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Abstract 

This project is concerned with de novo molecular design whereby novel molecules are 

built in silico and evaluated against properties relevant to biological activity, such as 

physicochemical properties and structural similarity to active compounds. The aim is to 

encourage cost-effective compound design by reducing the number of molecules 

requiring synthesis and analysis. 

One of the main issues in de novo design is ensuring that the molecules generated are 

synthesisable. In this project, a method is developed that enables virtual synthesis 

using rules derived from reaction sequences. Individual reactions taken from reaction 

databases were connected to form reaction networks. Reaction sequences were then 

extracted by tracing paths through the network and used to create ‘reaction sequence 

vectors’ (RSVs) which encode the differences between the start and end points of the 

sequences. RSVs can be applied to molecules to generate virtual products which are 

based on literature precedents. 

The RSVs were applied to structure-activity relationship (SAR) exploration using 

examples taken from the literature. They were shown to be effective in expanding the 

chemical space that is accessible from the given starting materials. Furthermore, each 

virtual product is associated with a potential synthetic route. They were then applied in 

de novo design scenarios with the aim of generating molecules that are predicted to be 

active using SAR models. Using a collection of RSVs with a set of small molecules as 

starting materials for de novo design proved that the method was capable of producing 

many useful, synthesisable compounds worthy of future study.  

The RSV method was then compared with a previously published method that is based 

on individual reactions (reaction vectors or RVs). The RSV approach was shown to be 

considerably faster than de novo design using RVs, however, the diversity of products 

was more limited. 
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Chapter 1:  

Introduction 

 

The field of drug discovery has, to some extent, used computational methods in a 

supporting role since the late 1950s (Willett, 2011, Leach and Gillet, 2003). Initially, 

this was in the form of simple substructure analyses of structure collections in 

databases, as in the work by Ray and Kirsch (1957). The benefits of this searching 

method over the previous manual efforts became apparent very quickly, leading to 

significant interest in the research field. This resulted in the formation in 1961 of the 

first journal for the field, the Journal of Chemical Documentation (this still exists as the 

Journal of Chemical Information and Modeling, having adopted this name in 2005). 

Much of the initial published work in this decade came from work from the Chemical 

Abstracts Service (CAS), as part of their efforts to computerise their existing collections 

(Weisgerber, 1997). This research produced a number of analysis and processing 

methods still used in some form today, such as the Morgan algorithm for producing 

canonical molecular representations (Morgan, 1965).  

The success of the categorisation and analysis work soon led to an extension to 

studying the effect of structural features on activity, as in the work by Hansch and 

Fujita (1964). They introduced the concept of Quantitative Structure Activity 

Relationships (QSAR), whereby biological properties are related to structural 

parameters. During the 1970s and 1980s work on structure analysis methods 

continued as processing power improved; for example, the QSAR approach was 

enhanced and expanded and existing representations methods were extended to 

consider generic structures that represent multiple molecules in a single 

representation. Of particular interest during this period was the research work by 

Corey and Wipke (Corey et al., 1972), such as the OCCS (Organic Chemical Simulation of 

Synthesis) and LHASA (Logic and Heuristics Applied to Synthetic Analysis) programs. 

These tools were among the first to use computer graphics hardware to facilitate the 
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input and output of chemical structures, enabling drug design purely in silico. However, 

the calculations required for constructing and handling molecules were so 

computationally expensive that they severely limited the effectiveness of the modelling 

process.  

The improvements in computational technology towards the end of the 1980s 

permitted the system limitations that had frustrated growth in this field to be 

overcome. This led to many new tools being developed to permit the design of 

molecular structures in this manner, including the first de novo (derived from the Latin 

for ‘from new’) design programs (Danziger and Dean, 1989). De novo tools are able to 

build novel molecules in virtual space with some element of evaluation of the generated 

results for suitability according to prescribed design constraints. These include shape 

complementarity with a target site, similarity to other known examples and other 

constraints based on molecular property calculations. With the twin influences of 

reducing costs of high performance computing, along with the steady increase in the 

costs of bringing a drug to market (over $US 1.8 billion per successful compound (Paul 

et al., 2010)), there has been significant effort in the development of these tools as a 

cost effective component of drug design. In particular, the use of these kinds of in silico 

methods has become ever more important as a way of suggesting new compounds that 

fit a particular model. 

One common complaint with the first generation of structure design tools was that 

many did not take account of synthetic feasibility, i.e. the products generated by the 

tools were not necessarily capable of being created in the real world. More recent de 

novo methods are based around the concept of connecting together molecule fragments 

according to an established ruleset. These are often derived directly from examples in 

the published synthetic literature, restricting the transformation steps which can be 

applied to the input molecules to those that have a realistic synthesis route available. 

These tools have their own limitations in that many of the used rule sets are overly 

restrictive, with only limited capability to add new reactions to the collection.  

Previous work in the Sheffield group adapted the so-called ‘reaction vector’ methods 

(Broughton et al., 2003) for classification into a de novo framework which enables any 

collection of reactions to be converted into a list of transformation rules that can be 
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applied to input molecules (Patel et al., 2008, Patel et al., 2009, Gillet et al., 2009). These 

reaction vectors are a simple method of encoding the changes that take place in 

chemical reactions based on the differences between the products and reactants. The 

vectors are very quick and simple to produce from a data set, and are obtained by a 

subtraction of the descriptors of the reactants from those for the products to give a list 

of differences. Reaction vectors can be used in a number of ways, such as categorisation 

of reactions, or as a simple text-based depiction of reaction transformations. However, 

the primary use by Gillet et al. was to apply reaction vectors to generate new structures 

from a given starting molecule, with this step forming the structure generation 

component of an evolutionary de novo design algorithm. Given that reaction vectors can 

be derived automatically from a database of reactions, this approach overcomes the 

limitation of working with a pre-defined set of transformations. However, the approach 

has a number of limitations including: execution time, especially when dealing with 

large numbers of starting materials or transformation rules, and issues with the 

optimisation especially when intermediates in a reaction sequence score poorly 

relative to the start and end point of a sequence. 

The focus of this thesis is to extend the concept of reaction vectors to encode reaction 

sequences as vectors and to investigate their use in de novo design. This involves 

reworking the reaction vector approach to encode complete reaction sequences as 

single vectors, avoiding the intermediate steps that cause the scoring issues. This also 

has the effect of significantly optimising the structure generation process, by reducing 

the amount of execution time required to produce a result set. To produce the sequence 

information, tools have been developed that take a source of reaction data (such as an 

electronic lab notebook database) and produce sequences via the use of interconnected 

reaction networks and graph theoretic methods. This involves the expression of 

reactions and sequences in network space, creating a knowledge base onto which 

various reaction properties can be mapped. In addition, the range of reactions that can 

be encoded and used in the process has been significantly extended through 

amendments to the processing code. 

Chapter 2 presents a review of methods of representing molecular structures and 

reactions, along with specific drug design applications that utilise these approaches for 

structure development and reaction prediction. In Chapter 3, a more detailed study of 
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de novo design tools is presented. A summary of the existing reaction vector project 

work is presented in Chapter 4. This includes the two different methods used to 

generate and validate reaction vectors, as well as the means by which structures can be 

generated by combining a reaction vector with a given starting material. 

Chapter 5 presents the methods developed for collecting reaction data and producing 

sequences, which are based on graph theoretic and networking methods. These 

sequences are then used with a new reaction sequence vector method capable of 

representing them in a single step. In Chapter 6 this new method is compared with the 

original reaction-led approach in terms of the novelty and number of product 

molecules generated, as well as analysing the distribution and nature of the reaction 

sequences used to create the products. While both approaches generate interesting 

structures, it is clear that the reaction-led approach produces larger populations, with a 

greater diversity. Using the vector methods to categorise the collections of reactions 

and sequences used show the inherent bias towards particular functionalities and 

structures that affect the types of compounds produced. Chapter 7 presents different 

applications of the reaction sequence method, including: using the reaction networks to 

identify multiple equivalent routes to products; using reaction sequences to build 

structure activity relationship (SAR) profiles from a given starting material. Chapter 8 

uses the curated knowledge base with existing drug design case studies. This includes a 

direct comparison with the original reaction vector based multi-objective drug design 

method, highlighting the advantages and disadvantages of the new sequence-based 

approach for drug design. 

 

 

 

 

 



 

 

5 

 

Chapter 2: 

Representations of reactions 

 
2.1 Introduction 

As chemical research has progressed, and new forms of collaboration have developed, 

there has been a need to develop different means of communicating chemical 

information to others. These can range from simple written formulae, to images of 

structures, to more complicated methods of storing atom and bond connection data for 

computerised tools and databases. This chapter presents an overview of these 

methods, as well as the ways in which these can be used for searching molecular 

databases, and assessing similarity of a given molecule to those already stored. As the 

tools produced in this thesis utilise their own method for storing reaction data 

internally, there is a need to consider the different methods for depicting and storing 

these. Some of these approaches are extensions of existing molecular depiction 

methods, whereas others were specifically developed with a view to facilitating drug 

design or reaction searching. The last two sections of this chapter discuss these 

different reaction representation methods, as well as the drug design tools that rely on 

the special features of the bespoke reaction depiction forms. 

2.2 Molecular representation 

Chemical structures require specialised representation methods in order to be stored 

in searchable databases. These methods fall largely into two groups, namely linear 

representations (such as text formulae) and less human-readable descriptions such as 

connection tables.  

Text-based approaches such as SMILES (Simplified Molecular-Input Line-Entry 

Specification) (Weininger, 1988) and InChI (International Chemical Identifier) 

(McNaught, 2006) permit structural data to be represented using standard ASCII 
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characters. In the case of SMILES, capital letters represent the individual atomic 

symbols, lower case letters represent aromatic atoms, parentheses indicate molecular 

branching and a simple paired number system is used for assigning atoms in rings. 

Hydrogen atoms are usually omitted for SMILES strings, i.e. H2O is represented as O. An 

example of a SMILES string for a molecule is given in Figure 2.1.  

Molecule SMILES 

 

OC(=O)c1ccccn1 

Figure 2.1: Example of a SMILES String for 2-pyridinecarboxylic acid. (Wallace, 2015) 

For substructures, an extension of this method known as SMARTS is available. This 

uses largely the same format as SMILES, with the addition of logical operators and 

wildcards to facilitate the specification of generic molecular queries. The InChI method, 

on the other hand, does not feature any specific substructure support. Instead, the 

advantage of InChI is the sheer amount of metadata that can be retained, with the string 

separated into a number of optional ‘layers’ containing structure, charge, 

stereochemistry and other relevant data, spaced by ‘\’ characters. This enables more 

data to be encoded within the string, but at the expense of readability. 

Alternatively, users may prefer to input structures using a chemical drawing package, 

in which case the storage of the converted data is commonly achieved through 

connection table formats such as the .MOL file (BIOVIA). The BIOVIA .MOL format 

carries a header, usually listing the molecule name and the generating program, 

followed by a non-redundant connection table (each atom is listed in turn, followed by 

each bond being recorded once only, as opposed to once for each atom in the 

redundant case), listing atomic properties, stereochemistry and any ‘R group’ 

designations in the case of generic ‘Markush’ structures.  

Following the development of the World Wide Web, and XML (eXtensible Markup 

language) an XML schema has been developed for chemical information, the so-called 
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Chemical Markup Language (known as CML or ChemXML) (Murray-Rust and Rzepa, 

1999). As with all XML documents, the CML schema establishes a series of rules for 

encoding information in a machine readable format that can be easily parsed, 

effectively embedding a form of connection table in a hierarchical structure. The 

schema can not only encode individual atoms and bonds within the molecule (Murray-

Rust and Rzepa, 2003), but can also store spectral information (Kuhn et al., 2007) 

alongside, keeping all relevant data about a molecule together.  

2.2.1 Molecular graph theory 

From the earliest attempts to depict molecular structures, comparisons have been 

drawn between such structures and the basic forms used in graph theory (García-

Domenech et al., 2008). Graph theory is best described as a field of mathematics that is 

concerned with the nature of connections between objects. A graph is a collection of 

entities, commonly referred to as nodes or vertices, alongside a set of pairs of these 

entities representing the connection between nodes, commonly known as edges. It 

should be noted that the nodes and edges define the graph, with the order of the 

entities being irrelevant. In a graph used in a chemical context, the nodes would 

represent the atoms, with the edges representing the bonds. If labelled with the 

relevant information, this form is sufficient for many chemical applications. An example 

of this form is shown in Figure 2.2.   

 

Figure 2.2: Molecular graph for HOC=COH. Hydrogens are omitted.  

It should be noted that within this graph there is no ability to distinguish between 

isomers, such as the potential cis and trans forms around the double bond. However, 

these methods remain of significant value for representation of chemical structures in a 

mathematical context. Of particular interest is the concept of subgraph isomorphism, 

where the sets of nodes and edges of a particular graph are wholly contained within 

another. This is of particular interest in the context of molecular database searching, as 

SINGLE 
BOND 

O C 
DOUBLE 

BOND 

SINGLE 

BOND 

C O 
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searching for a partial structure within a database is analogous to a search for a partial 

graph (subgraph) in a set of graphs.  

2.2.2 Molecular database searching 

The search algorithms used within a molecular database differ depending on the user 

requirements, for example, the user may want to look at the properties of a complete 

structure, for compounds with a particular substructure element, or indeed, those 

structures that are similar to a given example. In the case of an ‘exact search’ query, this 

may seem to be a straightforward operation at first, but the problem is that the 

structure connection table or SMILES data string may be produced in a number of 

equivalent ways, depending on how one considers the order of the atoms. This can lead 

to duplication in storage, or possibly false negatives when searching. Testing every 

possible numbering method during a search is computationally expensive, as for a table 

of N atoms there are 𝑁! numberings to consider. Therefore it is necessary to ensure all 

structures stored and submitted use a standardised approach (a so-called ‘canonical’ 

representation), whereby no matter what the input order of atoms the output 

representation is always the same.  

The first reported example of an automated algorithm for generating such 

representations was by Morgan, in his work on behalf of the Chemical Abstracts Service 

(Morgan, 1965). At first, the ‘connectivity values’ of each atom are set to the number of 

non-hydrogen atoms directly connected to it, thereafter a new value is calculated (the 

sum of the values of the neighbouring atoms). This process is repeated iteratively until 

the number of different connectivity values the molecule possesses is at a maximum. 

Once this state is reached, the atom with the highest extended connectivity value is 

chosen to be first in the connection table for the molecule, then moving in succession 

through its neighbours in descending order of extended connectivity and so on through 

the molecule. In the event of two identical connectivity values, properties such as 

atomic number and bond order are used to break the tie. Similar approaches have been 

used to create canonical SMILES strings and InChI representations for storage and 

searching purposes. 
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Once the structures are canonical, both the submitted query and the stored data can be 

directly compared. This can be done with direct reference to the connection table or 

string, or through ‘hashing’ the query and the stored data. Hashing is the generation of 

a new alphanumerical string based on the data according to a given algorithm, such as 

in the Freeland approach, a continuation of Morgan’s work (Freeland et al., 1979). For 

large structures, the hash string is easier to process than the original structure and 

speeds up data retrieval. However, there is a risk of hash ‘collisions’ i.e. two molecules 

having the same calculated hash, which must be resolved if the database is to remain 

fully searchable. 

When considering substructure searching, one approach is to utilise graph theory as 

discussed above. The substructure problem can be considered as a form of subgraph 

isomorphism – whether the structure subgraph from the query can be found wholly 

contained within the graph of the stored database structure. The earliest attempts to 

use computational methods for substructure searching were developed by Ray and 

Kirsch (1957). In their method, all of the molecular graphs representing the database 

entries are compared one at a time. However, such approaches are relatively slow over 

a data set the size of a typical chemical database (Barnard and Downs, 1992). To speed 

this up, a screening step (Dittmar et al., 1983) is used to remove all structures that 

cannot possibly match, before the subgraph search is performed on the remainder. The 

screening process relies on the creation of individual bit strings for each molecule in 

the database and the query based on a given set of rules. These bits are set (1) or unset 

(0) depending on the presence or absence of given substructural features, such as 

augmented atoms, linear sequences and other structural features such as rings. An 

augmented atom feature is a representation of a substructure, defined in terms of the 

atoms attached to a given central atom. For greater search precision, the augmented 

atoms also specify bonding information, for example, ring bonds (marked with ‘*’) or 

chain bonds (marked with ‘–’) and bond types (single, double, triple or aromatic) by 

adding the appropriate numerical bond index (1, 2, 3 or 4 respectively). Examples of 

augmented atom descriptions are shown in Figure 2.3. Depending on the degree of 

precision, a number of different fragment types can be used, excluding or including the 

bond type, and the relative atom numbers. In the figure, three different fragment types 

are listed in order of complexity, from simple lists of atoms in the top row, to full 

descriptions of the bond type in the bottom row.  
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Augmented atoms at arrowed atom: 

 

Figure 2.3: Illustration of potential augmented atoms for 2-pyridinecarboxylic acid. 

Each line represents an augmented atom term for the arrowed atom, at differing levels 

of detail. The top line is a simple list of the elements involved, before the addition of the 

bond type in each case (‘*’ indicates a ring bond, and ‘–’ indicates a standard chain 

bond). The bottom line further adds the nature of the bonds, such as single, double etc. 

(1= single bond, 4 = aromatic bond). (Wallace, 2015) 

The linear sequence screen is very similar to the augmented atom screen, but relates to 

a chain of between four and six interconnected non-hydrogen atoms rather than 

radiating from a central atom. This works as an effective substructure screen when 

combined with the bond type designation seen in the augmented atom method. 

Examples of these fragments are shown in Figure 2.4. As can be seen, because the 

sequences are processed in order, both the forward and reverse sequences need to be 

stored to ensure that the search operates correctly. 

 

Linear atom sequence (1,2,3,4,5): 

 

Figure 2.4: Illustration of linear sequence screens for a given substructure of 2-

pyridinecarboxylic acid. (Wallace, 2015) 

C* N* C— 
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In Dittmar’s approach, combinations of 12 categories of screens similar to those 

described above are used to generate a 2048 bit string for each molecule (in contrast, 

similar screen approaches used in modern systems are typically limited to 1024 bits for 

simplicity). The strings of the query and the molecule in question are then compared, 

with results only returned where every bit set in the query is also set in the molecule. 

To ensure the system is efficient, it is necessary to carefully select the structural 

elements used for the bits, ensuring that they occur sufficiently often to be useful, while 

remaining independent of one another to ensure maximum effectiveness. 

These same bit strings can be used to provide a means for searching based on 

molecular similarity, such as with the Tanimoto coefficient (Willett et al., 1998, Willett 

and Winterman, 1986). The Tanimoto coefficient between two molecules A and B (SAB) 

is: 

𝑆𝐴𝐵 =
𝑐

𝑎 + 𝑏 − 𝑐
 

Equation 2.1: Tanimoto coefficient for molecular similarity. 

where a represents those bits set for molecule A, b represents those set for B and c 

represents the bits set in both (the ‘common’ elements). A similarity value of ‘1’ 

indicates that the two molecules have identical bit strings (they are not necessarily 

identical themselves) while ‘0’ indicates that there is no commonality in terms of the bit 

strings. By calculating the Tanimoto coefficient for each entry relative to the query 

molecule, a ranking of molecules by similarity can be obtained.  

While the Tanimoto coefficient is one of the more commonly used measures of 

molecular similarity, other measures exist that can be used in the same manner. These 

include the Dice and Cosine coefficients (Equation 2.2). 

𝑆𝐴𝐵 =
2𝑐

[𝑎 + 𝑏]
 𝑆𝐴𝐵 =

𝑐

√[𝑎𝑏]
 

Dice Cosine 

Equation 2.2: Equations for the Dice and Cosine coefficients of molecular similarity. 
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Alternatively, measurements exist that give an indication of how dissimilar two 

molecules are that work as inverses of the similarity measures (so called ‘distance’ 

measurements). Examples of these coefficients are shown in Equation 2.3. 

𝐷𝐴𝐵 = [𝑎 + 𝑏 − 2𝑐] 𝐷𝐴𝐵 = √[𝑎 + 𝑏 − 2𝑐] 𝐷𝐴𝐵 = 1 −
𝑐

[𝑎 + 𝑏 − 𝑐]
 

Hamming Euclidean Soergel 

Equation 2.3: Equations for the Hamming, Euclidean and Soergel molecular distance 

measurements. 

2.3 Reaction representation 

Storage and representation of reactions can be considered in a similar manner to 

individual molecular; however the methods have to be adapted to cope with multiple 

substances and roles within the same entry.  

In reaction SMILES, reactants and products are separated from one another with ‘>’ 

signs, and any catalysts or other agents are specified between the two groups. In cases 

where there are multiple reagents or products a ‘.’ character separates them. Figure 2.5 

shows a reaction SMILES string for a typical reaction. 

         

          

 CC(=O)c1ccccc1.N>([H][H]).RaNi>CC(N)c1ccccc1.O  

Figure 2.5: Reaction SMILES string for the Mignonac amination reaction. (Wang, 2010, 
Wallace, 2015)  

The MDL .RXN format serves the same purpose for reactions as the .MOL file does for 

molecules. The format is related to .MOL in the sense that each structure is represented 

as a connection table, but additional information is included, such as whether a 

structure represents a reactant or product (via tags and positioning within the file 

                                   reactants                          agents                   products 

H2, Ra(Ni) 
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record, depending on the precise revision), and potentially, atom mapping information. 

In atom mapping, each atom within a reaction is tagged, usually using a numerical 

system. The idea is that the same atom receives the same tag throughout the reaction, 

thus linking the reactant structures to the products, and indeed linking one reaction in 

a scheme to another, as necessary. An example of a mapped reaction is shown in Figure 

2.6. A comprehensive overview of atom mapping in its various forms can be found in 

the review by Chen, et al. (2013).  

 

Reactants              

[H:11][C:9]([H:10])([H:12])[C:7](=[O:8])[c:6]1[cH:5][cH:4][cH:3][cH:2][cH:1]1.[H:14][N:13] 
([H:15])[H:16]> 

Agents 

([H:17][H:18]).RaNi> 

Products 

[H:14][N:13]([H:15])[CH:7]([c:6]1[cH:1][cH:2][cH:3][cH:4][cH:5]1)[C:9]([H:12])([H:10])[H:11]. 

[H:18][O:8][H:17] 

 
Figure 2.6: Example of atom mapping for the Mignonac amination reaction, including 

Reaction SMILES (split for legibility).(Wang, 2010, Wallace, 2015)  

The process of generating atom maps for reactions can be entirely automated, and is a 

key element in the storage and recall of reactions in databases. The first fully automatic 

mapping method was reported by Lynch and Willett (Lynch and Willett, 1978b, Lynch 

and Willett, 1978a). Initially, the method relied on comparison of the two sides of a 

reaction written in Wiswesser Line Notation (an early text-based molecule 

representation), but this was followed up with a more extensible approach based on 

matching the maximal common substructure (MCS) between the two sides (McGregor 

and Willett, 1981), (Funatsu et al., 1988). As the name suggests, the MCS method 

compares the molecule graphs of the product and reactant sides to find the largest 

Ra(Ni) 
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common element to both, and uses this to ensure any relevant mapping or comparisons 

are canonical. While all of the automated algorithms are relatively quick and highly 

effective, if the initial reaction is imbalanced the chances of failure are high. 

A recent development of the MCS method (Apostolakis et al., 2008) for reaction 

mapping adds additional weight values to bonds based on the atoms that form them 

(for example, C-C σ-bonds are assigned a weight of 1.5, while C-N amine bonds are 

weighted as 0.48). These weights correspond to the likelihood of a bond being broken 

in a transformation (a lower weight indicates an easier breakage), and therefore also 

represents the cost of not matching particular bonds between the two sides of a 

reaction, the unmatched bonds representing the reaction centre. Alternatively, a 

general representation of a given reaction can be produced from superimposition of the 

two sides of the reaction onto one another to identify the reaction centre (de Luca et al., 

2012). This condensed reaction graph, as illustrated in Figure 2.7, can be treated in the 

same manner as any normal molecule, and therefore molecule similarity measures can 

be used to compare reactions with given queries. In the graph, the changing bonds are 

colour coded to highlight the differences, with red lines indicating lost bonds, and green 

lines indicating created bonds. 

Reaction 
Condensed 

Reaction Graph 

 

 

Figure 2.7: Illustration of the condensed reaction graph approach for the Mignonac 

amination reaction. (Wang, 2010, Wallace, 2015)  

The atom map assigned to the reaction can be used to identify the reaction centre via 

direct comparison of the two sides, forgoing the need for the user to specifically 

identify the region in the query. 



 

 

15 

 

The ChemXML format also has a reaction subset, CMLReact (Holliday et al., 2005). This 

uses the hierarchical structure of XML to collect the molecular representation and other 

data for reactants and products within a parent ‘reaction’ element. As before, the 

relevant connection tables to encode the individual molecules are stored. However, the 

reaction subset also permits tagging and mapping of individual atoms, bonds and 

electrons across molecules, allowing the encoding of mechanistic details that are useful 

for synthesis. By further exploitation of the parent and child principle, a reaction ‘step 

list’ can be produced, encoding an entire linear reaction sequence in the same manner 

within the same file. 

2.3.1 Chemical reaction databases 

In order to enable coherent processing of published literature, many chemical 

databases exist. While there are databases that deal exclusively with compounds and 

their properties such as the NIST Webbook (NIST) and the CAS registry (Chemical 

Abstract Services), many include some element of reaction data. These can be divided 

into two groups (Boiten et al., 1995): 

 Those that aim to cover the entire literature base within certain set boundary 

conditions such as CASREACT (Blake and Dana, 1990), and CrossFire 

Beilstein/Gmelin (Hicks, 1990) (now the Reaxys database).  

 Subsets of useful reactions without any claim to completeness, some of which 

are freely available and some are licensed for in-house use such as SYNLIB 

(Distributed Chemical Graphics). Many of the original examples of these such as 

ORAC, REACCS (Mills et al., 1988), and IRDAS have been discontinued as a 

result of consolidation between suppliers, but tools such as BIOVIA 

DiscoveryGate (BIOVIA) offer access to  similar data collections. 

Some of the organic reaction databases currently available are given in Table 2.1 and 

Table 2.2, representing free and commercial databases respectively. 
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Database name Source Approximate 

number of 

reactions  

Rate of 

expansion 

Organic Syntheses 

(Organic Syntheses 

Inc.) 

Independently 

confirmed reaction 

routes 

>5000 ~40 new 

routes a year 

Boston CMLD 

Synthesis protocols 

(Boston University) 

Boston University 

Chemical 

Methodology and 

Library Development 

133 No further 

expansion 

noted 

The Chemical 

Thesaurus 

(Leach) 

Open access 

submission to editor 

4000 No new 

reactions for 

some time 

Webreactions 

(openmolecules.org) 

Extraction from 

ChemSynth and 

ChemReact  

~400,000 Unknown 

ChemSpider 

Synthetic Pages 

(Royal Society of 

Chemistry) 

Open access 

submission to editor 

(Public Domain) 

~250,000 Dependent on 

submissions 

and review 

USPTO Collection 

via NextMove 

Software (Lowe and 

Sayle, 2014) 

Extraction of 

reactions from US 

patent applications 

(2001-2013) and 

grants (1976-2013) 

1,000,000 n/a 

  
  

Table 2.1: A list of freely available organic reaction databases and their properties. 
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Database name Source Approximate 

number of reactions  

Rate of 

expansion 

Reaxsys 

(Elsevier) 

Journals and patents 

(Formerly Beilstein, 

Gmelin and Patent 

Chemistry 

Databases) 

>22,000,000 200,000 new 

reactions annually 

CASREACT 

(Chemical Abstract 

Services) 

Journals and patents >60,000,000 30,000-50,000 

new reactions 

weekly 

ChemInform Reaction 

Library (CIRX) 

(Wiley/FIZ CHEMIE 

Berlin) 

Journals >1,200,000 Monthly updates 

of varying sizes 

Current Chemical 

Reactions 

(Thomson Reuters) 

Journals and some 

US patents 

>1,000,000 Monthly updates, 

no figures given 

Derwent Journal of 

Synthetic Methods 

(Reuters) 

Journals and patents >75,000 No longer updated 

or supported. 

e-EROS 

(Encyclopaedia of 

Reagents for Organic 

Synthesis) 

(John Wiley & Sons) 

Submissions to 

editor 

~70,000 Twice annual 

updates, 150 

reagents and 

articles updated 

in last release 

Science of Synthesis 

(Thieme Chemistry 

Publishing) 

Submissions to 

editor 

>300,000 ~14,000 new 

reactions annually 

(estimated) 

SPRESI 

(InfoChem) 

Journals and Patents ~4,400,000 100,000 new 

reactions annually 

Table 2.2: A list of commercially available reaction databases and their properties. 
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2.3.2 Reaction database searching 

The same approaches used to search for an individual molecule in a database (Section 

2.2.2) can be used in a reaction context, allowing for users to find reactions that can be 

performed with a given starting material or that give a particular product. However, 

these methods will not necessarily work for finding reactions that retain a particular 

substructure, or for searching by reaction type. These additional mapping approaches 

are necessary to ensure a reaction search is effective. Conducting a standard 

substructure search in this context (looking for reactions that use a particular 

functional group, for example) may produce a large number of unsuitable hits. This is 

due to the fact that the search will lead to a collection of structures that have the 

structural features within the reaction centre, but not necessarily in a reactive position, 

due to steric effects or other considerations.  The usual approach to these types of 

searches is to instead consider only the portions of a reaction that change (known as 

the reaction centre), and return results based on this.  

When performing a search within a reaction centre, additional input methods are 

required to indicate which structural features are parts of the query. For example, the 

BIOVIA Draw program (BIOVIA) allows this through special bond indicators that 

indicate the changes, placing an ‘X’ through any bonds that do not change and using 

bespoke symbols on those that do. A table of these indicators is included below in Table 

2.3, along with a sample of a suitably labelled reaction in Figure 2.8.  

Bond 
Symbol 

Effect 

# 
Bond change unspecified, can change type, be broken or be formed 
(same as no symbol) 

| Bond changes in type (single to double, double to triple etc.) 

|| Bond is formed (if used on product) or broken (if used on reactant) 

||| Combination of | and ||, bond is formed/broken and changes type 

X Bond remains unchanged 

Table 2.3: The bond symbols used in BIOVIA Draw and their meanings. 
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Figure 2.8: Bond change marking of the amination reaction in Figure 2.5.  (Wang, 2010, 

Wallace, 2015) 

In addition to the bond indicators, some of these programs also use the atom mapping 

approach described previously, enabling the user to select individual atoms and assign 

numerical tags to indicate their role and position in the final structure. 

To input a reaction query in a SMILES text form, another subset of the SMILES 

language, SMIRKS, is required. This relies on five simple rules to generate a compatible 

string for searching (Daylight Chemical Information Systems) : 

 The reactant and product sides of the reaction have to have the same numbers 

and types of mapped atoms i.e. each mapped atom in the reactant should have a 

counterpart in the product. If need be, atoms can be added or removed during 

the reaction as necessary (if an agent or catalyst has to be specified, for 

example), but these atoms cannot carry a mapping. To define a mapping, the 

atom symbol must be followed by ‘:N’, where ‘N’ is the mapping number. 

 Stoichiometry within the string is assumed to be 1:1 for all atoms on both sides, 

if additional equivalents of reactant or product are required, they must be 

entered an appropriate number of times. 

 If hydrogen atoms are stated explicitly on one side, the equivalent hydrogen 

atoms on the other side must also be stated. They must also be atom mapped in 

both cases. 

 Bond expressions must be valid SMILES strings; it is not possible to use 

wildcards to represent multiple bond types. Atom queries on the other hand 

can use the ‘*’ or ‘?’ wild cards as appropriate. 

 Atoms where the connectivity and bond order remain identical in both cases 

can be specified in the SMARTS molecular pattern format; otherwise they must 

be SMILES strings. 

H2, Ra(Ni) 
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These criteria result in an expanded string, similar to the SMILES string seen 

previously, where atom numbers are specified by values after the colon, as seen in 

Figure 2.9. 

[*:6]([C:7](=[O:8])[C:9]).([N:13][H:14][H:15][H:16)>([H:17][H:18]).Ni> 

[*:6][C:7]([N:13][H:14][H:15])[C:9][H:10][H:11][H:12].[H:17][O:8][H:18] 

 

Figure 2.9: SMIRKS string for the reaction shown in Figure 2.5 (split at product portion 

for clarity). For reference, the mapped reaction is included. (Wang, 2010, Wallace, 

2015) 

2.4 Reaction classification methods 

A number of different approaches to the storage and processing of reaction centres 

have been created to permit effective searching and reaction classification (Chen, 

2008). Many of these rely on some form of atom mapping approach (Section 2.3), with 

the REACCS database (Grethe and Moock, 1990) combining this with a substructure 

fingerprint approach for searching, similar to that used in standard molecule database 

searching methods.  

Reaction classification methods are also based on reaction centres. One such example is 

the appropriately named Classify method by InfoChem (InfoChem), which is used by a 

number of commercial databases. This has three different levels of search depending 

on how many of the atoms immediately connected to the reaction centre are included, 

with the narrower searches including more of the specific environment surrounding 

the reaction centre. Hash codes are generated for reaction centres at each level and can 

then be summed to give an overall value for the reaction, which can be compared with 

others in the database to assess similarity of reaction type. 

Ra(Ni) 
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There also exists a subset of reaction classification methods that are specifically 

designed to be used with a particular tool or for a specialised purpose. The Dugundji–

Ugi reaction model (1973) is one such method, used in the IGOR synthesis method that 

generates novel reactions from first principles (Ugi et al., 1993). The model states that 

reactions of ensembles of molecules may be treated in the same manner as a graph 

isomorphism problem, effectively creating a graph with the molecules on the nodes and 

reactions on the edges. Using this model, the reaction transformation operation (the 

exchange of atoms and electrons that occurs during the reaction itself) is represented 

as a bond-electron matrix, as illustrated in Figure 2.10. There are three matrices in 

total, one representing the reactants (B - beginning), one representing the products (E - 

end) and an overall reaction matrix R (effectively E-B). By consideration of what the 

numbers represent, and the basic rules of chemistry, several conclusions can be drawn 

about the properties of the matrix: 

 Since charge is conserved over the reaction, the sum of all the individual entries 

of the reaction matrix must equal zero (no electrons can be created or 

destroyed). 

 It therefore follows that, if the formal charge does not change for any atom, then 

this also applies to the individual row and column pairings corresponding to the 

atoms (if charges do migrate then numerical imbalances occur at the points of 

migration, in accordance with the first rule). 

As a result of these properties, it becomes possible to predict reactions via determining 

a solution for the matrix set that satisfies the charge rules, given either the reactant 

matrix or the reaction transformation (B or R in the nomenclature). This strict 

mathematical treatment can and has led to previously unknown reactions being 

presented as solutions, and exploration of new solution space (Herges and Ugi, 1985). 
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Figure 2.10: Dugundji-Ugi matrices for the reaction CH2CH2 + H2 → CH3CH3. 

The Hendrickson classification method (Hendrickson, 1997b) attempts to represent 

chemical reactions in terms of the bonds broken and formed, extending similar visual 

methods proposed by Fujita, Vladutz and Balaban (Chen, 2008). These methods all 

share the idea of representing the bonds and atoms of the reaction centre as a cycle, but 

the Hendrickson case is greatly simplified, with the broken bonds shown as solid lines 

and the newly made bonds as dashed lines. This effectively condenses the information 

at the reaction centre into an ‘imaginary transition state’, as seen in Figure 2.11. In 

Beginning (B) 

H 0 1 0 0 0 0 0 0 

C 1 0 1 0 2 0 0 0 

H 0 1 0 0 0 0 0 0 

H 0 0 0 0 1 0 0 0 

C 0 2 0 1 0 1 0 0 

 H 0 0 0 0 1 0 0 0 

H 0 0 0 0 0 0 0 1 

H 0 0 0 0 0 0 1 0 

 H C H H C H H H 

 

Endpoint (E) 

H 0 1 0 0 0 0 0 0 

C 1 0 1 0 1 0 1 0 

H 0 1 0 0 0 0 0 0 

H 0 0 0 0 1 0 0 0 

C 0 1 0 1 0 1 0 1 

 H 0 0 0 0 1 0 0 0 

H 0 1 0 0 0 0 0 0 

H 0 0 0 0 1 0 0 0 

 H C H H C H H H 

 

Reaction R (R = E - B) 

H 0 0 0 0 0 0 0 0 

C 0 0 0 0 -1 0 1 0 

H 0 0 0 0 0 0 0 0 

H 0 0 0 0 0 0 0 0 

C 0 -1 0 0 0 0 0 1 

 H 0 0 0 0 0 0 0 0 

H 0 1 0 0 0 0 0 -1 

H 0 0 0 0 1 0 -1 0 

 H C H H C H H H 
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these centres any bonds that are unchanged in the reaction but are useful for 

classification can be designated as shell bonds (such as the σ-bond in σ, π double bond 

systems), marked as a bolder line.  

 

Figure 2.11: Transition state logo for the reaction shown in Figure 2.10. The σ-bond in 

the double bond system appears as a bolder shell bond (Wallace, 2015). 

 

While initially complicated to set up, the idea of an imaginary reaction centre has 

significant advantages when describing the intermediary phases of a reaction scheme, 

and can depict the change in a molecule without the need for atom mapping, as would 

be the case for connection table-based formats where the centre is not immediately 

obvious. However, this system as designed is intended for pictorial representation, and 

for computational purposes a linear, text-based ‘Synthesis Tree’ approach using the 

same data is implemented instead. This is effectively a branched retrosynthesis 

diagram showing all possible disconnects, and can be generated easily as an aid to 

synthetic planning for a given target compound.  

A further variant (Hendrickson and Miller, 1990) is more specifically designed for in 

silico operation, focussing on rapid retrieval of reaction data from models and 

databases. In this form, classification is limited to carbon atoms in the reaction centre, 

with other atoms represented simply in terms of electronegativity relative to carbon. 

As a consequence, four types of bonding can be defined, namely carbon-carbon σ-

bonding (R), carbon-carbon π-bonding (Π), carbon to electronegative atom (Z) and 

carbon to electropositive atom (H). From this method, it can be seen that a relative 

change in the total of R would indicate a structural change, with the other values 

indicating functionality changes. 
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One graph theory approach to handling reactions (Crabtree and Mehta, 2009) is to 

consider that the sum of the graphs of the reactants is effectively transformed into the 

sum of the graphs of the products during a reaction. The key is to find therefore a 

mapping for both sides that minimises the number of bonds formed or broken, 

attempting to match the relevant subgraphs. Many approaches to solving this problem 

exist, either as atom mapping functions in their own right such as the NAUTY (McKay, 

1981) and Faulon (Faulon et al., 2004) algorithms, or as attempts to provide canonical 

names and structural representations of molecules, such as the Maximal Common 

Substructure/Subgraph method (MCS) (McGregor and Willett, 1981), (Funatsu et al., 

1988), as discussed in Section 2.3.  

The reaction vector approach (Broughton et al., 2003) involves determining a 

difference vector between the reactants and products. It was originally used as a means 

of comparing reactions for classification purposes, but the generic representation it 

generates has since found use within de novo design (Patel et al., 2008). The idea of 

categorising reactions in this manner dates back to the work of Vléduts (1963) (Willett, 

1980).  Vléduts’ method relies on the logical premise that the bonds produced as the 

result of a given reaction transformation will be different in nature to those destroyed 

in the reactant, and as a consequence the reaction centre can be identified by tracking 

these changes. At the time of the Vléduts work, limits in computational power 

prohibited automatic processing for all but the most simple connection tables, but by 

the time of Willett’s work, technology enabled the principle to be extended to the vast 

majority of reactions. In the case of the reaction vector method, no connection tables 

are required; features such as atom pairs are used to encode the individual components 

of a reaction either using the number of occurrences of a particular descriptor or its 

presence or absence as the vector elements and the difference is calculated by 

subtracting the reactant vectors from the product vectors. 

Atom pairs are essentially substructure representations, encoding characteristics about 

the properties of each atom (type, connectivity, etc.) relative to all others in a molecule, 

usually expressed in the form ‘atom type a – (distance in bonds) – atom type b’. In this 

case, as with the bond-electron matrices, an overall reaction vector can be obtained via 

subtraction of the product pair list from the reactant pair list, with the result giving an 
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indication of the changes within the reaction centre without reference to the rest of the 

structure.  

2.5 Forward synthetic planning methods 

A number of approaches have been developed to predict products that can be 

synthesised from given starting materials. For example, CAMEO (Computer Assisted 

Mechanistic Evaluation of Organic Reactions) (Salatin and Jorgensen, 1980) analyses 

the atom types present in a given molecule before choosing an appropriate mechanism 

and simulating the likely synthetic products. A similar concept is used with the 

previously mentioned IGOR (Interactive Generation of Organic Reactions) (Ugi et al., 

1993). The main difference between the two approaches is that, rather than using an 

existing knowledge base of mechanisms, IGOR is capable of generating novel reactions, 

based on the Dugundji–Ugi model of reaction representation. Following the Dugundji–

Ugi electron redistribution rules, every generation step in the process minimises the 

reallocation of valence electrons while forcing a structural change, in some cases 

creating new reaction classes for study and predicting likely new products.   

The EROS (Elaboration of Reactions for Organic Synthesis) tool (Gasteiger and Jochum, 

1978, Höllering et al., 2000) is another example of this type of methodology. This is a 

rule based system that attempts to predict the products of a reaction. The process of 

rule creation is complex, and attempts to recreate the mixing conditions of the real 

world system. This requires the definition of the system in terms of the processes used 

(defined as ‘reactors’ in the program), details of the phases of the mixture in the 

system, and any other information about the reaction behaviour that is necessary. This 

information includes definitions of what combinations of starting materials are 

possible (such as whether dimers can form), while also being used to mark particular 

reactors and phases in terms of reaction behaviour (described as the reaction ‘mode’). 

If reactions do not occur in a particular phase, the mode must be set to ‘inert’ to ensure 

the kinetic profile for the predicted reaction is correct. With these rules defined, the 

EROS program can then simulate the reaction products from a given set of starting 

materials, as well as calculating relevant physicochemical properties to assist in 

building a kinetic profile for the process.  
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2.6 Retrosynthetic approaches 

The storage of structural information for a given reaction can also allow for automated 

retrosynthesis of molecules, in much the same way an individual would with a drawn 

structure (Cook et al., 2012). In retrosynthesis, an established end molecule is 

deconstructed at key attachment points, with each disconnection responding to an 

existing chemical reaction in the forward synthesis. The usual approach when 

performing retrosynthesis in silico is to use a pre-established rule set to provide a 

‘knowledge base’ for the system and identify the points of disconnection. The first full 

program to perform a retrosynthetic role, LHASA (Logic and Heuristics Applied to 

Synthetic Analysis) (Corey et al., 1972) relied on manual encoding of reaction rules in a 

bespoke language and so was reliant on the operators to provide the disconnection 

logic and add functionality. A number of revisions were made to LHASA during its 

lifetime to add additional features and improve the quality of the retrosynthesis (Corey 

and Jorgensen, 1976). However, as research progressed, a more automated approach 

was sought leading to alternative programs such as the SEEDS tool (Honma, 2003), 

which fragments the molecules, before checking commercial databases for suitable 

derivatives and starting materials.  

