in Chapter 5) which investigated the effect of

steering wheel acceleration magnitude suggested that human perceptual abilities and the

human a priori knowledge of the road surface produce detection characteristics which are

not simply related to the test stimuli in terms of magnitude. At least three memory

models, or categories, of road surface type appear to exist. The results for the

Cobblestone surface and the Tarmac surface suggested that detection varied inversely for

these two stimuli sets which are also supported by the work of Giacomin and Woo (2004).

Detection of the cobblestone surface improved with increases in stimuli level while the

opposite was true of the tarmac surface.
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A natural question which therefore arises is whether the detection of these two stimuli

also varies as a function of the frequency bandwidths. Based on the above the cobblestone

surface and the tarmac surface were chosen to be studied in the new experiment which

had the objective of measuring the effect of frequency bandwidth on the human detection

task of road type. In a similar study Giacomin and Woo (2005) defined a minimum

bandwidth requirement of approximately 0 to 60 Hz, which is required by drivers for the

detection task.

6.2.1 TestStimuli

Each of the two steering wheel time histories was low-pass filtered by means of digital

Butterworth filters which were constructed in the LMS® TMON software (LMS TMON,

2002) and applied to each original stimulus. For each of the two original stimuli

frequency bandwidths of 0-20 Hz, 0-40 Hz, 0-60 Hz, 0-80 Hz and 0-100 Hz were

achieved. A total of 10 filtered test stimuli were therefore produced. The r.m.s.

acceleration values of the five frequency bandwidth test stimuli used in the laboratory test

are presented in Table 6.2.

Table 6.2 The r.m.s. acceleration values (m/s2) of the five frequency bandwidth stimuli
used for producing the laboratory test stimuli.

["fillI'II'~IIll1sht:id&b Ill:mAC S;;gbbl,~&gll'
0-20Hz 0.029 0.112
0-40Hz 0.038 0.204

0-60Hz 0.044 0.266

0-80Hz 0.046 0.268

O-lOOHz 0.047 0.269

6.2.2 TestProtocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the two road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the two stimuli types which would be used later, in order to become acquainted

with the detection task.
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The experiment was performed in two parts, one for each road surface studied. Each part

involved five repetitions of each test stimuli (presented in Table 6.2) from the displayed

road surface. In addition, twenty five stimuli were chosen randomly from the stimuli sets

of the other road surfaces which were used as background noise stimuli. The time

duration of each individual test stimuli was chosen to be 10 seconds (as explained in

section 5.3.2). Five different series of ten acceleration stimuli were applied to evaluate

each road surface type. In each series, each stimulus was separated from each other

stimulus by a 5 second gap in which the participant was asked to state by "yes" or "no"

whether the actuated acceleration stimulus was from the road surface whose photograph

was shown on the board directly in front of the test bench. When the response and the

stimulus matched, the event was taken to be a correct detection. False alarms, on the other

hand, were taken to be those situations when the participant responded "yes" to a stimulus

which was not derived from the displayed road surface. The order of stimuli presentation

was fully randomised for each participant in each series in order to reduce learning

effects. Each participant performed 50 detections in each part of the experiment, for a

total of 100 detections in a complete experiment.

6.2.3 Results from the Experiment to Measure the Effect of Frequency Bandwidth

Figure 6.1 presents the results obtained from the experiment to determine the effect of

frequency bandwidth on the human ability to detect road surface type. In Figure 6.1 a the

results are presented in terms of percent correct detection from 0 to 100 percent while in

Figure 6.1b the results are presented in terms of detectability index d', as a function of the

frequency bandwidth of the stimuli (0-20 Hz, 0-40 Hz. 0-60 Hz. 0-80 Hz and 0-100 Hz).

For each frequency bandwidth the hit rate was taken to be the proportion of "yes"

responses obtained from the stimuli which were actually derived from the road surface

shown on the board. The false alarm rate was taken to be the proportion of "yes"

responses obtained from the stimuli which were not derived from the road surface shown

on the board. The detection responses for the two road surfaces were analysed in a

between/within-subjects by means of the one factor repeated measures ANOV A.

Statistical significance effect in the responses were found in both surfaces tested at a

p=O.OI of significance level with a F(4.56) value of 28.4 and 11.57 for the cobblestone

stimuli and the tarmac surface stimuli. respectively.
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Figure 6.1 Results of the experiment to measure the effect of steering wheel acceleration frequency
bandwidth on the human detection of road surface type (n=15), in terms of:
(a) Percent correct detection rate and (b) detectability d' value detection.

As shown in Figure 6.1, the results suggest a monotonically increasing relationship

between the detectability and bandwidth, detection of both road surfaces having improved

with increases in the bandwidth of the vibration stimuli. The greater the maximum .

frequency range, the greater the percent detection and the detectability value.

When reinforced by the presence of visual and/or acoustic stimuli it may be possible that

correct detection might be achieved at bandwidths less than the 60 to 80 Hz suggested by

the current findings. Nevertheless a bandwidth in excess of 60 Hz appears necessary for

driving conditions in which tactile feedback alone is relied upon for surface detection.

Figures 6.2 and 6.3 present the Receiver Operating Characteristic (ROC) points obtained

for the 15 test participants for the cobblestone and the tarmac surface stimuli,

respectively. Figures 6.2 and 6.3 suggest a progressive change in detectability with

bandwidth. Average hit rates exceeded 80% for the both cobblestone and the tarmac

stimuli when the bandwidth used covered the frequency range from 0 to 60 Hz. The

results suggest that the long term memory model used by average drivers to judge road

surface type contains information to oscillatory frequencies in excess of 60 Hz. While

qualitatively similar, the small differences between the two data sets suggest that the

energy content associated with the higher frequencies was more important towards correct

detection of the cobblestone surface than of the tarmac surface.
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Figure 6.2 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
steering wheel acceleration frequency bandwidth on the human detection of road surface type (n= IS).
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Figure 6.3 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration frequency bandwidth on the human detection of road surface type (n=15).

6.2.4 Observations and Discussion

In the tests performed to measure the human detection of road surface type based on

steering wheel acceleration magnitude, the human detection was found to follow one of

three general patterns: improve with increasing acceleration amplitude, degrade with

increasing acceleration amplitude, or degrade with any change (greater or lower) away

from the natural acceleration level measured in the road vehicle. The road surface types

used in this experiment were chosen because they followed the first two of these patterns,

meaning the two less intuitive results (see Chapter 5). For these two road surfaces the
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detection results suggest that the perceptual and cognitive mechanisms used by the test

participants required vibrational information up to frequencies in excess of 60 Hz in order

to permit accurate detection in situations where detection relies solely on the tactile sense

modality, the same finding obtained by Giacomin and Woo (2005). The results of the

frequency bandwidth experiment therefore provide a clear indication of the bandwidth

used by humans to judge road surface type when driving current production automobiles.

Bandwidths of less than 60 Hz are to be considered detrimental to human detection, and

to any information metrics that can be developed for the automobile steering system. This

point may be of relevance to the designers of steering systems since the current frequency

content of those systems are often less than 40 Hz (Jurgen, 1999; Sugiyama et al., 2006).

Although the results of this experiment suggested that bandwidths of less than 60 Hz are

detrimental to human detection, it did not clarify how variations of the distribution of

vibrational energy within the overall bandwidth might affect the detection task. As noted

in Chapter 4, the principal frequency content at the steering wheel for all road types is

normally in the frequency range from 0 to 80 Hz. However, different roads produce

different shapes and levels along the complete frequency spectrum, in which some

frequency bands are found to have higher energy than others. A natural question is

therefore whether anyone frequency band within the range from 0 to 60 Hz is more

important than others.

6.3 Experiment to Measure the Effect of the Vibrational Energy Distribution

In order to isolate critical bands of steering wheel vibrational energy a test was performed

in which individual bands were eliminated from the overall steering wheel signal. By

identifying which bands created most damage to the human detection task when

eliminated it would be possible to isolate the most important energy region. The selection

of the bands to be eliminated was based on the approximate locations of the higher peaks

of vibrational energy. The assumption was made that the highest peaks of vibrational

energy would most likely have been the result of resonances in the automobile's systems,

and that the elimination of information from one of the most important subsystems might

deny the driver an important source of information about the road.
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6.3.1 TestStimuli

Three road surfaces were selected for use in testing which were a motorway surface, a

broken concrete surface and a broken lane surface. Each of the three original steering

wheel time histories was high-pass filtered and band-pass filtered (Hamming, 1989;

Strum and Kirk, 1988) by means of digital Butterworth filters which were constructed in

the LMS® TMON software (LMS TMON, 2002) and applied to each original stimulus.

Figure 6.4 presents the five frequency ranges from the steering wheel acceleration

spectrum which were selected for elimination of vibrational energy, for each of the

original base stimuli. Selected frequency ranges were from 0-6, 6-13, 13-27, 27-60 and

60-150 Hz for the motorway stimuli, 0-6, 6-12, 12-27, 27-53 and 53-150 Hz for the

broken concrete stimuli and 0-6, 6-9, 9-22, 22-58 and 58-150 Hz for the broken lane

stimuli. Each band can be considered an important subdivision of the vehicle's vibrational

energy, which is dominated by one specific frequency which is associated with one

specific vehicle subsystem.
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Figure 6.4 Power spectral densities of the experimentally acquired steering wheel acceleration
signals, along with the frequency intervals selected for consideration for each type of road.

As an example of the high-pass filtering and band-pass filtering, Figure 6.5 presents

power spectral density (PSD) graphs of the un-manipulated and manipulated motorway

stimuli. A total of 18 test stimuli were obtained. The r.m.s. acceleration values (m/s2) for

all un-manipulated and manipulated test stimuli used in the laboratory test are presented

Table 6.3.
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Figure 6.5 Laboratory test stimuli for the Motorway road surface that were produced
by means of digital Butterworth high-pass and band-pass eliminating filters.

Table 6.3 The r.m.s. acceleration values (m/s2) of the un-manipulated and manipulated stimuli used for
producing the laboratory test stimuli.

lst 2nd 3rd 4th 5th
Road Surface Type Original Frequency Frequency Frequency Frequency Frequency

Interval Interval Interval Interval Interval

Motorway (M) 1.15 1.09 1.07 1.04 0.83 0.99

Broken Concrete (C) 2.03 1.91 1.87 1.73 1.26 1.83

Broken Lane (BL) 2.36 2.13 2.05 1.88 1.95 2.22

6.3.2 Test Protocol

Upon aniving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the three road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the three stimuli types which would be used later, in order to become acquainted

with the detection task.

The experiment was performed in three parts, one for each road surface studied. Each part

involved five repetitions of each of the five high-pass filtered and band-pass filtered

stimuli and of the original base stimuli for each type of road, plus a further 24 stimuli

chosen randomly from the stimuli sets described in Chapter 4 which acted as background
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noise. The time duration of each individual test stimuli was chosen to be 10 seconds. Six

different series of nine acceleration stimuli were applied to evaluate each road surface

type. In each series, each stimulus was separated from each other stimulus by a 5 second

gap in which the participant was asked to state by "yes" or "no" his or her judgment of

road surface type so as to indicate if the experimental stimulus seemed to be from the road

which was displayed during the test. The order of stimuli presentation was fully

randomised for each participant in each series in order to reduce learning effects. Each

participant performed 54 detections for each road surface type, and a total of 162

detections in the complete experiment.

6.3.3 Results from the Experiment to Measure the Effect of the Vibrational Energy

Distribution

Figure 6.6 presents the results obtained from the experiment plotted in terms of percent

correct detection, from 0 to 100 percent. Percent correct detection is presented along the

ordinate while the five different frequency ranges for each road are presented along the

abscissa. The original base stimuli are labelled as O. For each frequency range, the hit rate

was taken to be the proportion of "yes" responses obtained from the stimuli which were

actually from the road surface which was shown on the board. The false alarm rate was

taken to be the proportion of "yes" responses obtained from the stimuli which were not

derived from the road surface which was being shown on the board. The percentage of

correct detection responses for the three road surfaces were analysed in a betweenlwithin-

subjects by means of the one factor repeated measures ANOV A. Statistical significance

effect in the responses were found in all surfaces tested at a p=O.Ol of significance level

with a F(5,70) value of 60.6, 43.3 and 65.73 for the broken concrete stimuli, the broken

lane stimuli and the motorway stimuli, respectively.
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Figure 6.6 Results of the laboratory experiments regarding the effect of the vibrational energy distribution
of the steering wheel acceleration signal on the human detection of road surface type (n= 15).

As shown in Figure 6.6, the percentage of correct detection for the original base stimuli

for the current experiment was approximately 62% for the motorway stimuli, 74% for the

broken concrete stimuli and 80% for the broken lane stimuli. The curves of correct

detection as a function of the eliminated frequency interval for the broken concrete and

broken lane stimuli showed similar qualitative behaviour, decreasing in detection until the

27Hz to 53Hz frequency interval for the broken concrete stimuli, and the 22Hz to 58Hz

frequency interval for the broken lane stimuli. Qualitatively, the results from the

motorway stimuli showed a very different behaviour from that of the other two test

stimuli.

