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Abstract 

In this thesis, the effect of various thermomechanical controlled processing 

parameters on the transformed microstructural evolution and grain refinement of 

an API X-80 high temperature processing steel was investigated by conducting 

plane strain compression tests followed by continuous cooling. 

Increasing the strain magnitude below the recrystallisation-stop temperature 

(T5%) from 0 to 0.5 with a cooling rate of 20˚C/s, a transition from bainitic ferrite 

(BF) to acicular ferrite (AF) occurs and grain refinement, microhardness and 

martensite/retained austenite (M/A) constituent refinement is improved. Once 

the magnitude of strain2 is increased to 0.7, dynamic recrystallisation (DRX) and 

subsequent static recrystallisation/meta-dynamic recrystallisation (SRX/MDRX) 

were triggered, weakening the beneficial influences of the austenite deformation. 

Applying continuous cooling with various cooling rates, ranging from 

0.5˚C/s to 50˚C/s, to both fully recrystallised and fully unrecrystallised austenite, 

the effect of continuous cooling rate was investigated. Based on the results of the 

effects of austenite deformation and continuous cooling rate on AF 

transformation, the introduction of intragranular nucleation sites and halting of 

BF laths nucleated on austenite grain boundaries are found as two conditions that 

should be fulfilled for the occurrence of acicular ferrite transformation in 

pipeline steels.  

The effect of prior-austenite grain size (PAGS) on the microstructural 

evolution from both recrystallised and unrecrystallised austenite was studied. For 

microstructures transformed from recrystallised austenite, increasing the PAGS 

from 22.3 μm to 62.8 μm, the morphology of the transformed BF microstructure 

is changed and the effective grain size is reduced. For microstructures 

transformed from unrecrystallised austenite, reducing the PAGS from 62.8 μm 

to 37.0 μm, the volume fraction of AF is increased and the effective grain size is 

reduced from 4.5 μm to 2.9 μm. However, further reducing the PAGS from 37.0 
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μm to 22.3 μm, there are not significant changes on the transformed 

microstructures and the grain refinement. 
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ACC Accelerated Cooling 

AF Acicular Ferrite 

BF Bainitic Ferrite 
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CL Confidence Level 
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DBTT Ductile-Brittle Transition Temperature 

DQ Direct Quenching 
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FTTU Fast Thermal Treatment Unit 
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GND Geometrically Necessary Dislocation 

G-T Greninger-Troiano 
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HTP High Temperature Processing 

IAC Interrupted Accelerated Cooling 
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IDB Incidental Dislocation Boundary 

IPF Inverse Pole Figure 

IPS Invariant-Plane Strain 

K-S Kurdjumov-Sachs 

LAGB Low Angle Grain Boundary 

LB Lath Bainite 

LEDS Low Energy Dislocation Structures 

LSCM Laser Scanning Confocal Microscopy 

M/A Martensite/Retained Austenite 

MDRX Meta-Dynamic Recrystallisation 

ND Normal Direction 

N-W Nishiyama-Wasserman 

ODF Orientation Density Function 

OM Optical Microscopy 

OR Orientation Relationship 

PA Parent Austenite 

PAGB Prior-Austenite Grain Boundary 

PAGS Prior-Austenite Grain Size 

PF Polygonal Ferrite 

PSC Plane Strain Compression 

QF Quasi-Polygonal Ferrite 

QST Direct Quenching Plus Self-Tempering 

RD Rolling Direction 

SEM Scanning Electron Microscopy 

SFE Stacking Fault Energy 

SRX Static Recrystallisation 

SSD Statistically Stored Dislocation 
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TEM Transmission Electron Microscopy 

TMC Thermomechanical Compression 

TMCP Thermomechanical Controlled Processing 

TWIP Twinning-Induced Plasticity 

WF Widmanstätten Ferrite 

b Burgers Vector 

C1 Constant 

C2 Constant 

D Austenite Grain Size 

d  Grain Diameter 

Dc10% Grain Size that 10% Area Fraction of Grains 

possessing a Size Greater than this Value 

G Shear Modulus 

K Constant 

ky Constant 

l1 Average Slip Length for Statistically Stored 

Dislocations 

l2 Average Slip Length for Geometrically 

Necessary Dislocations 

R Reduction Ratio 

s Shear Strain 

Sv Effective Interfacial Area per Unit Volume 

Sv(DB) Total Area of Intragranular Planar Defects per 

Unit Volume 

Sv(GB) Total Area of Deformed Austenite Grain 

Boundary per Unit Volume 

T Temperature 

T5% Recrystallisation-Stop Temperature 

T95% Recrystallisation-Limit Temperature 

v Poisson’s Ratio 

α Constant 
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β Resistance of Grain Boundary Against 

Cleavage Fracture 

δ Dilation Strain 

ΔG Chemical Free Energy Change 

ε Deformation Strain 

εc Critical Strain of Dynamic Recrystallisation 

εp Peak Strain 

εss Steady State Strain 

εT Minimum Strain for Meta-Dynamic 

Recrystallisation Becoming Dominant 

θ Boundary Disorientation Angle 

ρ Dislocation Density 

ρg Density of Geometrically Necessary 

Dislocations 

ρs Density of Statistically Stored Dislocations 

σ Flow Stress 

σ0 Friction Stress 

σy Yield Strength 

τ Mean Shear Stress Needed to Force Dislocation 

Past Each Other 

τT Shear Stress Driving the Motion of the Interface 

Φ Constant 
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Chapter 1 Introduction 

1.1 Thermomechanical controlled processing of 

microalloyed steels 

Thermomechanical controlled processing (TMCP), including controlled 

rolling and accelerated cooling, has been widely applied to the production of 

microalloyed steels and has gained great commercial success. Through 

controlled rolling, austenite grains are refined and then heavily deformed at 

temperatures with no recrystallisation and minimum recovery to increase the 

density of nucleation sites for subsequent phase transformations. By applying 

accelerated cooling, medium to low-temperature transformation products are 

favoured to improve the strength. The addition of microalloy elements such as 

niobium, vanadium and titanium with very small amounts (<0.1wt%) can benefit 

the practical application of TMCP by retarding the restoration of deformed 

austenite and by increasing the hardenability, especially when niobium is added. 

In addition, fine precipitates of microalloy elements as carbides, nitrides or 

carbonitrides can significantly increase the strength. 

The advances in TMCP techniques and alloy design of microalloyed steels 

have significantly promoted the development of pipeline steels. Pipeline steels 

have long been used for building pipelines to transport massive natural gas and 

oil from deposits to harbours and refineries [1]. By increasing the strength of 

pipeline steels, a significant pipe thickness reduction can be achieved which will 

markedly reduce the pipe weight, the building cost and the welding difficulty [2]. 

Even when the wall thickness is not the main concern, raising the pipeline steels 

strength can allow a higher operating transmission pressure which will promote 

the transmission efficiency and lower the cost. Thus, great efforts in the steel 

industry have been devoted to the development of high strength pipeline steels 

[3-5] and the pipeline steel grades progressed from API X60 to API X120 since 
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the 1970s as shown in Figure 1-1 (a), with yield strengths increasing from 420 

MPa (60 ksi) to ~830 MPa (120 ksi) and microstructures evolving from ferrite-

pearlite to bainite-martensite [6]. The representative stress-strain curves and 

types of transformation products for pipeline steels with different grades are 

shown in Figure 1-1 (b) [7]. 

 

 

Figure 1-1 (a) Development history of pipeline steels [6], (b) representative stress-strain 

curves and microstructure components for pipeline steels with different grades [7]. 

 

1.2 Acicular ferrite in pipeline steels 

It is clear from Figure 1-1 (a) that increasing hardenability and changing 

cooling conditions, and thus altering austenite decomposition products are 

necessary to meet the strength requirement. However, since many gas and oil 

exploitations have been undertaken in extreme conditions like severe low 

temperatures or deep seas [1], it is imperative that the increase in strength of 

pipeline steels is done so without compromising the toughness. A decrease in 

toughness will promote the stress-induced cracking especially in corrosive 

atmospheres, and will reduce the formability which will cause failures in the pipe 

shaping processes. Thus, high strength in association with high toughness is an 

important requirement for pipeline steels [3-5]. 

To meet this requirement, an optimal microstructure should be obtained 

during the steel plate production. Acicular ferrite (AF) dominant microstructures 
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provide more potential to improve the strengthening and toughening components, 

including grain refinement, dislocation density and easily controlled 

precipitation hardening, than those obtainable in ferrite-pearlite microstructure 

[8]. As a result, pipeline steels with an acicular ferrite (AF) microstructure 

possess a better property combination (e.g., higher strength [9], better toughness 

[9], superior H2S resistance [10], and better fatigue behaviour [11]) than those 

steels exhibiting a ferrite-pearlite microstructure. Additionally, the strength 

associated with an AF microstructure is relatively lower than that of a bainitic 

ferrite (BF) microstructure, but the toughness of an AF microstructure is 

considerably higher [12]. 

Although there have been extensive investigations on the AF microstructure 

since the 1970s and API X80 pipeline steels with an AF dominant microstructure 

have already been successfully used to build several pipeline projects, there are 

still many unclear aspects of AF microstructures, including the transformation 

mechanism and the formation conditions. Knowledge of these aspects is 

necessary to understand the reason for the good strength and toughness of the 

AF microstructure and to further improve its properties.  

1.3 Aim and scope of this thesis 

The aim of this thesis is to investigate the effects on the microstructure 

evolution, especially AF transformation, of various TMCP parameters, including 

austenite deformation, continuous cooling rates and austenite grain sizes. Not 

only their individual effects but also their combined influences were studied. 

Along with the discussion on the influences of these TMCP parameters, the 

conditions for the occurrence of AF microstructure in pipeline steels were 

analysed and the related implications on the industrial production were also 

provided. In order to achieve these purposes, the layout of this thesis is presented 

as follows: 

Chapter 2 presents a literature review on various aspects of the background 
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necessary for this thesis. Firstly, the thermomechanical controlled processing of 

high strength low alloy (HSLA) steels is illustrated generally. After that, several 

physical metallurgy phenomena related to this thesis are introduced, covering the 

hot deformation of austenite, the decomposition of supercooled austenite and the 

characteristics of acicular ferrite in different microstructures. Finally, the 

crystallography characteristics of BF microstructure are briefly explained. 

Chapter 3 mainly introduces the material used in this thesis, which is a high 

temperature processing (HTP) pipeline steel, together with the experimental 

apparatuses. The microscopy techniques adopted in this thesis to characterise 

microstructures are also presented and emphasis is placed on the description of 

the electron backscattering diffraction (EBSD) mapping and the post-processing 

procedures for EBSD data. In the end, the as-received microstructure of the 

tested steel is characterised. 

Chapter 4 discusses the effect of austenite deformation below the 

recrystallisation-stop temperature (T5%) on the austenite restoration behaviour, 

the evolution of transformed microstructures and the grain refinement. The 

possible nucleation mechanism of AF is presented and the importance of AF 

transformation on grain refinement is also emphasized. 

Chapter 5 is concerned with the influence of different continuous cooling 

rates, for both recrystallised austenite and deformed austenite, on the evolution 

of transformed microstructures and the grain refinement. The conditions for the 

occurrence of AF transformation are proposed and explained in terms of the 

mechanical stabilisation of austenite. Subsequently, the impact of cooling rates 

on the grain refinement effect of austenite deformation is presented. 

Chapter 6 presents the effect of different austenite grain sizes, for both 

recrystallised austenite and deformed austenite, on the evolution of transformed 

microstructures and the grain refinement. Austenite with different grain sizes are 

generated before the continuous cooling or the finishing deformation, by altering 

the heat treatment time and the roughing deformation magnitude. Possible 
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mechanisms that are responsible for the differences in morphologies of the 

transformed microstructures with different austenite grain sizes are proposed. 

Chapter 7 concludes the main findings of this thesis based on the result of 

each chapter. Chapter 8 suggests the possible work that could be done in the 

future to complete the results and testify the mechanisms proposed in this thesis.  
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Chapter 2 Background 

2.1 Introduction 

In this chapter, a literature review on various aspects of the background 

necessary for this thesis is presented. First, the thermomechanical controlled 

processing of high strength low alloy (HSLA) steels is illustrated in general 

terms. After that, several physical metallurgy phenomena related to this thesis 

are introduced, covering the hot deformation of austenite, the decomposition of 

supercooled austenite and the characteristics of acicular ferrite in different 

microstructures. Finally, the crystallography characteristics of BF microstructure 

are briefly explained. 

2.2 Overview of TMCP for HSLA steels 

Based on the well-acknowledged Hall-Petch equation [13, 14], the yield 

strength σy can be expressed as: 

𝜎𝑦 = 𝜎0 + 𝑘𝑦𝑑−
1
2 (2.1) 

where σ0 is the friction stress , d the grain diameter and ky a positive constant of 

yielding related to the stress required to extend activities of dislocations to 

adjacent grains. Furthermore, when polygonal ferrite dominates the final 

microstructure, the ductile-brittle transition temperature (DBTT) can be 

expressed as: 

𝑇 = 𝛼 − 𝛽𝑑−
1
2 (2.2) 

where α is a constant depending on the chemical composition and β is the 

resistance of a grain boundary against the progress of cleavage fracture [15]. 

From the above two relationships, it is clear that unlike other strengthening 

mechanisms, grain refinement not only increases the strength but also improves 

the toughness. 
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The aim of TMCP for HSLA steels is to obtain refined transformation 

microstructures through the conditioning of austenite and the controlling of 

cooling processes.  

In general, the grain size of ferrite depends on the density of nucleation sites. 

It was found that in undeformed austenite, ferrite grains mainly nucleate at grain 

triple junctions, grain edges and grain boundaries with increasing activation 

energy for nucleation as shown in Figure 2-1 (a) [16]. While in deformed 

austenite, additional nucleation sites of ferrite transformation were found to be 

effective, such as deformation bands and prior annealing twin boundaries as 

shown in Figure 2-1 (b) [16]. The reason why it is called a prior annealing twin 

boundary is because, during austenite deformation, twin boundaries will lose 

coherency and transit into normal high angle grain boundaries (HAGBs). 

 

  

Figure 2-1 Nucleation of ferrite at (a) undeformed austenite grain boundary, (b) 

deformed austenite grain boundaries, deformation bands A and prior annealing twins 

B [16]. 

 

A stereological parameter Sv has been proposed to quantify the total effective 

nucleation sites area per unit volume for ferrite transformation [16], and the 

relationship between ferrite grain size and Sv in both recrystallised and deformed 

austenite is shown in Figure 2-2. We can see that the ferrite grain diameter has a 
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reciprocal relationship with Sv, and therefore increasing Sv is the primary method 

to refine ferrite microstructures. 

 

 

Figure 2-2 Relationship between ferrite grain size and Sv value in austenite [16]. 

 

The expression of Sv for recrystallised austenite was proposed as: 

𝑆𝑣 =
2

𝐷
 (2.3) 

where D is the austenite grain size measured by mean linear intercept length [17]. 

The expression of Sv for deformed austenite was presented as: 

  𝑆𝑣 =  𝑆𝑣(GB) +  𝑆𝑣(DB) = [1.67(𝑅 − 0.1) + 1](
2

𝐷
) + 0.63(𝑅 − 0.3) (2.4) 

where Sv(GB) stands for the total area of deformed austenite grain boundary per 

unit volume, Sv(DB) the total area of intragranular planar defects per unit volume, 

D the austenite grain size and R the reduction ratio [18]. 

Based on these equations, to archive a large Sv, there are two methods, 

obtaining recrystallised austenite with small grain diameters or deforming 

austenite to generate additional nucleation sites. These two methods lead to two 

different rolling strategies, the recrystallisation controlled rolling and the non-

recrystallisation controlled rolling. At a given strain, strain rate, temperature and 
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interpass time, deformed austenite may exhibit different restoration behaviours, 

including complete recrystallisation, partial recrystallisation and no 

recrystallisation at decreasing temperatures as schematically illustrated in Figure 

2-3. The lower and upper temperature limits for partial recrystallisation are 

termed as the recrystallisation-stop temperature (T5%) and the recrystallisation-

limit temperature (T95%). For the recrystallisation controlled rolling, austenite 

deformation is conducted above T95% so that recrystallised and refined austenite 

grains are obtained. While for the non-recrystallisation controlled rolling, 

austenite deformation is performed below T5% so that austenite is deformed with 

no recrystallisation and minimum recovery, generating a high density of 

nucleation sites for subsequent phase transformations. Usually, austenite 

deformation between T95% and T5% is avoided due to the inhomogeneous 

microstructure transformed from partially recrystallised austenite grains. 

 

 

Figure 2-3 Schematic illustration of austenite grains at the same strain level but 

different deformation temperatures [19]. RXN stands for recrystallisation. 

 

According to the Sv expression for deformed austenite, Equation (2.4), a 

smaller austenite grain size before deformation can also help increase Sv and this 

can be more directly understood by the relationship between Sv, austenite grain 

size and rolling reduction as shown in Figure 2-4. 
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Figure 2-4 Change of Sv with rolling reduction below the recrystallisation-stop 

temperature for a 0.03%-Nb steel [20]. 

 

Based on the above information, the typical thermomechanical controlled 

processing for HSLA steels is schematically shown in Figure 2-5, including 

reheating, rough rolling, finish rolling and continuous cooling. 
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Figure 2-5 Schematic illustration of the thermomechanical controlled processing 

(TMCP) [21]. 

 

During the reheating process, ingots are heated to the austenite single-phase 

region and there are two major influences of the reheating process on the 

following thermomechanical treatment, grain coarsening of austenite and 

dissolution of microalloy element precipitates [22]. The grain coarsening of 

austenite during the reheating process is affected by the temperature and duration 

of reheating. Lower reheating temperatures and shorter reheating times can 

reduce the initial austenite grain size, which benefits the following austenite 

conditioning. However, the reheating temperature and duration must be adequate 

for enough dissolution of microalloy element precipitates. It can be seen from 

Figure 2-6 that increasing the initial solute content of various alloy elements, the 

recrystallisation-stop temperature (T5%) is raised to higher temperatures which 

facilitates the finish rolling process. The dissolved microalloy elements can also 

increase the hardenability of steels and form fine precipitates during continuous 

cooling, both strengthening the final microstructure. Past research [22] has 

shown that the reheating temperature very strongly affected the strength and low-

temperature toughness properties of HSLA steels, which could be attributed to 
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the higher amount of Nb(C,N) in solution at higher reheating temperatures. 

 

 

Figure 2-6 Effect of addition of microalloying elements on recrystallisation-stop 

temperature of a 0.07C-1.4Mn-0.25Si steel [16]. 

 

During rough rolling, ingots are deformed above T95% to refine the coarse-

grained austenite through repeated deformation and recrystallisation. After that, 

finish rolling is conducted below T5% to pancake the refined austenite grains and 

introduce intragranular nucleation sites. 

Finally, the pancaked (i.e., unrecrystallised) austenite is cooled continuously 

to get the final transformed microstructure. For controlled rolled microalloyed 

steels, subjected to air cooling often leads to a ferrite-pearlite microstructure with 

mechanical properties commonly below an X70 grade. To further improve the 

properties, accelerated cooling (ACC) is necessary. Based on the understanding 

of the transformation behaviours of deformed austenite during continuous 

cooling, the advantages of ACC for the improvement of both strength and 

toughness were studied during the 1970’s [23]. The wide application of online 

ACC equipment not only increases the productivity significantly in steel plate 

mills [24] but also brings good control of the transformed microstructures [25]. 

For low carbon microalloyed pipeline steels, ACC after finish rolling 

exploits the enhanced hardenability of these steels to produce low-temperature 
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transformation products, mainly acicular ferrite (AF) which has a good 

combination of strength and toughness. A good example of the effect of ACC on 

the improvement of mechanical properties is shown in Figure 2-7. We can see 

that replacing the air cooling with an ACC with a cooling rate of 15˚C/s, not only 

the strength is increased from X70 grade to X80 grade, also the toughness is 

improved as shown by the lower temperature of 85% shear in a drop weight tear 

test (DWTT). 

 

 

Figure 2-7 Strength and toughness properties of 18 mm pipeline steel plate (0.03% C–

0.10% Nb–1.75% Mn) as a function of cooling conditions [26]. 

 

Additionally, the microstructure inhomogeneity across the plate thickness, 

mainly observed as banded structures, caused by solidification-induced chemical 

segregation, can be reduced or eliminated by applying ACC [24, 27]. 

2.3 Hot deformation of austenite 

The essence of TMCP for HSLA steels is austenite deformation below the 
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T5% which significantly increases the density of nucleation sites for the 

subsequent phase transformations from austenite. Therefore, in this part, the 

deformation mechanisms of austenite are introduced and the evolution of 

deformation substructures are reviewed. 

2.3.1 Deformation mechanisms of austenite 

It is well known that the deformation mechanisms of face-centred cubic 

(FCC) metals strongly depends on the stacking fault energy (SFE) [28]. For the 

FCC phase of iron, austenite, its SFE is one of a number of factors that determine 

whether dislocation glide, twinning or martensite transformation will occur 

during deformation [29]. 

In austenite, a perfect <110> dislocation can dissociate into two Shockley 

partial dislocations with Burgers vectors in directions of <112>, as shown in 

Figure 2-8 (a). Between these two partial dislocations, an area with a perturbed 

local stacking sequence on the slip plane exists as shown by the area A in Figure 

2-8 (b), which is called a stacking fault. If the dislocation energy can be reduced 

by dissociating perfect dislocations into partial dislocations, stacking faults are 

likely to be generated. Furthermore, there is a repulsive force between these two 

partial dislocations and the surface tension of the stacking fault tend to pull them 

together. The partial dislocations will settle at an equilibrium separation 

determined primarily by the stacking fault energy. Therefore, the width of 

stacking faults, namely the separation distance between two partial dislocations 

has an inverse relationship with the SFE of austenite. Low SFE leads to wide 

stacking faults, while high SFE results in narrow ones. The narrow stacking 

faults in high SFE materials means the separated partial dislocations could be 

easily recombined to form a perfect dislocation to climb or cross-slip. On the 

other hand, for low SFE materials, due to the wide stacking faults and thus the 

difficulty of climb and cross-slip, other deformation mechanisms may be 

activated in addition to dislocation slip. 
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Figure 2-8 (a) A dislocation b1 dissociate into two Shockley partial dislocations b2 and 

b3 in FCC crystal; (b) The stacking fault region with an area of A between two Shockley 

partials b2 and b3 [30]. 

 

The mechanisms both of ε-martensite transformation and mechanical 

twinning can be associated with the dissociation of perfect <110> dislocations 

and thus to the SFE of the material as well. From a crystallographic viewpoint, 

the formation of twins can be explained by packing of the same Shockley partial 

dislocations on every close-packed {111} plane, while packing of Shockley 

partials on every second close-packed {111} plane leads to the occurrence of ε-

martensite [31]. Therefore, the occurrence of mechanical twinning and ε-

martensite transformation is linked to the probability of forming stacking faults 

and thus to the SFE [32, 33]. 

It was reported that with increasing SFE, the active deformation mechanism 

of austenite will change from martensitic transformation, mechanical twinning 

to dislocation glide [34]. With a SFE smaller than 18 mJ/m2, and simultaneously 

a high enough driving force for a martensite transformation, martensite 

transformation is favoured. If the SFE is higher than 18 mJ/m2 but lower than 45 

mJ/m2, mechanical twinning becomes active. When the SFE is higher than 45 

mJ/m2, dislocation glide is the only deformation mechanism [29]. Besides 
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chemical composition, the SFE of materials also increases with an increase in 

temperature [33]. Therefore, various deformation mechanisms can be observed 

within different temperature ranges for the same material. An example of 

twinning-induced plasticity (TWIP) steel is shown in Figure 2-9 [29]. From it, 

we can see that at the same temperature, the SFE varies with different chemical 

compositions and with increased temperatures, SFEs of all three kinds of TWIP 

steels rises dramatically. 

 

 

Figure 2-9 Stacking fault energy (SFE) of various TWIP steels at different 

temperatures [29]. 

 

The SFE of the austenite in C-Mn steels as measured by Charnock and 

Nutting at high temperatures is around 75 mJ/m2 [35]. Therefore, based on the 

description of the dependence of deformation mechanism on SFE, dislocation 

slip is the main deformation mechanism during hot deformation of austenite. 

2.3.2 Evolution of deformation substructures 

During the deformation of metals, the mechanical energy required for 

deformation is largely transformed into heat and only a small fraction (~1-10%) 
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of the mechanical energy is stored in the deformed metals as crystal defects, 

mainly dislocations [28]. The arrangement of these dislocations depends on the 

material and deformation parameters, and generally these dislocations are 

accumulated in dislocation boundaries and only a small amount of dislocations 

exist in the regions separated by those dislocation boundaries [36]. The 

occurrence of this dislocation accumulation behaviour can be attributed to the 

reduction of strain energy by forming low energy dislocation structures (LEDS). 

Although the LEDS theory provides guidelines and principles for the analysis of 

deformation microstructures, it cannot allow the prediction of certain dislocation 

arrangement [36]. 

The evolution of deformation induced dislocation boundaries during rolling 

has been characterised extensively in FCC metals, such as Al [37], Ni [38] and 

Cu [39]. The general evolution pattern is illustrated as follows: at small strains, 

cell block (CB) structures are generated as schematically shown in Figure 2-10 

(a); while at large strains, typical lamellar structures, with almost planar 

boundaries and short coadjacent boundaries generating a bamboo-like structure, 

are dominant as shown in Figure 2-10 (b) [40]. 

 

 

Figure 2-10 Schematic illustration of the deformation substructure evolution: (a) 

strain between 0.06 and 0.80, (b) strain higher than 1 [40]. 

 

For the cell block structures, cell blocks consisting of multiple equiaxed 

ordinary cells are delineated by extended planar dislocation boundaries and cells 
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are separated by cell boundaries [41]. These two types of dislocation boundaries 

are intrinsically different. The extended planar dislocation boundaries separating 

CBs are geometrically necessary boundaries (GNBs) produced by a 

deterministic mechanism while the ordinary cell boundaries are incidental 

dislocation boundaries (IDBs) formed by stochastic processes [36]. 

The formation mechanisms for these two different types of dislocation 

boundaries are schematically described in Figure 2-11 [36]. For GNBs, Figure 

2-11 (a), different slip systems are activated in each cell block, which leads to an 

increased misorientation between adjacent cell blocks, and this difference in 

orientation will further aggravate the difference in slip systems activated. 

Therefore, dislocation boundaries with relatively large misorientation angles are 

geometrically necessary to accommodate the orientation misorientations 

between adjacent CBs and this process is deterministic during deformation. As 

for IDBs, mutual trapping of moving dislocations on a single slip system is the 

main mechanism to generate these boundaries and thus this process is stochastic 

in nature. 

 

 

Figure 2-11 Formation mechanisms for two types of dislocation boundaries: (a) GNBs 

such as cell block boundaries are produced by different active slip systems (Γ) within 

individual cell blocks; (b) IDBs such as cell walls are formed by mutual trapping of 

moving dislocations on a single slip system [36]. 

 

To quantify the evolution of deformation substructures, microstructural 



 

19 

 

parameters, including the spacing between dislocation boundaries and the 

misorientation angles across these boundaries have been extensively investigated. 

One example is shown in Figure 2-12 for cold-rolled nickel specimens [42]. It 

can be seen clearly that the spacings of both GNBs and IDBs decrease with the 

increased Von Mises strain, while the averaged misorientation angles of both 

GNBs and IDBs increase with the raised Von Mises strain. Furthermore, the 

mean misorientation angle of GNBs increases with Von Mises strain more 

rapidly that that of IDBs, which can be seen more clearly in Figure 2-13. The 

more rapid increase in the average misorientation angle of GNBs was attributed 

to its deterministic nature and modelling and calculation using dislocation 

mechanisms based on the different formation processes of GNBs and IDBs 

successfully predict this difference as shown by the dashed lines in Figure 2-13 

[43]. 

 

 

Figure 2-12 Spacings (Dav) and average misorientation angles (θav) at different Von 

Mises strains for cold-rolled nickel: (a) GNBs and (b) IDBs [42]. 
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Figure 2-13 Experimental measurements and theoretical calculation of mean 

misorientation angles at different Von Mises strains for IDBs and GNBs [43]. 

 

Besides strain magnitude, deformation induced substructures can also be 

significantly affected by orientations of the parent grains. An example of tensile 

strained Cu is given in Figure 2-14 [44]. It is clear from Figure 2-14 (b)~(c) that 

three different types of deformation substructures can be identified and this 

substructure difference can be associated with the orientations of the parent 

grains as shown in the inverse pole figure (IPF) of tensile axes in Figure 2-14 (a). 
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Figure 2-14 The dependence of deformation induced substructures on grain orientations 

in a tensile strained copper: (a) inverse pole figure (IPF) of tensile axes orientations of 

120 grains, (b) type 1 substructures, (c) type 2 substructures and (d) type 3 substructures 

[44]. 

 

With tensile axes locating in the centre of the IPF, a cell block deformation 

substructure developed, Figure 2-14 (b). The GNBs in this type of microstructure 

are straight, parallel and aligned nearly with the activated slip planes (within 10˚). 

If tensile axes are near to the <111> direction of the parent grains, a cell block 

deformation substructure is also generated, Figure 2-14 (d), but the GNBs 

deviate substantially from the activated slip planes (>10˚). When tensile axes are 
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near to the <100> direction of the parent grains, a cell structure without GNBs is 

developed, Figure 2-14 (c), with cell boundaries randomly orientated and 

extended along the tensile axes. A similar dependence of deformation 

substructure on parent grain orientations was also found in cold-rolled Cu. 

Detailed descriptions can be found in reference [44]. 

Through extensive and careful transmission electron microscopy (TEM) 

characterisation of various deformation substructures in pure copper and 

aluminium [45, 46], the strong effect of the parent grain orientations on the 

deformation substructures was found to originate from the dependence of 

deformation substructures on the active slip systems. Different combinations of 

slip systems will give rise to different types of dislocation boundaries and most 

of the GNBs align with certain crystallographic planes. Based on the 

characteristics of the GNBs generated after deformation, different combinations 

of slip systems were classified into 5 fundamental slip classes [45]. More 

importantly, the slip activities of all slip systems largely depend on the 

orientations of parent grains. Therefore, different parent orientations lead to 

distinct active slip systems and finally result in different deformation 

substructures. 

The slip activity distribution within a parent grain is also very important. 

According to the classic Taylor theory [47], each grain is subjected to the same 

homogeneous strain undergone by the bulk material, which needs the 

simultaneous operation of the same five independent slip systems in different 

parts. This homogeneous slip activity will generate a homogeneous deformation 

substructure as schematically shown in Figure 2-15. Nevertheless, in 

experimental work, inhomogeneous slip patterns are generally observed, and it 

is believed that the quantity of active independent slip systems is commonly less 

than 5 in each region of the parent grain. More importantly, the active slip 

systems in each region of the parent grain are different and therefore cause the 

parent grains to be subdivided into cell blocks separated by GNBs as shown in 
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Figure 2-16 [48]. 

 

 

Figure 2-15 Homogeneous deformation based on the Taylor assumption: (a) 

deformation substructures (b) slip line pattern [48]. 

 

 

Figure 2-16 Inhomogeneous deformation with various combination of slip systems 

operating in different regions: (a) deformation substructures (b) slip line pattern [48]. 

 

Although most of the experiments mentioned above were conducted at room 

temperature, the underlying principles and general descriptions are suitable for 

both cold and hot deformation [44]. Direct characterisations of austenite 

deformation substructures for C-Mn steels are difficult due to the phase 

transformation during quenching, but similar evolutions of deformation 

substructures were observed in hot deformed austenitic stainless steels and Fe-

Ni model alloys [49, 50]. Therefore, the general description of deformation 
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substructures should be applicable to the hot deformation of austenite for HSLA 

steels.  

Deformed austenite is thermodynamically unstable because of the presence 

of crystal defects generated during deformation. At high temperatures, 

restoration processes such as recovery and recrystallisation occurring during 

(dynamic) or after (static) deformation can proceed readily by the help of 

thermally activated diffusion. For further details about the mechanisms and 

microstructure evolution characteristics of various restoration processes, 

comprehensive textbooks such as Recrystallization and related annealing 

phenomena [28] can be referred to. 

 

2.4 Decomposition of austenite  

During the continuous cooling of HSLA steels, various transformation 

products can be formed and specific terms have been introduced to describe these 

phases. The classification of these transformation products usually is conducted 

according to the systems proposed by Araki et al. [51] and Krauss and Thompson 

[52]. In this section, the morphology characteristics and the transformation 

mechanisms of these transformation products are introduced. 

