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Abstract

This thesis is concerned with modelling long chain branched polymer

melts using the McLeish and Larson Pompom constitutive equations.

Usually the non-linear terms in this model are fitted to uniaxial exten-

sional data due its sensitivity to levels of branching, but in this thesis

I will study a number of other non-linear flows using this model. For

each flow the results are compared to experiments on a set of polyethy-

lene melts.

The first flow types I examine are simple shear flows. In a shear

step-strain flow the stress relaxation of branched polymers is observed

to be time-strain separable, whereby the relaxation modulus can be

separated into the product of separate functions of time and strain. I

show that although the Pompom model is not time-strain separable in

general, there exist subsets of parameter values for which time-strain

separability is valid. For these sets a branched damping function is

derived which is analogous to the Doi-Edwards damping function for

linear polymer melts.

The other simple shear flow examined is oscillatory shear. Commonly,

oscillatory shear is probed at low strain amplitudes over a range of

frequencies to measure the usual dynamic moduli of linear viscoelas-

ticity. In this work the effect of strain amplitude is explored up to

absolute strains of order unity. The non-linear stress response is anal-

ysed from the higher harmonics in the Fourier series. In particular it is

shown that the third Fourier components are dependent on the Pom-

pom non-linear stretch relaxation time and a low-strain asymptote is

obtained.
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Subsequently, this thesis focuses on the stagnation point flow gener-

ated in a cross-slot geometry. The stress calculated from the Pompom

constitutive model is compared to experimental flow induced birefrin-

gence images. It is shown for linear and lightly branched materials

that the Pompom model predicts both the form of the birefringence

pattern and stress values obtained from the stress-optical law. How-

ever, for more highly branched polymers the Pompom model fails

to predict the change to birefringence patterns. Subsequent analysis

shows that there could exist a transient overshoot in extension which

the Pompom model cannot capture as it stands.

In the final part of my thesis I suggest an empirical alteration to the

Pompom constitutive model to capture this transient extensional over-

shoot, which is able to resolve the differences between experimental

flow induced birefringence images and theoretical simulations.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Processing of polymer melts . . . . . . . . . . . . . . . . . . . . . 2

1.3 Continuum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Governing Equations of Fluid Motion . . . . . . . . . . . . 7

1.3.2 Deformation Kinematics . . . . . . . . . . . . . . . . . . . 10

1.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Rheology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Linear Viscoelasticity . . . . . . . . . . . . . . . . . . . . . 15

1.5 Branched polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Molecularly derived constitutive model . . . . . . . . . . . . . . . 21

1.6.1 Gaussian Chains . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.2 The upper convected Maxwell model . . . . . . . . . . . . 24

1.6.3 Rouse Dynamics . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.4 Entanglements and Reptation . . . . . . . . . . . . . . . . 27

1.6.5 Branched Polymers: The Pompom model . . . . . . . . . . 32

1.7 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 42

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Materials 49

2.1 Pompom characterisation . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.A Pompom parameters . . . . . . . . . . . . . . . . . . . . . . . . . 67

vii



CONTENTS

3 Step-Strain Flow 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Pompom in Step Strain . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 The multimode Pompom model . . . . . . . . . . . . . . . 78

3.3 Damping function . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.3.2 Ideal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Survey of branched polymers . . . . . . . . . . . . . . . . . . . . . 90

3.4.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.A Approximating the initial stretch function . . . . . . . . . . . . . 101

4 Large Amplitude Oscillatory Shear Flow 105

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 General Oscillatory Shear . . . . . . . . . . . . . . . . . . 107

4.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3 The Pompom model in oscillatory shear . . . . . . . . . . . . . . 113

4.3.1 Fourier Transform Rheology . . . . . . . . . . . . . . . . . 114

4.3.2 Asymptotic Solutions . . . . . . . . . . . . . . . . . . . . . 116

4.3.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . 122

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.1 Small amplitude experiments . . . . . . . . . . . . . . . . 127

4.4.2 Large amplitude oscillatory shear (LAOS) . . . . . . . . . 127

4.5 Modelling linear chain stretch in the Pompom model . . . . . . . 136

4.5.1 Computational branch on branch rheology . . . . . . . . . 139

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Cross-slot Flow 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.4 The Pompom model in cross-slot flow . . . . . . . . . . . . . . . . 161

viii



CONTENTS

5.4.1 One mode Pompom model . . . . . . . . . . . . . . . . . . 161

5.4.2 A two mode Pompom model . . . . . . . . . . . . . . . . . 165

5.4.3 Comparison of 2D approximation and 3D simulations . . . 166

5.4.4 Multimode Pompom model . . . . . . . . . . . . . . . . . 174

5.5 The cross-slot as a rheometer . . . . . . . . . . . . . . . . . . . . 184

5.5.1 Steady state elongational planar viscosity from stagnation

point analysis . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.5.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.6 Evaluating Pompom parameterisations . . . . . . . . . . . . . . . 196

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6 Cross-slot Flow: an overshoot in extension 202

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.2 Transient overshoot in extension . . . . . . . . . . . . . . . . . . . 208

6.2.1 Multimode overshoot Pompom model . . . . . . . . . . . . 216

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.A Pompom overshoot parameters . . . . . . . . . . . . . . . . . . . 231

7 Conclusions 233

7.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

7.2 Concluding remarks and future work . . . . . . . . . . . . . . . . 234

References 240

ix



List of Figures

1.1 An example of GPC-MALLS, showing the contrasting structures

of a linear HDPE, a lightly branched HDPE and a branched LDPE. 5

1.2 An example of the film casting process, in which a polymer melt

is extruded through a die and is taken up, frozen, on a drum. The

difference in the molecular structure between a LCB-HDPE (left)

and a LDPE (right) affects the profile of the draw-ratio. . . . . . 5

1.3 Birefringence patterns showing contours of constant principal stress

difference for two complex geometries. On the left is a contraction

expansion geometry and on the right a cross-slot geometry. The

red arrow in figure (a) highlights the zero stress eye. . . . . . . . . 6

1.4 Relaxation of the shear stress after a shear step strain, for a New-

tonian fluid, elastic rubber and a viscoelastic fluid. . . . . . . . . 13

1.5 Transient shear stress, σxy(t), for a Newtonian fluid, elastic rubber

and a viscoelastic fluid. . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 The dynamic moduli for a single Maxwell mode. . . . . . . . . . 17

1.7 Linear Maxwell spectrum for a branched metallocene HDPE, HDB6,

is fitted to experimental data. . . . . . . . . . . . . . . . . . . . . 18

1.8 Shear viscosity data and uniaxial extensional viscosity data for

a linear LDPE called CM1. The data shows non-linear thinning

response in shear and in extension the stress response transitions

from linear to a strain softening regime. . . . . . . . . . . . . . . 19

1.9 Shear viscosity data and uniaxial extensional viscosity data for a

LCB LDPE called 1800S. For non-linear shear the viscosity thins

but in non-linear extension we get strain hardening. . . . . . . . . 20

x



LIST OF FIGURES

1.10 An isolated polymer in a cube, L3. The polymer carries a tension

across the surface. Taken from McLeish (2002). . . . . . . . . . . 23

1.11 An isolated Rouse chain. . . . . . . . . . . . . . . . . . . . . . . 26

1.12 The storage and loss modulus for the Rouse model. . . . . . . . . 28

1.13 An entangled chain diffusing from its tube. The tube is a contin-

uum of topological constraints caused by entanglements (circles).

Taken from McLeish (2002). . . . . . . . . . . . . . . . . . . . . 29

1.14 Diagram of a Pompom molecule with, q = 3 arms. . . . . . . . . 33

1.15 A one mode Pompom model in uniaxial extension (solid lines)

and shear (dashed lines). Extension/shear rates of 0.01, 0.1, 1

and 10s−1 were used with Pompom parameters of {G = 1Pa, τb =

5s, q = 10, τs = 1.25s}. . . . . . . . . . . . . . . . . . . . . . . . . 40

1.16 An example of an element used with the finite element method of

solving complex geometries. The velocity and pressure are solved

at the nodes of the element and the velocity gradient and stress

are solved as constant of the area of the element. . . . . . . . . . 43

1.17 An example of a finite element mesh created by flowSolve in solv-

ing cross-slot flow. The red lines indicate regions of refinement.

On the left is the initial mesh at time t = 0s and on the right the

mesh at some later time. The refinement regions have been subse-

quently distorted and the green circle indicates the movement of

one element. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.18 An example of the static mesh used by euFlow ’s finite element

scheme. On the left the spatial domain is constructed of super

elements which are filled in with finite elements on the right. . . 45

xi



LIST OF FIGURES

2.1 An example of molar mass distributions (left) and branching num-

ber, bn (right) for several of the materials studied in this thesis.

The molar mass distribution is broader for the LDPE 1840H than

that of the HDPE materials, CM1, HDB1, HDB3 and HDB6. The

branching number can clearly distinguish between the branching

structure of the LDPE 1840H, the branched HDPEs and the lin-

ear HDPE CM1, but the measurements are not accurate enough

to distinguish between the branched HDPEs. . . . . . . . . . . . 51

2.2 A plot of complex viscosity for all materials. The symbols represent

the data and lines are linear Maxwell modes fitted to the dynamic

moduli for each material . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 A Cole-Cole plot showing η
′′

plotted against η
′
, parameterised by

Deborah number for the three materials studied in chapter 4. The

peak of the curve shows the Cole-Cole relaxation time and the shift

in peaks indicates increasing levels of LCB. . . . . . . . . . . . . 57

2.4 A van Gurp-Palmen plot indicating levels of LCB for the three

materials studied in chapter 4. The more LCB is present in a

material the smaller the value of the phase shift for the relative

value of complex modulus. The figure indicates that HDB3, HDB6

and 1840H have increasing levels of LCB, respectively. . . . . . . 58

2.5 A comparison between theory fitted to oscillatory shear, transient

shear and transient uniaxial extension for three LLDPE metal-

locene catalysed materials. Left: the dynamic moduli and complex

viscosity fitted to a linear Maxwell spectrum. Right: transient

shear and transient uniaxial extension data used to fit the non-

linear parameters (τs and q) of the Pompom model. Data symbols

correspond to shear/extension rates given in table 2.2. . . . . . . 59

xii



LIST OF FIGURES

2.6 A comparison between theory fitted to oscillatory shear, transient

shear and transient uniaxial extension for three of five HDPE met-

allocene catalysed materials. Left: the dynamic moduli and com-

plex viscosity fitted to a linear Maxwell spectrum. Right: transient

shear and transient uniaxial extension data used to fit the non-

linear parameters (τs and q) of the Pompom model. Data symbols

correspond to shear/extension rates given in table 2.2. . . . . . . 60

2.7 A comparison between theory fitted to oscillatory shear, transient

shear and transient uniaxial extension for two of five HDPE metal-

locene catalysed materials. Left: the dynamic moduli and complex

viscosity fitted to a linear Maxwell spectrum. Right: transient

shear and transient uniaxial extension data used to fit the non-

linear parameters (τs and q) of the Pompom model. Data symbols

correspond to shear/extension rates given in table 2.2. . . . . . . 61

2.8 A comparison between theory and data for three LDPE materials.

Left: the dynamic moduli and complex viscosity fitted to a linear

Maxwell spectrum. Right: transient shear and transient uniaxial

extension data used to fit the non-linear parameters (τs and q) of

the Pompom model. For Dow150R two fits are proposed where

an alternative fitting technique used for Dow150R(b) is examined.

Data symbols correspond to shear/extension rates given in table

2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.9 A plot of fitted linear modulus, Gi, and the non-linear branching

priority, qi, plotted against relaxation time τb. The details of these

plots can be found in appendix 2.A . . . . . . . . . . . . . . . . . 64

2.10 A plot of Gi ·τbi and Gi ·q2
i against relaxation time τb. The two plots

show the contribution each mode makes in a multimode sum in

high Weissenberg number flows; on the left the shear contribution

and on the right extensional contribution. . . . . . . . . . . . . . 65

xiii



LIST OF FIGURES

2.11 A plot showing the comparison of three spectra fitted to the ma-

terial HDB6 in uniaxial extension and transient shear flow. The

three spectra (detailed in appendix 2.A) show very similar agree-

ment with experimental results, although the spectrum HDB6(a)

does have slightly improved transient extensional response. . . . . 66

3.1 The relaxation modulus for the integral (solid) and differential

(dashed) Pompom model depicting the differences in terminal time

behaviour between the models. The strains used were γ = 0.1, 5, 10

with parameters G0 = 10Pa, τb = 10s, τs = 5s and q = 6. . . . . . 76

3.2 The damping ratio H(γ) against time for a one mode integral

(solid) and differential (dashed) Pompom. The strains used were

γ = 0.1, 5, 10 with parameters G0 = 10Pa, τb = 10s, τs = 5s and

q = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3 The relaxation modulus and damping ratio parameters for IUPAC

A. The modifications to the equation for backbone stretch relax-

ation by Blackwell improve the plateau modulus showing time-

strain separability over three orders of magnitude in time from

10−1s to 102s (from left to right ν∗ = 0 and ν∗ = 2
q−1

). Strains of

0.1, 10 and 20 were used. . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 A comparison of the 9 (dashed lines) and 12 (solid lines) mode

Pompom fits to extensional and shear data taken at 150◦C for

1840H. Extension rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30s−1

and shear rates of 0.03, 0.1, 0.3, 1, 3, 10s−1 were used. There ap-

pears little difference between the two fits, however the increased

density of modes in the 12 mode fit gives a longer region of TSS. . 81

xiv



LIST OF FIGURES

3.5 a) Relaxation modulus and damping ratio for a 12 mode model of

1840H. The comparison of differential (solid) and integral (dashed)

models shows that the differential model approximates the time-

strain separability of the integral model correctly until terminal

time behaviour becomes dominant. b) Relaxation modulus and

damping ratio for a 9 and 12 mode model of 1840H. The com-

parison of 9 modes (dashed lines) and 12 (solid lines) models is

shown. The increase from 9 to 12 modes of relaxation improves

the plateau of time-strain separability. Comparing the damping

ratio near terminal time in figures a) and b), shows a reduction in

oscillations for the denser 12 mode spectrum. Strains of γ = 0.1

and 7 are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.6 Damping ratios are shown for the ideal fluid whilst varying the

parameter c = 0, 0.1, 0.2 for the differential model. Strains of γ =

0.1, 3, 10 are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.7 Derived BDF (solid line), plotted against strain, compared with

damping ratios taken from an ideal fluid at various times, 0.1, 1, 10s

(dashed lines). The picture is the case for ν∗ = 2
q−1

. . . . . . . . . 88

3.8 a) Variations in the BDF, hB(γ; qm, α, b) with power laws in b. b)

Variations in hB(γ; qm, α, b) with values of qm. c) Variations in

hB(γ; qm, α, b) with values of α. Strains of 0.1 · · · 100 were used.

The default parameters of the plots are b = −0.5, qm = 6 and α = 5. 89

3.9 A comparison of the BDF [equation 3.3.13] (heavy solid line) and

the damping predictions against strain for 1840H at times 0.1,

1 and 10s (dashed lines). Parameters used are qm = 5.92, α =

3.32, b = −0.4. The light solid line is the Doi-Edwards damping

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Plot of Gi (left) and qi (right) against τb for various materials. On

the left none of the materials satisfy the power law property used

to derive the BDF. On the right we see that the q spectra show

reasonable power law agreement, with powers ≤ 0.2. . . . . . . . . 91

xv



LIST OF FIGURES

3.11 Left: is the 12 mode 1840H relaxation modulus, G(γ, t), and damp-

ing ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the

experimental data and the dashed the differential Pompom predic-

tions. Right: a comparison of BDF (3.3.13), heavy solid line, and

the damping ratio predictions against strain of 1840H for various

strains. Parameters used are qm = 5.92, α = 3.32, b = −0.4. The

dashed line is the Doi-Edwards damping function. . . . . . . . . . 94

3.12 Left: is the 12 mode 1800S relaxation modulus, G(γ, t), and damp-

ing ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the

experimental data and the dashed the differential Pompom predic-

tions. Right: a comparison of BDF (3.3.13), heavy solid line, and

the damping ratio predictions against strain of 1800S for various

strains. Parameters used are qm = 5.67, α = 2.70, b = −0.5. The

dashed line is the Doi-Edwards damping function. . . . . . . . . . 95

3.13 Left: is the 12 mode Dow150R(a) relaxation modulus, G(γ, t), and

damping ratio, H(γ, t), for strains 0.3, 5, 7. The solid lines repre-

sents the experimental data and the dashed the differential Pom-

pom predictions. Right: a comparison of BDF (3.3.13), heavy

solid line, and the damping ratio predictions against strain of

Dow150R(a) and Dow150R(b) for various strains. Parameters used

are (a) qm = 4.83, α = 3.90, b = −0.4 and (b) qm = 19.2, α =

3.1, b = −0.4. The dashed line is the Doi-Edwards damping func-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.14 Left: is the 12 mode CM3 relaxation modulus, G(γ, t), and damp-

ing ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the

experimental data and the dashed the differential Pompom predic-

tions. Right: a comparison of BDF (3.3.13), heavy solid line, and

the damping ratio predictions against strain of CM3 for various

strains. Parameters used are qm = 2.5, α = 3.5, b = −0.4. The

dashed line is the Doi-Edwards damping function. . . . . . . . . . 96

xvi



LIST OF FIGURES

3.15 Left: is the 12 mode HDB6 relaxation modulus, G(γ, t), and damp-

ing ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the

experimental data and the dashed the differential Pompom model.

Right: a comparison of BDF (3.3.13), heavy solid line, and the

damping predictions data for various strains. Parameters used are

qm = 1.3, α = 4.16, b = −0.4. The dashed line is the Doi-Edwards

damping function. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.16 A comparison of the BDFs produced from the five materials sur-

veyed, a summary of parameters used can be seen in table (3.3). . 99

3.17 Various approximations for the initial stretch. The solid lines show

the piece-wise bounded stretch. The dotted and dashed lines show

predictions for (a1 = 0, a2 = 2) and (a1 = 1/2, a2 = 1), respec-

tively. The dash-dotted line shows the prediction for a1 = 1 and

a2 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.18 A plot of the various parameter choices used in figure (3.17) sub-

stituted into the derived BDF against strain. The solid line shows

the actual stretch equation (3.3.5). The dotted, dashed and dash-

dotted lines show damping functions using approximate stretch

parameters (a1 = 0, a2 = 2), (a1 = 1, a2 = 2) and (a1 = 1/2, a2 =

1), respectively. The dashed-double dotted line shows the Doi-

Edwards damping function. We use parameters of b = −0.5, α = 5

and qm = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 A one Pompom model in oscillatory shear with various choices of

time step. The other Pompom parameters chosen are G = 1000Pa,

τb = 10s, q = 5 and r = 4, giving a constant Deborah number for

each simulation as De = 12. Good convergence for both low and

high strain amplitudes occurs for a step size of 10−3. . . . . . . . 113

xvii



LIST OF FIGURES

4.2 A one Pompom model in oscillatory shear with various choices of

the branching parameter, q = 1, 2, 5 and 10. The other Pompom

parameters chosen are G = 1000Pa, τb = 10s and r = 4, giving a

constant Deborah number for each simulation as De = 12. As the

Weissenberg number increases the most noticeable difference is for

the case q = 1. The stress response has low sensitivity to values of

q > 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3 A one Pompom model in oscillatory shear with various choices of

the stretch relaxation ratio, r = 1, 2, 4 and 8. The other Pompom

parameters chosen are G = 1000Pa, τb = 10s and q = 5, giving a

constant Deborah number for each simulation as De = 12. Com-

pared to the branching parameter (figure 4.2) the stress response

is more sensitive to variations and stretch relaxation time. . . . . 116

4.4 A plot of the first harmonics as a function of Deborah number

which correspond to the dynamic moduli used to fit Maxwell modes.

The parameters used were G = 1Pa and τb = 1s. . . . . . . . . . . 118

4.5 A plot of I
′

3/1, I
′′

3/1 and I3/1 as a function of Deborah number.

Parameters used were G = 1Pa, τb = 1s and τs = 0.25s, with the

strain amplitude chosen as, ε = 0.01. . . . . . . . . . . . . . . . . 119

4.6 A plot of I3/1 as a function of Deborah number for various ratios,

r = 1, 2, 4, 5, 10 and r = ∞. The linear parameters are G = 1Pa

and τb = 1s. The maximum in I3 increases as a function of r up

to the case of τs = 0s (r = ∞) which has asymptotically different

behaviour compared to finite r. The strain amplitude chosen as,

ε = 0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 The high strain asymptote of the relative third harmonic, I3/1,

plotted as a function of Deborah number. The high strain asymp-

tote is only analytic for a linear Pompom model, i.e. q = 1. This

one mode model has parameters of G = 1Pa and τb = 1s. . . . . 122

xviii



LIST OF FIGURES

4.8 The relative third harmonic I3/1 plotted as a function of Weis-

senberg number for a one mode Pompom model with variations

in branching parameter, q. The other Pompom parameters are

G = 1000Pa, τb = 10s and r = 4 giving a Deborah number,

De = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9 The relative third harmonic I3/1 plotted as a function of Weis-

senberg number for a one mode Pompom model with variations in

the ratio of orientation and stretch relaxation times, r. The dashed

lines represent the low-strain asymptotic solution and the simula-

tion was performed at a fixed Deborah number of De = 12. The

other Pompom parameters are G = 1000Pa, τb = 10s and q = 5. . 124

4.10 The real and imaginary parts of the relative third harmonic, I3/1,

plotted against Weissenberg number for various choices of branch-

ing priority, q, (left) and the ratio of orientation and stretch re-

laxation times, r (right). The linear Pompom parameters are

G = 1000Pa and τb = 10s with De = 12. . . . . . . . . . . . . . . 125

4.11 A plot of the absolute value, I3/1, of the low strain asymptotes (c.f.

equations (4.3.6) and (4.3.7)) plotted as a function of Deborah

number for the three materials; HDB3, HDB6 and 1840H. The

strain amplitude chosen as, ε = 0.01. . . . . . . . . . . . . . . . . 128

4.12 A comparison between experiment and theory for each material for

the three frequencies used in this study. Since each experiment is

performed at a different Deborah number the value of I3/1 is nor-

malised by Deborah number for clarity and is plotted as a function

of Weissenberg number. The dotted lines represent the low strain

asymptotic solution derived in the last section and the solid lines

are the simulated results. . . . . . . . . . . . . . . . . . . . . . . 129

4.13 A comparison between experiment and Pompom theory of the real

(right) and imaginary (left) parts of I3/1 for HDB3. The Pom-

pom model has reasonable agreement with data with the biggest

discrepancy occurring for the largest Deborah number, De = 280. 130

xix



LIST OF FIGURES

4.14 A comparison between experiment and Pompom theory of the real

(right) and imaginary (left) parts of I3/1 for HDB6(a). The Pom-

pom model has good agreement with data with the biggest dis-

crepancy occurring for the largest Deborah number, De = 350. . 131

4.15 A comparison between experiment and Pompom theory of the real

(right) and imaginary (left) parts of I3/1 for the LDPE 1840H.

The Pompom model has good agreement with real data with the

biggest discrepancy occurring for the imaginary component, I
′′

3/1,

for the largest two Deborah numbers, De = 63 and De = 630. . . 132

4.16 A comparison of the three different HDB6 spectra (a, b, and c)

fitted to extensional data, and experimental data for the lowest

of the three Deborah numbers, De = 3.8. Each spectra does a

reasonable job in predicting the experimental data for both the real

and imaginary components of I3/1. The most discernible difference

is the modelling of the real component where HDB6(c) gives the

closest agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.17 A comparison of the three different HDB6 spectra (a, b, and c)

fitted to extensional data, and experimental data for the interme-

diate Deborah number, De = 38. Each spectra does a good job in

predicting the experimental data for both the real and imaginary

components of I3/1. In particular HDB6(a) captures the rheology

of each component very well. . . . . . . . . . . . . . . . . . . . . 133

4.18 A comparison of the three different HDB6 spectra (a, b, and c)

fitted to extensional data, and experimental data for the largest

of the three Deborah numbers De = 380. Each spectra does a

poor job in predicting the experimental data for both the real and

imaginary components of I3/1, failing to predict the large negative

results that experimental data shows. . . . . . . . . . . . . . . . 134

4.19 A comparison of each HDB6 spectra (a, b, and c) compared to

experimental data for the absolute value of the third harmonic

for each experimental Deborah number. All three spectra perform

similarly well which is a consequence of the dominant imaginary

component being well modelled by each spectra. . . . . . . . . . 134

xx



LIST OF FIGURES

4.20 The value of the absolute relative third harmonic as a function of

Deborah number predicted by the low strain asymptotes derived

earlier in this chapter. The Pompom predictions are shown for var-

ious choices of Rouse chain stretch ratio for the material HDB6(a). 137

4.21 The Pompom spectrum HDB6(a) with various choices of chain

stretch ratio are compared to experimental data for the real (right)

and imaginary (left) components of the relative third harmonic.

Ratios of r = 3.3 and r = 10 are shown with the result for r = 100

giving almost identical results to the original model. . . . . . . . 138

4.22 Left) The dynamic moduli for HDB6, comparing the experimental

data, the 12 mode HDB6(a) spectrum and the BoB spectrum de-

rived from reaction synthesis. Right) A comparison of the absolute

relative third harmonic for the material HDB6. The parameteri-

sations shown are the 12 mode HDB6(a) spectrum and the BoB

spectrum with and without chain stretch. . . . . . . . . . . . . . 141

4.23 A comparison of experimental data and Pompom predictions for

I3/1 as a function of Weissenberg number. The Pompom prediction

for HDB6(a) is shown for each Deborah number along with the low

strain asymptote derived from the BoB Pompom spectra which

shows an improved prediction with correct modelling of stretch

relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.24 Left) The dynamic moduli for 1840H, comparing the experimental

data, the 12 mode 1840H spectrum and the BoB spectrum derived

from reaction synthesis. Right) A comparison of the absolute rela-

tive third harmonic for the material 1840H. The parameterisations

shown are the 12 mode 1840H spectrum and the BoB spectrum

with and without chain stretch. . . . . . . . . . . . . . . . . . . . 142

4.25 A comparison of experimental data and Pompom predictions for

I3/1 as a function of Weissenberg number. The Pompom prediction

for 1840H is shown for each Deborah number along with the low

strain asymptote derived from the BoB Pompom spectra which

shows an improved prediction with correct modelling of stretch

relaxation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xxi



LIST OF FIGURES

5.1 An illustration of cross-slot flow which generates stagnation point

flow. The stream lines indicate the flow direction with the colours

representing the magnitude of the velocity. . . . . . . . . . . . . 148

5.2 The Geometry of the MPR cross-slot. . . . . . . . . . . . . . . . 152

5.3 A comparison of flowSolve meshes (meshes 2 and 3 in tables 5.1

and 5.2) showing the PSD distribution and the triangular meshes

used. The comparison shows that visually the solutions are almost

identical. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 The PSD and velocity gradient, dU
dX

s−1, probed at the stagna-

tion point are plotted against the inverse node number of various

meshes, detailed in tables 5.3 and 5.4. left) the Stokes solution,

showing convergence with increasing node number. right) A solu-

tion time of t = 9s showing the solution is independent of mesh to

within 3%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 A comparison of euFlow and flowSolve solutions at steady state

with contours added for comparison every 20kPa and at 175kPa.

The solutions are visually very similar, with both solvers predicting

the same number of fringes. The biggest difference occurs at the

SP where the highest fringe is smaller for the euFlow solution. . 157

5.6 The transient solutions of euFlow and flowSolve simulations are

compared at the SP. Both solutions show the same transient de-

velopment of the PSD and dU
dX

, however euFlow predicts a higher

value for the velocity gradient and a lower value for the PSD com-

pared to flowSolve. . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.7 The resolution of the XY euFlow mesh used in 3D simulations

compared to the 2D mesh. left) the high and low resolution meshes

used for 2D and 3D simulation, respectively. right) the PSD for

LDPE 1800S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.8 The 3D euFlow solutions for HDPE HDB6 (left) and LDPE 1800S

(right), showing the PSD. The top figures show the XY centre

plane and the bottom figures show the XZ centre plane. For the

LDPE 1800S the high stress gradient near the outflow centre line

causes instabilities in the Z direction at late solution times. . . . 160

xxii



LIST OF FIGURES

5.9 Qualitative comparison of the predicted shape of the PSD for differ-

ent flow Weissenberg number regimes for a single Pompom mode:

a) slow flow (Wib = 0.1 and Wis = 0.05); b) orientating but non-

stretching flow (Wib = 1.5 and Wis = 0.75); c) stretching flow

(Wib = 10 and Wis = 5). . . . . . . . . . . . . . . . . . . . . . . . 162

5.10 A comparison of the x-velocity shape in the right hand part of

the cross-slot for different test cases: a) the initial Stokes solution

velocity profile, b) during the flow the velocity near the stagnation

point speeds up for low values of q, i.e. q = 5 c) for intermediate

values of q ∼ 10 the velocity up near the stagnation point speeds

up, but slow the flow down further along the downstream centre

line. d) for large values of q > 15 the large stretch gradient slows

the flow down. Parameters chosen were; G = 0.9Pa, τb = 10s,

r = 2 with varied q, this gives an initial Weissenberg number of 5

for stretch and 10 for orientation. . . . . . . . . . . . . . . . . . . 163

5.11 A comparison of the transient PSD and velocity gradient, dU
dX

, taken

at the stagnation point for various branching priorities, q. Param-

eters chosen were; G = 0.9Pa, τb = 10s, r = 2 with varied q, this

gives an initial Weissenberg number of 5 for stretch and 10 for

orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.12 The predictions of the two mode Pompom model given in table 5.6

using flowSolve. The highly stretched backbone of the slow mode

(d) significantly modifies the flow, slowing the velocity along the

outflow centre line (a). This causes a collapse in the fast mode

stretch (c) along the outflow centre line, but the collapsed pattern

is not seen in the PSD (b) because of the dominance in slow mode

needed to reduce the velocity. . . . . . . . . . . . . . . . . . . . . 166

5.13 A comparison between the Pompom and DPP constitutive models

for the same spectra given in chapter 2. The comparison is made

for three materials; HDB2, HDB6 and 1800S in transient shear and

uniaxial extension. The black line shows the linear envelope and

the coloured lines show various shear/strain rates. . . . . . . . . 169

xxiii



LIST OF FIGURES

5.14 The Pompom and DPP constitutive models are compared in 2D

cross-slot flow for three materials; HDB2, HDB6 and 1800S. The

results show that the two models are comparable in cross-slot flow

predicting the same number of contours (at 20kPa each) for each

material. However the Pompom model does show sharper cusping

down the outflow centre line. . . . . . . . . . . . . . . . . . . . . 169

5.15 A comparison for the euFlow solution of the 2D approximation to

the actual 3D FIB for three materials; HDB2, HDB6 and 1800S.

The figures show that the aspect ratio is sufficient for the 2D ap-

proximation to accurately capture the FIB PSD contours (at 20kPa

each) at the side walls and around the SP for each material. For

1800S high stress gradients on the outflow centre line meant the

numerical solution was only valid until around 4s. . . . . . . . . 172

5.16 A comparison between the transient development of the FIB PSD

contours (at 20kPa each) for 2D and 3D cross-slot flow for the

material HDB6. At each time the 2D flow approximates the 3D

birefringence well showing that the 2D simulation accurately cap-

tures the transient development of full 3D flow. . . . . . . . . . . 173

5.17 left) A comparison between the 2D and 3D solutions for the values

of the PSD and dU
dX

along the stream line shown in figure 5.25.

The figure shows good agreement between 2D and 3D simulations.

right) The transient development of the PSD and dU
dX

at the SP

(and centre plane for the 3D simulation) for the material HDB6,

comparing the 2D and 3D solutions. At all times the 3D simulation

predicts slightly higher PSD than the 2D model. Despite an initial

discrepancy at steady state dU
dX

is the same for 2D and 3D solutions. 174

5.18 The experimental FIB for the LLDPE CM1 and 2D simulation

results with PSD contours shown at every 40kPa. The shape of the

simulated PSD is very similar to the experiment and the Pompom

spectra used predicts the correct number of contours. . . . . . . 176

xxiv



LIST OF FIGURES

5.19 The experimental FIB for the HDPE HDB2 and 2D simulation

results with PSD contours shown at every 22kPa. The Pompom

spectra used predicts one less fringe than the experiment and the

experiment has sharper cusping, possibly indicating that the spec-

tra for HDB2 should include more LCB. . . . . . . . . . . . . . . 177

5.20 The experimental FIB for the HDPE HDB6 and 2D simulation

results with PSD contours shown at every 22kPa. The number of

fringes and the overall shape of the PSD is predicted well, how-

ever, the Pompom constitutive model does not predict the W-cusps

along the outflow centre line. . . . . . . . . . . . . . . . . . . . . 178

5.21 The experimental FIB for the LDPE 1800S and 2D simulation

results with PSD contours shown at every 24.5kPa. The number

of fringes and large stress gradient is predicted well, however, the

Pompom constitutive model does not predict the W-cusps along

the outflow centre line. The double cuspsing is narrow for 1800S

and therefore is hard to see in this picture. . . . . . . . . . . . . 178

5.22 The experimental FIB for the LDPE 1840H and 2D simulation

results with PSD contours shown at every 24.5kPa. The number

of fringes and stress gradient is predicted well, however, the again

Pompom constitutive model does not predict the W-cusps along

the outflow centre line, easily seen on the outer fringes. . . . . . 179

5.23 The transient development of the experimental PSD for HDPE

HDB6 is compared to the transient PSD for the 2D simulated so-

lution. In the experiments W-cusps occur at a time of 3.2s near the

SP. The simulated PSD develops faster for simulations than exper-

iment and W-cusps are not predicted for any simulated solution

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.24 A comparison of the velocity profile along the downstream symme-

try line for the simulated HDB6 Pompom spectrum as a function

of time. Near the stagnation point the velocity increases where

regions of constant stretch occur, but further downstream the flow

is slowed by gradients in the stretch. . . . . . . . . . . . . . . . . 182

xxv



LIST OF FIGURES

5.25 Flow patterns computed in the cross-slot for a multimode Pompom

model of HDB6(a) (155◦C) at steady state flow from simulation at

a Weissenberg number of ∼ 100: b) elongational flow rate distri-

bution ∼ dU
dx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.26 Experimental results from laser-Doppler velocimetry (symbols) and

flow simulations (solid line) for the velocity profile as a function of

position for the stream line along the inlet-outlet symmetry plane

for HDPE HDB2 at 155◦C. See figure 5.25 for a depiction of the

stream line used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.27 Experimental results from laser-Doppler velocimetry (symbols) and

flow simulations (solid line) for the velocity profile as a function of

position for the stream line along the inlet-outlet symmetry plane

for LDPE 1840H at 150◦C. See figure 5.25 for a depiction of the

stream line used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.28 Number of fringes per piston speed as a function of piston speed for

the LLDPE, HDPE and LDPE samples investigated at conditions

indicated in Figures 5.29, 5.30 and 5.31. . . . . . . . . . . . . . . 185

5.29 Flow-induced stress birefringence patterns at steady state flow for

HDPE HDB series at different initial strain rates, or Weissenberg

numbers, Wi, calculated using the average relaxation time indi-

cated. The stress profile is evident from the fringe patterns and

the simulated data are presented with a series of contours, using

the same optical constant of 22kPa for all materials. . . . . . . . 187

5.30 Flow-induced stress birefringence patterns at steady state flow for

HDPE CM series at different initial strain rates, or Weissenberg

numbers, Wi, calculated using the average relaxation time indi-

cated. The stress profile is evident from the fringe patterns and

the simulated data are presented with a series of contours, using

the same optical constant of 40kPa for all materials. . . . . . . . 188

xxvi



LIST OF FIGURES

5.31 FIB stress patterns at steady state flow for three LDPEs at dif-

ferent initial strain rates, or Weissenberg numbers, Wi. Note, for

Dow150R the strain rates are a factor 10 lower than for 1800S and

1840H. The stress profile is evident from the fringe patterns and

the simulated data are presented with a series of contours, using

the same optical constant of 24.5kPa for the three slowest flow

rates, and for clarity 49kPa for the two fastest flow rates. . . . . 189

5.32 The predicted error for CSER extensional viscosity measurements

for a range of materials used in this study. The largest error bars

occur for the less viscous materials (CM1, HDB1 and 1800S) for

the lower strain rates when less than two fringes are observed. . . 191

5.33 Elongational viscosity ηE as a function of strain rate from uniaxial

(open symbols) and cross-slot experiments (closed symbols) for the

branched HDPE HDB series. Also shown are the Pompom predic-

tions in uniaxial (solid lines) and planar (dashed lines) extension. 193

5.34 Elongational viscosity ηE as a function of strain rate from uniaxial

(open symbols) and cross-slot experiments (closed symbols) for the

branched HDPE CM series. Also shown are the Pompom predic-

tions in uniaxial (solid lines) and planar (dashed lines) extension. 194

5.35 Elongational viscosity ηE as a function of strain rate from uniax-

ial (open symbols) and cross-slot experiments (closed symbols) for

the LDPE materials used in this study. Also shown are the Pom-

pom predictions in uniaxial (solid lines) and planar (dashed lines)

extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.36 A comparison of the PSD for the three HDB6 spectra explored

in this work. Only various contour levels have been selected for

clarity. As none of the parameterisations show W-cusps then none

of the spectra predict the experimental PSD distribution. However,

away from the outflow centre line HDB6(a) (RED) predicts the

PSD contours with better accuracy than HDB6(b) (BLUE) and

HDB6(c) (GREEN), both of which predict an extra PSD fringe

when compared to experimental FIB images. . . . . . . . . . . . 198

xxvii



LIST OF FIGURES

5.37 The steady state extensional viscosity for the LDPE Dow150R.

The open symbols are the maximum values taken from SER exper-

iments and the closed symbols are taken from CSER fringe count-

ing. The Pompom predictions for two spectra, Dow150R (a) and

(b), are also shown. With the CSER data indicating a transient

overshoot in extension the spectra Dow150R(b) is an unreasonable

estimation of the extensional rheology of the material. . . . . . . 199

6.1 A comparison of the extensional rheology of the HDB series using

SER and CSER data and FIB images taken at an initial strain rate

of 1.74s−1. The comparison shows that W-cusps are a function of

branching in a material as they only occur for the highly branched

HDB4 and HDB6. Also, when W-cusps occur the steady state

CSER data falls below cross-slot data indicating an extensional

overshoot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2 FIB images of HDB6 at three flow rates. All flow rates are in the

non-linear strain hardening regime and W-cusps are exhibited for

all experimental rates and the width and length of the W-cusps

are similar for each flow rate. . . . . . . . . . . . . . . . . . . . . 205

6.3 FIB images of Dow150R at three flow rates. All flow rates are in

the non-linear strain hardening regime and W-cusps are exhibited

for all experimental rates and the width and length of the W-cusps

are similar for each flow rate. . . . . . . . . . . . . . . . . . . . . 205

6.4 FIB images for 1800S at three flow rates. The lower viscosity of

1800S means the linear response is accessible with the cross-slot

and as the flow rate increases W-cusps appear by the highest flow

rate shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6.5 The effects of temperature on the appearance of W-cusps for HDB2

is shown at a flow rate of UQ = 1.15mm.s−1. At 140◦C (Wi = 47.7)

a transient W-cusp is found at early times which disappears as the

PSD pattern collapses by steady state, whereas no W-cusps are

found for HDB2 at 155◦C (Wi = 28) for any flow rate. . . . . . . 207

xxviii



LIST OF FIGURES

6.6 For the LLDPE CM3, the CSER and SER data cross-over at a

strain rate of around 10s−1 and at a similar strain rate possible

W-cusps appear in cross-slot flow. Here the transition between

single and W-cusps occurs in the non-linear regime. . . . . . . . 207

6.7 A one mode Pompom model, {G = 100Pa, τb = 5s, q = 10, r = 4},
in uniaxial extension showing variations in the power law α from 10

to 1000 with CR = 2. The strain rates used were 0.01s−1, 0.1s−1,

1s−1 and 10s−1. As α is increased so does the amount of alignment

needed for the extra relaxation time, τ∗, to become dominant. This

has the effect of delaying relaxation until a higher Hencky strain

has been reached causing a bigger difference between the maximum

and steady state extensional viscosity. . . . . . . . . . . . . . . . 210

6.8 A plot of the measured alignment, (S : ST )α, for the uniaxial ex-

tension shown in figure 6.7. As α is increased so does the strain

taken for the measured alignment to approach unity and thus de-

lays the transient overshoot. . . . . . . . . . . . . . . . . . . . . 211

6.9 A one mode Pompom model, {G = 100Pa, τb = 5s, q = 10, r = 4},
in uniaxial extension showing variations in the parameter CR from

1 to 5 with α = 100. The strain rates used were 0.01s−1, 0.1s−1,

1s−1 and 10s−1. The parameter CR does not affect the strain

needed to achieve an overshoot but it does affect the dominance of

τ∗ and thus determines the steady state extensional viscosity. . . 212

6.10 A one mode Pompom model, {G = 100Pa, τb = 5s, r = 4}, in

uniaxial extension showing variations in the branching priority, q,

with CR = 2 and α = 1000. The strain rates used were 0.01s−1,

0.1s−1, 1s−1 and 10s−1. The figure shows how the branching pri-

ority effects the extensional viscosity in the case maximum stretch

is reached (q = 3) and even when the maximum stretch is not

reached (q = 10 and 20). . . . . . . . . . . . . . . . . . . . . . . 213

xxix



LIST OF FIGURES

6.11 Figure a) shows the one mode Pompom model used in figure 6.7,

examining how the power law α affects W-cusps in cross-slot flow.