The results are also presented in terms of the detectability index d' value in Figure 6.7,

from -1 to 2, determined from the hit and false alarm rates obtained from all sessions.

Detectability index d' is presented along the ordinate, while the five frequency ranges

eliminated for each road surface are presented along the abscissa. Both the detection rate

and the detectability results suggest similar qualitative human response and suggest that
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the frequency range from approximately 20 Hz until 60 Hz is playing a key role in the

human cognitive detection of the road surface type for all three surfaces.
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Figure 6.7 Results of the laboratory experiments regarding the effect of the vibrational energy distribution
of the steering wheel acceleration signal on the human detection of road surface type (n= 15).

Figures 6.8 to 6.10 present the Receiver Operating Characteristic (ROC) points obtained

for the 15 test participants for the motorway surface, the broken concrete surface and the

broken lane surface. ROC point results suggest that the long term memory model used by

average drivers to judge all three road surface types contains information at the frequency

range approximately from 20 Hz to 60 Hz. The results suggest that this frequency range

where the automobile has its column resonances, steering wheel resonances and chassis

resonances seems critical to detection. Elimination of vibrational energy in the range from

20 to 60 Hz made it almost impossible to correctly detect broken surfaces (concrete and

asphalt lane) while it dramatically improved detection of the smooth surface (motorway).

Clearly, the energy in this band is very important towards determining the surface type.
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Figure 6.8 ROC points for the Motorway surface stimuli regarding the effect of the vibrational energy
distribution of the steering wheel acceleration signal (n= 15)
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Figure 6.9 ROC points for the Broken Concrete surface stimuli regarding the effect of the vibrational
energy distribution ofthe steering wheel acceleration signal (n= 15)
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Figure 6.10 ROC points for the Broken Lane surface stimuli regarding the effect of the vibrational energy
distribution of the steering wheel acceleration signal (n= 15)

6.3.4 Observation and Discussion from the Experiment to Measure the Effect of

Vibrational Energy Distribution

The detection rate of less than 100 percent for all three road surface types suggests the

difficulty of achieving fully accurate detection in a laboratory task in which several key

stimuli, notably the acoustical stimuli, are absent. Notwithstanding the less than perfect

environmental reproduction, the results of the vibrational energy distribution suggest that

the frequency range from approximately 20 Hz until 60 Hz played a key role in the human

cognitive detection of the road surface type for all three surfaces. The effect of the

elimination of energy distribution results show some qualitative similarities to those

obtained by the bandwidth experiments (Giacomin and Woo, 2005) in which the

elimination of high frequency energy from the steering wheel vibration signal was found

to have a detrimental effect on road surface type detection. In the effect of bandwidth

experiment carried out by Giacomin and Woo (2005) and also in this thesis was stated

that the long term memory model used by average drivers to judge road surface type

appeared to contain information to oscillatory frequencies in excess of 60 Hz. The effect

of vibrational energy distribution results suggest that the elimination of energy in the

frequency range from 20 to 60 Hz seems helpful towards the detection of surfaces which

are expected to have low level of energy content, but that it is greatly detrimental for

those road surfaces which are expecting to have high level of energy content, since much

more of this energy is found in this band.
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Considering no a-priori knowledge of the possible meaning of the vibration energy in the

20 to 60 Hz band, it would appear from the results that eliminating one of the intervals

which contains the greatest amount of vibration energy in current production automobiles

can be said to deprive the driver an important source of driving information, and thus an

important source of steering feel.

A-prior information about this frequency band includes, however, the knowledge that it

normally contains more than one resonance of the steering system (tyres, front

suspensions, steering column, steering wheel, etc.) thus elimination of this band would

appear to remove important feedback to the driver about the dynamic state of those

subsystems (Giacomin and Lo Faso, 1993; Pottinger and Marshall, 1986). Given the

resonance behaviours of the automobile in the 20 to 60 Hz frequency band, it may be the

case that in current production automobiles the frequency band provides a focus and a

principal source of driver perception.

The findings may be interpreted as suggesting that road surface, steering and suspension

in the 20 to 60 Hz frequency interval provide vital clues to automobile drivers regarding

the roads over which they drive and the dynamic response of the vehicle. Steering feel

may be compromised by any reductions in vibrational energy at the steering wheel in this

interval.
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7.Test to determine the Effect of Compression
and Expansion of the Steering Wheel
Acceleration Signal

This chapter describes a set of experimental testing activities performed in order to

measure the effect of signal compression or expansion on the human ability to detect road

surface type based on steering wheel acceleration signals. The reason for studying this

effect was the interest in determining if some effects used in the music field to enhance

perception could improve also the steering stimuli for the detection task. As explained in

Chapter 2, compressors and expanders manipulate stimuli above a critical threshold level.

Such effects, compression and expansion, are used in the field of the music to enhance

recordings (Eargle, 1995; Huber and Runstein, 2005; Katz, 2002) by selectively reducing

or increasing the audio levels such that the louder passages are made softer, or the softer

passages are made louder, or both. The research which is described in this chapter was

performed based on the assumption that if the use of these effects enhances the human

perception of music sound signals then it might also prove beneficial in the case of

steering wheel acceleration signals. In order to investigate if different manipulations

above a critical threshold level of the steering wheel acceleration stimuli could affect the

decision making, the main objectives of the study were:

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration.

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration when it has been either

compressed or expanded.
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• To verify if the manipulation of the stimuli above a critical threshold level by either

compressing or expanding could improve the human detection for all road surface

types.

• To verify if only one single compressor factor or expander factor could improve the

human detection for all road surface types.

The results of the experimental tests were plotted using the Theory of Signal Detection as

the analytical framework and were summarised by means of the detectability index d'

value.

7.1 Experiment to Measure the Effect of Compression and Expansion of Steering

Wheel Acceleration Signals

A laboratory-based experiment was performed in the Perception Enhancement Systems

laboratory in order to measure the human cognitive response to compression or expansion

of the steering wheel acceleration signals. The test facility used to perform the laboratory

experiment was the same which was previously described in this thesis in section 5.1.1.

The mathematical operation of compressing and expanding does not affect the spectral or

phase relationships of the stimuli.

Steering vibration from three road surfaces was selected to perform the current laboratory

experiment, which were: a Tarmac surface, a Concrete surface and a Cobblestone surface.

This selection was based on the assumption that possibly the test stimuli used in Chapter

5 did not need to be re-scaled in their complete acceleration time histories in order to

improve the human detection task. Possibly manipulation of their acceleration level above

a threshold value would prove more beneficial.

7.1.1 Test subjects

A group of 15 individuals was tested who were all university staff and students. Upon

arriving in the laboratory each was issued an information and consent form. Verbal

explanation was also provided about the experimental method and the laboratory safety

features. Age, gender, height, and mass data were then collected and the participant was

requested to state whether he or she had any physical or mental condition which might

affect perception of hand-arm vibration, and whether he or she had ingested coffee within

the 2 hours previous to arriving in the laboratory. No test participant declared a physical
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or cognitive condition which might affect the perception of hand-arm vibration. and none

declared having ingested coffee prior to their tests.

The subjects who participated in the compression and expansion of the steering

acceleration signals test consisted of 9 males and 6 females. Table 7.1 presents the mean,

standard deviation (STD), minimum and maximum values of age, height and mass

encountered in the test. None of the characteristics deviate substantially from 50th

percentile characteristics except age, which was substantially lower than the national

average.

Table 7.1 Physical characteristics of the group of test participants
involved in the laboratory experiment (n=15)

Characteristics Mean STD Minimum Maximum

Age (years) 24.13 4.39 20 37
Height (m) 1.69 0.07 1.57 1.81
Mass (kg) 73.13 6.83 58 85

(STD) Standard Deviation

7.1.2 Test Stimuli

In order to make use of compressors or expanders some parameters had to be defined.

These were: a critical threshold level, a compressor factor and an expander factor. In this

context, the critical threshold level is defined as the amplitude level above which

reduction or amplification begins to occur, while the compressor and the expander factors

are the ratio of input to output above the threshold level (Eargle. 1995; Huber and

Runstein, 2005; Katz, 2002). According to Katz (2002) in the field of music the threshold

value would be from -20 to -10 dBFS (decibel Full Scale) which is considered the range

where most of the musical movements take place. In the case of steering wheel vibration a

human detection threshold value has never been defined in the research literature. The

research described here adopted as threshold level three values (±30', ±20', ±O') which

were based on the standard deviation 0' of the acceleration values of the signal in m/s2•

Figure 7.1 shows schematically the adopted values above which reduction or

amplification was performed.
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Figure 7.1 Standard deviation values used as critical threshold levels above which gain reduction or
amplification was performed.

According to Katz (2002) common factor values used for music enhancement are

approximately 0.40 when compressing and 1.10 when expanding. Considering that

compressor and expander factors used to enhance music might be expected to be different

from those which could enhance perception of the steering vibration, a range of different

factor values were selected for the steering wheel test stimuli. Scale values of 0.40,0.60,

0.80 and 0.90 were selected as compressor factors, while 1.10, 1.50, 2.00 and 2.50 were

selected as expander factors. Both selected ranges include those factor values which

usually enhance music as stated above (0.40 and 1.10).

The stimuli actuated at the wheel during the experiment consisted of the compressed and

expanded signals taken from all three road surface types. The stimuli were manipulated

above the three critical threshold level values by means of the four compressor factors and

also the four expander factors. As an example of this process, Figure 7.2 shows the effect

of various compressors or expanders applied to the tarmac surface when the critical

threshold level is taken to be the three standard deviation values of the data points

composing the steering acceleration time history. Figure 7.2 suggests that the use of a

compressor greatly reduces the acceleration level of the stimuli and the peakedness, while

the use of expanders greatly increases the acceleration level of the stimuli and also the

peakedness.
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Figure 7.2 The effect of various compressor and expander factors used at the tarmac stimul i when the
critical threshold levels are taken to be the three standard deviation values.

Table 7.2 presents the global statistical properties determined from the un-manipulated

and the manipulated stimuli of each of the three road surfaces selected for the current

experiment. As expected from the acceleration time histories presented in Figure 7.2, the

global statistical properties of the manipulated stimuli changed drastically as their

acceleration time histories were manipulated by means of compressors and expanders.

The kurtosis value, which measures the peakedness of the probability distribution of the

acceleration time histories, increased when the steering signals were manipulated by

means of expander factors. The kurtosis value for the original base stimuli changed from

a value close to 3.0 to a kurtosis value above 15.0 in some cases. On the other hand, when

the steering signals were manipulated by means of compressor factors the kurtosis value

decreased, in some cases achieving values below' to 2.0. Such kurtosis values are more

close to the expected value for a sine wave of 1.50 than the value expected of a random

vibration signal. The remaining global statistical properties such as the r.m.s. acceleration

value, skewness value, crest factor value and the VDV value changed in some cases by

more than a factor of 2.0 when expanders were applied while decreasing by more than a

half when compressors factors were applied, as seen in Table 7.2.
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Table 7.2 Global statistical properties of the three road stimuli used for producing the laboratory test stimuli
to measure the effect of com~ression and exeansion on the human detection.