2.4.1 Morphologies of austenite decomposition products 

The classification of ferritic microstructures proposed by Krauss and 

Thompson [52] is used in this thesis, including polygonal ferrite (PF), quasi-

polygonal ferrite (QF), Widmanstätten ferrite (WF), granular bainite (GB), 

acicular ferrite (AF) and lath bainite (LB). Since acicular ferrite (AF) has been 

designated to a specific type of microstructure which is illustrated at length in 

Section 2.5, the term lath bainite (LB) is used to describe the bainite 

microstructures with an apparent parallel morphology. The morphology 

characteristics of all types of microstructure except AF are illustrated below and 
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the typical optical micrographs are shown in Figure 2-17.  

 

 

Figure 2-17 Optical micrographs of various transformation products: (a) polygonal 

ferrite (light grains), (b) quasi-polygonal ferrite, (c) Widmanstätten ferrite (large 

elongated white grains), (d) granular bainite and (e) lath bainite. 

 

PF forms at the slowest cooling rates and the highest transformation 

temperatures, and nucleates at austenite grain boundaries and grows into 

equiaxed shapes [52]. Due to the very low dislocation density and the high 

transformation temperature [53], this microstructure can be easily identified, 

under a optical microscope, with bright colour and smooth boundaries as shown 

in Figure 2-17 (a). The dark areas in Figure 2-17 (a) are martensite formed during 

quenching after isothermal holding. 

During the continuous cooling of very-low-carbon steels, if the cooling rate 
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is rapid enough, with decreased temperatures, austenite can go through the two-

phase field of austenite/ferrite without any initiation of transformation, and reach 

the single-phase field of ferrite. Within the single-phase field of ferrite, massive 

transformations could occur and quasi-polygonal ferrite (QF or massive ferrite) 

could be generated from austenite without any change of bulk chemical 

composition [54, 55]. QF has irregular grain boundaries and sub-boundaries with 

high densities of dislocations [56], as shown in Figure 2-17 (b). 

WF is usually referred to coarse and elongated ferrite grains and due to the 

lack of substructures within each grain, WF in optical micrographs appears 

uniformly white as shown in Figure 2-17 (c). WF forms at faster cooling rates or 

lower transformation temperatures than those of PF and QF. It nucleates on 

austenite grain boundaries or pre-existed PF grains and develops into long, thin 

and parallel lath-like or plate-like microstructures. 

At even lower transformation temperatures or higher cooling rates, granular 

bainite (GB) and then lath bainite (LB) transformations occur [57, 58]. GB 

microstructures usually consist of coarse plates with an almost entirely granular 

aspect together with equiaxed M/A (martensite and retained austenite) 

constituents distributing among this featureless matrix as shown in Figure 2-17 

(d) [2]. In GB microstructures, prior-austenite grain boundaries (PAGBs) are also 

retained. Differently, parallel morphologies can be seen clearly from LB 

microstructures and M/A constituents in them have an acicular shape as shown 

in Figure 2-17 (e). The terms GB and LB were given mainly to distinguish 

different bainite morphologies [55]. Actually, GB has many similarities to LB 

[51] and Bhadeshia [2] suggested that GB is not different from ordinary LB in 

terms of transformation mechanism, despite the existence of morphological 

differences between them. They both consist of packets of parallel ferrite laths 

separated by low-angle disorientation boundaries and contain high densities of 

dislocations [59]. Since in this research ferritic microstructure evolution is the 

main focus, we term both GB and LB as bainitic ferrite (BF). 
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2.4.2 Mechanisms of phase transformation from austenite 

The various austenite transformation products illustrated above can be 

divided into two groups, reconstructive transformations and displacive 

transformations, based on their transformation mechanisms [60]. PF and QF 

belong to the group of reconstructive transformations while WF, GB and LB fall 

into the group of displacive transformations. During reconstructive 

transformations, to form the lattice structure of the target phase (bcc in this case), 

all of the atom bonds in the parent lattice (FCC in this case) need to be broken 

and all the atoms are needed to be rearranged through diffusion [54]. As for 

displacive transformations, the lattice structure of the target phase is formed 

through uniform deformation of the austenite lattice and the movement of atoms 

are synchronized. These two transformation mechanisms are schematically 

illustrated in Figure 2-18. 

 

 

Figure 2-18 Schematic illustration of the lattice change mechanisms from a parent 

lattice (left) to a product lattice (above the interface) through a displacive 

transformation (right and upper) and a reconstructive transformation (right and lower) 

[60]. 

 

For displacive transformations in steels, the transformation product is 
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generated by an invariant-plane strain (IPS) deformation consisting of a small 

dilation component, δ, and a large shear component, s, as shown in Figure 2-19. 

The approximate values of the shear component, s, and the dilatation component, 

δ, for various transformation products are listed in Table 2-1. The shape strains 

of displacive transformations are significantly larger than those of reconstructive 

transformations, and the relief of these large shape strains will cause surface 

displacement for polished and unconstrained samples as shown in Figure 2-20. 

But if the sample is constrained during displacive transformation, a thin plate or 

lath morphology will be adopted by the transformation products to minimize the 

strain energy induced by transformation. This thin plate or lath morphology can 

be seen in all displacive transformation products [2]. Besides morphology, 

displacive transformation products will also have many crystallographic 

characteristics and these will be introduced in section 2.6. 

 

 

Figure 2-19 Different strain conditions (a) uniaxial dilatation, (b) shear and (c) IPS of 

displacive transformations [2]. 

 

It was found that bainite possesses a higher density of dislocations than that 

of PF even when PF and bainite transformed at similar temperatures [2]. The 

existence of a high density of dislocations in bainite is usually attributed to the 

large shape strain corresponding to the bainitic transformation. When the shape 

deformation is relaxed by the plastic deformation of austenite and bainite, 

dislocations introduced by this plastic relaxation in austenite will be inherited by 
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the bainite, which finally leads to a high density of dislocations in bainite [2]. 

The plastic relaxation can be seen in Figure 2-21. 

 

Table 2-1 Approximate values of the shear strain, s, and dilatational strain, δ, for a 

variety of transformation products in steels [2]. 

Transformation s δ 

Widmanstätten ferrite 0.36 0.03 

Bainite 0.22 0.03 

Bainite 0.26  

Martensite 0.24 0.03 

Allotriomorphic ferrite 0 0.03 

Idiomorphic ferrite 0 0.03 

 

 

Figure 2-20 Surface relief after bainitic transformation in a pipeline steel: (a) optical 

differential interference contrast microscopy, (b) topography using atomic force 

microscopy and (c) a line scan [61]. 
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Figure 2-21 Dislocations in austenite and bainite near an austenite/bainite interface 

[2]. 

 

The main characteristics of many important phase transformations in steels 

are listed in Table 2-2 [61]. For more details, comprehensive textbooks such as 

Steels: Microstructure and Properties [60] can be useful. 

 

Table 2-2 Key Transformation Characteristics in Steels [61]. 
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2.5 Acicular ferrite 

Acicular ferrite was firstly introduced by Y. E. Smith [8] in 1972. However, 

it has been designated to several slightly different microstructures over the years 

[62]. 

2.5.1 AF in steel welds 

In steel welds, acicular ferrite has been known as ferrite laths nucleating on 

intragranular non-metallic inclusions in austenite, as shown in Figure 2-22 and 

Figure 2-23, and leads to an excellent combination of strength and toughness [63] 

which can be attributed to the high densities of dislocations and HAGBs in these 

AF microstructures [64]. 

 

 

Figure 2-22 Replica TEM micrograph of acicular ferrite in a steel weld [2]. 
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Figure 2-23 TEM micrograph of AF plates nucleated on inclusions [65]. 

 

Based on extensive investigations on the nature of AF [2, 66-70], it was 

found that the transformation mechanism of AF in steel welds is similar to that 

of bainite, except for the requirement of intragranular inclusions for AF 

nucleation. Therefore, AF in steel welds has been known as intragranularly 

nucleated bainite [2]. Acicular ferrite laths usually do not develop into parallel 

packets like bainite as the formation of packets is prohibited by impingement of 

adjacently nucleated plates in AF microstructures [2].  

Although, the transformation mechanisms of bainite and AF are analogous, 

because of the existence of more crystallographic variants in AF microstructures 

and thus a higher density of HAGB, the toughness of AF microstructures in steel 

welds is better than that of bainite microstructures [71] which is a highly 

organized microstructure with packets containing parallel plates with similar 

crystallographic orientation [2], as shown in Figure 2-24. 
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Figure 2-24 TEM micrograph of a bainite packet [12]. 

 

2.5.2 Inoculated Acicular Ferrite Steels 

To obtain the weld-metal AF-like microstructures in structural steels, 

inclusion particles which are effective in stimulating AF nucleation are 

deliberately brought in by controlling the deoxidation process during steel 

making [2]. The particles formed are generally a mixture of various oxides and 

sulphides, but the effective phase in promoting the AF nucleation is Ti2O3 [72]. 

The formation of weld-metal AF-like microstructures can greatly improve the 

steel’s toughness through the increase of the density of HAGBs which can arrest 

or deflect the propagation of cracks. A huge number of inoculated AF steels have 

been produced for the constructions in the offshore gas and oil industries, 

especially in various deep, cold and hostile environments [2]. The optical 

micrograph of an inoculated acicular ferrite steel is shown in Figure 2-25. 
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Figure 2-25 Optical micrograph of acicular ferrite in an inoculated acicular ferrite 

steels [73]. 

 

Based on the introduction above, it is reasonable to say that the AF 

microstructures in inoculated AF steels and steel welds are the same. 

2.5.3 AF in pipeline steels 

In pipeline steels, acicular ferrite was defined by Smith in 1972 [8] as ‘‘a 

highly substructured, non-equiaxed ferrite that forms on continuous cooling by 

a mixed diffusion and shear mode of transformation that begins at a temperature 

slightly higher than the upper bainite transformation range.’’ Nowadays, AF 

dominant microstructures have become the optimal candidates in the production 

of pipeline steels for their excellent combination of strength and toughness. 

Actually, pipeline steels with AF dominant microstructures have already been 

applied in the 3000 km Alliance Pipeline Project from British Columbia to 

Chicago in North America [74] and also in the 4000 km West–East Natural Gas 

Transmission Project from Xinjiang to Shanghai in China [75].  

As for the nature of AF in pipeline steels, its transformation mechanism is 

still controversial. Some researchers regarded AF as a kind of GB [76], while AF 

was classified as quasi-polygonal ferrite (QF) or massive ferrite in some 

investigations [77, 78]. Xiao et al. [75] proposed that the phase transformation 

mechanism of acicular ferrite was in diffusion mode. Collins et al. [79] indicated 

that AF transformation was similar to that of WF. Various investigators [80, 81] 
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proposed that AF was almost similar to BF because of the similar mechanical 

properties, while Coldren and Mihelich [82] suggested that AF was different 

from bainite for the disappearance of PAGBs. Differently, Wang et al. [83] 

argued that AF complexly consisted of QF, GB and BF with dispersed islands of 

second phases in the matrix. And a complicated mixture of PF, upper bainite, 

lower bainite, auto tempered martensite with retained austenite was treated as 

AF in the literature [84]. 

However, after analysing the characteristics of the AF transformation and its 

microstructure carefully, it is more proper to classify AF as a kind of bainitic 

transformation product. In an isothermal holding test [85], it was found that by 

increasing the austenite deformation strain, there was a transition from BF to AF, 

which means both AF and BF transformations can occur at the same 

thermodynamic conditions. Furthermore, in an investigation [85], after 

isothermal holding at 600˚C, the AF transformation was nearly finished and the 

final volume fraction of acicular ferrite was only 51%, corresponding well to the 

typical incomplete transformation phenomenon of bainite [2], and the total 

transformation time of AF was 13s, which suggests that the transformation of 

AF proceeds very quickly by transformation behaviour associated with a shear 

mechanism. The incomplete transformation phenomenon is related to the 

transformation mechanism of bainite. During bainite transformation, laths grow 

without diffusion and after the formation of a lath, supersaturated carbon atoms 

in this lath partition into the surrounding residual austenite, leading to the 

increased carbon concentration in the residual austenite. Therefore, during 

bainite transformation, laths grow from austenite with gradually increased 

carbon concentrations as schematically shown in Figure 2-26 [2]. Bainite 

transformations will cease when the carbon concentration of austenite reaches a 

critical value, x’T0 which is defined as the critical carbon concentration below 

which the driving force of the transformation from FCC to BCC without a 

composition change is higher than the transformation strain energy, and is around 
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400J/mol for bainite [2]. Differently, for paraequilibrium transformations, e.g. 

WF, the transformation can proceed until the carbon concentration of austenite 

reaches the Ae3’ curve [2], which is higher than x’T0 at the same temperature as 

shown in Figure 2-26, indicating that a higher fraction of austenite can transform 

into paraequilibrium transformation products than into bainite. Therefore, bainite 

transformations appear ‘incomplete’ compared with paraequilibrium 

transformations. 

 

 

Figure 2-26 Schematic illustration of the incomplete transformation phenomenon of 

bainite [2]. 

 

Furthermore, in several TEM observations [85-88], it was found that AF 

laths contained a higher density of dislocations than that in the reconstructive 

transformation products, which is a characteristic of low-temperature 

transformation products [2]. And in research [85], the microstructure of AF was 

found to be composed of several parallel sub-units, which are possibly formed 

by side-by-side sympathetic nucleation and the size of each sub-unit was less 

than 1 μm. This morphology characteristic can also be observed in the literature 

[86] which resembles the sheaf morphology of bainite sub-units proposed by 
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Bhadeshia [2].  

The displacive transformation characteristic of the AF microstructure can 

also be seen from the boundary density distributions against disorientation angles 

shown in Figure 4-6. This is explained at length in Section 4.3.3. 

In summary, acicular ferrite in pipeline steels shows a similar transformation 

behaviour to that of bainitic ferrite, which is agreed by many other researchers 

[1, 85, 88]. 

2.5.4 Microstructure characteristics of acicular ferrite in pipeline 

steels 

Acicular ferrite in pipeline steels has many microstructural characteristics, 

such as consisting of non-equiaxed ferrite grains with high dislocation densities, 

the existence of a microphase, mostly M/A constituents, the veined appearance 

[89] and the boundary protrusions of ferrite lath groups [79]. These 

characteristics are illustrated below under different microscopy techniques. 

(1) Optical microscopy (OM) 

Optical micrographs of microstructures with different fractions of AF are 

shown in Figure 2-27. It is found that these microstructures are mainly composed 

of AF and PF. Acicular ferrite usually appears grey in these micrographs and 

consists of fine non-equiaxed ferrite laths with a chaotic arrangement as 

schematically illustrated in Figure 2-28. The boundaries of acicular ferrite are 

very obscure and less evident than those of PF which appear white in these 

micrographs. This may be attributed to the fact that the grain boundaries within 

acicular ferrite are mainly with low disorientation angles [85] and the standard 

2% nital is less effective for revealing these boundaries [88]. Some microphases, 

possibly fine M/A constituents, appearing black, are distributed throughout the 

matrix and the formation of this microphase can be attributed to the partitioning 

of carbon from ferrite to austenite during the AF transformation [90]. 
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Figure 2-27 Optical micrographs of microstructures with different fractions of AF: (a) 

0.23, (b) 0.48, (c) 0.25 and (d) 0.82 [1]. 

 

 

Figure 2-28 Schematic illustration of acicular ferrite grains [1]. 

 

(2) Scanning electron microscopy (SEM) 

In SEM micrographs, the randomly oriented and non-equiaxed ferrite laths 

with dispersed M/A islands can be seen in Figure 2-29. But in practical acicular 

ferrite dominant microstructures, PF/QF not only forms on the austenite grain 

boundaries but also on the deformation induced substructure formed within the 

austenite grains as shown in Figure 2-1 (b). Furthermore, some of the acicular 

ferrite boundaries cannot be clearly etched [89]. Therefore, it is hard to 

distinguish between these two phases, PF/QF and AF, even under SEM. However, 



 

39 

 

it was found in research [88] that under high-resolution SEM after a long time 

etching, PF/QF is etched very lightly while AF is etched much more deeply and 

also contains fine and veined substructures as shown in Figure 2-30. 

 

 

Figure 2-29 SEM micrograph of acicular ferrite [91]. 

 

 

Figure 2-30 SEM micrograph of AF and PF/QF under a high magnification [89]. 

 

(3) Transmission electron microscopy (TEM) 

At the initial transformation stage, since the interference from other 

nucleation sites is quite small, it is feasible to obtain accurate acicular ferrite 

microstructures. The microstructure of acicular ferrite at the initial stage 

isothermally held at 600˚C [85] is shown in Figure 2-31 and schematically 
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illustrated in Figure 2-32. The microstructure of acicular ferrite was found to be 

consisting of several parallel sub-units, and size of each sub-unit was less than 1 

μm. The sub-units are possibly formed by a side-by-side sympathetic nucleation. 

This morphology characteristic can also be observed in the literature [86] which 

quite resembles the sheaf morphology of bainite sub-units proposed by 

Bhadeshia [2].  

 

 

Figure 2-31 TEM micrographs of acicular ferrite at the starting stage of 

transformation [85]. 

 

 

Figure 2-32 Schematic illustration of acicular ferrite laths [85] 

 

After the AF transformation, the acicular ferrite grains are shown in Figure 
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2-33 (a), it can be found that the sub-units of the AF grains are also clear despite 

the boundaries being curved and not as flat as in the initial stage, Figure 2-31. 

The sheaf-like morphology changes into one that is more irregular-shaped. This 

may be explained by the occurrence of some diffusional processes like 

coalescence and thickening of acicular ferrite grains similar to what happens in 

bainite transformation [92], given the relatively high transformation 

temperatures of acicular ferrite. 

 

 

Figure 2-33 TEM micrographs of as-rolled acicular ferrite microstructure [87]. 

 

In research [88], the thin foil TEM observation revealed that the AF 

microstructure consisted of parallel laths forming groups which were separated 

by PF regions, as shown in Figure 2-34. Where the groups with different 

lengthening directions met, chaotic and interweaving arrangements of ferrite 

laths were also found, as shown in Figure 2-35. Thus, there are two different 

morphologies existing simultaneously in the microstructure, parallel laths and 

interweaving laths. It has been shown that the parallel laths have a similar 

crystallographic orientation and are separated by low-angle boundaries [91]. 
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Figure 2-34 TEM micrographs of AF colonies separated by PF areas [88]. 

 

 

Figure 2-35 TEM micrographs of chaotic arrangement of ferrite laths [88]. 

 

In all the TEM observations above [85-88], it was found that AF laths all 
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contain a higher density of dislocations than PF, which is a characteristic of 

displacive transformation products [2]. All these microstructure characteristics 

observed by TEM indicate that AF has a similar transformation mechanism to 

that of bainite. 

2.6 Crystallographic characteristics of Bainite 

microstructures 

2.6.1 Orientation relationships 

For displacive transformations like BF and martensite, transformation 

interfaces cannot cross austenite grain boundaries and the transformed ferritic 

products and their parent austenite grains are crystallographically related by an 

orientation relationship (OR) within the Bain region [2]. Although various ORs 

have been proposed, including the Kurdjumov-Sachs (K-S) OR [93], the 

Nishiyama-Wasserman (N-W) OR [94, 95], the Kelly OR [96] and the 

Greninger-Troiano (G-T) OR [97], according to the phenomenological theory of 

martensite transformation [98], this OR is actually irrational and the close-

packed planes of BF and parent austenite are not exactly parallel. It was found 

that the angular deviation between close-packed planes of bainite and austenite 

increases with the increased transformation temperature, while the change of 

angular deviation between close-packed directions are very small, which was 

explained by the temperature related plastic accommodation of bainite 

transformation strain in austenite [99]. 

2.6.2 24 K-S variants 

Owing to the OR between bainite and austenite and the crystallographic 

symmetry of austenite, there are 24 possible BF orientation variants for each 

austenite grain. Since the Kurdjumov–Sachs (K–S) orientation relationship 

({111}γ//{110}α, <110>γ//<111>α) generally provides good predictions for BF 
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transformations in steels [100], it is taken as the OR to illustrate the BF 

orientation variants. With the K–S OR, there are 24 BF orientation variants for 

each austenite grain, V1~V24 as listed in Table 2-3 [99]. The 24 K-S variants 

can be divided into four close-packed plane groups (CP groups), each of which 

consists of six variants sharing the same parallel relationship of close-packed 

planes with austenite. The arrangement of the close-packed planes and close-

packed directions of these 24 K-S variants and the misorientation between these 

variants can be seen clearly in Figure 2-36 [101]. K–S variants can also be 

discriminated into three Bain groups based on three variants of the Bain 

correspondence [102]. Variants belonging to the same Bain group have their 

<100> directions surrounding a specific <100> direction of the prior austenite, 

shown in Figure 2-37 as black dots around an open diamond. The corresponding 

CP and Bain groups for these 24 K-S variants are also shown in Table 2-3.  

 

Table 2-3 24 K–S variants and their corresponding CP and Bain groups [99]. 
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Figure 2-36 Arrangement of close-packed planes and close-packed directions of the 

24 K-S variants and the misorientation between these variants [101]. 

 

 

Figure 2-37 Austenite <001> {100} pole figure showing 24 K-S variants with their 

variant numbers labeled. Prior austenite orientation is marked by red open diamonds 

[103]. 

 

The connections between variants and bainite microstructures can be shown 

in Figure 2-38 [104]. A parent austenite grain is usually divided into several 
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packets during BF transformations and each packet can be further segmented 

into several blocks which consist of a few BF laths. This packet-block structure 

is defined from the viewpoint of variants. Each block contains several bainite 

laths with the same variant and the variants within the same packet belong to the 

same close-packed plane group. In martensite microstructures, each block can 

be further segmented into two sub-blocks with two variants belonging to the 

same CP group and the same Bain group [105-107].  

 

 

Figure 2-38 Schematic illustration of bainite lath martensitic structure [104]. 

 

The formation of blocks of several BF laths with the same variant can be 

attributed to an autocatalytic effect. In reference [108] the stress field 

surrounding a martensite plate of an oblate spheroid shape was established with 

the application of micromechanics theory and it was found that at the tip of the 

martensite plate the nucleation of a new plate with the same variant is favoured. 

Similarly, in reference [109] it was disclosed that the formation of a stacking 

fault at the tip of a martensite plate also promotes the development of a new plate 

with the same variant. This repetitive autocatalytic nucleation during martensite 

transformation results in the formation of a block structure consisting of 

laths/plates with the same variant. 

The formation of packets can be related to the accommodation of large 
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transformation strains. During displacive transformations, the shape strain can 

be accommodated through different mechanisms, plastic deformation of 

austenite and bainite, elastic deformation of austenite and bainite or self-

accommodation when different variants are formed adjacently [101]. Therefore, 

when austenite is difficult to deform plastically, different variants have to be 

formed adjacently to self-accommodate the transformation strain and the strain 

that can be elastically accommodated is very limited [68, 110, 111]. Due to the 

same reason, when plastic accommodation of transformation strain is feasible, 

the packet structure will be changed and this will be discussed in the next section. 

2.6.3 Variant selection 

During transformation, not all of the 24 K-S variants are necessarily formed 

in each austenite grain and the favour of certain variants is called variant 

selection. When transformation products nucleate at lattice defects in the matrix, 

the variant selected depends on the characteristics of these defects [112]. Since 

bainite usually nucleates on the austenite grain boundaries, the characteristics of 

austenite grain boundaries may have great impact on the variant selection of 

bainite, which has been observed experimentally [113, 114]. These 

investigations show that variant selection occurs through various mechanisms, 

including the reduction of the bainite/austenite interface energy through the 

elimination of the larger austenite grain boundary area at nucleation or through 

the reduction of transformation strain energy by plastic accommodation. Since 

an individual austenite grain boundary has its distinct characteristic, the bainite 

nucleation potency for each austenite grain boundary is different. In research 

[114], some austenite grain boundaries are still free from bainite laths, whereas 

others are fully covered with bainite laths and tilt grain boundaries are chosen as 

nucleation sites more evidently than twist grain boundaries. Similarly, in 

research [115], it was found that certain types of austenite grain boundaries have 

higher potencies for martensite nucleation than annealing twin boundaries and 
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normal HAGBs, and symmetric tilt boundaries with the rotation axis of <112> 

possess a similar dislocation arrangement to the nucleation model proposed in 

research [116]. Later the high potency of <112> symmetric tilt boundaries was 

confirmed and the potency of these boundaries was found to be higher than that 

of the twist boundary which was attributed to the better strain compatibility at 

the tilt boundary than at the twist boundary [117, 118]. 

Besides austenite grain boundary characteristics, variant selections can also 

be influenced by other factors. As previously reported [119], bainite formed at 

high temperatures exhibits a strong variant selection and with a decrease in the 

transformation temperature, more BF variants formed at each austenite grain 

boundary as shown in Figure 2-39. The factors that weaken the variant selection 

are the increased bainite transformation driving force and the onset of self-

accommodation of transformation strain. For a larger driving force obtained by 

lowering the transformation temperature, the differences in the activation energy 

for nucleation between various variants are smaller and more types of variants 

can nucleate. But even when lowering the transformation temperature, variant 

selection can still happen in the initial stages of transformation [119]. 

 

 

Figure 2-39 Inverse pole figure coloured orientation maps of (a) lath martensite, (b) 

bainite transformed at 450˚C and (c) bainite transformed at 580˚C [119]. 
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Self-accommodation of the transformation shape strain also plays an 

important part in weakening variant selection. By forming different variants 

adjacently, the bainite transformation strain can be self-accommodated when the 

plastic accommodation in austenite and also in BF is difficult. As shown in 

reference [120], the formation of all 6 variants belonging to the same CP group 

can successfully self-accommodate the transformation shape strain and reduce 

the shape strain from 0.242 to 0.024. Such self-accommodation can be activated 

by strengthening the austenite through lowering transformation temperatures or 

increasing carbon contents. 

The change in the bainite transformation driving forces and the 

transformation strain self-accommodation conditions can also influence the 

packet structure of BF as schematically illustrated in Figure 2-40 [99].  

 

 

Figure 2-40 Schematic illustrations of packet structures in (a) bainite transformed at 

580˚C and (b) bainite transformed at 450˚C. Different colours represent different Bain 

groups and different boundary directions represent different close-packed plane groups 

[99].  

 

At a relatively low transformation temperature (450˚C), Figure 2-40 (b), 

normal BF packets in which variants of the same CP group are formed to self-

accommodate the transformation strain as mentioned above. 
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At a relatively high transformation temperature (580˚C), Figure 2-40 (a), 

variants belong to the same Bain group are formed adjacently and a variant 

pairing of V1-V8 is favoured in addition to the well acknowledged variant 

pairing of V1-V4 [119]. Although V1 and V8 belong to the same Bain group, 

they come from different CP groups. Therefore, at relatively high temperatures 

bainite microstructures cannot be divided into packets. The possible formation 

mechanism of a variant pair with two variants belonging to different CP groups 

but the same Bain group can be explained as follows. When the BF 

transformation happens at high temperatures, the transformation shape strain is 

accommodated plastically in the austenite and the BF, and thus dislocations 

could be introduced into the austenite which have characteristics that are strongly 

related to the first nucleated variant [2]. According to the variant selection model 

introduced by Butron-Guillen et al. [100], the development of each variant can 

be closely linked to a particular slip system. Therefore, it is possible that the 

dislocations introduced by the first nucleated variant in the austenite are suitable 

nucleation sites for other BF variants, which is defined as strain-induced 

nucleation [2], and indeed, a two-stage nucleation behaviour has been observed 

before [121]. The initial stage is associated with the nucleation of primary plates 

at austenite boundaries and these plates grow gradually towards the interior of 

the austenite grains. The following stage is the nucleation of secondary plates on 

the primary plates and these plates grow in different directions compared with 

the primary plates [121]. Furthermore, Lambert-Perlade et al. [110] suggested 

this particular variant pair, V1-V8, becomes favoured because this particular 

spatial and crystallographic kind of variant pair is able to reduce the plastic 

deformation in the austenite phase, which could help the growth of the BF laths. 

Differently, a separate investigation by Takayama et al.[99] proposed that 

reducing the boundary energy between variants may be the reason for the 

formation of this particular variant pair as variant pairs of the same Bain group 

usually have smaller disorientation angles and the boundary energy decreases 
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significantly with the reduction of disorientation angle below about 15. 

Preferential formation of specific variant pairs that are disoriented by a relatively 

low angle (approximately, 10˚) in a packet was also revealed in low carbon lath 

martensite [120, 122, 123] and bainite [68, 110, 119]. 

2.7 Phase identification 

2.7.1 Discrimination between QF and AF 

Since AF grains usually consist of several laths as shown in Figure 2-34 and 

these lath boundaries normally cannot be clearly revealed by nital [89], AF grains 

sometimes appear as granular grains with irregular boundaries as shown 

schematically in Figure 2-28 which resemble the morphology of QF as shown in 

Figure 2-17 (b). Therefore, sometimes it is difficult to distinguish whether a 

specific microstructure is AF dominant or QF dominant just by morphology 

characteristics, e.g. in Figure 4-4. Similarly, it was found in research [124] that 

some grains with the same morphology belong to different phases and it is very 

difficult to differentiate QF grains from GB packets using OM or SEM. But 

according to the phase transformation characteristics of steels, phases 

transformed at different temperatures or with different transformation 

mechanisms have different defect densities and thus different microhardness 

values as shown in Figure 2-41 for an ultra-low carbon steel [125]. It is evident 

that there is a large microhardness difference between QF and BF. Since AF can 

be regarded as intragranularly nucleated BF, it should have a similar hardness 

value to that of BF. Therefore, microhardness values can be used to determine 

whether a microstructure is AF dominant or QF dominant. For example, in 

Figure 4-8 we can see that most of the microstructures have hardness values 

higher than HV210 indicating that these microstructures should be AF/BF 

dominant. 
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Figure 2-41 Optical microstructures and microhardness of various transformation 

products of an ultra-low carbon steel. Adapted from [125]. 

 

Another way to determine whether a microstructure is QF or AF dominant 

depends on the distribution of disorientation angles. Since PF/QF grains usually 

do not have a near K-S OR with the prior-austenite grains they grow into, the 

disorientation angle distribution of PF/QF grains will be quite random as shown 

in Figure 2-42, especially for disorientation angles between 21˚~47˚ [126]. As 

listed in Table 2-3, for displacive transformations, variants following K-S OR 

within the same prior-austenite grain do not have disorientation angles between 

21˚~47˚, so for displacive transformation products, e.g. AF and BF, the 

frequencies for disorientation angles between 21˚~47˚ should be significantly 

lower than for others as shown in Figure 4-6. Therefore, the distribution of 

disorientation angles can generally be used to differentiate AF and QF dominant 

microstructures. 
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Figure 2-42 Histograms showing the boundary misorientation angle distributions of 

PF/QF grains transformed from: (a) recrystallised austenite and (b) deformed austenite 

of a low carbon Mo-Nb pipeline steel. Adapted from [126]. 

 

However, to determine whether a specific grain is AF or QF is still very 

difficult. Due to the similar morphology characteristics, it is hard to distinguish 

AF and QF even under SEM. Although it was found in research [88] that after a 

long time etching and under a SEM with a high resolution, a difference in etching 

status can be seen between PF/QF and AF as shown in Figure 2-30, it can not be 

used under the normal magnification needed to reflect the transformation 

microstructure. By the help of crystallographic data provided through EBSD 

mapping, QF and AF can be discriminated from each other by the differences in 

electron backscatter pattern (EBSP) clarity [127] and orientation gradients [128], 

due to different dislocation densities in these grains. Furthermore, it was found 

in this research that, QF can be differentiated from AF by carefully comparing 

the pole figure characteristics to see whether a specific grain has a near K-S OR 

with the prior-austenite grain. 

2.7.2 Discrimination between BF and AF 

Based on the description in Section 2.5, there are three characteristics of AF 

microstructure: intragranular nucleation, intersecting and irregular morphology 

and a high density of high angle grain boundaries (HAGBs). The latter two 
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characteristics indicate that in AF microstructures variants belong to different CP 

groups and at the same time different Bain groups are formed adjacently. For BF 

microstructure transformed at relatively high temperatures, Figure 2-40 (a), 

although intersecting laths are formed, these laths come from the same Bain 

group, suggesting a low density of HAGBs. For BF microstructure transformed 

at relatively low temperatures, Figure 2-40 (b), although variants from different 

Bain groups are formed side by side and a high density of HAGBs exist, these 

laths come from the same CP group, suggesting evident parallel morphology of 

this BF microstructure. Therefore, BF microstructures can be readily 

distinguished from AF by morphological characteristics and HAGB densities. 