The red line shows α = 10, the green line shows α = 100 and

the green line shows α = 1000. Figure b) shows the one mode

Pompom model used in figure 6.9, examining how the parameter

CR affects W-cusps in cross-slot flow. The red line shows CR = 5,

the green line shows CR = 2 and the blue line shows CR = 1. . . . 214

6.12 The stream line shown in figure 5.25 is plotted as a function of

distance from the SP showing variations in (a) α and (b) CR. Neg-

ative distance from the SP shows the PSD and S : ST along the

centre of the inlet channel and positive distance shows the outlet

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.13 A plot comparing extensional data and OPP theory for Dow150R.

Strain rates range from 0.003s−1 to 0.3s−1 and OPP parameters

can be found in tables 6.1 and 6.2. The closed symbols show the

SER data already considered in this work, the open symbols show

new data from the FSR achieving higher Hencky strains than the

SER and the blocks show the steady state predictions from CSER

analysis. All three experiments agree closely and the OPP param-

eterisation matches the experiment very well. . . . . . . . . . . . 217

6.14 The extensional data from both the SER (left) and CSER (right)

is shown for HDB6. The strain rates used range from 0.01s−1 to

30s−1. The lines show the fitted OPP parameterisation found in

tables 6.1 and 6.3, with the model fitted to transient SER data

and steady state CSER data. . . . . . . . . . . . . . . . . . . . . 218

6.15 The extensional data from both the SER (left) and CSER (right)

is shown for 1800S. The strain rates used range from 0.082s−1 to

24.6s−1. The lines show the fitted OPP parameterisation found in

tables 6.1 and 6.2, with the model fitted to transient SER data

and steady state CSER data. . . . . . . . . . . . . . . . . . . . . 219

xxx



LIST OF FIGURES

6.16 The extensional data from both the SER (left) and CSER (right)

is shown for CM3. The strain rates used range from 0.01s−1 to

10s−1. The lines show the fitted OPP parameterisation found in

tables 6.1 and 6.3, with the model fitted to transient SER data

and steady state CSER data. . . . . . . . . . . . . . . . . . . . . 220

6.17 The OPP constitutive model is fitted to HDB2 at 140◦C (left) and

155◦C (right) on the same axis scale. The OPP parameters are

given in tables 6.1 and 6.4 with only the linear parameters varying

with temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.18 A comparison of between FIB in cross-slot flow and 2D simula-

tions of the OPP parameterisation for HDPE HDB6. The OPP

parameterisation is detailed in table 6.3 and shown in figure 6.14.

The black lines in the simulations represent the black contours

of the experimental PSD for initial strain rates of ε̇C = 0.70s−1,

ε̇C = 1.74s−1 and ε̇C = 3.48s−1 from top to bottom. . . . . . . . . 222

6.19 A comparison between the OPP simulations and the experimen-

tally measured position of the FIB contours of constant PSD for

HDB6 at three flow rates. . . . . . . . . . . . . . . . . . . . . . . 223

6.20 A comparison of between FIB in cross-slot flow and 2D simula-

tions of the OPP parameterisation for LDPE Dow150R. The OPP

parameterisation is detailed in table 6.2 and shown in figure 6.13.

The black lines in the simulations represent the black contours of

the experimental PSD for initial strain rates of ε̇C = 0.035s−1,

ε̇C = 0.070s−1 and ε̇C = 0.174s−1 from top to bottom. . . . . . . 225

6.21 A comparison of between FIB in cross-slot flow and 2D simula-

tions of the OPP parameterisation for LDPE 1800S. The OPP

parameterisation is detailed in table 6.2 and shown in figure 6.15.

The black lines in the simulations represent the black contours

of the experimental PSD for initial strain rates of ε̇C = 1.74s−1,

ε̇C = 3.48s−1 and ε̇C = 6.95s−1 from top to bottom. The W-

cusps increases in size with increasing flow rate as the strain rate

increases as the flow becomes more non-linear. . . . . . . . . . . 226

xxxi



LIST OF FIGURES

6.22 A comparison of between FIB in cross-slot flow and 2D simulations

of the OPP parameterisation for HDPE HDB2. The OPP param-

eterisation is detailed in table 6.4 and shown in figure 6.17. The

black lines in the simulations represent the black contours of the

experimental PSD for initial strain rate of ε̇C = 1.74s−1. The figure

shows a transient experimental W-cusp at 2.5s for a temperature of

140◦C (top), which disappears by the steady state (middle). The

bottom picture shows the flow at 155◦C where no experimental

W-cusp can be seen for any solution time at any flow rate. . . . . 227

6.23 A comparison of LDV measurements of HDB2 compared with eu-

Flow simulated results of both the original Pompom model and

the OPP model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.24 A comparison of between FIB in cross-slot flow and 2D simula-

tions of the OPP parameterisation for LLDPE CM3. The OPP

parameterisation is detailed in table 6.3 and shown in figure 6.16.

The black lines in the simulations represent the black contours

of the experimental PSD for initial strain rates of ε̇C = 3.48s−1,

ε̇C = 6.95s−1 and ε̇C = 13.9s−1 from top to bottom. . . . . . . . . 229

xxxii



List of Tables

1.1 Flow tensors for zero dimensional simple flows. For each flow γ̇ and

ε̇ are the deformation rates, with γ and ε representing the strains. 15

2.1 Material properties of polyethylenes investigated. The values for

the HDB, CM series and Dow150R are consistent with previous

studies [Wood-Adams and Dealy (2000), Crosby et al. (2002), den

Doelder et al. (2005), Das et al. (2006), and Hassell et al. (2008)]. 53

2.2 The symbols used for transient shear and transient uniaxial exten-

sion plots in figures 2.5 to 2.8. Other strain rates are specified in

the plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.3 A list of Pompom parameters for materials CM1, CM2, CM3 and

HDB1 used throughout this study. Linear Maxwell parameters are

fitted to oscillatory shear and non-linear parameters are fitted to

transient shear and uniaxial flow. . . . . . . . . . . . . . . . . . . 68

2.4 A list of Pompom parameters for materials HDB2, HDB3, HDB4

and HDB6 (a) used throughout this study. Linear Maxwell param-

eters are fitted to oscillatory shear and non-linear parameters are

fitted to transient shear and uniaxial flow. . . . . . . . . . . . . . 69

2.5 A list of Pompom parameters for materials HDB6 (b), HDB6(c),

1800S at 140◦C and 150◦C used throughout this study. Linear

Maxwell parameters are fitted to oscillatory shear and non-linear

parameters are fitted to transient shear and uniaxial flow. . . . . 70

xxxiii



LIST OF TABLES

2.6 A list of Pompom parameters for materials 1800S at 160◦C, 1840H,

Dow150R (a) and Dow150R (b) [taken from Hassell et al. (2008)]

used throughout this study. Linear Maxwell parameters are fitted

to oscillatory shear and non-linear parameters are fitted to tran-

sient shear and uniaxial flow. . . . . . . . . . . . . . . . . . . . . 71

3.1 Parameters used for IUPAC A. Both the cases of ν∗ = 0 and

ν∗ = 2
q

are listed. Linear data produced from Laun (1986), ν∗ = 0

parameters from Inkson et al. (1999) and ν∗ = 2
q−1

parameters are

from Blackwell et al. (2000). . . . . . . . . . . . . . . . . . . . . . 79

3.2 Parameters used for 1840H - 9 and 12 mode models. The 9 mode

parameters were used in section 3 and compared with the 12 mode

model to show that an increase in the number of modes gives an

increase in the period of TSS predictions. . . . . . . . . . . . . . . 80

3.3 A summary of parameters used in producing BDFs (figure 3.16)

for the various materials we survey. . . . . . . . . . . . . . . . . . 98

5.1 A comparison of various flowSolve mesh densities for the Stokes

solution at a time of t=0s. The PSD and velocity gradient, dU
dX

,

are compared at the stagnation point. For the Stokes solution

the PSD at the stagnation point can be calculated analytically;

4 dU
dX

∑
iGiτbi , where the sum is taken over the solvent modes.

There is close agreement between the simulated and analytical

value of the intial PSD at the SP to within 1.2%. . . . . . . . . . 155

5.2 A comparison of various flowSolve mesh densities for the solution at

a time of t=3.5s. The PSD and velocity gradient, dU
dX

, are compared

at the stagnation point. . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 A comparison of various euFlow mesh densities for the Stokes so-

lution. The PSD and velocity gradient, dU
dX

, are compared at the

stagnation point. For the Stokes solution the PSD at the stagna-

tion point can be calculated analytically; 4 dU
dX

∑
iGiτbi , where the

sum is taken over the solvent modes. There is good agreement

between the simulated and analytical value of the intial PSD at

the SP to within 0.2%. . . . . . . . . . . . . . . . . . . . . . . . 158

xxxiv



LIST OF TABLES

5.4 A comparison of various euFlow mesh densities for the solution at

a time of t=9s. The PSD and velocity gradient, dU
dX

, are compared

at the stagnation point. . . . . . . . . . . . . . . . . . . . . . . . 158

5.5 A table showing how the choice of Pompom branching parameter,

q, affects the flowSolve prediction of the velocity gradient, dU
dX

, and

the PSD at the stagnation point. . . . . . . . . . . . . . . . . . . 164

5.6 The parameters for the two mode Pompom model used in figure

5.12. A Newtonian viscosity of µ = 1Pa.s was also included in the

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.7 The differences between the Pompom and DPP constitutive models

in 2D cross-slot flow, with values of PSD and velocity gradient, dU
dX

,

taken from the stagnation point initially and after the transient

development of the solution to steady state. . . . . . . . . . . . . 170

5.8 The differences is the PSD between the 2D approximation of the

full 3D flow. The values were taken at the stagnation point and

for 3D flow in the centre plane of the geometry. . . . . . . . . . . 172

5.9 The experimental conditions for each material investigated in this

section. The initial strain rate is calculated from the Stokes solu-

tion and τ̄b is taken from the spectra detailed in section 2.A. . . . 175

6.1 A table showing the Pompom overshoot parameters used for fitting

extensional data in figures 6.13 to 6.17. The parameters are the

same for each mode in the multimode spectra given in tables 6.2

to 6.4 and are also chosen to be independent in temperature for

HDB2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.2 A list of OPP parameters for materials 1800S and Dow150R used

throughout this chapter. The transient extensional viscosity is

fitted to SER data and the steady state is fitted to CSER data. For

Dow150R, data was provided from Dr. Henrik Rasmussen using

the method described in Bach et al. (2003). Overshoot parameters

are detailed in table 6.1. . . . . . . . . . . . . . . . . . . . . . . . 231

xxxv



LIST OF TABLES

6.3 A list of OPP parameters for materials HDB6 and CM3 used

throughout this chapter. The transient extensional viscosity is

fitted to SER data and the steady state is fitted to CSER data.

Overshoot parameters are detailed in table 6.1. . . . . . . . . . . 232

6.4 A list of OPP parameters for materials HDB2 at 140◦C and 155◦C

used throughout this chapter. The transient extensional viscosity

is fitted to SER data and the steady state is fitted to CSER data.

Overshoot parameters are detailed in table 6.1. . . . . . . . . . . 232

xxxvi



Chapter 1

Introduction

1.1 Overview

The study of rheology is concerned with relating an imposed deformation to a

measured mechanical response and is usually focused on a structured or complex

fluid. The rheology of a fluid is physically attributed to its structure at a micro-

structural or molecular level. In particular, polymers either in a solution or melt

state are highly sensitive to various aspects of the architecture of the molecules.

For example, the presence of long branches on a molecule has a dramatic effect

on the rheology of a material. Commercial low-density polyethylenes have varied

random long chain branching as a result of the synthesis technique used [Tobita

(2001)]. When certain mechanical properties are needed, being able to choose

the material for a specific purpose is important.

A key aspect to understanding the rheology of polymeric fluids is mathemat-

ically modelling and predicting experimentally measured stresses. A constitutive

equation is used to relate the deformation history to the stress. To fully under-

stand polymer rheology we aim to derive a constitutive equation from microscopic

physics and deduce macroscopic conclusions. This is a vital step in a future in-

dustrial goal of synthesizing polymers by design.

Although in principle a precise knowledge of molecular structure should give a

complete prediction of its rheology [Inkson et al. (2006)], in practice even consti-

tutive equations derived from molecular theory will contain unknown parameters
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1.2 Processing of polymer melts

that must be quantified by fitting the model to experimental data. In a molec-

ular theory these parameters may represent unknown details of the molecular

structure. A simple experimental geometry enables many parameter choices to

be tested and the optimum values found, however the practicality of these exper-

iments is a major issue and choosing an experiment that is sensitive to each of

the unknown parameters is difficult.

For example, a polymer can go through several mechanisms to relax itself

of stress by returning to equilibrium after an imposed strain. The polymer is

characterised by the corresponding time scales and fitting them from simple ex-

periments can be used to either test the theory or for predicting more complex

flow situations.

During a typical industrial process a fluid can experience a complex strain

history at high rates of deformation. Capturing the simple behaviour of a material

in non-linear response is essential for modelling complex flows accurately.

In my thesis I test and build upon a generation of constitutive theories in a

series of simple and complex geometries. In particular I concentrate on the level

of branching in a material, as parameterising this correctly is critical in modelling

non-linear flows. For each geometry the theory is compared to experimental re-

sults and is examined to see how a certain parameter set can infer the molecular

structure of a material. This chapter gives an overview of polymer processing on

the macroscopic level and then constitutive equations are derived from the mi-

croscopic level. Subsequent chapters detail material characterising and examine

various geometries in detail.

1.2 Processing of polymer melts

Polymers commonly occur in many industrial and consumable products. They are

widely used due to their versatility in being manufactured for a precise purpose,

with a choice of polymer leading to differing mechanical properties. The most

popular choice of polymer in industry is the thermoplastic polyethylene, with

over 20 million metric tons of low density polyethylene forecast for production in

Europe by 2012 [Petro-Polymers (2009)].

Polyethylenes can be produced in different ways. Each synthesis method
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makes molecules with specific characteristics that define its mechanical properties.

One example of an important mechanical property is strain hardening, where the

apparent extensional viscosity increases with applied strain rate [c.f. section

1.5]. Polyethylenes can contain varying quantities of long chain branching (LCB)

depending on the synthesis route and the consequence of LCB is the amount of

strain hardening observed for a particular material.

Low density polyethylene (LDPE) is produced using high pressure polymeri-

sation. This method produces many random long chain branches (LCB) on a

molecule which inhibits crystallisation. The LCB also have a dramatic effect on

the melt processing properties as they give rise to a high degree of strain hard-

ening in flows with an extensional component. This strain hardening property is

beneficial in stabilising processing flows such as film blowing or film casting, but

the resulting amorphous material has relatively low mechanical strength.

High density polyethylene (HDPE), produced for example by Ziegler-Natta

polymerisation, has a high level of crystallinity due to the molecules being linear,

i.e. having no branches. In HDPE this gives more desirable solid state properties,

such as stronger tensile strength. However, the lack of strain hardening makes

its processing more difficult.

Linear low density polyethylene (LLDPE) was seen as a compromise between

LDPE and HDPE, containing short branches attached to linear backbones. How-

ever LDPE remains the more popular choice of material due to its superior pro-

cessing properties.

Metallocene catalysis of polyethylene is an emerging synthesis technique that

produces HDPEs that contain some LCB. The synthesis process of these LCB-

HDPE can be controlled very accurately giving choice over molecular structure.

Das et al. (2006) used Monte-Carlo simulations to model the synthesis process and

predict the linear rheology of several varieties of linear and branched metallocene

HDPEs.

A general overview on production methods and mechanical properties of

polyethylene can be found in Peacock (2000), for example. Further discussions

on synthesis methods with respect to rheology can be found in chapter 2.

The production of many products is cheap on a mass scale, however the initial

machine setup cost is high meaning it is crucial that the production process
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is understood. It is potentially cheaper to change the polymer used than the

machine setup.

A non-Newtonian stress response to strains imposed during processing can be

‘remembered’ by a fluid and frozen into a solid sate. These stresses relax over

long time scales and can cause the final product to warp.

Typically in industry, a range of polymers are synthesised and are charac-

terised in both linear and non-linear response. Using a constitutive equation a

multi-dimensional flow simulation can be made of a production process and the

best polymer candidate can be chosen to meet required specifications. Much at-

tention has been focused in the area of modelling synthesis of a polymer. An

overall goal is to reverse the ‘design arrow’ and synthesise a polymer that meets

a preconceived specification. This means instead of picking from a range of avail-

able polymers, the required mechanical properties of a material for a process can

be identified with the use of constitutive modelling and flow simulations and then

any inferred molecular detail can be synthesised with the use of modelled reaction

chemistry. This has been one of the philosophies of the research group I have been

involved in during my PhD; the micro-scale polymer processing (µPP 2) project,

www.mupp2.co.uk (2010).

An example of how molecular structure affects processing techniques is illus-

trated with the film casting process. Here a polymer melt is extruded through a

die and is taken up onto a chilled roll, which pulls the polymer at a faster rate

than it is being extruded.

In figure 1.1 gel permeation chromatography (GPC) and multi-angle laser

light scattering (MALLS) experiments are used to show molecular differences

between LCB-HDPE and LDPE. The GPC experiments elute the various vol-

umes of polymer chain in a material and light scattering is used to measure the

molecular weight of each elution volume. Also, measuring the radius of gyra-

tion provides information on the branching number, bn, which corresponding to

branches per thousand monomer. The GPC experiments show that the LDPE

has a much broader molecular weight distribution than LCB-HDPE and also that

the LDPE is significantly more branched than the LCB-HDPE. Further details

of GCP-MALLS are discussed in chapter 2.

The contrast between these two materials is also seen in the processing during
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Figure 1.1: An example of GPC-MALLS, showing the contrasting structures of
a linear HDPE, a lightly branched HDPE and a branched LDPE.

Figure 1.2: An example of the film casting process, in which a polymer melt is
extruded through a die and is taken up, frozen, on a drum. The difference in the
molecular structure between a LCB-HDPE (left) and a LDPE (right) affects the
profile of the draw-ratio.

the film casting process. The molecular structure of the polymer affects the draw-

ratio profile, giving a different shape of film between the die and roll, and differing

film widths on the roll for equivalent draw speeds, seen in figure 1.2 [Auhl et al.

(2008)].

The film casting process has a complex deformation history involving shear

flow on the walls of the die, uniaxial extension in the centre of the film and
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Figure 1.3: Birefringence patterns showing contours of constant principal stress
difference for two complex geometries. On the left is a contraction expansion
geometry and on the right a cross-slot geometry. The red arrow in figure (a)
highlights the zero stress eye.

planar extension at the film edges. This requires a full 3D simulation to capture

the cross-section shape of the film in free surface flow. This is a difficult and a

computationally expensive simulation as there is only a 2D approximation when

the aspect ratio of the film is large [Zheng et al. (2006)].

To test constitutive equations in complex flow situations an idealised geometry

is used. Historically much attention has been focused on contraction-expansion

and stagnation point flows. Figure 1.3 shows the flow induced birefringence (FIB)

patterns of a LCB-HDPE in both contraction-expansion and cross-slot geome-

tries. The advantage of designing an idealised geometry is the opportunity to in-

corporate flow measurements. FIB uses polarized light to create contour patterns

of principal stress difference [c.f. chapter 5]; this method does not interact with

the material and gives a non-invasive way to test constitutive theories. Further-

more, to investigate localised detail on the flow, such as orientation or velocity,

techniques such as small angle neutron scattering (SANS) [Graham et al. (2009)]

or laser Doppler velocimetry (LDV) can be used.

In my thesis I examine the characterisation of polymer melts to see if molecular

detail can be captured by a constitutive equation. I also check the performance
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of the Pompom class of constitutive equations [c.f. section 1.6.5] in complex

flow geometries, not only to test the constitutive theory but also to see what

macroscopic FIB can infer about molecular detail. In particular I focus on the

non-linear parameters that represent branching in a material.

1.3 Continuum Mechanics

Although the flow properties of a material are governed by the molecular scale

physics, in describing the large scale motion it is useful to consider the melt as a

continuum in which intermolecular forces are represented by a macroscopic stress.

The melt is considered a continuum medium with density, ρ, and velocity, u(x, t).

1.3.1 Governing Equations of Fluid Motion

A fundamental principle in fluid dynamics is the conservation of mass. This

comes from the very basic assumption that mass in a closed system is constant

at all times. By matching the flux of mass into local volumes with the resulting

change in density the continuity equation is derived as,

∂ρ

∂t
+∇.(ρu) = 0. (1.3.1)

Using the Lagrangian derivative, D
Dt
≡ ∂

∂t
+ u · ∇, equation 1.3.1 can be

rewritten by expanding ∇.(ρu) to give,

Dρ

Dt
+ ρ∇.u = 0, (1.3.2)

where ρ is the density of the fluid and u is the fluid velocity. For a constant

density, ρ, that does not vary with either position or time,

Dρ

Dt
=
∂ρ

∂t
+ u∇. ρ = 0,

and hence,

∇ . u = 0. (1.3.3)
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A fluid that satisfies this equation is called incompressible.

A second continuum equation is derived from Newton’s second law of motion,

the conservation of momentum. To derive an equation for the motion of the fluid,

the forces changing the momentum of the fluid and any types of momentum flow

due to boundary fluxes are accounted for. The rate of decrease of momentum in

an arbitrary volume V is given by,

(rate of decrease of momentum) = −
∫
V

∂(ρu)

∂t
dV. (1.3.4)

Momentum flow is given by advection out of V through its surface S, due to a

velocity vector u. Momentum of the fluid is the product of its mass and velocity,

and hence the momentum flux, CM , is given by,

CM =

∫
S

n̂ . (ρu)u dS.

An equation for net rate of outward flow of momentum from V due to a flux

through S is thus obtained using the divergence theorem,

CM =

∫
V

∇.(ρu u) dV. (1.3.5)

External body forces such as gravitational acceleration are also accounted

for. The force of gravity is a product of the mass and the constant gravitational

acceleration, g, giving,

(body forces on V) =

∫
V

ρg dV. (1.3.6)

Finally, we have the effect of intermolecular forces. These appear as surface

forces acting on the boundary,

f = fiêi = (stress on dS)dS,

where f is the surface force density and fi is the component of the force in the êi

direction.
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The surface element n̂dS over which this force acts can be be split up into

component form. So defining τij = (the stress on the ith plane in the jth direction),

then for an elemental surface area dS,

f1 dS = dS n̂ . (ê1τ11 + ê2τ21 + ê3τ31),

f2 dS = dS n̂ . (ê1τ12 + ê2τ22 + ê3τ32),

f3 dS = dS n̂ . (ê1τ13 + ê2τ23 + ê3τ33). (1.3.7)

Combining all these elements together and defining the second rank stress

tensor, τ , as,

τ =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

 ,

the surface force density due to stress acting on an element of fluid is,

f dS = dS n̂ . τ . (1.3.8)

With use of the divergence theorem, the net molecular force acting on V is,

f
M

=

∫
V

∇ . τ dV. (1.3.9)

Equating the rate of decrease of momentum with the outward flux of momen-

tum and the forces acting on the fluid, using equations (1.3.4), (1.3.5), (1.3.6) &

(1.3.9) we obtain,∫
V

∂(ρu)

∂t
dV = −

∫
V

∇.(ρu u) dV +

∫
V

∇.τ dV +

∫
V

ρg dV.

Eliminating the integration over the arbitrary volume, V,

∂(ρu)

∂t
= −∇.(ρu u) +∇.τ + ρg. (1.3.10)

Using the conservation of mass equation we have the general equation of mo-
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1.3 Continuum Mechanics

tion,

ρ
Du

Dt
= −∇ . τ + ρg. (1.3.11)

For an incompressible fluid there is an isotropic component of the stress re-

quired to maintain, ∇ · u, and consequently the stress tensor is usually expressed

as the sum of the extra stress tensor, σ, and the isotropic pressure of the fluid.

The extra stress tensor is the stress caused by the deformation of the fluid,

σ = τ − pI. (1.3.12)

The equation that defines σ is know as the Stress Constitutive Equation. It is

dependent on kinematic effects of velocity, strain and their derivatives.

For Newtonian fluids the extra stress is traceless. However, in many non-

Newtonian fluid constitutive models the extra stress has non-zero trace so the

division between the extra stress and the isotropic stress is arbitrary.

1.3.2 Deformation Kinematics

In order to derive a constitutive equation for the extra stress tensor of non-

Newtonian fluids the deformation history must be known. This local rate of

deformation is found from gradients of the velocity field, u(r, t), and is called the

velocity gradient tensor, or deformation rate tensor,

K(r, t) = (5u(r, t))T . (1.3.13)

However, only the symmetric part of equation (1.3.13) represents deformation,

as the antisymmetric part represents the vorticity. The symmetric part is called

the strain rate tensor,

D =
1

2

(
K +KT

)
. (1.3.14)

The velocity gradient only gives information about the current rate of defor-

mation. In order to measure the deformation history it is necessary to find the

accumulated deformation. The deformation gradient tensor maps the deforma-

10



1.3 Continuum Mechanics

tion from coordinates r to r′ in a time t′ − t,

r(t) = E(t′, t) · r′(t′). (1.3.15)

If the velocity gradient tensor, K, is independent of position, r, then the flow

is zero dimensional and is classified as a simple flow. In this case the deformation

gradient tensor is related to the velocity gradient tensor by,

∂E(t′, t)

∂t
= K · E(t′, t), (1.3.16)

while in general,
DE(t′, t)

Dt
= K · E(t′, t), (1.3.17)

where D
Dt

= ∂
∂t

+ u · ∇ is the Lagrangian time derivative.

Equation (1.3.16) can be integrated,

E(t′, t) = exp

[∫ t

t′
dt′′K(r′′, t′′)

]
, (1.3.18)

where the exponential of a matrix is defined as,

eA = I +
∑
n

An

n!
. (1.3.19)

The principle of frame invariance says that a solid body rotation should not

cause a stress response and as with the velocity gradient tensor, K, the defor-

mation gradient tensor, E, contains the effects of both deformation and solid

body rotation. Therefore, instead of examining stress response with respect to

the deformation gradient it is often more convenient to consider the rotationally

invariant Finger tensor,

B(t, t′) = E(t′, t) · ET (t′, t), (1.3.20)

and its inverse, the Cauchy tensor,

C(t, t′) = B−1(t, t′). (1.3.21)

11



1.3 Continuum Mechanics

1.3.3 Examples

To demonstrate the difference between purely viscous fluids, elastic solids and

viscoelastic fluids we consider simple constitutive equations for each.

The stress in a Newtonian fluid is linear in strain rate so that conventionally,

σN = 2µD, (1.3.22)

where µ is the viscosity of the fluid.

In contrast the stress in an incompressible hyper-elastic rubber depends only

on the deformation from its equilibrium,

σR = GB, (1.3.23)

where G is the shear modulus.

Under a simple shear deformation the xy components of equations 1.3.22 and

1.3.23 reduce to
1

µ
σNxy = γ̇ and

1

G

dσRxy
dt

= γ̇. (1.3.24)

Adding the two parts in equation 1.3.24 provides a combination of viscous

and elastic stress. This is called a Maxwell viscoelastic model which is defined

as,
dε

dt
=
σM

µ
+

1

G

dσM

dt
, (1.3.25)

where ε is the total strain experienced by the fluid. The general solution in shear

given given by,

σMxy = G

∫ t

0

dt′γ̇(t′)e
1
τ

(t′−t), (1.3.26)

where τ ≡ µ
G

is defined as a characteristic relaxation time of the viscoelastic

stress.

Two simple shear flows, an instantaneous shear step-strain and a constant

shear rate flow, characterize the distinction between the three models.

In the case of the shear step-strain, an instantaneous deformation, of size γ0,

is applied at t = 0s, giving a shear rate of γ̇ = γ0δ(t). The subsequent stress

response is shown in figure 1.4. For a Newtonian fluid the stress is proportional

12



1.3 Continuum Mechanics

Figure 1.4: Relaxation of the shear stress after a shear step strain, for a Newtonian
fluid, elastic rubber and a viscoelastic fluid.

to the applied shear rate, stress only exists at t = 0s and is of size µγ0δ(t). For

a hyper-elastic rubber solid the stress is proportional to the total strain applied,∫
γ0δ(t) = γ0. Hence, the stress is permanently remembered. The viscoelastic

Maxwell model shows the cross-over between elastic and viscous behaviour. At

early timescales the model behaves like the elastic solid. The stress decays away

with characteristic timescale, τ = µ
G

, to the viscous regime of having no memory

of the stress.

For a shear flow, a constant shear rate, γ̇ = γ̇0, is applied for t > 0s. The stress

response for constant shear rate flow can be seen in figure 1.5. The Newtonian

fluid has a constant viscosity and hence constant stress, for all time. The hyper-

elastic rubber has stress proportional to the total applied strain, γ̇0t, which is

linear in time. Hence the stress is linear in time with a slope of gradient, γ̇0G.

The viscoelastic Maxwell model displays a cross-over between the two regimes.

The stress develops linearly with gradient γ̇0G, at early timescales and plateaus

to a constant stress, γ̇0µ, at steady state.
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1.4 Rheology

Figure 1.5: Transient shear stress, σxy(t), for a Newtonian fluid, elastic rubber
and a viscoelastic fluid.

1.4 Rheology

To test and characterise constitutive equations various simple, zero dimensional

flows are commonly used. I will use these flows in chapter 2 to fit non-linear

parameters to various polyethylene samples that are tested and modelled in sub-

sequent chapters for other geometries. The three flows most commonly used

are simple shear, uniaxial extension and planar extension. The velocity gradient

tensors, K and deformation gradient tensors, E are detailed in table 1.1.

Rather than plotting the stress for various deformation rates, the stress is com-

monly normalised by the deformation rate to define a (time dependent) viscosity

for each flow more properly termed stress growth coefficients,

shear viscosity µS = σxy
γ̇
, (1.4.1)

uniaxial extensional viscosity µE = σzz−σxx
ε̇

, (1.4.2)

planar extensional viscosity µP = σxx−σyy
ε

. (1.4.3)
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Flow type Velocity gradient, K Deformation gradient, E

Simple Shear

 0 γ̇ 0
0 0 0
0 0 0

  1 γ 0
0 1 0
0 0 1


Uniaxial Extension

 −ε̇/2 0 0
0 −ε̇/2 0
0 0 ε̇

  e−ε/2 0 0
0 e−ε/2 0
0 0 eε


Planar Extension

 ε̇ 0 0
0 −ε̇ 0
0 0 0

  eε 0 0
0 e−ε 0
0 0 1


Table 1.1: Flow tensors for zero dimensional simple flows. For each flow γ̇ and ε̇
are the deformation rates, with γ and ε representing the strains.

1.4.1 Linear Viscoelasticity

To measure and fit the linear Maxwell parameters, {G, τ}, linearly oscillatory

shear is often used. To capture the rheology of a polymer melt a set of Maxwell

parameters, {Gi, τi}, called a linear spectrum is required,

G(t) = ΣiGie
− t
τi . (1.4.4)

The characteristic relaxation time for a linear Maxwell spectrum is defined as,

τ̄ =
ΣiGiτ

2
i

ΣiGiτi
. (1.4.5)

At small shear amplitude, oscillatory shear measurements are considered eas-

ier and more reliable than step-strain measurements. Provided the amplitude

is small enough [c.f. 4 on large amplitude oscillatory shear] the measurements

are far away from any non-linear response, unlike low-strain transient shear or

extension. For a small amplitude oscillatory shear, the stress can be assumed to

be linear in the symmetric velocity gradient, D, and linear response theory can

be used,

σ =

∫ ∞
−∞

dt′2G(t′, t)D(t′), (1.4.6)

where G(t′, t) is the response function. Assuming that the material properties
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are independent of time and integrating over the deformation history gives,

σ =

∫ t

−∞
dt′2G(t′ − t)D(t′). (1.4.7)

Equation 1.4.7 is known as Boltzmann’s constitutive equation.