Global Statistics and Characteristics

Type of Road Surface T.m.S Kurtosis Skewness CJo' VDV
~mI~l ~dimensionless) ~dimensionlessl !dimensionlessl ~1Jl'i'1.75l

COBBLESTONE 0.287 3.465 ·0.002 4.710 0.736

x2.50 0.429 15.666 -0.086 6.869 1.519

x2.00 0.383 10.593 -0.057 6.163 1.229
±3STD

xl.50 0.342 6.044 -0.025 5.170 0.955
x 1.25 0.325 4.332 -0.009 4.537 0.834

.. x 2.50 0.585 7.908 0.023 5046 1.743
<II

1 x2.00 0.486 6.823 0.022 4.852 1.398
±2STD

xl.50 4.500
&1

0.393 5.214 0.017 1.057

x 1.25 0.350 4.208 0.013 4.214 0.892

x2.50 0.741 3.753 -0.015 3.980 1.834

x2.00 0.596 3.679 -0.011 3.960 1.468
:tSTD

xl.50 0.452 3.529 -0.004 3.918 1.101
x 1.25 0.380 3.391 0.001 3.877 0.918

xO.90 0.305 2.861 0.012 3.482 0.705

±3STD xO.80 0.300 2.644 0.017 3.144 0.681
xO.60 0.292 2.437 0.026 2.422 0.650
xO.40 0.287 2.436 0.033 2.467 0.637

xO.90 0.296 2.783 0.003 3.594 0.679~ xO.80 0.282 2.450 0.000 3.350 0.627~ ±2STD:... xO.60 0.257 2.015 -0.006 2.750 0.545
~ xO.40 0.239 1.977 -0.008 1.978 0.503u

xO.90 0.283 3.036 0.008 3.759 0.663
xO.80 0.255 2.875 0.011 3.698 0.591:tSTD
xO.60 0.202 2.434 0.012 3.497 0.450
xO.40 0.154 1.907 0.001 3.065 0.322

CONCRETE 0.099 3.144 0.073 4.280 0.222

x2.50 0.141 12.752 0.089 5.280 0.473

±3STD
x2.00 0.123 9.282 0.091 4.832 0.382
xl.50 0.107 5.719 0.079 4.157 0.295
xl.25 0.100 4.204 0.067 3.702 0.255

t
x2.s0 0.190 6.247 -0.096 3.915 0.533
x2.00 0.156 5.620 -0.054 3.806 0.427±2STD

~ xl.50 0.124 4.606 -0.001 3.597 0.323
I;I;l

x 1.25 0.109 3.900 0.027 3.419 0.271

x2.50 0.228 3.492 -0.027 3.263 0.553
x2.00 0.183 3.444 -0.013 3.250 0.443:tSTD
xl.50 0.138 3.342 0.009 3.223 0.332
x 1.25 0.116 3.245 0.027 3.197 0.277

xO.90 0.092 2.771 0.043 2.900 0.211

I ±3STD xO.80 0.090 2.S45 0.036 2.633 0.203

Cl. xO.60 0.087 2.329 0.023 2.049 0.191a xO.40 0.085 2.350 0.014 2.105 0.186c
Col
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xO.90 0.089 2.748 0.056 3.005 0.204

xO.80 0.084 2.435 0.057 2.833 0.186
±2STD

xO.60 0.1580.D75 1.974 0.043 2.383

xO.40 0.068 1.907 0.002 1.759 0.141

xO.90 0.086 2.983 0.062 3.120 0.200

xO.80 0.077 2.859 0.076 3.080 0.178
:tSTD 0.135xO.60 0.061 2.495 0.104 2.944

xO.40 0.045 1.981 0.114 2.637 0.095

TARMAC 0.056 2.997 0.052 3.872 0.130

x2.50 0.080 12.693 -0.549 6.786 0.268

x2.00 0.070 8.981 -0.348 6.161 0.217
:t3 STD

xl.s0 0.062 5.416 -0.127 5.245 0.168

x 1.25 0.058 3.999 -0.023 4.642 0.147

.. x 2.50 0.110 6.332 -0.124 4.940 0.310..
'a x2.00 0.091 5.647 -0.090 4.792 0.248
i ±2STD
>e xl.s0 0.072 4.561 -0.032 4.514 0.187
~ x 1.25 0.063 3.827 O.otl 4.277 0.158

x2.50 0.133 3.485 0.081 4.076 0.323

x2.00 0.107 3.424 0.077 4.059 0.259
:tSTD

xl.sO 0.081 3.303 0.071 4.023 0.194

xl.2S 0.068 3.191 0.068 3.988 0.162

xO.90 0.054 2.748 0.094 3.604 0.124

:t3 STD xO.80 0.053 2.566 0.118 3.264 0.120

xO.60 0.051 2.408 0.149 2.529 0.114

xO.40 0.050 2.442 0.157 2.588 0.112

Is xO.90 0.052 2.687 0.090 3.737 0.119
'"! xO.80 0.049 2.396 0.116 3.515 0.109

~
±2STD

xO.60 0.044 1.999 0.162 2.941 0.094
Clc xO.40 0.040 1.990 0.190 2.159 0.085

xO.90 0.050 2.901 0.066 3.886 0.117

xO.80 0.045 2.768 0.068 3.833 0.104
:tSTD

xO.60 0.036 2.395 0.081 3.653 0.079

xO.40 0.027 1.920 0.127 3.254 0.056

7.1.3 Test Protocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the three road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the three stimuli types which would be used later, in order to become acquainted

with the detection task.
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The experiment was performed in six parts, two for each road surface investigated. For

each road surface, the first part of the experiment corresponded to the study of the

compressed stimuli and the second part to the study of the expanded stimuli. Each part

involved five repetitions of each un-manipulated and manipulated test stimuli from the

displayed road surface. In addition, twenty five stimuli were chosen randomly from the

stimuli sets of the other road surfaces, and were used as background noise stimuli.

The time duration of each individual test stimuli was chosen to be 10 seconds. Six

different series of fifteen acceleration stimuli were applied in each part of the experiment.

Each stimulus was separated from each other stimulus by a 5 second gap in which the

participant was asked to state by "yes" or "no" his or her judgment of road surface type so

as to indicate if the experimental stimulus seemed to be from the road which was

displayed during the test. The order of stimuli presentation was fully randomised for each

participant in each series in order to reduce learning effects. Each participant performed

90 detections in each part of the experiment, for a total of 540 detections in a complete

experiment.

7.1.4 Results from the Experiment to Measure the Effect of Compression and

Expansion of Steering Wheel Acceleration Signals

The laboratory-based experiment results from the group of 15 people are presented in

Figure 7.3. These results show the effect which compression or expansion of the steering

acceleration stimuli has on the human ability to detect road surface type. The results of

Figure 7.3 are presented in terms of percent correct detection, from 0 to 100 percent. The

graphs are organised according to the three threshold levels used in the laboratory

experiment (±3 STD, ±2 STD and ±l STD). Percent correct detection is presented along

the ordinate, while the compressor and expander factors are presented along the abscissa.

The original base stimuli are labelled as x 1.0, which means that all data points of the

acceleration time histories above the critical threshold level remain without change, since

they are either compressed or expanded by the value of unity. The four compressor

factors used are labelled as xO.40, xO.60, xO.80 and xO.90, while the four expander factors

used are labelled as xl.lO, x1.50, x2.00 and x2.50. The percentage of correct detection

responses for the three road surfaces were analysed in a between/within-subjects by

means of the one factor repeated measures ANOV A. Statistical significance effect in the
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responses were found in all surfaces at a p=O.Ol of significance level with a F(4,56) value

spanning from 5.01 to 320.77.
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Figure 7.3 Results of the experiment to measure the effect of compression and expansion of the steering
wheel acceleration signals on the human detection of road type in percent correct detection (n= 15) where:

(a, b) Results at threshold level of ±3 STD
(c, d) Results at threshold level of ±2 STD
(e, f) Results at threshold level of ±1 STD

As shown in Figure 7.3, the percentage of correct detection for the original base stimuli

was approximately 85% for the tarmac stimuli, 75% for the concrete stimuli and 78% for

the cobblestone stimuli. These values can be compared to the values of approximately

90%, 78% and 80% respectively obtained for the same road surface type in Chapter 5.

The small differences between these results, less than 5% for all road types, suggests that

the tests described in this chapter did not deviate substantially from the research described

in previous chapters of this thesis. The small differences may be due to small changes in

the group of test subjects or in the environmental conditions.
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Figure 7.3 suggests that a single, optimal, threshold level above which the stimuli can be

manipulated by either compression or expansion exists which is valid for all three road

surfaces that were investigated. It was found at the ±3 STD threshold level when the

stimuli are compressed by a factor of 0.90. This result can suggest that, similarly to the

case of music, the compression of the highest peaks by a small factor makes the stimuli

clearer to be detected. However, the percentage difference of less than 7% between the

detection rate of the original stimuli (xl.O) and that of the stimuli which was compressed

by a factor of 0.90 is not large in magnitude.

Similarly to the effect of scale/gain which was studied in Chapter 5, the highest detection

rate for the tarmac stimuli was approximately of 90%, which was achieved when the

stimulus was compressed by a factor of 0.90. In the (scale/gain) study the detection of the

concrete surface and the cobblestone surface rescaled by factor of 0.90 produced

detection rates of approximately 40%, while in the current study the detection rate was

78% for the concrete stimuli and 80% for the cobblestone stimuli using the same

compressor factor of 0.90.

The use of expanders in the tarmac road surface at any threshold level only produced a

detriment to detection. This surface can be assumed to be representative of a category of

surfaces whose correct detection is reduced by increases in the size of their acceleration

stimuli. For the concrete stimuli, instead, an improvement in detection occurred when the

stimuli was expanded by a factor of 1.S and 2.0 above a ±l standard deviation. Increases

in correct detection also occurred for the cobblestone stimuli when expanded for almost

all factors greater than 1.0 above a ±l standard deviation. The results for the concrete

stimuli and cobblestone stimuli suggest that human memory associates the stimuli for

these surfaces with large vibration amplitudes, however improvements in detection only

seems to be achieved when almost all the data points in the time history are expanded.

These results are also presented in Figure 7.4 in terms of detectability index d' value as a

function of the three threshold levels used in the laboratory experiment (±3 STD, ±2 STD

and ±l STD). Results oscillate from -2 to 2 determined from the hit and false alarm rates

obtained from all sessions. Detectability index d' value is presented along the ordinate,
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while the scaled factors are presented along the abscissa. Both the percentage of detection

rate and the detectability results suggest similar human response to all stimuli types.
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Figure 7.4 Results of the experiment to measure the effect of compression and expansion of the steering
wheel acceleration signals on the human detection of road type in detectability index d' value (n=15) where:

(a, b) Results at threshold level of ±3 STD
(c, d) Results at threshold level of ±2 STD
(e, f) Results at threshold level of ±1 STD
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Appendix D.I presents the Receiver Operating Characteristic (ROC) points obtained for

the 15 test participants for the tarmac surface, the concrete surface and the cobblestone

surface.

7.1.5 Observations and Discussion

For the three road surfaces investigated in the experiment the results suggested that the

effect of compression or expansion of the steering wheel acceleration signals can lead to

improvements in the detection task for all surfaces at a single and a fixed compression

factor. This finding suggests that the assumption made at the beginning of the chapter
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could be confirmed and that the use of these effects could also enhance the human

perception in the case of steering wheel acceleration signals. However, the percentage

difference of less than 7% between the detection rate of the original stimuli and that of the

stimuli which was compressed by a factor of 0.90 suggests that more research is required.

since the simple operation of either compression or expansion of the complete steering

wheel acceleration signal does not produce extremely large changes in detection rate of

the road surface. If very large improvements are required, a more selecti ve process for

defining the parts of the signal which should be amplified or reduce would seem

necessary.

The music literature (Izotope, 2004; Katz, 2002) suggests the need to listen to the music

when selecting what to compress or expand. The overall quality of the result of the

transformation is directly judged by a listener. From the results found in the current study,

it suggested that something similar must be applied to the steering stimuli in order to

enhance the human road detection. It seems that the way in which the compressors and

expanders are used to manipulate the steering stimuli must be carefully controlled

according to the human cognitive mechanism used to detect the road surface. The results

suggest that the situation is not as simple as choosing an arbitrarily threshold level above

which compressors or expanders manipulate the stimuli, but that this threshold level

should be carefully selected based on the expected human responses.
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8.Test to determine the Effect of Steering
Wheel Acceleration Transient Events on the
Human Detection

According to the literature the term of transient event is used to describe dynamic events

which are short in duration (Exarchos et aI., 2006; 2006; Giacomin et aI., 1999;

Oikonomou et aI., 2007; Tzallas et aI., 2004) compared to the underlying long term

changes in the signal. In the study of vibrational stimuli a transient event is considered to

be a sudden increase in vibration which occurs for a short period of time, sometimes less

than a fraction of a second, in an acceleration time history (Giacomin et aI., 1999;

Grainger, 2001; Steinwolf et aI., 2002). Such events are detected as deviations from

stationarity which exceed a specific threshold level. The presence of high-amplitude

transient events is common in time histories of road vehicle vibration when the vehicle is

driven over rough road surfaces. Even those road surfaces which appear smooth at first

sight will often have rougher points which produce transient events.

This chapter describes experimental testing activities performed in order to measure the

effect of transient event frequency content and scale on the human detection of road

surface type by means of steering wheel vibration. The steering acceleration stimuli were

manipulated by means of the mildly non-stationary mission synthesis (MNMS) algorithm

(Giacomin et aI., 1999) in order to produce test stimuli which were selectively modified in

terms of the number, and size, of transient vibration events they contained. A natural

question which arises in the case of the steering system is whether short, sharp, transients

of the kind that occur when driving over cracks or stones have an effect on the detection

of road surface type. The research which is described in this chapter was performed based
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on the assumption that transient events could be features from which drivers receive

information to detect road surface type. In this context the term of information is taken to

mean something that people get from the environment, or something that a machine tells

them they did not know before (Gamer, 1962). In order to investigate if different

manipulations in the number and the size of transient events could affect the decision

making the main objectives of the experimental activities described in this chapter were:

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration.

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration when it has been manipulated

in the number of the transient events by means of the MNMS algorithm using

different compression ratios.

• To verify if one single compression ratio could produce mission signals which contain

most of the informative transient events that the human uses to perform the detection

for all road surface types.

• To measure the percentage of correct detection of the road surface type and the

detectability index d' based on steering wheel vibration when it has been manipulated

in the size of the transient events by means of the MNMS algorithm using different

scale factors.

