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Abstract

Model Driven Engineering (MDE) is a state-of-the-art software engineering approach,

which adopts models as first class artefacts. In MDE, modelling tools and task-specific

model management languages are used to reason about the system under development

and to (automatically) produce software artefacts such as working code and documen-

tation.

Existing tools which provide state-of-the-art model management languages exhibit the

lack of support for automatic static analysis for error detection (especially when models

defined in various modelling technologies are involved within a multi-step MDE develop-

ment process) and for performance optimisation (especially when very large models are

involved in model management operations). This thesis investigates the hypothesis that

static analysis of model management programs in the context of MDE can help with

the detection of potential runtime errors and can be also used to achieve automated

performance optimisation of such programs. To assess the validity of this hypothesis,

a static analysis framework for the Epsilon family of model management languages is

designed and implemented. The static analysis framework is evaluated in terms of its

support for analysis of task-specific model management programs involving models de-

fined in different modelling technologies, and its ability to improve the performance of

model management programs operating on large models.
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1. Introduction

The complexity of software grows as technologies advance. Today’s software engineers

build complex systems with interoperating components and sophisticated graphical user

interfaces, due to the fact that computers are ubiquitous and software systems are

adopted to process data in more fields and contexts. To address software complexity, a

variety of software engineering methodologies and technologies, which aim to improve

the quality of software and productivity of software developers, have been proposed and

adopted over the years. Although methodologies and technologies may focus on different

aspects and may vary significantly from each other, they share a common vision: to raise

the level of abstraction at which software is designed and implemented.

This trend is evident from the shift of software engineering technologies. For exam-

ple, software engineers have moved from assembly languages programming to procedure

oriented programming (e.g. Fortran, C), object oriented programming (e.g. C++, Java,

.NET) and aspect oriented programming (e.g. AspectJ). Designing and implementing

software at a raised level of abstraction allows software engineers to manage software

complexity by focusing on the more important aspects of the software system, in order

to improve its quality and the productivity of the software engineers.

Model Driven Engineering (MDE) is a contemporary software engineering approach

which enables engineers to abstract away technological details (such as programming

languages) and focus on the problem domain of the system (specific domains such as bank

account management systems, patient record management systems, etc.). To this extent,

models are used to capture the relevant details of the problem domain. A MDE-based

software development process is driven by performing a series of task-specific model

management operations on the models to automatically produce software artefacts such

as working code and documentation.
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1. Introduction

This chapter presents a brief overview of the current state of practice of Model Driven

Engineering and highlights the problems that motivated the work of this thesis. The

research hypothesis and methodology are also outlined and a summary of the results

and the main contributions of the thesis is provided. Finally, this chapter provides an

overview of the organisation of this thesis and a summary of the remaining chapters.

1.1. Motivation

This section presents a summary of the current state of practice of MDE and highlights

the problems that motivated the work presented in this thesis.

1.1.1. Model Driven Engineering: State of Practice

The practice of MDE involves two important aspects, modelling and model management.

Modelling is essentially a process of applying abstraction to describe a system within a

problem domain. Models can be characterised as structured or unstructured. A struc-

tured model is a type of model which conforms to a set of syntactic well-formedness

constraints which is known as the model’s modelling language or metamodel. An un-

structured model is a type of model which does not conform to any rules (or meta-

models). In MDE, developers have the freedom to define their own modelling languages

which capture relevant concepts within their problem domains. Using such modelling

languages, developers are able to describe their systems by producing models that con-

form to them. The current state of practice of MDE involves managing models defined

in different technologies. Existing modelling technologies include the Eclipse Modelling

Framework (EMF) [6], Meta Data Repository (MDR) [10], etc. Some tools also support

models defined using plain XML, CSV, etc. [9]. Currently, modelling languages can also

be defined using graphical notations (e.g. EMF) and textual notations (e.g. Emfatic

[11], Xtext[12] etc.)

In order to deliver its promised benefits, MDE also relies on mechanisms that are

able to automate a range of task-specific model management operations. For example,

to realise the benefits of increased productivity in software construction, mechanisms

that can automatically generate (programming language) source code from models are
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desirable. To enable interchange of models between different modelling languages/tech-

nologies, mechanisms that can automatically transform models defined in one modelling

technology to models defined in other technologies are desirable. In the current state

of practice of MDE, existing task-specific model management operations include model

validation, text-to-model transformation, model-to-model transformation, model-to-text

transformation, model comparison, model merging, etc. There is also a broad range of

task-specific model management languages (backed by different tools/platforms) within

the context of MDE which enable such model management operations (discussed in

Chapter 2).

MDE provides well documented benefits over traditional approaches to software en-

gineering. Case studies suggest that adopting MDE can improve the productivity by

reducing the amount of time required to develop a system by means of automated model

transformations. Adopting MDE also reduces the number of errors discovered through-

out development [13]. In [14, 15], MDE has been shown to increase productivity by

as much as a factor of 10. The use of MDE also introduces benefits in maintaining

software systems. For example, to re-deploy an existing system onto another platform

(possibly in another programming language), model transformations can be devised to

automatically generate source code in the target programming language.

Whilst MDE brings many benefits, it faces a number of challenges. Firstly, as the

languages and tools in MDE are relatively new (mature tools have been around for about

5 years), few tools support automatic analysis and validation of model management

programs to detect potential runtime errors at compile time. On the other hand, as

MDE has been increasingly applied to larger and more complex systems [16, 17] over

the last decade, several studies have observed that existing tools are being stressed to

their limits in terms of their capacity to efficiently support tasks such as management

and persistence of large models with more than a few million model elements [18]. There

are also many other challenges to MDE, such as learning curve and adoption [19]. This

thesis focuses on the first two challenges identified.
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1.1.2. Static Analysis in MDE

Software defects have been around as long as software. This is due to the fact that

software is implemented by humans, and it is inevitable that human actions often pro-

duce incorrect results [20]. Fixing defects gets more expensive the later the defects are

identified in the development process. Software companies typically spend more than

80% of their development budget on quality control [21]. Thus, it is desirable to identify

potential defects in the software as early in the development process as possible.

A number of defect detection methodologies are used to identify potential defects

in the software. Defect detection can be achieved through dynamic testing and static

analysis. Dynamic testing and static analysis are often used together to ensure the

quality of software. Apart from defect detection, static analysis can also be used to

fulfil other purposes. For example, static analysis techniques are often used in compilers

to optimise the performance of programs. For instance, data flow analysis [22] is often

carried out by compilers to determine very busy expressions so that such expressions are

evaluated only once at runtime to avoid heavy computations (discussed in Chapter 3).

In the context of MDE, despite the raised level of abstraction, model management

programs are still likely to contain defects. Whilst dynamically testing model man-

agement programs has received much attention and a number of approaches have been

proposed and implemented [23, 24], there is limited literature on static analysis in the

context of MDE. Although a number of static analysis tools have been implemented

for OCL, ATL, IncQuery, etc. [25, 26, 7, 8], the functionality of such tools is mostly

limited to providing auto-completion facilities and defect detection facilities. Chapter 4

reviews, compares and highlights the limitations of existing static analysis tools in MDE.

Throughout the review, the following limitations of existing static analysis tools in MDE

have been identified:

• Lack of support for analysis of cross-technology model management.

There is no support for static analysis of model management programs that involve

models captured using different technologies (e.g. a transformation that produces

an EMF model from an XML document or a set of constraints that validates a

UML model against a spreadsheet-based model).
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• Little reuse between static analysers of different languages. Although

model management languages share a lot of functionalities (e.g. support for model

navigation) and even syntax (e.g. many model management languages reuse sub-

sets of OCL), they are typically implemented from scratch. As a result, static

analysis facilities that could benefit a wide range of model management tasks (e.g.

partial model loading – discussed in Chapter 9) need to be implemented a number

of times on top of similar technical architectures.

• Lack of automated performance analysis and optimisation

through static analysis. Existing static analysis tools for MDE are mostly lim-

ited to error detection and auto-completion. However, as discussed in Chapter 3,

static analysis can also be used to optimise performance by identifying performance

hotspots (e.g. very-busy-expression detection). In the context of MDE, there is no

static analysis tool that provides the support for automated performance analysis

and optimisation.

1.1.3. Scalability in MDE

Scalability has been recognised as a major challenge to the wider adoption of MDE [27].

As MDE is increasingly applied to larger and more complex systems, the current genera-

tion of modelling and model management technologies are being stressed to their limits in

terms of their capacity to accommodate collaborative development, efficient management

and persistence of models (in XMI1 format) larger than a few hundreds of megabytes in

size. In [18], the authors identify a number of scalability challenges that MDE needs to

address towards its wider adoption, such as providing scalable domain specific languages,

scalable query and transformation engines, scalable collaborative modelling and scalable

model persistence. Therefore, it is imperative for MDE to achieve scalability across the

MDE technical space so that it can remain relevant and continue to deliver its widely

recognised benefits. A number of existing technologies/approaches have been proposed

to target scalability, including building incremental query and transformation engines

[28, 8], providing performance optimisation for transformations such as lazy loading [29]

1XML Metadata Interchange
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and storing models using state-of-the-art database technologies as opposed to storing

models in text-based technologies [30, 31, 32].

1.2. Hypothesis and Objectives

With respect to the current situation discussed above, the context of the research hy-

pothesis is as follows:

A Model Driven Engineering process involves many different model management tasks

such as validation, model-to-model transformation, model-to-text transformation, com-

parison and merging. Model management programs that automate such tasks inevitably

contain defects. Currently, there is a number of static analysis tools built for indepen-

dent MDE languages/tools, but their capabilities are limited in terms of their ability to

handle models defined in diverse modelling languages. In addition, independent model

management languages and tools may lead to consistency, reuse and interoperability

problems. Thus, there is a need for a static analysis framework that can target a broad

range of model management languages with consistent syntax, which are able to si-

multaneously manage models defined in diverse modelling languages/technologies. To

this end, the Epsilon platform [9] has been selected as the research platform for the

work presented in this thesis, due to its extensible support for a broad range of model

management languages, and a variety of modelling technologies.

From a static analysis point of view, existing MDE static analysis tools lack the sup-

port for automated performance analysis and optimisation. Apart from defect detection,

static analysis can also be used to optimise performance of programs. In the context

of this thesis, the static analysis for model management programs may also be used to

address the scalability challenges for MDE.

In this context, the hypothesis of this thesis is stated as follows:

Reusable static analysis facilities can be used to identify errors in different types of

model management programs (e.g. model transformations, validation constraints) that

operate on multiple models defined using diverse modelling technologies, and to enhance

the performance of programs operating on large models.
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The objectives of the thesis are:

• To build a static analysis framework for the Epsilon platform, atop which reusable

static analysis tools can be developed;

• To build a facility which supports the analysis of programs that manage models

defined in diverse modelling technologies;

• To use the framework to develop static analysis tools for the Epsilon model man-

agement languages demonstrating its reusability and extensibility;

• To use the static analysis framework to develop facilities for analysis and automated

optimisation of the performance of programs operating on large models.

Although this research positions Epsilon as its research platform, the outcomes of this

research are not bound to Epsilon. Since EOL re-uses a large part of OCL’s (Object

Constraint Language) syntax, the static analysis techniques presented in this thesis can

be applied to any language with an OCL-like syntax without extensive changes. On

the other hand, the means to address scalability through static analysis can be used as

approaches to solve similar problems for other model management languages/tools.

1.3. Research Methodology

A typical software engineering process involving analysis, design, implementation and

testing iterations has been followed to evaluate the research hypothesis.

1.3.1. Iterative Analysis

In the analysis phase, an in-depth analysis of the Epsilon Model Connectivity (EMC,

Section 6.1) and Epsilon Object Language (EOL, Section 6.4.1) was performed to study

how the static analysis framework can be implemented to achieve the same extensi-

bility as EMC and EOL in order to construct the infrastructure of the static analysis

framework.
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After the infrastructure of the static analysis framework was constructed, analysis was

performed to discover which static analysis technique was best suited for the purpose of

this research, in order to construct the static analysis framework.

After the static analysis framework was implemented, analysis was performed on the

Epsilon Validation Language (EVL, Section 8.1) and the Epsilon Transformation Lan-

guage (ETL, Section 8.2) in order to implement static analysers for these two languages.

Once the static analysis framework was constructed, analysis was performed to dis-

cover how the static analysis framework could be extended to implement facilities that

provide automated performance analysis and optimisation to address the scalability chal-

lenges from various aspects.

1.3.2. Iterative Design and Implementation

Following the first analysis iteration, an extensible model connectivity layer fulfilling

the purpose of static analysis was designed and implemented. Altogether, a metamodel

of EOL was designed and implemented, together with a facility that transforms EOL

programs into EOL models that conform to the EOL metamodel.

Following the second analysis iteration, a static analysis facility which performs anal-

ysis on EOL programs was designed and implemented.

Following the third analysis iteration, the static analysis framework was extended to

add the modules in order to support the analysis of programs written in EVL and ETL.

Following the fourth analysis iteration, automated performance analysis and optimi-

sation facilities were designed and implemented which address the scalability challenges

in MDE from different aspects.

1.3.3. Iterative Testing and Evaluation

Throughout the design and implementation phases, several case studies have been used

to assess the quality and usefulness of the proposed approach and the correctness of the

implementation. Significant feedback has been provided by academic peers who have

reviewed publications on several aspects of the framework. Errors and design defects

were identified throughout the testing and were considered in the next analysis, design
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and implementation iterations.

1.4. Research Results

As a result of this work, an extensible static analysis framework (named the Epsilon static

analysis framework), which provides support for analysing model management programs

written in Epsilon languages interacting with models defined in diverse modelling tech-

nologies, has been constructed. The Epsilon static analysis framework comprises two

components. To access metamodels defined in different modelling technologies, an ex-

tensible model connectivity layer, the Epsilon Static Analysis Model Connectivity layer

(ESAMC) was designed and implemented. To analyse programs written in Epsilon lan-

guages, a core static analyser for the Epsilon Object Language (EOL) was designed and

implemented. These two infrastructural components enable the development of mod-

elling technology specific drivers and of static analysers for other Epsilon languages. A

schema-less XML driver was created atop ESAMC so that programs involving schema-

less XML models can be analysed by the Epsilon static analysis framework. Static

analysers for the Epsilon Validation Language (EVL) and the Epsilon Transformation

Language (ETL) were also developed atop the core EOL static analyser so that EVL

and ETL programs can also be analysed.

Apart from static analysis facilities for potential runtime error detection for programs

written in EOL, EVL and ETL, this thesis has also contributed three automated per-

formance analysis and optimisation facilities. A sub-optimal performance pattern de-

tection facility has been constructed, which aims to detect sub-optimal source code

patterns that can lead to potential performance degradation. A set of more efficient

computation strategies for accessing model elements (the call to allInstances() and op-

erations of the same nature) which exploit the results of static analysis, have been

implemented, which demonstrates significant performance improvement. A facility has

been constructed which is able to partially load XMI2-based models by exploiting the

results of static analysis, which demonstrates significant improvements in loading time

and resource consumption.

2XML Metadata Interchange
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The hypothesis has been validated by demonstrating that programs which simultane-

ously manage models defined in different modelling technologies can be statically anal-

ysed to identify potential runtime errors, and that the results of static analysis can be

exploited to achieve automated performance optimisation of programs that manage very

large models.

1.5. Summary of Contributions

The contributions of the work presented in this thesis to the Epsilon platform, and to

model management in general are listed as follows:

1.5.1. Contributions to Epsilon

To investigate and assess the validity of the hypothesis of this thesis, a static analysis

framework for languages the Epsilon platform was developed. This contributed the

following facilities to Epsilon:

• Ecore-based EOL, EVL and ETL metamodels, which formalise the respective lan-

guages’ abstract syntaxes;

• AST2EOL, AST2EVL and AST2ETL transformations, which transform ANTLR-

based homogeneous abstract syntax trees into instances of EOL, EVL and ETL

metamodels;

• Epsilon Static Analysis Model Connectivity layer (ESAMC), an enhanced version

of Epsilon Model Connectivity layer (EMC) that provides interfaces for accessing

metamodels defined in different modelling technologies in a uniform way;

• EOL, EVL and ETL static analysers, which formalise the scoping rules for variable

resolution, and the type resolution semantics of the respective languages.

1.5.2. Contributions to Model Management

In terms of contributions that are not bound to Epsilon, this thesis demonstrated that:
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• Meaningful static analysis of programs that involve models defined in diverse mod-

elling technologies is feasible and practical.

• The results of static analysis can be used to reason about and to automatically

optimise the performance of model manamgement programs operating on large

models. More specifically by leveraging the results of static analysis:

- Sub-optimal performance pattterns can be identified;

- Efficient computation and caching strategies can be defined for computation-

ally expensive operations such as collecting all instances of a type in a model (e.g.

the allInstances() operation);

- Partial loading of XMI models can be achieved.

1.6. Thesis Structure

In Chapter 2, a detailed review of Model Driven Engineering is performed. Section 2.1

discusses the terminologies and principles of MDE. The concept of model and modelling

language are discussed with examples. Different types of model management operations

are also discussed with their corresponding literature and tools. Section 2.2 discusses

MDE tools, and focuses on EMF and Epsilon, which are relevant to the research of this

work.

In Chapter 3, a detailed review of static program analysis is performed. Section 3.1

discusses the origin of software defects and why they are inevitable; Section 3.2 discusses

different means of defect detection; Section 3.3 discusses the characteristics of static

analysis; and Section 3.4 discusses the techniques that are adopted by contemporary

static analysis facilities.

In Chapter 4, a number of existing static analysis tools in the context of MDE are

reviewed. Section 4.1 discusses the need for static analysis tools in the context of MDE;

Section 4.2 presents the review strategy of the static analysis tools and outlines what

attributes the review is focused on; Section 4.3 reviews the static analysis tools for Dres-

den OCL and Eclipse OCL; Section 4.4 reviews the static analysis tools for Eclipse ATL;

Section 4.5 and 4.6 reviews the static analysis tools for Acceleo and Xpand; Section 4.7
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reviews the static analysis tool for EMF Inc-Query. Section 4.9 presents the findings

from the review of the static analysis tools.

Chapter 5 summarises the findings of the review performed in Chapter 2, 3 and 4

and identifies the shortcomings of contemporary static analysis tools in MDE. More

specifically, Section 5.1 performs the research analysis and identifies the shortcomings of

existing static analysis tools in MDE. Then, the analysis identifies the research platform

on which the research of this thesis is carried out. In Section 5.2, the research hypothesis

is stated and a set of objectives for validating the proposed hypothesis are outlined. In

Section 5.3, the research scope is outlined, and in Section 5.4, the research methodology

is discussed which evaluates the validity of the hypothesis.

Chapter 6 discusses the first development iteration which constructed the infrastruc-

ture of the static analysis framework. Section 6.1 discusses the structure of the Epsilon

platform and identifies its main components. Section 6.2 discusses the existing Epsilon

Model Connectivity layer (EMC) and its functionality. Section 6.3 identifies a few short-

comings of EMC with regard to static analysis and proposes the Epsilon Static Analysis

Model Connectivity (ESAMC) layer, which is designed specifically for the static anal-

ysis framework. Section 6.4 discusses the infrastructure of the Epsilon static analysis

framework, which includes the discussion of the created EOL metamodel, and the EOL

program to EOL model transformation.

Chapter 7 discusses the EOL static analyser. Section 7.1 identifies the techniques

used by the EOL static analyser and discusses its design. Section 7.2 discusses a utility

facility, named the EOL visitor, which is created by a model-to-text transformation which

is able to automatically construct visitor facilities based on Ecore models. Section 7.3

and Section 7.4 discusses the variable resolution and the type resolution processes of the

static analysis.

In Chapter 8, the EOL static analyser is extended to create the EVL static analyser

and the ETL static analyser. Section 8.1 and Section 8.2 discuss the EVL and ETL static

analysers, including the EVL and ETL metamodels, the EVL and ETL visitor frame-

works, the EVL and ETL variable resolution and type resolution facilities. Section 8.2.5

discusses the transformation rule dependency calculation for ETL transformation rules
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and its potential application.

Chapter 9 discusses the evaluation of the Epsilon static analysis framework. The

extensibility of the static analysis framework is illustrated by the construction of the

EVL and ETL static analysers. The extensibility of the Epsilon Static Analysis Model

Connectivity (ESAMC) is evaluated by the construction of a driver that adds support for

managing schema-less XML documents for the static analysis framework in Section 9.1.

Examples are also provided to demonstrate how plain XML models and EMF models can

be managed within a single ETL transformation. The evaluation then progresses to the

EOL, EVL and ETL static analysers in Section 9.2, where existing model management

programs are analysed using these static analysers and the identified defects are reported.

Chapter 10 presents the applications of static analysis which aim to address scalability

problems in MDE. In Section 10.1, a sub-optimal perform pattern detection approach is

discussed which, by using pattern matching techniques, is able to detect potential per-

formance degradation patterns by analysing EOL programs together with the models

they interact with. Section 10.2 discusses a facility integrated into the Epsilon execu-

tion engine, which provides more efficient computation strategies to compute calls to

allInstances() (and calls to allOfKind(), allOfType() and all()), so that the execution

of Epsilon programs can be optimised at runtime. Benchmarks involving running pro-

grams against very large models are reported in Section 10.2.7. Section 10.3 discusses

a facility named SmartSAX which integrates static analysis with an enhanced version

of the EMF SAX (Simple API for XML) parser which realises partial loading of EMF

models. Such work involves an automated effective metamodel extraction facility pre-

sented in Section 10.3.4. SmartSAX is then used to run EOL programs on very large

models, which benchmarks the resource consumption of the partial loading algorithm.

The benchmarks are reported in Section 10.3.7.

Chapter 11 concludes by summarising the findings of this thesis and providing direc-

tions to further work in the field of static analysis of model management programs.
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Model Driven Engineering (MDE) is a contemporary software development approach.

In an MDE process, models are first class artefacts. Models are used to capture relevant

details of a system under development and are used, by different model management

operations in an automated manner, to reason about the system and to generate soft-

ware development artefacts such as partial (or complete) implementation of the system

or documentations. This chapter presents a detailed review of MDE. Section 2.1 in-

troduces the terminology and fundamental principles used in MDE, the development

methodologies and guidance for MDE, and model management operations and corre-

sponding languages which support various model management operations. Section 2.2

discusses existing MDE technologies and platforms. Section 2.3 discusses the challenges

to MDE. Finally, Section 2.4 summarises this chapter.

2.1. Terminologies and Principles of Model Driven Engineering

Compared to traditional software engineering approaches, in an MDE-based software

engineering process, engineers construct and manipulate similar artefacts (such as code

and documentation). However, in addition to traditional approaches, MDE approaches

involve working with different types of artefacts, such as metamodels, models and model

management programs. This section describes the terminologies, principles, artefacts

and activities involved in MDE.

2.1.1. Models

To talk about models, it is necessary to talk about abstraction. Psychologically, the

human mind subconsciously and continuously re-establishes reality by applying cogni-
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tive processes that alter the subjective perception of it. Among the various cognitive

processes applied, abstraction is one of the most prominent ones [33]. In principle,

abstraction is used to:

• generalise specific features of real world objects (generalisation);

• classify objects into coherent clusters (classification); and

• aggregate objects into more complex ones (aggregation).

Generalisation, classification and aggregation represent natural behaviours that the

human mind is natively able to perform in everyday life. Abstraction is also widely

applied in science and technology, where it is often referred to as modelling. People can

informally define a model that is a simplified version of reality. Models fulfil different

purposes, such as to provide views of a phenomenon from different angles, or to reach

an agreement on a topic, etc. Therefore, by definition, a model is a subset of reality that

describes it as abstractly as needed.

Models have been and still are of great importance in many scientific contexts. For

example, the uniform motion model in physics is something that does not exist in the

real world, but is very useful in understanding the theory and for delivering the theory

in teachings. It also acts as the basis for subsequent and more complex theories.

Models are also created for various purposes. Models can be descriptive of the reality

of a system or a context. Models can also be prescriptive, used to determine the scope

and details of a problem, or to define how a system should be implemented.

On a philosophical level, it stands true that “everything is a model” [34], since it

is the way of the human mind to perceive and process things by “modelling” them.

This explains the fact that models have become crucial also in technical fields such as

mechanics, civil engineering, computer science and computer engineering. In the context

of production processes, modelling enables engineers to investigate, verify, document and

discuss the properties of products before they are produced. In many cases, models are

even used for directly automating the production of goods.

MDE, which adopts models as first class artefacts, has been shown to increase effi-

ciency and effectiveness in software development, as demonstrated by various quanti-
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tative and qualitative studies [35]. In a software engineering process which adopts the

MDE approach, according to [33], models can be used in various ways:

• models as sketches: models are used for communication purposes. Only partial

views of the system are specified;

• models as blueprints: models are used to provide a complete and detailed specifi-

cation of the system; and

• models as programs: models, instead of code, are used to develop the system.

Thus, in MDE, a model is an abstract representation of a system of a problem domain,

which is created by software engineers to capture only the relevant details of such system.

2.1.2. Modelling Languages

Models can be generally characterised as structured and unstructured, depending on

whether they conform to rigorously specified rules. Structured models have rigorously

defined rules to which they must comply (e.g. notations that the models must use/not

use). On the other hand, unstructured models are artefacts that do not conform to any

rules. Thus, the users of unstructured models are free to express their views without

notational/semantic restrictions. Whiteboard drawings and low fidelity prototypes are

examples of unstructured models.

In MDE, structured, rather than unstructured, models are used [36]. A structured

model is defined by a set of syntactic and semantic well-formedness constraints. In

the context of MDE, these rules are encoded in a modelling language. Often, a mod-

elling language is specified as a model, hence modelling languages are also referred to as

metamodels.

Between a model and a metamodel, there exists a relationship known as conformance.

A model is said to conform to a metamodel when every concept used in the model is

specified in the metamodel [34]. Conformance can be described by a set of constraints

between models and metamodels [37]. For example, a conformance constraint might

state that for an attribute a of a Type T, a should be single-valued. When all the

constraints are satisfied by the model, the model is said to conform to its metamodel.
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A metamodel typically encompasses three types of constraints:

• The abstract syntax is the set of concepts defined by the metamodel. Examples

of such concepts are packages, classes, attributes, etc. The abstract syntax is a set

of abstract concepts. Therefore, its representation can be of any form. For exam-

ple, a program compiler may use abstract syntax trees to represent the instances

of the abstract syntax of a programming language, whereas the instances of the

abstract syntax of the programming language can also be represented as program

source code.

• The concrete syntax provides a notation to represent the abstract syntax of

the metamodel. For example, the concepts of the metamodel, such as classes

and references, can be represented as a collection of boxes connected by lines.

Concrete syntax may be optimised for consumption by machines (e.g. stored in

files using formats such as XML Metadata Interchange (XMI) [38]) or by humans

(e.g. graphical syntax of Unified Modelling Language [1]).

• The semantics provides the meaning of the concepts with respect to the problem

domain. The semantics of a metamodel may be specified rigorously, by defining

constraints in a language, such as the Object Constraint Language (OCL) [39], or

in a semi-formal manner by employing natural languages.

Abstract syntax, concrete syntax and semantics are used together to specify meta-

models (modelling languages) [40].

2.1.3. Meta Object Facility: A metamodelling language

The Object Management Group (OMG)1 has standardised a language for specifying

metamodels, the Meta-Object Facility (MOF). MOF originated in the Unified Mod-

elling Language [1]. MOF enables developers to define the abstract syntax of modelling

languages. MOF is complemented by the Object Constraint Language (OCL) [41], a

formal language that can be used to define model constraints in terms of predicate logic.

1http://www.omg.org
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Figure 2.1.: A fragment of the UML metamodel defined in MOF, from [1].

For MOF, models are serialised/represented with another OMG standard, the XML

Metadata Interchange (XMI, [38]), which is a dialect of XML to support the storage,

loading and exchange of models.

MOF is a modelling language for defining modelling languages. It is sometimes also

referred to as a metamodelling language or metametamodel because the language con-

cepts introduced in MOF also define MOF itself. Figure 2.1 shows part of the UML

metamodel defined in MOF, which uses the concrete syntax similar to that of UML

class diagrams.

The purpose of the MOF standard is to enhance consistency in the way in which

modelling languages are specified. Without a standardised metamodelling language,
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modelling tools can have diverse modelling languages, which makes interoperability chal-

lenging. With a common metamodelling language in place, tools can create modelling

languages with the metamodelling language and exchange such modelling languages

with no compatibility issues. Thus, a standardised metamodelling language promotes

modelling tool interoperability.

2.1.4. An Example

To illustrate the terms model, metamodel, metametamodel , and conformance, an exam-

ple adopted from [2] is provided.

Figure 2.2.: A relational model represents the books in a library from [2]

In Figure 2.2, a model named “Relational Model” (right part of the figure) is presented,

which is a possible representation of a collection of books in a library (left part of the

figure) stored in a relational database.

The conformance relationship of the Relational Model and its metamodel, called Rela-

tional Metamodel, is described in Figure 2.3. The Relational Metamodel defines concepts

such as Table, Column and Type, instances of which are used to define the Relational

Model.

Figure 2.4 illustrates the conformance relationship (or meta-relationship [2]) between

the instances of the concepts used in the Relational Model and the concepts defined in

the Relational Metamodel. In Figure 2.4, in the Relational Model, Book is an instance of

Table defined in the Relational Metamodel, whereas BookId, Title, PagesNb and AuthorId

in the Relational Model are instances of Column in the Relational Metamodel, and finally

String and Int in the Relational Model are instances of Type in the Relational Metamodel.

Figure 2.5 illustrates the conformance relationship between the instances of the con-
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Figure 2.3.: The “conformance” relation between a model and its metamodel from [2]

Figure 2.4.: The “meta” relation between model and metamodel elements [2]
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Figure 2.5.: The “meta” relation between metamodel and metametamodel elements [2]

cepts used in the Relational Metamodel and the concepts defined in MOF. In MOF, an

entity named Class is defined which is used to define entities in a modelling language.

In this example, Table, Column and Type in the Relational Metamodel are instances

of Class. The Associations in the Relational Metamodel, such as owner, col etc. are

instances of Association defined in MOF. As a metamodelling language, the concepts

defined in MOF also define MOF itself. For example, in Figure 2.5, concept Class in

MOF is used to define both Class and Association, whereas the concept Association is

used to define the association between Association and Class (the source and destination

associations).

2.1.5. Metamodelling Architectures and Domain Specific Modelling

Layers of abstraction for the real system, the model, the metamodel and the metameta-

model in the example are a reflection of the structure of a typical metamodelling frame-

work. A metamodelling framework typically provides a three-layered (M1-M3) hierar-

chical architecture, as seen in Figure 2.6. The M3 layer contains the core metamodelling

language, which is used to define modelling languages. The M2 layer contains the mod-
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elling languages defined using the metamodelling language in the M3 layer, whereas the

M1 layer contains the models devised from the modelling languages defined in the M2

layer. The models in the M1 layer represent the real systems in the M0 layer.

Figure 2.6.: The four layer metamodelling architecture.

There are many choices for solutions when addressing a set of related problems. [42]

states that for a set of related problems, a specific approach tailored to target only the

problems is likely to provide better outcomes than a generic approach designed to target

all problems. The set of problems in this context is referred to as the domain or the

problem domain. A Domain Specific Language (DSL) is a language that is designed
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specifically for describing a certain technical or business domain. Examples of DSLs

include: HTML markup language for web page development, MatLab for mathematics,

SQL for database management, etc. If a DSL is aimed at modelling, it may also be

referred to as Domain Specific Modelling Language (DSML). Examples of DSMLs include

OMG’s Business Process Model Notation (BPMN) [43] to model business processes,

Open Group’s ArchiMate [44] for enterprise architecture modelling, OMG’s MARTE

[45] for modelling and analysing real time and embedded systems, etc.

The use of Domain Specific Languages to represent the various facets of a system is

referred to as Domain Specific Modelling, and is identified as one of the fundamental

aspects of MDE [46]. Several metamodelling frameworks have been proposed to allow

domain specific modelling, including the OMG Meta Object Facility (MOF) [47], the

Eclipse Modelling Framework (EMF) [6], the Microsoft Domain Specific Languages Tools

[48], the Generic Modelling Environment (GME) [49], etc.

2.1.6. Model Management Operations and Tools

Domain Specific Modelling enables software engineers to define modelling languages

and create models that conform to them. In MDE, models are processed/manipulated

to produce software development artefacts. In [33], the authors suggest that the core

concepts of MDE are models and transformations. However, research shows that in an

MDE-based software development process, other operations, such as model validation,

model comparison, model merging, etc. are of equal importance and are also frequently

performed throughout MDE development processes [36]. Collectively, such operations, as

suggested by [36], are referred to as model management operations. This section presents

an overview of frequently performed model management operations and existing tools

that support such operations.

Model-to-model Transformation

Model-to-model transformations are considered to be of great importance to MDE [50].

According to [51], model transformations can be categorised as text-to-model transfor-

mations, model-to-model transformations and model-to-text transformations. In gen-
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eral, a model-to-model transformation operation has the form depicted in Figure 2.7.

In a model-to-model transformation, the input and the output of a transformation are

termed its source and target respectively. To transform the source Ma to a target Mb

(where Ma conforms to its metamodel MMa and Mb conforms to its metamodel MMb,

both metamodels MMa and MMb conform to metametamodel MMM ), the transfor-

mation is done by executing the set of transformation rules Mt, which conforms to its

metamodel MMt (in this case, a model transformation language).

Figure 2.7.: The form of a model transformation [3]

Model transformations can generally be characterised by the number of source mod-

els and the number of target models involved in a model transformation. In a model

transformation, when multiple source models are transformed into one target model, the

transformation is normally referred to as model merging [52]; when one source model

is transformed into one target model, it is a general model transformation; when one

source model is transformed into multiple target models, it is normally due to the need to

represent the same information in different representations; when any number of source

model(s) are used but the transformation produces only Strings, it is normally referred

to as a or model query.

With regard to the metamodels of the source and target models, two types of model
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transformations are generally recognised: Exogenous Transformations and Endogenous

Transformations [53]. Exogenous Transformations refers to model transformations where

the source model(s) and the target model(s) conform to different metamodels. Endoge-

nous Transformations refers to model transformations where only the input models are

modified.

Exogenous Transformation is also called mapping transformation or translation

transformation. As its name suggests, a translation transformation is an algorithm

that defines how a number of source models are mapped to a set of target models [36].

Translation transformations are predominantly rule-based. There are generally three

model transformation styles:

• Imperative Transformation is the transformation style where the mappings between

elements of the source model and the target model are directly and explicitly spec-

ified in an executable language (such as XTend [54] and Kermeta [55]). Imperative

transformation style allows complex transformation rules to be created. However,

imperative transformation languages have limitations, such as the overhead to im-

plement scheduling and traceability, the difficulty of reusing transformation rules

[36], etc.

• Declarative Transformation is the transformation style where the mappings be-

tween elements of the source model and the target model are specified using declar-

ative constraints. In [56], a transformation framework is proposed, which uses OCL

to declare the relations between source and target elements. Such relations are then

translated into executable Java code which implements the transformation. A sim-

ilar approach is adopted in [57], except OCL expressions are translated into XSLT

to implement transformations.

Declarative model transformations are typically carried out based on the principles

of graph transformations. Examples of using the principle for declarative model

transformations as graph transformations are QVT-R [58] and the Triple Graph

Grammar [4]. A Triple Graph Grammar consists of the source metamodel, the

target metamodel and the correspondence model (which conforms to the corre-

spondence metamodel) that links the elements between the source metamodel and
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Figure 2.8.: An example of a triple graph grammar [4]

the target metamodel. A transformation engine that supports triple graph gram-

mar transformations performs pattern matching of the source model and produces

the target model using the transformation correspondence metamodel. An exam-

ple of the approach is illustrated in Figure 2.8, which transforms Class models into

RDBMS (Relational Database Management System) models. In Figure 2.8a, the

Class metamodel is provided. The Class metamodel defines entities such as Class,

Association, Attribute, etc. In Figure 2.8c, the RDBMS metamodel is provided.

The RDBMS metamodel defines entities such as Table, FKey (Foreign Key), and

Column. In Figure 2.8b a correspondence metamodel, which defines correspon-

dences between objects, is presented. The entity ClassTableRel states that, on the

one hand, each Class corresponds to one Table. On the other hand, each Table

corresponds to at least one Class. This relationship can be observed from the

multiplicity at the end of the association. The class AttrColRel links one Attribute

with at most one Column, whereas each Column is linked with exactly one At-

tribute. The class AttrFKeyRel associates an Attribute with its is primary field

being true with a Fkey. Similarly, the class AttrColRel associates an Attribute with
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its is primary being false with a column. The triple graph transformation engine

takes this triple graph grammar and performs the transformation from Class to

RDBMS according to the link metamodel provided in Figure 2.8b.

Declarative Transformation languages provide developers with a higher level of ab-

straction than imperative transformation languages, which makes transformations

easier to specify, but demonstrates limitations to specify complex model transfor-

mations [59].

Figure 2.9.: A simple university metamodel

• Hybrid Transformation is the transformation style that enhances declarative trans-

formation approaches with imperative features, so that complex transformation

rules can be specified while preserving the desirable features of declarative trans-
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formation languages. Therefore, the hybrid style can be used to solve most of

the needs for model transformations. Examples of hybrid transformation style

languages are the Atlas Transformation Language (ATL) [60] and the Epsilon

Transformation Language (ETL) [61].

An example of declarative M2M transformation written in the Epsilon Transforma-

tion Language (ETL) is provided in Listing 2.1. The source of the transformation

is a university model conforming to the metamodel shown in Figure 2.9. The tar-

get of the transformation is a social network model conforming to the metamodel

shown in Figure 2.10.

The first rule (line 1-7), named Student2Person, transforms Students into Persons:

the body of the rule specifies that the first name and last name should be copied

over and the Person(s) a Student knows are derived from the student’s tutor in

the University metamodel.

1 rule Student2Person

2 transform s: Student

3 to p: Person {

4 p.first_name = s.first_name;

5 p.last_name = s.last_name;

6 p.knows = s.tutor.equivalent();

7 }

8 rule Lecturer2Person

9 transform l: Lecturer

10 to p: Person {

11 p.first_name = l.first_name;

12 p.last_name = l.last_name;

13 p.knows = l.students.equivalents();

14 }

Listing 2.1: An example of model-to-model transformation written in Epsilon Transfor-

mation Language [61].
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Figure 2.10.: A simple social network metamodel

The second rule (line 8-14), named Lecturer2Person, transforms the Lecturers into

Persons. Like rule 1, the names are copied over and the Person(s) a Lecturer

knows are derived from the Lecturer ’s supervised Students.

At runtime, the transformation rules will be scheduled implicitly by the execution

engine, and invoked for each Lecturer and Student. On line 6, the built-in operation

equivalent() is used to produce a Lecturer by invoking the corresponding transfor-

mation rule (rule Lecturer2Person in this example). The call to equivalent() is an

example of explicit rule scheduling, in which the developer defines when a rule is

invoked.

Figure 2.11.: The metamodel of a PetriNet, extracted from [5]

Endogenous Transformation is also called update transformation, or rephrasing

transformation [53], and is used to perform modifications of existing models. Rephrasing

transformations can be further classified as update transformations in the small and in
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the large. Rephrasing transformations in the large applies to sets of model elements

for which model transformation rules are executed in a batch manner. On the other

hand, update transformation in the small may require user intervention since the model

elements which require update are normally specified by the user. The Epsilon Wizard

Language [62] is an example of endogenous transformation language.

Figure 2.12.: A graph transformations example: removing and adding token [5].

Since models can be considered as graphs. A number of tools that perform endogenous

transformations ared based on the principles of graph transformations. VIATRA2 [5] is

a platform that supports graph transformation principles to perform model transforma-

tions. In Figure 2.11, a metamodel of a PetriNet [5] is provided. The PetriNet meta-

model defines entities Place, Transition, Token and ArcWeight. Places and Transitions

are connected with Arcs; a Place can contain a number of Tokens, etc. In Figure 2.12,

graph transformations rules are defined. The upper part of the figure removes a token

from a place. The LHS precondition is the pattern that needs to be transformed: a
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Place P with a Token that connects to a Transition T by an OutArc. The RHS post

condition specifies the transformation, which is to remove the Token from P. The trans-

formation engine performs pattern matching with the LHS and then removes the Token

on each pattern matched. The same principle applies to the example at the lower part of

Figure 2.12, where a LHS precondition defines the pattern: a Transition T connected to

a Place P with an InArc from T to P. A RHS postcondition defines the transformation:

a Token is added to the Place P for each of the patterns matched.

There are also other transformation languages available to perform endogenous trans-

formations, such as Graph Rewrite Generator (GrGen.NET) [63] for graph modelling,

pattern matching and rewriting, Attributed Graph Grammar (AGG) [64] for attributed

graph transformation, etc.

Model-to-text Transformation

Model-to-text (M2T) transformations are used to produce text files, such as source code,

documentation, as well as model serialisation to text files (for example, saving models in

XMI files). OMG first recognised the lack of a standardisation for M2T transformation

with its M2T Language Request for Proposals. A set of languages were developed

including Acceleo [65], Xpand [66], and the Epsilon Generation Language [67].

In M2T languages, templates are commonly used to enable repeatability. A template

defines static sections which, during M2T transformations, are outputted verbatim, and

dynamic sections, which contain expressions and statements that are executed to produce

text from the contents of the target models involved in M2T transformations.

An example of an M2T transformation, written in the Epsilon Generation Language

(EGL), is provided in Listing 2.2. In this example, the source of the transformation is a

model that conforms to the social network metamodel in Figure 2.10, where the target

of the transformation is plain text. In the template, the assumption is that the variable

person is an instance of Person in the metamodel. In EGL, there are two different types

of dynamic sections. When a dynamic section is contained within [% and %], the section

is a normal section and contains statements, such as control flows like if statements,

etc. When a dynamic section is contained within [%= and %], the section is known
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as a dynamic output section. The value which the contained expression evaluates to is

output to the text. In the example, the sections on lines 2 and 4 are normal dynamic

sections, whereas the sections on lines 1 and 3 are dynamic output sections.

1 Name: [%=person.first_name%] [%=person.last_name%]

2 Knows: [% for(p in person.knows) {%]

3 [%=p.first_name%] [%=p.last_name%]

4 [% } %]

Listing 2.2: An example of model-to-text transformation written in Epsilon Generation

Language [67].

Text-to-Model Transformation

Text-to-Model (T2M) transformation is used to transform text into models. T2M trans-

formation is typically implemented as a parser that generates models from text inputs.

Existing parser generators, such as ANTLR [68], can be used to produce structured arte-

facts (such as abstract syntax trees) from text inputs. T2M tools typically reuse parser

generators and process the artefacts obtained to produce models that can be managed

with model management tools.

Xtext [12], EMFText [69], Rascal [70] and Spoofax [71] are contemporary tools that

support Text-to-Model transformations. Given a grammar, T2M tools in general are

capable of generating a metamodel and a parser that transforms text inputs into a

model that conforms to the metamodel.

Listing 2.3 shows an exemplar DSL grammar defined in Xtext. In line 2, a Domain-

model is defined, which in line 6 defines that it should have a number of Types. A Type

is either a DataType or an Entity, as it is defined in line 7. DataType is defined in line 11,

whereas Entity is defined in line 14. An Entity may have superTypes (of type Entity),

as it is defined in line 15. An Entity may contain a number of Features, as the grammar

suggests in line 16. Feature is defined in line 20, and it has a type which is of type Type.

Given the grammar provided in Listing 2.3, Xtext is able to generate an Ecore meta-

model from the grammar, a parser which translates text inputs into models, a static

analysis tool which is used for code validation and code completion, and an Eclipse
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plug-in project which integrates all the functions, including refactoring tools, etc. [12].

1

2 Domainmodel :

3 (elements += Type)*

4 ;

5

6 Type:

7 DataType | Entity

8 ;

9

10 DataType:

11 ’datatype’ name = ID

12 ;

13

14 Entity:

15 ’entity’ name = ID (’extends’ superType = [Entity])? ’{’

16 (features += Feature)*

17 ’}’

18 ;

19

20 Feature:

21 (many ?= ’many’)? name = ID ’:’ type = [Type]

22 ;

Listing 2.3: An exemplar DSL grammar defined in Xtext [12]

Model Validation

Development of large systems always faces the risk of inconsistency. Inconsistency issues

can arise throughout an MDE-based software development process. Model validation

provides a mechanism to assess the integrity of the models that drive an MDE process.

In general, inconsistency can appear in two different forms [72]: incompleteness and
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contradiction. Incompleteness arises from missing information. For example, creating

an object without populating its compulsory properties is an instance of incompleteness.

Contradiction arises from incompatible information in models. For example, an instance

of a class A in a model has a reference to an instance of another class B, where in the

metamodel these classes A and B do not relate in any way. In [73], the authors further

classify inconsistency into internal and external inconsistencies:

Internal Inconsistency includes Metamodel Inconsistency and Domain Inconsis-

tency. Metamodel Inconsistency arises when a model fails to conform to its metamodel.

An example of metamodel inconsistency is the existence of a UML class that inherits

itself. Domain Inconsistency arises when a model fails to comply semantically with the

domain rather than its metamodel. For domain inconsistency, consider the University

metamodel mentioned in Figure 2.9. The finalGrade of a Student is of type float. Whilst

not breaking the rules defined in the metamodel, a negative value for the finalGrade is

not valid in the domain, as the minimum a Student can get is 0.0.

External Inconsistency arises among models that are used to describe a system.

According to [74], [75] and [76], two types of external consistency are identified: hori-

zontal and vertical. Horizontal Inconsistency arises when multiple models are used to

capture overlapping aspects of a system. Models that are developed by the same engineer

can also contain inconsistencies. While there are various modelling languages that can

be used to model a system, the variety also introduces potential inconsistencies among

models depicted in different modelling languages. Vertical Inconsistency arises from in-

crementally refining models, where adding more details may inadvertently change the

semantics of the models.

Due to the potential consistency issues described above, the need for model validation

is obvious. There are a number of languages in the MDE field that can be used to

validate models for consistency. The Object Constraint Language (OCL) [41] is an

OMG-standardised language for specifying constraints on MOF and UML models. OCL

is a side-effect free language, suitable for expressing metamodel consistency rules. OCL

has been used extensively for internal consistency checking. The Epsilon Validation
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Language (EVL) [73], built in the Epsilon2 platform, is a validation language with similar

concepts as OCL constraints. In addition, EVL provides more capabilities, such as

dependent constraints, inter-model consistency checking, customisable error messages

and fixes to repair inconsistencies [73].