Under oscillatory shear the velocity gradient can be written in complex vari-

ables,

D12 = iωeiωt, (1.4.8)

which gives a shear stress of,

σxy = iωγ(t)

∫ ∞
0

dsG(s)e−iωs, (1.4.9)

where the variable of integration has been changed, s = t− t′.
This can be rewritten as,

σxy = γ(t)G∗(ω), (1.4.10)

where G∗(ω) is defined as the complex modulus,

G∗(ω) = iω

∫ ∞
0

eiωtG(t)dt. (1.4.11)

The complex modulus can be split into real and imaginary parts, G∗ = G′ +

iG′′. The first term, G′, describes stress that is in phase with the shear and is

associated with elastic stress. The second term, G′′ describes stress which is out

of phase with the shear and is associated with viscous stresses. Here, G′ is called

the storage modulus and G′′ is called the loss modulus. The storage and loss

modulus are together termed the dynamic moduli.

For a Newtonian fluid, equation 1.3.22, G′ = 0 and G′′ = ωµS and for a rubber

solid, equation 1.3.23, G′ = G and G′′ = 0. If we substitute, γ̇ = iωeiωt into the

general solution for a Maxwell fluid, equation 1.3.26, we get a general solution of

the form,

σxy = iωGe−
t
τ

∫ t

−∞
dt′eiωt

′
e
t′
τ , (1.4.12)
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Figure 1.6: The dynamic moduli for a single Maxwell mode.

solving and taking real and imaginary parts gives the storage and loss moduli for

a Maxwell fluid as,

G′ = G
ω2τ 2

1 + ω2τ 2
, G′′ = G

ωτ

1 + ω2τ 2
. (1.4.13)

Figure 1.6 shows the storage and loss moduli for a single Maxwell mode. For

low frequencies the stress is predominantly viscous and the stress is predominantly

elastic for high frequencies.

The cross-over frequency when, G′ = G′′, occurs when ωτ = 1 signifying the

characteristic relaxation for this Maxwell mode. In a general fluid the reciprocal

cross-over frequency identifies a characteristic relaxation time scale.

For oscillatory shear a dimensionless Deborah number can be defined to de-

scribe the degree of non-linearity of the strain experienced by the material. Let-

ting, De = ωτ , shows that De � 1 gives a viscous response and De � 1 gives

an elastic response. Oscillatory shear is performed at some amplitude, γ0, and

an oscillatory shear Weissenberg number can be defined as Wi = γ0ωτ . This de-

scribes the validity of the linear stress response assumption (equation 1.4.6) and

for this assumption to hold true, Wi � 1. In chapter 4, numerical simulations in
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1.5 Branched polymers

Figure 1.7: Linear Maxwell spectrum for a branched metallocene HDPE, HDB6,
is fitted to experimental data.

the case of Wi � 1 show deviations from linear stress response.

A set of 12 Maxwell modes is fitted to experimental data in figure 1.7, for

a branched metallocene catalysed HDPE called HDB6. Fitting was done using

RepTate software [Ramirez and Likhtman (2007)] and details are given in chapter

2. For HDB6 in figure 1.7 the average relaxation time, τ̄ ∼ 28s.

1.5 Branched polymers

One important aspect of characterising a polymeric fluid is to quantify the level

of LCB on molecules. The branching on a molecule is randomly distributed and

is characterised by the branching number, bn, which the number of branches per

thousand carbon atoms. The amount of LCB is partly a result of the method of

synthesis. The LDPEs used in this study were formed using free radical poly-

merisation which produces more LCB than the metallocene catalysed HDPEs

and LLDPEs studies here [c.f. figure 1.1]. There are flow phenomena that arise

due to branching in the simple flows defined in section 1.4. Here the difference

between linear and branched materials is shown.
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1.5 Branched polymers

Figure 1.8: Shear viscosity data and uniaxial extensional viscosity data for a
linear LDPE called CM1. The data shows non-linear thinning response in shear
and in extension the stress response transitions from linear to a strain softening
regime.

For both simple shear and extensional flow the stress response can be char-

acterised by a Deborah number (which is the same as the Weissenberg number

for simple transient flows). The Deborah number for each flow is the product of

the deformation rate and the average relaxation time of the fluid. Linear flow

behaviour is defined for each simple flow as the Deborah number, De� 1.

For Newtonian fluids the ratio between shear and extensional viscosity defined

in section 1.4 is constant and is µe
µs

= 3 for uniaxial extension and µp
µs

= 4 for planar

extension. For both linear and branched materials, the transient viscosity with

Deborah number, De� 1, have the same viscosity ratios (see figures 1.8 and 1.9

for shear and uniaxial linear flow).

For simple shear flow both linear and branched materials show qualitatively

the same non-linear response, i.e. when De � 1. For high enough shear rates,

the non-linear steady state shear viscosity is lower than the linear shear viscosity.

This is called shear thinning.

For extensional flow there is a dramatic difference between linear and LCB
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1.5 Branched polymers

Figure 1.9: Shear viscosity data and uniaxial extensional viscosity data for a
LCB LDPE called 1800S. For non-linear shear the viscosity thins but in non-
linear extension we get strain hardening.

materials. In figure 1.8 uniaxial viscosity data is plotted against time for a linear

LDPE called CM1. The data falls onto 3µs(t) for all extension rates except the

highest extension rate of of 10s−1 where the extensional viscosity falls below the

linear reference. This is the opposite effect to strain hardening and is known as

strain softening.

In figure 1.9 the transient extensional viscosity is plotted for a LCB LDPE,

1800S. For the smallest strain rate, ε = 0.1s−1, the viscosity agrees with the

relation, µe = 3µs, and has a linear deformation. For all the higher strain rates the

viscosity grows above the linear flow prediction and this is called strain hardening.

Notice that for each of the higher strain rates no steady state plateau is reached

experimentally. It remains a challenge to ascertain the extensional steady state

viscosity, although in chapter 5 the cross-slot geometry is used to determine

this steady state. Non-linear rheology can also be studied in oscillatory flow if

the amplitude of motion is large. In section 1.4.1 the Weissenberg number for

oscillatory shear was defined as Wi = γ0ωτ , where γ0 is the amplitude of motion

at a frequency of ω and τ is some characteristic time scale. This time scale is
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determined by taking the viscosity average of the orientation relaxation time (c.f.

1.4.1) and so for a given frequency the amplitude can be made large enough to

examine non-linearity.

1.6 Molecularly derived constitutive model

In order to explain the differences described above it is necessary to account for

the stress that arises in melts of polymers with differing branching structure.

This requires a constitutive model for the stress that takes account of the micro-

scopic physics. These theories can be tested against materials with a predefined

molecular structure.

In this section we discuss the molecular theory used to derive a constitutive

model for branched polymers. The theories discussed in this thesis are based on

the ideas of statistical mechanics where thermal averaging is considered over local

conformations of polymer chains in melts. Many of the established principles

covered here are reviewed in full in such books as Bird et al. (1977a,b); Doi

(1995); Doi and Edwards (1986); Huilgol and Phan-Thien (1997); Phan-Thien

(2002); Rubinstein and Colby (2003).

1.6.1 Gaussian Chains

Polymer molecules are composed of long chains of repeated sub-units, linked to-

gether. As a consequence of the rotational flexibility of these links the orientation

correlation between neighboring units in flexible polymers such as polyethylene,

decays over a small number of units. This decay length is called the persistence

length (1p ∼ 6Ȧ) and is equal to roughly four C − C bonds in polyethylene so

that on length scales larger than 1p the polymer chain may be modelled as a

free-jointed chain.

Consider a polymer made up of N freely jointed sections of length, b. Each

section points in a random direction so that the distribution is isotropic. This is

a random walk model, with the orientation of each section having no correlation.
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This gives the mean polymer, end to end vector,

〈R〉 = 0. (1.6.1)

The average length of an unstretched polymer is given by [e.g. Doi and Ed-

wards (1986)], 〈
R2
〉

= Nb2 (1.6.2)

For a molecule of N segments, the end to end vector is characterised by its

probability density function, P (R;N), which is the probability of an N-segment

polymer having end to end vector, R. Provided that N is large and R2 � N2b2

the probability density function can be approximated by a Gaussian distribution

[e.g. Doi and Edwards (1986)],

P (R;N) =

(
3

2πNb2

) 3
2

exp

(
− 3R2

2Nb2

)
. (1.6.3)

Note that the end to end vector has a maximum length of Nb, whereas the

Gaussian probability is still non-zero for end to end vectors larger than the max-

imum. For large N , the probability of reaching this state is small, however, in

extension there does exist a coil-stretch transition where the deformation-rate

will be large enough to stretch a Gaussian chain beyond the maximum length.

In this case it is necessary to take account of the non-Gaussian nature of the

distribution [c.f. Bird et al. (1977a); Chilcott and Rallison (1988); Rallison and

Hinch (1988)].

Other effects neglected with the Gaussian chain are excluded volume interac-

tions and a maximum bond angle [c.f. Bird et al. (1977a,b); Doi and Edwards

(1986)]. However, these topics are beyond the scope of this thesis.

Using the Gaussian probability density function an equation for the free energy

in the chain can be derived. This is done on the basis that the probability density

function is proportional to the entropy of a chain,

E(R) = A(T )− kBT lnP (R), (1.6.4)

where A(T ) is some given function of temperature, T , and kB is Boltzmann’s
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Figure 1.10: An isolated polymer in a cube, L3. The polymer carries a tension
across the surface. Taken from McLeish (2002).

constant.

For a Gaussian chain (1.6.3), the entropic tension caused by extending the

chain by the vector R is,

F = −∂E
∂R

= −3kBT

Nb2
R. (1.6.5)

This implies that the tension in a Gaussian chain acts like a Hookean spring

with stiffness,

k =
3kBT

Nb2
. (1.6.6)

Initially, consider isolated chains that do not interact with each other. The

thermal energy in a polymer chain causes it to exert a force when deformed.

Using index notation, the extra stress tensor, σ (equation 1.3.12), can be written

as, σij, where the i-th component is the total force per unit area across a plane

with normal in the j-th direction.

In figure 1.10 a polymer chain with end to end, R, is in a elementary volume

L3. If the chain carries a tension, f , then the polymer contribution to the stress
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is the sum of all chains inside the cube,

σij =
1

L3

∑
chains

fiRj. (1.6.7)

Typically, a polymer chain is considered on some coarse-grained level, where

a polymer chain is split into N sections. Each length is chosen to be the Kuhn

step length, b. If the monomer concentration is c in the cube, L3, then the cube

contains, cL3

N
polymer chains.

If the cube contains a large amount of chains, the sum in the above equation

can be approximated by an ensemble average, 〈· · · 〉, giving the stress inside the

cube as,

σij =
c

N
〈fiRj〉 . (1.6.8)

Thus for a Gaussian chain (1.6.5), the extra stress can be written as,

σij =
ck

N
〈RiRj〉 =

3kBT

N2b2
c 〈RiRj〉 , (1.6.9)

which is the ensemble average of the dyadic product, RR.

1.6.2 The upper convected Maxwell model

Thus to derive an equation for the extra stress it is necessary to obtain an expres-

sion for the evolution of the end to end vector, R. Let us begin by considering a

single molecular chain in which the tension of the chain is equated with the solvent

drag and random Brownian force arising from collisions with solvent molecules

so that,

ζ

(
dR

dt
−R · ∇u

)
= −2kR + f

b
, (1.6.10)

where ζ is a drag coefficient, k is the spring constant from equation (1.6.6) and

f
b

represents random Brownian forces. Hence,

d

dt
〈RiRj〉 =

〈
RiRk

∂uj
∂xk

〉
+

〈
RkRj

∂ui
∂xk

〉
− 4k

ζ
〈RiRj〉+

1

ζ
〈fbiRj〉+

1

ζ

〈
fbjRi

〉
.

(1.6.11)

The ensemble average of the correlation between the random Brownian forces
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and end-to-end vector,
〈
f
b
R
〉

, is calculated using the Ito-Stratonovich relation,

〈fiRj〉 = 2kBTδij. (1.6.12)

Defining Aij = 3
Nb2
〈RiRj〉,

d

dt
Aij = KijAij + AijK

T
ij −

1

τ
(Aij − δij) , (1.6.13)

where τ = ζ
4k

and Kij = ∂ui
∂xj

. The extra stress is given by,

σ = GA, (1.6.14)

where G = ckBT
N

, is defined as the elastic modulus. Equations (1.6.13) and (1.6.14)

are known as the upper convected Maxwell (UCM) model and are a generalised

form of the Maxwell model defined in section 1.3.3.

1.6.3 Rouse Dynamics

The UCM model only accounts for the overall end-to-end length and a more

detailed model is the Rouse model for polymer chains. This was first proposed

by Rouse (1953) and consists of a polymer chain with a large number, (N +1), of

beads connecting a line of springs each with the same spring constant, k′ = 3kBT
b2

(c.f. figure 1.11). The drag from the solvent on each bead is constant per monomer

with friction coefficient, ζ0. Labeling each bead with an index s = 0 · · ·N and

assuming that N is large so that we can take the continuum limit on s, the

equation for the motion of the bead in the middle of the chain is,

ζ0

(
∂Rs

∂t
− v(Rs)

)
= k′

∂2Rs

∂s2
+ f

s
. (1.6.15)

Each Rouse chain has N + 1 normal modes, one mode represents translation

and each of the other N modes represents a contribution to the extra stress acting

like the dumbbell model. Concentrating on stress relaxation in the absence of

flow (i.e. neglect the velocity, v), the normal modes and relaxation times can

be derived. The random force terms, f
s

on each segment are uncorrelated with
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Figure 1.11: An isolated Rouse chain.

each other. Since the ends of the chains are free the tension must vanish so that
∂R
∂s

= 0 at s = 0, N . Hence writing R(s)as a Fourier series, the position of the

beads, Rs, can be written as the sum of sinusoidal normal modes,

Rs =
∑
p

Xp cos
(πps
N

)
, p = 1, 2, 3, · · · ., (1.6.16)

giving a constitutive model for a Rouse chain as,

σ = G
∑
p

A
p
, (1.6.17)

where for each p the tensor A
p

satisfies the UCM evolution equation (1.6.13),

d

dt
A = K · A

p
+ A

p
·KT − 1

τp

(
A
p
− I
)
. (1.6.18)

Subsequently, the stress relaxation time of the pth mode is given by,

τp =
τ1

2p2
=

ζ0N
2b2

6π2kBTp2
, (1.6.19)

The relaxation modulus for the Rouse model is simply a sum over UCM modes,

i.e linear Maxwell modes (c.f. section 1.3.3), and is of the form,

G(t) = G
∑
p

e
− p

2t
τ1 . (1.6.20)
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This can be thought of as the progressive relaxation of the p modes and so at

early times, t� τ1, the majority of modes contribute to the relaxation modulus.

In this case taking the continuous limit of the sum in equation (1.6.20) it is found

that at early times, G(t) ∼ t−
1
2 [Doi and Edwards (1986)].

Taking the Fourier transform of equation (1.6.20) will also give the storage

and loss modulus for the Rouse model,

G∗ =

∫ ∞
0

ds iωG
∞∑
p=1

e
− p

2s
τ1
−iωs

, (1.6.21)

giving the storage and loss modulus, respectively as,

G′ = G
∞∑
p=1

ω2τ 2
1

p4 + ω2τ 2
1

and G′′ = G
∞∑
p=1

p2ωτ1

p4 + ω2τ 2
1

. (1.6.22)

In figure 1.12 the storage and loss modulus are plotted against dimensionless

frequency, ωτ1. In the limit of low frequencies we can assume that p4 +ω2τ 2
1 ∼ p4,

then G′ ∼ ω2 and G′′ ∼ ω. Similarly, in the limit of high frequencies the sum

over p modes can be taken in the continuous limit and for both the storage and

loss modulus, G′, G′′ ∼ ω
1
2 . These results are indicated in figure 1.12.

The Rouse model assumes a simple coupling between the polymer chain and

the background solvent which ignores hydrodynamic interactions. For polymer

solutions hydrodynamic interactions are an important physical process and are

included in the model of Zimm [Zimm (1956); Zimm et al. (1956)]. Despite

this both the dumbbell and Rouse model, both derived from Gaussian chain

statistics, are important theories in the study of polymer melts. In particular,

Rouse dynamics capture the rheology of low molecular weight polymer melts,

where interactions between molecules are not dominant.

1.6.4 Entanglements and Reptation

The constitutive models in the previous two subsections consider only isolated

chains. In a melt of sufficiently long chain polymers there is a significant overlap

between the polymer chains that dominates the rheology. The theory for entan-
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Figure 1.12: The storage and loss modulus for the Rouse model.

gled polymer melts is based upon the Doi-Edwards tube model [Doi and Edwards

(1986)].

Considering one polymer chain, if it experiences many overlaps, or entan-

glements, with other chains then the lateral movements of the polymer chain is

restricted. This leads to the idea of a tube of confinement around a polymer

chain. This idea was first introduced by de Gennes (1971) and Edwards (1998).

For entanglements to be a dominant feature in the rheology of a material

the molecular weight of each polymer chain has to be large enough to experi-

ence multiple entanglements. This was first shown by Berry and Fox (1968)

and subsequently discussed by Colby et al. (1987); Doi (1983). Berry and Fox

(1968) measured the zero shear viscosity for many types of polymers and var-

ied the molecular weight of each type. In these experiments the authors found

two regimes of molecular weight, characterised by some critical molecular weight,

MC . Below MC the zero shear viscosity was proportional to the molecular weight

of the polymers, η0 ∼ M , as predicted by the Rouse model. However, above

MC the zero shear viscosity scales as η0 ∼ M3.4 which is attributed to polymer

chains becoming entangled. The Doi-Edwards tube model [Doi and Edwards

(1986)] provides a molecular model for chains with molecular weight exceeding
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Figure 1.13: An entangled chain diffusing from its tube. The tube is a continuum
of topological constraints caused by entanglements (circles). Taken from McLeish
(2002).

MC . This critical molecular weight is defined as the molecular weight at which

entanglements become important to the rheology of the material.

The tube model adopts a mean field approach, that simplifies the multi-chain

system to a single chain confined with a ‘tube’ that represents the effect of neigh-

boring polymer chains. The tube constrains the lateral movement of a polymer

chain, however the chain is free to explore its own path length. In this way a

polymer chain can relax stress by diffusing along its contour and out of its initial

tube, in order to adopt an isotropic distribution in its subsegments. This stress

relaxation is characterised by the average time it takes a polymer to escape its

tube. The relaxation process of a polymer chain diffusing out of a tube is named

reptation [de Gennes (1971)] in reference its snake like motion.

The exact nature of entanglements is still a current research area with much

activity [for example see Sukumaran and Likhtman (2009)]. However, the as-

sumption made is that entanglements affect the lateral dynamics of a polymer

chain beyond some length scale, a. This length scale, a, measures the distance

between entanglements and in equilibrium, where the polymer chain can be ap-

proximated as a Gaussian walk, is given by the relationship,

a2 =
3

ν
Neb

2, (1.6.23)
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where Ne ∝ Me is the number of Rouse beads in an entanglement segment, b is

the Kuhn step length and ν is a dimensionless number relating the step lengths

a and b.

The relaxation of fundamental segments, Me, follows Rouse dynamics with,

τe =
ζ0N

2
e b

2

3π2kBT
, (1.6.24)

so all time scales can be expressed in terms of the Rouse relaxation time of

entanglement segments, τe. Similarly, we can express molecular weights as path

lengths, s = M
Me

= N
Ne

, which is the number of entanglement lengths.

The primitive path is defined as the shortest path length through the tube

with the same end to end vector as the polymer chain. Let z′ be the distance

of the primitive chain contour as measured from the centre of the molecule and

R(z′, t) be the position of the primitive chain. Then,

u(z′, t) =
∂

∂z′
R(z′, t), (1.6.25)

is the unit tangent vector of the primitive chain. Also, if we let L be the length

of the steps in a primitive chain then,

L =
Nb2

a
=
ν

3
sa. (1.6.26)

So the step size, a, becomes the step length of the primitive path, also called the

tube diameter.

A primitive path satisfies a one-dimensional diffusion equation as it diffuses

out of its tube, with Rouse diffusion coefficient, DC = kBT
ζ0N

. The average time

for the polymer chain to diffuse out of its tube, the disentanglement or reptation

time, τd, is given by,

τd =
L2

π2DC

=
ζ0N

3b4

π2kBTa2
= νs3τe. (1.6.27)
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This gives a shear relaxation modulus as,

G(t) = G0

∑
p,odd

8

p2π2
exp

(
−p

2t

τd

)
, (1.6.28)

where G0 = 4ρRT
5Me

is defined as the plateau modulus. This leads to a zero shear

viscosity, η0 = π2

12
G0τd ∼M3, agreeing closely with the experimental observations

of η0 ∼ M3.4 discussed at the beginning of this section (the full 3.4 power law is

recovered by modelling contour length fluctuations [Milner and McLeish (1998)]).

In the basic Doi-Edwards model the extra stress tensor uses the second mo-

ment of the unit tangent vector, equation (1.6.25),

σ =
c

Ne

kBTν 〈uu〉 = G0S, (1.6.29)

where S = ν 〈uu〉.
The rate of tube reconfiguration is τ−1

d which implies that the probability of a

tube segment surviving from an isotropic distribution at time, t′, to a later time,

t > t′, is exp(− t−t′
τd

).

If u is a unit vector denoting the orientation of a tube segment at time, t′,

then at time t it is given by
E·u
|E·u| , where E(t′, t) is the strain between times t and

t′. Hence the orientation distribution at time t of tube segments with orientation

u at time t′ is given by,

Q =

〈
E · uE · u
|E · u|2

〉
t′

, (1.6.30)

where the subscript t′ denotes the time at which the average is taken.

The extra stress in the Doi-Edwards model at time t is then given by the sum

of contributions from all the surviving tube segments created at past times t′,

σ = G0ν

∫ t

−∞
dt′

exp(− t−t′
τd

)

τd
Q. (1.6.31)

This representation of the tube model contains a simplifying assumption called

independent alignment which neglects the interconnection of the chain. A more

detailed theory was described by Doi and Edwards (1986) which does not use
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this approximation and accounts for chain stretch, which aligns with the flow.

Despite this, the independent alignment provides a reasonable approximation,

although discrepancies can occur in first normal stress difference or in complex

flow situations such as reversing flows.

For the independent alignment approximation Doi and Edwards (1986) cal-

culated that ν = 5, however, the non-independent alignment value of ν = 15
4

will

be subsequently used for the rest of this work. This is because the value, ν = 15
4

,

gives the correct scaling when considering star arm polymers, which is important

when considering LCB in the next section [Ball and McLeish (1989)].

One important experimentally observed phenomena is that stress relaxation,

after a shear step, is time-strain separable. This means that the non-linear shear

relaxation modulus, G(γ, t), can be written as the product of two functions,

G(γ, t) = G(t)h(γ), (1.6.32)

where G(t) is the time dependent, low strain, linear relaxation function and h(γ)

is strain dependent function, called the damping function. For the Doi-Edwards

model this property follows from the integral representation (1.6.31) and gives,

h(γ) =
1

(1 + 4
15
γ2)

. (1.6.33)

The Doi-Edwards tube model successfully captures key rheological properties

of linear polymer melts with a high molecular weight, such as shear thinning and

extensional strain softening. This model has been the benchmark for subsequent,

more complex models, such as the GLaMM model [Graham et al. (2003)]. The

GLaMM model uses the tube model concept and included the extra concepts of

contour length fluctuations and convective constraint release. The Doi-Edwards

tube model is also a key concept in the theory of LCB rheology.

1.6.5 Branched Polymers: The Pompom model

In the previous section I considered linear polymer chains. I now move on to

consider branched molecular architecture. Materials containing LCB exhibit dif-
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Figure 1.14: Diagram of a Pompom molecule with, q = 3 arms.

ferent rheology than linear materials. In particular, they exhibit strain hardening

phenomena discussed in section 1.5.

Before considering a general branched molecule, I first consider the extra

stress for an idealised branched molecule, the Pompom molecule [McLeish and

Larson (1998)]. This is the simplest molecule that contains multiple branch points

allowing segments of the molecule to become ‘buried’ and causing a hierarchy of

relaxation processes. Figure 1.14 shows a typical Pompom molecule. It consists

of a backbone of length, L(t), connecting two sets of q identical arms at a branch

point at each end of the backbone.

The Pompom molecule can be characterised by its molecular weight which

comprises of the molecular weight of the backbone, Mb, and the molecular weight

of each arm, Ma, so that the molecular weight of each molecule is, M = Mb +

2qMa. As for linear polymers, the dynamics are controlled by the scaling of the

molecular weight by the molecular entanglement weight, Me, giving a dimension-

less path length for the backbone, sb = Mb

Me
, and arms, sa = Ma

Me
.

It is convenient to express the molecular mass of the backbone, Mb, and

arms, 2qMa, as molecular mass fractions of the total mass of the molecule, M =

Mb + 2qMa,

φb =
Mb

Mb + 2qMa

and φa =
2qMa

Mb + 2qMa

. (1.6.34)

There exist two dominant relaxation processes for the stress in the central

segment of the Pompom molecule. These are the relaxation of chain stretch

and the relaxation of orientation by reptation. The motion of the backbone is
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inhibited by the two branch points at either end, which connect to the arms of the

Pompom molecule. These prevent the backbone from moving along its tube until

the arms have relaxed. The branch points are essentially star shaped molecules

for which Ball and McLeish (1989) showed that the relaxation time of an arm is

proportional to the exponential of the arm path length,

τa = τ0e
ν′sa , (1.6.35)

where τ0 is the average time for an arm to try and retract into its tube and ν ′ is

obtained from the entropic arm retraction potential. Ball and McLeish (1989);

Blackwell et al. (2000); McLeish et al. (1999) used tube dilution dynamics to

derive,

ν ′ =
15
(
1− (1− φa)β(1 + βφa)

)
4β(β + 1)φ2

a

. (1.6.36)

The relaxation of the backbone, via stretch relaxation and reorientation, oc-

curs at time scales much larger than the arm relaxation time and dominates the

rheology at deformation rates of order of the backbone relaxation time. Although

the arm relaxation controls the backbone relaxation, the stress contribution is

negligible at time scales of order of the backbone relaxation time since relaxation

is effectively instantaneous and is thus treated as Newtonian solvent. However,

as segments of the molecule relax they can no longer act as entanglements to

unrelaxed segments. The effect of this is to increase the tube diameter and Ball

and McLeish (1989) proposed that the polymer volume fraction, Φ, scales with

the entanglement molecular weight as, Me = Me,0

Φβ−1 , with β = 7
3

[Colby and Ruben-

stein (1990)]. As the relaxation of the arms is not considered before any of the

backbone has relaxed, the polymer volume fraction, Φ = φb [Milner and McLeish

(1997)].

The two dominant relaxation processes, backbone stretch relaxation and back-

bone reorientation, are determined from the arm disentanglement time. The

backbone stretch relaxation time, τs, is the time taken for the path length of the

backbone to return from some displaced length to its equilibrium length. The

orientation relaxation time, τb, is the average time it takes the backbone to rep-

tate, via its branch points diffusing along the backbone tube, out of a tube of
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unstretched length.

The dynamics of the stretch relaxation are governed by the balance of an

entropically generated thermal tension and the frictional drag force at each branch

point. The drag force is determined from the relative velocity of the branch point

and the tube,

Fd =
ζbp
2

(
∂L

∂t
− LK : S

)
, (1.6.37)

where ζbp is the drag coefficient, the velocity gradient is K, the orientation is given

by S and the contour length of the tube is given by, L. The drag coefficient, ζbp,

can be obtained from the Stokes-Einstein relationship, ζbp = kBT
Dbp

. By considering

the diffusion of the branch points an equation is derived for the drag force of

the q arms [Blackwell et al. (2000)], with diffusion coefficient given by Colby and

Rubenstein (1990),

Dbp =
p2a2

eff

2qτa
, (1.6.38)

where aeff = a

φ
(β−1)/2
b

is the effective tube diameter and p is the fraction of the tube

diameter that a branch point diffusively hops when it is liberated by a retracting

arm.

This drag force must balance the entropic tension in the backbone with the

entropic force being Hookean in nature,

Fe =
3kBT

L0a
(L− L0) , (1.6.39)

where L0 is the equilibrium length of the backbone tube and L0a =< R2 >= Nbb
2,

with the Kuhn step length related to the tube diameter with a2 = 4
5
Neb

2 [Doi

and Edwards (1986)].

Defining λ(t) = L(t)
L0

as the dimensionless stretch and equating the viscous

drag force and entropic elastic recovery force gives,

Dλ(t)

Dt
= λ(t)K : S − 1

τs
(λ(t)− 1) , (1.6.40)

as the dynamic equation for the stretch in the backbone of the Pompom molecule
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with,

τs =
5

2
qsbφ

β−1
b τa. (1.6.41)

Bick and McLeish (1996) noted that there is an upper bound on the elastic

force and hence on the stretch, λ. Each arm with a free end carries an entropic

tension, f0 = 3kBT
a

, and so the backbone can maintain a maximum tension of qf0.

At this point the branch point is withdrawn into the backbone tube reducing the

effective drag coefficient and the value of the stretch will not increase. Equating

the maximum tension with the tension in the backbone gives the condition, λ(t) ≤
q. Originally McLeish and Larson (1998) included dynamics of the branch point

withdrawal in their model. However, the timescale of this process is much faster in

comparison to the stretch relaxation time, and the additional stress contribution

from the aligned portion of the arms is small compared to that contributed by

the backbone. Consequently, subsequent treatments of the Pompom equations

[Blackwell et al. (2000); Inkson et al. (1999); Lee et al. (2001)] have neglected

this term.

Blackwell et al. (2000) considered local branch point displacement. Since all

relaxation processes are based on the arm relaxation process, which in turn, has

dependence on the exponential of the arm path length, equation (1.6.35), even

changes in the arm path length, sa, in the order of a tube diameter, a, will have

a significant effect on the arm relaxation time. Blackwell et al. (2000) assumed

that there would be no significant change to the orientation relaxation time, since

the withdrawn material would be orientated.

To consider the effect of branch point displacement on the relaxation times

we look at the localising force on the branch point. If x is the distance along the

tube contour measured from the end of the contour, then Doi and Edwards (1986)

state that the Gaussian probability distribution for small scale displacements of

the branch point will have a localising force with a harmonic potential,

U(x)

kBT
= (q − 1)k∗

(x
a

)2

, (1.6.42)

where k∗ is an unknown dimensionless constant of order unity. This is different

than the result quoted in Blackwell et al. (2000), where the case of q = 1 was not
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treated correctly in this potential. For the value, q = 1, the Pompom molecule

is linear and hence, has no branch points to generate Pompom stretch (note

linear molecules exhibit chain stretch above critical deformation rates [Graham

et al. (2003)], but this is not modelled for linear Pompom molecules) or branch

point displacement. This changes U(x) ∼ q quoted in Blackwell et al. (2000)

to U(x) ∼ (q − 1). For large branch point displacements the branch point feels

maximum force, qf0, this gives a linear potential in agreement with McLeish and

Larson (1998).

The length of a Pompom arm, La = 5
4
saa, and so a change in the path length

of a Pompom arm with branch point displacement, x, is given by,

4sa = −4x

5a
. (1.6.43)

By balancing the elastic force, Fe, with the localising force with potential,

U(x), the change in path length can be expressed in terms of the stretch, λ(t),

4sa = − 6

5k∗(q − 1)
(λ(t)− 1) . (1.6.44)

From equation (1.6.35) the arm relaxation time can be expressed with respect

to a dynamic path length, sa +4sa, as long as the change in path length, 4sa,
is small compared to the path length of the arm, sa, to give,

τa = τ0e
ν′sa → τ0e

ν′(sa+4sa). (1.6.45)

This gives a modification to the Pompom model that reduces the stretch

relaxation time exponentially with branch point displacement,

τs → τse
−ν∗(λ−1), (1.6.46)

where ν∗ is given by [McLeish (2002)],

ν∗ =
2

q − 1
. (1.6.47)

The effect of branch point displacement reduces the stretch relaxation time, τs,
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from its initial value for λ = 1 at equilibrium, to a value of τse
−2 at maximum

stretch, λ = q.

Incorporating the adjusted τs into the stretch equation (1.6.40) gives an ODE

for the evolution of the stretch with branch point displacement,

Dλ(t)

Dt
= λ(t)K : S − 1

τs
(λ(t)− 1) eν∗(λ−1). (1.6.48)

Another modification to the Pompom equations was proposed by Lee et al.

(2001), whereby in the case of reversing flows the contour length of the polymer

chain becomes smaller than its equilibrium length, L0. This is particularly im-

portant in complex flows such as contraction-expansion flows [Lee et al. (2001)]

and in oscillatory shear flows where the deformation rate is large, De � 1 [c.f.

section 1.4.1]. This flow is a topic of much current research and in chapter 4 I

discuss large amplitude oscillatory shear with respect to the Pompom equations.

Considering the case where a positive strain is followed by a rapid strain in

the opposite direction the backbone tube may retract faster than the polymer

chain. If there is significant chain retraction between the positive and negative

strain then the contraction of the tube contour will bring the path length below

equilibrium, λ < 1. From equation (1.6.48) this condition is equivalent to, S :

K − 1
λ
Dλ
Dt

< 0. In this case the chain extension will create new isotropic portions

of the backbone tube by exploration of the melt by the emerging free ends at a

rate, S : K− 1
λ
Dλ
Dt

, which is accompanied with reptation at a rate, τ−1
b . Lee et al.

(2001) proposed that orientation relaxation time should be modified to capture

this relaxation process with a piecewise continuous function that adjusts τb only

when, λ < 1, to give,

1

τ ∗b
=

1

τb
+
λ̇

λ
−K : S for λ < 1. (1.6.49)

The final element of the Pompom equations is the equation for the evolution

of the orientation. As previously mentioned in this section the backbone of the

Pompom model reptates out of its tube after the Pompom arms have relaxed and

simply contributes as solvent drag at the branch points. The reptation time of the

backbone, like for the stretch relaxation, is clearly dependent on arm relaxation.
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McLeish and Larson (1998) derive the orientation relaxation as,

τb =
75

2π2
qs2

bφ
2(β−1)
b τa. (1.6.50)

The orientation contribution to the extra stress tensor is given by the Doi-

Edwards orientation [c.f. equations 1.6.30,1.6.31] and the extra stress for the

Pompom model is,

σ = G0φ
β
bλ

2(t)S(t), (1.6.51)

where G0 is the plateau modulus.

Differential Pompom models

For non-rheometric flows the numerical solution to this integral form of the Pom-

pom model is computationally expensive, although Wapperom and Keunings

(2001) perform successful numerical simulations of the integral Pompom model.

This had led to the introduction of differential approximations for the orientation

equation (1.6.30,1.6.31). The approximation proposed by McLeish and Larson

(1998) [which is the approximation used in Blackwell et al. (2000); Hassell et al.

(2009); Lee et al. (2001); McLeish (2002); McLeish and Larson (1998)] is given

by,

σ = 3Gλ2(t)S, (1.6.52)

with

S =
A

trace(A)
, where (1.6.53)

D

Dt
Aij = KijAij + AijK

T
ij −

1

τb
(Aij − Iij) , (1.6.54)

where A is an auxiliary variable satisfying the UCM model. The stretch remains

given by equation (1.6.48). This approximation gives the correct asymptotic lim-

its for Sxy in shear flow at high and low shear-rates. However, the transition from

isotropic to aligned orientations occurs too rapidly with increasing deformation

rate, so that this is a qualitative rather than a quantitative approximation to the

integral solution for S.
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Figure 1.15: A one mode Pompom model in uniaxial extension (solid lines) and
shear (dashed lines). Extension/shear rates of 0.01, 0.1, 1 and 10s−1 were used
with Pompom parameters of {G = 1Pa, τb = 5s, q = 10, τs = 1.25s}.

Figure 1.15 shows the differential Pompom model, for a single mode, in uni-

axial extension and simple shear flow. The parameters, {G = 1Pa, τb = 5s, q =

10, τs = 1.25s}, are chosen to show the qualitative behaviour of the Pompom

model.

In addition this approximation gives zero second normal stress difference and

the stress in both transient and steady state extension can be non-differentiable

as the equations are only piece-wise continuous. Several alternative approxima-

tions for orientation tensors have been suggested to overcome these problems.

Verbeeten et al. (2001) suggested an alternative approximation known as the

extended Pompom model (XPP). This model gives a second normal stress dif-

ference, however it also produces unphysical mathematical artifacts. In partic-

ular, the steady shear viscosity contains multiple solutions for some shear rates

[Clemeur et al. (2003)]. Clemeur et al. (2003, 2004a) suggested alterations from

the XPP model know as the double convected Pompom (DCPP) model. This

model creates a second normal stress difference using a ratio of upper and lower

convective derivatives and has been shown to have good agreement with large am-
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plitude oscillatory shear experiments (c.f. chapter 5) and predicted birefringence

patterns in 3D simulations of contraction flows [Clemeur et al. (2004b)].