• To verify if one specific scale factor could re-size transient events in order to improve

the human detection for all road surface types.

The results of the experiment tests were plotted using the Theory of Signal Detection as

the analytical framework and were summarised by means of the detectability index d'

value.

8.1 Three experiments in the Detection of Road Surface Type

Three laboratory-based experiments were carried out in this chapter. The first experiment

investigated the effect of threshold trigger level, the second experiment investigated the

effect of the number of the transient events and the third experiment investigated the

effect of the scale of the transient events. All three experiments were performed in the

Perception Enhancement Systems laboratory. The test facility used to perform the
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laboratory experiments was the same which was previously described in this thesis in

section 5.1.1.

8.1.1 Test subjects

For each of the three experiments a group of 15 individuals was tested. The test groups

consisted of university staff and students. Upon arriving in the laboratory each participant

was issued information and a consent form and an explanation was provided which

described the experimental method and the laboratory safety features. Age, gender,

height, and mass data were then collected, and the participant was requested to state

whether he or she had any physical or mental condition which might affect perception of

hand-arm vibration, and whether he or she had ingested coffee within the 2 hours

previous to arriving in the laboratory. No participant declared any condition which might

affect the perception of hand-arm vibration, and none declared having ingested coffee

prior to their tests.

The participants in the threshold level experiment (First Experiment) consisted of 8 males

and 7 females, while the participants in the number of the transient events experiment

(Second Experiment) and the participants in the scaling of the transient events experiment

(Third Experiment) consisted of 9 males and 6 females. Table 8.1 presents the mean,

standard deviation (STD), minimum and maximum values of age, height and mass

encountered in the test groups. The values can be considered relatively representative of

UK drivers in all values except age, which is below the natural average.

Table 8.1 Physical characteristics of the groups of test participants
involved in the laboratory experiments (n=15)

Characteristics Mean STD Minimum Maximum

Threshold Level EXl:riment
Age (years) 24.60 5.74 20 37

Height (m) 1.71 0.08 1.60 1.95
Mass (kg) 72.33 8.44 58 90

Number or transient events
Scale or transient events
Age (years) 28.20 3.98 22 33

Height (m) 1.72 0.05 160 1.8
Mass (kg) 72.60 4.64 59 80

(STD) Standard Deviation
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8.2 Experiment to Evaluate the Effect of Threshold Level on the Human Detection of

Road Surface Type

One of the most fundamental and important variables in the MNMS algorithm is the

Threshold Trigger Level (TTL). In MNMS, transient event identification is achieved in

each wavelet group time history by means of a user selected threshold trigger level that is

specific to the wavelet group. Variations of this value result in a change in the number of

the transient events identified and extracted from the wavelet groups, and therefore, a

change in the transient events reinserted back into the synthetic Fourier signal. The

purpose of this laboratory-based experiment was to investigate the optimum value for the

threshold level for each road surface type, so as to establish if a single value would prove

optimal for all road surface types.

8.2.1 Test Stimuli

Three road surfaces were selected for use in testing. They were a broken concrete surface,

a broken lane surface and a cobblestone surface. Each of the three steering wheel time

histories was manipulated by means of the MNMS algorithm. A feature which is specific

to MNMS is a wavelet grouping stage which permits the user to group individual wavelet

levels into larger regions of significant energy, as illustrated in the PSD plots of Figure

8.1, where each wavelet group (WG1, WG2, etc.) is formed of two or more automatically

generated wavelet levels. For all three acceleration stimuli used in the current study, the

signal was automatically divided into 12 wavelet levels, which were then grouped based

on user inputs into 5 wavelet groups. As shown in Figure 8.1 the wavelet groups were

ordered from the lowest frequency to the highest frequency for simplicity.
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Figure 8.1 Power Spectral Densities (PSD) of the experimentally acquired steering wheel acceleration
signals, showing the wavelet groups chosen for use in the current study.
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Threshold trigger level (TTL) values of 2.4, 2.6, 2.8, 3.0, 3.2 and 3.4 were chosen so as to

produce mission signals for use as test stimuli. Table 8.2 presents the number of transient

events identified in each wavelet group using the six TTL values for each of the three

road surfaces. The results suggest that the higher the TTL value, the lower the number of

transient events identified into each wavelet group.

Once all transient events have 'been identified and extracted from all wavelet groups they

are sorted by MNMS in descending order by maximum peak amplitude (absolute crest

factor value). The transient event reinsertion method selected was maximum reinsertion,

meaning synchronization procedure 2, which does not affect the amplitude and phase

relationships within each bump event extracted from the original data (see section 2.6.6).

Time compression ratio and bump scale factor were both set to the unity in order to

produce mission signals without affecting the number, or size, of the transient events.

Mission signals were then acquired into the LMS® TMON software in order to be tested

(LMS TMON, 2002).
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Table 8.2 Number of transient events identified in each wavelet group CWG) using different TTL values for
all three stimuli used for producing the laboratory test stimuli.

THRESHOLD TRIGGER LEVEL (TTL)

WG
SIGNALS 2.4 2.6 2.8 3.0 3.2 3.4

NUMBER

WGI 9 9 6 3 3 3

WG2 15 6 6 6 3 3
BROKEN

WG3 63 39 24 18 9 6
CONCRETE

WG4 87 60 36 27 9 6

WG5 153 III 93 72 48 42

WGI 12 9 3 3 0 0

WG2 18 18 15 9 6 6
BROKEN

WG3 36 21 21 15 6 6
LANE

WG4 87 63 36 24 9 3

WG5 158 122 87 60 48 27

WGI 7 2 1 1 1 0

WG2 16 11 6 3 2 0

COBBLESTONE WG3 49 35 25 16 11 8

WG4 80 58 36 25 17 12

WG5 147 104 74 43 27 19

8.2.2 Test Protocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the three road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the three stimuli types which would be used later, in order to become acquainted

with the detection task.

The experiment was performed in three parts, one for each road surface studied. Each part

involved five repetitions of each of the manipulated test stimuli which were derived from

the original road data and also the original stimuli from the displayed road surface. In

addition, twenty five stimuli were chosen randomly from the stimuli sets of the other road

surfaces which were used as background noise for the overall test. The time duration of
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each individual test stimuli was chosen to be 10 seconds. Five different series of twelve

acceleration stimuli were applied to evaluate each road surface type. In each series, each

stimulus was separated from each other stimulus by a 5 second gap in which the

participant was asked to state by "yes" or "no" his or her judgment of road type. The

order of stimuli presentation was fully randomised for each participant in each series in

order to reduce learning effects. Each participant performed 60 detections in each part of

the experiment, for a total of 180 detections in a complete experiment.

8.2.3 Results from the Experiment to Evaluate the Effect of Threshold Trigger

Level on the Human Detection of Road Surface Type

Figure 8.2 presents the experimental results plotted in terms of percent correct detection,

from 0 to 100 percent. Percent correct detection is presented along the ordinate while the

six different threshold trigger level (TTL) values are presented along the abscissa. The

original base stimuli are labelled as O. For each TTL, the hit rate was taken to be the

proportion of "yes" responses obtained from the stimuli which were actually derived from

the presented road surface. The false alarm rate was taken to be the proportion of "yes"

responses obtained from the stimuli which were not derived from the road surface which

was being presented. The detection responses for the three road surfaces were analysed in

a between/within-subjects by means of the one factor repeated measures ANOV A.

Statistical significance effect in the responses were found in all the three surfaces tested at

a p=O.OI of significance level with a F(6,84) value of 21.19,21.16 and 3.39 for the broken

concrete stimuli, the broken lane stimuli and the cobblestone stimuli, respectively.
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Figure 8.2 Results of the laboratory experiments regarding the effect of threshold level of the steering
wheel acceleration signal on the human detection of road surface type in percent correct detection (n= 15).

As shown in Figure 8.2 the percentage of correct detection for the original base stimuli

was approximately 78% for the broken concrete stimuli, 80% for the broken lane stimuli

and 78% for the cobblestone stimuli. These values can be compared to the values of

approximately 74%, 80% and 80% respectively obtained in previous experiments in

Chapter 5 and 6. These results suggested a maximum difference in detection lesser to 5%

for all three road surfaces. The results in Figure 8.2 suggest an improvement in detection

when threshold trigger level (TTL) values from 2.6 to 3.2 were used to produce mission

signals for all the three road surfaces. The use of TTL values lesser to 2.6 or greater to 3.2

seems to be detrimental to human detection.

The results are also presented in terms of the detectability index d' value in Figure 8.3,

from 0 to 3, determined from the hit and false alarm rates obtained from all sessions.

Detectability index d' is presented along the ordinate, while the six threshold trigger level

(TTL) values are presented along the abscissa. Both the detection rate and the

detectability results suggest similar qualitative human response and suggest that the

bumps events identified and extracted in the range of TTL values from 2.6 until 3.2 are

playing a key role in the human cognitive detection of the road surface type for all three

surfaces.
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Figure 8.3 Results of the laboratory experiments regarding the effect of threshold level steering wheel
acceleration signal on the human detection of road surface type in detectability index d' value (n= 15).

Both curves, the detection rate and the detectability present in the current study, show

similar qualitative behaviour for all three road surfuces, decreasing in detection when the

lesser threshold level was evaluated (2.4), increasing in detection in the range of TTL

from 2.6 to 3.2, and then again decreasing in detection at the greater TTL of 3.4. The

detection results suggest that the perceptual and cognitive mechanisms used by the

average driver required vibrational information which content transient events with a

standard deviation spanning from 2.6 to 3.2, which can permit accurate detection in

situations where detection relies solely on the tactile sense modality. The identification of

these TTL values may be of relevance in order to use the MNMS algorithm to manipulate

steering stimuli.

The use of TTL values different to those found in the range from 2.6 to 3.2 seems to be

detrimental to human detection for the three road surfaces studied. Current results suggest

that possibly certain transient events in the original stimuli are not informative to the

driver, and that their extraction and their reinsertion made the stimuli more complex to

detect as seen in the case of a TTL value of 2.4, or some transient events are missed when

TTL values are selected to be greater than 3.2.
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Appendix D.2 presents the Receiver Operating Characteristic (ROC) points obtained for

the 15 test participants for the broken concrete surface, the broken lane surface, and the

cobblestone surface. ROC point results also suggest that an improvement in detection is

found at threshold trigger level (TIL) values from 2.6 to 3.2 from each wavelet group.

The results suggest that the transient events identified with TIL values spanning from 2.6

to 3.2 seem critical to the human detection: averaging hit rates exceeded 80% for the three

road surfaces.

8.3 Experiments to Measure the Effect of the Number of Transient Events and the

Scale of Transient Events

Laboratory-based experiments were conducted to evaluate the effect of the number and

scale of transient vibration events on the human detection of road surface type by means

of steering wheel vibration. The study used steering wheel tangential direction

acceleration time histories which had been measured in a mid-sized European automobile

that was driven over three different types of road surface. The steering acceleration

stimuli were manipulated by means of the Mildly Non-stationary Mission Synthesis

(MNMS) algorithm (section 2.6) in order to produce test stimuli which were selectively

modified in terms of the number, and size, of transient vibration events they contained.

Participants were exposed to both un-manipulated and manipulated steering wheel

rotational vibration stimuli.

8.3.1 Test Stimuli

Three road surfaces were selected for use in testing which were a cobblestone surface.

concrete surface and a tarmac surface. Each of the three steering wheel time histories was

manipulated by means of the MNMS algorithm as described in section 8.2.1. The steering

stimuli wavelet levels were grouped into larger regions of significant energy called

wavelet groups as seen in Figure 8.4. where each wavelet group is formed of two or more

automatically generated wavelet levels.
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Figure 8.4 Power Spectral Densities (PSD) of the experimentally acquired steering wheel acceleration
signals, showing the wavelet groups chosen for use in the study.

In the study the wavelet group trigger levels were chosen to be in the range from 2.6 to

3.2 standard deviations based on the findings of the previous experiment which is

describe in section 8.2.

Test signals were produced from each of the three experimentally acquired base signals

using four time compression ratios of 1.0, 2.0, 3.0 and 4.0 and five transient event scale

factors of 0.8, 1.0, 2.0, 3.0 and 4.0. The transient event reinsertion method selected was

maximum reinsertion, meaning synchronization procedure 2, which does not affect the

amplitude and phase relationships within each the bump event which was extracted from

the original signal (see section 2.6.6). Table 8.3 presents the number of bump events that

were extracted (NBE) from the original stimuli and the number of bump events that were

reinserted (NBR) into the test stimuli at the four time compression ratios (Ck) selected for

the study. Figure 8.5 presents the power spectral densities obtained for the original

concrete road stimuli and for the test stimuli. The close correspondence of the curves of

Figure 8.5 suggests that the energy distribution was accurately retained after manipulation

by the MNMS algorithm.
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Table 8.3 Number of bump events extracted (NEE) from the original stimuli and the number of bump
events that were reinserted (NBR) into the test stimuli using four time compression ratios.