Combinations of retrosynthesis and reaction prediction have also been reported, such 

as Hendrickson’s SYNGEN (Hendrickson, 1997a). This uses his reported system of in 

silico reaction classification (Section 2.4.1) to identify bonds in the target molecule that 

are suitable for retrosynthetic disconnection. These are then used to fragment the 

molecule, generating a suitable synthesis reaction. In order to ensure feasibility, an 

additional filtration step removes any reactions that are too complicated, or that 

contain a starting material not present in the SYNGEN knowledge base. A similar 

approach is used by WODCA (Workbench for the Organisation of Data for Chemical 

Applications) (Gasteiger et al., 2000). This is used to retrosynthesise a target molecule 

which can then be passed to the EROS program to generate a reaction sequence for 

synthesis. 
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2.7 Reaction networks 

Graph-theoretic approaches can be used to depict reactions and sequences (Temkin 

and Bonchev, 1992). In reaction networks, each vertex represents a molecule (reactant, 

product or intermediate), with each edge representing an individual reaction step. In 

order to correctly represent the flow of the reaction, the edges can have a direction 

assigned, indicating a transition that only occurs in one direction (reversible reaction 

steps are represented using undirected edges). An example of a reaction graph is 

shown in Figure 2.12. 

 

A ⇌ B 
B → C 

Figure 2.12: Example of a reaction graph (left) for a simple reaction sequence (right). 

This method can also be used to represent multiple step sequences in the same manner, 

with separate reaction graphs linked together to show the reaction progression. These 

graphs can be used for mechanism elucidation, by generating all possible reaction 

combinations that fit a given set of criteria (Sinanoglu, 1975). In this approach, an 

exhaustive set of graphs are generated, representing all possible reaction mechanism 

combinations for a given number of reactions. A list of potential mechanisms for a 

simple two step sequence from the hypothetical starting material MOL1 is illustrated in 

Figure 2.13. 

A 

B C 
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Figure 2.13: The reaction graphs for a two step reaction sequence, including loops 

where a loop represents a rearrangement.The four graphs represent: a simple two step 

progression; a rearrangement of molecule 1 followed by a reaction to molecule 2; a 

reaction to molecule 2 followed by a rearrangement; and a dynamic equilibrium. With 

comparison to the observed behaviour of the reaction system, logical conclusions can 

be drawn as to which of these mechanisms are valid, facilitating assignment. 

By mapping the known reactant and product molecules of the sequence onto the nodes, 

it is possible to ascertain which mechanism is correct. Comparing observed 

experiments with these graphs makes it clear if certain mechanisms are impossible in 

given circumstances, and indicates which candidates are most likely. In this example, if 

an intermediate compound is detected as well as the starting material and product, this 

indicates that the linear mechanism (the top of Figure 2.13) must be correct, as both of 

the other options only lead to the generation of a single molecule. This is of particular 

benefit for more complicated sequences where mechanisms and in some cases, reaction 

rates can be identified via application of this approach in conjunction with the 

observation of reaction kinetics (Temkin and Bonchev, 1992).  

By combining collections of reaction graphs, it is possible to build a network illustrating 

the interactions between synthetic pathways. Initial literature referred to these forms 

as chemical networks (Sellers, 1967), but to avoid confusion with property networks 

MOL 

2 

MOL 

3 

MOL 
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MOL 
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MOL 
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MOL 
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Oster and Perelson (1974), as well as others, propose the term ‘reaction networks’. By 

utilising graphs in this manner, it is possible to gain an insight into a reaction collection. 

A number of metrics can be calculated to profile the nature of the connections within a 

reaction data set. One example of particular interest is the node degree value, which 

represents the number of edges that include a particular node (either inbound or 

outbound). This can be used to highlight areas of over and underrepresentation in a 

reaction network context, such as the kin and kout parameters reported by Grzybowski 

et al. (2009). In this context, the identification of nodes with particularly low degree 

values would indicate regions in the network space that are underrepresented. 

Another, more straightforward visualisation of reaction sequences for comparison was 

developed by Proudfoot (2013). This takes a sequence and represents it as a road map, 

colour coding each edge based on reaction yield and increasing the edge weights based 

on the reaction scale. This means that high yield, large scale reactions are represented 

by heavy, green edges. The nodes themselves also vary in size, so molecules with high 

atom counts are larger. By generating these networks for multiple reaction pathways, 

the relative properties are made immediately obvious for comparison.  

A more detailed approach to navigated reaction sequences is the ChemGPS project by 

the Grzybowski group (Fialkowski et al., 2005, Bishop et al., 2006). This project uses a 

reaction network derived from the CrossFire database (Elsevier) to create navigable 

views of reaction databases. These can be effectively crawled and mined for 

information in a similar way to the process used to index files within a search engine 

crawler. As a consequence, ChemGPS can be used as a means of mapping and searching 

large collections of reactions for relevant information. The network creation process 

for ChemGPS is the same as with other reaction network methods, with molecules as 

nodes, and edges connecting nodes where a reaction between the two molecules is 

reported. Initially, the tool was used to highlight areas of chemical space where there 

are gaps in synthetic knowledge that can be resolved by developing new syntheses 

(Grzybowski et al., 2009). In this case those areas where there is a low density of edges 

(low node degree), or a gap within the network would be highlighted as regions of 

interest.  

Later work (Kowalik et al., 2012, Gothard et al., 2012) saw ChemGPS extended to 

consider the pathways contained within the network for sequence optimisation. 



 

 

30 

 

Kowalik reports a method for suggesting and optimising syntheses from a given 

starting material. In this approach, one of the many algorithms for computing the 

shortest path between nodes in a network (Dijkstra, 1959, Hart et al., 1968, Cherkassky 

et al., 1996), is used to present all possible reaction pathways between two points. 

However, as part of the optimisation, each edge in the network is assigned a weighting 

based on parameters of interest, such as cost, or ease of synthesis. The collected 

weightings for each path are then used for comparison and evaluation of the results, to 

help find the optimal pathway. Another, retrosynthetic approach to the same problem 

is reported by Gothard (Gothard et al., 2012). Firstly, all reactions in the network that 

lead directly to the product are considered in terms of the previously discussed cost 

parameters. Once the optimum reaction has been selected for this step, the process 

continues backwards from the starting material of that reaction through the network 

until a suitable start point is identified.  

The network path searching approach has also been reported as part of a potential 

‘early warning tool’ for identifying easily available precursors to hazardous materials 

(Fuller et al., 2012). This utilises the same backwards search method through the 

network as with Gothard’s sequence optimisation but, rather than looking for a single 

sequence, it focussing on finding simple chemical routes to regulated substances from 

common household materials. If a path is identified that can be readily followed by 

those with a basic understanding of chemistry, or access to basic chemical literature, 

the relevant authorities can be notified to take action. 

2.8 Conclusions 

In this chapter, a number of different representation styles, formats and database 

searching strategies have been discussed. These all have their own particular benefits 

in use, but for general purposes simple approaches such as SMILES and the .MOL and 

.RXN dominate. It is clear that cataloguing reactions in a manner that permits rapid 

searching and synthetic awareness requires additional treatment and curation of the 

data. This includes a number of methods for automated reaction centre detection and 

classification, such as the reaction vector approach which forms the main focus of this 

thesis. In the next chapter, methods for de novo design will be discussed, looking at the 

history of the technique, and the various design and evaluation methods employed. 
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Chapter 3: 

De novo Design 

 

3.1 Introduction 

The idea of using computational technology to assist in the design of drug candidates 

began to take hold in the late 1980’s, when it started to become possible to make 

comparisons between medically interesting protein structures and the three-

dimensional geometry of small, drug-like molecules in order to assess the ability of the 

molecules to bind to key receptor sites. Having the ability to visualise the protein on 

screen and assess significant numbers of potential candidates without the need for 

expressing large amounts of the necessary protein, greatly assists in the design process. 

Attempts to design worthwhile therapeutic candidates in silico have largely fallen into 

two main categories: those that evaluate large numbers of molecules already in 

existence (so-called high-throughput virtual screening) and those that build novel 

molecules in order to fit a pre-established series of parameters, working from the 

‘ground up’ (Schüller et al., 2008). It is this de novo approach that this chapter will focus 

on. 

3.2 De novo design tools to date 

In de novo design, there are two key elements that a computational tool needs to 

implement: the method by which individual candidates are constructed, and some 

scoring function to evaluate the candidates.  

The earliest de novo tools operated in three-dimensional space, producing molecules 

according to a set of constraints imposed by the receptor site with which they were to 

interact. It is these interactions that determine how effective a molecule will be 

therapeutically, and therefore form the basis for any scoring or comparison. However, 
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the fact that the three-dimensional structure of the active site needs to be known in 

detail drastically limits the number of potential problems that can be analysed with 

these methods. In addition, the computational power required to model such sites and 

interactions is sufficiently large as to force considerable compromises in the modelling, 

compromising the results (Glen, 2011). As a consequence, later work has seen a more 

ligand-based approach to the problem, with scoring instead being based on known 

active molecules.  

In the ligand-based systems, the properties of the respective candidates are evaluated 

against the structural features of an established reference compound or indeed a series 

of compounds. Depending on the tool used, and the nature of the scoring function, 

ligand-based design methodologies can operate in either two or three dimensions. For 

example, the three-dimensional case may use an appropriate model of the structural 

features necessary for recognition (known as a pharmacophore); while the two-

dimensional case performs comparisons based on topological characteristics of the 

reference compound(s). With ligand-based methods providing significantly increased 

adaptability to different targets over receptor-based approaches, while also proving to 

be computationally less expensive to operate in the two-dimensional case, it is no 

surprise that the majority of de novo tools produced after 1995 include some element 

of ligand-based scoring within their functionality (Hartenfeller and Schneider, 2011, 

Schneider, 2014).  

Over the course of this chapter, the various scoring present in de novo design tools will 

be explored, followed by the methods by which molecules are generated in silico. The 

approaches towards searching chemical solution space will also be covered, before 

considering the efforts to implement synthetic feasibility checks within design tools. 

3.2.1 Defining constraints in de novo design 

In all molecular design approaches, it is necessary to ensure the generated results are 

relevant and useful. This can be effectively achieved by applying constraints to the 

solutions as they are being generated, with these taking different forms depending on 

what information is available about the target. For structure-based methods, the 

candidate molecule is positioned within the active site of the target protein with the 
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system attempting to maximize the quantity and strength of the favourable interactions 

that will lead to strong binding (‘docking’ the molecule). In order to obtain the 

geometric constraints needed to build molecules to fit a given receptor, it is first 

necessary to analyse the active site, looking for potentially interesting features that 

could support hydrogen bonding, or Van der Waals interactions. This can be done by 

searching for key features of the site in accordance with previous crystallographic 

studies (a rule-based approach) or by consideration of the energy of the system as a 

whole. In a rule-based approach, a basic appraisal is made that assigns atoms to 

bonding and non-bonding roles in accordance with previously obtained ‘real world’ 

data. Such an approach can be seen with HSITE (Danziger and Dean, 1989, Lewis and 

Dean, 1989) which focussed on hydrogen bonding interactions and LUDI (Böhm, 1992).  

The alternative approach is to calculate energy hot spots within the virtual site, 

obtaining a more genuine picture of the energy of the binding site. This can be achieved 

via the probe atom approach seen in the work reported by Toda et al., (2010), and 

programs like LEGEND (Nishibata and Itai, 1991), GRID (Goodford, 1985), MCDNLG 

(Monte Carlo De Novo Ligand Generator) (Gehlhaar et al., 1995) and those in the 

CONCEPTS family (Pearlman and Murcko, 1993). In principle, the programs place an 

atom at each grid point within the active site, and calculate the binding energy. From 

aggregating these results, the areas of energetic activity can be determined. 

For ligand-based design methods, information about the active site structure is not 

necessarily provided, so an alternative set of constraints are required. Many of these 

methods instead focus on the properties of compounds known to have activity, often 

screening the generated results against some form of pharmacophore model produced 

from the actives. In these cases, the results are evaluated according to the ability to fit 

the identified features of the pharmacophore, representing the sites of interaction 

between the ligand and the receptor. Examples of tools that use these constraints 

include PhDD (Huang et al., 2010), which mounts individual fragments in key sites 

according to the pharmacophore, which are then linked to form a molecule. Other tools 

enhance pharmacophores to build a more complex model for comparison, such as with 

the pseudoreceptor approach (Fayne, 2013). In these, the common structural features 

from the pharmacophore are combined with additional steric considerations, based on 

the three-dimensional conformations of the active compounds to create something 
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more akin to a traditional active site structure. Results are then scored by evaluating 

the goodness of fit to this model as seen with PrGen (Zbinden et al., 1998), which uses 

estimates of binding energy between the generated molecule and the pseudoreceptor. 

In circumstances where there is insufficient data to construct a pharmacophore model, 

direct evaluation of the ligands based on chemical and structural properties can be 

used as an alternative. For structure evaluation, the most common approach is to 

calculate the similarity scores for the new products relative to the known active results, 

with structural similarity implying a similar activity profile. One of the advantages of 

this method is that the calculations are less complex than three-dimensional modelling, 

drastically reducing the computational time required. However, ‘similarity’ between 

two different molecules is subjective, and as such a number of different methods have 

been reported to quantify the value, like the Tanimoto coefficient (Section 2.2.2). 

Alternatively, design constraints can be implemented by restricting the fragments 

available for structure generation to a limited subset with known properties. Tools 

such as PRO_LIGAND (Clark et al., 1995) use these limited approaches to empirically 

score the molecule at each step, based on the ranks associated with the individual 

fragments.   

3.2.2 Structure generation - atoms versus fragments 

Common to both ligand-based and receptor-based approaches is the need to construct 

a molecular structure from scratch using some iterative process. This can be achieved 

via two routes, either atom-by-atom or by combining known molecular fragments 

together from an established library. 

In the atom-based case, each step in the molecular generation process directly affects 

one atom of the final structure, through removal, addition or substitution performed on 

the structure generated previously. This is a relatively slow process, with only small 

changes made at each step, but provides unlimited scope for exploring the whole 

solution space. However, the size of the problem rapidly becomes sufficiently large to 

be unworkable (approximately 10100 possible molecules can be constructed that fit the 

definition of drug-like behaviour) (Walters et al., 1998, Medina-Franco, 2012), and 

heavy constraints have to be applied to ensure results in a reasonable time frame.  
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The alternative fragment-based approach, by definition, restricts the solution space to 

approximately 1013 molecules, assuming that an average drug candidate consists of a 

scaffold and three side chains (based on the estimate of 10,000 realistic scaffolds and 

the 1,000 known side chains used in drug-like molecules (Walters et al., 1998)). The 

process helps to reduce the computational cost by presenting fewer molecules for 

evaluation, but with the step size so large, the possibility of missing the optimal 

solution to the problem is an issue (Schüller et al., 2008). However, fragment-based 

systems have additional advantages to the medicinal chemist, as will be explained later. 

3.2.3 Structure generation strategies 

When considering the construction of the molecule, whether atom-by-atom or 

fragment-by-fragment, the methods used to connect individual building blocks together 

fall into three separate categories (Schüller et al., 2008). These are defined as: 

 growing 

 linking 

 lattice-based structure sampling 

In this section each method will be considered in turn, highlighting key programs 

reported, and their method of operation. 

3.2.3.1 Growing approach 

For the growing approach, a ‘seed’ atom or molecular fragment is placed within the 

target site, with motifs from a library added around the seed in order to optimise the 

interaction between the formed molecule and the target site. This is the logic behind 

the GenStar (Rotstein and Murcko, 1993a) and GroupBuild (Rotstein and Murcko, 

1993b) programs which represent atom- and fragment-based approaches to the same 

problem.  

In the atom-based approaches, as seen in LEGEND (Nishibata and Itai, 1991) and 

GrowMol (Bohacek and McMartin, 1994), an atom is positioned within the site, usually 
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in alignment with a three-dimensional grid. The seed atom is placed first and its type 

and location is chosen to ensure that the seed forms hydrogen bonds with a randomly 

chosen heteroatom in the target site. Thereafter each new atom is linked to a randomly 

selected part of the previously generated structure, with the atom type and orientation 

also randomised.  

PRO_LIGAND (Clark et al., 1995) takes a fragment-based approach, using four different 

libraries with which to build the molecule at the appropriate stages. These can be 

ranked by the user in accordance with the type of chemistry desired, or alternatively 

scored empirically by the program, based on summation of individual receptor-ligand 

energies and bond distances. FOG (Fragment Optimised Growth) (Kutchukian et al., 

2009) works in a very similar way, adding a Markov chain training approach, where 

reference compounds can be used to create an optimised library that is more likely to 

create drug-like compounds. 

One of the main problems with the growing approach is that the growth method is 

often non-deterministic, and as such different runs will produce different results, 

potentially missing the optimal solution and indeed, possibly missing key interaction 

sites altogether due to lack of compatible geometry. In addition, the nature of the 

scoring and building process forces the progression of the molecule through 

increasingly energetically favourable areas, precluding access to any superior solutions 

that may have less stable intermediary stages. 

3.2.3.2 Linking approach 

In the linking approach (Leach and Kilvington, 1994, Leach and Lewis, 1994), the main 

interaction sites at the receptor are highlighted, and the molecule generation program 

focuses on placing structural motifs at these sites, either through pre-docking via 

another tool, such as with GRID and HOOK (Eisen et al., 1994), or through empirical 

analysis of the site at build time, as in LUDI (Böhm, 1992). By establishing points of 

growth at all of the important interaction sites, one of the key problems with the 

growth approach, that of missing key sites, is negated. In LUDI, the program attempts to 

connect pre-docked molecular fragments together to give a complete candidate 

structure that can be synthesised. The difficulty here is ensuring that the linked 
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molecule remains feasible, synthetically and structurally, as the linking chemistry may 

not be compatible with the fragment selected. In addition, due to the assumptions made 

in the virtual model, there is a chance that the produced molecule will have a different 

conformation than the modelled one, which could have a significant effect on the 

predicted scores, although this can also be said of growing approaches. Other methods 

of generating molecules via linking can be found in CONFIRM (Thompson et al., 2008), 

FOUNDATION (Ho and Marshall, 1993a), SPLICE (Ho and Marshall, 1993b), NEWLEAD 

(Tschinke and Cohen, 1993), FlexNovo (Degen and Rarey, 2006), PhDD (Huang et al., 

2010) and the work of White and Wilson (2010).  

SPROUT (Gillet et al., 1993), uses a combination of both the growing and linking 

methods to produce molecular candidates. Initially, HIPPO (Gillet et al., 1995) is run to 

analyse the potential receptor site. HIPPO follows rules regarding hydrogen 

positioning, the location of hydrogen bond acceptors and donors and any potential 

covalent bonding sites in order to identify key interaction sites. The rule set is based on 

literature results, and statistically validated by comparison with structures from the 

Protein Databank. SPROUT then proceeds to build initial skeletal structures using a 

three-dimensional subgraph methodology (Mata et al., 1995), where the edges of the 

graph represent the bonds and the vertices represent a generic atom type making one 

graph equivalent to a number of potential structures. Partial structures or fragments 

are positioned at the various target sites, and grown outwards until they can be joined 

together to form one structure - this is achieved by overlaying a template common to 

both on the region in question. When all fragments have been joined the atom types are 

also manipulated at this point to make the molecules into realistic structures that 

complement the binding site features. 

One further approach used by some two-dimensional tools is to take known active 

compounds and rearrange their fragments in different manners or with different 

geometries to create a new lead. This approach can be found in BREED (Pierce et al., 

2004) which uses ligands known to bind to a particular target site as its fragment 

source and in FLUX (Fechner and Schneider, 2005, Fechner and Schneider, 2007) which 

connects entities from a library of likely candidate fragments using randomly assigned 

linking groups. The BIBuilder method (Teodoro and Muegge, 2011), uses a BREED-like 

algorithm with a library of fragments generated via RECAP retrosynthesis of a relevant 
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drug library. The RECAP (Retrosynthetic Combinatorial Analysis Procedure) (Lewell et 

al., 1998) rules were originally designed as an attempt to heuristically retrosynthesise 

molecules to give stable fragments as potential starting points for new lead compounds. 

BIBuilder works by first fragmenting a set of molecules according to the 11 defined 

bond types in RECAP. The user then defines design constraints (either a known 

receptor for a structure-based design, or suitable ligands for a ligand-based design). 

New lead compounds are created by linking the generated fragments in all possible 

ways. Other similar approaches, such as that by Foscato et al. (2014) prevent the 

combinatorial explosion by filtering the produced fragments, and assessing any 

potential linkages for chemical compatibility prior to generating the products. Further 

use of the RECAP principles can be seen in the feasibility checks implemented in 

programs like ARChem/Route Designer (Law et al., 2009), which uses retrosynthetic 

rules generated automatically from reaction databases. 

3.2.3.3 Lattice-based structure sampling 

In lattice-based structure sampling, a lattice of carbon atoms mixed with other random 

atom types, or indeed molecular fragments from a selected library, is constructed in the 

active site. Structures are built by generating bonds along the shortest path between 

lattice atoms that bridge the points of interaction. This approach can be seen in 

BUILDER (Lewis et al., 1992). To use the program, DOCK (Kuntz et al., 1982, DesJarlais 

et al., 1988) must first be run. This scans a library of compounds in search of molecules 

or fragments that will most appropriately fit the target site, subsequently generating 

lattices with the selected entities placed within them. The user must then select from 

the generated lattices any particular regions of interest. From this, BUILDER selects a 

start point, and the various molecules are linked in sequence, using bridging elements 

again selected from a list of suitable candidates. This leads to a more interactive design 

tool than most programs, relying more heavily on user input. However, the automated 

bridging logic proves limited, both in terms of synthetic feasibility and compound 

diversity. These problems were largely remedied in BUILDER v.2 (Roe and Kuntz, 

1995), which uses heuristic rule sets applied to the search strategies which serve to 

decrease needless complexity found in the molecular linkages generated by the 

previous tool. PRO_SELECT (Systematic Elaboration of Libraries Enhanced by 

Computational Techniques) (Murray et al., 1997) also uses the lattice framework 
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approach, adding it to the PRO_LIGAND software previously discussed, in order to 

enhance operation. Further information about these and similar methods can be found 

in the review by Cavasotto and Phatak (2011). 

3.2.3.4 Scoring methods  

A major issue in de novo design is the need to evaluate the proposed molecules after 

generation. One approach in structure-based de novo design is to first build structures 

using a two-dimensional method and then generate the three-dimensional structures 

and use docking methods to calculate the free energies of association for use as a 

ranking criterion. For this approach, most of the established docking methods such as 

AutoDock Vina (Trott and Olson, 2010) can be adapted for this, providing that suitable 

target information is provided for the fitting. It does not necessarily follow, however, 

that all functions that predict the ideal binding geometry for a molecule will be suitable 

for comparing different ligands. In particular, the additional computational time 

required to dock all potential solutions makes the process inefficient without some pre-

screening approach. When these are factored in, the use of an additional bespoke 

scoring function to assist in selection has benefits over the usual execution time 

penalties associated with adding an additional process to the setup. In all cases, when 

looking at potential geometries for docking, it is necessary to consider the number of 

degrees of freedom possessed by both the site and the candidate. As more realistic 

treatments of conformation flexibility are added, so the complexity of the calculations 

increases, resulting in a trade-off between absolute accuracy and computation time 

(Dias and Filgueira de Azevedo Jr., 2008). As all potential candidate molecules must be 

screened in a number of geometries, the amount of time taken to process each molecule 

is a significant factor in determining the maximum number of molecules that can be 

evaluated.  

Where molecules are generated directly in the binding site, some evaluation is required 

of the partial solutions to ensure that that the synthesis proceeds in the right direction, 

with the minimum of inactive or unsuitable results. For iterative methods, this is 

relatively straightforward in that the result population can be ranked at the end of each 

iteration, with the best performing molecules used as the parents for the next step. Any 

individual property of the molecule that can be expressed as a relative score can be 
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used in this manner, but many bespoke algorithms have been reported that combine 

these evaluations with other screening functions, such as TOPAS (TOPology-Assigning 

System) (Schneider et al., 2000). Each structure produced is scored for fitness by 

comparison with the target compound, using topological pharmacophores and the 

Tanimoto coefficient. If the results converge to an optimum (i.e. no structural changes 

occur over multiple generations) the process is automatically stopped; otherwise, the 

iterations continue using the best performing molecules as the new parents until the 

maximum number of iterations is reached. Approaches like TOPAS and other iterative 

optimisation techniques are particularly effective where large numbers of molecules 

could potentially be generated, as they help to cut down the potential time wasted 

pursuing undesirable solutions. 

3.2.4 Searching strategies 

One significant issue with de novo tools relates to the nature of the exploration of the 

chemical space. As previously mentioned, the number of individual molecules available 

to the de novo design tool is so large that to attempt to explore chemical space in its 

entirety would be completely infeasible. It is therefore necessary to find a means to 

sample the space to give usable results within the research timeframe. Traditionally, 

these search methods have included breadth- and depth-first algorithms as well as 

various stochastic sampling routines. 

3.2.4.1 Breadth- and depth-first searching 

The breadth- and depth-first searching regimes differ in the degree of storage of the 

search results at each individual step. When dealing with a limited search space, the 

two techniques have their own advantages. In breadth-first searching, all the partial 

solutions reported by the program are scored, with a subset taken on to pursue further, 

leading to a large number of simultaneous search processes. As a consequence, as the 

number of potential paths increases, the timeframe for the search also increases 

dramatically. This makes breadth-first searching more appropriate to methods that 

provide limited diversity within construction such as LUDI (Böhm, 1992). When using 

depth-first searching, on the other hand, the number of paths pursued at one time is 
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limited to one i.e. one partial solution at each level is retained until the end result is 

reached, getting to a result relatively quickly.  

In both cases, the limitations placed on the searching methods may ultimately make the 

searching process more efficient, but the use of such techniques may result in missing 

the optimal candidate. The main problem is that when choosing which result to retain 

at a given point, the tendency is to go for the best scoring molecule at that point, which 

may favour an overall mediocre solution over a poor scoring intermediate that may 

rapidly evolve into an ideal candidate. This can be improved by utilising backtracking 

algorithms such as those in SPROUT to review alternative solutions should issues arise. 

3.2.4.2 Stochastic sampling and searching 

There are a number of different stochastic approaches to sample the space, from Monte 

Carlo approaches to those more closely related to genetic algorithms, and genetic 

algorithms themselves. 

In the Monte Carlo method the solution space is sampled, with individual movements 

within the space occurring at random. As this unfocussed searching is computationally 

very expensive, the Metropolis criterion is often applied to act as a filter. 

𝑃 = min(1, 𝑒
−∆𝑠𝑐𝑜𝑟𝑒

𝑇 ) 

Equation 3.1: The Monte Carlo Metropolis Criterion. 

If the movement from one molecule to the next results in an improvement in the 

scoring function, the result is accepted and the next modification is generated. 

However, if the modification results in a reduction in the scoring function, the 

probability that the change will be accepted is calculated in accordance with the 

equation above, where P is the probability of acceptance, T represents the absolute 

temperature of the system in Kelvin (a reference to the system entropy seen in 

simulated annealing processes) and Δscore represents the change in the score as the 

result of modification. Such Monte Carlo searching has been employed in 

CONCEPTS/CONCERTS (Creation Of Novel Compounds By Evaluation Of 
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Particles/Residues at Target Sites) (Pearlman and Murcko, 1993, Pearlman and 

Murcko, 1996), SkelGen (Todorov and Dean, 1998) (Lloyd et al., 2003), DycoBlock (Liu 

et al., 1999) and SMoG (Small Molecule Growth) (DeWitte and Shakhnovich, 1996). In 

these cases an estimate of the free energy of the interactions is used as the scoring, 

either directly in the case of CONCEPTS/CONCERTS, or as part of a more knowledge-

based approach as in SMoG, or the Monte Carlo De Novo Ligand Generator or MCDNLG 

(Gehlhaar et al., 1995). In all these cases, by fine tuning the ‘T’ parameter during the 

run, initial wide variations can be made to hone in on a particular molecule (referred to 

as ‘annealing’ the system). This ultimately results in one candidate being generated that 

scores highly, but different runs can result in differing solutions due to the random 

nature of the movements through chemical space. 

3.2.4.3 Genetic algorithms (GAs) 

Genetic algorithms work on populations of potential molecular candidates, utilising the 

Darwinian principles of natural selection and survival of the fittest, attempting to 

mimic the mutation and crossover operations present in reproduction (Back et al., 

1997). The algorithms treat the individual bits within a data string, or the individual 

atoms in a molecule structure, as chromosomes to be manipulated in a number of 

different ways. Usually, one of the encoded operators is selected at random and applied 

to one or more chromosomes according to the rules associated with it, creating new 

results to be evaluated. Once the results are scored, the process repeats until the goal is 

reached, or the maximum number of iterations is reached. In the vast majority of cases, 

two distinct operators are used: 

 Mutation – An individual component of the representation (an atom, bond or 

even a whole functional group) is randomly replaced with another or deleted to 

generate a new molecule. 

 Crossover – Two randomly chosen molecules (the ‘parents’) are taken, and 

sections of their data exchanged at a convenient linkage point, resulting in the 

addition of the new combinations to the population. 

The ‘randomness’ of these functions and operators is key to avoiding the problem of 

local optima, where a series of operations can find a less than ideal solution due to an 
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inability to adequately explore the sample space. By adding a random element, other 

solutions are at least considered, reducing the likelihood of this problem occurring. The 

degree of randomness in the system is usually influenced in some manner, such as in 

the ‘weighted roulette wheel’ selection method, where groups or molecules that score 

highly have a higher chance of being selected than lower scoring alternatives. This 

serves to guide the searching towards optimal solutions, while still retaining an 

element of diversity with the random element. 

The Chemical Genesis program (Glen and Payne, 1995) applies these principles starting 

with an initial seed molecule input as a SMILES string, or other two- or three-

dimensional structure. In all cases, the GA operates on a 3D conformation that has been 

generated from the molecule, rather than a traditional 2D chromosome. As a 

consequence, the standard GA operations are enhanced to include translation and 

rotation of either the molecular structure or an individual bond, as well as enhanced 

mutation operations that change atom types and add methylene or ring substituents. At 

each step, parent molecules are selected and a set number of the GA operations are 

applied to make new hybrids, with two separate lists of results for the mutation and 

crossover operations. These structures are then optimised using molecular mechanics 

and scored according to a number of criteria. These include restrictions on the volume 

of the manipulated structure, as well as the usual collection of molecular properties 

derived from the target.  

MEGA (Multiobjective Evolutionary Graph Algorithm) (Nicolaou et al., 2009) uses 

molecular graphs for its molecular representations, with the start point defined as a 

particular structure input by the user or assembled at runtime from a library of suitable 

fragments. This start point then has the genetic operators applied to generate a 

population of suitable candidates that are converted into three-dimensional 

representations and docked into a binding site. The molecules are scored according to 

their interactions with the binding site and by comparisons with the Lipinski rules 

(Lipinski et al., 1997) to ensure they are drug-like. These scoring functions represent 

the multiple objectives used to guide the generation of the molecules. This same 

approach is seen with the SENECA program (Han and Steinbeck, 2004) and the Pareto 

Ligand Designer (Ekins et al., 2010), which uses a reference molecule set to identify 

objective values to build Pareto fronts. The Pareto efficiency approach refers to the 
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allocation of resources (properties and scores) in such a manner that it is impossible to 

improve one individual without disadvantaging another in the distribution. The Pareto 

front for a system is one for which the set of property allocations for a result set all 

meet the requirements for Pareto efficiency (these results are referred to as non-

dominated results). Any solutions that meet this criteria are stored are used for the 

next molecule evolution step via a number of transformation rules, including those 

from Drug Guru (Stewart et al., 2006), until the optimisation criteria are met. Drug 

Guru incorporates 186 rules in the form of SMIRKS strings, as shown in Figure 2.9 in 

Section 2.3.2, favouring functional group transformations and a number of ring 

structure modifications. 

CoG (Compound Generator) (Brown et al., 2004) and the Globus method (Globus et al., 

1999) use a  typical GA approach, with the ability to backtrack along synthetic routes. 

The development of each molecule is represented as an individual subgraph in a 

collated synthesis tree, using standard genetic operations used on the nodes, and 

Tanimoto similarity scoring. GANDI (Dey and Caflisch, 2008) uses a GA method for 

fragments, but without the use of multiple mutation operators. Instead, fragments are 

prearranged and docked within the active site with a number of suitable linkers chosen 

at random and evaluated via either two-dimensional similarity coefficients or a three-

dimensional overlap function. In order to prevent a synthesis ‘loop’ occurring with 

constant re-evaluation of the same complexes a tabu search (as discussed by Rusu and 

Bulacovschi (2006), after the work by Glover) is used, where knowledge of the previous 

potential solutions is stored.  

LeapFrog (Tripos, Kharkar et al., 2009) does not employ a genetic algorithm in the 

strictest sense, but it does use the standard genetic operators for its molecular 

constructions. Configuration of the program allows it to operate in one of three modes: 

suggesting improvements to a given structure (Optimise); creating a bespoke molecule 

(Dream); and providing a more interactive stepwise design process (Guide). EA-

Inventor (Tripos) uses a more conventional evolutionary algorithm, making all 

operators tuneable to increase or decrease the likelihood of them being used (Feher et 

al., 2008).  
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An alternative approach to GA-like expansion from a fixed scaffold is the BOMB 

(Biochemical and Organic Model Builder) method (Jorgensen et al., 2006) in which a 

seed structure is modified extensively with different side chains in an iterative fashion 

to form a product. The process involves a library of over 100 cores and 600 

substituents that can be overlaid to the structure to build ligands which are then 

optimised and scored. While not implementing all of the GA operations, the creation 

and optimisation methods are similar to standard mutations.  LigBuilder (Wang et al., 

2000, Yuan et al., 2011) works in a similar manner, but using an elitist approach to 

ensure that each successive generation does not result in a backward step. The 

program uses a GA approach, implementing the growing and linking strategies as 

described in Section 3.2.3, with a fixed proportion of the highest scoring results (based 

on the free energy of their binding with the active site) copied from one generation to 

the next. 

In terms of exclusively two-dimensional approaches, the Nachbar method of molecule 

evolution (Nachbar, 2000) uses a genetic programming tree structure, as opposed to 

linear chains when describing molecules. The initial population is created randomly, 

selecting one atom and adding new bonds until its valence is complete. New atoms are 

then added as appropriate, with new bonds added and so forth, branching out until 

terminated by either the random selection of a terminal atom (hydrogen for example), 

or maximum depth for the system is reached. This is repeated for different start points 

until a population is generated. The members of the population are then scored by 

similarity comparisons with a reference compound. Optimisation then proceeds 

through the usual mutation and crossover parameters.  

Other, similar methods include TOPAS (TOPology-Assigning System) (Schneider et al., 

2000), as discussed in Section 3.2.3 and 3.2.4, and ADAPT (Pegg et al., 2001). The latter 

method combines a genetic algorithm approach with a fragment-based linking method, 

using DOCK 4.0 to evaluate fitness.  

3.2.5 Particle swarm optimisation 

Particle swarm optimisation (PSO) was first proposed by Kennedy and Eberhart (1995) 

as a means of simulating social behaviour en masse, and is best described as a subset of 
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evolutionary algorithms. In it, each individual candidate solution can be described as a 

particle within the swarm. The particles effectively move through the search space 

independently, but are guided by their own previous results, and the best results of the 

swarm as a whole. In this way, the system quickly converges to a solution. 

PSO has been utilised for de novo design in COLIBREE (COmbinatorial Library 

BREEding) (Hartenfeller et al., 2008). A starting molecule is selected which will serve 

as the basis for each individual particle in the swarm. Each of these particles can access 

the library of fragments and linkers that can be combined to generate a potential new 

molecule for evaluation, which is stored within the structure of the particle. A score is 

allocated to each fragment and linker (known as a quality vector or QV) representing 

the suitability of the unit for the scenario in question and the likelihood of selection at a 

given point, in order to allow the swarm to operate. In each iteration, all the particles 

are informed of the highest scoring solution, which is used alongside the individual 

results to select the next operation. The operation is chosen via roulette wheel 

sampling, with the additional ability to edit the scores externally to force a particular 

route to be covered. A similar variant, Ant Colony Optimisation is used in tools such as 

MAntA (Molecular Ant Algorithm) (Reutlinger et al., 2014).  In MAntA, as each fragment 

and linker is evaluated, a score is assigned in the form of a ‘pheromone concentration’, 

which gradually diminishes over time. Much like a real ant colony, the shorter, superior 

routes to a target are more likely to be covered repeatedly, which increases the 

concentration, creating a weighted sampling method that converges rapidly towards a 

solution. 

3.3 Synthetic feasibility in de novo design 

One of the main issues in de novo design is ensuring the synthetic accessibility of the 

suggested compounds. Two approaches have been developed to tackle this problem. 

The first is to score compounds on ease of synthesis once they have been generated 

(allowing the de novo tool to operate without restricting the sampling space) while the 

other is to base the structural transformation operations embedded within the de novo 

design tools on known reactions, restricting the sample space but ensuring, at least in 

theory, that a synthetic route remains available for any solution generated.  
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3.3.1 Feasibility scoring functions 

Many of the de novo tools produced post-1995 look to implement some form of 

synthetic feasibility check within their scoring, imposing penalties on structures that 

have too many of a particular group, for example. RASSE (RAtional Space SEarching) 

(Luo et al., 1996) and TOPAS (Schneider et al., 2000) score molecules on the structural 

features present that affect synthesis (favouring esters and amides over enols and 

peroxides, for example, and avoiding overly large atom counts) as well as their binding 

affinity and other similar parameters in order to ensure suitable results. In the case of 

RASSE, a standard ligand-based scoring approach is used, but penalties are applied for 

every instance of a chemically unstable functional group or excessive use of asymmetric 

structural elements prior to tabulation of the results.  

Another approach is to leave the scoring functionality untouched, and instead perform 

a more detailed, specific evaluation on the final candidates as seen in the SYLVIA 

structure evaluation method (Boda et al., 2007, Molecular Networks GmbH). As well as 

ring complexity and chirality, this method also takes into account topological and atom 

type features, alongside a retrosynthetic analysis of the molecule in question to identify 

simple, readily available precursors. Allu and Oprea (2005) take a similar approach, 

with the synthetic and molecular complexity (SMCM) scoring system intended for use 

with existing de novo tools. Firstly, each atom is assigned a relative electronegativity 

value according to empirical data, and then every bond is identified and assigned a 

parameter value. Next, the molecule is assessed for features that are known to be more 

complicated to synthesise, such as chiral centres or complex ring systems, and an 

additional penalty score calculated. The final score is the sum of these individual values 

and represents the ease of molecule generation – the higher the score, the harder the 

molecule is to synthesise. CAESA (Computer Assisted Estimation of Synthetic 

Accessibility) (Gillet et al., 1995), analyses a given structure to determine the likelihood 

of there being suitable starting materials. Any potential issues regarding 

stereochemical complexity, topological details or specific functional groups that may 

hinder a synthesis are highlighted, and then the candidates are ranked in order of 

synthetic ease. This effectively acts in the same manner as a qualified synthetic chemist 

would when facing the same problem, but on a larger scale. 
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3.3.2 Reaction-based de novo design 

Another approach to the synthetic feasibility problem is to limit the range of 

transformations to known reactions. For these purposes, the Daylight SMIRKS 

(Daylight Chemical Information Systems) language is often used to encode the 

transformations (effectively structural ‘difference lists’), due to its ability to 

characterise the reaction centre directly. Some of the earliest examples of this process 

in de novo design are the previously mentioned TOPAS (Schneider et al., 2000) and 

FLUX (Fechner and Schneider, 2005). In these cases, the synthetic restrictions come 

from a master set of 11 reaction transformations (the RECAP rules (Section 2.4.5), 

encoded as SMIRKS), and a fixed fragment library derived from retrosynthesis of the 

contents of the World Drug Index in the case of TOPAS or the COBRA library (Collection 

Of Bioactive Reference Analogues, a literature collection of 4,236 molecules with 

known structures, activities and bioavailability information) (Schneider and Schneider, 

2003) in the case of FLUX. Deliberate restriction of reaction transformations to hard-

coded libraries can also be useful for producing multiple candidates that follow a 

similar synthetic route. This is of particular benefit when attempting to build focussed 

arrays for high throughput screening based around particular in silico properties or 

existing results. The vProtocol method (Schürer et al., 2005) derives its rule set from a 

collection of synthetic literature schemes filtered for compatibility, utilised as part of a 

genetic algorithm based de novo tool. The program generates a series of products 

together with the reaction sequences used to create them, with the GA used to optimise 

both elements. One advantage of the approach is that particularly effective short 

sequences found by vProtocol can be added to the rule set for future use. 

SYNOPSIS (SYNthesize and OPtimize System in Silico) (Vinkers et al., 2003) starts with 

a database of existing molecules, such as those available within the Available Chemicals 

Directory (BIOVIA) one of which is selected in accordance with a Monte Carlo function 

(Section 3.2.5.2). The molecule is then analysed for appropriate functional groups by 

query matching with the library of 70 manually coded reaction transformations. Each 

transformation included within the database is chosen to be suitable for a wide range 

of reactants, while the query elements of the SMIRKS string ensure that reactions are 

not applied where the structure or competing functionality would prevent their use in 

real life. Of those that are suitable, one is selected at random and applied to the 
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molecule, to generate a new molecule which is scored. The Monte Carlo function then 

selects another molecule, gradually annealing the system so that processor time is 

devoted towards improving the quality of the solutions rather than attempting to 

enhance the population as a whole. This simulated annealing approach was extended to 

multiple objectives by MOLig, which takes the Monte Carlo method to optimise around 

internal energy, energy of interaction, bioavailability and similarity to a reference 

compound. 

DOGS (Design Of Genuine Structures) (Hartenfeller et al., 2012) uses a similar 

approach, but with the transformations encoded in a bespoke language, Reaction-MQL 

(Reisen et al., 2008). This depicts the individual bonds and electrons in a linear format, 

better suited to storage within SQL data tables or other similar storage solutions. The 

DOGS reaction library is designed to be sufficiently generic to be applied to a wide 

range of reactants. A molecular fragment library is then processed to assess the 

reactivity of each fragment towards each of the list reactions, and the reaction centres 

in each case, flagging the entries accordingly. The structure generation process is then a 

case of selecting a reaction from the database, and applying it to the starting molecule 

at the identified reaction centres. For optimisation purposes, an initial pilot study is 

performed with one reaction from each class in the library (the one predicted to be the 

most effective), with the collected results evaluated. The classes that produced the best 

results are then investigated in more detail; with all of the reaction they contain being 

used to generate compounds. If the starting material requires it, two component 

reactions can be processed by applying transformations to all of the suitable structural 

features, but only the highest scoring combinations are retained for processing due to 

the potential population size problems. 