Some may argue that in both Figure 2-40 (a) and (b), in the centre part of the 

prior-austenite grains where different packets collide, variants from different 

Bain groups and at the same time different CP groups exist, so these laths should 

be named as AF. But it is clear that the existence of these packet-colliding regions 

are an inevitable and intrinsic characteristic of BF microstructures so long as 

more than one BF packet is formed in each austenite grain. And these packets 

nucleate on prior-austenite grain boundaries instead of intragranular features. 

Therefore, it is not appropriate to identify these packet-colliding regions as AF. 

However, the possibility that the sympathetic nucleation of BF results in a new 

lath belonging to both different CP group and different Bain groups can not be 

overlooked, although this kind of sympathetic nucleation hasn’t been observed 

in Bainite. If it does exist, further investigations are needed to distinguish the 

sympathetically nucleated BF and AF intragranularly nucleated on deformation 

substructures. 

Based on the description above, microhardness values and disorientation 

angle distributions obtained by EBSD were used in this thesis to determine 

whether the transformed microstructure is QF dominant or AF dominant. 

Furthermore, morphological characteristics, parallel for BF and chaotic for AF, 

and boundary maps plotting HAGBs were used to discriminate AF from BF. 
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Chapter 3  Experimental Details 

In this chapter the material, experiment apparatus and microstructure 

characterisation methods used in this thesis are introduced, together with some 

illustrations about the post-processing procedures for EBSD data. But the 

detailed thermomechanical processing parameters for each specimen are given 

in the following chapters separately. 

3.1 Material 

Since both the thermomechanical processing parameters and the chemical 

composition of the steel can influence the final microstructure, to investigate the 

effect of thermomechanical processing parameters accurately, only one pipeline 

steel was used in the entire thesis, which is an API X-80 high temperature 

processing (HTP) pipeline steel.  

The material used in this thesis was received as a half diameter of a steel 

pipe section provided by Companhia Brasileira de Metalurgia e Mineração 

(CBMM), Brazil. The as-received microstructure was characterised in Section 

3.4. The chemical composition of this HTP steel is listed in Table 3-1. Due to the 

high niobium content, the retardation of austenite recrystallisation can be 

achieved at significantly higher temperatures as shown in Figure 2-6. 

Consequently, finish rolling can be carried out at higher temperatures, which is 

called high temperature processing. 

 

Table 3-1 Chemical compositions (wt%) 

C Mn Si S P Nb Cr Ni Cu Ti N 

0.045 1.43 0.14 <0.003 <0.01 0.09 0.21 0.12 0.21 0.01 0.0039 

 

The carbon content of this steel was lowered to 0.045% to improve the 

weldability, toughness, ductility, solubility of such high concentration of 

niobium, segregation reduction and thus corrosion resistance [26]. Titanium was 
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added to fix the nitrogen and to form thermodynamically stable nitrides to 

control the austenite grain size during reheating. The fix of nitrogen by the 

addition of titanium effectively prevents the formation of niobium carbonitride, 

allowing for a higher niobium content to be dissolved during reheating. 

Compared with the typical composition of HTP steels [26], the manganese 

concentration of this steel is reduced to alleviate the segregation of manganese 

and thus the banded structures formed during cooling. Chromium, nickel and 

copper are added as solid solution strengthening elements to compensate the 

reduced manganese and lower the corrosion rate under medium severe sour 

conditions [26]. 

The high temperature processing leads to a significant reduction of the finish 

rolling load, compared to the high strain and low temperature deformation 

required for conventional Nb-V microalloyed steels. This helps older plate mills 

which cannot accommodate high rolling loads to enter the profitable pipeline 

steel production. Moreover, the high processing temperature results in less 

evident textures associated with the final microstructure, which can improve the 

H2S resistance. In addition, HTP steels are more economical than those steels 

relying extensively on vanadium or molybdenum microalloying [26, 129]. 

3.2 Plane strain compression and continuous cooling tests 

3.2.1 Plane strain compression 

Various laboratory-based mechanical testing methods, including plane strain 

compression (PSC), axisymmetric compression, tensile testing and torsion have 

been used to study the hot working behaviour of metals under different strain 

conditions. Since during industrial rolling, materials are subjected to a plane 

strain deformation, the plane strain compression test is the closest and thus the 

most commonly employed method to conduct laboratory physical simulations of 

the commercial hot rolling [130]. Furthermore, the PSC test has some additional 
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advantages over other physical simulation techniques. It can be used to achieve 

high-strain deformations unlike the tensile test and the volume of material 

undergoing deformation is relatively large, which is convenient for subsequent 

microstructure characterisation and mechanical property testing [130]. Therefore, 

in this thesis, plane strain compression is adopted to simulate the 

thermomechanical processing of pipeline steels. 

All the PSC tests in this thesis were conducted using the servo-hydraulic 

Thermomechanical Compression (TMC) machine at The University of Sheffield 

shown in Figure 3-1. Some important features of the TMC machine are listed in 

Table 3-2. The operating system of the TMC machine is fully digitised and 

computer controlled to allow a precise control of many deformation parameters 

including temperatures, strains and constant true strain rates. 

 

Table 3-2 Key features of the servo-hydraulic Thermomechanical Compression 

machine [131]. 

 

 



 

58 

 

 

Figure 3-1 Outline structure of main components of TMC machine [131]. 

 

The configuration of the PSC test is shown in Figure 3-2. PSC specimens 

with a dimension of 60 mm × 30 mm × 10 mm were machined from the received 

HTP steel pipe section, according to the engineering drawing shown in Figure 

3-3. The notches on the two sides of the PSC sample are machined for robotic 

arms holding the PSC sample. During the PSC test, a specimen is deformed 

between two flat parallel tools (with a width of 15 mm at room temperature) and 

the load-displacement data are recorded accurately. The tools are made of a 

nickel-based superalloy which are hard enough to withstand the load required 

for high temperature deformations. 
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Figure 3-2 Schematic illustration of the configuration of plane strain compression test, 

(a) positions and geometries of PSC specimen and deformation tools, (b) deformed 

specimen and (c) the normal direction-rolling direction (ND-RD) plane of deformed 

PSC specimen for microstructure characterization [21]. 

 

 

Figure 3-3 Engineering drawing of steel PSC specimen in the unit of millimetre [21]. 

 

It needs to be mentioned that for PSC tests on the TMC machine, before each 

deformation, the upper tool is lifted so that there is enough distance between the 
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upper tool and the specimen to accelerate the upper tool to a velocity required 

for the desirable strain rate when it contacts with the specimen. By doing that the 

instant strain rate of a PSC test on the TMC machine can be controlled precisely 

and the tool acceleration needed is finished when the tools and the specimen start 

to contact, which is far better than the PSC test on a Gleeble-like machine where 

the tool acceleration needed begins when the tools and the specimens are 

contacting. Furthermore, prior to each hot deformation, the wedge which is a 

mechanical stop device shown in Figure 3-1, automatically moves to a pre-

defined position for the desirable strain so that the actual deformation strain does 

not exceed the desirable strain. The temperature of the specimens can also be 

precisely controlled over a uniform area, which is introduced in the next section. 

3.2.2 Reheating and cooling 

The temperature control of the specimens during the tests is fulfilled in the 

fast thermal treatment unit (FTTU) located in front of the test furnace as shown 

in Figure 3-1. The FTTU consists of an induction heating coil, a specimen 

cooling system (capable of air blasting, mist cooling and water quenching), an 

induction heating coil cooling system and an electrical converter. The 

temperature of the specimen is sampled through a thermocouple embedded into 

the PSC specimen. 

To fully exploit the benefit of Nb addition on the deformation restoration 

retardation and the hardenability improvement, it is necessary to dissolve the Nb 

carbide or carbonitride precipitates back into solid solution during the reheating 

process. Given the high niobium concentration (0.09%) in the tested steel, a high 

reheating temperature and a long isothermal holding duration are needed. 

To determine the dissolution temperature of Nb carbide or carbonitride 

precipitates in the tested steel, a thermodynamic calculation was conducted using 

the Thermo-calc software with the database TCFE6. The mole fractions of each 

phase at different temperatures are shown in Figure 3-4 (a). Because of the small 
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mole fractions of various precipitates, the region in Figure 3-4 (a) with mole 

fraction between 0 and 0.006 is enlarged and shown in Figure 3-4 (b). The 

dissolution temperatures for various precipitates are given in brackets. It is clear 

from Figure 3-4 (b) that at a temperature higher than 1156˚C, NbC should be 

dissolved according to the thermodynamic calculation. 

 

 

Figure 3-4 Thermodynamic calculation of phase constitution of the tested HTP steel at 

different temperatures using Thermo-calc software. 

 

However, it was argued that thermodynamic calculations of solubility 

products tend to overlook the interaction between different elements and thus the 

activity coefficients are supposed to be unity. Consequently, activities are 
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represented by their weight percents, which is unrealistic [132]. Since most of 

the nitrogen in the tested steel is fixed by the addition of titanium, NbC should 

dominate the Nb related precipitates. Therefore, a solubility product, based on 

atom probe data and expressed as [132]: 

log[Nb] [C] = 2.06 −
6700

𝑇
 (3.1) 

was adopted and the lowest temperature required to dissolve NbC in the tested 

steel is 1232˚C. 

Since the operating duration of FTTU at high temperatures above 1200˚C 

cannot exceed 0.5 hours due to the limitation of the coil cooling system, all 

machined PSC specimens were subjected to an additional solid solution heat 

treatment before the PSC tests to shorten the reheating time in the FTTU. During 

the solid solution heat treatment, most of the specimens were individually heated 

to 1250˚C in a tube furnace with Ar atmosphere protection, held for 30 minutes, 

and then directly quenched in ice water to keep the solute elements in solution. 

Besides reheating, continuous cooling is also fulfilled in the FTTU. During 

the TMCP of steel plates, there are several cooling processes depending on the 

cooling rates and cooling interrupt temperature as shown in Table 3-3, including 

interrupted accelerated cooling (IAC), continuous ACC, direct quenching plus 

self-tempering (QST) and direct quenching (DQ) [133]. The typical cooling rates 

achieved for steel plates with different thickness on the MULPIC water cooling 

system from SIEMENS VAI is shown in Figure 3-5 [134] and we can see that 

the achievable cooling rates are largely between 1~60˚C/s. 

Through a previous systematic investigation on the maximum controllable 

linear cooling rates in the FTTU of the TMC machine, it was found that the 

largest cooling rates for air blasting and mist cooling are 25˚C/s and 67˚C/s 

respectively [135], which means the various cooling processes for industrial 

plate production can be successfully simulated in the FTTU. Furthermore, the 

above results were obtained from 10 mm thick undeformed PSC specimens, 

therefore for deformed PSC specimens the reduction in thickness can result in a 
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larger controllable linear cooling rate. 

 

Table 3-3 Classification of different cooling process and corresponding cooling 

rate(dependent on plate thickness) in the TMCP [133]. 

 

 

 

Figure 3-5 Typical cooling rates achieved for steel plates with different thickness on 

the MULPIC water cooling system from SIEMENS VAI [134]. 

 

3.3 Microstructure characterisation methods 

3.3.1 Optical microscopy and scanning electron microscopy 

After the plane strain compression and the continuous cooling, specimens 

were cut on the normal direction-rolling direction (ND-RD) plane, and then 

mechanically ground and polished down to 1 μm using silicon carbide abrasive 

papers and monocrystalline diamond suspensions, respectively. To reveal the 
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continuous cooling transformation products, a 2% Nital solution was used as an 

etchant on the polished surface. While saturated aqueous picric acid solution 

with the addition of surfactant Teepol and 3 drops of HCl was heated to 65˚C 

and was utilized as an etchant to reveal the prior-austenite grain boundaries 

(PAGBs) [136, 137]. The etched surface was observed under a Nikon Eclipse 

LV150 optical microscope to check the morphologies of the transformation 

products and the prior-austenite grains. Two scanning electron microscopes, 

JEM JEOL 6400 and FEI InspectF, were used to observe the transformed 

microstructure in greater detail. 

Although during the plane strain compression on the TMC machine, 

specimens can be successfully deformed to the designed nominal compression 

strains, through a systematic thermomechanically coupled finite element (FE) 

analysis carried out by Mirza and Sellars [130, 138, 139], it was found that the 

equivalent strain distributions are not homogeneous in the deformed specimen 

as shown in Figure 3-6. The inhomogeneity of strain distribution can cause non-

uniform microstructures during the subsequent continuous cooling. Therefore, 

to accurately investigate the microstructure evolution, the observation area must 

be selected carefully. According to the results shown in Figure 3-6, the suitable 

area actually is not located in the longitudinal centre of the specimen, deviating 

1 mm to 4 mm from it along RD as shown by the area between positions A and 

B in Figure 3-6. Furthermore, due to the existence of intense friction on the 

specimen surface contacting with the tools during deformation, the strain 

conditions near these contacting surfaces will be far from plane strain conditions. 

Therefore the area in the centre along ND and between positions A and B along 

RD was selected for all microstructure and textural characterisation in this entire 

thesis. 
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Figure 3-6 Predicted distributions of equivalent strain for a 316L stainless steel 

specimen after a plane strain compression with nominal equivalent strain of 1 and strain 

rate of 10s-1 at 1000˚C [138]. 

 

3.3.2 Electron backscattering diffraction mapping 

Additionally, electron backscattering diffraction (EBSD) mappings were also 

carried out in this research. The necessity of using EBSD mappings in AF 

microstructure related research can be explained from the following aspects. In 

AF dominant microstructures, PF/QF not only forms on the austenite grain 

boundaries but also on the substructures formed within the deformed austenite 

grains as shown in Figure 2-1, and the AF lath boundaries cannot be clearly 

revealed by nital [89] as shown in Figure 2-27. Given that, it is hard to distinguish 

different phases even under the SEM. Although, it was found in research [88] 

that after long time etching and under a SEM with a high resolution, a difference 

in etching status can be seen between PF/QF and AF. This discrimination can 

only be conducted under high magnifications (4000X in research [88] ) and thus 

is not suitable for quantification. Differently, a number of phase quantification 

methods based on EBSD data were proposed and successfully applied to 

complex transformation microstructures in steels [124, 128, 140, 141]. 

Furthermore, using only OM and SEM, it is difficult to examine the effect of 

different degrees of deformation and cooling conditions on the grain refinement 

of the transformed microstructures. This is because the AF microstructures 
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observed by optical microscopy are usually finer than the crystallographic 

effective grain whose refinement is important for the improvement of toughness 

[85] and for displacive transformation products, the absence of EBSD techniques 

may lead to incorrect conclusions on grain refinement. In reference [142] it was 

found that the packet size is reduced after ausforming, which results in a refined 

microstructure when viewed under the optical microscope. But it was shown that 

the block width become larger after ausforming, which means that the 

crystallographic effective grain size actually becomes larger. Last but not the 

least, the orientation information of the transformed microstructures can be 

obtained through EBSD mappings, which can be used to analyse various 

crystallographic characteristics of the transformed microstructures. 

To prepare the samples particularly for EBSD mapping, after grinding and 

polishing as mentioned in section 3.3.1, the samples were then polished with a 

colloidal silica suspension for an additional 2 minutes. EBSD mappings were 

performed on the RD-ND plane of the specimen in a FEI Sirion Field Emission 

Gun Scanning Electron Microscope (FEGSEM) with a working distance of 14 

mm and accelerating voltage of 20 kV. The specimen was tilted around RD to 

70˚ to the horizontal plane. The electron backscattering diffraction patterns 

(EBSPs) were acquired by an Oxford Instrument HKL Nordlys F+ Camera 

which was positioned to 164.7 mm, and these patterns were transformed into 

orientation data by an HKL Channel 5 Flamenco package. 

For EBSD mappings, an appropriate selection of step size is significantly 

important. A step size of one-tenth of the average grain size is often utilised for 

microtexture and grain misorientation measurements, and an appropriate step 

size also depends on the scale of the feature investigated and the status of the 

material [143]. A step size equal to the smallest grain size can be used to observe 

the spatial distribution of texture components in an area, while for a detailed map 

illustrating microstructure morphologies or subtle orientation spreads within 

grains, a smaller step size compared to the average grain size is required. 
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Furthermore, typically, a step size of 1 μm might be required for a recrystallised 

microstructure, whereas for a unrecrystallised microstructure, the step size may 

have to be as small as 0.01~0.1 μm [143]. Since for the AF dominant 

microstructures, the grain size measured by EBSD is largely within the range of 

1.6~3.0 μm [83] and there is a high density of substructures within AF laths, 

inherited or generated during transformations, a step size of 0.2 μm was used 

throughout this research except for the PF/QF dominant microstructures where 

0.5 μm was chosen as the step size instead. As the ferritic phase was the main 

focus in this research, α iron (BCC) was chosen as the only matching unit in the 

HKL Channel 5 Flamenco package during the mapping to reduce the mis-

indexing of phases in the complex transformation microstructures. 

The obtained EBSD data were analysed using several in-house programs in 

C language together with the HKL Channel 5 post-processing software including 

Tango, Mambo and Salsa packages. 

During the EBSD data analysing, it is universally found that the index rate 

of an EBSD mapping is below 100% and the rest of the pixels are zero solution. 

The existence of these non-indexed points can be attributed to their low quality 

EBSPs which cannot be recognised by the acquisition software. The non-indexed 

points are usually located near or at dislocations substructures, 

damage/contamination on the sample surface and grain boundaries. Differently, 

due to the poor quality of EBSPs near or at these locations, the orientations could 

also be wrongly indexed which is called spikes. It is obvious that these non-

indexed points or spikes which together are called noise points, will have a 

negative effect on the crystallographic analysis of the EBSD data. Therefore, a 

reduction of the non-indexed points and spikes is necessary. However, it was 

found that these noise reduction procedures could have an effect on the results 

of the effective grain size measurement [144, 145]. A conservative progressing 

noise reduction method proposed in research [146] that could eliminate as many 

noise points as possible without introducing additional fictitious data points to 
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bias grain size measurement was used throughout this thesis. This method was 

conducted using the noise reduction function in the Channel 5 Tango package 

and can be described as follows: first, remove the spike points; second, fill the 

non-indexed points with the most common orientation of their 8 neighbouring 

pixels if they have; then, repeat the second step with 7, 6 and 5 neighbouring 

pixels respectively. 

As for the grain size measurement, there are two approaches provided in the 

HKL Channel 5 Tango package. The first one is based on the linear intercepts in 

both horizontal and vertical directions and the geometric mean of them can be 

used as the grain size. The other method is based on the grain detection by setting 

a critical disorientation angle and detecting grains surrounded by boundaries 

with disorientation angles higher than the critical values, and the average values 

of both grain areas and diameters of equivalent circles around grains could 

represent the grain size. Since the latter one is more susceptible to the noise 

points in the EBSD data [146], the method based on the linear intercepts was 

adopted throughout this thesis. To measure the grain size, disorientation 

threshold values should be selected. Different disorientation threshold values 

have been used to define microstructure parameters that can be related to certain 

mechanical properties, and the microstructural unit size that controls strength 

may differ from that which controls toughness. Disorientation threshold values 

of 4˚ and 15˚ are typical threshold values to define the grain size for 

strengthening and toughening, respectively [83, 147]. Low angle disorientation 

(4˚) grain size is one of the factors that controls the yield and tensile strength of 

steel because boundaries with disorientation angles above this value are expected 

to be able to oppose dislocation movements, while high angle boundaries (15˚) 

provide effective barriers to cleavage fracture [147, 148]. The grain size 

measured against the high disorientation angle (15˚) is usually called the 

effective grain size. 

 



 

69 

 

3.3.3 Microhardness 

Besides microscopy, the hardness testing result is still an effective tool to 

identify different transformation products during continuous cooling [58, 125]. 

Since various transformation products have different transformation 

temperatures and thus distinct dislocation densities and grain sizes, there is a 

certain hardness range for each product. Vickers microhardness values were 

obtained with a 500 g applied load and a 20 second dwelling time on a Mitutoyo 

hardness testing machine. Ten indentations were measured on each specimen. 

3.4 Initial microstructure characterisation 

To characterise the as-received microstructure of the tested steel, specimens 

were sectioned from the original pipe on the RD-ND plane and then prepared 

carefully for the OM and SEM observation and the EBSD mapping. The optical 

micrograph and SEM secondary electron micrograph of the as-received 

microstructure are shown in Figure 3-7 (a)~(b) respectively. It can be seen that 

the final microstructure may consist of chaotic arranged AF laths or irregular QF 

grains. Within the matrix, granular-shaped microphases, probably M/A 

constituents appear black in the optical micrograph while white in the SEM 

secondary electron micrograph. 

 

  

Figure 3-7 Optical micrograph (a) and SEM secondary electron micrograph (b) 
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depicting the as-received microstructure on the ND-RD plane. 

 

An EBSD mapping was also performed on the RD-ND plane of the as-

received steel with a step size of 0.2 μm. After the aforementioned noise 

reduction procedures, the inverse pole figure (IPF) coloured orientation map and 

the corresponding boundary map with red lines representing high angle grain 

boundaries (HAGBs) and blue lines indicating low angle grain boundaries 

(LAGBs) are shown in Figure 3-8 (a)~(b) respectively. The fine-grained 

characteristic of the as-received microstructure can be seen clearly from these 

EBSD maps. LAGBs can be found in most of the fine grains indicating that the 

transformed microstructure mainly consists of acicular ferrite. Meanwhile, there 

are still some regions with a lack of HAGBs but rich in LAGBs which can be 

identified as BF regions. 
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Figure 3-8 IPF coloured orientation map (a) and boundary map (b) with red lines 

representing HAGBs (disorientation angle >15˚) and blue lines indicating LAGBs 

(disorientation angle >3˚) on the RD-ND plane of the as-received steel. 
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Chapter 4 Effect of austenite deformation 

on microstructure evolution 

4.1 Introduction  

An important aspect of the thermomechanical processing of pipeline steels 

is the deformation below the recrystallisation-stop temperature (T5%), which 

renders the austenite grains highly elongated and deformed. This austenite 

conditioning strongly affects the transformed microstructure and, hence, the final 

mechanical properties [2, 91]. The effect of austenite deformation on the 

accelerated cooled transformation products has been studied by many 

researchers but the results are still controversial. Considering the effect of 

austenite deformation on the grain refinement as an example, in some 

investigations [85, 149, 150], it was found that the transformed microstructure is 

refined by the austenite deformation and the fraction of AF increases with 

increasing deformation. Contradicting this were results from another 

investigation [151] in which it was shown that the effective grain size of bainite 

was raised from 3.2 μm to 3.8 μm when the austenite was deformed by 30%. 

Furthermore, the block size of the bainite was found to be increased after 

austenite deformation [142], and the quantity of packets in each austenite grain 

also decreased after the austenite deformation [152]. More importantly, it was 

revealed from these investigations that even after significant austenite 

deformation, the transformation product still consisted of parallel BF laths and 

the typical AF microstructure was absent. 

Therefore, in this chapter, different strains were applied to austenite before 

the continuous cooling to investigate the effect of deformed austenite on the 

microstructure evolution, including the transition between AF and BF, the grain 

refinement and the refinement of M/A constituents. Furthermore, the post-

deformation softening behaviour of austenite was also illustrated. 
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4.2 Experimental 

As mentioned in Section 2.2, the rough rolling is usually conducted above 

the recrystallisation-limit temperature (T95%) so that the austenite grain size can 

be refined by repeated recrystallisation, while the finish rolling should be 

performed below the recrystallisation-stop temperature (T5%) so that the 

deformation-induced substructures can be well-retained, leading to refined and 

homogeneous transformed microstructures. If the austenite deformation 

temperature is set between the T95% and T5%, partial recrystallisation of deformed 

austenite will occur resulting in inhomogeneous transformed microstructures. 

Therefore, austenite deformations at temperatures between T95% and T5% are 

generally avoided. 

The T95% and T5% are susceptible to the influences of steel’s chemical 

composition [19], austenite deformation conditions (deformation mode, 

temperature, strain and strain rate) and inter-pass delay time [153]. Therefore, it 

is necessary to determine these temperatures for the specific steel and processing 

parameters to define the processing window, using the interrupted plane strain 

compression or double-hit tests. Since the evolution of transformed 

microstructure is the focus, double-hit tests were not conducted in this thesis. 

The deformation temperature below T5% was firstly set according to various 

results in the literature and then testified through the observation of the deformed 

austenite microstructures. 

Since the typical T95% for HTP steels is around 1050˚C [26], the deformation 

temperature below T5% was selected as 950˚C, and the strain was increased from 

0 to 0.7. The processing route is illustrated in Figure 4-1. The solid solution heat 

treated specimens illustrated in section 3.2.2 were reheated to 1200˚C at a rate 

of 10˚C/s, held for 2 minutes for equilibration, then cooled at a rate of 5˚C/s to 

1100˚C for a roughing deformation (strain1) of 0.3 at a constant true strain rate 

of 10s-1. After that, the specimens were cooled immediately to 950˚C at a rate of 

5˚C/s for the finishing deformation with strain2 varying between 0~0.7. This 
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second deformation was also performed at a constant true strain rate of 10s-1, and 

was followed by an accelerated cooling from 950˚C to 500˚C at a rate of 20˚C/s, 

a slow cooling from 500˚C to 350˚C at a rate of 1˚C/s, and finally a water 

quenching from 350˚C to room temperature. Furthermore, another three 

specimens were also heat treated and deformed but were water quenched directly 

before strain2 and after strain2 of 0.5 and 0.7 to examine the as-deformed 

austenite microstructures. 

 

 

Figure 4-1 Schematic illustration of the thermomechanical testing profile. 

 

Specimens for OM and SEM observation and EBSD mapping were prepared 

carefully as illustrated in Section 3.3. A 2% nital solution was used to show the 

transformed microstructures and a saturated aqueous picric acid solution was 

used to reveal the prior-austenite grain boundaries (PAGBs). Besides microscopy, 

mechanical properties of the transformed products were characterised by Vickers 

microhardness as described in Section 3.3.3. 

EBSD analyses were carried out with a step size of 0.2 μm and accelerating 

voltage of 20 kV on the RD-ND plane of each specimen. Noise reduction and 

grain size measurement were performed as introduced in Section 3.3.2. 
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4.3 Results 

4.3.1 Flow behaviour 

The load-displacement data recorded during austenite deformation was 

converted into the von Mises equivalent stress-strain data according to a standard 

procedure [154]. The flow stress curve with strain2 of 0.7 is shown in Figure 4-2. 

It can be seen that during the second deformation (strain2) the flow stress 

increased gradually with strain2 and started to decrease after reaching a peak 

strain of 0.53, which is a characteristic of dynamic recrystallisation (DRX). 

However, this flow stress curve reflects the average, macroscopic deformation 

condition of the entire specimen. Due to the existence of strain gradients in the 

current plane strain compression tests as shown in Figure 3-6, optical 

micrographs depicting the PAGBs before strain2 and after strain2 of 0.5 and 0.7 

are shown in Figure 4-3 respectively, to determine the austenite deformation 

behaviour accurately. 

 

 

Figure 4-2 Macroscopic flow behaviour from testing scheme of strain2 of 0.7. 
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Figure 4-3 Optical micrographs showing PAGBs of water-quenched specimens: (a) 

after strain1 of 0.3, (b) after strain2 of 0.5 and (c) after strain2 of 0.7. 

 

In Figure 4-3 (a), it is evident that before strain2, austenite grains are fully 

recrystallised with an average linear intercept length of 37.0 μm measured from 

multiple micrographs. In Figure 4-3 (b), the austenite microstructure remains in 

an unrecrystallised condition, while in Figure 4-3 (c) there are some small 

dynamically recrystallised austenite grains at the triple junctions of the elongated 

austenite grains. The recrystallisation fraction was measured as 6%, which 

means that at strain2 of 0.7, dynamic recrystallisation (DRX) was just triggered 

during austenite deformation, and the recrystallisation fraction is quite low at the 

end of deformation. 

4.3.2 Microstructures 

To observe the microstructure evolution with the increase of strain2, SEM 

secondary electron micrographs of the transformed microstructure are shown in 
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Figure 4-4 (a)~(e). In Figure 4-4 (a) and (b), a parallel morphology of the 

transformation products can be seen clearly. PAGBs remain, and the parallel 

laths developed from the PAGBs extended into the austenite grain, sometimes 

across the whole grain, which is a typical BF morphology. From Figure 4-4 (c) 

to (d), with an increase in strain2, the microstructure becomes finer, and the 

parallel BF laths get shorter. The fraction of parallel BF laths is gradually 

reduced and the rest are non-equiaxed ferrite laths with a chaotic arrangement 

which can be classified as AF. This indicates that with the increase of austenite 

deformation a transition from BF to AF occurs, consistent with previous research 

[85, 149, 150]. Finally, in Figure 4-4 (e), despite the further increased strain2, 

the fraction of AF is not increased and the microstructure becomes 

inhomogeneous with coarse BF packets surrounding fine AF laths. 
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Figure 4-4 SEM secondary electron micrographs depicting the transformed 

microstructures after different strain2: (a) 0, (b) 0.1, (c) 0.3, (d) 0.5 and (e) 0.7. 

 

Throughout all the micrographs above, microphases, possibly M/A 

constituents, appearing white can be found distributed within the matrix. In 

HSLA steels subjected to accelerated cooling processes, M/A constituents are a 

typical microstructural feature and they are considered as another factor affecting 

the toughness of steels, depending on their volume fraction, size and morphology. 

In general, the existence of M/A constituents causes a detrimental effect on the 

toughness. Hence, reduction and refinement of the M/A constituents will 

decrease the ductile–brittle transition temperature, promoting an improvement in 

the toughness of steels [11, 90]. 

It is clear in Figure 4-4 (a)~(d) that the shape of M/A constituents changes 

from elongated rods to dispersed, equiaxed particles with the increase of strain2 

from 0 to 0.5. This shape change can be related to the transition from BF to AF. 

When the transformation product mainly is BF, which is a highly organised 

microstructure with packets of parallel laths with similar crystallographic 

orientations [2], the retained austenite mainly exists between laths, leading to the 

coarse, elongated rod shape of M/A constituents. In contrast, when the 

transformation product is AF dominant, which exhibits a relatively chaotic 

microstructure [88], the retained austenite is located mainly in the gaps between 

AF laths with different shapes and directions, resulting in the fine, equiaxed 

shape of M/A constituents. This morphology change of M/A constituents has also 
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been observed by another investigation [155]. The formation of coarse M/A 

constituents normally has a detrimental effect on toughness, therefore the 

refinement of M/A constituents through austenite deformation can alleviate the 

negative effect of M/A constituents on toughness. 

4.3.3 EBSD mappings 

Following the noise reduction procedures illustrated in Section 3.3.2, a small 

area of each EBSD data set was used to plot a boundary map. For a statistical 

analysis of boundary density distribution and boundary interception length, each 

whole data set was used. 

The selected area boundary maps are shown in Figure 4-5. From Figure 4-5 

(a)~(d), although BF microstructures revealed by parallel low angle grain 

boundaries (LAGBs) can be seen clearly in all figures, the length and fraction of 

parallel BF laths reduce gradually with increased austenite deformation. 

Additionally, the BF microstructure is replaced by non-equiaxed AF laths with 

curved boundaries and an irregular arrangement, indicating a transition from BF 

to AF as austenite deformation is increased. Together with these morphological 

changes, the densities of both HAGBs and LAGBs significantly increases with 

the augment of strain2 from 0 to 0.5. However, further increasing strain2 from 

0.5 to 0.7, the densities of both HAGBs and LAGBs were reduced as shown in 

Figure 4-5 (d)~(e). The characteristics of microstructure evolution observed in 

the boundary maps correspond very well to those micrographs from optical and 

SEM microscopy. However, due to the advantages of EBSD mapping, these 

microstructure changes can be well quantified. 
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Figure 4-5 EBSD boundary maps of transformed microstructures after strain2 of (a) 0, 

(b) 0.1, (c) 0.3, (d) 0.5 and (e) 0.7, where blue lines represent low angle boundaries with 

disorientation between 2˚ and 15˚ whilst red lines represent high angle boundaries with 

disorientation greater than 15˚. 

 

Based on the EBSD maps covering relatively large areas of the tested 

specimens, the boundary densities in terms of absolute number per unit area are 

plotted against the disorientation angle values as distribution histograms in 

Figure 4-6, to reveal the boundary characteristics of the transformed 
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microstructures. For cubic crystals, there are 24 symmetrical operations and thus 

24 angle-axis pairs to represent the misorientation between two orientations. 