SIGNAL
Compression Ratio Number of Bumps Number of Bumps

(CR) Extracted (NBE) Reinserted (NBR)

1.0 53
2.0 53

COBBLESTONE 53
3.0 53
4.0 52
1.0 53
2.0 49

CONCRETE 533.0 48
4.0 47
1.0 53
2.0 53

TARMAC 53
3.0 49
4.0 44

0.00 -ORIGINAL CONCRETE
--MNMSCR1.0

-- MNMS CR2.0
---- MNMS CR3.0

-- MNMSCR4.0

25 50 75
Frequency (Hz)
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Figure 8.5 Power Spectral Density of the original concrete road base stimuli and of the test stimuli obtained
using compression ratios of 1.0, 2.0, 3.0 and 4.0.

8.3.2 Test Protocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the three road surfaces which was being used in

the test. Prior to commencing formal testing, the participant was provided an example of

each of the three stimuli types which would be used later, in order to become acquainted

with the detection task.

Both the experiment to determine the effect of the number of transient events and the

experiment to determine the effect of the transient event scaling were performed in three
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parts, one for each road surface studied. Each part involved five repetitions of each test

stimuli from the displayed road surface. In addition, twenty five stimuli were chosen

randomly from the stimuli sets of the other road surfaces, and were used to provide a

noise background for the study.

The time duration of each individual test stimuli was chosen to be 10 seconds. Five

different series of ten acceleration stimuli were applied to evaluate each road surface type

for each test experiment. In each series, each stimulus was separated from each other

stimulus by a 5 second gap in which the participant was asked to state by "yes" or "no"

his or her judgment of road type. The order of stimuli presentation was fully randomised

for each participant in each series in order to reduce learning effects. Each participant

performed 50 detections in each part of the experiment, for a total of 150 detections in a

complete experiment.

8.3.3 Results from the Experiment to Measure the Effect of the Number and

Scaling of Transient Events

Figure 8.6 presents the results obtained from the experiment to determine the effect of the

number of transient events. The results are plotted in terms of percent correct detection,

from 0 to 100 percent. Percent correct detection is presented along the ordinate while the

ratio of signal compression (the increases in the number of transient events) is presented

along the abscissa. The original base stimuli are labelled as 0, while the four compressed

test stimuli are labelled as +1, +2, +3 and +4 to indicate the compression ratios from 1 to

4. For each compression ratio, the hit rate was taken to be the proportion of "yes"

responses obtained from the stimuli which were actually from the presented road surface.

The false alarm rate was taken to be the proportion of "yes" responses obtained from the

stimuli which were not derived from the road surface which was being presented. The

percentage of correct detection responses for the three road surfaces were analysed in a

between/within-subjects by means of the one factor repeated measures ANOV A.

Statistical significance effect in the responses were found in all the three surfaces tested at

a p=O.Ol of significance level with a F(4,56) value of 6.70, 17.48 and 36.26 for the

cobblestone stimuli, the concrete stimuli and the tarmac stimuli, respectively.
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Figure 8.6 Results of the laboratory experiments regarding the effect of the number of transient events of
the steering wheel acceleration signal on the human detection of road surface type plotted in terms of

percent correct detection (n= 15).

As shown in Figure 8.6 the results obtained for a compression ratio of 1, which consists of

the use of the MNMS algorithm to manipulate the signals without increasing the number

of transient events, produced only mixed results. The percentage of correct detection

remained constant for the cobblestone stimuli, decreased for the concrete stimuli and

improved for the tarmac stimuli. This suggests that human detection of road surface type

can be sensitive not just to the type, size and number of transient events in the signal, but

also to their position in the stimulus time history since changes in the position is the main

result of operating MNMS without any signal compression.

Figure 8.6 does suggests, however, the potential usefulness of controlling the transient

events which are present in the steering vibration stimuli. Important increases in correct

detection occurred for all compression ratios greater than 2 for the cobblestone stimuli,

for compression ratio 2 for the concrete stimuli and for compression ratios of both 1 and 2

for the tarmac stimuli.

The results are also presented in terms of the detectability index d' value in Figure 8.7,

from 0 to 3, determined from the hit and false alarm rates obtained from all sessions.
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Detectability index d' is presented along the ordinate while the compression ratio values

are presented along the abscissa. Both the detection rate and the detectability results

suggest similar qualitative human response.
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Figure 8.7 Results of the laboratory experiments regarding the effect of the number of transient events of
the steering wheel acceleration signal on the human detection of road surface type plotted in terms of

detectability index d' value (n= 15).

Figure 8.8 presents the results obtained from the experiment to determine the effect of

transient event scaling on the human ability to detect road surface type. The stimuli used

in this experiment had a compression ratio of 2, which was chosen because it was the

mean compression ratio considered in the current study. The results are again plotted in

terms of percent correct detection, from 0 to 100 percent. The scale factors applied to the

individual transient events (0.8, 1.0, 2.0, 3.0 and 4.0) by means of the MNMS algorithm

are presented along the abscissa. The percentage of correct detection responses for the

three road surfaces were analysed in a between/within-subjects by means of the one factor

repeated measures ANDV A. Statistical significance effect in the responses were found in

all the three surfaces tested at a p=O.Ol of significance level with a F(4,56) value of 18.82,

15.12 and 35.47 for the cobblestone stimuli, the concrete stimuli and the tarmac stimuli,

respectively.
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Figure 8.8 Results of the laboratory experiments regarding the effect of the transient events scaling of the
steering wheel acceleration signal on the human detection of road surface type plotted in terms of percent

correct detection (n= 15).

For the stimuli involving transient events which were maintained at their natural scale

(xl.O), the percentages of correct detection were 75% for the cobblestone stimuli, 80% for

the concrete stimuli and 92% for the tarmac stimuli. In the case of the cobblestone stimuli

the optimum detection was achieved at the largest scale that was tested (x4.0), while for

the concrete stimuli optimum detection occurred at the mean value (x2.0) and detection

for the tarmac stimuli was optimum for the smallest scale values tested (xO.8). For all

three road surface types, optimum detection occurred for stimuli having transient events

which were different in size from those occurring naturally in the original stimuli.

The results are also presented in terms of the detectability index d' value in Figure 8.9,

from 0 to 2, determined from the hit and false alarm rates obtained from all sessions.

Detectability index d' is presented along the ordinate while the compression ratio values

are presented along the abscissa. Both the detection rate and the detectability results

suggest similar qualitative human response.
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Figure 8.9 Results of the laboratory experiments regarding the effect of the transient events scaling of the
steering wheel acceleration signal on the human detection of road surface type plotted in terms of

detectability index d' value (n= 15).

Appendix D.3 and D.4 present the Receiver Operating Characteristic (ROC) points

obtained for the 15 test participants for the cobblestone surface, the concrete surface and

the tarmac surface

8.3.4 Observations and Discussion

The findings suggest that steering wheel transient vibration events play a key role in

human detection of road surface type. Improvements of up to 20 percentage points in the

rate of correct detection were achieved by means of selective manipulation of the steering

vibration stimuli. The results also suggest, however, that no single setting of the MNMS

algorithm proved optimal for all road surface types which were investigated.

Comparison of these results to those of Chapter 5 relative to the study of the effect of

gain/scale suggests similarities. The curves of percent correct detection which are

presented here, both those as a function of transient event number, and those as a function

of transient event scale, show similar qualitative behaviour to the curves obtained as a

function of overall signal scale. The improvement in detection rate as a function of

increasing compression ratio found for the cobblestone surface in this study mirrors the

monotonic increase obtained as a function of overall signal scale in Chapter 5. Also, the
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decrease in detection rate as a function of increasing the scale of the transient events

found for the tarmac surface mirrors the monotonic decrease obtained as a function of

overall signal.

Although the results of the test to measure the effect of the number of transient events

suggested that there was no single time compression ratio (i.e. increase in the density of

transient events in the signal) which was optimal for all of the road surface types which

were investigated, the time compression value of 2 did nevertheless provide significant

improvements for the concrete stimuli and for the tarmac stimuli while simultaneously

providing reasonable results for the cobblestone stimuli.

Although the results of the test to measure the effect of the scaling of the transient events

suggested that there was no single scale factor (i.e. increase or decrease of the size of the

individual transient events in the signal) which was optimal for all of the road surface

types which were investigated, the scale factor of 2.0 did nevertheless improve detection

for the cobblestone stimuli and for the concrete stimuli while providing reasonable results

for the tarmac stimuli.

An overall conclusion which can be hypothesised based on the results of the transient

event number and scale experiments is that simple repetition or scaling of the individual

transient events, performed as the only perception enhancement operation, does not

provide universally optimal results. Doubling both the number and size of the transient

events in the signal would be expected to produce improvements in the detection of many

road surfaces, but these parameter settings are not sufficient to guarantee universally

optimal perception enhancement. From the results of these experiments it would appear

that selection and targeting of individual transient events is probably required in order to

achieve universally optimal results. Possibly only a small number of transient events carry

the main part of the road surface information to the driver, thus only those events should

be scaled and repeated so as to achieve optimal results.
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9.Experiment to determine the effectiveness
of a first set of guidelines for automotive
steering vibration feedback

The final test activity of the PhD research is presented in this chapter. It was performed

based on the assumption that automotive steering vibration feedback can be optimised for

the purposes of road surface detection by implementing the most promising feedback

settings which were found in the various tests which are described in the previous

chapters of this thesis. By collecting the best MNMS algorithm settings from the various

individual tests of road surface detection it was expected that a simple first set of

perception enhancement guidelines could be assembled for use with the automotive

steering.

Based on the results described in the previous chapters of this thesis the parameter

settings which can be applied to the Mildly Non-stationary Mission Synthesis (MNMS)

algorithm so as to achieve general improvements in the rate of road surface detection

include the following:

1. The steering vibration should contain transient events extracted from at least the

key frequency band identified in the study of the effect of steering wheel

acceleration frequency distribution of Chapter 6. The frequency band in question

is the range from approximately 20 Hz to 60 Hz for the road surfaces studied.

2. Based on the results of the study of the effects of threshold trigger level (TTL) of

Chapter 8, the steering vibration should contain transient events which are chosen
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using a trigger value in the range from 2.6 to 3.2 standard deviations. If only the

single frequency band described in point (1) above is manipulated, then only a

single standard deviation value is required, which can be taken to be 2.6 based on

the results of chapter 8.

3. The steering vibration signal should contain more transient events than would be

expected from current practice with automobiles. Improvements in road surface

detection can be achieved by implementing a compression ratio of 2.0 using the

MNMS algorithm so as to double the number of transient events in the steering

vibration signal as described in chapter 8.

4. The steering vibration signal should contain transient events which are scaled

upwards so as to be larger than those which occur from current practice with

automobiles. Improvements in road surface detection can be achieved by

implementing a bump scale factor of 2.0 using the MNMS algorithm, as described

in chapter 8.

In order to investigate the possible effectiveness of the first set of guidelines for

automotive steering vibration feedback which are listed above, the experimental test

activity described in this chapter had the following objectives:

• To measure the percentage of correct detection of the road surface type based on

steering wheel vibration.

• To measure the percentage of correct detection of the road surface type based on

steering wheel vibration when it has been manipulated according to the first set of

guidelines for automotive steering vibration feedback.

• To verify if the automotive steering vibration feedback guidelines lead to general

improvements in human detection for a wide range of road surfaces.

The results of the experimental tests were plotted using the Theory of Signal Detection as

the analytical framework and were summarised by means of receiver operating curve

(ROC) points.
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9.1 Experiment to Measure the effect of the first set of guidelines for automotive
steering vibration feedback

A laboratory-based experiment was conducted to evaluate the effect of a first set of

guidelines for automotive steering vibration feedback on the human detection of road

surface type. The study used steering wheel tangential direction acceleration time

histories which had been measured in a mid-sized European automobile that was driven

over ten different types of road surface. The original experimentally acquired steering

acceleration stimuli were manipulated by means of the Mildly Non-stationary Mission

Synthesis (MNMS) algorithm (section 2.6) in order to produce test stimuli which were

selectively modified according to the steering feedback guidelines. For each steering

acceleration stimuli a single manipulated test stimulus was produced. During the course

of the experiment the participants were exposed to both un-manipulated and manipulated

steering wheel rotational vibration stimuli.

9.1.1 Test Subjects

A group of 15 participants was tested who were all university staff and students. Upon

arriving in the laboratory each participant was issued an information and consent form as

well as a description of the experimental method and the laboratory safety features. Age,

gender, height, and mass data were then collected, and each participant was requested to

state whether he or she had any physical or mental condition which might affect

perception of hand-arm vibration, and whether he or she had ingested coffee within the 2

hours previous to arriving in the laboratory. No test participant declared a physical or a

cognitive condition which might affect the perception of hand-arm vibration, and none

declared having ingested coffee prior to their tests.