Model Comparison

Model comparison, according to [77], is “the process of establishing correspondences

of interest between elements that belong to different models, that are potentially ex-

pressed using different modelling languages and/or technologies”. Model comparison is

a necessary operation to perform before merging/integrating two or more models into

a single model. There are a number of proposals for model comparison. Xlinkit [74],

SiDiff [78], EMF Compare [79] and the Epsilon Comparison Language [74] are examples

of contemporary model comparison tools.

Model Merging

As discussed in the model transformation section, Model Merging is a special case of

model transformation, where a number of input models are transformed (integrated,

merged) into a single output model. The reason model merging is listed as a task spe-

cific model management operation is because, unlike general model transformations, it

requires comparison between models to be carried out before it can be performed, so

that the output model of model merging does not include redundant information. In

addition, model merging is commonly performed on models that conform to different

metamodels, which increases the complication of model merging. Successful and ex-

tensively used model merging techniques are Atlas Model Weaving (AMW) [80], based

on ATL, which can be used to merge both heterogeneous models3 and homogeneous

models4. Additionally, AMW can also be used to merge metamodels and homogeneous

models. The Epsilon Merging language [52] also serves the purpose of model merging

and is typically used in conjunction with the Epsilon Comparison Language [52] for

2Extensible Platform for Specification of Integrated Languages for mOdel maNagement
3models that conform to different metamodels
4models that conform to the same metamodel
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model comparison.

2.1.7. Summary

This section introduced the core terminologies and principles of MDE. Models provide

an abstract view of a real world system by only capturing aspects of interest. Meta-

models provide the syntactical and semantical well-formedness constraints to construct

models. The metamodelling architecture forms the basis of modelling in the context of

MDE. Throughout an MDE based software development process, various model man-

agement tasks are performed to eventually produce software development artefacts, such

as working code or documentation.

2.2. MDE Technologies

Well established and mature platforms comprising tools and languages to support com-

mon activities in MDE are available. This section discusses two MDE technologies that

are used in the remainder of this thesis.

Section 2.2.1 provides an overview of the Eclipse Modelling Framework (EMF) [6],

which provides a pragmatic implementation of the MOF standard and acts as the baseline

for many MDE tools and languages. Section 2.2.2 provides an overview of Epsilon, an

extensible platform, which provides a wide range of model management languages and

supports a wide range of modelling technologies.

2.2.1. Eclipse Modelling Framework (EMF)

Based on Eclipse, the Eclipse Modelling Framework (EMF) project [6] provides a meta-

modelling language, Ecore, which (partially) implements the MOF 2.0 standard [47].

EMF is the most widely used contemporary MDE modelling framework and is supported

by a large number of automated model management languages and tools, such as ATL,

VIATRA, Epsilon, Eclipse OCL and Acceleo.

An overview of Ecore is provided in Figure 2.13. In EMF, metamodel elements are

organised in EPackages and are represented by EClassifiers. An EClassifier can be
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either of primitive data type, represented by EDataType, or a complex type, represented

by EClass. An EClass can contain attributes represented by EAttributes and define

relationships to other EClass(es) represented by EReferences.

Figure 2.13.: The Ecore metamodelling language, from[6]

EMF provides a code generation facility, which is able to generate metamodel-specific

editors given a metamodel defined in Ecore. Based on Eclipse, EMF model editors com-

prise a comprehensive set of views for viewing and manipulating models. The generated

metamodel-specific editors support the loading, storing and exchanging of models in

XML Metadata Interchange (XMI) format [38], which is a dialect of XML optimised

for model interchange. In addition, EMF also supports pluggable model persistence for-

mats. Existing tools, such as Neo4EMF [81] and MongoEMF [32], which are backed by

NoSQL databases [82], offer more scalable alternatives than XMI for model persistence.

Apart from constructing metamodels using Ecore, EMF provides facilities to extract

models from XML Schema, Java annotated interface source file, and from XMI docu-
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ments generated by other modelling tools, such as Rational Rose [6].

The code generator for EMF also provides a facility to generate a set of Interface

and Implementation Java classes for each type defined in a given Ecore model. These

classes can be edited to include behaviour for their operations defined in the model. Such

behaviour is also able to persist throughout code regenerations from metamodels.

A large number of MDE tools are based on EMF, such as Eclipse OCL [26], Eclipse

ATL [60], Eclipse Epsilon [36], Xtext [12], GMF [83], etc. EMF has become the de facto

standard for building MDE tools [81]. EMF, acting as a common base for MDE tools,

enables MDE operations such as reverse engineering [84], model transformation [36] and

code generation [67].

2.2.2. The Epsilon platform

The Extensible Platform for Specification of Integrated Languages for mOdel maNage-

ment (Epsilon) [36] is an Eclipse based platform that supports MDE. The architecture

of Epsilon is shown in Figure 2.14. Epsilon essentially contains two main components,

the Epsilon Model Connectivity layer (EMC) and the Epsilon family of languages.

Figure 2.14.: The architecture of the Epsilon platform.
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Epsilon is modelling technology agnostic [36]. Whilst many model management lan-

guages and tools are bound to a particular subset of modelling technologies (for exam-

ple, Eclipse OCL is able to work with Ecore models and UML2 models only), Epsilon is

able to access and manage models defined in various modelling technologies. Currently,

Epsilon supports models defined using EMF, schema-less XML, Meta Data Repository

(MDR), CSV, MetaEdit+, etc., which are backed by technology-specific drivers [36]. Ep-

silon is extensible in the sense that further technology-specific drivers can be developed

to support models defined in other modelling technologies.

Epsilon promotes reuse when building task-specific model management languages. The

core language of Epsilon is the Epsilon Object Language (EOL), which provides function-

ality that is similar to OCL, but with additional language features such as imperative

statements, access to multiple models (backed by EMC), model updating (backed by

EMC), error reporting and user feedback, etc. Atop EOL, task-specific languages can

be created by reusing and extending EOL, which promotes consistency of syntax among

the languages. Currently, a number of task-specific languages have been created atop

EOL:

• Epsilon Generation Language (EGL) to perform mode-to-text transformations;

• Epsilon Wizard Language (EWL) to perform update model-to-model transforma-

tions;

• Epsilon Comparison Language (ECL) to perform model comparison;

• Epsilon Merging Language (EML) to perform model merging;

• Epsilon Transformation Language (ETL) to perform model-to-model transforma-

tions;

• Epsilon Validation Language (EVL) to perform model validation;

• Epsilon Flock to perform model migration;

• Epsilon Pattern Language (EPL) to perform pattern-based querying.
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Apart from these languages, Epsilon also supports the aggregation of model management

operations to form complex workflows [36].

Epsilon is well positioned as a platform for the research of this thesis due to its broad

support of modelling technologies and task-specific model management languages, the

extensible EMC layer for further modelling technology-specific driver development, and

the extensible core language EOL for further task-specific model management language

development.

2.3. Challenges to MDE

MDE delivers a number of benefits to software engineers. In MDE, some manual steps of

traditional software engineering can be automated due to the use of domain specific mod-

elling and model management operations. In [14, 15], MDE has been shown to increase

productivity by as much as a factor of 10. In addition, tool interoperability enables

a variety of tools to work on different aspects of the model without any compatibility

issues.

Whilst the benefits of MDE are well recognised, there are some challenges to it. Con-

cerns are raised for the human factor in MDE, such as learnability and acceptance of

MDE by software engineers. In this section, only the challenges that are relevant to this

thesis are discussed. These are correctness, maintainability and scalability.

2.3.1. Correctness of Model Management Operations

Software constantly contains errors. This is due to the fact that software are implemented

by humans, and human actions often cause incorrect results. Fixing defects gets more

expensive the later in the development process where they are identified. Software

companies typically spend more than 80% of their development budget on quality control

[21]. Thus, it is necessary to identify potential defects in the software as early in the

development process as possible.

In the context of MDE, despite the raised level of abstraction, model management

programs can still contain defects. Thus, there is a need to ensure the correctness of
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model management programs. For example, to exclude a given rule in a model trans-

formation named R1, it is necessary to know if R1 is invoked by any other rules in the

whole transformation [85] for the transformation rule to behave correctly.

The tools reviewed in Chapter 4 provide various degrees of support for analysing

different model management programs. However, such tools only support either the

analysis of programs that manage models defined by only a subset of contemporary

modelling technologies, or the analysis of programs that are only written in a single

(or a subset) of task-specific modelling languages. Such limitations are discussed in

Chapter 5.

2.3.2. Scalability

As MDE is increasingly applied in larger and more complex systems, the current gen-

eration of modelling languages and model management tools are being stressed to their

limits in terms of their capacity to accommodate various activities, such as collaborative

development, efficient management and persistence of models, when dealing with models

larger than a few hundred megabytes in size [18].

For MDE to remain relevant in software engineering, MDE languages and tools must

confront the challenges associated with scalability, so that they can be used in larger scale

complex models and systems. In [18], the authors suggest that to achieve scalability,

MDE typically needs to:

• enable the construction of large models and domain specific languages in a sys-

tematic manner;

• enable large teams of modellers to collaboratively construct and refine large models;

• enhance the current generation of model querying and transformation tools so

that they can accommodate large models (with millions of model elements) in an

efficient manner;

• provide an infrastructure for efficient storage, indexing and retrieval of such models.

Scalability issues of MDE tools is a key concern for their applications and has been

referred to as the “holy grail” of MDE [86].
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Currently, there are a number of tools which strive to address some of these scalability

issues, such as Neo4EMF [81], Morsa [31], Hawk [87], etc. which are backed by contem-

porary NoSQL databases in order to enable persistence and collaborative development

of models containing several millions of elements.

2.4. Chapter Summary

In this chapter, a background review of MDE was provided. The main concepts within

MDE were discussed, including models, modelling languages and metamodelling archi-

tectures. A series of model management operations were also identified and discussed,

including model-to-model transformation, model-to-text transformation, text-to-model

transformation, model validation, model comparison and model merging. The Eclipse

Modelling Framework (EMF) and the Epsilon platform, which are closely related to this

thesis, were discussed. Finally, a number of challenges for the current practice of MDE,

that are directly related to this thesis, were identified and discussed. This thesis tries

to address the challenges by means of static analysis. The next chapter will present a

review on static analysis fundamentals.
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Fundamentals

Static program analysis is a fully automatic technique for reasoning about the behaviour

of a program without actually executing it [88]. Static analysis is recognised as a comple-

mentary measure to dynamic testing. Static analysis is able to infer type incompatibil-

ity, detect potential runtime errors and optimise the performance of programs. Modern

compilers typically provide static analysis to perform code optimisation to improve per-

formance [89].

This chapter provides a field review on static source code analysis. It starts with

a description of the importance of defect detection and ways to detect defects in soft-

ware. The characteristics of static analysis are discussed and a number of static analysis

techniques adopted by contemporary static analysis tools are presented.

3.1. Software Defects

Software defects have existed as long as software. According to IEEE [20], a software

defect can be defined as “an imperfection or deficiency in a software system where that

software system does not meet its requirements or specifications and needs to be either

repaired or replaced”. Defects originate from errors, where an error is “a human action

that produces an incorrect result” [20]. This is one of the reasons that software often

contains defects, as humans inevitably make mistakes [90].

Some defects are identified easily whilst others are either found late in the development

process, or after the release of the software. Defects can cause several types of problems,

including logical/functional problems (incorrect outputs computed by the software sys-
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tem), runtime errors such as unexpected crashing, resource leaks, degraded performance,

etc. Poor software quality caused by defects is a serious problem that developers and

users of software face today. On average, software contains 10 to 20 defects per thousand

lines of code after compilation and testing [91]. Large software contains millions of lines

of code and therefore contains potentially thousands or tens of thousands of defects upon

release. Fixing defects gets more expensive the later in the development process these

are identified . Software companies typically spend more than 80% of their development

budget on quality control [21]. A research carried out by NIST in [92] illustrated that

software defects cost the U.S. economy $59.5 billion annually as of year 2002.

3.2. Defect Detection

To address the defects that inevitably exist in software systems, a broad range of tech-

niques for automatic or semi-automatic detection and prevention of defects has been

proposed and developed. Whilst there are various categorisations of software testing,

one clear distinguishing feature of defect detection is whether the detection requires ex-

ecuting the software (termed Dynamic Testing) or not (termed Static Testing or Static

Analysis) [93].

3.2.1. Dynamic Testing

Dynamic Testing is a defect detection approach that involves executing the program

being tested a number of times, and analysing the information collected from the exe-

cutions. Dynamic testing provides accurate defect reports, as the information collected

is based on the actual execution of the program. Additionally, dynamic test cases are

straightforward to implement based on software specifications [91]. On the other hand,

dynamic testing can be time- and resource-consuming because it requires the instrumen-

tation of the program(s) being tested. Exhaustive testing for all possible code paths is

practically difficult. Dynamic testing can be carried out at different stages of software

development in different levels. In particular, Unit Testing, Integration Testing, System

Testing and Acceptance Testing are recognised testing methods to capture defects at

different stages of software development [93].
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3.2.2. Static Testing

Static Testing, or Static Code Analysis, is a testing approach that analyses the source

code of the software without executing it, which can be done manually (code inspection)

or automatically (using automated static analysis tools). Static analysis sometimes

incurs negligible resource consumption compared to dynamic testing, as it does not

require the execution of the software. Sophisticated automated static analysis tools

make a trade-off between performance and accuracy. Static analysis typically considers

all possible execution paths and does not require test suites. Importantly, static analysis

can detect possible defects while the source code of the program is being developed and

can generate immediate reports on potential defects. The downside of static analysis is

that it is not straightforward: unlike designing dynamic test cases, static analysis often

requires more complex implementation [21]. Static analysis often generates more false

alarms on defects, forming a very high noise level which makes the defect alarms hard

to analyse.

Static analysis can be used to protect against specific types of software runtime errors

which, when detected at early stages, can prevent more significant defects from occurring

in the future. A non-exhaustive list of runtime problems that static analysis can detect

is as follows:

• Incomplete code, such as uninitialised variables, functions with unspecified return

values, incomplete control flow statements (e.g. missing cases in switch state-

ments);

• Improper resource management, for example memory leaks. This issue is of great

importance for programming languages with no garbage collection mechanisms;

• Illegal operations: division by zero, improper values for functions, overflows and

underflows, index array out of bounds, etc.;

• Dead code: code sections that cannot be reached. This kind of defect may only be

inappropriate coding style, but it may also indicate the risk of potential errors.

Whilst static analysis can reduce the resources spent on dynamic testing or even detect
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defects that cannot be identified by dynamic testing, it is not a replacement for dynamic

testing [93]. Static analysis can be used to check that the program executions do not

unexpectedly terminate or crash, but it does not guarantee correct execution. Thus,

static analysis and dynamic testing are always carried out as complements of each other

in a development process [94]. This thesis focuses on static analysis techniques and their

application in MDE.

3.3. Static Analysis Characteristics

Static analysis tackles a problem which is known to be undecidable (according to Rice’s

Theorem) [95]. In other words, it is not possible to design a static analysis tool which

proves any non-trivial property on any program both accurately and automatically. As a

consequence, static analysis is inherently imprecise [95]. Typically, static analysis tools

infer that a property (e.g. an error) may hold for a given program. When analysing

a program P for a certain error E using a static analysis tool SA, the outcome of the

analysis falls in one of the following four categories:

• (a) P holds E, SA infers that E may exist; in some cases, SA is able to infer that

E definitely exists;

• (b) P holds E, but SA infers that E does not exist;

• (c) P does not hold E, and SA infers that E does not exist;

• (d) P does not hold E, but SA infers that E may exist;

With respect to static analysis, case (b) is often referred to as a false negative, while

case (d) is referred to as a false positive [96]. False negative typically refers to a situation

where a static analysis fails to report defects that actually exist in a software system.

False positive typically refers to a situation where a static analysis reports defects which

do not really exist.

False negatives and false positives are used to measure the precision of static analysis

tools. A static analysis tool is said to be sound if all reported defects are actual defects
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(i.e. no false positives) but it does not guarantee that all errors can be detected (i.e.

there may be false negatives) [97]. A static analysis tool is said to be complete if all

defects in a program are detected and reported (i.e. no false negatives), but there may

be false positives.

The precision of a static analysis tool determines how frequently false positive reports

are produced. The more precise the analysis, the more likely it is to generate fewer

false positives. Precision of a static analysis tool usually correlates with the time taken

to perform the analysis [95]. The more precise the analysis, the more time it is likely

to take to perform it. The trade-off between precision and analysis time is one of the

design concerns of a static analysis tool. If a static analysis examines a program in a

short time, it is likely to generate many false positives which increases the noise level. In

contrast, a precise static analysis tool, which reports significantly fewer false positives,

is not likely to finish its analysis in a timely manner.

There are some approaches to reduce false positives whilst preserving the short time

of analysis, which normally adopt techniques that filter out unlikely defect reports from

the false positives. For example, CodePeer [98] classifies defects into high, medium and

low risk levels, with low risk level defect warnings only presented to the users on demand.

However, without care, such techniques will result in removal of actual defects causing

false negatives.

There is also a number of techniques that can be used to make the best out of the

trade-off between precision and analysis time [99]. A flow sensitive analysis focuses

on the control flow graph (See Section 3.4.2) of the program, while a flow insensitive

analysis does not. Flow sensitive analysis is usually more precise than flow insensitive

analysis. For example, for a block of code, flow sensitive analysis is able to infer that

a certain value x is defined in a particular line, while flow insensitive analysis is only

able to infer that x may be defined throughout the block. A path sensitive analysis

considers only available paths through the program. It takes into consideration the

values of variables and boolean expressions in if/switch conditions and loops to reason

the execution branches.
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3.4. Static Analysis Techniques

In this section, techniques used by most static analysis tools are discussed. Such

techniques include data flow analysis (Section 3.4.2) and abstract interpretation (Sec-

tion 3.4.3). A number of other techniques used in contemporary static analysis tools are

also discussed in Section 3.4.4.

3.4.1. Lattice Theory

Static analysis techniques discussed in this section largely rely on the lattice theory. This

section provides an overview of the lattice theory and some terminologies used therein

[100].

Definition 3.1. Partial order set. A partial order set (sometimes referred to as poset)

is a set U and a binary relation v, on U , such that:

• ∀x ∈ U : x v x (reflexivity)

• ∀x, y, z ∈ U : (x v y ∧ y v z)⇒ x v z (transitivity)

• ∀x, y ∈ U : (x v y ∧ y v x)⇒ x = y (antisymmetry)

Example 3.2. Consider a finite set U : {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with the usual ordering

6. Such ordering is reflexive because 1 6 1, is transitive because (1 6 2∧2 6 3)⇒ 1 6 3,

is antisymmetric because (1 6 1 ∧ 1 > 1)⇒ 1 = 1. Thus, (U , v) is a partial order.

Definition 3.3. Least upper bound. Assume that (U , v) is a partial order and

assume that A ⊆ U . If there exists an element z ∈ U such that:

• ∀x ∈ A : x v z

• ∀y ∈ U : (∀x ∈ A : x v y)⇒ z v y

then z is called the least upper bound of A. The least upper bound of A is denoted as tA.

The t can also be used to denote a least upper bound of two elements in a set. Suppose

a, b ∈ A, then the least upper bound of a and b can be denoted as a t b.
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Definition 3.4. Greatest lower bound. Assume that (U , v) is a partial order and

that A ⊆ U . If there exists an element z ∈ U such that:

• ∀x ∈ A : z v x

• ∀y ∈ U : (∀x ∈ A : y v x)⇒ y v z

then z is called the greatest lower bound of A. The greatest lower bound of A is denoted

as uA. The u can also be used to denote the greatest lower bound of two elements in a

set. Suppose a, b ∈ A, then the greatest lower bound of a and b can be denoted as au b.

Definition 3.5. Lattice. If (U , v) is a partial order where U 6= ∅, and for all x, y ∈ U ,

x t y and x u y exist, then the system (U , v) is called a lattice.

If tA and uA exist for arbitrary subsets A of U , then the system (U , v) is called a

complete lattice.

Two elements of a complete lattice (U , v) are of particular interest: the element > =

tU (top) and ⊥ = uU (bottom). And ∀x ∈ U : ⊥ v x v >.

Definition 3.6. Fixed point. If U is a set and f : U → U is a function, then u ∈ U

is called a fixed point of f if f(u) = u. A fixed point u ∈ U is called the minimal fixed

point if for all other fixed points v ∈ U of f , v 6v u. If a function f has exactly one

minimal fixed point, then this fixed point is called the least fixed point of f .

Tarski’s Theorem [101] proved that for an increasing function f on a complete lattice,

f must have a least fixed point, which can be computed.

Lattice theory is the foundation of a number of important static analysis techniques,

such as data flow analysis and abstract interpretation. Such techniques are reviewed in

the following sections.

3.4.2. Data Flow Analysis

Data flow analysis is a process to (statically) collect run-time information about data in

programs. Data flow analysis is a form of flow sensitive analysis. The semantics of the

operators are not used during data flow analysis [102]. Data flow analysis is based on
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the control flow graph(s) of programs, lattice theory and least fixed point algorithm(s)

[102].

To perform data flow analysis on a program, a control flow graph (CFG) of that

program needs to be obtained first. A control flow graph consists of nodes or basic

blocks. A basic block contains statement(s) or similar concepts of the programming

language in which the program under question is written. A basic block is an abstract

concept such that:

• control enters a basic block only at its beginning;

• control exits a basic block only at its end (under normal execution); and

• control cannot halt or jump out of a basic block except at its end

Such condition implies that when control flow enters a basic block, the statement(s)

contained in the basic block are all executed.

Control Flow Graph

A control flow graph is an abstract representation of a program. Each node in the graph

is represented by a basic block. Directed edges are used to connect the basic blocks, which

represent control flow branches. An entry block is a basic block that has no incoming

edges. An exit block is a basic block that has no outgoing edges.

Control Flow Path

A control flow path is a path in the control flow graph that starts at an entry block and

ends at an exit block [22]. There may be more than one possible control flow paths in a

given control flow graph of a program. Often, the number of possible control flow paths

is infinite because of the unpredictability of the bounds of loops.

Example

To better understand data flow analysis, an example program from [22] is provided in

Listing 3.1. The program is written in an imaginary programming language called TIP
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(stands for Tiny Imperative Language). The control flow graph for the program in

Listing 3.1 is shown in Figure 3.1.

1 x = 2;

2 y = 4;

3 x = 1;

4 if(y>x)

5 z = y;

6 else

7 z = y*y;

8 x = z;

Listing 3.1: A program created in an ad-hoc language from [22].

Figure 3.1.: Control flow graph of the program in Listing 3.1

There are various types of data flow analysis. Lattice theory is applied in data flow

analysis by constructing a lattice for each type of data flow analysis. The constructed

lattice depends on the type of data flow analysis and also the range of variables/values

involved in the program under question.

One example of data flow analysis is the liveness of variables. A variable is said to be

alive at a point in the program if its value is accessed in the remainder of the program.

For the program provided in Listing 3.1, the lattice for analysing the liveness of the

variables is:
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L = (2{x,y,z},v)

Where the binary relation is alive, with a given set {x, y}, it stands true that x and y

are alive, so that x v {x, y} ∧ y v {x, y}.

With the control flow graph and the chosen lattice, the next step is to construct con-

straints for each basic block. For every node v in the control flow graph, a constraint

variable [v] is introduced denoting the subset of program variables that are live at the

program point before that node. An auxiliary definition is provided: [22]

JOIN(v) =
⋃

w∈succ(v)
[w]

For the exit node the constraint is:

[exit] = {}

For conditions and output statements, the constraint is:

[v] = JOIN(v) ∪ vars(E)

For assignments, the constraint is:

[v] = JOIN(v)\{id} ∪ vars(E)

For a variable declaration, the constraint is:

[v] = JOIN(v)\{id1, ..., idn}

Finally, for all other nodes, the constraint is:

[v] = JOIN(v)

In the constraints, the term id refers to either the variable on the left hand side of the

assignment operator or to variables in variable declarations, whereas vars(E) refers to

the variables that are not ids.

Thus, for the program in Listing 3.1, the constraints for the basic blocks in the con-

trol flow graph are the following. In the constraints, the expression enclosed in square

brackets ([]) represents the potential value in the lattice that a basic block may hold.

For example, the [exit ] basic block holds no value in the lattice.

[x = 2] = [y = 4] \ {x}

[y = 4] = [x = 1] \ {y}

[x = 1] = [y > x] \ {x}
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[y > x] = ([z = y] ∪ [z = y ∗ y]) ∪ {x, y}

[z = y] = [x = z] \ {z} ∪ {y}

[z = y ∗ y] = [x = z] \ {z} ∪ {y}

[x = z] = [exit] \ {x} ∪ {z}

[exit] = {}

With all the constraints for all basic blocks in the control flow graph, the next step is

to solve the constraints by substituting the basic blocks enclosed in square brackets with

their range of values in the lattice. By doing so, the solved constraints are obtained:

[entry] = {}

[x = 2] = {}

[y = 4] = {}

[x = 1] = {y}

[y > x] = {x, y}

[z = y] = {y}

[z = y ∗ y] = {y}

[x = z] = {z}

[exit] = {}

Thus, it is inferred that variable y is only alive before the statement x = 1. A smarter

compiler (with the help of the static analysis) would omit line 1 in Listing 3.1 because

variable x is later assigned again in line 3 in Listing 3.1.

Data flow analysis can also be applied to perform the following types of analysis:

Available Expression Analysis

Available expression analysis is able to determine which expression(s) in the program

are computed in more than one place in the program. If an expression, for example, a+b

has previously been computed and there are no changes to a and b, then the expression

a + b can be substituted with the previous computation. Available expression analysis

considers all the control flow paths of the program (the least fixed point algorithm is

used to deal with loops). The results of the analysis can be used to optimise programs

so that available expressions are replaced with their previous computations.
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Very Busy Expression Analysis

A very busy expression is an expression that is used intensively and the value(s) of the

variable(s) in the expression do not change between each usage [22]. The results of the

very busy expression analysis can be used by compilers to optimise programs so that

such expressions are only evaluated once.

Reaching Definition Analysis

Reaching Definition Analysis is used to determine for each basic block, which assignments

may have been made to define the values of variables [22]. Typically, reaching definition

analysis enriches the control flow graph by linking the definition of variables to their

declarations. Such graph is called def-use graph. Reaching definition analysis is the

basis of optimisations, such as dead code elimination.

Data flow analysis is a formal approach of static analysis and is mainly used in compil-

ers to create optimised code. However, data flow analysis is not as powerful in detecting

possible runtime defects. This is due to the fact that data flow analysis does not typi-

cally consider the semantics of the source code; therefore, it is not able to determine its

correctness.

3.4.3. Abstract Interpretation

Abstract interpretation is a theory of semantic approximation. The essence of abstract

interpretation is to create new semantics for the programming language (under question)

that is an abstraction of the concrete semantics of the programming language. Hence,

abstract interpretation can be defined as: abstract since some details about the data of

the program are (intentionally) forgotten, and interpretation since both a new meaning

is given to the program text and the information is gathered about the program by means

of an interpreter which executes the program according to this new meaning [103]. The

abstract semantics focuses on a subset of problems with regards to the programs. In

[103], a static analysis by abstract interpretation (SAAI) framework is proposed. The

framework is based on control flow analysis and the lattice theory - programs are inter-

preted as control flow graphs and a set of constraints in a lattice L. The lattice and
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constraints depend on the property of the program that the static analysis targets. Un-

like data flow analysis, abstract interpretation considers the semantics - operators and

function calls are assigned new meanings in the abstract semantics.

For instance, instead of computing with actual integers, abstract interpretation may

compute with values that describe some property of the integers. For example, using

abstract interpretation, one may replace the domain of integers with the finite domain

{	, 0, ⊕, ?}, where 	 represents a negative integer in the interval [-∞, -1], 0 represents

the integer 0, ⊕ represents a positive integer in the interval [1, ∞] and ? represents any

integer in the interval [-∞, ∞]. With the domain defined, one can define an abstract

interpretation of operators; for example, an addition which used to be performed to add

two integers can now be redefined to add up two abstract integers. The abstract addition

operation, can be defined as follows:

+ 	 0 ⊕ ?

	 	 	 ? ?
0 	 0 ⊕ ?
⊕ ? ⊕ ⊕ ?
? ? ? ? ?

Such abstraction leads to loss of information but it can be inferred that if two negative

integers are added, the result will be negative. Similar to addition, one can redefine

abstract division operation, so that the defect of division-by-zero can be identified.

With different lattice(s), abstract interpretation is able to check for various types of

runtime errors. For example, with a lattice which contains the set of possible states of a

pointer in C/C++, abstract interpretation is able to check if a pointer is NULL. With

a lattice which contains the set of possible type(s) in the programming language’s type

system, abstract interpretation is able to check if a program is type correct.

Abstract interpretation can be computationally expensive if the range of the lattice

is not carefully defined. Because of this, abstract interpretation is considered to be

challenging to apply with large programs [104].

Abstract interpretation is not only bound to lattice theory. In [103], the author states

that any form of static analysis that interprets the semantics to an abstract semantic

can be considered a form of abstract interpretation.
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3.4.4. Other Techniques

Another type of approach is to build a model for static analysis purposes only. Pro-

grams are parsed into an instance of the model and properties are checked by executing

validators in the model. The Lint [105] family of tools are examples that adopt such

an approach. However, the Lint tool(s) exhibit a high rate of false positives. Although

output can be customized to eliminate some false positives, it also increases the risk of

eliminating real errors.

Another approach, called annotation checker, relies on the user of such tools to an-

notate the program they wish to check. This approach provides better checking and

performance. LCLint [106] is an example of such an approach.

FindBugs [107] adopts another approach by specifying the patterns of errors and

storing them in a pattern base. Given a program, the search for all bug patterns is

performed. This approach reduces the rate of false positives, as only potential error

patterns are searched for.

The Eclipse JDT provides a static analysis facility [108], which parses Java source

code into Abstract Syntax Trees (ASTs). Such ASTs are then traversed, and variable

resolution and type resolution are performed to check for defined errors.

3.5. Chapter Summary

This chapter provided a background review on the importance of defect detection. Then

a number of static analysis techniques were discussed. Data flow analysis and abstract

interpretation are the most commonly used static analysis techniques to optimise code

and check for potential runtime errors in compilers. Their limitations were also briefly

discussed. Other static analysis approaches, such as the static analysis used in Lint,

FindBugs and Eclipse JDT were briefly discussed.

3.6. Terminology

Software Defect: an imperfection or deficiency in a software system where that soft-

ware system does not meet its requirements or specifications and needs to be either
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repaired or replaced.

Dynamic Software Testing: Dynamic testing is a defect detection approach that

involves executing the program being tested a number of times, and analysing the infor-

mation collected from the executions.

Static Software Testing: Static software testing is a testing approach that analy-

ses the source code of the software without executing it, which is typically carried out

either manually or automatically.

False negatives: In the context of static analysis, false negatives refer to the defects

that exist in the source code but are not detected by a static analysis tool.

False Positives: In the context of static analysis, false positives refer to the defects

reported by a static analysis tool but are not actual defects in the source code.
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Management Programs

This chapter reviews contemporary static analysis tools in the context of MDE. Sec-

tion 4.1 discusses the need for static analysis in the context of MDE. Section 4.2 identi-

fies the aspects of the static analysis tools that the review looks into. Then, a number of

static analysis tools in MDE, namely the built-in static analysis tools for Dresden OCL

[109], Eclipse OCL [26], Eclipse ATL [23], Acceleo [65], Xpand [110] and EMF-IncQuery

[8] are reviewed. A third-party static analyser, AnATLyzer [7], which provides higher

level analysis functionalities, is also reviewed.

4.1. Static Analysis in the context of MDE

MDE has been shown to bring two positive impacts on software engineering. Firstly,

metamodelling and modelling raise the level of abstraction in system design, which

enables problem domain experts to design systems without the concern of low level im-

plementation details. Secondly, the notion of automation in MDE allows the developers

to automatically transform models into working code (and documentation) using a va-

riety of model management operations (model-to-model transformations, model-to-text

transformations, etc.). Automation in MDE has been shown to improve productivity

[15] and the generated software (source code) is of good quality in terms of consistency

and coding style.

However, model management operations are typically programmed in model manage-

ment languages. As such, there is a need to ensure the correctness of programs written in

such model management languages (discussed in Chapter 2). For example, the program
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in Listing 4.1 is a model-to-model transformation which is used to transform models

that conform to the University metamodel to models that conform to the SocialNetwork

metamodel, provided in Section 2.1.6 (Figure 2.10). There is an error in line 6, where

the assignment statement assigns all the Students that a Lecturer has to p, which is

illegal because the type Student does not exist in the SocialNetwork metamodel. The

program will throw a runtime error because of the assignment statement in line 6.

1 rule Lecturer2Person

2 transform l : University!Lecturer

3 to p : SocialNetwork!Person {

4 p.first_name = l.first_name;

5 p.last_name = l.last_name;

6 p.knows = l.students;

7 }

Listing 4.1: A model-to-model transformation written in Epsilon Transformation

Language

For runtime errors caused by defects in the source code, in the absence of static

analysis facilities, developers typically have to review the source code manually, correct

it, then compile the source code and run the program again. If errors persist, developers

may need to look into the metamodel to check if the operations/functions in the source

code conform to the constraints in the metamodel. Such a process can introduce a long

debugging curve. Thus, if no techniques of defect detection are used at the development

phase of model management operations, the cost of removing defects is expensive because

defects cannot be detected at early stages [93]. Moreover, if the models involved in the

transformation grow larger (with hundreds or thousands of model elements inside a

model) or transformation programs get more complicated, debugging using the compile-

run-debug process described above can be considerably slow.

Thus, there is a need for checking the correctness of model management programs.

Software defects in programs in MDE can be detected by dynamic testing and static

analysis [93], as discussed in Section 3.2. This thesis focuses on static analysis of model

management programs in MDE.
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There are some existing static analysis tools in the context of MDE to analyse pro-

grams written in various model management programs. Dresden OCL [25] and Eclipse

OCL [26] provide built-in static analysis facilities, which are used to check type safety for

model validation programs written in OCL. Eclipse ATL [60] provides a static analyser

to check type safety in ATL model transformations. EMF-IncQuery [8] provides a static

analysis facility to check type safety in model queries. Acceleo [111] and Xpand [66]

provide static analysers to check type safety for model-to-text transformations, etc. The

details of these static analysers are reviewed in this chapter.

Whilst the aforementioned static analysers focus on the correctness of model manage-

ment programs, a new line of work has focused on utilising static analysis to achieve

additional objectives. In [7], a static analyser is implemented for ATL and produces

what is called the effective metamodel. Through the analysis of ATL transformations,

based on the effective metamodel, test cases are generated to exercise the transformation

and discover potential defects.

4.2. Review Strategy

In the previous section, a number of contemporary static analysis tools were identified.

These tools are reviewed in this chapter. The review is focused on the following set of

characteristics of the tools.

4.2.1. Modelling technologies supported

As discussed in Section 2.1.5, a number of modelling technologies (such as EMF, MDR,

UML2, plain XML, etc.) are being used to define modelling languages and models. In

the context of MDE, models can be categorised as closed models and open world models.

Closed models are models that have their corresponding metamodels which define the

concepts used in such models (such as models specified using Ecore). On the other hand,

open world models are models that do not have corresponding metamodels - they are

defined and used in an ad-hoc manner. Examples of open world models include models

defined in plain XML and CSV. Such models do not conform to metamodels but are

widely used by engineers due to their popularity and simplicity [112].
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In a closed model M which conforms to its metamodel MM , when accessing a property

p of an object O of type T (T is defined MM), if T does not define property p, then

the property navigation is surely illegal. On the other hand, in open world models, all

property navigations may be legitimate due to the lack of a metamodel.

A desirable feature for model management languages or tools is the support of manag-

ing models defined in diverse modelling technologies. Such models can be either closed

models or open world models. In addition, although some model management languages

support multiple modelling technologies, they do not support managing models defined

in different modelling technologies simultaneously within a single model management

program. For example, ATL supports MDR and EMF [60], but it does not support the

transformation from a model defined in EMF to a model defined in MDR.

The review assesses if diverse modelling technologies are supported, and if models

defined in different modelling technologies can be used simultaneously within a single

model management program.

4.2.2. Program Abstract Syntax Representation

In the context of MDE, everything is considered to be a model [34]. This stands true

for model management languages. A model management language can be considered as

a metamodel and programs written in the language can be considered as models that

conform to the language (the metamodel). In terms of language implementation, the

approach that most languages adopt is to parse the source code of a program into an

abstract syntax tree (AST) using a parser and then use the AST to execute the program.

In some cases, a higher level of interpretation is performed, turning the ASTs into

content-rich representations (i.e. models) of the language. The benefit of having a

metamodel of a model management language is that it can loosen the coupling between

the language and its underlying parser so that it makes it easier for the language im-

plementers to substitute its underlying parsing technology. Obtaining the model of a

program also allows higher order transformations [113], so that the programs can be

altered with MDE technologies and/or transformed into programs that conform to other

languages.
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The review will assess if a language and its static analysis tools implement a high level

modelling of the language.

4.2.3. Encoding/Representation of the Standard Library

A model management language, in general, has its own type system, which provides types

for its developers to use. The standard library provides the operations/helpers of the

types defined by the model management language. With regard to the implementation

of the standard libraries, model management languages can choose from a number of

approaches.

One approach is to build internal representations of the standard library programmat-

ically. While this is a common approach for language builders, it brings some subsequent

problems. By implementing the standard library programmatically in its entirety, the

model management language is coupled with the underlying programming language that

implements it. Thus, the re-usability of the model management language is limited, as

implementing the model management language in another programming language re-

quires the complete re-write of the standard library. Additionally, extending/altering

the standard library is difficult [114]. For example, given the specification of the model

management language, one may wish to create another version of the implementation of

the language or one may wish to implement only a subset of the types in the language’s

type system. In this case, removing the types and its operations in the standard library

can be tedious.

Another approach is to model the signatures of the operations/helpers of the standard

library using the model management language, while the static semantics of the opera-

tions/helpers is implemented programmatically. By doing so, the coupling between the

model management language and its underlying programming language is loosened to

an extent, and the effort for altering/extending the standard library is minimised.

The review will assess which approach the underlying model management languages

and their static analysis tools use.
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4.2.4. Static Analysis Capabilities

In [115], a number of common errors which can be detected by static analysis are iden-

tified, such as:

• Reading an undefined variable

• Reading an absent property of an object

• Invoking undefined functions

• Invoking a function with an invalid number of parameters

• Type conversion and compatibility problems

Such errors are normally detected by basic static analysis mechanisms when the expres-

sions/variables involved are properly typed. While static analysis tools provide checking

against errors like the above, some static analysis tools illustrate that static analysis can

be used to achieve higher level functionalities. In [7], the authors suggest that static

analysis can be used to construct effective metamodel(s) from an ATL transformation.

An effective metamodel [23] is a subset of the metamodel involved in a model manage-

ment program, which indicates which instances of the type(s) defined in the metamodel

will be used by such a program. Effective metamodels give an insight of the model

element coverage and are often used to construct (automatically) test cases for model

management programs.

The review of the static analysis tools looks into whether the tools support functional-

ities (such as effective metamodel extraction) rather than just static analysis for checking

type-related errors.

4.3. OCL Static Analysis Implementations

This section presents the reviews on the static analysis tools provided by two OCL

implementations: Dresden OCL [109] and Eclipse OCL [26]. Dresden OCL and Eclipse

OCL are both based on the Eclipse platform. Dresden OCL provides facilities for defining

constraints in OCL and assessing the validity of these constraints against models. Eclipse
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OCL, on the other hand, provides a variety of OCL-based languages for domain-specific

modelling, expressing constraints, and re-writing/extending the OCL standard library.

Both implementations adopt the concept of Pivot Metamodel. In this section, the two

OCL implementations are reviewed by looking into the aforementioned aspects.

4.3.1. Dresden OCL

Dresden OCL provides a set of tools to parse and evaluate OCL constraints on models

defined in various modelling technologies, such as UML, EMF and Java. Dresden OCL

provides a built-in static analysis facility. In the context of this thesis, Eclipse Luna

version 4.4.0 and Dresden OCL version 3.4.0 are used for the review of Dresden OCL

and its static analysis facilities.

Dresden OCL Pivot Metamodel

OCL originally acted as an add-on to UML to specify constraints. However, its scope has

widened in recent years to support constraints and queries over object-based modelling

languages in general [41] due to the variety of approaches proposed and tools imple-

mented in the context of MDE. Consequently, OCL faces the challenge of supporting

different Domain Specific Languages. Dresden OCL addresses this challenge by intro-

ducing a Pivot Metamodel, which is defined in EMF’s Ecore. The Pivot Metamodel is a

metamodel that abstracts from all other metamodels [109]. The purpose of Pivot Meta-

model is to allow arbitrary metamodels defined in different modelling languages to be

converted into a common representation. Therefore, Dresden OCL is able to work with

models expressed in diverse metamodelling technologies.

Modelling technologies supported

According to [109], Dresden OCL supports any modelling technology with the use of

Pivot Metamodel. Currently, Dresden OCL supports models (and instances of the mod-

els) defined in the following technologies:

• EMF’s Ecore;
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• Java, Dresden OCL supports the import of Java classes as models and allows OCL

constraints to be defined directly on Java types and their fields and methods;

• MDT UML, Dresden OCL supports the import of UML class diagrams modelled

with the Eclipse Modelling Development Tools (Eclipse MDT); and

• XML Schemas, Dresden OCL supports the import of XML Schema Definitions

(XSD) as models.

Other modelling technologies can be supported by adapting them to the Pivot Meta-

model [109]. Although Dresden OCL supports diverse modelling technologies, it does

not support expressing constraints to models defined in different modelling technologies

within a single OCL file.

Program Abstract Syntax Representation

Dresden OCL provides the metamodel of Essential OCL [39], which is defined with the

Pivot Metamodel. At runtime, OCL constraints are parsed into abstract syntax trees

(models) which conform to the Essential OCL metamodel.

Encoding/Representation of the Standard Library

The standard library of Dresden OCL is also defined in the Pivot Metamodel to sup-

port different modelling technologies. Only the signatures of the standard library are

defined in Pivot Metamodel - the semantics of the operations/helpers are implemented

programmatically via the OCL Standard Library Semantics facility provided by Dresden

OCL.

Static Analysis Capabilities

The built-in Dresden OCL static analysis facility provides basic analysis for type checking

of expressions. OCL programs with injected errors mentioned in Section 4.2.4 have been

created and analysed by Dresden OCL static analyser. Dresden OCL static analyser is

able to detect such errors. Figure 4.1 shows a screenshot where Dresden OCL is used to

write a constraint for the University metamodel (defined in Section 2.1.6). In line 5, an
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invariant is defined, which tries to access a property named “faculties”. However, the

type University does not define this property. Dresden OCL static analyser produces an

error message accordingly.

Figure 4.1.: Dresden OCL static analysis detecting metamodel-related errors

Dresden OCL does not provide any facilities based on the static analysis apart from

error detection.

4.3.2. Eclipse OCL

Eclipse OCL [26] is an implementation of the OCL specification 2.4 for use with EMF-

based (in particular, Ecore and UML2) metamodels. As previously mentioned, this is due

to the extended scope of OCL to support expressing constraints on different modelling

technologies. Eclipse OCL can also be considered as a behavioural extension of EMF

[116]. Eclipse OCL has a static analysis mechanism built in it. In the context of this

thesis, Eclipse Mars version 4.5.0 and Eclipse OCL version 6.0.0 are used for the review

of Eclipse OCL static analysis mechanism.

The Classic Eclipse OCL metamodels and the Eclipse OCL pivot metamodel

According to [116], Eclipse OCL has two different implementations: one with the classic

Eclipse OCL metamodel, and another with the Eclipse OCL pivot metamodel. The
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classic code base of Eclipse OCL1 focused on providing utilities for Java programmers.

It originally supported Ecore metamodels and then added support for UML. This is

achieved by a shared generic metamodel, in which the differences between Ecore and

UML metamodels are accommodated by template parameter lists in Java [116]. These

parameter lists are rather substantial and therefore introduce cumbersome Java code for

the OCL developers/consumers.

The latest Eclipse OCL2 adopts the concept of Pivot Metamodel, which is similar

to the Dresden OCL Pivot Metamodel. The Pivot Metamodel is derived from the UML

metamodels for UML and OCL to provide a unified metamodel for UML with executable

semantics. When using the Pivot Metamodel for Ecore or UML metamodels, an instance

of the Pivot Metamodel is created on the fly to provide the unified merged OCL func-

tionality for the Ecore or UML metamodel instances. The Eclipse OCL Pivot Metamodel

is UML-aligned. It supports modelling of the OCL standard library, XMI representation

of its instances, etc. [117].

Modelling technologies supported

Eclipse OCL currently supports EMF’s Ecore and UML2 [118]. Additionally, with the

Pivot Metamodel in place, it is possible to support more modelling technologies in the

future.

Program Abstract Syntax Representation

All languages provided by Eclipse OCL (Essential OCL for OCL core, OCLinEcore

for embedding ocl within an Ecore metamodel to add invariants for classifiers, and

OCLstdlib for defining standard and custom OCL libraries) are modelled with the Pivot

Metamodel, which is created with EMF’s Ecore.

Encoding/Representation of the Standard Library

Eclipse OCL adopts the approach of modelling the signatures of the operations/helpers of

the OCL standard library and implementing the execution semantics programmatically.

1Versions before 6.0.0, based on Eclipse Luna and before
2Version 6.0.0, based on Eclipse Mars release
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The standard library of Eclipse OCL is modelled with the Pivot Metamodel. The types

in the standard library align with the OCL specification version 2.5 [114]. In [109], it is

identified that Eclipse OCL is not able to model the iterator operations of the standard

library. However, in Eclipse OCL, a few types have been proposed and implemented

[114] to help model the standard library.