As an alternative to the pre-encoded systems, reactions can be directly represented as 

difference values between reactant and product environments as in the reaction vector 

approach (Broughton et al., 2003, Patel et al., 2009), (Section 2.4.1). A ‘reaction vector’ 

is a set of atom pair descriptors representing two and three bond distances, indicating 

the differences between the product and the reactant i.e. which atoms have changed. By 

representing reactions in this manner, transformations are reduced to the reaction 

centre and immediate environment, enabling any set of reactions to be encoded 

without reference to predefined transformation rules or atom maps, making the overall 
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input significantly more straightforward. It should be noted that, because the atom pair 

data represents only the immediate reaction environment, the same issues that affect 

all similar reaction centre methods are present here. For example, any functional 

groups that would cause reaction incompatibility in a real world synthesis (due to 

steric or electronic effects) will have their effect ignored if they are not directly 

connected to the perceived reaction centre. Careful selection of the size of the reaction 

centre can mitigate this effect, but can present its own problems with respect to 

novelty. In general, a compromise is required as the greater the number of bonds 

recorded as part of the reaction centre, the narrower the scope of application of the 

reaction to novel starting materials. 

In the reaction vector de novo design tool, an initial database of reactions is converted 

to the vector representation to be stored internally and recalled as necessary. A starting 

molecule is input, and evaluated against the reaction vectors to determine which 

reactions are possible for that structure. One of these is selected at random, at which 

point the reaction is applied in silico using an algorithm that is described later in the 

thesis. This process is then repeated with another copy of the starting molecule to 

generate a population of solutions. At this point, a weighted roulette wheel sampling is 

used to pick a candidate for the next phase and so on for a set number of iterations. As 

this method is the foundation of the work presented in this thesis, a more detailed 

discussion of this method is included in Chapter 4. 

3.4 Drug-likeness in de novo design 

Much like the assessment of synthetic feasibility, there are two main approaches to 

ensuring that the results produced by de novo tools are useful drug candidates. These 

are post hoc evaluation of a given set of results based on a given set of criteria, or via 

restriction of the used transformations and structural elements to those known to be 

commonly used in drug design. 

3.4.1 Rule-based drug-likeness evaluation 

One of the most common approaches used is to filter any prospective results against a 

simple set of rules devised by Lipinski (Lipinski et al., 1997, Lipinski, 2004). These 

empirical rules are based on the principle that the majority of orally administered 
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drugs are lipophilic, and relatively low in molecular mass. The rules use the following 

criteria: 

 molecular mass below 500 Da 

 log P (octanol-water partition coefficient) value below 5 

 no more than 5 hydrogen bond donors (N—H and O—H bonds) 

 no more than 10 hydrogen bond acceptors (nitrogen and oxygen atoms) 

where an orally available molecule breaks no more than two of these rules. As all of 

these values are multiples of five, these rules are often referred to as the rule of five, 

despite the original list only having four criteria. One of the key advantages to such an 

approach is that the properties are easily calculated from a two-dimensional structure, 

with software libraries such as Marvin (ChemAxon) and MOE (Chemical Computing 

Group Inc., 2015) able to calculate these in order to assist the evaluation of results after 

generation. As a result such evaluations are commonly used as a simple addition to 

existing de novo methods requiring little additional effort to implement. However, tools 

such as PHDD directly incorporate the rule of five into the design workflow, with non-

drug-like compounds removed from the result list prior to calculation of the fitness 

values.  

Further studies into bioavailability have led to additional rules being developed to 

improve the quality of the predictions (Ghose et al., 1999). These include adjustments 

to the molecular mass and log P ranges (180 – 500 Da and -0.4 to 5.6 respectively), as 

well as requiring an atom count for the molecule between 20 and 70. A related rule 

system for identifying good lead compounds also exists, the rule of three (Congreve et 

al., 2003). This suggests that leads should have log P values below 3.0, molecular 

masses below 300 Da and no more than three hydrogen bond donors and acceptors, as 

well as limiting structures to no more than three rotatable bonds.  

3.4.2 Transformation-based drug-likeness evaluation 

An alternative method of ensuring drug-likeness is to restrict the available 

transformations and fragments for de novo structure generation.  Many of these 

methods have already been covered in Section 3.3.2, as the libraries and rule 
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definitions used in tools such as DOGS, FLUX and TOPAS to determine synthetic 

feasibility are derived from collections of compounds known to be bioactive  with the 

aim of increasing the likelihood of drug-like results. The BOMB tool discussed in Section 

3.2.4.3 also uses this approach, with the library of cores and sidechains preselected to 

ensure compatibility and bioavailability.  

3.5 Conclusions 

This chapter has looked at how de novo design tools have progressed, and the various 

methodologies by which they operate. Despite the initial interest being in structure-

based de novo design, it is interesting to note that in recent years, programs have 

tended to focus on ligand-based design and on structure optimisation. This could be 

because drug discovery chemists are seeking to either improve on known entities from 

other companies, or their own assay screening results without necessarily wanting to 

design compounds from scratch. Also, two-dimensional comparisons take considerably 

less computation time than three-dimensional methods, making them a more efficient 

screening method. In any case, comparing potential candidates to a reference 

compound via three- and two-dimensional metrics seems to be the underlying scoring 

method for these programs. 

It has been suggested that the lack of uptake of traditional de novo design tools is 

largely due to the failure to consider how the candidates can be synthesised. Many of 

the more recent de novo tools do consider the feasibility of synthesising the output by 

reference to reaction databases, either commercial or bespoke, or through some sort of 

review process of the final candidate molecules. One of the main advantages of the 

reaction vector method is that this synthetic accessibility is an integral part of the tool, 

due to the nature of the data collection.  

 

 

 

 



 

 

53 

 

Chapter 4: 

Reaction Vectors 

4.1 Introduction 

Previous work carried out within the research group (Hristozov et al., 2011, Patel et al., 

2009, Patel et al., 2008) resulted in the creation of a knowledge-based de novo design 

tool based on reaction vectors as introduced in Chapter 3. As this project enhances and 

extends this work, it is necessary to summarise how the tool works, and how it may be 

used to generate structures. 

4.2 The Reaction Vector (RV) format 

As previously discussed in Section 1.2 and Section 3.3.2, a reaction vector stores the 

structural changes that occur over the course of a chemical reaction as a difference 

vector. In a de novo design context a reaction vector can be applied to different starting 

materials to generate novel structures. In order to deliver the best compromise 

between applicability, ease of calculation and simplicity, the changes are encoded in the 

form of atom pair descriptors (Carhart et al., 1985). In this project, two different forms 

of atom pair descriptors are used, which are referred to as AP2 and AP3, with the 

number in the descriptor representing the length of the path involved. The AP2 

descriptor refers to two atoms that are directly bonded, whereas the AP3 descriptor 

refers to a pair of atoms separated by two bonds. This means that AP2 descriptors 

encode bond information, with the AP3 descriptors providing information about the 

environment of the bond, specifically one bond away from the changed bond. The 

descriptors take the form X1(h,p,r)-S(o)-X2(h,p,r), where: 

 X1 and X2 are the atoms in question 

 h represents the number of non-hydrogen connections to the atom 

 p is the number of Π bonds the atom contributes to  

 r is the number of rings the atom is part of 

 S is the path separation (i.e. whether this is an AP2 or AP3)  

 o is the bond order of the connection (only relevant for AP2) 
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The ‘p’ parameter is calculated as follows. Initially, p is set to zero for each atom in 

question, before each bond for the atom is analysed in turn; if the bond is aromatic or 

double, p is incremented by one; if the bond is triple, p is incremented by two. As a 

result of this calculation, a Kekulé representation of an aromatic structure will give a 

different atom pair descriptor to a delocalised representation. As a Kekulé structure 

uses alternating single and double bonds to represent aromaticity, any atom in the ring 

is perceived as having at least one double bond and one single bond and therefore p 

will be incremented by one (assuming no other bonds), whereas in a delocalised 

system both ring bonds incident to an atom will be assigned as aromatic and therefore 

p will be incremented by two (again assuming no other bonds). In order to prevent 

problems with these mismatching definitions, a standardisation step is used to convert 

all structures to the delocalised aromatic representation prior to analysis. Additionally, 

any explicit hydrogen atoms are also removed from the molecule for consistency. The 

bond order parameter ‘o’ is assigned as follows. A single bond is 1; a double bond is 2; a 

triple bond is 3; and an aromatic bond is 4.  

To generate a reaction vector, the atom descriptors are calculated for both sides of the 

reaction, with the list associated with the ‘reactant’ side subtracted from the list from 

the ‘product’ side to give an indication of the transformation itself. The result of this 

process is a set of negative atom pairs that represent atoms and bonds that are lost as 

part of the transformation and a set of positive atom pairs that represent atoms and 

bonds that are gained. An example of this process for a sample rearrangement reaction 

is presented in Figure 4.1, with the negative atom pairs (AP2s and AP3s) listed on the 

left in red, and the positive atom pairs listed on the right in green. The AP2 descriptor 

associated with the C—N bond that moves as part of the rearrangement does not 

appear in the reaction vector since there are C—N bonds in both the reactant and the 

product which cancel out when the difference is calculated. However, the reaction 

vector contains negative and positive AP3 descriptors that include the N, and these 

encode the changing environment of the C—N bond. It should be noted that the 

reaction vector code handles the reaction as shown with the reactant and product as 

separate entities; it has no knowledge of tautomerism or mesomerism and as such this 

reaction is processed as entered. 
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Atom Pairs removed 
during the reaction 

Illustration of 
bonds removed 

(red line indicates 
removed bonds) 

 
Atom Pairs added 

during the reaction 

Illustration of bonds 
added (green line 

indicates new bonds) 

C(3,1,0)-2(2)-C(2,1,0) 

 

 

C(3,1,0)-2(1)-C(2,0,0) 

 

C(3,2,1)-2(1)-C(3,1,0) 

 

 

C(3,2,1)-2(1)-C(2,0,0) 

 

O(1,0,0)-2(1)-C(2,1,0) 

 

 

O(1,1,0)-2(2)-C(3,1,0) 

 

C(3,1,0)-3-C(2,2,1) 

 

 

C(2,2,1)-3-C(2,0,0) 

 

C(3,1,0)-3-C(2,2,1) 

 

 

C(2,2,1)-3-C(2,0,0) 

 

C(3,2,1)-3-C(2,1,0) 

 

 

C(3,2,1)- 3-C(3,1,0) 

 

N(1,0,0)-3-C(2,1,0) 

 

 

N(1,0,0)-3-C(2,0,0) 

 

N(1,0,0)-3-C(3,2,1) 

 

 

O(1,1,0) -3-C(2,0,0) 

 

O(1,0,0)-3-C(3,1,0) 

 

 

O(1,1,0)-3-N(1,0,0) 

 

Figure 4.1: Example of the generation of a reaction vector for a rearrangement reaction.  

(Wallace, 2015) 
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4.3 Structure generation using RVs 

4.3.1 Original method 

The first approach to generating and applying RVs in de novo design was developed by 

Patel (Patel et al., 2009). While the generation of RVs is relatively simple, the 

application of the vectors to generate new products is more complex. In the method 

developed by Patel this is done in an atom-by-atom and bond-by-bond approach, 

pursuing each possible solution in a breadth first search until all possibilities have been 

exhausted. First, the starting material is fragmented by removing bonds recorded in the 

reaction vector as being ‘lost’ (the negative atom pairs). Then, atom pairs are selected 

one at a time from the list of items to be ‘gained’ (the positive atom pairs), and added to 

the fragments from the starting material. This is done in all possible ways, starting from 

a seed atom (the highest numbered atom with an unsatisfied valence). All of the 

positive AP2s within the vector are analysed, and any that contain an atom descriptor 

matching that of the seed atom are used to grow the fragment in turn, with the positive 

AP3 descriptors used to validate the extended fragment and verify that it is consistent 

with the reaction vector. Should any of the extended fragments contain AP3s that are 

not present in the reaction vector, they are considered incorrect and eliminated. The 

search then moves to consider each valid extended fragment in turn. For each extended 

fragment, the highest numbered atom with an unsatisfied atom valence becomes the 

next seed atom and any remaining AP2s are used to grow the fragment as before. The 

process continues until the entire structure is assembled or no possible solution can be 

found.  
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(a)  

   
(b) 

C(3,2,1)-2(1)-C(3,1,0) 
C(3,1,0)-3-C(2,2,1) 
C(3,1,0)-3-C(2,2,1) 

 

C(3,1,0)-2(2)-C(2,1,0) 
C(3,2,1)-3-C(2,1,0) 
N(1,0,0)-3-C(2,1,0)  
N(1,0,0)-3-C(3,2,1)  

O(1,0,0)-2(1)-C(2,1,0) 
O(1,0,0)-3-C(3,1,0) 

(c) 

  

 

(d) 

 

(e) 

Figure 4.2: The structure generation procedure using the reaction vector method.  (a) 
The reaction in question (affected bonds in orange). (b) The bonds to be removed from 
the reactant to form the fragment (* indicates attachment point). (c) The negative AP2 
and AP3 descriptors (the ‘negative’ pairs from Figure 4.1). (d) An unordered set of 
bonds to be added to the fragment to form the product. (e) The structure generation 
procedure – fragments are assembled bond-by-bond. (Wallace, 2015) 

Incorrect product, 

double bond too far 

from ring 

Correct product 
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An illustration of the structure generation process is given in Figure 4.2, whereby the 

RV is applied to the starting material of the reaction from which it was generated and 

the known product is generated. Initially, the bonds lost during the reaction are 

removed from the starting material to leave a collection of fragments, in this case the 

chlorobenzene ring, and a nitrogen atom connected to an sp2 carbon atom. The seed 

atom in the starting material fragments is then identified as the highest numbered atom 

with an unsatisified valence (the unsubstituted atom in chlorobenzene in this case). 

Each applicable positive AP2 is attached in turn, to build the structure bond-by-bond. 

However, as in general there may be multiple ways in which a given AP2 can be 

attached, as well as multiple AP2s, additional verification is achieved through use of the 

positive AP3s. In the first step, only one AP2 is applicable, as only one fragment is 

compatible with the attachment point on the chlorobenzene ring, and there is only one 

way in which it can be attached. The bond is added to the ring to extend the 

chlorobenzene fragment. It is not possible to attach the nitrogen atom at this stage 

since it is incompatible with the new unsatisfied valence which is an sp3 carbon. The 

search now moves to consider this extended fragment and a new seed atom is 

identified. The remaining AP2s are examined; only one is applicable but this can be 

added in two different orientations and so two extended fragments are generated. 

Comparing the AP3 data for the possible result structures with the positive AP3s 

results in the structure on the right hand branch being eliminated. Conversely, the AP3 

data for the fragment on the left hand branch is consistent with the positive AP3s 

verifying the structure as correct. In the next step, the AP2 representing carbonyl 

oxygen is added and finally the two fragments are joined. 

The method was tested by Patel et al., with a variety of different reaction types 

including epoxide reduction and formation, amide reduction and Diels-Alder reactions. 

The method was demonstrated to be effective for R → P, R1 + R2 → P, R → P1 + P2 and 

R1 + R2 → P1 + P2 reactions, although these latter two categories are more prone to 

failure. Overall, 85% of the RVs tested reproduced the correct product given the 

original starting material. This breadth-first method works well for simple cases, but 

due to the exhaustive approach needed to ensure the correct product is built, more 

complex reactions with higher numbers of atom pairs can lead to incredibly slow 

structure generation times. Indeed, for many large molecules, even a maximum 
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execution time of 60 seconds per RV is not sufficient on a 256 core HPC cluster to 

recreate the desired structure. As a consequence, revisions were made to permit faster 

application of the vectors. 

4.3.2 Revised RV generation and storage (reverse fragmentation) 

Hristozov et al. subsequently increased the speed and success rate of RV application for 

structure generation by storing additional information with the RV when it is first 

generated. This information is in the form of an ordered list of pre-made molecule 

fragments (a ‘recombination path’) that can be used in the structure generation 

process. Rather than constructing the new molecule atom-by-atom as before, these 

fragments are used to apply multiple atoms at once in a predetermined order, 

removing the need for a breadth-first search (Hristozov et al., 2011).  

The recombination path data is generated during reaction vector calculation by 

reconstructing the product molecule from the starting material. Initially a ‘reverse 

fragmentation’ approach (Figure 4.3) is used. The name refers to the fact that, in 

addition to fragmenting the starting material by the atom pairs lost during the reaction, 

the product molecule is also fragmented using the atom pairs that are gained during the 

reaction. The aim of this step is to reduce both sides of the reaction to the fragments 

that remain unchanged by removing all changed bonds from the process. Presuming 

that the information encoded in the RV is sufficiently unambiguous, both sides will have 

identical fragments, as the structures and environment data for the fragments will be 

the same. However, as the atom pairs do not encode the full environment of the 

changed bonds, there may be multiple sites at which the fragmentation can occur. In 

these situations, multiple sets of fragments are generated, and must be compared 

systematically. If a match is found between the two sets of fragments, it is assumed that 

the forward synthesis for the reaction can be generated via said fragments. The 

necessary fragments for structure generation are then obtained by extracting the 

largest ‘base’ fragment from the product, using an MCS algorithm, and assigning the 

remainder of the product molecule as reagent fragments. It should be noted that, in the 

example in Figure 4.3, only one reagent fragment is present, but depending on the 

disconnections multiple fragments are possible. These fragments are represented 

internally as lists of atom pairs, effectively representing the substructures as complete 
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entities to be attached. These are then used to perform a full reconstruction in the 

manner previously described in Section 4.3.1, but now using fragments (sets of atom 

pairs), in order to determine an assembly order. The RV and ordered list of fragments 

are then placed into an SQL database, designed to permit rapid recall of the vectors and 

recombination data as necessary, further speeding up the process. 
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Figure 4.3: Flowchart showing the reverse fragmentation process. Note that all the acyclic atoms are ‘lost’ as they become part of a ring in the 
product. On recombination, the ring fragment (labelled 2 above) is stored as the recombination path (Wallace, 2015)  

Generate a reaction vector for the 
reaction. 

Break bonds on both sides of the 
reaction according the atom pairs in 

the vector (red). 

Compare fragments, if a match can be 
found between the fragments from 
starting material and the product, the 
vector is stored along with a 
recombination path composed of the 
fragment lists (based on the product, 
excluding the base fragment). 

Remove the base fragment from the 
product molecule. Reconstruct the 

product from the resulting fragments 
and the base fragment to obtain an 

order for reconstruction. 

Cl(1,0,0)-2(1)-C(3,1,0) 
O(1,1,0)-2(2)-C(3,1,0) 
C(3,1,0)-2(1)-C(2,0,0) 
C(2,0,0)-2(1)-C(2,0,0) 
C(3,2,1)-2(1)-C(2,0,0) 
C(3,2,1)-2(4)-C(2,2,1) 
C(3,2,1)-2(4)-C(2,2,1) 
C(2,2,1)-2(4)-C(2,2,1) 
 

Fragments stored in recombination path 

O(1,1,0)-2(2)-C(3,1,1) 
C(3,1,1)-2(1)-C(2,0,1) 
C(2,0,1)-2(1)-C(2,0,1) 
C(3,2,2)-2(1)-C(2,0,1) 
C(3,2,2)-2(1)-C(3,1,1) 
C(3,2,2)-2(4)-C(2,2,1) 
C(3,2,2)-2(4)-C(2,2,1) 
C(3,2,2)-2(4)-C(3,2,2) 
 

1. Base fragment 2. Fragment 

 

Cl(1,0,0)-3-C(2,0,0) 
Cl(1,0,0)-3-O(1,1,0) 
O(1,1,0)-3-C(2,0,0) 
C(3,1,0)-3-C(2,0,0) 
C(3,2,1)-3-C(2,0,0) 
C(2,2,1)-3-C(2,0,0) 
C(2,2,1)-3-C(2,0,0) 
C(3,2,1)-3-C(2,2,1) 
C(3,2,1)-3-C(2,2,1) 
C(2,2,1)-3-C(2,2,1) 
C(2,2,1)-3-C(2,2,1) 

 

O(1,1,0)-3-C(2,0,1) 
O(1,1,0)-3-C(3,2,2) 
C(3,1,1)-3-C(2,0,1) 
C(3,1,1)-3-C(2,2,1) 
C(2,2,1)-3-C(2,0,1) 
C(3,2,2)-3-C(2,0,1) 
C(3,2,2)-3-C(2,0,1) 
C(3,2,2)-3-C(3,1,1) 
C(3,2,2)-3-C(2,0,1) 
C(3,2,2)-3-C(2,2,1) 
C(3,2,2)-3-C(2,2,1) 
C(3,2,2)-3-C(2,2,1) 
C(3,2,2)-3-C(2,2,1) 

 

Atom pairs used for fragmentation (positive and negative) 

AP2 

Starting material 

fragments 

Product 

fragments 

AP2 AP3 AP3 
Negative pairs Positive pairs 

Base  

fragment 
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While the reverse fragmentation method is effective in the majority of cases, when this 

process cannot produce a result, the original method by Patel (Section 4.3.1) is used 

instead, attempting to construct the product molecule via the breadth-first search 

process as previously described. If this method is successful, then a path to the solution 

is stored as an ordered list of atom pairs. This recombination path then enables an 

ordered step-by-step reconstruction of the product that, while slower than the reverse 

fragmentation approach, is considerably faster than the breadth-first approach 

described by Patel et al. If this also fails to produce the correct structure, then the 

reaction vector is not stored in the database. An analysis of the reverse fragmentation 

approach carried out by Hristozov (Hristozov et al., 2011) demonstrated that this 

approach has a higher success rate than the previous method, with 89.8% of the 5,695 

reactions tested successfully reproduced, compared with 85%. The analysis also claims 

an average run time of 0.015 seconds per reaction for the new method, with a 

maximum execution time of 30 seconds, compared to an equivalent maximum run time 

of up to 5 minutes in the case of the original method, as reported in the original PhD 

thesis (Patel, 2009). However, not all reaction types can be reproduced to the same 

degree of success. For example, Fischer indole synthesis reactions were successfully 

reproduced in only 41% of the 230 cases tested for the new method. However, no 

equivalent analysis by reaction type was made for the original method to enable a 

comparison. 

4.3.2.1 RV-based structure generation  

Once the reaction vector database has been created, it can be utilised to generate novel 

structures by applying the vectors to different starting materials. The atom pairs of the 

starting material are compared to the set of negative atom pairs belonging to a 

particular reaction vector, and if all of the necessary features are present (or a suitable 

subset is present that can be combined with an external reagent) then the vector can be 

applied. The structure generation process is outlined in Figure 4.4. Once an RV has been 

selected, the negative atom pairs are removed from the starting material, and the 

fragments from the recombination path are added according to the order previously 

recorded.  This will lead to a new structure being created. However, in order to ensure 

that the molecules produced are chemically sensible, each produced molecule is 

checked before being reported as a result: the molecule is loaded into the RDKit library 

(Landrum) and subjected to a full molecule sanitisation process which includes 

cleaning up non-standard valence states, verifying the aromatic states for rings are 
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correct and valid, and calculating hybridisation states. Any structures that are not 

considered chemically stable and sensible (such as those with atoms in higher than 

allowed variance states, or incompatible aromatic systems) are rejected at this stage. 

The structure generation process can be repeated for all of the vectors in the database, 

and all possible functional sites on the molecule, until every possible molecule is 

generated.  



 

 

64 

 

Figure 4.4: Simple example of the structure generation process, using the RV from Figure 4.3. (Wallace, 2015) 

Check RV against starting material Remove negative atom pairs from molecule 
(where applicable, highlighted in red) 

Add positive atom pair fragments to molecule 
wherever environments match  (multiple 

locations if necessary)  
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4.3.3 Additional features 

4.3.3.1 Handling multiple reactants 

The reaction examples discussed so far have consisted of molecular rearrangements 

and other similar simple reactions. As indicated previously the RV method is also 

capable of supporting reactions where two reagents are combined to produce one or 

more products, as illustrated in Figure 4.5. 

 

Figure 4.5:  Example of a two component reaction taken from J. Med. Chem. (Wallace, 

2015) 

In these cases, the reaction vector encodes the negative atom pair descriptors of both 

starting materials. If the starting material used for the structure generation step does 

not contain all of the negative atom pairs it is possible to search in a database of 

reagents for a molecule that contains the missing atom pairs in order to use the 

reaction vector. The revised RV method developed by Hristozov et al. encodes reagent 

information directly alongside the generated recombination path, so that an external 

database is not required. However, to increase the number of products alternative 

reagents can also be used via a database, with any appropriate molecule replacing the 

stored reagent. The use of the external reagent generation method is illustrated in 

Figure 4.6. In this case, any reagent in the pool that contains the same atom pair 

environments as the original reagent is used to generate structures in the same way, 

resulting in additional products being generated. 
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(a) (b) 

 
(c) 

Figure 4.6: Example of the use of the external reagent generation. (a) The reaction from 

which the RV is derived. (b) An alternative reagent (circled) that contains atom pairs 

needed to apply the RV. (c) Flowchart describing the external reagent process. 

(Wallace, 2015) 

4.3.3.2 Reaction balancing 

As the RV is based on the differences between the two sides of the reaction, any 

mismatches in the number and type of atoms between the sides may result in problems 

when applying the RV. As part of the original Patel method for generating RVs, a 

reaction cleaning tool was designed to reduce these problems. This tool seeks to 

correct imbalances in reactions between the carbon atom counts on the reactant and 

product sides. The first step is to determine the number of reactants and products in 

the reaction. In situations where more than one product is listed, the reaction is split 

further into separate, one product reactions (so R1 + R2 → P1 + P2 is split into two 

reactions, R1 + R2 → P1 and R1 + R2 → P2), as illustrated in Figure 4.7. 

 

 

 

 

 

Select suitable RV 
from database 

If a reagent within 
the pool contains 
the relevant atom 

pair environments, 
add it to the reaction 

Use external 
reagent (circled) to 
generate structure 
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Original Reaction 

 
Cleaned Reaction 1 

 

Cleaned Reaction 2 

 

Figure 4.7: Example of a dehydration reaction that is cleaned by separating into two 

distinct reactions. Only carbon containing molecules are shown.(Wallace, 2015) 

The carbon atoms in these reactions are then counted again, to see if the reaction has 

now become balanced. Should there still be a mismatch, atom mapping information 

from the reaction is used to identify any missing fragments. In this process any atoms 

on the reactant side that do not have mapped counterparts in the product side are 

combined into a new, stable product molecule. This process is repeated for the product 

side, creating new reactants out of unmapped product atoms. If there are still atom 

imbalances at this point, additional copies of each reactant and product are added to 

balance the stoichiometry, with the carbon count repeated at each addition. If none of 

these approaches work, reactions with more than one reactant are analysed with each 

reactant removed in turn to identify any reagents that are not involved. A flow chart 

illustrating the whole process is shown in Figure 4.8. It should be noted, however, that 

this tool is not essential for use with the revised fragment based approach, as this does 

not require a perfect atom balance to operate. 
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Figure 4.8: Summary of the reaction cleaning algorithm.  At each step, the carbon count 

is rechecked, with the algorithm stopped if the reaction is balanced (green route). If 

not, the algorithm continues (red route). 

4.4 Conclusions 

In this chapter, the reaction vector approach developed by Patel et al. and then refined 

by Hristozov has been summarised, including how the reaction vector is calculated and 

applied to generate product molecules. Using atom pairs as the descriptor retains 

sufficient data from a reaction to ensure that it will not be applied inappropriately, 

while also permitting novel molecules to be made. While RVs have been shown to be 

useful for de novo design (Gillet et al., 2012, Gillet et al., 2014), they have limitations 

when considering multi-step reactions since intermediates may not score well thus 

preventing potentially useful molecules from being found. Furthermore, the application 

of RVs can lead to very long execution times. The next chapter describes an approach to 

generating reaction sequences and reaction sequence vectors with a view to 

overcoming these limitations. 
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Chapter 5: 

Reaction networking 

 

5.1 Introduction 

One of the main problems in de novo design is that the exploration of all possible 

structures within a given solution space is impossible, due to the combinatorial 

explosion. Rather than pursue every possible compound, it is necessary to find some 

way of scoring and evaluating the population of candidates at each generation, 

focussing on the routes most likely to give usable products. However, in a reaction 

sequence, such scoring methods become problematic. In these circumstances, the 

intermediates in the sequence may be given significantly worse scores than the starting 

material, for example, due to the structural contribution of protecting groups or similar 

features. As a consequence, potentially useful routes can be rejected.  

As finding a scoring method that can account for the disparity between intermediate 

and final structures is a very complex problem, an alternative approach can be 

considered for use during the de novo process itself, which is to skip past the 

intermediates and execute entire sequences within one execution step. This chapter 

explores preliminary work aimed at developing networks of reactions with a view to 

using this approach to perform these multi-step processes. 

Section 5.2 describes the methods used in database preparation to transcribe and store 

reaction sequences. In Section 5.3, the KNIME nodes and workflows developed for 

testing and cleaning the input data are discussed and demonstrated. Section 5.4 shows 

how this data can be expressed in the form of a network, linking molecules via known 

reactions. This concept is extended in Section 5.5, where an external knowledge base 

consisting of single step reactions is processed and sequence data is generated by 

linking reactions according to common reaction components. 
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5.2 Collation of a set of reaction sequences 

While many reaction databases exist that can be mined for reaction information (Table 

2.2, Section 2.3.2), the majority of these store the reactions as individual entities, with 

only limited sequence data available such as the synthesis information in the Reaxys 

AutoPlan synthesis planner (Elsevier). In order to develop a de novo method based on 

sequences it is therefore necessary to develop a method for creating reaction 

sequences. To test if this would be feasible, a preliminary experiment was conducted 

whereby a small set of sequences was collected manually. This set was then split into 

its component reactions and methods were developed to reconstruct the sequence data 

algorithmically. Should this process succeed, this implies that it will be possible to 

create sequence information for any collection of reaction data. This section describes 

the preparation of this test set, and the ways in which the set was used for tool 

development and evaluation. 

5.2.1 Literature abstraction 

Following the procedure outlined by Roughley and Jordan (2011), the SciFinder 

database (Chemical Abstract Services, 2011) of journal articles was searched for 

structure activity relationship (SAR) papers that contain suitable reaction schemes. The 

search was restricted to those papers published in 2008 in three significant medicinal 

chemistry journals (Bioorganic and Medicinal Chemistry,  Bioorganic and Medicinal 

Chemistry Letters and the Journal of Medicinal Chemistry) with further restriction to 

three drug companies (AstraZeneca, GlaxoSmithKline and Pfizer). The resulting papers 

were analysed by hand for reaction schemes (here defined as any collection of 

reactions that leads to a defined product), with each step redrawn and saved as a 

BIOVIA .RXN file. In order to ensure both sides of the reactions were balanced in terms 

of atom counts (see Section 5.3.1), the reagent information listed in the quoted method 

was used, excepting in cases where the only information was from a reference to a 

previously published paper, in which case data from that method was taken. If the 

reaction could not be balanced using this information, or the reaction sequence proved 

too complex to transcribe (more than eight molecules on one side), the scheme was 

rejected and not added to the database. In total, 102 reaction schemes were collated; 

examples are shown in Table 5.1 in the form of the individual reaction steps that 

combine to form the sequences. The reaction ID field in this table is made up of the 

paper number, the number associated with the product in the paper and finally the 

reaction number. For example, 19_2701 represents the 19th paper to be reviewed and 
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the first reaction in the sequence to make product 27 from that paper. In these 

particular examples, many of the sequences share the same first reaction, only differing 

at the second. For product 30, however, the sequence is entirely different. 

Reaction ID Image 

19_2701 

 
  

19_2702 

 

19_2802 

 

19_2902 

 
 

 

19_3001 

 

19_3002 

 

Table 5.1: Example reactions from the reaction database. All examples taken from 

Basarab, G. S., Hill, P. J., Rastagar, A. & Webborn, P. J. H., 2008. Design of Helicobacter 

Pylori Glutamate Racemase Inhibitors as Selective Antibacterial Agents: A Novel Pro-

drug Approach to Increase Exposure. Bioorganic & Medicinal Chemistry Letters, 18, 

4716-4722, where they were represented in the Kekulé form. (Wallace, 2015) 
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Due to the analytical focus of the papers, many of the reaction schemes used contain 

information about the preparation of series of analogous compounds, usually made by 

following the same or similar reaction sequence with appropriately different reactants. 

One such scheme is shown in Figure 5.1, and illustrated in Table 5.2. 

 

Figure 5.1: Generic representation of the reaction scheme associated with paper ‘19’ 

from Table 5.1, represented in the Kekulé form.(Basarab et al., 2008, Wallace, 2015) 

Product ID R2 R3 

27 

  

28 

  

29 

  

30 

 
 

Table 5.2: Breakdown of reactants used in scheme ‘19’, using the product ID from 

Basarab et al, represented in the Kekulé form.(Basarab et al., 2008, Wallace, 2015) 

+ + 
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In these cases, all of the individual sequences were enumerated leading to 424 reaction 

sequences being collated in total, representing 1544 individual reaction steps. This 

includes a number of duplicates, either due to the implementation of the sequence 

branching, or coincidental duplicates (where the same reaction or an equivalent form is 

present in more than one unrelated sequence, due to being used in schemes in different 

papers). After removing duplicate reactions, there are 974 unique reaction steps, which 

were used to make the test set. 

5.2.2 File format creation and data set processing 

The sequences were represented as a ‘.SCMX’ file with CML validated connection tables 

for the reactions in the sequence, and a reference to the paper for each step of the 

sequence was included. This XML form was used for both storage and processing of the 

initial database, due to its efficient storage capabilities, and the ability to use 

ChemAxon’s Marvin libraries (ChemAxon) to read and manipulate the data. To produce 

the .SCMX file, each individual RXN file representing a reaction step was processed via a 

Java program to generate individual CML strings. These strings are converted via a 

second program to build one single file. Once encoded, the individual reaction steps can 

be processed within KNIME (Berthold et al., 2008) using the XPath query engine. A 

breakdown of the sequences by size is presented in Figure 5.2. 

 

Figure 5.2: Frequency plot of reaction sequence size for the test set. 

This limited data set seems to contradict the assumptions made by Carey et al. (2006), 

namely that the average synthetic scheme used in drug preparation contains 8.1 steps, 
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with heavy reliance on protecting group chemistry. However, this average appears to 

include all the steps involved in preparing the starting material. This would lengthen 

the sequences relative to the ones shown here that begin with the starting materials 

already prepared. In the above example, the large number of two-step sequences in this 

set skews the average towards three and four steps, although from a set this small it is 

difficult to draw meaningful conclusions as to trends. 

The bulk of the data processing within this project was carried out using the KNIME 

data mining system, and a workflow was produced to process the .SCMX files into two 

SQL data tables. As before, XPath queries were used to read the sequence identifier, the 

reference and the reaction information. For reaction handling, the CML data was 

imported, canonicalised and converted to Reaction SMILES via the ChemAxon Marvin 

library incorporated within KNIME, as the alphanumeric nature of the format makes 

the data easier to process within Java using standard text processing methods. Samples 

of the output from these processes are shown in Table 5.3 and Table 5.4.
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Scheme 

ID 
Number of Steps Step ID Reaction ID Reference 

19_27 2 0 ID  

19_27 2 1 19_2701  

19_27 2 2 19_2702  

Table 5.3: Sample table of a reaction sequence as seen in Table 5.1. 

Scheme 

ID 

Reaction 

ID 
Reaction SMILES String 

19_27 19_2701 CN1C(=O)C=C(NN)N(CC2CC2)C1=O.ClC1=CC2=C(C=C1)N=CC=C2C=O>> 
 
CN1C(=O)C=C(N\N=C/C2=C3C=C(Cl)C=CC3=NC=C2)N(CC2CC2)C1=O.O 

19_27 19_2702 CN1C(=O)C=C(N\N=C/C2=C3C=C(Cl)C=CC3=NC=C2)N(CC2CC2)C1=O.CS 
(=O)(=O)C1=CC=C(O1)C=O>> 
 
CN1C(=O)N(CC2CC2)C2=NN(CC3=C4C=C(Cl)C=CC4=NC=C3)C(C3=CC=C 
(O3)S(C)(=O)=O)=C2C1=O.O 

Table 5.4: Table of reaction data for processing from Table 5.3.(Reaction SMILES split 

at product portion for increased legibility) (Basarab et al., 2008, Wallace, 2015) 

5.3 Curation of the reaction data 

In any collection of data, whether gathered through automated processing or manual 

transcription, the likelihood of duplicate entries and other minor errors being present 

in a set is high. Having duplicates or imbalances in the reaction set can cause significant 

problems when trying to establish connections between reactions or when generating 

structures. In this section, the creation and usage of tools made to detect and eliminate 

duplicates and errors is discussed. 

5.3.1 Reaction atom balancing 

By using the Reaction SMILES format to store the data within KNIME, the individual 

molecular representations are automatically ‘cleaned’ by the loading algorithm. This 

generates a new molecule object from the original atom data, ensuring all charges and 

valences are correct, with explicit hydrogens removed where specified. This ensures 

that all mesomeric structures (such as nitro groups) are represented in a standard 

manner, and all aromatic structures are handled consistently, with Kekulé rings 

converted to the aromatic form. However, there is no guarantee that the reaction data 
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input is necessarily valid or balanced in terms of atoms. If any reagents or side products 

are omitted, problems can result with structure generation due to atoms required to 

construct the product molecule being missing. Consequently, identifying these issues at 

an early stage is essential, and so an atom balance checker was written. This counts 

each atom present in the molecules on the reactant side of the reaction and lists them 

by type, before doing the same for the product side. The counts for both sides are then 

compared to check for equality. Any mismatch between reactant and product is logged, 

listing the reaction in question and the nature of the imbalance (both the element 

symbol and the atom counts) to allow for easier correction by hand (see Figure 5.3).  

 

Atom counts for individual components and sides 

Reactant 1 Reactant 2 Product 

H14 C9 N4 O2 H6 C10 N1 O1 Cl1 H18 C19 N5 O2 Cl1 

H20 C19 N5 O3 Cl1 H18 C19 N5 O2 Cl1 

Figure 5.3: Example of the atom count process for an unbalanced reaction from scheme 

‘19’. (Basarab et al., 2008, Wallace, 2015) 

In the example above the imbalance was fixed by adding H2O to the generated products. 

After running the tool, a number of unbalanced reactions were discovered throughout 

the data set, usually involving the need to add the small molecules that were omitted in 

the original papers to the product side of the reaction, or the need to add equivalents of 

particular molecules to parts of the reaction to ensure stoichiometry. 

5.3.2 Detection of duplicate reactions 

Duplicate reactions were removed by processing with a set of KNIME nodes. The 

individual components of a reaction were sorted in alphabetical order of their SMILES 

strings to prevent issues where B + A → C would not be detected as a duplicate of A + B 

→ C. Each individual reaction was then compared to the remainder of the database and 

any duplicates were removed, amending the scheme data to point to the first matching 

reaction in the set. 
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5.4 Reaction network generation 

This section describes how the individual reaction steps are connected to form a 

reaction network of the form shown in Figure 5.4.  

This approach is similar to the reaction graph creation method described in Section 

2.3.1, with molecules on the nodes, and linking reactions on the edges. By forming a 

directed network, where the sense of each edge is to move from the reactant of the 

reaction to the product, a path through the network is then representative of a reaction 

sequence. 

 

Figure 5.4: An illustration of the reaction network approach. Nodes (circles) 

representing molecules are linked by reactions (edges, arrowed). 

The reaction network is generated using a KNIME workflow as seen in Figure 5.5. This 

contains three bespoke KNIME nodes, highlighted in green. The first KNIME node 

processes cleaned reactions in turn, outputting the reactant and product molecule 

strings in separate columns of a temporary storage table. A second KNIME node sorts 

the table by the individual molecules, assigning a unique hash value to each, and listing 

which reactions the molecule participates in, either as a reactant or a product. Finally, a 

comparator KNIME node takes the sorted data and produces a network compatible 

with KNIME. As previously discussed in Section 5.3.1, all reactions used in the network 

are pre-processed so that all structures are represented in a consistent manner. This 

greatly facilitates the network process by ensuring all representations of a given 

molecule are identical, and so errors are reduced. To form the network, the first 

reaction is inserted as two connected nodes. Next, the second reaction is taken and 

compared to all molecules present in the network. If neither the reactant nor the 

product is present in the network, the reaction is added as a new set of two nodes, with 

the reactant and product connected via a single directed edge, reactant to product. 

However, if one of the molecules matches, a new connection is made, depending on 

which molecule matches, with a new edge representing the reaction and new 

molecule(s) being added as nodes respectively. This process is demonstrated for a 

three reaction system in Figure 5.6, with an image shown in Figure 5.7. 

RXN 1 MOL 
1 

RXN 2 MOL 

2 

MOL 
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Figure 5.5: KNIME workflow showing the generation of the reaction network.

Reaction sequence selection Molecule sorting and reaction generation 

Network output 



 

 

79 

 
 

 
 

 
 
 

 

 

Figure 5.6: Example of network construction for three reactions from the database. 

Only one reactant and one product are considered for each reaction (circled, top) to be 

collated into the network based on their relative roles (bottom). (Wallace, 2015) 

 

Figure 5.7: Images of the original small database expressed in terms of a molecule 

transformation network. 
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In Figure 5.6, one reactant and one product from each reaction is used to build the 

sample network. In the first version of network building each component in a reaction 

was considered independently, however, this led to many otherwise unrelated 

reactions being connected due to common small molecules such as water and 

methanol. This effect explains the dense region to the right of Figure 5.7. If these 

connections are allowed to remain in the network, the sequences that are produced will 

be overly long, and make little sense from a synthetic perspective, as the main products 

and starting materials will have little connection to one another. It was therefore 

necessary to introduce some rules to define which components should be considered 

when forming the network. These rules are applied to the individual reactions. Firstly, 

any molecule with fewer than three heavy atoms was removed from the reaction, 

before selecting the molecule with the largest atom count on the reactant and product 

sides. If either of these molecules had a weight above 500g mol-1, the next largest 

molecule on that side was selected in its place where available, to avoid incorrect 

connections due to heavy reagents or catalysts.  An example is shown in Figure 5.8, 

where one reagent and hydrogen bromide are removed from the network, while 

retaining the intent of the reaction. 

 
 

 

Figure 5.8: Result of filtration step for a sample reaction from the database.  