Among these 24 misorientation angles, the smallest angle is called the 

disorientation angle. Therefore, a disorientation angle is a special kind of 

misorientation angle. Since the disorientation angle provide the small least 

rotation angle between two orientations, it is easy and accurate to use the 

disorientation angle to compare misorientations. Therefore disorientations 

angles were used throughout this thesis to represent the misorientation between 

two orientations. The whole disorientation angle scope can be divided into four 

ranges, range 1 (θ<10˚), range 2 (10˚≤θ<21˚), range 3 (21˚≤θ<47˚) and range 4 

(47˚≤θ≤62.8˚), due to different formation mechanisms. 

 

 

Figure 4-6 Histograms showing the boundary densities in terms of absolute number 

per unit area with different disorientation angles from 2˚ to 62.8˚. 

 

The displacive transformation characteristic of the microstructures formed 

under accelerated cooling can be seen directly from the boundary density 

distributions shown in Figure 4-6. For all transformed microstructures, the 

densities (frequencies) of boundaries with disorientation angles in range 3 are 

very low. This is because both AF and BF are displacive transformation products, 
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following a near K-S (Kurdjumov-Sachs) or N-W (Nishiyama-Wasserman) 

orientation relationship with parent austenite grains [89, 91]. For the K-S or N-

W orientation relationships, the disorientation angles of boundaries between 

different laths transformed in the same parent austenite grain do not fall into 

range 3 between 21˚ and 47˚ as shown in Table 2-3. The boundaries with 

disorientations angles within range 3 shown in Figure 4-6 are the boundaries 

between laths transformed from different austenite grains at PAGBs, but not vice 

versa. Since the total area of PAGBs only accounts for a small portion of the total 

boundary area of the transformed microstructure, and it increases with austenite 

deformation as shown by Equation (2.4), the boundary densities in range 3 

(21˚~47˚) are considerably lower than others and increase with the augment of 

strain2. Based on these results, the characteristics of boundary density 

distributions shown in Figure 4-6 add as evidence that the transformation 

mechanisms of both AF and BF are similar and displacive. 

It can be seen in Figure 4-6 that the boundary densities (frequencies) of all 

EBSD data sets in other disorientation angle ranges, 1, 2 and 4, increase with the 

augment of strain2 from 0 to 0.5 and fall at strain2 of 0.7. The reason is explained 

in Section 4.4.3. It can also be observed that the boundary density in range 4 will 

increase with the rise of the AF volume fraction as strain2 increases from 0 to 

0.5. 

To quantify the microstructural refinement, the grain size defined by different 

disorientation threshold values, 4˚ and 15˚ are measured by a linear intercept 

method in the Channel 5 software respectively, owing to the reason explained in 

Section 3.3.2. The geometric mean of linear intercept lengths in both horizontal 

and vertical directions were calculated as in reference [146] and are shown in 

Figure 4-7. 
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Figure 4-7 Microstructure size parameter as geometric mean of the linear interception 

lengths in horizontal and vertical direction from the EBSD maps measured against two 

disorientation criteria, 4˚ and 15˚. Error bar represent 95% confidence levels of the 

measurement. 

 

It can be seen that the mean linear intercept lengths following both 

disorientation threshold values decrease with strain2, but increase again at a 

strain2 of 0.7, and the grain size range is very similar to another investigation 

[83]. Furthermore, the difference among all the specimens is statistically 

significant as there is very limited overlapping of their 95% CL error bars. The 

adjacent laths with disorientation below 15˚ make up the effective grains [85]. 

Since the effective grain boundaries (θ≥15˚) act as obstacles to cleavage crack 

propagation, the reduction of effective grain size can result in a better toughness, 

especially in terms of the ductile–brittle transition temperature (DBTT) [85]. 

4.3.4 Microhardness 

Microhardness values of the transformed microstructure versus the amount 

of strain2 are shown in Figure 4-8. The hardness increases slightly with 

increasing strain2 but decreases when strain2 reaches 0.7. This microhardness 

changing behaviour corresponds very well to that of the linear interception 
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lengths with threshold value of 4˚. 

 

 

Figure 4-8 Vickers microhardness of the transformation products after various 

deformation strain. Error bars represent the 95% confidence interval of the 

measurement. 

4.4 Discussion 

4.4.1 Restoration of deformed austenite before phase transformation 

It is evident from the results above that the microstructural refinement and 

strengthening effect of the austenite deformation is weakened when strain2 

reaches 0.7. Despite the onset of DRX during strain2 of 0.7, the fraction of 

austenite recrystallisation is only 6% at the end of deformation, which is quite 

small compared to the hardness drop and microstructure coarsening. 

Therefore, there should be another restoration mechanism occurring after 

deformation, but before the subsequent phase transformation. Under the cooling 

conditions used in this research, displacive transformations dominate as proved 

by the boundary density distribution histograms in Figure 4-6. Therefore, PAGBs 

before phase transformation can also be revealed by etching with a saturated 

aqueous picric acid solution similar to that used for water quenched specimens. 
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The optical micrographs depicting the PAGBs before phase transformation after 

strain2 of 0.5 and 0.7 are shown in Figure 4-9 (a) and (b) respectively. In Figure 

4-9 (a), after strain2 of 0.5 and after continuous cooling, the prior-austenite still 

remains deformed which suggests that with strain2 of 0.5, deformation 

temperature of 950˚C and strain rate of 10s-1, strain can be successfully 

accumulated in the austenite. While from Figure 4-9 (b), it can be seen clearly 

that many small equiaxed grains exist among unrecrystallised austenite grains. 

The fraction of those small equiaxed grains was measured at 38.5%. Since DRX 

was triggered at strain2 of 0.7 and the deformation temperature is relatively high 

(950˚C), this leaves a relatively long time gap for post-dynamic softening to 

proceed. 

 

  

Figure 4-9 Optical micrographs depicting PAGBs of continuous cooled specimens 

after strain2 of (a) 0.5 and (b) 0.7. 

 

As for the specific post-dynamic softening mechanism, some authors used to 

assume that static recrystallisation (SRX) is the dominant softening mechanism 

when deformation strain is lower than the critical strain of DRX, εc, while as long 

as the deformation strain is higher than εc, the following post-dynamic softening 

is dominated by meta-dynamic recrystallisation (MDRX) mechanisms which 

only involves growth of previously formed dynamic recrystallised grains. 

However, when the fraction of dynamic recrystallisation is low, MDRX cannot 

be accounted for a high post-dynamic softening fraction and in previous studies 
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[156], MDRX only became dominant after a minimum strain εT, was reached. 

This minimum strain εT is smaller than the steady state strain εss, but can be 

significantly larger than εc. εT has been determined experimentally leading to a 

relationship: 

𝜀𝑇 = 𝐾𝜀𝑝 (4.1) 

where εp is the peak strain with the constant K of 1.7. Therefore, a transition 

between the strain-range was proposed [156], where SRX works as the dominant 

post-dynamic softening mechanism (ε<εc), and where MDRX takes over (ε>εT). 

Between εc and εT, both mechanisms contribute simultaneously to post-dynamic 

softening. Based on the information provided above, after strain2 of 0.7 both 

SRX and MDRX contributed to the softening, and resulted in the hardness drop 

and subsequent microstructure coarsening when strain2 reaches 0.7. 

Therefore, based on the results shown above, the occurrence of SRX/MDRX 

during accelerated cooling is very hard to notice unless specimens with different 

strains are compared or the continuously cooled specimens are etched to reveal 

PAGBs. Moreover, the strain magnitude and deformation temperature of finish 

rolling should be selected carefully, especially for HTP steel, to minimise 

restoration processes such as MDRX and SRX from occurring prior to the phase 

transformation during accelerated cooling. 

4.4.2 Transition from BF to AF 

Despite the similarity in the transformation mechanism, AF has a quite 

different morphology compared to that of BF. The formation of AF can be 

explained by the effect of austenite deformation on introducing intragranular 

nucleation sites. 

In Bhadeshia’s research [2], the nucleation mechanism of bainite was proved 

to be related to spontaneous dissociation of specific dislocations that are already 

present in the parent austenite, which was originally proposed for martensite 
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nucleation by Olson and Cohen [116]. The first step of nucleation is faulting on 

the close-packed planes. Embryos consisting of stacking fault groups usually 

develop from the dissociation of existing dislocations with an appropriate 

number and spacing. These groups of stacking faults, embryos, turn unstable and 

start to spontaneously transform during cooling. These dislocations are glissile 

therefore diffusion of iron and substitutional solid solution atoms is not required 

for this nucleation mechanism, which corresponds well to the low transformation 

temperature for bainite at which thermal activation is in short supply. Although 

bainite and martensite are thought to have similar nucleation mechanisms, one 

difference is that carbon partitioning is required during the bainite nucleation 

stage to guarantee a reduction in free energy, due to the higher transformation 

temperatures and lower driving forces of bainite transformations compared with 

those of martensite transformations [2]. 

The hypothesis that martensite preferentially nucleates at dense stacking 

dislocation arrays has been widely accepted [157-160], and it was suggested that 

the potency of the nucleation site is determined by the number of dislocations in 

the array. For the nucleation site becoming potent enough, the quantity of 

dislocations inside should be higher than a critical value [116, 161]. The defect 

size necessary to account for a spontaneous nucleus formation was found to be 

directly proportional to the interfacial energy which is largely determined by the 

dislocation array energy [116]. Therefore, besides austenite grain boundaries 

where dense stacking dislocation arrays can be found and which is thought to be 

one of the most potent nucleation sites, intragranular dislocation arrays 

introduced by austenite deformation or strain related with intragranular 

inclusions can also act as nucleation sites for bainite and martensite 

transformation products. Furthermore, Magee [162] and Christian [163] argued 

that severely deformed regions could become potent nucleation sites for 

martensitic transformation. This can be attributed to the strain field interaction 

between martensite embryos and severely deformed regions which can lower the 
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free energy barrier for martensite nucleation. Actually, a mechanism for the 

strain-induced nucleation of martensite has been proposed by Olson and Cohen 

[158] involving two intersecting shear systems. In a three-dimensional phase-

field study of strain-induced martensitic transformation in a stainless steel [160], 

martensite nucleates along the grain edges as well as in the austenite grain 

interior where the plastic strains are relatively larger compared to the rest of the 

material. Most importantly, the validity of deformation defects acting as 

nucleation sites for martensite transformation has been proved by in-situ laser 

scanning confocal microscopy (LSCM) observation and it was found that 

martensite blocks developed from sub-grain boundaries and the development of 

blocks were also stopped at subgrain boundaries [164]. 

Since the AF transformation mechanism is bainitic, the nucleation 

mechanisms of both AF and BF should be similar. Therefore, for specimens 

undeformed or slightly deformed, BF laths nucleate primarily on PAGBs where 

dense stacking dislocation arrays can be accommodated, and these laths finally 

developed into packets with a parallel morphology as shown in Figure 4-4 

(a)~(b). On the other hand, when austenite is heavily deformed, a high density 

of dislocations and stacking faults will be introduced into the austenite, which 

can also act as nucleation sites in addition to PAGBs, leading to the AF dominant 

microstructures shown in Figure 4-4 (c)~(d). Moreover, it is worth noticing that 

in Figure 4-4 (e), a mixture of AF microstructure surrounded by blocky BF grains 

is evident. This inhomogeneous microstructure can be attributed to the mixture 

of unrecrystallised and recrystallised austenite grains as shown in Figure 4-9 (b). 

The remaining unrecrystallised austenite transforms into an AF microstructure, 

while the recrystallised austenite grains change into a BF microstructure because 

of the lack of intragranular nucleation sites. 

The nucleation of AF has also been observed on many deformation 

substructures, like deformation bands [12, 165, 166] and dislocation cell walls 

[167]. Laths nucleated at these defects do not develop into a parallel morphology 
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on a large scale because the development of a parallel morphology is prohibited 

by impingement between adjacently nucleated AF laths [2]. Actually, several 

adjacent parallel AF laths form a packet on a small scale and different packets 

have different lengthening directions. AF packets will impinge with other 

packets formed at nearby nucleation sites, which prevents the parallel 

morphology on a large scale and brings about the irregular morphology of AF. 

This morphology characteristic has been proved by thin foil TEM observation in 

research [88] as shown in Figure 2-34 and Figure 2-35. Therefore, austenite 

deformation is required for the AF transformation in pipeline steels. 

 

4.4.3 Grain refinement 

The change of boundary densities in the disorientation angle range 3 with 

increased strain2 from 0 to 0.7 has been explained in Section 4.3.3. Differently, 

it can be seen in Figure 4-6 that the boundary densities (frequencies) of all EBSD 

data sets in the disorientation angle ranges, 1, 2 and 4, increase with the augment 

of strain2 from 0 to 0.5 and fall at strain2 of 0.7. A common reason is that with 

the increase of strain2 from 0 to 0.5, the density of intragranular nucleation sites 

introduced by austenite deformation is raised and thus the BF and AF laths 

become increasingly smaller and shorter as shown in Figure 4-4, leading to 

increased lath boundary densities. Due to the formation of blocky BF packets 

from the recrystallised austenite grains with strain2 of 0.7, the lath boundary 

density drops as strain2 reaches 0.7. However, the reason for the boundary 

density change in each disorientation angle ranges are slightly different. 

Boundaries with disorientation angles in range 1 (θ<10˚), are mainly resulted 

from the plastic strains of austenite and ferrite to accommodate the displacive 

transformation shape strain [168, 169]. The main phase components, AF and BF, 

in all specimens are displacive transformation products with similar 

transformation shape strains. Therefore, the boundary density in range 1 should 
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be very similar. However, since the main characteristic of displacive 

transformations is the coordinated movement of lattice atoms [2], the 

substructure induced by austenite deformation will be inherited by the displacive 

transformation products. Therefore, the increase in strain2 will introduce more 

deformation substructures inherited by the transformation products and finally 

leads to the increased boundary density in range 1. The occurrence of 

SRX/MDRX after strain2 of 0.7 lowers the deformation substructure density, and 

results in a decrease of boundary density in range 1. 

Boundaries with disorientation angles in range 4 (47˚≤θ<62.8˚), are mainly 

the boundaries between variants transformed in the same austenite grain but 

belonging to different Bain groups as shown in Table 2-3. The rise in boundary 

density in range 4 as strain2 increases from 0 to 0.5 can be mainly attributed to 

the formation of intragranular nucleated AF. During the BF transformation, 

strong variant selection occurs and results in certain variant pairs in the 

transformation product and thus high boundary densities in certain disorientation 

values [99]. Under relatively slow cooling rates or high transformation 

temperatures, the variant selection will mainly favour the variant pairs with low 

disorientation angles between them [99]. However, for the AF dominant 

microstructures, austenite deformation increases the intragranular nucleation 

sites, which will weaken the variant selection mechanisms and more variants and 

variant pairs can be formed in each austenite grain. This is consistent with 

previous research [44], which found that plates formed on the primary plates 

have been found to be related with each other in low disorientation angles, 

between 5˚ and 15˚, despite the considerable spatial disorientation between them. 

In other words, the HAGB found in research [44] is mainly attributed to the 

intragranular nucleation of the primary plates, and not the plate interwoven 

morphology. Therefore, the boundary density in range 4 will increase with the 

rise of the AF volume fraction as strain2 increases from 0 to 0.5. The occurrence 

of SRX/MDRX after strain2 of 0.7 eliminates some of the intragranular 
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nucleation sites, leading to the reduced AF volume fraction and thus the 

decreased boundary density in range 4. 

Boundaries with disorientation angles in range 2 (10˚≤θ<21˚), are mainly 

the boundaries between variants transformed in the same austenite grain and 

belonging to the same Bain group as shown in Table 2-3. The change of boundary 

density in this range can be explained mainly by the change of lath boundary 

density as illustrated in the beginning of this section. 

It is also worth noticing that besides the disorientation angle range 4, the 

disorientation angles of boundaries formed between laths transformed from 

different austenite grains can also fall into other disorientation angle ranges 1, 2 

and 4. But due to the limited fractions of PAGBs, their influences are very small 

in the ranges 1, 2 and 4. 

Due to the increased boundary density in the high angle range (θ>15˚) with 

strain2 from 0 to 0.5, Figure 4-6, it can be seen clearly that the effective grain 

size with threshold value of 15˚ reduces with the increase of accumulated strain 

in the austenite in this research. This is consistent with other previous research 

results [85, 149, 150]. As for the controversial influence of austenite deformation 

on effective grain size, it is discussed in Section 5.4.4. 

4.5 Summary 

In this chapter, the effect of austenite deformation (strain2) below the 

recrystallisation-stop temperature, T5%, on microstructural evolution was 

investigated. It was found that: 

(1) With an increase of strain2 from 0 to 0.5 in the austenite, transition from 

bainitic ferrite to acicular ferrite occurs, and the grain boundary density 

and microhardness increase with the rise of the acicular ferrite fraction in 

the transformed microstructure. Meanwhile effective grain size decrease 

with increased strain2 indicating toughness improvement. 
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(2) Increasing strain2 further from 0.5 to 0.7 leads to reduced microhardness 

and inhomogeneous and coarse microstructure with AF regions 

surrounded by blocky BF grains, which is attributed to the occurrence of 

dynamic recrystallisation and subsequent post-dynamic softening 

resulting in the drop of the accumulated strain. 

(3) Some of these microstructural evolution characteristics including 

effective grain size are opposite to those observed in bainitic ferrite 

dominant microstructures. The active intragranular nucleation sites under 

the transformation condition in this research are the main reason for this 

discrepancy. 

(4) Based on the result of this research, to get AF dominant microstructures 

under industrial continuous cooling conditions, deformation below T5% 

should be high enough to encourage the transition from BF to AF but not 

so high that DRX and subsequent SRX/MDRX can be triggered which 

will lower the accumulated strain in austenite and weaken the effect of 

austenite deformation on AF transformation, grain refinement and 

strengthening. 

 

  



 

93 

 

Chapter 5 Effect of cooling rates on 

microstructure evolution 

5.1 Introduction 

It is shown in Chapter 4 that the austenite deformation below the 

recrystallisation-stop temperature (T5%) can promote the transition from BF to 

AF. But besides austenite deformation, the effect of continuous cooling rates on 

the AF transformation is also under debate and the conditions for the occurrence 

of the AF transformation are still unclear. In the research of Xiao et al. [170], a 

low carbon Mn-Mo-Nb pipeline steel was used to investigated the static and 

dynamic transformation products and it was found that the final microstructure 

with cooling rates below 10˚C/s can be identified as AF. However, in the research 

of Yakubtsov et al. [155], for a low carbon microalloyed commercial grade 550 

steel, it was found that at slow cooling rates, the transformation microstructure 

is BF dominant, while at higher cooling rates (≥35˚C/s), AF transformation 

occurs, due to the low bainite transformation temperature and thus the high 

thermodynamic driving force which promotes the intragranular nucleation of AF. 

Moreover, some researchers [89, 149, 170] proposed that AF-like 

microstructures can be formed without austenite deformation but at slow cooling 

rates.  

Therefore, in this chapter, continuous cooling at different cooling rates was 

applied to either undeformed or deformed austenite to investigate the effect of 

cooling rates on the microstructure evolution and the conditions for the 

occurrence of the AF transformation. Furthermore, the influence of cooling rates 

on the grain refining effect of austenite deformation below the recrystallisation-

stop temperature (T5%) is discussed. 

5.2 Experimental 
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Given the controllable linear cooling capacity of the FTTU introduced in 

Section 3.2.2, the fastest rate of the controlled continuous cooling used in this 

thesis was set at 50˚C/s. During continuous cooling at rates slower than the 

natural air cooling rate, instead of using cooling mediums, the FTTU actually 

needs to heat the specimen to maintain the slow cooling rates. Based on the 

limitation of the coil cooling system of the FTTU and time efficiency, the slowest 

rate of the controlled continuous cooling used in this thesis was set at 0.5˚C/s. 

The processing route is illustrated in Figure 5-1. The solid solution heat 

treated specimens illustrated in Section 3.2.2 were reheated to 1200˚C at a rate 

of 10˚C/s, held for 2 minutes for equilibration, and then cooled at a rate of 5˚C/s 

to 1100˚C for a roughing deformation (strain1) of 0.3 at a constant true strain 

rate of 10s-1. After that, the specimens were cooled immediately to 950˚C at a 

rate of 5˚C/s for the second deformation with strain2 of, either 0 or 0.5. This 

second deformation was also performed at a constant true strain rate of 10s-1, and 

was followed by a controlled cooling from 950˚C to 500˚C at rates of 0.5˚C/s, 

1˚C/s, 5˚C/s, 10˚C/s, 20˚C/s and 50˚C/s. After that, specimens were slowly 

cooled from 500˚C to 350˚C at a rate of 1˚C/s and finally water quenched from 

350˚C to room temperature. 

 

 

Figure 5-1 Schematic illustration of the thermomechanical testing profile. 
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Specimens for OM and SEM observation and EBSD mapping were prepared 

carefully as illustrated in Section 3.3. A 2% nital solution was used to show the 

transformed microstructure. EBSD analyses were also carried out with an 

accelerating voltage of 20 kV on the RD-ND plane of each specimen. The step 

size for the transformed microstructures with cooling rates of 0.5˚C/s and 1˚C/s 

is set as 0.5 μm because under these conditions coarse PF/QF grains dominate 

the transformed microstructures. The step size for the rest of the cooling rates is 

still set as 0.2 μm. Noise reduction and grain size measurement were performed 

as introduced in Section 3.3.2. 

5.3 Results 

5.3.1 Microstructures 

The morphologies of the prior-austenite grains with strain2 of 0 and 0.5 have 

been shown in Figure 4-3 (a)~(b). As can been from these two figures, with 

strain2 of 0, the prior-austenite grains are recrystallised and the mean linear 

intercept length measured is 37.0 μm, while with a strain2 of 0.5, the prior-

austenite microstructure remains in an unrecrystallised condition. Therefore, the 

selected austenite deformation parameters are suitable to investigate the effect of 

continuous cooling rates on the transformed microstructure evolution of 

recrystallised and deformed austenite. 

The microstructures transformed from the recrystallised austenite (strain2 = 

0) with different continuous cooling rates are shown in Figure 5-2. At cooling 

rates of 0.5˚C/s and 1˚C/s, Figure 5-2 (a)~(b), a mixture of PF/QF grains and BF 

packets was found in the transformed microstructures and with the increase of 

cooling rates, the volume fraction of BF raises and the grain size of PF/QF 

becomes smaller.  

At cooling rates higher than 1˚C/s, Figure 5-2 (c)~(f), a parallel morphology 
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of the transformed products can be seen clearly in all microstructures. PAGBs 

remain, and the parallel laths developed from the PAGBs extended into the 

austenite grain, sometimes across the whole grain, which is a typical BF 

morphology. Therefore, BF dominates the transformed microstructures 

continuously cooled at 5~50˚C/s without austenite deformation. At the cooling 

rate of 5˚C/s, Figure 5-2 (c), the microstructure mainly consists of coarse BF 

laths and some of the lath boundaries can only be seen vaguely. Differently, at 

the cooling rate of 50˚C/s, Figure 5-2 (f), BF laths become thinner and the lath 

boundaries are clearer. With the increase of cooling rate from 5˚C/s to 50˚C/s, 

the transformed microstructure gradually changed from coarse BF laths to thin 

BF laths, and the boundaries between laths are increasingly clear.  

The microstructures transformed from deformed austenite (strain2 = 0.5) 

with different continuous cooling rates are shown in Figure 5-3. At cooling rates 

of 0.5˚C/s and 1˚C/s, Figure 5-3 (a)~(b), a mixture of PF/QF grains and dark 

phases was found and increasing the cooling rate, the grain size of PF/QF 

becomes smaller. The phases appearing dark in the optical micrographs could be 

bainite or degenerated pearlite and a detailed TEM observation of thin foils is 

required to give a definite answer, which is out of the scope of this research. In 

contrast to the microstructures transformed from recrystallised austenite under 

the same low cooling rates, paralleled BF laths no longer exist in the 

microstructures transformed from deformed austenite as shown in Figure 5-3 

(a)~(b). 

With cooling rates between 5~20˚C/s, Figure 5-3 (c)~(e), the transformed 

microstructures maybe consist of AF laths together with a small fraction of 

PF/QF grains at the lower cooling rate (5˚C/s) while parallel BF laths are seen at 

the higher cooling rates (10~20˚C/s ). Increasing the cooling rate further to 

50˚C/s, a parallel morphology of the transformed product becomes evident and 

many sheaves developed across the whole austenite grains, which is a typical BF 

dominant microstructure. From Figure 5-3 (c)~(e), it is interesting to notice that 
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the fraction of BF in the transformed microstructures raises with the increased 

cooling rates, which means under the same austenite deformation condition 

(strain2 = 0.5), a transition from AF to BF happens with the increase of cooling 

rates. 

 

 

 

  

Figure 5-2 Optical micrographs depicting microstructures transformed from 

recrystallised austenite (strain2 = 0) with different continuous cooling rates: (a) 0.5˚C/s, 

(b) 1˚C/s, (c) 5˚C/s, (d) 10˚C/s, (e) 20˚C/s and (f) 50˚C/s. 
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Figure 5-3 Optical micrographs depicting microstructures transformed from deformed 

austenite (strain2 = 0.5) with different continuous cooling rates: (a) 0.5˚C/s, (b) 1˚C/s, 

(c) 5˚C/s, (d) 10˚C/s, (e) 20˚C/s and (f) 50˚C/s. 

 

Since PF/QF dominant microstructures at the low cooling rates, 0.5~1˚C/s, 

are less intricate than the AF or BF dominant microstructures at higher cooling 

rates, 5~50˚C/s, the following microstructure characterisation mainly focuses on 

the BF and AF dominant microstructures. 
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To observe the microstructures in greater detail, SEM secondary electron 

micrographs of the microstructures transformed from recrystallised and 

deformed austenite with different cooling rates are shown in Figure 5-4 and 

Figure 5-5, respectively. In Figure 5-4, with increased cooling rate, BF laths 

become thinner and the boundaries between BF laths revealed by nital etching 

are clearer.  

In Figure 5-5, similar microstructural changes can be observed compared to 

optical micrographs as well. In Figure 5-5 (b)~(c), at the cooling rates of 10˚C/s 

and 20˚C/s, although the dominant microstructure is AF, some short parallel BF 

laths forming short wide packets along PAGBs can be seen in the microstructures, 

and AF microstructure exists between these wide packets. This actually is an 

important microstructural characteristic of AF and this will be discussed in 

Section 5.4.3. Finally increasing the cooling rate further to 50˚C/s, parallel BF 

laths dominate the transformed microstructure, Figure 5-5 (d), and many BF laths 

extended across the whole austenite grains. 
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Figure 5-4 SEM secondary electron micrographs showing microstructures transformed 

from recrystallised austenite (strain2 = 0) with different continuous cooling rates: (a) 

5˚C/s, (b) 10˚C/s, (c) 20˚C/s and (d) 50˚C/s. 
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Figure 5-5 SEM secondary electron micrographs showing microstructures transformed 

from deformed austenite (strain2 = 0.5) with different continuous cooling rates: (a) 

5˚C/s, (b) 10˚C/s, (c) 20˚C/s and (d) 50˚C/s, where white dashed lines represent the 

traces of the parent austenite grain boundaries. 

5.3.2 EBSD mappings 

Following the noise reduction procedures illustrated in Section 3.3.2, a small 

area of each EBSD data set was used to plot an inverse pole figure (IPF) coloured 

orientation map and a boundary map. For a statistical analysis of the boundary 

interception length, each whole data set was used. 

The selected area IPF coloured orientation maps and corresponding 
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boundary maps of the microstructures transformed from recrystallised and 

deformed austenite with different cooling rates are shown in Figure 5-6 and 

Figure 5-7, respectively. 

Transformed from recrystallised austenite, increasing the cooling rate from 

5˚C/s to 20˚C/s, Figure 5-6 (a)~(c), the change in the effective grain size is not 

evident from these IPF coloured orientation maps and it can be seen that the 

transformed microstructures mainly consist of coarse BF packets and HAGBs 

exist mainly between packets instead of between laths within packets. 

Furthermore, from the corresponding boundary maps, Figure 5-6 (e)~(g), it can 

be found that within each packet LAGBs were generated and the influence of 

cooling rate on the densities of both HAGB and LAGB is not evident. However, 

increasing the cooling rate further to 50˚C/s, the densities of both HAGB and 

LAGB are increased significantly and HAGBs exist not only between packets 

but also between laths within packets as shown by the black parallel lines in 

Figure 5-6 (d). 
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Figure 5-6 EBSD maps of the microstructures transformed from recrystallised austenite 

(strain2 = 0) with different continuous cooling rates: (a)~(d) inverse pole figure 

coloured orientation maps corresponding to microstructures with cooling rates of 5˚C/s, 

10˚C/s, 20˚C/s and 50˚C/s respectively, where black lines represent high angle 
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boundaries with disorientation greater than 15˚; (e)~(h) boundary maps corresponding 

to the same area in (a)~(d) respectively, where blue lines represent low angle boundaries 

with disorientation between 3˚ and 15˚ whilst red lines represent high angle boundaries 

with disorientation greater than 15˚. 

 

Transformed from deformed austenite, Figure 5-7 (e)~(h), the density of 

LAGBs increases constantly with the cooling rate raising from 5˚C/s to 50˚C/s. 

Coarse effective grains pointed to by black arrows can be found within all the 

transformed microstructures. Therefore all the microstructures can be divided 

into two parts, coarse effective grains composed of parallel BF laths and fine 

effective grains composed of AF laths with an irregular arrangement. From 

Figure 5-7 (a) to (b), the density of HAGBs is increased because the relatively 

coarse PF/QF grains in Figure 5-7 (a) are replaced by the fine AF laths in Figure 

5-7 (b). But raising the cooling rate from 10˚C/s to 50˚C/s, the area of coarse 

effective grains increases and finally leads to a quite inhomogeneous 

microstructure at the cooling rate of 50˚C/s. The increase of the coarse effective 

grain area suggests that a transition from AF to BF happens with the cooling rate 

increasing from 10˚C/s to 50˚C/s. Furthermore, the change of the density of 

effective grains implies the differences of nucleation site density at various 

cooling rates. 
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Figure 5-7 EBSD maps of the microstructures transformed from deformed austenite 

(strain2 = 0.5) with different continuous cooling rates: (a)~(d) inverse pole figure 

coloured orientation maps corresponding to microstructures with cooling rates of 5˚C/s, 
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10˚C/s, 20˚C/s and 50˚C/s respectively, where black lines represent high angle 

boundaries with disorientation greater than 15˚; (e)~(h) boundary maps corresponding 

to the same area in (a)~(d) respectively, where blue lines represent low angle boundaries 

with disorientation between 3˚ and 15˚ whilst red lines represent high angle boundaries 

with disorientation greater than 15˚.  

 

To quantify the microstructural refinement, the grain size defined by different 

disorientation threshold values, 4˚ and 15˚ are measured by a linear intercept 

method in the Channel 5 software, owing to the reason explained in Section 3.3.2. 

The geometric mean of linear intercept lengths in both horizontal and vertical 

directions were calculated as in reference [146] and are shown in Figure 5-8. 
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Figure 5-8 Microstructure size parameter measured against two disorientation criteria: 

(a) 15˚ and (b) 4˚, as geometric mean of the linear interception lengths in horizontal and 

vertical direction from the EBSD maps, where error bars represent 95% confidence 

levels of the measurement. 

 

For transformed microstructures from recrystallised austenite, the grain sizes 

defined by both disorientation threshold values of 4˚ and 15˚ are reduced with 

the cooling rate increasing from 0.5˚C/s to 50˚C/s. But the changes of grain size 

between cooling rates of 5˚C/s to 20 ˚C/s are not statistically significant as there 

are very large overlaps of their 95% CL error bars, corresponding very well to 

the results obtained from EBSD maps in Figure 5-6. 

Differently, for microstructures transformed from deformed austenite, the 

change of grain size with cooling rate is more complicated. For the grain size 

defined by a disorientation threshold value of 4˚, the grain size is firstly reduced 

from 5.0 μm to 1.8 μm with the cooling rate increasing from 0.5˚C/s to 10˚C/s, 

and then the grain size is raised to 1.9 μm although this increase is not statistically 

significant. Finally, when the cooling rate reaches 50˚C/s, the grain size is further 

lowered to 1.7 μm. While for the grain size defined by a disorientation threshold 
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value of 15˚, the effective grain size firstly is reduced from 5.7 μm to 2.9 μm 

with the cooling rate increasing from 0.5˚C/s to 10˚C/s, and then the effective 

grain size is increased continuously from 2.9 μm to 3.5 μm as the cooling rate is 

raised from 10˚C/s to 50˚C/s, although the effective grain size change between 

10˚C/s and 20˚C/s is not statistically significant. 