The XPP and DCPP models have a common limit when the parameters con-

trolling the second normal stress difference are set to zero, known as the DPP

model [Clemeur et al. (2003)]. Both models avoid the non-differentiable piece-

wise nature of the original models by neglecting the maximum stretch condition,

λ(t) ≤ q. This does make solving finite element problems easier as no penalty

condition is needed (c.f. next section; 1.7) but ignores an important piece of the

Pompom physics. Also both XPP and DCPP model do not gives the correct

asymptotic behaviour at high shear rates.

Öttinger (2001) suggested a model from an approach based on non-equilibrium

thermodynamics which does introduce a second normal stress difference and

maintains the maximum stretch condition. The model is complicated by the

process of having to invert matrices to solve the equations and a simplification of

the model is used to avoid this when solving computational problems.

In my thesis I will focus on the original set of differential and integral Pompom

equations by McLeish and Larson (1998) with the improvements discussed in this

section [Blackwell et al. (2000); Inkson et al. (1999); Lee et al. (2001); McLeish

(2002)]. In the subsequent chapters I will be exploring the equations in simple

and complex geometries and evaluate their performance based on experimental

observations.

Multimode models

The model of monodisperse Pompom molecules can be expanded to capture the

rheology of randomly LCB polydisperse materials, such as LDPE. Inkson et al.

(1999) introduced the multimode Pompom model which decouples a randomly

LCB molecule into a series of simple Pompom molecules, which have a range

of orientation and stretch relaxation times. This assumption is based on the

principle that the outer branches of a randomly branched molecule must relax

first, before the inner segments of a molecule can then relax. The Pompom
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constitutive model now takes the form,

N∑
i

σ
i

= 3Giλ
2
i (t)Si, (1.6.55)

where N is the number of Pompom modes. The Pompom model parameter space,

{Gi, τbi , τsi , qi}, can successfully capture the rheology of commercial polyethylenes

[Blackwell et al. (2000)] and this will be discussed in the next chapter, where I

detail fitting several polyethylenes with Pompom spectra.

1.7 Numerical simulations

The aim of this thesis is to analyse stress response of polymers and constitutive

equations in complex flow. In particular I will examine the cross-slot geometry

implemented by the Cambridge multi-pass rheometer [see for example Hassell

et al. (2009)]. The cross-slot experimental apparatus allows optical measurements

of principal stress difference via flow induced stress birefringence. This method

will be fully discussed in chapters 5 and 6, with an investigation on mesh density

carried out in chapter 5. A particular feature of cross-slot flow is the generation of

a stagnation point, causing polymers to become highly extended. This stagnation

point flow is a good test of constitutive equations and, to test the Pompom model

in the flow, the constitutive equations coupled with the equations of motion are

solved for this complex geometry.

Of course the experimental flow is three dimensional, however if the depth of

the cross-slot (i.e. perpendicular to the viewing plain) is significantly more than

the width of the cross-slot channel, then a two-dimensional approximation can

be made (Wales (1976) suggests the ratio of depth to width be at least 10). The

ratio of depth to width for the Cambridge cross-slot is 7 and so although a 2D

approximation is valid, the error of ignoring the full 3D nature of the flow needs

to be checked.

One popular method for solving flow through a complex geometry is the finite

element (FE) method, which I use in my thesis. Finite element (FE) methods

consist of dividing the solution domain into discrete elements. An example of
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Figure 1.16: An example of an element used with the finite element method of
solving complex geometries. The velocity and pressure are solved at the nodes
of the element and the velocity gradient and stress are solved as constant of the
area of the element.

an element can be seen in figure (1.16), where in this case a triangular element

has the velocity and pressure solved at each of its three nodes and the velocity

gradients and extra stress solved as a constant for the element.

I will compare two kinds of FE methods in my work. The first FE method is a

split Lagrangian technique [Bishko et al. (1997, 1999); Harlen et al. (1995)] built

into software called flowSolve. With this method the mesh moves with the fluid

(c.f. figure (1.17)) and provides a very natural way of solving the velocity field,

the velocity gradient field and the UCM tensor. As the mesh moves the triangles

become distorted and so are split into smaller triangles. To save computation

time specific regions can have the resolution of elements increased, as seen in

figure (1.17), and as the mesh convects so do the refined regions so as not to loose

any data points.

The second FE method I will employ is a static Eulerian mesh solver know

as euFlow [Tenchev et al. (2008)]. This method uses quadrilateral elements to

form the solution domain and the mesh does not deform with the flow. The

solver scheme uses Petrov-Galerkin stream-line upwinding to stabilise the solu-

tion. Using a static mesh provides a much quicker solving method than the

moving Lagrangian mesh and is expanded to 3D calculations. The speed of the
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1.7 Numerical simulations

Figure 1.17: An example of a finite element mesh created by flowSolve in solving
cross-slot flow. The red lines indicate regions of refinement. On the left is the
initial mesh at time t = 0s and on the right the mesh at some later time. The
refinement regions have been subsequently distorted and the green circle indicates
the movement of one element.

method will allow me to check deviations from the 2D approximation of experi-

ments. The discretisation of space is initially done by breaking the space down

in to a series of ‘super elements’ (c.f. figure 1.18), these are then filled with a

preset number of elements giving the final mesh.

Solving the Pompom equations requires transient constraints to be made on

the solution, namely the supremum on the stretch equation (1.6.48), λ(t) ≤ q,

and the trace of the UCM tensor (1.6.54) needs to be constrained so that the

solution remains finite. This does not affect the solution as once the trace of the

UCM tensor becomes large each element of the orientation tensor (1.6.53) never

exceeds unity. The solver flowSolve has a natural way of imposing these limits,

however euFlow cannot impose hard limits as this makes the solution unstable.

Therefore euFlow uses a penalty function to ‘push back’ any nodal values that

go beyond their particular limits. This requires a predefined penalty coefficient

where trial and error is needed to find the correct number. In this way there is a

trade off between the speed of euFlow and the stability of flowSolve.

The experimental flow rate is set by a constant piston speed, Vp, which gives
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1.7 Numerical simulations

Figure 1.18: An example of the static mesh used by euFlow ’s finite element
scheme. On the left the spatial domain is constructed of super elements which
are filled in with finite elements on the right.

a volume flux into the cross slot of,

Q = 78.5 · Vp,mm3/s (1.7.1)

where Q is the volume flux.

The moving mesh solver, flowSolve requires an average velocity flux, UQ,

which is calculated from the geometry used [c.f. figure 5.2], dividing the volume

flux by the surface area of the input channel. This gives the velocity input flux

as,

UQ = 5.2333 · Vp. (1.7.2)

For the static mesh solver, euFlow, the required input parameter is given as the

maximum velocity of the Stokes solution across the input channel, the velocity

profile is then continually updated during the simulation. For 2D geometries this
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implies the maximum input velocity, V 2D
max, is given by,

V 2D
max =

3

2
UQ. (1.7.3)

The 3D input parameter is the maximum velocity, V 3D
max, of a bi-quadratic velocity

profile,

V (x, z) = V 3D
max

(
1− x2

a2

)(
1− z2

b2

)
, (1.7.4)

where a is the channel width and b is the channel depth. Integrating the velocity

profile gives the relation between the maximum 3D velocity to the velocity flux

as,

V 3D
max =

9

4
UQ. (1.7.5)

I will be using and comparing both solver methods in my thesis and I would

like to thank Dr Harley Klein, Dr Timothy Nicholson and Dr Mark Walkley for

the help in using flowSolve and Dr Rosen Tenchev and again Dr Mark Walkley

for their help in using and adapting euFlow.

1.8 Summary

In this chapter I briefly set out the motivation behind this thesis and the study

of polymer rheology. I went on to introduce the basic principles that underpin

the constitutive theories used in this paper, namely the Pompom constitutive

equations.

In chapter 2 I will discuss the rheology of several polyethylenes with varying

molecular structures and use the Pompom model to describe their behaviour in

these simple flows. In doing so I will fit Pompom spectra to linear and non-linear

rheological data. These spectra will then be used throughout my thesis when

exploring the Pompom model’s ability to correctly model certain flow situations.

In the subsequent chapters I will be focusing on particular flow situations in

turn. Several key questions arise from this study; primarily can the Pompom

model, with the correct parameterisation, capture the rheology of real polymer

melts? Also, an important aspect of deriving a constitutive model can be to infer
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1.8 Summary

molecular detail from fitting its parameters to rheological flows, so the question

of what can be learned by the results of different flows is of concern.

In chapter 3 I will be examining branched polymer melts under a shear step-

strain flow. The Doi-Edwards model Doi and Edwards (1986) for linear polymers

predicts time-strain separation, with the result that a damping function can be

derived from the model. LCB materials also exhibit time-strain separation, and

in chapter 3 I look at how well the Pompom model captures this phenomena. It

turns out that a branched damping function can be derived that is dependent

on the non linear rheological parameters, {τs, q}. I show that step strain can be

used to differentiate between LCB-HDPEs and LDPEs.

In chapter 4 I will continue my investigation of shear flow by examining large

amplitude oscillatory shear (LAOS) using Fourier transform rheology (FTR). This

has traditionally been seen as frequency sweeps of the dynamic moduli for small

amplitude. In this chapter not only strain dependency on the stress response

but higher harmonics in the Fourier series are explored. In particular it is shown

that in the limit of low strain amplitude the third harmonic is dependent on

the two linear parameters, {G, τb}, and only one non-linear Pompom parameter,

the stretch relaxation time, τs. Even for high strain amplitudes of order unity,

the dependence on the non-linear Pompom branching parameter is small making

LAOS an experiment for examining the stretch relaxation time independently of

the branching parameter. The Pompom model performs well with parameters

fitted to uniaxial extensional data, but using simulated reaction processes which

produces a highly detailed Pompom spectrum with thousands of modes provides

even greater accuracy when comparing low-strain asymptotes with experimental

data.

Chapter 5 and onwards is concerned with the performance the Pompom con-

stitutive model in a complex cross-slot geometry. The Pompom model is com-

pared to flow induced birefringence images. Flow through the cross-slot geometry

causes a stagnation point and here the Pompom model shows a failing in cap-

turing the rheology of cross-slot flow around the outflow centre line. Materials

that contain long chain branching exhibit double cusping (W-Cusps) along the

outflow centre line, which the Pompom model fails to capture. To explore this

phenomenon further the flow induced birefringence images are transformed into
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1.8 Summary

steady state extensional viscosity curves. These give smaller viscosities than seen

in the maximum values obtained from stretching experiments. This leads to the

conclusion that a transient overshoot in extension could exist.

To test whether a transient overshoot in extension would give W-cusps, in

6 an extra empirical stretch-relaxation term is incorporated into the Pompom

model. With carefully parameterised Pompom spectra fitted to both transient

uniaxial stretching data, and with the steady state fitted to cross-slot data, the

rheology of several materials is modelled in cross-slot and found to give excellent

predictions compared to flow induced birefringence images.

I would also like to acknowledge the many people who provided data for

this thesis, making comparisons between constitutive modelling and experiment

possible. I would like to thank John Embury and Dietmar Auhl for their linear

oscillatory shear, transient shear and extensional data in chapter 2, and also

Dietmar Auhl for the step strain data in chapter 3. In chapter 4 Vitor Borossa and

Manfred Wilhelm kindly provided data for LAOS and Daniel Read and Chinmay

Das the BoB spectra used for comparison. For the cross-slot birefringence images

and LDV data in chapters 5 and 6, I would like to thank David Hassell, Timothy

Lord and Malcom Mackley. Finally I would like to thank Henrik Rasmussen and

Qian Huang for the extensional data in chapter 6, which is the only material for

which I have data showing the transient overshoot in extension.
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Chapter 2

Materials

In this chapter I will discuss the rheological tests commonly used to characterise

polymer melts and then fit the experimental data with Pompom parameters,

which will be used throughout the rest of my thesis. All experimental data in

this chapter, and throughout my thesis was provided to me through the Mi-

croscale Polymer Processing project (µPP 2), in particular I would like to thank

Dr. Dietmar Auhl and Dr. John Embury for the oscillatory shear, transient shear

and uniaxial extensional data in this chapter and Dr. Dietmar Auhl again, for

the data on molar mass distribution and branching numbers.

All the materials in my thesis are polyethylenes which can broadly be split up

into three categories as previously mentioned in section 1.2. These are linear-low

density polyethylenes (LLDPEs), branched high density polyethylenes (HDPEs)

and low density polyethylenes (LDPEs). LDPEs are produced by high pressure,

high temperature free radical polymerisation, whereas LLDPEs and HDPEs in

this study are produced by metallocene catalysed polymerisation, which is pro-

duced at relatively lower pressures and temperatures compared to that for the

polymerisation of LDPE. Further details of these practices can be found in, for

example Peacock (2000).

For high pressure polymerisation, the high pressure forces ethylene monomers

into close proximity where free radicals initiate the polymerisation process. Dur-

ing polymerisation free radicals can randomly extract a hydrogen atom from a

pre-existing chain. This free radical then creates a site on which a new chain can

grow, so forming a branch point. Branches can be short or long chained branches
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(SCB or LCB, respectively) with the probability of branch point creation being

proportional to molecular weight. Therefore high molecular weight LDPEs typi-

cally have more LCB. Metallocene catalysis uses a metal oxide additive to provide

a smoother synthesis route than high pressure polymerisation. In contrast to the

free radical catalyst, the metallocene catalyst provides a more uniform polymeri-

sation chemistry which provides increased control over molecular architecture.

To characterise the molecular structure of a polymeric material the aver-

age molecular weight of the ensemble of polymer chains is often measured. A

polymeric material will have a distribution of individual molecules with varying

length. Such a material is called polydisperse. If all the molecules are of equal

length then the material is called monodisperse. The molar mass of a molecule

is MN = MmonN , where Mmon is the molecular mass of a monomer and N is

the number of monomers in a chain. Defining the number fraction, nN , as the

number of molecules each containing N monomers the molar mass distribution

can be described using moments of the number fraction distribution. The num-

ber average molar mass, Mn, is defined as the ratio between the first and zeroth

moments of the number fraction distribution,

Mn =

∑
N nNMN∑
N nN

=
∑
N

nNMN , (2.0.1)

and the weight average molar mass is the ratio of the second and first moments

of the number fraction,

Mw =

∑
N nNM

2
N∑

N nNMN

=

∑
N nNM

2
N

Mn

. (2.0.2)

The polydispersity of a material can be characterised by the ratio of the weight

average and number average molar mass, the polydispersity index Mw

Mn
. Monodis-

perse materials have a polydispersity index of 1 and the larger the polydispersity

index the broader the molar mass distribution will be.

Experimentally the molar mass distribution and hence the number and weight

average molar masses can be measured using a combination of gel permeation

chromatography and multi-angled laser light scattering (GPC-MALLS) [for fur-

ther description see, for example Rubinstein and Colby (2003)]. Figure 2.1 shows
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Figure 2.1: An example of molar mass distributions (left) and branching number,
bn (right) for several of the materials studied in this thesis. The molar mass dis-
tribution is broader for the LDPE 1840H than that of the HDPE materials, CM1,
HDB1, HDB3 and HDB6. The branching number can clearly distinguish between
the branching structure of the LDPE 1840H, the branched HDPEs and the lin-
ear HDPE CM1, but the measurements are not accurate enough to distinguish
between the branched HDPEs.

the molar mass distribution of the following materials used in experiments anal-

ysed in this thesis (we refer to them using the material codes used throughout):

linear HDPE CM1, LCB HDB1, LCB HDB3, LCB HDB6 and the LDPE 1840H

[c.f. table 2.1] are plotted as a function of dw
d(log(Mw))

[Yau and Flemming (1968)],

which is a quantity that represents the molar mass distribution of a polyethylene

sample. Here, w is a weight fraction of polymer eluted. The molar mass distribu-

tion of LDPE 1840H is typical of the three LDPEs studied in this thesis, which

has a much broader mass distribution compared to the metallocene catalysed

materials, and hence a high polydispersity (c.f. table 2.1). The weight average

molar mass of the LDPEs are all higher than any of the HDPEs in this study.

The technique of GPC-MALLS can also be used to measure the radius of

gyration of polymers with respect to the distribution of molar masses, which

can be used to obtain information on the degree of branching as the branching

number, bn [Zimm and Stockmayer (1949)]. The branching number is defined

as the average number of branches per thousand carbons in the backbone of

a molecule. In figure 2.1 the branching number as a function of molar mass
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distribution is shown for several of the materials used in this thesis, detailed in

table 2.1. Using GPC-MALLS the branching number can be measured sensitively

enough to distinguish between the LDPE 1840H, the branched HDPEs (HDB1,

HDB3 and HDB6) and the linear HDPE CM1. The GPC-MALLS branching

number is in disagreement with the known branching structure of the HDPEs

[Das et al. (2006)]. According to the GCP-MALLS data HDB1 is seen to have

more branches per molecule than both HDB3 and HDB6, which is in contradiction

to the actual branching structures where HDB1-HDB6 are labeled in order of

increasing branching numbers [Costeux et al. (2002)].

Although measuring the molar mass distributions and branching number of a

material provides information on the structure of the material it is not sensitive

enough to parameterise constitutive theories, such as the Pompom constitutive

model. This thesis is focused on the parameterisation of the Pompom model

using dynamic flow measurements and finding which experiments are sensitive to

certain aspects of the molecular detail.

Rheological measurements of the materials in both oscillatory and transient

shear and uniaxial extensional flow were performed using a strain-controlled

ARES rheometer (Advanced Rheometric Expansion System, Rheometric Scien-

tific) with a force-rebalanced transducer (2K-FRT). The specimens were com-

pression moulded at 170− 190◦C with the dimensions corrected for the thermal

expansion. The rheological tests were repeated to assess the thermal stability

and showed that no detectable molecular structure changes took place during the

experiments.

Oscillatory shear test were carried out using 10mm parallel plates, while tran-

sient shear tests were carried out using various cone and plate geometries with

cone angles between 2 and 10 degrees and a diameter of 10mm. Frequency sweeps

were performed at a range of temperatures and the data shifted to the same tem-

perature as the non-linear rheology using Williams-Landel-Ferry (WLF) theory

[Ferry (1961)].

The non-linear elongational flow behaviour was characterised using the uniax-

ial stretching device SER (Sentmanat Elongational Rheometer, Xpansion Instru-

ments [Sentmanat (2004)]) attached to the ARES rheometer. Different Hencky

strain rates between 0.001s−1 and 10s−1 were applied to compression molded
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2.1 Pompom characterisation

Table 2.1: Material properties of polyethylenes investigated. The values for the
HDB, CM series and Dow150R are consistent with previous studies [Wood-Adams
and Dealy (2000), Crosby et al. (2002), den Doelder et al. (2005), Das et al. (2006),
and Hassell et al. (2008)].

Sample Code MW MW/MN T η0 τ̄b
[kg/mol] [-] [◦C] [kPa s] [s]

Tubular 1800S 146 7 150 2.5 1.15
140 3.0 1.38
160 2.1 1.07

Tubular 1840H 240 9 150 51 50
Tubular Dow150R 242 11 160 368 428

LCB-met. HDB1 77 2.1 155 11 5.6
LCB-met. HDB2 82 2.1 155 27 14.8
LCB-met. HDB3 86 2.1 155 43 22.1
LCB-met. HDB4 96 2.1 155 200 56
LCB-met. HDB6 68 2.2 155 50 28
Lin-met. CM1 104 2.1 155 11 1.09

175 7.9 0.58
LCB-met. CM2 92 2.2 155 32 16.3
LCB-met. CM3 84 2.2 160 35 18

specimens with a width from 3mm to 10mm and a thickness of about 1mm [c.f.

for example Münstedt and Auhl (2005)].

2.1 Pompom characterisation

In my thesis I analyse eleven polyethylene samples, three LDPEs, five LCB HD-

PEs and three LLDPEs, one of which (CM1) is linear. In chapters three to six

the Pompom model will be analysed in various simple and complex flow types.

Although each material will not appear in every chapter (only materials where

experimental data is available for a particular flow type will be investigated in

the relevant chapter), each chapter will compare materials of all three types.

The linear and non-linear Pompom parameters were fitted to data using Rep-

tate software [Ramirez and Likhtman (2007)]. This software provides an auto-

mated fitting tool which uses the downhill simplex method and searches for the

minimum error between experimental data points and theory.
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2.1 Pompom characterisation

The multimode Pompom model described in section 1.6.5 contains four param-

eters per mode. The linear Maxwell parameters are fitted to the dynamic moduli

obtained from oscillatory shear measurements and as a further check the Maxwell

parameters are then checked against the same data in the form of the complex

viscosity (c.f. figure 2.2). Where available frequency sweeps at various temper-

atures are used to create a master curve using time-temperature superposition

theory with two parameters [Ferry (1961)]. The shift to a different temperature

consists of a horizontal shift and a vertical shift. The horizontal shift of frequency

is of the form,

ω(T0) = aTω(T ), (2.1.1)

where T is the original temperature and T0 is the temperature which the data is

shifted to, in degrees Celsius. The value of aT is given by,

log10aT =
−C1(T − T0)

T + C2

, (2.1.2)

where C1 and C2 are material parameters. The vertical shift of modulus is given

by,

G(T0) =
G(T )

bT
, (2.1.3)

with,

bT =
ρ(T )T

ρ(T0)T0

=
(ρ0 − TC3)(T + 273.15)

(ρ0 − T0C3)(T0 + 273.15)
, (2.1.4)

where ρ is the density of the fluid at a given temperature, ρ0 is the density of

the polymer at 0◦C and C3 is a material parameter. For this study Reptate is

used to minimize the χ2 fit of the temperature dependence of frequency shifts

with respect to C1 and C2 and the parameters C3 = 6.9 × 10−4kg.m−3.K−1 and

ρ0 = 0.95kg.m−3 are fixed.

Due to the broad molecular weight distribution of the polyethylene samples

relaxation modes spanning four to six decades are required to capture their rhe-

ology. Thus in order to provide two to three relaxation times per decade nine

to fifteen modes linear modes are required. The actual values of the orientation

relaxation times, τbi , are arbitrary but they are usually equally spaced on a loga-

rithmic axis, which is the approach employed here. The upper and lower bounds
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2.1 Pompom characterisation

of τbi are set to the limits of the oscillatory frequency data. In this thesis I have

normally used twelve relaxation modes for each material. The exceptions to this

are the fits to CM2 which has thirteen modes and Dow150R-b which is taken

from a previous study [Hassell et al. (2008)] and has eleven modes. To obtain

the relaxation moduli, Gi, I first use Reptate to obtain an automated fit. Then

manual alterations are made to smooth out oscillations in the moduli, Gi, which

occur due to the ill-posed nature of the inverse problem of finding Gi from mea-

surements of the complex moduli [Davies and Anderssen (1998)]. These manual

adjustments do not reduce the quality of the fit to the data and the fit between

experimental data and fitted theory is shown for each material in the left hand

columns of figures 2.5 to 2.8. Also plotted in the figures 2.5 to 2.8 (left) is the

complex viscosity which is defined as η∗ = G∗

ω
[Pa s] and in the case of limiting

frequency, ω → 0, the zero shear viscosity, η0, seen in table 2.1 is calculated. The

complex shear viscosity for all materials can be seen in figure 2.2. In the limit of

low frequency the zero shear viscosity for certain materials plateaus to a constant

value, for example CM1 or 1800S. For these materials the lowest relaxation time

is well defined. For materials where the zero shear viscosity does not plateau,

for example Dow150R, the lowest relaxation time is not well defined. Also from

figure 2.2, Dow150R at 160◦C is the most viscous sample compared to 1800S at

150◦C which is the least.

Commonly small amplitude oscillatory shear is used to fit Maxwell modes to

the dynamic moduli, G′, G′′, the fits of which are shown in figures 2.5 to 2.8.How-

ever, other results for variables such as phase angle are defined from these vari-

ables and provide further information about material parameters [e.g. Malmberg

et al. (2002); Vega et al. (1998, 1999)]. In chapter 4 the materials HDB3, HDB6

and 1840H are considered in further detail with respect to oscillatory shear in

small and large amplitudes. For these materials we consider two plots that infer

this extra materials detail; the Cole-Cole plot and the van Gurp-Palmen plot.

The Cole-Cole plot is a graph of η
′

= G
′

ω
against η

′′
= G

′′

ω
parameterised

by Deborah number and can be used as an indicator of LCB [Schlatter et al.

(2005)]. Figure 2.3 shows Cole-Cole plots for the three materials, HDB3, HDB6

and 1840H, which are studied in chapter 4. The point dη
′′

dη′
= 0 gives a maximum

point in the curve. The shift of this maximum point is attributed to LCB, however
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2.1 Pompom characterisation

Figure 2.2: A plot of complex viscosity for all materials. The symbols represent
the data and lines are linear Maxwell modes fitted to the dynamic moduli for
each material

polydispersity can mask the LCB [Wood-Adams et al. (2000)]. For the three

polyethylene materials the Cole-Cole plots do show increased LCB from LCB-

HDPE to LDPE as expected. The Cole-Cole plots also indicate a dominant

relaxation time, which is the inverse frequency at which the maximum point on

the curve is achieved.

Another plot which uses standard linear rheology to show potential levels of

LCB present in a material is the van Gurp-Palmen plot [Fleury et al. (2004);

Malmberg et al. (2002); Schlatter et al. (2005); Trinkle et al. (2002)]. The van

Gurp-Palmen plot shows the phase shift plotted as a function of complex modulus,

G∗. The presence of LCB in indicated by a lower phase angle relative to the

complex modulus.

The three materials featured in chapter 4 are again discriminated by branching

structure as expected. For the HDPEs, HDB3 and HDB6, differences are only

seen at higher values of G∗. The LDPE 1840H has a lower curve than the two

HDPEs for all experimental values of G∗.

The Cole-Cole and van Gurp-Palmen plots both indicate the level of LCB in
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2.1 Pompom characterisation

Figure 2.3: A Cole-Cole plot showing η
′′

plotted against η
′
, parameterised by Deb-

orah number for the three materials studied in chapter 4. The peak of the curve
shows the Cole-Cole relaxation time and the shift in peaks indicates increasing
levels of LCB.

three polyethylenes that agrees with the other discussions about the materials in

this chapter, however these indicators are modelled with linear Maxwell param-

eters and thus don’t directly infer any quantitative detail about the molecular

structure of of a material. As previously mentioned these results can also be a

result of molecular weight distribution as well as LCB [e.g. Wood-Adams et al.

(2000)]. It is impossible to tell the difference between molecular weight distribu-

tion and LCB without the molecular weight distribution information. Coupled

with the fact that the non-linear Pompom parameters have no influence on mod-

elling these results provides the motivation for non-linear measurements, such as

strain hardening seen in extensional experiments. In chapter 4 it is shown that a

low strain asymptote can be derived for the third harmonic which is dependent

on the linear Maxwell parameters and the non-linear Pompom stretch relaxation

time.

The non-linear Pompom parameters, τsi and qi, are fitting using the proto-

col set out by Inkson et al. (1999). The authors suggest physical constraints on
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2.1 Pompom characterisation

Figure 2.4: A van Gurp-Palmen plot indicating levels of LCB for the three mate-
rials studied in chapter 4. The more LCB is present in a material the smaller the
value of the phase shift for the relative value of complex modulus. The figure in-
dicates that HDB3, HDB6 and 1840H have increasing levels of LCB, respectively.

Table 2.2: The symbols used for transient shear and transient uniaxial extension
plots in figures 2.5 to 2.8. Other strain rates are specified in the plots.

strain rate [s−1] 0.01 0.03 0.1 0.3 1.0 3.0 10 30
symbol � 4 © 5 � . ∗ /

the choice of non-linear Pompom parameters (τsi ,qi). Namely, that the priority

of branching must increase towards the centre of a molecule, i.e. the qi is an

increasing function in τbi and that the ratio of relaxation times, ri = τb
τs

, is pro-

portional to the number of entanglements in the backbone section. Although the

number of entanglements is unknown the limit of ri = 1 implies an unentangled

backbone section. Inkson et al. (1999) also suggests that τbi−1
< τsi , however this

rule is not strictly adhered to and in the interests of improving the fit between

experimental data and theory the relaxation time ratios are varied in the range,
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2.1 Pompom characterisation

Figure 2.5: A comparison between theory fitted to oscillatory shear, transient
shear and transient uniaxial extension for three LLDPE metallocene catalysed
materials. Left: the dynamic moduli and complex viscosity fitted to a linear
Maxwell spectrum. Right: transient shear and transient uniaxial extension data
used to fit the non-linear parameters (τs and q) of the Pompom model. Data
symbols correspond to shear/extension rates given in table 2.2.
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2.1 Pompom characterisation

Figure 2.6: A comparison between theory fitted to oscillatory shear, transient
shear and transient uniaxial extension for three of five HDPE metallocene catal-
ysed materials. Left: the dynamic moduli and complex viscosity fitted to a linear
Maxwell spectrum. Right: transient shear and transient uniaxial extension data
used to fit the non-linear parameters (τs and q) of the Pompom model. Data
symbols correspond to shear/extension rates given in table 2.2.
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Figure 2.7: A comparison between theory fitted to oscillatory shear, transient
shear and transient uniaxial extension for two of five HDPE metallocene catalysed
materials. Left: the dynamic moduli and complex viscosity fitted to a linear
Maxwell spectrum. Right: transient shear and transient uniaxial extension data
used to fit the non-linear parameters (τs and q) of the Pompom model. Data
symbols correspond to shear/extension rates given in table 2.2.

1 < ri < 10.

The non-linear parameters are fitted to the extensional data and then against

shear predictions. The value of qi is mainly determined from the estimated limit-

ing value in extensional viscosity at large strains. However, the extensional data

obtained from the SER never reaches a steady state plateau as stretching experi-

ments are prone to sample inhomogeneity and sample rupture [c.f McKinley and
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2.1 Pompom characterisation

Figure 2.8: A comparison between theory and data for three LDPE materials.
Left: the dynamic moduli and complex viscosity fitted to a linear Maxwell spec-
trum. Right: transient shear and transient uniaxial extension data used to fit
the non-linear parameters (τs and q) of the Pompom model. For Dow150R two
fits are proposed where an alternative fitting technique used for Dow150R(b) is
examined. Data symbols correspond to shear/extension rates given in table 2.2.
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Sridhar (2002); Minoshima and White (1986a,b) and Aho et al. (2010a,b)] and

experiments are limited to Hencky strains less than four. This leaves an open

question as to how to fit the Pompom theory to the data. I have chosen to fit

the Pompom steady state plateau to equal the maximum SER data value reached

before sample rupture.

This assertion will be tested within this thesis and in particular an alternative

approach will be tested. A Pompom parameter set Dow150R(b) is taken from

Hassell et al. (2008), where the approach to fitting was to estimate the degree

of strain hardening that occurs after sample rupture to be higher than experi-

mentally measured. This seems to be a reasonable approach, however the choice

of steady state plateau is arbitrary. During the subsequent chapters both my

fit (Dow150R(a)) and the alternative fit (Dow150R(b)) will be tested in vari-

ous flow situations with the aim of determining the best fitting approach. It is

important to ascertain which fitting procedure provides the most accurate flow

modelling since parameterising the amount of strain hardening is important when

considering complex flows containing an extensional component. A prediction of

both Dow150R(a) and (b) in transient extensional and shear flow can be seen

in figure 2.8, which shows the extensional viscosity steady state plateau to be

considerably higher for Dow150R(b) than for Dow150R(a). Also, the spectrum

Dow150R(a) matches the transient development of the data much more closely

than Dow150R(b).

Figure 2.9 shows a plot of the moduli and branching priority for each Pompom

spectra plotted as a function of τbi . These parameters are detailed in appendix

2.A. Since the Pompom constitutive model is formed with a sum of modes, know-

ing the level of contribution from each mode can give insight into parameterising

the Pompom model. Performing experiments at different flow rates is used to

investigate the parameterisation of various modes, for example in uniaxial ex-

tensional flow the Weissenberg number characterising linear or non-linear flow is

defined as, Wi = ε̇τ̄b. However, each Pompom mode has its own Weissenberg

number for orientation and stretch relaxation, Wib and Wis , respectively. Thus

modelling and experiments performed at low strain rates will only stretch the

Pompom modes with the longest stretch relaxation times, i.e. where Wis > 1.

For increasingly larger strain rates more Pompom modes will have orientation
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and stretch Weissenberg numbers greater than one. Each mode makes a different

contribution in shear and extensional flow. Figure 2.10 shows the contribution

of each mode in shear flow, which can be measured by the product, Gi · τbi . In

extension the Pompom model predicts the same stress response for uniaxial and

planar extension for a Weissenberg number Wi = ε̇τ̄b � 1 and the contribution to

the stress from each mode is given by Gi · q2
i . Figure 2.10 shows the contribution

from Pompom modes for three materials (CM3, HDB6, Dow150R) in this study.

For both shear and extensional high Weissenberg number flows the contribution

to the stress is dominated by the intermediate modes, making these modes impor-

tant to parameterise correctly. In general the modes with the longest relaxation

times contribute little to the total stress and this makes fitting the non-linear

Pompom parameters to these modes difficult as the sensitivity in extension to

the branching priority is reduced.

Figure 2.9: A plot of fitted linear modulus, Gi, and the non-linear branching
priority, qi, plotted against relaxation time τb. The details of these plots can be
found in appendix 2.A

Since the fitting of Pompom parameters to data is an ill-posed problem, i.e.

multiple solutions exist, then the question arises over which fit is ‘right’. In

other words, as the Pompom model infers molecular detail, the question of which

is the set of parameters that infers the actual molecular detail of the material

arises. To investigate this three spectra with near identical fits to extensional

and shear data [figure 2.11] have been produced for the material HDB6, denoted
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2.1 Pompom characterisation

Figure 2.10: A plot of Gi · τbi and Gi ·q2
i against relaxation time τb. The two plots

show the contribution each mode makes in a multimode sum in high Weissenberg
number flows; on the left the shear contribution and on the right extensional
contribution.

by the letters (a)-(c) in tables 2.4 and 2.5. The spectra HDB6(a) and HDB6(b)

have the same linear spectrum but different non-linear parameters. HDB6(a) has

generally larger qis with faster stretch relaxation, i.e larger ratios, ri, compared

to HDB6(b). The spectra HDB6(c) has a different linear spectra with a smaller

time between orientation relaxation times than HDB6(a,b) and the non-linear

parameters considered to be an intermediate with medium branching and stretch

relaxation parameters. Also HDB6(a,c) have five stretching modes, i.e. modes

with non-linear parameters, where as HDB6(b) has six stretching modes. The

spectrum for HDB6(a) has a marginally better transient fit to extensional data

but there is no experimental information on the steady state plateau to fit the

data to so none of the three fits can be considered to be superior to another.

It should be noted that the similar stress response from three similar Pompom

spectra does show the robustness of the approximation of modelling a LCB melt

with the discrete sum of Pompom molecules. In subsequent sections I examine

whether a particular flow type is sensitive to the subtle variations in the three

spectra and whether one spectrum provides a superior prediction in the other

experiments considered.
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Figure 2.11: A plot showing the comparison of three spectra fitted to the ma-
terial HDB6 in uniaxial extension and transient shear flow. The three spectra
(detailed in appendix 2.A) show very similar agreement with experimental results,
although the spectrum HDB6(a) does have slightly improved transient extensional
response.

2.2 Conclusions

In this chapter I have detailed the Pompom parameters used to fit various polyethy-

lene samples used throughout the rest of this thesis. In the subsequent chapters I

investigate how well Pompom model performs in a variety of flows. In particular,

can parameters fitted to extensional data capture the rheology of other flows? If

there is discrepancy between experiment and model is this a result of the ill-posed

nature of the fitting procedure, i.e is there a different set of Pompom parameters

that can fit both experiments. If there is no Pompom parameterisation that can

fit an experiment, then is there a deficiency in the Pompom model?

Also I will investigate several Pompom fits for the materials HDB6 and Dow150R.

For Dow150R two different techniques have been used to derive Pompom non-

linear parameters, namely to either fit the extensional steady state to the max-

imum SER results obtained, or assume a higher steady state as seen in Hassell

et al. (2008). Can these two parameterisations be differentiated in different ex-

periments and which fitting technique is most recommendable? For HDB6 three

very similar spectra have been produced that all fit SER data very closely. Can

any of the experiments investigated in this work help to resolve which of these
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spectra is best to use, if any?

If discrepancies between experiment and theory arise through fitting errors

then this is not necessarily a negative finding. In fact simply being able to re-

duce the size of Pompom parameter space by adding further constraints, deduced

from considering experimental techniques not commonly used when fitting Pom-

pom parameters leads further towards a more precise molecular description of a

material.