OclLambda Type. Prior to OCL 2.5, Iterator operation declarations in the OCL

specification variously omit the final body argument. The required type signature is

defined by commentary and sometimes well-formed rules. The OclLambda Type was

introduced in the OCL standard Library 2.5 so that iterator operators can be defined

using Lambda expressions. The Syntax of a Lambda type is illustrated below:

Lambda context-type (parameter-type-list) : result-type

Thus, iterator operations, such as forAll(), can be defined:

iteration forAll(i : T | body: Lambda T() : Boolean) : Boolean

OclSelf Type. OCL standard library 2.5 introduced the OclSelf type to solve various

corner cases in the existing OCL standard library. For example, prior to OCL standard

library version 2.5, the oclAsSet() operation was defined as:

OclAny::oclAsSet() : Set<OclAny>

where static type information is lost since there is no way to specify that the return

type of the oclAsSet() operation is a Set containing the object on which the operation is

invoked. The OclSelf type helps with such cases. Thus, the oclAsSet() is redefined as:

OclAny::oclAsSet() : Set<OclSelf>

when an object calls oclAsSet(), its type is propagated into the return type of the

operation. Thus, static type information can be maintained and propagated.

Additionally, OclSelf can also be used to model the allInstances() operation (which

returns all the instances within a model of a given type):

static Classifier::allInstance() : Set<OclSelf>

Operations and Well Formedness Rules. Together with the types, the OCL

standard library provides operations which are applicable to their corresponding types.
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In terms of the implementation of the operations, the standard library provides a mech-

anism which allows an arbitrary string to be specified for use by the tooling. The string

points to the location of a Java class which implements the feature of the operation.

Figure 4.2, illustrates the syntax of this mechanism.

Figure 4.2.: OCL Standard Library Implementable

Eclipse OCL provides a domain specific language (which is a dialect of OCL), named

OCLstdlib, to define the OCL standard library. Developers, thus, have the freedom to

extend the OCL standard library at an appropriate level of abstraction.

Static Analysis Capabilities

The static analysis facility built in to Eclipse OCL provides basic analysis for type

checking of expressions. At runtime, the OCL source code is parsed into a Heterogeneous

abstract syntax graph, which is essentially an instance of the Pivot metamodel. The

Pivot metamodel adopts the visitor design pattern for evaluation and validation. There

is a centralised validation visitor which is responsible for dispatching the validation

algorithms to validate different expressions.

OCL programs with injected errors mentioned in Section 4.2.4 were created and anal-

ysed by the Eclipse OCL static analyser. Figure 4.3 shows an OCL program created to

describe constraints on the University metamodel (defined in Section 2.1.6). In line 7,

an invariant is defined which tries to access the property named “faculties”. However,

in the University metamodel, there is no such feature. An error is then issued by the

Eclipse OCL static analyser.

Eclipse OCL does not provide any facilities based on the static analysis apart from

error detection.
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Figure 4.3.: Eclipse OCL detecting metamodel-related errors

4.4. ATL Static Analysis Implementation

This section reviews the static analysis tools for the Atlas Transformation Language

(ATL) [60]. ATL is a hybrid model transformation language as an answer to the OMG

MOF [47] QVT (Query/View/Transformation) RFP (Request For Proposal) [119]. ATL

focuses on model-to-model transformations. Eclipse ATL provides a number of standard

development tools (e.g. syntax highlighting, debugger, content assist, etc.) that aim to

facilitate the development of ATL transformations.

While there is a number of static analysis tools proposed for ATL, this section reviews

the static analysis tool provided by Eclipse ATL, and AnATLyzer [7], a third-party

static analysis tool created with the aim of providing more accurate error reports. In

the context of this thesis, Eclipse Mars version 4.5.0 and Eclipse ATL version 3.5.0 are

used for the review.

4.4.1. Modelling technologies supported

ATL executes programs in an ATL Virtual Machine (currently, there are several versions

of ATL Virtual Machines). Virtual Machines enables platform independence. Within an

ATL virtual machine, ATL defines a generic facility which allows ATL to support diverse

modelling technologies by creating drivers for them. For ATL version 3.6.0, drivers for
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EMF, UML2 [118] and MDR [10] are provided.

4.4.2. Program Abstract Syntax Representation

ATL uses Textual Concrete Syntax (TCS) [120] to parse the source code of ATL programs

into ATL models which conform to the ATL metamodel. The ATL metamodel is defined

using EMF’s Ecore. The ATL metamodel defines the language constructs of ATL and

OCL, including all the types involved in OCL and ATL.

4.4.3. Encoding/Representation of the Standard Library

ATL programs run in ATL Virtual Machines. Currently, there are three versions of Vir-

tual Machines: ATL regular VM, ATL EMFVM (EMF specific VM) and ATL EMFTVM

(EMF Transformation VM) [121].

The ATL regular VM is the first VM implemented for ATL. It is built with the

purpose of supporting diverse modelling technologies using the concept of model handlers

[121]. ATL regular VM has the standard library implemented programmatically in it.

ATL programs are compiled into “bytecode”, stored in ATL’s assembler files (with the

“.asm” extension) [121]. The .asm files are XML-based files, which are executed by

the regular VM. However, the model handlers of the ATL regular VM demonstrate

significant performance issues [121].

ATL EMFVM is a redefinition of the ATL regular VM, and is specific to EMF models

to address the performance issues incurred by the ATL regular VM model handlers. The

standard library is implemented programmatically in EMFVM, including the operations

to directly access EMF models.

ATL EMFTVM, standing for EMF Transformation Virtual Machine, is currently the

most used virtual machine with advanced language features, such as multiple rule in-

heritance, advanced tracing, in-place transformation, etc. EMFTVM is derived from

the previous two ATL VMs and “bytecode” format. However, instead of using a pro-

prietary XML format, it stores its “bytecode” as EMF models, such that they may be

manipulated by model transformations. The standard library is built programmatically

in EMFTVM.
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4.4.4. Static Analysis Capabilities

In terms of static analysis support, at the parsing stage, after an ATL program is parsed

into an ATL model, a transformation, named ATL-WFR, is performed [121]. ATL-WFR

is a model-to-model transformation written in ATL to transform an ATL model into a

model that conforms to the Problem metamodel. The Problem metamodel is defined in

Ecore to represent errors which are subsequently translated into markers visible in the

ATL editor in Eclipse. This ATL-WFR transformation acts as a static analyser which

performs very basic code analysis - mostly checking the uniqueness of transformation

rules, models, variable declarations, etc.

Figure 4.4.: An example of ATL static analysis

ATL programs with injected errors mentioned in Section 4.2.4 were created and anal-

ysed by Eclipse ATL static analyser. Figure 4.4 shows an ATL program which manages

models that conform to the University metamodel (defined in Section 2.1.6). In this

program, an ATL helper was created, named firstClassStudents(), which goes through

all the Members of a Department and finds the students with an average grade greater

or equal to 70. In line 11, an error is injected: the name of the property is changed from

average grade to average grades. The ATL static analyser is able to detect such error

and report it in the editor.

Eclipse ATL does not provide any facilities based on the static analysis apart from
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error detection.

4.4.5. AnATLyzer

AnATLyzer [7] is able to discover errors in ATL transformations by combining static

analysis and constraint solving. If a problem cannot be guaranteed to be an error by

the static analysis facility, a witness model is automatically generated by AnATLyzer

which is used to confirm if the problem is an error, by running the transformation with

the witness model.

Figure 4.5.: Overview of the AnATLyzer [7]

Figure 4.5 illustrates the process performed by the AnATLyzer. The AnATLyzer

performs the static analysis with the following steps:

• The ATL transformation (under question) is parsed to obtain the ATL model which

conforms to the ATL metamodel.

• Type checking is performed on the ATL model in two passes. First, variable

declarations, rule pattern types, helpers, etc. are annotated with their explicitly
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declared types. Then, a bottom-up traversal of the ATL model is performed,

propagating types, annotating each node in the ATL model, and reporting errors

and warnings along the way.

Because ATL is a weakly typed language, expressions may yield different types

at runtime. AnATLyzer makes use of an abstract interpretation technique, which

keeps track of all possible types that an expression may have.

Because ATL does not support the oclAsType operation, to overcome this, AnAT-

Lyzer keeps track of calls to the operation oclIsKindOf(targetType) and annotates

its return type with the target Type. For example, for the expression

expression.oclIsKindOf(University!Student)

the static analyser annotates the return type of oclIsKindOf() to type “Boolean

and University!Student”. AnATLyzer tracks all the calls to oclIsKindOf() in se-

lect() operations, if conditions and rule filters to implicitly downcast the checked

expressions.

In some cases, the type errors detected statically need to be confirmed by finding

a witness model. For example, the aforementioned downcasting mechanism may

report a false problem. To speed up the generation of the witness model, AnAT-

Lyzer uses the effective metamodel of the transformation. The effective metamodel

is calculated from the metamodel footprint obtained in the analysis phase, using

a pruning algorithm similar to the one presented in [122].

Altogether, the type-checking phase annotates the nodes of the ATL model, which

enables the identification of some typing errors and warnings.

• With all the types resolved in the ATL model, the AnATLyzer produces an instance

of an extended version of the ATL metamodel, which contains type information

of the nodes in the ATL model, and the control and data flow of the transfor-

mation, including the dependencies between transformation rules. This model,

called transformation dependence graph (TDG), is analysed in a second iteration

to uncover further potential problems.
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• Some problems detected in the analysis phase cannot be confirmed but require

finding a witness model proving that the error can occur in practice. In order

to do this, AnATLyzer first extracts the error path. This is done by extracting

all possible paths that lead to the (potentially) problematic statement. In the

next step, an OCL expression describing the models that make the transformation

execute the problematic statement is derived.

• With the error path, AnATLyzer extracts the error path’s effective metamodel and

eventually extracts the error’s effective metamodel. Together with the OCL path

condition, the model finder of AnATLyzer is able to generate a witness model.

Failing to find a witness model may occur in two cases: when the metamodel

includes constraints preventing the existence of problematic models, or when the

transformation contains expressions that prevent the error at runtime.

AnATLlyzer does not provide any facilities based on the static analysis apart from

error detection.

4.5. Acceleo Static Analysis Implementation

Acceleo is an Eclipse-based code generation framework which implements the Object

Management Group’s (OMG) model-to-text specification [123]. It supports the genera-

tion of textual files using EMF and UML models. The Acceleo language, named MTL

(Model-to-Text Language, which follows the OMG naming convention), is composed of

two main types of structures: templates and queries. Acceleo adopts a subset of OCL’s

expressions in order to query the input models. A built-in static analysis facility is

provided by Acceleo for error detection and code completion.

In the context of this thesis, Eclipse Mars version 4.5.0 and Acceleo version 3.6.1 are

used for the review of the Acceleo platform and its static analysis mechanisms.

4.5.1. Modelling technologies supported

Acceleo is based on EMF, so it naturally provides support for models defined with

EMF. Acceleo is also compatible with models defined with UML2. For models defined
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in previous UML versions, such as UML1.3 and UML1.4, Acceleo provides converters

which are able to convert models defined in UML1.3 and UML1.4 to EMF models.

4.5.2. Program Abstract Syntax Representation

Since there is only very limited amount of documentation for Acceleo, this review is

conducted by delving into the source code of Acceleo. The investigation of Acceleo’s

source code reveals that the abstract syntax of MTL is defined with EMF’s Ecore.

Acceleo extends Eclipse OCL to a large extent. Acceleo version 3.6.1 is built by extending

Eclipse OCL version 3.5.0.

Acceleo defines two metamodels for MTL with EMF’s Ecore. For parsing the source

code, Acceleo defines a metamodel for MTL’s concrete syntax, named MTLCST, which

is used to represent a concrete syntax tree (CST) for MTL programs. The entities

defined in MTLCST are limited to the language constructs of MTL at the source code

level. At runtime, MTL source code is parsed into instances of MTLCST. Syntax errors

are reported during this process, and markers for these errors are created in the Acceleo

Editor.

The MTL metamodel extends Eclipse OCL’s OCL metamodel, by importing the OCL

metamodel defined in Eclipse OCL into the MTL metamodel in Ecore. The execution

and static analysis works by interacting with instances of the MTL metamodel.

After the CST of a program is acquired, a model-to-model transformation is performed

which converts instances of MTLCST into instances of MTL. Acceleo implements this

transformation in Java, which is encapsulated in the CST2ASTConverter class. What

the transformation does is to further process the elements in the program and create

corresponding OCLExpressions.

4.5.3. Encoding/Representation of the Standard Library

Acceleo defines two built-in libraries: the standard and the non-standard library. The

standard library is built conforming to Acceleo’s specification, whilst the non-standard

library is built for the OCL specification.

Acceleo defines the operations of the standard library and the non-standard library
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with EMF’s Ecore. The implementation of the operations is defined programmatically.

At runtime, an AcceleoLibraryOperationVisitor is responsible for retrieving the oper-

ations defined in the standard library and for invoking the code that implements the

behaviour of the operations. The non-standard library uses the classic version of the

OCL; therefore, types such as OclSelf (mentioned in Section 4.3.2) are not defined in it.

4.5.4. Static Analysis Capabilities

Acceleo extends Eclipse OCL to a large extent by reusing the OCLExpressions defined

in the OCL metamodel. Therefore, the “semantic validation” mechanism (i.e. static

analysis mechanism) of Eclipse OCL is used to detect errors in OCLExpressions.

Before the static analysis on OCL takes place, a preliminary static analysis occurs

during the transformation from MTLCST to MTL, which identifies syntax errors and

possible type incompatibilities. After the MTL abstract syntax graph is acquired, the

OCL ValidationVisitor is then invoked to identify errors in OCLExpressions.

Figure 4.6.: Type inference of Acceleo for the University example (1 of 3)

With respect to static analysis capabilities, Acceleo inherits OCL’s type safe policy

- property accesses are bound to the property’s own type only. Figure 4.6 exhibits

this property. In line 12, an error is reported because the property personalWebPage

cannot be accessed as the type of member in this case is interpreted as Member, despite

the condition of the if statement in line 10 guarantees that the type of member to be

110



4.5. Acceleo Static Analysis Implementation

Lecturer.

Figure 4.7.: Type inference of Acceleo for the University example (2 of 3)

Acceleo’s inference system is a very basic one. In Figure 4.8, instead of giving member

a correct type declaration, an incorrect annotation is given, which declares the type of

member to be Department. Such type declaration results in an error being reported, as

the type of the collection department.members is statically known. Acceleo in this case

only provides a warning for possible type incompatibility.

Figure 4.8.: Type inference of Acceleo for the University example (3 of 3)

Acceleo does not provide any facilities based on the static analysis apart from error

detection.
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4.6. Xpand Static Analysis Implementation

Xpand [110] is an MDE platform which provides textual languages that are useful in dif-

ferent aspects in the context of MDE, such as model validation, model-to-model transfor-

mation and model-to-text transformation [110]. The languages of the Xpand framework

are based on a common programming language named Xtend. Xpand, a model-to-text

transformation language and Check, a model validation language, are built atop the

Xtend language [110]. In the context of this thesis, Eclipse Mars version 4.5.0 and

Eclipse Xpand version 2.1.0 are used for the review of the Xpand framework.

4.6.1. Modelling technologies supported

Xpand is able to work with models defined in different modelling technologies, such as

EMF Ecore models, Eclipse UML2 models, XML schemas and simple JavaBeans [66].

Xpand allows the usage of work flow (a series of model management tasks) templates

which can be configured to interact with models defined in such technologies throughout

the work flow (but not to manage models of different technologies within a single pro-

gram). Xpand also provides an extensible interface, which allows the creation of model

drivers for other modelling technologies.

4.6.2. Modelling of Xpand

The Xpand language extends the Xtend language in terms of its abstract syntax. The

abstract syntax of the Xtend language is implemented using Java - there is a Java class

implementation for each concept in the language abstract syntax. The Xpand language

implements its abstract syntax by extending the Xtend abstract syntax.

At runtime, program source code is parsed Java-based Abstract Syntax Trees (i.e. the

Java instances of the abstract syntax). Each abstract syntax implements an analyse()

method, which deals with syntax errors and performs static analysis for type checking.
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Figure 4.9.: Type casting in Xpand using the University example (1 of 2)

4.6.3. Encoding/Representation of the Standard Library

As previously mentioned, the Xpand language extends the Xtend language. Therefore,

it also extends the standard library of the Xtend language. The standard library of

the Xtend language is implemented programmatically in Java. The Xpand language

implements more types atop those of the Xtend type systems, such as Definition, Iterator,

etc.

4.6.4. Static Analysis Capabilities

For each abstract syntax element (implemented Java class), there is an analyse() method,

which is used for static type inference. Xpand is a statically typed language (inherited

from Xtend), and it has an advanced type inference mechanism which is able to infer

the types of expressions even where type declarations are not in place. However, when

dealing with inheritance, the type inference system needs the help of type casting in

order to infer types correctly. The program in Figure 4.9 prints out all the Lecturers of

all the Universities in the model.

Since the type Lecturer is a sub-type of Member, type casting is needed in line 14, so

that the type inference system knows that the type of this is Lecturer. It is noteworthy
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that the condition of the if statement in line 11 does not help the type inference, although

the condition specifies that the metaType of this should be Lecturer.

On the other hand, if used inappropriately, type casting can result in runtime errors.

In Figure 4.10, type casting in line 20 results in a runtime error.

Figure 4.10.: Type casting error in Xpand using the University example (2 of 2)

Xpand does not provide any facilities based on the static analysis apart from error

detection.

4.7. IncQuery Static Analysis Implementation

EMF-IncQuery [8] provides a means to query EMF models in a scalable manner us-

ing declarative and re-usable specification of queries. EMF-IncQuery features a high-

performance incremental query engine built on an adaptation of the RETE algorithm

[124]. Based on the RETE algorithm, the evaluation times of queries are practically in-
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dependent of the complexity of the query and the size of the models [8]. EMF-IncQuery

provides a built-in static analysis tool for type-related error detection.

In the context of this thesis, Eclipse Mars version 4.5.0 and EMF-IncQuery version

1.0.1 are used for the review.

4.7.1. Modelling technologies supported

EMF-IncQuery supports models defined using EMF and UML2 [118].

4.7.2. Program Abstract Syntax Representation

Since there is only very limited design documentation for EMF-IncQuery, this review is

conducted by inspecting the source code of EMF-IncQuery to investigate its structure.

The investigation of EMF-IncQuery’s source code reveals that the pattern language of

EMF-IncQuery is defined with the help of Xtext [12]. Xtext is a framework which

enables the creation of a full implementation of a programming language including a

dedicated editor, a parser, an EMF-based metamodel of the language, a serialiser and

a code formatter [12]. Xtext also provides a framework on top of which static analysis

rules can be implemented.

EMF-IncQuery defines two models with Xtext for the EMF-IncQuery language: Pat-

ternLanguage and EMFPatternLanguage. PatternLanguage defines the language con-

structs of EMF-IncQuery which are used to specify patterns. EMFPatternLanguage acts

as an add-on to the PatternLanguage, which adds the definition of Import statements

used to import EMF packages in the editor.

4.7.3. Encoding/Representation of the Standard Library

EMF-IncQuery provides a number of operations such as eval() and check() to evaluate

values and check for boolean conditions. Such operations are implemented programat-

ically in Java. In addition, EMF-IncQuery uses the RETE algorithm [124] for pattern

matching. The process of the query processing of IncQuery is illustrated in Figure 4.11.

At first, the query definition (source code) of a program is parsed into what is called

the PatternModel, which is essentially an instance of the PatternLanguage metamodel.
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Figure 4.11.: IncQuery Query Processing [8]

The PatternModel is then converted into an internal representation called PQuery in the

pSystem, which is essentially a constraint network. In the constraint network, queries

are formed into patterns. From the constraint network, a relational algebra-like search

plan is created. The search plan is then converted into a RETE recipe, which is an

instance of the recipes metamodel defined with Ecore for the RETE algorithm to work
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on. The execution engine then uses the Rete recipe to produce the query results.

4.7.4. Static Analysis Capabilities

EMF-IncQuery uses a constraint-based static type-checking framework for graph pat-

terns, which adopts a type-checking approach, called constraint satisfaction problems

(CSP) for partially typed graph transformation programs [12].

In IncQuery, type checking a query is conducted as follows:

The first step of the analysis is the identification of the type system (TS) of the query,

and its initialisation for the CSP solver library. The rationale behind this is that a

query normally exercises a sub-set of metamodel elements; therefore, the type system

used in a query consists only of the sub-set of the metamodel under question. This is

similar to the concept of model pruning [122]. After the TS is collected, for each type, a

unique integer set is assigned in a way that the set-subset relation between the integer

sets represents the inheritance hierarchy in the type system. Informally, it is a mapping

function m : type 7→ 2N, which guarantees that ∀T1, T2 ∈ TS : supertypeOf(T1, T2) ⇔

m(T1) ⊂ m(T2).

Figure 4.12.: Type System of the University metamodel

The type system for the University metamodel is partially depicted in Figure 4.12.

As shown, type Member is assigned to the number 3, whereas Student is assigned
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the numbers 3 and 5, and Staff is assigned the numbers 3 and 6. Determining type

compatibility, for example, between Member and Student, is solved by the relation

m(Member) = {3} ⊂ {3, 5} = m(Student). On the other hand, type Student is not

compatible with type Department as m(Department) = {2} * {3, 5} = m(Student).

After the type system is built for the query, a program traversal is performed, which

processes every statement in every possible execution path of the transformation pro-

gram. All the variables in the program are assigned to a CSP constraint. These con-

straints represent the type of a variable of the program, which will be matched with

constraints representing the various uses of the variable. For example, for the state-

ment:

University(U);

The variable U would be assigned the CSP constraint m(typeOf(U)) ⊂ {1}, according

to the type system extracted in Figure 4.12. In terms of type information, the type of

the expression University(U) is University.

The constraints of the statements are then aggregated to determine the constraints of

patterns. Thus, the pattern:

pattern university(U) = {

University(U);

}

The constraint of the pattern is consequently the same as the constraint of the state-

ment University(U); because it is the only statement contained in the pattern, which is

m(typeOf(U)) ⊂ {1}.

By building the constraint network in a bottom-up manner, the constraint network is

able to infer advanced type errors in the source code. For the following patterns:

pattern member(M) = {

Member(M)

}

pattern studentsWithFirstClassResult(S) = {
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find member(S);

Student.average_grade(S, G);

check(G >= 70);

}

IncQuery is able to infer that, in line 6, the type of variable S is Student because of the

property call in line 7. It is noteworthy that because of the type inference system, the

users of IncQuery do not need to declare types unless it is absolutely necessary.

EMF-IncQuery does not provide any facilities based on the static analysis apart from

error detection.

4.8. Related Work

Apart from the integrity checking tools mentioned in the previous sections, there are a

number of tools that attempt to solve the same problem using formal methods. [125]

presents EMFtoCSP, which is a tool for validating EMF models (annotated with OCL

constraints) using constraint logic programming. EMFtoCSP translates EMF models

along with their constraints (expressed in OCL) and the correctness properties to be

checked into a constraint satisfaction problem (CSP). A constraint solver is then used to

determine whether a solution for the CSP exists or not. If a solution is found, EMFtoCSP

provides a valid instance of the input model to certify it. In this sense, EMFtoCSP

may be a potential approach to statically analysing model management programs (OCL

programs) by searching for solutions for the OCL constraints. However, as stated by

the authors, EMFtoCSP employs a bounded verification strategy to ensure termination.

Limits are set by restricting the number of instances per class and association and

the domains of each attribute in the model, which may result in some problems when

statically analysing complex programs which number of instances of types exceeding

the restricted number set by the tool. UML2Alloy [126] uses the same approach which

transforms UML/5OCL class diagrams into Alloy3. However, UML2Alloy desmonstrates

limitations in direct manipulation of operations involving integers [125].

3http://alloy.mit.edu/alloy/
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In [127], the authors present a plugin named OCL2Kodkod which is integrated to USE

(UML-based Specification Environment), which is a UML and OCL tool. OCL2Kodkod,

together with USE, provides a means for efficiently searching for model instances in

large search spaces. OCL2Kodkod translates UML models and OCL constraints into

the relational logic of Kodkod [128]. The formulas from the relation logic are then

translated into boolean logic, and the resulting boolean fomulas are then searched by

SAT solvers for boolean satisfiability (SAT). If the applied SAT solver finds a solution,

the solution is translated back into a UML model. Similar to EMFtoCSP, OCL2Kodkod

supports the search of valid UML models.

4.9. Review Findings

Whilst existing static analysis tools support the management of models defined in diverse

modelling technologies, none of the available static analysis tools supports the analysis of

programs that simultaneously manage models defined in different modelling technologies

within a single program. In addition, the functions that the reviewed tools provide are

only limited to error detection and auto-completion. None of the tools provide the

facility to address scalability challenges to MDE.

Although the underlying tools/languages of the static analysis tools reviewed cover

model management tasks such as model validation, model-to-model transformation,

model-to-text transformation and model querying, in practice it is difficult to make use

of the tools/languages in conjunction with each other due to their support for modelling

technologies and their inconsistent syntax. Thus, it is possible that static analysis is not

in place for a certain model management task throughout an MDE based development

process because tools without static analysis support might be adopted. Thus, there

is a need to have a static analysis framework that provides static analysis facilities to

a broad range of model management languages, which share consistent syntax and the

same means to interact with models defined in different technologies.
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4.10. Chapter Summary

This chapter reviewed a number of static analysis tools in the context of MDE. In

Section 4.1, the need for static analysis was introduced and a number of existing static

analysis tools within the context of MDE were identified. Section 4.2 discussed the

review strategy for the static analysis tools identified. Section 4.3 reviewed the built-in

static analysis tools for Dresden OCL and Eclipse OCL. Section 4.4 reviewed the built-

in static analysis tool for Eclipse ATL and a third-party static analyser, AnATLyzer,

which provides an automated test case generation facility to detect runtime errors more

efficiently. Section 4.5 and 4.6 reviewed the built-in static analysis tools for Acceleo

and Xpand. Section 4.7 reviewed the built-in static analysis tools for EMF-IncQuery.

The findings from the review of these tools were discussed in Section 4.9. Based on

these findings, the thesis positions its research hypothesis, which will be discussed in

Chapter 5.
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This chapter presents the analysis and hypothesis of this thesis. Firstly, the analysis of

the research problem is conducted, including the analysis of the target MDE platform

for the research, the available infrastructure and the research methodology. This chapter

also presents the hypothesis of this thesis and identifies the research objectives that need

to be achieved to assess its validity.

5.1. Research Analysis

5.1.1. Research Challenges

In Chapter 2, two challenges to MDE (which are relevant to this thesis) were identified

as follows:

• The need to ensure the correctness of model management programs; and

• The need to achieve scalability of model management tools when large-scale models

are involved.

This thesis aims to tackle these challenges through static analysis of model management

programs. In Chapter 4, a number of contemporary static analysis tools were identified

and studied in terms of their ability to tackle these challenges. Throughout the study, a

number of limitations were identified in the state of the art:

Simultaneous Diverse Model Management: Although most model management

languages support the management of models defined in diverse modelling technologies,

they do not support the management of models defined in different modelling tech-

nologies within a single program. On the other hand, languages which support the
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simultaneous management of models defined using different modelling technologies (e.g.

languages of the Epsilon platform) do not provide built-in support for static analysis.

Multiple Model Management Language Support: The static analysis tools

either support only a single model management language or a limited subset of languages

in the model management language spectrum (discussed in Section 2.1.6). Within an

MDE-based software development process, there are practical difficulties related to using

independently developed model management languages. Such difficulties arise due to

the diversity and inconsistency of the syntax of the languages. In addition, inconsistent

assumptions and varying levels of support for different modelling technologies can often

cause interoperability problems.

Support to Achieve Scalability of MDE: The static analysis tools reviewed focus

on the detection of type-related runtime errors of model management programs. How-

ever, as discussed in Chapter 2, static analysis techniques can also help improve the

performance of programs (e.g. by avoiding heavy and repetitive computation). In this

context, none of the reviewed tools provides facilities that help address the scalability

challenges in MDE.

Given the number of static analysis tools for model management languages that have

emerged in recent years in the context of MDE, it is evident that the importance of static

analysis in MDE is well understood. Contemporary static analysis tools within MDE aim

to ensure the correctness of model management programs by detecting potential runtime

errors. However, for the wider adoption of MDE, it is essential for it to support models

defined in arbitrary modelling technologies and to support model management operations

in which models defined in diverse modelling technologies are managed simultaneously

(e.g. within a single model management program). In addition, as scalability has been

identified as a major concern for the wider adoption of MDE, it is also desirable to

investigate how static analysis techniques can be used to improve the performance of

model management programs on large models.
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5.1.2. Research Platform

To address the identified research challenge, it is necessary to indicate a set of target

model management languages or a research platform. For this thesis, the Epsilon plat-

form [36] is well positioned as a target platform. Epsilon provides the following features,

which offer a promising basis for addressing the challenges summarised in Section 5.1.1:

• Epsilon provides an extensible model connectivity layer, EMC, which is able to

manage models defined in diverse modelling technologies. Modelling technology-

specific drivers can also be developed atop EMC to support arbitrary modelling

technologies. In addition, Epsilon supports the simultaneous management of mod-

els defined in different modelling technologies within a single program;

• Epsilon provides a broad range of task-specific model management languages with

consistent syntax, which are built atop a core language (the Epsilon Object Lan-

guage [129]). It also enables the creation of further task-specific model management

languages by extending EOL.

5.2. Research Hypothesis

The hypothesis of this thesis is as follows:

Reusable static analysis facilities can be used to identify errors in different types of

model management programs (e.g. model transformations, validation constraints) that

operate on multiple models defined using diverse modelling technologies, and to enhance

the performance of programs operating on large models.

The objectives of the thesis are:

• To build a static analysis framework for the Epsilon platform, atop which reusable

static analysis tools can be developed;
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• To build a facility which supports the analysis of programs that manage models

defined in diverse modelling technologies;

• To use the framework to develop static analysis tools for the Epsilon model man-

agement languages demonstrating its reusability and extensibility;

• To use the static analysis framework to develop facilities for analysis and automated

optimisation of the performance of programs operating on large models.

Although this thesis positions Epsilon as its research platform, the outcomes of the the-

sis is not bound to Epsilon. Since EOL re-uses a large part of OCL’s (Objec Constraint

Language) language syntax, the static analysis techniques presented in this thesis can be

applied to any language that re-uses OCL’s language syntax without extensive changes.

On the other hand, the means to address scalability through static analysis can be used

as heuristics to solve similar problems for other model management languages/tools that

inherit OCL’s language syntax or execution semantics.

5.3. Research Scope

The purpose of this section is to establish the scope and boundaries of this work. Fol-

lowing the research hypothesis, the development of the static analysis framework on the

Epsilon platform involves the following steps:

• Constructing the infrastructure of the static analysis framework, which includes

building an analysable representation of programs of Epsilon’s core language (EOL).

Such a representation should be extensible in the sense that it can be extended to

represent other languages that build on top of EOL, such as the Epsilon Transfor-

mation Language (ETL) and the Epsilon Validation Language (EVL);

• Constructing an extensible facility which is able to access the metamodels of the

models involved in a program. This facility should also be extensible in the sense

that it can be extended to support arbitrary modelling technologies;

• Constructing a static analysis facility using static analysis techniques, such as

abstract interpretation and lattice theory;
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• Constructing a number of facilities based on the static analysis to address the scal-

ability challenges in MDE, such as performance bottleneck detection, performance

improvement of programs which operate on large models, etc.

Due to the high number of task-specific model management languages in Epsilon, a

decision has been made to limit the scope of this work to the languages supporting

the most recurring tasks, such as model querying, model-to-model transformation and

model validation, and to provide guidelines on how to implement static analysers for the

remainder of the languages of Epsilon.

5.4. Research Methodology

A typical software engineering process involving multiple analysis, design, implemen-

tation and testing iterations has been followed to evaluate the validity of the research

hypothesis.

5.4.1. Iterative Analysis

In the analysis phase, an in-depth analysis of the Epsilon Model Connectivity (EMC,

Section 6.1) and Epsilon Object Language (EOL, Section 6.4.1) was performed to study

how the static analysis framework can be implemented to achieve the same extensi-

bility as EMC and EOL in order to construct the infrastructure of the static analysis

framework.

After the infrastructure of the static analysis framework was constructed, analysis was

performed to discover which static analysis technique was best suited for the purpose of

this research, in order to construct the static analysis framework.

After the static analysis framework was implemented, analysis was performed on the

Epsilon Validation Language (EVL, Section 8.1) and the Epsilon Transformation Lan-

guage (ETL, Section 8.2) in order to implement static analysers for these two languages.

Once the static analysis framework was constructed, analysis was performed to dis-

cover how the static analysis framework could be extended to implement facilities that
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provide automated performance analysis and optimisation to address the scalability chal-

lenges from various aspects.

5.4.2. Iterative Design and Implementation

Following the first analysis iteration, an extensible model connectivity layer fulfilling

the purpose of static analysis was designed and implemented. Altogether, a metamodel

of EOL was designed and implemented, together with a facility that transforms EOL

programs into EOL models that conform to the EOL metamodel.

Following the second analysis iteration, a static analysis facility which performs anal-

ysis on EOL programs was designed and implemented.

Following the third analysis iteration, the static analysis framework was extended to

add the modules in order to support the analysis of programs written in EVL and ETL.

Following the fourth analysis iteration, automated performance analysis and optimi-

sation facilities were designed and implemented which address the scalability challenges

in MDE from different aspects.

5.4.3. Iterative Testing

Throughout the design and implementation phases, several case studies have been used

to assess the quality and usefulness of the proposed approach and the correctness of the

implementation. Significant feedback has been provided by academic peers who have

reviewed publications on several aspects of the framework. Errors and design defects were

identified throughout the testing and were considered in future development iterations.

5.5. Chapter Summary

This chapter provided a detailed discussion on the selection of the target research plat-

form, identified the research challenges, and also established the research hypothesis and

the research methodology used to target the challenges and fulfil the research hypothesis.

The following chapters present the static analysis framework which assess the validity

of the research hypothesis.
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Management Language Infrastructure

This chapter presents the first analysis, design and implementation iteration of this

research. As stated in Chapter 5, this iteration analyses the Epsilon Model Connectivity

(EMC) layer and the Epsilon Object Language (EOL). This chapter then provides the

design and implementation of the infrastructure of the static analysis framework.

6.1. Overview of the Epsilon platform

The design of Epsilon focuses on two main aspects with regards to MDE: modelling

technologies and model management languages. With respect to modelling technologies,

Epsilon is metamodel technology-agnostic [129]. Epsilon provides an abstract interface,

named the Epsilon Model Connectivity layer (EMC), which enables the creation of mod-

elling technology-specific drivers for arbitrary modelling technologies. EMC provides

a set of interfaces which allow the languages of Epsilon to access models defined with

different modelling technologies in a uniform way. Currently, Epsilon supports models

described in EMF, plain XML, Meta Data Repository (MDR), CSV, etc.

With respect to model management languages, Epsilon provides a set of task-specific

languages that are built atop a core language - the Epsilon Object Language (EOL)

[129]. EOL reuses a significant part of the Object Constraint Language (OCL), but adds

support for features such as imperative language constructs (statement sequences and

groups), multiple model access, uniformity of function invocation, model modification,

debugging and error reporting.

Currently, there is a broad range of task-specific model management languages imple-
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mented atop EOL, including the Epsilon Validation Language (EVL) for model valida-

tion, the Epsilon Transformation Language (ETL) for model-to-model transformation,

the Epsilon Generation Language (EGL) for model-to-text transformation, the Epsilon

Comparison Language (ECL) for model comparison, etc.

The Epsilon platform provides consistency, interoperability and extensibility. Consis-

tency is achieved through the re-use of EOL - Epsilon languages have consistent syntaxes

because they are built atop EOL. Interoperability is achieved by the abstract model inter-

action layer EMC. Extensibility is achieved by EMC and EOL - new technology-specific

model drivers can be created by extending EMC and new model management languages

can be created by extending EOL.

The architecture of the Epsilon platform is depicted in Figure 6.1.

Figure 6.1.: The architecture of the Epsilon platform

6.2. The Epsilon Model Connectivity Layer

The Epsilon Model Connectivity layer (EMC) provides abstraction facilities over con-

crete modelling technologies such as EMF, XML, etc., and enables Epsilon programs to
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interact with models conforming to these technologies in a uniform manner. A graphical

overview of the design is displayed in Figure 6.2.

EMC provides the IModel interface which abstracts away from concrete model rep-

resentations. IModel provides a number of functions that enable model querying and

modification. The ModelRepository acts as a container of models. It also enables Epsilon

languages to manipulate models in a batch manner.

6.2.1. Loading and Persistence

The load() and load(properties:Properties) methods enable the model drivers which

extend IModel to specify how a model is loaded onto memory. The store() and the

store(location:String) methods are used to define how the model can be persisted from

memory to a permanent storage location. [9].

6.2.2. Type-related Methods

In metamodelling architectures, there are typically two types of type conformance rela-

tionships. Assume a model element E from a model M and a type T from M ’s metamodel

MM . E is said to have a type-of relationship with T if E is an instance of T . E is

said to have a kind-of relationship with T if E is an instance of T or an instance of any

sub-type(s) of T . With this definition, the operation getAllOfType(type:String) returns

all the instances of type (provided in the parameter). The getAllOfKind(type:String)

returns all the instances of type (provided in the parameter) and all instances of the

sub-types of type.

The method isTypeOf(element:Object, type:String) returns true if the element has

a type-of relationship with type. The method isKindOf(element:Object, type:String)

returns true if the element has a kind-of relationship with type. The method get-

TypeOf(element:Object) returns the fully qualified name of the type with which the

element has a type-of relationship. The hasType(type:String) method returns true if the

model supports a type with the specified name (the parameter type). The method isIn-

stantiable(type:String) returns true if a type defined in the metamodel is non-abstract.
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6.2.3. Model and contents

The method allContents() returns all the elements that a model contains. The method

owns(element:Object) returns true if the element belongs to the model.

6.2.4. Creation, Deletion, and Modifications

Model elements are created and deleted using the createInstance(type:String) and dele-

teElement(element:Object) methods respectively.

To retrieve and set the values of the properties of its model elements, IModel uses its

associated propertyGetter (IPropertyGetter) and propertySetter (IPropertySetter) respec-

tively. Technology-specific drivers should also implement the IPropertyGetter and IProp-

ertySetter interfaces and provide implementations for accessing and modifying the value

of a property of a model element through their invoke(element:Object, property:String)

and invoke(value:Object) operations.

6.2.5. ModelRepository

A model repository is a container for a set of models that need to be managed in the

context of a task or a set of tasks. Apart from a reference to the models it contains,

ModelRepository also provides the following methods:

• The method getOwningModel(element:Object) returns the model that owns a par-

ticular element (the parameter).

6.2.6. The ModelGroup

A ModelGroup is a group of models that have a common alias. ModelGroups are cal-

culated dynamically by the model repository based on model aliases given by model

management operations. If two or more models share a common alias, the repository

forms a new model group. The ModelGroup class implements the IModel interface. It

also implements all the methods in the IModel interface, but in a batch manner. How-

ever, the createInstance(type:String) cannot be defined for a group of models, as it cannot
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be determined in which underlying model of the group the newly created element should

belong.

6.3. Designing the Epsilon Static Analysis Model Connectivity

Layer

The design of EMC makes minimal assumptions about the structure and the organisation

of the underlying modelling technologies. This can be observed from EMC’s deliberate

avoidance of abstractions, such as model element (elements in a model), type (types

in a metamodel) and metamodel. Instead, EMC uses String type for names of types

and Java Objects for model elements. This design decision promotes flexibility and

extensibility - new technologies can be adapted by implementing technology-specific

drivers by extending EMC. In addition, performance is also preserved - the lightweight

approach of IModel (i.e. the use of String and Java Objects) avoids using wrapper objects

for model elements and, therefore, reduces memory consumption, as opposed to using

wrapper objects [9].

However, such a lightweight approach also introduces some challenges with respect

to static analysis. EMC provides little support for inspecting the type structure of the

metamodel(s) under question. The functions provided to make queries at the metamodel

level are limited to the hasType(type: String) method and the getTypeOf(element:Object)

method. Because EMC uses only Java String and Java Object, it is not possible to

acquire the type hierarchy of the metamodel(s) under question (including the type in-

heritance structure, references between types, etc.). Therefore, to allow static analysis,

an enhanced model connectivity layer needs to be devised.

6.3.1. Access to Metamodels

Model management programs mostly involve interacting with models and their corre-

sponding metamodels. EMC refrains from defining such abstractions but essentially it

interacts with artefacts at the model and metamodel levels. However, from the static

analysis perspective, a static analysis facility is interested in the types of expressions.
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The types involved (for example in an EOL program) include (a subset of) the types

provided in the EOL type systems and also (a subset of) the types provided by the un-

derlying metamodel(s) (that the EOL program interacts with). Thus, a static analysis

facility for model management programs is not interested in the models involved, but

rather the metamodels of such models, in the sense that type names, legal features of

types and their cardinalities are used to validate the correctness of the expressions with

relation to their types.

6.3.2. Wrapping Metamodel Elements with Ecore

To enable static analysis, an enhanced model connectivity layer needs to be devised.

Such a layer should provide metamodel level access, in order to obtain the information

of the type structure in the metamodel(s) related to the analysis of a model management

program.

A design decision was made to use EMF’s Ecore as a wrapping layer to convert meta-

models (or unstructured models) defined by various modelling technologies into a com-

mon representation so that they can be accessed in a uniform way by the static analysis

framework.

6.3.3. Epsilon Static Analysis Model Connectivity (ESAMC)

Based on the analysis of EMC, the Epsilon Static Analysis Model Connectivity (ESAMC)

was created. The structure of the ESAMC is shown in Figure 6.3. Before a metamodel is

accessed, regardless of its modelling technology, ESAMC requires that such metamodel is

converted (or wrapped) to an Ecore metamodel, with the help of modelling technology-

specific drivers that implement ESAMC.

The fundamental element of ESAMC is IPackage. IPackage is responsible for man-

aging an EPackage. IPackage can be identified by its name. An IPackage may contain

a number of subPackages, and an IPackage may have a superPackage. In IPackage, a

number of methods are provided to query the types defined in a metamodel.
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• getMetaElement(elementName: String), getClass(elementName: String),

getDataType(elementName: String) and getEnumeration(elementName: String)

are used to fetch an EClassifier, EClass, EDataType or EEnum respectively by the

elementName provided;

• getAttribute(eClass: EClass, attribute: String), getReference(eClass: EClass, ref-

erence: String) and getFeature(eClass: EClass, feature: String) are used to fetch

the corresponding EAttribute, EReference and EStructuralFeature defined by the

EPackage with the parameters provided;

• getSubPackage(name: String) fetches any IPackage contained by the current IPack-

ageDriver ;

• getSubPackages() returns all the IPackages contained by the current IPackageDriver ;

• getSuperPackage() returns the parent IPackage of the current IPackage.

With such methods, the static analysis mechanism is able to fetch the types defined

in a metamodel and query its attribute(s) and reference(s). Because the metamodel is

represented as EPackages, the type structure inside the metamodel can be navigated

from a given type.

Interface IMetamodel is used to represent a metamodel. It may contain a number of

IPackages. The metamodel is loaded with a method call to load(options: Map<String,

Object>), which takes a Map that contains loading options. The user of ESAMC can

specify how the metamodel is loaded (for example, by looking for the underlying EPack-

age in the EPackage registry, etc.). An IMetamodelDriver can be identified by a name

and a number of aliases. Methods are provided to get a specific IPackage by name.

The IMetamodelManager acts as a container to contain IMetamodels and provides

interfaces for retrieving IMetamodels either by name or by aliases.

6.3.4. Summary

Compared to EMC, ESAMC is a read-only layer which only accesses the metamodels

of (structured) models (and the models if they are unstructured, as discussed in Chap-
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ter 9). ESAMC is largely inspired by EMC in the sense that it provides a uniform

measure to access metamodels defined in different modelling technologies. Modelling

technology-specific drivers can be devised by extending the IMetamodel and IPackage

interface. Unlike EMC, ESAMC requires that metamodels defined in different modelling

technologies to be wrapped (or converted) into Ecore metamodels. Such an approach is

necessary to provide a uniform way to access type hierarchy of metamodels defined in

different modelling technologies.

6.4. The Static Analysis Infrastructure for EOL

The Epsilon Object Language (EOL) is the core language of Epsilon. EOL provides a

reusable set of common model management facilities atop which task-specific languages

can be implemented. Epsilon’s other task-specific model management languages (such

as the Epsilon Validation Language, Epsilon Transformation Language, Epsilon Gen-

eration Language, etc.) are defined atop EOL. EOL can also be used as a standalone

general-purpose model management language for tasks that do not fall into the patterns

targeted by task-specific languages. EOL reuses the model navigation feature of OCL,

but provides additional support for language features like multiple model access, state-

ment sequencing and model modification capabilities. Since EOL is the core language of

Epsilon and the basis of all other task-specific Epsilon languages, this thesis first focuses

on EOL.

6.4.1. The Current Abstract Syntax Representation of EOL

The abstract syntax of EOL is implemented using an ANTLR-based [68] parser, in the

form of Abstract Syntax Trees (ASTs). The ASTs are homogeneous trees: an AST

node contains a type (of type int), a text which contains the content of the node, and

a number of children which are of type AST node. For example, for the following EOL

example program:

var a = 1;

var b = 2;
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var c = a + b

Listing 6.1: An Example EOL program

the ANTLR parser parses the program into an AST as shown in Figure 6.4. At the top

level is an AST node with type 61 and text “EOLMODULE”, it then contains another

AST node with type 62 and text “BLOCK”. AST of type 62 then contains 3 children,

and so on.

Figure 6.4.: An instance of EOL’s ANTLR-based AST

The EOL execution engine implements different Executors for different types of ASTs

in order to execute an EOL program. However, for the purpose of this thesis, it is not

desirable to perform static analysis on the ASTs for two major reasons. Firstly, the ASTs

are homogeneous trees in the sense that all the nodes are of the same type: AST, which

makes it difficult to express type hierarchy of all the types in EOL’s abstract syntax. In

addition, the homogeneous nature of AST makes performing static analysis on it tedious
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and error-prone. Secondly, ANTLR is a choice of parsing technology that Epsilon adopts.

However, Epsilon should not be tightly coupled to ANTLR. As Epsilon evolves over time,

new parsing technologies may emerge, which can be potential choices for parsing EOL

programs. Thus, the static analysis framework should avoid tight coupling with ANTLR

by giving EOL a higher level representation of its abstract syntax.