Top: Original reaction. Bottom: Filtered result.(Jones et al., 2008) (Wallace, 2015) 

This selection process results in each reaction being reduced to one reactant and one 

product. This is important, as it means that the process of generating the reaction 

network is inherently lossy in nature. In order to retain a source of the full reaction 

data for later use and recall, the full reaction string is also stored within the relevant 

parts of the network as a feature, in the manner reported in Section 5.4.1. This balanced 
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reaction can be used to generate RVs as mentioned in Chapter 4 where needed for 

structure generation. An image of the filtered network is shown in Figure 5.9. 

 

Figure 5.9: Images of the reaction network generated from the test set, with small 

molecules removed (Expansion of network portion highlighted). 

In general, the reaction network will consist of a number of disconnected graphs, each 

of which represents a reaction sequence with the branching indicating sequences that 

have some steps in common but which diverge in later steps. Each node in the network 

represents a molecule, with the connected paths leading from it representing synthetic 

routes to potential product molecules. In addition to the simple linear paths that 

represent reproductions of the original sequences, there are also a number of 

interconnected ‘wheels’ towards the top right of the figure. These represent collections 

of reaction sequences with one common molecule at the centre, with the spokes 

indicating a series of analogues that could be made, based on the use of different 

reactions. The network also contains some new sequences found as a result of new 

connections linking the original sequences. Examples of sequences that show single and 

multiple routes to a product are shown in Figure 5.10.  
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Figure 5.10: Demonstration of the molecule transformation network.  

Top: Single route reported based on sequence 102. Bottom: multiple routes to one 

product. (Li et al., 2008, Wallace, 2015) 

As Figure 5.10 shows, any path through the network represents a reaction sequence, 

and therefore, by iterating through all the available paths, the reaction sequence data 

can be regenerated. Where multiple reactions lead to the same end points, cycles can 

form that have to be considered when processing the network. However, in these 

circumstances, the only cycles of note are reversible reactions and rearrangements that 

occur over multiple reaction steps. No further action is needed in these respects, as the 

directionality of the network edges is sufficient to prevent recursion occurring. In order 

to collect reaction sequence information from a reaction network in an efficient 

manner, the network is first split into its subgraphs, so that each discrete portion of the 

network is analysed separately. A subgraph is then loaded into a KNIME node which 

interrogates all the possible paths between nodes using a variant of the Dijkstra 

algorithm (Dijkstra, 1959), with those paths between ‘terminal’ nodes recorded. For 

these purposes, a terminal node is one that represents a natural start or end in the 

network, i.e., it has only outbound edges (start) or inbound edges (end). In the case of 

the cycle shown in Figure 5.10, MI0053 is the only node that is considered as a start 

102_01.rxn 102_02.rxn 102_03.rxn 

(MI0961) (MI0928) (MI0929) (MI0991) 

(MI0055) 

03_5a03.rxn 03_5a01.rxn 

03_5a02.rxn 

(MI0054) (MI0053) 
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point, and MI0055 is the sole end point, with both routes between the two recorded. 

After aggregating all of the paths and assigning a sequence ID to each, a data table is 

output to an SQL database as previously described, using the workflow in Figure 5.11.  

This form is then used as the new reaction sequence database, with the network 

retained only for visualisation purposes.  

 

Figure 5.11: KNIME workflow showing the network sequence generator.(Generation 

portion highlighted). 

Once all the subgraphs have been processed, it is possible to generate a breakdown of 

the sequences by size including any new sequences that have been discovered, to 

compare with the original distribution, as shown in Figure 5.12.  

 

Figure 5.12: Frequency plot of reaction sequence size for the network, when only one 

reactant and one product are used. This includes any newly created sequences. 

When the reactions are pre-processed to consist of only one reactant and one product 

prior to generating the network, some of the side connections that were part of the 

original network form, but do not represent the true intent of the reaction, are no 

longer present, hence the difference between Figure 5.12 and Figure 5.2. An analysis of 

the extracted sequences was performed, comparing each extracted sequence with the 

list of those originally recorded. The evaluation confirmed that all the known reaction 

sequences within the database are successfully reproduced in this form, with some 
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existing within longer network paths. Additionally, a number of new sequences were 

obtained from the network, as listed in Table 5.5. An example of an interconnection 

between sequences is shown in Figure 5.13. 

Number of 
steps 

Number of additional 
sequences 

1 0 

2 10 

3 5 

4 0 

5 3 

6 8 

7 6 

8 0 

9 0 

10 1 

 
Table 5.5: New sequences found from the test set. 

 

 

  

 

Figure 5.13: Chart showing an example of a new connection within the 

network.(Cheung et al., 2008, Stevens et al., 2008, Wallace, 2015)   

In Figure 5.13, the compound identified as MI502 is the end product of sequence 67, as 

well as the starting material for sequence 68. Through connections like these, new 

routes can be uncovered in sufficiently large data sets. 
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5.4.1 Sequence database property addition 

When sequences are extracted from the network and entered into the sequence 

database, additional information is also stored including the original references from 

which the sequence is derived. An example of the output as viewed through the 

Cytoscape network visualisation tool is shown in Figure 5.14. 

 

Figure 5.14: Example output from selection of an edge in the reaction network. (Wang 
et al., 2008) 

By embedding the molecule data as SMILES strings within the attributes, it becomes 

possible to visualise the molecules within Cytoscape. Using the ChemViz software 

(UCSF), on selection of a network feature, this data can be passed through the 

Chemistry Development Kit (Steinbeck et al., 2003) and displayed within the network 

window, as seen in Figure 5.15. 

 

Figure 5.15: Example output from ChemViz on a given node of the reaction 

network.(Schnute et al., 2008, Wallace, 2015) 

5.5 Using external databases and knowledge bases 

5.5.1 Data processing and input 

After confirming that the network tools can reliably reproduce the sequences in the 

manually created test set, the same process was used to generate larger networks, and 

subsequently lists of reaction sequences for other databases. This was achieved via 

utilising a knowledge-base of reactions previously collated by members of the CADD 

research group at Lilly UK (Hristozov et al., 2011). The database consists of 24,489 

reactions abstracted from a number of papers from the Journal of Medicinal Chemistry 

(Patel et al., 2008), packaged as a BIOVIA RDFile. By using the RDFile parser built for 
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the KNIME system by the Lilly UK group as part of the Erl Wood Chemoinformatics 

tools, these reactions were converted into the existing database format. After 

importing, it was necessary to expand some of the wildcards found in the data. There 

are two different wildcards, one that represents generic halogen atoms as an ‘X’, and 

one representing any given atom as ‘*’. For compatibility with the reaction tools, the 

any atom wildcard was replaced with a carbon atom, and the X symbol was replaced 

with F, Cl, Br and I, in turn. Once these wildcards were fully enumerated a total of 

25,610 reactions were made available for use. 

5.5.2 Analysis of enlarged reaction network 

After using the tools from Section 5.3 to clean the reaction data, a reaction network was 

created as before (Section 5.4.1) with the rules described above applied to limit each 

reaction to one reactant and one product. When the network is run through the 

sequence generator, 45,308 individual sequences of two or more steps in length are 

detected, with an average sequence length of 1.57 steps if single step reactions are 

included (shown in Figure 5.16, with the full data recorded in Table 5.6). If single step 

reactions are excluded, the average sequence length for the remainder is 6.72 steps. 

The sequences extracted from this network were collated into a data set referred to in 

the rest of this work as ‘JMC1’.  

 

Figure 5.16: Frequency plot of reaction sequence size for the population 
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Number of steps 
Number of 
sequences 

1 25610 

2 3932 

3 3083 

4 3937 

5 5008 

6 5939 

7 5922 

8 5352 

9 4015 

10 3162 

11 2415 

12 1539 

13 573 

14 170 

15 87 

16 165 

17 12 

Table 5.6: Table of the full sequence summary. 

Another approach to generating sequences is to include all of the partial paths within 

the network (i.e. sequences in the middle of existing paths), as opposed to just using the 

longest paths. An illustration of this approach for a collection of three molecules is 

shown in Figure 5.17. Using this method, the distribution of sequences is more even, 

with an average sequence length of 5.32 steps per sequence (shown in Figure 5.18, with 

the full data recorded in Table 5.7), and 6.41 steps when single step reactions are 

removed. 

 

Sequence Length Molecules involved in sequence 

1 
MOL 1 → MOL 2 

MOL 2 → MOL 3 

2 MOL 1 → MOL 2 → MOL 3 

Figure 5.17: Illustration of the additional sequences found within an existing path. 

In the original case, only the final sequence would be reported.  

MOL 
1 

MOL 

2 

MOL 

3 
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Figure 5.18: Frequency plot of reaction sequence size for the full population. 

Number of steps 
Number of 
sequences 

1 25610 

2 8000 

3 8632 

4 10452 

5 12137 

6 13519 

7 13176 

8 10771 

9 7458 

10 5758 

11 4563 

12 2569 

13 1014 

14 318 

15 187 

16 187 

17 12 

Table 5.7: Table of the sequence summary for the full population. 

This collection of sequences (hereafter referred to as ‘JMC2’) is potentially more useful, 

in that it contains a larger number of sequences, with a more even profile.  
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5.5.3 Database analysis by atom pair content  

For de novo design use, it is desirable for a given reaction collection to represent as 

diverse a range of transformations.  One method of analysing a collection for diversity 

is to study the reaction centres for each reaction stored. Since the RV contains a 

representation of the reaction centre for a given reaction, it is possible to generate RVs 

for the entire collection and group reactions on the basis of identical negative atom 

pairs.  

The negative atom pairs are relevant for this analysis since they represent the reaction 

features that must be present in a molecule in order for the RV to be applied. An 

analysis of the J. Med. Chem. reactions used to make the JMC1 and JMC2 databases was 

performed in this manner, grouping the RVs according to negative atom pairs via 

KNIME (Berthold et al., 2008). A frequency distribution for the groups was produced 

and is shown in Figure 5.19, with an expansion of the early portion shown in Figure 

5.20. 

 

Figure 5.19: Frequency distribution curve based on the negative atom pairs in the JMC1 

reaction data set. 
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Figure 5.20: Expansion of the first 200 entries in Figure 5.19. 

It is clear from the steep drop off and long tail in the distribution that there is a 

significant bias towards particular reaction types, with some having particularly high 

levels of representation. This property is well known, as discussed by Garagnani and 

Bart (1977). The distribution appears to follow Zipf’s law (Adamic, 2011), where the 

frequency of a given entry is inversely proportional to its rank in the frequency table. If 

this is the case, a plot of the frequency value and relative rank of each entry on a log-log 

graph will be linear. Such a plot for this distribution is shown in Figure 5.21.  

 

Figure 5.21: Log-log plot of the frequency distribution of negative atom pairs in the 

JMC1 reaction data set. 
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It can be seen that there are deviations from true linearity, suggesting that the 

distribution is not perfectly Zipfian. However, the inverse relation between rank and 

frequency is clear. In terms of the chemistry represented, the five sets of groups of 

negative atom pairs that are most frequent are shown in Table 5.8.  
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
reactions 

represented 

Reaction centre 
structure 

Sample reactant(s) Sample product 

C(3,1,0)-2(1)-C(1,0,0) 
O(1,1,0)-2(2)-C(2,1,0) 

C(3,2,1)-3-C(1,0,0) 
O(1,1,0)-3-C(1,0,0) 
O(1,1,0)-3-C(3,2,1) 

85  

 
  

C(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(2,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

C(3,1,0)-3-C(2,0,0) 
O(2,0,0)-3-C(1,0,0) 
O(2,0,0)-3-C(3,2,1) 
O(2,0,0)-3-O(1,1,0) 

70 

    

Cl(1,0,0)-2(1)-C(2,0,0) 
N(2,0,1)-2(1)-C(2,0,1) 
N(2,0,1)-2(1)-C(2,0,1) 

Cl(1,0,0)-3-C(2,0,0) 
N(2,0,1)-3-C(2,0,1) 
N(2,0,1)-3-C(2,0,1) 

60 

    

N(3,1,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-N(3,1,0) 
O(1,1,0)-2(2)-N(3,1,0) 

N(3,1,0)-3-C(2,2,1) 
N(3,1,0)-3-C(2,2,1) 
O(1,0,0)-3-C(3,2,1) 
O(1,1,0)-3-C(3,2,1) 
O(1,1,0)-3-O(1,0,0) 

59 

 

 

 

N(2,0,0)-2(1)-N(1,0,0) 
O(1,1,0)-2(2)-C(2,1,0) 

N(1,0,0)-3-C(3,1,0) 
O(1,1,0)-3-C(3,2,1) 

51  

   

Table 5.8: Representation of the five largest groups of partial RVs. The red lines indicate 

bonds broken in the reaction centre structure. (Wallace, 2015) 
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Unsurprisingly, given the fact that the reactions were collated from SAR explorations in 

the literature, the majority of the most common reaction centres in the set have some 

form of carbonyl content or aromatic character. As it is these features that are used as 

the selection criteria for deciding whether an RV is applicable, starting materials with 

these features will be more likely to give good results.  

This method of grouping compares RVs on the negative AP2 and AP3 data, making the 

groups particularly sensitive to minor changes in environment. This will affect the 

nature of the grouping, as very similar reaction centres that differ in their immediate 

environment will be treated as separate entities, rather than being considered together. 

Making the comparison using just the AP2 content gives a distribution with the same 

skew, but with fewer groups overall (10,344 versus 13,669). A frequency distribution 

for the JMC1 reactions using the AP2 content is shown in Figure 5.22, with an 

expansion in Figure 5.23 and a log-log plot in Figure 5.24. As before, the distribution is 

not perfectly Zipfian, but shows a definite inverse relation between rank and frequency. 

 

Figure 5.22: Frequency distribution curve based on the negative AP2 content in the 

JMC1 data set. 
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Figure 5.23: Expansion of the first 200 entries in Figure 5.22. 

 

Figure 5.24: Log-log plot of the frequency distribution of negative AP2 content in JMC1. 

Analysing the most popular reaction centres (Table 5.9) makes it clear that ignoring the 

AP3 content has reduced the number of unique groups of atom pairs. The most 

frequent atom pair groupings show a tendency towards nitro, amine and ether groups, 

as seen in Table 5.9. These functionalities are very common in SAR chemistry, as part of 

lead optimisation processes, and as a result tend to be heavily represented. 
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
reactions 

represented 

Reaction centre 
structure 

Sample reactant(s) Sample product 

N(3,1,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-N(3,1,0) 
O(1,1,0)-2(2)-N(3,1,0) 

144 

 
 

 

C(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(2,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

132 

 

 

 

C(3,1,0)-2(1)-C(1,0,0) 
O(1,1,0)-2(2)-C(2,1,0) 

110  

 

 

 

 

N(1,0,0)-2(1)-C(2,0,0) 
O(1,0,0)-2(1)-C(3,1,0) 

97 

 

 

 

 

 

Cl(1,0,0)-2(1)-C(3,2,1) 
N(2,0,1)-2(1)-C(2,0,1) 
N(2,0,1)-2(1)-C(2,0,1) 

90 

   

Table 5.9: Representation of the five largest groups of partial AP2 RVs. 

 The red lines indicate bonds broken in the reaction centre structure. (Wallace, 2015) 



 

 

96 

In both frequency distributions, it is clear that there are a considerable number of 

reaction types that are underrepresented. A significant proportion of these occur in a 

single reaction in the database only, as shown by the long tail in Figure 5.24. Some 

examples of such reaction centres are illustrated in Figure 5.25. The low occurrence of 

these functional groups in the database suggests that they may be of limited use for de 

novo design, assuming that the underlying database is typical of the reactions carried 

out in medicinal chemistry. 

 
 

Figure 5.25: Examples of reaction centres for which only single partial RVs exist in the 

JMC database.  (Wallace, 2015) 

5.5.3.1 US Patent Reaction set 

While the JMC1 and JMC2 databases are directly derived from medicinal chemistry 

research data, both of the frequency distributions retain a long tail of reactions that are 

not widely applicable. As a result, it is worth analysing other collections of reactions in 

order to see if this effect is common. One readily available source of reactions is the 

collection published by NextMove Software (Lowe and Sayle, 2014). This consists of 

over a million reactions from the US Patent database which are considerably more 

complex than the J. Med. Chem. reactions, with multiple reactants and products 

encoded, alongside catalysts and other agent molecules. Some of these reactions are 

incomplete or otherwise invalid, causing problems with loading and processing. To 

produce manageable databases comparable with the previous experiments, a random 

number generator was used to select two sets of 22,500 reactions from the pool. While 

these sets are similar in size to the original data set used to produce the JMC1 and JMC2 

sequence databases, the fact that these reactions were randomly selected from a large 

pool rather than a series of related papers means that the likelihood of connections 

between the data will be smaller. Additionally, the presence of other agent molecules 

can cause problems with the reaction network creation, as there is an increased chance 

of selecting the wrong molecule as the intended reactant and product of the reaction. 

However, the existing network method can be used to categorise the data set. The first 
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random sample has an average sequence length of 1.26 which is considerably lower 

than that seen for the J. Med. Chem. data. This would make sense, given that the 

syntheses represented in patents are likely to involve more specialised starting 

materials, without the optimisation steps seen in medicinal chemistry studies. There is 

also a significant reduction in the maximum length of the sequences, as can be seen in 

Figure 5.26 and Table 5.10.  

 

Figure 5.26: Frequency plot of reaction sequence size for the first random sample 

extracted from the US patent database. 

Number of steps 
Number of 

sequences 

1 22500 

2 4087 

3 1293 

4 198 

5 40 

6 19 

7 2 

Table 5.10: Table of the sequence summary for the first random sample extracted from 

the US patent database. 
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When comparing the number and size of the groups produced from the negative AP2 

content with that from the previous datasets, the first collection of patent data closely 

resembles the J. Med. Chem. reaction sets. The frequency distribution is illustrated in 

Appendix A, Section A-1, showing a similar distribution to the J. Med. Chem. set. 

However, the precise nature of the most common RV groups shows some significant 

differences, as seen in Table 5.11. Overall, 5,485 unique groups of negative atom pairs 

were recorded, with the biggest groups representing reaction centres containing the 

same ether abstraction and nitro and amine processes  seen with the JMC1 reaction set, 

but with even higher frequencies. In addition, the boronic acid and bromine reaction 

centre associated with the common Suzuki coupling process is significantly more 

common here than with the JMC1 set, highlighting its heavy usage in the kind of process 

chemistry represented in the patents. 
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
reactions 

represented 

Reaction centre 
structure 

Sample reactant(s) Sample product 

O(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

 
397 

 

  

N(3,1,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-N(3,1,0) 
O(1,1,0)-2(2)-N(3,1,0) 

329 

 
  

C(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(2,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

326 

  
 

Cl(1,0,0)-2(1)-C(3,2,1) 
N(1,0,0)-2(1)-C(3,2,1) 

171 

 

 

 
 

Br(1,0,0)-2(1)-C(3,2,1) 
C(3,2,1)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 

129 

 

  

N(1,0,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-C(3,1,0) 

121 
 

   

Table 5.11: Representation of the five largest groups of partial AP2 RVs. The red lines 

indicate bonds broken in the reaction centre structure.  (Wallace, 2015) 
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The heavy skew in the frequency distribution shows that the degree of 

underrepresentation of certain groups remains high. Some examples of the reaction 

centres for which only one example exist in the collection are shown in Figure 5.28. 

These represent straightforward reactions which are not that common in drug design, 

particularly with the complexity of some of the starting materials used, such as in the 

bottom example. However, the top example represents a fairly straightforward 

reduction using Diisobutylaluminium hydride (DIBAL, a bulky reducing agent), which 

would be relatively commonplace. In fact, there are 26 examples of this kind of reaction 

in the database, but all have differing partial RVs. Part of the problem in this case is the 

unusual method of reporting the use of DIBAL within the database, not using the 

traditional ‘bridged’ layout around the central aluminium atom. This can also occur 

with other reagents and leaving groups, where more obscure structures lead to a 

number of singletons in the data set. 

 

 

Figure 5.27: Examples of reaction centres for which only single examples exist in the 

first US patent database. (Wallace, 2015) 

If the random sampling is truly representative of the data set, the distribution and 

content of the partial RVs of the second randomly selected set should be similar to the 

first set, with heavy representation of ether abstraction and nitro group conversions. 

This data set has an even more pronounced bias towards shorter sequences, with an 

average sequence length of 1.20 steps, as seen in Figure 5.29 and Table 5.12. 
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Figure 5.28: Frequency plot of reaction sequence size for the second random sample 

from the US patent database. 

Number of steps 
Number of 

sequences 

1 22500 

2 3667 

3 697 

4 105 

5 7 

Table 5.12: Table of the sequence summary for the second random sample from the US 

patent database. 

In this set, 5,511 groups were recorded, but overall there is very little difference 

between this set and the previous example from the patent database. The frequency 

distribution of the atom pair groupings in this set is shown in Appendix A, Section A-2, 

along with information regarding the most common reaction centres.  The fact that the 

log-log plots for both samples are nearly identical would indicate that the random 

sampling is indeed indicative of the data collection as a whole. A comparison between 

the two sets is shown in Appendix A, Section A-3. 
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5.6 Conclusions  

In this chapter, the creation of a network of reactions was described by linking 

individual reactions according to common reaction components. This network 

approach was then used to generate reaction sequences for different collections of 

medicinal chemistry reactions. The reaction collections were also grouped by first 

generating RVs and grouping them according to identical negative atom pairs. The 

collections were shown to have significant biases towards particular functional groups. 

As might be expected for reactions used in medicinal chemistry there was a bias 

towards reactions that act on aromatic rings and on amine and carbonyl functionality. 

The approach was then extended to collections of reactions from the US Patent 

database, demonstrating the ability to assemble usable material from any reaction 

collection. In the next chapter, the reaction sequences will be used to construct a 

variant of the reaction vector method capable of representing the entire sequence as a 

single transformation for de novo design purposes. 
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Chapter 6: 

Reaction sequence encoding 
 

6.1 Introduction  

The work in Chapter 5 established a way of creating reaction sequences from a 

collection of single step reactions via the formation of a network. However, it is not yet 

possible to use these in de novo design, as the existing RV format is limited to encoding 

a single step at a time. In this chapter a revision of the RV algorithm will be reported 

that permits the encoding of whole sequences as a single transformation. This should 

eliminate any issues caused by the application of multiple RVs in molecule optimisation 

methods, while also being significantly faster for enumeration. This new method will 

then be compared with the existing RV tool in terms of the total number of molecules 

generated in a de novo context, as well as their novelty. Additionally, the various 

sequences produced from the reaction collections will be analysed via their atom pair 

content as in Chapter 5, to see if the same skew in functionality is present as in the RV 

case.  

6.2 Handling of reaction sequences 

In Chapter 5, it was demonstrated that reaction sequences can be extracted from a 

reaction network by tracing paths through the network and recording an ordered list of 

the nodes and edges from start to finish. With these sequences recorded, attempts can 

be made to develop methods to represent them in a manner that makes them effective 

within the existing de novo framework. Ideally, these approaches would permit 

structure generation via application of all relevant stored sequences regardless of 

length in a manner that is faster than applying the individual reaction vectors from the 

sequence in turn, while remaining relatively easy and quick to implement. Thus, the 

aim is to store all of the information required to generate the product of a sequence in a 

single transformation step, in a comparable manner to reaction vectors. If the format of 

the data storage could be made to be compatible with that of the original method, this 

would be of additional benefit, as this would permit the original tools and workflows to 
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be appropriated, with only minimal changes. In the next section, three such methods 

are described and validated. 

6.2.1 Reaction sequence vectors (RSVs) 

6.2.1.1 Direct Method 

The simplest method of representing reaction sequences that is compatible with the de 

novo toolset is to create an artificial chemical reaction in which the start and end points 

of the sequence are directly linked (see Figure 6.1). The resulting ‘compressed 

sequence’ can then be converted into a single difference vector and stored as before, 

giving an advantage over the original setup which would require as many individual 

vectors (and therefore structure generation iterations) as there are steps in the 

sequence, as seen in Figure 6.2. Using the same format as the original vectors is a 

considerable benefit, as it permits the reuse of the existing structure generation code, 

greatly simplifying the further development of the tool set. For clarity, and to avoid 

confusion with the earlier forms of reaction vector (RV) reported this reaction vector 

form will be referred to as a reaction sequence vector (RSV).  

Sequence components 

 

 

 

Compressed sequence 

                  

Figure 6.1: Illustration of the sequence compression process using a sequence from 

JMC2. (Wallace, 2015) 
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Figure 6.2: Comparison of the reaction vector (RV) and reaction sequence vector (RSV) 

based approaches to structure generation. The RSV method aims to enable direct 

transformation from start to end point of the sequence, without having to generate 

each individual reaction in turn. (Wallace, 2015) 

As with the original RV method, the creation of the RSV is straightforward as it is a 

simple list of the differences in the atom pair descriptors between the two sides of the 

compressed reaction sequence. The RSV resembles an RV in structure, albeit with a 

larger list of descriptors stored, due to the increased number of changes encoded. As 

with the original reaction vector method, some additional information is required in 

the form of a recombination path to ensure it can be quickly and effectively applied to 

other molecules to generate the new products. To create this, the reverse 

fragmentation approach as described in Section 4.3.2 is applied to the start and end 

molecules in the sequence and an ordered list of bonds or fragments (the 

recombination path) is created. The path is then stored with the RSV in the database as 

before, to enable the final product to be generated from the starting material in an 

efficient manner. 

The main issue with using the reverse fragmentation approach to generate the 

recombination path data is that as the molecules in the reaction get larger, so does the 

number of possible sets of fragments that can be generated, as a result of multiple 

matches to the atom pairs. Particularly complex molecules, or those with a large 

dissimilarity between reactant and product, need considerably larger amounts of 

memory as the list of fragments stored increases exponentially, eventually reaching a 
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point where it is impossible for the system to store all of the combinations.  Should this 

occur, or if the reverse fragmentation method fails for any other reason, the breadth 

first search method (Section 4.3.1) is used instead to generate recombination data by 

constructing the necessary ordered bonds atom-by-atom in a brute-force approach. 

This process is considerably slower than the reverse fragmentation approach, and 

prone to failure, especially when there is a large difference between the reactant and 

product. Even if the RSV is confirmed as suitable for reproducing the sequence on 

which it is based, there are still potential problems. In the earlier work it was assumed 

that in order for an RV to be effective in generating new molecules, there is a need for 

all non-hydrogen atoms to be balanced on both sides of the reaction to ensure that the 

correct product can be generated from the constituent molecules (Patel et al., 2009). 

This would imply that using an RSV created through direct connection of the molecules 

at the start and end of a multi-step reaction is likely to fail when used for novel 

structure generation due to missing atom pairs as a result of the absence of reagent 

information. While the reverse fragmentation approach does not necessarily require 

this atom balance, no assessment was performed of the effectiveness of the tool for 

unbalanced reactions. Therefore, two other methods of vector preparation were also 

investigated. 

6.2.1.2 Additive and subtractive methods 

In order to add reagent information, two different methods can be used. One is based 

on the addition of molecules to create reagents, while the other is based on subtraction 

of the starting material from the product. These are illustrated in Figure 6.3, for a 

simple, two step sequence, alongside the direct method previously discussed. In both 

cases, these approaches utilise the full reaction data encoded as part of the reaction 

network (Section 5.4), and the reactant and product assignments already obtained 

during the network processing. 
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Sequence components 

 

 
Reaction Sequence Vector (RSV) reactions 

 

                            

                                                      

Figure 6.3: Examples of the different methods of generating reaction sequence vectors 

from a typical two step reaction sequence. (Wallace, 2015) 

In the additive approach, the individual reagents in each step of the sequence are added 

to the start molecule with the RSV being the difference between the atom pairs in the 

product and the sum of the atom pairs in the starting molecule and all of the reagents in 

the sequence. The reagents for each reaction step are identified by removing the 

designated reactant, and then collecting the molecules that remain on the reactant side. 

While including all of the reagent molecules does not strictly balance the reaction, it 

ensures that all of the relevant atom types needed for the transformation are present in 

the correct numbers. 

In the subtractive approach, a “super reagent” is created by subtracting the starting 

molecule from the product of the sequence, and added to the left hand side of the 

reaction. To perform the subtraction, a maximum common subgraph comparison is 

made between the two molecules using the Indigo library (EPAM Life Sciences) (Figure 

6.4). The super reagent is formed by subtracting the maximum common subgraph 

(highlighted in red) from the product to generate a substructure.  The RSV is then the 

difference between the product and the combined starting molecule and super reagent. 

Additive 

Subtractive 

Direct 
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In this case, the reactant and product designations come directly from the reaction 

network, with only the first and last reactions of the sequence being considered. 

 

 

 

Figure 6.4: Illustration of the subtractive method (maximum common subgraph 

highlighted). Note that side products are not included. The * indicates the attachment 

point. (Wallace, 2015) 

6.2.1.3 Comparison of Methods 

In order to determine which of these three RSV generation methods is the most 

effective for sequence encoding and reproduction, all three were validated using 6,500 

two step sequences found within the smaller reaction network produced from over 

25,000 reactions from the Journal of Medicinal Chemistry (JMC1, Section 5.5). RSVs 

were prepared from the sequences according to each of the three methods.  

For each method and each sequence, the RSV was generated and then applied to the 

known starting molecule using the de novo tool and the resulting products were 

assessed against the expected product. If the correct product molecule was found, the 

sequence was said to have been successfully reproduced. The RSV approaches were 

also compared with the original reaction vector method, in which RVs generated from 

the individual reaction steps were applied in turn. For consistency, these single 

reactions were processed in the same manner as the sequences i.e. only one reactant 

and one product molecule were included, and reagents were removed. The results of 

these experiments are presented in Table 6.1 and Table 6.2. To aid comparison, two 

versions of the RVs were also used: one where reagent data was included when 

generating the RV and one where the RV was generated without reagent data, i.e., 

where the reactions were reduced to a single reactant and product prior to generating 

the RV. 

Super reagent 
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Additive 

method 

Subtractive 

method 

Direct 

method 

Executing individual 

reactions in turn 

(original approach, 

with reagent data) 

Executing 

individual 

reactions in 

turn (without 

reagent data) 

Number of 

sequences 

successfully 

reproduced 

5080 5123 5305 5720 4509 

Table 6.1: Table comparing methods of reaction sequence vector generation for 6,500 

two step sequences. 

 Additional sequences reproduced compared to method 

Initial Method 
used 

Additive Subtractive Direct 

Additive  510 380 

Subtractive 495  348 

Direct 587 570  

 

Table 6.2: Table demonstrating where some sequences are reproduced in one method, 

but not another. The rows and columns represent the unique sequences reproduced in 

one method compared to the other, (e.g. 510 sequences were reproduced in the 

subtractive method that were not produced in the additive method). 

Table 6.1 shows that the original RV method with reagents reproduces more sequences 

than any of the new approaches. However, considering the RSVs, the direct approach is 

the most effective for reproducing the reaction sequences, despite the heavy atom 

imbalance that results from excluding any additional reactant data. This would imply 

that additional reactant data is not essential to the structure generation process in this 

case, although the RV case shows better results where reagent data is present. The 

difference results from the fact that, for certain sequences, the reagent data produced 

exceeds the amount of material that can be represented within the vector framework, 

which is designed to support a maximum of three separate molecules on the reactant 
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side. In cases where this is exceeded, the vector cannot be reproduced and therefore 

the sequence is recorded as failing. It is interesting to note that Table 6.2 shows that 

each approach is able to accomplish the reproduction of some sequences that are not 

possible by the others. In the cases where the direct method is outperformed, this is 

due to the presence of the additional reagent data. 

6.3 Reaction sequence validation 

6.3.1 Sequence reproduction tests 

In order to further determine the effectiveness of the direct method for de novo design, 

the sequence reproduction experiment was repeated and extended to a randomly 

selected subset of reaction sequences from the original JMC1 data set (Chapter 5). By 

splitting the experiment into separate groups according to sequence length, it should be 

possible to determine if this has any effect on the ability of the RSV method to encode 

and reproduce the contained chemistry. It is expected that the degree of success in 

reproducing sequences will be inversely proportional to the sequence length, as the 

more steps there are, the greater the difference between the start and end points, and 

thus the greater likelihood that the necessary material will be missing due to ambiguity 

in assigning atom pairs. A breakdown of the results by sequence is listed in Table 6.3. 
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Number of steps Sequences successfully 
reproduced 

Percentage reproduction 

2 5240/6500 80.6% 

3 1471/2731 53.9% 

4 559/1172 47.7% 

5 187/462 40.5% 

6 71/189 37.6% 

7 23/66 34.8% 

8 10/19 52.6% 

9 5/10 50% 

10 2/7 28.6% 

11 2/4 50% 

12 1/3 33.3% 

 

Table 6.3: Table showing the success rate for reaction sequence reproduction. 

While the overall figures are not particularly impressive (an overall success rate of 

55.5% for the database as a whole), the experiment shows that there are a number of 

issues with memory allocation that can be worked around to improve the quality of the 

results. At this point, given the general failure rate, it is difficult to determine whether 

the apparent relation between the reproduction success and sequence length is 

significant. 

6.3.2 Improvements to the algorithm 

On further analysis of the RSV failures, it became clear that the sequences that failed to 

reproduce successfully were due to the corresponding RSV not being generated. This is 

due to the procedure for creating the recombination path following generation of the 

RSV (Section 6.2.1) failing. The vast majority of these failed sequences triggered error 

messages associated with being ‘too large’ for the reverse fragmentation to handle, 

with the fragment combinations exceeding the memory threshold. As processing power 

has increased considerably since the vector code was originally designed, it is possible 

to simply increase the amount of memory available to store the combinations, and thus 
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permit these complex sequences to be handled by more powerful computers. This 

slows down the generation of the vector database due to the greater number of 

combinations that can be tried, but does not have significant impact on the time taken 

for the structure generation process itself. With the code amended to take this into 

account, a new experiment was performed using the sequence database to see how 

much of an improvement has been made.  

By running the same sequences through the code with the expanded memory 

allocation, the overall success rate increased from 55.5% to 74.7%, which is a 

significant improvement. However, there remain a number of errors that cannot be 

resolved via memory related fixes alone. These are largely related to the recombination 

method producing the wrong molecule (or no molecule at all) due to errors in the 

fragmentation processes. By adding data logging features to the vector generation code, 

it was possible to trap errors during the recombination path generation step without 

going through the structure generation process, and thus determine the cause of these 

issues. The overall results of the experiment are listed in Table 6.4, categorised by the 

reason for the failure. 

Type of failure Number of reported failures 

Fragments generated (forward and 
reverse), but no path. 

1542 

Forward fragments invalid/empty. 633 

Reverse fragmentation fails due to 
memory issues, forward cannot find path. 

283 

Path finding times out. 419 

No valid fragments generated. 240 

Total 3117 

Table 6.4: Report of failures in the sequence vector system. 

There are five different categories of reproduction failures. The main causes of failure 

are where the recombination path code simply times out, without any results being 

found, or the algorithm fails quickly without any fragments being generated. Usually 

this is due to the differences between the sides of the reaction being too great to result 

in meaningful fragmentation via any of the existing methods, resulting in an attempt to 
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build the recombination path atom-by-atom. While increasing the memory allocation 

for fragments can improve matters in some cases, in order to permit all of these 

examples to be encoded will require far more memory than is available with standard 

computer hardware, and as such, these problems remain unfixable.  

The same issue can also manifest itself in a slightly different way, where one side of the 

reaction fragments correctly, while the other side does not. This seems to be more of a 

problem when all examples of a particular atom environment change bond order and 

type (due to cycle formation or condensation, for example) over the course of the 

reaction. If this situation cannot be reversed through simple fragmentation of a 

particular bond, there will be insufficient material to permit a correct reconstruction 

based on the stored descriptors. An example of such a reaction is presented in Figure 

6.5. 

 

Figure 6.5: Example of a failing reaction in the data set, where ring fusion confuses the 

fragmentation code (MCS highlighted). (Wallace, 2015) 

In order to increase the number of sequences that can be processed, an attempt was 

made to add further reagent data to enable processing of the sequence using the 

subtractive method (Figure 6.6). Reactions that fail processing with the direct method 

are passed to the subtractive method and processed again with the super reagent 

added. This leads to successful reproduction in the majority of cases. Note that in the 

example in Figure 6.6, the super reagent does not have a fully satisfied valence as no 

atoms are added to the fragments after calculation in order to keep the reaction 

balanced. 

 

Ring fusion 

cannot be easily 

fragmented. 
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Figure 6.6: Revised version of the reaction from Figure 6.5, using the super reagent data 

to generate the ring fusion fragment (MCS highlighted).The red lines in the super 

reagent indicate bonds broken, the asterisks represent points of attachment(Wallace, 

2015) 

After increasing the memory allocation to the algorithm, fixing an apparent bug with 

the database handling and permitting the subtractive RSV method to generate 

additional reagent material where necessary, another attempt was made to reproduce 

all of the reaction sequences contained within the J. Med. Chem. subset. This is 

summarised in Figure 6.7, with the full details in Table 6.5. The second run was far 

more successful, with 8,582 sequences successfully reproduced, giving a 76.3% success 

rate overall. Over the whole of the sample set, it appears that there is no significant 

relationship between the number of steps in the sequence and the rate of success, 

although the number of sequences of five steps or above is so small, it is difficult to 

draw strong conclusions. For those sequences with over 400 examples (the solid line), 

a slight downward trend can be observed. Where there are fewer sequences (the 

dashed line) it is difficult to observe any trend. 
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Figure 6.7: Graph showing the relationship between sequence length and percentage 

success.  The solid line represents the sequence lengths for which there are sufficient 

numbers to draw conclusions over trends, while the dashed lines have too few to be 

useful. 

 

  Number of steps Sequences successfully 
reproduced 

Percentage reproduction 

2 5240/6500 80.6% 

3 1980/2731 72.5% 

4 817/1172 69.7% 

5 289/462 62.6% 

6 120/189 63.5% 

7 37/66 56.1% 

8 15/19 78.9% 

9 7/10 70% 

10 5/7 71.4% 

11 4/4 100% 

12 3/3 100% 

 

Table 6.5: Table showing the success rate for reaction sequence reproduction with the 

revised method. 

Because of the lack of long sequences in the original database, the full content of the 

expanded reaction network JMC2 (Section 5.5) was used to carry out the same 
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experiment. This network includes all sequences that start or finish partway through a 

longer path, and as such includes the synthesis of all possible intermediate molecules. 

As a result, the network contains 124,354 reaction sequences generated from the 

22,694 J. Med. Chem. reactions previously curated, as shown in Figure 6.8 and Table 

6.6. With larger numbers of sequences available, it is possible to observe a general 

downward trend as the sequences get longer and more complex, as can be seen for 

sequence lengths 2 to 13 which have over 400 sequences stored (the solid line). Of the 

reaction sequences stored (including single step sequences), 93,557 give unique 

vectors, and 92,767 can be successfully reproduced, giving an overall reproduction rate 

of 99.2%, which is considerably better than the subset of JMC1 previously studied. 

 

Figure 6.8: Graph showing the relationship between sequence length and percentage 

success for the expanded network. As with Figure 6.7, the solid line represents those 

sequences for which there are sufficient numbers to draw conclusions over trends, 

while the data points connected by the dashed lines have too few examples to be able to 

generalise. 
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Number of steps Sequences successfully 
reproduced 

Percentage reproduction 

2 7808/8000 97.6% 

3 7890/8632 91.4% 

4 9522/10452 91.1% 

5 11081/12137 91.3% 

6 12100/13519 89.5% 

7 11279/13176 85.6% 

8 8875/10771 82.4% 

9 6004/7458 80.5% 

10 4480/5758 77.8% 

11 3404/4563 74.6% 

12 1901/2569 74.0% 

13 779/1014 76.8% 

14 282/318 88.6% 

15 187/187 100% 

16 168/187 90% 

17 11/12 90% 

Table 6.6: Table showing the success rate for reaction sequence reproduction with the 

revised method, using the expanded network. 

Further efforts to improve the performance of the method were considered, but it was 

felt that the potential gains that would result would be outweighed by the complexity 

involved in modifying the algorithm at this stage. In particular, the types of reactions 

that the current code struggles with are those which are less appropriate from a drug 

design standpoint, due to the components having overly high molecular weights, or 

being highly complex in terms of the number and types of bonds, making fragmentation 

difficult. Some examples of such reactions are listed in Figure 6.9. It should be noted 

that all of these reactions do not participate in sequences, and have no connection to 

others within the reaction network.  
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Requires fragmentation of large molecule in multiple places (decomposition) 

 

Requires handling of large fragments 

 

Overly complex end product, cannot fragment correctly 

 

Figure 6.9: Examples of reactions that fail using the de novo algorithm, with the reasons 

for failure. (Wallace, 2015) 

These highly specialised reactions are unlikely to offer many opportunities for de novo 

use, and as such their omission should not adversely affect the ability of the tool to 

generate useful novel molecules. 

6.3.3 Comparison of RV and RSV for de novo design 

With two different approaches to performing structure generation available (the 

individual RVs and the corresponding RSV), the number of molecules generated by 

each approach is likely to vary in size considerably. As the RSV approach misses out 

molecules generated by the intermediate steps, and the reagent data is explicitly 

encoded within the RSV, the amount and novelty of the produced molecules is likely to 

be much smaller. This could potentially lead to results that are insufficiently diverse to 

be worthwhile in a de novo context. To compare the numbers of novel molecules 

generated, the 6,379 three step sequences from the JMC2 data set that produce unique 

RSVs were extracted from the database. All of these unique RSVs were applied to the 
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1,043 unique starting materials from the initial reactions in the sequence, using the 

direct RSV method. The number of unique, novel (i.e. not present in the network) 

molecules was recorded. This process took 10 minutes to execute on an i7 workstation. 

This experiment was then repeated for the RVs of each reaction step in each sequence 

in turn. For each of the sequences, the individual RVs (including the original full reagent 

data) in each step were extracted and duplicates were removed. Each of the 760 unique 

RVs in the first set of reaction steps was applied to each starting material to give a set of 

1,820 single step products. The 376 unique RVs from the second steps of the sequences 

were then applied to each of the unique products to give a set of 12,128 two step 

products, before repeating this again for the 819 RVs in the third set (this process is 

illustrated in Figure 6.10). The number of unique products following the final step was 

then recorded, and is summarised in Table 6.7. Because of the increased numbers of 

intermediates involved in this process, the overall execution time was considerably 

longer, taking approximately 90 minutes to complete on the same i7 workstation as the 

RSV experiment. 

 

Figure 6.10: Illustration of the stepwise RV experiment. 

Method of structure generation Unique, novel molecules generated 

RSV approach 33,976  

RV approach 312,962 

 

Table 6.7: Comparison of the result populations generated by the different structure 

generation approaches. 

Because of the way this experiment is conducted, not all of the product molecules from 

the RV approach are generated from applying three consecutive reactions to the 

743 
Starting Materials 

Apply each Starting Material 
to all 760 unique RVs 

(743 x 760 RVs) 

Results applied to 376 
unique Step 2 RVs 

Result Set 1 
(1,820 Products) 

Result Set 2 
(12,128 Products) 

312,962 
Products Results applied to 819 

unique Step 3 RVs 
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original starting materials (for example, some may be the product of only one or two 

reactions, starting from one of the intermediate points). However, there are a 

considerable number of the generated products that can be tracked through an entire 

three step sequence, as shown in Figure 6.11. 