5.4 Discussion 

5.4.1 Effect of austenite deformation at slow cooling rates 

Without austenite deformation, the transformed microstructures cooled at 

0.5˚C/s and 1˚C/s consist of PF/QF grains and BF packets. The occurrence of the 

BF microstructure can be attributed to the effect of niobium on the hardenability 

of the steel. It has been found by many researchers [171, 172] that the addition 

of niobium can suppress the allotriomorphic ferrite transformation, by lowering 

its nucleation rate at austenite grain boundaries, and promote bainitic 

transformation microstructures at the expense of allotriomorphic ferrite. The 

suppression effect of niobium on the allotriomorphic ferrite is evident when 

niobium is in solid solution. In past research [172], increasing the concentration 

of niobium in solution in austenite greatly retards the formation of 

allotriomorphic ferrite. However, a maximum suppression effect was found 

when the niobium concentration was beyond a certain level and it was explained 

that with a high niobium concentration, the precipitation of niobium carbides or 

carbonitride happens before the ferrite transformation during cooling and even 

worse these precipitates can act as intragranular nucleation sites for the ferrite 

transformation. 

Through thermodynamic calculation for the tested steel, the addition of 

niobium can only slightly change the austenite stability, due to the low niobium 

concentration in the tested steels (0.09%). And in microalloyed steels, the 

concentration of niobium is normally lower than 0.1% [26]. This indicates that 
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the effect of niobium on steel’s hardenability should be very limited. The 

discrepancy between thermodynamic calculation and experimental results can be 

explained by the fact that niobium atoms do not evenly distribute in austenite but 

segregate at austenite grain boundaries and different transformation suppression 

mechanisms were proposed based on this segregation. In research [172], the 

retardation of allotriomorphic ferrite transformation was attributed to the solute-

drag effect that the segregation of niobium to austenite/ferrite interface is 

assumed to modify the diffusivity of carbon and decrease interface advancing 

rate. Nevertheless, since niobium also affects the kinetics of the bainitic 

transformation [171] in which substitutional solid solution atoms including 

niobium are believed to be partitionless [2], the solute-drag explanation is not 

reasonable under this situation and other retardation mechanisms, such as the 

stabilisation of grain boundaries by segregation of niobium atoms, seem more 

plausible [173]. 

Differently, subjected to an austenite deformation below the T5% temperature, 

the transformed microstructures cooled at 0.5˚C/s and 1˚C/s consist of finer 

PF/QF grains compared with those transformed from recrystallised austenite. 

The BF packets shown in Figure 5-2 (a)~(b) disappear in Figure 5-3 (a)~(b). The 

PF/QF grain refinement and the disappearance of BF after austenite deformation 

can be explained as follows. 

Firstly, austenite deformation increases the stored strain energy in the 

austenite and during reconstructive transformations (PF/QF) under slow cooling 

rates, this strain energy can add up to the driving force and make the 

decomposition of austenite begin at a higher temperature. Therefore, the low-

temperature transformation product, BF, disappears during the continuous 

cooling after austenite deformation. 

Secondly, deformation of the austenite can increase the austenite grain 

boundary area per unit volume and introduce deformation substructures within 

austenite grains, such as deformation bands or cell boundaries which can act as 
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intragranular nucleation sites [75]. The increase of the ferrite nucleation site 

density accelerates the transformation kinetics of ferrite, and also refines the 

ferrite grain size. Therefore, the PF/QF dominant microstructures appear finer 

after austenite deformation. Another effect of austenite deformation is that the 

increased austenite grain boundaries and deformation substructures are also 

attractive to niobium atoms, leading to lowered niobium segregation levels at 

these defects. Therefore, the austenite grain boundary stabilisation effect of 

niobium atoms is weakened, which reduces the volume fractions of low-

temperature transformation products. 

Last but not least, strain-induced precipitation of niobium carbide or 

carbonitride during austenite deformation may further reduce the niobium 

content in solution and thus weaken the austenite grain boundary stabilisation 

effect of niobium. 

Therefore, the effect of austenite deformation on the transformation at slow 

cooling rates can be explained in terms of increasing driving forces, raising 

nucleation site densities and weakening the effect of niobium on steel’s 

hardenability. 

5.4.2 Effect of cooling rates without austenite deformation 

Without austenite deformation, the transformed microstructures cooled at 

5~50˚C/s mainly consist of BF. The phase identification was performed 

according to the procedures described in Section 2.7. As the cooling rate is 

increased, the effective grain size decreases gradually and the distribution of both 

HAGBs and LAGBs are changed. These changes in grain refinement and the 

distribution of HAGBs and LAGBs can be explained from the point view of 

variant selection which is illustrated in Section 2.6.  

Although the differences of BF microstructures with cooling rates between 

5˚C/s to 20˚C/s are very small, these BF microstructures are quite different from 

the transformed microstructure cooled at 50˚C/s. Therefore, a comparison is 
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made between the BF microstructures cooling at 5˚C/s and 50˚C/s. Since 

displacive transformations cannot cross austenite grain boundaries, a prior-

austenite grain was identified in each EBSD map of these two BF 

microstructures. The {100} pole figures of the BF orientations of these two prior-

austenite grains are shown in Figure 6-11 (a), (c) and the orientation maps of 

them are illustrated in Figure 5-10 (a), (d) respectively. Since the Kurdjumov–

Sachs (K–S) relationship ({111}γ//{110}α, <110>γ//<111>α) generally provides 

good predictions for the BF transformation in steels [100], it was adopted as the 

orientation relationship in this research and the method proposed by Tari et al. 

[174] was used to evaluate the orientations of these two parent austenite grains, 

and the results were used to calculate the 24 K-S variants of each austenite grain. 

These results are shown in Figure 6-11 (b), (d) respectively, and good matches 

can be found between the pole figures of the experimentally determined BF 

orientations and calculated ferrite orientation variants. 

To reveal detailed crystallographic features, the colours in the orientation 

maps were changed to show different colours for different CP and Bain groups, 

which is introduced in Section 2.6.2. These maps are termed as CP and Bain 

group maps and are shown in Figure 5-10 (b), (e) and Figure 5-10 (c), (f) for the 

two BF microstructures transformed at different cooling rates, respectively. 
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Figure 5-9 {100} pole figures of the BF orientation in single parent austenite grains 

with cooling rates of (a) 5˚C/s and (c) 50˚C/s; {100} pole figures of the calculated 

austenite orientations and corresponding ferrite orientation variants with cooling rates 

of (b) 5˚C/s and (d) 50˚C/s, respectively.  

 

 

Figure 5-10 IPF coloured orientation maps (a) and (d), close-packed plane group maps 

(b) and (e) and Bain group maps (c) and (f) for BF microstructures in single parent 

austenite grains with cooling rates of 5˚C/s and 50˚C/s, respectively. 
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It can be seen clearly from Figure 5-9 that more intense variant selection 

happened at the cooling rate of 5˚C/s than at the cooling rate of 50˚C/s. 

Furthermore, the variant arrangements in these two microstructures are also quite 

different, as shown in Figure 5-10. At the cooling rate of 5˚C/s, variants 

belonging to the same Bain group are formed adjacently as shown in Figure 5-10 

(c) and these variants may come from different CP groups, thus leading to 

intersecting CP groups as shown in Figure 5-10 (b). Differently, at the cooling 

rate of 50˚C/s, variants belonging to the same CP group are formed side by side 

as shown in Figure 5-10 (e) and these variants may come from different Bain 

groups, thus resulting in the typical packets morphology of BF. 

These differences in the variant selection and the variant arrangement 

between two transformed BF microstructures cooled at 5˚C/s and 50˚C/s are 

similar to the results shown in Figure 2-40 and thus can be well explained by the 

influence of transformation driving force and accommodation method of 

transformation shape strain on variant selection. At the low cooling rate of 5˚C/s, 

BF transformation takes place at high temperatures and owing to the low BF 

transformation driving forces at high temperatures, intense variant selection 

happens. Due to the reason introduced in Section 2.6.3, variants belonging to the 

same Bain group are formed adjacently. While at the high cooling rate of 50˚C/s, 

BF transformation occurs at low temperatures and owing to the large BF 

transformation driving forces at low temperatures, variant selection is weakened. 

Due to the low transformation temperatures, the strength of austenite and BF are 

relatively high and thus the BF transformation shape strain cannot be relaxed 

easily by plastic accommodation. The transformation shape strain needs to be 

relaxed by self-accommodation through the formation of variants belonging to 

the same CP group but different Bain group in neighbours as introduced in 

Section 2.6.3. Since the boundaries between variants belonging to different Bain 

groups have disorientation angles higher than 47.1˚ as shown in Table 2-3, a 

higher density of HAGBs and thus a smaller effective grain size will be formed 
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at the cooling rate of 50˚C/s than at the cooling rate of 5˚C/s and some of these 

HAGBs exist within the BF packets. Based on the description above, it is 

reasonable to conceive that by further increasing the cooling rate and thus 

lowering the transformation temperature, the effective grain size will become 

increasingly small. 

5.4.3 Conditions for the occurrence of AF transformation 

In Chapter 4, it was found that austenite deformation below the 

recrystallisation-stop temperature promotes the transition from BF to AF by 

introducing deformation substructures as intragranular nucleation sites for AF 

transformation. Furthermore, BF dominates the transformed microstructures 

cooled at 5~50˚C/s without austenite deformation (strain2 of 0) as can be seen in 

Figure 5-2. Therefore, austenite deformation is required for the AF 

transformation in pipeline steels, which is quite different from the findings that 

AF-like microstructures can be found in continuous cooling products without 

deformation at slow cooling rates [89, 149, 170]. 

However, only meeting the condition of introducing intragranular nucleation 

sites by austenite deformation, AF transformation does not necessarily happen 

as shown in Figure 5-3 (d) at the cooling rate of 50˚C/s. For this specimen, a high 

density of intragranular nucleation sites had already been introduced into 

austenite grains by austenite deformation (strain2 = 0.5), but the transformed 

microstructure mainly consists of typical parallel BF laths and their nucleation 

mainly happened on the austenite grain boundaries. In other words, intragranular 

nucleation sites become inactive at this high cooling rate. Therefore, there must 

be another condition needed to be met for AF transformation to proceed. 

It is very interesting to notice that in Figure 5-5 (b)~(c) where AF is the 

dominant microstructure, some short parallel laths along the PAGBs classified 

as BF can be seen clearly, and AF exists between these wide packets. While in 

the BF dominant microstructure as shown in Figure 5-5 (d), parallel BF laths 
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developed from PAGBs and extended across the whole austenite grain or 

impinged with others. To further confirm this microstructural characteristic, two 

areas were selected from the EBSD maps of microstructures transformed from 

deformed austenite and cooled at 10˚C/s and 50˚C/s respectively, indicated by 

black dashed blocks in Figure 5-7 (f) and (h) respectively. All Euler angle 

coloured orientation maps of these two areas with black lines representing 

boundaries with disorientation higher than 3˚ are shown in Figure 5-11 and 

Figure 5-12 respectively. Different parent austenite (PA) grains were separated 

from each other by carefully comparing the pole figure characteristics of 

different parts and PAGBs were highlighted by white dashed lines. The validity 

of the separation of these PA grains can be proved by the good correspondence 

between the {100} pole figures of the measured BF orientations and those of the 

transformed variants orientations of the calculated PA orientations. The method 

proposed by Tari et al. [174] was used to evaluate these PA orientations, 

following the Kurdjumov-Sachs (K-S) orientation relationship. 

 

 

Figure 5-11 EBSD analysis of specimen with strain2 of 0.5 and cooling rate of 10˚C/s: 

(a) all Euler angle coloured orientation image map (black lines represent boundary 

disorientation>3˚ and PAGBs are shown by white dashed lines); (b) <100> pole figures 

of measured ferrite orientations in each parent austenite (PA) grain; (c) <100> pole 

figures of parent austenite (PA) orientations calculated and the orientations of their 

transformation variants respectively. 
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Figure 5-12 EBSD analysis of specimen with strain2 of 0.5 and cooling rate of 50˚C/s: 

(a) all Euler angle coloured orientation image map (black lines represent boundary 

disorientation>3˚ and PAGBs are shown by white dashed lines); (b) <100> pole figures 

of measured ferrite orientations in each parent austenite (PA) grain; (c) <100> pole 

figures of parent austenite (PA) orientations calculated and the orientations of their 

transformation variants respectively. 

 

In Figure 5-12 (a) where BF is the dominant microstructure, parallel BF laths 

forming packets with similar colours nucleated on PAGBs and extended across 

the whole grain or impinged with others. However, in Figure 5-11 (a) parallel 

laths nucleated on PAGBs and extended into PA2 were stopped and the remained 

austenite transformed into irregularly arranged AF laths, which corresponds very 

well to the characteristics observed in Figure 5-5 (b)~(c). It is also interesting to 

notice that in Figure 5-11 and Figure 5-12, the more refined and irregular the 

transformed microstructure, the more spreading of the ferrite orientations in the 

pole figures. There are some possible reasons for the spread of ferrite orientations. 

Under slow cooling rates, there may be some PF/QF grains which do not 

necessarily follow the orientation relationship with the parent austenite grains. 

The spreading of ferrite orientations may also reflect the disorientations induced 

by austenite deformation and the alleviated variant selection promoted by 

intragranular nucleation inside a single austenite grain. 
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Based on the above microstructure characteristic, in addition to the 

requirement for introducing intragranular nucleation sites, another prerequisite 

for the occurrence of AF transformation can be analysed as below. 

Since austenite grain boundaries are very potent nucleation sites, BF laths 

firstly nucleate on the austenite grain boundaries during continuous cooling. 

When these laths develop across the whole austenite grain or impinge with other 

boundary nucleated laths, a BF dominant microstructure is formed. On the other 

hand, when these boundary nucleated laths are stopped prematurely due to 

certain mechanisms and thus cannot take up the whole parent austenite grain, AF 

transformation at intragranular nucleation sites happens during the following 

cooling process. The halting of BF laths should be another requirement for the 

occurrence of AF transformation. 

Despite the nucleation promoting effect of austenite deformation illustrated 

in Section 4.4.2, it has been emphasised that displacive transformations involve 

the coordinated movement of atoms and such motion of a glissile interface can 

be halted if it encounters strong defects such as an austenite grain boundary or 

drastic deformation substructures. Less strong defects such as isolated 

dislocations also hinder the progress of such interfaces but can often be 

incorporated into the transformation product lattice. This means that austenite 

deformation can retard or hinder the displacive transformation. This retardation 

of the displacive transformation by plastic deformation is called mechanical 

stabilisation of austenite and has been found for all of the displacive 

transformations that occur in steels, which include Widmanstätten ferrite [175-

177], bainite [178-180] and martensite [181, 182] transformations. 

This mechanical stabilisation effect can be explained by a model [180] 

established by balancing the force driving the motion of the displacive 

transformation interface against the resistance of the dislocation debris created 

by austenite deformation. The mean shear stress τ needed to force dislocations 

past each other is: 
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 𝜏 =
𝐺𝑏𝜌

1
2

8𝜋(1 − 𝑣)𝑙
 (5.1) 

where G is the shear modulus, v the Poisson’s ratio and ρ the dislocation density 

[183]. The stress τT driving the motion of the interface originates from the 

chemical free energy change ΔG of the transformation,  

 𝜏𝑇 = Φ𝛥𝐺 (5.2) 

where Φ is a constant assumed to be equal to unity. ΔG varies with the 

transformation temperature and steel’s composition. The chemical free energy 

change, ΔG, of the tested steel in this research was calculated using the 

thermodynamic calculation software Thermo-Calc which accesses 

thermodynamic data (TCFE6 database) to calculate phase stabilities and free 

energies. The stored strain energy due to the shape deformation accompanying 

bainite transformation comes to about 400 J/mol [184] which was subtracted 

from the Thermo-Calc calculation results. The values of bainitic ferrite 

transformation driving force (after the subtraction of the stored strain energy, 400 

J/mol) at different temperatures are shown in Figure 5-13 (a). It can be seen that 

when temperature is lower than 645˚C, bainitic transformation is 

thermodynamically possible for the tested steel composition.  
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Figure 5-13 Variation of (a) bainitic ferrite transformation driving force and (b) 

interface halting dislocation density with corresponding disorientation angle of 

austenite as a function of transformation temperature. 

 

The motion of the transformation interfaces halts when the stress driving it, 

τT, is lower than the resistance opposing it, τ. Therefore based on the driving 

force calculation results, the dislocation density in austenite which is high 

enough to halt the motion of the interface can be calculated using Equation (5.1)  

with austenite shear modulus 8×1010 Pa, Poisson’s ratio 0.27 and Burgers vector 

2.52×10-10 m. However, the dislocation density of deformed austenite is hard to 

measure. Therefore, the dislocation densities were roughly transferred to a sub-

grain boundary disorientation angles according to the relationship: 
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 𝑏𝜌
1
2 ≈ 𝜃 (5.3) 

where θ is the sub-grain boundary disorientation angle, and this relationship has 

been found effective for 304L stainless steel deformed in compression at 1000˚C 

[185].  

According to the transformation driving force values shown in Figure 5-13 

(a), the dislocation densities and the corresponding sub-grain boundary 

disorientation angles capable of halting the transformation interface as a function 

of transformation temperature were calculated and are shown in Figure 5-13 (b). 

It can be seen that at relatively high transformation temperatures around 550˚C, 

the motion of the transformation interface can be halted by sub-grain boundaries 

with disorientation angles higher than 0.9˚ which can be readily formed during 

the austenite deformation process with a strain = 0.5 as shown in research [186]. 

By lowering the transformation temperature, larger dislocation densities and thus 

higher sub-grain boundary disorientation angles are needed to stop the motion of 

the transformation interface. Furthermore, according to the scaling hypothesis 

[40] analysing the distribution of boundary spacing and disorientation angles, for 

sub-grain boundaries with disorientation angles above the mean disorientation 

angle, the higher the disorientation angle, the lower the frequency. Therefore, 

lowering the transformation temperature by increasing the cooling rate, the 

probability of a bainitic transformation interface being stopped is reduced 

resulting in relatively coarse BF packets. 

It should be noted that an assumption is made here that the dislocations 

halting the advancing interface are all geometrically necessary dislocations 

(GNDs) which Equation (5.3) is applicable to. During austenite deformation, 

GNDs are needed to maintain lattice continuity while statistically stored 

dislocations (SSDs) are developed from random trapping processes [187]. 

Therefore, critical sub-grain boundary disorientation angles can be lowered with 

the presence of statistically stored dislocations. 

Based on the mechanism illustrated above, it is feasible to conceive that if 
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the deformed austenite is cooled very fast from the deformation temperature to 

room temperature, there should be very few AF laths in the microstructure. 

Conversely, if the deformed austenite is cooled very fast from the deformation 

temperature to a relatively high temperature below the bainite transformation 

start temperature and then slowly cooled, AF dominant microstructures should 

be obtained. To test these conceptions, another two specimens were tested. Both 

of them underwent the same deformation profile with strain2 = 0.5, but one of 

them was water quenched to room temperature after deformation and the other 

one was fast cooled from 950˚C to 600˚C at 100˚C/s and then slowly cooled to 

350˚C at 1˚C/s followed by a water quenching to room temperature. The 

transformed microstructures of these two specimens are shown in Figure 5-14. 

It can be seen clearly that for the water quenched specimen the microstructure 

mainly consists of BF and martensite and AF laths can hardly be found. For the 

other specimen, the transformed microstructure is AF dominant and this further 

proves that instead of cooling rates, transformation temperature is the critical 

parameter for the occurrence of AF transformation. This also explains the reason 

why an AF dominant microstructure is formed after austenite deformation in 

Chapter 4, because of the relatively slow cooling rate, 20˚C/s, used. And at 

higher cooling rates, e.g. 50˚C/s, the influence of austenite deformation on 

transformed microstructures will be less evident because both of the 

microstructures transformed from recrystallised and deformed austenite will be 

BF dominant. 
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Figure 5-14 SEM secondary electron micrograph showing the microstructure of the 

transformed product after different cooling processes with austenite deformation strain2 

= 0.5: (a) water quenched to room temperature; (b) cooled at 100 ˚C/s to 600 ˚C and 

then slowly cooled to 350˚C at 1˚C/s followed by water quenching to room temperature. 
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Some characteristics of the transformed AF microstructure need to be further 

explained.  

(1) Although BF laths nucleated on austenite grain boundaries need to be 

stopped to give room for the AF intragranular nucleation, parallel BF laths as 

shown in Figure 5-5 (b)~(c) do not necessarily appear on each PAGB. This is 

because the deformation strain is not evenly distributed within each austenite 

grain. Normally strain at the austenite grain boundary is higher than that in the 

austenite grain interior and correspondingly sub-grain boundary disorientation 

angles near the austenite grain boundary will be higher than that in the grain 

interior. Therefore, boundary nucleated BF laths are more likely to be halted very 

near the austenite grain boundaries without forming BF packets. 

(2) It is widely found in this research that if a BF packet is formed on one 

side of an austenite grain boundary, a BF packet will also be developed on the 

other side of the austenite grain boundary. This is because the strain across the 

austenite grain boundary is supposed to be continuous. If the deformation 

substructure developed on one side of the austenite grain boundary is not dense 

enough to stop the BF development, they are also not dense enough on the other 

side due to the continuity of the local strain. 

(3) Even in AF dominant microstructures, there are still some long BF laths 

across the whole parent austenite grains. This can be attributed to the unevenly 

distributed deformation strains between different parent austenite grains, and the 

differences of deformation induced substructures between austenite grains with 

different orientations were investigated in research [186]. Furthermore, the 

microstructure changes from AF dominant to BF dominant is gradual with 

increased cooling rates. 

(4) Although raising the transformation temperature will promote the 

mechanical stabilisation effect of austenite deformation and halt BF laths more 

effectively, the maximum possible transformation volume of AF and BF will be 

reduced with the rise of the transformation temperature and finally reaches zero 
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at the bainite transformation start temperature according to the incomplete 

transformation phenomenon of bainitic transformation [2]. This has already been 

shown in isothermal transformation results in research [85]. Therefore, the 

continuous cooling rate and the cooling interrupt temperature need to be selected 

carefully to stop the lengthening of BF laths and simultaneously get a high 

volume fraction of AF microstructure, and continuous cooling is more suitable 

than isothermal holding to get high volume fraction of AF. 

(5) PF/QF transformation happened before AF and BF can consume the 

nucleation sites on austenite grain boundaries and more importantly, the solid 

solution atoms partitioned from PF/QF grains to austenite can stabilize their 

neighbour austenite and retard bainite nucleation, which has already been proved 

in research [188]. Moreover, PF/QF grains formed intragranularly can also halt 

the BF transformation interfaces. Therefore, the formation of PF/QF grains is 

beneficial to AF transformation. But the existence of PF/QF grains will 

undoubtedly lower the strength of the transformed microstructure, and the 

formation of PF/QF grains is not a prerequisite for AF transformation. In 

previous research [85], cooling from austenite deformation temperature 850˚C 

to isothermal holding temperature 500~600˚C at a rate of 75˚C/s, the AF 

transformation still occurred without the aid of PF/QF transformation, and 

interestingly, it was observed that the PF transformation happened at PAGBs 

when AF and BF transformations were nearly finished. Similarly, in this research, 

it can be seen from Figure 5-14 (b) that with a cooling rate of 100˚C/s to reduce 

the interference of the PF/QF transformation, AF still dominates the transformed 

microstructure. In other words, PF/QF transformation is not a prerequisite for 

AF transformation. 

5.4.4 Effect of austenite deformation on grain refinement  

As illustrated in Section 4.1, although many investigations have been 

conducted, the effect of austenite deformation on the grain refinement are still 
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controversial. In some investigations [85, 149, 150], it was found that the 

transformed microstructure is refined by austenite deformation and the volume 

fraction of AF increases with raised deformation. Contradicting this were results 

from another investigation [151] in which it was shown that the effective grain 

size of bainite was increased from 3.2 μm to 3.8 μm when the austenite was 

deformed by 30%. Furthermore, the block size of the bainite was found to be 

increased after austenite deformation [142], and the quantity of packets in each 

austenite grain also decreased after the austenite deformation [152]. More 

importantly, it was revealed from these investigations that even after significant 

austenite deformation, the transformation product consisted of parallel BF laths 

and the typical AF microstructure was absent. 

Based on the experimental results in this chapter, it can be proposed that the 

effect of austenite deformation on the grain refinement is cooling rate dependent. 

Actually, the whole cooling rate range can be divided into four regions as shown 

in Figure 5-8 (a) and within each cooling rate region, the effect of austenite 

deformation on grain refinement is distinct. 

In the cooling rate region 1, due to the low cooling rates (0.5˚C/s and 1˚C/s), 

the transformation products consist of PF/QF and BF (when transformed from 

fully recrystallised austenite) or PF/QF and microphases (when transformed 

from fully unrecrystallised austenite). Because of the influence of austenite 

deformation on the transformation driving force and the nucleation site density 

as illustrated in Section 5.4.1, the effective grain size is refined by austenite 

deformation in this region. 

In the cooling rate region 2, the transformation products are BF (when 

transformed from fully recrystallised austenite) or AF dominant (when 

transformed from fully unrecrystallised austenite). Since for displacive 

transformation products lath boundaries are not necessarily HAGBs, therefore 

the grain refinement should be analysed from two aspects, the density of lath 

boundaries and the possibility of HAGB formation. Due to the relatively slow 
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cooling rates (5˚C/s and 10˚C/s) and thus, the high transformation temperatures, 

the transformed BF laths are very coarse, leading to a very low density of lath 

boundaries. Furthermore, at high transformation temperatures, during the BF 

transformation intense variant selection happens and variants belonging to the 

same Bain group are formed adjacently [99] as shown in Figure 5-10 (c). The 

possible reason for the formation of these particular variant pairs is explained in 

Section 2.6.3. Variants belonging to the same Bain group usually have 

disorientation angles small than 21.1˚ with each other as shown in Table 2-3. 

Therefore, a low density of HAGBs and thus a large effective grain size are found 

for the BF microstructures transformed from fully recrystallised austenite.  

However, for the AF microstructures transformed from fully unrecrystallised 

austenite, due to the introduction of intragranular nucleation sites and the halting 

effect of the deformation substructures on the growth of displacive 

transformation products, both AF and BF laths are greatly refined as shown in 

Figure 5-5 (a)~(b), leading to a high density of lath boundaries. Furthermore, the 

introduction of intragranular nucleation sites can weaken the variant selection 

mechanism and thus more variants and variant pairs will be generated, leading 

to a high density of HAGBs and thus a small effective grain size as shown in 

Figure 5-7 (b)~(c) and Figure 5-8 (a) respectively. Actually, it has been found in 

research [189] that the formation of HAGBs is mainly attributed to the 

intragranular nucleation of the primary plates and not the plate interwoven 

morphology. Therefore, the effective grain size is refined by austenite 

deformation through the formation of intragranularly nucleated AF in region 2. 

In the cooling rate region 3, the transformation products are BF (when 

transformed from fully recrystallised austenite) or AF+BF (when transformed 

from fully unrecrystallised austenite). For fully recrystallised austenite, due to 

the relatively high cooling rates (20˚C/s and 50˚C/s) and thus the low BF 

transformation temperatures, BF laths become thinner with the increased cooling 

rate, Figure 5-4 (c)~(d), and the factors weakening the variant selection are 
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increasingly strong so that more variants are formed in each austenite grain. 

Furthermore, owing to the occurrence of self-accommodation of the BF 

transformation shape strain at low transformation temperatures, typical packet 

structures are formed and within each packet variants belonging to different Bain 

groups are generated side by side as shown in Figure 5-10 (e)~(d). Therefore, a 

high density of HAGBs and thus a small effective grain size are found for the BF 

microstructures transformed from fully recrystallised austenite. More 

importantly, by increasing the cooling rates or lowering the transformation 

temperatures, the effective grain size can be further reduced. 

In contrast, for the transformation products from fully unrecrystallised 

austenite, with the increased cooling rates or the lowered transformation 

temperatures, the intragranular nucleation sites for AF transformation gradually 

become inactive as explained in Section 5.4.3, and the fraction of AF is 

decreased while that of BF is raised as shown in Figure 5-7. For the BF 

transformation, the main nucleation sites are austenite grain boundaries, and 

austenite deformation can only result in a very limited increase of the austenite 

grain boundary area. Even worse, for a BF microstructure, austenite deformation 

can result in a strong variant selection that the BF variants with habit planes 

parallel to the active slip planes during austenite deformation are favoured [190]. 

This kind of variant selection can be found in PA2 and PA3 in Figure 5-12 (a). 

The traces of the lath boundaries on the RD-ND plane are around 32˚ away from 

the RD and based on the Schmid factor analysis for the main ideal texture 

component of austenite during plane strain compression [49] the traces of active 

slip planes in the RD-ND plane are 19.5˚~ 45˚ away from the RD. Therefore, for 

deformed austenite, with the increased cooling rates, due to the raised BF 

fraction and the strong BF variant selection resulted from the austenite 

deformation, the effective grain size becomes increasingly large as shown in 

Figure 5-8 (a). More importantly, by increasing the cooling rates or lowering the 

transformation temperatures, the fraction of BF can be further increased as 
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illustrated in Section 5.4.3 and thus the effective grain size will be continuously 

increased. 

Therefore, it is reasonable to conceive that the two lines in Figure 5-8 (a) can 

intersect at a certain cooling rate higher than 50˚C/s and further increasing the 

cooling rates, the red line will be above the black line, which means in region 4 

at very high cooling rates or low transformation temperatures, instead of refining, 

austenite deformation will lead to a coarser transformation microstructure. This 

conception has been confirmed in investigation [191] that at cooling rates higher 

than 20˚C/s, the effective grain sizes of the microstructures transformed from 

fully unrecrystallised austenite are larger than those of the microstructures 

transformed from fully recrystallised austenite. The relevant results in 

investigation [191] are shown in Figure 5-15. The smaller intersecting cooling 

rate, 20˚C/s, in investigation [191] maybe can be attributed to the large 

hardenability of the steel used in that research. 

 

 

Figure 5-15 Effect of cooling rate on the mean grain size for both recrystallized (Cycle 

A) and unrecrystallised (Cycle B) austenite adopting 4˚ and 15˚ as threshold 

disorientation values in steel 6NbMo16 [191]. 
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Based on the analysis above, the controversial effect of austenite deformation 

on grain refinement can be well understood. In investigations [85, 149, 150], due 

to the high transformation temperatures or the low cooling rates, the transformed 

microstructures are AF dominant so that the transformed microstructures are 

refined by austenite deformation as in region 2 or in region 3 in Figure 5-8 (a). 

However, in investigations [142, 151, 152], owing to the high cooling rates or 

the low transformation temperatures, BF microstructure dominates, therefore, 

the transformed microstructures are coarsened by austenite deformation as in 

region 4 in Figure 5-8. 

5.5 Summary 

In this chapter, the effects of austenite deformation and continuous cooling 

rates on the microstructural evolution were investigated. It was found that: 

(1) Subjected to low cooling rates (0.5˚C/s and 1˚C/s), the transformation 

products consist of PF/QF and BF (when transformed from fully 

recrystallised austenite) or PF/QF and microphases (when transformed 

from fully unrecrystallised austenite). Because of the influence of 

austenite deformation on the transformation driving force, steel’s 

hardenability and nucleation site density, the effective grain size is 

refined by austenite deformation and BF packets disappear in the 

transformation products from deformed austenite. 

(2) Without austenite deformation, the transformed microstructures cooled at 

different cooling rates (5~50˚C/s) are all BF dominant. AF-like 

microstructures cannot be found in these continuous cooled 

microstructures covering a wide cooling rate range without austenite 

deformation, which proves that austenite deformation is required for the 

AF transformation in pipeline steels. For these BF dominant 

microstructures, effective grain size can be continuously reduced with the 

increased cooling rate. 
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(3) Subjected to the same austenite deformation (strain2 of 0.5), the fraction 

of AF decreases and BF becomes more and more dominant with the 

cooling rate increasing from 10˚C/s to 50˚C/s, which means a transition 

from AF to BF occurs. At the same time, the transformed microstructure 

is coarsened with the effective grain size being raised from 2.9 μm to 3.5 

μm. 

(4) Based on the results obtained from optical microscopy, scanning electron 

microscopy and electron backscattering diffraction mapping, the 

introduction of intragranular nucleation sites and halting of BF laths 

nucleated on austenite grain boundaries are found as two conditions that 

should be fulfilled for the occurrence of acicular ferrite transformation. 