Thus, in order to establish a static analysis framework for Epsilon, it is necessary

to provide a heterogeneous representation of the abstract syntax of EOL. The design

decision is to create the abstract syntax in the form of an Ecore metamodel.

6.5. Modelling the Epsilon Object Language

Following the discussions in the previous section, the first step of the research was to

devise a metamodel for EOL. There are a number of choices of approaches/technologies

at hand. In terms of approaches, there are two approaches that are feasible:

• To use Xtext (or similar tools) to define the grammar for EOL, Xtext then uses the

grammar to generate a number of facilities such as parser, Ecore-based metamod-

els, static analysis infrastructure, etc. However, this approach involves perfoming

redundant tasks such as defining the grammar (as Epsilon already defines a set of

grammars for its parsers for different Epsilon languages). In addition, the static

analysis infrastructure generated by Xtext binds the tool tightly to Xtext and

provides little flexibility. Thus, this approach does not seem to be ideal for this

research.

• To use existing modelling languages to define a metamodel of EOL, then translate

EOL source code into instances of the EOL metamodel. This approach eliminates

the redundant work and focus directly on the task of this research. In addition,

this approach gives great amount of freedom to implement the static analysis

framework. Therefore, this approach is adopted.

Although EOL has been inspired by OCL, the metamodels of the two languages are

substantially different. For example, EOL does not support a number of OCL constructs

such as let statement and tuples. On the other hand, EOL provides more languages
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constructs such as imperative statements and statement blocks. Thus, it is not possible

to define the EOL metamodel as an extension of the OCL metamodel.

A detailed discussion on the EOL metamodel is provided in Appendix A, altogether

with necessary concrete syntax examples of its elements.

6.6. Transformation from Homogeneous AST to

Heterogeneous AST

With the EOL metamodel defined, the next step is to perform a model-to-model trans-

formation, which transforms the homogeneous AST produced by EOL’s ANTLR-based

parser into a model that conforms to the EOL metamodel, as shown in Figure 6.5. For

this purpose, the AST2EOL facility is created.

Figure 6.5.: The transformation from Homogeneous AST to Heterogeneous AST

The AST2EOL facility (implemented in Java) comprises several components, as shown

in Figure 6.6. The AST2EOLContext provides a container of all the necessary fa-

cilities (hence the word context) needed during the AST2EOL transformation. The

AST2EOLContext also acts as the centralised access control. It has a create(AST

ast) method, which takes an ANTLR-based AST, and creates an EOLElement. The

AST2EOLContext also keeps track of the EOLElements created with their correspond-

ing mapping to their ASTs, which is stored in the traces (of type Map).

The AST2EOLContext contains an EOLElementCreatorFactory, which is responsi-

ble for providing EOLElementCreators during the AST2EOL transformation. EOLEle-
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Figure 6.6.: The AST2EOLContext

mentCreators are one-to-one mappings to their counterparts in the EOL metamodel.

The structure of EOLElementCreator and its sub classes is shown in Figure 6.7. Each

EOLElementCreator contains two methods:

• The appliesTo(AST ast) acts as a guard, which checks the type and the children

of the AST to determine if the EOLElementCreator is applicable to the AST:

• The create() method is responsible for creating the corresponding EOLElement.

It takes three parameters: the ast is the AST in question, the container is the

previously created EOLElement by another EOLElementCreator(s) which contains

the EOLElement to be created, and the context is the AST2EOLContext which

provides all the auxiliary facilities needed.

The details of individual EOLElementCreators are not discussed in detail. During the
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Figure 6.7.: The EOLCreator and its sub classes

transformation, the location information of ASTs is also copied over to target EOLEle-

ments so that locating EOLElements in Eclipse editors can be supported.

Because of the structure of the EOL metamodel, at the end of the transformation,

the EOLElements created form a tree structure. The isProperlyContained() method in

AST2EOLContext checks if all the EOLElements are properly contained.

With the AST2EOL facility in place, transforming the AST in Figure 6.4 (which

is the representation of the EOL program in Listing 6.1) generates the EOL model

in Figure 6.8. It is noteworthy that during the AST2EOL transformation, no type

resolution is performed; hence, the types of variables a, b and c in the assignment

statements are not resolved.

143



6. Extensible Model Access and Model Management Language Infrastructure

F
ig

u
re

6.
8.

:
T

h
e

E
O

L
m

o
d

el
of

th
e

p
ro

gr
am

in
L

is
ti

n
g

6.
1

144



6.7. Chapter Summary

6.6.1. Summary

In this section, the AST2EOL facility was presented. AST2EOL is able to transform an

AST produced by EOL’s ANTLR-based parser into a model that conforms to the EOL

metamodel.

6.7. Chapter Summary

This chapter presented the first analysis, design and implementation iteration of this

thesis. In this chapter, the Epsilon Model Connectivity was reviewed and analysed.

The analysis drew the conclusion that an enhanced model connectivity layer should

be constructed. This chapter then moved onto the design and implementation of the

Epsilon Static Analysis Model Connectivity layer (ESAMC), which provides a uniform

layer for accessing metamodels defined in different modelling technologies. ESAMC

comes naturally with an EMF driver as it is based in EMF. In Chapter 9, the ESAMC

is extended and a plain XML model driver is created to evaluate the extensibility of

ESAMC. This chapter then moved onto the design and implementation of the EOL

metamodel. A detailed discussion of the design and the implementation of the EOL

metamodel was then provided in Section 6.5. An AST2EOL transformation facility was

then presented in Section 6.6, which transforms ANTLR-based ASTs into models that

conform to the EOL metamodel.

The ESAMC and the EOL metamodel constitute the infrastructure of the Epsilon

static analysis framework. The static analysis facilities for EOL, EVL and ETL are

discussed in the following chapters.

6.8. Terminology

Epsilon: Epsilon stands for Extensible Platform for Specification of Integrated Lan-

guages, Epsilon is a platform on which MDE activities can be performed.

Epsilon Object Language (EOL): EOL is the core language of the Epsilon plat-

form. EOL is inspired by the Object Constraint Language (OCL) which is used to
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express constraints on UML models. EOL provides additional language features such

as imperative language constructs, multiple model access, uniformity of function invo-

cation, model modification, etc.

Epsilon Model Connectivity layer (EMC): EMC is the model connectivity layer for

the Epsilon platoform, it provides an abstract layer which enables the access of models

defined in different modelling technologies in a uniformed way. EMC can be extended

to build model drivers to access models defined in modelling technologies that are not

currently supported by Epsilon.

Epsilon Static Analysis Framework: The Epsilon static analysis framework is the

outcome of this research, it provides static analysis facilities for the languages of the

Epsilon platform.

Epsilon Static Analysis Model Connectivity (ESAMC): ESAMC is the meta-

model connectivity layer for the Epsilon static analysis framework, which acts similar

to EMC. ESAMC can be exteded to access metamodels defined in different modelling

technologies.

Abstract Syntax Tree (AST): AST in this chapter refers to the homogeneous ab-

stract syntax tree produced by the Epsilon parser (an ANTLR-based parser).

EOL metamodel: The EOL metamodel refers to the abstract syntax of the Epsilon

Object Language (EOL) represented in the form of a Ecore based metamodel.

AST2EOL: In the context of this thesis, the term AST2EOL refers to the transfor-

mation which transforms a homogeneous abstract syntax tree produced by the Epsilon

parser to a model which conform to the EOL metamodel.
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for Epsilon

This chapter discusses the development iteration in which the static analyser for the

Epsilon Object Language (EOL) was created. In Section 7.1, the design of the infras-

tructure of the EOL static analyser is presented. In Section 7.2, the EOLVisitor facility,

which acts as the foundation of the EOL static analyser, is presented. In Sections 7.3

and 7.4, the design and the implementation of the EOL static analyser (the EOL vari-

able resolution facility and the EOL type resolution facility) are discussed. The static

analyser of EOL is essential to the Epsilon static analysis framework in the sense that

it provides a baseline so that modules (static analysers for other Epsilon languages) can

be developed atop it to extend its support for other Epsilon languages.

7.1. Infrastructure of the EOL Static Analyser

The EOL static analyser consists two main procedures when analysing an EOL pro-

grams for potential errors: variable resolution and type resolution. Consider an example

program written in EOL:

1 var a: Integer = 1;

2 var b: Integer = 2;

3 var c: Integer = a + b;

4 c.println()

Listing 7.1: An example EOL program

A main objective for static analysis is to identify potential runtime errors with regards

to type safety. In the program, in order to check the type of the expression a + b, it
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is necessary to acquire the types of a and b. In order to acquire the types of a and b,

it is necessary to establish the link between a variable’s declaration and its references.

Therefore, for the program above, a link between the variable reference a in line 3 and

the variable declaration var a : Integer in line 1 needs to be established, as do the

links between the variable reference b and its declaration var b: Integer and the variable

reference c and its declaration var c: Integer. This thesis refers to the establishment of

the {variable declaration, variable reference} links as Variable Resolution.

With all the variables resolved, the next step is to resolve the types of the variable

references, i.e. the variable references of a and b in line 3, and the variable reference of c

in line 4. By looking at the variable declarations of these variables, it can be inferred that

the types of a, b and c are all Integers (since their types are declared at their variable

declarations respectively). This thesis refers to this process as Type Resolution.

Figure 7.1.: The structure of the LogBook facility

Performing static analysis and detecting potential runtime errors, variable and type

resolutions are essential. Variable resolution and type resolution are supported by the

widely used Eclipse JDT (Java Development Tool) static analyser, which is a mature

static analysis tool to detect errors in Java programs. However, the JDT static analyser

is not suitable to be reused for static analysis of EOL, due to the following reasons.
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Firstly, EOL programs operate on models, which requires performing type checks of

expressions whose type is defined either in EOL or in the metamodel of the models on

which EOL operates on. Secondly, although EOL and Java share some language syntax,

the type system of EOL and the operations provided for the type system are rather

different to Java. Finally, Java is a statically typed language, where EOL is dynamically

typed. Due to the above reasons, a decision was made to build an independent static

analysis framework for Epsilon.

A LogBook facility is created to log the warnings and errors identified during the vari-

able and type resolution processes. The structure of the LogBook is shown in Figure 7.1.

EOLProblem (abstract) represents the problems that may arise during the variable and

type resolutions. EOLProblem is associated with a message (of type String) and a

reference to the EOLElement where the problem occurs. EOLProblems are further cat-

egorised into EOLErrors and EOLWarnings. LogBook contains a collection of EOLProb-

lems and provides functions (not discussed in detail) to add and extract EOLProblems.

For variable resolution and type resolutions, a number of warnings/errors have been

identified and their corresponding messages are stored in the IMessage facility.

7.2. The EOLVisitor Facility

Section 6.6 discusses the AST2EOL facility which is able to transform an ANTLR-based

AST into a model that conforms to the EOL metamodel. In order to perform static

analysis on EOL models, a facility is needed which is capable of traversing instances of

the EOL metamodel. To achieve this, a facility named EOLVisitor is created using a

visitor generation framework, which is essentially a model-to-text transformation tool

written in the Epsilon Generation Language (EGL). The transformation has been made

available as an Eclipse plug-in under the EpsilonLabs open-source project1. The plug-in

works on EMF generator models (.genmodel) and is able to generate an Eclipse plug-in

which contains a visitor facility for any given genmodel. Figure 7.2 shows a screenshot,

which illustrates how EOLVisitor can be generated from the EOL genmodel.

1https://github.com/epsilonlabs/epsilonlabs/tree/master/com.googlecode.epsilonlabs.evg.

updatesite
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Figure 7.2.: Generating the EOLVisitor facility using visitor generation plug-in.

The structure of the EOLVisitor facility is shown in Figure 7.3. The core of the

EOLVisitor facility is the EOLVisitorController, which acts as the centralised control

and access point. EOLVisitorController contains a number of EOLElementVisitors, one

for each non-abstract element defined in the EOL metamodel. An EOLElementVisitor

provides two methods:

• The appliesTo(EOLElement element, T context) method acts as a guard, which

checks if the EOLElementVisitor is applicable to a given EOLElement ;

• The visit() method performs the traversal of the applicable EOLElement. Devel-

opers who use EOLElementVisitor should implement their own algorithms inside

the visit() method. The method provides a generic typed parameter so that the

developers can develop their own context in order to achieve the desired function-

ality.

EOLVisitorController acts as the uniform access point for visiting an EOLElement.

When visit(Object o, T context) is called, the appropriate EOLElementVisitor is selected

and the EOLElement is visited according to the algorithm defined in each EOLEle-

mentVisitor.
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Figure 7.3.: The structure of EOLVisitor

7.3. The EOL Variable Resolution Facility

With the EOLVisitor facility in place, the next step is to develop the EOL variable

resolution facility. The structure of this facility is shown in Figure 7.4. The EOLVari-

ableResolver is the centralised access point of the facility. EOLVariableResolver con-

tains an EOLVariableResolutionController (by extending the EOLVisitorController in

the EOLVisitor facility), which contains a number of EOLElementVariableResolvers that
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are implemented by extending the EOLVisitor facility. Thus, when the run(EOLElement

eolElement) method in EOLVariableResolver is executed, EOLVariableResolutionCon-

troller traverses the eolElement provided using the EOLElementVariableResolvers in

correspondence with each EOLElement encountered.

EOLVariableResolver also contains an EOLVariableResolutionContext. The main re-

sponsibility of the EOLVariableResolutionContext is to maintain the FrameStack, which

represents the stack of scopes within an EOL program (e.g. the local scope within an

if statement, etc.). Whenever the following EOLElements are encountered, there is a

need to push a new Frame onto the FrameStack :

• The EOLModule element. An EOLModule is the entry point of control when

executing an EOL program;

• The OperationDefinition element, within an EOL program. Each OperationDef-

inition is visited once, and when it is visited, a corresponding Frame is pushed

onto the FrameStack ;

• Control flow constructs, such as IfStatement, ForStatement, WhileStatement, Switch-

Statement, SwitchCaseStatement and TransactionStatement ;

• ExpressionOrStatementBlock enclosed in control flow constructs;

• FOLMethodCallExpression, as first order logic method calls use lambda expres-

sions, which declare iterators within them (Section A.2.11).

The push() and pop() methods of the StackFrame are called within the corresponding

EOLElementVariableResolvers for the EOLElements mentioned above. Consider an

example program shown in Listing 7.2. In line 1, a variable named sequence is declared

which contains Integer values from -10 to 10. Line 2 extracts a random element from

sequence and assigns the value of that element to a variable named a. Lines 3 to 9 are an

if statement. In line 3, the value of a is examined; if a is less than 0, statements in lines

4 and 5 are executed, otherwise line 8 is executed. Lines 11 to 16 define an operation

named abs() with context type Integer and return type Integer which calculates the

absolute value of a given Integer.
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1 var sequence : Sequence(Integer) = Sequence{-10..10};

2 var a : Integer = sequence.random();

3 if(a < 0) {

4 "a is negative".println();

5 a.abs().println();

6 }

7 else {

8 a.println();

9 }

10

11 operation Integer abs() : Integer {

12 if(self < 0) {

13 return -self;

14 }

15 return self;

16 }

Listing 7.2: An EOL Example to demonstrate the EOL Variable Resolution facility

The visualisation of all the Frames inserted in the FrameStack is shown in Figure 7.5.

It is worth noting that by the end of the variable resolution, the FrameStack during the

variable resolution process on the program of Listing 7.2 is empty - the EOL variable

resolution facility traverses an EOLModule in a top-down manner. When the traversal

exits a control flow construct as discussed above, the top of the FrameStack is popped

from it.

In Figure 7.5, when the EOLModule is visited, a Frame (Frame:EOLModule) is pushed

onto the FrameStack. The block of the EOLModule is visited first, so that variables

sequence and a are inserted in the Frame:EOLModule. When line 3 is encountered, the

variable resolution pushes a Frame onto the stack named Frame:IfStatement#ifBody,

and variable resolution takes place in lines 3-6 to link references of a (lines 3 and 5)

to its declaration. After the if body is traversed, the Frame:IfStatement#ifBody is

popped from the FrameStack, then the Frame:IfStatement#elseBody is pushed onto the
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FrameStack, and variable resolution is performed by linking the reference of a in line 8 to

its declaration. The Frame:IfStatement#elseBody is then popped from the FrameStack

after line 9. In line 11, the operation abs() is encountered and a new Frame is pushed

onto the FrameStack. As with all operation frames, the new frame has two associated

variables: self is used to refer to the object that calls the operation and result is used

to refer to the result returned by the operation. For variable resolution, these two

variables are inserted into the Frame:OperationDefinition. Operation abs() contains an

if statement from line 12 to line 14; thus, a Frame is pushed onto the FrameStack by

variable resolution.

Figure 7.5.: StackFrame footprint of the program in Listing 7.2

The variable resolution process is responsible for establishing the link between a Name-

Expression (Section A.2.6) and a VariableDefinitionExpression (Section A.2.7), which

essentially calculates the resolvedContent property of the NameExpression and the ref-

erences property of the VariableDeclarationExpression.

EOL supports variable shadowing in the sense that a variable with a name that has
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been previously declared in a parent Frame can be declared in a child Frame. Consider

the example in Listing 7.3 from [9]:

1 var i: Integer = 5;

2 var c : new Uml!Class;

3 //i = "somevalue";

4 if(c.isDefined()) {

5 var i: String;

6 i = "somevalue";

7 }

8 i.println();

Listing 7.3: Example of variable shadowing from [9]

In line 5, a variable named i (which is previously declared in line 1) is declared again

and assigned a String value (line 6) inside the if statement (lines 4-7). This variable

is only available within the scope of the if statement (and any sub-scopes inside the if

statement). When the program exits the scope of the if statement (line 8), the variable is

no longer available. Thus, when line 8 is executed, the output will be 5. This behaviour

is handled by the StackFrame.

The Variable Resolution process captures variables that are declared but not refer-

enced, as well as variables which are referenced but not declared. Consider the example:

1 var a: Integer;

2 b = 10;

In line 1, a variable named a is declared but never used in the program. The variable

resolution generates an EOLWarning for this situation. In line 2, a reference named b is

called but there is no variable named b declared. The variable resolution generates an

EOLError for this situation.

The VariableResolutionContext also contains an IMetamodelManager which is respon-

sible for managing the models declared in an EOL program. Consider the Example:

1 model University alias u

2 driver EMF {nsuri = "http://university/1.0"};
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3 var a: Student = University!Student.all().first();

4 a.println();

In lines 1 and 2, a ModelDeclarationStatement is in place, which declares a model that

conforms to the University metamodel mentioned in Section 2.1.6 (Figure 2.9). In line

3, a nested MethodCallExpression is in place. Consider only the MethodCallExpression:

University!Student.all()

The target of the MethodCallExpression is University!Student, which is in fact a Name-

Expression. The variable resolution is able to distinguish the differences between variable

names and model element names. Thus, the IMetamodelManager is used to check if the

model element name University!Student is legal; if not, an appropriate EOLError is

generated.

7.4. Type Resolution

As previously discussed, the second stage of the static analysis process is to resolve the

types of the Expressions within an EOL program. As with the variable resolution facil-

ity discussed above, the EOL type resolution facility is built by extending the EOLVis-

itor facility. The structure of the EOL type resolution facility is shown in Figure 7.6.

EOLTypeResolver is the centralised access point of the facility. EOLTypeResolver con-

tains an EOLVariableResolutionController (by extending EOLVisitorController in the

EOLVisitor facility), which in turn contains a number of EOLElementTypeResolvers

that are implemented by extending the EOLVisitor facility. When the run(EOLElement

eolElement) method in the EOLVariableResolver is executed, the EOLTypeResolution-

Controller traverses the eolElement provided using the EOLElementTypeResolvers in

correspondence with each EOLElement encountered.

The EOLTypeResolver contains a TypeResolutionContext. The TypeResolutionCon-

text acts as a container which provides the states of the different auxiliary facilities

of the EOLTypeResolver during the analysis. The TypeResolutionContext contains the

following important facilities:
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• An IMetamodelManager, which is responsible for accessing the metamodels in-

volved in an EOL program (Section 6.3.3);

• An OperationDefinitionManager, which acts as a container of the OperationDefi-

nitions both from the EOL standard library and from the definitions provided by

the user.

7.4.1. Modelling the EOL Standard Library

In [114], the author addresses the rationale behind the modelling of the OCL standard

library. In Section 4.2.3, a detailed discussion about modelling the standard library

of a model management program is provided. The static analysis framework provides

a model of the EOL standard library. The modelling of the EOL standard library is

realised by defining the operation signatures of the EOL standard library, leaving the

bodies of operations blank. For example, the isDefined() operation in the standard

library can be specified as:

operation Any isDefined(): Boolean {}

However, modelling the EOL standard library exhibits some limitations, for the seman-

tics of an operation cannot be accurately captured by existing EOL types. For example,

EOL supports type propagation in its built-in println() operation. For example, consider

the following program:

1 var a = "Hello World!";

2 a.println().split(" ").println();

In line 1, a variable a is assigned the value “Hello World”. In line 2, method println()

is called on a and then split(“ ”) is called afterwards. In this instance, the value of a is

propagated through method call a.println() such that the call to split() is invoked on a.

Thus, there is a need to propagate the type of a through the call to println(). In [114],

the author names such operation semantic as self-variant in the sense that the return

type of the operation has the same type of context.

Therefore, two PseudoTypes (Section A.4.8) are added to the EOL metamodel to

enable more precise modelling of operations of the EOL standard library. They are
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SelfType and SelfContentType.

SelfType

The SelfType is created to help model the operations where the return type of the

operations should be the same as the context type, so that the type-related semantics

of the operations is captured at the signature level. In the absence of SelfType, the

signature of the built-in println operation would read:

operation Any println(): Any {}

This is reasonable given that println() is able to be called upon on any type, and returns

whatever type it is called upon. However, this signature does not propagate the type of

its context.

With SelfType, a new operation signature of println() can be written as:

operation Any println() : SelfType{}

so that when it comes to handling the operation call, it is known that this operation call

should return the type of the context.

SelfContentType

SelfContentType is created to model the behaviour of operations that apply on collection

types in EOL, and in the sense that their return types should be the same as the content

type of their context. Consider the at() operation of the EOL standard library, which is

used to retrieve an element from an ordered collection. In the absence of SelfContentType

the signature of the built-in at() operation would read:

operation Collection at(index: Integer) : Any {}

However, the type-related semantics of this operation is lost given that this operation

should return the type of the element at the index. SelfContentType can be used to

resolve such trouble:

operation Collection at(index: Integer) : SelfContentType {}
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Thus, when it comes to handling the operation call, there is an obvious indication that

the operation call should return the content type of self, that is the content type of the

collection that initiates this operation call.

7.4.2. Type Resolution: the Type Resolution Rule Solving Approach

The implementation of the static analysis adopts a rule-based approach using the lattice

theory discussed in Chapter 3.

The first step of the type resolution process involves identifying all the Expressions in

the EOL metamodel and resolving their types. These expressions are:

• VariableDeclarationExpression and NameExpression;

• PrimitiveExpression and its sub types;

• MapExpression, CollectionExpression and its sub types;

• OperatorExpression and its sub types in the EOL metamodel.

• FeatureCallExpression and its sub types. In particular, PropertyCallExpression,

MethodCallExpression and FOLMethodCallExpression.

• KeyValueExpression; and

• NewExpression.

With the types of Expressions identified, the next step of the type resolution process

involves checking for the type-correctness of the Statements that encapsulate Expres-

sions, which are:

• AssignmentStatement ;

• IfStatement ;

• ForStatement ;

• WhileStatement ;

• SwitchStatement
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The Type Set

To perform type resolution, it is necessary to identify the set of Types of EOL. The set

of all the Types (denoted by T hereafter) is defined as:

T = {AnyType,

PrimitiveType

RealType, IntegerType, StringType,BooleanType,

CollectionType(T ),

SetType(T ), OrderedSetType(T ), SequenceType(T ), BagType(T ),

ModelElementType,NativeType,MapType}

The type set is a one-to-one mapping to the Types in the EOL metamodel. It is to

be noted that unlimited number of types can be derived from T due to the fact that

CollectionTypes can have nested Types as their content types in an arbitrary number of

levels.

The types in T form a lattice (poset) where the top of the lattice is AnyType and the

bottom of the lattice is ∅ (although in practice all Expressions have an associated Type).

The lattice is shown in Figure 7.7.

With each of the Expressions and Statements identified previously, a set of type reso-

lution rules are associated. The type resolution rules can be considered as an (abstract)

interpretation of the semantics of the Expressions and Statements. The type resolution

rules are encompassed in EOLElementTypeResolvers, which extend the EOLElementVis-

itors in the EOLVisitor facility. The EOL type resolution facility achieves type resolution

by solving the type resolution rules (which is, in a sense, to compute the fixed point of

the type) of an EOLModule in a bottom-up manner.

For each Statement, the Expressions contained within it are type-resolved (visited) by

their corresponding EOLElementTypeResolver ; and for each Expression, the Expressions

contained within it are also type-resolved by their corresponding EOLElementTypeRe-

solvers. Hence, solving the type resolution rules in this bottom-up manner resolves the
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types of all the Expressions within an EOL program.

Type resolution rules for VariableDeclarationExpression

Let V denote a VariableDeclarationExpression, [V ] denote the type of V . In EOL, a

variable declaration has an optional type declaration, for example:

1 var aVar;

2 var anInt: Integer;

In line 1, an untyped variable is declared and, as such, the static analyser assumes that

the type of the variable is Any. In line 2, a typed variable is declared. Let V T denote

the declared type of V . Therefore, the type resolution rules for VariableDeclarationEx-

pression are defined as follows:

V T = ∅ ⇒ [V ] = Any;

V T = t ∈ T ⇒ [V ] = t;

Type resolution rules for NameExpression

Let N denote a NameExpression, [N ] denote the type of N . Let N → V denote the

variable declaration of N , [N → V ] denote the type of N → V . The type resolution

rules for NameExpression are defined as follows:

(N → V 6= ∅) ∧ ([N → V ] = t ∈ T )⇒ [N ] = t;

Sometimes, a NameExpression can be used to refer to types in either the EOL type

system or in the metamodel of one of the models processed by the program. Let Ntext

denote the actual String value of an NameExpression and MM denote the set of model

element types defined in the metamodel(s) involved in an EOL program. Thus, if a

NameExpression does not have a corresponding variable declaration and its String value

is a type defined in the EOL type system, the type of the NameExpression is resolved

164



7.4. Type Resolution

to whatever type Ntext refers to:

(N → V = ∅) ∧ (Ntext ∈ T )⇒ [N ] = [Ntext];

If a NameExpression does not have a corresponding variable declaration and its String

value is a type defined in the metamodel(s) involved, the type of the NameExpression is

resolved to ModelElementType (with its corresponding properties calculated):

(N → V = ∅) ∧ (Ntext ∈MM)⇒ [N ] = ModelElementType;

It is worth noting that not all NameExpressions within an EOL program are visited

(for example, the “property” of a PropertyCallExpression) - the EOLElementTypeRe-

solver for each individual EOLElement determines which property for a given EOLEle-

ment should be visited.

Type resolution rules for PrimitiveExpressions

Let BE denote a BooleanExpression, [BE] denote the type of BE. Let IE denote an

IntegerExpression, [IE] denote the type of IE. Let RE denote a RealExpression, [RE]

denote the type of RE. And finally, let SE denote a StringExpression and [SE] denote

the type of SE. Thus, the type resolution rules are defined as follows:

[BE] = Boolean;

[IE] = Integer;

[RE] = Real;

[SE] = String;

Type resolution rules for CollectionExpressions

Let SetE, [SetE], OSetE, [OSetE], SeqE, [SeqE], BagE, [BagE] denote a SetExpres-

sion and its type, an OrderedSetExpression and its type, a SequenceExpression and its

type, and finally a BagExpression and its type. Let [CollectionExpressionc] denote the

content type of an CollectionExpression. Therefore, the type resolution rules are defined
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as follows:

([SetEc] 6= ∅) ∧ ([SetEc] ∈ T )⇒ [SetE] = Set([SetEc]);

[SetEc] = ∅ ⇒ [SetE] = Set(Any);

([OSetEc] 6= ∅) ∧ ([OSetEc] ∈ T )⇒ [OSetE] = OrdredSet([OSetEc]);

[OSetEc] = ∅ ⇒ [OSetE] = OrderedSet(Any);

([SeqEc] 6= ∅) ∧ [SeqEc] ∈ T ⇒ [SeqE] = Sequence([SeqEc]);

[SeqEc] = ∅ ⇒ [SeqE] = Sequence(Any);

([BagEc] 6= ∅) ∧ ([BagEc] ∈ T )⇒ [BagE] = Bag([BagEc]);

[BagEc] = ∅ ⇒ [BagE] = Bag(Any);

Type resolution rules for Unary Operators

Let E denote the expression involved in a unary operator and [E] denote the type of E.

Negative Operator (−). The − operator is used to negate a Real or an Integer

number. Therefore, the type resolution rules of the − operator are:

[E] = Real⇒ −[E] = Real;

[E] = Integer ⇒ −[E] = Integer;

Any other types apart from Real and Integer will result in a warning being reported

if [E] is Any, and an error being reported if E is of any other type. In addition:

[E] = Any ⇒ −[E] = Real;

[E] ∈ T \ {Any,Real, Integer} ⇒ −[E] = Real;

The type of −[E] is bounded by Real to prevent type errors from being propagated

further into the program.

Not Operator (not). The not operator not is used to negate a boolean value.
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Therefore, the type resolution rules of the not operator are:

[E] = Boolean⇒ not[E] = Boolean

Any other types apart from Boolean will result in a warning being reported if [E] is Any,

and an error being reported if [E] is of any other type:

[E] ∈ T \ {Boolean} ⇒ not[E] = Boolean

Type resolution rules for Binary Operators

Let L and R denote the first and the second operands involved in a binary operator, and

let [L] and [R] denote the types of L and R.

Plus Operator (+). The plus operator + is used to perform the summation of two

values of type Real or Integer, String concatenations and collection aggregations. The

type resolution rules of the + operator are defined as follows:

([L] = Integer) ∧ ([R] = Integer)⇒ [L + R] = Integer;

([L] = Integer) ∧ ([R] = Real)⇒ [L + R] = Real;

([L] = Real) ∧ ([R] = Real)⇒ [L + R] = Real;

If [L] and [R] are both String, the operation is considered to be string concatenation,

therefore:

([L] = String) ∧ ([R] = String)⇒ [L + R] = String;

If [L] is Collection and [R] is Collection, the operation is considered to be collection

aggregation, where the contents of the two collections are aggregated, in this case [L+R]

is the type of [L]. For the discussion, let [Lc] and [Rc] denote the content types of [L]

and [R]. The type of the plus operator expression is whatever the type it is for L. For

the content type, If [Lc] and [Rc] are the same, then the content type of the expression

is [Lc]. Otherwise, the Least Common Type (LCT) of [Lc] and [Rc] are computed. If
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there is a Least Common Type, then the content type is the computed Least Common

Type, otherwise the content type is Any. Let the symbol lct() denote the function that

calculates the Least Common Type and LCT denote the LCT returned by lct():

([L] = Collection1) ∧ ([R] = Collection2) ∧ ([Lc] = [Rc])

⇒ [L + R] = Collection1(Lc);

([L] = Collection1) ∧ ([R] = Collection2) ∧ ([Lc] 6= [Rc])

⇒ [L + R] = Collection1(lct([Lc], [Rc])) 6= null ?LCT : Any);

If [L] and [R] are not Any, String or Collection, and they do not relate in the type

system, a warning is generated, but the type of [L + R] is bounded by String.

([L] ∈ T \ {Any, String, Collection}) ∧ ([R] ∈ T \ {Any, String, Collection})

∧([L] /∈ [R]) ∧ ([L] 6= [R])⇒ [L + R] = String;

Duplicated type resolution rules are omitted in this discussion (switching types of L

and R).

Minus Operator (−), Multiply Operator (∗) and Divide Operator (/). The

minus operator − is used to perform subtraction between two values of type Real or

Integer. Because these operators share the same type resolution rules, they are discussed

together. The operators −, ∗ and / are represented as op in the rules. The type resolution

rules of the − operator are defined as follows:

([L] = Integer) ∧ ([R] = Integer)⇒ [LopR] = Integer

([L] = Integer) ∧ ([R] = Real)⇒ [LopR] = Real

([L] = Real) ∧ ([R] = Real)⇒ [LopR] = Real

The order of [L] and [R] does not influence the analysis, so duplicates are omitted.
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[LopR] is lifted to Real if the highest type between L and R is Real.

([L] = Any) ∧ ([R] ∈ {Real, Integer})⇒ [LopR] = Real

([L] ∈ T \ {Any,Real, Integer}) ∧ ([R] ∈ T \ {Any,Real, Integer})

⇒ [LopR] = Real

If [L] is Any and [R] is either Real or Integer, then a warning is generated and [L+R]

is Real. If [L] and [R] are any other types, then an error is generated and [L + R] is

bounded by Real.

The multiply operator (∗) and the divide operator (/) perform multiplication and

division on Integer/Real values. Their type resolution rules are the same as for the

minus operator (−).

Equals Operator (=) and Not Equals Operator (<>). The equals operator (=)

and the not equals operator (<>) are used to compare if L equals to (or not equals to)

R. The = and <> operators are represented as op in the rules.The type resolution rules

of the equals operator are defined as follows:

If [L] and [R] are equal or related with regard to inheritance, [LopR] is of type

Boolean:

([L] = [R]) ∨ ([L] ∈ [R]) ∨ ([R] ∈ [L])⇒ [LopR] = Boolean;

If [L] and [R] are not equal and are not related with regard to type inheritance, a

warning is reported and [LopR] is of type Boolean:

([L] 6= [R]) ∧ ([L] /∈ [R]) ∧ ([R] /∈ [L])⇒ [LopR] = Boolean;

Greater Than Operator (>), Greater Than Or Equal To Operator (>=),

Less Than Operator (<), Less Than Or Equal To Operator (<=). These

operators are used to compare Real/Integer values. The operators >, >=, <, and <=

are represented as op in the rules.Their type resolution rules are defined as follows:

169



7. A Modular Static Analysis Framework for Epsilon

If [L] and [R] are Integer or Real, [L + R] is Boolean.

(([L] ∈ {Integer,Real}) ∧ ([R] ∈ {Integer,Real}))⇒ [LopR] = Boolean;

If [L] is Any, and [R] is Integer or Real, a warning is reported on L and [LopR] is

Boolean.

(([L] = Any) ∧ ([R] ∈ {Integer,Real}))⇒ [LopR] = Boolean;

If [L] (or) [R] are not Any, Integer or Real, an error is reported, but [LopR] is Boolean.

(([L] ∈ T \ {Any, Integer,Real}) ∧ ([R] ∈ {Integer,Real}))

⇒ [LopR] = Boolean;

Duplicated type resolution rules (switching types of [L] and [R]) are omitted.

And Operator (and), Or Operator (or), Exclusive Or Operator (xor and

Implies Operator (implies)). These operators are logical operators which apply to

Boolean values. The operators and, or, xor, and implies are represented as op in the

rules. Their type resolution rules are defined as follows:

If [L] and [R] are both Boolean, then [LopR] is Boolean.

(([L] = Boolean) ∧ ([R] = Boolean))⇒ [LopR] = Boolean;

If [L] is Any and [R] is Boolean, a warning is reported on [L], then [LopR] is Boolean.

(([L] = Any) ∧ ([R] = Boolean))⇒ [LopR] = Boolean;

If [L] is not Any or Boolean, an error is reported on [L], then [LopR] is Boolean.

(([L] ∈ T \ {Any,Boolean}) ∧ ([R] = Boolean))⇒ [LopR] = Boolean;

Duplicated type resolution rules (switching types of [L] and [R]) are omitted.
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Type resolution rules for FeatureCallExpressions

In this section, the type resolution rules for FeatureCallExpressions are provided, which

include MethodCallExpression, PropertyCallExpression and FOLMethodCallExpression.

MethodCallExpression in the EOL metamodel is used to represent a method call.

To analyse the type of a MethodCallExpression, the first step is to acquire the respective

OperationDefinition. Let od denote the OperationDefinition and OD denote the set of

all available OperationDefinitions (both in the standard library and defined by the user

within the EOL program under analysis). The OperationDefinitionManager (Figure 7.8)

is responsible for identifying the appropriate operation given the name, the context type,

the list of parameter types, and a boolean value to denote if the method call is initiated

by the → operator or the . operator. The static analyser then looks at appropriate

OperationDefinitionContainers for the operation. To compare the distance between

types, the Dijkstra’s Shortest Path algorithm [130] is used, which is not discussed in

detail. Let MC and [MC] denote a MethodCallExpression and its type, and [odreturn]

denote the return type of OD. If od is found by the OperationDefinitionManager, the

type of the method call should be the return type of the od. The return type of od is

handled by the type resolution facility if it is a PseudoType (Section 7.4.1).

∃od ∈ OD ⇒ [MC] = [odreturn]

If no OperationDefinition is found, the type of the expression is Any, and an error is

raised.

¬∃od ∈ OD ⇒ [MC] = Any

PropertyCallExpression in the EOL metamodel is used for feature navigation. For

this discussion, let PC denote a PropertyCallExpression, PCtar denote the target of

PC, PCproperty denote the property to call on PC, whereas [PC] and [PCtar] denote

the types of PC and PCtar. The type resolution rules for PropertyCallExpression are
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Figure 7.8.: Type structure OperationDefinitionManager

defined as follows2:

([PCtar] = ModelElement)∧

(∃ feature ∈ ([PCtar].features) : feature = PCproperty)

⇒ [PC] = [feature]

If the target of the PropertyCallExpression is a ModelElementType, its features are

inspected (via the ESAMC), and if a feature specified by the property of the Property-

CallExpression is found, it is returned by the ESAMC. The type of the PropertyCallEx-

2Note: the feature is retrieved by ESAMC

172



7.4. Type Resolution

pression is calculated based on the returned feature, such that:

• if the upper bound of the feature is -1, and the feature is ordered and unique, an

OrderedSetType is created. If the feature is ordered but not unique, a SequenceType

is created. If the feature is not ordered but unique, a SetType is created. If the

feature is not ordered but unique, a BagType is created. If the feature is of type

EDataType, then the corresponding PrimitiveType is created as the content type

of the collection type. If the feature is of type EClass, then the corresponding

ModelElementType is created as the content type of the collection type;

• if the upper bound of the feature is 1, and the feature is of type EDataType, then

the corresponding PrimitiveType is created. If the feature is of type EClass, then

the corresponding ModelElementType is created.

In other cases, the target of the PropertyCallExpression is a collection of model ele-

ments. Consider the example:

1 var persons: Sequence(Person) = Person.allInstances();

2 var names: Sequence(String) = persons.first_name;

3 names.println();

In line 1, the collection of all Persons is extracted and in line 2, a property call is in

place, which returns a Sequence of Strings because it retrieves the property first name

on all Persons.

For this situation, the type resolution rule is defined as follows. Let [PCtarCon] denote

the target content type. If the target type is Collection3:

([PCtar] = Collection)∧

([PCtarCon] = ModelElement)∧

(∃ feature ∈ ([PCtarCon].features) : feature = PCproperty)

⇒ [PC] = [PCtar]([feature])

3Note: the feature is retrieved by ESAMC
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The calculation of the type of feature follows the rules previously discussed.

In cases where the target type of the PropertyCallExpression is Any, a warning is

reported, and the type of PropertyCallExpression is set to Any. If the target type of the

PropertyCallExpression is neither Any nor ModelElementType, an error is reported and

the type of PropertyCallExpression is set to Any.

[PCtar] = Any ⇒ [PC] = Any;

[PCtar] ∈ T \ {Any,ModelElement} ⇒ [PC] = Any

Finally, for extended properties (discussed in Section A.2.11), the type of the Proper-

tyCallExpression is set to Any.

FOLMethodCallExpression in the EOL metamodel represents a first-order-logic

method call. For the purpose of the discussion, let FOL and [FOL] denote a FOL-

MethodCallExpression and its type, FOLtar and [FOLtar] denote the target of FOL and

its type, FOLiter and [FOLiter] denote the iterator of FOL and its type, and FOLcon

and [FOLcon] denote the condition of FOL and its type. Let CollectionType denote

the set of all the CollectionTypes in EOL. Once again, the first-order-logic operations

need to be matched by the OperationDefinitionManager. Let od denote the matched

operation and OD denote the set of all operations. Let [odreturn] denote the return type

of od.

Since first-order-logic operations in EOL can have non-trivial type semantics, a number

of OperationDefinitionHandlers (Figure 7.8) is created. The type resolution rules will be

discussed for each first-order-logic operation. All first-order-logic operations apply only

to Collection values; hence, if the target of a first-order logic is not of Collection type,

the OperationDefinitionManager is not able to locate the first-order-logic operation in

the standard library.

aggregate(). The aggregate() operation returns a Map containing key-value pairs

produced by evaluating the key and value expressions on each item of the collection that
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is of the type specified in the iterator. The type resolution rules for aggregate() are:

If an operation is found by OperationDefinitionManager, the type of FOL is Map

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = Map

If no operation is found by the OperationDefinitionManager (normally due to [FOLtar]

being not a CollectionType), the type of FOL is set to Any and an error is reported.

([FOLtar] /∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

closure(). The closure() operation returns a collection containing the results of evalu-

ating the transitive closure of the results provided by the expression. The type resolution

rules for closure() are defined as follows:

If the target type is a collection, the type of FOL is the same as the target type, but

the content type of FOL is the type of the condition of FOL ([FOLcon]):

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD ⇒ [FOL])⇒ [FOLtar]([FOLcon])

If no operation is found by OperationDefinitionManager, the type of FOL is set to Any

and an error is reported.

¬∃od ∈ OD ⇒ [FOL] = Any

collect(). The collect() operation returns a collection containing the results of evalu-

ating the expression (specified in the condition FOLcon) on each item of the collection

that is of the specified type. The rules for collect() are defined as follows:

If the target type is Collection, the type of FOL is the same as its target type, but

the content type of FOL is the type of the condition of FOL ([FOLcon]);

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD ⇒ [FOL])⇒ [FOLtar]([FOLcon])

If the target type is not Collection, the type of FOL is set to Any and an error is
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reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

exists(). The exists() operation returns true if there exists at least one item in the

collection that satisfies the condition. The type resolution rules for exists() are defined

as follows:

If the target type is Collection, the type of FOL is Boolean

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = Boolean

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

forAll(). The forAll() operation returns true if all items in the collection satisfy the

condition. The type resolution rules for forAll() are defined as follows:

If the target type is Collection, the type of FOL is Boolean

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = Boolean

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

one(). The one() operation returns true if there exists exactly one item in the col-

lection that satisfies the condition. The type resolution rules for one() are defined as

follows:
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If the target type is Collection, the type of FOL is Boolean

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = Boolean

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

reject(). The reject() operation returns a sub-collection containing only items in the

(target) collection that do not satisfy the condition. The type resolution rules for reject()

are defined as follows:

If the target type is Collection, the type of FOL is the same as its target, but the

content type of [FOL] should be the type of the iterator:

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = [FOLtar]([FOLiter])

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

select(). The select() operation returns a sub-collection containing only items in the

(target) collection that satisfy the condition. The type resolution rules for select() are:

If the target type is Collection, the type of FOL is the same as its target, but the

content type of [FOL] should be the type of the iterator:

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = [FOLtar]([FOLiter])

If the target type is not Collection, the type of FOL is set to Any and an error is
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reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

selectOne(). The selectOne() operation returns an item in the (target) collection

that satisfies the condition. The type resolution rules for selectOne() are defined as

follows:

If the target type is Collection, the type of FOL is the same as the type of its iterator:

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = [FOLiter]

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

sortBy(). The sortBy() operation returns a copy of the collection which is sorted

by evaluating the expression specified in the condition. The type resolution rules for

sortBy() are defined as follows:

If the target type is Collection, the type of FOL is the same as its target:

([FOLtar] ∈ CollectionType) ∧ (∃od ∈ OD)⇒ [FOL] = [FOLtar]

If the target type is not Collection, the type of FOL is set to Any and an error is

reported.

([FOLtar] ∈ CollectionType) ∧ (¬∃od ∈ OD)⇒ [FOL] = Any

KeyValueExpression. The key value expression has two types: the key type and

the value type. Let KeyV al and [KeyV al] denote the KeyValueExpression and its type,
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K and [K] denote the key and its type, and V and [V ] denote the value and its type.

[K] ∈ T, [V ] ∈ T ⇒ [KeyV al] = {[K]→ [V ]}

NewExpression. The new expression is used to create an instance of a type. Let

NE and [NE] denote a new expression and its type, and [NEtarget] denote the target

type to be instantiated. Thus, the type resolution rule of NewExpression is:

(∃t ∈ T : [NEtarget] = t)⇒ [NE] = t

An error is reported if the target type to be created cannot be found in the EOL type

system (including model element types, which are managed by ESAMC), or if the target

type is not instantiable (abstract/interface);

AssignmentStatement. The assignment statement encapsulates two Expressions,

the left hand side expression and the right hand side expression. The left hand side

expression should be only of type PropertyCallExpression, NameExpression or Vari-

ableDeclarationExpression. For the purpose of the discussion, let L and [L] denote the

left hand side expression and its type, and R and [R] denote the right hand side expres-

sion and its type:

[R] ⊆ [L]

An error is reported if [L] and [R] are incompatible.

IfStatement. The if statement encapsulates potentially three blocks of statements,

the if-body, a number of optional else-if-bodies and an optional else-body. Let ifcon and

[ifcon] denote the if condition and its type; elseIfcon and [elseIfcon] denote an else-if

condition and their type; ELSEIFcon denote the set of all else-if conditions. Thus, the

type resolution rule for IfStatement is:

([ifcon] ∈ {Boolean,Any})∧

(∀elseIfcon ∈ ELSEIFcond : [elseIfcon] ∈ {Boolean,Any})
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Warnings are reported for conditions that are of type Any, and errors are reported for

all conditions that are not of types Boolean or Any.

ForStatement. The for statement encapsulates an iterator and a condition (domain,

discussed in Section A.3.3), where the condition should be a Collection and the type of

the iterator should be the content type of the type of the condition. Let iter and [iter]

denote the iterator and its type, cond and [cond] denote the condition and its type,

[condcontent] denote the content type of the condition, and CollectionType denote the

set of all Collection types:

([cond] ∈ {CollectionType ∪ {Any}}) ∧ ([iter] ∈ {Any, [condcontent]})

A warning is reported if the type of the condition is Any, and an error is reported if the

type of the condition is neither Any or Collection. A warning is reported if the type of

the iterator is Any, and an error is reported if the type of the iterator is different from

the content type of the condition type.