 

 

 

 

 

 

Figure 6.11: A sample route seen in the stepwise RV.  (Wallace, 2015) 

While the individual reaction based approach produces considerably more molecules, 

the population from the sequence based method still appears to be of sufficient size and 

scope to be useful from a de novo standpoint. However, for de novo design purposes, 

longer sequences needed to be analysed using the RSV method, with greater focus 

placed on reviewing the diversity of the molecules produced.  

6.3.4 Molecule novelty assessment 

In order to assess the applicability of the RSV method to de novo design as a whole, the 

full JMC2 reaction network of 93,557 unique sequence vectors (as mentioned in Section 

6.3.2) was tested for its ability to generate novel molecules.  

The goal of the experiment was to determine the amount of product novelty that can be 

produced on application of the reaction sequence vectors, and to compare this with 

what can be achieved with the original reaction vectors. To assess this, the structure 

generation tool was used to apply the JMC2 database of RSVs to a set of 500 starting 

material molecules selected at random from the reaction database. This process took 

an average execution time of 25 minutes per starting material on the i7 workstation 

mentioned previously, with the overall time being proportional depending on the 

number of vectors that were applicable. The number of novel unique molecules 

produced (i.e. those absent from the reaction network) was then recorded. A summary 

of the distribution of the molecular weights of the 500 starting molecules is presented 

in Figure 6.12, with further information regarding the hydrogen bond donors and 

RI8902 RI8765 RI6545 
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acceptors present in Figure 6.13 and 6.14. By selecting starting materials at random, 

the intention was to cover as much of the whole database in terms of functional group 

properties and general characteristics as possible. As generated, the sample favours 

hydrogen bond donors over acceptors, and is skewed slightly towards molecules that 

have molecular weights below 200g mol-1. These properties should result in a series of 

starting molecules very similar to traditional drug precursors. 

 

Figure 6.12: Molecular weight distribution for the 500 starting material molecules. 
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Figure 6.13: Hydrogen bond donor distribution for the 500 starting material molecules. 

 

Figure 6.14: Hydrogen bond acceptor distribution for the 500 starting material 

molecules. 
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A summary of the products from this experiment is given in Table 6.8, along with a 

frequency plot ordered by number of product molecules per starting material in Figure 

6.15. Overall, an average of 137 molecules is produced per starting material, with 

68,703 unique products generated in total. The largest number of unique products 

generated was from a simple alkene. The large number of products generated from this 

particular compound is due to the presence of RSVs that can act on both the saturated 

atoms in the chain (of which there are several) as well as the unsaturated atoms. Figure 

6.16 shows a histogram of the average number of products sorted by the number of 

steps in the sequence used to generate them, while Figure 6.17 shows a frequency plot 

of the number of products generated per RSV. 

Most molecules generated 

 

1,742 

 

An example molecule which results in 

no product molecules being 

generated. 

0 

 

Total number of molecules generated 68,703 

Average 137.4 molecules per starting material 

 
Table 6.8: Summary of the results, applying the RSVs in JMC2 to 500 randomly selected 

starting materials. (Wallace, 2015) 
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Figure 6.15: Plot showing the number of unique products generated from each starting 

material from the JMC2 RSVs. 

 

Figure 6.16: A breakdown of the products, arranged by sequence length from the JMC2 

RSVs. 
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Figure 6.17: Frequency plot showing the number of RSVs applicable to each starting 

material from the JMC2 RSVs. 

Figure 6.15 shows a great variation in the number of novel products generated with 

210 starting materials producing in excess of 500 products. There is then a gradual 

decline, with the next 20 starting materials producing an average of 300 products each, 

before a further decline to below 100 products, and for the last 64 molecules, no unique 

products generated at all. Reviewing the molecules in question, it is the simpler, more 

drug-like starting materials with common functionality that lead to greater number of 

products, as shown by the examples in Table 6.9. For example, the most products in this 

case were generated from molecules with some carbonyl or double bond functionality. 
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Structure 
Number of unique, novel products 

generated 

 

1,742 

 

1,604 

 

1,511 

Table 6.9: The three starting materials that generated the most unique products in the 

sampling experiment from the JMC2 RSVs. (Wallace, 2015) 

A breakdown by RSVs (Figure 6.17) offers a number of surprising results, considering 

the nature of the network and the sample of starting materials used. Firstly, it is clear 

that, despite the number of RSVs, relatively few sequences are actually used to generate 

products, with only 2,700 of the 93,557 RSVs being used. Of these, only a quarter of that 

figure are used to generate more than ten unique products, and 41 of these generate in 

excess of 250 products. This is an interesting result, as it suggests that there is one key 

portion of the network that is used for structure generation, with the vast majority of 

the network proving irrelevant to these simple starting materials.  

Table 6.10 shows examples of: RSVs that generated the most products; the original 

reaction sequences from which they were generated; together with a starting material 

and the product generated from it. With a few noted exceptions, these operate on 

aromatic species, further confirming the apparent dominance of the more generic 

addition chemistry in the test set. 
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Sequence ID Sequence information 
Sample 
reactant 

Sample product 

SCM_17413 Sequence reactions 
 
 

 
RSV 

 

 

 

SCM_54554 Sequence reactions 
 

 
 
 

RSV 
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Sequence ID Sequence information 
Sample 
reactant 

Sample product 

SCM_62626 

Sequence reactions 
 

 
 

RSV 

 

 

 

Table 6.10: Illustration of the three most frequently used JMC2 RSVs.  (Wallace, 2015) 

Studying the overall frequency distribution of RSVs, it appears that approximately 600 

RSVs (0.6% of the total) are responsible for the majority of the products. Again, this is 

down to the relative applicability or otherwise of the sequences represented, with 

simpler processes being more applicable than the more convoluted sequences. When 

this consideration is extended to sorting by sequence length, it can be seen that once 

sequences get particularly long the likelihood of them being applicable is reduced, with 

more products generated through RSVs of shorter sequences.  

In order to test the wider application of the reaction sequence data, the same 

experiment was performed with a second series of 500 molecules extracted from the 
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reagent pool. This pool was generated as part of a previous project, where reagent 

molecules detected within the reaction database were removed from the records as 

part of a database cleaning operation, and stored in a separate file. These reagent 

molecules are not directly related to the stored sequences, but should provide sufficient 

functionality to resemble the typical small molecule pool used in de novo design. The 

completion time for this experiment was approximately the same as with the other 

starting materials, averaging 25 minutes for each input molecule. A summary of the 

distribution of the molecular weights of these molecules is presented in Figure 6.18, 

along with the hydrogen bond donor and acceptor profiles in Figure 6.19 and 6.20. For 

comparison, the distributions of these properties for the original collection of starting 

materials are also included. 

 

Figure 6.18: Molecular weight distribution of the starting material collections. 

0

20

40

60

80

100

120

140

N
u

m
b

e
r 

o
f 

m
o

le
cu

le
s 

in
 c

la
ss

 

Molecular weight / g mol-1 

Molecular  weight distribution of 
starting materials 

Reagent Pool

Original Starting
Materials



 

 

130 

 

Figure 6.19: Hydrogen bond donor distribution for the starting material collections. 

 

Figure 6.20: Hydrogen bond acceptor distribution for the starting material collections. 

It should be noted that this distribution of molecular weights favours a lower range 

than the original as shown in Figure 6.12. In terms of functionality, however, the 

sample is now biased in favour of hydrogen bond acceptors. This gives a different 
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activity profile to the previous set that may favour a different portion of the reaction 

network.   

A summary of the data produced from this experiment is given in Table 6.11, along with 

frequency plots ordered by product molecule, the sequence lengths and the particular 

RSVs involved (Figure 6.21, 6.22, 6.23). Overall, an average of 179 molecules is 

produced per starting material, with 89,881 generated in total. This is higher than with 

the previous pool of starting materials. However, in this case the most products come 

from a molecule containing a functionalised benzene ring, while the least products 

come from molecules like carbon tetrabromide, a molecule with very little functionality 

to exploit. Looking at the most commonly applied sequences, two of these are shared 

with the previous sample (SCM_17413, and SCM_62626), so only the sequence that is 

not shared is shown in Table 6.12. It should be noted that this sequence (SCM_6297) is 

not a realistic synthetic route, and is produced in this form in the database as a result of 

the automated connection of related reactions. A more realistic approach to the same 

goal would be via a Grignard reagent operating on the ester. Such a transformation is 

present in the database, but is removed as a duplicate RSV. This highlights an issue with 

the sequences that are stored with the RSVs. When multiple sequences lead to duplicate 

RSVs, it would make more sense to retain the sequence having few steps, rather than 

making an arbitrary choice as occurs currently. Table 6.13 shows the three most 

frequently used starting molecules.  
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Most molecules generated 

 

1,416 

 

An example molecule which results in 

no product molecules being generated 

0 

 

Total number of molecules generated 89,881 

Average 179.8 molecules per starting material 

Table 6.11: Summary of the results of the molecule novelty experiment from the 

reagent pool, using the JMC2 RSVs. (Wallace, 2015) 

 

Figure 6.21: Frequency plot showing the number of unique products generated from 

each starting material in the reagent pool, using the JMC2 RSVs. 
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Figure 6.22: A breakdown of the products, arranged by sequence length, using the 

reagent pool and the JMC2 RSVs. 

 

Figure 6.23: Frequency plot showing the number of RSVs applicable to each starting 

material in the reagent pool, using the JMC2 RSVs. Only the non-zero values are shown, 

the vast majority of the RSVs remain unused. 
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Sequence ID Sequence information 
Sample 
reactant 

Sample 
product 

SCM_6297 

Sequence Reactions  

 
 

RSV 

 

 

 

Table 6.12: Example of some of the most frequently used RSVs with the reagent pool 

and the JMC2 RSVs.  Two of the three most frequently used RSVs are shared with the 

other experiment. (Wallace, 2015) 

Structure Number of unique, novel products generated 

 

1,416 

 

1,404 

 

1,393 

 

Table 6.13: The three starting materials that generated the most unique products in the 

sampling experiment using the reagent pool and the JMC2 RSVs. (Wallace, 2015) 
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The same general trends in generation of products according to starting materials and 

RSVs can be seen as before, with many of the most frequently used sequences in this 

case being the same as those seen with the previous set. Comparing the three most 

frequently used RSVs with the previous experiment shows significant overlap, with 

only one RSV being different (shown in Table 6.12). Figure 6.21 shows that, as before, 

there is a heavily skewed distribution of products generated from particular starting 

materials, but with a lower product total overall. In total, 3,792 RSVs are applied to 

generate structures in this case. The same steep descents and long plateaux are present 

in this distribution as in the one for the previous experiment (Figure 6.17), indicating 

that a limited subset of the sequences are used to generate the products. However, in 

this case the number of molecules generated at each step is slightly larger than the 

previous case, with a steeper tail off towards the end of the distribution. Overall, 78 

molecules lead to no products being generated due to a lack of applicability.  

Considering the breakdown by sequence length in Figure 6.22, it appears that the 

profile of products generated relative to sequence length is more evenly distributed. 

However, the most commonly used transformations seem to be consistent over the two 

runs. Reviewing the breakdown by RSV (Figure 6.23) again reinforces the suggestion 

that the issues with apparently only accessing limited portions of the network in these 

experiments are genuine effects rather than limitations of the sampling. In both cases 

the majority of the product generation is carried out by a small portion of the total 

network, with around 95% remaining unused. The fact that so little of the recorded 

network appears to be used for both samples suggests that there are issues that require 

further investigation.  

Looking at the overlap between the two sets of results, there are 2,821 RSVs used to 

generate structures in both experiments. This represents the majority of the useful 

sequences in both cases, suggesting that only a very narrow range of reaction centres 

are relevant for these kinds of starting materials. However, in terms of the structures 

generated, the overlap is relatively small, with 2,909 molecules common to both 

experiments. Examples of some of these are illustrated in Figure 6.24, with these 

common molecules being based around ring structures, and in some cases carbonyl 

functionality. 
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Figure 6.24: Examples of molecules produced from both sets of starting materials. 

(Wallace, 2015) 

In order to ascertain the sensitivity of the output of structure generation to sets of RSVs 

derived from different sources to see if the issues regarding the relatively small 

numbers of applicable sequences occur with other collections, the two sets of 26,000 

reactions abstracted from the NextMove (Lowe and Sayle, 2014) collection of patent 

data in Section 5.5.3.1 were used to perform similar experiments. As mentioned 

previously, the analysis by Schneider et al. (2014) indicates that these reactions are 

more complicated than those considered in the JMC1 and JMC2 collections, meaning 

that fewer of these are likely to generate RSVs. However, there should be sufficient data 

for a meaningful experiment. It should be noted that the patent data sets contain atom 

mappings that can theoretically be used to identify the intent of the reactions. However, 

for ease of comparison it was decided to disregard this and use the existing methods of 

processing the reactions. 

The reaction networks produced for each data set (as detailed in Section 5.5.3.1) were 

used to produce RSVs using the direct method. The two RSV collections were then used 

to generate products using the original set of 500 starting materials selected for the 

first experiment. As before, the number of novel unique molecules produced from the 

RSVs in this database was recorded. A summary of the number of products generated is 

given in Table 6.14, along with a frequency plot ordered by number of product 

molecules in Figure 6.25. Overall, an average of 2,421 molecules is produced per 

starting material, with 1,210,733 generated in total. As before, the most products are 

generated for a starting material with multiple functional groups and attachment 

points, in this case featuring two benzene rings that can be functionalised in a number 

of ways, but those with more complicated groups only provide results that fail the 

stability check. It should be noted that more of the starting materials from the 

experiment generated products in this case as opposed to the JMC2 experiment, with 

only 26 recording no products at all. Figure 6.26 shows a histogram of the average 

number of products sorted by the number of steps in the sequence used to generate 
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them, while Figure 6.27 shows a frequency plot of the number of products generated 

per RSV. 

Most molecules generated 9,829 

 

An example molecule which results in 

no product molecules being generated 

0 

 

Total number of molecules generated 1,210,393 

Average 2,420.79 molecules per starting material 

 

Table 6.14: Summary of the results of the molecule novelty experiment for the first 

patent data collection. (Wallace, 2015) 

 

Figure 6.25: Plot showing the number of unique products generated from each starting 

material for the first patent data collection. 
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Figure 6.26: A breakdown of the products, arranged by sequence length, for the first 

patent data collection. 

 

Figure 6.27: Partial frequency plot showing the number of RSVs applicable to each 

starting material for the first patent data collection. 
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As with the JMC data sets, the vast majority of the products are generated by a 

relatively small portion of the RSVs. The larger number of products seen with this set 

(1,210,393) would suggest that there is a greater likelihood of applying the RSVs in this 

set to our starting materials, despite the relatively short sequence length. 

The second data set taken from the patent information is very similar in characteristics 

to the first, with slightly fewer sequences present (26,981 in total). Despite this lower 

number of sequences, more unique products were made from this set than the previous 

example, with 1,470,740 generated, averaging at 2,941 per molecule. Once again, not all 

of the 500 starting materials generate products, with 35 producing nothing in this case. 

A summary of the number of products generated from the sampling experiment is 

given in Table 6.15, along with a frequency plot ordered by the number of the 

generated product molecules in Figure 6.28. Figure 6.29 shows a histogram of the 

average number of products sorted by the number of steps in the sequence used to 

generate them, while Figure 6.30 shows a frequency plot of the number of products 

generated per RSV. 

Most molecules generated 

 

12,260 

 

An example molecule which results in 

no product molecules being generated 

0 

 

Total number of molecules generated 1,470,740 

Average 2,956.74 molecules per starting material 

Table 6.15: Summary of the results of the molecule novelty experiment for the second 

patent data collection. (Wallace, 2015) 
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Figure 6.28: Plot showing the number of unique products generated from each starting 

material for the second patent data collection. 

 

Figure 6.29: A breakdown of the products, arranged by sequence length for the second 

patent data collection. 
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Figure 6.30: Partial frequency plot showing the number of RSVs applicable to each 

starting material for the second patent data collection. 

Again, the vast majority of the unique products are made from only a few of the stored 

RSVs in the database, and the general trends are similar to the first patent derived set.  

6.3.5 Network analysis by RSV content  

The skewed distribution of the numbers of products generated for the RSVs and 

starting materials has potential implications for a de novo tool, in that populations 

could either become too large to realistically handle, or too small to generate 

interesting molecules, depending on the nature of the input. This has importance when 

considering the composition of the ideal reaction network and subsequent database of 

RSVs generated from it. To be useful in a de novo context a reaction network would 

ideally cover as much of the potential solution space as is possible. This means that it 

would need to contain sufficiently diverse transformations to ensure that it is 

applicable to all starting materials of interest. At the same time, sequences that are 

irrelevant to the used starting materials should not be present, as the time taken to 

search the RSV collection to generate structures increases with the collection size. In 

the sampling experiments large sections of the reaction network proved to be 

irrelevant to the drug-like starting materials used, so in this case a much smaller 

database could be used to achieve the same results with greater efficiency. One of the 

0

100000

200000

300000

400000

500000

600000

700000

800000

900000
N

u
m

b
e

r 
o

f 
u

n
iq

u
e

 p
ro

d
u

ct
s 

g
e

n
e

ra
te

d
 

RSV 

Number of products generated by 
individual RSVs 



 

 

142 

simplest methods to analyse the collected RSVs for applicability to a given set of 

starting materials is to study the reaction centre, in a similar manner to the database 

analysis in Section 5.5.3.  

As discussed previously, the simplest grouping approach for RVs is by negative atom 

pair content, since these determine the characteristics required in a starting material 

for that transformation to be applicable. RSVs store data in the same manner, albeit in 

larger amounts, so this same approach can be used to study transformations over  

whole sequences. The stored RSVs from the JMC2 network (92,767 unique RSVs) were 

grouped based on identical negative atom pairs. The number of groups indicates the 

number of different types of functionality that the network can be applied to, whereas 

the relative numbers of RSVs in each group indicates if the network favours one type of 

reaction centre over any others. An illustration of the distribution of RSVs in groups is 

shown in Figure 6.31, with an expansion in Figure 6.32 and a log-log plot for the 

distribution in Figure 6.33 which approximates Zipf’s law similarly to the RV 

distributions analysed in Section 5.5.3. 

 

Figure 6.31: Frequency distribution curve based on the negative atom pairs in the JMC2 

data set. 

0

100

200

300

400

500

600

N
u

m
b

e
r 

o
f 

R
S

V
s 

RSV clusters 

Frequency distribution based on negative 
atom pairs in RSVs 



 

 

143 

 

Figure 6.32: Expansion of the first 2000 entries in Figure 6.31. 

 

Figure 6.33: Log-log plot of the frequency distribution based on the negative atom pairs 

in the JMC2 data set. 

The frequency distributions show that there is indeed a significant amount of skew in 

the nature of the reactant functionality, with only 9,316 groups generated, and only 
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RSVs were tabulated, as shown in Table 6.16. These are very simple in nature, and 

represent structural features that would be expected to be present in many starting 

materials. There is a significant bias towards aromatic structural species which are 

common to many drug precursors and indicates a potential lack of diversity within the 

RSV database. 

Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
sequences 

represented 

Reactant 
functionality 

structure 

Example 
reactant 

Example product 

I(1,0,0)-2(1)-C(3,2,1) 
I(1,0,0)-3-C(2,2,1) 
I(1,0,0)-3-C(2,2,1) 

510 

 

  

C(2,1,0)-2(2)-C(1,1,0) 
C(3,2,1)-2(1)-C(2,1,0) 

C(2,2,1)-3-C(2,1,0) 
C(2,2,1)-3-C(2,1,0) 
C(3,2,1)-3-C(1,1,0) 

410 

 
 

 

C(3,2,1)-2(1)-C(2,0,0) 
O(1,0,0)-2(1)-C(2,0,0) 

C(2,2,1)-3-C(2,0,0) 
C(2,2,1)-3-C(2,0,0) 
O(1,0,0)-3-C(3,2,1) 

409 

 
  

Br(1,0,0)-2(1)-C(2,0,0) 
C(3,2,1)-2(1)-C(2,0,0) 
Br(1,0,0)-3-C(3,2,1) 
C(2,2,1)-3-C(2,0,0) 
C(2,2,1)-3-C(2,0,0) 

334 

 
  

C(3,2,1)-2(1)-C(2,1,0) 
O(1,1,0)-2(2)-C(2,1,0) 

C(2,2,1)-3-C(2,1,0) 
C(2,2,1)-3-C(2,1,0) 
O(1,1,0)-3-C(3,2,1) 

309 

  
 

Table 6.16: Representation of the five largest groups of partial RSVs for the JMC2 

data.The red lines indicate bonds broken in the reaction centre structure.(Wallace, 

2015) 
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There are a number of groups that have very few examples. In total, 4,355 reaction 

centres exist that have only one listed example, all of which represent chemistry that is 

unlikely to be included in a general purpose de novo experiment. These centres tend to 

contain multiple functional groups involved in the transformation, or contain metal 

ions in the key leaving groups. Some examples of these reaction centres are shown in 

Figure 6.34. It should be noted that only 20 of the partial RSVs representing ten or 

more sequences have reaction centres that contain obscure metal ions or heavily 

specialised structures. 

  

Figure 6.34: Examples of reaction centres in JMC2 for which only single partial RSVs 

exist. (Wallace, 2015) 

The RSVs in JMC2 include all intermediate sequences. For example, a sequence of three 

steps in length (R1→R2→R3→ R4) will produce six RSVs (R1→R2, R1→R3, R1→R4, 

R2→R3, R2→R4, R3→R4). This potentially biases the RSVs towards reactant 

functionality that may not be useful for sequence-based de novo design. For example, 

the functionality could include protecting and deprotecting chemistry. To determine if 

this is an issue, the smaller JMC1 set was used for the same experiment, as this does not 

contain the intermediates. Looking at the frequency distribution, the same pattern 

emerges of a heavy skew towards particular reactant functionalities as shown in Figure 

6.35. However, a different set of partial RSVs dominates, as can be seen in Table 6.17. 

The log-log plot for this distribution (Figure 6.36) is also similar to the Zipf’s law plots 

seen previously, suggesting this more complete collection is similar to the reaction 

databases in terms of range of functionality. 
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Figure 6.35: Partial frequency distribution curve based on the ‘lost’ atom pairs in the 

JMC1 data set. 

 

Figure 6.36: Log-log plot of the frequency distribution based on the ‘lost’ atom pairs in 

the JMC1 data set. 
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
sequences 

represented 

Reactant 
functionality 

structure 

Example 
reactant 

Example 
product 

O(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(3,2,1) 

 C(3,2,1)-3-C(1,0,0) 
 O(2,0,0)-3-C(2,2,1)  
O(2,0,0)-3-C(2,2,1) 

75 

 

  

C(3,2,1)-2(1)-C(2,1,0)  
O(1,1,0)-2(2)-C(2,1,0)  

C(2,2,1)-3-C(2,1,0)  
C(2,2,1)-3-C(2,1,0) 
O(1,1,0)-3-C(3,2,1)  

46 

 

  

O(1,0,0)-2(1)-C(3,1,0)  
O(1,0,0)-3-C(2,0,0)  
O(1,1,0)-3-O(1,0,0)  

46 

 

 
 

C(2,2,0)-2(3)-C(1,2,0)  
C(3,2,1)-2(1)-C(2,2,0)  

C(2,2,1)-3-C(2,2,0)  
C(2,2,1)-3-C(2,2,0) 
C(3,2,1)-3-C(1,2,0)  

40 

 

 
 

C(3,2,1)-2(1)-C(3,1,0) 
O(1,0,0)-2(1)-C(3,1,0) 
O(1,1,0)-2(2)-C(3,1,0) 

C(3,1,0)-3-C(2,2,1) 
C(3,1,0)-3-C(2,2,1) 
O(1,0,0)-3-C(3,2,1) 
O(1,1,0)-3-C(3,2,1) 
O(1,1,0)-3-O(1,0,0) 

35 

 

  

Table 6.17: Representation of the five largest groups of partial RSVs for the JMC1 data. 

The red lines indicate bonds broken in the reaction centre.(Wallace, 2015) 
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While four of the five most common reaction centres are different from the JMC2 case, 

small, simple structural features still dominate for both the JMC1 and JMC2 databases. 

In fact, only 11 of the groups containing more than ten sequences encode anything 

other than aromatic species with carbonyl groups attached. It should be noted that in 

the JMC1 list, while aromatic functionalities dominate, the presence of non-aromatic 

functionality within the five largest groups, suggests different characteristics between 

the two network types. However, the JMC1 distribution is still highly skewed, with 

8,246 of the 9,781 partial RSVs representing only one example.  

Looking at the first random sample extracted from the US patent database, grouping by 

negative atom pairs gives 7,767 groups in total, with 20 of these representing over 100 

sequences, and 6,559 groups only containing one sequence. The frequency distribution 

for this data set is shown in Figure 6.37, with a table of the most popular groups in 

Table 6.18. 

 

Figure 6.37: Partial frequency distribution curve based on the negative atom pairs in 

the reaction sequence database for the first random sample extracted from the US 

patent database. 
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
sequences 

represented 

Reactant 
functionality 

structure 

Example 
reactant 

Example product 

N(2,0,1)-2(1)-C(2,0,1) 
N(2,0,1)-2(1)-C(2,0,1) 

N(2,0,1)-3-C(2,0,1) 
N(2,0,1)-3-C(2,0,1) 

157 

 

  

O(1,0,0)-2(1)-C(3,1,0) 
O(1,0,0)-3-C(3,2,1) 
O(1,1,0)-3-O(1,0,0) 

135 

 

  

C(2,0,0)-2(1)-C(1,0,0) 
C(2,0,0)-2(1)-C(1,0,0) 
C(2,0,0)-2(1)-C(1,0,0) 
Si(3,0,0)-2(1)-C(2,0,0) 
Si(3,0,0)-2(1)-C(2,0,0) 
Si(3,0,0)-2(1)-C(2,0,0) 

C(2,0,0)-3-C(2,0,0) 
C(2,0,0)-3-C(2,0,0) 
C(2,0,0)-3-C(2,0,0) 
Si(3,0,0)-3-C(1,0,0) 
Si(3,0,0)-3-C(1,0,0) 
Si(3,0,0)-3-C(1,0,0) 
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N(1,0,0)-2(1)-C(3,2,1) 
N(1,0,0)-3-C(2,2,1) 
N(1,0,0)-3-C(2,2,1) 

133 

 

 

 

Br(1,0,0)-2(1)-C(3,2,1) 
Br(1,0,0)-3-C(2,2,1) 
Br(1,0,0)-3-C(2,2,1) 

104 

 
 

  

Table 6.18: Representation of the five largest groups of partial RSVs for the first 

random sample extracted from the US patent database.  The red lines indicate bonds 

broken in the reaction centre structure.(Wallace, 2015) 
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The most popular reactant functionalities in this set are very similar to those seen in 

JMC2, with small aromatic molecules, and simple structural features favoured. It should 

be noted that the silyl molecule in the third example in Table 6.18 is an example of one 

of the issues with the network construction. On occasion, the identification of the 

wrong molecule as the reactant or product leads to unusual partial RSVs being 

associated with the sequences, and as such, unrelated sequences are grouped together. 

The preference for small aromatic molecules is seen with the second patent data 

collection, although there are significant differences in the frequency distribution of the 

negative pair groupings. As shown in Figure 6.38, the largest group from the second set 

is only one quarter of the size of the equivalent group in the first set, with 6,368 of the 

7,541 reaction centre groupings only containing one stored example. Additionally, 

looking at the most popular groups for this set (as seen in Table 6.19) shows that all of 

the five most popular reaction centres are different from the first collection, with the 

Suzuki coupling reagents seen when analysing the individual reactions becoming 

prominent once again. In both patent sets, however, significant portions of the 

collection of sequences remain unused. 

 

Figure 6.38: Partial frequency distribution curve based on the negative atom pairs in 

the reaction sequence database for the second random sample extracted from the US 

patent database. 
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Negative atom pairs 
(duplicates indicate 

multiple entries) 

Number of 
sequences 

represented 

Reactant 
functionality 

structure 

Example reactant Example product 

N(2,0,1)-2(1)-C(2,0,1) 
N(2,0,1)-2(1)-C(2,0,1) 

N(2,0,1)-3-C(2,0,1) 
N(2,0,1)-3-C(2,0,1) 

145 

 

  

N(1,0,0)-2(1)-C(3,2,1) 
N(1,0,0)-3-C(2,2,1) 
N(1,0,0)-3-C(2,2,1)  

141 

 

 
 

O(1,0,0)-2(1)-C(3,1,0) 
O(1,0,0)-3-C(3,2,1) 
O(1,1,0)-3-O(1,0,0) 

112 

 
 

 

Br(1,0,0)-2(1)-C(3,2,1) 
Br(1,0,0)-3-C(2,2,1) 
Br(1,0,0)-3-C(2,2,1) 

103 

 

  

C(3,2,1)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 

C(2,2,1)-3-B(3,0,0) 
C(2,2,1)-3-B(3,0,0) 
O(1,0,0)-3-C(3,2,1) 
O(1,0,0)-3-C(3,2,1) 
O(1,0,0)-3-O(1,0,0) 

104 

 

 
 

 

 
Table 6.19: Representation of the five largest groups of partial RSVs for the second 

random sample extracted from the US patent database. The red lines indicate bonds 

broken in the reaction centre structure.(Wallace, 2015) 
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6.4 Conclusions 

In this chapter the reaction vector approach was extended to consider reaction 

sequences from which RSVs were generated. The RSVs were then applied in a de novo 

design context. While there are fewer novel molecules produced using RSVs compared 

to applying RVs iteratively, the advantages of speed and simplicity of RSVs make these 

potentially useful for de novo design. However, the disadvantage is the reduced number 

and diversity of molecules produced. This reduction in diversity is also demonstrated 

by the skewed distribution of the frequency of application of the RSVs and the limited 

number of RSVs that are applicable to a given set of starting materials. This was shown 

to be the case for different sets of starting materials and different sources of RSVs. This 

analysis also suggests that it may be possible to do some pre-analysis of RV and RSV 

collections to eliminate those that are unlikely to be useful and to avoid the over-

representation of particular types of reaction. However, this was not explored further 

in this thesis. The next chapter compares the use of RSVs and RVs in a number of drug 

design scenarios. 
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Chapter 7: 

SAR Exploration with Reaction 

Sequence Vectors 

7.1 Introduction  

This chapter explores the application of the RSV methods to various drug design 

scenarios, including exploration of Structure Activity Relationship (SAR) information 

and de novo design in general. These methods include the identification of multiple 

routes to the same product, and learning more about the interrelation between 

reactions in the database for synthesis planning.  

From a molecular design perspective, there are a number of different features that are 

required to make the tool more effective to a medicinal chemist than simply providing a 

report of the generated structures. Given that the tool is intended for use in compound 

and synthetic route suggestion, the ability to visualise the alternate routes to generate 

compounds and near analogues would be of significant benefit.  

7.2 Alternate route identification 

In Chapter 6, individual reactions were used to generate a reaction network (Chapter 5) 

from which RSVs are extracted to use as part of a reaction transformation library. The 

network may contain more than one route between a given start and end molecule, 

however, given that the RSV generation ignores intermediate compounds, these will 

collapse to a single RSV. As a consequence, such sequences will only be recorded in the 

library once, albeit with both sets of sequence identifier information. KNIME (Berthold 

et al., 2008) code was written to retrieve the original reactions used to make the RSVs, 

permitting a comparison of the different routes available. Figure 7.1 illustrates one 

such example, in which two routes from the same starting material (green) to the same 

product (red) can be compared. 
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Figure 7.1: Illustration of multiple routes to the same product. (Wallace, 2015) 

For a more complete SAR exploration, additional processes are required to expand 

upon the stored sequences to fully exploit the stored knowledge. In the next section, the 

separate processes used to analyse the data will be considered in turn, followed by a 

case study of an SAR evaluation. 

7.3 SAR proof of concept 

When a lead compound is identified as part of a screening programme, a period of fine-

tuning and optimisation is required to determine how to improve its efficacy and 

physico-chemical property profile. The usual method for achieving this is to generate as 

many analogues as possible, with different functionality in key areas, and screen each 

of these in turn (known as a structure-activity relationship evaluation, or SAR 

evaluation). An illustration of such an evaluation for a relatively simple molecule is 

given in Figure 7.2, which shows how many different points of interest may be utilised 

in any given case. 
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Figure 7.2: A systematic SAR evaluation for a simple drug-like molecule. (Wallace, 

2015) 

The structure generation program developed in this project is ideally suited to such an 

exploration, as it can be configured to systematically transform a starting molecule into 

all possible products, based on a knowledge base of reactions and reaction sequences. 

Consequently, the generated products will represent compounds that can be generated 

in one or more synthetic steps and will therefore provide a much more exhaustive SAR 

exploration than traditional approaches, which consider a single reaction step only. The 

RSVs encode multi-step reactions that can be used to extend the potential range of 

chemistry covered relative to RVs.  Depending on the desired usage, a simple filtration 

of the products can then be used to highlight those molecules of interest, such as those 

that are structurally similar to a known active compound, at which point further 

investigations of their syntheses can be carried out. 

7.3.1 SAR exploration example 1 – cilomilast synthesis 

In order to determine the usefulness of the RSV algorithm for SAR evaluation, the 

reactions taken from the JMC2 database were augmented with additional SAR data. The 

SAR data consists of reactions collated from the SAR papers described in Section 5.2.1, 

using the method reported by Roughley and Jordan (2011). By combining the two sets 

of reactions together and forming a network as in Section 5.4, a data set was produced 

that focusses on drug discovery chemistry (referred to as ‘JMCRoughley’). When 
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merged there are 26,235 reactions in total. The network generated from this database 

produced 125,787 unique RSVs including all intermediate pathways, with an average 

length of 5.06 steps (shown in Figure 7.3, with the full data recorded in Table 7.1). As 

all intermediate sequences found in the network are included in this collection, the 

number of RSVs greatly exceeds the number of reactions (as explained in Chapter 5, a 

sequence of three steps in length (R1→R2→R3→R4) will produce six RSVs (R1→R2, 

R1→R3, R1→R4, R2→R3, R2→R4, R3→R4)). As with other collections of reactions from 

literature, relatively short sequences are more common, as the preparation steps are 

excised. 

 

Figure 7.3: Frequency plot of reaction sequence size for the population. 
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Number of steps 
Number of 
sequences 

1 26235 

2 8413 

3 9333 

4 12249 

5 14168 

6 14208 

7 12549 

8 10803 

9 7241 

10 4300 

11 2628 

12 1542 

13 880 

14 464 

15 372 

16 190 

17 197 

18 15 

Table 7.1: Table of the full sequence summary. 

A simple drug design sequence that forms part of the collection of reactions in the 

JMCRoughley database was used as a proof of concept of SAR exploration. The aim was 

to use the library of RSVs associated with the database to explore structures that can be 

generated from the known starting material used to synthesise the anti-asthma 

compound cilomilast, as published in Lednicer’s collection of organic synthesis 

methods (Lednicer, 2007) and illustrated in Figure 7.4.  
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Figure 7.4: Literature synthesis route to cilomilast. (Lednicer, 2007) 

The original starting material (highlighted in green in Figure 7.4) was used with the 

JMCRoughley database of RSVs, using the structure generation tool. In total, 4,030 

products were generated, in addition to cilomilast itself, due to the application of 

several RSVs in the database. The products were then filtered on 0.8 Tanimoto 2D 

structural similarity to cilomilast using the Indigo structural fingerprints (EPAM Life 

Sciences). After filtering seven molecules remained, four of which were not found 

within the original literature sequences. These near neighbour molecules (shown in 

Figure 7.5) are intended to provide structural novelty, while remaining sufficiently 

similar to the original product to be considered worthwhile to study. The molecule 

shaded in red is the original product, while those shaded in blue are intermediates in 

the literature route to cilomilast. The unshaded molecules represent novel products. 
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Figure 7.5: The ‘Near Neighbour’ products produced by the structure generation tool, 

including some molecules from the literature route (blue). (Wallace, 2015) 

By referring to the identifiers associated with the sequences used to generate the near 

neighbours, potential synthetic routes can be retrieved. The various synthetic routes 

used are illustrated in a spider diagram in Figure 7.6, taking the original starting 

material as a start point. The literature route to cilomilast (highlighted in red) is shown 

with black arrows, with the other routes indicated by colour coded arrows originating 

from the starting material (green). 
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Figure 7.6: Spider diagram showing the routes to the near neighbours of cilomilast. 

(Wallace, 2015) 

While the original literature route is indeed detected and represented (black arrows), it 

is interesting to note that the various new analogues are produced from much shorter 

sequences, with the novel products proving to be very accessible from a synthetic 

standpoint.  

7.3.2 SAR exploration example 2 – hydroxamates 

Another example is based on a literature study involving the generation of 15 

hydroxamates (Bailey et al., 2008) through R group modification. These compounds are 

of particular interest for topical applications to treat fibroplasia, a condition in which 

excessive fibrous tissue forms near wounds or infection sites. The mechanism of action 

is to intervene with the mechanism of collagen production and deposition by binding to 

procollagen C-proteinase (PCP), preventing these excessive tissues from forming. 
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7.3.2.1 Structure generation 

The original literature route is shown in Figure 7.7, with the starting material in green, 

and the 15 literature products shown in Figure 7.8. This starting material was used as 

input to the structure generation tool, using the JMCRoughley RSVs as before. 

 

Figure 7.7: Generic literature route to hydroxamates based on the published starting 

material (green). (Bailey et al., 2008) 

 

R groups 

 

 

 

 

 

  
  

 

  

 

  

Figure 7.8: The hydroxamate products generated in the original literature.  (* indicates 

attachment point) (Bailey et al., 2008) 
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In total, 1,514 unique products were generated. The results were filtered by similarity 

to the originally reported product molecules as before. In total 23 near neighbour 

molecules (having a Tanimoto coefficient value between 0.99 and 0.8 relative to at least 

one of the products) were generated, with 14 unique molecules left after filtering for 

duplicates. These near neighbour products are summarised in Figure 7.9. It should be 

noted that the main structural difference between these compounds and the literature 

products is a change to the structural scaffold (highlighted), with all but one of the R 

substituents being identical to those represented in Figure 7.8. 

 

R groups 

 

 
 

 

 

 

 

 
 

  

   

Figure 7.9: New ‘Near Neighbour’ products produced by the structure generation 

tool.(* indicates attachment point) (Wallace, 2015) 

The 14 near neighbours, along with the reaction pathways used to generate them, could 

be of significant interest to the medicinal chemist. This is because they represent 

potentially interesting areas of SAR space near the published analogues that have not 

been fully explored. A literature search for the near neighbours in SciFinder (Chemical 

Abstract Services) reveals that eight of these compounds have literature references to a 

patent granted to the authors of the original study related to this activity class, and can 

therefore be considered as potential treatments for fibroplasia. However, no activity 

information is recorded for these compounds specifically, as these lack the zinc 
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chelating hydroxamic acid group needed to be effective. The remaining six compounds 

are not in SciFinder, nor are they referenced as part of the generic hydroxamate 

structure in the original paper and so there is no evidence that the compounds have 

been tested for therapeutic activity. Thus, the de novo tool has identified analogues that 

are relatively similar in structure to the compounds with known activity, but without 

such activity themselves. Lowering the similarity threshold to 0.3 shows that one 

compound containing a hydroxamate derivative group is generated by the de novo tool, 

(shown in Figure 7.10) but this otherwise bears no relationship to any of the original 

literature examples, lacking any aromatic character. In addition, a large number of 

compounds are present in the expanded data set with carboxylic acid groups that can 

weakly bind with the zinc ion, but the expected activity of these is considerably lower 

than those already reported. It should also be noted that there may be issues with the 

synthesis of these molecules, in that the ester group in the structural scaffold would 

need to be protected first to permit functionalisation of the ester bearing the R group.  

 

Figure 7.10: Structure produced that contains a hydroxamic acid group for zinc 

chelation. Similarity coefficient to the literature hydroxamates is 0.352 (Wallace, 2015) 

In this context, the more analogues of a particular compound that are produced, the 

more likely it is that an SAR relationship can be found that enables the key properties of 

the drug to be optimised. As a result, any synthesisable molecule that is similar, but not 

identical, to a given start point is worth studying. However, since there may be very 

large numbers of these depending on the structures involved, additional filtration of 

these may be required, such as looking for the presence of key substructures, or 

consideration of their likely interactions with the site of interest. In the next section, the 

ways in which these types of result molecules can be studied will be explored.  
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7.3.2.2 Molecule PCA analysis 

In order to determine how the near neighbours are related to one another and to the 

literature compounds in property space, a Principal Component Analysis (PCA) (Abdi 

and Williams, 2010) was performed based on parameters generated by the Chemistry 

Development Kit (CDK) (Steinbeck et al., 2003). As these parameters include 3D 

structural features, conformations were generated using the CDK tools, which include a 

force field based model builder. The PCA method aims to simplify the description of a 

complex data set by visualising the similarities and differences between data points 

graphically. This is achieved through the conversion of a set of descriptors into a 

smaller set of principal components that are linear combinations of the original 

descriptors. The full set of topological parameters available through CDK were used 

(such as the distances between carbon, nitrogen and oxygen atoms in the molecule, the 

nature of carbon hybridisation states, and measures of charge and polarisability). In 

addition, in order to assess shape similarity (for receptor binding, or other similar 

activity models), a number of geometric parameters were also included, such as the 

moments of inertia for the molecules in free space. A complete list of the descriptors 

used is given in Appendix B. The combination of descriptors is performed in such a way 

that each principal component is independent and orthogonal to the others. The 

molecules are plotted in a 3D space that is constructed using the first three principal 

components. The molecules are then displayed as 3D conformers using the CheS-

Mapper (Gutlein et al., 2012) PCA tool available in KNIME, which automates the whole 

PCA process. This plot can then be navigated as a real time 3D visualisation, with the 

molecule representations given colour coding based on the 2D similarity values.   

Figure 7.11 shows a 3D PCA plot of the literature hydroxamate molecules and the near 

neighbours generated using RSVs. The plot is coloured according to the structure 

similarity values, with yellow molecules representing the literature products, red 

molecules representing those generated molecules within 0.8 Tanimoto similarity of at 

least one literature product (based on the same Indigo structural fingerprints as 

before), and blue molecules representing the remainder of the products generated.  
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Figure 7.11: 3D PCA plot of the generated hydroxamates and associated products. 

(Bailey et al., 2008, Wallace, 2015) 

The figure shows that a very large number of molecules has been generated covering a 

wide area of topological space. Figure 7.12 shows only those molecules that are within 

the 0.8 Tanimoto similarity range calculated previously based on the literature 

products, while Figure 7.13 shows an expansion of the area around the known 

products, showing all generated molecules in the immediate vicinity. 