The participants consisted of 9 males and 6 females. The physical characteristics of the

group are summarised in Table 9.1. The mean value and the standard deviation of each of

the three measures of age, height and mass can be seen to be near the UK population

values except in the case of age, which was somewhat lower than the UK national

statistics.
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Table 9.1 Physical characteristics of the group of test participants
involved in the laboratory experiment (n=15)

Characteristics Mean STD Minimum Maximum

Age (years) 29.93 3.75 22 35
Height (m) 1.69 7.66 1.58 1.8
Mass (kg) 68.67 6.85 58 76

(STD) Standard Deviation

9.1.2 TestStimuli

Ten road surfaces were selected for use in the experiment. They were a broken surface, a

broken concrete surface, a broken lane surface, a cobblestone surface, a cobblestone city,

a concrete surface, a country lane, motorway surface, a noise surface and a tarmac

surface. Each of the ten steering wheel acceleration time histories was manipulated by

means of the MNMS algorithm as described in section 8.2.1 based on the conditions

established at the beginning of the chapter. The wavelet levels of the steering acceleration

stimuli were grouped into three large regions of significant energy which are the wavelet

groups WGl, WG2 and WG3 which are shown in Figure9.1. Each wavelet group is

formed of two or more automatically generated wavelet levels. WG2 is the wavelet group

which contains the critical frequency range of 20 to 60 Hz.
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usmg: a threshold trigger level value of 2.6, a time compression ratio of 2.0 and a

transient event scale factor of 2.0. The transient event reinsertion method selected was

maximum reinsertion, meaning synchronization procedure 2, which does not affect the

amplitude and phase relationships within each the bump event which was extracted from

the original signal (see section 2.6.6). Table 9.2 presents the number of bump events that

were extracted (NBE) from the original stimuli and the number of bump events that were

reinserted (NBR) into the test stimuli.

Table 9.2 Number of bump events extracted (NBE) from the original stimuli and the number of bump
events that were reinserted (NBR) into the test stimuli.

SIGNAL
Number of Bumps Number of Bumps

Extracted (NBE) Reinserted (NBR)

Broken 65 62

Broken Concrete 60 55

Broken Lane 63 60

Cobbleston 35 35

Cobbleston City 71 68

Concrete 35 33

Country Lane 60 60

Motorway 60 60

Noise 46 46

Tarmac 33 33

9.1.3 TestProtocol

Upon arriving in the laboratory each participant was asked to remove any articles of

heavy clothing such as coats, and to remove watches or jewellery. He or she was asked to

sit in the test rig and to adjust the seat so as to achieve a realistic driving posture. The

participant was then asked to fix his or her eyes on a board directly in front of the test rig,

which displayed a photograph of one of the ten road surfaces which was being used in the

test. Prior to commencing formal testing, the participant was provided an example of each

of the ten stimuli types which would be used later, in order to become acquainted with the

detection task.

The experiment was performed in ten parts, one for each road surface studied. During

each part of the experiment a photograph of a single road surface was displayed on the
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board directly in front of the participant throughout the test. Each part involved five

repetitions of the original experimentally acquired steering vibration stimuli from the road

which was displayed on the board, and five repetitions of the optimised stimuli which had

been developed through manipulation according to the steering feedback guidelines. In

addition, ten other test stimuli were chosen from among the original or the optimised

stimuli associated with the other nine road surfaces. The stimuli from the other road

surfaces served to form the noise background for the study, against which the detections

of the correct stimuli from the actual road were being made.

The time duration of each individual test stimuli was chosen to be 10 seconds. Two

different series of ten acceleration stimuli were applied to evaluate each road surface type.

In each series, each stimulus was separated from each other stimulus by a 5 second gap in

which the participant was asked to state by "yes" or "no" whether the actuated

acceleration stimulus was from the road surface whose photograph was shown on the

board directly in front of the test bench. The order of stimuli presentation was fully

randomised for each participant in each series in order to reduce learning effects. Each

participant performed 20 detections in each part of the experiment, for a total of 200

detections in a complete experiment.

9.1.4 Results from the Experiment to Measure the Effect of the first set of

guidelines for an automotive steering vibration feedback

Figure 9.2 presents a histogram containing the percent correct detection from both the

original stimuli and the manipulated stimuli for each of the ten road surfaces investigated

in the experiment. The percent correct detection is presented along the ordinate, while the

name of the road surface is presented along the abscissa. For each un-manipulated or

manipulated road surface stimulus the hit rate was taken to be the proportion of "yes"

responses obtained from the stimuli which were actually from the presented road surface.

The false alarm rate was taken to be the proportion of "yes" responses obtained from the

stimuli which were not derived from the road surface which was being presented.
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Figure 9.2 Results of the laboratory experiments regarding the effect of the first set of guidelines for
automotive steering vibration feedback on the human detection of road surface type in terms of percent

detection rate (n= 15).

As shown in Figure 9.2 the application of the first set of steering vibration feedback

guidelines by means of the MNMS algorithm produced improvements in some cases of

up to 14 percentage points in the rate of correct detection. Manipulation of the steering

wheel acceleration stimuli by means of MNMS and the steering vibration feedback

guidelines produced improvements in the rate of detection of 8 of the 10 road surfaces.

The same manipulation lead to a degradation in detection in two of the road surfaces, i.e.

the motorway surface and the noise surface.

The percentage of the correct detection responses for the ten road surfaces were analysed

in a between/within-subjects by means of the one factor repeated measures ANOV A.

Statistical significance effect in the responses were found in almost all surfaces which

produced improvements in the detection rate at a p=0.05 of significance level with a

F(1,14) spanning from 5.385 tolO. Except for the tarmac stimuli in which no significant

effect was found at a p=0.05 of significance level with a F(1,14) equal to 1.0. Although

the percentage of correct detection of the manipulated stimuli for both the motorway

stimuli and the noise stimuli decreased in detection, it was not found to be significant at a

p=0.05 of significance level.

Appendix D.5 presents the Receiver Operating Characteristic (ROC) points obtained for

the 15 test participants for the ten surfaces investigated.
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9.1.5 Observations and Discussions

Following the general pattern established in chapter 6 of this thesis, the improvements in

correct detection were found to be a function of the amount of energy in the critical 20 to

60 Hz band. The 8 road surfaces which were each characterised by significant vibration

energy in the 20 to 60 Hz band, and whose correct detection was found in chapter 6 of

this thesis to depend critically on the 20 to 60 Hz band, all improved significantly when

the steering vibration signal was optimised using the steering vibration feedback

guidelines. The two road surfaces which contained little energy in the 20 to 60 Hz band,

Le. the noise surface and the motorway surface, both suffered degradation in detection

due to the feedback guidelines only being applied to the critical 20 to 60 Hz band. For

these two road surfaces, the critical 20 to 60 Hz band actually seems to contain little

vibration energy and little useful information. Manipulation therefore appears to have

complicated the detection task rather than simplify it. Extending the steering vibration

feedback guidelines to the complete frequency range from 0 to 80 Hz would be expected

to produce improvements in detection for all ten of the road surfaces.
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10. Conclusions and Recommendations for
Future Research

10.1 Summary of the Research Findings

The experimental activities described from chapter 5 to chapter 9 of this thesis were

performed in order to answer questions about the human ability to detect road surface

type based on steering wheel vibration and to use the findings to define a simple first set

of perception enhancement guidelines could be assembled for use with the automotive

steering. This chapter summarises the main findings and attempts to provide an answer to

the objectives posed in the Chapter 1 in light of the experimental results.

• The Issue of Steering Wheel Acceleration Magnitude.

The effect that has the steering wheel acceleration magnitude of road surface road surface

stimuli on the human ability to detect road surface type suggests that road detection is not

strictly optimal at the natural vibration magnitude encountered in automobiles and that a

single, fixed, feedback gain from the automobile to the steering wheel will result optimal

in only a small number of driving conditions. The optimum vibration magnitude for

detection appeared to be related to the characteristics of the cognitive mechanism model

which the test participant associated with the surface in question. This aspect of the

detection problem may be of relevance to the designers of both traditional and by-wire

steering systems since careful consideration appears to be necessary when choosing the

target magnitude of steering feedback for each driving condition.
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• The Issue of Steering Wheel Acceleration Frequency Distribution.

The effect that has the frequency bandwidth of road surface stimuli on the human ability

to detect road surface type suggests that an average hit rate of more than 80% for stimuli

with vibrational energy at frequency up to 60-80 Hz. In this experiment the road surfaces

investigated had the same behaviour, an improvement with increasing in frequency

bandwidth. This may be of relevance to the designers of automotive steering systems

since the current frequency contents of most steering systems are under 40 Hz.

The effect that has the vibrational energy distribution of road surface stimuli on the

human ability to detect road surface type suggests that the frequency range from

approximately 20 Hz until 60 Hz played a key role in the human cognitive detection of

the road surface type for all three surfaces. The results show some qualitative similarities

to those obtained by the bandwidth experiment in which the elimination of the high

frequency energy from the steering wheel vibration signal was found to have a

detrimental effect on road surface type detection. The results suggest that the elimination

of energy in the frequency range from 20 to 60 Hz can improve the detection of surfaces

which are expected to have little energy at low frequencies, but that it is greatly

detrimental for those road surfaces which have much of their vibrational energy at high

frequencies. Given the resonance behaviours of the automobile in the 20 to 60 Hz

frequency band, it may be the case that in current production automobiles this frequency

band provides a focus and a principal source of driver perception.

The findings may be interpreted as suggesting that road surface, steering, chassis and

suspension in the 20 to 80 Hz frequency interval provide vital clues to automobile drivers

regarding the roads over which they drive and the dynamic response of the vehicle.

Steering feel may be compromised by any reductions or elimination in vibrational energy

at the steering wheel in this interval.

• The Issue of Steering Wheel Acceleration Compression and Expansion.

The effect that has the steering wheel acceleration compression and expansion on human

detection of road type suggests that a single, optimal, compression factor of 0.90 exists

which was valid for all three road surfaces when the stimuli were compressed above the

±3 STD threshold level. The results suggest that the compression of the highest peaks

works acceptably for all test stimuli investigated, increasing the detection rate. It may be
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the case that the highest peaks which occur in a steering wheel acceleration time history

act as masking for parts of the steering acceleration stimuli which are vital clues for an

automobile driver. Based on the current results it may be the case that the cognitive

mechanism used by human to perceive steering vibration is similar to those used to

percei ve music. Although this result is one of the main findings in this research, further

investigation is required in order to better understand the parts of the stimuli which need

to be compressed or expanded so as to improve the human detection.

• The Issue of the individual transient events which are contained in the Steering

Wheel Acceleration Stimuli.

The effect of the transient events, in terms of number and size, which are contained in the

steering wheel acceleration stimuli, suggests that the manipulation of both the number and

the size of the transient events played a role in improving the human detection of road

surface type in driving situations. Improvements in the correct detection rate occurred for

all the road surfaces which were tested (in some cases of up to 20 percentage points)

suggest the potential usefulness of controlling the transient events which are present in the

steering vibration stimuli with which some driving scenarios can be clarified. The results

suggest, however, that no single time compression ratio and no single bump scale factor

might work for all the road surface types, and that each road surface requires specific

control in the number and scale of transient events they contain. From the results of these

experiments it would appear necessary, as future research, to cluster and classify

individual transient events. Possibly there are individual transient events within the

complete time history with similar characteristics (i.e. time duration, amplitude, wave

shape) which carry the main part of the road surface information to the driver. The

repetition and re-scaling of such events in the steering stimuli might achieve optimal

results for all driving scenarios.

• Confirmation of the first set of guidelines for automotive steering vibration

feedback.

The implementation of the most promising feedback settings which were found in the

various individual tests performed in this research suggests that similarly to the findings

in Chapter 6, the correct detection of road type is a function of the energy contained in the

frequency band investigated. The road surfaces which were characterised by significant

vibration energy in the key 20 to 60Hz band all improved significantly (in some cases of
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up to 14 percentage points) in detection when the steering vibration signal was optimised

using the steering vibration feedback guidelines. While for the road surfaces which were

characterised by little vibration energy in the key 20 to 60Hz band suffered reduced

detection due to the feedback guidelines only being applied to the critical 20 to 60 Hz

band. Extending the steering vibration feedback guidelines to the complete frequency

range from 0 to 80 Hz might be expected to produce improvements in detection for all

driving scenarios.

10.2 Research Limitations and Sources of Error

As with all research, there are limitations and sources of error which should be

considered, the following is a discussion of some of the main issues:

• The first significant limitation was due to the lack of scientific literature concerning

the human cognitive detection in vibrational scenarios, which made this study a real

challenge. The fact of being one of the first studies to evaluate the human cognitive

detection of road surfaces based on the feedback vibrations provided by the

automobile steering wheel gives the opportunity to be the first to state the first

findings in this field, but it also leads to difficulties in stimulus selection, protocol

selection, and statistical analysis due to the lack of analogous studies. While logical

motivations were applied to all test signal and protocol decisions during the course of

the research, there are few studies in the literature which can be used to substantiate

the choices which were made (Giacomin and Woo, 2004; Giacomin, 2005).