WhileStatement. The while statement encapsulates a condition, where the type of

the condition should be Boolean. Let cond and [cond] denote the condition and its type:

([cond] ∈ {Boolean,Any})

A warning is reported if the type of the condition is Any, and an error is reported if the

type of the condition is neither Boolean nor Any.

SwitchStatement. The switch statement encapsulates a switch expression, a number

of cases and a default case. For each case, there is a case expression which is used to

compare with the expression in the switch. Let expr and [expr] denote the switch

expression and its type, case and [case] denote a case expression and its type, and

CASE denote the set of all cases in the switch statement:

∀ case ∈ CASE : [case] ∈ {[expr], Any}

Warnings are reported if the switch expression, or the case expressions, are Any, and
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errors will be reported if types are not compatible.

7.5. Warnings/Errors Detectable by the EOL Static Analyser

The warnings and errors detectable by the EOL static analyser are listed below.

7.5.1. Warnings/Errors Detectable by the EOL Variable Resolver

• Warning: a warning is issued if a defined variable v is not referenced anywhere in

the program;

• Warning: a warning is issued if an attempt to define a variable with a name that

has been used previously to define another variable;

• Error: an error is issued if within a model declaration statement md, a name n

has been used as the name of another model declaration statement;

• Error: an error is issued if a name n cannot be resolved to a previously defined

variable;

7.5.2. Warnings/Errors Detectable by the EOL Type Resolver

• Error: an error is issued for attempts to instantiate non-instantiable types;

• Error: an error is issued if model types are used without supporting model decla-

ration statements;

• Error: an error is issued if the driver of a model declaration statement is not

supported;

• Error: an error is issued if a name n cannot be resolved to a type (model element

type/EOL type);

• Error: an error is issued if a metamodel cannot be found using the identifier

provided in a model declaration statement;
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• Error: an error is issued if the type of an expression contained in a logical operator

(and, or, xor, not and implies) is not Boolean or Any;

• Error: an error is issued if the type of any expression contained in a comparison

operator (>, ≥, <, ≤) is not Integer, Real or Any;

• Error: an error is issued if the type of any expression contained in −, ∗ and /

operators is not Integer or Real;

• Warning: a warning is issued if the types of the expressions contained in the +

operator are not compatible;

• Warning: a warning is issued if the targets of the operation call to all operations

(EXCEPT asBoolean(), asInteger(), asReal(), asString(), asOrderedSet(), asSe-

quence(), asSet(), asBag(), err(), errln(), format(), hasProperty(), ifUndefined(),

isDefined(), isKindOf(), isTypeOf(), isUndefined(), owningModel(), print(), println())

are of type Any;

• Error: an error is issued if the targets of the operation calls to charAt(), con-

cat(), endsWith(), firstToLowerCase(), firstToUpperCase(), isInteger(), isReal(),

isSubstringOf(), length(), isReal(), isSubstringOf(), length(), matches(), pad(), re-

place(), split(), startsWith(), subString(), toCharSequence(), toLowerCase(), toUp-

perCase(), trim() are NOT of type Any or String;

• Error: an error is issued if the targets of the operation calls to abs(), ceiling(),

floor(), log(), log10(), max(), min(), pow(), round() are NOT of type Any, Real or

Integer;

• Error: an error is issued if the targets of the operation calls to iota(), to(), toBi-

nary() and toHex() are NOT of type Any or Integer;

• Error: an error is issued if the targets of the operation calls to add(), addAll(),

clear(), clone(), concat(), count(), excludes(), excludesAll(), excluding(), excludin-

gAll(), flatten(), includes(), includesAll(), including(), includingAll(), isEmpty(),

product(), random(), remove(), removeAll, size(), sum(), at(), first(), second(),
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third(), fourth(), last(), indexOf(), invert(), removeAt() are NOT of type Any or

Collection;

• Error: an error is issued if the targets of the operation calls to first order logic

operations calls (aggregate(), closure(), collect(), exists(), forAll(), one(), reject(),

select(), selectOne(), sortBy()) are NOT of type Any or Collection;

• Error: an error is issued if the targets of the operation calls to all(), allInstances(),

allOfKind(), allOfType(), createInstance(), isInstantiable() are NOT of type Mod-

elElementType

• Warning: a warning is issued when collection expression ce does not have a content

type;

• Error: an error is issued when abort statement is used outside of a transaction

statement;

• Error: an error is issued when a return statement is detected outside an operation;

• Error: an error is issued when the types of the left hand side and the right hand

side of an assignment statement are not compatible;

• Error: an error is issued when the left hand side of an assignment statement is an

invalid expression (i.e. expressions that are NOT name expressions, property call

expressions or variable declaration expressions);

• Error: an error is issued when two operations with the same signature are defined

in the same program;

• Error: an error is issued when an invoked operation cannot be found withinin

either the EOL standard library or the user defined operations;

• Error: an error is issued when accessing an undefined property in a property call

expression;

• Error: an error is issued when a call to first order logic operation has no target;
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Figure 7.9.: The transformation from Homogeneous Abstract Syntax Tree to Heteroge-
neous Abstract Syntax Graph

7.6. Chapter Summary

In this chapter, the design and implementation of the core facilities of the Epsilon static

analysis framework were presented. In Section 7.1 and 7.2, the design and implementa-

tion of the infrastructure of the EOL static analyser were discussed and the EOLVisitor

facility was presented. In Section 7.3, the variable resolution facility of the EOL static

analyser was presented. In Section 7.4, the type resolution facility of the EOL static

analyser was presented, as well as the details of the static analysis approach adopted

and the detailed type resolution rules for each EOL language construct.

With the EOL static analyser constructed, the next step is to design and implement

the static analysis facilities for other Epsilon languages. In Chapter 8, the design and

implementation of the static analysers for the Epsilon Validation Language (EVL) and

the Epsilon Transformation Language (ETL) will be presented.

The variable resolution facility and the type resolution facility constitute the infras-

tructure of the Epsilon static analysis framework. This infrastructure, together with

the EOL metamodel, provide a means to transform a homogeneous abstract syntax tree

(ANTLR-based AST) to a heterogeneous abstract syntax tree (Ecore-based EOL model

that conforms to the EOL metamodel), and eventually to a heterogeneous abstract syn-

tax graph (variable resolved and type resolved EOL model that conforms to the EOL

metamodel), shown in Figure 7.9. Using the heterogeneous abstract syntax graph, facil-
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ities that aim at addressing the scalability challenges in MDE can be constructed, which

will be discussed in Chapter 9.

7.7. Terminology

LogBook The LogBook facility is used to record warnings and errors that arise during

the static analysis process.

Variable Resolution: The term Variable Resolution refers to the process to solve

the reaching definition problem, i.e. to establish the links between a variable declaration

and its references. Problems (warnings/errors) arise during the variable resolution are

recorded by the LogBook facility.

Type Resolution: The term Type Resolution refers to the process to resolve the types

of the expressions in the EOL program. Type resolution happens after the variable res-

olution and it also resolves the links between an operation definition and corresponding

calls to it. Problems (warnings/errors) arise during the type resolution are recorded by

the LogBook facility.
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Framework

This chapter discusses the development iteration where the established Epsilon Static

Analysis Framework, discussed in Chapter 7, is extended to support static analysis for

the Epsilon Validation Language (EVL) [73] and the Epsilon Transformation Language

(ETL) [61]. In Section 8.1, the static analyser for EVL is discussed. The EVL metamodel

is discussed in Section 8.1.1, the AST2EVL transformation is discussed in Section 8.1.2,

the EVL variable resolution facility is discussed in Section 8.1.3 and the EVL type res-

olution facility is discussed in Section 8.1.4. In Section 8.2, the static analyser for ETL

is discussed. The ETL metamodel is discussed in Section 8.2.1, the AST2ETL trans-

formation is discussed in Section 8.2.2, the ETL variable resolution facility is discussed

in Section 8.2.3 and the EVL type resolution facility is discussed in Section 8.2.4. For

ETL, a transformation rule dependency calculation facility is discussed in detail in Sec-

tion 8.2.5, which is useful for transformation analysis and potentially for optimising ETL

transformations.

8.1. The EVL Static Analyser

This section discusses the design and implementation of the static analyser for the Ep-

silon Validation Language (EVL) [73]. The EVL static analyser is built by extending

the EOL static analyser. The EVL static analyser includes the EVL metamodel, the

AST2EVL transformation, the EVL visitor framework, the EVL variable resolution fa-

cility and the EVL type resolution facility, which are discussed in what follows.
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8.1.1. The EVL Metamodel

To support the static analysis of EVL programs, the EVL metamodel was created by ex-

tending the EOL metamodel. The structure of the EVL metamodel is shown in Figure 8.1

(metamodel elements with dashed lines are elements reused from the EOL metamodel).

The elements introduced in the EVL metamodel are:

EVLModule

An EVL program is represented by the EVLModule element, which is a subtype of EOL-

LibraryModule in the EOL metamodel. An EVLModule contains a number of constraints

organised in Contexts, which are discussed further in this section. It also contains an

optional pre statement block and an optional post statement block, which are executed

before and after the module’s constraints respectively. The pre and post blocks are

NamedBlock elements, which contain a name (of type NameExpression in EOL), and

a body (of type Block in EOL).

GuardedElement

In EVL, a Context specifies the kind of instances in which the contained Invariants

will be evaluated. Context and Invariant can define an optional guard (of type Ex-

pressionOrStatementBlock) to limit their applicabilities only to elements that satisfy a

condition. Thus, they are categorised as GuardedElement elements.

A Context contains a type (of type ModelElementType) to specify the model element

type to which it is applicable. A Context has a variable named self (of type Vari-

ableDeclarationExpression) which is used to refer to the object that is being validated

by a Context. A Context also contains a number of invariants (of type Invariant), which

model elements are required to satisfy.

An Invariant is a GuardedElement. An Invariant contains the following properties:

• a name (of type NameExpression) that identifies it;

• a check (of type ExpressionOrStatementBlock) to express the properties to vali-

date;
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• a message (of type ExpressionOrStatementBlock) to provide detailed user feedback

to describe the reason an Invariant has failed for a particular model element;

• a number of fixes (of type Fix) which support semi-automatic fixing of elements

on which the invariant has failed;

• satisfies, which is a list of references to other Invariants that the Invariant under

question depends on. The satisfies property is calculated during static analysis

(discussed in Section 8.1.4).

Invariants are further categorised into Constraints, which are critical errors that

invalidate the model, and Critiques which are non-critical errors that do not invalidate

the model, but should be addressed to enhance the quality of the model [73].

Fix

A Fix defines a title (of type ExpressionOrStatementBlock) to allow the user to specify

a context-aware title [9]. A Fix defines a do (of type Block) that describes the fix which

repairs the inconsistency in the model.

Concrete Syntax

Listings 8.1, 8.2, 8.3 and 8.4 demonstrate the concrete syntax of the EVL Context,

Invariant Fix, pre- and post-blocks discussed above.

1 context <name> {

2 (guard (:Expression) | ({StatementBlock}))?

3 (invariant)*

4 }

Listing 8.1: Concrete Syntax of an EVL context [9].

1 (@lazy)?

2 (constraint|critique) <name> {

3 (guard (:Expression) | ({StatementBlock}))?

4 (check (:Expression) | ({StatementBlock}))?
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5 (message (:Expression) | ({StatementBlock}))?

6 (fix)?

7 }

Listing 8.2: Concrete Syntax of an EVL invariant [9].

1 fix {

2 (guard (:Expression) | ({StatementBlock}))?

3 (title (:Expression) | ({StatementBlock}))?

4 do {

5 StatementBlock

6 }

7 }

Listing 8.3: Concrete Syntax of an EVL fix [9].

1 (pre|post) <name> {

2 block

3 }

Listing 8.4: Concrete Syntax of an EVL fix [9].

8.1.2. The AST2EVL Transformation and the EVLVisitor Framework

An AST2EVL transformation facility was created by extending the AST2EOL trans-

formation facility (Section 6.6). A set of EVLElementCreators (in accordance to the

additional EVLElements created in the EVL metamodel) were created, which create

EVLElements from ASTs generated by the EVL parser.

The EVLVisitor Framework was generated based on the EVL metamodel using the

mode-to-text transformation discussed in Section 7.2. The EVLVisitor Framework acts

as the infrastructure for the EVL variable resolution and type resolution facilities, which

were created by extending the EOL variable resolution (Section 7.3) and type resolution

facilities (Section 7.4) respectively.
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8.1.3. The EVL Variable Resolution Facility

The implementation of the EVL variable resolution facility involves creating a number

of EVLElementVariableResolvers atop the EOL variable resolution facility (as well as by

extending the EVLVisitor framework). Apart from the EOLElementVariableResolvers

discussed in Section 7.3, the EVL variable resolution facility comprises the following

EVLElementVariableResolvers:

• EVLModuleVariableResolver, which is used to resolve the variables of an EVL

module. The resolution process is driven by the EVLModuleVariableResolver, in

the sense that it visits the imports, pre block, contexts, operationDefinitions and

the post block in sequential order;

• ContextVariableResolver, which is used to resolve variables when a Context in the

EVL module is encountered;

• InvariantVariableResolver, which is used to resolve variables when an Invariant is

encountered in the EVL module;

• FixVariableResolver, which is used to resolve variables when a Fix is encountered

in the EVL module;

• NamedBlockVariableResolver, which is used to resolve the pre and post blocks in

an EVL module.

These EVLElementVariableResolvers direct the control of the variable resolution. In

addition to the scoping rules of the EOL variable resolution facility, the EVL resolution

facility defines additional scoping rules. For example, the variables defined in the guard

of a Context are accessible throughout the whole scope of the Context. The same prin-

ciple applies to variables defined in the guard of an Invariant, so that the variables are

accessible throughout the whole scope of the Invariant.

8.1.4. The EVL Type Resolution Facility

The EVL type resolution facility was implemented atop the EOL type resolution facility

(Section 7.4). The implementation of the EVL type resolution facility involves creating
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a number of EVLElementTypeResolvers (by extending the EVLVisitor framework):

• EVLModuleTypeResolver ;

• ContextTypeResolver ;

• InvariantTypeResolver ;

• FixTypeResolver ;

• NamedBlockTypeResolver ;

These EVLElementTypeResolvers drive the type resolution of different EVLElements,

which are one-to-one mappings to the newly created EVLElements in the EVL meta-

model. In addition, a number of operations are introduced in the EVL standard library:

• satisfies(invariant: String);

• satisfiesAll(invariants: Sequence(String));

• satisfiesOne(invariants: Sequence(String)).

1 context Lecturer {

2

3 constraint DefinesNames {

4 check: self.first_name.isDefined() and

5 self.last_name.isDefined()

6 message: "Lecturer’s names must be defined"

7 }

8

9 constraint DefinesID {

10 guard: self.satisfies("DefinesNames")

11 check: self.staff_id.isDefined()

12 }

13 }

Listing 8.5: An example EVL program

193



8. Extending the Epsilon Static Analysis Framework

These operations are used to capture dependencies between Invariants. Using these

operations, an Invariant can specify in its guard the Invariants that need to be satisfied

in order for it to be executed. Listing 8.5 demonstrates how satisfies() is used. Lines 1-

13 declare two constraints for the context Lecturer. Lines 3-7 define a constraint named

DefinesNames which checks if a Lecturer ’s first name and last name are defined. In line

9-11, a constraint named DefinesID is defined, which checks if the staff id of a Lecturer is

defined. To promote modularity, in line 10, the satisfies operation is named, which states

that for “DefinesID” to be meaningful, the lecturer should first satisfy “DefinesNames”.

In other words, the constraint “DefinesID” depends on the constraint “DefinesNames”.

A number of OperationDefinitionHandlers (discussed in Section 7.4.2) has been cre-

ated to handle calls to these operations. The type resolution rules of the operations are

defined as follows:

satisfies(invariant: String)

This operation takes a String and returns a Boolean value. Let MC and [MC] denote

the MethodCallExpression (that calls satisfies()) and the type of it, and arg and [arg]

denote the argument and its type. The type resolution rule of this operation is:

(arg ∈ Expression) ∧ ([arg] = String)⇒ [MC] = Boolean

The parameter invariant can be any Expression, which must evaluate to a value of

type StringType. An error will be reported if the type of the invariant is not StringType.

For the static analysis to calculate the constraint dependencies, ideally the parameter

invariant should be of type StringExpression. If the invariant is not a StringExpression,

at compile time, the static analyser is not able to compute the value of such an expression.

A warning will be reported if invariant is not a StringExpression to notify the developer

that the constraint dependency cannot be resolved.

The satisfies() handler looks for the Invariant by the value provided in the parameter

of the method call. If an Invariant with the name is found, the found Invariant is then

added to the satisfies property of the current Invariant. If no Invariant is found, an

error will be reported.
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satisfies(invariantsAll: Sequence(String)) and

satisfiesOne(invariantsOne: Sequence(String))

These operations take a Sequence of String values and return a Boolean value. Let MC

and [MC] denote the MethodCallExpression (that calls these methods) and the types of

them, ARG denote the set of all the arguments, and arg and [arg] denote each argument

and its type. The type resolution rule of these operations is:

(∀ arg ∈ ARG : arg = Expression ∧ [arg] = String)⇒ [MC] = Boolean

Each element in the parameter of invariantsAll or invariantsOne can be of any Ex-

pression, which must evaluate to a value of type StringType. An error will be reported

if any element in the parameter invariantsAll or invariantOne is not StringType. For

the static analysis to calculate the constraint dependencies, ideally each element in the

parameter invariantAll or invariantOne should be of type StringExpression. A warn-

ing will be reported if this is not the case, to notify the developer that the constraint

dependency cannot be resolved.

For the method call to satisfiesAll(), the satisfiesAll() handler iterates through the

parameter invariantsAll and looks for Invariants by the value provided in the parameter

of the method call. If an Invariant is found, the found Invariant is added to the satisfies

property of the current Invariant. If no Invariant is found, an error will be raised.

For the method call to satisfiesOne(), the handler adopts an optimistic approach

which copies the behaviour of the satisfiesAll() handler. This approach results in all the

Invariants found to be added to the satisfies property of the current Invariant. Thus, the

constraint dependency is only an approximation because of the uncertainty introduced

by the satisfiesOne() operation.

The EVL Type Resolution facility inherits all the features of the EOL Type Resolution

facility (Section 7.4). However, there are additional checks for Invariant :

• the check of an Invariant should be either an Expression with type BooleanType,

or a Block of Statements. However, if check contains a Block of Statements, for

each ReturnStatement, the returned value must have a BooleanType. The same
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principle applies to the guard of Context, Invariant and Fix ;

• the message of an Invariant should be either an Expression with type StringType,

or a Block of ExpressionStatements, for which the type of each Expression en-

capsulated in the ExpressionStatement should be StringType. The same principle

applies to the title of Fix ;

• the fix of an Invariant should not contain any ReturnStatement (that returns a

value) in the sense that fixes do not return values in EVL (ReturnStatements that

do not return anything, e.g. return; is acceptable). Thus, an error is reported if a

ReturnStatement (that returns a value) is detected within a Fix.

8.2. The ETL Static Analyser

This section presents the design and implementation of the static analyser for the Epsilon

Transformation Language (ETL) [61]. The ETL static analyser is built by extending

the EOL static analyser. The ETL static analyser includes the ETL metamodel, the

AST2ETL transformation facility, the ETLVisitor framework, the ETL variable resolu-

tion facility and the ETL type resolution facility, which are discussed in this section.

8.2.1. The ETL Metamodel

To support the static analysis of ETL programs, the ETL metamodel was created by

extending the EOL metamodel. The structure of the ETL metamodel is shown in Fig-

ure 8.2. The elements introduced in the ETL metamodel (atop the EOL metamodel)

are the following:

ETLModule

An ETL transformation program is organised in an ETLModule. The ETLModule is

a subtype of EOLLibraryModule in the EOL metamodel. An ETLModule contains a

number of pre and post NamedBlocks, which are executed before and after an ETL

program’s transformation rules respectively.
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TransformationRule

An ETLModule contains a number of TransformationRules, which are used to represent

the transformation rules in an ETL program. A TransformationRule contains a number

of properties:

• an optional annotationBlock (of type AnnotationBlock), which provides annota-

tion(s) about the TransformationRule. For example, a TransformationRule may

be declared as abstract, lazy, primary or greedy, using appropriate annotations;

• attributes abstract, lazy, primary and greedy are used to denote if a Transfor-

mationRule is abstract, lazy, primary or greedy. Such attributes decide the rule

execution scheduling and are provided in the annotationBlock of a Transformation-

Rule. These attributes are calculated during the static analysis. The semantics of

these attributes is discussed in [61];

• a source (of type FormalParameterExpression) denoting the type of instances in

which the TransformationRule is applicable;

• a number of targets (of type FormalParameterExpression) denoting the type of the

target elements to be created by the TransformationRule;

• a number of extends (of type NameExpression), to denote if a TransformationRule

extends the behaviour of other TransformationRules. A TransformationRule also

contains a number of resolvedParentRules, which are a collection of references to

the current rule’s parent rules, and are calculated during the static analysis:

• an optional guard (of type ExpressionOrStatementBlock) limiting the applicability

of the TransformationRule;

• a body (of type Block) which contains the logic of the transformation;

• a number of TransformationRuleDependency(-ies), which are used to capture the

transformation dependency graph of an ETL program, as discussed in Section 8.2.5.
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SpecialAssignmentStatement

In ETL, transformation rules can depend on each other by using the operation equiv-

alent() and equivalents() provided in the ETL standard library. In addition, there is

also a special assignment operator (::=) which is equivalent to making the call to equiva-

lent() on the right hand side of the assignment operator. To capture this behaviour, the

SpecialAssignmentStatement is created by extending the AssignmentStatement in EOL.

Concrete Syntax

Listing 8.6 and Listing 8.7 demonstrate the concrete syntax of the ETL Transformation-

Rule and Pre/Post Blocks discussed above.

1 (@abstract)?

2 (@lazy)?

3 (@primary)?

4 rule <name>

5 transform <sourceParameterName>:<sourceParameterType>

6 to <targetParameterName>:<targetParameterType>

7 (,<targetParameterName>:<targetParameterType>)*

8 (extends <ruleName>(, <ruleName>)*)? {

9 (guard (:expression)|({statementBlock}))?

10 statement+

11 }

Listing 8.6: Concrete Syntax of a Transformation Rule [61]

1 (pre|post) <name> {

2 statement+

3 }

Listing 8.7: Concrete Syntax of Pre and Post Blocks [61]
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8.2.2. The AST2ETL Transformation and the ETLVisitor Framework

An AST2ETL transformation facility was created by extending the AST2EOL trans-

formation facility (Section 6.6). A set of ETLElementCreators (in accordance to the

additional ETLElements created in the ETL metamodel) were created which, in turn,

create ETLElements from ASTs generated by the ETL parser.

The ETLVisitor Framework was generated based on the ETL metamodel using the

model-to-text transformation discussed in Section 7.2. The ETLVisitor framework acts

as the infrastructure for the ETL variable resolution and type resolution facilities, which

were created by extending the EOL variable resolution (Section 7.3) and type resolution

facilities (Section 7.4).

8.2.3. The ETL Variable Resolution Facility

The implementation of the EVLVariableResolver involves creating a number of EVLEle-

mentVariableResolvers, which are used to direct the resolution process:

• ETLModuleVariableResolver, which is used to perform variable resolution for an

ETL module. The resolution process is driven by the ETLModuleVariableResolver

in the sense that it visits the ETL module’s model declarations, imports, pre blocks,

transformation rules, operation definitions and post blocks in sequential order;

• TransformationRuleVariableResolver. The resolution is delegated to the Transfor-

mationRuleVariableResolver whenever a TransformationRule is encountered in the

ETL module. The TransformationRuleVariable puts its source and targets in the

current active Frame in the FrameStack (Section 7.3) and performs the resolution;

• NamedBlockVariableResolver, which is used to perform the variable resolution for

the pre and post blocks of the ETL module.

These ETLElementVariableResolvers direct the control of the variable resolution.

There are additional scoping rules added by the ETL variable resolution facility. For ex-

ample, variables defined in the pre block of an ETLModule are available throughout the

entire ETLModule; variables defined in the guard of a TransformationRule are available

throughout the scope of the TransformationRule.
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8.2.4. The ETL Type Resolution Facility

The ETL type resolution facility was implemented atop the EOL type resolution facility

(Section 7.4). The implementation of the ETL type resolution facility involves creating

a number of ETLElementTypeResolvers (by extending the ETLVisitor framework). The

ETLElementTypeResolvers are one-to-one mappings to the newly created ETLElements

in the ETL metamodel. In addition, a number of operations are introduced in the ETL

standard library: the equivalent() and the equivalents() operations.

1 rule Lecturer2Person

2 transform l : University!Lecturer

3 to p : SocialNetwork!Person {

4 p.first_name = l.first_name;

5 p.last_name = l.last_name;

6 p.knows = l.students.equivalent();

7 }

8

9 rule Student2Person

10 transform s: University!Student

11 to p: SocialNetwork!Person {

12 p.first_name = s.first_name;

13 p.last_name = s.last_name;

14 p.knows = s.tutor.equivalent();

15 }

Listing 8.8: A model-to-model transformation written in Epsilon Transformation

Language

The principle behind the equivalent() and equivalents() operations is to resolve target

elements that have been (or can be) transformed from source elements by other rules.

Consider the ETL transformation example (involving the University metamodel in Fig-

ure 2.9, Section 2.1.6, and the SocialNetwork metamodel in Figure 2.10, Section 2.1.6)

in Listing 8.8. In lines 1-7, a TransformationRule is in place, which transforms a Lec-

turer (denoted as l) in the University model into a Person (denoted as p) in the target

201



8. Extending the Epsilon Static Analysis Framework

SocialNetwork model. In line 6, equivalent() is called on the students property of l,

which denotes that the contents in the students property of l, which have been or can be

transformed, should be resolved. The ETL transformation engine is responsible for han-

dling the call to equivalent(). Thus, if the ETL transformation engine is not able to find

any objects that have been transformed with relation to l.students, in Listing 8.8, the

TransformationRule Student2Person (lines 9-15) will be called to resolve the students

property of l.

equivalents() and equivalent() are semantically similar to each other. When equiva-

lents() is called on a single-valued object, the ETL execution engine inspects the estab-

lished transformation trace, invokes all applicable transformation rules (if necessary) to

calculate the counterparts of the element in the target model, and returns a Sequence

containing the elements. The order of the elements in the result respects the order of

the applicable transformation rules defined within the ETL module. When equivalents()

is invoked on a collection of objects, it returns a Sequence containing Sequences that

contain the counterparts of the source elements contained in the collection.

When equivalent() is called on a single-valued object, the look up of transformation

rules in the transformation trace is the same as for equivalents(). The difference is

that only the first element of the respective result that would have been returned by

equivalents() is returned by the call to equivalent(). When equivalent() is invoked on a

collection, a flattened Sequence (of the result that would have been returned by equiva-

lents()) is returned.

The ETL type resolution facility implements dedicated handlers for equivalent() and

equivalents(). During the type resolution process, the ETL type resolution facility es-

tablishes a transformation trace by matching the type of the source of all Transforma-

tionRules.

equivalent(rule : String ..)

The equivalent() operation can be invoked with a number of parameters specifying from

which rules the source should be resolved. Let MC and [MC] denote the call to equiv-

alent() and its type, rule, [rule] and RULE denote each matched TransformationRule,
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the type of the (first) target of that TransformationRule and the set of all matched

TransformationRules. Since there may be any number of TransformationRules, and a

TransformationRule may have any number of targets, the notation (index) is used to

refer to an element in a collection with index.

If equivalent() is called on a single-valued object, the type of the call should be the

type of the first target of the first matched TransformationRule:

[MC] = [RULE(0)]

If equivalent() is called on a collection, the type resolution collects all matched Trans-

formationRules which are applicable for the call to equivalent(), then a computation

is performed on all the first targets of such transformation rules. The objective is to

compute the Least Common Type (LCT) of all the target types. If a LCT is found, then

the type of the call to equivalent() is Sequence(LCT ); otherwise, it is Sequence(Any).

Let the symbol lct() denote the function that calculates the Least Common Type and

LCT denote the LCT returned by lct():

[MC] = Sequence(lct([RULE])) 6= null ?LCT : Any)

For all matched TransformationRules on the call to equivalent(), a RuleDependency

is created to link the call to equivalent() to the matched TransformationRule. The

RuleDependency is added to the dependencies property of the current rule.

equivalents(rule : String ..)

The equivalents() operation can be invoked with a number of parameters specifying

from which rules the source should be resolved. Let MC and [MC] denote the call to

equivalents() and its type, and rule, [rule] and RULE denote each matched Transfor-

mationRule, the type of the first target of that TransformationRule and the set of all

matched TransformationRules.

If equivalents() is called on a single-valued object, the type resolution collects all

matched TransformationRules which are applicable for the call to equivalents(). The
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Least Common Type (LCT) is computed among all the types of the first target of all the

TransformationRules. Let the symbol lct() denote the function that computes the Least

Common Type and LCT denote the LCT returned by lct():

[MC] = Sequence(lct([RULE])) 6= null ?LCT : Any)

If equivalents() is called on a collection, the type resolution collects all matched Trans-

formationRules which are applicable to the call to equivalents(). The Least Common

Type (LCT) is computed among all the types of the first target of all the Transforma-

tionRules. Let the symbol lct() denote the function that computes the Least Common

Type and LCT denote the LCT returned by lct():

[MC] = Sequence(Sequence(lct([RULE])) 6= null ?LCT : Any))

For all matched TransformationRules on the call to equivalents(), a RuleDependency

is created to link the call to equivalents() to the matched TransformationRule. The

RuleDependency is added to the dependencies property of the current rule.

The Special Assignment Operator

The special assignment operator ::= is an alias for invoking the equivalent() operation

without parameters on the right hand side of an assignment. As such, its type reso-

lution semantics reuses the semantics of equivalent(). As an assignment operator, the

left and right hand side should be of compatible types. Let L and [L] denote the left

hand side expression and its type of the ::= operator, R and [R] denote the right hand

side expression and its type of the ::= operator; CollectionType denote the set of all

collection types in EOL; and rule, [rule] and RULE denote each matched Transforma-

tionRule, the type of the target of that TransformationRule and the set of all matched

TransformationRules. The type constraints are:

If R is a model element, the type resolution is the same as the call to equivalent():

[L] = [RULE(0)]
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If R is a collection, the type resolution is the same as the call to equivalent():

[MC] = Sequence(lct([RULE])) 6= null ?LCT : Any)

For all matched TransformationRules on the call to equivalent(), a RuleDependency

is created to link the call to equivalent() to the matched TransformationRule. The

RuleDependency is added to the dependencies property of the current rule:

8.2.5. Transformation Rule Dependency Analysis

The ETL static analyser is able to construct a rule dependency graph. For illustration

purposes, a simple example is presented to demonstrate how the calculation is performed.

The ETL static analyser provides an Eclipse plug-in to visualise transformation rule

dependency graphs and is discussed together with the example. Then, the discussion

moves on to a more realistic example, which examines the static analysis on an existing

OO2DB transformation.

Figure 8.3.: The Source Metamodel Figure 8.4.: The Target Metamodel

To illustrate the transformation rule dependency calculation, a simple example is

provided first. In this example, two simple Ecore metamodels named Source and Target

(in Figure 8.3 and Figure 8.4) are devised for demonstration purposes. In the Source

metamodel, A has a single-valued reference to B, B extends C, and D extends B. In the
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Target metamodel, E has a single-valued reference to F, and G and H extend F.

1 rule A2E

2 transform a : Source!A

3 to e : Target!E {

4 e.f = a.b.equivalent();

5 }

6

7 rule B2F

8 transform b : Source!B

9 to f : Target!F { }

10

11 rule B2G

12 transform b : Source!B

13 to g : Target!G { }

14

15 rule C2F

16 transform c : Source!C

17 to f: Target!F { }

18

19 rule D2G

20 transform d: Source!D

21 to g: Target!G { }

Listing 8.9: Example ETL transformation

In Listing 8.9, an ETL transformation is created to illustrate how the transformation

dependency graph is calculated. In lines 1-5, a transformation rule named A2E is cre-

ated, which transforms instances of A to instances of E. In line 4, equivalent() is called

to resolve the element a.b, which is a single-valued reference. Lines 7-10 define a trans-

formation rule which transforms instances of B to instances of F. Lines 11-13 define a

transformation rule to transform instances of B to instances of G. Lines 15-17 define a

transformation rule to transform instances of C to instances of F. Lines 19-21 define a
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transformation rule to transform instances of D to instances of G.

equivalent() on single-valued elements

This section illustrates the transformation rule dependency resolution for operation

equivalent() on single-valued elements. To visualise the transformation rule dependency

graph, an Eclipse plug-in is developed using Eclipse Zest [131], which allows the creation

of nodes and edges for visualisation. The visualisation of the transformation dependency

graph of the program in Listing 8.9 is shown in Figure 8.5. Since the property b of ele-

ment A is single-valued, the call to equivalent() resolves to the first transformation rule

that transforms instances of B, which in this case is the transformation rule B2F.

Figure 8.5.: A2E → B2F dependency

ETL provides the keyword primary for developers to use in the annotation of a trans-

formation rule. The keyword primary gives priority to the transformation rule when

scheduling the transformation (by the ETL transformation engine) and resolving source

elements. Thus, if the rule B2G is declared as primary, as shown in Figure 8.6, the

transformation dependency is resolved to rule B2G.

If the keyword primary is used on transformation rule C2F, as shown in Figure 8.7,

207



8. Extending the Epsilon Static Analysis Framework

Figure 8.6.: A2E → B2G dependency

Rule C2F will not be resolved because in the Source metamodel, C is the supertype of

B. In order for the equivalent() operation to call rule C2F, the keyword greedy should

be used. Semantically, the keyword greedy means that the transformation rule will

transform all objects, which are either instances of the type of the source of the applicable

transformation rule or instances of its subtypes.

equivalents() on single-valued elements

When operation equivalents() is applied on a single-valued element, rule dependencies are

resolved to all applicable transformation rules. Figure 8.9 illustrates the transformation

rule dependency graph for the call to equivalents() on a.b (a.b is a single-valued element).

However, since the expression:

a.b.equivalents()

is of type Collection, a type mismatch error is detected in line 6 by the ETL static

analyser (since e.f is single-valued). This error is rectified in Figure 8.10 by getting the

first element of the expression a.b.equivalents().
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Figure 8.7.: Declaring C2F as primary

Figure 8.8.: Declaring C2F as primary and greedy
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Figure 8.9.: Error detection on the call to equivalents()

Figure 8.10.: Calling equivalents() on single-valued elements

equivalent() and equivalents() on collections

Although the semantics of equivalent() and equivalents() on collections is different, their

transformation rule dependency resolutions are the same. To illustrate this behaviour,
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the Source metamodel and the Target metamodel are modified: the cardinalities of

A.b and E.f are changed to many. Thus, when the call to equivalent() is made on

a.b in Figure 8.11, the transformation rule dependencies are resolved to all applicable

transformation rules.

Figure 8.11.: Calling equivalents() on collections

Analysing OO2DB

In a more realistic and complex example, the transformation rule dependency calculation

facility is used to analyse the ETL transformation OO2DB in the Epsilon Examples1.

The OO2DB transformation is used to transform models that conform to the OO meta-

model, which is a metamodel containing constructs related to Object-Oriented design, to

models that conform to the DB metamodel, which is a metamodel containing constructs

related to Relational Database (Emfatic Specifications provided in Appendix B).

The OO2DB transformation contains four transformation rules:

• Class2Table, which transforms an instance of Class to an instance of Table;

1https://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.

examples.oo2db
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• SingleValuedAttribute2Column, which transforms a single-valued attribute of a

Class to a column of a Table;

• MultiValuedAttribute2Table, which transforms a multi-valued attribute of a Class

to a column of a Table;

• Reference2ForeignKey, which transforms a reference of a Class to a foreign key in

a Table.

Figure 8.12.: OO2DB Transformation Rule Dependency Graph.

The transformation rule dependency graph of OO2DB is shown in Figure 8.12. It is

noteworthy that the transformation graph supports navigating back to the source code,

so that in Figure 8.12, when the dependency between SingleValuedAttribute2Column

and Class2Table is selected, the tool navigates to the source code where it happens. In

the following code:

c.table ::= a.owner;

c is the Column that the transformation creates and Column has a reference named table,

which refers to the Table to which the Column belongs. a is the source Attribute to be

transformed and Attribute has a reference named owner, which refers to the Class to
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which the Attribute belongs. The special operator ::= is used to resolve a.owner, which

in turn calls the transformation rule Class2Table to create the corresponding Table.

For rules MultiValuedAttribute2Table and Reference2ForeignKey, the rule dependen-

cies are resolved in the same manner. On the other hand, the rule Class2Table depends

on itself, because when transforming a Class, it also recursively calls Class2Table to

create instances of the super Class of the current Class that is being transformed.

8.3. Chapter Summary

This chapter presented the design and implementation of the EVL and ETL static anal-

ysers, which are both built by extending the EOL static analyser. The implementation

of these two static analysers demonstrates the extensibility of the Epsilon static analysis

framework, in the sense that the EOL metamodel, the EOL variable resolution facility

and the EOL type resolution facility are reused in their entireties to create the EVL and

ETL static analysers.

8.4. Terminology

Epsilon Validation Language (EVL): The Epsilon Validation Language (EVL) con-

tributes the model validation capabilities to the Epsilon platform. Using EVL, invariants

can be expressed which are validated against the models. EVL is built atop EOL.

EVL metamodel: The EVL metamodel refers to the abstract syntax of the Epsilon

Validation Language (EVL) represented in the form of a Ecore based metamodel. The

EVL metamodel is built by extending the EOL metamodel.

AST2EVL: In the context of this thesis, the term AST2EVL refers to the transfor-

mation which transforms a homogeneous abstract syntax tree produced by the Epsilon

parser (for EVL) to a model which conform to the EVL metamodel.

EVL static analyser: Built atop the EOL static analyser, the EVL static analyser
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provides a variable resolution facility (which extends the EOL variable resolution facil-

ity) and a type resolution facility (which extends the EOL type resolution facility). Each

facility contains their own rules to analyse EVL programs.

Epsilon Transformation Language (ETL): The Epsilon Transformation Language

(ETL) contributes model-to-model transformation capabilities to the Epsilon platform.

ETL is a hybrid transformation language which provides declarative and imperative lan-

guage constructs. ETL is built atop EOL

ETL metamodel: The ETL metamodel refers to the abstract syntax of the Epsilon

Transformation Language (ETL) represented in the form of a Ecore based metamodel.

The ETL metamodel is built by extending the EOL metamodel.

AST2ETL: In the context of this thesis, the term AST2ETL refers to the transfor-

mation which transforms a homogeneous abstract syntax tree produced by the Epsilon

parser (for ETL) to a model which conform to the ETL metamodel.

ETL static analyser: Built atop the EOL static analyser, the ETL static analyser

provides a variable resolution facility (which extends the EOL variable resolution facil-

ity) and a type resolution facility (which extends the EOL type resolution facility). Each

facility contains their own rules to analyse ETL programs.
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Chapter 6 discussed the infrastructure of the core Epsilon static analysis framework,

Chapters 7 and 8 discussed the EOL, EVL and ETL static analysers. In this chapter,

the evaluation of the static analysis framework is carried out.

The evaluation of the extensibility of the Epsilon Static Analysis Model Connectivity

layer (ESAMC) is presented in Section 6.3.3, where the implementaiton of an additional

modelling technology driver (for schema-less XML models) is discussed. Model queries

and transformations involving transforming models defined in both EMF and schema-less

XML simultaneously will be evaluated to further validate the extensibility of ESAMC

and the Epsilon static analysis framework. The evaluation of the EOL, EVL and ETL

static analyser is then carried out by analysing existing queries and transformations.

This chapter then points out the limitation of the Epsilon static analysis framework

which hopefully will be addressed in future work.

9.1. Extending ESAMC: A Schema-less XML Driver

Chapter 6 highlighted the need for the Epsilon Static Analysis Model Connectivity layer

(ESAMC). To perform static analysis on programs written in Epsilon languages, there

is a need for the Epsilon static analysis framework to provide support for accessing

metamodels defined in different modelling technologies. In the previous chapters, the

example programs presented all interacted with models defined in EMF. This section

evaluates the extensibility of ESAMC by presenting a schema-less XML driver (hereby

referred to as XML driver), which is an extension of the ESAMC to support the analysis

of programs that manage models defined in schema-less XML documents (hereby referred

to as XML models).
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9.1. Extending ESAMC: A Schema-less XML Driver

The majority of contemporary MDE tools focus on 3-level metamodelling architectures

(Section 2.1.5) where models conform to metamodels which are defined in terms of

architecture/framework-specific metamodelling languages such as MOF or Ecore. Thus,

most contemporary model management languages/tools require models to be defined by

such architectures. In practice, however, many modelling tools do not use MOF/Ecore

to manage and store their models. In [112], the authors identify the need for Epsilon to

provide support of the management of XML models.

In order to support the static analysis of programs that manage XML models, it is

necessary to implement a corresponding XML model driver for ESAMC. Therefore, an

XML driver was developed by extending ESAMC as illustrated in Figure 9.1, where

PlainXMLIMetamodel was created by extending IMetamodel, and PlainXMLIPackage

was created by extending IPackage.

9.1.1. Epsilon’s Rules of Accessing Schema-less XML

This section discusses the syntax that Epsilon uses to query XML models. Epsilon

provides a set of naming conventions for accessing different constructs within an XML

model. Listing 9.1 provides an example XML document which describes a library and

its books.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <library>

3 <book title="EMF Eclipse Modeling Framework" pages="744">

4 <author>Dave Steinberg</author>

5 <author>Frank Budinsky</author>

6 <author>Marcelo Paternostro</author>

7 <author>Ed Merks</author>

8 <published>2009</published>

9 </book>

10 <book title="Eclipse Modeling Project:

11 A Domain-Specific Language (DSL) Toolkit" pages="736">

12 <author>Richard Gronback</author>
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13 <published>2009</published>

14 </book>

15 <book title="Official Eclipse 3.0 FAQs" pages="432">

16 <author>John Arthorne</author>

17 <author>Chris Laffra</author>

18 <published>2004</published>

19 </book>

20 </library>

Listing 9.1: An Example Plain XML Document

Epsilon provides a set of prefixes that enable developers to access and query XML

models in a concise manner. Firstly, it uses the t prefix to emulate types in XML models,

which is necessary given that XML models do not have corresponding metamodels. In

the example EOL program in Listing 9.2, the t prefix is used in line 2 to access the type

book.

1 model XMLDoc alias xml driver XML {path = "library.xml"};

2 var books = t_book.all;

3 for(b in books) {

4 b.a_title.println();

5 for(author in b.c_author) {

6 author.text.println();

7 }

8 b.i_pages.println();

9 }

Listing 9.2: An example EOL program that manages a XML model

To access attributes, Epsilon provides five prefixes. The a prefix is used to access an

attribute’s string value (a is the shorthand for attribute). The b prefix is used to access

an attribute but the type of its value is explicitly cast to Boolean (b is the shorthand

for boolean). The i , r , s prefixes work in the similar way, and cast the type of the

attribute in question to Integer, Real and String respectively. Atop these prefixes, for
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every type in the XML model, there is a tagName attribute which returns the name

of the element tag in the XML model, and a text attribute which returns the content

between the opening tag and the closing tag of an element. Listing 9.2 illustrates the

usage of the a prefix in line 4, the text attribute in line 6 and the i prefix in line 8.

To access references, Epsilon provides two prefixes. The e prefix is used to access a

single-valued containment reference, where the c prefix is used to access a multi-valued

containment reference. Listing 9.2 illustrates the usage of the c prefix in line 5. For

each element in the XML document, there is also a reference named parentNode which

accesses the container of the current element under question. Finally, there is a reference

named children which accesses the contained elements of the element under question.

9.1.2. Constructing Ecore metamodels from XML models

To compensate for the lack of a metamodel, or of an equivalent artefact from which a

metamodel can be inferred (e.g. an XML Schema), the XML driver is able to create an

Ecore metamodel by analysing a sample XML document.