2.A Pompom parameters

This appendix provides a detailed list of all the Pompom parameter sets used

during this thesis, unless subsequently mentioned.
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CM1 at 155◦C, 12 modes CM2 at 155◦C, 13 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 324041 0.00501 - 1 210295 0.00586 - 1
2 137478 0.01087 - 1 88330.4 0.01321 - 1
3 72139.8 0.02359 - 1 35687.2 0.02974 - 1
4 39856.8 0.05118 - 1 24142.5 0.06700 - 1
5 16198.8 0.11103 - 1 12841.1 0.15091 - 1
6 5774.95 0.24088 - 1 7587.82 0.33993 - 1
7 914.271 0.52261 - 1 5056.59 0.76568 - 1
8 312.033 1.13382 - 1 2106.61 1.72467 4 2
9 54.6331 2.45985 - 1 1219.45 3.88476 4 3
10 25.4509 5.33670 - 1 683.099 8.75031 5 3
11 14.5771 11.5781 - 1 243.090 19.7098 5 3
12 13.2977 25.1189 - 1 88.2695 44.3958 5 4
13 29.1552 100.000 5 7

CM3 at 155◦C, 12 modes HDB1 at 155◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 247540 0.00631 - 1 433472 0.00100 - 1
2 41955.2 0.01874 - 1 122601 0.00285 - 1
3 20339.9 0.05565 - 1 73615.9 0.00811 - 1
4 12961.3 0.16527 - 1 30072.1 0.02310 - 1
5 6872.94 0.49080 - 1 11178.2 0.06579 - 1
6 3841.27 1.45759 - 1 5265.64 0.18738 - 1
7 1430.96 4.32876 6 8 2749.20 0.53367 - 1
8 347.444 12.8556 6 8 1143.61 1.51991 - 1
9 134.989 38.1784 6 8 338.297 4.32876 - 1
10 12.8201 113.382 4 12 55.1885 12.3285 - 1
11 0.71838 336.723 4 20 7.94840 35.1119 - 1
12 0.04156 1000.00 4 25 2.61684 100.000 1 2

Table 2.3: A list of Pompom parameters for materials CM1, CM2, CM3 and
HDB1 used throughout this study. Linear Maxwell parameters are fitted to oscil-
latory shear and non-linear parameters are fitted to transient shear and uniaxial
flow.
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HDB2 at 155◦C, 12 modes HDB3 at 155◦C, 12 modes
Mode Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 413109 0.0010 - 1 422713 0.0016 - 1
2 152056 0.0028 - 1 116060 0.0043 - 1
3 91389.6 0.0081 - 1 62123.9 0.0118 - 1
4 41271.5 0.0231 - 1 30703.6 0.0323 - 1
5 16646.6 0.0658 - 1 16501.1 0.0882 - 1
6 9659.77 0.1874 - 1 9527.73 0.2409 - 1
7 5507.88 0.5337 - 1 5934.25 0.6579 - 1
8 2876.60 1.5199 - 1 3362.16 1.7970 2 1.3
9 1296.61 4.3289 10 1.3 1770.38 4.9081 9 1.4
10 417.052 12.329 9 1.3 688.780 13.405 9 1.5
11 75.9657 35.112 8 2 147.668 36.613 9 1.8
12 23.0226 100.00 1.2 5 64.4183 100.00 7 5

HDB4 at 155◦C, 12 modes HDB6a at 155◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 288814 0.0016 - 1 219226 0.0009 - 1
2 148263 0.0048 - 1 179387 0.0028 - 1
3 73732.9 0.0146 - 1 37873.9 0.0093 - 1
4 35850.5 0.0442 - 1 32981.4 0.0306 - 1
5 21573.4 0.1341 - 1 18896.9 0.1009 - 1
6 10424.4 0.4065 6 1.2 11820.4 0.3333 - 1
7 8137.79 1.2328 7 1.4 6053.40 1.1009 - 1
8 4211.77 3.7388 7 1.4 2767.03 3.6361 9 3
9 2345.31 11.338 7 1.5 840.575 12.009 9 3
10 978.088 34.385 8 1.6 224.024 39.662 3 5
11 248.950 104.28 7 2 26.7746 130.99 2 8
12 98.4469 316.23 3 6 1.94559 432.63 7 20

Table 2.4: A list of Pompom parameters for materials HDB2, HDB3, HDB4 and
HDB6 (a) used throughout this study. Linear Maxwell parameters are fitted
to oscillatory shear and non-linear parameters are fitted to transient shear and
uniaxial flow.
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HDB6b at 155◦C, 12 modes HDB6c at 155◦C, 12 modes
Mode Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 219226 0.0009 - 1 332848 0.0010 - 1
2 179387 0.0028 - 1 58677.2 0.0029 - 1
3 37873.9 0.0093 - 1 52262.7 0.0081 - 1
4 32981.4 0.0306 - 1 31683.5 0.0231 - 1
5 18896.9 0.1009 - 1 18795.6 0.0658 - 1
6 11820.4 0.3333 - 1 13806.8 0.1873 - 1
7 6053.40 1.1009 5 2 7762.11 0.5337 - 1
8 2767.03 3.6361 5 2 4576.71 1.5199 5 2
9 840.575 12.009 5 3 1929.19 4.3288 5 3
10 224.024 39.662 2 5 826.986 12.329 5 3
11 26.7746 130.99 4 5 175.380 35.112 5 4
12 1.94559 432.63 4 5 64.0465 100.00 2.3 8

1800S at 140◦C, 12 modes 1800S at 150◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 42020.9 0.0050 - 1 56339.6 10.000 - 1
2 9803.49 0.0100 - 1 12305.3 4.8064 - 1
3 7989.03 0.0200 - 1 8755.15 2.3101 - 1
4 5305.43 0.0398 - 1 5978.29 1.1103 - 1
5 3444.06 0.0794 2.2 9 4082.17 0.5337 2.2 9
6 2448.64 0.1585 2.2 10 2529.70 0.2565 2.2 10
7 1209.93 0.3162 2.2 11 1564.11 0.1233 2.2 11
8 768.726 0.6310 2.2 12 722.701 0.0593 2.2 12
9 346.388 1.2589 2.2 14 313.623 0.0285 2.2 14
10 99.1665 2.5119 2 18 108.407 0.0137 2 18
11 36.4592 5.0119 2.1 22 27.2916 0.0066 2.1 22
12 18.9970 10.000 2.5 25 11.8188 0.0032 2.5 25

Table 2.5: A list of Pompom parameters for materials HDB6 (b), HDB6(c), 1800S
at 140◦C and 150◦C used throughout this study. Linear Maxwell parameters are
fitted to oscillatory shear and non-linear parameters are fitted to transient shear
and uniaxial flow.
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1800S at 160◦C, 12 modes 1840H at 155◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 56463.0 0.0025 - 1 64373.3 0.0032 - 1
2 10126.2 0.0053 - 1 37846.4 0.0100 - 1
3 8280.15 0.0113 - 1 13408.4 0.0316 1.3 4
4 6876.31 0.0241 - 1 14121.9 0.1000 4.7 5
5 3999.72 0.0512 2.2 9 7155.58 0.3162 5 5
6 2889.58 0.1087 2.2 10 4417.12 1.0000 5 6
7 1555.57 0.2310 2.2 11 2191.35 3.1622 5 7
8 674.243 0.2908 2.2 12 1034.37 10.000 5 8
9 270.474 1.0428 2.2 14 404.689 31.623 2.6 9
10 81.7654 2.2154 2 18 88.1892 100.00 2.6 14
11 22.3680 4.7068 2.1 22 7.91095 316.23 1 15
12 10.0000 10.000 2.5 25 0.34016 1000.0 1 16

Dow150a, 160◦C, 12 modes Dow150b, 160◦C, 11 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 64715.5 0.0040 - 1 49451.0 0.0316 - 1
2 45406.6 0.0129 - 1 21039.0 0.1000 - 1
3 23491.1 0.0415 - 1 13894.0 0.3160 1 2
4 19983.8 0.1341 - 1 9626.00 1.0000 4 18
5 12836.6 0.4329 4 7 6070.00 3.1620 4 20
6 8565.19 1.3978 5 7 3519.00 10.000 4 20
7 5152.39 4.5138 5 7 1783.00 31.620 3 20
8 2934.19 14.576 5 7 797.400 100.00 4 25
9 1436.93 47.068 5 8 288.200 316.20 2 40
10 635.072 151.99 5 8 74.0000 1000.0 3 55
11 176.198 490.81 3.5 10 13.6900 3162.0 3 20
12 45.9648 1584.9 2.3 12

Table 2.6: A list of Pompom parameters for materials 1800S at 160◦C, 1840H,
Dow150R (a) and Dow150R (b) [taken from Hassell et al. (2008)] used throughout
this study. Linear Maxwell parameters are fitted to oscillatory shear and non-
linear parameters are fitted to transient shear and uniaxial flow.
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Chapter 3

Step-Strain Flow

Long chain branched polymer melts such as LDPE and branched metallocene

polyethylenes show strong time-strain separability in step strain. Constitutive

models of the multimode Pompom form are highly successful in modelling the

stress generated by general flow histories for these materials. However, a single

Pompom mode is not time-strain separable, and reconciling this to the step-

strain phenomenon has been a challenge. Indeed, McLeish et al. (1999) were

able to show that melts made of single Pompom architectures do not show time

strain separation as predicted by the Pompom theory. This means that time

strain separability occurs with polydispersity and the multimode version of the

Pompom model is required to capture the effects of polydispersity. We investigate

multimode integral Pompom model and a differential approximation to compare

time-strain separation, with respect to mode density. Here we show that for

a wide class of branched distributions, a family of damping functions can be

derived with a response that is very close to separable. We evaluate the family

for both LDPE and branched HDPE melts and show that a damping function

derived from the multimode Pompom model, gives an accurate prediction of the

damping behaviour in step-strain experiments.
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3.1 Introduction

An experimentally observed rheological property of many branched polymer melts

is that the stress relaxation following a step strain satisfies time-strain separability

(TSS). In these cases the relaxation modulus, G(γ, t), after a step strain of γ can

be factorised to a good approximation as,

G(γ, t) = G(t)h(γ), (3.1.1)

where G(t) is the linear relaxation spectrum and h(γ) a function of strain only,

is known as the ‘damping function’.

This observation is used as the basis of the K-BKZ family of integral con-

stitutive models [Bernstein et al. (1963); Wagner and Stephenson (1979)], where

TSS is ‘built in’. However, these models do not perform well in all geometrical

flows of long-chain branched (LCB) melts. For LCB polymer melts a multimode

version of the Pompom model, introduced by McLeish and Larson [McLeish and

Larson (1998); McLeish (2002)] has been highly successful in modelling the non-

linear rheology. This model, which is based on tube theory for a simple branched

molecule does not explicitly satisfy time-strain separability. Larson has shown

for a restricted class of models [Larson (1985a), Larson (1985b)] that apparent

time-strain separability may arise from superposition of modes, but whether this

applies to the Pompom model is still open to question.

Indeed, in a comprehensive review of an early version of the Pompom equa-

tions, Rubio and Wagner (2000) found no time-strain separable region in the

non-linear relaxation modulus. However, this version of the model did not in-

corporate the important mechanism of branch-point withdrawal introduced by

Blackwell et al. (2000). This makes a considerable difference to the smoothness

of response in strong flows.

Chodankar et al. (2003) reviewed the differential and integral forms of the

Pompom model and showed that by incorporating branch point withdrawal mul-

timode versions of both models display apparent time strain separability in step

strain. A numerical damping function could be produced at various times that

was in better agreement with the experimentally determined damping function
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of a branched LDPE, Lupolen 1810H, than the tube theory damping function for

linear melts, h(γ) = (1 + 4
15
γ2)−1. As well as the original differential and integral

forms they also analysed the Öttinger differential version of the model [Öttinger

(2001)] and found that this gave a better approximation to the integral model

at the terminal time than the original differential approximation of McLeish and

Larson.

In further work Venerus (2005) and Venerus and Nair (2006) used the Öttinger

version without the maximum stretch condition to model the stress relaxation of

entangled linear polymers where the strain is imposed over a finite time inter-

val and found good quantitative agreement for a variety of different melts and

solutions, even though this model was designed for branched polymers.

However, the more sensitive technique of Fourier transform rheology [Fleury

et al. (2004); Vittorias and Wilhelm (2007)] in large amplitude oscillatory shear

shows that time-strain separability does not, after all, hold perfectly for branched

polymers. These observations raise a series of questions related to the general

issue of how apparent TSS arises:

• For what subsets, if any, of multimode Pompom models are the predictions

in non-linear step strain time-strain separable?

• When these conditions are relaxed, how close to separability are the pre-

dictions for a wider class of models?

• To what extent do multimode Pompom models derived from fits to ex-

tensional data on long chain branching melts satisfy the conditions of the

classes stated above?

In this chapter these issues will be addressed. We review the original integral

and differential Pompom equations and assess how the range and density of modes

affects the accuracy of the differential model. In section 3.2.1 we also examine how

the range of relaxation times in the multimode spectrum affects the timescales

over which apparent time-strain separability is observed and the behaviour at the

terminal time. In section 3.3 we derive an analytic damping function approxi-

mation using certain model and material assumptions under which the Pompom

model is time-strain separable. This damping function is then compared against
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‘idealised fluids’ that incorporate some or all of the assumptions made during the

derivation. Finally, in section 3.4, we survey a range of branched polyethylene

melts produced by two different synthesis routes to examine how close these ma-

terials are to the conditions for time-strain separability. Comparisons are then

made between the derived damping function and the modelled stress relaxation

over a wide range of times and strains.

3.2 Pompom in Step Strain

A step strain flow is modelled by imposing a shear-rate, γ̇ = γδ(t), so that no

relaxation occurs during deformation. The calculation of the initial orientation

and stretch can be found by neglecting terms associated with the characteristic

relaxation times, τb and τs, in their corresponding dynamical equations. After

this initial stage it is assumed that no more deformation occurs.

I employ the Pompom equations discussed in section 1.6.5 and consider both

the differential and integral versions of the Pompom model, with stress given by

equation (1.6.55), the stretch equation given by (1.6.48) and orientation given by

(1.6.53) and (1.6.54) (differential) as well as (1.6.30) and (1.6.31) (integral). Since

there is no reversing flow, the instance of the backbone tube length being less than

its equilibrium length, the adjustment made by Lee et al. (2001) (equation 1.6.49)

does not need to be considered. In the differential model the initial orientation

is given by,

Sxy(γ, 0
+) =

γ

γ2 + 3
, (3.2.1)

with stretch given by [McKinley and Hassager (1999)],

λ(γ, 0+)D = (1 +
1

3
γ2)

1
2 . (3.2.2)

For the integral Pompom model,

Q12(γ) =
4γ

15(1 + 4
15
γ2)

and λ(γ, 0+)I = (1 +
4

15
γ2)

1
2 . (3.2.3)

Using the initial orientation as a boundary condition, the relaxation of the
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fluid can be computed for the integral and differential model shear relaxation

moduli, and are given respectively by,

GI(γ, t) =
σxy
γ

=
G0λ

2
I(γ, t)e

− t
τb

1 + 4
15
γ2

, (3.2.4)

and

GD(γ, t) =
σxy
γ

=
G0λ

2
D(γ, t)e

− t
τb

1 + 1
3
γ2e
− t
τb

. (3.2.5)

The differences in the models become apparent at late times (t � τs). The ori-

entation of the integral model alone, appears to show TSS; this is observed at

terminal times when the backbone stretch has relaxed. The differential orienta-

tion behaves differently as GD becomes independent of strain in the long time

limit. This unphysical behaviour can be observed in figure 3.1.

Figure 3.1: The relaxation modulus for the integral (solid) and differential
(dashed) Pompom model depicting the differences in terminal time behaviour
between the models. The strains used were γ = 0.1, 5, 10 with parameters
G0 = 10Pa, τb = 10s, τs = 5s and q = 6.

To examine this effect further it is convenient to look at the ratio of the non-

linear and linear stress relaxation modulus by defining the damping ratio, H(γ, t),
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as,

H(γ, t) =
G(γ, t)

G(t)
, (3.2.6)

where G(t) =
∑

iGie
− t
τbi is the linear relaxation modulus. For a time-strain

separable fluid, H(γ, t) is independent of t and is equal to the damping function.

The results for the one-mode model can be seen in figure 3.2. Note for both

integral (dashed) and differential (solid) models that H(γ, t) displays two phases

of relaxation, for times t < τb and t > τb. No relaxation occurs until a time of

order τs when the stretch begins to relax. During this phase both models show a

similar decay of H(γ, t). Differences between the models appear at times beyond

τb where the orientation relaxes. In the integral model the damping ratio tends to

a plateau, which is a Doi-Edwards-like damping regime. However, the differential

model shows an increase in the damping ratio and ultimately tends to the limit

of H(γ, t) = 1. This occurs because the non-linear denominator in the differential

relaxation modulus, (3.2.5), decays with time, unlike in the integral case, (3.2.4).

Figure 3.2: The damping ratio H(γ) against time for a one mode integral (solid)
and differential (dashed) Pompom. The strains used were γ = 0.1, 5, 10 with
parameters G0 = 10Pa, τb = 10s, τs = 5s and q = 6.
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Clearly neither model displays TSS as found experimentally for LDPE ma-

terials, except for times beyond τb. This is however, to be expected since real

‘Pompom’ polymer melts, constructed from monodisperse controlled-architecture

polymers, display exactly this failure of TSS arising from the separation of stretch

and orientation [McLeish et al. (1999)]. More seriously the differential model does

not properly approximate the behaviour of the integral model at long times. We

need to assess the seriousness of this failure in the context of multimode models

relevant to polydisperse branched melts.

3.2.1 The multimode Pompom model

The multimode Pompom model [Inkson et al. (1999)] was introduced to account

for polydispersity and multi-level branching in LDPE. Rubio and Wagner (2000)

used this model to describe the LDPE, IUPAC-A in step strain. This model, how-

ever, did not incorporate the modified stretch equation [Blackwell et al. (2000)]

which was instrumental in achieving quantitative fits to start up flows of LDPEs.

Figure 3.3: The relaxation modulus and damping ratio parameters for IUPAC A.
The modifications to the equation for backbone stretch relaxation by Blackwell
improve the plateau modulus showing time-strain separability over three orders
of magnitude in time from 10−1s to 102s (from left to right ν∗ = 0 and ν∗ = 2

q−1
).

Strains of 0.1, 10 and 20 were used.
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Table 3.1: Parameters used for IUPAC A. Both the cases of ν∗ = 0 and ν∗ = 2
q

are

listed. Linear data produced from Laun (1986), ν∗ = 0 parameters from Inkson
et al. (1999) and ν∗ = 2

q−1
parameters are from Blackwell et al. (2000).

ν∗ = 0 ν∗i = 2/qi − 1

Mode no., i Gi/Pa τb,i/s qi τb,i/τs,i qi τb,i/τs,i
1 1.520× 105 1.0× 10−3 1.0 − 1.0 −
2 4.005× 104 5.0× 10−3 1.0 − 1.0 −
3 3.326× 104 2.8× 10−2 1.0 − 2.0 2.0
4 1.659× 104 1.4× 10−1 1.0 − 2.0 2.5
5 8.690× 103 7.0× 10−1 2.0 2.0 4.0 2.0
6 3.151× 103 3.8× 100 6.0 1.7 7.0 2.0
7 8.596× 102 2.0× 101 6.0 2.15 8.0 1.5
8 1.283× 102 1.0× 102 9.0 1.25 12.0 1.0
9 1.8495× 100 5.0× 102 22.0 1.1 30.0 1.0

Figure 3.3 compares the shear relaxation modulus and damping ratio for the

two fits to IUPAC A. This shows the differences between the unmodified (ν∗ = 0)

and modified (ν∗ = 2
q−1

) backbone stretch ODE, (1.6.48), given by Blackwell et al.

(2000) and with Pompom parameters shown in table 3.1. Note, the parameters

for IUPAC A in Blackwell et al. (2000) used a strain parameter ν∗ = 2
q
, which

was later corrected to ν∗ = 2
q−1

in McLeish (2002). In figure 3.3a, for ν∗ =

0, the damping ratio shows no plateau with respect to time, showing no time-

strain separability. In figure 3.3b the damping ratio plateaus, after initial early

relaxation of faster modes, for up to three decades of time. The damping ratio,

H(γ, t), shows clearly improved time-strain separability given by the improved

modelling of branch point withdrawal.

When the faster modes have relaxed they contribute little to the total re-

laxation modulus. However, as the number of modes left to relax reduce, the

terminal time behaviour, in which H(γ, t) tends to one, becomes more dominant

until the final mode displays the behaviour as seen in single mode relaxation.

This causes spurious oscillations in the damping ratio for the differential Pom-

pom model near the terminal time, as can be seen in figure 3.3 after the plateau

of time-strain separability.

To examine the effect of different discretization of the material spectrum on
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3.2 Pompom in Step Strain

Table 3.2: Parameters used for 1840H - 9 and 12 mode models. The 9 mode
parameters were used in section 3 and compared with the 12 mode model to
show that an increase in the number of modes gives an increase in the period of
TSS predictions.

1840H at 150◦C - 9 modes 1840H at 150◦C - 12 modes
Mode, i Gi/Pa τb,i/s τb,i/τs,i qi Gi/Pa τb,i/s τb,i/τs,i qi

1 92497 0.00316 − 1 64373 0.00316 − 1
2 27781 0.0154 1.0 2 37846 0.01 − 1
3 19747 0.0750 1.7 3 13408 0.0316 1.3 4
4 9610 0.365 4.4 3 14122 0.1 4.7 5
5 4326 1.778 5 5 7155 0.316 5.0 5
6 1583 8.660 2.3 5 4417 1.00 5.0 6
7 405.2 42.17 2.3 8 2191 3.162 5.0 7
8 30.44 205.4 1.6 11 1034 10.0 5.0 8
9 0.407 1000.0 1.6 14 404.7 31.62 2.6 9
10 88.19 100 2.6 14
11 7.911 316.2 1.2 15
12 0.3402 1000 1.0 16

the predictions of TSS, in table (3.2) we give details of two different spectra for

1840H. 1840H is a similar material to IUPAC A and its material properties are

listed in table (2.1), which includes the spectra in table 2.6 for comparison and

has full rheology shown in figure 2.8. The two different spectra were prepared

by fitting 9 and 12 modes Pompom models to linear and extensional rheology

measurements for relaxation times in the range 0.003s to 1000s. Figure 3.4 shows

a comparison between both models and experimental measurements, at 150◦C,

in extensional and shear stress. Extension rates of 0.001, 0.003, 0.01, 0.03, 0.1,

0.3s−1 and shear rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3s−1 were used. Although

there is little difference in the quality of the fits to the rheological data, in figure

3.5b) it can be seen that the denser 12 mode spectrum has a smoother plateau

in damping ratio and later transition to terminal damping. These results are

compared to the experimental damping behaviour of 1840H in figure 3.11.

Figure 3.5a) compares the differential and integral model for the 12 mode

spectrum for 1840H. The damping ratio shows that in a multimode model the

differential model approximates the plateau of the integral model correctly. This
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3.2 Pompom in Step Strain

happens because the oscillations in the differential model occur on a similar time

scale to the integral model transitioning to a Doi-Edwards damping regime, and

occur once most of the stress in the mode has relaxed. Consequently neither

affect the overall stress significantly, except in the terminal zone.

Figure 3.4: A comparison of the 9 (dashed lines) and 12 (solid lines)
mode Pompom fits to extensional and shear data taken at 150◦C for 1840H.
Extension rates of 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30s−1 and shear rates of
0.03, 0.1, 0.3, 1, 3, 10s−1 were used. There appears little difference between the
two fits, however the increased density of modes in the 12 mode fit gives a longer
region of TSS.

We conclude that empirically, a sufficiently dense mode-spectrum of either

the differential or integral multimode Pompom model does exhibit TSS, over

four decades of time, when parameters are extracted from representative LDPE

materials. This takes us to the question of what properties of both material and

model cause this behaviour to arise, when the individual modes are not TSS?
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3.3 Damping function

Figure 3.5: a) Relaxation modulus and damping ratio for a 12 mode model of
1840H. The comparison of differential (solid) and integral (dashed) models shows
that the differential model approximates the time-strain separability of the in-
tegral model correctly until terminal time behaviour becomes dominant. b) Re-
laxation modulus and damping ratio for a 9 and 12 mode model of 1840H. The
comparison of 9 modes (dashed lines) and 12 (solid lines) models is shown. The
increase from 9 to 12 modes of relaxation improves the plateau of time-strain
separability. Comparing the damping ratio near terminal time in figures a) and
b), shows a reduction in oscillations for the denser 12 mode spectrum. Strains of
γ = 0.1 and 7 are used.

3.3 Damping function

3.3.1 Derivation

In the previous section it was observed that increasing the number of modes

in the differential Pompom equations improves the modelling of the step strain

experiment. This in turn gives apparent time-strain separability over several

decades of time. We now derive an approximate analytical expression for the

damping function h(γ) in the region of TSS. To proceed we need to make a number

of simplifying assumptions about both the model and the material properties.

The effect of deviations from these approximations will then be checked.

In order to provide an analytic solution of the backbone stretch equation

[1.6.48], we initially set the parameter ν∗ = 0, so that we do not incorporate the

improvement made by Blackwell et al. (2000). Although in general not incor-
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3.3 Damping function

porating branch-point withdrawal will not give TSS, the other approximations

used in the derivation of the damping function, together with ν∗ = 0, give a spe-

cial case of TSS. However, in modelling a general fluid we restore the important

smoothing behaviour of ν∗ 6= 0. This is incorporated when we approximate the

piece-wise continuous initial stretch with a fully continuous, (relaxation time)-

strain separable equation.

If the material is assumed to be time strain separable then,

G(γ, t) =
∑
i

Giλ
2
i (γ, t)e

− t
τbi

1 +Nγ2e
− t
τbi

= h(γ)
∑
i

Gie
− t
τbi = h(γ)G(t). (3.3.1)

The use of a sufficiently dense spectrum of modes implies the differential and

integral model are equivalent, up to the factor in the denominator, N , equal to
4
15

for the integral model and 1
3

for the differential model.

We will now look for constraints on the family of parameters, Gi, τbi , τsi , qi,

that allow (3.3.1) to hold. We take the continuous limit of the sum and for

convenience write ω = 1
τb

so that,

∫ ∞
0

dω
G(ω)λ2(γ, ω, t)e−tω

1 +Nγ2e−tω
= h(γ)

∫ ∞
0

dωG(ω)e−tω. (3.3.2)

This effectively increases the number of modes to infinity and so suppresses the

oscillations associated with the final modes of relaxation (that is reminiscent of

a Gibbs phenomenon). The exponential term in the denominator of (3.3.2) is re-

sponsible for the unphysical terminal behaviour of the differential approximation.

So we remove this term in order to focus on the conditions for TSS during the

many decades of relaxation prior to the terminal zone.

In order to obtain an analytic solution for λ(γ, t), we revert to the unmodified

stretch equation with (ν∗ = 0) so that,

λ(γ, t) = 1 + (λ0 − 1)e−tωs . (3.3.3)

We will restore the important smoothing behaviour provided by ν∗ 6= 0 below.
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3.3 Damping function

With these approximations equation (3.3.2) becomes,

h(γ)

∫ ∞
0

dωG(ω)e−tω =
1

1 +Nγ2

(∫ ∞
0

dωG(ω)e−tω + · · ·

· · ·+ 2

∫ ∞
0

dωG(ω)(λ0 − 1)e−tω−tωs +

∫ ∞
0

dωG(ω)(λ0 − 1)2e−tω−2tωs
)
. (3.3.4)

Notice that the dependence on the q-spectrum enters (3.3.4) via the piecewise-

continuous equation for the initial stretch,

λ0 =

{
(1 +Nγ2)

1
2 for λ0 < q

q otherwise
. (3.3.5)

In appendix 3.A we show that this function may be approximated by a con-

tinuous separable expression of the form,

λ0 − 1 =
βγ1+a1/a2(q − 1)

(qa2m + (βγ1+a1/a2)a2)
1
a2

= Λ(γ) · (q − 1). (3.3.6)

By smoothing out the initial stretch as a function of γ in this way, we recover

the smoothing behaviour of ν∗ 6= 0 that was lost by the approximation of equation

(3.3.3).

This approximation produces separability at the level of stretch only (which is

not the same as TSS for the full constitutive equation). The expression containing

the damping function is now fully separable in terms of strain and time,

h(γ)

∫ ∞
0

dωG(ω)e−tω =
1

1 +Nγ2

(∫ ∞
0

dωG(ω)e−tω + · · ·

· · ·+ 2βγ1+a1/a2

(qa2m + (βγ1+a1/a2)a2)
1
a2

∫ ∞
0

dωG(ω)(q − 1)e−tω−tωs + · · ·

· · ·+ (βγ1+a1/a2)2

(qa2m + (βγ1+a1/a2)a2)
2
a2

∫ ∞
0

dωG(ω)(q − 1)2e−tω−2tωs
)
. (3.3.7)

In order to obtain TSS it remains to choose the functions G(ω), q(ω) and

ωs(ω) such that each of the integrals has the same time dependence. We begin by

assuming that the ratio of orientation to stretch time for all modes is a constant,
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α, so that,

ωs = αω. (3.3.8)

This ratio is proportional to the number of entanglements between branch

points and might be expected to be constant if the probability of branching

is independent of position in the molecule. However, the physics of dynamic

dilution predicts that α should decrease slightly with increasing relaxation time.

In practice, when fitting a Pompom spectrum the ratio is adjusted to best fit

the transient build up of stress. Furthermore, changes in the value of α have a

negligible effect on the damping function as can be seen in figure 3.8.

Next we choose G(ω) and q(ω) to satisfy power laws in ω, namely,

G(ω) = Bωb and (q(ω)− 1) = Cωc. (3.3.9)

The equation for the damping function now looks like,

h(γ)

∫ ∞
0

dωωbe−tω =
1

1 +Nγ2

(∫ ∞
0

dωωbe−tω + · · ·

· · ·+ CΛ(γ)

∫ ∞
0

dωωb+ce−tω(1+α) + · · ·

· · ·+ (CΛ(γ))2

∫ ∞
0

dωωb+2ce−tω(1+2α)
)
, (3.3.10)

where the integrals may now all be written as Gamma functions. Dividing by

Γ(b+ 1) gives the damping function as,

h(γ) =
1

1 +Nγ2

(
1 +

CΛ(γ)Γ(b+ c+ 1)

tc(1 + α)b+c+1Γ(b+ 1)
+ · · ·

· · ·+ (CΛ(γ))2Γ(b+ 2c+ 1)

t2c(1 + 2α)b+2c+1Γ(b+ 1)

)
.

(3.3.11)

Note that this is only independent of time for the exponent c = 0, with (q− 1) =

C = qm being constant. We will see below that this is a reasonable approximation

for a wide family of LDPEs, where the best fit power-law, c, is typically ∼ 0.1.
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The general form of the branched damping function is given by,

h(γ) =
1

1 +Nγ2

(
1 +

2qmΛ(γ)

(1 + α)b+1
+

(qmΛ(γ))2

(1 + 2α)b+1

)
.

(3.3.12)

For the differential Pompom model (with N = 1
3
), making the substitution for the

best proposed choice of parameters (Appendix 3.A) for Λ(γ) (β = 1/4, a1 = 1/2

and a2 = 1) in equation (3.3.6) gives a damping function with three material

characteristics,

hB(γ; qm, α, b) =
1

1 + 1
3
γ2

(
1 +

2qmγ
3
2

(4qm + γ
3
2 )(1 + α)b+1

+
(q2
mγ

3)

(4qm + γ
3
2 )2(1 + 2α)b+1

)
.

(3.3.13)

As noted in appendix 3.A this damping function does become greater than one,

but by less than 1% for low strain results. This provides the best smoothing

behaviour at the transition to maximum stretch.

The family of damping functions represented by (3.3.13) constitutes a uni-

versal set of responses for complex branched melts in the same way that the

single Doi-Edwards damping function does for linear melts. We refer to hB as

the branched damping function (BDF).

3.3.2 Ideal Model

In deriving the BDF in the previous section, we assumed that parameters in the

multimode Pompom model satisfied the following conditions,

• G(ω) ∼ Bω−b ∼ Bτ b

• q(ω)− 1 ∼ Cω−c ∼ Cτ c

• ωs = αω

In this section we consider the properties of an ‘ideal damping fluid’ whose

parameters follow these relations, but are described by a finite set of discrete

modes.
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Unless otherwise stated parameters used throughout this section will be B =

100, b = −0.5, C = qm = 6, c = 0 and α = 5. This choice is made for illustrative

purposes and all general features of the model appear with this parameter choice.

We also restore the choice of ν∗ = 2
q−1

.

During the derivation of the BDF (3.3.13) we found that the power law co-

efficient for the q-distribution was required to be zero. Since the q-spectra for

LDPEs generally show a slow increase in q with τb, we check the effect of de-

partures from c = 0 to weak power laws. In figure (3.6) the damping ratios are

shown for the ideal fluid for c = 0, 0.1, 0.2 for the differential model at strains of

γ = 0.1, 3, 10. For low strains there is little difference over this range and approx-

imate time-strain separability is observed over four decades of time. For large γ

there is a more dramatic difference due to non-linear effects. As the magnitude

of c is increased the time-strain separable plateau becomes less valid and a more

exaggerated trough and peak occur. However, even at γ = 10, provided |c| ≤ 0.1,

H(γ, t) is constant to within 5% over three orders of magnitude in t.

Figure 3.6: Damping ratios are shown for the ideal fluid whilst varying the pa-
rameter c = 0, 0.1, 0.2 for the differential model. Strains of γ = 0.1, 3, 10 are
used.
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Figure 3.7: Derived BDF (solid line), plotted against strain, compared with damp-
ing ratios taken from an ideal fluid at various times, 0.1, 1, 10s (dashed lines). The
picture is the case for ν∗ = 2

q−1
.

In figure 3.7 we compare damping estimations, H(γ, t), produced for ideal

fluids in the case of c = 0 and ν∗ = 2
q−1

at various times, 0.1, 1 and 10s. For

all times the coincidence of the damping ratios, H(γ, t), shows almost exact TSS

that is well approximated by the BDF, equation (3.3.13).

Finally in figure 3.8, we examine how the BDF, hB, varies with the choice

of parameters, b, qm and α. Decreasing the power law of the elastic modulus

from b = −0.2 to b = −0.8 has the effect of increasing the contribution from the

fast relaxing modes and increases the BDF for strains in the range of 1 to 10.

The BDF is also increased by the branching number, qm = q̄i − 1. Choosing the

average branch number, qm = 0 which corresponds to qi = 1 for all i, restores the

Doi-Edwards damping function because there is no chain stretching in this limit.

The BDF is only weakly dependent on the ratio, α, of orientation and stretch

relaxation times. As α increases, the BDF decreases; figure (3.8c).

To test the performance of the BDF, hB(γ, qm, α, b), for a commercial material

we compare it to the behaviour of the damping ratio, H(γ, t), for the material

1840H. The damping ratios are calculated from the differential Pompom model

using the 12 mode spectrum given in table 3.2 . The parameters of the BDF are

taken from the material’s spectrum with the non-linear parameters for the BDF
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Figure 3.8: a) Variations in the BDF, hB(γ; qm, α, b) with power laws in b. b)
Variations in hB(γ; qm, α, b) with values of qm. c) Variations in hB(γ; qm, α, b)
with values of α. Strains of 0.1 · · · 100 were used. The default parameters of the
plots are b = −0.5, qm = 6 and α = 5.

chosen as the average arm number, qm = q̄i − 1 = 5.92 and the average ratio

α = r̄i = 3.32, and a power law of b = −0.4. In figure 3.9 the 12 mode 1840H

damping ratios are plotted, along with the BDF, (3.3.13), against strain for times

0.1, 1, 10s. The coincidence of the damping ratio show that TSS is valid over

these times and the BDF (heavy solid line) is found to be in very good agreement

with the predictions of H(γ, t).

The time range over which the differential Pompom model model shows TSS

begins much earlier than the longest existing stretch time, where G(γ, t) transi-

tions into terminal time unitary behaviour. Although a finite sum of differential
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3.4 Survey of branched polymers

Figure 3.9: A comparison of the BDF [equation 3.3.13] (heavy solid line) and
the damping predictions against strain for 1840H at times 0.1, 1 and 10s (dashed
lines). Parameters used are qm = 5.92, α = 3.32, b = −0.4. The light solid line is
the Doi-Edwards damping function.

Pompom modes will not provide any case of exact TSS it closely estimates the

existence of a region of TSS. Finally, the BDF (3.3.13) still gives a good prediction

to behaviour of a material even with the condition of ν∗ = 0 relaxed.

We now look for regions of TSS arising in Pompom spectra for a range of

branched polymer melts. We then compare experimental measurements of the

damping function with the predictions of BDF (3.3.13) where the parameters b,

α and qm are derived from the Pompom model fits of these materials obtained

from extensional rheology.

3.4 Survey of branched polymers

In this section we compare the non-linear stress relaxation of a variety of branched

polyethylenes produced by different synthesis routes. The degree of LCB dramat-

ically affects the rheology of a material and in addition to analysing the perfor-

mance of the BDF (3.3.13) in capturing TSS, where it exists in low and high
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Figure 3.10: Plot of Gi (left) and qi (right) against τb for various materials. On the
left none of the materials satisfy the power law property used to derive the BDF.
On the right we see that the q spectra show reasonable power law agreement,
with powers ≤ 0.2.

density PEs, we also examine how branching structure affects the existence of

TSS in step strain and the extent to which the relaxation modulus is damped.