• The number and selection of the steering vibration stimuli used to perform the

experimental test activities of the thesis (described in the Chapter 4) can be considered

a research limitation. The author knows that there are several factors which cause a

change in the dynamics of the automobile, consequently there are several factors

which also cause changes in the steering wheel stimuli. Among them could be

included:

• the type of the automobile (i.e. sport, luxury, compact, lorry);

• the type of engine (i.e. diesel, gasoline);

• the suspension type;

• the tyres pressure,

• the driving speeds,
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• the type of road surface,

• the environmental conditions, etc.

While this research attempted to achieve the most common driving conditions

possible, a limitation of the present study is that the evaluation of the human detection

of road type was performed using steering wheel stimuli obtained when only three

different automobiles were driven over ten different road surfaces, at only one single

speed for each driving condition. Since the purpose of the research was to identify any

universally beneficial steering vibration transformations, the limitation of using only

ten road surfaces and three automobiles may be a factor which must be considered

when assessing the results. When a perception enhancement system (PES) for an

automobile steering system can be defined, it should satisfy all driving conditions.

• When the findings of a study are based on laboratory experimental tests where

humans are the test subjects, many questions emerge in the search of any source of

error which might affect the results and consequently the findings of the research.

This thesis has treated systematically the sources of error inherent in the various

laboratory-based experiments such as: the calibration of the test facilities, the

accuracy of the test stimuli reproduction and the test protocol employed during the

test activity, which includes: instructions given to the participant, posture of the

participant during the test, the number of repetitions of the test stimuli, the duration of

each test stimulus, the way to judge each test stimulus and the environmental

conditions. A significant effort was made to achieve the greatest possible repeatability

in these parameters, thus the results should be considered reliable.

The fact of isolating the real context of the driving experience can be considered a

source of error and a limitation of the research. However, the use of a real driving

scenario to evaluate the steering wheel vibration can produce results influenced much

more by other human senses (i.e. sight and auditory senses) instead of the sense of

touch which is the aim of the current study. The author knows that in the environment

of driving a real car each of the human senses is interlinked and can affect each other

in the perception of what is see, hear or feel. Nevertheless, the isolation of the steering

wheel vibration in this research was necessary in order to determine more clearly how
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much information of the steering feel is store in the human memory and which are the

features carrying the main part of the road surface information to the driver.

• The laboratory-based experiments In this research employed fifteen human test

subjects. A natural question which arises is whether or not fifteen participants are

enough to achieve the needed scientific accuracy. From the research literature

available in the fields of whole-body vibration and hand-arm vibration, there is no

study in which has been defined the number of test participants considered as

satisfactory. Most of the studies performed in these fields to date represent the average

responses of from least 6 to 15 test subjects. In the human whole-body vibration

literature, Mansfield and Griffin (2000) investigated the effect of vibration magnitude

on both the apparent mass of the seated body and the transmission of vibration to

locations on the abdominal wall, the lumbar spine and the pelvis in which 12 male

participants were exposure to whole-body vertical vibration. In the hand-arm

transmitted vibration literature, Miwa (1967) established equal sensation curves for 10

male participants who held their palm flat against a plate which was vibrated

sinusoidally in either the vertical or horizontal direction, while Morioka and Griffin

(2006) established a family of equal sensation curves for 12 male participants who

gripped with one hand a cylindrical handle which was vibrated sinusoidally in either

the vertical, axial or horizontal directions. With respect to automotive steering

vibration Giacomin et al. (2004) established equal sensation curves for 15 participants

(10 males and 5 females) who held a rigid sinusoidally rotating steering wheel with

both hands.

10.3 Suggested Future Research

Although an extensive number of test experiments were described in this research work,

further investigation and test experiments are required in order to define the system

specifications for a steering perception enhancement system for automobiles. A few

important areas in which further research would be beneficial are listened below:

A selection of individual transient events. Individual transient events in the vibration

time history appear to be an important source of information to the driver, and further

research could attempt to categorise and classify these extracted events and to evaluate

their effect on human cognitive response they produce. In order to achieve the possibility

149



of evaluating the information content of the vibration stimuli occurring in road vehicles, a

number of measures could be developed to assess the informativeness of the transient

events. These measures will be used as a criterion for transient event selection. The

information theory (Shannon, 1959) assesses the information content of random variables

and can be used as a criterion for event selection (see Figure 10.1). This information can

be measured by the entropy calculation, which is estimated in terms of probability events.

The results should provide a rudimentary "language" of automobile-driver

communication.
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Figure 10.1 A possible basis for an automotive steering PES is an Information Entropy measure
which is used in conjunction with a library of road features.

Performing of experimental tests using road surfaces which produce transient or

impulsive input to the automobile. Most of the road surfaces employed in the studies

described in this thesis are of type which produce a nearly stationary vibrational input to

the automobile. However, there are still many driving scenarios which require to be

studied, such as: bump events, cat eyes, joints, strips, harsh events, stone-on-the road, etc.

Although, the shock events presented in these types of surfaces seem to be easily detected

by the common driver, as it was reported in the results of the low bump surface (Chapter

5) either increasing or decreasing the magnitude level of the stimuli, the evaluation of the

human cognitive detection of road surface which produce impulsive input to the

automobile is still needed.
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APPENDIX A

Technical Specifications of Test Equipment

A.I Technical Specifications of the equipment used to measure the steering wheel
vibration for the Uxbridge test.

The technical specifications of the SVAN 947 Sound and Vibration Level Meter and
Analyser manufactured by SVANTEK Ltd. are presented in Figures A.I and A.2. The
technical specifications of the Low Impedance Voltage Mode (UVTTM) accelerometer
3055B1 are presented in Figures A.3 and A.4.
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Sound I.evel Meler & Analyser
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Figure A.I SVAN 947 Sound and Vibration Level Meter and Analyser manufactured by SVANTEK Ltd.
used for the experimental steering vibration measurements. Part I.
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Figure A.2 SVAN 947 Sound and Vibration Level Meter and Analyser manufactured by SVANTEK Ltd.
used ~ r the experimental steering vibration measurements. Part II,
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Figure A.3 Technical specifications for the LIVTTMaccelerometer Series 3055B 1 used for the experimental
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SPECIFICATIONS
MODEL SERIES 305SB UVM ACCELEROMETERS

SPECIFICATIO H VAWE UNITS

PHYSICAL

WEIGHT
SIZE. HEX x HEIGHT
MOUNTING PROVISION
CONNECTOR, RADIALLY MOUNTED
MATERIAL. BASE. CAP &: CONNECTOR
SEISMIC ELEMENT TYPE

PERFORMANCE

305581

:SENSITIVITY,:I:~ (i) 10
RANGE F.s, FOR:I: 5 VOLT8 OUTPUT ± 500
FAEQUENCY RANGE, ±5% (all modelB~
RESONANT FREQUENCY, NOM. (all models)
ELECTRICAL NOISE FLOOR C25Hz-25kHz) .0002

(1Hz-l0kH.z) .0004
UNEAAITY (2) (allmodels)
TRANSVERSE SENSmVITY. MAX. (III modeb)

ENVIRONNENTAL
305SB1

10 Grams
.50 x 0.62 Inches
1CN2 X .1!S() OEEP TAPPED HOlE
lG-32 Coaxial
ffiANIUM
CERAMIC, PLANAR SHEAR

MODELS

305582 3OSSB3 3O&SB4

100 500 50 mVlg
±SO ±10 :1:'100 g'.
1 to 10,000 Hz
35 kHz

.00006 .00005 .0005 g'8 RMS

.0001 .0001 .0010 g'sRMS
±2 "'-F.S.
;!;2 %

3056B2 305583 305584
MAXIMUM VIBRATIONISHOCK
TEMPERATURE RANGE (all modeIg)
SEAL, HERMETIC
-COEFFICIENT OF THERMAl SI:NSITIVITV

ELECTRICAL

60013000 400l2000 20011000 500l2000 ± g's1g'8PK
-60 to +250 OoF
Glass·lo·me1allweIded
.06 %IOF

SUPPlYCURRENTICOMPLIANCE VOLTAGE RANGE (3) 2to20/+18to +30
OUTPUT IMPEDANCE,TYP. 100
BIAS VOLTAGE. +10.5 VOLTS NO..... +Stto+'12
DISCHARGE TIME CONSTANT, NOM. 0.5
OUTPUT SIGNAL POLARITY FOR ACCELERATION TOWARD TOP
ELECTRICAL ISOLATION. CASf (iROIJND TO MOUNTING SURFACE

mA/Voita
Ohms
VDe
Sec
PosilWe

10 M99 n,min.

Accee80rles auppll-ed: (1) Model6200 mounting stud.

(1] Measured at 1(1) Hz, 1 G RM8 pel' ISA RP 37.2.
[2J MHsurod tBIng 2MO·llasocj bast straight Iina mtthoct, % CIf F.S. or lIlY lesser range.
13] Do not appty power to this device without current limiting. 20 mA MAX. To do so wiRdestroy th e IntegrailC

amplifier.

Figure A.4 Technical specifications for the LIVTTM accelerometer Series 3055B 1 used for the experimental
steering vibration measurements. Part II.
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APPENDIXB

Geometrical Dimensions of the steering wheel
clamp for vibration measurements
B.1 Drawings of the geometrical dimensions of the steering wheel clamp used for

vibration measurements.

Figures B.l to B.3 present the drawings of the steering wheel mounting clamp which
show the geometrical dimensions and also an ensemble drawing.
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Figure B.1 Ensemble drawing of the steering wheel clamp used to measure the steering wheel vibration
for the Uxbridge test.
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APPENDIXC

Technical Specifications of Equipment us 'd i
the experimental laboratory tests
C.l Description and Technical Specifications of the equipment used in the

experimental laboratory test.

The monoaxial accelerometer which was placed on the rotational steering wheel test rig is
presented in Figure C.l. Technical specifications of the accelerometer are presented in
Figure C.2, while its certificate of calibration is presented in Figure C.3 in which is
described the properties of the single axis of measurement.

The technical specification for the multi-channel signal conditioning MSC6 is presented
in Figure C.4, while the technical specification for the power amplifier PAIOOE and the
shaker V20 are presented in Figure C.S.

Figure C.l Accelerometer position at the rotational steering wheel test rig, located
on the top left side of the wheel.
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EGAS Series Accelerometers Ill]
Miniature · Rugged