To access an XML model, the EOL developer needs to provide its location, from

which PlainXMLIMetamodel can infer an Ecore metamodel. Consider the example XML

document in Listing 9.1. From this document, PlainXMLIMetamodel infers an Ecore

metamodel using the algorithm provided in Algorithm 1-3. Thus, for the example XML

document provided in Listing 9.1, the construction of the Ecore metamodel follows the

steps below;

• Lines 2-20 form the root of the document, from which an EClass named t library

is created. As there is no attribue in line 2, no attribute is added to the t library

EClass. However, EOL supports querying the element name by the tagName

attribute and the value of the element by the text attribute. Thus, EAttributes

tagName of type EString with cardinality 1, and EAttribute text of type EString

with cardinality 1, are created and added to the t library EClass;

• The children nodes of root are iterated. The name of the first child node is book

in line 3-9. An EClass named t book is created and an EReference named book
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let document = the XML Document parsed by DOM;
let root = the root of the document; let p = EPackage created with the name of the document;
createEClass(root);
function createEClass(element: Element) : EClass

let name = “t ” + element.nodeName;
let result = EClass to be created;
/* create an attributeMap for this EClass, which is used to check if there are

reocurring attributes */
let attributeMap = new Map<String, EAttribute>;
if p contains EClass with name then

result = p.getEClass(name);
end
else

result = create new EClasss with name;
p.add(result);

end
let tagName = new EAttribute with name “tagName” of type EString;
tagName.upperBound = 1;
let text = new EAttribute with name “text” of type EString;
text.upperBound = 1;
add tagName and text to result;
foreach attribute attr in element do

createEAttribute(result, attr, attributeMap);
end
/* create an referenceMap for this EClass, which is used to check if there are

reocurring attributes */
let referenceMap = new Map<String, EReference>;
foreach node in element.getChildNodes() do

if node instance of Element then
createEReference(result, node, referenceMap)

end
end

end
foreach EClass eClass in p do

if result.allReferences().size() == 1 then
let childrenReference = new reference with name “children”;
childrenReference.upperBound = -1; childrenReference.eType = type of the first
EReference;
add childrenReference to result;

end
else

let childrenReference = new reference with name “children”;
childrenReference.upperBound = -1;
add childrenReference to result;
let leastCommonType = the least common super type of the eTypes of all EReferences
of result;
if leastCommonType != null then

childrenReference.eType = leastCommonType;
end
else

childrenReference.eType = null;
end

end
end

Algorithm 1: Ecore Metamodel Creation from Plain XML (1 of 3)

of type t book with cardinality 1 is added to t library. It is worth noting that the

name of the reference does not contain a prefix, because the XML driver only uses
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function createEReference(eClass: EClass, reference: Node, referenceMap: Map)
if node instance of Element then

let refType = createEClass(node);
let reference = get reference from referenceMap by the name of refType;
/* if reference is null, it means it has not ocurred before */
if reference == null then

/* reference names are not created with prefixes */
reference = new reference with node name and refType;
reference.upperBound = 1;
add reference to referenceMap;

end
else

reference.upperBound = -1;
end
add reference to eClass;
/* calculate the parentNode, if there is a parentNode for thie EClass,

check types, if types don’t match, set eType of parentNode to null */
let parentNode = get reference from EClass;
if parentNode == null then

parentNode = new EReference with name “parentNode”;
parentNode.eType = eClass;

end
else

eType = parentNode.eType;
if eType != EClass then

parentNode.eType = null;
end

end
parentNode.upperBound = 1;
add parentNode to refType;

end
end

Algorithm 2: Ecore Metamodel Creation from Plain XML (2 of 3)

prefixes internally for attributes and references for type comparison and cardinality

comparison;

• The attributes of book in line 3 are then iterated, which results in the creation of

an EAttribute named title of type EString with cardinality 1, and the creation of

EAttribute named pages of type EInt with cardinality 1. The created EAttributes

are added to the EClass t book. Default EAttributes tagName and text are also

created. Apart from all the EAttributes, a default EReference named parentNode

of type t library with cardinality 1 is created and added to t book ;

• The children nodes of book in line 3 are then iterated, resulting in the creation of

an EClass named t author with its default EAttributes tagName and text. Then

an EReference is created with its name set to author and its eType to t author and
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function createEAttribute(eClass: EClass, attribute: Node, attributeMap: Map)
let attrName = attr.getNodeName(0);
let value = attr.getNodeValue();
let eAttribute = new EAttribute with attrName;
eAttribute.upperBound = 1; if value.equals(”true”) or value.equals(”false”) then

eAttribute.setEType(EBoolean);
end
else if value instanceof Integer then

eAttribute.setEType(EInt);
end
else if value instanceof Float then

eAttribute.setEType(EFloat);
end
else if value instanceof Double then

eAttribute.setEType(EDouble);
end
else if value instanceof String then

eAttribute.setEType(EString);
end
/* if attributeMap contains the attribute, set cardinality to many */
if attributeMap contains attrName then

let eAttribute = eClass.getEAttribute(attrName);
/* if existing attribute has the same type as the attribute inferred, set

cardinality to many */
if eAttribute.eType.equals(eAttribute.eType) then

if eAttribute.upperBound == 1 then
eAttribute.upperBound = -1;

end
end
/* if existing attribute has a different type, change the existing

attribute to the type inferred, set cardinality to many */
else

let eType = eAttribute.eType;
eAttribute.eType = eType;
eAttribute.upperBound = -1;

end
end
/* if attributeMap does not contain the attribute, add to attributeMap */
else

add eAttribute to attributeMap;
end
add eAttribute to eClass;

end

Algorithm 3: Ecore Metamodel Creation from Plain XML (3 of 3)

added to t book. For EClass t author, a default EReference named parentNode of

type t book with cardinality 1 is created and added to t author ;

• Because t author appears more than once within the EClass t book, the cardinality

of the EReference named author for t book is changed to -1 (unbounded);

• An EClass named t published is created with its default tagName and the text

EAttribute. An EReference named parentNode of type t book with cardinality 1 is

222



9.1. Extending ESAMC: A Schema-less XML Driver

created and added to t published ;

• When the book in line 10 is processed, it is determined that the EReference named

book for EClass t library appears more than once, therefore, the cardinality of the

EReference is changed to -1 (unbounded);

• The rest of the elements are processed in a similar manner. At the end of the file,

for each EClass calculated, its children EReference is computed. If the EClass

under question has only one EReference, the children’s eType is the eType of the

EReference; if the EClass has more than one EReferences (and the eType of these

EReferences are different), the children’s eType is Any.

Figure 9.2.: Ecore metamodel generated from XML document in Listing 9.1

The inferred Ecore metamodel is shown in Figure 9.2. It is noteworthy that all the ERef-

erences generated are containment references (they directly contain elements instead of

referring to elements defined elsewhere). The only exception is the parentNode reference

for all EClasses, which is introduced to support navigation to an element ’s container.

In addition, the generation of the Ecore metamodel is based on the assumptions that,

for an XML document, each element in the DOM is mapped to an EClass, the attributes

defined within the element tag are mapped to EAttributes, and any elements contained

with the element are mapped to EReferences.
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Because there is no typing scheme in XML models, the creator of the XML models has

great flexibility. As such, there are a number of corner cases which the XML driver has

to cater for. The first corner case is when attributes are of different types as illustrated

in Listing 9.3. Up until line 9, the inferred type of the EAtrribute pages of EClass t book

is Integer because the value of the pages attribute in line 3 can be parsed as an Integer.

However, as the value of the pages attribute in line 11 is not a valid integer, the XML

driver needs to change the type of the EAttribute pages of EClass t book to EString. If

the developer tries to access the pages attribute of t book as an Integer, they will receive

an error from the static analyser.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <library>

3 <book title="EMF Eclipse Modeling Framework" pages="744">

4 <author>Dave Steinberg</author>

5 <author>Frank Budinsky</author>

6 <author>Marcelo Paternostro</author>

7 <author>Ed Merks</author>

8 <published>2009</published>

9 </book>

10 <book title="Eclipse Modeling Project:

11 A Domain-Specific Language (DSL) Toolkit" pages="many">

12 ...

13 </book>

14 </library>

Listing 9.3: An example corner case 1

The second corner case is when a type is contained in different types of parents. List-

ing 9.4 illustrates such case, in lines 3-5, EClass named t book is created, an EReference

named parentNode is created with its eType set to t library. However, later in the XML

file, when lines 6-9 are processed, the t book element has a different container. As such

the type of the parentNode EReference needs to be set to Any.
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1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <library>

3 <book title="EMF Eclipse Modeling Framework" pages="744">

4 ...

5 </book>

6 <aisle title="box of MDE" id="1">

7 <book title="Eclipse Modeling Project:

8 A Domain-Specific Language (DSL) Toolkit" pages="many">

9 </aisle>

10 ...

11 </library>

Listing 9.4: An example corner case 2

9.1.3. Integration of the Plain XML Driver with the EOL Static Analyser

Misuses of prefixes result in warnings being produced by the EOL static analyser. Fig-

ure 9.3 illustrates a number of misuses of prefixes and how the static analyser reacts to

them. In line 5, the i prefix is used to access the EAttribute title for the type t book.

However, in the extracted Ecore metamodel, the eType of EAttribute title is EString,

thus, a warning is produced. In line 9, the b prefix is used to access EAttribute pages.

However, EAttribute pages is of type EInt, accessing a Integer value using the b is

considered a misuse, therefore a warning is produced.

Figure 9.3.: Warnings generated by the EOL static analyser for misuses of prefixes.

The EOL static analyser is also able to detect errors when the developer attempts
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to access features of an element that are not defined in the sample XML model. In

Figure 9.4, errors are injected in the program such that in line 5, an attempt is made to

access a feature named titles (which is not defined in the XML model). A similar error

is injected in line 9. The EOL static analyser detects these illegal property calls and

generates appropriate errors markers.

Figure 9.4.: Errors generated by the EOL static analyser for accessing undefined features.

The EOL static analyser is also able to detect the misuse of prefixes for the cardinalities

of features. In Figure 9.5, an error is injected in line 6. Instead of using the c prefix

(for accessing collections), the e prefix is used, which is used to access single-valued

references. The EOL static analyser detects this and generates an error.

Figure 9.5.: Errors generated by the EOL static analyser for accessing features with
inappropriate prefixes.

9.1.4. Analysing EOL programs that manage models defined in EMF and

schema-less XML

One of the contributions of this thesis is the support for static analysis of model man-

agement programs that manage models defined in diverse technologies. In this section,
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the static analyser is used to analyse a model transformation program written in the

Epsilon Transformation Language (ETL), which transforms a schema-less XML-based

university model (as shown in Listing 9.5) to an EMF-based model which conforms to

the University model presented in Section 2.1.6 (Figure 2.9).

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <university name="UoY">

3 <department name="CS">

4 <student first_name="Cathy" last_name="Smith"/>

5 <student first_name="Carl" last_name="Smoka"/>

6 <lecturer first_name="Tom" last_name="Brown"/>

7 <lecturer first_name="Leo" last_name="James"/>

8 <module name="MODE">

9 </module>

10 <module name="TPOP">

11 </module>

12 </department>

13 <department name="Psychology">

14 </department>

15 </university>

Listing 9.5: A schema-less XML based university model

In Listing 9.5, a sample university model is displayed. In line 2, a university element

is defined with the name UoY, and line 3 defines a child element department with the

name CS. Lines 4 and 5 define two child elements (student) of element department, with

their first names and last names. Lines 6 and 7 define two child elements (lecturer)

of element department, with their first names and last names. Lines 8-11 define two

modules with their names. Lines 13-14 define another department named Psychology

which contains no children.

An ETL program (Listing 9.6) is created to transform the model defined in Listing 9.5

to an EMF model that conforms to the University metamodel presented in Section 2.1.6

(Figure 2.9). In lines 5-10 of Listing 9.6, a transformation rule is defined which transforms
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each university element in the XML model to a University by copying the name of the

university element in the XML model, and by transforming its departments into instances

of Department in the University metamodel (via the equivalent() method call in line

9). In lines 11-17, a transformation rule is defined which transforms each department

element in the XML model into a Department in the University EMF model, by copying

the name attribute of the department element in the XML model and by transforming

the student and lecturer child elements of the department element in the XML model

into instances of Student and Lecturer in the EMF model. Lines 18-23 define a rule

which transforms each student element in the XML model into a Student in the EMF

model. Finally, lines 24-39 define a rule which transforms each lecturer element in the

XML model into a Lecturer in the EMF model.

1 model XMLDoc driver XML

2 {path = "university.xml"};

3 model University driver EMF

4 {nsuri = "http://university/1.0"};

5 rule xml_university2University

6 transform xml_u : XMLDoc!t_university

7 to e : University!University {

8 e.name = xml_u.s_name;

9 e.departments = xml_u.c_department.equivalent();

10 }

11 rule xml_department2Department

12 transform xml_d : XMLDoc!t_department

13 to d : University!Department {

14 d.name = xml_d.s_name;

15 d.members.addAll(xml_d.c_student.equivalent());

16 d.members.addAll(xml_d.c_lecturer.equivalent());

17 }

18 rule xml_student2Student

19 transform xml_s : XMLDoc!t_student
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20 to s : University!Student {

21 s.first_name = xml_s.a_first_name;

22 s.last_name = xml_s.a_last_name;

23 }

24 rule xml_lecturer2Lecturer

25 transform xml_l : XMLDoc!t_lecturer

26 to l : University!Lecturer {

27 l.first_name = xml_l.a_first_name;

28 l.last_name = xml_l.a_last_name;

29 }

Listing 9.6: An ETL M2M transformation which transforms an XML model to an EMF

model

Figure 9.6.: Transformation rule dependency graph for the program in Listing 9.6.

The ETL static analyser is able to analyse the transformation and compute the

transformation rule dependency graph (Discussed in Section 8.2.5) illustrated in Fig-

ure 9.6. Transformation rule xml university2University delegates the creation of De-

partment elements to transformation rule xml department2Department, which in turn

delegates the creation of Student and Lecturer elements to rules xml student2Student
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and xml lecturer2Lecturer.

The example above illustrates a copy transformation: the XML model has a structure

that is similar to the EMF University model. To further evaluate the XML driver,

another example is provided, which transforms an XML based tree model into an EMF

based Graph model.

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <tree name="root">

3 <tree name="node1">

4 <tree name="node2">

5 </tree>

6 <tree name="node3">

7 </tree>

8 </tree>

9 </tree>

Listing 9.7: A XML based tree model

The XML based tree model is shown in Listing 9.7. It is composed of tree elements,

which have an attribute called name. A tree element can contain an arbitrary number

of tree children.

Figure 9.7.: The Graph metamodel

The EMF-based Graph metamodel is provided in Figure 9.7. A Graph type is com-
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posed of Nodes, which have a number of incoming and outgoing Edges. An Edge connects

two Nodes, identified as source and target.

Listing 9.8 shows the ETL transformation which transforms tree elements into Nodes

and Edges that connect the Nodes. In line 7, the name of the tree element (xml t.s name)

is copied and assigned to the name of the Node created. If the tree element has a

parentNode, the transformation creates an Edge (line 9) and resolves the parentNode by

calling the equivalent() method (line 10). The Edge then connects the resolved Node

and n.

1 import "declare_models.eol";

2

3 rule tree2Graph

4 transform xml_t : XMLDoc!t_tree

5 to n : Graph!Node {

6

7 n.name = xml_t.s_name;

8 if(xml_t.parentNode.isDefined()) {

9 var e: new Graph!Edge;

10 e.source = xml_t.parentNode.equivalent();

11 e.target = n;

12 }

13 }

Listing 9.8: Transforming an XML-based tree model into an EMF based Graph model

Figure 9.8 shows the computed the transformation rule dependency graph for the

program. To illustrate that the static analysis checks for misuse of prefixes in XML

models, when the prefix of name in line 7 is changed to i , an appropriate warning is

produced.

9.1.5. Summary

In this section, the extensibility of the ESAMC was evaluated through the implementa-

tion and evaluation of the XML driver. The implementation of the XML driver demon-
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Figure 9.8.: Transformation rule dependency graph for the program in Listing 9.8.

strates that the Epsilon static analysis framework is able to analyse programs that man-

age models defined in different modelling technologies within a single model management

program.

9.2. Evaluating the EOL, EVL and ETL Static Analysers

This section discusses the evaluation of the capabilities of the EOL, EVL and ETL static

analysers in terms of their abilities to detect errors. The evaluation of the Epsilon static

analysis framework is carried out in three different stages.

9.2.1. Evaluating the EXL Metamodels and the AST2EXL Transformations

The first step of the evaluation was conducted by evaluating the EOL, EVL and ETL

metamodels and the AST2EOL, AST2EVL and AST2ETL transformations. The EOL,

EVL and ETL metamodels have been maintained throughout the entire development

process as an increasing number of programs written in these languages from the Epsilon

labs1 have been analysed by the static analysis framework. The EOL metamodel was

developed based on the study of the EOL parser of Epsilon. As previously mentioned,

Epsilon defines an ANTLR-based grammar for EOL, which was used as a guide for the

development of the EOL metamodel. The EOL metamodel is iteratively validated by

comparing its structure with the EOL grammar provided by Epsilon.

A set of unit tests have also been developed for each EOLElementCreator within the

1https://github.com/epsilonlabs/epsilonlabs
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AST2EOL transformation facility2. These unit tests were executed as regression tests

whenever changes were made to the EOL metamodel and the AST2EOL transformation.

In addition, a pretty printer facility3 was also developed to evaluate the EOL metamodel

and the AST2EOL facility. The pretty printer facility was built on the EOL visitor

framework. Essentially it is a model-to-text transformation, which transforms EOL

models (obtained from the AST2EOL transformation) into Strings. Manual code reviews

are performed on the Strings generated by the pretty printer to verify that Strings

generated are identical to the original EOL programs.

The complex EuGENia transformation4 was also used to evaluate the EOL metamodel

and the AST2EOL facility. The validation approach presented above were also applied

to the components for the EVL and ETL static analysers.

9.2.2. Evaluating the EOL Static Analyser

A set of EOL programs have been created to evaluate the EOL static analyser5. These

EOL programs target the operations defined in the standard library and cover different

scenarios in which the operations are called, within which warnings/errors are deliber-

ately injected in the EOL code to test the capabilities of the EOL static analyser. These

programs have also been used as regression tests whenever the EOL static analyser was

changed.

To test the EOL static analyser in realistic scenarios, it is also useful to analyse existing

EOL programs that have been proved to work correctly and are used extensively. Thus,

a number of existing EOL programs (from Epsilon labs and the examples provided by

Epsilon) have been analysed using the EOL static analyser. Among the EOL programs,

the most complex and mature program analysed was the EuGENia transformation.

Although the EuGENia transformation has been heavily tested, a number of warnings

and errors were still found by the EOL static analyser.

2https://github.com/epsilonlabs/epsilonlabs/tree/master/org.eclipse.epsilon.eol.ast2eol
3https://github.com/epsilonlabs/epsilonlabs/tree/master/org.eclipse.epsilon.eol.

visitor.printer
4https://epsilonblog.wordpress.com/2009/06/15/eugenia-polishing-your-gmf-editor/
5https://github.com/epsilonlabs/epsilonlabs/tree/master/StaticAnalysis/org.eclipse.

epsilon.static.analysis.tests
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Figure 9.9.: The structure of the EuGENia transformation.

EuGENia is a tool that automatically generates the .gmfgraph, .gmftool and .gmfmap

models needed to implement a GMF editor from a single annotated Ecore metamodel.

The EuGENia transformation comprises three parts. The actual transformation is de-

scribed in the ECore2GMF.eol file, which imports two additional EOL files: ECore-

Util.eol which provides utility operations for Ecore, and Formatting.eol which provides

formatting operations that convert entities in Ecore into entities in GmfGraph.

Analysing ECoreUtil.eol

The EOL static analyser generates 17 warnings and 2 errors after analysing ECoreUtil.eol

(467 lines of code). The warnings are all related to expressions having AnyType (for

example, the warning in line 168 in Figure 9.10, in which the expression featureName is

of type AnyType). In lines 154-164, an error is produced as the getNodeSize() operation

with exactly the same signature is already defined in lines 142-152. This feedback is

illustrated in Figure 9.10. In line 413, an error is reported to the property call

self.eAllStructuralFeatures

In this expression, the type of the variable self is ECore!EModelElement (as self is an

instance of the context type of the operation. In the ECore metamodel, model element

type EModelElement does not have a feature named “eAllStructuralFeatures”, hence the

error is reported. This code works fine at runtime as the operation only happens to be
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Figure 9.10.: Analysis on ECoreUtil.eol (1 of 2)

invoked on instances of EClass (which is a sub-type of EModelElement). This feedback

is illustrated in Figure 9.11.

Analysing Formatting.eol

Analysing Formatting.eol (267 lines of code) uncovers 2 warnings and 4 errors. The

warnings are both related to expressions of type AnyType. The first two errors are in

Figure 9.12, and are reported because the variable figureGallery cannot be located by
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Figure 9.11.: Analysis on ECoreUtil.eol (2 of 2)

the static analyser. Performing manual code inspection reveals that the variable figure-

Gallery is defined in ECore2GMF.eol. Figure 9.9 shows that ECore2GMF.eol imports

Formatting.eol, but not the other way around, hence, as a standalone EOL file analysed

by the static analyser, as far as the static analyser is concerned, the variable figureGallery

cannot be located.

This error reveals a potential problem in the EOL runtime because it is not ideal for

an imported program to depend on the program which imports it.
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Figure 9.12.: Analysis on Formatting.eol (1 of 2)

The rest of the errors for Formatting.eol are of the same nature as illustrated in

Figure 9.13. In lines 262 and 264, the program attempts to call the operation getAnno-

tationValue(), which is not defined in Formatting.eol, but in ECoreUtil.eol.

Analysing ECore2GMF.eol

The analysis of ECore2GMF.eol (614 lines of code) generates 97 warnings and 1 error.

The warnings are all related to expressions of type AnyType. The error generated is
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Figure 9.13.: Analysis on Formatting.eol (2 of 2)

shown in Figure 9.14. In lines 530 and 531, the property “referencedChild is called on

variable self. The property call is illegal because self is of type GmfMap!NodeReference.

Although GmfMap!NodeReference is an abstract type, it has two sub types, which are

GmfMap!ChildReference and GmfMap!TopNodeReference. Of the two sub types, only

GmfMap!ChildReference defines a feature named “referencedChild”. Hence, the source

code is incorrect, as if an instance of GmfMap!TopNodeReference is involved in the

operation call, a runtime error will be thrown.
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Figure 9.14.: Analysis on ECore2GMF.eol

9.2.3. Evaluating the EVL Static Analyser

The evaluation of the EVL static analyser is carried out by analysing a set of example

validation rules provided in the Epsilon project’s Git repository. In this section, an exam-

ple which validates an OO model with EVL6 (OO metamodel provided in Appendix B)

is discussed. Analysing the EVL program in the example generates just one warning

6http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.

examples.validateoo
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and no errors. This section evaluates the EVL static analyser by injecting errors in the

example code and show that such errors can be identified by the EVL static analyser.

The first type of error is to inject non-boolean expressions in the guard and check of

an Invariant as shown in Figure 9.15. In lines 17-18, injected errors convert the resolved

type of the expressions in the guard and check into String. This is detected by the static

analyser which produces an error message stating that the guard and check can only

contain expressions that evaluate to a Boolean value.

Figure 9.15.: Injecting errors to validateOO.evl
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Figure 9.16 illustrates errors injected to the message of an Invariant. In line 8, the

expression of the message is changed to a boolean value. This is detected by the static

analyser which produces error messages stating that only expressions that evaluate to

a String value is allowed within the message. In line 17, the parameter of the method

call satisfies() has been changed from “HasName” to “Hasname”. The static analyser

produces a warning as the names of the Invariants are case sensitive and no Invariant

named “Hasname” can be found.

Figure 9.16.: Injecting errors to validateOO.evl
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An injected error which requires more complex analysis is shown in Figure 9.17. In

line 3, the type of the context is changed from OO!NamedElement to OO!Class, which

triggers the error in line 17. In line 17, the method call satisfies() requires that self

should satisfy the constraint named “HasName” which is defined in line 6. The EVL

static analyser checks if the constraint “HasName” applies to the same type as the

critique (line 16) that calls the satisfies() method. In this case, the static analyser will

check if OO!Class is a super class of OO!Feature (which is not the case). The error is

then produced in line 17 indicating that the constraint “HasName” does not apply on

instances of OO!Feature.

9.2.4. Evaluating the ETL Static Analyser

In Section 8.2, the ETL static analyser was used to analyse the OO2DB transforma-

tion example provided in Epsilon’s Git repository7. In addition, the transformation rule

dependency graph calculation were discussed. In this section, example ETL transforma-

tions with injected errors are analysed by the ETL static analyser to demonstrate how

different kinds of errors are detected. The created examples reuse the metamodels intro-

duced in Section 8.2, which are however provided again for readability in Figures 9.18

and 9.19.

The ETL static analyser inherits all the features of the EOL static analyser, thus

examples of errors in ETL that share the same nature with EOL errors are not discussed

in this section. The first type of error is to check that the expression(s) in guards of

transformation rules are of type Boolean. Figure 9.20 illustrates an injected error in line

6, where the expression within the guard of transformation rule A2E is a String expres-

sion. The ETL static analysis is able to detect this error and produce an appropriate

marker on the offending expression.

In ETL, a transformation rule may inherit another transformation rule (using the

extends keyword). For the discussion, let R denote a transformation rule and R′ denote

another transformation rule which extends R, let S and T denote the source and the

target(s) of the transformation rule R, and S′ and T ′ denote the source and the target(s)

7http://www.eclipse.org/epsilon/examples/index.php?example=org.eclipse.epsilon.

examples.oo2db
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Figure 9.17.: Injecting errors to validateOO.evl

of the transformation rule R′. In a rule inheritance relationship, S′ should be a sub type

of S and each T ′ in R′ should be a sub type of the corresponding T s in R. To ensure the

integrity of the inheritance relationship between transformation rules, the ETL static

analyser should check if the rules satisfy this constraint.

An injected error with regard to transformation rule inheritance is demonstrated in

Figure 9.21. In the example ETL module, three transformation rules are defined, rule

A2E transforms instances of A in the source model into instances of E in the target
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Figure 9.18.: The Source Metamodel Figure 9.19.: The Target Metamodel

Figure 9.20.: Checkikng the type of the expression in guard.

model, rule C2H transforms instances of C into instances of H, rule B2G transforms

instances of B into instances of G. Rule B2G inherits the transformation rule C2H by

using the extends keyword. For the inheritance relationship, the ETL static analyser

checks if the type of the source of rule B2G is a sub type of the type of the source of

rule C2H, and the target type(s) of B2G are sub types of the target type(s) of rule C2H

in their respective order. In this example, since G in the target metamodel is not a sub

type of H, an error is reported in the offending line 16.

In Section 8.2.4, the rule resolution operations (equivalent(), and equivalents() and the

special assignment operator ::=) were discussed. During the rule resolution process, if

no applicable rule is found, there is a need to inform the developer about it. Figure 9.22

shows a program that exhibits this error. In the ETL program, there are two rules, rule

A2E, which transforms instances of A into instances of E and rule C2H, which transforms
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Figure 9.21.: Checking the correctness of rule inheritance.

Figure 9.22.: Checkikng the type of the expression in guard.

instances of C into instances of H. In line 6, a call to the operation equivalent() is in

place, which tries to resolve the equivalent model element for the result of the expression

a.b in the target model. However, inspecting the whole ETL program reveals that there

is no such rule that transforms instances fo B, hence, the ETL static analyser produces

an error in line 6.
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9.3. Limitations of the Epsilon Static Analysis Framework

One major limitation of the Epsilon static analysers is that they do not support resolving

the types for native method calls, i.e. calls to native Java methods. Statically analysing

Java code is outside the scope of this work. Therefore, the responsibility of ensuring the

correctness of native expressions are delegated to the users of Epsilon languages.

Another limitation of the Epsilon static analyser is that it does not support the veri-

fication of OCL recursive expressions, i.e. the call to the closure() operation.

9.4. Chapter Summary

In this chapter, the extensibility of the Epsilon Static Analysis Model Connectivity was

evaluated by means of the implementation of the schema-less XML driver. Transfor-

mations involving both EMF models and schema-less XML models were analysed to

evaluate Epsilon static analysers. The EOL, EVL and ETL static analysers altogether

with the AST2EOL, AST2EVL, AST2ETL transformations have also been evaluated

by analysing widely used transformations. The limitations of the Epsilon static analysis

framework were also discussed in this chapter, which can be considered goals for future

work.
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Analysis Framework

In this chapter, the discussion moves onto the applications of the Epsilon static analy-

sis framework related to performance analysis and optimisation of model management

programs. These applications, although developed atop the Epsilon platform, can be

ported to other model management tools to achieve the same functionalities.

In the first application, based on the Epsilon static analysis framework, a facility

named Sub-Optimal Performance Pattern Detection (SPPD) was developed which de-

tects performance bottlenecks within EOL programs. In the second application, the

Epsilon static analysis framework was used in conjunction with the Epsilon execution

engine to improve the performance of programs that manage very large models. Fi-

nally, a sophisticated XMI model parser was developed atop the Epsilon static analysis

framework which is able to partially load large XMI-based models with the help of static

analysis.

10.1. Sub-Optimal Performance Pattern Detection

In the context of processing large models in MDE, it is essential to ensure that model

management programs are written in an optimised manner in terms of performance.

Sub-optimal performance patterns within model management programs can result in

severe performance issues. This section presents the Sub-optimal Performance Pattern

Detector (SPPD), which is built by leveraging the Epsilon static analysis framework.

With SPPD, sub-optimal performance patterns in a program written in Epsilon lan-

guages (for example, an EOL program) can be detected and reported to developers
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statically (i.e. without the need for runtime monitoring).

Figure 10.1.: Detecting sub-optimal performance patterns from Abstract Syntax Trees.

10.1.1. Design of SPPD

Chapter 7 explained how static analysis works by converting the Homogeneous Abstract

Syntax Tree (HoAST) of a program written in EOL (ANTLR-based AST) into the Het-

erogeneous Abstract Syntax Tree (HeAST), which is essentially a model that conforms

to the EOL metamodel. Based on the HeAST, variable resolution and type resolu-

tion are performed which enrich the HeAST (by generating inter-related links such as

variable-reference links and by calculation features of expressions such as the resolved

types), and turn it into a Heterogeneous Abstract Syntax Graph (HeASG). SPPD uses

the Epsilon Pattern Language (EPL) to define patterns which are matched against the

fully resolved HeASG. This process is depicted in Figure 10.1. If any matches are found,

corresponding warnings are produced to prompt the developer of source code segments

that can be potentially improved.

10.1.2. Sub-Optimal Performance Patterns

In this section, a number of sub-optimal performance patterns in the context of large

scale model manipulation are presented.

The examples provided are based on a minimal Library metamodel illustrated in

Figure 10.2. The Library metamodel contains two types, Author and Book. An Author

has a first name, a surname and a number of published Books, and a Book has a name

and an Author. The association between Author and Book is bidirectional, they are

books and authors respectively.
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Figure 10.2.: The Library metamodel

Inverse navigation

A frequent operation in EOL is to retrieve all model elements of a specific type by using

the .all property call (equivalent to allInstances() and allOfKind, which retrieves all

instances of a type and its sub types) which can be a computationally expensive activity

as models grow in size. By analysing the metamodel of the model under question,

bidirectional relationships between model elements can be used to avoid such expensive

computations.

1 var a = Author.all.first;

2 var books = Book.all.select(b|b.author = a);

3 var aBook = Book.all.selectOne(b|b.author = a);

The listing above demonstrates a sub-optimal pattern that can lead to degraded perfor-

mance. In line 1, an Author is retrieved from the model. In line 2, all instances of type

Book are retrieved and then a select() operation is performed to find the books that

are written by Author a. However, since the relationship between Author and Book is

bidirectional, this can be replaced by the (more efficient) statement:

var books = a.books;

This is also the case for the selectOne operation in line 3, which can be rewritten as:

var aBook = a.books.first();

Compound select operations

Another sub-optimal pattern is the presence of compounded select() operations on the

same collection. For example:
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var authors = Author.all.select(a|a.first_name =

’William’).select(a|a.surname = ’Shakespeare’);

Listing 10.1: Compounded select operations

All of the Authors are retrieved first, then a select() operation is performed to select

all Authors whose first names are William, and finally another select() operation is

performed to select all Authors whose surnames are Shakespeare. The complexity of this

operation is O(n + m) where n is the number of Authors in the model under question,

and m is the number of the results returned by the first select() operation. However,

the condition of both the select operations can be put together to form a single select

operation, which can be written as:

var authors = Author.all.select(a|a.first_name =

’William’ and a.surname = ’Shakespeare’);

The complexity of this operation is O(n) as the collection of the Authors is only traversed

once.

Collection element existence

In some cases, checking existence of an element inside a collection can be written in

inefficient ways.

1 if(Book.all.select(b|b.name = "EpsilonBook").size() > 0) {

2 "There is a book called EpsilonBook".println();

3 }

Listing 10.2: Collection element existence

Listing 10.2 demonstrates such a scenario. In line 1, the condition of the if statement

retrieves all instances of Book, then selects those with the name EpsilonBook, then

evaluates if the size of the result is greater than 0. This operation eventually checks for

the existence of a book named EpsilonBook. Thus, this operation can be more efficiently

re-written as:

Book.all.exists(b|b.name = "EpsilonBook")
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Select the first element in a collection

Listing 10.3 demonstrates another example of sub-optimal EOL code.

var anEpsilonBook = Book.all.select(b|b.name = "EpsilonBook").first();

Listing 10.3: Select an element in a collection

A select() operation is performed on all instances of Book to select all books with the

name EpsilonBook, then a first operation is performed to select the first item of the

collection returned by select. This can be more efficiently re-written as:

var anEpsilonBook = Book.all.selectOne(b|b.name = "EpsilonBook");

to avoid traversing all instances of Book.

10.1.3. Pattern Implementation: Inverse Navigation

This section demonstrates the implementaion of the detection facility for the first pat-

tern discussed above (Inverse Navigation). Detectors for the remaining patterns are

implemented in a similar way.

The Abstract Syntax Graph

Figure 10.3 illustrates a fragment of an EOL model which represents the statement

below:

Book.all.select(b|b.author = a);

Firstly, invocations of the select() operation in the EOL metamodel are represented by

instances of FOLMethodCallExpression. A FOLMethodCallExpression has a name (of

type NameExpression) and an iterator (of type FormalExpressionParameter). In this

case, the name is select and the iterator is b.

The select() operation has a condition, which in this case is an instance of EqualsOp-

eratorExpression. The lhs (left hand side) of it is an instance of PropertyCallExpression,

whose target (of type NameExpression) is b and property (of type NameExpression) is

author ; the rhs (right hand side) of it is a (an instance of NameExpression). Both the
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Figure 10.3.: The model representation for Book.all.select(b|b.name = a)

lhs and rhs of the EqualsOperatorExpression have resolvedTypes, in this case, they are

both Author (ModelElementTypes).

The target of the FOLMethodCallExpression is an instance of PropertyCallExpression

with its target being Book (of type NameExpression) and its property being all (of type

NameExpression). The types of these expressions, as well as with some irrelevant details

are omitted for the purpose of the discussion.

The EPL pattern

In Listing 10.4, an EPL pattern is defined to match occurrences of the pattern described

above. In lines 3-7, a guard is defined to look for a FOLMethodCallExpression the name

of which is either select or selectOne, the type of the condition should be EqualsOp-

eratorExpression, its target should be an instance of PropertyCallExpression, and the

property of the PropertyCallExpression should be all.
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In line 11, a guard is defined to look for an instance of EqualsOperatorExpression in

the condition of the FOLMethodCallExpression found previously, the lhs of which should

be an instance of PropertyCallExpression.

Lines 13-15 specify that the resolvedType of the lhs should be an instance of Mod-

elElementType. In lines 17-19, it specifies that the resolvedType of the rhs should be an

instance of ModelElementType, too. In lines 21-25, it specifies that the type of the lhs

and the rhs should be the same.

Lines 26-37 perform the matching of the pattern. This part firstly fetches the ERefer-

ence from the lhs of the condition (in this case, ‘b.author’, it is an EReference because as

previously discussed, all metamodels are converted to EMF metamodels by ESAMC for

uniformity). The EReference is then inspected; if it is not null and it has an eOpposite

reference, the pattern continues to check if the type of the eOpposite of the reference is

the type of the rhs of the condition (in this case, Author).

In lines 40-47, a helper method is defined to help look for an EReference given an

EClass and a name.

At runtime, the EPL execution engine matches the provided patterns against a given

EOL model (which is acquired from the AST2EOL transformation discussed in Sec-

tion 6.6). Pattern matches are then collected by SPPD and corresponding warnings are

produced in the EOL editor in Eclipse.

1 pattern InverseNavigation

2 folcall : FOLMethodCallExpression

3 guard: (folcall.method.name = ’select’

4 or folcall.method.name = ’selectOne’)

5 and folcall.conditions.isTypeOf(EqualsOperatorExpression)

6 and folcall.target.isTypeOf(PropertyCallExpression)

7 and folcall.target.property.name = ’all’,

8

9 condition : EqualsOperatorExpression

10 from: folcall.condition

11 guard: condition.lhs.isTypeOf(PropertyCallExpression)
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12

13 lhs : PropertyCallExpression

14 from: condition.lhs

15 guard: lhs.resolvedType.isTypeOf(ModelElementType),

16

17 rhs : NameExpression

18 from: condition.rhs

19 guard: rhs.resolvedType.isTypeOf(ModelElementType),

20

21 lhsType : ModelElementType

22 from: lhs.resolvedType,

23 rhsType : ModelElementType

24 from: rhs.resolvedType

25 guard: lhsType.ecoreType = rhsType.ecoreType {

26 match {

27 var r = getReference(lhs.target.resolvedType.ecoreType,

28 lhs.property.name);

29 if(r.upperBound = 1 and

30 r.eOpposite <> null and r <> null) {

31 if(r.eOpposite.eType =

32 lhs.target.resolvedType.ecoreType) {

33 return true;

34 }

35 }

36 return false;

37 }

38 }

39

40 operation getReference(class: Any, name:String)

41 {
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42 for(r in class.eReferences) {

43 if(r.name = name)

44 return r;

45 }

46 return null;

47 }

Listing 10.4: EPL pattern for inverse navigation

10.1.4. Evaluation

To validate the applicability of SPPD in practice, a number of EOL files on GitHub1 were

analysed by SPPD to check for existing defined sub-optimal patterns. GitHub returned

245 matched EOL programs, however, only 47 of them are complex enough for SPPD

to analyse in a meaningful way. Among all the 47 EOL files, 32 of them contained

sub-optimal performance patterns. For example, a file from the Jet2Egl project2 in

Figure 10.4. In line 5, a sub-optimal pattern which calls first() after select() (instead of

calling selectOne()) was detected. This pattern is very common in complex queries and

is the most occurring pattern for all the EOL files analysed.

Figure 10.4.: Detecting sub-optimal pattern for OO2DB.

Another common found sub-optimal pattern is the call to select() followed by size(),

which should be replaced by exists() instead, Figure 10.5 illustrates analysing an EOL

1https://github.com/search?utf8=%E2%9C%93&q=select+extension%3Aeol&type=Code&ref=

searchresults
2https://github.com/majicmoo/EGLStuff/tree/72be6e6f503e94db052ca4cc25fbe55a8aa97822/

Jet2Egl
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program named TestScenario.eol which was developed in the context of the CATMOS

project (Capability Acquisition Tool with Multi-objective Search) 3.

Figure 10.5.: Detecting sub-optimal pattern for TestScenario.eol.

10.2. An efficient computation strategy for the call to

allInstances()

As models involved in MDE processes get larger and more complex [16, 17], model

query and transformation languages are being stressed to their limits [27, 132]. One of

the most commonly-used and computationally-expensive operations that model query

and transformation engines support is the ability to retrieve collections of instances of a

particular type/kind regardless of their location in a model (i.e. OCL’s allInstances()).

This section discusses existing strategies for computing such collections of instances,

to highlight their advantages and shortcomings. Based on the discussion, this section

presents a novel computation strategy, which uses static analysis and metamodel intro-

spection to pre-compute and cache the results of calls to allInstances() within programs

in an efficient way.

10.2.1. Background

The majority of contemporary model query and transformation languages provide sup-

port for retrieving collections of all model elements that are instances of a particular type-

3https://github.com/Frankablu/CATMOS/blob/8c8b33cc2f0297fd5ffe184b76fb954eac3c81ed/

catmos_gui/runtime-LoadTool/Tool/Scripts/testScenario.eol
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/kind. For example, OCL, QVTr, ATL, and Acceleo provide the built-in allInstances()

operation which can be invoked on a type to return a set containing all its instances (e.g.

Person.allInstances()), Epsilon’s EOL provides the getAllOfType() and getAllOfKind()

operations, and QVTo the objects(type : Type) and objectsOfType(type : Type) opera-

tions that operate in a similar way. In this section, all such operations are collectively

referred to as allInstances().

For file-based EMF models, a naive strategy to implement allInstances() is to navigate

the (loaded) in-memory model element containment tree upon invocation, to collect and

return all instances of the requested type. Repeatedly traversing the containment tree to

fetch all instances of the same type for multiple invocations of the operation on that type

is clearly inefficient, so the majority of model query and transformation engines provide

support for caching and reusing the results of previous invocations of the operation

(which is a simple task for side-effect free languages but requires some additional book-

keeping for languages that can mutate the state of a model).

When a query (or a transformation) contains a large number of calls to allInstances()

for different types, instead of traversing the containment tree for each of these calls/types

on demand, it can be more efficient for the execution engine to pre-compute and cache all

these collections in one pass at start-up instead (normally referred to as greedy caching,

as not all of the caching results are needed). This typically incurs a higher upfront

cost and increase the memory footprint. However, for a sufficiently high number of

invocations on different types, it is very likely to pay off eventually – particularly as

models grow in size.

Overall, when more than one calls to allInstances() are made for different types in the

context of a query, the on-demand approach is sub-optimal in terms of performance. On

the other hand, if a query only calls allInstances() on a small number of types (compared

to the total number of types in the metamodel), greedy caching is wasteful.

10.2.2. Program- and Metamodel-Aware Instance Collection

Given in-advance knowledge of the metamodel of a model, and the types on which

allInstances() is likely to be invoked in the context of a query (e.g. obtained through
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static analysis of the query itself) operating on that model, it is possible to pre-compute

the results of these invocations by traversing the contents of the model only once.

This section demonstrates the proposed algorithms and their supporting data struc-

tures with reference to EOL. For conciseness, the discussion is also restricted to EOL

queries operating on a single EMF-based model which conforms to an Ecore metamodel

comprising exactly one EPackage. However, the proposed approach is trivially portable

to other query and transformation languages of a similar nature, and to queries that

involve more than one models conforming to multi-EPackage metamodels.

Figure 10.6.: Cache Configuration Metamodel

10.2.3. Cache Configuration Model

Figure 10.6 demonstrates a data structure (in the form of a metamodel) of the cache

configuration, an instance of which needs to be populated at compilation time (e.g. by

statically analysing the query of interest and by inspecting the metamodel of models on

which it will be executed) in order to facilitate efficient execution of allInstances() at

runtime.

CacheConfiguration acts as a container for the EClasses of the model’s metamodel of

which that the execution engine may need to retrieve all instances in the context of the

query of interest. EClasses of interest can be linked to a CacheConfiguration through

the latter’s allOfKind and allOfType references (EOL, like QVTo, support distinct op-

erations for computing all direct and indirect instances of a given type). The traverse
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reference in Figure 10.6 is discussed in Section 10.2.5.

10.2.4. Query Static Analysis: The Type-Aware Strategy

Figure 10.7.: The Abstract Syntax Graph of the EOL program of Listing 10.5

The first step of the process is to generate an initial version of the cache configuration

model by statically analysing the query of interest. For this purpose, an extension of

the Epsilon static analysis framework was created for automatic cache configuration

extraction. Figure 10.7 demonstrates the variable-resolved and type-resolved abstract

syntax graph of the example EOL program below;

WebPage.allOfType().println();

Member.allOfKind().println();

Listing 10.5: An Example EOL Program

This program operates on models conforming to the University metamodel (introduced

in Chapter 2 and provided again in Figure 10.8). To compute the initial version of the

cache configuration model, the automatic cache configuration extraction facility (backed

by EOLVisitor facility discussed in Section 7.2) goes through the abstract syntax graph

and locates instances of:

• MethodCallExpression for which the name of the method called is allOfKind(),

allOfType(), allInstances() (alias of allOfKind()), the resolved type of their target
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expression is ModelElementType, and which have no parameter values;

• PropertyCallExpression for which the name of the property is all (alias of the

allOfKind() operation), and the resolved type of their target expression is Mod-

elElementType.

Figure 10.8.: A simple university metamodel

Figure 10.9.: Initial Extracted Cache Configuration Model
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Having identified the EOL constructs of interest, a CacheConfiguration is automat-

ically extracted. For each call to allOfType() the allOfType reference is populated in

the CacheConfiguration with its corresponding EClass. Similarly, for all other calls of

interests, the respective references of the CacheConfiguration is populated. The initial

extracted cache configuration model after running the example is illustrated in Fig-

ure 10.9. This approach is referred to as the Type-Aware strategy because it extracts all

of the types that need to be cached in a program.

Figure 10.10.: An University Model

10.2.5. Reference Pruning: The Type-and-Reference-Aware Strategy

Following the process discussed above, the execution engine can be made aware of all

the calls to allInstances() it needs to perform, and to pre-compute and cache upfront

(WebPage.allOfType() and Member.allOfKind() in the running example). The next step
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is to collect the model elements of interest in one pass and as efficiently as possible. A

straightforward collection strategy would involve navigating the entire model contain-

ment tree, assessing whether each model element is of one of the types of interest and,

if so, adding it to the appropriate cache(es).

However, by inspecting the example model in Figure 10.10, it is observed that travers-

ing the containment closure of the modules reference of the “Computer Science” Depart-

ment model element is guaranteed not to reveal any model elements of interest (according

to the metamodel of Figure 10.8, Modules can only contain Lectures and neither of these

types of elements are of interest to the query). This observation can be generalised and

exploited to prune the subset of the containment tree that the engine will need to visit

in order to populate the caches of interest.

let cm = the initial version of the configuration cache model;
let p = the EPackage that the model conforms to;
let refs = empty list of EReferences;

foreach non-abstract EClass c in p do
foreach containment EReference r of c do

call planTraversal(r);
end

end

function planTraversal(r : EReference)
let types = transitive closure of r ’s type and all its sub-types;
if types includes any of the EClasses in cm then

add r to refs;
end
else

foreach containment EReference tr of each of the types do
planTraversal(tr)

end
end

end

Algorithm 4: Containment Reference Selection Algorithm

To achieve this, it is needed to analyse the metamodel and compute the subset of

containment references that can potentially lead to elements of interest. The proposed

algorithm for this purpose is illustrated in Algorithm 4. It is worth noting that the

algorithm has been simplified for presentation purposes and that implementations of the

algorithm need to make use of memoisation to avoid infinite recursion that can be caused

by circular containment references of no interest. Adding the computed containment

references that need to be traversed at runtime to the (incomplete) cache configuration
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Figure 10.11.: Complete Cache Configuration Model

model of Figure 10.9, produces the (complete) configuration model of Figure 10.11. This

approach is referred to as the Type-and-Reference-Aware strategy because not only it

gives an idea of what Types to cache, but it also give an idea of what references that

need to be traversed in the model level in order to get the instances of the Types that

need to be cached.

10.2.6. Instance Collection and Caching

Having computed the cache configuration model, the final step includes traversing only

the identified containment references of the in-memory model at runtime in a top-down

recursive manner to collect and cache the elements of interest.

For example, with reference to the example model of Figure 10.10, the instance col-

lection process starts at the top-level :University element. The element’s EClass is not

linked to the cache configuration via one of its allOfType or allOfKind references, and

as such the element is not cached. Navigating the university’s departments reference

reveals a :Department element, which also does not need to be cached. The process does
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not need to navigate the department’s modules reference as it is not linked to the cache

configuration via the latter’s traverse reference, and as such it proceeds with its members

reference. Traversing the members reference reveals an instance of Student and an in-

stance of Lecturer, both of which are cached in preparation for the Member.allOfKind()

invocation. Similarly, the webpage reference of :Lecturer is traversed and reveals a :Web-

Page, which is also cached in preparation for the WebPage.allOfType() invocation.