We investigate materials produced from two different synthesis routes; low

density polyethylenes (LDPEs) produced by high pressure free radical polymeri-

sation and branched high density polyethylenes (HDPEs) produced by metal-

locene catalysed polymerisation. The LDPE polymers are highly polydisperse

(Mw

Mn
≈ O(10)) with relatively dense branching structures, whereas the metal-

locene HDPE polymers have a more controlled polydispersity (Mw

Mn
≈ 2) and

sparse but longer branches. See table (2.1) for material properties.

Previous existence of TSS in branched materials has been well documented

for LDPEs [Osaki (1993); Chodankar et al. (2003)]; we could therefore expect

that the existence of dense branching structures will produce TSS. For branched

HDPE the fluid will contain a proportion of linear molecules as well as LCB

molecules. We might therefore expect to see a transient transition from a linear

to a branched regime and not see any region of TSS with respect to time. However,

experimental evidence shows that both metallocene materials display TSS for at

least one decade in time.

Each material has linear rheological parameters (Gi, τbi) and Pompom branch-
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ing parameters (τsi , qi) fitted to experimental oscillatory and extensional data re-

spectively, using ‘Reptate’ software [Ramirez and Likhtman (2007)] with twelve

relaxation modes. The fits for all materials with step-strain data available are

shown in figure (3.10) with parameter values detailed in tables (2.3 - 2.6). When

fitting the extensional parameters to the data, the steady state plateau is never

reached experimentally. This leaves a question over the accuracy of the q values

in the spectra as these primarily control the steady state behaviour of LCB ma-

terials. Figure 3.10 shows a plot of the moduli, Gi, and the branch parameter,

qi, against τb for the materials we survey.

From figure 3.10 we can see that none of the materials perfectly satisfies the

power law property used in the previous section to derive the BDF. This leads

to a question in the choice of power law parameter, b < 0, in the BDF, (3.3.13).

We choose to focus on the early relaxation time region and take b = −0.5 for

1800S and b = −0.4 for the other LDPEs and the two HDPEs, for which step

strain data was available. The plot of the qi spectra shows that for each material

a reasonable power law approximation could be used, with a weak power c ≤ 0.2.

This is in agreement with the regime found for TSS in our earlier approximations

in the BDF, (3.3.13).

3.4.1 Experimental

For the rheological testing of the materials in step-strain flow a strain-controlled

ARES rheometer (Advanced Rheometric Expansion System, Rheometric Scien-

tific) with a force-rebalanced transducer (2K-FRT) was employed. The specimens

were compression moulded at 150◦C and the dimensions at test temperature were

corrected for the thermal expansion. Further rheological tests with respect to the

thermal stability showed that no detectable molecular structure changes took

place during the experiments. The step-strain data was measured by Dr Dietmar

Auhl, for which I thank him.

The step-strain tests were carried out using various cone and plate geometries

with different cone angles between 2 and 10 degree and a diameter of 10mm. The

step imposition time was about 20ms and the maximum strain γ obtainable was

15. Similar to the procedure described in Stadler et al. (2008), a series of stress

92



3.4 Survey of branched polymers

relaxation tests with increasing deformation beginning with small and going to

high strains was applied to each specimen. The stress was required to vanish

below the noise level at the end of each test before the next one was started.

Thus, it was ensured that the remaining stress of the previous strain step was

negligible compared to the stress measured in the following step.

For reliable stress relaxation measurements it is necessary that the specimen

does not suffer from any structural damage such as edge fracture. It is also

necessary to ensure that no wall-slip [Archer et al. (1995)] or inhomogeneous

flow [Wang et al. (2006)] occur within the sample gap. The latter is particularly

difficult to rule out without optical investigation. However, a series of repeated

relaxation tests with different cone angles gave almost identical stress relaxation

curves indicating that the damping functions are time-independent and the time-

strain separation principle is valid.

3.4.2 Results

For each of the three LDPEs and two lightly branched metallocene HDPEs we

have compared the predictions of the multimode Pompom model (and the BDF

derived from it) to experimental relaxation data. For all materials the experi-

mental damping values are determined by averaging at least one decade of the

experimental damping ratio where TSS exits.

For 1840H we use the 12 mode spectrum presented earlier in table (3.2).

Figure (3.11) shows the 12 mode model 1840H relaxation modulus and damping

ratios for strains of 0.1, 5 and 7. The solid and dashed lines show the experimental

and differential Pompom model respectively. The differential Pompom model is

in good agreement with experiments in the region of TSS. The discrepancies at

early times are due to the effects of an imperfect strain history in the experiments,

which affect the results for times up to around 0.1s.

In the right-hand graph in figure (3.11) we compare the BDF, (3.3.13), hB(γ)

with experimental damping values. The parameters used in hB(γ) are taken from

the 12 mode spectrum; with average q̄ = 6.92 so that qm = 5.92, average ratio,

α = 3.32, and a power law of b = −0.4.

We have repeated the comparison for the LDPEs 1800S and Dow150R. The 12
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Figure 3.11: Left: is the 12 mode 1840H relaxation modulus, G(γ, t), and damping
ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the experimental
data and the dashed the differential Pompom predictions. Right: a comparison
of BDF (3.3.13), heavy solid line, and the damping ratio predictions against strain
of 1840H for various strains. Parameters used are qm = 5.92, α = 3.32, b = −0.4.
The dashed line is the Doi-Edwards damping function.

mode Pompom spectra used for 1800S and Dow150R (only spectrum Dow150R(a)

is compared to transient data) are plotted in figure 3.10. Dow150R has a high

viscosity making experimental measurements at high strains more difficult for this

material. 1800S has a lower viscosity than 1840H, which allows strains of up to 15

to be measured. The results for 1800S and Dow150R can be seen in figures 3.12

and 3.13, respectively. The stress relaxation damping ratios predicted by the

Pompom model show similar levels of agreement to those shown for 1840H and

with TSS for times in the range 0.01s to 10s. The BDFs for all three LDPEs are

shown in figure 3.16 and are in good agreement with the experimental results. The

parameters used were obtained from the Pompom fit, with qm = 5.67, α = 2.7,

b = −0.5 for 1800S. For Dow150R two spectra were compared and the damping

predictions are shown in figure 3.13. The spectra used are detailed in table 2.6

and consist of one spectrum fitted to the maximum SER data value obtained,

Dow150R(a), and a spectrum with showing more strain hardening and higher

steady state extensional viscosity, Dow150R(b). The BDF parameters used are

(a) qm = 4.83, α = 3.90, b = −0.4 and (b) qm = 19.2, α = 3.1, b = −0.4. The

figure clearly shows that the fit Dow150R(a) matches the experimentally observed
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Figure 3.12: Left: is the 12 mode 1800S relaxation modulus, G(γ, t), and damping
ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the experimental
data and the dashed the differential Pompom predictions. Right: a comparison
of BDF (3.3.13), heavy solid line, and the damping ratio predictions against strain
of 1800S for various strains. Parameters used are qm = 5.67, α = 2.70, b = −0.5.
The dashed line is the Doi-Edwards damping function.

Figure 3.13: Left: is the 12 mode Dow150R(a) relaxation modulus, G(γ, t), and
damping ratio, H(γ, t), for strains 0.3, 5, 7. The solid lines represents the ex-
perimental data and the dashed the differential Pompom predictions. Right: a
comparison of BDF (3.3.13), heavy solid line, and the damping ratio predictions
against strain of Dow150R(a) and Dow150R(b) for various strains. Parameters
used are (a) qm = 4.83, α = 3.90, b = −0.4 and (b) qm = 19.2, α = 3.1, b = −0.4.
The dashed line is the Doi-Edwards damping function.
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3.4 Survey of branched polymers

Figure 3.14: Left: is the 12 mode CM3 relaxation modulus, G(γ, t), and damping
ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the experimental
data and the dashed the differential Pompom predictions. Right: a comparison
of BDF (3.3.13), heavy solid line, and the damping ratio predictions against strain
of CM3 for various strains. Parameters used are qm = 2.5, α = 3.5, b = −0.4.
The dashed line is the Doi-Edwards damping function.

damping very well where as the much higher q values of Dow150R(b) produce a

dramatic deviation from the data. This indicates that the spectra Dow150R(a),

with its relatively lower q values is a much better choice for capturing the rheology

of the material.

In contrast with the two LDPE materials the metallocene catalysed HDPE

materials show less extension hardening and are not fitted as accurately by the

Pompom model. The material CM3 shows strain hardening for strain rates in the

range 0.01s−1 to 10s−1. Both the experimental measurements and the Pompom

model for this material give TSS for times in the range of 0.1s to 30s and the

BDF, with qm = 2.5, α = 3.5 and b = −0.4, gives excellent agreement with

experimental results, seen in figures 3.14 and 3.16.

Finally we consider HDB6, which displays the least satisfactory agreement

with experimental data. This is one of the reasons why several similar Pompom

spectra where fitted to HDB6. However, each of the three fits give results which

cannot be discriminated. I show the results for HDB6b as this is closest to the

approximation of a constant power law. The extensional data for HDB6 is shown

in figures 2.6 and 2.7 for extension and shear rates from 0.03s−1 to 30s−1, and
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only shows extension hardening at lower strain rates (although it is possible that

the experiments underestimated the extensional stress at higher strain rates due

to necking). Consequently, the Pompom fit to this model, given in tables 2.4 and

2.5, has only 5 or 6 modes for which qi is greater than unity. Thus, as can be

seen in figure 3.10, the Pompom spectra for HDB6 are furthest from the ideal

spectrum in which the q value is approximately constant for all modes.

For the different Pompom spectra fitted to HDB6 there are different param-

eters used in the damping function. For all three spectra b = −0.4 since there is

no significant change in the linear fitting. For HDB6 a, b and c the branching

parameter, qm = 3.83, 1.3 and 2.25, and α = 6, 4.16 and 4.46, respectively. There

seems to be a dramatic difference in results but the relative changes in qm and

α cancel each other out to give the same BDF. This is not surprising since the

parameters of the BDF are derived from the multimode Pompom parameters,

which in fitting is itself an ill posed problem with multiple solutions. This prob-

lem occurs at its severest for HDB6 since there is very little extension hardening

to fit a Pompom spectra to, for the other materials this problem is not so severe.

The experimental and predicted values of the relaxation modulus and damping

ratios are shown in figure 3.15. The experimental data are shown as solid lines

and reveal that TSS exists for times in the range 0.1s to 100s. However, the

predictions of the Pompom model, shown as dashed lines, show no strict region

of TSS. For the smallest strain large amounts of noise were measured beyond

100s.

At high strains the Pompom fit correctly predicts the stress at early times

(but not during the step imposition), but over predicts the stress at later times,

suggesting that the q parameter distribution is more uniform than any of the

fitted models. Nevertheless the fitted BDF, obtained from the Pompom fit for

HDB6b with qm = 1.3, α = 4.16 and b = −0.4, is in good agreement with results

(although it does slightly under predict the experimental damping values at high

strains).

Figure 3.16 shows a comparison of the damping functions and BDFs for the

five materials we have analysed. The details of the parameters used are sum-

marised in table (3.3). The BDFs from top to bottom correspond to the value

of qm from highest to lowest. This suggests that information on the extent of
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3.4 Survey of branched polymers

Figure 3.15: Left: is the 12 mode HDB6 relaxation modulus, G(γ, t), and damping
ratio, H(γ, t), for strains 0.1, 5, 7. The solid lines represents the experimental
data and the dashed the differential Pompom model. Right: a comparison of
BDF (3.3.13), heavy solid line, and the damping predictions data for various
strains. Parameters used are qm = 1.3, α = 4.16, b = −0.4. The dashed line is
the Doi-Edwards damping function.

Table 3.3: A summary of parameters used in producing BDFs (figure 3.16) for
the various materials we survey.

Material b qm α
1840H −0.4 5.92 3.32
1800S −0.5 5.67 2.70

Dow150R(a) −0.4 4.83 3.90
CM3 −0.4 2.50 3.5

HDB6b −0.4 1.30 4.16

long chain branching can be obtained from the damping function via the BDF.

In particular the experimental data is seen to divide into two groups with the

LDPEs showing a slower relaxation with increasing strain than the more lightly

branched HDPEs.

We have surveyed a range of materials to see which set of Pompom parameters

(extracted from extensional data) showed a region of TSS in step-strain. Although

none of the materials exactly satisfied the conditions for the ‘ideal model’ detailed
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Figure 3.16: A comparison of the BDFs produced from the five materials sur-
veyed, a summary of parameters used can be seen in table (3.3).

in section four, the differential model predicts approximate TSS for four of the five

materials we surveyed, the exception being the lightly branched material HDB6.

In the case of HDB6 this discrepancy could arise from errors in the extensional

data to which the spectrum was fitted. Furthermore the BDF, (3.3.13), provides

a good approximation of the observed damping behaviour for these materials,

despite the relaxation in the conditions used to derive it.

3.5 Conclusions

We have analysed the stress relaxation following step strain in multimode Pom-

pom models for branched polymers. A single mode Pompom model does not

show TSS and the differential approximation shows qualitatively different termi-

nal time behaviour from the integral model. However, in a multimode Pompom

model this discrepancy between integral and differential versions does not appear

until near the terminal relaxation time. We also find that increasing the density

of modes improves the accuracy of the differential model in a manner that is

analogous to the restriction of the ‘Gibbs phenomena’ of Fourier series with the
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addition of terms to the series.

The damping ratio H(γ, t) was defined to show how well parameterised models

are time-strain separable. This tool clearly shows how well the differential model

approximates the integral model and the range of timescales over which the stress

relaxation is time-strain separable.

We now turn to the questions raised in the introduction. The first question

was whether there exists any subsets of parameters for the multimode Pompom

model that give TSS in step-strain. We have shown that a material with a power

law spectrum where the ratio of orientation to stretch relaxation time and the

maximum stretch, q are constant for all modes does indeed give TSS.

The second question concerned the degree of departure from separability when

these conditions are relaxed. By modelling an ‘ideal’ fluid based on the criteria

above we showed how deviations from the constant non-linear stretch parameter,

q, to a weak power law in orientation relaxation time affect TSS. We find that

provided this dependence is weak there is still a range of times over which the

material shows approximate TSS.

The final question concerned the extent to which real materials satisfy these

conditions. We have surveyed a range of branched polyethylenes produced through

two different synthesis routes to look for differences between the materials. The

high pressure polymerisation produces more random LCBs than the smoother

metallocene catalysed route. For all five materials the experimental stress relax-

ation data showed a range of TSS and despite none of the materials falling in

the subspace of Pompom models that predict exact TSS, a region of TSS was

predicted for four of our materials. The LCB-HDPE named HDB6 was the only

material where the Pompom parameterisation failed to capture the experimen-

tally observed TSS.

To investigate the sensitivity of step-strain to the Pompom parameters the

three spectra that were produced in chapter 2 for HDB6 were examined. None

of the three Pompom spectra were able to capture the experimentally observed

TSS. Indeed, the three spectra used could not be discriminated in step strain and

it remains an outstanding problem to capture TSS for HDB6 using parameters

derived from start-up rheology. This deviation arose from the step gradient in the

distribution of the non-linear parameter, q, and all three spectra superimposed
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to give the same result. For the LDPE Dow150R, two different spectra were

compared, one with much higher q priority than the other. The BDF clearly

indicated that the spectrum Dow150R(a), with lower q values, gave a much better

prediction than the alternative Dow150R(b).

All BDFs predicted the attenuation in the stress relaxation well, including the

BDF for HDB6 which captured the damping behaviour of the material, despite

the reduced TSS predicted by the Pompom model. Thus although the parameter

values for these materials do not fall into the class of exact TSS, they are close

enough to this parameter space so that TSS is predicted to a good approximation.

Furthermore, both the experimental data and the corresponding BDFs split

into two groups according to the synthesis route of the polyethylene concerned,

with the LDPEs showing less attenuation at high strains compared with the

HDPEs. This suggests that by fitting the branching parameter qm in the branched

damping function to step-strain experiments we can infer the average value of q

for this material. The branching parameter is an averaged value and so further

techniques, such as Fourier transform rheology, would be needed to obtain precise

detail on branching structure.

In conclusion, while the materials surveyed did not fall strictly into the sub-

space within which the ideal BDF was derived, the BDF still predicts the exper-

imental damping function to within experimental error. This suggests that the

BDF is able to capture the damping behaviour of a wider class of multimode Pom-

pom models that show approximate TSS. Furthermore the two different classes

of branched polyethylenes show different damping behaviour demonstrating that

step-strain relaxation may be used to characterise the degree of LCB in polymer

melts.

3.A Approximating the initial stretch function

An essential part of deriving the BDF (3.3.13) is incorporating the piece-wise

initial stretch equation (3.3.5),

λ0 =

{
(1 + 1

3
γ2)

1
2 for λ0 < q

q otherwise
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as a fully continuous function dependent on the strain and the q-spectrum.

An approximation that interpolates between the small and high strain limits

is given by,

λ0 − 1 =
βγ1+a1/a2(q − 1)

(qa2m + (βγ1+a1/a2)a2)
1
a2

, (3.A.1)

where a2 determines the rate of approach to the high strain limit, a1 deter-

mines the strain dependence at low and moderate γ.

This particular function was chosen because it makes λ0− 1 a separable func-

tion of q−1 and γ, where (qm+1) is the average number of arms in the spectrum.

This gives a good fit of initial stretch for (q− 1) near qm, (i.e. for modes whose q

value is close to the average) but under or over predicts the gradient of equation

3.3.5 for low and high (q− 1), respectively. Provided that q− 1 does not deviate

far from qm then this approximation holds.

Figure 3.17: Various approximations for the initial stretch. The solid lines show
the piece-wise bounded stretch. The dotted and dashed lines show predictions
for (a1 = 0, a2 = 2) and (a1 = 1/2, a2 = 1), respectively. The dash-dotted line
shows the prediction for a1 = 1 and a2 = 2.

Figure (3.17) shows three choices for the parameters a1 and a2. Choosing
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a1 = 0, a2 = 2 (dotted line) gives a simpler form of the initial stretch equation,

but looses the γ power law behaviour at low strains. A more accurate but also

more complex form of the initial stretch is also pictured (dashed line) where

a1 = 1 and a2 = 2. The dash-dotted solid line shows a1 = 1
2

and a2 = 1, the ratio

of a1 and a2 is the same as for a1 = 1 and a2 = 2 but the transition to maximum

stretch is smoother, similar to that of the simple case, a1 = 0. For; a1 = 0 then

β = 0.5, a1 = 1 then β = 0.17 and a1 = 1
2

then β = 0.25.

Figure 3.18: A plot of the various parameter choices used in figure (3.17) substi-
tuted into the derived BDF against strain. The solid line shows the actual stretch
equation (3.3.5). The dotted, dashed and dash-dotted lines show damping func-
tions using approximate stretch parameters (a1 = 0, a2 = 2), (a1 = 1, a2 = 2)
and (a1 = 1/2, a2 = 1), respectively. The dashed-double dotted line shows the
Doi-Edwards damping function. We use parameters of b = −0.5, α = 5 and
qm = 6.

We can now insert this approximation into equation 3.3.4, so that provided

q is constant, the damping ratio is strain separable with the damping function

given by,
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h(γ) =
1

1 + 1
3
γ2

(
1 +

2qmΛ(γ)

(1 + α)b+1
+

(qmΛ(γ))2

(1 + 2α)b+1

)
,

where Λ(γ) is given by,

Λ =
βγ1+a1/a2(q − 1)

(qa2m + (βγ1+a1/a2)a2)
1
a2

. (3.A.2)

A plot of the derived BDF for the various parameter choices used in figure

(3.17) is shown in figure (3.18). We use parameters of b = −0.5, α = 5 and qm = 6.

The solid line shows the actual stretch equation (3.3.5), which displays a kink at

the point of maximum stretch. The kink is captured by the case for a1 = 1 (dashed

line), but the behaviour of the other two cases displays a smoother transition to

high strain results. Note this cusp is a consequence of choosing ν∗ = 0, and with

the inclusion of branch point withdrawal, this unphysical behaviour is removed.

Therefore, for cases with ν∗ 6= 0 it is desirable to choose parameter values that

don’t produce this cusp. For the case of a1 = 0 (dotted line), the BDF becomes

greater than one for low strains. This is because the γ power law behaviour

of the initial stretch (3.3.5) for low strains is lost by the approximation with

a1 = 0. Since we require the damping function to be monotonic this choice of

initial stretch parameters is not suitable for the BDF. The dashed double dotted

line shows the Doi-Edwards damping function.

Therefore, in this paper we choose to use a1 = 1
2
, a2 = 1 (dash-dotted line in

figure 3.18) and β = 1
4
. This choice provides the required smoothing behaviour

occurring at maximum stretch and is monotonic to an accuracy of less than 1%.

104



Chapter 4

Large Amplitude Oscillatory

Shear Flow

In this chapter the predictions of the Pompom constitutive model in large am-

plitude oscillatory shear (LAOS) are examined using Fourier transform rheology

(FTR). FTR is commonly used with small amplitude oscillatory shear (SAOS) to

fit linear Maxwell parameters to dynamic moduli and in this chapter this process

is expanded to larger strain amplitudes and to further terms in the Fourier series.

For both small and large amplitudes these higher harmonics are dependent on the

non-linear Pompom parameters and the Pompom parameter space is explored to

see how experimental oscillatory shear data can infer molecular detail.

In the regime of small strain amplitude an asymptotic solution can be found

that depends only on the ratio of the orientation and stretch relaxation times, τb

and τs. This asymptotic solution is found to be accurate up to strains of order

unity and the branching priority, q, only affects the stress response at larger

strains.

Continuing the theme of the last chapter, the Pompom parameters fitted to

extensional data are compared to LAOS data for three materials; the HDPEs,

HDB3 and HDB6 and the LDPE 1840H. In general the Pompom model performs

well in LAOS but does tend to over predict experimental results at high strain

amplitudes.

In the investigation of the Pompom model the idea of linear chain stretch
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relaxation is modelled to see if the inclusion of this relaxation mechanism has

any significant effect on modelling experimental LAOS results. I show that incor-

porating linear chain stretch relaxation into the Pompom model does not signifi-

cantly affect the theoretical predictions of LAOS simulations. The question that

remains is whether any inadequacies seen in fitting the Pompom parameters to

extensional rheology can be overcome by adjusting the Pompom parameterisa-

tions without significantly changing the predictions in extension. We show that

by simulating the reaction process of HDB6 and 1840H to obtain a distribution

of molecular structures and then creating a detailed Pompom spectrum for these

molecules using over 4200 modes we are able to capture low-strain asymptotes

of LAOS rheology. For deviations from the low-strain asymptotes full simulation

results need to be examined but these are currently unavailable.

4.1 Introduction

As has been already discussed, one challenge with using the Pompom model is

to fit the non-linear parameters that cannot be obtained from linear rheology.

One challenge is to fit the free parameters of a constitutive theory to a ge-

ometrically and practically simple experiment, so that the material can then

be modelled in more general complex flow situations. Such flows will typically

contain a mix of shear and extensional flow and it is necessary to characterise

simultaneously both flow types. In particular the degree of strain hardening seen

in extensional flow is highly sensitive to LCB and makes extensional flow a good

choice for fitting constitutive theories, such as the Pompom model [Münstedt

et al. (1998), Inkson et al. (1999) and Malmberg et al. (2002)]. However, it is

very rare that an extensional steady state viscosity can be measured and de-

spite recent developments in extensional rheology [Sentmanat (2004)] it remains

a difficult experiment and usually only transient response is measured.

As seen in chapter 2, various techniques have been developed using linear

shear rheology to distinguish between linear and branched topologies. Gabriel

et al. (1998) showed creep experiments can be used to distinguish between a

LLDPE and a LDPE. Various authors have used small amplitude oscillatory shear

with Cole-Cole [Vega et al. (1998) and Vega et al. (1999)] and vanGurp-Palmen

106



4.1 Introduction

plots [Trinkle and Friedrich (2001); Trinkle et al. (2002); Wood-Adams and Dealy

(2000); Wood-Adams et al. (2000) and Lohse et al. (2002)]. The vanGurp-Palmen

plot not only distinguishes between linear and branched polymers but also indi-

cates the degree of LCB, although this can be masked by polydispersity [Trinkle

et al. (2002); Vega et al. (1999) and Wood-Adams and Dealy (2000)]. Malmberg

et al. (2002) used SAOS and uniaxial extension to examine the amount of LCB

in metallocene catalysed polyethylenes. They found that while vanGurp-Palmen

analysis of the samples detected LCB, uniaxial extension was a more sensitive

technique for detecting the amount and distribution of LCB.

To investigate non-linear shear response several transient flow types can be

modelled. Inkson et al. (1999) fitted Pompom spectra to extensional data and

showed this gave good agreement with transient shear data. Graham et al. (2001)

showed that a Pompom model fitted to extensional data of LDPE successfully

predicts the stress development in exponential shear. However, when the proce-

dure is reversed and the Pompom model is fitted to exponential shear, there is

no guarantee of being able to capture the level of strain hardening in extensional

flow. In chapter 3 it was shown that step strain measurements of polyethylenes

are sensitive to the level of branching and can be predicted from Pompom spectra

obtained from extensional data.

The three shear flows above are all modelled well by fitting a Pompom theory

to extensional data, but the converse is not true. These shear flows are less

sensitive than extensional flow to details of the branching structure, and thus

they are not as useful for characterising constitutive theories.

Much attention has recently been focused on Large Amplitude Oscillatory

Shear (LAOS), which explores oscillatory shear experiments for a given frequency

and varying strain amplitudes, typically ranging from 0.1 to 4. In particular

results have been explored using Fourier transform rheology (FTR), where the

stress response is analysed in Fourier space.

4.1.1 General Oscillatory Shear

In this study we compare steady state oscillatory shear flow to transient shear

and transient extensional flow. For a general oscillatory flow the deformation-rate
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tensor K reduces to

Kxy = γ̇ = εω cos(ωt), (4.1.1)

where ε is the strain amplitude and ω is the frequency of oscillation.

We can express the stress, in the quasi-steady state, as its Fourier decompo-

sition,

σxy =
∞∑
N

I
′

N sin(Nωt) +
∞∑
N

I
′′

N cos(Nωt), (4.1.2)

where the Fourier coefficients, I
′
N and I

′′
N satisfy,

I
′

N =
ω

π

∫ π
ω

− π
ω

σxy sin(Nωt)dt, (4.1.3)

and,

I
′′

N =
ω

π

∫ π
ω

− π
ω

σxy cos(Nωt)dt. (4.1.4)

The Fourier coefficients can be defined in terms of non-linear storage and loss

moduli by,

I
′

N = εG
′

N and I
′′

N = εG
′′

N , (4.1.5)

where in the limit ε→ 0, G
′
1 and G

′′
1 become the usual complex moduli.

We can also define the phase angle of each Fourier mode, N , as

tan(φN) =
G′′N
G′N

, (4.1.6)

and is commonly investigated in linear rheology for the first mode, N = 1 [e.g.

Vittorias and Wilhelm (2007)].

Oscillatory shear flow for a fluid with characteristic relaxation time, τ̄ , can be

described using both a Deborah number and Weissenberg number [c.f. section

1.4.1] which are defined as,

De = ωτ̄ (4.1.7)

Wi = εωτ̄ , (4.1.8)

where for a mulitmode Pompom spectra, τ̄ =
ΣiGiτ

2
i

ΣiGiτi
.
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It has been suggested that FTR is sensitive to differing levels of branching [e.g.

Hyun et al. (2007)], and has the advantage that LAOS is easier experimentally

than extensional flow. Typically, measured quantities include the real and imag-

inary components of the odd harmonics, I ′N and I ′′N , where N = 1, 3, 5 · · · . From

these parameters the absolute value of each harmonic is examined as a fraction

of the absolute first harmonic and can be defined as,

I2
N/1 =

I
′2
N + I

′′2
N

I
′2
1 + I

′′2
1

. (4.1.9)

MacSporran and Spiers (1984) have shown that LAOS and FTR is a sensi-

tive technique for investigating the microscopic structure of fluids, in particular

the phase shift for the third harmonic, Φ3 = φ3 − 3φ1, and the third storage

and loss moduli, G′3, G
′′
3, are of particular interest in characterising a material

and characterising both viscous and elastic non-linear rheology. Wilhelm et al.

(1998) showed that applying oscillatory shear to non-Newtonian linear polymers

provides a tool for investigating non-linear response independent of material. By

investigating the shear response in Fourier space, higher harmonics were used to

characterise non-linearities. Wilhelm et al. (1999) continued investigating at the

cross-over from linear to non-linear behaviour using the relative magnitude of the

third harmonic, I3/1. The authors also looked at the difference between paral-

lel plate and cone-plate geometries, suggesting that results are not independent

of geometry. Wilhelm et al. (2000) and Wilhelm (2002) used FTR with linear

polymers to characterise with respect to their molecular weight, molecular weight

distribution and topology.

Debbaut and Burhin (2002) investigate high density polyethylenes (HDPE)

in various oscillatory measurements including LAOS and compare them with the

Giesekus model, finding reasonable agreement between experiment and theory.

Neidhöfer et al. (2003) used FTR with various branched polystyrene solutions.

Using the phase shift of the third harmonic, Φ3, the authors were able to dis-

tinguish between linear and star branched molecules at large amplitudes. Fleury

et al. (2004) and Schlatter et al. (2005) investigated various linear and branched

materials in FTR. They compared the sensitivity of FTR to linear analyses such

as van Gurp-Palmen and Cole-Cole plots and showed that it was more sensitive
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to branching than linear analysis. The authors compare two constitutive models

(Wagner [Wagner and Stephenson (1979)] and DCPP [Clemeur et al. (2003)])

and fit the models to the data in a range of plots. One of the more interesting

plots shown is a polar plot of the real and imaginary components of the Fourier

decomposed shear stress, parameterised by strain amplitude. The authors claim

the Wagner model gives a better prediction of the experimental results than the

Pompom model, although this may be a consequence of the way in which the

model parameters were fitted.

Hyun et al. (2006) and Hyun et al. (2007) compare a range of constitutive mod-

els to strain hardening and non-strain hardening data. The authors discuss the

concepts of medium amplitude oscillatory shear (MAOS) for strains amplitudes

of 0.1 to 1 and the ‘intercept’ of the normalised absolute third harmonic, I3/1,

which is the value of I3/1 at a strain amplitude of 0.01. In particular for branched

materials the authors claim that the slope of I3/1 scales with ε as I3/1 ∼ εn,

where n is less than 2, as opposed to n = 2 for linear molecules. The authors

also measure transient extensional data in an attempt to link the level of strain

hardening to the non-linear response of FTR. They also note that a single mode

Pompom model has a power law of n = 2 in MAOS as must any model in the

limit of small but finite strain amplitude. Schlatter et al. (2005) shows the DCPP

model can successfully predict I3/1 for a range of linear, sparsely branched and

densely branched polyethylenes, and in this chapter we show that the multimode

form of the original Pompom model is equally effective.

Vittorias et al. (2007) compared Fourier transform rheology (FTR), NMR and

Pompom DCPP simulations. They examined I3/1 and Φ3 and extended the van

Gurp-Palmen method to the third harmonic, Φ0
3 = limε→0Φ3, extrapolating to

zero strain amplitude and investigated optimum experimental conditions for dis-

tinguishing the branching structure of various polyethylene samples. They found

that the extended van Gurp-Palmen method is sensitive to LCB and found low

frequencies optimized the non-linearity. The data was modelled with the DCPP

model, using only four modes. This model was able to predict I3/1 and Φ3 reason-

ably accurately although deviations from experimental data did exist. Vittorias

and Wilhelm (2007) examined small amplitude oscillatory shear (SAOS), LAOS

and FTR for linear and branched polyethylenes and showed that FTR is capable
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of determining the degree of LCB and that LAOS is more sensitive to LCB than

SAOS. However, the authors point out that FTR still needs to be explored using

well characterised polymer architectures.

Wapperom et al. (2005) investigated LAOS for a high density polyethylene

comparing it to the predictions of various constitutive equations, mainly focus-

ing on the MSF but also considered the Doi−Edwards, Carreau−Yasuda, and

Giesekus models. They found that the MSF model over predicted the shear

stress, although fitted the phase shift well. The Doi−Edwards model gave a bet-

ter prediction of the stress than the MSF model, however the MSF model is able

to capture strain hardening and only requires one parameter.

In their paper deriving DPP formulation of the Pompom model, Clemeur et al.

(2003) calculated the response of the model to a double step strain and LAOS with

FTR. They presented the LAOS results in the form of ‘Lissajous’ plot, comparing

stress to strain. This makes non-linear behaviour apparent by observing visual

distortion of a linear ellipse. The DPP model performs reasonable well, capturing

the intensity of the harmonics, but deviations in the Lissajous plot occur at strains

of around 5.

More recently, Hyun and Wilhelm (2009) derive the quantities Q and Q0,

which are defined as I3/1/ε
2 and I0,3/1/ε

2, respectively where the 0 subscript

denotes the limit of zero strain amplitude. The authors show that both Q and

Q0 are sensitive to molecular architecture and that Q0 as a function of Deborah

number can be explored using TTS to increase the experimental range available.

In this chapter we examine a variety of materials in SAOS and LAOS to see if

we can successfully distinguish between levels of branching. We also plan to ex-

plore the Pompom parameter space in order to understand what characterisation

of a material can be obtained from LAOS.

4.2 Numerical Methods

The stress generated in the Pompom model in oscillatory shear and its Fourier

decomposition were calculated simultaneously. In shear flow the constitutive
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4.2 Numerical Methods

equations for the Pompom [c.f section 1.6.5] model reduce to,

dAxy
dt

= γ̇ − 1

τ ∗b
Axy, (4.2.1)

dAxx
dt

= 2γ̇Axy −
1

τ ∗b
(Axx − 1) , (4.2.2)

dλ

dt
=

γ̇Axy
Axx + 2

λ− 1

τs
(λ− 1) eν

∗(λ−1). (4.2.3)

The orientation equations needed to be solved numerically since the relaxation

time, τ ∗b is a function of the non-analytic stretch function, λ(t), in reversing flow

[c.f. equation 1.6.49]. Equations 4.2.1 to 4.2.3 are solved using a fourth order

Runge-Kutta scheme [Burden and Faires (2001)]. Quadruple precision was used

to avoid round−off when solving solutions at low strain amplitude. In choosing

appropriate values for the time step some calculations were performed using a fifth

order Runge-Kutta-Fehlberg scheme [Burden and Faires (2001)] and solutions

were checked for time-step independence for a large range of frequencies and

strain amplitudes. An example of this can be seen in figure 4.1, where a one

mode Pompom model with parameters G = 1000Pa, τb = 10s, q = 5 and r = 4

was solved for various choices in time step ranging from 10−1 to 5 · 10−4, at a

constant Deborah number, De = 12. Good convergence at both low and high

strain amplitudes occurs for a step size of 10−3 and lower. At small Weissenberg

numbers the third harmonic, I3, is of order W 3
i making it difficult to compute

accurately at very small Wi. However, for step sizes less than 10−3 the results in

figure 4.1 for the relative third harmonic, I3/1, shows the expected W 2
i behaviour.

To further reduce numerical noise the time step was chosen so that the period

is an integer number of steps. Convergence to steady state was checked by ensur-

ing the maximum stress response for each period agreed to five significant figures

before the start of the Fourier integral and the Fourier transform was performed

over multiple cycles to increase noise cancellation. The Fourier transform was

calculated using a five point extension on the trapezoid rule, known as Bode’s

rule, which has an error of order h7f (6) [Press et al. (1996)].

The noise level of the Fourier transform was calculated from the second har-

monic, which is mathematically zero. For strain amplitudes larger than ε = 0.1
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4.3 The Pompom model in oscillatory shear

Figure 4.1: A one Pompom model in oscillatory shear with various choices of time
step. The other Pompom parameters chosen are G = 1000Pa, τb = 10s, q = 5
and r = 4, giving a constant Deborah number for each simulation as De = 12.
Good convergence for both low and high strain amplitudes occurs for a step size
of 10−3.

the absolute value of the second harmonic was less than 10% of the absolute

value of the third harmonic. The low-strain asymptotic solution detailed in the

next section removes the need to calculate the solution at very low Weissenberg

numbers.

4.3 The Pompom model in oscillatory shear

In this section I examine a one mode Pompom model in oscillatory shear to

examine the influence of the choice of parameters on the predictions for LAOS.

The Deborah number and the Weissenberg number are defined with respect to

the orientation relaxation time as De = ωτb and Wi = εωτb, respectively.