Increasing austenite deformation strain can introduce a higher density of 

dislocation arrays into the austenite which can act as intragranular 

nucleation sites. Besides, the deformation substructures can also halt the 

lengthening of BF laths by the mechanism of mechanical stabilisation of 

austenite. 

(5) Halting BF laths can only happen under relatively slower cooling rates or 

higher transformation temperature because high cooling rates result in a 

low transformation temperature which increases the driving force for 

transformation interfaces to overcome deformation substructures and 

leads to a BF or martensite dominant microstructure. 
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Chapter 6 Effect of austenite grain size on 

microstructure evolution 

6.1 Introduction 

Prior-austenite grain size (PAGS) is well acknowledged to have a remarkable 

effect on phase transformations in steel. But there are some differences in the 

influence of PAGS on various phase transformations [192-194]. For martensite 

transformation, the martensite-start temperature rises as the PAGS is increased 

[192]. As for pearlite transformation, it was argued in reference [193] that rising 

PAGS can delay isothermal pearlite transformation due to the reduction of grain 

edges which are the main nucleation sites for pearlite. 

However, the effect of PAGS on the bainitic transformation is controversial 

[165, 194-196]. In some investigations [194, 196-198], it was found that the rate 

of bainite transformation was increased by a decrease in the PAGS, which was 

attributed to the fact that the reduction in PAGS brings about an increase in the 

grain boundary area per unit volume, and thus an enhanced nucleation rate. 

However, Davenport [199] observed that the PAGS had no observable effect on 

the bainite transformation kinetics. In contrast, investigation [200] indicated that 

a fine-grained austenite structure suppressed the growth of bainite and leads to a 

lower transformation rate. Additionally, it was shown that the influence of the 

PAGS does not appear to be continuous, and that there is a critical PAGS below 

which there is a distinct grain size effect [200]. To explain these controversial 

effects, Matsuzaki and Bhadeshia [195] discovered that for different steels the 

effects of PAGS on bainite transformation are distinct and the difference in 

kinetics was found together with evident discrepancy in transformed bainite 

microstructures. Whether the kinetics of bainite transformation are increased or 

decreased by reducing the PAGS depends on whether the kinetics are restricted 

by slow growth rate or limited number of nucleation sites. Despite the number 
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of studies concerning the effect of PAGS on BF transformation kinetics, there 

are few investigations regarding the influence of PAGS on BF microstructures. 

Differently, for intragranularly nucleated transformation products, like the 

AF in steel welds, it has been found that the decomposition of supercooled 

austenite is a competition between the BF transformation nucleated on austenite 

grain boundaries and the AF transformation nucleated intragranularly on non-

metallic inclusions [2]. It was found that increasing the PAGS, the fraction of 

intragranularly nucleated AF was increased, replacing the boundary nucleated 

BF, and this was attributed to the reduction of the austenite grain boundary 

density and thus the nucleation site density of BF [201]. Bhadeshia and Svensson 

[19] have performed systematic modelling research and established a collection 

of models to predict the transformed microstructures in steel welds. They found 

that increasing the PAGS can promote intragranularly nucleated transformations 

and consequently increase the AF volume fraction in steel welds. Since the AF 

in pipeline steels has been widely considered as an intragranularly nucleated 

transformation product of austenite [165-167], it is reasonable to assume that the 

fraction of AF will also be influenced by the PAGS.  

Therefore, in this chapter, specimens with various austenite grain sizes were 

processed to investigate the effect of PAGS before continuous cooling (from 

fully recrystallised austenite) or before the finishing deformation (from fully 

unrecrystallised austenite) on the microstructural evolution and grain refinement.  

6.2 Experimental 

During the solid solution heat treatment and the thermomechanical 

processing illustrated previously in this thesis, parameters of the solid solution 

heat treatment, the reheating and the roughing deformation (strain1) can all 

influence the austenite grain size before the continuous cooling (strain2 = 0) or 

before the finishing deformation (strain2 = 0.5). However, attention must be paid 

on choosing the suitable parameters to generate different PAGSs, especially on 
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the reheating temperature and duration. During reheating, not only the PAGS but 

also the dissolution status of Nb precipitates are changed by altering the 

reheating temperatures and durations [22], which makes the investigation on the 

effect of PAGS biased. Differently, if the standard solid solution heat treatment 

can dissolve most of the Nb precipitates, prolonging the duration of the heat 

treatment can result in a larger PAGS without greatly changing the Nb 

dissolution status. In addition, changing the roughing deformation (strain1) also 

has little influence on the Nb precipitates dissolution status simply due to the 

high temperature (1100˚C) of this deformation at which the solute 

supersaturation, and subsequently the extent of precipitation of Nb carbide or 

carbonitride is very low. Therefore, to generate austenite with different grain 

sizes, different parameters of the solid solution heat treatment and the roughing 

deformation (strain1) were used as shown in Table 6-1 and S, M, L and XL were 

designated to the specimens subjected to these different combinations of the heat 

treatment duration and the volume of strain1. The heat treatment temperature 

was selected as 1250˚C based on the dissolution temperature of Nb carbide 

calculated for the tested steel from Equation (3.1), 1232˚C, as illustrated in 

Section 3.2.2. After this solid solution heat treatment, all specimens were 

quenched in ice water. 

 

Table 6-1 Heat treatment and austenite deformation parameters 

 

The processing route is illustrated in Figure 6-1. The heat treated specimens 

Specimen names S M L XL 

Heat treatment temperature 

(˚C) 

1250 1250 1250 1250 

Heat treatment duration (s) 1800 1800 7200 7200 

Strain1 magnitude 0.7 0.3 0.3 0 

Prior-austenite grain size (μm) 22.3 37.0 52.4 62.8 
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were reheated to 1200˚C at a rate of 10˚C/s, held for 2 minutes for equilibration, 

and then cooled at a rate of 5˚C/s to 1100˚C for a roughing deformation (strain1) 

at a constant true strain rate of 10s-1. After that, the specimens were cooled 

immediately to 950˚C at a rate of 5˚C/s for the finishing deformation with strain2, 

either 0 or 0.5. This finishing deformation was also performed at a constant true 

strain rate of 10s-1, and was followed by a controlled cooling from 950˚C to 

500˚C at a rate of 10˚C/s. After that, specimens were slowly cooled from 500˚C 

to 350˚C at a rate of 1˚C/s and finally water quenched from 350˚C to room 

temperature. Additionally, specimens S, M, L and XL were also water quenched 

directly from 950˚C before or after the finishing deformation (strain2 = 0.5) to 

reveal the prior-austenite microstructures with different PAGSs. 

 

 

Figure 6-1 Schematic illustration of the thermomechanical testing profile. 

 

Specimens for OM and SEM observation and EBSD mapping were prepared 

carefully as illustrated in Section 3.3. Specimens water quenched before the 

finishing deformation (strain2) were etched with a saturated picric acid aqueous 

solution to measure the PAGSs optically by the linear intercept method according 

to ASTM E112-13 standard [202]. The microstructures of the continuously 
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cooled specimens were observed after etching with 2% nital solution. EBSD 

analyses were carried out with a step size of 0.2 μm and accelerating voltage of 

20 kV on the RD-ND plane of each specimen. Noise reduction and grain size 

measurement were performed as introduced in Section 3.3.2. 

6.3 Results 

6.3.1 Prior-austenite microstructures 

Optical micrographs of the prior-austenite grain boundaries (PAGBs) both 

before and after strain2 for specimen S, M, L and XL are shown in Figure 6-2. It 

is clear from Figure 6-2 (a)~(d) that through adjusting the solid solution heat 

treatment durations and the magnitude of strain1, fully recrystallised austenite 

with different grain sizes were obtained before strain2 at 950˚C. PAGS 

measurement results are shown in Table 6-1, PAGS varying from 22.3 μm to 62.8 

μm. After the finishing deformation (strain2 = 0.5), austenite grains of all 

specimens remain in a deformed state as shown in Figure 6-2 (e)~(h) and there 

is no sign for the occurrence of dynamic recrystallisation. 
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Figure 6-2 Optical micrographs of prior-austenite grain boundaries for specimen S, M, 

L and XL respectively: (a)~(d) before strain2 at 950˚C; (e)~(h) after strain2 of 0.5 at 

950˚C. 

 

6.3.2 Transformed microstructures 

Optical micrographs of the continuously cooled microstructures transformed 

from recrystallised austenite (strain2 = 0) with different PAGSs are shown in 

Figure 6-3. The transformed microstructures all consist of BF but with clear 
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differences in their morphologies. With a PAGS of 37.0 μm, Figure 6-3 (b), the 

transformed microstructure mainly consists of packets of parallel BF laths. With 

an increased PAGS, Figure 6-3 (c)~(d), the BF lath boundaries are more and 

more obscure and irregularly shaped and the shape of the microphases, probably 

M/A constituents, also change from acicular to equiaxed. Due to the very small 

PAGS (22.3 μm), the microstructure in Figure 6-3 (a) is well refined and the 

morphology of the BF microstructure cannot be observed clearly from this 

optical micrograph. 

 

  

  

Figure 6-3 Optical micrographs depicting microstructures transformed from 

recrystallised austenite (strain2 = 0) with different PAGSs: (a) 22.3 μm, (b) 37.0 μm, 

(c) 52.4 μm and (d) 62.8 μm. 

 

Optical micrographs of the continuously cooled microstructures transformed 

from deformed austenite (strain2 = 0.5) with different PAGSs are shown in 

Figure 6-4. From these micrographs we can see that the transformed 
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microstructures with the PAGSs of 22.3 μm and 37.0 μm are very similar and so 

are the transformed microstructures with the PAGSs of 52.4 μm and 62.8 μm. 

However, the transformed microstructures with the PAGSs of 22.3 μm and 37.0 

μm are quite different from those with the PAGSs of 52.4 μm and 62.8 μm. 

Therefore, for transformation products from deformed austenite, the PAGSs can 

be divided into two groups, the small PAGS group (22.3 μm and 37.0 μm) and 

the large PAGS group (52.4 μm and 62.8 μm). With the small PAGSs, the 

transformed microstructures are AF dominant and consist of non-equiaxed 

ferrite laths with an irregular arrangement. While in the transformed 

microstructures with the large PAGSs, although a small fraction of AF still exists, 

the major transformation product is BF, organised and parallel laths nucleated on 

austenite grain boundaries and extended into grain interiors. Furthermore, the 

transformed microstructures with the small PAGSs are finer than those with the 

large PAGSs. 

 

 

  

Figure 6-4 Optical micrographs depicting microstructures transformed from deformed 
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austenite (strain2 = 0.5) with different PAGSs: (a) 22.3 μm, (b) 37.0 μm, (c) 52.4 μm 

and (d) 62.8 μm. 

 

To observe the microstructures in greater detail, SEM secondary electron 

micrographs of the continuously cooled microstructures transformed from 

recrystallised austenite (strain2 = 0) with different PAGSs are shown in Figure 

6-5. With the PAGSs of 22.3 μm and 37.0 μm, BF laths with a parallel 

morphology can be observed clearly. However, as the PAGS is increased to 52.4 

μm or 62.8 μm, more interlocking BF microstructures are observed in Figure 6-5 

(c)~(d). In these microstructures, BF laths with different directions intersect with 

each other. 
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Figure 6-5 SEM secondary electron micrographs showing microstructures 

transformed from recrystallised austenite (strain2 = 0) with different PAGSs: (a) 22.3 

μm, (b) 37.0 μm, (c) 52.4 μm and (d) 62.8 μm. 

 

SEM secondary electron micrographs of the continuously cooled 

microstructures transformed from deformed austenite (strain2 = 0.5) with 

different PAGSs are shown in Figure 6-6. Similar results to those observed from 

optical micrographs can be obtained that with the small PAGSs, the transformed 

microstructures are AF dominant while for the large PAGSs, parallel BF laths 

are the main phase component. Therefore, there is a distinct effect of the PAGS 

on the microstructure evolution under present test conditions. 
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Figure 6-6 SEM secondary electron micrographs showing microstructures 

transformed from deformed austenite (strain2 = 0.5) with different PAGSs: (a) 22.3 

μm, (b) 37.0 μm, (c) 52.4 μm and (d) 62.8 μm. 

 

6.3.3 EBSD mappings 

Following the noise reduction procedures illustrated in Section 3.3.2, a small 

area of each EBSD data set was used to plot an inverse pole figure (IPF) coloured 

orientation map and a boundary map. For a statistical analysis of the boundary 

interception length, each whole data set was used. 

The selected area IPF coloured orientation maps and corresponding 

boundary maps of the continuously cooled microstructures transformed from 

fully recrystallised austenite with a different PAGS are shown in Figure 6-7. It 

can be seen from Figure 6-7 that with increasing PAGS, the density of HAGBs 

is reduced and the fraction of LAGBs is increased. More importantly, as the 

PAGS is increased, the shape of the LAGBs changes from parallel and straight 

to curved and irregularly arranged, and simultaneously the morphology of the 

transformed BF microstructures becomes increasingly intricate. 
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Figure 6-7 EBSD maps of the microstructures transformed from fully recrystallised 

austenite (strain2 = 0) with different PAGSs: (a)~(d) inverse pole figure coloured 

orientation image maps corresponding to microstructures with PAGS of 22.3 μm, 37.0 

μm, 52.4 μm and 62.8 μm, respectively, where black lines represent high angle 

boundaries with disorientation greater than 15˚; (e)~(h) boundary maps corresponding 

to the same area in (a)~(d) respectively, where blue lines represent low angle boundaries 

with disorientation between 3˚ and 15˚ whilst red lines represent high angle boundaries 

with disorientation greater than 15˚. 

 

The selected area IPF coloured orientation maps and corresponding 

boundary maps of the continuously cooled microstructures transformed from 

deformed austenite with different PAGSs are shown in Figure 6-8. From these 

maps, we can see that the transformation microstructures with the small PAGSs 

(22.3 μm and 37.0 μm) are finer and both the densities and fractions of HAGBs 

are higher than those with the large PAGSs (52.4 μm and 62.8 μm). Furthermore, 

relatively large BF regions like those found in Figure 5-7 which are rich in 

LAGBs but lack HAGBs can also be found in most of the transformed 

microstructures, and the fractions of these BF regions are considerably higher in 

microstructures with the large PAGS as shown in Figure 6-8 (g)~(h), indicating 

that a transition from AF to BF occurs by increasing the PAGS. In addition, AF 

regions which consist of fine and non-equiaxed laths bounded by HAGBs can 
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also be found in Figure 6-8 (g)~(h). Therefore, with large PAGSs very 

heterogeneous transformation microstructures were formed. The microstructure 

evolution characteristics observed in these EBSD maps correspond very well to 

those observed in the OM and SEM micrographs and thanks to the advantages 

of EBSD mapping, these microstructure changes can be well quantified. 
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Figure 6-8 EBSD maps of the microstructures transformed from deformed austenite 

(strain2 = 0.5) with different PAGSs: (a)~(d) inverse pole figure coloured orientation 

image maps corresponding to microstructures with PAGS of 22.3 μm, 37.0 μm, 52.4 

μm and 62.8 μm, respectively, where black lines represent high angle boundaries with 

disorientation greater than 15˚; (e)~(h) boundary maps corresponding to the same area 

in (a)~(d) respectively, where blue lines represent low angle boundaries with 

disorientation between 3˚ and 15˚ whilst red lines represent high angle boundaries with 

disorientation greater than 15˚. 

 

To quantify the microstructural refinement, the grain size defined by different 

disorientation threshold values, 4˚ and 15˚ are measured by a linear intercept 

method in the Channel 5 software, owing to the reason explained in Section 3.3.2. 
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The respective geometric means of linear intercept lengths in both horizontal and 

vertical directions were calculated as in reference [146] and are shown in Figure 

6-9. 

 

 

 

Figure 6-9 Microstructure size parameter measured against two disorientation criteria, 

4˚ and 15˚, as geometric mean of the linear interception lengths in horizontal and 

vertical direction from the EBSD maps measured from the microstructures transformed 

from: (a) fully recrystallised austenite (strain2 = 0) and (b) fully unrecrystallised 

austenite (strain2 = 0.5). Error bars represent 95% confidence levels of the 
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measurement. 

 

In Figure 6-9 (a), we can see clearly that the mean linear intercept length 

following the disorientation threshold value of 15˚ decreases gradually with the 

reduction of PAGS from 62.8 μm to 22.3 μm, while the intercept lengths against 

the disorientation threshold value of 4˚ of these four microstructures are very 

similar. These results suggest that for BF microstructures transformed from fully 

recrystallised austenite, reducing the PAGS can effectively refine the 

transformed microstructures. 

Differently, it can be seen in Figure 6-9 (b) that the mean linear intercept 

lengths following both disorientation threshold values firstly decrease with the 

reduction of PAGS from 62.8 μm to 37.0 μm and then level off when PAGS is 

further reduced to 22.3 μm. Furthermore, changes of the mean intercept lengths 

both between the transformed microstructures with the PAGSs of 52.4 μm and 

62.8 μm and between the transformed microstructures with the PAGSs of 22.3 

μm and 37.0 μm are not statistically significant as there are very large overlaps 

of the error bars. But the difference of the mean intercept length is quite evident 

between the transformed microstructures with the small and the large PAGSs. 

These grain refinement characteristics correspond very well to the 

microstructure observation from Figure 6-4. 

The results above clearly show the effect of PAGS on the grain refinement 

of the microstructures transformed both from recrystallised and deformed 

austenite. However, by altering the PAGS before austenite deformation (strain2 

= 0.5), not only the microstructure refinement but also the microstructure 

heterogeneity is influenced as shown in Figure 6-8. The microstructure 

heterogeneity also has a great impact on the toughness. In order to quantify the 

microstructure heterogeneity, the distributions of grain size defined by the 

diameter of equivalent circle against the disorientation angle criteria of 15˚ for 

the microstructures transformed from deformed austenite with different PAGSs 
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are shown in Figure 6-10. With the small PAGSs (22.3 μm and 37.0 μm), the AF 

dominant transformed microstructures both possess homogeneous grain size 

distributions and the difference is very small. As the PAGS is increased from 

37.0 μm to 62.8 μm, an increase in the microstructure heterogeneity is observed 

and with the largest PAGS (62.8 μm) the grain size distribution is the wildest. 

According to research [191], a parameter Dc10% defined as the grain size for 

which 10 percent of the area fraction of grains have a size greater than that value 

is selected here to describe the relevance of coarse grain fractions in different 

microstructures. The corresponding Dc10% values for the transformed 

microstructures with the PAGS changing from 22.3 μm to 62.8 μm are 25.5 μm, 

24.5 μm, 73.5 μm and 89.0 μm respectively. Therefore, it is straightforward to 

say that reducing the PAGS from 62.8 μm to 37.0 μm or 22.3 μm before austenite 

deformation can significantly refine and homogenise the transformed 

microstructure. 

 

 

Figure 6-10 Grain size distributions of the microstructures transformed from fully 

unrecrystallised austenite (strain2 = 0.5) with different austenite grain sizes against the 

disorientation angle criteria of 15˚ plotted in terms of accumulated area fraction. 
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6.4 Discussion 

6.4.1 Effect of PAGS on BF transformation and grain refinement 

Without austenite deformation, the continuously cooled microstructures with 

different PAGSs, varying from 22.3 μm to 62.8 μm, mainly consist of BF laths. 

It can be seen from Figure 6-5 and Figure 6-9 (a) that altering the PAGS, both 

the morphology and the effective grain size of the transformed BF microstructure 

are changed. These changes can be explained from the point view of variant 

selection.  

A comparison is made between the BF microstructures with the PAGSs of 

37.0 μm (small) and 62.8 μm (large). A prior-austenite grain was identified in 

each EBSD map of these two BF microstructures. The {100} pole figures of the 

BF orientations of these two prior-austenite grains are shown in Figure 6-11 (a), 

(c) and the IPF coloured orientation maps of them are illustrated in Figure 6-12 

(a) and (d) respectively. Since the Kurdjumov–Sachs (K–S) relationship 

({111}γ//{110}α, <110>γ//<111>α) generally provides good predictions for the 

BF transformation in steels [100], it was adopted as the orientation relationship 

in this research and the method proposed by Tari et al. [174] was used to evaluate 

the orientations of these two parent austenite grains, and the results were used to 

calculate the 24 K-S variants of each austenite grain. These results are shown in 

Figure 6-11 (b), (d) respectively, and good matches can be found between the 

pole figures of the experimentally determined BF orientations and calculated 

ferrite orientation variants. 

To reveal detailed crystallographic features, the colours in the orientation 

maps were changed to show different colours for different CP and Bain groups, 

which is introduced in Section 2.6.2. These maps are termed as CP and Bain 

group maps and are shown in Figure 6-12 (b), (e) and Figure 6-12 (c), (f) for the 

two microstructures transformed with different PAGSs, respectively. 
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Figure 6-11 {100} pole figures of the BF orientation in single parent austenite grains 

with (a) small (37.0 μm) and (c) large (62.8 μm) PAGS; {100} pole figures of the 

calculated austenite orientations and corresponding ferrite orientation variants with (b) 

small and (d) large PAGS. 

 

 

Figure 6-12 IPF coloured orientation maps (a) and (d), close-packed plane group maps 

(b) and (e) and Bain group maps (c) and (f) for BF microstructures in single parent 

austenite grains with the small (37.0 μm) and large (62.8 μm) PAGS respectively. 
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For the BF microstructure with a small PAGS (37.0 μm), Figure 6-12 (a), 

parallel BF laths can be clearly revealed by low angle grain boundaries. It is also 

evident from Figure 6-11 (a), (b) that an intense variant selection occurred, and 

only a small fraction of the 24 K-S variants formed. Furthermore, the entire 

austenite grain is dominated by a single CP group with blue colour as shown in 

the CP map, Figure 6-12 (b), but consists of two Bain groups, yellow and blue, 

as shown in the Bain group map, Figure 6-12 (c). 

For the BF microstructure with the large PAGS shown in Figure 6-12 (d), a 

more complicated BF microstructure was formed, and nearly all the 24 K-S 

variants exist, Figure 6-11 (c), (d). From the CP group map shown in Figure 6-12 

(e), it is evident that the entire austenite grain is occupied by intersecting CP 

groups, signifying variants from the same CP groups are no longer preferentially 

formed side by side. Interestingly, although adjacent laths come from different 

CP groups, they mainly belong to the same Bain group as shown in the Bain 

group map in Figure 6-12 (f), except in the central part of the parent austenite 

grain where different Bain groups intersect. 

The above analysis clearly shows that there is a limited number of BF 

orientation variants formed in the smaller austenite grain. This suggests that after 

nucleation on the most potent austenite grain boundaries, the BF laths rapidly 

develop across the whole parent grain before nucleation sites on other austenite 

grain boundaries become potent enough. However, for the larger austenite grain, 

and because of the larger intercept length and higher volume, before the initially 

nucleated BF laths expand across the complete austenite grain, other austenite 

grain boundaries become potent enough, and there is still enough volume of 

austenite left for the development of these nuclei. Since variant selection happens 

during the BF nucleation on austenite grain boundaries through the reduction of 

the BF/austenite boundary energy and other mechanisms [203], the variants 

selected on the austenite grain boundaries varies with the austenite grain 
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boundary characteristics. Therefore, in austenite grains with a large PAGS, BF 

laths of different variant types can develop, and the variant selection is less 

intense than that observed in the small-grained austenite. This is consistent with 

previous research [204, 205], where austenite grains with a small PAGS 

transformed into limited types of variants compared with large-grained austenite. 

Additionally, it was found in research [205] that the size of BF blocks which 

consisted of variants with a similar orientation, was nearly equal to the linear 

intercept length of the parent austenite when the size of parent austenite was 

smaller than ~30 μm. In austenite with a grain size higher than this value, the 

block size was found to be considerably smaller than the size of the austenite 

grain, indicating that more blocks will be formed in coarse-grained austenite. 

Besides variant selection, the arrangements of CP and Bain groups are also 

quite different between small-grained and large-grained austenite. During the 

bainite transformation, the parent austenite grain is usually segmented into 

packets, each of which consists of a group of laths with nearly the same trace 

direction on a polished surface due to their habit planes being in close proximity 

to each other. Since the variants belonging to the same CP group have the closest 

habit planes [203], packets usually consist of variants coming from the same CP 

group. In other words, BF laths belonging to the same CP group are usually 

formed side by side. However, this is only the case in austenite with a small 

PAGS as shown in Figure 6-3 (b) and Figure 6-12 (b). For the austenite with a 

large PAGS, the parent austenite grains cannot be clearly divided into packets as 

shown in Figure 6-3 (d) and the BF laths belonging to different CP groups are 

formed adjacently and are well-intersected, Figure 6-12 (e). In this case, 

austenite grains are more conveniently described as being divided by Bain 

groups instead of CP groups. This is consistent with previous research [99] that 

the variants belonging to the same Bain group are created adjacently in bainite 

transformed at higher temperatures and subsequent smaller driving forces. 

Obviously, it is these differences in the arrangement of CP groups between 
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austenite grains with small and large PAGS that result in the differences in optical 

morphology. For the transformed microstructure with a small PAGS, a single CP 

group is dominant, and the boundaries between parallel laths are quite 

continuous, Figure 6-12 (a), and thus can be identified easily in optical 

micrographs or SEM micrographs. However, in the transformed microstructure 

with a large PAGS, the BF laths belonging to different CP groups were observed 

to be adjacent to each other, thus forming an interlocking morphology. Because 

of the incomplete transformation phenomenon of bainite [2] and this interlocking 

morphology of BF laths, granular M/A constituents are found between BF laths. 

Furthermore, the lath boundaries are less continuous as shown in the upper part 

of Figure 6-12 (a), therefore they are not obvious from optical micrographs. 

Although it is possible to say that it is the impingement between different Bain 

groups that results in this interlocking morphology, it also exists in the area 

where a single Bain group is dominant, as shown in the upper part of the austenite 

grain in Figure 6-12 (c). This latter situation is consistent with the results from 

previous research [110], where adjacent non-parallel sets of BF laths were found 

belonging to the same Bain group and presented as one grain in the optical 

micrographs. Although the thickening of the BF laths during continuous cooling 

usually covers up this interlocking morphology in optical micrographs, it can be 

clearly revealed in the partially transformed microstructures [57, 110, 121]. 

The possible formation mechanism of a variant pair belonging to different 

CP groups but the same Bain group was explained in Section 2.6.3 in terms of 

the strain-induced nucleation of BF, the reduction of plastic deformation in 

austenite and the reduction of lath boundary energy. Interestingly, this variant 

pairing mechanism is not dominant in the BF microstructure with the small 

PAGS. Although the austenite grain size exhibits an effect on the bainite start 

temperature and transformation kinetics, the possibility of transformation 

temperature acting as the dominant factor can be excluded. This is due to the fact 

that the same differences resulted from PAGS were also observed in isothermally 
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transformed bainite microstructures [121], although no explanation was 

provided. 

A review of the martensite transformation shows that there is a very similar 

nucleation process to what this research has found in large-grained austenite. 

This process is known as autocatalysis, which describes the situation where 

plates of martensite form and induce new embryos that are then available for 

further transformation [2]. Autocatalysis accounts for the bursts of 

transformation that the initial formation of a plate stimulates a disproportionately 

large degree of further transformation and most importantly, it was found that 

the burst temperature of martensite is decreased with the reduction of austenite 

grain size [206, 207]. This effect of austenite grain size is attributed to the fact 

that the burst of martensite transformation arises because of the intense elastic 

and plastic disturbance of the austenite adjacent to a martensite plate [2]. It is the 

displacive transformation strain that causes this disturbance. The intensity of the 

stress and strain field generated by a plate is proportional to the plate size. For 

the primary plates nucleated first their size can be thought to be restricted by the 

PAGS. Therefore, the formation of plates in a larger austenite grain will generate 

a higher degree of the elastic and plastic disturbance and thus a higher burst 

temperature [206]. However, the situation is different in the BF transformation, 

where sub-units are stopped below a certain size due to the plastic 

accommodation of the transformation strain in the austenite, and the formation 

of laths actually lowers the average transformation strain magnitude from around 

0.23 to 0.13 [2]. Therefore, the elastic and plastic disturbance of the austenite 

should not be significantly influenced by the size difference of laths and thus 

PAGS. 

A more reasonable explanation could be based on the driving force of BF 

transformation from austenite near the BF/austenite interface. Because of the fact 

that the post-transformation carbon content of BF tends to be significantly higher 

than equilibrium and the diffusion coefficient of carbon in austenite is 
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significantly lower than that in ferrite, there are carbon enriched regions in the 

austenite around the existing BF sub-units [208]. Since the grain boundary area 

per unit volume is lower in the large-grained austenite, fewer BF laths form per 

unit volume at a certain time than those in the small-grained austenite, as 

schematically shown in Figure 6-13. Furthermore, BF grows under a relatively 

small driving force, which is only adequate for the development of a low carbon 

nucleus [2]. Therefore, the carbon concentration of the austenite near the existing 

BF laths can be reduced sufficiently in large-grained austenite to a level that 

strain-induced nucleation sites become potent enough to generate BF, whereas 

in small-grained austenite the carbon diffusion fields of adjacent BF laths are 

more likely to overlap, keeping the carbon concentration higher than the level to 

allow nucleation sites to be potent enough. The low cooling rate in the present 

research also provides enough time at high temperatures, which facilitates the 

carbon diffusion in austenite. However, more details on the transformation strain 

plastic accommodation and carbon distribution profile are needed to propose a 

definite answer. 

 

 

Figure 6-13 Schematic illustration of the difference in carbon diffusion fields in the 

austenite with (a) large and (b) small PAGS. 
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Due to the difference in variant selection as shown in Figure 6-11, the chance 

of forming HAGBs within each austenite grain is lower for the small-grained 

austenite compared to the large-grained austenite as illustrated in the Bain group 

maps in Figure 6-12 (c) and (f). However, with the reduction of PAGS from 62.8 

μm to 22.3 μm, the effective grain size gradually decreases from 9.5 μm to 5.6 

μm, indicating the density of HAGB is higher in the transformed microstructure 

with a smaller PAGS. This discrepancy can be explained by analysing the 

densities and fractions of HAGBs shown in Figure 6-14. 
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Figure 6-14 Histograms showing (a) the relative fractions of boundaries and (b) the 

boundary densities in terms of absolute number per unit area with different 

disorientation angles from 15˚ to 62.8˚. 

 

As described in Section 4.3.3 and Section 4.4.3, boundaries with different 

disorientation angles are formed by different mechanisms. The whole 

disorientation angle scope can be divided into four ranges, range 1 (θ<10˚), range 
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2 (10˚≤θ<21˚), range 3 (21˚≤θ<47˚) and range 4 (47˚≤θ≤62.8˚). For HAGBs, 

only the disorientation angle ranges 2~4 are involved.  

HAGBs with disorientation angles within range 2 are mainly the boundaries 

between variants transformed in the same austenite grain and belonging to the 

same Bain group. HAGBs with disorientation angles within range 3 are the 

boundaries between variants transformed from different austenite grains at 

PAGBs. HAGBs with disorientations angles within range 4 are mainly the 

boundaries between variants transformed in the same austenite grain but 

belonging to different Bain groups. 

In Figure 6-14 (a), we can see that with the decrease of PAGS, the fractions 

of HAGBs with disorientation angles within range 3 are increased, while the 

fractions of HAGBs with disorientation angles within range 4 are reduced. No 

great changes are found in the fractions of HAGBs with disorientation angles 

within range 2. These results indicate that the chance of forming HAGBs within 

each austenite grain is lower for the small-grained austenite compared to the 

large-grained austenite and for the small-grained austenite more fractions of 

HAGBs are formed at the PAGBs, leading to the increased fraction of HAGBs 

within range 3 as the PAGS is reduced. But, with the reduction of PAGS, the 

quantity of prior-austenite grains and also the total area of PAGBs per unit 

volume are increased, leading to the increased absolute densities of HAGBs 

within the disorientation angle ranges 2~4 as shown in Figure 6-14 (b). 

Furthermore, besides range 3, the disorientation angles of boundaries 

formed between variants transformed from different austenite grains can also fall 

into other disorientation angle ranges 1, 2 and 4. With the reciprocal increase of 

the total PAGB area per unit volume as the PAGS is reduced, the influence of 

PAGB on boundary densities within the ranges 1, 2 and 4 are more and more 

evident. 

Therefore, although intense variant selections exist in transformed 

microstructures with small PAGSs, due to the large austenite grain quantity and 



 

159 

 

the large total PAGB area, the transformed microstructure is refined with the 

reduction of PAGS. 