 

Figure 7.12: 3D PCA plot of the generated hydroxamates and near neighbours. (Bailey 

et al., 2008, Wallace, 2015) 

            Legend 

Original compounds 

Near neighbours 

All other products 

                Legend 

Original compounds 

  Near neighbours 
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Figure 7.13: Expanded 3D PCA plot showing the relationship between the generated 

hydroxamates, near neighbours and other products. (Bailey et al., 2008, Wallace, 2015) 

Looking at the yellow molecules alone, it can be seen that large areas of the PCA space 

are underrepresented. Adding in the near neighbours helps to fill in these gaps, and 

offers some new ideas that the medicinal chemists may want to evaluate. The blue 

molecules on the other hand represent molecules that may be close in descriptor space, 

but more distant in terms of Tanimoto similarity, as illustrated in Figure 7.12. These 

examples could also be worth investigating, in terms of potential scaffold hopping. 

7.3.2.3 Expanding the reaction network 

The molecules generated thus far are the result of applying RSVs to a known starting 

material. While this can lead to some exploration of SAR space, as shown in Chapter 6, 

RSVs limit the number of molecules that can be generated compared to application of 

the individual RVs that represent each step in a sequence. Further exploration of the 

SAR space and additional synthetic routes can be identified by extracting the individual 

RVs expanding out from a selection of the routes identified by the RSVs. The result is a 

more generalised set of reaction steps, which can be used to provide more information 

on the intermediate reactions that could occur between different pathways. 

Legend 

Original compounds 

Near neighbours 

All other products 
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It is first necessary to retrieve the reaction sequences for the relevant RSVs used to 

generate the products. From these sequences, it is possible to obtain the individual 

reaction steps, and generate RVs from these. As a complete enumeration of products 

from each step is required, all of the components of each relevant reaction (including 

reactants, reagents and products) are placed into a communal molecule pool. These are 

then used as starting materials for the structure generation process, increasing the 

chemistry space represented by the network. 

Stored reaction 

 

Full reaction with reagents 

 

Molecule pool 

 

 

 

 

Figure 7.14: Examples of the different reaction and reagent types collected. (Bailey et 

al., 2008, Wallace, 2015)  

The collected RVs are then applied to the starting materials with the generated 

products forming the starting materials for the next reaction step and so on, until the 
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sequence is completed. This process is then repeated for all sequences used to generate 

products of interest, until every molecule (starting material or product) has been used 

with every RV. The four key steps of the process are shown in the flowchart, given in 

Figure 7.14. As in Section 6.3.3, by using the individual steps rather than just the 

sequence as a whole, more information about side products and intermediates is 

collected. This effectively creates an expansion of the network in the region of these 

sequences, as seen in Figure 7.15.  

 

Figure 7.15: Flowchart showing the expanded network generation process. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.16: Illustration of an expanded reaction network. All routes leading to MOL2, 3 

and 4 are shown, although in reality other endpoints may exist. 
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Figure 7.15 shows the expansion from a single start point (MOL1) via three separate 

sequences. The blue edges and nodes represent the molecules produced from the 

stored RSVs, labelled as MOL2, MOL3 and MOL4. However, if the relevant RVs are used 

instead of the RSVs, additional molecules are generated (represented by the red nodes 

and edges). In this limited example, the addition of intermediates enables the discovery 

of two routes between MOL1 and MOL4 for review. As well as the expected route 

derived from RSV3 (RV5 and RV6), a combination of RV3 and RV2 also produces the 

same result. This latter route is only discovered when including RVs and intermediates 

in the network. 

Figure 7.16 shows an expanded network based on the hydroxamate synthesis which 

can be used to identify different synthetic routes and other interesting compounds. In 

this case, the individual highlight boxes represent starting materials which can be used 

to generate the desired products, the green box representing the literature starting 

material, and the yellow box representing an alternative starting material. These 

materials are then shown with the routes used to generate the desired products 

(highlighted in red). 
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Figure 7.17: Illustration of interconnected routes found by expanding the RSV network 

to include RVs. The red arrows show the start of an alternative route via different 

starting material.  (Wallace, 2015) 

As can be seen in Figure 7.16, the individual paths through the network constitute 

sequences. The small size of this network enables the synthetic paths to be visualised 

by embedding the 2D structures for the molecules on the nodes. This is implemented 

within KNIME using the Prefuse graph library (Heer et al., 2005), and can be used with 

any KNIME network data.  The method permits the user to select individual sequences 

or groups of sequences for expansion. Once the image is created, it is possible to zoom 

in on key areas of the network, and focus on regions a certain number of reaction steps 

away from a given molecule, giving a greater ability to interact with the presented data. 

This makes the approach more useful from a medicinal chemistry standpoint, as these 

smaller, more detailed network views can be used as part of a synthesis planning step, 

showing all of the possible products formed from a given start point, as well as any 

alternative pathways. In the examples in Figure 7.16, the two identified ‘starting 

materials’ are actually the starting material and reagent from the literature route. 

However, the expansion approach shows that the reagent in yellow can be used as part 
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of a route proceeding through different intermediates and using different reactions, 

making it interesting in its own right.  

This expansion method also highlights a further use case for the approach, where the 

different vector methods can be used to highlight the best routes to particular products, 

effectively using RSVs for initial sampling, before reviewing the relevant RVs in more 

detail. This would also highlight any potential competing side reactions that can cause 

problems with synthesis. 

7.3.3 SAR exploration example 3 – biaryl carboxamides 

A third application was investigated, extracted from a paper outlining the synthesis of 

biaryl carboxamides as agonists for motillin receptors (Westaway et al., 2008). 

Regulating motillin binding is integral to the treatment of gastroparesis, where 

digestion of food is delayed due to partial paralysis of the stomach. The literature 

synthetic route for these compounds is outlined in Figure 7.17, and the reported 

literature products shown in Figure 7.18. The starting material (highlighted in green in 

Figure 7.17) and the JMCRoughley set of RSVs produces a set of 48 molecules after 

removal of the literature products, which are shown in Figure 7.19. In this case, the new 

molecules are not dramatically different from the originally reported products, with 

some representing new combinations of existing R1 and R2 groups. 

 

Figure 7.18: General scheme for the synthesis of carboxamides. (Westaway et al., 2008) 
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R1 = 

 

R2 groups 
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R2 groups 

 

Figure 7.19: Reported literature products generated from the carboxamide literature 

route. (* indicates attachment point) (Westaway et al., 2008) 
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R1 = 

 

R2 groups 
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Figure 7.20: Examples of ‘near neighbour’ products produced by the structure 

generation tool from the carboxamide route. (* indicates attachment point) (Wallace, 

2015) 

In this case, as the number of generated products is relatively small (48 in total), it is 

not necessary to filter the structures by similarity before generating a PCA plot as seen 

in Figure 7.20.  



 

 

174 

 

Figure 7.21: PCA analysis of the products of the carboxamide sequences. (Westaway et 

al., 2008, Wallace, 2015) 

Using the same topological and geometric parameters as in the previous PCA plots 

shows the similarity in properties between the near neighbours and the original 

products, with the near neighbours overlapping the original compounds in property 

space far less than in the previous example. While the set of molecules generated is 

relatively small compared to the hydroxamate example, those that are close to the 

reported carboxamides still provide interest for further study. As before, the blue 

molecules in Figure 7.20 indicate compounds that may not be obvious to researchers, 

but are sufficiently similar in property and three-dimensional space to be valuable 

potential targets. Some examples of these are shown in Figure 7.21. 
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R1 = 

 

R2 groups 

    

  
 

 

 

   

 
 

 

Figure 7.22: Examples of products from the carboxamide route that are outside of the 

similarity threshold but are of interest. (* indicates attachment point) (Wallace, 2015) 
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A similarity search for the near neighbour molecules within the SciFinder database 

returns no references outside of the original paper, suggesting that these compounds 

are yet to be evaluated for activity. 

7.3.4 SAR exploration example 4 – substituted alkynes 

In order to further test the network approach, a fourth test set was produced, from a 

reaction sequence used to provide functionalised alkynes as feedstock for 4-sulfamoyl 

pyrroles used in statin synthesis (Park et al., 2008). The generic scheme for the 

synthesis is shown in Figure 7.22, with the literature compounds summarised in Figure 

7.23. 

 

Figure 7.23: Generic route to 4-sulfamoyl alkynes. (Park et al., 2008) 

 

 

 

 

 

 

 



 

 

177 

 

R3=H 

N R1 R2 

  
 

 

 

   

 

R3=F 

N R1 R2 

 
  

  

  
 

 

 

  

  

 

 
Figure 7.24: Reported alkyne products generated from the literature route. (* indicates 

attachment point) (Park et al., 2008) 
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If the original starting material is used with the JMCRoughley database as before, 1,707 

products are generated, but only three are near neighbour molecules using the 

Tanimoto score of 0.8 as a threshold, which are highlighted in yellow in Figure 7.24. 

Altering the similarity threshold to show near neighbour molecules with a Tanimoto 

score of 0.6 relative to the known products leads to 16 additional molecules of interest, 

as summarised in Figure 7.24. However, with two exceptions, none of these contain the 

alkyne functionality required.  A substructure search for this functionality through the 

entire result set returns no additional results. 

 

 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.25: Near neighbour alkyne products, including extended similarity threshold. 

(Wallace, 2015) 
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A SciFinder search for the near neighbours with alkyne functionality indicates that the 

two compounds highlighted in blue in Figure 7.24 were identified as part of the patent 

covering the initial study, but with no reported activity. The other two molecules are 

not found. The data set can be expressed in a PCA plot, as shown in Figure 7.25. 

However, when focussing on the near neighbours, it can be seen that there is more of 

an overlap in property space, with all of the compounds existing in the same narrow 

region of the plot, as illustrated in Figure 7.26. 

 

Figure 7.26: PCA analysis of the alkyne products, including selected other products. 

(Park et al., 2008, Wallace, 2015) 
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Original compounds 
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All other products 
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Figure 7.27: PCA analysis of the alkyne products. (Park et al., 2008, Wallace, 2015) 

The reaction network associated with the production of the near neighbour molecules 

shows that the key to producing new analogues in this scheme is via modification of the 

functionalised benzene ring. The relevant portion of the reaction network is shown in 

Figure 7.27, expanding the network using the sequence RVs as before, with some of the 

more similar near neighbour molecules (using the Tanimoto threshold of 0.8) 

highlighted in blue. The network shows that there is some degree of branching between 

the synthetic routes, suggesting that there may be worthwhile alternative routes to be 

explored. 

            Legend 

Known Products 

Near neighbours 
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Figure 7.28: Portion of the reaction network showing the generation of near neighbour 

molecules. (Park et al., 2008, Wallace, 2015) 

7.4 Conclusions 

As part of the validation method, it was shown that alternative routes to compounds 

within the reaction network can be found in a number of ways, either through direct 

interrogation of the stored vectors, or via the assembly of SAR-focussed ‘mini 

networks’. This latter approach is also useful when combined as part of a PCA 

approach, in which all of the molecules of interest from a result set can be compared 

based on their properties, with the necessary synthetic pathways highlighted for use. 

The method has been demonstrated on a number of SAR examples from literature, 

showing full synthetic routes to the desired products, as well as near neighbour 

molecules that may be of interest to the medicinal chemist.  By combining the RSV 

approach with some RVs, the area of solution space around a molecule can be 

expanded, possibly suggesting alternative routes and new compounds of interest. 
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Chapter 8: 

Structure generation with 

reaction sequence vectors 

8.1 Introduction 

The case studies outlined in Chapter 7 investigated lead optimisation scenarios by 

exploring molecules that could be made from a given starting material. In the first part 

of this chapter, the aim is to investigate the ability of the RSVs to generate molecules 

that are predicted to be active using a set of starting materials and an SAR model. As 

one of the main aims of the RSV approach is to generate molecules that are 

synthetically accessible, the results are also assessed using a computer model for 

predicting synthetically accessible as well as manually by synthetic chemists. The 

chapter then describes a comparison of the RSVs and RVs for de novo design based on 

the same data sets.  

8.2 Prediction of activity and structural feasibility 

As previously discussed in Section 7.3.2.3, RSVs can be used to quickly generate 

structures and highlight alternative routes to a given product. These generated 

structures can be quickly evaluated, with the routes to products of interest analysed 

further via the relevant RVs. To assess the feasibility of this, a study in activity and 

structural feasibility prediction was performed. Six data sets were extracted from a 

paper by Sutherland et al (2004). In Sutherland’s work these were used to assess the 

relative accuracy of different approaches to build QSAR models, and as such each data 

set represents a well curated collection of molecules covering a wide activity range. The 

QSAR models used in the experiments described here are support vector machine 

(SVM) regression models (Cortes and Vapnik, 1995) based on Sutherland’s work and 

were trained and provided by Lilly.  

An SVM regression model can be used to predict the value of a property. For the models 

used here, each molecule in the training data was represented using a Lilly in-house 

structural fingerprint and has an associated pIC50 value (representing the negative log 
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of the standard IC50 measure) measured by Lilly. In SVM regression, the descriptor 

space is transformed into a higher dimensional space with linear regression performed 

in this space (Xue et al., 2004). An unknown molecule is then fitted to the regression 

function to estimate the unknown quality, the pIC50 value in this case.  

All of the molecules within each data set were used as starting materials with the 

structure generation tool to produce all possible structures, using the JMC Roughley 

RSVs. The fingerprints for each generated molecule were calculated and the pIC50 value 

of each generated molecule was predicted using the appropriate SVM model. These 

result molecules were compared with existing compounds within the class on structure 

and the number of unique molecules recorded, as well as the range of predicted activity 

values. The results for each of the inhibitor classes are summarised in Table 8.1, with 

histograms indicating the pIC50 range shown in Figures 8.1 to 8.6. It should be noted 

that some of the larger, more complex molecules were too structurally dissimilar to the 

existing inhibitors, and as such, the SVM model was unable to predict pIC50 values in 

these cases. In total, 5,521 of the generated products across the compound classes 

could not be predicted by the model, and have been excluded from the activity ranges 

reported in Table 8.1. For the purposes of comparison, suggested threshold pIC50 values 

provided by Lilly are included (such as the value of 7.0 for the Ace data set). These 

represent the minimum pIC50 value a molecule has to have to be considered as worthy 

of further research interest. Compounds at or above the threshold are referred to as 

‘considered’ or ‘predicted’ active. Looking at the collected data, there are relatively few 

unique molecules produced in the Cox-2, Dhfr and Gpb cases, considering the high 

number of starting materials. In these data sets, there are relatively few differences 

between the molecules in the sets in terms of their structure. As a consequence, the 

limited diversity of the transformations in the RSV database result in a large number of 

identical structures, with the various functional groups on the scaffolds being 

interconverted between one another.  
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Inhibitor class 

Number of 

molecules 

in class 

Number of 

unique 

molecules 

generated 

Number of 

compounds 

without 

predicted 

activity 

Suggested 

threshold 

pIC50 value 

to be 

considered 

active 

pIC50 range for 

starting 

materials, 

(higher is 

better) 

Predicted 

pIC50 range 

for new 

products, 

(higher is 

better) 

Angiotensin 

converting 

enzyme (Ace) 

114 17789 1585 7.0 2.14-9.90 2.94-9.20 

Benzodiazepine 

(Bzr) 
147 13900 1085 7.52 5.52-8.92 6.60-8.63 

Cyclooxygenase-2 

(Cox-2) 
282 8534 589 6.0 4.03-9.00 4.73-8.73 

Dihydrofolate 

reductase (Dhfr) 
361 12276 1018 6.52 3.30-9.80 4.05-9.03 

Glycogen 

phosphorylase B 

(Gpb) 

66 2052 88 6.0 1.30-6.80 1.80-4.52 

Thermolysin 

(Therm) 
76 13818 1156 6.0 0.52-10.17 1.75-8.02 

Table 8.1: Summary of the results of the RSV structure generation experiment with the 

Sutherland inhibitors. 
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Figure 8.1: Frequency distribution of pIC50 values for the literature and generated 

examples in the Ace inhibitor class. 

 

Figure 8.2: Frequency distribution of pIC50 values for the literature and generated 

examples in the Bzr inhibitor class. 
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Figure 8.3: Frequency distribution of pIC50 values for the literature and generated 

examples in the Cox-2 inhibitor class. 

 
 
Figure 8.4: Frequency distribution of pIC50 values for the literature and generated 

examples in the Dhfr inhibitor class. 
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Figure 8.5: Frequency distribution of pIC50 values for the literature and generated 

examples in the Gpb inhibitor class. 

 

Figure 8.6: Frequency distribution of pIC50 values for the literature and generated 

examples in the Therm inhibitor class. 
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Considering the data as a whole, the RSVs generated from the JMC Roughley sequences 

appear to be able to construct a significant number of inhibitors of interest. For the new 

products the SVM models predict inhibition activities that fit well within the ranges of 

the existing classes. A comparison of the frequency distributions of the original 

inhibitors with the generated products in each class shows that the proportion of 

compounds in the ‘active’ range of pIC50 concentrations (above the suggested activity 

threshold) is greater for the generated compounds than for the original literature set. 

The one exception is the Gpb class, where the proportion of active compounds is 

particularly low for both the original data set and the generated molecules. With so few 

active compounds in the literature set, the range of structural features associated with 

activity by the SVM model will be restricted in diversity. Since the other starting 

materials in the set lack these structural features, the likelihood of producing active 

molecules is greatly reduced. In this case, the de novo tool generates no molecules 

above the threshold.  

Looking at the histogram plots for each class in more detail shows that the newly 

generated compounds have pIC50 values that cluster around the threshold values of the 

activity ranges. The original sets on the other hand are biased towards the most active 

part of the ranges, and contain compounds with higher activity values. This is to be 

expected, as the datasets contain genuine drug candidates. The RSV generation 

approach appears to be useful as a means of generating compounds of interest, 

covering a wide range of activities, if not necessarily the most active compounds. It 

should also be noted that some of these new products have molecular weight values 

that are in excess of those seen in drug-like compounds, and as such would be less 

suitable for therapeutic use. Selections of the highest predicted active molecules that 

have molecular weights below 500g mol-1 are shown in Table 8.2, with key scaffold 

features that match those in typical inhibitors of each class, highlighted. 

The 20 molecules with highest predicted activities in each compound class were 

searched for in SciFinder, to determine if any of them had previously been investigated 

for inhibitor activity. No reported activity values could be found for any of these 

compounds, but there are results of interest in each inhibitor class. Taking the example 

of Ace (representing inhibition of the angiotensin converting enzyme), two of the 

molecules were found in SciFinder, albeit without any assessment of their inhibitor 

activity in any recorded context. 
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Inhibitor 
class 

Structure (inhibitor scaffold highlighted) 
Predicted 

pIC50 
 Inhibitor 

class 
Structure (inhibitor scaffold 

highlighted) 
Predicted 

pIC50 

Ace 

 

8.84 

 

Bzr 

 

8.63 

Ace 

 

8.83 

 

Bzr 

 

8.62 

Ace 

 

8.81 

 

Bzr 

 

8.55 
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Inhibitor 
class 

Structure (inhibitor scaffold highlighted) 
Predicted 

pIC50 
 Inhibitor 

class 
Structure (inhibitor scaffold 

highlighted) 
Predicted 

pIC50 

Cox-2 

 

8.73 

 

Dhfr 

 

9.02 

Cox-2 

 

8.62 

 

Dhfr 

 

8.95 

Cox-2 

 

8.58 

 

Dhfr 

 

8.94 
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Inhibitor 
class 

Structure (inhibitor scaffold highlighted) 
Predicted 

pIC50 
 Inhibitor 

class 
Structure (inhibitor scaffold 

highlighted) 
Predicted 

pIC50 

Gpb 

  

4.51 

 

Therm 

 

7.38 

Gpb 

  

4.34 

 

Therm 

 

7.34 

Gpb 

  

4.32 

 

Therm 

 

7.32 

 

Table 8.2: Selection of the most active compounds from each inhibitor class. (Sutherland et al., 2004, Wallace, 2015)
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All of the 20 most active examples in the Ace set were analogues of L-Proline and L-

Leucine, both of which are known as Ace inhibitors (Cushman and Ondetti, 1991) 

(Vrielink et al., 1996). These amino acid derivatives feature as part of the starting 

material scaffold. The inhibition of angiotensin converting enzyme (Ace) is key to the 

treatment of blood pressure and hypertension. This works by preventing the 

production of Angiotensin II, a peptide that causes blood vessels to constrict. The L-

Proline and L-Leucine analogues both have an affinity for the zinc containing active site 

in the angiotensin I enzyme, selectively inhibiting it while leaving angiotensin II 

unaffected and thus reducing side effects.  

In a similar vein, the highest predicted active compounds from the Thermolysin 

(Therm) class are complex derivatives of L-Leucine, as this enzyme binds hydrophobic 

amino acids for degradation (Khan et al., 2009). None of the compounds searched for in 

SciFinder returned records, but a structure similarity search confirmed their relation to 

Leucine, highlighting the similarity in the scaffolds. Thermolysin is a protein secreted 

by many infecting bacteria, such as Staphylococcus and Legionella. It specifically 

catalyses peptide bond hydrolysis, and is key to the reproduction of the bacteria within 

the host. Inhibiting the operation of this enzyme is therefore of interest in the 

development of new antibiotics that are effective on drug resistant bacteria strains. 

In the Bzr class, (representing drugs acting on the benzodiazepine receptor site), none 

of the most active compounds could be found in Scifinder. However, the most active 

compounds found by the structure generation method have structures that incorporate 

the benzodiazepine functional group in a manner that does not resemble existing 

drugs. Drugs containing this group are known to be of therapeutic benefit for 

conditions concerning the central nervous system, increasing the effect of 

neurotransmitters (Sieghart, 1994). However, the originally discovered benzodiazepine 

compounds are known to have serious side effects, including issues with patients 

developing chemical dependency. Consequently, much research effort is going into 

modifications to the scaffold or derivatives with a different inhibition mechanism.  

The results for cyclooxygenase-2 (Cox-2) are interesting, in that they are all relatively 

simple benzenesulfonamides, many of which have structures similar to those in the 

Markush structure expressed in a research patent filed by Talley et al. (2002), albeit 

without any of the specific molecules having their own entries in SciFinder.  

Cyclooxygenase-2 is an enzyme that regulates inflammation and the transmission of 

pain (Green, 2001). By specifically targeting this enzyme, anti-inflammatory drugs can 
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be made that keep side effects such as the formation of ulcers to a minimum. However, 

other effects such as cardiovascular problems or strokes were discovered with some 

Cox-2 inhibitors, leading to efforts to retain the positive effects while making the 

compounds safer to use. Benzenesulfonamides such as those generated are of 

particular interest as a form of inhibitor that appears to offer a compromise between 

high efficacy, with a significant reduction in side effects. 

Analysis of the dihydrofolate reductase (Dhfr) compound class indicates that most of 

the highest predicted active compounds are glutamic acid derivatives, often containing 

diaminopyridine functionality. In this case one of these molecules was found in 

SciFinder, namely 1-[4-[[(2,4-diaminopyrido[3,2-d]pyrimidin-6-yl)methyl]amino]

phenyl]-ethanone. Dihydrofolate reductase is a key enzyme used in the synthesis of 

purine and thymidine. Selective inhibition of this enzyme is effective as part of a 

treatment program for various cancers, by reducing the rate of tumour growth to 

permit other therapies to take effect. Literature searches show that glutamic acids have 

been investigated as anti-tumour agents acting via preventing production of purine, 

while also inhibiting the action of the thymidylate synthase enzymes (Gangjee et al., 

2003). By inhibiting both components of the Dhfr mechanism, the overall therapeutic 

effect is greatly enhanced.  

The generated inhibitors of glycogen phosphorylase B (the Gpb class) have similar 

structural features to those in the Dhfr case, in that they both use acid derivatives with 

high binding affinity to the active site. While all of the compounds searched for in 

SciFinder fit this general structure, none of them had specific entries in the database. In 

this case, the active compounds are mainly derivatives of carbamic acids, containing 

simple sugar structures that resemble glucose. Glycogen phosphorylase B is an enzyme 

that releases glucose from the stores of glycogen in the liver. By preventing this 

conversion process, selective inhibition of this enzyme helps to regulate blood sugar 

levels in Type-2 diabetes patients, as liver glucose production is known to increase for 

sufferers of this condition (Baker et al., 2005). As the inhibitor molecules resemble the 

conversion products for the enzyme, they effectively block the receptor, preventing 

further glycogen adsorption and conversion.  

It should be noted that in all cases the activity of the starting materials did not directly 

correlate with the activity of the final products generated. In general, a wide range of 

pIC50 values were derived from each start point, with some regression to lower values 
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from the most active starting materials. This regression is due to the increase in 

molecular weight and distortion of the existing structural motifs caused by taking 

existing inhibitors and forcing further modification. Using late stage intermediates 

instead of actual inhibitors as the start point in these experiments would permit 

molecular growth to occur naturally without such distortion. However, since the 

necessary structural and modelling data is no longer available to permit such a 

comparison to be made, it has not been possible to perform the confirmatory 

experiment.  

In general, while not all of the generated compounds may be good drug candidates, 

(due to high molecular weight or poor solubility), they contain structural motifs that 

imply that they would be good starting points for drug optimisation and testing, if they 

were synthesised and tested for real. The fact that such a high proportion of the 

generated molecules in each class contain these scaffolds is due to the starting 

materials used as inputs. As the starting materials in these cases are examples of 

inhibitors in their own right that contain these scaffold, it is logical that the results with 

the highest predicted activities will retain these features, and therefore be structurally 

very similar. The SciFinder searches showed that very few of the generated compounds 

had been reported in literature, with no therapeutic information or activity data 

available. However, the fact that these molecules have not been reported suggests that 

the analogues produced are more interesting, with the RSV method capable of 

producing diverse analogues. In addition, the most drug-like compounds from each 

class tend to be derived from the lightest starting materials. Given that a key criterion 

of drug-likeness is a low molecular weight (below 500 g mol-1), and that the general 

trend in the application of RSVs to molecules is to increase the molecular weight, it 

stands to reason that starting from a lighter molecule is more likely to result in 

molecules remaining below the threshold. 

8.2.1 Assessment of synthetic accessibility 

To determine the likelihood that the new products are synthetically feasible, they were 

processed using the retrosynthetic accessibility (RSynth) tool in the MOE suite 

(Chemical Computing Group Inc., 2015). This gives an estimate of the ability to 

synthesise a given molecule, based on the fraction of heavy atoms within it that can be 

resolved back to simple starting materials via retrosynthesis. The feasibility score is the 

fraction of these atoms that can be resolved, so a value of ‘1’ represents something 

readily synthesised (where all non-hydrogen atoms could be traced back to readily 
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available start points). Conversely, a value of ‘0’ represents something considered 

synthetically impossible, as this would suggest no non-hydrogen atoms could be traced 

back. The number of molecules generated for each inhibitor class with a score of 0.9 or 

above is shown in Table 8.3.  

Inhibitor 

class 

Number of 

molecules with 

RSynth score ≥0.9 

Percentage of 

generated molecules 

with RSynth score 

≥0.9  

Number of molecules with 

RSynth score ≥ 0.9 and 

predicted pIC50 ≥ 

threshold 

Ace 5688 32.0% 1927 

Bzr 7244 52.1% 3736 

Cox2 4588 53.4% 754 

Dhfr 6818 55.5% 2902 

Gpb 1425 46.4% 31 

Therm 5487 39.7% 943 

Table 8.3: Summary of RSynth scores for the generated inhibitors.  The Gpb set 

contains no generated molecules with pIC50 scores above 4.5, so 4.0 was used as the 

threshold score instead. 

While for some of the inhibitor classes the majority of the generated molecules 

produced have synthetic accessibility values below the threshold, the proportion in 

each inhibitor class that are readily accessible is more than sufficient for study in most 

cases. Taking just the Ace inhibitors as an example, a PCA plot was produced from the 

generated molecules identified as having RSynth scores above 0.9, a Tanimoto 

coefficient greater than 0.8 relative to at least one of the molecules in the original 

inhibitor class, and a predicted pIC50 of 7.0 or above, as shown in Figure 8.7. The 

descriptors used were identical to those used in Section 7.3, and summarised in 

Appendix B. 
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Figure 8.7: PCA plot of products generated by the Ace inhibitor class. (Sutherland et al., 

2004, Wallace, 2015) 

It appears that the generated molecules in this case expand, rather than fill in gaps in 

the PCA property space around the existing inhibitors. Two different distinct regions of 

near neighbours can be observed, the denser left region showing those molecules 

similar in property space to the originals, and the right region indicating molecules that 

are more distant in property space. A close examination of the denser region shows it 

largely consists of molecules with identical scaffolds to the known inhibitors but with 

different substituents. It should also be noted that none of these molecules have higher 

activity values than the known starting materials. While the activity range for the 

generated molecules is comparable to the original inhibitors, the novel reactions in the 

RSV knowledge base result in interesting expansions of the core structure. Some 

examples of these are shown in Figure 8.8, with the original molecule scaffold 

highlighted. As one of the aims of this project is to provide new, useful molecules that 

are synthetically accessible, these results suggest the tool is of worth for molecular 

suggestion. The less dense section of the PCA plot represents more diverse compounds 

and should not be discounted, since these are likely to be widely different to existing 

research efforts, and inspire new synthetic routes. 
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Figure 8.8: Examples of expansions to Ace inhibitor scaffolds.(Wallace, 2015) 

As an additional measure of synthetic accessibility, examples of the de novo products 

for each inhibitor class covering the full range of calculated RSynth scores were 

presented to two medicinal chemists for analysis. The aim was to determine if the 

RSynth scores are an accurate representation of the ease of synthesis, as well as 

highlighting any problematic molecules that are generated by the tool. It was 

determined that using an RSynth threshold value of 0.6 is sufficient to limit the results 

to those that can be readily synthesised, with some molecules with RSynth scores as 

low as 0.2 also being considered feasible. This apparent disparity between the 

automated analysis and manual inspection can be explained via reference to the RSynth 

algorithm. Given that algorithm relies on comparison between the fragments produced 

from non-hydrogen atoms and the stored list of starting materials, should any of the 

fragmentation points be part of charged groups or complex ring structures, it is 

unlikely that a match will be found. These will be recorded as a retrosynthesis failure, 

leading to an RSynth score penalty. To avoid these false negatives compromising the 

quality of the results, a threshold of 0.8 may be more appropriate for assessing new 

compounds.  

11 

Original structure 
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The expert analysis of the results also identified a few examples within the data set of 

structural classes that would be impossible to make in real world conditions, due to 

clashes in geometry or limitations of the RSV application method. Some of these 

structures are illustrated in Figure 8.9. In both of these cases, the RSynth retrosynthetic 

accessibility score is recorded at 0.5. 

 

 
Figure 8.9: Examples of molecules produced that are considered impossible to 

synthesise. (Wallace, 2015) 

These molecules highlight a number of limitations with the reaction vector format as 

currently implemented. One of the key problems is that, while the vector carries 

information regarding the nature of the bonds, including membership of ring systems, 

the size of the rings to which the atoms are members is not recorded in the atom pair 

lists. This can lead to transformations recorded for one ring size being applied to 

structures featuring a different ring size. This would in reality lead to structural 

incompatibility, due to the differences in electron density, but this is ignored by the 

structure generation tool. An example reaction for which this occurs, along with an 

example where the transformation is applied to a different sized ring is shown in Figure 

8.10. The top example is a reaction in the JMCRoughley dataset from which a reaction 

vector is derived. The reaction vector encodes the addition of 1-methyl imidazole to an 

imidazole ring with one of the aromatic nitrogen atoms in the 5-membered ring 

identified as the atom which is acted upon. As the reaction vector does not encode ring 

size it can also be applied to pyrimidine as shown in the bottom of the figure, even 

though this is a quite different reaction to that from which the reaction vector was 

derived. 
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Sample transformation 

 

Example of application 

 

Figure 8.10: An example of a transformation that can be incorrectly applied in the 

structure generator. (Wallace, 2015) 

An additional issue reported during the analysis of the products relates to the encoding 

of the environment of a reaction. In RVs and RSVs, the encoding is limited to bonds that 

are adjacent to those that are added or removed in the reaction. There is currently no 

support in the vector format for specifying the effects of electron withdrawing or 

donating groups which are more than one bond away from the reaction centre, or those 

that remain unchanged over the course of the reaction groups, thus preventing direct 

implementation of mesomeric effects or electron induction. The ARChem synthesis 

prediction tool (Johnson et al., 2008) attempts to resolve these problems by 

incorporating these additional environmental factors within its transformation rules 

database. However, these factors make the rules considerably more complex to 

generate than the RVs and RSVs, requiring considerable manual input.  

8.3 Comparison of RSVs and RVs for de novo design 

The previous RV method was designed to perform multi-objective de novo design 

(Gillet et al., 2014). This led to a number of issues, such as increased execution time and 

complexity relative to single reaction analyses, as well as the fact that the intermediate 

steps in such optimisation pathways may not score well in property evaluation 

methods. As a result, selection of the best pathways may be difficult to achieve, and 

X 
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potentially useful results may be discarded. As an RSV represents a pathway in its 

entirety, this problem can be effectively worked around utilising the new structure 

generation method. To compare the two approaches directly, a series of experiments 

was carried out using the inhibitor data sets from the Sutherland molecule collection, 

as described in Section 8.1. 

8.3.1 Single starting materials 

8.3.1.1 Angiotensin converting enzyme (Ace) inhibitors 

A simple multi-objective model was created using KNIME, consisting of three separate 

scores each of which is calculated on a continuous scale. As the SVM model used for the 

previous work was only available when working at the Lilly site, an alternative method 

was required to perform these experiments. The approach taken was to build a 

Bayesian model, using the existing Ace inhibitor set. Each molecule in the set was 

assigned as active or inactive based on its activity value, using the pIC50 value of 7.0 as a 

threshold; molecules at or above this threshold were classed as active and those below 

classed as inactive. 

Each molecule was then represented using structural fingerprints generated by the 

RDKit software (Landrum), with the model generated using the Bayesian 

implementation included within KNIME. In this method, each substructure fragment is 

assigned a weight based on the frequency with which it occurs in an active molecule 

relative to its frequency in inactives. For this implementation the fragment weighting 

method ‘R2’ was used with the individual weights for a fragment calculated by: 

𝑃𝑓𝑖𝑛𝑎𝑙(𝐴|𝑗) = 𝐴𝑗 + 1/ (𝑇𝑗
𝑁𝐴
𝑁𝑇

+ 1) 

Equation 8.1: Calculation of fragment weight for the Bayesian activity model. 

where 𝑇𝑗represents the total number of compounds in the training set containing the 

fragment j, 𝐴𝑗represents the number of these that are active, NA represents the total 

number of actives and NT represents the total number of compounds in the training set. 

When the model is applied to a test molecule (in this case generated by the de novo 

design tool) the sum of the log values of the weights for the fragments in the molecule 

gives a numerical value (referred to here as a Bayesian score) that represents the 

likelihood of the molecule being active, with higher values indicating a greater 

likelihood (Hert et al., 2006).   
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In addition to scoring using the Bayesian model, generated molecules were also scored 

on molecular weight and logP value. In the latter two cases, scores were assigned based 

on whether the molecule fits into the range of properties associated with drug-like 

molecules (Lipinski et al., 1997), namely molecular weight between 0.0 and 500 g mol-1, 

and predicted logP value between 0.0 and 5.0, as calculated using the RDKit library. For 

these properties, the value is converted into a numerical score: if the properties are 

within the range, the score is set to the maximum to indicate that the criterion has been 

satisfied. However, if the property is outside of the given range, the score is reduced pro 

rata based on the difference between the property value and the range boundaries. 

This is scaled such that the larger the difference between the property and the range 

boundary, the lower the score. The reduction is performed in such a manner as to treat 

being under or over the range equally.  

In order to compare the RV and RSV approaches directly, attempts at a full 

enumeration of solution space were carried out using each method, with the inhibitor 

from the Ace set with the lowest molecular weight used as the starting material (as 

shown in Figure 8.11). This has a pIC50 score of 2.96, suggesting that it is not 

particularly active itself, as it lacks the proline residue common to many inhibitors. The 

Bayesian model gives this molecule a Bayesian score of 0.92, which can be used to 

measure the relative performance of the RV and RSV approaches in terms of their 

ability to optimise the molecule. For the RSV case, the structure generation experiment 

was rerun in the same manner as in Section 8.2, using the JMCRoughley RSV database, 

representing sequences from one to eleven steps in length. The activity and molecular 

property values were used to give Pareto rankings to the entire population.  

In the RV case, a simple iterative loop was set up using the RVs from the JMCRoughley 

database. The unique products generated from the first experiment were used as the 

starting materials for the next iteration and so on using the same RVs, with eleven 

iterations attempted in order to match the range of sequence lengths in the RSV 

experiment. 

 

Figure 8.11: Starting material for the RV comparison experiment. (Sutherland et al., 

2004) 
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However, the RV experiment had to be abandoned after three iterations, as the full 

enumeration of the products became too large to process. For the first generation, 890 

products were generated, which led to 357,972 for the second generation, and 816,925 

for the third generation. As the number of molecules increases, the execution time for 

each iteration increases dramatically, with the second iteration taking over 24 hours to 

complete on the i7 Linux workstation (running Red Hat 6.4, with eight cores running at 

3.40 GHz and 16 Gb of available memory) running KNIME, and the third iteration taking 

36 hours. From this, it is clear that a complete enumeration of the solution space for an 

inhibitor set using RVs would be impossible.  

In order to produce a meaningful set of results, a revised RV experiment used an 

optimisation and sampling method in order to limit the number of products generated. 

This is based on a multi-objective optimisation approach, as previously discussed in 

Section 3.2.5.3. An initial population of results is generated from the given starting 

material as before, with each result molecule scored, with the best results used as 

starting materials to produce a further generation. In this case, each iteration utilises a 

sampling method based on tournament selection, rather than enumerating all of the 

possibilities. In the tournament selection process, a number of molecules from the 

starting population are selected at random from the pool, according to the specified 

tournament size. From this subset, the highest scoring molecule according to the fitness 

criteria (a particular property for example, or the Pareto ranking) is selected to use as 

the input molecule for RV application. A randomly selected RV is then chosen from 

those applicable to this molecule and used to generate a new product. This process of 

tournament selection and RV application was repeated until a new population of 

molecules was produced that is equal to the required population size (in this case, as 

close to 200 molecules as is possible). A KNIME workflow for this process is shown in 

Figure 8.12. Careful selection of the size of the tournaments is required to ensure good 

result quality. If the tournament size is too large, it is likely that the selection will 

become elitist, as the best scoring molecules are more likely to be selected multiple 

times. Similarly, a sampling frame that is too small will not adequately explore the 

solution space, leading to wide variations in the data between runs and a lack of 

reproducibility.  

In this instance, the first step for the tournament-based optimisation process consisted 

of a full enumeration of all products using the same single starting material as input 

and all applicable RVs from the 26,235 reactions (including the reagent data) in the 
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JMCRoughley set. This resulted in 890 molecules, as before. These molecules were then 

scored, firstly only using the Bayesian scores, with the 200 best molecules selected as 

starting materials for the tournament selection processes. A series of experiments was 

carried out to determine the optimal tournament size, with this varied from five 

molecules up to 175 molecules with three iterations carried out. Three complete runs 

were carried out for each tournament size and results are reported for the run which 

produced the molecule with highest Bayesian score. Between individual runs, the 

highest Bayesian scores were largely consistent, with relatively low degrees of 

deviation. The data for all of the repeated runs is shown in Appendix C.1.1, Table C-1. 

As the RV approach in this case is based on a single objective optimisation rather than 

Pareto ranking, it is possible to make comparisons between the RV and RSV approaches 

by sorting the generated molecules on activity. The results are summarised in Table 

8.4. For each experiment, the number of unique molecules produced is listed, as well as 

the ranges of the molecular properties observed. For the RSV case, the results are 

presented based on the lengths of sequences used, between one and eleven steps. For 

example, RSV 1-3 represents the results from RSVs representing sequences between 

one and three steps in length, and is therefore equivalent to the number of iterations 

used in the tournament selection method.  

While none of the sampling methods (either in the RV or RSV cases) match the full 

enumeration of the RV database in terms of the highest Bayesian score, the tournament 

selection method is an effective approach to find high Bayesian scoring molecules with 

a short execution time (taking an average of 15 minutes to complete each run, on the i7 

workstation). Both of the methods using RVs (full enumeration and tournament 

sampling) perform better at finding high Bayesian scoring molecules. However, a 

significant proportion of these results have higher molecular weight and logP values 

than would be considered drug-like, leaving these unsuitable for therapeutic use.  
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Sampling 
experiment 

Number 
of 

products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range / 
g mol-1 

LogP range 

Full RV enumeration 

(3 generations) 
816,925 23.95 -1.78 to 23.95 242 to 2,026 -1.81 to 24.19 

Tournament size 5 200 10.87 -8.32 to 10.87 236 to 1,166 0.78 to 14.58 

Tournament size 75 200 10.51 -9.63 to 10.51 254 to 1,118 2.17 to 14.36 

Tournament size 150 200 8.43 -8.71 to 8.43 260 to 810 1.63 to 9.69 

Tournament size 10 200 7.71 -8.05 to 7.71 239 to 1,062 0.98 to 14.51 

Tournament size 20 200 7.66 -8.29 to 7.66 240 to 958 0.67 to 12.18 

Tournament size 30 200 6.79 -7.92 to 6.79 240 to 1,233 1.50 to 18.46 

Tournament size 100 200 6.64 -8.71 to 6.64 260 to 1,117 1.63 to 14.36 

Tournament size 15 200 6.51 -8.50 to 6.51 268 to 1,289 0.81 to 15.90 

Tournament size 50 200 6.15 -9.14 to 6.15 284 to 1,327 0.67 to 16.17 

RSV 1-2 178 5.88 -13.42 to 5.88 172 to 1,235 -0.66 to 15.48 

RSV 1-3 239 5.88 -13.42 to 5.88 120 to 1,235 -0.66 to 15.48 

RSV 1-4 243 5.88 -13.42 to 5.88 120 to 1,235 -0.66 to 15.48 

RSV 1-5 244 5.88 -13.42 to 5.88 120 to 1,235 -0.66 to 15.48 

RSV 1-6 246 5.88 -13.42 to 5.88 120 to 1,235 -0.66 to 15.48 

Table 8.4: Summary of Bayesian scores for RV enumeration, tournament selection and 

RSV approach. The results from RSV 1-6 to RSV 1-11 are identical, and so have been 

omitted. 

It should be noted that, for each experiment there is a large improvement over the 

starting material in terms of Bayesian score, as this had a value of 0.92. However, in the 

sampling experiments there are a number of results with much lower Bayesian scores 

than the starting material. This is particularly the case with the RSV experiments, 

where there are significant deviations from the molecule scaffold. The fact that so few 

compounds are produced via the RSV enumeration as opposed to the RV approach 

shows the limitations of the solution space available, when transformations are 

restricted to sequences. However, the experiments still produce good results in terms 

of Bayesian scores relative to the starting material. 