10.2.7. Benchmark Results

This section presents the benchmarking results of the work presented in Section 10.2.

For the benchmarking, the computation approaches have been integrated with Epsilon

runtime in the sense that the Epsilon EMF model driver has been modified so that it

works with the static analysis and pre-caches the results of query in different approaches.

For comparison purposes, the benchmarks are performed on four different strategies for

computing the calls to allInstances() (based on the Epsilon platform);

1. Lazy (on-demand) approach (denoted by L), the lazy approach is the default ap-

proach for Epsilon;

2. Greedy approach (denoted by G), the greedy approach naively pre-computes the

results all possible calls to allOfType() and allOfKind() and caches them in memory

(discussed in Section 10.2.1);

3. Type-Aware approach (denoted by T), the Type-Aware approach makes use of

static analysis as discussed in Section 10.2.4 but does not prune references and as

such it needs to visit the entire containment tree at runtime. It is included in this

benchmark only to assess the additional benefits of reference pruning; and

4. Type-and-reference-aware (denoted by TR), the Type-and-Reference-Aware ap-

proach makes use of the further static analysis approach discussed in Section 10.2.5,

which prunes containment references in the sense that only part of the model is

visited in memory at runtime.

The benchmarks were performed on a computer with Intel(R) Core(TM) i7 CPU @
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2.3GHz, with 8GB of physical memory, running OS X Yosemite. The version of the Java

Virtual Machine used was 1.8.0 31-b13. The results are in seconds.

For the benchmarks, models of varying sizes obtained from reverse engineered Java

code in the 2009 GraBaTs contest4 are used. These models, named set0, set1, set2, set3

and set4 (9.2MB, 27.9MB, 283.2MB, 626.7MB, 676.9MB respectively) are stored in XMI

2.0 format and have been used for various benchmarks for different tools [87, 81].

Model Element Coverage

To quantify model coverage in the benchmarks, the numbers of elements in each data set

are counted, and then EOL programs which (approximately) exercise 20%, 40%, 60%,

80% and 100% of the number of elements for each data set are automatically generated

with their respective calls to allOfKind() (and/or) allOfType(). An example generated

EOL program is provided in Listing 10.6.

var size = 0;

var methodInvocation = MethodInvocation.all.first();

size = size + MethodInvocation.all.size();

var qualifiedName = QualifiedName.all.first();

size = size + QualifiedName.all.size();

...

size.println();

Listing 10.6: An example of generated EOL program for model element coverage

All generated EOL programs are then executed and the performance of the four dif-

ferent approaches is measured in terms of the time it takes to load the models and the

time it takes to execute the programs.

Results

The obtained results are presented in Table 10.2.7 and Table 10.2.7. Acronyms L, G,

T and TR are used to denoted the aforementioned approaches (Lazy, Greedy, Type-

4GraBaTs2009: 5th Int. Workshop on Graph-Based Tools, http://is.tm.tue.nl/staff/pvgorp/

events/grabats2009/
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Perc.
L G T TR * Imp.G Imp.T Imp.TR Imp.*

Load Exec. Load Load Load Exec. Total Total Total Exec.
sec. sec. sec. sec. sec. % % % %

Set0

20% 0.552 0.015 0.652 0.554 0.572 0.001 -15.17% 2.12% -1.06% 93.33%

40% 0.555 0.007 0.631 0.572 0.561 0.002 -12.63% -2.14% -0.18% 71.43%

60% 0.549 0.012 0.645 0.571 0.573 0.003 -15.51% -2.32% -2.67% 75.00%

80% 0.543 0.026 0.652 0.573 0.576 0.005 -15.47% -1.58% -2.11% 80.77%

100% 0.552 0.141 0.638 0.623 0.619 0.013 6.06% 8.23% 8.80% 90.78%

Perc. Set1

20% 1.643 0.606 1.856 1.653 1.672 0.01 17.03% 26.06% 25.21% 98.35%

40% 1.596 0.595 1.875 1.736 1.711 0.011 13.92% 20.26% 21.41% 98.15%

60% 1.587 0.556 1.843 1.786 1.773 0.013 13.39% 16.05% 16.66% 97.66%

80% 1.611 0.571 1.86 1.787 1.788 0.017 13.98% 17.32% 17.28% 97.02%

100% 1.606 0.626 1.866 1.852 1.852 0.021 15.46% 16.08% 16.08% 96.65%

Perc. Set2

20% 14.159 2.244 17.169 14.802 14.809 0.007 -4.71% 9.72% 9.68% 99.69%

40% 14.061 4.402 17.979 16.587 16.613 0.015 2.54% 10.08% 9.94% 99.66%

60% 14.456 3.305 16.96 16.276 15.851 0.02 4.40% 8.25% 10.64% 99.39%

80% 15.151 5.685 18.145 17.724 18.217 0.03 12.77% 14.79% 12.43% 99.47%

100% 15.223 6.2 17.32 17.769 17.839 0.036 18.98% 16.89% 16.56% 99.42%

Table 10.1.: Benchmark results for Lazy, Greedy, Type-Aware, Type-and-Reference-
Aware caching for Set0, Set1 and Set2 (* in the table represents the results
for G,T and TR collectively).

Aware and Type-and-Reference-Aware respectively). Since the execution time of the

EOL programs for G, T and TR is practically the same5, only one result for all three of

these approaches is presented under the * column.

Acronym Imp. denotes the performance improvement of a certain approach, Load

denotes the time it takes to load the models, whereas Exec. denotes the time it takes to

execute the EOL programs. Finally, Total denotes the time it takes to load the model

and execute an EOL program for a single experiment.

5This is expected as all three strategies populate all caches required before the EOL program executes.
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Perc.
L G T TR * Imp.G Imp.T Imp.TR Imp.*

Load Exec. Load Load Load Exec. Total Total Total Exec.
sec. sec. sec. sec. sec. % % % %

Set3

20% 34.199 8.706 38.096 34.17 33.753 0.017 11.17% 20.32% 21.29% 99.80%

40% 31.786 9.756 37.552 35.086 34.809 0.028 9.54% 15.47% 16.14% 99.71%

60% 31.835 12.222 37.528 36.516 35.662 0.045 14.72% 17.01% 18.95% 99.63%

80% 32.417 11.456 39.301 39.302 37.795 0.068 10.27% 10.26% 13.70% 99.41%

100% 35.872 13.7 38.659 40.779 40.513 0.071 21.87% 17.59% 18.13% 99.48%

Perc. Set4

20% 36.133 7.586 43.745 39.477 37.278 0.018 -0.10% 9.66% 14.69% 99.76%

40% 37.99 12.973 43.515 41.044 41.01 0.039 14.54% 19.39% 19.45% 99.70%

60% 36.457 14.131 44.883 42.348 41.055 0.05 11.18% 16.19% 18.75% 99.65%

80% 37.782 11.762 41.932 44.038 45.168 0.065 15.23% 10.98% 8.70% 99.45%

100% 37.617 14.563 44.813 46.914 43.406 0.078 13.97% 9.94% 16.67% 99.46%

Table 10.2.: Benchmark results for Lazy, Greedy, Type-Aware, Type-and-Reference-
Aware caching for Set3 and Set4(* in the table represents the results for
G,T and TR collectively).

From the benchmarks, it is observed that with the Greedy, Type-Aware and Type-

and-Reference-Aware approaches, programs execute significantly faster than with the

Lazy approach. These approaches require more time upfront to load the models due

to the overhead incurred by their respective caching logic; such overhead affects the

performance for small data sets (set 0 in this case).

However, as the sizes of models grow, these approaches provide marginal benefits in

terms of the time it takes to load a model and to execute an EOL program (total time).

In general, TR provides better performance but for some cases in which TR needs to

visit elements deep in the containment tree, T and G marginally outperform it. In terms

of memory footprint, the three approaches behave very similarly and incur a small linear

overhead compared to L.

267



10. Applications of the Epsilon Static Analysis Framework

10.2.8. Summary

This section discussed a novel approach for computing and caching of the results of calls

to allInstances() (and similar) operations based on static analysis of programs written

in EOL. In Section 10.2.7, the benchmarking results for running the lazy approach, the

greedy approach, the type-aware approach and the type-and-reference-aware approach

were provided and compared. The benchmark results reveals that the proposed strategy

exhibits significant performance improvements.

10.3. SmartSAX: Towards Partial Loading of Large XMI

Models

According to [27], one significant emerging concern for scalability in the context of MDE

is the scalability of tools when accessing large models. As discussed in Section 2.2.1, XML

Metadata Interchange (XMI) is an XML-based model interchange format standardised

by the OMG. It is the default model persistence format of the widely used Eclipse

Modelling Framework (EMF) [6] and is supported (typically as an import/export option)

by the majority of UML modelling tools. However, as the size of XMI-based models

increase, the general consensus is that working with such models does not scale in terms

of loading time and memory consumption [31, 81], because XMI parsers typically need

to load an XMI model into memory in its entirety before any queries can be evaluated

against it.

In response to this limitation, several database-backed model persistence prototypes

have been proposed for storing very large models, such as Morsa [31], Neo4EMF [81],

MongoEMF [32], EMF Fragments [133] and Hawk [87]. The general idea behind these

tools is that they are able to load only the parts of a model that are needed for the

task at hand (e.g. to compute particular queries), so that large models can be accessed

efficiently both in terms of loading time and memory consumption. On the downside,

these model representation formats are non-standard and, as such, they can adversely

impact tool interoperability.

This section presents SmartSAX, an alternative solution which is able to “partial”
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load XMI-based models.The hypothesis of SmartSAX is that partially loading XMI-

based models is feasible and beneficial in terms of improving loading performance and

lowering memory footprint. In particular, given in-advance, the knowledge of the parts

of an XMI model that are needed to compute a particular query/transformation (e.g.

obtained through static analysis of the query/transformation itself), an intelligent XMI

parser can skip irrelevant elements while reading the model file and (selectively) only

load/process the elements of interest into memory.

10.3.1. Background

This section briefly discusses the background of SmartSAX. This section provides an

overview of how SAX parser works, how EMF implements SAX to load XMI-based

models, and the default algorithm for parsing XMI-based models.

Java SAX Parser

A Java SAX (Simple API for XML) XML parser is an event-based XML parser that

operates by going through an XML file/stream and invoking callback methods on a

listener/handler object (which subclasses SAX’s DefaultHandler built-in class) when

it encounters certain structural elements of the XML file. For example, the parser

invokes the handler’s startDocument() method when the start of the XML document

is encountered, its startElement() method when the start of an element is encountered,

etc. It is the responsibility of the handler to extract the information it needs from these

elements (by implementing the callbacks methods where appropriate).

Default XMI Parsing Algorithm

To illustrate the default XMI parsing algorithm implemented by EMF, the University

metamodel is used, provided in Figure 10.12. A sample XMI representation of a model

that conforms to the University metamodel is provided in Figure 10.13. This model

contains a University element, which in turn contains a Department (Computer Science)

element. Under Computer Science, there are two members: a Lecturer (Tom Brown) and

a Student (Cathy Smith). Tom has a webPage while Cathy does not. Under Computer
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Figure 10.12.: The University Metamodel

Science, there is also a Module element: MODE, which also has a webPage. Finally,

both Tom and Cathy are involved in MODE (see modules=“e6” in lines 6 and 10).

EMF’s XMI parser, in particular, the SAXXMIHandler component, maintains a stack

of model elements (EObjects in EMF’s terminology) to keep track of its position in the

XMI document. This is needed in order to determine what EObjects to create next, as

illustrated in the lower part of Figure 10.13. When line 1 of the XMI file is read, the

callback method startElement() is triggered, the <university> element is handled and

a new instance of University (with its name attribute set to UoY ) is created. The new

EObject is pushed into the object stack. When line 4 is read, the parser processes the

top of the stack (peekObject in EMF’s terminology) together with the <departments>
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Figure 10.13.: Parsing a University XMI model using EMF’s built-in XMI parser.

element and decides that an instance of Department should be created and added to

the departments reference of the University model element. The created instance of

Department is also pushed into the object stack. The same principle is applied when

line 5 is read: the element <members> is handled and an instance of Lecturer is created,

added to the members reference of the Department and pushed into the stack. When

an element tag ends (e.g. in line 8), the top element of the object stack is popped.
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Figure 10.14.: An example University model.

Once all XML elements have been processed, a tree structure has been constructed in

memory and resolution of non-containment references (e.g. Member.modules) takes place

to transform the tree into the graph shown in Figure 10.14.

10.3.2. Partial XMI Loading

While parsing the entire contents of an XMI-based model into an in-memory object

graph is often necessary (for example, when it is not known in advance which elements

of the model will need to be accessed by a program/user), there are also cases where

only parts of the model need to be loaded, and precise information about which parts

are relevant/needed can be provided in advance. For example, when a model is loaded

in order to be queried by a program (e.g. a set of OCL constraints or an M2M/M2T
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transformation), it is possible to detect through static analysis which parts of the model

the program is likely to exercise. In such cases, loading parts of the model that the

program is guaranteed not to access is inefficient both in terms of loading time and in

terms of memory footprint.

To improve support for working with large XMI-based models in such scenarios, in

the following sections, an algorithm that is used to load only EObjects of interest into

memory and ignore irrelevant XML elements are explained in detail.

10.3.3. Effective Metamodel

Partial loading is typically associated with analysing model management programs. Sup-

pose an EOL program p, which manipulates an underlying model m, which conforms to

its metamodel mm. SmartSAX needs some in-advance information for it to partial-load

XMI models, that contains information on which part(s) of m are needed by p. Such

information, in [23], is referred to as the effective metamodel of mm extracted from p.

Effective metamodel is a subset of the underlying metamodel under question. There

are also cases that the effective metamodel extracted from a program is identical to the

underlying metamodel. In this case, it means that the program exercises instances of

all types in the underlying metamodel and all attributes and references of the types are

accessed by the program as well.

Figure 10.15.: Effective Metamodel Representation

Figure 10.15 illustrates how effective metamodels are represented in SmartSAX. Let

symbols p, m, mm and em denote respectively the EOL program under question, the
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model that p manages, and metamodel of m and the effective metamodel extracted from

analysing p. The base construct of the proposed Effective Metamodel structure is the

EffectiveType, which represents a type in mm, EffectiveType contains a name, a collection

of attributes and a collection of references of interest. The em of m is represented by

EffectiveMetamodel, which has a name, an nsURI (mm’s globally unique identifier), and

three collections of EffectiveType (types, allOfKind and allOfType).

allOfKind, allOfType and types

The allOfKind and allOfType references are used to specify the types, instances of which

need to be loaded by the parser. For example, if allOfKind of Person is declared in the

effective metamodel, it implies that instances of both Lecturer and Student should be

loaded (as they have the kind-of relationship with Person). In contrast, if allOfType

of Person is declared in the effective metamodel, only instances of Person should be

loaded (in this case no element will be loaded since Person is abstract). The types

reference specifies types, instances of which should be loaded only when they appear

under containment references of interest. For example, in the effective metamodel of

Figure 10.16, it specifies that all instances of Lecturer need to be loaded regardless

of their positions; but only instances of WebPage that are contained in containment

references of interest will be loaded (for example, Lecturer.webPage).

Attributes and References

In each EffectiveType, names of the attributes and references that need to be populated

can be declared. For example, if it is declared that only the first name attribute is

needed for Student elements. The partial loading parser will only populate the value

of the first name attribute of Students (and not any other attributes or references of

Student).

10.3.4. Automated Effective Metamodel Extraction

Atop the Epsilon static analysis framework, an Automated Effective Metamodel Extrac-

tion facility (AEME) is constructed. AEME works with the variable-resolved and type-
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resolved EOL Heterogeneous Abstract Syntax Graph and extracts the effective meta-

model by looking at operation calls to all(), allOfKind(), allOfType() and allInstances().

If such operation calls are found, their corresponding target types are recorded and

added to the Effective Metamodel. AEME also looks for property calls that for which

the target expression of the property call is of ModelElementType (T). If this is the case,

the property is added to either the attribute or the reference of T .

let EM = new effective metamodel;
foreach method call expression do

if the type of the target of the method call is a model element type then
if the name of the method is all(), allOfKind() or allInstances() then

let ET = create new / retrieve existing effective type for the method call’s target
model element type;
if ET is already under EM’s allOfType reference then

// allOfKind is a superset of allOfType
move ET under EM’s allOfKind reference;

end
else

add ET under EM’s allOfKind reference;
end

end
else if the name of the method is allOfType() then

let ET = create new / retrieve existing effective type for the model element type;
if ET is not already under EM’s allOfType or allOfKind reference then

add ET under EM’s allOfType() reference;
end

end
end

end

Algorithm 5: Effective Metamodel Extraction Algorithm (1 of 2)

for(s in Lecturer.allOfKind()) {

("First name:" + s.first_name).println();

("Last name:" + s.last_name).println();

("Web page:" + s.webPage.url).println();

("Number of modules taught:" + s.modules.size()).println();

}

Listing 10.7: An example EOL Program

Algorithm 5 and 6 show the algorithm for matching operation calls and property calls

which populates the Effective Metamodel automatically. These algorithms, in principle,

can also be applied to other model management languages such as OCL and ATL, so

that they can work seamlessly with SmartSAX.
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foreach property call expression do
if the type of the target of the property call is a model element type then

if the name of the property is all then
// .all is a shorthand notation for .all()/.allInstances()/.allOfKind() // treat this
as a call to allOfKind() – see Algorithm 5

end
else

let ET = create new / retrieve existing effective type for the model element type;
if ET is not already under the EM’s types, allOfKind or allOfKind references
then

add ET under EM’s types reference;
end
if the property is an attribute then

add the property to ET’s attributes (if not already there)
end
else if the property is a reference then

add the property to ET’s references (if not already there)
end

end
end
else if the type of target of the property call is a collection type then

if the content type of the collection type is a model element type then
let ET = create new / retrieve existing effective type for the model element type;
if ET is not already under the EM’s types, allOfKind or allOfKind references
then

add ET under EM’s types reference;
end
if the property is an attribute then

add the property to ET’s attributes (if not already there)
end
else if the property is a reference then

add the property to ET’s references (if not already there)
end

end
end

end

Algorithm 6: Effective Metamodel Extraction Algorithm (2 of 2)

Figure 10.16.: Automatically-extracted Effective Metamodel from Listing 10.7
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Applying Algorithm 5 and 6 on the EOL program in Listing 10.7 produces the effective

metamodel illustrated in Figure 10.16.

10.3.5. Effective Metamodel Reconciliation

Effective metamodels specified manually, or extracted through static analysis of model

management programs, can be incomplete. For example, the effective metamodel shown

in Figure 10.16 specifies that the underlying program is interested in loading all of

the instances of Lecturer, and in turn the first name and last name attributes and the

webPage and modules references. It also specifies that for loaded instances of WebPage,

their url attributes should be populated.

Figure 10.17.: Reconciled Version of the Effective Metamodel of Figure 10.16

As the extracted effective metamodel does not include the Module type (because the

modules feature of type Lecturer is a non-containment reference), the parser will not load

any instances of Module, and as such the modules reference of all loaded Lecturer elements

will be empty. To address such cases, in this step, the AEME automatically reconciles a

provided (potentially incomplete) effective metamodel by adding allOfKind relationships

to the types of declared non-containment references. If an allOfType relationship already
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exists for that type, it is converted to an allOfKind relationship. The reconciled effective

metamodel for this example, where the missing allOfKind relationship has been added

for the Module type, appears in Figure 10.17.

10.3.6. Partial XMI Loading Algorithm

As discussed above, EMF’s built-in XMI parser maintains a stack of EObjects to deter-

mine what type of EObject it needs to create when it encounters a new XML element,

and where6 it should place the new element in the containment hierarchy. While on one

hand it is desirable to re-use as much of the (by far non-trivial) functionality of the ex-

isting XMI parser as possible; creating all EObjects in order to maintain the stack is not

efficient in terms of time and memory consumption, and defeats the purpose of partial

loading. Thus, a solution is proposed by SmartSAX to use a placeholder cache, which

contains an empty/placeholder EObject for each type that is not declared in the effective

metamodel. As such, when the parser encounters an XML element that it wishes to skip

(means to read but not to process), it can fetch the corresponding placeholder EObject

for that type from the cache and put it in the object stack, instead of creating an new

EObject.

On the other hand, when it encounters an XML element of a type that is included in

the effective metamodel under an appropriate allOfType or allOfKind reference, or an

element that belongs to a containment reference of interest and is included in the effective

metamodel under a types reference, it creates a new EObject. If the top element of the

stack is not an placeholder EObject and the containment reference is included in the

effective metamodel, it puts the new object under the containment reference; otherwise

it adds it a top level element in the resource (model). Finally, the parser adds the new

EObject to the top of the stack.

Figure 10.18 illustrates a snapshot of the state of SmartSAX at the point where it has

parsed the University XMI model up to line 7, with reference to the reconciled effective

metamodel shown in Figure 10.17. When the parsing starts, SmartSAX populates the

Placeholder Cache with one placeholder EObject for each type of the full metamodel

6i.e. under which containment reference
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Figure 10.18.: Parsing the University model with SmartSAX.

that is not included in the effective metamodel7 as illustrated on the bottom-left corner

of Figure 10.18. It then handles the XML elements it encounters as follows:

• When the <university> element in line 1 is encountered, SmartSAX checks the

effective metamodel, and determines that instances of University do not need to

7Another approach would be to populate the cache in a lazy manner - i.e. to only create placeholder

EObjects the first time they are needed.
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be loaded. Therefore, SmartSAX fetches the placeholder EObject of University

from the placeholder cache and pushes it on to the object stack.

• When the <departments> element in line 4 is encountered, SmartSAX determines

that the type of the object that should be instantiated is Department. However,

according to the effective metamodel, instances of Department do not need to be

loaded, so SmartSAX fetches the placeholder EObject of Department from the

placeholder cache and pushes it on to the object stack.

• When SmartSAX encounters the <members> element in line 5 it determines that

it needs to create a new instance of Lecturer (as Lecturer is part of the effective

metamodel). After creating the new instance, it consults the effective metamodel

and populates the values of its first name and last name attributes. Then it looks

at the element on the top of the stack (currently the placeholder instance of Depart-

ment), it detects that it is a placeholder, and as such adds the populated instance

of Lecturer to the resource as a top-level element.

• When the <webPage> element in line 7 is encountered, SmartSAX determines that

it needs to create an instance of WebPage and place it in the webPage containment

reference of the top element of the stack. It also populates the url attribute of the

new instance with the value of the respective attribute of the XML element.

• When </webPage> is encountered in line 7, the top object of the stack is popped

(the current top element is now Tom)

• When </members> is encountered in line 8, the top object of the stack is popped

(the current top element is now Computer Science)

• When the <members> element is encountered in line 9, SmartSAX determines

that it needs to create an instance of Student. Since the Student type is not part

of the effective metamodel, it fetches the Student placeholder object and puts it

at the top of the stack.

• When </members> is encountered in line 10, the top object of the stack is popped

(the current top element is still Computer Science).
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• When the <modules> element is encountered in line 11, SmartSAX determines

that it needs to create an instance of Module and since the effective metamodel

declares that all instances of Module need to be loaded, it creates a fresh EObject

(but does not populate any of its attributes/references as none of these need to be

loaded according to the effective metamodel). Since the top element in the stack

is a placeholder, it adds the new Module instance to the resource as a top-level

element and also pushes it on to the stack.

• When the <webPage> element is encountered in line 12, SmartSAX determines

that it maps to an instance of WebPage that should be placed under the webPage

containment reference of the top element of the stack (which is currently the MODE

module). Since the WebPage type is part of the types reference of the effective

metamodel, and its containment reference (Student.webPage) is not of interest, the

parser fetches the placeholder WebPage object and pushes it on to the stack.

• Each of the last three lines (13-15) cause the parser to pop the top element of its

stack – thus ending up with an empty stack.

Figure 10.19.: The Partially Loaded Model

Since all required objects have been loaded, the last step of the algorithm involves

resolving non-containment references (in this case, link Tom to the MODE module,

through its modules reference). The obtained partially-loaded model appears in Figure

10.19. Note how the name attribute of the loaded Module is empty, as the value of this

attribute is not of interest according to the effective metamodel of Figure 10.17.
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let stack = new stack of model elements;
let cache = new set of model elements;
let model = new model;
let elements = new stack of xml elements;
let EM = the defined/extracted effective metamodel;
let referencesToHandle = non-containment references to resolve after file is fully read;
Procedure startElement(xmlElement)

push xmlElement to elements;
let peekModelElement = peek top model element of stack;
if peekModelElement is nil then

// We are at a root element
let type = find a model element type for the tag name of the xmlElement;
let modelElement = createModelElement(type);
push modelElement to the stack;

end
else

let peekModelElementType = the type of peekModelElement ;
if a feature needs to be created based on peekModelElementType and xmlElement then

handleFeature(xmlElement);
end
else if a (top level) model element to be created then

let type = find a model element type for the tag name of the xmlElement;
let modelElement = createModelElement(type);
push modelElement to the stack;

end
end

Procedure endElement(element)
pop the top model element from the stack;
pop the top model element from the elements;

Algorithm 7: Partial Loading Algorithm 1 of 3

The partial loading algorithm illustrated above is also presented in an example-

independent manner in Algorithms 7, 8 and 9.

10.3.7. Benchmark Results

This section presents the results of benchmarks of SmartSAX for its partial loading

algorithm presented in Section 10.3.6 to evaluatate the scalability and practicality of the

proposed approach. Benchmarks were performed on a computer with Intel(R) Core(TM)

i7 CPU @ 2.3GHz, with 8GB of physical memory, running OS X Yosemite. The version of

the Java Virtual Machine used was 1.8.0 31-b13. Results are in seconds and Megabytes.

For the benchmarks, models of varying sizes obtained from reverse engineered Java

code in the 2009 GraBaTs contest8 are used. These models, named set0, set1, set2, set3

and set4 (9.2MB, 27.9MB, 283.2MB, 626.7MB, 676.9MB respectively) are stored in XMI

2.0 format and have been used for various benchmarks for different tools [87, 81].

8GraBaTs2009: 5th Int. Workshop on Graph-Based Tools, http://is.tm.tue.nl/staff/pvgorp/

events/grabats2009/
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let stack = new stack of model elements;
let cache = new set of model elements;
let model = new model;
let elements = new stack of xml elements;
let EM = the defined/extracted effective metamodel;
let referencesToHandle = non-containment references to resolve after file is fully read;
Procedure createModelElement(type)

let modelElement = instance to be created/retrieved;
if EM contains type under allOfKind/allOfType then

modelElement = create an instance of the type;
add modelElement to the resource;

end
else

modelElement = create/retrieve cache object from the cache by type;
end
return modelElement;

Procedure handleObjectAttributes(eObject)
foreach attribute in the current xmlElement do

let name = name of the attribute;
let value = the value of the attribute;
if shouldHandleFeature(eObject, attribute) then

setFeatureValue(eObject, name, value);
end

end
Procedure setFeatureValue(eObject, name, value)

let feature = identify feature based on eObject and name;
if feature is single valued then

set value to feature;
end
else

add value to feature;
end

Algorithm 8: Partial Loading Algorithm 2 of 3

Loading Unit Coverage

To quantify partial loading in the benchmarks, this thesis uses the concept of loading

units. For this purpose, three types of loading units are identified: objects (model

elements), attribute values, and reference values. For example, the partially-loaded

model in Figure 10.19, there are 8 loading units (3 objects, 3 attribute values (excluding

Module.name) and 2 reference values), while the fully-loaded model of Figure 10.14

consists of 24 loading units (7 objects, 9 attribute values and 8 reference values).

With regard to the experiment, the first step is to count the number of loading units

in each of the models (from set0 to set4). Then, EOL programs which achieve coverage

of 20%, 40%, 60%, 80%, and 100% of the loading units for models from set0 to set4 were

constructed. Finally, set0 to set4 were loaded using the effective metamodel extracted

from the EOL programs and SmartSAX, the performance in terms of loading time and

memory consumption were recorded and compared with the performance of the built-in
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Procedure handleFeature(xmlElement)
let peekModelElement = peek top model element of stack;
let peekModelElementType = the type of peekModelElement ;
let feature = the feature that is to be created based on peekModelElementType and
xmlElement;
if feature is an attribute then

handleObjectAttributes(peekModelElement);
end
else

//feature is a reference
if feature is a containment reference then

let eType = the type of the reference;
let modelElement = createModelElement(eType);
if modelElement is null then

if em contains eType under types then
if shouldHandleFeature(peekModelElement, feature) then

let modelElement = create an instance of the eType;
add modelElement to the resource;
setFeatureValue(peekModelElement, feature name, modelElement);

end
end
else

let modelElement = create/retrieve cache object from the cache for
typeToCreate;

end
end
else

add modelElement to the resource;
setFeatureValue(peekModelElement, feature name, modelElement);

end
push modelElement to the stack;

end
else

if shouldHandleFeature(peekModelElement, feature) then
add feature to referencesToHandle;

end
end

end
Procedure shouldHandleFeature(eObject, feature)

let effectiveType = retrieve effective type from EM based on eObject;
if effectiveType is not nil then

if effectiveType contains the name of feature then
return true;

end
end
return false;

Algorithm 9: Partial Loading Algorithm 3 of 3

EMF XMI parser on the same models.
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Percentage
Set0

Norm.(T) Norm.(M) Part.(T) Part.(M) Part.Impr(T) Part.Impr(M)

20% 0.65 161 0.31 87 52.29% 60.11%

40% 0.65 161 0.47 96 28.57% 39.98%

60% 0.65 161 0.51 97 25.61% 38.91%

80% 0.65 161 0.60 126 6.08% 21.37%

100% 0.65 161 0.71 162 -4.12% -0.63%

Percentage Set1

20% 1.97 419 0.92 128 53.46% 69.27%

40% 1.97 419 1.36 258 31.67% 38.54%

60% 1.97 419 1.51 285 23.83% 31.81%

80% 1.97 419 1.64 316 14.88% 23.08%

100% 1.97 419 2.01 416 -3.97% -1.08%

Percentage Set2

20% 18.11 1891 6.49 893 64.12% 52.81%

40% 18.11 1891 9.67 1172 47.22% 38.24%

60% 18.11 1891 11.71 1389 35.72% 26.60%

80% 18.11 1891 14.10 1487 22.37% 21.35%

100% 18.11 1891 18.90 1893 -3.97% -0.09%

Percentage Set3

20% 35.8 2285 17.25 836 50.94% 63.36%

40% 35.8 2285 21.21 1111 40.55% 51.25%

60% 35.8 2285 29.19 1221 18.94% 46.42%

80% 35.8 2285 33.23 1636 7.38% 26.42%

100% 35.8 2285 37.29 2300 -3.63% -0.13%

Percentage Set4

20% 39.58 2501 15.25 584 60.47% 76.69%

40% 39.58 2501 25.91 1689 32.99% 33.03%

60% 39.58 2501 30.26 1807 24.62% 30.03%

80% 39.58 2501 35.47 2074 11.48% 18.59%

100% 39.58 2501 42.58 2560 -7.63% -2.23%

Table 10.3.: Partial Loading GraBaTs models
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Norm.(T) Normal Loading Time

Norm.(M) Normal Loading Memory

Part.(T) Partial Loading Time

Part.(M) Partial Loading Memory

Part.Impr(T) Partial Loading Improvement in Time

Part.Impr(M) Partial Loading Improvement in Memory

Table 10.4.: Terms explained for Table 10.3

Results

The obtained results are presented in Table 10.3. The terms of each column are explained

in Table 10.4. From the benchmarks it is observed that for SmartSAX, the resource

consumptions (time and memory) are linear with respect to the loading unit coverages.

For set0, SmartSAX demonstrate significant resource consumption improvements both

in terms of time and memory. For 100% coverage, SmartSAX takes slightly more time

and memory due to the upfront cost for effective metamodel extraction and reconcili-

ation. During the parsing, the (redundant) comparisons with the effective metamodel

also costs more time.
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Figure 10.20.: Benchmark results for Set 0
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Figure 10.21.: Benchmark results for Set 1
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Figure 10.22.: Benchmark results for Set 2

For set 1 to set 4, significant improvements (at least 10% time improvement and 20%

memory improvement up to 80% of coverage) are observed. The obtained results are

plotted in Figures 10.3.7-10.3.7 for all five data sets. It is worth noting that the time
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Figure 10.23.: Benchmark results for Set 3
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Figure 10.24.: Benchmark results for Set 4

consumption and memory consumption are not proportional as some attributes of the

EObjects contain relatively large amount of Strings therefore taking more memory. Such
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situation can be perceived for set0, set3 and set4.

GraBaTs query

To further assess the performance benefits it delivers, SmartSAX was used in conjunction

with Epsilon and the Epsilon static analysis framework to execute a complex query

(proposed in the context of the Grabats 2009 competition), which detects singletons in

the reverse-engineered Java models (set0 - set4). The Epsilon static analysis framework

was used to extract the effective metamodel from the query, which was then used by

SmartSAX to load models set0 - set4. The query is then executed on the models. The

loading time, execution time and memory consumption for both full loading and partial

loading were measured and are illustrated in Table 10.5 (the header labels in Table 10.5

are explained in Table 10.6).

Set0 Set1 Set2 Set3 Set4

Norm.L(T) 0.65 1.98 16.85 38.58 40.71

Norm.E(T) 0.11 0.12 2.77 7.24 7.42

Norm.L(M) 161 419 1891 2268 2444

Part.L(T) 0.17 0.37 10.20 25.07 27.57

Part.E(T) 0.01 0.03 1.83 5.12 5.32

Part.L(M) 32 52 578 1524 1515

Part.L.Impr(T) 71.65% 81.43% 39.47% 35.02% 32.28%

Part.E.Impr(T) 89.38% 71.55% 33.95% 29.29% 28.31%

Part.L.Impr(M) 80.00% 87.53% 69.48% 32.81% 38.01%

Table 10.5.: Partial Loading and GraBaTs Models and Executing GraBaTs Query

For all data sets, SmartSAX demonstrates substantial benefits for loading. Set0 is

loaded 71.65% faster than and set4 is loaded 32.28% faster compared to the full loading

algorithm. It also takes less to compute the query on partially loaded models (as there

are fewer elements to traverse in the model). The query on the partially loaded set0 is

computed 89.38% faster and the query on the partially loaded set4 is computed 28.31%

faster compared to their fully-loaded equivalents. In terms of memory consumption,

partial loading set0 consumes 80.00% less memory and set 4 consumes 38.1% memory.
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Norm.L(T) Normal Loading Time

Norm.E(T) Normal Execution Time

Norm.L(M) Normal Loading Memory

Part.L(T) Partial Loading Time

Part.E(T) Partial Execution Time

Part.L(M) Partial Loading Memory

Part.L.Impr(T) Partial Loading Improvement in Time

Part.E.Impr(T) Execution Improvement for Partial Loading in Time

Part.L.Impr(M) Partial Loading Improvement in Memory

Table 10.6.: Terms explained for Table 10.5

10.3.8. Limitations

There are two noteworthy limitations for SmartSAX. First, it requires elements refer-

enced from non-containment references to have IDs that do not depend on their position

in the containment hierarchy (i.e. intrinsic IDs or extrinsic IDs instead of fragment path

IDs [6] such as //@departments.0/@modules.0 ) as partial loading re-arranges the order

of the objects loaded into memory, so fragment path becomes incorrect. Second, it does

not support propagating changes made to the partially-loaded model back to its original

XMI source (i.e. it is only useful for read-only operations on models).

10.3.9. Summary

This section discussed a novel approach for partial-loading XMI-based models by com-

bining the Epsilon static analysis framework with an enhanced SAX parser which is

built by extending EMF’s existing SAX parser. The benchmark results presented in

Section 10.3.7 indicate that SmartSAX brings significant improvements to both loading

time and memory consumption.

10.4. Chapter Summary

This chapter presented three applications of the Epsilon static analysis framework which

aim for performance analysis and optimisation of model management programs. Sec-

tion 10.1 presented a facility for detecting sub-optimal performance patterns that may

exist in EOL programs. Section 10.2 discussed how the Epsilon static analysis framework
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can be used to optimise the caching strategy for calls to allInstances(), And Section 10.3

discussed how static analysis can be used to achieve partial-loading of large XMI models

to reduce both loading time and memory consumption. Although developed for the Ep-

silon platform, these applications can be ported to other model management tools (and

to be used in conjunction with their corresponding static analysis facilities) to achieve

same functionalities.

10.5. Terminology

Sub-Optimal Performance Pattern Detection (SPPD): SPPD is an extention of

the Epsilon static analysis framework and is an application of static analysis. SPPD

allows the developers to express performance bottleneck patterns so that these patterns

can be matched against the programs they wish to check. Patterns can be expressed

in Epsilon Pattern Language (EPL) or Java although the EPL approach is cleaner and

easy to comprehend.

Epsilon Pattern Language (EPL): The Epsilon Pattern Language contributes pat-

tern matching capabilities to the Epsilon platform. Using EPL, model patterns can be

expressed which can be matched against models. EPL is built atop EOL.

The allInstances() operation: In model query and transformation languages, an

important task to perform is to retrieve collections of model elements of a particu-

lar type/kind. OCL, QVTr and ATL provides the built-in allInstances() operation to

achieve this function.

Effective metamodel: In the context of model management, the term effective meta-

model refers to the footprint of a model management operation on the metamodel it

manages. In theory, a model management operation only accesses a part of a model.

Extracting the effective metamodel gives an idea of how much of a model is accessed by

a model management operation.
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This thesis has investigated the topic of automated analysis and validation of programs

- as a means for error detection and performance optimisation of model management

programs. In particular this thesis investigated the validity of the following research

hypothesis:

Reusable static analysis facilities can be used to identify errors in different types of

model management programs (e.g. model transformations, validation constraints) that

operate on multiple models defined using diverse modelling technologies, and to enhance

the performance of programs operating on large models.

To explore the thesis hypothesis, the following research objectives were identified:

• To build a static analysis framework for the Epsilon platform atop which, reusable

static analysis tools can be developed;

• To build a facility which supports the analysis of programs that manage models

defined in diverse modelling technologies;

• To use the framework to develop static analysis tools for the Epsilon model man-

agement languages to demonstrate its reusability and extensibility;

• To use the static analysis framework to develop facilities for analysis and automated

optimisation of the performance of programs operating on large models.

The remainder of this chapter summarises the contributions of the thesis in relation
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to the research hypothesis and the research objectives, and provides a direction towards

potential future extensions of the current state of the research.

11.1. Review Findings

In Chapter 2, a background review of Model Driven Engineering was performed. The

review covered the terminology and principles of MDE, including the concepts of models,

modelling languages and metamodels. The review then moved onto common model

management operations in an MDE-based development process, a non-exhaustive list of

which includes:

• Model-to-model Transformation

• Model-to-text Transformation

• Text-to-Model Transformation

• Model Validation

• Model Comparison

• Model Merging

Existing languages and tools that support these tasks were also identified and reviewed.

The Eclipse Modelling Framework (EMF) and the Epsilon platform, which are closely

related to the aims of this thesis were then reviewed. The review on MDE identified a

number of challenges, including the need to ensure the correctness of model management

programs, and the need to address a number of scalability challenges.

In Chapter 3, a background review of static analysis was performed. A number of char-

acteristics of static analysis were introduced and a number of static analysis techniques

were also reviewed.

In Chapter 4, a comparative study of a number of static analysis tools within the

context of MDE was performed. To compare such static analysis tools, a number of

criteria were identified. The review concluded that existing static analysis tools had a

number of limitations:
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• They are built to target only independently developed model management lan-

guages that support a limited range of model management tasks;

• They lack support for performing static analysis on programs that manage models

defined in different modelling technologies;

• They do not provide support for runtime performance optimisation based on the

results of static analysis.

11.2. Proposed Solution and Prototype

In Chapter 5, the research hypothesis was stated and a number of research objectives

were identified. The following sections summarise the components of the Epsilon static

analysis framework developed to achieve the research objectives.

11.2.1. Epsilon Static Analysis Model Connectivity Layer (ESAMC)

The Epsilon platform provides an abstract layer to support models defined in diverse

modelling technologies, the Epsilon Model Connectivity layer (EMC). However, as dis-

cussed in Chapter 6, EMC is not suitable for static analysis as it does not provide sup-

port for inspecting the type hierarchy of the metamodels of models involved in model

management operations. Therefore, an enhanced version of EMC, the Epsilon Static

Analysis Model Connectivity layer (ESAMC), was designed and implemented. ESAMC

natively supports Ecore, and provides interfaces for developing modelling technology

specific drivers. The extensibility of ESAMC was validated in Section 9.1 where an

XML driver for ESAMC was created, which is able to infer meta element structures

from XML documents.

11.2.2. EOL Metamodel, the AST2EOL Transformation and the EOLVisitor

Facility

For EOL programs to be analysed, there is a need to convert them into structures that

can be easily queried and traversed. Epsilon executes EOL programs by first parsing
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them into homogeneous ANTLR-based Abstract Syntax Trees (ASTs). Section 6.4 pro-

vided a detailed discussion explaining that such ASTs are not suitable for static analysis.

Thus, a design decision was made to create a metamodel for EOL using EMF’s Ecore.

Section 6.5 presented the language constructs of EOL and their corresponding meta

elements in the EOL metamodel.

With the EOL metamodel in place, there was a need to convert the ANTLR-based

ASTs produced by the Epsilon parser to instances of the EOL metamodel. For this

purpose, an AST2EOL transformation facility was created in Java and was presented

in Section 6.6. A facility for generating visitors from the EOL metamodel (EOLVisitor)

was presented in Section 7.2.

11.2.3. EOL Static Analyser

The EOL static analyser was built by extending the EOLVisitor facility and was pre-

sented in Chapter 7. It contains two main facilities, the EOL variable resolution facility

(presented in Section 7.3) which is responsible for establishing links between variable

declarations and their references, and the EOL type resolution facility (presented in Sec-

tion 7.4) which is responsible for resolving types of expressions within EOL programs.

The EOL type resolution algorithm adopts the lattice theory to represent the EOL type

system and a rule-based type resolving approach to resolve types of the expressions in

the program.

11.2.4. EVL and ETL Static Analyser

The EVL static analyser, presented in Section 8.1, was built by extending the EOL

static analyser. Beyond type checking, the EVL static analyser is also able to compute

invariant dependency graphs, which may be used in the future work to optimise EVL

program execution. The ETL static analyser, presented in Section 8.2, was also built by

extending the EOL static analyser. Beyond type-checking capabilities, a transformation

rule dependency graph computation facility was also built atop the ETL static analyser

and was discussed in Section 8.2.5.
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11.2.5. Applications of Static Analysis

As pointed out in Chapter 5, apart from error detection, the Epsilon static analysis

framework also supports the implementation of facilities for performance analysis and

optimisation of model management programs. The sub-optimal performance pattern de-

tection (SPPD, presented in Section 10.1) is an application of the Epsilon static analysis

framework, which enables the developers to define known code patterns that can cause

performance degradation. Such patterns are then searched for in Epsilon programs so

that performance bottlenecks can be discovered early in the development process.

Another scalability issue discovered from the study of Epsilon (and other querying

languages such as OCL) is the execution time to compute the results for calls to the

allInstance() operation which computes a set of all instances of a given type in a model.

The drawbacks of the existing computation strategy of such operations (for contemporary

tools) were identified in Section 10.2. This thesis then proposed a number of more

efficient computation strategies for computing and caching the results of such operations

using the results of the static analysis. The computation strategies are backed by the

Epsilon static analysis framework’s cache configuration extraction facility (discussed in

Section 10.2.3). The static analysis is integrated with the EOL runtime and benchmark

results for running EOL programs that interact with very large models were presented

in Section 10.2.7.

SmartSAX, discussed in detail in Section 10.3, is another application of static analysis,

which adds support for partial XMI model loading by leveraging the results of static

analysis of model management programs. SmartSAX exploits the effective metamodels

extracted from model management programs and achieves partial loading of XMI-based

models (based on the effective metamodels) to improve resource consumption (time and

memory) during model loading.

11.3. Evaluation Results

In Chapter 9, the validity of the proposed hypothesis presented in Section 5.2 was as-

sessed. In Section 9.1, the extensibility of the ESAMC was demonstrated by the XML
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driver created atop it and example ETL transformations transforming XML models into

EMF models were also provided. From this perspective, the hypothesis is validated in

the sense that the Epsilon static analysis framework is able to analyse programs that

simultaneously manage models defined using different modelling technologies.

Section 9.2 evaluated the EOL, EVL and ETL static analysers in terms of their ability

to detect runtime errors. The evaluation covered testing plans and a number of examples

which illustrate analysing widely used and complex programs were also presented.

11.4. Applications

Section 10.1 presented an extension of the Epsilon static analysis framework which aims

at finding sub-optimal performance patterns in programs written in Epsilon languages.

This facility addresses the scalability issues from the perspective of programming styles.

It was used to evaluate a number of EOL programs found on GitHub and was able to

detect (potentially) sub-optimal code from these programs.

Section 10.2 presented an extension of the Epsilon static analysis framework which

aims at efficient computation of queries over models that contain millions of model

elements. This facility addresses the scalability issues from the perspective of execution

optimisation. Using the efficient computation strategy, resource consumption during

program execution are significantly improved.

Section 10.3 presented an extension of the Epsilon static analysis framework (Smart-

SAX), which aims at enabling partial loading of XMI-based models that contain millions

of model elements. This facility addresses the scalability issues from the perspective of

model loading. The benchmark results of SmartSAX showed that partial loading sig-

nificantly reduces the time and memory consumption compared to normal loading, and

partial loading is applicable to general programs.

11.5. Summary of Contributions

This section summarises the contributions of this project to the Epsilon platform, and

to model management in general.
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11.5.1. Contributions to Epsilon

To investigate and assess the validity of the hypothesis of this thesis, a static analysis

framework for languages the Epsilon platform was developed. This contributed the

following facilities to Epsilon:

• Ecore-based EOL, EVL and ETL metamodels, which formalise the respective lan-

guages’ abstract syntaxes;

• AST2EOL, AST2EVL and AST2ETL transformations, which transform ANTLR-

based homogeneous abstract syntax trees into instances of EOL, EVL and ETL

metamodels;

• Epsilon Static Analysis Model Connectivity layer (ESAMC), an enhanced version

of Epsilon Model Connectivity layer (EMC) that provides interfaces for accessing

metamodels defined in different modelling technologies in a uniform way;

• EOL, EVL and ETL static analysers, which formalise the scoping rules for variable

resolution, and the type resolution semantics of the respective languages.