I begin by examining the effect of the branching priority, qi on the shear

stress response in oscillatory shear. In figure 4.2 the stress response of a one

mode Pompom model with various values of q and constant ratio of r = 4 are

shown. The is plotted against time and strain (Lissajous plots) for a constant

Deborah number, De = 12, for q = 1, 2, 5 and 10. At a Weissenberg number of
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4.3 The Pompom model in oscillatory shear

Wi = 1.2 (ε = 0.1) all four models superimpose with a linear stress response. At

Wi = 12 (ε = 1) all cases with q > 1 still superimpose, however for q = 1 the

stress deviates slightly from linear behaviour. For a high Weissenberg number,

Wi = 120 (ε = 10), the linear model with q = 1 is dramatically different from the

branched models, q > 1. For q = 1 a double peak is observed which corresponds

to cusps in the Lissajous plots. Similar shaped plots that have been observed

in experiments [Li et al. (2009)] and even hysteresis loops have been shown to

be evident in certain circumstances at the cusps [Ewolt and McKinley (2010);

Ewolt et al. (2008)]. Even at this high amplitude there is little difference in the

stress response for q > 1 indicating that the Pompom model in LAOS is not very

sensitive to the branching priority. This is confirmed in more detail using FTR

later in the chapter.

Figure 4.3 shows the same plot as figure 4.2 for constant branching priority,

q = 5 but with the ratio of orientation and stretch relaxation times varied through

r = 1, 2, 4 and 8. For a Deborah number De = 12 with increasing Weissenberg

number the stress response changes more dramatically than for the case with

varied q parameter. For a Weissenberg number of Wi = 120 the stress response

is attenuated with increasing relaxation time ratio. Thus we conclude that for

q > 1 the stress response of the Pompom constitutive model in LAOS is more

sensitive to changes in the ratio of relaxation times than to changes in branching

priority.

4.3.1 Fourier Transform Rheology

The stress response of the Pompom model seems to be particularly sensitive to

the ratio of orientation and stretch relaxation times. This ratio is proportional to

the number of entanglements along the backbone. To probe this property almost

singularly would provide a unique tool for the analysis of branched materials. To

study LAOS in further detail it becomes more convenient to examine the stress

response in Fourier space rather than the time domain. The Fourier coefficients

of the harmonic series can be studied independently to find which is particularly

sensitive to molecular structure. The first harmonics of the series are already

commonly used in the linear regime to fit Maxwell modes for various constitutive
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Figure 4.2: A one Pompom model in oscillatory shear with various choices of the
branching parameter, q = 1, 2, 5 and 10. The other Pompom parameters chosen
are G = 1000Pa, τb = 10s and r = 4, giving a constant Deborah number for each
simulation as De = 12. As the Weissenberg number increases the most noticeable
difference is for the case q = 1. The stress response has low sensitivity to values
of q > 1.

equations including the Pompom model where they are used to determine {Gi, τbi}
and hence give some information about the structure of the material. In this

chapter I will focus on the third harmonic and examine its sensitivity to the

non-linear Pompom parameters.
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4.3 The Pompom model in oscillatory shear

Figure 4.3: A one Pompom model in oscillatory shear with various choices of the
stretch relaxation ratio, r = 1, 2, 4 and 8. The other Pompom parameters chosen
are G = 1000Pa, τb = 10s and q = 5, giving a constant Deborah number for each
simulation as De = 12. Compared to the branching parameter (figure 4.2) the
stress response is more sensitive to variations and stretch relaxation time.

4.3.2 Asymptotic Solutions

A series of low strain asymptotic solutions can be derived to achieve analytical

solutions for equation 4.1.3 and 4.1.4. We can use these to look for deviations

from linear behavior. Once verified these results can also be used to reduce
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computation time for calculating the Fourier coefficients, as a very small time

step is required to resolve the Fourier integrals for very low strains. A high strain

asymptote for the case of q = 1 can also be derived to examine the high strain

limit of a linear Pompom model.

To derive low strain asymptotes it is convenient to re-write the UCM tensor

as an expansion in powers of the strain amplitude, ε,

A = I + εa
1

+ ε2a
2

+ · · · , (4.3.1)

and, similarly the stretch equation can be written as,

λ(t) = 1 + ελ(t)1 + ε2λ(t)2 + · · · (4.3.2)

In the case of the UCM tensor for τ ∗b = τb the expansion terminates after the

quadratic term.

The changes to τ ∗b are negligible in the low strain limit and can be neglected.

Simulations show that changes in τ ∗b affect the Pompom stress response for strain

amplitudes higher than unity. The resulting shear stress can be expanded in odd

powers of ε. The leading order term is,

σxy =
Gτbω (cos (ωt) + τbωsin (ωt))

1 + τ 2
b ω

2
ε+O(ε3) (4.3.3)

Taking the Fourier transform of this result restores the familiar Maxwell stor-

age and viscous moduli,

I
′

1 =
GDe2

1 +De2
ε+O(ε3), (4.3.4)

and,

I
′′

1 =
GDe

1 +De2
ε+O(ε3), (4.3.5)

where the Deborah number is given by, De = ωτb, and the frequency is given in

rad.s−1.

Figure (4.4) shows a frequency sweep of the storage modulus (G
′
) and viscous

modulus (G
′′
), for a one mode Maxwell (Pompom) model. We see at the cross-
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over frequency ω = τ−1
b that the two moduli are equivalent.

Figure 4.4: A plot of the first harmonics as a function of Deborah number which
correspond to the dynamic moduli used to fit Maxwell modes. The parameters
used were G = 1Pa and τb = 1s.

We can go on from the first harmonic to derive subsequent low-strain asymp-

totic results for higher odd harmonic results (since the even Fourier coefficients

are zero in value). These were calculated by hand and checked using the MAPLE

symbolic algebra program. We give the result for the third harmonic and con-

centrate on this since higher harmonics are more complicated still. The storage

and loss modulus for the third harmonic, in their low strain limit are given by,

I
′

3 = −GDe
4(1− r−1)(De2 + 5De2r−1 − 2− r−1)

(1 + 4De2r−2)(1 + 4De2)(1 +De2)2
ε3 +O(ε5), (4.3.6)

and,

I
′′

3 =
GDe3(1− r−1)(4De4r−1 − 5De2 − 8De2r−1 + 1)

2(1 + 4De2r−1)(1 + 4De2)(1 +De2)2
ε3 +O(ε5). (4.3.7)

The two coefficients for the third harmonic are a function of Deborah number and
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the ratio, r, of the orientation and stretch relaxation times. Neither asymptote

is dependent on the branching parameter, q, so that the influence of branching is

only present in the large amplitude regime, i.e. for Wi � 1.

The leading order term in I
′
n and I

′′
n is of order εn for n odd and containing

only odd powers of ε. In the limit of low strain only the leading power is of

importance and so higher order terms can be neglected.

In figure 4.5 we show the variation in I
′

3/1 and I
′′

3/1 with frequency, ω, where

I
′

3/1 is defined as
I
′
3

I1
and similarly I

′′

3/1 =
I
′′
3

I1
. We plot the resulting I

′

3/1 and I
′′

3/1

scaled by ε2 on a linear axis, as there exists a regime of negative contribution.

The frequency is still on a log axis. The modulus of the relative third harmonic

is also overlayed.

Figure 4.5: A plot of I
′

3/1, I
′′

3/1 and I3/1 as a function of Deborah number. Pa-
rameters used were G = 1Pa, τb = 1s and τs = 0.25s, with the strain amplitude
chosen as, ε = 0.01.

For each modulus, I
′

3/1 and I
′′

3/1, there exists a maximum/minimum contribu-

tion to the stress, depending on frequency. In figure 4.6 we explore the height of

the maxima of I3/1 with respect to the ratio of τs to τb.

We see in figure (4.6), that a higher ratio implies a higher maxima of I3/1. In
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Figure 4.6: A plot of I3/1 as a function of Deborah number for various ratios,
r = 1, 2, 4, 5, 10 and r = ∞. The linear parameters are G = 1Pa and τb = 1s.
The maximum in I3 increases as a function of r up to the case of τs = 0s (r =∞)
which has asymptotically different behaviour compared to finite r. The strain
amplitude chosen as, ε = 0.01.

other words, a higher ratio implies a quicker τs and hence a smaller contribution

to stretch term in the extra stress. Note, from equations (4.3.6) and (4.3.7) for a

ratio, r = 1, there is no contribution of the third harmonic to the total stress. In

fact, the contribution is of order, O(ε5) and can be calculated analytically.

The case of q = 1 with the physical limit of λ < q, stretch relaxation is

effectively instantaneous hence, τs = 0s. This causes the values I
′′
3 and I

′
3 to

have characteristically different behaviour from the cases with stretch relaxation

occurring.

Again, from equations (4.3.6) and (4.3.7) the value of I
′

3/1 is the most dra-

matically different and is non-zero in the high frequency limit. This behaviour is

unphysical as this model rejects chain Rouse modes. The difference between I
′′

3/1

for q = 1 and q > 1 occurs in the high frequency regime. For the case q = 1, I
′′

3/1

does not have a second minimum as it does for the cases where q > 1 [c.f. figure

(4.5)]. Again, this is due to the lack of any chain stretch modes in this model.
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One method for incorporating the rheology of a linear molecule is to set the

stretch relaxation time to the Rouse time and allow q → ∞. This limit approx-

imates to the RoliePoly constitutive equations [Graham et al. (2003)] without

convective constraint release and this limit has been previous studied by Venerus

(2005); Venerus and Nair (2006) to successfully model step strain flow of both

finite and ideal step imposition time.

In the case of q = 1 we can derive high strain asymptotes for each Fourier co-

efficient. Using the previous expansion of the UCM tensor in powers of the strain

amplitude (equation 4.3.1) it can be shown that in high strain all Fourier coef-

ficients scale as ε−1. Subsequently the Fourier coefficients for the first harmonic

can be expressed as,

I ′1 =
1

ε

√
3G
(

2De
√

(3(1 + 4De2))− 4De2 − 1
)

De
√

(1 + 4De2)
, (4.3.8)

and

I ′′1 =
1

ε

3G

De
, (4.3.9)

and the Fourier coefficients for the third harmonic can similarly be written as,

I ′3 = −1

ε

√
3G
(

20De4 − 6De3
√

3(4De2 + 1)− 17De2 + 6De
√

3(4De2 + 1)− 1
)

De(1 +De2)
√

4De2 + 1
,

(4.3.10)

and

I ′′3 =
1

ε

√
3G
(

11De2
√

3(4De2 + 1)−
√

3(4De2 + 1)− 36De3
)

De(1 +De2)
√

4De2 + 1
. (4.3.11)

Unfortunately we have not been able to find an equivalent solution for q > 1.

This requires solving the backbone stretch equation for λ(t). Even in the limit

of infinite branches, q → ∞, which has the effect of making ν∗ = 0 and not

having to impose the limit of λ ≤ q, no solution has been found in the high strain

amplitude limit.

In figure 4.7 the high strain asymptote for I3/1 is plotted as a function of

Deborah number for one mode Pompom model with G = 1Pa and τb = 1s.
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Figure 4.7: The high strain asymptote of the relative third harmonic, I3/1, plotted
as a function of Deborah number. The high strain asymptote is only analytic for
a linear Pompom model, i.e. q = 1. This one mode model has parameters of
G = 1Pa and τb = 1s.

This high strain asymptote is independent of strain amplitude and so for a fixed

Deborah number it is also independent of Weissenberg number, as seen in figure

4.8. Figure 4.7 shows that I3/1 has two regimes in high strain. For low Deborah

numbers, De � 1, the ratio of the third and first absolute harmonics is ∼ 1,

implying each harmonics contributes equally in the Fourier series. For De � 1

the value of I3/1 plateaus at approximately 0.27 with the transition between the

two regimes occurring at De ∼ 1. This is in contrast to the low strain asymptotic

results that show peaks in I3/1 at a Deborah number ∼ 2.

4.3.3 Simulation results

In this section the Pompom model is explored in LAOS with the Pompom equa-

tions solved using the numerical techniques detailed in section, 4.2.

In figure 4.8 a one mode Pompom model is compared in LAOS for De = 12

and a range the number of arms, q = 1, 2, 5 and 10. The solution agrees with the
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low strain asymptote for Weissenberg numbers in the range 1 < Wi < 10, and for

the case q = 1 the high strain asymptote agrees with the solution for Wi > 100.

The solution deviates from the low strain asymptote at around a Wi ∼ 10, at

which point small differences can be seen for the various choices of q, for cases

with q > 1.

Figure 4.8: The relative third harmonic I3/1 plotted as a function of Weissenberg
number for a one mode Pompom model with variations in branching parameter,
q. The other Pompom parameters are G = 1000Pa, τb = 10s and r = 4 giving a
Deborah number, De = 12.

In figure 4.9 a plot of I3/1 is shown for various ratios of orientation and stretch

relaxation time, r = 1, 2, 4 and 8, and constant branching parameter, q = 5. For

r > 1 the linear response superimposes onto the low strain asymptote. For the

case of r = 1 the leading order terms given in equations 4.3.6 and 4.3.7 are zero

so that I3/1 is of order ε4 and not ε2. Comparing figures 4.8 and 4.9 it can be

seen that the predominant Pompom parameter that controls the stress response

in LAOS is the stretch relaxation time, τs.

In figure 4.10 the real and imaginary parts of the absolute value of the third

harmonic, I3/1, are plotted as a function of Weissenberg number for fixed Deborah
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Figure 4.9: The relative third harmonic I3/1 plotted as a function of Weissenberg
number for a one mode Pompom model with variations in the ratio of orientation
and stretch relaxation times, r. The dashed lines represent the low-strain asymp-
totic solution and the simulation was performed at a fixed Deborah number of
De = 12. The other Pompom parameters are G = 1000Pa, τb = 10s and q = 5.

number of De = 12, for various choices of branching parameter, q, and ratio of

orientation and stretch relaxation time, r. The linear Pompom parameters are

chosen as G = 1000Pa and τb = 10s. The real and imaginary parts of I3/1 are

denoted as I
′

3/1 and I
′′

3/1, respectively.

In figure 4.10(left) the real and imaginary parts of I3/1 are plotted for various

choices of branching parameter, q, and a fixed ratio, r = 4. For q > 1 there is

only a small effect on the values of I
′

3/1 and I
′′

3/1 with changing q. For q = 1, I
′

3/1

is considerably larger than for the case of q > 1 and also for q = 1, I
′′

3/1 is positive

as oppose to negative for the case q > 1.

As previously mentioned, there will exist a physical stretch relaxation from

chain stretch of a linear molecule which is not modelled by the Pompom con-

stitutive equations and this in the sum of multiple modes this could lead to

discrepancies between constitutive model and experiment.

On the right of figure 4.10 the ratio of orientation and stretch relation times,
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Figure 4.10: The real and imaginary parts of the relative third harmonic, I3/1,
plotted against Weissenberg number for various choices of branching priority, q,
(left) and the ratio of orientation and stretch relaxation times, r (right). The
linear Pompom parameters are G = 1000Pa and τb = 10s with De = 12.

r, is varied with a fixed branching parameter, q = 5. The figure shows the results

for a fixed Deborah number of, De = 12, as a function of Weissenberg number.

Again it can be seen that varying τs and hence r has a much bigger effect on I
′

3/1

and I
′′

3/1 than the branching parameter, q.

Studying the real and imaginary parts of I3/1 provides a deeper insight into

how a constitutive equation performs in LAOS, compared to the absolute value of

I3/1, since such quantities as the phase shift (of the nth harmonic) are calculated

from I
′
n and I

′′
n . In the subsequent section the principles discussed here are used to

compare simulations of multimode Pompom constitutive model to experimental

results of various polyethylenes.

4.4 Experimental Results

We shall now compare the predictions of the multimode Pompom model fitted

to extensional rheology in chapter 2 with experimental measurements for three

materials, namely the HDPEs; HDB3 and HDB6, and the LDPE, 1840H. All

three materials have similar zero shear viscosities, η0 ∼ 50[Pa s], details of which
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and other material parameters can be found in table 2.1. It should be noted that

unless otherwise stated the theory for HDB6 will be HDB6(a).

This will enable us to consider the question: can Pompom spectra with non-

linear parameters fitted to extensional data capture the behaviour of branched

materials in LAOS?

The experimental data presented in this section explores three frequencies

0.12rad/s, 1.2rad/s and 12rad/s, with absolute strain amplitudes in the range of

0.1 to 1 for each of the three materials. I would like to acknowledge and thank

Vitor Barosso currently working at the Johannes Kepler University, Austria, and

formally working at the Max Plank Institute working under Manfred Wilhelm,

for providing me with both the experimental measurements and details of the

experimental procedure used.

The Large Amplitude Oscillatory Shear (LAOS) experiments were performed

on an ARES rotational rheometer (TA Instruments, New Castle-DE, USA) using

a 13mm parallel plate geometry, with a gap of around 1mm. The temperature

was controlled through the use of the convection oven of the ARES, with heated

nitrogen being flushed to achieve the desired temperature and avoid degradation.

During the LAOS experiments, a temperature of 150◦C was used for 1840H, and

155◦C for HDB3 and HDB6. All the samples were previously prepared on a

heated press under vacuum which ensured samples free of entrapped air bubbles

and stress free. For the frequencies of 0.2Hz and 2Hz, eleven strain amplitudes

between 0.1 and 1 (10% and 100% strain) equally spaced on a log-scale were used.

For the lower frequency (0.02Hz), only six strains (also equally spaced) were used

due to possible thermal degradation derived from the extended duration of the

measurement.

For the analysis of the LAOS data, the FT-Rheology framework was used

[Neidhöfer et al. (2003); Wilhelm (2002)]. The raw strain and torque data were

collected directly from the ARES, and externally digitised. The obtained values

after Fourier analysis of the raw torque signal were the relative intensities of the

higher harmonics In/1, and the relative phase differences Φn, as explained by

Neidhöfer et al. (2003).
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4.4.1 Small amplitude experiments

First consider the case of small amplitudes for which we can use the asymp-

totic formulas. Using small amplitude to measure dynamic moduli for the third

harmonic has the benefit of avoiding experimental difficulty associated with per-

forming higher strain amplitudes and it allows the stretch relaxation times in a

multimode Pompom constitutive model to be determined.

Figure 4.11 shows a plot of the absolute value, I3/1, of the low strain asymp-

totes (c.f. equations (4.3.6) and (4.3.7)) plotted as a function of Deborah number

and normalised by ε2 for the three materials used in this section. For each mate-

rial the value of I3/1 shows some oscillations due to the sum of multimodes. The

most discernible difference is between the two HDPEs and the LDPE, where the

curve of I3/1 for the LDPE is below that of the two HDPEs. This is a result

of the 1840H being modelled with more non-linear modes than the two HDPEs.

Recall from figure 4.8 that the value of I3/1 is lower for q > 1 than for q = 1 so

the number of modes that have q > 1 is important.

In section 4.5.1 we discuss the effect of not modelling chain stretch for linear

molecules and the effect that mode density has on these low strain predictions.

4.4.2 Large amplitude oscillatory shear (LAOS)

In this section a range of strain amplitudes typically larger than those used for

SAOS are examined. Absolute strain amplitudes in the range ε = 0.1 to ε = 1

were accessible with the experimental technique used. Strain amplitudes beyond

some critical point will depart from the low-strain asymptote which is propor-

tional to the square of the strain amplitude, and tend to a plateau [e.g. Neidhöfer

et al. (2003)]. This plateau has not been experimentally reached in this work.

In the last section it was shown that in a multimode Pompom constitutive

model the number of modes with non-linear parameters (i.e. modes with q > 1)

affects the results for higher harmonics at small strain amplitudes. On a natural

progression does the number of non-linear modes affect the LAOS results and

how sensitive are LAOS predictions to the branching parameter, q? Another test

for LAOS is to see if measurements can be used to distinguish between materials

with differing levels of LCB.

127



4.4 Experimental Results

Figure 4.11: A plot of the absolute value, I3/1, of the low strain asymptotes
(c.f. equations (4.3.6) and (4.3.7)) plotted as a function of Deborah number for
the three materials; HDB3, HDB6 and 1840H. The strain amplitude chosen as,
ε = 0.01.

Figure 4.12 shows a comparison between experiment and theory for each ma-

terial for the three frequencies used in this study. Since each experiment is per-

formed at a different Deborah number the value of I3/1 is normalised by Deborah

number for clarity and is plotted as a function of Weissenberg number. To cal-

culate Deborah and Weissenberg numbers the average relaxation time for each

material was taken from table 2.1. The dotted lines represent the low strain

asymptotic solution derived in the last section and the solid lines are the nu-

merical results. The experimental results do not always depart from the small

strain amplitude asymptotic prediction and where there is departure it is small.

In general, the Pompom model with parameters fitted to extensional rheology

is able to predict the experimental results well, even departing from the W 2
i be-

haviour at the same point as experiments. The best results are for the interme-

diate frequency, 1.2rad/s where experiment and theory agree well. The smallest

and largest frequencies are modelled less precisely, with the Pompom parame-

terisations used here, over-predicting the experimental results. This is possibly
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4.4 Experimental Results

Figure 4.12: A comparison between experiment and theory for each material for
the three frequencies used in this study. Since each experiment is performed at
a different Deborah number the value of I3/1 is normalised by Deborah number
for clarity and is plotted as a function of Weissenberg number. The dotted lines
represent the low strain asymptotic solution derived in the last section and the
solid lines are the simulated results.

caused by the oscillatory behaviour occurring from the discretisation into Pom-

pom modes (c.f. 4.11) and therefore increasing the mode density should smooth

out the oscillations.

As noted earlier the real and imaginary parts, I
′

3/1 and I
′′

3/1 respectively, con-

tain phase information that does not appear in I3/1. Figures 4.13 to 4.15 show the

real and imaginary parts of the absolute third harmonic, I3/1, plotted for varying

Weissenberg numbers for HDB3, HDB6(a) and 1840H. Generally the real part,

I
′

3/1, is larger and dominates the absolute modulus for each Deborah number. The

initial quadratic behaviour modelled by the low strain asymptote of I3/1 is seen

in I
′

3/1. In contrast the imaginary part of the absolute third harmonic, I
′′

3/1, is

much smaller than I
′

3/1 and tends to decrease and become negative. In each plot

the Pompom prediction is shown with a solid line in the experimental regime and

a dotted line for Weissenberg numbers that were not experimentally available.
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Figure 4.13: A comparison between experiment and Pompom theory of the real
(right) and imaginary (left) parts of I3/1 for HDB3. The Pompom model has
reasonable agreement with data with the biggest discrepancy occurring for the
largest Deborah number, De = 280.

All the multimode Pompom spectra show a similar pattern of behaviour with

increasing Wi. The real part of I3/1 typically grows quadratically with Wi before

reaching a turning point, at which point I
′

3/1 decreases and becomes negative.

The imaginary part of I3/1 is much smaller than the real component but still

grows negatively as the Weissenberg number is increased. For all three materials

the highest Deborah number plot of both I
′

3/1 and I
′′

3/1 show maxima that are

much higher than that observed experimentally.

For HDB3 I
′′

3/1 is modelled well for the lowest Deborah number (De = 2.8),

but for the two higher Deborah numbers (De = 28, 280) the downturn occurs at

a higher Weissenberg numbers for the model than in the experiments (c.f. figure

4.13). The real component, I
′

3/1, is predicted well for low Weissenberg numbers

for all Deborah numbers, but the Pompom model predicts a maximum which is

much higher than the data.

The results are similar for HDB6(a) (figure 4.14) with the first two Deborah

(De = 3.8, 38) numbers being modelled well by the Pompom model, although

slightly over-predicting the experimental data. For the highest Deborah number

(De = 380) the Pompom model over-predicts the value of the experimental data

and predicts a large maximum for both the real and imaginary components, where
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4.4 Experimental Results

Figure 4.14: A comparison between experiment and Pompom theory of the real
(right) and imaginary (left) parts of I3/1 for HDB6(a). The Pompom model has
good agreement with data with the biggest discrepancy occurring for the largest
Deborah number, De = 350.

no maximum is seen in the experimental data.

For LDPE 1840H (figure 4.15) the lowest Deborah number experiment is pre-

dicted well by the Pompom model, however I
′

3/1 is still over-predicted. For the

other two Deborah numbers the Pompom model predicts a maximum in I
′′

3/1

which is not experimentally visible. For the largest Deborah number the experi-

ments find a downturn in I
′

3/1 which is not captured by the Pompom model until

much higher Weissenberg numbers.

In chapter 2 three different spectra for the HDB6 were obtained and fitted to

extensional data. In the last chapter the three spectra were found to be indistin-

guishable in shear step strain. However, they do show quantitative differences in

LAOS. The three different spectra are compared to LAOS data for the Deborah

numbers, De = 3.8, 38 and De = 380 in figures 4.16 to 4.18. For the lowest Debo-

rah number, De = 3.8, all three models over-predict both the real and imaginary

parts of I3/1. The disagreement between theory and experiment is similar for

each spectrum and the resulting absolute harmonics also similarly show theory

over predicting experiment, as can be seen in figure 4.19.

For the intermediate Deborah number, De = 38, all parameterisations match

the data well. In particular HDB6(a) shows good agreement for both real and
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4.4 Experimental Results

Figure 4.15: A comparison between experiment and Pompom theory of the real
(right) and imaginary (left) parts of I3/1 for the LDPE 1840H. The Pompom
model has good agreement with real data with the biggest discrepancy occurring
for the imaginary component, I

′′

3/1, for the largest two Deborah numbers, De = 63
and De = 630.

Figure 4.16: A comparison of the three different HDB6 spectra (a, b, and c)
fitted to extensional data, and experimental data for the lowest of the three
Deborah numbers, De = 3.8. Each spectra does a reasonable job in predicting
the experimental data for both the real and imaginary components of I3/1. The
most discernible difference is the modelling of the real component where HDB6(c)
gives the closest agreement.
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4.4 Experimental Results

Figure 4.17: A comparison of the three different HDB6 spectra (a, b, and c)
fitted to extensional data, and experimental data for the intermediate Deborah
number, De = 38. Each spectra does a good job in predicting the experimental
data for both the real and imaginary components of I3/1. In particular HDB6(a)
captures the rheology of each component very well.

imaginary parts of the third harmonic.

The Pompom parameterisations for HDB6 compared to LAOS data for the

highest experimental Deborah number, De = 380, show a big discrepancy from

the data. The Pompom model predicts both the real and imaginary parts, I
′

3/1

and I
′′

3/1, to have a much higher maximum than experiments find and don’t show

a negative gradient until much higher Weissenberg numbers.

Figure 4.19 show the absolute value of the third harmonic for each of the three

HDB6 Pompom parameterisations. As seen in the figure, all parameterisations

perform similarly well, and despite the discrepancies for the individual real and

imaginary parts the absolute third harmonic is modelled well by all three spectra.

This is because it is dominated by the imaginary component and this component

is best modelled by the Pompom equations.

Each of the HDB6 spectra does give a noticeably different prediction for the

components I
′

3/1 and I
′′

3/1 for the three Deborah numbers considered. From the

study of the Pompom model in the previous section this differentiation between
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4.4 Experimental Results

Figure 4.18: A comparison of the three different HDB6 spectra (a, b, and c) fitted
to extensional data, and experimental data for the largest of the three Deborah
numbers De = 380. Each spectra does a poor job in predicting the experimental
data for both the real and imaginary components of I3/1, failing to predict the
large negative results that experimental data shows.

Figure 4.19: A comparison of each HDB6 spectra (a, b, and c) compared to exper-
imental data for the absolute value of the third harmonic for each experimental
Deborah number. All three spectra perform similarly well which is a consequence
of the dominant imaginary component being well modelled by each spectra.
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4.4 Experimental Results

the spectra is attributed to the sensitivity of LAOS rheology to the stretch re-

laxation times. The value of the real component shows the largest amount of

variation using the three spectra, however this is typically smaller than the imag-

inary component and thus the absolute value of the third harmonic is dominated

by the imaginary component. The imaginary component show less variation for

the three HDB6 spectra and hence so does the absolute value, I3/1.

Examining the real and imaginary components of the absolute third harmonic

separately for all three materials gives greater insight into the performance of the

Pompom equations in LAOS compared to looking at the absolute value alone.

The real component is much smaller than the imaginary and thus has little contri-

bution to the absolute third harmonic thus studying this variable separately can

show discrepancies not seen when studying the absolute third harmonic alone.

Also both components become negative in the range of Weissenberg numbers ac-

cessible. The Pompom model captures the magnitude of the harmonic well but

the prediction of the phase angle of the harmonic is poor. This can be seen,

for example in figures 4.18 and 4.19 in the largest Deborah number for the ma-

terial HDB6, and for all the materials investigated here. The question remains

of whether this is a fundamental deficiency of Pompom model in capturing the

rheology of LAOS or whether the discrepancies result from the incorrect choice of

non-linear parameters when fitting to extensional rheology. In fitting parameters

to extensional data both the non-linear Pompom parameters (τs and q) are fitted

simultaneously and is most sensitive to q, if the Pompom model correctly cap-

tures the rheology of LAOS then it can be used to ascertain the stretch relaxation

time independently.

In general the Pompom constitutive model with parameters fitted to exten-

sional rheology capture the rheology of LAOS reasonably well. When discrep-

ancies occur the Pompom model over-predicts experimental results. In the one

mode Pompom model we found that the value of I3/1 showed different rheolog-

ical response for modes with a branching priority of q = 1 than for q > 1, in

particular giving larger values of I3/1. As noted earlier a linear molecule would

still exhibit chain stretch relaxation that is not modelled by the q = 1 Pompom

model. The next section looks at modelling chain stretch relaxation for linear

Pompom molecules to examine if this affects the performance of the Pompom

135



4.5 Modelling linear chain stretch in the Pompom model

model in LAOS.

4.5 Modelling linear chain stretch in the Pom-

pom model

It was shown in section 4.3 that there is a qualitative difference between linear

Pompom modes (i.e. modes with branching parameter, q = 1) and branched

Pompom modes (modes with q > 1). This is attributed to the presence of stretch

relaxation. In the q = 1 Pompom modes the chain stretch relaxes instantaneously

and the extra stress only contains contributions from chain orientation. However,

at high shear rates and frequencies stretch modes are important even in linear

polymer melts [e.g. Likhtman and McLeish (2002)], and is incorporated in consti-

tutive models such as the GLaMM model [Graham et al. (2003)]. In this section

the effect of incorporating chain stretch for q = 1 modes in the multimode Pom-

pom model is assessed to determine whether this can remedy the discrepancies

from experimental results.

In this section a simple model for linear chain stretch is included in LAOS

calculations. For the modes with q = 1 the polymer stretch, λ, found by solving

the equation,
D

Dt
λ(t) = λ(t)K : S − 1

τs
(λ(t)− 1)eν∗(λi−1), (4.5.1)

is calculated using the chain Rouse time as the value of τs with no limit on λ.

Since for a linear molecule there is no branch point displacement the value of

ν∗ = 0.

For HDPE materials considered here the chain Rouse time is of order 0.01τb

giving a chain relaxation ratio of order 100. However, I will also test chain

stretch relaxation ratios of 3.3 and 10 as well, to determine the effect of this

ratio. For each value of the chain stretch ratio (3.3, 10, 100) all modes with

q = 1 will be given the same ratio of orientation to stretch relaxation time and

the limit of λ < q will be removed. Figure 4.20 show the SAOS predictions of the

relative third harmonic (normalised by ε2) as a function of Deborah number for

the material HDB6 for the various choices of chain stretch ratio. For all values

of the chain stretch ratio there is only negligible difference for Deborah numbers
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4.5 Modelling linear chain stretch in the Pompom model

Figure 4.20: The value of the absolute relative third harmonic as a function of
Deborah number predicted by the low strain asymptotes derived earlier in this
chapter. The Pompom predictions are shown for various choices of Rouse chain
stretch ratio for the material HDB6(a).

less than 10, which is the range of the two lowest frequencies in experiments. At

high Deborah numbers ∼ O(106), the models with chain stretch relaxation ratios

tend to a zero contribution from the third harmonic, as oppose to the non-zero

plateau predicted by the Pompom model without chain stretch relaxation. For

the intermediate regime, 10 < De < 106, the effect of including chain stretch is

to reduce the value of I3/1 with larger Rouse times giving the largest reduction.

However for, r = 100, which most resembles the Rouse motion for linear chain

segments the response is nearly identical to the original model over the frequency

range of the experiments.

This result is confirmed when the real and imaginary values of the relative

third harmonic are compared to experimental data for various Weissenberg num-

bers. Figure 4.21 shows the experimental results for the real and imaginary parts

of the relative third harmonic with Pompom predictions for the material HDB6,

using the Pompom spectrum HDB6(a). The theory results are shown for the

Pompom model without linear chain stretch relaxation and with chain stretch

relaxation for ratios of r = 3.3 and r = 10. For the lowest Deborah number there
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4.5 Modelling linear chain stretch in the Pompom model

Figure 4.21: The Pompom spectrum HDB6(a) with various choices of chain
stretch ratio are compared to experimental data for the real (right) and imaginary
(left) components of the relative third harmonic. Ratios of r = 3.3 and r = 10 are
shown with the result for r = 100 giving almost identical results to the original
model.

is little difference between the three models and for the intermediate Deborah

number modelling chain stretch worsens the prediction of the real component.

The highest Deborah number is the more interesting case as this means there

are more individual Pompom modes with De > 1. Although the real component

is largely unaffected by the choice of model, the imaginary component show dif-

ferences in the maximum peak with the Pompom model using a Rouse ratio of

r = 3.3 showing a much smaller peak than the original model. As the ratio is

increased the predictions tend to the original model and a Rouse ratio of r = 100

was examined and found to give indistinguishable results to the original model.

Modelling Rouse chain stretch relaxation for linear Pompom modes makes

little difference to the model predictions when a chain stretch ratio is chosen to

be of realistic value (O(102)). However, the Pompom spectra with non-linear

parameters fitted to extensional data still don’t predict some aspects of LAOS

rheology.
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4.5 Modelling linear chain stretch in the Pompom model

4.5.1 Computational branch on branch rheology

In the previous sections of this chapter the Pompom spectra used in the LAOS

calculations were obtained from fitting rheological data and not from molecular

structure of the polymers. In order to make a direct link with molecular struc-

ture we need to test a Pompom spectrum derived from the molecular structure.

One possibility would be to perform LAOS experiments on a melt of carefully

synthesised Pompom molecules. Although such materials have been synthesised,

LAOS measurements are not available. The alternative is to derive a statistical

distribution of molecular shapes of the materials we have available using a model

for their synthesis, and use this distribution of shapes to obtain an approximate

Pompom spectrum. Such a model is currently under development [Das et al.

(2006); Read et al. (2008)] from which Pompom spectra for HDB6 and 1840H

have been derived.

Software is able to simulate reactor conditions for branched polyethylenes [Das

(2010)] using a Monte-Carlo algorithm to model the reaction of molecules [Inkson

et al. (2006)] and create an explicit ensemble where probability statistics are used

to interpret the LCB architecture. From this ensemble a detailed configuration is

analysed with a tube model that then predicts the linear rheology of a material

using a branch-on-branch (BoB) algorithm [Das et al. (2006)]. Finally, this is

mapped onto a full Pompom parameter space where the complex architecture

of a material requires many different Pompom modes for each Maxwell mode to

capture the correct rheology.

Although the determination of the branching priority, q, is still a topic of

current research, the value of the stretch relaxation time, τs, is well defined in the

reaction simulations. This makes LAOS a good choice of flow to test this aspect

of the BoB model since we showed earlier that LAOS is strongly dependent on

stretch relaxation and weakly dependent on the branching priority. In particular,

the low-strain asymptotes derived in section 4.3.2 can be quickly examined to

compare reaction modelling to experimental data that are in the linear regime of

LAOS.

For the HDPE, HDB6, a BoB Pompom spectra was provided to analyse in

LAOS. I would like to thank Daniel Read and Chinmay Das for providing this
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4.5 Modelling linear chain stretch in the Pompom model

data. The BoB Pompom spectra for HDB6 consists of 42 Maxwell modes and

approximately 4200 Pompom modes. In the case of linear Pompom molecules

the BoB algorithm provides Rouse stretch relaxation times so the choice of mod-

elling Rouse stretch relaxation for linear modes can be checked. The use of so

many modes makes a full LAOS simulation computationally very time consum-

ing, however the low-strain asymptotes can be used relatively easily to examine

the behaviour of the Pompom model in the linear regime.

In figure 4.22(left) the Dynamic moduli for HDB6 are plotted as a function

of Deborah number, De, where for consistency the average relaxation time is

taken from the Pompom spectra already used in this chapter. The figure show a

comparison between the manually fitted 12 mode linear spectrum and the BoB

linear spectrum. In the experimental window the two spectra are comparable but

beyond this the BoB spectra gives a more realistic prediction than the 12 mode

model since it has relaxation time spanning a much larger range of frequencies.