In order to determine how many drug-like molecules are found by each method, the 

results were filtered by removing any molecule with a molecular weight over  

500g mol-1 or a logP value greater than 5. This alters the relative ranking of 

experiments slightly, as illustrated in Table 8.5, but the general trends in Bayesian 
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scores are still observed in that the Bayesian scores are higher for the full RV 

enumeration, with tournament selection outperforming the RSV method.  
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Figure 8.12: KNIME workflow for the tournament selection process. 
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Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW 
range / g 

mol-1 
LogP range 

Full RV enumeration 

(3 generations) 
1,901 17.63 2.95 to 17.63 242 to 499 -0.21 to 5.00 

Tournament size 5 52 6.03 -7.93 to 6.03 273 to 498 0.96 to 4.99 

Tournament size 75 33 5.72 -9.23 to 5.72 254 to 490 2.17 to 4.87 

Tournament size 150 22 5.72 -8.71 to 5.72 260 to 474 0.94 to 4.85 

Tournament size 100 90 5.39 -8.71 to 5.39 260 to 489 1.63 to 4.72 

Tournament size 50 50 5.45 -5.88 to 5.45 284 to 497 0.67 to 4.96 

Tournament size 10 60 5.16 -6.70 to 5.16 280 to 499 1.59 to 4.99 

Tournament size 15 66 4.86 -8.50 to 4.86 268 to 497 0.81 to 4.98 

Tournament size 20 69 4.41 -8.29 to 4.41 240 to 496 0.67 to 4.97 

Tournament size 30 69 4.41 -7.93 to 4.41 240 to 491 1.51 to 4.94 

Tournament size 175 97 3.75 -8.71 to 3.75 259 to 469 0.84 to 4.59 

RSV 1-2 131 2.07 -13.42 to 2.07 172 to 495 -0.66 to 4.96 

RSV 1-3 189 2.07 -13.42 to 2.07 120 to 495 -0.66 to 4.96 

RSV 1-4 194 2.07 -13.42 to 2.07 120 to 495 -0.66 to 4.96 

RSV 1-5 195 2.07 -13.42 to 2.07 120 to 495 -0.66 to 4.96 

RSV 1-6 200 2.07 -13.42 to 2.07 120 to 495 -0.66 to 4.96 

Table 8.5: Summary of Bayesian scores for RV enumeration, tournament selection and 

RSV approach, filtered for drug-likeness. The results from RSV 1-6 to RSV 1-11 are 

identical, so only RSV 1-6 is shown. 

Comparing these values with Table 8.4 shows that the vast majority of molecules 

produced in the full enumeration are non-drug-like, indicating that the vast proportion 

of the time spent on exploring the solution space leads to the generation of unusable 

products. Drug-like compounds with Bayesian scores for each method (RV 

enumeration, tournament selection and RSV methods) are shown in Tables 8.6, 8.7 and 

8.8 respectively.  
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RV enumeration 

Structure (common inhibitor scaffold highlighted) LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

 

4.85 485 17.63 

 

4.85 485 16.60 

 

3.75 476 15.38 

 
Table 8.6: Drug-like compounds with highest Bayesian scores from the RV enumeration 

method for the initial Ace experiment (sorted by predicted activity). (Wallace, 2015) 
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Tournament selection 

Structure (common inhibitor scaffold highlighted) LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

 

4.36 404 5.58 

 

1.25 389 4.26 

 

4.92 465 3.84 

 
Table 8.7: Drug-like compounds with highest Bayesian score produced from 

tournament selection for the initial Ace experiment (sorted by activity). (Wallace, 

2015) 
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RSV enumeration 

Structure (common inhibitor scaffold highlighted) LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

 

4.60 451 2.07 

 

3.20 365 1.82 

 

3.81 384 0.71 

 
Table 8.8: Drug-like compounds with highest Bayesian score produced from RSV 

enumeration for the initial Ace experiment (sorted by activity). (Wallace, 2015) 

After the initial study, scoring based on the molecular weight and logP values for the 

molecules were added, turning the method into a multi-objective optimisation. As 

discussed previously, the scores for these are based on how well the molecules fit into 

the range of drug-likeness parameters, with the three scores used to build a Pareto 

rank used to evaluate the results. In addition, Pareto ranking is used when choosing 

between candidates in the tournament selection method. In theory, by adding these 

parameters to the scoring, the results of the sampling experiments will favour the 

formation of compounds that are more drug-like, improving result quality. The 

complete results for this experiment are presented in Appendix C.1.2, Table C-2, and 

summarised in Table 8.9. As the scoring of the results of the RV enumeration occurs 

independently of the sampling, the overall results are unaffected, and so are not 

duplicated. However, it should be noted that the tournament selection results are 

different to the previous experiment, due to the difference in scoring function and the 

random nature of the sampling process. The best drug-like molecules (according to the 

Pareto ranking) for the RV enumeration and tournament selection methods are 
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illustrated in Table 8.10 and 8.11. Again, the best results for the RSV enumeration are 

identical to those for the activity only case shown in Table 8.8 and so they are not 

duplicated here. As only drug-like results are shown, sorting by Pareto rank in this 

instance is effectively the same as sorting by Bayesian score, as the other two 

parameters are guaranteed to be in range.  

As expected, the use of the Lipinski parameters for scoring has resulted in a larger 

proportion of the results being drug-like, in comparison to scoring solely by Bayesian 

score. However, the molecules with the highest Bayesian scores for the tournament 

selection method are identical to those shown in Table 8.7, with the total number of 

drug-like compounds remaining relatively low. Looking at the Pareto rankings, 64 

molecules from the full RV enumeration are part of the non-dominated front, compared 

with 5 in the RSV case. When filtered for drug-likeness each of the molecules with the 

highest Bayesian score was assigned to a unique Pareto front. It should be noted that 

only results for tournament sizes between five and fifteen are shown here, as larger 

tournament sizes did not produce any noticeable increases in drug-like molecules with 

high Bayesian score. In addition, while a tournament size of five produces the molecule 

with the highest Bayesian score, a tournament size of fifteen actually produces more 

molecules designated as drug-like.  

Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW 
range / 
g mol-1 

LogP range 

Full RV enumeration 
(3 generations) 

816,925 23.95 -1.78 to 23.95 
242 to 
2,026 

-1.81 to 24.19 

Tournament size 5 200 10.35 -6.54 to 10.35 
204 to 
1,211 

1.15 to 16.74 

Tournament size 5 
(drug-like 

compounds) 
49 7.59 -1.69 to 7.59 

281 to 
492 

1.28 to 4.92 

Tournament size 10 200 7.41 -10.33 to 7.41 
240 to 
1,019 

1.55 to 12.50 

Tournament size 10 
(drug-like 

compounds) 
57 5.86 -7.12 to 5.86 

307 to 
499 

0.67 to 4.82 

Tournament size 15 200 7.36 -3.46 to 7.36 
217 to 
1,390 

-0.03 to 12.38 

Tournament size 15 
(drug-like 

compounds) 
65 4.82 -3.46 to 4.82 

217 to 
499 

0.23 to 4.97 

Table 8.9: Summary of the best performing runs of the structure generation using the 

lightest Ace inhibitor as the starting material, using Pareto ranking. 
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RV enumeration 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

2.93 416 4.91 1 

 

4.73 485 4.68 2 

 

3.56 469 4.26 3 

Table 8.10: Drug-like compounds with highest Bayesian score from the RV 

enumeration method for the revised Ace experiment (sorted by Pareto ranking). 

(Wallace, 2015) 

Tournament selection 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

3.77 450 7.59 1 

 

3.80 323 4.35 2 

 

3.91 386 4.24 3 

Table 8.11: Drug-like compounds with highest Bayesian score from the tournament 

selection method for the revised Ace experiment (sorted by Pareto ranking). (Wallace, 

2015) 
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Searching for the highest Bayesian scoring drug-like compounds in each case in 

SciFinder did not return any data on the specific molecules, but many of the results 

contain scaffolds common to Ace inhibitors, as seen with the initial starting material 

and discussed in Section 8.1. As in the previous study, these results have structures 

similar to amino acids such as L-Leucine, which are known to be effective Angiotensin I 

inhibitors, although they do not contain any direct amino acid functionality, such as 

proline scaffolds. 

As the results from each tournament size represent the best performing run out of 

three repetitions, an understanding of the degree of reproducibility can be determined 

through statistical comparisons of these repetitions. The results for this analysis are 

shown in Table 8.12. 

Tournament 
size 

Mean  

(Highest Bayesian 
score) 

Standard Deviation  

(Highest Bayesian score) 

Variance  

(Highest Bayesian 
score) 

5 8.81 1.41 1.98 

10 6.84 0.85 0.72 

15 6.48 1.01 1.02 

Table 8.12: Summary of statistical analysis of the tournament selection method for the 

revised Ace experiment. 

Considering the mean values for the Bayesian score alone, it can be seen that the same 

relative relationship between tournament size and Bayesian score is present as with 

the consideration of the highest Bayesian score alone, with the smaller sizes producing 

a higher overall value. As with the highest Bayesian score data, there is little to 

distinguish the results for the tournament sizes of ten and fifteen in terms of the mean 

Bayesian score. However, looking at the variance and standard deviation (indicating 

the degree of spread around the mean value), it appears that the tournament size of ten 

shows lower variance in the data over the runs, with the tournament size of fifteen 

showing a smaller spread than the tournament size of five. While larger tournament 

sizes are more likely to select the same high performing molecules repeatedly, it is 

unlikely that this elitism leads to the smaller spread of results in this case. It is more 

likely that the mean Bayesian scores for the tournament size of five is due to high 

performing outliers, skewing the distribution towards higher scores. In the other two 
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cases, these outliers do not exist, and the two activity distributions are closer in nature. 

To see if these trends hold for other examples, further studies would be needed. 

Alternative starting materials 

In order to determine if optimal tournament sizes identified above are suitable for use 

in other examples, the structure generation experiment was repeated with a second 

molecule from the Ace set as starting material. The second lowest molecular weight 

compound (illustrated in Figure 8.13) was chosen which has a pIC50 value of 5.62, 

making it more active than the previous starting material, but still below the activity 

threshold itself. The Bayesian score in this case is 2.00, which is higher than the 

previous starting material. The same Pareto ranking scoring system was used to 

evaluate the results, which are summarised in Table 8.13, with the molecules with 

highest Bayesian score illustrated in Table 8.14, Table 8.15 and Table 8.16. 

 

Figure 8.13: Second lightest molecule in the Ace inhibitor set. (Sutherland et al., 2004, 

Wallace, 2015) 

In these results, there are fewer products generated than in the previous experiment. 

While the difference between the two starting materials is very small (an additional 

carbonyl group), it significantly reduces the number of unique compounds that can be 

created by disrupting the straight carbon chain, leading to a smaller set of unique 

results. (As reported previously (Table 6.8) a long alkyl chain such as that in the first 

Ace inhibitor can result in a large number of products.) For this particular starting 

material, the larger tournament size produces the most active molecule, in contrast to 

the first Ace inhibitor studied. As before, each experiment produces results with 

Bayesian scores higher than the starting material, but with some molecules in each 

collection representing a significant backwards step. It should be noted that the RSV 

sampling experiments do not produce any drug-like compounds with comparable 

Bayesian scores to the starting materials, and the full RV enumeration gives the best 

results. 



 

 

216 

Sampling 
experiment 

Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW 
range / g 

mol-1 
LogP range 

Full RV enumeration 
(3 generations) 

361,081 14.84 -5.84 to 14.84 
119 to 
1,585 

-3.51 to 19.36 

Full RV enumeration 
(drug-like 

compounds) 
190,356 10.14 -5.29 to 10.14 

119 to 
499 

-2.51 to 5.00 

Tournament size 15 200 9.44 -1.39 to 9.44 
268 to 
1,125 

1.39 to 15.00 

Tournament size 15 
(drug-like 

compounds) 
66 6.55 -0.79 to 6.55 

293 to 
495 

0.19 to 4.85 

Tournament size 10 200 8.56 -0.96 to 8.56 
292 to 
1,276 

0.68 to 15.02 

Tournament size 10 
(drug-like 

compounds) 
52 7.92 -0.72 to 7.92 

314 to 
490 

0.06 to 4.87 

Tournament size 5 200 8.03 -10.08 to 8.03 
308 to 
1,123 

-0.95 to 11.93 

Tournament size 5 
(drug-like 

compounds) 
63 4.88 -7.62 to 4.88 

308 to 
499 

0.12 to 4.91 

RSV 1-2 165 4.13 -15.53 to 4.13 
175 to 
1,248 

-1.48 to 14.66 

RSV 1-2 
(drug-like 

compounds) 
127 -0.04 -15.53 to -0.04 

186 to 
478 

0.09 to 4.88 

RSV 1-3 225 4.13 -15.53 to 4.13 
134 to 
1,248 

-1.48 to 14.66 

RSV 1-3 
(drug-like 

compounds) 
180 -0.04 -15.53 to -0.04 

134 to 
483 

0.09 to 4.88 

RSV 1-4 229 4.13 -15.53 to 4.13 
134 to 
1,248 

-1.48 to 14.66 

RSV 1-4 
(drug-like 

compounds) 
184 -0.04 -15.53 to -0.04 

134 to 
483 

0.09 to 4.88 

RSV 1-5 & RSV 1-6 230 4.13 -15.53 to 4.13 
134 to 
1,248 

-1.48 to 14.66 

RSV 1-5 & RSV 1-6 
(drug-like 

compounds) 
185 -0.04 -15.53 to -0.04 

134 to 
483 

0.09 to 4.88 

RSV 1-7 232 4.13 -15.53 to 4.13 
134 to 
1,248 

-1.48 to 14.66 

RSV 1-7 (drug-like 
compounds) 

185 -0.04 -15.53 to -0.04 
134 to 

483 
0.09 to 4.88 

Table 8.13: Summary of the best performing runs of the structure generation for the 

second lightest Ace inhibitor, using Pareto ranking. The results from RSV 1-7 to RSV 1-

11 are identical, duplicates are omitted. 
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RV enumeration 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

2.35 453 10.14 1 

 

4.86 460 9.66 2 

 

3.64 496 9.50 3 

Table 8.14: Drug-like compounds with highest Bayesian score from the RV 

enumeration method from the second lightest Ace inhibitor (sorted by Pareto ranking). 

(Wallace, 2015) 

Tournament selection 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight  / 

g mol-1 

Bayesian 
score 

Pareto 
Ranking 

  

3.25 359 6.11 1 

 

3.34 327 5.74 2 

 

3.49 432 5.29 2 

Table 8.15: Drug-like compounds with highest Bayesian score from the tournament 

selection method from the second lightest Ace inhibitor (sorted by Pareto ranking). 

(Wallace, 2015) 
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RSV enumeration 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

3.78 465 -0.04 1 

 

2.25 321 -0.16 2 

 

2.38 379 -0.29 3 

Table 8.16: Drug-like compounds with highest Bayesian score from the RSV 

enumeration method from the second lightest Ace inhibitor (sorted by Pareto ranking). 

(Wallace, 2015) 

Both the RV and RSV methods produce the same category of amino acid derivatives 

known to be Ace inhibitors. A search in SciFinder for the molecules with highest 

Bayesian scores does not reveal any specific literature activity data for any of these 

molecules. In the RV enumeration, a second compound class is seen among the results, 

with considerably higher Bayesian scores. These are molecules containing 

methanamine (methylammonium) groups, which are known to be strong angiotensin II 

receptor antagonists when combined with the typical Ace inhibitor scaffolds already 

discussed (Bessa Belmunt, 2008).  

Looking at the Pareto rankings for the full results of each experiment, 18 molecules 

from the RV enumeration are not dominated, as opposed to three in the RSV case. In 

general, the additional molecules seen in the RV enumeration on this front are those 

with high molecular weights and logP values well outside of the desired range. In these 

situations, the very high Bayesian activity scores are balanced by the penalties due to 

the non-drug-like structural parameters.  
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A tournament size of fifteen appears to give the best results in terms of quality and 

highest Bayesian scores, which is very different to the previous example, where smaller 

sizes were better. As before, a statistical analysis of the individual runs shows that the 

larger tournament sizes show a lower degree of variance between runs, but with a 

higher peak and mean Bayesian score. These results are summarised in Table 8.17. 

Given the relative speed at which the sampling experiments can be conducted, it would 

be possible to run a number of experiments with these different parameters and choose 

the best results as appropriate, although larger sizes appear to be superior. In this case, 

the best for both starting materials tournament sizes of ten or fifteen would be 

appropriate, as they have the best compromise between predicted activity and result 

reproducibility. 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 6.12 1.66 2.77 

10 8.26 0.32 0.10 

15 8.51 0.82 0.67 

Table 8.17: Summary of statistical analysis of the tournament selection method for the 

revised Ace experiment (second starting material). 

It should be noted that for each starting material, the tournament selection using RVs 

provide results superior to those determined by RSV enumeration in terms of the 

Bayesian scores. The molecules with the best Pareto rank produced via the RSV method 

in these cases have small, negative Bayesian scores, suggesting that they are highly 

unlikely to be active. While compounds with positive Bayesian scores exist in the data 

set, these are associated with non-drug-like properties. On the other hand, the RV-

based methods produce drug-like molecules that have high Bayesian scores, making RV 

enumeration or sampling better approaches. Given that the main difference between 

the RV and the RSV method is the restriction of the latter to previously established 

sequences, this implies that the limited diversity in the collection of transformations in 

the RSV database leads to the lack of high Bayesian scoring compounds. In addition, 

although sequences from two to eleven steps in length were used, the molecules with 

highest Bayesian scores come from the sequences between two and five steps in length. 

It is therefore unlikely that long reaction sequences will be of benefit when generating 

drug-like molecules from these simple start points.  
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8.3.1.2 Benzodiazepine receptors (Bzr) inhibitors 

The performance of the RSVs was then compared with RVs for the benzodiazepine 

inhibitors using an appropriate Bayesian model for likelihood of activity. The starting 

molecule was the lowest molecular weight molecule in the set. Summary results are 

presented below with additional results in Appendix C.2, Table C-3.  

The Bzr inhibitor set (Figure 8.14, pIC50 value of 6.46) shows the same trends as the 

Ace inhibitors, but with lower Bayesian scores overall. The starting material in this case 

is below the suggested threshold for activity for the class (pIC50 = 7.52, Bayesian score = 

-4.82), and consists of a simple benzodiazepine scaffold. Summary results are given in 

Table 8.18, with the molecules with the highest Bayesian scores shown in Table 8.19, 

Table 8.20 and Table 8.21. These scores indicate that the majority of produced 

molecules are not likely to be active, much like the starting material itself, with the 

tournament selection approach providing the only molecule with a positive Bayesian 

score outside of the full RV enumeration. However, each experiment does give results 

with significant improvements over the starting material in terms of predicted activity. 

It should also be noted that the results of the RV enumeration bear little resemblance to 

the benzodiazepine starting material, suggesting that those features associated with 

higher scores in the model may not be the key features of the benzodiazepine scaffold. 

 

Figure 8.14: Lowest molecular weight molecule in the Bzr inhibitor set. (Sutherland et 

al., 2004) 

In this case, the training set contains molecules that exhibit two different mechanisms 

for inhibition – the more selective inhibitors and the traditional benzodiazepines. The 

more selective compounds have higher Bayesian scores than the original 

benzodiazepines, and represent a considerable proportion of the active class in the 

training set. This leads to higher weights being associated with the fragments from 

these molecules (including functionalised piperidines and pyridines) in the Bayesian 

model, with fragments derived from the original benzodiazepines scoring considerably 

lower. As a consequence, generated molecules that resemble the benzodiazepines have 

relatively low Bayesian scores, despite the fact that benzodiazepines have reported 
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activity in this class. As with the Ace inhibitor data set, the smallest tournament size 

gives results with the highest Bayesian score, but a tournament size of ten gives the 

smallest variance. 

Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range / 
g mol-1 

LogP range 

Full RV enumeration 
(3 generations) 

2,026,928 1.67 -13.80 to 1.67 
251 to 
1,900 

-2.23 to 21.76 

Full RV  enumeration 
(drug-like 

compounds) 
245,035 1.31 -12.24 to 1.31 

251 to 
499 

-1.40 to 5.00 

Tournament size 5 176 0.30 -8.94 to 0.30 
322 to 
1,027 

0.15 to 11.77 

Tournament size 5 
(drug-like 

compounds) 
44 -1.98 -8.10 to -1.98 

322 to 
499 

0.15 to 4.87 

Tournament size 10 178 -1.13 -9.76 to -1.13 
348 to 
1,173 

-0.49 to 14.47 

Tournament size 10 
(drug-like 

compounds) 
27 -2.47 -8.05 to -2.47 

348 to 
498 

0.49 to 4.94 

Tournament size 15 181 -1.31 -9.63 to -1.31 
322 to 
1,180 

0.39 to 13.58 

Tournament size 15 
(drug-like 

compounds) 
38 -1.20 -7.31 to -1.20 

322 to 
496 

0.39 to 4.77 

RSV 1-2 
 

3,123 -0.88 -8.33 to -0.88 
249 to 
1,332 

1.09 to 13.85 

RSV 1-2 
(drug-like 

compounds) 
373 -1.96 -6.88 to -1.96 

249 to 
499 

1.09 to 4.99 

RSV 1-3 3,189 -0.03 -8.33 to -0.03 
249 to 
1,332 

1.09 to 13.85 

RSV 1-3 
(drug-like 

compounds) 
417 -0.03 -7.03 to -0.03 

249 to 
499 

1.09 to 4.99 

RSV 1-4 3,210 -0.03 -8.33 to -0.03 
249 to 
1,332 

1.09 to 13.85 

RSV 1-4 
(drug-like 

compounds) 
427 -0.03 -7.03 to -0.03 

249 to 
499 

1.09 to 4.99 

RSV 1-5 3,280 -0.03 -8.33 to -0.03 
249 to 
1,332 

1.09 to 13.85 

RSV 1-5 
(drug-like 

compounds) 
461 -0.03 -7.03 to -0.03 

249 to 
499 

1.09 to 4.99 

Table 8.18: Summary of the best performing runs of the structure generation for the 

lowest molecular weight Bzr inhibitor, using Pareto ranking. The results from RSV 1-5 

to RSV 1-11 are identical, and so only RSV 1-5 is shown. 
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RV enumeration 

Structure LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

2.27 161 1.31 1 

 

4.19 410 1.07 2 

 

4.35 325 0.72 3 

Table 8.19: Drug-like compounds with the highest Bayesian score from the RV 

enumeration method for the Bzr experiment (sorted by Pareto ranking). (Wallace, 

2015) 
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Tournament selection 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

2.25 449 -1.98 1 

 

4.44 376 -2.62 2 

 

2.90 479 -2.69 3 

Table 8.20: Drug-like compounds with the highest Bayesian score from the tournament 

selection method for the Bzr experiment (sorted by Pareto ranking). (Wallace, 2015) 
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RSV enumeration 

Structure (common inhibitor 
scaffold highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

4.86 441 -1.73 1 

 

4.85 482 -1.96 2 

 

4.25 391 -2.00 3 

Table 8.21: Drug-like compounds with the highest Bayesian score from the RSV 

enumeration method for the Bzr experiment (sorted by Pareto ranking). (Wallace, 

2015) 

Looking at the Pareto rankings for the generated molecules, there are six molecules in 

the full RV enumeration that are part of the non-dominated front, compared with two 

in the RSV case. Searching the SciFinder database for the 20 compounds identified as 

having the highest Bayesian scores in each case did not return specific entries for any of 

them. The RSV and tournament selection methods generate products that are closer to 

benzodiazepines in structure, while the full RV enumeration also includes 

functionalised 4-pyridines and 4-piperidines with scaffolds very similar to known 

drugs. These latter compounds have been reported as more selective benzodiazepine 

receptor analogues, used for the treatment of migraines (Burgey et al., 2006).  

Overall, the RSV approach and tournament selection produce collections of drug-like 

molecules that are predicted to be highly unlikely to be active, albeit with scores above 

that of the starting material. This appears to be due to a limitation of the Bayesian 

model when dealing with multiple chemical classes. In these cases, as weights are 
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assigned to the structural fragments from the whole training set, confidence values are 

generally reduced as molecules that rely on one class will not have the features 

associated with the other. This affects the tournament selection method more than the 

RSV approach, as the lower scores compromise the selection of candidates for 

optimisation. However, the limit to using existing sequences in the RSV method reduces 

the amount of solution space that can be accessed; hence the lack of active results in 

this case. 

8.3.1.3 Cyclooxygenase-2 (Cox-2) inhibitors 

The Cox-2 inhibitor used as the starting material in this experiment is shown in Figure 

8.15, with the results presented in Appendix C.3, Table C-4 and summarised in Table 

8.22. This starting material has a pIC50 score of 7.22, above the activity threshold for the 

Bayesian model, which is set at 6.0. However, the Bayesian score for the starting 

material is -1.77, as there are few active examples in the data set, leading to lower 

confidence values for the model. This means that, in this case, when comparing the 

results of the sampling experiments, results with low negative scores may still be 

active. The molecules with the highest Bayesian score are shown in Table 8.23, Table 

8.24 and Table 8.25. Unlike the other examples, while a tournament size of 10 gives the 

result with the highest Bayesian score, there is a significant variance in the data set. 

Considering mean peak Bayesian scores over the relevant runs, a tournament size of 

five gives more consistent results (a smaller variance), but these have lower scores 

than the products of the RV or RSV enumerations. For the tournament size of fifteen, all 

of the results have lower Bayesian scores than the starting material, indicating that in 

this case the optimisation has not been successful. 

 

Figure 8.15: Lowest molecular weight molecule in the Cox-2 inhibitor set. (Sutherland 

et al., 2004) 
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Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW 
range / g 

mol-1 
LogP range 

RV (full 
enumeration, 3 

generations) 
276,820 1.61 -12.78 to 1.61 

317 to 
1,959 

-0.41 to 23.38 

RV (drug-like 
compounds only) 

2,925 0.39 -8.20 to 0.39 
317 to 

499 
1.36 to 5.00 

Tournament size 10 125 -1.17 -11.43 to -1.17 
403 to 
1,107 

3.31 to 13.40 

Tournament size 10 
(drug-like 

compounds only) 
5 -1.17 -4.07 to -1.17 

403 to 
445 

3.32 to 4.64 

Tournament size 5 121 -1.27 -10.03 to -1.27 
447 to 
1,058 

2.86 to 11.73 

Tournament size 5 
(drug-like 

compounds only) 
7 -1.27 -6.20 to -1.27 

447 to 
484 

3.84 to 4.61 

Tournament size 15 122 -2.47 -11.37 to -2.47 
430 to 
1,173 

2.42 to 12.24 

Tournament size 15 
(drug-like 

compounds only) 
5 -2.87 -7.03 to -2.87 

430 to 
494 

4.64 to 4.87 

RSV 1-2 3,101 0.29 -13.19 to 0.29 
326 to 
1,407 

2.47 to 15.23 

RSV 1-2 (drug-like 
compounds only) 

44 0.01 -5.19 to 0.01 
326 to 

499 
2.47 to 4.98 

RSV 1-3 3,163 0.29 -13.19 to 0.29 
326 to 
1,407 

2.47 to 15.23 

RSV 1-3 (drug-like 
compounds only) 

52 0.01 -5.19 to 0.01 
326 to 

499 
2.47 to 4.98 

RSV 1-4 3,184 0.29 -13.19 to 0.29 
326 to 
1,407 

2.47 to 15.23 

RSV 1-4 (drug-like 
compounds only) 

59 0.01 -5.19 to 0.01 
326 to 

499 
2.47 to 4.98 

RSV 1-5 3,254 0.29 -13.19 to 0.29 
326 to 
1,407 

2.47 to 15.23 

RSV 1-5 (drug-like 
compounds only) 

62 0.01 -5.19 to 0.01 
326 to 

499 
2.47 to 4.98 

Table 8.22: Summary of the best performing runs of the structure generation for the 

lowest molecular weight Cox-2 inhibitor, using Pareto ranking. The results from RSV 1-

5 to RSV 1-11 are identical, and so only RSV 1-5 is shown. 
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RV enumeration 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

4.94 459 0.39 1 

 

4.57 485 0.38 2 

 

4.18 438 0.21 3 

Table 8.23: Drug-like compounds with the highest Bayesian score from the RV 

enumeration method for the Cox-2 experiment (sorted by Pareto ranking). (Wallace, 

2015) 
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Tournament selection 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

4.72 419 -1.10 1 

 

3.32 418 -1.17 2 

 

4.61 484 -1.35 3 

Table 8.24: Drug-like compounds with the highest Bayesian score from the tournament 

selection method for the Cox-2 experiment (sorted by Pareto ranking). (Wallace, 2015) 
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RSV enumeration 

Structure (common inhibitor scaffold 
highlighted) 

LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

3. 37 391 0.07 1 

 

3.31 394 0.06 2 

 

2.61 458 0.05 3 

Table 8.25: Drug-like compounds with the highest Bayesian score from the RSV 

enumeration method for the Cox-2 experiment (sorted by Pareto ranking). (Wallace, 

2015) 

The non-dominated Pareto fronts for the RV and RSV enumeration experiments are 

very similar, containing 12 and 15 molecules respectively. However, the results from 

the RSV approach are more drug-like, with smaller molecular weight and logP values 

than the equivalents in the RV case. Unusually, the tournament selection approach is 

outperformed by the RSV enumeration in terms of Bayesian scores in this case, with 

few drug-like compounds with positive Bayesian score generated overall. This is partly 

due to the model. As the starting material used is already highly active, but perceived 

by the model as having a low likelihood of activity, transformations performed on it to 

produce the initial population of results can distort the scaffold and lead to lower 

Bayesian scores. This leads to similar problems with scoring as seen with the Bzr case, 
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affecting the RV tournament selection method. It should be noted that the most active 

molecules in each group all possess the functionalised pyrrole scaffold associated with 

the literature examples of Cox-2 inhibitors. As with the previous classes, none of the 

highest scoring structures for each experiment are identified specifically as known 

inhibitors, with SciFinder containing no specific records for any of these results. 

8.3.1.4 General trends in RV and RSV usage 

Similar experiments to the ones summarised above were carried out for the 

Dihydrofolate reductase, Gpb and Thermolysin inhibitor classes in the Sutherland set. 

These generally followed the same trends as the others regarding the relative 

performance of the RV and RSV methods, with the RV enumeration and tournament 

selection producing molecules with higher scores than the RSV enumeration methods. 

The data for these runs are included in Appendix C, Sections C.4, C.5 and C.6. In all 

cases, molecules were generated that had higher Bayesian scores than the relevant 

starting material. For the RSVs, in the vast majority of cases, despite having sequences 

between two and eleven steps in length, the best results come from two or three step 

sequences. Given that many of the starting materials are active inhibitors in their own 

right, very few transformation steps are required to make changes in the predicted 

likelihood of activity through simple scaffold modification. In addition, as further 

reactions are performed on the molecule, any potential increases in Bayesian score are 

negated by increases in molecular weight and scaffold distortion, making the results 

less drug-like and potentially affecting the overall score. Although the shorter 

sequences were most effective in these cases, this trend may not be true if starting from 

typical reagents such as those in Section 6.3.3, where longer sequences may be of 

benefit due to the small sizes of the reagents. 

Of particular interest is that fact that, in these examples, the RV approaches outperform 

the RSVs in terms of the likelihood of activity, in all but one case. This exposes a 

limitation of the RSV process, namely the restriction on chemical diversity that can be 

achieved. As all RSVs are generated from connected paths in the reaction network, the 

potential combinations of transformations that can be used is restricted to those that 

are known to directly follow on from one another, or operate on the same molecule. 

While RSVs can be applied iteratively, this has a negative effect on the accessibility of 

the method, as the combination of multiple unconnected reaction pathways makes 

planning the resulting synthesis more difficult. On the other hand, for the RV 

enumeration, each step operates independently of the previous steps, with the only 
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limitation being the applicability checks for individual vectors. While the restriction of 

diversity is a limitation of the RSV approach, it is also an integral part of its design. By 

limiting the combinations of reactions to those that have a real world synthetic 

precedent, this increases the likelihood of a molecule generated from RSV application 

being synthetically accessible. When combining random reactions, such as in the RV 

method, no consideration is made as to whether a previous reaction has any electronic 

or resonance effect on the structure that could prevent the current reaction from 

working correctly. In these circumstances, the resulting molecule may appear to be of 

interest in the in silico result list, however the resulting real world synthesis may be 

challenging due to structural incompatibility. For this reason, the RSV approach 

remains a worthwhile companion to the standard RV approaches. It should also be 

noted that the results overall for the RSV cases tend to plateau after considering 

sequences of approximately six steps in length with no further molecules being 

generated at longer sequences. As there are fewer sequences present at these lengths, 

the likelihood of there being transformations applicable to the starting material is 

greatly reduced, meaning that no new results will be produced.  

When using Pareto ranking to analyse the results of the full enumerations of the RV and 

RSV solution spaces for each inhibitor, it can be seen that there are relatively few 

molecules at the first Pareto front, representing the non-dominated solutions. This is 

surprising, but given the sensitivity of the Pareto ranking method to changes in logP 

and molecular weight, and the relatively wide range of molecular properties observed, 

the Pareto fronts are relatively small. It should also be noted that for these data sets 

there does not appear to be a direct connection between molecular weight and activity. 

The results from the RV enumeration do not necessarily represent drug-like 

compounds, due to the structures not conforming to the Lipinski rules, but the RSV 

examples tend to be closer to the accepted values. Performing the same analysis after 

filtering out the non-drug-like molecules shows very different results, with only one 

molecule being present in the lead front in each class. In this case, the ranking is 

effectively based on the Bayesian scores alone, as the other properties will all be within 

the ranges defined in the Lipinski rules. 

Considering the RV tournament selection method, it appears that different tournament 

sizes give the best results for different inhibitor classes. Statistical analysis of the 

reported results of each individual run (as shown in Appendix C.7) indicates that there 

is a fairly wide deviation between the different tournament sizes and the Bayesian 
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scores. In general, it appears that larger tournament sizes will lead to results with 

higher scores, but the correlation is not strong. However, tournament sizes that give 

higher Bayesian scores are associated with wider variance in the data, and thus show 

less consistency in the data. The logical explanation for this is that some of these higher 

scoring results are detached from the bulk of the distribution, resulting in a significant 

skew, as seen by the variance. It is therefore necessary to find the best compromise 

finding the best results, while controlling result consistency reproducibility. Since the 

larger tournament sizes tend to have smaller variance figures, and a tournament size of 

fifteen consistently gives results with reasonably high likelihood of activity, it is 

recommended that this size should be used.  

8.3.2  Multiple starting materials 

To determine the effect of larger initial populations on the tournament sampling 

method, a second series of experiments was performed using multiple starting 

materials for each data set. For each set of inhibitors, ten starting materials were 

selected at random, representing the full range of activity and molecular properties. 

These starting materials were used to perform tournament selection over three 

iterations, using a tournament size of fifteen, as well as a full RSV enumeration. It 

should be noted that a full RV enumeration for these classes was impossible due to the 

very large numbers of molecules produced in each iteration. Consequently, the RV 

tournament selection method was compared directly with the full RSV enumeration for 

sequences up to three steps in length, as these two methods represent an equivalent 

number of reactions.  

For the tournament selection process, each starting material was considered separately 

as an independent experiment, with three runs of the tournament method used for 

each.  As before, the run containing the result with the highest Bayesian score was 

selected for each experiment, with the best results pooled to give an overall result for 

the data set (giving a maximum of 2000 result molecules for each collection). Each of 

these runs took approximately 15 minutes to complete on the i7 workstation, making 

this process particularly time consuming (approximately 7 hours 30 minutes per 

compound class). Considering that the full RSV enumeration for the data set only takes 

20 minutes per class in total under the same conditions, it is clear that, in evaluating 

more potential combinations of reactions and products the RV approach is significantly 

slower.  The results of the tournament selection approach and the RSV enumeration for 

the Ace inhibitor sets are summarised in Table 8.26 below, with the drug-like 



 

 

233 

molecules with the highest Bayesian scores shown in Table 8.27 and Table 8.28. It 

should be noted that, for the RV tournament selection case, fewer than 2,000 molecules 

are reported, as some of these were duplicates that were filtered out. As expected, the 

use of additional starting materials results in the Bayesian scores increasing relative to 

the single material case, with a considerably larger set of results for the RSV 

enumeration. In this case, the starting material in the data set with the greatest 

Bayesian score had a value of 8.32, showing that both approaches offered apparent 

improvements over the original collection. 

Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW 
range / g 

mol-1 
LogP range 

RV (tournament 
selection, 3 

generations) 
1,954 13.48 -4.16 to 13.48 

217 to 
1,735 

-4.48 to 15.00 

RV 
(drug-like) 

174 10.97 -6.98 to 10.97 
252 to 

499 
0.09 to 4.94 

RSV 1-2 502 11.22 -4.08 to 11.22 
271 to 

968 
-3.89 to 6.96 

RSV 1-2 
(drug-like) 

73 8.01 -2.51 to 8.01 
271 to 

499 
0.16 to 3.09 

RSV 1-3 16,840 15.55 -4.08 to 15.55 
271 to 
1,627 

-3.89 to 12.51 

RSV 1-3 
(drug-like) 

366 8.57 -2.85 to 8.57 
271 to 

499 
0.02 to 4.44 

Table 8.26: Summary of the best performing runs of the structure generation for the 

Ace inhibitor set, using Pareto ranking.  

There is a considerable increase in the number of molecules produced via RSV 

enumeration in this case, compared to the when individual starting materials were 

considered. Of particular interest is the much greater number of products derived from 

three-step sequences, an increase of over 16,000. This is due to some of the starting 

materials with higher molecular weights being more suitable to the application of RSVs 

than the smaller materials previously considered. As the number of RSVs increases, yet 

more products can be generated, hence the dramatic increase in population size. 

However, because these molecules are derived from high molecular weight starting 

materials, the likelihood of them being drug-like is very low, and as such the filtered 

results do not show a significant increase. 

Searching for the 20 highest scoring compounds from each experiment on SciFinder 

indicated that the results are close in nature to derivatives of L-Proline and other amino 
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acids as seen with the previous experiments with this data set (Section 8.2). However, 

the structures are significantly different to those produced from the lighter starting 

materials used in Section 8.3.1.1, in that the mercaptohexanoic acid scaffolds are not 

present. This would suggest that using a single starting material for this type of study 

may be unreliable, especially if the starting material does not contain functionality that 

is key for activity, such as the proline residue that most Ace inhibitors possess. As 

before, no specific entries in SciFinder were found for any of these result molecules. To 

confirm the general trends, further experiments were carried out using the other 

inhibitor classes, as summarised in Table 8.29 and Table 8.30. These show the results 

from the RV tournament selection mode for each inhibitor class, compared with the 

results of the RSV enumeration in each case. 

Tournament selection 

Structure LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Relative 
Pareto 

Ranking 

 

0.29 496 10.97 1 

 

1.01 476 8.98 2 

 

0.09 466 8.66 3 

Table 8.27: Drug-like compounds with the highest Bayesian scores from the 

tournament selection method for the Ace inhibitor set (sorted by Pareto ranking). 

(Wallace, 2015) 
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RSV enumeration 

Structure LogP 
Molecular 
weight / 
g mol-1 

Bayesian 
score 

Pareto 
Ranking 

 

1.18 458 8.57 1 

 

1.81 471 8.01 2 

 

1.25 443 7.70 3 

Table 8.28: Drug-like compounds with the highest Bayesian scores from the RSV 

enumeration for the Ace inhibitor set, using multiple starting materials (sorted by 

Pareto ranking). (Wallace, 2015) 
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Inhibitor class 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian  
score range 

MW range / 
g mol-1 

LogP range 

Ace 1,954 13.48 -4.16 to 13.48 217 to 1,735 -4.48 to 15.00 

Ace (drug-like) 174 10.97 -6.98 to 10.97 252 to 499 0.09 to 4.94 

Bzr 1,777 1.24 -10.35 to 1.24 369 to 1,706 -0.05 to 16.87 

Bzr (drug-like) 43 -0.30 -5.35 to -0.30 376 to 498 2.20 to 4.49 

Cox-2 1,919 0.09 -12.26 to 0.09 421 to 1,747 1.51 to 24.70 

Cox-2 (drug-like) 21 0.09 -7.61 to 0.09 421 to 499 2.25 to 4.80 

Dhfr 1,976 1.67 -23.18 to 1.67 305 to 1,671 -1.00 to 18.89 

Dhfr (drug-like) 84 0.28 -20.59 to 0.28 305 to 499 0.01 to 4.89 

Gpb 1,983 3.09 -1.38 to 3.09 180 to 1,806 -3.91 to 14.75 

Gpb (drug-like) 77 1.40 -1.21 to 1.40 276 to 478 0.08 to 5.00 

Therm 2,000 7.03 -4.99 to 7.03 389 to 1,823 -3.91 to 18.54 

Therm (drug-like) 146 3.45 -3.27 to 3.45 292 to 499 0.22 to 4.77 

Table 8.29: Summary of the best performing runs for all activity classes from the RV 

based tournament selection. 

Inhibitor class 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian  
score range 

MW range / 
g mol-1 

LogP range 

Ace 16,840 15.55 -4.08 to 15.55 271 to 1,627 -3.89 to 12.51 

Ace (drug-like) 366 8.57 -2.85 to 8.57 271 to 499 0.02 to 4.44 

Bzr 10,774 2.61 -8.87 to 2.61 316 to 1,448 1.86 to 15.83 

Bzr (drug-like) 122 1.57 -6.28 to 1.57 316 to 499 1.86 to 5.00 

Cox-2 64 0.33 -9.89 to 0.33 352 to 1,112 2.89 to 11.61 

Cox-2 (drug-like) 9 -0.04 -4.70 to -0.04 352 to 478 3.16 to 4.45 

Dhfr 6,114 0.01 -27.42 to 0.01 213 to 1,444 -0.87 to 15.72 

Dhfr (drug-like) 394 0.01 -17.23 to 0.01 213 to 499 0.32 to 5.00 

Gpb 27 1.96 -1.10 to 1.96 265 to 632 -4.11 to 6.64 

Gpb (drug-like) 2 -0.45 -0.45 to -0.45 318 to 325 0.30 to 0.55 

Therm 26,104 8.25 -3.85 to 8.25 309 to 1,792 -2.64 to 13.10 

Therm (drug-like) 355 4.33 -1.95 to 4.33 309 to 499 0.05 to 4.80 

Table 8.30: Summary of the best performing runs for all activity classes from the RSV 

enumeration (sequences from 1 to 3 steps in length). 
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It should be noted that the Bzr, Cox-2 and Dhfr results generate particularly low 

numbers of molecules and these had low Bayesian scores overall for both RVs and 

RSVs. In the case of Cox-2 these scores are lower than the scores assigned to the 

starting molecules (1.01), implying the optimisation gives worse results than the 

original material. As both the RSV and RV approaches are affected in the same manner, 

this problem is not due to any issues with the population sampling required for 

tournament selection. The Bayesian scores were also very low in the previous single 

starting material experiments. This seems to be due to a lack of active examples in the 

respective data sets, adversely affecting the scoring and analysis. 