11.5.2. Contributions to Model Management

In terms of contributions that are not bound to Epsilon, this thesis demonstrated that:

• Meaningful static analysis of programs that involve models defined in diverse mod-

elling technologies is feasible and practical.

• The results of static analysis can be used to reason about and to automatically

optimise the performance of model manamgement programs operating on large

models. More specifically by leveraging the results of static analysis:

- Sub-optimal performance pattterns can be identified;

- Efficient computation and caching strategies can be defined for computationally-

expensive operations such as collecting all instances of a type in a model (allInstances());

- Partial loading of XMI models can be achieved.
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11.6. Future Work

Static analysis in the context of MDE, as illustrated in this thesis, has great potential

to develop applications that solve a broad range of existing/emerging problems. This

section provides a number of research directions for future work.

11.6.1. Extending the EOL Static Analyser

The EOL static analyser can be extended in the future in a number of ways.

• The EOL static analyser can be extended to support the analysis of EOL programs

that manage models defined in modelling technologies beyond EMF and schema-

less XML. This is made possible by the Epsilon Static Analysis Model Connectivity

(ESAMC) layer; drivers for other modelling technologies can be built atop ESAMC.

• This work aims to establish a static analysis framework for model management

programs. However, some of the active research topic in the context of static

analysis are not extensively explored. For example, EOL is a dynamically typed

language, as pointed out in Section 9.3, the EOL static analyser adopts a naive

approach - it makes best guess of the type of expressions of Any type. However,

the type of an expression of Any type gets significantly more difficult to guess

when its type changes in condition statements (such as if and switch statements).

In the future work, the EOL static analyser should be able to handle this situation

- the resolution of Any type using union types or similar approach. However,

such tolerance to the use of Any type should also have its boundaries - it should

not encourage the abuse of Any type, i.e. that the developers should not use an

expression of type Any and assign values of different types to it. The boundary

of tolerance would be (or at least should respect) that an expression with type

Any to be assigned values of types that are inherently related - an warning/error

should be issued for assignments to expressions of Any type which do not respect

this boundary. There are at least two advantage if this approach is adopted: the

static analyser is able to resolve types of most of the expressions (or possibly all),

300



11.6. Future Work

and that the code gets clean and more clear and therefore is easier to comprehend

and maintain.

• As previously discussed, the EOL static analyser should in the future provide

support for type resolution of Native (Java) expressions. For variables (objects) of

Native types, EOL supports direct method invocations (methods defined in their

respective Java classes). Therefore to further help the developer detect potential

errors, it is beneficial to expand the static analysis support to Native types.

• Most static analysis tools provide content assistance/completion facilities for de-

velopers. Although not a research contribution, implementing a content assist tool

for EOL would be arguably beneficial to EOL developers.

11.6.2. Extending the Epsilon Static Analysis Framework

Currently, the static analysis framework supports the analysis of programs written in

EOL, EVL and ETL. In the future work, supports for EGL (Epsilon Generation Lan-

guage), ECL (Epsilon Comparison Language) EML (Epsilon Merging Language) and

EWL (Epsilon Wizard Language) can be implemented to expand the static analysis to

programs written in achieving different model management goals.

In addition, the analysis of programs should not be bound to one program at a time.

In a typical MDE-based development process, model mangement programs are used in

complex workflows. For example, before a model (m1) is used as the input model of

a model-to-model transformation, it typically needs to be validated by a model valida-

tion operation (mv1). When the transformation is completed, the output model (m2)

may also be validated by another model validation operation (mv2). While individu-

ally analysing the model management operations may discover potential runtime errors,

analysing the model management operations collectively may discover more runtime

problems such as dead code (transformation rules that are not executed) or inconsis-

tencies (transformation rules that disregard the constraints described in mv1 or mv2).

Therefore, expanding the analysis scope across different types of model management

operations can be beneficial.
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11.6.3. Additional Applications

In this thesis, three applications of the Epsilon Static Analysis Framework were presented

and discussed. In the future work, several research additional directions can be pursued:

• Scheduling of model transformation rules. As discussed in Chapter 8, computing

the rule dependency graph for model transformation is beneficial for the paral-

lel execution of model transformations. However, in reality model transformation

rules can typically get complicated making transforamtion scheduling a hard prob-

lem. To pursue this path, search-based meta-heuristics may be adopted to find an

optimal solution for rule scheduling (either applied dynamically or statically).

• New model-management-operation-driven model persistence format. Analysing

models/metamodels involved in a model management operation can be benefi-

cial if more freedom is given to the persistence technique on how the structure of

the models can be re-arranged within the persistence format so that partial load-

ing/saving can be achieved (in the sense that the entirety of the model does not

need to be fully loaded, and that any changes made to the loaded model can be

propagated back to the persistence). This means that every model-metamodel pair

may have a different structure of how model elements are persisted (with look-up

information persisted at the beginning of each persisted file).

11.6.4. Porting to OCL-like languages and tools

As previously described, EOL re-uses a large amount of language syntax of OCL. This

makes it possible for (principles used in) the Epsilon Static Analysis Framework and

its applications to be ported to languages that use OCL syntax. In order to achieve

this, additional work is required to implement a bridge (or via OCL’s pivot metamodel)

between other OCL-like language and EOL. Alternatively, the ideas of the static analysis

and its applications for the Epsilon platform can be re-implemented for other OCL-like

languages independently.
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A. The Abstract Syntax of Epsilon Object

Language

This section presents the abstract syntax of EOL. It is worth noting that the EOL

metamodel also includes elements which are created for the purpose of static analysis.

The syntax of EOL is presented in a top-down manner. Although this section aims

at organising the introduction of the EOL abstract syntax, the inter-related nature of

EOL’s abstract syntax makes it difficult to introduce one concept at a time. Thus,

a convention is adopted, if a concept needs to be explained in detail, but is necessary

to be introduced before its detailed discussion, in the first instance of its occurrence it is

emphasised in bold font and with a forward reference to its detailed discussion. Abstract

Syntax elements marked as conceptual do not have their corresponding concrete syntax

counterparts in EOL, but are essential for static analysis.

Figure A.1.: The structure of EOLElement
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A.1. EOLElement

The structure of EOLElement is depicted in Figure A.1. Element EOLElement is the

fundamental element of EOL. EOLElement is abstract, and is extended by other EOL

elements. Before moving on to the features of EOLElement, two basic constructs should

be discussed: TextPosition and TextRegion.

• Element TextPosition is created to represent the position of a character in an EOL

program. It contains two attributes: line and column which are int, and represent

the coordinates of a character in an EOL program.

• Element TextRegion is created to represent a region of text in an EOL program.

It contains two references: start and end which are of type TextPosition, and

represent the start and the end coordinates of a region of text in an EOL program.

EOLElement contains the following features:

• container, of type EOLElement, is used to establish a link between an EOLElement

and its containing EOLElement.

• region, of type TextRegion, is used to denote the text region of an EOLElement in

its containing file.

• uri, of type String, is used as the unique identifier of the EOLElement, which

contains information such as file path etc. so that an EOLElement can be located

with the uri in the file system.

EOLElement is the base type of all constructs in the EOL metamodel. The direct

sub-types of EOLElement are shown in Figure A.2. EOLLibraryModule models the

EOL Library Modules [9] in EOL, and is discussed in Section A.1.1. Import is used

to model the EOL imports which are used to import other EOL programs (discussed in

Section A.1.2). OperationDefinition is used to model the operation definitions in EOL

contained in an EOLLibraryModule (discussed in Section A.4.9). Statement is used to

model the statements in an EOL program, and is discussed in Section A.3. Block is

used to model a block of Statements, and is discussed in section A.1.4. Expression

306



A.1. EOLElement

Figure A.2.: Sub-types of EOLElement

is used to model expressions that EOL is capable of describing, and is discussed in

Section A.2. Type is used to model the type system of EOL, and is discussed in

Section A.4. ExpressionOrStatementBlock is used to model the construct in EOL

which may contain a single Expression or (exclusively) a single Block, and is discussed

in Section A.1.5.

A.1.1. EOLLibraryModule

EOLLibraryModule (abstract) is used to denote a module of Epsilon. In Epsilon, a

module is an abstract concept that represents a program. For example, an EOL program

is an EOL module. EOLLibraryModule can be extended to create other modules. This

is discussed later in Section A.1.3. In particular, an EOLLibraryModule contains:

• A number of Imports, which are used to denote imported EOLLibraryModules,

where the path of the imported module is denoted by the imported property of

Import (Section A.1.2).

• A number of ModelDeclarationStatements. A ModelDeclarationStatement is

used to represent a statement that declares a model, and its parameters can be
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Figure A.3.: The structure of EOLLibraryModule

used to specify the location of a metamodel and a model (the parameters are

technology-specific, for example for an EMF model it makes sense to specify an

nsURI or the location of the Ecore metamodel; for a database model it makes sense

to provide the name of the database and the IP of the server etc.). The details of

ModelDeclarationStatement are discussed in Section A.3.9;

• A number of OperationDefinitions. An OperationDefinition is used to denote the

concept of an operation (or helper). The details of OperationDefinition are dis-

cussed in Section A.4.9.

The structure of EOLLibraryModule is shown in Figure A.3. It is worth noting that

some details of the classes previously introduced are omitted for visibility purposes.

A.1.2. Import

An Import is used to denote the import behaviour in EOL. For example, the following

statement imports an EOL program named “foo.eol”;

import "foo.eol";
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Figure A.4.: The structure of Import

The Import conceptually contains another EOLLibraryModule (the name of the im-

ported module is denoted by the imported property), which can be accessed through its

importedModule reference. The structure of Import is displayed in Figure A.4.

A.1.3. EOLModule

EOLProgram is used to denote an EOL program. EOLProgram extends EOLLibrary-

Module. In addition, it contains an optional Block (discussed in Section A.1.4), which is

used to denote a block of Statements that are processed when the program is executed

(discussed in Section A.3). The structure of EOLProgram is shown in Figure A.5.

Figure A.5.: The structure of EOLModule
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A.1.4. Block

Block represents a block of statements in EOL. A Block contains a feature named state-

ments (of Type Statement discussed in Section A.3) which contains a list of Statements.

A Block is normally contained in EOLLibraryModules and OperationDefinitions. The

structure of Block is shown in Figure A.6. It is noteworthy that AnnotationBlock

is a special case for Block that contains AnnotationStatements, and is discussed in

Section A.3.8.

Figure A.6.: The structure of Block

A.1.5. ExpressionOrStatementBlock

ExpressionOrStatementBlock is a construct that contains exclusively either an Expres-

sion (discussed in Section A.2) or a Block. ExpressionOrStatementBlock is typically

used in control flow statements such as if statements:

1 var student = Student.all.first;

2 if(student.tutor.isUndefined())

3 (student.first_name + "does not have a tutor").println();

The construct in line 3 is an instance of ExpressionOrStatementBlock, because control

flow statements can omit the curly brackets and give an expression immediately after the

if() condition. In line 3, the ExpressionOrStatementBlock contains simply an expression.

310



A.2. Expression

Figure A.7.: The structure of ExpressionOrStatementBlock

The structure of ExpressionOrStatementBlock is shown in Figure A.7. It contains an

expression (of type Expression) or a block (of type Block). It also contains a condition

(of type Expression) which is used to represent the condition of the control flow branches.

A.2. Expression

Expression (abstract) is a base class of different types of EOL expressions. Expression

has a feature named resolvedType, which is a Type. The Type can be one of the types

in the EOL type system, which are discussed in Section A.4. The Expression and its

sub-types are shown in Figure A.8. There is a number of types that extend Expression.

The sub-types of Expression are discussed in detail in this section.
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A.2.1. PrimitiveExpression

PrimitiveExpression is created to model the primitive literals in EOL. In EOL, there

are four primitive types: Boolean, Integer, Real and String. The modelling of the Prim-

itiveExpression introduced several conceptual and abstract classes. The ComparableEx-

pression (abstract and conceptual) type denotes the primitive types on which compare

operators (>, >=, <, <=, = and <>) can be used. The SummableExpression (abstract,

conceptual) type denotes the primitive types to which the summation operator (+) can

be used. StringExpression, RealExpression, IntegerExpression and BooleanEx-

pression represent the literals of String, Real, Integer and Boolean. StringExpression,

RealExpression, IntegerExpression and BooleanExpression all have a feature named value

which holds the value of the literals. The structure of PrimitiveExpression and its sub-

types is shown in Figure A.9. Thus, for the following EOL program:

Figure A.9.: The structure of PrimitiveExpression and its sub-types

var a = "String";

The right hand side of = is a StringExpression. PrimitiveExpression inherits the re-

solvedType feature from Expression. This implies that a PrimitiveExpression must have

a Type. In this case, the StringExpression (with value “String”) has a StringType

which is discussed in Section A.4.2.

313



A. The Abstract Syntax of Epsilon Object Language

A.2.2. CollectionExpression

CollectionExpression is created to model collection literals in EOL. In EOL, four types

of collections are provided. The Bag collection represents non-unique, unordered col-

lections; the Sequence collection represents non-unique, ordered collections; the Set

collection represents unique and unordered collections; and the OrderedSet represents

unique and ordered collections. The structure of CollectionExpression is shown in Fig-

ure A.10. The abstract types UniqueCollection and OrderedCollection are types created

to categorise collections. Thus, SetExpression and OrderedSetExpression are kind-of

UniqueCollection, and OrderedSetExpression and SequenceExpression are kind-of Or-

deredCollection. BagExpression on the other hand is not ordered and not unique.

Figure A.10.: The structure of CollectionExpression and its sub-types

CollectionExpression inherits the resolvedType field from Expression. It implies that

a CollectionExpression must have a type. Consider an example:

var a = Sequence(String);

The right hand side of the = is a SequenceExpression, which comes with a type decla-

ration, which declares that the content type of the sequence should be StringType. If
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no type annotation is provided, the expression is assumed to be of type AnyType, and

is discussed in Section A.4.1.

CollectionExpression can also be initialised by a CollectionInitialisationExpres-

sion.

A.2.3. CollectionInitialisationExpression

A CollectionExpression may be initialised by a CollectionInitialisationExpression.

The structure of CollectionInitialisationExpression is shown in Figure A.11.

Figure A.11.: The structure of CollectionInitialisationExpression and its sub-types

In general, there is a number of ways that a CollectionExpression can be initialised.

Consider the example below:

1 var a = new Sequence;

2 var b = new Sequence(Integer);

3 var c = Sequence{1,2,3,4,5};

4 var d = Sequence{5..10};

In line 1, a Sequence is created with the new keyword, and has an automatic AnyType

as its content type. In line 2, a Sequence is initialised with a type declaration, and its

content type is IntegerType. In line 3, an explicit expression list is provided to initialise

a Sequence. Thus, variable c is a Sequence which contains values {1,2,3,4,5}. Finally,

in line 4, an expression range with the .. notation is provided to initialise a Sequence.
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Thus, variable d is a Sequence which contains the values {5,6,7,8,9,10}.

Thus, two sub-types of CollectionInitialisationExpression are created. Expression-

List contains a number of Expressions which are used to initialise a CollectionExpres-

sion. ExpressionRange contains an Expression named start to denote the start of the

range, and an Expression named end to denote the end of the range. It is noteworthy

that ExpressionRange is only applicable when the Expressions involved evaluate to In-

tegerExpressions and only to CollectionExpressions with IntegerType as their content

types.

A.2.4. KeyValueExpression

KeyValueExpression is created to model the key-value pair expressions in EOL. Key-

ValueExpression contains a feature named key and a feature named value which are

both of type Expression. KeyValueExpression is typically used in MapExpression,

which is discussed in Section A.2.5. The structure of KeyValueExpression is shown in

Figure A.12.

Figure A.12.: The structure of KeyValueExpression

A.2.5. MapExpression

EOL provides a way to create a Map. The Map represents a collection of key-value pairs

in which the keys are unique. A Map may be initialised in the following forms:

var map = new Map;

var map = Map{"John" = "01904-123-456", "Kate" = "01904-987-654"};
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The MapExpression is created to model the Map expression in EOL. A MapExpression

contains an optional collection of KeyValueExpressions at initialisation. The structure

of MapExpression is shown in Figure A.13.

Figure A.13.: The structure of MapExpression

A.2.6. NameExpression

Figure A.14.: The structure of NameExpression

In EOL, there are names of various kinds. Consider the example:

1 var a = 1;

2 a.println();

3 a.isType(Integer);

In lines 1 and 2, a is an example of name in EOL. In line 2, the name of the method

call println is also a name. Parameters are expressions in general but can also be names

of other expressions. In line 3, Integer is an example of a name. Type NameExpression

is created to model names in EOL. A NameExpression contains a string named name

which holds the value of the name. In some cases, a name can refer to another object;

for example, in line 2, a refers to the variable declared in line 1. Thus, NameExpression

contains a feature named resolvedContent of type Object. NameExpression also contains

an attribute isType, which is used to denote if the NameExpression is a type in EOL.
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For example, in line 3, the parameter Integer is a name but at the same time it is an

EOL type. The structure of NameExpression is shown in Figure A.14.

A.2.7. VariableDeclarationExpression

VariableDeclarationExpression is created to model variable declarations in EOL. Con-

sider the example:

1 var a = 1;

2 var b: String;

3 var student : new Student;

In line 1, a variable named a is declared on the left hand side of =. a does not have any

type declaration, so its type is assumed to be Any in EOL. In line 2, a variable named

b is declared with its type (String). In line 3, a variable named student is declared,

together with a keyword new. This means that a new instance of Student is created

and assigned to student. Thus, VariableDeclarationExpression contains a name of type

NameExpression and an attribute create to denote if the new keyword is used. The Vari-

ableDeclarationExpression can also have a number of references by NameExpressions.

The structure of VariableDeclarationExpression is shown in Figure A.15.

Figure A.15.: The structure of VariableDeclarationExpression

A.2.8. FormalParameterExpression

FormalParameterExpression is a sub-type of VariableDeclarationExpression, which is

used to denote the parameter declarations when an operation is declared. For example:

1 var a = 1; //a is 1
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2 a = a.add(1); //a is now 2

3 operation Integer add(i: Integer): Integer {

4 return self + i;

5 }

In line 3, the declared operation takes a single parameter i of type Integer. This parame-

ter declaration is represented by FormalParameterExpression. FormalParameterExpres-

sion does not contain any additional features compared to VariableDeclarationExpres-

sion.

A.2.9. NewExpression

Figure A.16.: The structure of NewExpression

In EOL, the new keyword is used to create instances of non-primitive types. For

example, to create a Sequence:

var a = new Sequence(Integer);

To create a model element type named Student :

var a = new Student;

EOL also supports the creation of native Java objects:

var frame = new Native("javax.swing.JFrame");

frame.title = "Opened with EOL";

frame.setBounds(100,100,300,200);

frame.visible = true;

The NewExpression is created to represent such expressions, and its structure is shown

in Figure A.16. NewExpression has a name (of type NameExpression) to denote the
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name of the type to be instantiated. The parameters of the new keyword are represented

by the feature named parameter (of type Expression).

A.2.10. EnumerationLiteralExpression

EOL provides the # operator for accessing enumeration literals. For example:

var a = A!B#C;

accesses the Literal C in enumeration B in metamodel A. The structure of Enumera-

tionLiteralExpression is shown in Figure A.17. EnumerationLiteralExpression has three

references named metamodel, enumeration and literal (all of type NameExpression) to

represent the names of the metamodel, the enumeration and the literal.

Figure A.17.: The structure of EnumerationLiteralExpression

A.2.11. FeatureCallExpression

EOL provides expressions to navigate properties and invoke operations on objects [9].

Such expressions can be collectively summarised as feature call expressions. Consider

the example:

1 var student = Student.all.println();

2 var tutor = student.tutor;

3 name.println();

4 var firstClassStudents = Student.all.select(s|s.tutor = tutor);

In line 2, a property call expression student.tutor appears, where tutor is the name

of the property to be named on student. In line 3, a method call expression appears,
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where println() is the name of the method in the EOL standard library to be named.

A first-order logical method call expression appears in line 4. The name of the method

is select and it specifies the condition of select using a lambda expression. Property

call expression, method call expression and first-order-logic-method call expression can

be categorised as feature call expressions [9]. EOL provides two operators to initiate

feature call expressions: the . operator and the → operator. The semantics difference

is that when the . operator is used, precedence is given to the user-defined operations

rather than the standard library operations in case of a name collision. For example:

1 "Something".println();

2 operation Any println(): Any {

3 ("Printing: " + self)->println();

4 }

In line 2, an operation named println() is defined, which collides with the println()

operation defined in the EOL standard library. To invoke the operation in line 3, the .

operator is used in line 1. However, it is noteworthy that in line 3, the → operator is

used to call the println() operation in the EOL standard library; otherwise, the operation

would trigger an infinite recursion.

Figure A.18.: The structure of FeatureCallExpression and its sub-types

The FeatureCallExpression (abstract) is created to represent the concept of feature call

expressions of EOL. Its structure is shown in Figure A.18. The FeatureCallExpression

has an optional target (of type Expression), which is used to denote which expression

initiates the FeatureCallExpression. FeatureCallExpression also contains an attribute
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named isArrow (of type Boolean), which is used to denote if a FeatureCallExpression

uses the → operator.

MethodCallExpression

MethodCallExpression is created to represent method calls in EOL. Its structure is shown

in Figure A.19. MethodCallExpression extends FeatureCallExpression, which contains

a number of arguments (of type Expression) and a method (of Type NameExpression)

which is used to refer to the name of the operation definition. A MethodCallExpression

also has a derived feature named resolvedOperationDefinition which is calculated at

runtime, so that it points to the operation definition that it calls.

Figure A.19.: The structure of MethodCallExpression

FOLMethodCallExpression

FOLMethodCallExpression is created to represent first-order-logic-method calls in EOL.

Its structure is shown in Figure A.20. FOLMethodCallExpression extends FeatureCall-

Expression, which contains an iterator (of type FormalParameterExpression) to denote

the iterator of the lambda expression, a number of conditions (of type Expression) to

denote the condition of the lambda expression, a method (of type NameExpression) to

denote the name of the first-order-logic operation, and a resolvedOperationDefinition (of
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Figure A.20.: The structure of FOLMethodCallExpression

type OperationDefinition) which is calculated at runtime to refer to the first-order-logic

operation (in the standard library) that it calls.

Figure A.21.: The structure of PropertyCallExpression

PropertyCallExpression

PropertyCallExpression is created to represent property call expressions in EOL. Its

structure is shown in Figure A.21. EOL supports the notion of extended property, which

temporarily assigns a property to an object which can be retrieved throughout the

execution of the EOL program. Consider the example program shown in Listing A.1

which calculates the depth of each Tree element (which does not have a parent node) in
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a model that conforms to the Tree metamodel from [9] in Figure A.22. In line 10, an

extended property, represented by the ∼ operator, named depth, is assigned to instances

of Tree. In line 6, the depth property is retrieved. The extended property provides the

user of EOL the facility to relate information to individual objects which is not supported

by its corresponding meta-type.

Figure A.22.: The Tree Metamodel from [9]

Therefore, PropertyCallExpression has an attribute named extended (of type Boolean)

to denote if this property call is an extended or a regular property call. PropertyCall-

Expression also has a feature named property (of type NameExpression) which is used

to denote the name of the property.

for (n in Tree.allInstances.select(t|not t.parent.isDefined())) {

n.setDepth(0);

}

for (n in Tree.allInstances) {

(n.name + " " + n.~depth).println();

}

operation Tree setDepth(depth : Integer) {

self.~depth = depth;

for (c in self.children) {

c.setDepth(depth + 1);

}

}

Listing A.1: An example EOL program using extended properties
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A.2.12. OperatorExpression

OperatorExpression (abstract) is created to denote operator expressions in EOL. Oper-

atorExpression extends Expression; thus, it inherits the resolvedType property (of type

Type). The structure of OperatorExpression and its sub-types is shown in Figure A.23.

OperatorExpressions can be categorised into UnaryOperatorExpressions (abstract,

conceptual) and BinaryOperatorExpressions (abstract, conceptual). UnaryOpera-

torExpressions contain a feature named expression (of type Expression) to denote the

expression used in the operator. There are two kinds of UnaryOperatorExpressions in

EOL: the NotOperatorExpression and the NegativeOperatorExpression. Con-

sider the example:

var not = not false;

var negative = - (1);

The right hand side expression of the = in line 1 is an example of NotOperatorEx-

pression, whereas the right hand side expression of the = in line 2 is an example of

NegativeOperatorExpression.

BinaryOperatorExpressions contain a lhs (of type Expression) and a rhs (of type

Expression) to denote the first and second operand of the binary operator expressions.

BinaryOperatorExpressions can be further categorised as:

• ArithmeticOperatorExpressions (abstract, conceptual), which represent oper-

ators for arithmetic computations such as +, −, ∗ and /, represented by PlusOp-

eratorExpression; MinusOperatorExpression, MultiplyOperatorExpres-

sion and DivideOperatorExpression.

• LogicalOperatorExpressions (abstract, conceptual) which include logic oper-

ators such as and, xor, or and implies, represented by AndOperatorExpres-

sion, XorOperatorExpression, OrOperatorExpression and ImpliesOper-

atorExpression.

• ComparisonOperatorExpressions (abstract, conceptual) which denote com-

parison operators such as >, >=, < and <=. These operators are represented by
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GreaterThanOperatorExpression, GreaterThanOrEqualToOperatorEx-

pression, LessThanOperatorExpression and LessThanOrEqualToOpera-

torExpression.

• EqualityOperatorExpressions (abstract, conceptual) which are equality opera-

tors such as = and <>, represented by EqualsOperatorExpression and NotE-

qualsOperatorExpression.

A.3. Statement

Statement (abstract) and its sub-types are created to represent the different types of

statements provided by EOL. The structure of Statement and its sub-types is shown in

Figure A.25.

A.3.1. ExpressionStatement

ExpressionStatement is created to represent the simplest form of statement in EOL.

Consider the example:

"Hello World".println();

where an instance of ExpressionStatement appears. ExpressionStatement contains an

expression (of type Expression). The structure of ExpressionStatement is shown in

Figure A.24.

Figure A.24.: The structure of ExpressionStatement
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A.3.2. AssignmentStatement

AssignmentStatement is created to represent the assignments in EOL. Consider the

example:

var a = 1;

The left hand side of the = is an instance of VariableDeclarationExpression, whilst

the right hand side of the = is an instance of IntegerExpression. The structure of

AssignmentStatement is shown in Figure A.26. AssignmentStatement contains a lhs

and a rhs (of type Expression) to denote the left hand side and the right hand side

expressions of the assignment.

Figure A.26.: The structure of AssignmentStatement

A.3.3. ForStatement

ForStatement is created to represent for loops in EOL. Consider the example:

for(i in Sequence{1..5})

i.println();

In EOL, for loops contain an iterator and the domain of that iterator (i.e. the values it

iterates over). In this instance, the iterator is i and its domain is Sequence{1..5}. The

structure of ForStatement is shown in Figure A.27. ForStatement contains an iterator

(of type FormalParameterExpression), a body (of type ExpressionOrStatementBlock)

and a domain for the iterator (of type Expression).

A.3.4. WhileStatement

WhileStatement is created to represent the while loops in EOL. Consider the example:
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Figure A.27.: The structure of ForStatement

1 var a = 5;

2 while(a >= 0)

3 {

4 a.println();

5 a = a - 1;

6 }

Figure A.28.: The structure of WhileStatement

In line 2, a while loop is in place, which contains a condition that evaluates to a

boolean value, and a body which may be a block or an expression. The structure of

WhileStatement is shown in Figure A.28. WhileStatement contains a body (of type Ex-

pressionOrStatementBlock). It is noteworthy that the condition of the while loop, which

evaluates to a boolean value, is represented by the condition in the ExpressionOrState-

mentBlock.
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A.3.5. IfStatement

IfStatement is created to represent if statements in EOL. Consider the example:

1 var a = Sequence{1..30}.random();

2 if(a < 10)

3 {

4 "a is less than 10".println();

5 }

6 else if(a >= 10 and a < 20)

7 {

8 "a >=10 and a < 20".println();

9 }

10 else

11 {

12 "a is greater than or equal to 20".println();

13 }

Figure A.29.: The structure of IfStatement

An if statement contains multiple branches (if, else-if and else). The structure of If-

Statement is shown in Figure A.29. IfStatement has an ifBody, a number of optional

elseIfBody(-ies) and an optional elseBody (all of which are of type ExpressionOrState-

mentBlock). The condition of the branches in the IfStatement is represented by the

condition property in ExpressionOrStatementBlock.
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A.3.6. SwitchStatement

SwitchStatement is created to represent switch statements in EOL. In particular, a switch

statement in EOL is in the form of the following:

1 var i = Sequence{1..4}.random();

2 switch(i) {

3 case 1: i.println();

4 case 2: i.println();

5 case 3: i.println();

6 default : "default".println();

7 }

The structure of SwitchStatement is shown in Figure A.30. SwitchStatement contains an

expression (of type Expression) to represent the expression to switch. SwitchStatement

contains a number of cases (of type SwitchCaseExpressionStatement) and a de-

fault (of type SwitchCaseDefaultStatement). SwitchCaseExpressionStatement and

SwitchCaseDefaultStatement are sub-types of SwitchCaseStatement (abstract), which

contains a feature named body (of type ExpressionOrStatementBlock).

Figure A.30.: The structure of SwitchStatement

332



A.3. Statement

A.3.7. ContinueStatement, BreakStatement and BreakAllStatement

ContinueStatement, BreakStatement and BreakAllStatement are control flow statements

that are typically used in loops in EOL. Consider the example:

1 for(i in Sequence{1..3}) {

2 if(i == 1)

3 continue;

4 for(j in Sequence{1..4}) {

5 if(j = 2) {break;}

6 if(j = 3) {breakAll;}

7 (i + "," + j).println();

8 }

9 }

Lines 3, 5 and 6 illustrate examples of continue, break and breakAll statements. The

structures of ContinueStatement, BreakStatement and BreakAllStatement are shown in

Figure A.25.

A.3.8. AnnotationStatement

In EOL, an operation may be preceded by an annotation block [9]. In EOL, annotation

blocks have two purposes: simple annotations are used to declare a name and several

strings [9], and executable annotations are used to describe pre/post conditions of an

operation. The concrete syntax of simple annotations is:

@name value(,value)*

An example of simple annotations is:

@colours red, blue, green

A number of pre and post executable annotations can be attached to EOL operations

to specify the pre- and post-conditions of the operation. When an operation is invoked,

before its body is evaluated, the expressions of the pre- annotations are evaluated. If

all of them return true, the body of the operation is processed; otherwise, an error is
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raised. Similarly, once the body of the operation has been executed, the expressions of

the post- annotations of the operation are executed to ensure that the operation has had

the desired effects. Pre- and post- annotations can access all the variables in the parent

scope, as well as the parameters of the operation and the object on which the operation

is invoked (through the self variable). Moreover, in post annotations, the returned value

of the operation is accessible through the built-in result variable.

1 1.add(2);

2 1.add(-1);

3

4 $pre i>0

5 $post _result>self

6 operation Integer add(i: Integer) : Integer {

7 return self + i;

8 }

Listing A.2: pre- and post- conditions of an operation definition

For example, the program in Listing A.2 demonstrates an example of pre- and post-

conditions. In line 4, the pre- condition specifies that i should be greater than 0. The

post- condition specifies that the result should be greater than self. Thus, the statement

in line 1 will pass and the statement in line 2 will throw an error.

Figure A.31.: The structure of AnnotationStatement

AnnotationStatement (abstract) and its sub-types are created to represent annota-
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tions in EOL. The structure of AnnotationStatement and its sub-types are shown in

Figure A.31. AnnotationStatement contains a name (of type NameExpression). Exe-

cutableAnnotationStatement inherits AnnotationStatement and contains an expres-

sion (of type Expression), where SimpleAnnotationStatement inherits Annotation-

Statement and contains values (of type StringExpression).

A.3.9. ModelDeclarationStatement

ModelDeclarationStatement is not currently supported by EOL at runtime, but is es-

sential for the purpose of static analysis. At the moment, the EOL run configuration is

responsible for specifying the locations of models and metamodels managed by an EOL

program via Eclipse Epsilon’s GUI. However, in order to achieve static analysis, there

needs to be a way to specify such information in EOL source code rather than in the

configuration screen. Thus, the ModelDeclarationStatement is created. The structure of

ModelDeclarationStatement is displayed in Figure A.32.

Figure A.32.: The structure of ModelDeclarationStatement

ModelDeclarationStatement is a sub-type of Statement and contains the following

features:

• A mandatory name, represented by VariableDeclarationExpression;

• A number of aliases, represented by VariableDeclarationExpression;

• A mandatory driver, represented by NameExpression;
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• A number of parameters, represented by ModelDeclarationParameter. A Mod-

elDeclarationParameter is a sub-type of KeyValueExpression. A KeyValueEx-

pression is used to represent expressions such as:

a = "1", b = "2";

KeyValueExpression has a key and a value, both of which are Expressions.

An example of the concrete syntax of ModelDeclarationStatement is shown below:

model Ecore alias e driver EMF {nsuri =

"http://www.eclipse.org/emf/2002/Ecore"};

In this example, the name of the statement is Ecore. It also has an alias named e, and

specifies that the metamodel should be loaded using EMF. It then gives the nsuri of the

metamodel in the EPackage registry using a key-value pair.

A.3.10. ReturnStatement

Figure A.33.: The structure of ReturnStatement

ReturnStatement is created to represent the return keyword in EOL. The return key-

word is typically used in operation definitions to direct the control flow to the caller to

the operation definition. For example:

1 var a = 10;

2 a.add(10).println();

3 operation Integer add(i:Integer) {

4 return self+i;

5 }
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The return keyword in line 4 denotes that the operation add() in line 3 should return

the value of self+i. The structure of ReturnStatement is shown in Figure A.33.

A.3.11. ThrowStatement

Figure A.34.: The structure of ThrowStatement

EOL provides the throw statement for throwing a value as an EOLUserException Java

exception:

throw 42;

throw "Error!"

ThrowStatement is created to represent the throw keyword in EOL. The structure of

ThrowStatement is shown in Figure A.34.

A.3.12. DeleteStatement

Figure A.35.: The structure of DeleteStatement

EOL provides the delete keyword to delete a model element from a model. Consider

the example:

var student = Student.all.random();

if(student.first_name.isUndefined() and

student.last_name.isUndefined()) {
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delete student;

}

The program picks a random Student and checks if the first and last names of the student

are defined. If not, it deletes the student from the model. DeleteStatement is created to

represent the delete keyword in EOL. Its structure is shown in Figure A.35.
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A.4. Type

Type (abstract) and its sub-classes are created to represent the type system of EOL.

In addition, a number of conceptual types are also introduced for the purpose of static

analysis. The structure of Type and its sub-types is shown in Figure A.36.

A.4.1. AnyType

The Any type is a wildcard type in EOL’s type system. The Any type in EOL originates

from the OclAny type of the Object Constraint Language (OCL) [41]. A variable of type

Any is able to hold any value of any type in EOL. In EOL, when a variable declaration

is made, the type of the variable can be left unspecified:

1 var a;

2 var b: String;

In EOL, if no type declaration is provided in a variable declaration, it is assumed to be

of type Any. Thus, variable a in line 1 is of type Any. AnyType is created to represent

the Any type in EOL. AnyType contains the following features:

• dynamicTypes (of type Type). This property is used to hold all the possible types

that an expression can hold;

• declared, of type Boolean, is used to denote if the AnyType is specifically declared

by the developer.

The structure of AnyType is shown in Figure A.37

Figure A.37.: The structure of AnyType
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A.4.2. PrimitiveType

PrimitiveType (abstract) is created to model primitive types in EOL. There are four

primitive types in EOL: Boolean, Integer, Real and String. BooleanType, Inte-

gerType, RealType and StringType are created to represent these types.

A number of conceptual types are also created to categorise the primitive types. Com-

parablePrimitiveType (abstract, conceptual) is created to represent the primitive

types that are applicable to comparable operators (<, <=, > and >=). SummablePrim-

itiveType (abstract, conceptual) is created to represent the primitive types that are

applicable to the summation operator (+).

A.4.3. CollectionType

Figure A.38.: The structure of CollectionType

CollectionType (abstract) is created to model collection types in EOL. There are four

collection types in EOL: Bag, Set, OrderedSet and Sequence. BagType, SetType,

OrderedSetType and SequenceType are created to represent these types. Collec-

tionType also has a contentType which denotes the type of the contents in a collection.

For example:
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var a: Sequence(String);

The line above declares a Sequence named a. Note that the content type (String) of the

Sequence is also declared. Thus, a is a Sequence that can hold String values.

A number of conceptual types are also created to categorise the collection types.

UniqueCollectionType (abstract, conceptual) is created to represent collection types

in which contents are unique. OrderedCollectionType (abstract, conceptual) is cre-

ated to represent the collection types in which contents are ordered.

The structure of CollectionType and its sub-types are shown in Figure A.38.

A.4.4. MapType

Figure A.39.: The structure of MapType

EOL supports the creation of Map. Consider the example:

var map = Map{1 = "Hello", 2 = "World"};

A Map is defined in line 1, with its keys {1,2} and values {“Hello”, “World”}. MapType

is created to represent the type of a map. It is noteworthy that EOL does not provide

concrete syntax for declaring the types of keys and values of Maps; thus, they are both

considered to be of Any type.

MapType is created to represent the type of a Map. Its structure is shown in Fig-

ure A.39. MapType has a keyType and valueType which are bounded by AnyType.
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A.4.5. ModelElementType

ModelElementType is created to represent types defined in metamodels. EOL adopts

the syntax ! to access model element types. For example:

var student = new University!Student;

a model element type is specified by University!Student where University is the name of

the model of interest and Student is the name of the element type in its metamodel. The

structure of ModelElementType is shown in Figure A.40. ModelElementType contains

the modelName and elementName, which is used to identify the model element type.

It contains a modelType (of type Object) which is used to directly point to the model

element type when it is resolved.

Figure A.40.: The structure of ModelElementType

A.4.6. ModelType

EOL allows the user to query the owning model of an object using the owningModel()

operation:

var students = Student.all;

var newStudent = new Student;

students.add(newStudent);

var randomStudent = students.random();

randomStudent.owningModel().println();

The return type of owningModel is a Model type. ModelType is created to represent

this type. The structure of ModelType is shown in Figure A.41. ModelType contains a
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resolvedIMetamodel (of type Object) which points directly to the corresponding IMeta-

model driver, which is calculated at runtime. ModelType also has a reference to Mod-

elDeclarationStatement named resolvedModelDeclarationStatement, which is calculated

at runtime.

Figure A.41.: The structure of ModelType

A.4.7. NativeType

EOL enables users to create objects of the underlying programming environment (Java

for example) by using native types:

var file = new Native("java.io.File")("myFile.txt");

NativeType is created to represent types of the underlying implementation platform (i.e.

Java in the case of EOL’s current implementation). The structure of NativeType is

shown in Figure A.36. NativeType contains a typeName which is used to denote the

name of the native type, and a type (of Type Object) which will be derived from and

refer to the native type at runtime.

A.4.8. PseudoType

PseudoType (abstract) is created to help with the modelling of the EOL standard library.

A detailed discussion of PseudoTypes is provided in Section 7.4.1.

A.4.9. OperationDefinition

OperationDefinition is used to represent an operation/helper definition in EOL. In EOL,

operation definition is typically in the form as in the example below:
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1 var a = 1; //a is 1

2 a = a.add(); //a is now 2

3 operation Integer add(): Integer {

4 return self + i;

5 }

Listing A.3: An example EOL program with variable declaration and operation

definition

In the example, an operation is defined in line 3. The keyword operation is used to

denote that an operation is being defined, the name of the operation is add() and the

operation takes no parameters. Each operation has a context type, which is (optionally)

declared after the keyword operation. The context type is used to denote to which types

of objects the operation is applicable. In the example, the operation add is applicable

to instances of Integer. The operation also has a return type, in this case, an Integer.

An operation also has a special keyword named self which is used to fetch the caller of

this operation. Thus, when line 2 is executed and control is transferred to the operation

in line 3, the self is actually an alias of the variable a.

The structure of OperationDefinition is shown in Figure A.42. An OperationDefinition

typically comprises:

• An optional contextType (of type Type). If no contextType is declared, it is assumed

that the contextType is AnyType;

• An optional returnType (of type Type). If no returnType is declared, it is assumed

that the returnType is AnyType;

• A name of type NameExpression;

• A number of parameters of type FormalParameterExpression;

• A body of type Block ;

• An optional annotationBlock of type AnnotationBlock ;

• A special variable self of type VariableDeclarationExpression;
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Figure A.42.: The structure of OperationDefinition

• A special variable result, accessible from executable annotations, of type Vari-

ableDeclarationExpression;

• A collection of references to other OperationDefinitions named dependingOpera-

tionDefinitions, which are used to construct method call graphs, which will be

used later in this thesis.
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Transformation

@namespace(uri="OO", prefix="OO")

package OO;

class Model extends Package { }

abstract class PackageableElement extends NamedElement {

ref Package#contents ~package;

}

abstract class AnnotatedElement {

val Annotation[*] annotations;

}

class Annotation {

attr String key;

attr String value;

}

abstract class NamedElement extends AnnotatedElement {

attr String name;

}
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class Package extends PackageableElement {

val PackageableElement[*]#~package contents;

}

abstract class ~Classifier extends PackageableElement { }

class ExternalClass extends ~Class { }

class ~Class extends ~Classifier {

ref ~Class#extendedBy ~extends;

ref ~Class[*]#~extends extendedBy;

val Feature[*]#owner features;

attr Boolean isAbstract;

}

class Datatype extends ~Classifier { }

abstract class Feature extends NamedElement {

ref ~Class#features owner;

ref ~Classifier type;

attr VisibilityEnum visibility;

}

abstract class StructuralFeature extends Feature {

attr Boolean isMany;

}

class Operation extends Feature {

val Parameter[*]#owner parameters;

}
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class Parameter extends NamedElement {

ref ~Classifier type;

ref Operation#parameters owner;

}

class Reference extends StructuralFeature { }

class Attribute extends StructuralFeature { }

enum VisibilityEnum {

public = 1;

private = 2;

}

Listing B.1: The Emfatic Specification of the OO Metamodel

@namespace(uri="DB", prefix="DB")

package DB;

abstract class NamedElement {

attr String name;

}

class Database {

val DatabaseElement[*]#database contents;

}

abstract class DatabaseElement extends NamedElement {

ref Database#contents database;

}
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class Table extends DatabaseElement {

val Column[*]#table columns;

ref Column[*] primaryKeys;

}

class Column extends DatabaseElement {

ref Table#columns table;

attr String type;

}

class ForeignKey extends DatabaseElement {

ref Column parent;

ref Column child;

attr Boolean isMany;

}

Listing B.2: The Emfatic Specification of the DB Metamodel
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C. List of Acronyms

A

ANTLR: ANother Tool for Language Recognition

AMW: Atlas Model Weaving

AST: Abstract Syntax Tree

AST2EOL: AST to EOL model transformation

AST2ETL: AST to ETL model transformation

AST2EVL: AST to EVL model transformation

ATL: Atlast Transformation Language

C

CSV: Comma Separated Values

D

DSL: Domain Specific Language

E

ECL: Epsilon Comparison Language

EGL: Epsilon Generation Language

EMC: Epsilon Model Connectivity

EMF: Eclipse Modeling Framework

351



C. List of Acronyms

EMFATIC: A textual syntax for EMF Ecore (meta-)models.

EML: Epsilon Merging Language

EOL: Epsilon Object Language

EPL: Epsilon Pattern Language

Epsilon: Extensible Platform of Integrated Languages for Model Management

ESAMC: Epsilon Static Analysis Model Connectivity

ETL: Epsilon Transformation Language

EVL: Epsilon Validation Language

EWL: Epsilon Wizard Language

G

GME: Generic Modelling Environment

M

M2T: Model to Text transformation

M2M: Model to Model transformation

MDE: Model Driven Engineering

MDR: Meta Data Repository

MOF: Meta Object Facility

O

OCL: Object Constraint Language

OMG: Object Management Group

Q
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QVT: Queries/Views/Transformations

R

RDBMS: Relational Database Management Systems

S

SPPD: Sub-Optimal Performance Pattern Detection

SAX: Simple API for XML

T

T2M: Text to Model Transformation

U

UML: Unified Modelling Language

X

XMI: XML Model Interchange

XML: Extensible Markup Language

XSLT: Extensible Stylesheet Language Transformation
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[15] Juha Kärnä, Juha-Pekka Tolvanen, and Steven Kelly. Evaluating the Use of

Domain-Specific Modeling in Practice. In Proceedings of the 9th OOPSLA work-

shop on Domain-Specific Modeling, 2009.

[16] Parastoo Mohagheghi, MiguelA. Fernandez, JuanA. Martell, Mathias Fritzsche,

and Wasif Gilani. MDE Adoption in Industry: Challenges and Success Criteria.

In MichelR.V. Chaudron, editor, Models in Software Engineering, volume 5421

of Lecture Notes in Computer Science, pages 54–59. Springer Berlin Heidelberg,

2009.

356

http://www.eclipse.org/epsilon/doc/articles/emfatic/
http://www.eclipse.org/epsilon/doc/articles/emfatic/


[17] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering in a Large

Industrial Context Motorola Case Study. In Lionel Briand and Clay Williams,

editors, Model Driven Engineering Languages and Systems, volume 3713 of Lecture

Notes in Computer Science, pages 476–491. Springer Berlin Heidelberg, 2005.

[18] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Matragkas, Richard F. Paige, Es-
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Pruning. In Model Driven Engineering Languages and Systems, volume 5795 of

Lecture Notes in Computer Science, pages 32–46. Springer Berlin Heidelberg, 2009.

[123] Object Management Group. MOF Model To Text Transformation Language

(MOFM2T), 1.0. http://www.omg.org/spec/MOFM2T/1.0/. Accessed 01-01-2016.

[124] Charles L Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Artificial Intelligence, 19(1):17–37, 1982.
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