6.4.2 Effect of PAGS on AF transformation and grain refinement 

Since the AF in pipeline steels is considered as a kind of intragranularly 

nucleated transformation product of austenite [165-167], according to the results 

of investigations [19][201] that increasing PAGS, the dominant transformation 

product changes from the boundary nucleated phase to the intragranularly 

nucleated phase, the volume fraction of AF in this situation should be raised with 

the increase of PAGS. However, as shown in Figure 6-8 the volume fraction of 

AF actually is reduced with the increase of PAGS from 37.0 μm to 62.8 μm. 

Furthermore, due to the fact that AF microstructures have a high density of 

HAGBs, the reduction of AF volume fraction also results in a coarsening of the 

transformed microstructure as shown in Figure 6-9 (b). The discrepancy between 

the experimental results and the prediction based on the models in research 

[19][201] can be explained in terms of the conditions for the occurrence of AF 

transformation in pipeline steels and the differences in the austenite deformed 

microstructures with various PAGS. 

As proposed in Section 5.4.3, the introduction of intragranular nucleation 

sites and the halting of BF laths nucleated on the austenite grain boundaries are 

the two conditions that should be fulfilled for the occurrence of acicular ferrite 

transformation in pipeline steels. Since AF shows a similar transformation 

behaviour to that of BF, which is agreed by many researchers [1, 88, 209], the 

nucleation mechanisms of AF and BF should be similar. When austenite is 

heavily deformed, the dislocations and stacking faults introduced into austenite 

grains can act as intragranular nucleation sites of AF as illustrated in Section 

4.4.2. Besides that, when the driving force of BF transformation is smaller than 

the resistance exerted by the deformation substructures in austenite, these 

deformation substructures can halt the lengthening of BF laths nucleated on the 
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austenite grain boundaries through the mechanism of mechanical stabilisation. 

Therefore, AF transformation strongly depends on the austenite deformation 

substructures and the transformation temperatures. 

After the deformation of austenite below the recrystallisation-stop 

temperature (T5%), several changes in the state of austenite are made, including 

austenite grain shape, density of deformation substructures, annealing twin 

boundaries (transformed into normal HAGBs during austenite deformation) and 

bulging of austenite grain boundaries [210].  

The change in the densities of austenite grain boundaries can be evaluated 

by the effective nucleation area per unit volume, Sv (mm-1), which is introduced 

in Section 2.2 as a quantitative characterisation of the deformed austenite 

microstructure [16]. The expression of the total area of deformed austenite grain 

boundaries per unit volume, Sv(GB), was proposed in [18] as: 

 𝑆𝑣(𝐺𝐵) = [1.67(𝑅 − 0.1) + 1](
2

𝐷
) (6.1) 

where R is the reduction ratio and D is the PAGS before austenite deformation. 

It is clear that under the same reduction ratio, namely the same strain2, the total 

area of PAGBs per unit volume has a reciprocal relationship with the PAGS. 

The density of deformation induced dislocations can be approximated by the 

sum of the density of statistically stored dislocations (SSDs), ρs, and the density 

of geometrically necessary dislocations (GNDs), ρg, these two types of 

dislocations are accumulated by different mechanisms. In research [187] it was 

proposed that for polycrystalline materials, if each grain is assumed to undergo 

its uniform strain, overlaps of materials occur in some places while voids appear 

in others. Dislocations should be introduced into each grain to correct the 

overlaps or voids to keep strain compatibility everywhere and these dislocations 

are geometrically necessary and thus called geometrically necessary dislocations 

(GNDs). Differently, dislocations accumulated by trapping one another in a 

random way without geometry requirements are called statistically stored 

dislocations (SSDs). The expressions of the densities of these two kinds of 
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dislocations are given as follows [211]: 

 𝜌𝑠 =
𝐶1𝜀

𝑏𝑙1
 (6.2) 

and 

 𝜌𝑔 =
𝐶2𝜀

𝑏𝑙2
 (6.3) 

where l1 and l2 are the average slip lengths for SSD and GND respectively, C1 

and C2 constants, ε the strain and b the magnitude of the Burgers vector. In 

polycrystals, l2 is a characteristic of the microstructure which is independent of 

strains and is proportional to the grain size, while l1 is often regarded as the 

diameter to which a dislocation ring expands before it stops and l1 varies with 

strain. It is expected that the increase of ρg also can influence the ρs. Due to the 

increase of the density of GNDs, the chance that a dislocation is trapped by others 

will be increased, leading to a higher ρs. Therefore, changing the austenite grain 

size before deformation can influence the total dislocation density in the 

deformed austenite microstructure. The total dislocation density will be 

increased reciprocally with the reduction of the austenite grain size before 

deformation according to the Hall-Petch relationship [187], Equation (2.1), and 

the relationship between the flow stress, σ, and the dislocation density, ρ, 

proposed as: 

 𝜎 = 𝛼𝐺𝑏𝜌
1
2 (6.4) 

in research [212], where α is a numerical constant of order unity, G the shear 

modulus. 

Based on the illustration above, it is clear that although the total area of 

austenite grain boundaries per unit volume is increased reciprocally with the 

reduction of PAGS, the total dislocation density is also raised with a reciprocal 

relationship with the decrease of PAGS. More importantly, since the austenite 

deformation substructures can halt the lengthening of the BF laths nucleated on 

austenite grain boundaries through the mechanism of mechanical stabilisation of 
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austenite [178-180], the total area of BF-nucleation active austenite grain 

boundaries per unit volume will be lower than the calculated Sv value, and each 

of the active nucleation sites on austenite grain boundaries may only generate a 

very limited volume of BF. Therefore, with the reduction of PAGS, the increase 

of dislocation densities and thus the increase of intragranular nucleation site 

densities for AF is more dominate than the rise of the nucleation site densities of 

BF, leading to the increase of the AF fraction. As illustrated in Section 4.4.3, the 

increased fraction of AF can weaken the variant selection and thus generate a 

higher density of HAGBs, finally leading to a more refined microstructure. The 

relatively smaller influence of reducing PAGS from 62.5 μm to 52.4 μm than 

decreasing PAGS from 52.4 μm to 37.0 μm on the microstructure refinement 

shown in Figure 6-9 (b) can also be explained by the reciprocal relationship 

between the austenite dislocation density and the PAGS as schematically 

illustrated in Figure 6-15. 

 

 

Figure 6-15 Schematical illustration of the reciprocal relationship between the total 

dislocation density and the PAGS before deformation. 

 

Differently, it is universally acknowledged that the AF in steel welds 
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nucleates on the non-metallic inclusions introduced during welding [2], and after 

welding, the densities of the non-metallic inclusions and thus the possible 

nucleation sites of AF are fixed. Furthermore, it is known that for recrystallised 

austenite grains, the total area of austenite grain boundaries per unit volume 

increases reciprocally with the reduction of PAGS, Equation (2.3). Therefore, 

for steel welds, decreasing the PAGS, the total area of the austenite grain 

boundaries per unit volume is increased reciprocally, while the density of the 

intragranular nucleation sites is fixed, leading to a promotion of the 

transformation product nucleated on austenite grain boundaries and thus a 

reduction of the AF fraction in steel welds as shown in research [19][201]. 

Although some researchers still claimed that the AF in pipeline steels also 

nucleates on non-metallic inclusions, the results in this research that the fraction 

of AF is increased with the reduction of PAGS, add as indirect evidence that the 

intragranular nucleation sites of AF in pipeline steels are deformation 

substructures instead of non-metallic inclusions. Furthermore, the advance in 

steel making technology has significantly improved the cleanness of modern 

high strength low alloy (HSLA) steels and a high purity is also a prerequisite for 

modern HSLA steels. Clean steels are characterised by very small amounts of 

oxides and sulphides preferably in a globular form [213] and it is difficult to find 

high enough quantity of non-metallic inclusions in high grade pipeline steels to 

support AF transformation as in weld metals. But to obtain the weld metal AF-

like microstructures in structural steels, inoculated acicular ferrite steels have 

been developed, in which inclusion particles that are effective in stimulating AF 

nucleation are deliberately brought in by controlling the de-oxidation process 

during steel making [2]. The particles formed are generally a mixture of various 

oxides and sulphides, but the effective phase for AF nucleation is Ti2O3 [72]. 

Although as the PAGS is decreased from 62.8 μm to 37.0 μm, the fraction of 

AF is increased and the transformed microstructure is refined, reducing the 

PAGS further to 22.3 μm, there are not significant changes on the transformed 
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microstructures and the grain refinement as shown in Figure 6-8 and Figure 6-9 

(b), respectively. Since fractions of AF and grain refinement both are closely 

related to the density of the deformation induced substructure, it is reasonable to 

argue that as the PAGS is reduced from 37.0 μm to 22.3 μm, the trend of the 

deformation substructure being increased as predicted in Figure 6-15 is 

weakened or prohibited due to the operation of certain mechanisms. 

It is well known that under the same deformation conditions, decreasing the 

starting austenite grain size, the critical strain for the onset of dynamic 

recrystallisation (DRX) is reduced [214] and once DRX is triggered during the 

deformation, not necessary to a large extent, static recrystallisation (SRX) and 

meta-dynamic recrystallisation (MDRX) can proceed during the following 

continuous cooling and result in an evident restoration as shown in Section 4.4.1. 

Therefore, it is reasonable to conceive that with the PAGS of 22.3 μm, DRX was 

triggered during the austenite deformation and resulted in a decrease of the 

deformation substructure density. However, after strain2 of 0.5, the austenite 

grains remain unrecrystallised as shown in Figure 6-2 (e), which means that DRX 

is not triggered during the austenite deformation with the PAGS of 22.3 μm. 

However, SRX could still happen during the subsequent continuous cooling. As 

stated in Section 4.4.1, the continuously cooled specimen with PAGS of 22. 3 

μm was etched with a saturated aqueous picric acid solution to reveal the PAGBs. 

The optical micrograph depicting the PAGBs before phase transformation is 

shown in Figure 6-16. As can be seen from this figure, the shape of the prior-

austenite grains cannot be observed as clearly as in Figure 4-9. Therefore, it is 

difficult to determine whether SRX happens during the continuous cooling 

directly from the optical micrograph of the PAGBs. 
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Figure 6-16 Optical micrograph depicting prior-austenite grain boundaries of the 

continuously cooled specimen with PAGS of 22.3 μm. 

 

Fortunately, the texture information of the transformed microstructure can 

also be used as evidence to see whether SRX occurs during the continuous 

cooling. The principal texture component presented in the recrystallised 

austenite is the cube ({001} <010>) texture component and after displacive 

transformations, its products are the Goss ({110} <001>), the rotated Goss ({110} 

<110>) and the rotated cube ({001} <110>) texture components [215]. The 

presence of the Goss and the rotated Goss texture components is a sign that 

austenite is recrystallised or partially recrystallised before transformation and the 

presence of the rotated cube texture component alone does not necessarily 

indicate the occurrence of austenite recrystallisation because the rotated cube 

texture component can also be transformed from the Brass ({110} <112>) texture 

component [215]. The texture of the transformation product with PAGS of 

22.3μm measured by EBSD technique are represented by the φ2 = 45˚ section of 

orientation density function (ODF) in Figure 6-17 (a) and positions of the 

relevant texture components in the φ2 = 45˚ section are shown in Figure 6-17 (b). 

From Figure 6-17 we can see that although the rotated cube texture component 

exists in the texture of the transformed microstructure, the absence of the Goss 
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and the rotated Goss texture components suggest that austenite was 

unrecrystallised before transformation even with the PAGS as small as 22.3 μm. 

Therefore, both DRX and SRX did not happen in the present research and thus 

are not responsible for the cessation of microstructure refinement when the 

PAGS is reduced from 37.0 μm to 22.3 μm. 

 

 

Figure 6-17 (a) φ2 = 45˚ section of the ODF measured by EBSD technique for the 

transformed microstructure with PAGS of 22.5 μm, (b) positions of the relevant texture 

components in the φ2 = 45˚ section. 

 

Interestingly, the experimental results in research [216, 217] may provide an 

explanation for the cessation of microstructure refinement when the PAGS is 

reduced from 37.0 μm to 22.3 μm. In research [216] after AISI 304 stainless steel 

specimens with PAGSs of 40 μm and 15 μm were deformed with a strain of 1.0 

at 900˚C and a strain rate of 0.5s-1, from the EBSD maps shown in Figure 6-18, 

it was found that in the coarse-grained austenite, Figure 6-18 (a), uniformly 

distributed substructures can be found in the unrecrystallised austenite grains, 

while in the fine-grained austenite, Figure 6-18 (b), relatively dense 

substructures exist only near the austenite grain boundaries, leaving the interior 

lacking in sub-grain boundaries. Similarly, in investigation [217] after AISI 304 

stainless steel specimens with PAGSs of 35 μm and 8 μm were deformed at 
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900˚C with a strain of 1.0 and a strain rate of 0.01s-1, it was found from the EBSD 

maps that in the coarse-grained austenite two types of deformation substructures 

exist, dense cell structures and elongated dislocation boundaries with large 

distances between them, but in fine-grained austenite the major part of 

substructures are the elongated dislocation boundaries and the density of 

substructures is significantly less than that in the coarse-grained austenite. As for 

the reason of these differences, in research [216] it was proposed that during the 

deformation of the fine-grained austenite, grain boundary shearing and/or sliding 

take place at austenite grain boundaries which can lead to the development of 

inhomogeneous deformation substructures near the grain boundaries and also in 

the fine-grained austenite dynamic recovery is promoted due to an acceleration 

of dislocations spreading into austenite grain boundaries, while in research [217] 

grain boundary sliding in the fine-grained austenite was taken as the main cause. 

 

 

Figure 6-18 EBSD maps of the specimens with different PAGSs, (a) 40 μm and (b) 15 
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μm, deformed at 900˚C with a strain rate of 0.5s-1 and strain of 1.0 [216]. 

 

Based on the results of these investigations [216, 217], it is clear that the type, 

distribution, and density of the deformation substructures are different as the 

PAGSs change from 40 μm to 15 μm or from 35 μm to 8 μm. Therefore, a similar 

change in the deformation substructures could be expected in the present case 

with the reduction of PAGS from 37.0 μm to 22.3 μm and it could be these 

changes that are responsible for the cessation of microstructure refinement. 

However, further investigations on the austenite deformation substructure with 

small PAGSs are required to get a definite answer. 

6.4.3 Relationship between Sv and effective grain sizes 

Based on the effective grain size results of specimens with different PAGSs 

and strain2 magnitude which have the same accelerated cooling process (10˚C/s), 

the relationship between the effective grain sizes of the transformed 

microstructures and the Sv values calculated according to Equation (2.3) and 

Equation (2.4) are shown in Figure 6-19. Like the result for ferrite grain size in 

Figure 2-2, the effective grain size of continuously cooled transformation 

products (BF for fully recrystallised austenite, AF for largely unrecrystallised 

austenite and a mixture of BF and AF for slightly deformed austenite) has a 

reciprocal relationship with the Sv values. Although Sv was originally proposed 

to quantify the total effective nucleation site area of PF/QF per unit volume [16] 

and the nucleation site density of AF cannot be quantified by the Sv value, the 

factors affecting the effective grain sizes of BF and AF, including PAGS and 

austenite deformation, are also involved in the expressions of Sv for recrystallised 

and deformed austenite, Equation (2.3) and Equation (2.4). 
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Figure 6-19 Relationship between the effective grain size of transformed 

microstructure after an accelerated cooling (10˚C/s) and the Sv value. 

 

Although generally a reciprocal relationship between the effective grain sizes 

and the Sv values can be found in Figure 6-19, some discrepancies can be 

identified as well. With nearly the same Sv values (around 55 mm-1 and 90 mm-

1), the effective grain sizes of recrystallised (strain2 = 0), slightly deformed 

(strain2 = 0.1) and largely deformed austenite (strain2 = 0.5) are quite different 

and these differences raise with the increased Sv values. Therefore, with the same 

Sv value, deformation of austenite with a large austenite grain size is more 

effective than refining austenite grain size to a small value but without 

deformation in transformation product grain refinement and this advantage of 

austenite deformation is more evident at higher Sv values. 

6.5 Summary 

In this chapter, different parameters of the solid solution heat treatment and 

the roughing deformation were used to generate austenite with different grain 

sizes and the effects of austenite grain size on the microstructural evolution 
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transformed from both recrystallised austenite and deformed austenite were 

investigated. For microstructures transformed from recrystallised austenite with 

different prior-austenite grain sizes, it was found that: 

(1) The continuously cooled microstructures with different PAGSs, varying 

from 22.3 μm to 62.8 μm, mainly consist of BF laths. Under a relatively 

slow continuous cooling rate, intense BF variant selection occurs for 

small-grained austenite and BF laths, belonging to the same CP group, 

tend to grow side by side forming packet structures that are visible in 

optical micrographs.  

(2) For large-grained austenite, nearly all the variants are formed and variants 

from different CP groups but the same Bain group tend to grow together 

forming an interlocking structure, which is difficult to distinguish in 

optical micrographs. This morphology difference may be attributed to 

possible lower carbon concentrations near the BF and austenite interfaces 

in the large-grained austenite than those in the small-grained austenite. 

(3) Although intense variant selections exist in transformed microstructures 

with small PAGSs, due to the large austenite grain quantity and thus the 

large total PAGB area per unit volume, the transformed microstructure is 

refined with the reduction of PAGS. 

For microstructures transformed from deformed austenite with different 

prior-austenite grain sizes, it was found that: 

(1) With the small PAGSs (22.3 μm and 37.0 μm), the transformed 

microstructures are AF dominant consisting of non-equiaxed ferrite laths 

with an irregular arrangement. While in the transformed microstructures 

with the large PAGSs (52.4 μm and 62.8 μm), although a small fraction 

of AF still exists, the major transformation product is BF, organised and 

parallel laths nucleated on austenite grain boundaries and extended into 

the grain interior. 
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(2) Reducing the PAGS from 62.8 μm to 37.0 μm before austenite 

deformation, the volume fraction of AF is increased indicating the 

intragranular nucleation sites of AF in pipeline steels are austenite 

deformation substructures instead of non-metallic inclusions as in steel 

welds. 

(3) The reduction of the PAGS from 62.8 μm to 37.0 μm before austenite 

deformation can significantly refine and homogenise the transformed 

microstructure by introducing an increased density of austenite 

deformation substructures which promote the AF transformation. 

(4) Reducing the PAGS further from 37.0 μm to 22.3 μm, there are not 

significant changes on the transformed microstructures and the grain 

refinement. Restoration processes like DRX and SRX are excluded and 

the differences in the type, distribution, and density of the deformation 

substructures between deformed austenite with PAGSs of 37.0 μm and 

22.3 μm are proposed to be responsible for the cessation of microstructure 

refinement. 

Based on the effective grain size results of specimens with different PAGSs 

and different deformation magnitude which have the same accelerated cooling 

process (10˚C/s), a reciprocal relationship between the effective grain sizes and 

the Sv values can be found generally and with the same Sv value, deformation of 

austenite with a large austenite grain size is more effective than refining austenite 

grain size to a small value but without deformation in transformation product 

grain refinement and this advantage of austenite deformation is more evident at 

higher Sv values. 
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Chapter 7  Conclusions 

In this research, by conducting plane strain compression (PSC) tests followed 

by continuous cooling, the effect of various thermomechanical controlled 

processing (TMCP) parameters on the transformation products of a high 

temperature processing (HTP) steel were investigated. Not only their individual 

effects but also their combined influences were studied. The effects of austenite 

deformation below the recrystallisation-stop temperature (T5%) on the austenite 

restoration behaviour, the evolution of transformed microstructures and the grain 

refinement were studied and the possible nucleation mechanism of acicular 

ferrite (AF) was presented in Chapter 4. The influences of different continuous 

cooling rates, for both recrystallised austenite and deformed austenite, on the 

evolution of transformed microstructures and the grain refinement were 

investigated and the conditions for the occurrence of AF transformation were 

proposed in Chapter 5. In Chapter 6, the effects of different austenite grain sizes, 

for both recrystallised austenite and deformed austenite, on the evolution of 

transformed microstructures and the grain refinement were studied. To 

summarise the entire research, the following conclusions can be made. 

With an increase of strain in the austenite below the recrystallisation-stop 

temperature (T5%), transition from bainitic ferrite (BF) to AF occurs, and the 

grain boundary density and microhardness increase with the rise of the AF 

fraction in the transformed microstructure. Meanwhile, the effective grain size 

decreases with the increased accumulated strain, indicating toughness 

improvement. However, further increasing the strain above a critical value 

triggers dynamic recrystallisation and leads to the onset of static 

recrystallisation/meta-dynamic recrystallisation during continuous cooling. This 

partially recrystallised austenite microstructure results in a drop of 

microhardness and leads to an inhomogeneous and coarse microstructure with 

AF regions surrounded by blocky bainitic ferrite packets. 
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Without austenite deformation, the transformed microstructures cooled at 

different cooling rates are all BF dominant. AF-like microstructures cannot be 

found in these continuous cooled microstructures covering a wide cooling rate 

range without austenite deformation, which proves that austenite deformation is 

required for the AF transformation in pipeline steels. Subjected to the same 

austenite deformation, the fraction of AF decreases and the BF becomes more 

and more dominant with the increase of cooling rates, which means a transition 

from AF to BF occurs. Based on the results obtained, the introduction of 

intragranular nucleation sites and halting of BF laths nucleated on austenite grain 

boundaries are found as two conditions that should be fulfilled for the occurrence 

of acicular ferrite transformation in pipeline steels. Increasing the austenite 

deformation strain can introduce a higher density of dislocation arrays into the 

austenite which can act as intragranular nucleation sites. Besides, the 

deformation substructures can also halt the lengthening of BF laths by the 

mechanism of mechanical stabilisation of austenite. Halting BF laths can only 

happen under relatively slower cooling rates or higher transformation 

temperature because high cooling rates result in a low transformation 

temperature which increases the driving force for transformation interfaces to 

overcome austenite deformation substructures and leads to a BF or martensite 

dominant microstructure. 

For microstructures transformed from recrystallised austenite with different 

prior-austenite grain sizes, the continuously cooled microstructures mainly 

consist of BF laths under a relatively slow continuous cooling rate. Intense BF 

variant selection occurs for small-grained austenite and BF laths, belonging to 

the same CP group, tend to grow side by side forming packet structures that are 

visible in optical micrographs. For large-grained austenite, nearly all the variants 

are formed and variants from different CP groups but the same Bain group tend 

to grow together forming an interlocking structure, which is difficult to 

distinguish in optical micrographs. This morphology difference may be 
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attributed to possible lower carbon concentrations near the BF and austenite 

interfaces in the large-grained austenite than those in the small-grained austenite. 

Although intense variant selections exist in transformed microstructures with 

small PAGSs, due to the large austenite grain quantity and thus the large total 

PAGB area per unit volume, the transformed microstructure is refined with the 

reduction of PAGS. 

For microstructures transformed from deformed austenite with small prior-

austenite grain sizes, the transformed products are AF dominant consisting of 

non-equiaxed ferrite laths with an irregular arrangement. While for 

microstructures transformed from deformed austenite with large prior-austenite 

grain sizes, although a small fraction of AF still exists, the major transformation 

product is BF, organized and parallel laths nucleated on austenite grain 

boundaries and extended into the grain interior. 

Based on the results from this research, the implications for industrial 

practices are given as follows. First, to get AF dominant microstructures under 

industrial continuous cooling conditions, deformation below the 

recrystallisation-stop temperature (T5%) should be high enough to encourage the 

transition from BF to AF, but not so high that restoration processes can be 

triggered which will lower the accumulated strain in austenite and weaken the 

effect of austenite deformation on the AF transformation promotion, grain 

refinement and strengthening. Second, AF transformation can only happen under 

relatively slow cooling rates or high transformation temperatures, therefore the 

continuous cooling processes must be designed carefully. If the cooling rate is 

too large or the transformation temperatures is too low, BF or martensite 

microstructure will become dominant and the grain-refining effect of austenite 

deformation will be weakened, and under some conditions, it is possible that the 

transformed microstructures are coarsen by austenite deformation. Last but not 

least, under the same accelerated cooling condition, a reciprocal relationship 

between the effective grain sizes and the Sv values can be found generally and 
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with the same Sv value, deformation of austenite with a large austenite grain size 

is more effective in the grain refinement of transformation products than refining 

austenite grain size to a small value but without deformation. And this advantage 

of austenite deformation is more evident at higher Sv values. Therefore, a 

reasonable allocation of the total rolling reduction to the rough rolling and the 

finish rolling is required.  
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Chapter 8  Future work 

Based on the results from this research, the following suggestions for future 

research are proposed: 

8.1 Crystallographic characteristics of acicular ferrite 

Although the conditions for the occurrence of acicular ferrite transformation 

in pipeline steels have been proposed in this thesis, since the transformation 

mechanism of AF is also displacive, the crystallographic characteristics of AF, 

including the orientation relationship between AF and parent austenite, variant 

selection and variant pairing, are necessary for a complete characterisation and 

deeper understanding of the AF microstructure in pipeline steels.  

8.2 Plastic accommodation of BF transformation strain 

The reason why variant pairs come from the same Bain group but belonging 

to different CP group are still unclear. It is possible that the dislocations 

introduced into the austenite during the plastic accommodation of the 

transformation shape strain lead to the development of such a kind of variant pair. 

Therefore, identifying the dislocations in the austenite resulted from plastic 

accommodation is helpful to understand this variant-pairing mechanism.  

8.3 Deformation substructures in small-grained austenite 

In this research, it was found that reducing the PAGS from 37.0 μm to 22.3 

μm before austenite deformation, there are not significant changes on the 

transformed microstructures and the grain refinement. Differences in the type, 

distribution, and density of the deformation substructures between deformed 

austenite with PAGSs of 37.0 μm and 22.3 μm were proposed to be responsible 

for the cessation of microstructure refinement. However, evidence can only be 

found in the investigations with the deformation of AISI 304 stainless steel at 
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very low strain rates, 0.5s-1 in research [216] and 0.01s-1 in research [217]. 

Further investigations on the austenite deformation substructure with small 

austenite grain sizes at high strain rates are required to get a definite answer. 

8.4 Microstructure with small effective grain size and high 

strength 

Based on the results in this research, acicular ferrite transformation can only 

happen under relatively slower cooling rates or higher transformation 

temperatures, which means there is a strength limit for the AF dominant 

microstructures because the strength of displacive transformation products is 

closely related to the transformation temperature. To get a higher strength, low 

transformation temperature is needed. However, if the cooling rate is too large 

or the transformation temperature is too low, BF or martensite microstructure 

will become dominant and the effective grain size will be increased, which 

means the toughness will be compromised. Therefore, it is imperative to find 

new methods to obtain microstructures with small effective grains and high 

strengths.  

  



 

178 

 

References 

1. Y.M. Kim et al., “Effects of molybdenum and vanadium addition on tensile and 

charpy impact properties of API X70 linepipe steels,” Metallurgical and Materials 

Transactions A, 38 (2007) 1731-1742. 

2. H.K.D.H. Bhadeshia, Bainite in steels (Inst. of Metals, 1992). 

3. M.C. Zhao et al., “The effects of thermo-mechanical control process on 

microstructures and mechanical properties of a commercial pipeline steel,” 

Materials Science and Engineering: A, 335 (2002) 14-20. 

4. S. Shanmugam et al., “Microstructure and high strength–toughness combination of a 

new 700MPa Nb-microalloyed pipeline steel,” Materials Science and Engineering: 

A, 478 (2008) 26-37. 

5. Y.M. Kim et al., “Effect of microstructure on the yield ratio and low temperature 

toughness of linepipe steels,” ISIJ international, 42 (2002) 1571-1577. 

6. F. Grimpe et al., “Development, production and application of heavy plates in grades 

up to X120,”  1st International Conference “Super-High Strength Steels” Rome, 

Italy November, 2005, 2-4. 

7. I. Takeuchi et al., “The prospects for high-grade steel pipes for gas pipelines,” Pipes 

and Pipelines International, 48 (2003) 33-43. 

8. Y. Smith et al., Manganese-Molybdenum-Niobium Acicular Ferrite  Steels with 

High Strength and Toughness,  Toward improved ductility and toughness, 

Climax Molybdenum Company (Japan) Ltd, Kyoto, 1972, pp. 119-142. 

9. W. Wang et al., “Study of high strength pipeline steels with different microstructures,” 

Materials Science and Engineering: A, 502 (2009) 38-44. 

10. M.C. Zhao et al., “Role of microstructure on sulfide stress cracking of oil and gas 

pipeline steels,” Metallurgical and Materials Transactions A, 34 (2003) 1089-1096. 

11. Y. Zhong et al., “In situ TEM study of the effect of M/A films at grain boundaries 

on crack propagation in an ultra-fine acicular ferrite pipeline steel,” Acta 

materialia, 54 (2006) 435-443. 

12. C. Chiou et al., “The effect of prior compressive deformation of austenite on 

toughness property in an ultra-low carbon bainitic steel,” Materials chemistry and 

physics, 69 (2001) 113-124. 

13. E. Hall, “The deformation and ageing of mild steel: III discussion of results,” 

Proceedings of the Physical Society. Section B, 64 (1951) 747. 

14. N. Petch, “The cleavage strength of polycrystals,” J. Iron Steel Inst., 174 (1953) 25-

28. 



 

179 

 

15. F. Pickering and T. Gladman, Iron and Steel Institute Special Report No. 81, Iron 

and Steel Institute, , Tokyo, 1963, pp. 10. 

16. G. Speich et al., “Formation of ferrite from control-rolled austenite,” Phase 

transformations in ferrous alloys, (1983) 341-389. 

17. A. Thorvaldsen, “The intercept method—2. Determination of spatial grain size,” 

Acta materialia, 45 (1997) 595-600. 

18. C. OUCHI et al., “The Effect of Hot Rolling Condition and Chemical Composition 

on the Onset Temperature of γ-α Transformation after Hot Rolling,” Transactions 

of the Iron and Steel Institute of Japan, 22 (1982) 214-222. 

19. E. Palmiere et al., “The influence of niobium supersaturation in austenite on the 

static recrystallization behavior of low carbon microalloyed steels,” Metallurgical 

and Materials Transactions A, 27 (1996) 951-960. 

20. I. Kozasu et al., Hot Rolling as a High-Temperature Thermo-Mechanical Process,  

Microalloying 75, Union Carbide, Washington, D.C., 1977, pp. 120-135. 

21. L. Sun, “The effects of strain path reversal on austenite grain subdivision, 

recrystallisation and phase transformations in microalloyed steel,” (Ph.D. thesis, 

University of Sheffield, 2012). 

22. C. Heckmann et al., “Development of low carbon Nb–Ti–B microalloyed steels for 

high strength large diameter linepipe,” Ironmaking & steelmaking, 32 (2005) 337-

341. 

23. A.J. Deardo, “Accelerated Cooling - a Physical Metallurgy Perspective,” Canadian 

Metallurgical Quarterly, 27 (1988) 141-154. 

24. C. Ouchi, “Development of steel plates by intensive use of TMCP and direct 

quenching processes,” ISIJ international, 41 (2001) 542-553. 

25. M. Umemoto et al., “Effect of cooling rate on grain size of ferrite in a carbon steel,” 

Materials science and technology, 3 (1987) 249-255. 

26. K. Hulka and J. Gray, “High Temperature Processing of Line Pipe Steels,”  

Proceedings of the International Symposium Niobium, 2001, 587-612. 

27. H. TAMEHIRO et al., “Effect of accelerated cooling after controlled rolling on the 

hydrogen induced cracking resistance of line pipe steel,” Transactions of the Iron 

and Steel Institute of Japan, 25 (1985) 982-988. 

28. F. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena 

(Elsevier, 2004). 

29. S. Curtze and V.-T. Kuokkala, “Dependence of tensile deformation behavior of 

TWIP steels on stacking fault energy, temperature and strain rate,” Acta materialia, 

58 (2010) 5129-5141. 



 

180 

 

30. R.W. Hertzberg, “Deformation and fracture mechanics of engineering materials,” 

John Wiley & Sons, 1983, (1983) 697. 

31. H. Idrissi et al., “Is there a relationship between the stacking fault character and the 

activated mode of plasticity of Fe–Mn-based austenitic steels?,” Scripta Materialia, 

60 (2009) 941-944. 

32. P.J. Ferreira and P. Müllner, “A thermodynamic model for the stacking-fault 

energy,” Acta Materialia, 46 (1998) 4479-4484. 

33. S. Allain et al., “Correlations between the calculated stacking fault energy and the 

plasticity mechanisms in Fe–Mn–C alloys,” Materials Science and Engineering: 

A, 387 (2004) 158-162. 