EGAS, EGAS-F, EGAS-FS & EGAS-FT

, Teflon insulated ",ads

~~~~~~~~~'Ext"rn.t1l
~ ; mod~Q

~
Weight without. loads; 1 grain 110m.

Weight without leads' 1 gmm nom.

EGAS·FS" ·FT 4(167 .6(.3'

1
spgn EGAS-

~ EGAS

,EGAS.

'"'I~91.6106.17

S S(.IQn

P97, 10
(.39.1,

1.2
(.OS,m .. ,

FS: Silicone JackAal9d Shielded Cab ..
FT: Tenon J.ckAall!d Shk>ldOOCabla
EXt9rn.t11
module

Weight .,ithout cabl~: 1 grlll1l nom.

EGAS Series
g (J FREQUENCY NATURAL

RANGES OVERRANGE RESPONSE ±112dB FREQUENCY
"FS" LIMIT nom.rmm, nom,

±5 ± 500 o 10 150180 Hz 300 Hz
±10 ± 1000 o t02001120 Hz 400 Hz
±25 ±2500 o to 4001240 Hz 800 Hz
± 50 ± 5000 o to 600/350 Hz 1200 Hz

± 100 ± 10000 o to 9001500 Hz 1800 Hz
± Z50 ± 10000 o to 1300n50 Hz 2600 Hz
± 500 ± 10000 o to 1750/1000 Hz 3500 Hz

±1000 ± 10000 o to 2500/1500 Hz 5000 Hz
±2500 :!: 10000 o to 3500/2000 Hz 7000 Hz

EXCITATION:
IMPEDANCE IN:
IMPEDANCE OUT:
COMB, NON-lINEARITY& HYSTERESIS:
TRANSVERSE SENSITIVITY:
DAMPING RATIO AT 20'C (70'F):
OVER RANGE STOPS:
THERMAL ZERO SHIFT:
THERMAL SENSITIVITY SHIFT (TSS):
OPERAnNG TEMPERATURE:
COMPENSATED TEMPERATURE:
ZERO OFFSET AT 20'C (lO'F):

15VOC
1300 n nom. typ_
1S00llnom.
:!: 1%
2% max
0.7 nom. (0.5 to O.9)
Integral
± 1mV/SO'C (± lmVll00'F)
± 2.5%/50'C (:!: 2_5%J100'FJ
-40'C to 120'C (-40'F to 2S0'F)
20'C to ac-e (70'F to HO'F)
± 15mV typo

0.6 m I 38 nonl.
(lfU' .__ -,-(l_.S7,--_,

1m
(1.311')

Dim: mm (incl1es)

SENSITIVITY
mV/gnolD,

20
10
4
2
1
0.4
0,2
0.1
0.04

OUTPUT
'TSO"

IllY..lliill!..
± 100
± 100
:!: 100
± 100
:!: 100
± 100
± 100
± 100
:t 100

Entran® Entran Sensors & Electronics
EGAS ACCELEROMETERS USA: Fairfield. NJ

UK: Garston. Watford, Heres, Engkmd
Miniature Europe: l.es C"'yes-s0U5-Bo~, FrMce

'" Rugged.
'"' SPECIFICATION 1 ISSUE 1 PAGE

www.entran.com EGASSOO1U I PBO I 1012

Figure C.2 Technical specifications for the monoaxial EGAS accelerometer used
for the experimental laboratory tests,
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Figure C.3 ENTRAN Certificate of calibration and specifications for the monoaxial EGAS accelerometer
used to measure the steering wheel vibration test rig along the z-axis.
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Specifications CE
MSC6

MSC6-
139.3{5.48')

01-1.9991

~
1'1)- i•.

Q. ~OI'.
:Q~ 0 ~~ :0 :0 :0 ),

"---="""'

874
(3.44')

13
~.5"

Ca.. Oopth (Without connectors)
230 (9")

Chassis with Power Supply

FOR Ai AMPLIFIERS:
FOR A2 AMPLIFIERS (Also accepts Al amplifier.):
NUMBER OF CHANNELS:
POWER:
DISPLAY:
EXCITATION TO SENSOR (Common to all Channals):
INTERNAL CALIBRATION:

Msce
Not Available
e
115/220VAC (" 10%. 45-440Hz) Switch Selectable (Opllona' 12124 VDCI
3 1/2 DIGIT LED. 1.999V or 19.9911SwitchablB
Switchable: 5V. 611.811.10V. 12V and 15V
* 1mV through" 1DVcontinuously adjustable

Signal Conditioning Channels A1 & A2

OUTPUT:
AMPLlF1ER GAIN (Swltchabla with flna control):
AMPLIFIER BANDWIDTH (-ldB):
ZERO OFFSET:

A1
,,10V or ~211
1 to 2000
o to 50KHz
±4OmV at Input

62
4-20mA and *'0V or =211
10 to 10000
o to 1.5KHz
to lOmV at Input

INPUT RANGE:
INPUT MODE:
INPUT IMPEDANCE:
OUTPUT TYPES:
OUTPUT IMPEDANCE FOR TAPE:
OUTPUT FOR GALVOS,
OUTPUT LINEARITY:
OPERATING TEMPERATURE:
INPUT CONNECTORS:
OUTPUT CONNECTORS:
CE CONFORMANCE:

Smll to 1.0V
Full. Half or 1 Arm BridgB. Internal Bridge Completion
I MO Differential
Tape and Galvo
0.50
±10mA Into 1200
0.05%
O'C to 40'C (32'F to 104'F)
DIN Type 7 Pin. with unwired mate
o lYpe with unwired mala
EN61010-1. EN 50081-1. EN 50082-1

TITLE Entran •Entran~ MSC INSTRUMENTATION EJ«iI.AND ~-Multi-Channel -.--. Laa~~... Signal Conditioning SPECIFICATIONNUMBER ISSUE PAGE

MSCSOOO1E 01 1012

Figure C.4 Technical specification for the multi-channel signal conditioning MSC6.
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IISpecifications
II

Parameter Units V2 V4 \,20 V20

Power Amplifier PA30E PA30E PA30E PAIOOE
Sine force peak N 9 17.8 53 lOO
Random force rms N 3 5.9 17.6 33
Acceleration peak g 91 91 32 60
Velocity peak m/s 1.05 1.49 1.14 1.51
Displacement p-p mm 2.5 5 10 10
Armature mass k<> 0.01 0.02 0.17 0.17

'"Armature diameter mm Spigot Spigot 38 38
Suspension stiffness kgf/mm 0.32 0.45 1.14 1.14
Cooling Natural Natural Natural atural
System power utility VA 100 100 100 200

Parameter Units V20 V55 V55 \'55

Power Amplifier PA300E PAIOOE PA300E DSA1-lK
Sine force peak N IS5 142 310 444
Random force rms 58 50 110 160
Acceleration peak g 90 28.9 63 90
Velocity peak m/s 1.78 0.81 1.14 1.52
Displacement p-p mm 10 12.7 12.7 12.7
Armature mass kg 0.17 0.5 0.5 0.5
Armature diameter mm 38 76.2 76.2 76.2
suspension stiffness kgf/mm 1.14 1.79 1.79 1.79
Cooling Forced air Natural Forced air Forced, ir
System power utility VA 600 200 600 1000

Options Three Axis Testiug with Small Shakers
* Berryllium copper spiders for V2 and V4 shak-

ers to reduce axial stiffness.
* Trunnions for models \ 4. V20 and V55.
* Constant current drive for modal applications.
* Three axis testing configurations for models

V20 and VSS.
* Metric/Imperial/American table threads.

III Gearing & Watson Electronics Ltd
South Road, Hailsham, East Sussex, BN27 3JJ, United Kingdom

Tel +44 (0)1323 846464 Fax +44 (0)1323 847550
Email: sa/es@gearing-watson.com Web: www.gearing-watson.com

Figure C.S Technical specification for the power amplifier PAIOOE and the shaker V20 used during the
experimental laboratory tests.
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APPENDIXD

ROC points results for the laboratory
experiments
D.1 ROC points for the laboratory experiment to measure the effect of steering

wheel acceleration compression or expansion on the human detection of road
surface type.

The Receiver Operating Characteristic (ROC) points results obtained for the 15 test
participants for the tarmac surface, the concrete surface and the cobblestone surface when
compressed and expanded are presented in Figures 0.1 to 0.18. Results are presented
according to three threshold levels used in the laboratory experiment (±3 STD, ±2 STD
and ±l STD).
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Figure D.1 ROC points of concrete surface for the laboratory experiment to measure the effect of steering
wheel acceleration compression on the human detection of road surface type (± 3STD, n=15).
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Figure D.2 ROC points of concrete surface for the laboratory experiment to measure the effect of steering
wheel acceleration expansion on the human detection of road surface type (± 3STD. n=15).
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ROC poinls lor Cobbles lone Road (x 0.40)
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Figure D.3 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
steering wheel acceleration compression on the human detection of road surface type (± 3STD, n=15).
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Figure D.4 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
steering wheel acceleration expansion on the human detection of road surface type (± 3STD, n=15).
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ROC points for Tarmac Road (x 0.40)
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Figure D.S ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration compression on the human detection of road surface type (± 3STD, n= 15).
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Figure D.6 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration expansion on the human detection of road surface type (± 3STD, n=IS).
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Figure D.7 ROC points of concrete surface for the laboratory experiment to measure the effect of steering
wheel acceleration compression on the human detection of road surface type (± 2STD. n=15).
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Figure D.9 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
steering wheel acceleration compression on the human detection of road surface type (± 2STD. n= 15).
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Figure 0.11 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration compression on the human detection of road surface type (± 2STD, n=15).
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Figure 0.12 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
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Figure D.16 ROC points of cobblestone surface for the laboratory experiment to measure the effect of
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Figure 0.17 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration compression on the human detection of road surface type (± ISTD. n= 15).
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Figure 0.18 ROC points of tarmac surface for the laboratory experiment to measure the effect of steering
wheel acceleration expansion on the human detection of road surface type (± 1STD. n= 15).
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D.2 ROC points for the laboratory experiment to measure the effect of steering
wheel acceleration Threshold Trigger Level on the human detection of road
surface type.

Figures D.19 to D.21 present the Receiver Operating Characteristic (ROC) points
obtained for the 15 test participants for the broken concrete surface, the broken lane
surface and the cobblestone surface. Results are presented according to the threshold
trigger level (TIL) values from 2.4 to 3.4 investigated.

OB

ROC points for Broken Concrete (0)

•••••
~ 06
a:

:f 0.4

•••

02

O~--+---~--~---+--~
o 02 0.4 0.6 OB

False Alarm Rate
ROC RQlnts for Broken Concrete (28)

02

0.8 0 _ 0

"coO.6 ••
a:

IO.4

O~--~--~---+--~--~
o 02 0.4 0.6 OB

False Alarm Rate
ROC points lor Broken Concrete (3.4)

1 ---_

02

OB 0 0••••

~06 ....

IO.4

ROC points for Broken Concrete (2 4) 1 ROC points .~,.e~ok.n Concrete (26)

02

• •

02

..
OB • ••• • OB

~ 0.6
a:

j§ 0.4

O+---~--~---+---+--~
o 02 0.4 0.6 OB

False Alarm Rate

ROC points for Broken Concrete (3 0)~~ __~o----------~,

0.4

~ 0.6
a:

:f OA

O+---~--~---+---+--~
o 02 0.4 0.6 OB

False Alarm Rate
ROC points for Broken Concrete (3.2)

0.8 • 0.... 0

0.6 0

02

O+---~--~--~---+--~
o

OB •• _ •

0.6 •

0.4

02

02 04 0.6
Fai ...c ,\' ....'1i, r~ate

OB 02 0.4 0.6
False AlalJl! H..:&te

OB

o 02 0.4 0.6 OB
False Alarm Rate

Figure D.19 ROC points for the Broken Concrete surface stimuli regarding the effect of the threshold
trigger level (TTL) of the steering wheel acceleration signal (n= 15).
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Figure 0.20 ROC points for the broken lane surface stimuli regarding the effect of the threshold trigger
level (TTL) of the steering wheel acceleration signal (n= IS).
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Figure 0.21 ROC points for the Cobblestone surface stimuli regarding the effect of the threshold trigger
level (TTL) of the steering wheel acceleration signal (n= 15).
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D.3 ROC points for the laboratory experiment to measure the effect of the
number of the transient events on the human detection of road surface type.

The Receiver Operating Characteristic (ROC) points results obtained for the 15 test
participants for the cobblestone surface, the concrete surface and the tarmac surface are
presented in Figures D.22 to D.24. Results are presented according to the four
compression ratios investigated along with the original stimuli (0, 1+, 2+, 3+ and 4+).
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Figure 0.22 ROC points for the cobblestone surface stimuli regarding the effect of the number of the
transient events of the steering wheel acceleration signal (n= 15).
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Figure 0.23 ROC points for the concrete surface stimuli regarding the effect of the number of the transient
events of the steering wheel acceleration signal (n= 15).
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D.4 ROC points for the laboratory experiment to measure the effect of the scale of
the transient events on the human detection of road surface type.

The Receiver Operating Characteristic (ROC) points results obtained for the 15 test
participants for the cobblestone surface, the concrete surface and the tarmac surface are
presented in Figures D.25 to D.27. Results are presented according to the five bump scale
factors investigated (xO.8, x 1.0, x2.0, x3.0 and x4.0),
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Figure D.2S ROC points for the cobblestone surface stimuli regarding the effect of the scale of the transient
events of the steering wheel acceleration signal (n= 15).
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Figure D.26 ROC points for the concrete surface stimuli regarding the effect of the scale of the transient
events of the steering wheel acceleration signal (n= 15),
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Figure 0.27 ROC points for the tarmac surface stimuli regarding the effect of the scale of the transient
events of the steering wheel acceleration signal (n= 15).
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D.S ROC points for the laboratory experiment to measure the effect of the first set
of guidelines for an automotive steering feedback.

The Receiver Operating Characteristic (ROC) points results obtained for the 15 test
participants for the ten road surface investigated in the effect of first set of guidelines for
an automotive steering feedback are presented in Figures D.28 to D.37. Results are
presented for both the original stimuli and the manipulated stimuli.
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Figure D.2S ROC points for the original and the manipulated broken surface stimuli regarding the effect of
first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.29 ROC points for the original and the manipulated broken concrete surface stimuli regarding the
effect of first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.30 ROC points for the original and the manipulated broken lane surface stimuli regarding the
effect of first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.31 ROC points for the original and the manipulated cobblestone surface stimuli regarding the
effect of first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.32 ROC points for the original and the manipulated cobblestone city surface stimuli regarding the
effect of first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.33 ROC points for the original and the manipulated concrete surface stimuli regarding the effect
of first set of guidelines for an automotive steering feedback (n= 15).
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Figure 0.34 ROC points for the original and the manipulated country lane surface stimuli regarding the
effect of first set of guidelines for an automotive steering feedback (n= 15).
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Figure 0.35 ROC points for the original and the manipulated motorway surface stimuli regarding the effect
of first set of guidelines for an automotive steering feedback (n= 15).
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Figure 0.36 ROC points for the original and the manipulated noise surface stimuli regarding the effect of
first set of guidelines for an automotive steering feedback (n= 15).
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Figure D.37 ROC points for the original and the manipulated tarmac surface stimuli regarding the effect of
first set of guidelines for an automotive steering feedback (n= 15).
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