Comparing the two approaches shows that the RSV enumeration outperforms the RV 

tournament selection in terms of the highest Bayesian score for each inhibitor class in 

all but two cases. However, if only considering drug-like molecules this is reversed, 

with the tournament selection being superior in four of the six classes studied. Given 

that the RSVs are derived from sequences that can be up to length 11 and the approach 

is based on full enumeration, there is a tendency for this approach to generate 

molecules with large molecular weights where these subsequences are part of a long 

process. These larger molecules are more likely to contain high scoring fragments, 

hence the higher Bayesian scores. When these are removed, the highest Bayesian score 

drops below that which is achieved using the RVs. The greater diversity of compounds 

that is accessible using RVs leads to results with better Bayesian scores within the 

drug-like region, even using the tournament sampling. Theoretically a full enumeration 

using RVs may lead to further increases in the number of high scoring molecules, 

however, this is computationally prohibitive especially with multiple starting materials. 

Instead, using the RSV approach as part of a pilot study can determine what is feasible 

for a given set of starting materials. The best start points can then be used with a full RV 

enumeration or tournament selection to provide an optimal set of results, without 

considering starting materials that are inappropriate. For example, in the Ace case 

discussed above, a number of the starting materials have high molecular weights and 

complex structures, making it unlikely that these would generate active, drug-like 

results on further reactions. While identifying molecules like this in a real world 

evaluation would be straightforward, other, more subtle factors that affect the 

applicability of starting material may be present, leading to wasted time if these 

molecules are used to generate large quantities of unsuitable results. 
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An additional point to consider is that both experiments only consider sequences up to 

three steps in length. For the RSV enumeration, longer sequences lead to larger 

molecules with a higher Bayesian score in most cases. As adding further iterations to 

the RV method (full enumeration or tournament selection) would cause more issues 

with execution time and system memory due to the increased number of structures to 

consider, a speculative evaluation with the RSV method may be preferable to determine 

the optimal sequence length prior to a full study. Longer sequences may also lead to a 

greater proportion of results that are not drug-like, limiting any potential gain in result 

quality. 

8.3.3 Structure generation from simple starting materials 

In order to study the relative capabilities of the RV and RSV methods to generate active 

structures from typical reagent molecules, experiments were carried out to produce 

analogues of thrombin inhibitors, starting from a pool of starting materials as shown in 

Figure 8.19. These materials are not inhibitors themselves, unlike the examples in the 

Sutherland collection, which all had some level of inhibition activity. However, they do 

all contain the benzamidine group required for thrombin inhibition. 

 

 

 

 

 

 

 

 

  

Figure 8.16: Starting materials used for the thrombin structure generation experiment. 

(Wallace, 2015) 

In this instance, the result molecules were Pareto ranked by logP value, molecular 

weight and similarity value. LogP and molecular weight were scored in accordance 

with the Lipinski rules as before, and similarity was based on fingerprint similarity to 

four known thrombin inhibitors, as illustrated in Figure 8.20.  
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Figure 8.17: Known thrombin inhibitors used to generate fingerprints. (Wallace, 2015) 

A composite fingerprint was achieved by generating RDKit structural fingerprints for 

each inhibitor. A new fingerprint was then produced, with each bit set if the 

corresponding bit is set for any of the known inhibitors. Structures were then evaluated 

based on similarity to this fingerprint, with structural similarity implying activity in 

accordance with the similar property principle. 

In this experiment, the starting materials were used to generate structures, using the 

RSVs from the JMCRoughley database that represent sequences between one and four 

steps in length. Due to the same issues with execution time and system memory 

experienced in previous experiments with multiple starting materials, full 

enumerations of the RV database were not possible. Instead, the RSV results were 

compared to the results of a tournament selection sampling method, carried out using 

the same method as in Section 8.3.2. This involves carrying out three separate runs for 

each starting material with a tournament size of fifteen, and a population size of 500, 

with results reported for the run which gave the largest number of drug-like results 

and the highest similarity scores. Each run was carried out over four iterations of the 

RV process to be comparable with the sequence lengths from the RSV enumeration. As 

a result, each iteration took approximately 20 minutes to complete, with the full 

experiment taking ten hours on the i7 workstation. The results at each iteration of the 

tournament selection were considered separately, permitting comparisons for 

sequences from two to four steps in length. 

The results of the RSV and RV approaches are summarised in Tables 8.31 and 8.32. In 

total, 2,542 unique molecules were produced from the application of RSVs to the 
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original starting materials, with 1,585 of these being drug-like. Of the remainder, 914 

had molecular weights above 500g mol-1; 337 molecules had logP values outside of the 

required range; and 294 molecules had properties outside of both thresholds. The RV 

tournament selection, on the other hand, produced 4,565 unique molecules after 

combining the results for all starting materials, with 970 of these being drug-like. The 

other molecules consisted of 3,191 that had molecular weights above 500g mol-1; 2,800 

molecules had logP values outside of the range; and 2,396 molecules were outside of 

both ranges. 

RSV Enumeration 

Sequence 
length 

(number of 
reactions) 

Number 
of 

unique 
products 

Similarity 
range 

LogP 
range 

MW 
range/ 
g mol-1 

Number of 
drug-like 
molecules 

Lipinski rule violations 

Molecular 
weight 

>500g mol-1 

LogP 
out of 
range 

Both 

2 2156 
0.06 to 

0.29 
-4.28 to 

9.48 
136 to 
1,291 

1,427 766 183 220 

3 205 
0.10 to 

0.24 
-2.46 to 

7.87 
179 to 

889 
94 64 93 46 

4 181 
0.10 to 

0.30 
-2.08 to 

7.62 
178 to 

911 
64 84 61 28 

Table 8.31: Summaries of the results of the RSV enumeration approach for suggesting 

Thrombin analogues. 

RV Tournament Selection 

Number of 
reaction 

iterations 

Number 
of 

unique 
products 

Similarity 
range 

LogP 
range 

MW 
range/ 
g mol-1 

Number of 
drug-like 
molecules 

Lipinski rule violations 

Molecular 
weight 

>500g mol-1 

LogP 
out of 
range 

Both 

2 1591 
0.09 to 

0.26 
-2.99 to 

11.90 
165 to 
1465 

650 733 461 253 

3 1598 
0.05 to 

0.22 
-3.03 to 

14.44 
192 to 
1363 

265 1186 1074 927 

4 1376 
0.14 to 

0.18 
-3.17 to 

17.50 
176 to 
1398 

55 1272 1265 1216 

Table 8.32: Summaries of the results of the RV tournament selection approach for 

suggesting Thrombin analogues. 

Using the similarity to the known inhibitors as the main measure of performance, it can 

be seen that the RSV enumeration approach produces molecules that have higher 

similarity values, with a greater proportion of the results for each sequence length 
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being drug-like than the equivalent results for the tournament selection. Studying the 

best performing results from the two methods shows that they both contain results 

with similar structural features, with the RSV method having simpler scaffolds. 

Examples of these are shown in Tables 8.33 and 8.34.   

Structure Similarity LogP 
Molecular 
weight / 
g mol-1 

Pareto 
Ranking 

 

0.30 0.74 274 1 

 

0.27 1.94 432 2 

 

0.26 1.16 417 3 

Table 8.33: Examples of the best scoring, drug-like results for the RSV experiment. 

(Wallace, 2015) 

The similarity scores for these results are relatively low, compared to the composite 

fingerprint. Looking at the literature examples in isolation, it can be seen that a wide 

range of functional groups are represented on the inhibitor scaffold, leading to a 

composite fingerprint with a high number of bits set. With such a diverse collection of 

functionalities, it is unlikely that a single molecule will contain the majority of these, 

and as such, the similarity coefficient will be low. It is important to note, however, that 

the main inhibitor functionality is present in the vast majority of the result molecules, 

in the form of the benzenecarboximidamide group. 
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Structure Similarity LogP 
Molecular 
weight / 
g mol-1 

Pareto 
Ranking 

 

0.26 2.29 424 1 

 

0.23 0.62 398 2 

 

0.22 0.87 326 3 

Table 8.34: Examples of the best scoring, drug-like results for the RV Tournament 

selection experiment. (Wallace, 2015) 

Benzenecarboximidamide has been reported as the key component of factor Xa 

inhibitors used for treatment of thrombin related disorders (Dorsch et al., 1999), and as 

such its presence in the generated structures indicates a high likelihood of activity. The 

remainder of the structure serves to optimise the structure in terms of bioavailability 

and binding affinity, hence the wider variety of functionality.  

Comparing the best scoring drug-like molecules at each sequence length (Table 8.35) 

shows that the two different approaches generate different, but largely comparable 

molecules. As with the general summary, the RSV approach leads to results that are 

closer in similarity to the existing inhibitors with the similarity score dropping with 

each iteration of the RV approach. Once four reaction iterations have been completed, 

the results for the RV approach no longer contain the benzenecarboximidamide group, 

significantly reducing the activity. In this case, as the similarity scores are relatively 

low, so that selecting the best candidates for optimisation at each step is difficult. When 

poor candidates have been selected, further iterations do not lead to score 

improvements, resulting in greater deviation in the results, and ultimately poorer 

solutions. In the RSV case, since there is no scoring of the results until the enumeration 

is completed, these limitations have no effect, and as such the similarity scores remain 

largely consistent as the sequence length increases.  
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 RSV Enumeration RV Tournament Selection 

Sequence 
length 

Molecule 

Tanimoto 
similarity 
to known 

actives 

LogP 
Molecular 
weight / 
g mol-1 

Molecule 

Tanimoto 
similarity 
to known 

actives 

LogP 
Molecular 
weight / 
g mol-1 

2 

 

0.27 1.94 432 

 

0.26 2.29 424 

3 

 

0.24 3.14 460 

 

0.21 1.95 455 

4 

 

0.30 0.74 274 

 

0.16 4.88 489 

Table 8.35: Best performing drug-like result molecules for the RV and RSV approaches, for Thrombin analogues. (Wallace, 2015) 
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Overall, the greatest proportion of drug-like molecules with reasonable similarity to the 

existing inhibitors is found with the RSV enumeration, with the tournament selection 

tending towards compounds with greater deviation from the original inhibitor 

structures. In situations where the scoring of compounds is complex, or there are other 

issues with the optimisation of solutions, full enumeration approaches such as the RSV 

method will ultimately be of benefit. A full RV enumeration would most likely provide 

the best solutions due to the wider range of chemistry available; however, as noted 

previously, full enumerations using multiple starting materials are computationally 

infeasible.  

8.4 Conclusions  

In this chapter, a study of the effect of using a database of RSV material with starting 

materials unconnected to the original reactions demonstrated that meaningful results 

could be obtained despite the increase in specificity in the RSVs. A significant 

proportion of the generated molecules have been assessed as synthetically accessible, 

through both retrosynthetic analysis and review by experts. However, this review also 

highlighted some limitations of the vectors when used for structure generation such as 

the treatment of rings in certain circumstances. Overcoming these limitations would 

require a reworking of the vector format itself and in some cases it would be relatively 

easy to simply filter out any unintended molecules. 

Comparisons between the RSV method and multi-objective optimisation utilising the 

RV approach indicate that the latter method is considerably more effective at producing 

molecules predicted to be active for simple multi-objective studies from single starting 

materials. This is to be expected, as the collected RVs represent a far greater diversity 

than the equivalent RSV collection, and so better results are more likely to be 

generated. In theory, this implies that the best results would be achieved via a full 

enumeration of the sample space via RVs, evaluating the population after generation. 

However, when multiple starting materials and/or multiple iterations are required as 

part of the enumeration, the many different combinations of possible reactions and 

starting materials results in a combinatorial explosion. As a result, sampling methods 

are still required to keep the results manageable.  

Sampling approaches for RVs such as tournament selection appear to be effective 

where the scoring of results is well defined i.e. where there is a smooth progression 

between starting material and product. However, where the scoring of intermediate 
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results is problematic, the tournament approach suffers from the same problems as 

other similar approaches in terms of identification of the ideal candidates to select for 

optimisation. In these cases, the best course of action is to evaluate the compounds post 

hoc, requiring a full enumeration of the sample space. The RSV method is a good 

compromise in this situation, as the restrictions in the diversity of the data enables 

rapid sampling of the covered solution space quickly. While these results are not as 

complete as with RV enumeration, they are ideal for pilot studies, selecting areas for 

further analysis via the more complete RV data, enabling a more focussed study. 

In this chapter, two different models were used to predict the activity of the result 

molecules; an in-house SVM model, and a simpler Bayesian predictor. The SVM 

approach offers more precise prediction of pIC50 values in addition to classification as 

active and inactive, with the Bayesian approach only offering confidence values for the 

class assignment. This may be sufficient for the majority of cases, but where there are 

multiple mechanisms of action within the same inhibitor set (such as with the 

benzodiazepine case), the Bayesian model is less effective. In these situations, the 

activity predictions are based on the structural features of active examples taken from 

all of the mechanisms used, which can be mutually exclusive. As the predicted activity 

score is based on the proportion of these features that are present in the molecule 

being evaluated, this can result in lower predicted activity scores, and possibly 

incorrect categorisation of the molecule in question. In these circumstances, a more 

robust model is required that can distinguish between potential mechanisms, in order 

to more accurately classify the molecule. 
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Chapter 9: 

Conclusions and Future Work 

 

9.1 Conclusions 

This thesis details the creation and evaluation of a new method for encoding and 

applying reaction sequence information for the purposes of de novo design. The ability 

to encode and represent entire sequences in this form is of particular importance in 

drug design applications to avoid many of the problems associated with multi-objective 

optimisation of result molecules.  In particular, the new approach removes the pitfalls 

associated with sequences that proceed through intermediates that cannot be 

accurately scored and evaluated relative to the desired end product.  

Chapter 4 describes the Reaction Vector format as originally used for individual 

reactions, and the methods by which novel structures can be generated through 

application of reaction vectors. Two different methods were discussed, the original 

approach designed by Patel  (Patel et al., 2009) is explained in Section 4.3.1, and a more 

efficient revised approach by Hristozov (Hristozov et al., 2011) is covered in Section 

4.3.2. 

Chapter 5 describes the first new experiments carried out for this study, with the 

creation of a test database of reaction sequences outlined in Sections 5.2 and 5.3. These 

were collated into a network form that connects all the known molecules in the 

database according to the reactions that transform them, as shown in Section 5.4.  After 

establishing that this approach could be used to obtain sequence information (via the 

use of network path finding algorithms), the same method was used to provide 

sequence information for a larger set of reactions previously collated from research 

papers published in J. Med. Chem., as discussed in Section 5.5.  A reaction network was 

created for these reactions, and a collection of sequences generated and profiled for use 

in de novo studies. The reaction sequence vectors (RSV) are described in Chapter 6 and 

are based on computing the difference between the start and end points of a reaction 

sequence. The Hristozov structure generation algorithm was extended to allow RSVs to 
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be applied to a starting material to generate the product of a reaction sequence and the 

algorithm was demonstrated to perform with between 80 and 99% success in 

reproducing the original sequence content. Section 6.3.3 contains a direct comparison 

between the RV and RSV approach in terms of the number of unique products 

generated. The RSV approach leads to considerably fewer results than the RV approach, 

due to the bypassing of the intermediate stages. In terms of the quality of results 

however, there is little difference between the two sets, with the RSV approach being 

far more efficient in execution. An analysis of the novelty of the generated results in 

Section 6.3.4 shows that, for all of the given sets of sequences tested, there is a distinct 

skew in terms of which starting materials produce the most results, as well as in terms 

of which reaction sequence vectors are used. The most popular starting materials are 

those with the most potential for functional group addition (such as those with basic 

ring structures). In Section 6.3.5 an analysis of the RSV usage was carried out which 

and showed that the requirement for unusual metal atoms or complex functional 

groups in the required starting material features reduces the likelihood of a sequence 

being applicable, while straightforward, those requiring aromatic functionality are 

more likely to be applied. 

Chapter 7 illustrates the application of the RSV method and the de novo design tools for 

a variety of real world applications.  Section 7.2 described the use of RSVs to identify 

where multiple routes exist between the same start and end points. Section 7.3, 

describes the use of RSVs to expand the potential products in literature-based SAR 

analyses based on cilomilast, hydroxamates, carboxamides and a substituted alkyne 

feedstock. In all of the examples, the original starting material leads to the production 

of a number of interesting analogues that are structurally similar to those already 

known, but have not been studied for activity. The developed tools enable analysis of 

these compounds in PCA plots, as well as the reporting of the reactions identified to 

synthesise them, in the form of interactive reaction networks. 

Chapter 8 describes a more detailed analysis of the relative merits of the RV and RSV 

methods, taking a series of active drug compounds and using them as starting materials 

for structure generation processes. The results produced using reactions obtained from 

J. Med. Chem. complement the original results in terms of their predicted pIC50 values, 

demonstrating the ability of encoding transformations in a more generic form. 

Automatic and manual analysis of the synthetic accessibility of the compounds 

indicated that at least 34,250 of the 68,369 products of the RSVs were likely to be 
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synthesisable in real world conditions. Finally, a direct comparison is made between 

the RSV method and a multi-objective method based around the application of multiple 

RVs (Section 8.2). As the RSV method was designed specifically to address issues with 

this multi-objective approach, it was interesting to note that, for simple synthesis 

examples, the RV approach outperformed the RSV method in terms of result quality. 

However, the RV method is slower to run, and cannot be fully enumerated for large 

result sets. When considering more complex synthesis sequences, the RSV approach 

may be more effective at providing a summary of solution space, profiling all areas of 

solution space evenly. 

9.2 Future work 

There are a number of areas that are identified for potential improvements and 

additions to this work. The first issue concerns the reaction network form used to 

generate the reaction sequences. In the current approach, an algorithm is used to 

identify the key molecules of each reaction, which can sometimes lead to errors and 

misrepresentation. Some collections of reaction data, such as the NextMove collection 

of patent information (Lowe and Sayle, 2014) feature atom mapping information that 

can be used to identify the roles of the individual molecules. Adapting the network code 

to identify and use these roles would ensure the correct intentions of all reactions are 

selected in all cases, improving the quality of the data used for RSV generation.  Adding 

further information to the reaction network is also potentially of benefit for making 

comparisons between potential routes of interest. Currently, information such as the 

molecule structure information and the original reaction reference is stored in the 

network, but potentially other properties associated with reactions could be added. 

Factors such as estimated cost of a particular process (financial or in terms of 

environmental impact), or any reported yields could be used to score the individual 

reactions and sequences, and made available to the user enabling an effective 

comparison to be made between routes. 

Secondly, both the RV and RSV processes have issues with execution speed, in terms of 

the generation of the RV and RSV databases and the application of the vectors to 

produce new molecules. The RV approach in particular is affected by this, with full 

enumerations running too slowly to be performed for all but the simplest of examples. 

This is due to the approach used to retrieve vectors for application, which slows down 

when a large number of vectors are stored. When creating structures, every vector 

stored in the database has to be analysed to determine if it is applicable. For large 
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collections of reactions, this has a considerable impact on processing speed, 

particularly as this process is repeated for every iteration. An alternative approach to 

storing the vector content would be to use the negative AP2 content of each vector as 

an indexing key for the database, grouping the vectors on that basis. When searching 

for vectors to apply, AP2 content of the starting material would be compared to the 

various index values, with only the vectors in groups that match this initial step being 

analysed further. This approach could also be used to enhance the efficiency of the RSV 

process, enabling very large collections of sequences to be handled. This could be 

further enhanced via performing more thorough curation of the sequences to be stored, 

removing those that are overly complex, or irrelevant to the structure generation 

experiment in question. While this will not resolve the issues with processing large 

quantities of molecules due to the combinatorial explosion, it should be sufficient to 

improve the searching speed to a point that makes RV methods more appropriate. 
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Appendix A: 

Frequency distribution analysis 

A.1 Analysis of the first US patent set 

This set was collated at random from a collection of US patent data representing 

chemical reactions used in an industrial context. 

 

Figure  A-1: Frequency distribution curve based on the negative AP2 content for the 

first random sample extracted from the US patent database. 

 

Figure  A-2: Expansion of the first 200 entries in Figure A-1. 
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Figure  A-3: Log-log plot of the frequency distribution of the negative AP2 content for 

the first random sample extracted from the US patent database. 

A.2 Analysis of the second US patent set 

 

Figure A-4: Frequency distribution curve based on the negative AP2 content for the 

second random sample from the US patent database. 
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Figure  A-5: Expansion of the first 200 entries in Figure A-4. 

 

Figure  A-6: Log-log plot of the frequency distribution of the negative AP2 content for 

the second random sample extracted from the US patent database. 
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Negative pair grouping 
(duplicates indicate 

multiple entries) 

Number of 
reactions 

represented 

Reaction centre 
structure 

Sample 
reactant(s) 

Sample product 

O(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

379 

 
 

 

N(3,1,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-N(3,1,0) 
O(1,1,0)-2(2)-N(3,1,0) 

325 

   

C(2,0,0)-2(1)-C(1,0,0) 
O(2,0,0)-2(1)-C(2,0,0) 
O(2,0,0)-2(1)-C(3,1,0) 

285 

 

 

 

Cl(1,0,0)-2(1)-C(3,2,1) 
N(1,0,0)-2(1)-C(3,2,1) 

178 

   

N(1,0,0)-2(1)-C(3,2,1) 
O(1,0,0)-2(1)-C(3,1,0) 

142 
 

 
  

Br(1,0,0)-2(1)-C(3,2,1) 
C(3,2,1)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-B(3,0,0) 
O(1,0,0)-2(1)-C(3,1,0) 
O(1,0,0)-2(1)-C(3,1,0) 
O(1,1,0)-2(2)-C(3,1,0) 

135 

 

 
 

Table A-1: Representation of the five largest groups of partial AP2 RVs in the second 

random sample from the US patent database. Where shown, the red lines indicate 

broken bonds in the reaction centre structure where ambiguity exists.(Wallace, 2015) 

The last example in the above table has a more complex partial RV than the others, due 

to the presence of the carbonate group in the reaction centre in addition to the 
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standard Suzuki coupling reagents. In the patent database, the carbonate is specified as 

a reagent rather than a catalytic agent, and as such it is defined as being ‘lost’ over the 

course of the reaction. There are a number of examples of partial RVs for which only 

one reaction exists in the data set (seen in Figure A-7). It is at this point that the main 

differences between the data sets are noticed. There are considerably fewer examples 

of sulphate chemistry in this collection of singletons and over the set in general. 

Instead, the lowest represented reaction centres contain metal complexes that make 

the reaction centres unique. As a result, it is unlikely that these examples will be 

particularly relevant to de novo design, however. 

  

  

Figure  A-7: Examples of reaction centres for which only single examples exist in the 

second US patent database. (Wallace, 2015) 

A.3 Comparison of the US patent sets 

To analyse the two data sets in more detail, it is possible to use the RV content to make 

direct comparisons between the atom pair groupings. By determining the overlap 

between the two data sets, it is possible to ascertain how similar they are overall. 

Depending on whether the comparison is made using the negative AP2 and AP3 

groupings together, or using the negative AP2 grouping alone, differing degrees of 

overlap can be identified. For the AP2 and AP3 combined case, 3,759 of the 18,668 

negative atom pair groups in the first set were present in the second set, seemingly 

suggesting an overlap of around 20% between the two collections. To confirm this is 
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not an artefact of the additional environment data provided via the AP3s, a comparison 

using AP2 content alone was performed. In this case, 3,686 out of 14,237 of these 

groups are present in both sets, suggesting 25.9% of the reaction centres are common 

between them. These groups coincide with the most popular groupings of negative 

atom pairs identified previously. Conversely, the areas of the sets with the lowest 

overlap are the groups that only contain one or two examples, representing more 

obscure chemistry, or unusual leaving groups such as metal atoms. Considering the 

nature of the patent collection, the total amount of data sampled in these collections is 

too small to be truly representative of the set as a whole. In addition, as the nature of a 

patented set of reactions is towards diversity due to the need to preserve exclusivity, 

the chance of finding sufficiently similar molecules to network together is smaller than 

for other databases of equivalent size.    
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Appendix B: 

PCA descriptors 

In the PCA plots used in this thesis, a number of topological and geometric descriptors 

were used to generate the components. These are listed below. Further information on 

these descriptors can be found in the QSAR.sf.net Descriptor Dictionary (Floris et al.). 

B.4 Topological descriptors 

Descriptor name Description 
Additional 
References 

Moreau-Broto 
Autocorrelation 
descriptors 

Measure based on charge, 
molecular weight, 
polarizability. 

(Hollas, 2003) 

Carbon types Carbon hybridisation states  

Carbon Hybridisation 
Ratio 

Ratio of the different carbon 
states 

 

Kier and Hall cluster, 
chain path and  kappa 
molecular shape indices 

Categorise different aspects of 
molecular shape 

(Kier and Hall, 1986) 
(Hall and Kier, 2007) 

Kier and Hall SMARTS 
Descriptors 

Substructure counting (Hall and Kier, 1995) 

Eccentric Connectivity 
index 

Measure of the separation 
between individual atoms, and 
those the furthest distance 
away 

(Sharma et al., 1997) 

Petitjean Number Alternative measure of distance 
and eccentricity 

(Petitjean, 1992) 

Murcko framework Count of ring systems (one or 
more rings sharing an edge in 
the molecular graph) 

(Bemis and Murcko, 
1996) 

Fragment Complexity  Defined as 

 C=|B^2-A^2+A|+(H/100) 

 Where: 

 C = complexity, 

 A = number of non-hydrogen 
atoms, 

 B = number of bonds, 

H = number of heteroatoms 

(Nilakantan et al., 
2006) 

Molecular edge 
descriptors for Carbon, 
Nitrogen and Oxygen 

Relationship between atomic 
distance and the edges of the 
adjacency of the graph. 

(Liu et al., 1998) 

Topological Polar surface 
area 

The surface sum over all polar 
atoms in the molecule 

(Prasanna and 
Doerksen, 2009) 
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Descriptor name Description 
Additional 
References 

VABC Volume Descriptor Van der Waals volume 
prediction 

(Zhao et al., 2003) 

Vertex adjacency 
information  

Calculated as 1 + 𝑙𝑜𝑔2𝑏 where 
b is the number of bonds 
between heavy atoms. 

 

Weighted path 
descriptors  

Indicator of molecular 
branching. 

(Randić and Basak, 
1999) 

Wiener path number Equal to half of the sum of all 
bond distance matrix entries. 

(Wiener, 1947) 

Wiener polarity number Computed in the same way as 
the path number, but only 
entries with a value of 3 are 
counted. 

(Behmaram et al., 
2012) 

Zagreb Index Sum of the square of the atom 
degrees for all heavy atoms. 

(Gutman and 
Trinajstić, 1972) 

Table B-1: Descriptions of the topological descriptors used to make PCA plots.  

B.5 Geometric descriptors 

Descriptor name Description Additional 
References 

Charged partial surface 
areas 

29 features based on molecule 
surface areas, obtaining partial 
charges using the Gasteiger-
Marsilli algorithm. 

(Ertl et al., 2000) 

Gravitational Index Molecular weight distribution 
of the molecule 

(Katritzky et al., 
1996) 

Petitjean Shape indices 
 

Alternative measure of distance 
and eccentricity 

(Petitjean, 1992) 

Table B-2: Descriptions of the geometric descriptors used to make PCA plots. 
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Appendix C: 

Multi-objective drug design 

Each multi-objective experiment was performed as three separate runs at each 

tournament size, with the run showing the highest activity values recorded. The 

complete results are listed for each compound class below, along with the starting 

material used. 

C.1 Ace inhibitors 

 

Figure C-1: Lowest molecular weight molecule in the Ace inhibitor set, used as starting 

material (pIC50 = 2.96, Bayesian score = 0.92). (Sutherland et al., 2004) 

Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration) 816,925 23.95 -1.78 to 23.95 242 to 

2026 

-1.81 to 24.19 

RV (druglike 

compounds) 

1901 17.63 2.95 to 17.63 242 to 

499 

-0.21 to 5.00 

Tournament size 5 200 8.33 -9.02 to 8.33 239 to 

1284 

0.36 to 14.70 

 200 10.87 -8.32 to 10.87 236 to 

1166 

0.78 to 14.58 

 200 8.58 -7.93 to 8.77 273 to 

1207 

0.96 to 16.25 
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Sampling experiment 

Number 

of 

products 

Highest 

Bayesian 

score 

Bayesian score 

range 

MW range 

/ g mol-1 
LogP range 

Tournament size 10 200 6.61 -8.50 to 6.61 281 to 

1238 

0.54 to 

14.53 

 200 7.30 -9.92 to 7.30 280 to 

1158 

1.45 to 

16.28 

 200 7.71 -8.05 to 7.71 239 to 

1062 

0.98 to 

14.51 

Tournament size 15 200 6.51 -8.50 to 6.51 268 to 

1289 

0.814 to 

15.90 

 200 5.78 -7.41 to 5.78 252 to 

1162 

0.39 to 

13.93 

 200 6.34 -8.21 to 6.34 290 to 

1207 

0.37 to 

16.25 

Tournament size 20 200 7.01 -8.83 to 7.01 286 to 

1116 

1.60 to 

15.12 

 200 5.15 -9.53 to 5.15 309 to 

1265 

1.24 to 

15.90 

 200 7.66 -8.29 to 7.66 240 to 

958 

0.67 to 

12.18 
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Sampling 

experiment 

Number of 

products 

Highest 

Bayesian 

score 

Bayesian score 

range 

MW range 

/ g mol-1 
LogP range 

Tournament size 30 200 5.92 -10.04 to 5.92 
239 to 

1117 

0.58 to 

14.36 

 200 4.66 -7.50 to 4.66 
274 to 

1118 

1.24 to 

14.44 

 200 6.79 -7.92 to 6.79 
240 to 

1233 

1.50 to 

18.46 

Tournament size 50 200 6.15 -9.14 to 6.15 
284 to 

1327 

0.67 to 

16.17 

 200 5.34 0.01 to 5.34 
339 to 

1118 

1.89 to 

14.36 

 200 5.25 -9.63 to 5.25 
230 to 

1118 

0.67 to 

14.36 

Tournament size 75 200 5.89 -8.83 to 5.89 
274 to 

1059 

1.28 to 

13.73 

 200 10.51 -9.63 to 10.51 
254 to 

1118 

2.17 to 

14.36 

 200 6.15 -11.46 to 6.15 
372 to 

1247 

1.39 to 

14.72 
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Sampling experiment 
Number of 

products 

Highest 

Bayesian 

score 

Bayesian score 

range 

MW range 

/ g mol-1 
LogP range 

Tournament size 

100 
200 5.62 -8.71 to 5.62 

232 to 

1160 

1.42 to 

14.36 

 200 5.82 -8.52 to 5.82 
289 to 

1117 

1.45 to 

14.36 

 200 6.64 -8.71 to 6.64 
260 to 

1117 

1.63 to 

14.36 

Tournament size 

150 
200 3.29 -9.63 to 3.29 

232 to 

858 
1.72 to 9.03 

 200 5.72 -9.63 to 5.72 
260 to 

858 
0.94 to 9.03 

 200 8.43 -8.71 to 8.43 
260 to 

810 
1.63 to 9.69 

Tournament size 

175 
200 5.62 -8.71 to 5.62 

259 to 

745 
0.84 to 8.50 

 200 5.92 -6.77 to 5.92 
358 to 

1117 

2.57 to 

14.36 

 200 4.83 -8.71 to 4.83 
260 to 

840 
0.75 to 8.50 

Table C-1: Results of complete tournament selection runs for the first Ace inhibitor 
experiment. 
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Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

816,925 23.95 -1.78 to 23.95 
242 to 
2,026 

-1.81 to 24.19 

RV (drug-like 
compounds) 

1901 17.63 2.95 to 17.63 
242 to 

499 
-0.21 to 5.00 

Tournament size 5 200 10.35 -6.54 to 10.35 
204 to 
1,211 

1.15 to 16.74 

 200 7.59 -1.68 to 7.59 
281 to 
1,011 

0.61 to 14.23 

 200 8.50 -7.37 to 8.50 
239 to 
1,197 

1.30 to 19.33 

Tournament size 10 200 7.41 -10.33 to 7.41 
240 to 
1,019 

1.55 to 12.50 

 200 7.25 -2.23 to 7.25 
218 to 
1,080 

-1.00 to 12.33 

 200 5.86 -7.12 to 5.86 
307 to 

499 
0.67 to 4.82 

Tournament size 15 200 6.71 -8.37 to 6.71 
250 to 
1,135 

1.24 to 15.46 

 200 7.36 -3.46 to 7.36 
217 to 
1,390 

-0.03 to 12.38 

 200 5.38 -10.06 to 5.38 
255 to 
1,174 

0.89 to 14.88 

Table C-2: Results of tournament selection runs for the Ace inhibitor experiment. 
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C.2 Bzr inhibitors 

 

Figure C-2: Lowest molecular weight molecule in the Bzr inhibitor set, used as starting 

material (pIC50 = 6.46, Bayesian score = -4.82).(Sutherland et al., 2004) 

Sampling experiment 
Number of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

2,026,928 1.67 -13.80 to 1.67 
251 to 
1,900 

-2.23 to 21.76 

RV (drug-like 
compounds) 

245,035 1.31 -12.24 to 1.31 
251 to 

499 
-1.40 to 5.00 

Tournament size 5 178 -1.43 -8.13 to -1.43 
355 to 
1,029 

0.58 to 10.85 

 170 -1.10 -8.98 to -1.10 
362 to 

953 
1.16 to 12.19 

 176 0.30 -8.94 to 0.30 
322 to 
1,027 

0.15 to 11.77 

Tournament size 10 178 -1.13 -9.76 to -1.13 
348 to 
1,173 

-0.49 to 14.47 

 192 -1.58 -8.63 to -1.58 
318 to 
1,249 

0.91 to 12.31 

 189 -1.95 -11.12 to -1.95 
336 to 
1,294 

1.19 to 16.67 

Tournament size 15 179 -2.29 -11.01 to -2.29 
321 to 
1,033 

1.26 to 11.15 

 181 -1.31 -9.63 to -1.31 
322 to 
1,180 

0.39 to 13.58 

 184 -0.40 -10.48 to -0.40 
335 to 
1,271 

1.27 to 13.60 

Table C-3: Results of tournament selection runs for the Bzr inhibitor experiment. 
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C.3 Cox-2 inhibitors 

 

Figure C-3: Lowest molecular weight molecule in the Cox-2 inhibitor set, used as 

starting material (pIC50 = 7.22, Bayesian score = -1.77). (Sutherland et al., 2004) 

Sampling experiment 
Number 

of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

276,820 15.25 -4.17 to 15.25 
317 to 
1,959 

-0.41 to 23.38 

RV (drug-like 
compounds) 

3,993 10.45 -1.79 to 10.45 
317 to 

499 
1.36 to 5.00 

Tournament size 5 126 -1.54 -9.22 to -1.54 
430 to 
1,142 

3.14 to 14.22 

 123 -1.94 -9.88 to -1.94 
425 to 
1,158 

2.21 to 14.00 

 121 -1.27 -10.03 to -1.27 
447 to 
1,058 

2.86 to 11.73 

Tournament size 10 125 -1.17 -11.43 to -1.17 
403 to 
1,107 

3.31 to 13.40 

 127 -3.27 -9.96 to -3.27 
450 to 
1,215 

3.81 to 13.60 

 127 -3.12 -10.27 to 3.12 
431 to 
1,227 

0.68 to 13.61 

Tournament size 15 122 -2.47 -11.37 to -2.47 
430 to 
1,173 

2.42 to 12.24 

 119 -2.58 -10.51 to -2.58 
475 to 
1,298 

2.52 to 12.89 

 125 -2.58 -11.57 to -2.58 
418 to 
1,127 

2.68 to 12.32 

Table C-4: Results of tournament selection runs for the Cox-2 inhibitor experiment. 
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C.4 Dhfr inhibitors 

 

Figure C-4: Lowest molecular weight molecule in the Dhfr inhibitor set, used as starting 

material (pIC50 = 4.26, Bayesian score = -5.55). (Sutherland et al., 2004) 

Sampling experiment 
Number 

of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

234,283 3.83 -26.58 to 3.83 
174 to 
1,742 

-2.32 to 17.23 

RV (drug-like 
compounds) 

60,590 3.47 -21.97 to 3.47 
174 to 

500 
-2,32 to 5.00 

Tournament size 5 171 -1.73 -22.45 to -1.73 
188 to 
1,721 

0.61 to 13.06 

 176 -1.64 -24.99 to -1.64 
233 to 
1,429 

0.98 to 12.39 

 181 -2.34 -22.61 to -2.34 
299 to 
1,010 

1.72 to 12.00 

Tournament size 10 174 -1.15 -23.57 to -1.15 
309 to 

897 
1.56 to 11.69 

 179 -0.81 -18.49 to -0.81 
244 to 
1,288 

0.01 to 12.24 

 181 -0.83 -23.01 to -0.83 
325 to 
1,054 

1.72 to 10.99 

Tournament size 15 176 -0.56 -19.32 to -0.56 
305 to 
1,143 

1.77 to 12.18 

 178 -0.51 -22.26 to -0.51 
278 to 
1,217 

1.91 to 14.36 

 192 -0.87 -21.11 to -0.87 
294 to 
1,013 

1.03 to 10.74 

Table C-5: Results of tournament selection runs for the Dhfr inhibitor experiment. 
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C.5 Gpb inhibitors 

 

Figure C-5: Lowest molecular weight molecule in the Gpb inhibitor set, used as starting 

material (pIC50 = 1.3, Bayesian score = -0.55). (Sutherland et al., 2004) 

Sampling experiment 
Number 

of 
products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

301,156 5.94 -2.02 to 5.94 
164 to 
2214 

-8.56 to 19.51 

RV (drug-like 
compounds) 

43,846 4.86 -1.68 to 4.86 
164 to 

499 
-5.44 to 5.00 

Tournament size 5 181 1.32 -1.15 to 1.32 
268 to 
1,120 

-0.69 to 8.38 

 180 0.83 -1.33 to 0.84 
276 to 
1,088 

-0.37 to 13.39 

 190 1.85 -1.46 to 1.85 
180 to 
1,195 

-1.17 to 11.11 

Tournament size 10 182 1.59 -1.71 to 1.59 
260 to 
1,040 

-0.11 to 9.51 

 181 0.71 -1.26 to 0.71 
178 to 

820 
-2.15 to 8.86 

 177 1.37 -1.31 to 1.37 
276 to 

879 
-1.11 to 9.07 

Tournament size 15 185 2.18 -1.43 to 2.18 
200 to 
1,058 

-2.04 to 10.30 

 174 0.72 -1.40 to 0.72 
180 to 
1,006 

-1.17 to 9.26 

 183 0.85 -1.38 to 0.85 
180 to 

911 
-1.17 to 9.60 

Table C-6: Results of tournament selection runs for the Gpb inhibitor experiment. 
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C.6 Therm inhibitors 

NOTE: Due to insufficient results being generated from the molecule with the lowest 

molecular weight, the molecule with the second lowest weight was used instead. 

 

Figure C-6: Second lowest molecular weight molecule in the Thermolysin inhibitor set, 

used as starting material (pIC50 = 3.72, Bayesian score = 1.16). (Sutherland et al., 2004) 

Sampling experiment 

Number 
of 

products 

Highest 
Bayesian 

score 

Bayesian score 
range 

MW range 
/ g mol-1 

LogP range 

RV (full enumeration, 
2 generations) 

154,414 7.62 -5.66 to 7.62 
146 to 
1,827 

-3.48 to 19.37 
 

RV (drug-like 
compounds) 

45,237 5.72 -4.54 to 5.72 
146 to 

499 
-3.04 to 5.00 

Tournament size 5 194 3.86 -3.11 to 3.86 
251 to 
1,090 

-0.18 to 9.90 

 193 3.24 -3.23 to 3.24 
279 to 
1,138 

-0.60 to 12.26 

 197 3.21 -3.11 to 3.21 
266 to 

934 
0.45 to 8.17 

Tournament size 10 195 4.42 -5.65 to 4.42 
296 to 
1,310 

-0.40 to 10.88 

 195 3.63 -2.82 to 3.63 
294 to 
1,047 

0.06 to 10.01 

 194 3.34 -2.66 to 3.34 
259 to 
1,347 

-0.87 to 12.24 

Tournament size 15 194 3.62 -3.70 to 3.62 
146 to 

994 
-1.19 to 9.21 

 197 4.13 -5.27 to 4.13 
311 to 
1,005 

-0.62 to 10.59 

 192 4.74 -4.17 to 4.74 
335 to 
1,217 

-0.31 to 9.74 

Table C-7: Results of tournament selection runs for the Therm inhibitor experiment. 
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C.7 Statistical analysis of inhibitor runs 

C.7.1 Ace inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian score) 

Variance 

(Highest Bayesian 
score) 

5 8.81 1.41 1.98 

10 6.84 0.85 0.72 

15 6.48 1.01 1.02 

Table C-8: Summary of statistical analysis of the tournament selection method for the 

Ace inhibitor experiment. 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 6.12 1.66 2.77 

10 8.26 0.32 0.10 

15 8.51 0.82 0.67 

Table C-9: Summary of statistical analysis of the tournament selection method for the 

Ace inhibitor experiment (second starting material). 

C.7.2 Bzr inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 -0.74 0.92 0.84 

10 -1.55 0.41 0.17 

15 -1.33 0.95 0.90 

Table C-10: Summary of statistical analysis of the tournament selection method for the 

Bzr inhibitor experiment. 
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C.7.3 Cox inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 -1.58 0.34 0.11 

10 -2.52 1.17 1.37 

15 -2.54 0.06 0.00 

Table C-11: Summary of statistical analysis of the tournament selection method for the 

Cox inhibitor experiment. 

C.7.4 Dhfr inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 -1.90 0.38 0.15 

10 -0.93 0.19 0.04 

15 -0.65 0.20 0.04 

Table C-12: Summary of statistical analysis of the tournament selection method for the 

Dhfr inhibitor experiment. 

C.7.5 Gpb inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 -0.65 0.20 0.04 

10 1.22 0.46 0.21 

15 1.25 0.81 0.65 

Table C-13: Summary of statistical analysis of the tournament selection method for the 

Gpb inhibitor experiment. 
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C.7.6 Therm inhibitors 

Tournament 
size 

Mean 

(Highest Bayesian 
score) 

Standard Deviation 

 (Highest Bayesian 
score) 

Variance 

(Highest Bayesian 
score) 

5 3.44 0.37 0.13 

10 3.80 0.56 0.31 

15 4.16 0.56 0.31 

Table C-14: Summary of statistical analysis of the tournament selection method for the 

Therm inhibitor experiment. 
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