34. Y.K. Lee and C.S. Choi, “Driving force for γ → ε martensitic transformation 

and stacking fault energy of γ in Fe-Mn binary system,” Metallurgical and 

Materials Transactions A: Physical Metallurgy and Materials Science, 31 (2000) 

355-360. 

35. W. Charnock and J. Nutting, “The effect of carbon and nickel upon the stacking-

fault energy of iron,” Metal Science Journal, 1 (1967) 123-127. 

36. N. Hansen and R.F. Mehl, “New discoveries in deformed metals,” Metallurgical 

and materials transactions A, 32 (2001) 2917-2935. 

37. Q. Liu et al., “Microstructure and strength of commercial purity aluminium (AA 

1200) cold-rolled to large strains,” Acta materialia, 50 (2002) 3789-3802. 

38. D.A. Hughes and N. Hansen, “Microstructure and strength of nickel at large strains,” 

Acta Materialia, 48 (2000) 2985-3004. 

39. V. Ananthan et al., “Cell and band structures in cold rolled polycrystalline copper,” 

Materials science and technology, 7 (1991) 1069-1075. 

40. D. Hughes and N. Hansen, “High angle boundaries formed by grain subdivision 

mechanisms,” Acta materialia, 45 (1997) 3871-3886. 

41. N. Hansen and D.J. Jensen, “Development of microstructure in FCC metals during 

cold work,” Philosophical Transactions of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences, 357 (1999) 1447-1469. 

42. C. Barlow and N. Hansen, “Plastic deformation of metals and alloys,” (2014). 

43. W. Pantleon and N. Hansen, “Dislocation boundaries—the distribution function of 

disorientation angles,” Acta Materialia, 49 (2001) 1479-1493. 

44. N. Hansen et al., “Effect of grain boundaries and grain orientation on structure and 

properties,” Metallurgical and Materials Transactions A, 42 (2011) 613-625. 

45. G. Winther and X. Huang, “Dislocation structures. Part II. Slip system dependence,” 

Philosophical Magazine, 87 (2007) 5215-5235. 



 

181 

 

46. X. Huang and G. Winther, “Dislocation structures. Part I. Grain orientation 

dependence,” Philosophical Magazine, 87 (2007) 5189-5214. 

47. G. Taylor, “Plastic strain in metals, 28 th May Lecture to the Institute of Metals,” 

May, 4 (1938) 307-324. 

48. N. Hansen, “Cold deformation microstructures,” Materials science and technology, 

6 (1990) 1039-1047. 

49. A.S. Taylor et al., “Orientation dependence of the substructure characteristics in a 

Ni–30Fe austenitic model alloy deformed in hot plane strain compression,” Acta 

Materialia, 60 (2012) 1548-1569. 

50. A.S. Taylor et al., “Comparison of 304 stainless steel and Ni–30wt.% Fe as potential 

model alloys to study the behaviour of austenite during thermomechanical 

processing,” Acta Materialia, 59 (2011) 5832-5844. 

51. T. Araki, “Atlas for bainitic microstructures,” Atlas for Bainitic Microstructures, 1 

(1992) 4-5. 

52. G. Krauss and S.W. Thompson, “Ferritic microstructures in continuously cooled 

low-and ultralow-carbon steels,” ISIJ international, 35 (1995) 937-945. 

53. S. Ghasemi Banadkouki and D. Dunne, “Formation of ferritic products during 

continuous cooling of a Cu-bearing HSLA steel,” ISIJ international, 46 (2006) 

759-768. 

54. H.K. Bhadeshia, “Diffusional formation of ferrite in iron and its alloys,” Progress 

in Materials Science, 29 (1985) 321-386. 

55. G. Krauss, Steels: processing, structure, and performance (ASM International, 

2005). 

56. E. Wilson, “The gamma-> alpha transformation in low carbon irons,” ISIJ Int., 34 

(1994) 615-630. 

57. D. Tian et al., “Correlation between microstructural features of granular bainite, 

roughness of fracture surface and toughness of simulated CGHAZ in QT type 

HSLA steels,” Scandinavian Journal of Metallurgy, 25 (1996) 87-94. 

58. H.J. Jun et al., “Effects of deformation and boron on microstructure and continuous 

cooling transformation in low carbon HSLA steels,” Materials Science and 

Engineering: A, 422 (2006) 157-162. 

59. P. Cizek et al., “Effect of composition and austenite deformation on the 

transformation characteristics of low-carbon and ultralow-carbon microalloyed 

steels,” Metallurgical and Materials Transactions A, 33 (2002) 1331-1349. 

60. H. Bhadeshia and R. Honeycombe, Steels: microstructure and properties: 

microstructure and properties (Butterworth-Heinemann, 2011). 



 

182 

 

61. P. Yan and H.K.D.H. Bhadeshia, “Mechanism and Kinetics of Solid-State 

Transformation in High-Temperature Processed Linepipe Steel,” Metallurgical 

and Materials Transactions A, 44 (2013) 5468-5477. 

62. I. Madariaga et al., “Upper acicular ferrite formation in a medium-carbon 

microalloyed steel by isothermal transformation: Nucleation enhancement by 

CuS,” Metallurgical and Materials Transactions A, 29 (1998) 1003-1015. 

63. S. Babu and H. Bhadeshia, “Transition from bainite to acicular ferrite in reheated 

Fe–Cr–C weld deposits,” Materials Science and Technology, 6 (1990) 1005-1020. 

64. S.S. Babu, “The mechanism of acicular ferrite in weld deposits,” Current Opinion 

in Solid State and Materials Science, 8 (2004) 267-278. 

65. J. Yang and H.K.D.H. Bhadeshia, “Acicular ferrite transformation in alloy-steel 

weld metals,” Journal of materials science, 26 (1991) 839-845. 

66. J. Yang and H. Bhadeshia, “Orientation relationships between adjacent plates of 

acicular ferrite in steel weld deposits,” Materials science and technology, 5 (1989) 

93-97. 

67. J. Yang et al., “Acicular ferrite transformation in deformed austenite of an alloy-

steel weld metal,” Journal of materials science, 30 (1995) 5036-5041. 

68. A.-F. Gourgues et al., “Electron backscattering diffraction study of acicular ferrite, 

bainite, and martensite steel microstructures,” Materials Science and Technology, 

16 (2000) 26-40. 

69. S. Babu and H. Bhadeshia, “Stress and the acicular ferrite transformation,” 

Materials Science and Engineering: A, 156 (1992) 1-9. 

70. M. Chandrasekharaiah et al., “An atom probe study of retained austenite in ferritic 

weld metal,” Welding journal, 71 (1992) 247s-251s. 

71. M. Dáz-Fuentes et al., “Analysis of different acicular ferrite microstructures in low-

carbon steels by electron backscattered diffraction. Study of their toughness 

behavior,” Metallurgical and Materials Transactions A, 34 (2003) 2505-2516. 

72. H. Homma et al., “Improvement of HAZ toughness in HSLA steel by introducing 

finely dispersed Ti-oxide,” Weld J, 66 (1987) 301-305. 

73. J.-S. Byun et al., “Inoculated acicular ferrite microstructure and mechanical 

properties,” Materials Science and Engineering: A, 319 (2001) 326-331. 

74. T.S. Janzen and W.N. Horner, “Alliance Pipeline - a design shift in long distance 

gas transmission,” 1998, 83-88. 

75. F. Xiao et al., “Acicular ferritic microstructure of a low-carbon Mn–Mo–Nb 

microalloyed pipeline steel,” Materials Characterization, 54 (2005) 305-314. 

76. H. Fang et al., “Bainite transformation,” Beijing: Science Press, 2 (1999) 59. 



 

183 

 

77. T. Araki et al., “Atlas for Bainitic Microstructures,” ISIJ, Tokyo, 1 (1992) 1-165. 

78. T. Araki et al., “Reviewed Concept on the Microstructural Identification and 

Terminology of Low Carbon Ferrous Bainites,”  Materials Science Forum, Trans 

Tech Publ, 1991, 275-280. 

79. L. Collins et al., “Microstructures of linepipe steels,” Canadian Metallurgical 

Quarterly, 22 (1983) 169-179. 

80. M. Pontremoli et al., “Development of grade API X80 pipeline steel plates produced 

by controlled rolling,” Metals Technology, 11 (1984) 504-514. 

81. R. Cryderman et al., “Controlled-Cooled Structural Steels Modified with 

Columbium, Molybdenum and Boron,” ASM TRANS QUART, 62 (1969) 561-

574. 

82. A. Coldren and J. Mihelich, “Acicular ferrite HSLA steels for line pipe,” Metal 

Science and Heat Treatment, 19 (1977) 559-572. 

83. W. Wang et al., “Relation among rolling parameters, microstructures and 

mechanical properties in an acicular ferrite pipeline steel,” Materials & Design, 30 

(2009) 3436-3443. 

84. C.P.a.A. DeVito, “High-strength microalloyed pipe steels resistant to hydrogen-

induced failures,” MiCon 78: Optimization of Processing, Properties, and Service 

Performance Through Microstructural Control, 672 (1979) 53. 

85. Y.M. Kim et al., “Transformation behavior and microstructural characteristics of 

acicular ferrite in linepipe steels,” Materials Science and Engineering: A, 478 

(2008) 361-370. 

86. C. Shang et al., “Forming and controlling of the acicular ferrite in low carbon 

microalloyed steel,” Acta Metallurgica Sinica(China), 41 (2005) 471-476. 

87. M.-C. Zhao et al., “Difference in the role of non-quench aging on mechanical 

properties between acicular ferrite and ferrite-pearlite pipeline steels,” ISIJ 

international, 45 (2005) 116-120. 

88. Z. Tang and W. Stumpf, “The role of molybdenum additions and prior deformation 

on acicular ferrite formation in microalloyed Nb–Ti low-carbon line-pipe steels,” 

Materials Characterization, 59 (2008) 717-728. 

89. J.L. Lee et al., “The intermediate transformation of Mn-Mo-Nb steel during 

continuous cooling,” Journal of materials science, 22 (1987) 2767-2777. 

90. M.C. Zhao et al., “Continuous cooling transformation of undeformed and deformed 

low carbon pipeline steels,” Materials Science and Engineering: A, 355 (2003) 

126-136. 

91. R. Zhang and J. Boyd, “Bainite transformation in deformed austenite,” 

Metallurgical and Materials Transactions A, 41 (2010) 1448-1459. 



 

184 

 

92. S. Okaguchi et al., “Morphology of Widmanstatten and Bainitic Ferrites,” Materials 

Transactions, JIM(Japan), 32 (1991) 697-704. 

93. G. Kurdjumov and G. Sachs, “Over the mechanisms of steel hardening,” Z. Phys, 

64 (1930) 325-343. 

94. Z. Nishiyama, “X-ray investigation of the mechanism of the transformation from 

face centered cubic lattice to body centered cubic,” Sci. Rep. Tohoku Univ, 23 

(1934) 637-664. 

95. G. Wassermann, “Influence of the--transformation of an irreversible Ni steel onto 

crystal orientation and tensile strength,” Arch. Eisenhüttenwes, 126 (1933) 647. 

96. P.M. Kelly et al., “The orientation relationship between lath martensite and 

austenite in low carbon, low alloy steels,” Acta Metallurgica Et Materialia, 38 

(1990) 1075-1081. 

97. A.B. Greninger and A.R. Troiano, “The mechanism of martensite formation,” Trans. 

AIME, 185 (1949) 590-598. 

98. P.M. Kelly, “Crystallography of lath martensite in steels,” Materials Transactions, 

JIM, 33 (1992) 235-242. 

99. N. Takayama et al., “Effects of transformation temperature on variant pairing of 

bainitic ferrite in low carbon steel,” Acta Materialia, 60 (2012) 2387-2396. 

100. M. Butrón-Guillén et al., “A variant selection model for predicting the 

transformation texture of deformed austenite,” Metallurgical and Materials 

Transactions A, 28 (1997) 1755-1768. 

101. S. Zhang et al., “Variant selection of low carbon high alloy steel in an austenite 

grain during martensite transformation,” ISIJ international, 52 (2012) 510-515. 

102. A.-F. Gourgues, “Microtexture induced by the bainitic transformation in steels 

during welding. Effect on the resistance to cleavage cracking,” Materials Science 

Forum, 426 (2003) 3629-3634. 

103. M. Abbasi et al., “An approach to prior austenite reconstruction,” Materials 

Characterization, 66 (2012) 1-8. 

104. K. Iwashita et al., “Formation mechanism of the hierarchic structure in the lath 

martensite phase in steels,” Philosophical Magazine, 91 (2011) 4495-4513. 

105. H.K.D.H. Bhadeshia and D.V. Edmonds, “The bainite transformation in a silicon 

steel,” Metallurgical Transactions A, 10 (1979) 895-907. 

106. H.K.D.H. Bhadeshia and D.V. Edmonds, “Mechanism of bainite formation in 

steels,” Acta Metallurgica, 28 (1980) 1265-1273. 

107. B.P.J. Sandvik, “The Bainite reaction in Fe-Si-C Alloys: The primary stage,” 

Metallurgical Transactions A, 13 (1982) 777-787. 



 

185 

 

108. H. Ling and W. Owen, “A model of the thermoelastic growth of martensite,” Acta 

Metallurgica, 29 (1981) 1721-1736. 

109. K.i. Shimizu et al., “The association of martensite platelets with austenite stacking 

faults in an Fe-8Cr-1C alloy,” Acta Metallurgica, 18 (1970) 1005-1011. 

110. A. Lambert-Perlade et al., “Austenite to bainite phase transformation in the heat-

affected zone of a high strength low alloy steel,” Acta Materialia, 52 (2004) 2337-

2348. 

111. A. Lambert-Perlade et al., “Mechanisms and modeling of cleavage fracture in 

simulated heat-affected zone microstructures of a high-strength low alloy steel,” 

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials 

Science, 35 (2004) 1039-1053. 

112. T. Furuhara and T. Maki, “Variant selection in heterogeneous nucleation on 

defects in diffusional phase transformation and precipitation,” Materials Science 

and Engineering: A, 312 (2001) 145-154. 

113. T. Furuhara et al., “Key factors in grain refinement of martensite and bainite,”  

Materials Science Forum, Trans Tech Publ, 2010, 3044-3049. 

114. T. Furuhara et al., “Variant selection in grain boundary nucleation of upper bainite,” 

Metallurgical and Materials Transactions A, 39 (2008) 1003-1013. 

115. K. Tsuzaki et al., “Potency of grain boundaries as martensitic nucleation sites,” Le 

Journal de Physique IV, 5 (1995) C8-167-C168-172. 

116. G. Olson and M. Cohen, “A general mechanism of martensitic nucleation: Part 

II. FCC→  BCC and other martensitic transformations,”  Metallurgical and 

Materials Transactions A, 7 (1976) 1905-1914. 

117. M. Ueda et al., “Effect of grain boundary character on the martensitic 

transformation in Fe–32at.% Ni bicrystals,” Acta materialia, 49 (2001) 3421-3432. 

118. M. Ueda et al., “Controlling factor for nucleation of martensite at grain boundary 

in Fe-Ni bicrystals,” Acta materialia, 51 (2003) 1007-1017. 

119. T. Furuhara et al., “Crystallography of upper bainite in Fe–Ni–C alloys,” Materials 

Science and Engineering: A, 431 (2006) 228-236. 

120. S. Morito et al., “The morphology and crystallography of lath martensite in Fe-C 

alloys,” Acta Materialia, 51 (2003) 1789-1799. 

121. L. Lan et al., “Effect of austenite grain size on isothermal bainite transformation 

in low carbon microalloyed steel,” Materials Science and Technology, 27 (2011) 

1657-1663. 

122. S. Morito et al., “The morphology and crystallography of lath martensite in alloy 

steels,” Acta materialia, 54 (2006) 5323-5331. 



 

186 

 

123. T. Swarr and G. Krauss, “The effect of structure on the deformation of as-

quenched and tempered martensite in an Fe-0.2 pct C alloy,” Metallurgical 

Transactions A, 7 (1976) 41-48. 

124. K. Zhu et al., “Characterization and quantification methods of complex BCC 

matrix microstructures in advanced high strength steels,” Journal of Materials 

Science, 48 (2013) 413-423. 

125. K. Shibata and K. Asakura, “Transformation behavior and microstructures in ultra-

low carbon steels,” ISIJ international, 35 (1995) 982-991. 

126. P. Cizek et al., “The Effect of Simulated Thermomechanical Processing on the 

Transformation Behavior and Microstructure of a Low-Carbon Mo-Nb Linepipe 

Steel,” Metallurgical and Materials Transactions A, 46 (2014) 407-425. 

127. J.-Y. Kang et al., “Phase analysis of steels by grain-averaged EBSD functions,” 

ISIJ international, 51 (2011) 130-136. 

128. S. Zaefferer et al., “EBSD as a tool to identify and quantify bainite and ferrite in 

low‐alloyed Al‐TRIP steels,” Journal of Microscopy, 230 (2008) 499-508. 

129. D.G. Stalheim, “The use of high temperature processing (HTP) steel for high 

strength oil and gas transmission pipeline applications,” Iron & Steel, 40 (2005) 

699-704. 

130. M. Mirza and C. Sellars, “Modelling the hot plane strain compression test Part 2–

Effect of friction and specimen geometry on spread,” Materials science and 

technology, 17 (2001) 1142-1148. 

131. J.S. Hinton, “Laboratory simulation of microstructural evolution in AISI 430 

Ferritic Stainless Steel during the Steckel Mill Process,” (Ph.D. thesis, University 

of Sheffield, 2006). 

132. E. Palmiere et al., “Compositional and microstructural changes which attend 

reheating and grain coarsening in steels containing niobium,” Metallurgical and 

Materials Transactions A, 25 (1994) 277-286. 

133. A. Gorni and J.D. da Silveira, “Accelerated cooling of steel plates: the time has 

come,” Quenching and Cooling, Residual Stress and Distortion Control,ed. ASTM 

International,(ASTM International, 2010),  

134. M. Brammer, “Plate mills for higher-strength products,” Ironmaking & 

steelmaking, 33 (2006) 353-356. 

135. B. Xiao, “Multipass Laboratory Simulations of Steel Plate Hot Rolling for 

Improved Steel Productivity,” (Ph.D. thesis, University of Sheffield, 2013). 

136. D. Jorge-Badiola et al., “Influence of Thermomechanical Processing on the 

Austenite-Pearlite Transformation in High Carbon Vanadium Microalloyed 

Steels,” Isij International, 50 (2010) 546-555. 



 

187 

 

137. S. Hashimoto and M. Nakamura, “Effects of microalloying elements on 

mechanical properties of reinforcing bars,” Isij International, 46 (2006) 1510-1515. 

138. M. Mirza and C. Sellars, “Modelling the hot plane strain compression test Part 1–

Effect of specimen geometry, strain rate, and friction on deformation,” Materials 

Science and Technology, 17 (2001) 1133-1141. 

139. M. Mirza and C. Sellars, “Modelling hot plane strain compression test Part 3–

Effect of asymmetric conditions,” Materials science and technology, 23 (2007) 

567-576. 

140. S.L. Shrestha et al., “An automated method of quantifying ferrite microstructures 

using electron backscatter diffraction (EBSD) data,” Ultramicroscopy. 

141. J. Wu et al., “Image quality analysis: a new method of characterizing 

microstructures,” ISIJ international, 45 (2005) 254-262. 

142. H. Kawata et al., “Crystallography of ausformed upper bainite structure in Fe–

9Ni–C alloys,” Materials Science and Engineering: A, 438 (2006) 140-144. 

143. O. Engler and V. Randle, Introduction to texture analysis: macrotexture, 

microtexture, and orientation mapping (CRC press, 2009). 

144. K. Mingard et al., “Grain size measurement by EBSD in complex hot deformed 

metal alloy microstructures,” Journal of microscopy, 227 (2007) 298-308. 

145. S. Valcke et al., “Electron backscattered diffraction as a tool to quantify subgrains 

in deformed calcite,” Journal of microscopy, 224 (2006) 264-276. 

146. L. Sun et al., “Mapping microstructure inhomogeneity using electron backscatter 

diffraction in 316L stainless steel subjected to hot plane strain compression tests,” 

Materials Science and Technology, 26 (2010) 1477-1486. 

147. H. Kitahara et al., “Crystallographic features of lath martensite in low-carbon steel,” 

Acta Materialia, 54 (2006) 1279-1288. 

148. S. Kim et al., “Relationship between yield ratio and the material constants of the 

Swift equation,” Metals and Materials International, 12 (2006) 131-135. 

149. F.R. Xiao et al., “Challenge of mechanical properties of an acicular ferrite pipeline 

steel,” Materials Science and Engineering: A, 431 (2006) 41-52. 

150. D. Bai et al., “Effect of deformation and cooling rate on the microstructures of low 

carbon Nb-B steels,” ISIJ international, 38 (1998) 371-379. 

151. N.Y. Zolotarevskii et al., “Effect of the Grain Size and Deformation Substructure 

of Austenite on the Crystal Geometry of Bainite and Martensite in Low-Carbon 

Steels,” Metal Science and Heat Treatment, 55 (2014) 550-558. 

152. L. Malet et al., “Variant selection during the γ-to-α< sub> b</sub> phase 

transformation in hot-rolled bainitic TRIP-aided steels,” Scripta materialia, 61 

(2009) 520-523. 



 

188 

 

153. B. Dutta and E. Palmiere, “Effect of prestrain and deformation temperature on the 

recrystallization behavior of steels microalloyed with niobium,” Metallurgical and 

Materials Transactions A, 34 (2003) 1237-1247. 

154. M. Loveday et al., “Measurement of flow stress in hot plane strain compression 

tests,” Materials at High Temperatures, 23 (2006) 85-118. 

155. I. Yakubtsov and J. Boyd, “Bainite transformation during continuous cooling of 

low carbon microalloyed steel,” Materials science and technology, 17 (2001) 296-

301. 

156. P. Uranga et al., “Transition between static and metadynamic recrystallization 

kinetics in coarse Nb microalloyed austenite,” Materials Science and Engineering: 

A, 345 (2003) 319-327. 

157. J.W. Brooks et al., “Direct observations of martensite nuclei in stainless steel,” 

Acta Metallurgica, 27 (1979) 1839-1847. 

158. G.B. Olson and M. Cohen, “A mechanism for the strain-induced nucleation of 

martensitic transformations,” Journal of the Less Common Metals, 28 (1972) 107-

118. 

159. M. Suezawa and H. Cook, “On the nucleation of martensite,” Acta Metallurgica, 

28 (1980) 423-432. 

160. H.K. Yeddu et al., “Strain-induced martensitic transformation in stainless steels: 

A three-dimensional phase-field study,” Acta Materialia, 61 (2013) 6972-6982. 

161. X. Li et al., “Influence of prior austenite grain size on martensite–austenite 

constituent and toughness in the heat affected zone of 700MPa high strength 

linepipe steel,” Materials Science and Engineering A, 616 (2014) 141-147. 

162. C. Magee, “Nucleation of martensite,” PAPER FROM PHASE 

TRANSFORMATIONS, ASM. 1970, 115-156, (1970). 

163. J. Christian, “The mechanism of phase transformations in crystalline solids,” 

Institute of Metals, London, 231 (1969) 129-142. 

164. T. Shigeta et al., “The Effects of Ausforming on Variant Selection of Martensite 

in Cr-Mo Steel,” Quarterly Journal of the Japan Welding Society, 31 (2013) 178s-

182s. 

165. S. Yamamoto et al., “Effects of the austenite grain size and deformation in the 

unrecrystallized austenite region on bainite transformation behavior and 

microstructure,” ISIJ international, 35 (1995) 1020-1026. 

166. J. Yang et al., “The influence of plastic deformation and cooling rates on the 

microstructural constituents of an ultra-low carbon bainitic steel,” ISIJ 

international, 35 (1995) 1013-1019. 



 

189 

 

167. K. Fujiwara et al., “Effect of hot deformation on bainite structure in low carbn 

steels,” ISIJ international, 35 (1995) 1006-1012. 

168. M. Olasolo et al., “Effect of austenite microstructure and cooling rate on 

transformation characteristics in a low carbon Nb–V microalloyed steel,” 

Materials Science and Engineering: A, 528 (2011) 2559-2569. 

169. H. Bhadeshia, “Some phase transformations in steels,” Materials science and 

technology, 15 (1999) 22-29. 

170. F. Xiao et al., “Acicular ferritic microstructure of a low-carbon Mn-Mo-Nb 

microalloyed pipeline steel,” Materials Characterization, 54 (2005) 305-314. 

171. G. Rees et al., “The effect of niobium in solid solution on the transformation 

kinetics of bainite,” Materials Science and Engineering: A, 194 (1995) 179-186. 

172. M. Thomas and G. Michal, The Influence of Niobium and Nb (C, N) Precipitation 

on the Formation of Proeutectic Ferrite in Low-Alloy Steels, in: H.I. Aaronson 

(Ed.) Solid to Solid Phase Transformations, TMS-AIME, Warrendale, PA 1981, 

pp. 469-473. 

173. R. de Avillez, “Niobium Technical Report,” NbTR, 1  82. 

174. V. Tari et al., “Back calculation of parent austenite orientation using a clustering 

approach,” Journal of Applied Crystallography, 46 (2013) 210-215. 

175. P. Shipway and H. Bhadeshia, “The mechanical stabilisation of Widmanstätten 

ferrite,” Materials Science and Engineering: A, 223 (1997) 179-185. 

176. R.H. Larn and J.R. Yang, “The effect of compressive deformation of austenite on 

the bainitic ferrite transformation in Fe-Mn-Si-C steels,” Materials Science and 

Engineering A, 278 (2000) 278-291. 

177. R. Larn and J. Yang, “The effect of compressive deformation of austenite on the 

Widmanstätten ferrite transformation in Fe–Mn–Si–C steel,” Materials Science 

and Engineering: A, 264 (1999) 139-150. 

178. P. Shipway and H. Bhadeshia, “Mechanical stabilisation of bainite,” Materials 

science and technology, 11 (1995) 1116-1128. 

179. S. Singh and H. Bhadeshia, “Quantitative evidence for mechanical stabilization of 

bainite,” Materials science and technology, 12 (1996) 610-612. 

180. S. Chatterjee et al., “Mechanical stabilisation of austenite,” Materials Science and 

Technology, 22 (2006) 641-644. 

181. W.C. Leslie and R.L. Miller, “The stabilization of austenite by closely spaced 

boundaries,” ASM Trans. Q., 57 (1964) 972-979. 

182. E.S. Machlin and M. Cohen, “Burst phenomenon in the martensitic 

transformation,” Trans. AIME, 191 (1951) 746-754. 



 

190 

 

183. R.W.K. Honeycombe, “The plastic deformation of metals,” (1975). 

184. H. Bhadeshia, “A rationalisation of shear transformations in steels,” Acta 

Metallurgica, 29 (1981) 1117-1130. 

185. D. Hughes et al., “Geometrically necessary boundaries, incidental dislocation 

boundaries and geometrically necessary dislocations,” Scripta Materialia, 48 

(2003) 147-153. 

186. A. Taylor et al., “Orientation dependence of the substructure characteristics in a 

Ni–30Fe austenitic model alloy deformed in hot plane strain compression,” Acta 

materialia, 60 (2012) 1548-1569. 

187. M. Ashby, “The deformation of plastically non-homogeneous materials,” 

Philosophical Magazine, 21 (1970) 399-424. 

188. S. Babu and H. Bhadeshia, “Mechanism of the transition from bainite to acicular 

ferrite,” Materials Transactions, JIM(Japan), 32 (1991) 679-688. 

189. M. Dı́az-Fuentes and I. Gutiérrez, “Analysis of different acicular ferrite 

microstructures generated in a medium-carbon molybdenum steel,” Materials 

Science and Engineering: A, 363 (2003) 316-324. 

190. G. Miyamoto et al., “Variant selection of lath martensite and bainite 

transformation in low carbon steel by ausforming,” Journal of Alloys and 

Compounds, (2012). 

191. N. Isasti et al., “Effect of Composition and Deformation on Coarse-Grained 

Austenite Transformation in Nb-Mo Microalloyed Steels,” Metallurgical and 

Materials Transactions A, 42 (2011) 3729-3742. 

192. A. Garcia-Junceda et al., “Dependence of martensite start temperature on fine 

austenite grain size,” Scripta Materialia, 58 (2008) 134-137. 

193. M. Umemoto et al., “Prediction of hardenability effects from isothermal 

transformation kinetics,” Journal of Heat Treating, 1 (1980) 57-64. 

194. M. Umemoto et al., “Transformation kinetics of bainite during isothermal holding 

and continuous cooling,” Tetsu-to-Hagane, 68 (1982) 461-470. 

195. A. Matsuzaki and H. Bhadeshia, “Effect of austenite grain size and bainite 

morphology on overall kinetics of bainite transformation in steels,” Materials 

Science and Technology, 15 (1999) 518-522. 

196. S.-J. Lee et al., “Effect of austenite grain size on the transformation kinetics of 

upper and lower bainite in a low-alloy steel,” Scripta Materialia, 59 (2008) 87-90. 

197. J. Barford and W. Owen, “The effect of austenite grain size and temperature on 

the rate of bainita transformation,” Metal Science and Heat Treatment, 4 (1962) 

359-360. 



 

191 

 

198. G. Rees and H. Bhadeshia, “Bainite transformation kinetics Part 1 Modified 

model,” Materials Science and Technology, 8 (1992) 985-993. 

199. E. Davenport et al., “Influence of Austenite Grain Size upon Isothermal 

Transformation Behavior of SAE 4140 Steel,” Trans. AIME, 145 (1941) 301. 

200. G. Xu et al., “A new approach to quantitative analysis of bainitic transformation 

in a superbainite steel,” Scripta Materialia, 68 (2013) 833-836. 

201. R. Farrar et al., “The effect of prior austenite grain size on the transformation 

behaviour of C-Mn-Ni weld metal,” Journal of materials science, 28 (1993) 1385-

1390. 

202. Standard Test Methods for Determining Average Grain Size, ASTM International, 

2013. 

203. T. Furuhara et al., “Key factors in grain refinement of martensite and bainite,” 

Materials Science Forum, 638 (2010) 3044-3049. 

204. V. Pancholi et al., “Self-accommodation in the bainitic microstructure of ultra-

high-strength steel,” Acta Materialia, 56 (2008) 2037-2050. 

205. L. Rancel et al., “Measurement of bainite packet size and its influence on cleavage 

fracture in a medium carbon bainitic steel,” Materials Science and Engineering: A, 

530 (2011) 21-27. 

206. J. Guimarães and J. Gomes, “A metallographic study of the influence of the 

austenite grain size on martensite kinetics,” Acta Metallurgica, 26 (1978) 1591-

1596. 

207. M. Umemoto and W. Owen, “Effects of austenitizing temperature and austenite 

grain size on the formation of athermal martensite in an iron-nickel and an iron-

nickel-carbon alloy,” Metallurgical transactions, 5 (1974) 2041-2046. 

208. S. Mujahid and H. Bhadeshia, “Partitioning of carbon from supersaturated ferrite 

plates,” Acta metallurgica et materialia, 40 (1992) 389-396. 

209. S. Lee et al., “Transformation strengthening by thermomechanical treatments in 

C-Mn-Ni-Nb steels,” Metallurgical and Materials Transactions A, 26 (1995) 1093-

1100. 

210. T. Kvackaj and I. Mamuzic, “A quantitative characterization of austenite 

microstructure after deformation in nonrecrystallization region and its influence 

on ferrite microstructure after transformation,” ISIJ international, 38 (1998) 1270-

1276. 

211. N. Hansen and B. Ralph, “The strain and grain size dependence of the flow stress 

of copper,” Acta Metallurgica, 30 (1982) 411-417. 

212. H. Mecking and U. Kocks, “Kinetics of flow and strain-hardening,” Acta 

Metallurgica, 29 (1981) 1865-1875. 



 

192 

 

213. R. Cochrane, “The effect of second-phase particles on the mechanical properties 

of steel,” The Iron and Steel Institute, (1971) 101-106. 

214. J.J. Jonas et al., “The Avrami kinetics of dynamic recrystallization,” Acta 

Materialia, 57 (2009) 2748-2756. 

215. J.J. Jonas, “Transformation textures associated with steel processing,” 

Microstructure and Texture in Steels,ed. Springer,(Springer, 2009), 3-17 

216. J. Rasti et al., “Influence of grain size on the dynamic recrystallization behavior 

of AISI 304 stainless steel during hot deformation,” International Journal of 

Materials Research, 103 (2012) 483-489. 

217. A. Dehghan-Manshadi and P. Hodgson, “Dependency of recrystallization 

mechanism to the initial grain size,” Metallurgical and Materials Transactions A, 

39 (2008) 2830-2840. 

 