The right hand figure of 4.22 show the low-strain asymptotic prediction for the

absolute third harmonic, I3/1, in the cases of the 12 mode Pompom spectra fitted

to extensional data, the BoB spectra ignoring linear chain stretch and the BoB

spectra including linear chain stretch. Due to a high density of modes both BoB

spectra give a smoother curve than the 12 mode spectrum. Also, for Deborah

numbers, De > 102, the spectrum with linear chain stretch has a significantly

smaller value of I3/1 compared to the BoB spectrum without linear chain stretch.

This is analogous to the differences in I3/1 seen in figure 4.6, where the absence

of stretch relaxation caused a non-zero plateau. In general both BoB spectra

predict the curve for I3/1 to be lower than for the 12 modes spectrum.

A comparison between the BoB low-strain asymptotes (including Rouse chain

stretch) and experimental data is shown in figure 4.23, along with the full predic-

tions of the Pompom spectrum fitted to extensional data. The figure shows that

the agreement between experimental data and the BoB Pompom spectrum is sig-

nificantly improved compared to the 12 mode Pompom spectrum. For De = 350

this is expected since this is the regime where figure 4.22 showed a difference when

modelling chain stretch relaxation, but there is also a significant improvement for

De = 3.5 where the choice of modelling chain stretch relaxation is negligible.

This demonstrates that at least some of the discrepancies seen in the previous
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4.5 Modelling linear chain stretch in the Pompom model

Figure 4.22: Left) The dynamic moduli for HDB6, comparing the experimental
data, the 12 mode HDB6(a) spectrum and the BoB spectrum derived from re-
action synthesis. Right) A comparison of the absolute relative third harmonic
for the material HDB6. The parameterisations shown are the 12 mode HDB6(a)
spectrum and the BoB spectrum with and without chain stretch.

sections are due to the method of fitting the Pompom spectrum to the extensional

rheology, which is rather insensitive to the choice of τs.

The process is repeated for the LDPE 1840H, where the BoB simulated spec-

trum has around 104 modes. Similar to HDB6 the linear prediction for a frequency

sweep of the low strain asymptotes [c.f. figure 4.24] shows that the 12 mode fit-

ted Pompom spectra gives a much higher prediction than the BoB spectra for

the absolute third harmonic. This would again indicate that stretch relaxation

times are shorter than is predicted by Pompom spectra fitted to extensional data.

Comparing the low strain asymptotes of the third harmonic to experimental data

for 1840H, figure 4.25 shows that using the BoB Pompom spectrum gives an

improved prediction of the absolute third harmonic and hence an improved pre-

diction of the stress response. As for HDB6, the predictions for 1840H show

the biggest differences from the 12 mode Pompom spectrum for the lowest and

highest frequencies tested. For both materials however, without the full non-

linear solution no conclusions can be drawn on the deviations from the low strain

response with increasing strain amplitude.

Using reactor simulations and branch-on-branch rheological algorithms to pre-
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4.5 Modelling linear chain stretch in the Pompom model

Figure 4.23: A comparison of experimental data and Pompom predictions for
I3/1 as a function of Weissenberg number. The Pompom prediction for HDB6(a)
is shown for each Deborah number along with the low strain asymptote derived
from the BoB Pompom spectra which shows an improved prediction with correct
modelling of stretch relaxation.

Figure 4.24: Left) The dynamic moduli for 1840H, comparing the experimental
data, the 12 mode 1840H spectrum and the BoB spectrum derived from reaction
synthesis. Right) A comparison of the absolute relative third harmonic for the
material 1840H. The parameterisations shown are the 12 mode 1840H spectrum
and the BoB spectrum with and without chain stretch.
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Figure 4.25: A comparison of experimental data and Pompom predictions for
I3/1 as a function of Weissenberg number. The Pompom prediction for 1840H
is shown for each Deborah number along with the low strain asymptote derived
from the BoB Pompom spectra which shows an improved prediction with correct
modelling of stretch relaxation.

dict a detailed Pompom spectrum has indicated that the Pompom model is ca-

pable of capturing LAOS rheology with good accuracy. However, to substantiate

this result further a full simulation for high strain amplitudes is required to see

how a BoB Pompom spectrum predicts deviation from this linear result. This

is needed to analyse the real and imaginary parts of the third harmonic, where

the Pompom model fitted to extensional rheology showed the biggest discrepancy

from experimental data.

4.6 Conclusions

In this chapter the Pompom constitutive model was examined in large amplitude

oscillatory shear (LAOS) to see if the model can successfully predict experimental

results, and to determine the sensitivity of this experiment to the Pompom non-

linear parameters. In particular can a Pompom parameter set fitted to extensional

data capture the behaviour of the material in LAOS?
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As this is a periodic flow it is convenient to use Fourier analysis to analyse

the results. Since the first harmonic is dominated by the linear viscoelastic re-

sponse, the most sensitive measurements of non-linearity come from the higher

harmonics (which are zero for Oldroyd and UCM models). In this study I focus

my attention on the third harmonic Fourier coefficients, which are the largest

non-linear coefficients and hence most easily measured.

The Pompom parameters infer detail about molecular architecture and so

by analysing a one mode Pompom model it was possible to deduce which of

the Pompom parameters are sensitive in LAOS. Of the two non-linear Pompom

parameters the stretch relaxation time is the more dominant parameter, with

the branching priority having only a minor effect on the stress response, for

q > 1. For the Pompom model a low strain asymptotic solution was derived which

showed the absolute relative third harmonic, I3/1, as a function of Weissenberg

number shows a power law of 2. The low strain asymptotes can be used to

reduce computation time when simulating the full LAOS stress response and

Fourier decomposition. The low strain asymptotes are independent of branching

parameter, q, and so provide a method for measuring τs alone.

The multimode Pompom model is compared to experimental data for three

materials; two HDPEs HDB3, HDB6 and the LDPE 1840H. Experiments were

performed at three frequencies (0.02Hz, 0.2Hz and 2Hz) and strain amplitudes

ranging from ε = 0.1 to ε = 1. The Pompom parameters for each material were

fitted to the dynamic moduli and extensional rheology and each spectrum shows

a reasonable degree of accuracy in predicting I3/1. Deviations away from the low

strain asymptote were hard to examine as the experimental data did not go far

enough into the high strain regime.

To examine the accuracy of the Pompom model further the variation of the

real and imaginary parts of the relative third harmonic were examined with in-

creasing strain amplitude (Weissenberg number). In general the Pompom param-

eterisations agreed with experiments well for the two lower frequencies but large

deviations occurred for the larger frequency. For the higher Weissenberg numbers

both the real and imaginary components of I3/1 showed a significant downturn,

however, the Pompom model predicts a large peak and does not downturn until

much higher Weissenberg numbers. This could either be caused by poor param-
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eterisation of the non-linear Pompom parameters or due to inadequacies in the

Pompom model.

To examine how sensitive LAOS predictions are to variations in Pompom

parameterisations, the three different HDB6 spectra derived in chapter 2 were

compared to the experimental data for all three frequencies. LAOS predictions

discriminate the three spectra reasonably well when examining the real and imag-

inary components. So far in this thesis we have seen that transient shear and

extension as well as shear step strain flows were not particularly sensitive to the

three HDB6 spectra. In LAOS the three spectra do give differing results and in

particular HDB6(c) performs best in the low frequency experiment and HDB6(a)

performs best in the medium frequency experiment (All three spectra do not

fully capture the third harmonic for the highest frequency experiment and so no

conclusions can be drawn). The reason for this differentiation between Pompom

spectra is that LAOS is the only experiment considered so far that is strongly

dependent on only one of the non-linear Pompom parameters, namely the stretch

relaxation ratio. Transient shear and extension, as well as shear step strain, are

affected by both non-linear parameters.

For the linear Pompom modes Rouse chain stretch relaxation was modelled to

examine if there was a significant effect on the response of the third harmonic. It

was shown that for a realistic value of chain-stretch relaxation time the difference

between the original Pompom model and the chain stretch Pompom model is

negligible.

By modelling the reaction process for the material HDB6 and 1840H using

the branch-on-branch (BoB) algorithm a detailed Pompom spectrum fully char-

acterising the materials’ architecture was created which contained between 4000

and 10000 modes. Although a full LAOS simulation is computationally too time

consuming to perform at present, the low strain asymptotic results that were de-

rived in section 4.3.2, showed a significant improvement on the 12 mode Pompom

spectrum fitted to extensional data. This indicates that a correctly parameterised

Pompom model can capture LAOS rheology, although this remains to be shown

fully.

One way forward would be to use a smaller number of modes obtained from

the BoB model to simulate the LAOS experiments. Also a larger range of ex-
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perimental data could be used to further clarify results as well as investigating

further parameters such as higher Fourier harmonics.

Large amplitude oscillatory shear experiments provide a unique tool for analysing

branched polymer melts. The theme of this thesis is characterising LCB, but when

trying to parameterise the Pompom model to flows such as transient extension

the two non-linear Pompom parameters are fitted for each mode simultaneously.

This provides multiple fits all satisfying experimental rheology equally. In LAOS

the stress response is strongly dependent on only one non-linear Pompom param-

eter and so could be used to determine this parameter independently. The low

strain asymptotes provide a powerful tool for this analysis as the experiments are

easier to perform in this limit.
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Chapter 5

Cross-slot Flow

To characterise material architecture several spatially homogeneous ‘simple’ flows

have been examined. In particular the predictions of the Pompom model with

parameters fitted to extensional stretching experiments have been tested against

other experiments in shear step-strain and Fourier transform rheology, to assess

not only the accuracy of the parameterisation but also the performance of the

Pompom constitutive model itself.

In the rest of my thesis I will examine the flow in the cross-slot geometry. This

contains an isolated stagnation point (SP) flow which generates a region of exten-

sional flow, as well as shear near the walls. Experimentally the stress is measured

using flow induced birefringence (FIB). In a planar flow this technique provides

images of black and white contours of constant stress difference. Finite element

solutions of the Pompom constitutive model are compared to the FIB images.

The solution techniques are discussed in section 1.7. After an investigation into

mesh choices and the performance of one and two mode Pompom models, the

multimode Pompom model is compared to experimental FIB images for a range

of polyethylenes.

The FIB images for a material at several flow rates will be used to generate

steady state extensional viscosity measurements of LCB materials at steady state.

These measurements complement transient stretching experiments, which are not

always able to achieve steady state due to the finite strain achievable and sample

breakage.
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5.1 Introduction

Figure 5.1: An illustration of cross-slot flow which generates stagnation point
flow. The stream lines indicate the flow direction with the colours representing
the magnitude of the velocity.

5.1 Introduction

The cross-slot flow consists of four channels, two opposing inlet channels and

two outlet channels, illustrated in figure 5.1. This generates a stagnation point

(SP) flow which has regions of high extensional stress on the symmetry lines of the

outlet channels. The depth of the channels is usually chosen to be large compared

to their width so that the flow can be assumed to be 2D, this approximation is

checked later in the chapter [section 5.4.3]. The cross-slot flow does not suffer from

the free surface instabilities that hinder shear or uniaxial extensional flow. Also,

since the stress response is measured optically through birefringence once loaded

a single sample can be used for many different measurements. The material at

the SP experiences an arbitrarily large strain, although in practice (at least for

the flow cell used at Cambridge) the strain of a particular flow rate is limited to

the time taken for the sample to flow through the apparatus. This means that

the extensional stress generate by the stagnation point reaches steady state and

the rheological behaviour of branched materials in extension can be examined.

Furthermore, the birefringence pattern generated along the upstream stagnation

streamline shows the strain history at a particular flow rate.
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Stagnation point (SP) flow has been used in a variety of ways to examine fluid

dynamics. Taylor (1934) used a four roll mill to try and approximate [rectangular

hyperbolic] stream lines, similar to the cross-slot studied here. Taylor (1934)

placed a golden syrup solution containing a drop of various undissolved oils in

the four roll mill and examined how the drops deformed under flow conditions.

Dynamical and viscous forces on the surface of the oil drop act to distort its

shape. By balancing these forces with surface tension which acts to keep the

drop spherical, the author derives an analytic expression for the distortion of the

oil drops which is valid for small drops being distorted at low speeds.

To examine the relationship between an induced velocity gradient and stress

response of a polymeric fluid the optical anisotropy can be examined. A polymeric

fluid with completely random ensemble is optically isotropic. When the ensemble

average of polymer molecules become distorted then anisotropy caused by double

refraction, or birefringence, can be measured [Wales (1976)].

An important relation upon which the interpretation of flow birefringence

relies is the linear relation between stress and birefringence,

∆n = C∆σ, (5.1.1)

where ∆σ is know as the principal stress difference and is given by,

∆σ =
√

(σxx − σyy)2 + 4σ2
xy, (5.1.2)

and C is the stress-optical coefficient.

Frank and Mackley (1976) used a two roll mill and Crowley et al. (1976) a

four roll mill to investigate polyethylene oxide solutions in stagnation point flow

and found birefringent strands corresponding to high values of principal stress

difference along streamlines downstream of the stagnation point. Scrivener et al.

(1979) found similar birefringence strands using a cross-slot flow cell. A summary

of these and other flow birefringence studies can be found in Janeschitz-Kriegl

(1983).

In polymer melts flow induced birefringence is usually sufficiently strong enough

to rotate the plane of polarisation though more than one cycle. This means that
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provided the cell depth, d, is sufficiently large (so that end effects can be ignored)

the birefringent pattern is seen as contours of constant principal stress difference,

with each contour representing the same increment in stress which was calculated

by Coventry (2006) as,

stress/fringe =
λlight
C · d

. (5.1.3)

The stagnation point causes a region of high extension downstream of the

stagnation point and thus the PSD patterns show asymmetry between the inlet

and outlet plane [see Coventry (2006); Coventry and Mackley (2008); Verbeeten

et al. (2001)]. The stress is highest at the stagnation point and this is represented

by increasingly localised fringes around the stagnation point. Early findings for

polymer melts showed the stress contours cusp along the symmetry line down-

stream [Coventry (2006); Coventry and Mackley (2008); Verbeeten et al. (2001)].

More recent publications [Hassell and Mackley (2008); Hassell et al. (2009, 2008);

Soulages et al. (2008)] show that the cusping of the PSD contours occurs away

from the symmetry line and Hassell et al. (2009) termed this double cusping pat-

tern as ‘W-cusps’. In section 5.4.4 I review the PSD of single and double cusping

PSDs and compare the Pompom constitutive model to experimental PSD pat-

terns. I would like to thank David Hassell for providing the experimental data

used in this work.

Since this is a complex flow the local fluid velocity and hence strain rate are not

determined a priori, and will depend upon the constitutive properties of the fluid

as well as the input flow-rate. Consequently, it is important to know how polymer

molecules affect the velocity gradient. Harlen et al. (1992) reduced the complex

geometry of stagnation point flow to a 1D problem and modelled birefringent

strands and pipes using a FENE model. Incorporating hydrodynamic drag to

create a coil-stretch hysteresis the authors show that highly stretched molecules

from the stagnation point slow the flow down to create a birefringent pattern

called birefringent pipes [c.f. Keller et al. (1987); Müller et al. (1988)], which are

similar to the W-cusp phenomenon.

Since the depth to width ratio of the cross-slot is usually large, the flow

is normally regarded as being a 2D planar flow. However this approximation

neglects the effects of the viewing walls, which can affect the birefringence pattern.
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Wales (1976) suggests that an aspect ratio between the depth and the width of

the flow cell should be at least 10 for a valid 2D approximation. Schoonen et al.

(1998) investigated deviations from a 2D approximation for aspect ratios of 2

and 8 in slit flow. The authors found that deviations between 2D and 3D flow

calculations increased with increasing flow rate but were minimal for the larger

aspect ratio.

Clemeur et al. (2004b) performed a numerical investigation for various aspect

ratios in a slit flow and an abrupt contraction flow using the UCM model and

the DCPP version of the Pompom model. For both models they agreed with

Wales (1976) that a 2D approximation was acceptable for an aspect ratio of 10,

although the 2D approximation became worse at higher flow rates. The results

also show that the choice of constitutive model does not seem to affect the 2D

approximation. Sirakov et al. (2005) looked at 3D effects of the XPP constitutive

model for various contraction geometries. The authors show that complex 3D

flow kinematics can be captured using the XPP model and recommend that

full 3D numerical analysis is needed to correctly describe the flow behaviour in

contraction geometries. For the cross-slot geometry presented in this work the

aspect ratio is approximately 7 and so the validity of using a 2D approximation

is checked in section 5.4.3.

In this chapter cross-slot flow is considered for various branched polyethylenes,

establishing differing rheological behaviour for linear, lightly branched and densely

branched materials. The Pompom constitutive model is compared to cross-slot

flow using 2D flow simulations. As previously seen in this thesis, the Pompom

model parameter space is explored using one and two mode models. Then the

Pompom parameters fitted to uniaxial extensional data for various polyethylenes

(c.f. chapter 2) are compared to the principal stress difference patterns observed

in experiments.

5.2 Experimental Setup

For the complex flow experiments a Cambridge Multi-Pass Rheometer (MPR)

with a cross-slot insert was used. This instrument is a dual piston capillary-type

rheometer, designed for small quantities of material of about 10g, that enables si-
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Figure 5.2: The Geometry of the MPR cross-slot.

multaneous and time-resolved pressure and optical measurements [Mackley et al.

(1995)]. It was operated together with an optical configuration using monochro-

matic polarised light with a wavelength of 514nm and pair of stress-free quartz

windows so that the stress-induced birefringence patterns were captured by a

digital video camera, e.g. Collis and Mackley (2005). From the top and bot-

tom reservoirs the polymer material is driven in opposite directions along two

perpendicular channels by pistons at a controlled rate and with equal pressure

through the midsection cube into two horizontal side channels with slave pistons

(Figure 5.2). Thereby, the material is maintained within the MPR and can be

forced back by nitrogen pressure through the cross-slot insert into the top and

bottom reservoirs for subsequent runs. The cross-slot geometry insert used in

this study consists of four perpendicular, intersecting coplanar channels with a

depth of 10mm and aspect ratio of about 7 (Figure 5.2). The two streams, which

are pumped into the cross-slot channel, generate a pure and large elongational

deformation around the stagnation point and along the inlet-outlet symmetry

plane, but essentially simple shear near the outer walls [Coventry and Mackley

(2008); Hassell et al. (2008)].

The input condition is represented by a piston speed, Vp, and the volume flux,

Q, into the two input channels is given by the relation,

Q = 78.5 · Vp [mm3.s−1]. (5.2.1)
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The central extension rate in the Cross-Slot can be estimated from the flow

geometry, and the relationship between the maximum extension rate and the

piston speed, Vp, is given by:

ε̇max = AVp, (5.2.2)

where A scales as the reciprocal channel width. However, the exact numerical

value of A depends on the constitutive behaviour of the melt throughout the

flow. This is the reason that quantitative cross-slot extensional rheometry must

be supported by self consistent flow calculations. The steady state elongational

viscosity ηE,std is calculated from the time-independent tensile stress σ which is

determined from the number of fringes, and the steady state Hencky strain rate

ε̇std as determined from the flow field:

ηE,std =
σstd
ε̇std

. (5.2.3)

Stress induced birefringence was used to observe the principal stress difference

(PSD) during flow. The bi-color method gives simultaneously the phase shift and

extinction angle of a stressed polymer fluid according to the stress-optical relation

[e.g. Chow and Fuller (1984); Janeschitz-Kriegl (1983)]. The retardation of light

between the two principal axes within the polymer, represented as the difference

in the refractive indices, is given by the stress-optical rule (SOR) as in equations

5.1.1 and 5.1.2, where the stress-optical coefficient, C, is given in units of Pa−1.

This relation has been found to be a linear function for stresses up to about

1MPa in the case of low-density polyethylenes [Kotaka et al. (1997); Koyama and

Ishizuka (1989)] as well as polystyrenes [Luap et al. (2006); Venerus et al. (1999)].

For the work presented in the subsequent sections the stresses are below this

limit and therefore, the SOR is expected to be valid and simply a linear relation.

Stress-optical coefficients ranging from 1.29·10−9Pa−1 to 2.34·10−9Pa−1 were used

for the experimental and computational work, which is in quantitative agreement

with the range given in the literature for polyethylene of 1.2 − 2.4 · 10−9Pa−1

[Macosko (1994)]. According to the theory of rubber elasticity and with support

from experimental data, the stress-optical coefficient is only weakly dependent
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on temperature [Koyama and Ishizuka (1989)].

5.3 Numerical Methods

Details of the numerical methods used to solve the constitutive equations in

cross-slot flow are given in section 1.7. In this section the details of the choice of

mesh used for each method are discussed. In this section all simulation results

are performed at a set input velocity flux of 1.9mm.s−1. In general the input

parameters for each solver are related to the velocity flux via the relations derived

in section 1.7.

I would like to thank Drs Harley Klein and Timothy Nicolson for their help in

working with flowSolve and Drs Rosen Tenchev and Mark Walkley for their work

on and constant development of the euFlow software. Details of both solvers can

be found at www.mupp2.co.uk (2010).

For both computational methods the time stepping was performed in units

of strain so that the same number of time steps were used for any given flow

rate. Calculations were performed using three time steps ranging from 10−3 to

10−5 units of strain. The results of these calculations show that the solution

was independent of the time step chosen. Also to increase computational speed

modes with Wi � 1 were treated as contributions to the Newtonian solvent stress.

At most four modes were treated this way, meaning that at least eight modes

would be solved as Pompom modes for any given material and flow rate. In the

subsequent discussion of the various mesh refinements used the mesh densities

for both computational methods were varied using a global mesh refinement.

Each software package allows the mesh (including the various refinements) to be

varied with one global parameter which increases the mesh density of refined and

unrefined sections of the mesh uniformly.

The flowSolve program uses Lagrangian elements that move and deform with

the fluid. Three mesh densities with mesh refinement near the downstream stag-

nation streamline were investigated for the material HDB6. The details of the

three meshes used can be seen in table 5.1. The solution at time, t = 0s,

which represents the Stokes solution for a viscous fluid whose viscosity is equal

to
∑

iGiτbi , where the sum is taken over the solvent modes. In table 5.1 the
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Table 5.1: A comparison of various flowSolve mesh densities for the Stokes solu-
tion at a time of t=0s. The PSD and velocity gradient, dU

dX
, are compared at the

stagnation point. For the Stokes solution the PSD at the stagnation point can
be calculated analytically; 4 dU

dX

∑
iGiτbi , where the sum is taken over the solvent

modes. There is close agreement between the simulated and analytical value of
the intial PSD at the SP to within 1.2%.

mesh nodes [-] dU
dX

[s−1] PSD [kPa] difference from
true PSD [ % ]

1 1137 2.13 17.63 1.09
2 2162 2.13 17.63 1.09
3 8304 2.05 16.97 1.11

Table 5.2: A comparison of various flowSolve mesh densities for the solution
at a time of t=3.5s. The PSD and velocity gradient, dU

dX
, are compared at the

stagnation point.
mesh nodes [-] dU

dX
[s−1] PSD [kPa]

1 1667 2.835 144.4
2 6544 2.824 144.6
2 25269 2.786 143.6

velocity gradient, dU
dX

and principal stress difference are probed at the stagnation

point. As flowSolve computes the solution, elements are convected with the flow

and so new points are added to retain the resolution near the SP, as a result the

number of nodes increases with solution time. The details of each mesh density

at a solution time of t = 3.5s is given in table 5.2, with velocity gradient and

PSD values taken from the stagnation point. The solution times on a standard

laptop with 1.8GHz processing power, for each mesh are approximately 36 hours,

96 hours and 15 weeks, respectively. A comparison of flowSolve solution at time

t = 3.5s for mesh 2 and mesh 3 can be seen in figure 5.3. The figure shows the

PSD for HDB6 with contour lines for comparison, also shown are the two meshes

used with the result that the two meshes show visually identical results. For the

remainder of this work flowSolve mesh 2 will be presented in simulation results.

The solver euFlow uses a static mesh which allows more control over local

mesh refinement. The results of these mesh investigations with the velocity gra-

dient and PSD values taken at the stagnation point are detailed in tables 5.3 and

5.4. At the solution time of t = 9s there are fewer mesh densities investigated due
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Figure 5.3: A comparison of flowSolve meshes (meshes 2 and 3 in tables 5.1
and 5.2) showing the PSD distribution and the triangular meshes used. The
comparison shows that visually the solutions are almost identical.

to the solver instabilities detailed in chapter 1.7. The solution time for meshes 2

to 5 ranges from 24 hours to 48 hours.

The values detailed in tables 5.3 and 5.4 are plotted in figure 5.4 which shows

good convergence for the Stokes solution and at a solution time of t = 9s the

simulation results are independent of the meshes investigated. For the remainder

of this work mesh 5 will be presented for simulation results. In figure 5.5 the

simulation results for flowSolve and euFlow are compared again for HDB6 with

contour lines shown every 20kPa. The agreement between the results are excellent

which can be seen with the visual agreement of the contour lines. This implies

that either solver method can be used without affecting any comparisons made

with experimental flow induced birefringence.

A transient plot comparing the PSD and velocity gradient, dU
dX

, for euFlow and

flowSolve simulations of the material HDB6 can be seen in figure 5.6. The figure

shows that the two solvers shown good agreement in the transient development

of both the PSD and dU
dX

with flowSolve predicting a slightly higher PSD and

slightly lower and noisier dU
dX

.
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Figure 5.4: The PSD and velocity gradient, dU
dX

s−1, probed at the stagnation point
are plotted against the inverse node number of various meshes, detailed in tables
5.3 and 5.4. left) the Stokes solution, showing convergence with increasing node
number. right) A solution time of t = 9s showing the solution is independent of
mesh to within 3%.

Figure 5.5: A comparison of euFlow and flowSolve solutions at steady state with
contours added for comparison every 20kPa and at 175kPa. The solutions are
visually very similar, with both solvers predicting the same number of fringes.
The biggest difference occurs at the SP where the highest fringe is smaller for the
euFlow solution.
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Table 5.3: A comparison of various euFlow mesh densities for the Stokes solution.
The PSD and velocity gradient, dU

dX
, are compared at the stagnation point. For the

Stokes solution the PSD at the stagnation point can be calculated analytically;
4 dU
dX

∑
iGiτbi , where the sum is taken over the solvent modes. There is good

agreement between the simulated and analytical value of the intial PSD at the
SP to within 0.2%.

mesh nodes [-] dU
dX

[s−1] PSD [kPa] difference from
true PSD [ % ]

1 970 2.15893 17.7113 0.199
2 1368 2.15709 17.6959 0.197
3 1689 2.15573 17.6792 0.166
4 2226 2.15493 17.6714 0.160
5 2606 2.15424 17.6677 0.170
6 3264 2.15382 17.6645 0.171
7 3721 2.15346 17.6597 0.161
8 4500 2.15321 17.6572 0.158
9 5034 2.15300 17.6564 0.163

Table 5.4: A comparison of various euFlow mesh densities for the solution at a
time of t=9s. The PSD and velocity gradient, dU

dX
, are compared at the stagnation

point.
mesh nodes [-] dU

dX
[s−1] PSD [kPa]

2 1368 2.742 160.1
3 1689 2.710 161.5
4 2226 2.700 159.1
5 2606 2.690 161.8

For the euFlow static mesh solver 3D simulations are presented using a re-

duced XY-plane mesh density to reduce computation time. To avoid computa-

tional problems associated with the Pompom model (c.f. section 1.7) a version of

the DPP model is used. The details of this choice are discussed in section 5.4.3.

Figure 5.7 compares a 2D simulation of the XY-plane mesh consisting of

720 nodes, and the mesh chosen for 2D simulations (mesh 5 in table 5.4). The

left hand figure shows the two meshes with some refinement removed on the

outflow centre line. The right hand figure shows the predicted PSD for the LDPE

1800S with the contours of the PSD showing good visual agreement around the

stagnation point.
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Figure 5.6: The transient solutions of euFlow and flowSolve simulations are com-
pared at the SP. Both solutions show the same transient development of the PSD
and dU

dX
, however euFlow predicts a higher value for the velocity gradient and a

lower value for the PSD compared to flowSolve.

Figure 5.7: The resolution of the XY euFlow mesh used in 3D simulations com-
pared to the 2D mesh. left) the high and low resolution meshes used for 2D and
3D simulation, respectively. right) the PSD for LDPE 1800S
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Figure 5.8: The 3D euFlow solutions for HDPE HDB6 (left) and LDPE 1800S
(right), showing the PSD. The top figures show the XY centre plane and the
bottom figures show the XZ centre plane. For the LDPE 1800S the high stress
gradient near the outflow centre line causes instabilities in the Z direction at late
solution times.

Figure 5.8 shows the PSD for two materials in the XY-plane and the XZ-

plane. On the left the PSD of HDB6 shows a smooth distribution of stress in

the XZ-plane, where there are 16 levels of discretisation in the Z-direction. For

the LDPE 1800S (right) the solver produces an instability in the Z-direction,

even when the Z-discretisation was increased to 19. The instability occurs as

the solution approaches steady state (t ∼ 4s) and is caused by the large stress

gradient approaching the outlfow centre line. A transient comparison can be

made with 2D simulations for times before the instability occurs and this is the

approach used in section 5.4.3.
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The validity of the 2D approximation of cross-slot FIB will be examined in

section 5.4.3, where details of the DPP model used and the calculation of the

true 3D birefringence will be given. Since only small discrepancies occur the

remainder of simulations will be 2D and a combination of flowSolve and euFlow

will be used.

5.4 The Pompom model in cross-slot flow

Similar to the previous chapters, in understanding the stress response that causes

flow induced birefringence both experimentally and theoretically through the mul-

timode Pompom constitutive model, it is helpful to investigate the stress caused

by simple one and two mode Pompom models with parameters chosen to em-

phasize certain flow features. The Pompom model is based on the idea of two

dominant independent relaxation process; orientation relaxation (with character-

istic time τb) and stretch relaxation (with characteristic time τs). For cross-slot

flow it is helpful to characterise these relaxation processes with two Weissenberg

numbers, an orientation Weissenberg number (which is what was been used pre-

viously in this work) and a stretch Weissenberg number defined as,

Wib = ε̇Cτb, (5.4.1)

Wis = ε̇Cτs, (5.4.2)

where ε̇C is the strain rate at the stagnation point for a Newtonian fluid.

5.4.1 One mode Pompom model

The first model investigated is a one mode Pompom model with parameters;

G = 0.9Pa, τb = 10s, q = 15 and r = 2. In order to maintain numerical stability

a Newtonian viscosity, µ = 1Pa.s, is added, giving a zero shear-rate viscosity of

µ+Gτb = 10Pa.s. The shape of the PSD for the one mode model is characterised

by the two Weissenberg numbers.

In figure 5.9a the Pompom parameters in a single Pompom model and the

flow rate are chosen such that Wib ,Wis << 1. This means that the fluid behaves
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Figure 5.9: Qualitative comparison of the predicted shape of the PSD for different
flow Weissenberg number regimes for a single Pompom mode: a) slow flow (Wib =
0.1 and Wis = 0.05); b) orientating but non-stretching flow (Wib = 1.5 and
Wis = 0.75); c) stretching flow (Wib = 10 and Wis = 5).

as a Newtonian fluid of viscosity µ + Gτb. In figure 5.9b the flow is orientating

but not stretching, i.e. Wib > 1,Wis < 1. Finally, figure 5.9c shows a typical

pattern where the flow is both orientating and stretching, i.e. Wib ,Wis > 1.

The molecular stretching becomes evident from the formation of very narrow and

extended birefringence lines along the central outflow axis.

In the case of a stretching flow where the critical strain rate is larger than the

inverse stretch time of the polymer, i.e. τsε̇C > 1, the most dominant material

parameter for the appearance of the PSD pattern is the priority branching number

q, or set of priorities, {qi}. This parameter controls the maximum value which

the backbone stretch can reach. In consequence it has very little effect on shear

viscosity but a large effect on the planar elongational, as seen in the Cross-Slot

PSD.

The presence of high polymeric stresses near the outflow centre line affects the

fluid velocity, which changes the strain rate at the stagnation point. In Figure

5.10 we show how the x component of the fluid velocity near the SP changes with

different values of q.

For high values of q, a large stress builds up along the downstream centre line,

this in turn slows down the velocity in this direction therefore ε̇C(t) is decreasing.

In comparison with the initial velocity profile the area in which the flow slows

extends a long way along the downstream centre line (5.10d).

For low values of q, the stretch parameter λ quickly reaches a maximum.

In this case in a large area downstream of the stagnation point the stretch be-

comes saturated at λ = q. This has the effect of increasing the velocity near the
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Figure 5.10: A comparison of the x-velocity shape in the right hand part of the
cross-slot for different test cases: a) the initial Stokes solution velocity profile, b)
during the flow the velocity near the stagnation point speeds up for low values of q,
i.e. q = 5 c) for intermediate values of q ∼ 10 the velocity up near the stagnation
point speeds up, but slow the flow down further along the downstream centre
line. d) for large values of q > 15 the large stretch gradient slows the flow down.
Parameters chosen were; G = 0.9Pa, τb = 10s, r = 2 with varied q, this gives an
initial Weissenberg number of 5 for stretch and 10 for orientation.

stagnation when the limit λ = q is reached (Figure 5.10b).

In figure 5.11 the value of the velocity gradient, dU
dX

, and PSD at the SP are

plotted as a function of solution time, with the values at t= 4.5s given in table

5.5. The figure shows how the dependence of dU
dX

and the PSD varies with q.

The value of the stretch directly affects the PSD through the constitutive model,

however the variation in dU
dX

is more subtly dependent on how much the stretch

slows the velocity along the outlfow centre line.

In this simple model the choice of ε̇C relative to τs is important since this
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Table 5.5: A table showing how the choice of Pompom branching parameter, q,
affects the flowSolve prediction of the velocity gradient, dU

dX
, and the PSD at the

stagnation point.
q [-] dU

dX
[s−1] PSD [Pa]

t=0 1.13 4.53
5 1.07 60.1
10 0.84 118
15 0.63 164

Figure 5.11: A comparison of the transient PSD and velocity gradient, dU
dX

, taken
at the stagnation point for various branching priorities, q. Parameters chosen
were; G = 0.9Pa, τb = 10s, r = 2 with varied q, this gives an initial Weissenberg
number of 5 for stretch and 10 for orientation.

will determine not only if stretch is a dominant feature of the flow but whether a

maximum stretch is reached. From this we can see that ε̇C(t) is itself dependent

on changes in the stretch gradient deduced by the flow on other parts of the

chain. In a realistic model of a PE, with a multimode spectrum, these effects will

not be so prevalent. It should be noted that although Pompom modes do not

interact directly, all modes are affected by changes to the velocity gradient and

so are indirectly coupled.
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Table 5.6: The parameters for the two mode Pompom model used in figure 5.12.
A Newtonian viscosity of µ = 1Pa.s was also included in the simulation.

Mode, i Gi [Pa] τb,i [s] τb,i/τs,i [-] qi [-]
1 0.2 10 5 5
2 0.35 20 2 22

5.4.2 A two mode Pompom model

To study the effect of this coupling a two mode Pompom model is used to show

how changes in velocity gradient caused by one mode affects the other. In par-

ticular, we are interested in whether a reduction in strain rate along the outflow

centre line axis can cause chain relaxation in a mode where the stretch Weis-

senberg number is close to unity and whether this provides an explanation for

the W-cusp patterns observed by Hassell et al. (2009). The Pompom parameters

chosen can be seen in table 5.6, again Newtonian viscosity of µ = 1Pa.s was

included and the zero sher-rate viscosity is 10.

The initial strain rate was chosen to be ε̇C = 1.1s−1, so that all orientation

and stretch Weissenberg numbers are greater than unity. The parameters were

chosen so that mode two would significantly alter the velocity gradient at the

stagnation point, reducing it from 1.1s−1 to 0.6s−1.

In figure 5.12 results of the flowSolve simulation of the two mode Pompom

model detailed in table 5.6 are shown. As with the one mode model the flow

is dominated by the slowest mode which slows down the flow near the outflow

centre line and produces a narrow PSD pattern. The stretch of the faster mode

has less influence on the PSD. It can be seen that the reduction in strain rate at

the SP causes stretch relaxation along the outflow centre line for the fast mode,

with the maximum stretch occurring away from the centre axis.

For the stretch relaxation in the fast mode (mode 1) to occur the slow mode

(mode 2) needs to be the dominant mode in the two mode spectrum. Reducing

the modulus of the slow mode reduces the level of stretch relaxation in the fast

mode and for this reason, we find that stretch relaxation cannot have enough

influence in the sum of modes to cause the PSD to have a maximum away from

the outflow centre line. This suggests that this coupling mechanism alone is not

sufficient to cause the W-cusps.
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(a) x-velocity [mm · s−1] (b) PSD [Pa]

(c) λ1 [-] (d) λ2 [-]

Figure 5.12: The predictions of the two mode Pompom model given in table 5.6
using flowSolve. The highly stretched backbone of the slow mode (d) significantly
modifies the flow, slowing the velocity along the outflow centre line (a). This
causes a collapse in the fast mode stretch (c) along the outflow centre line, but
the collapsed pattern is not seen in the PSD (b) because of the dominance in slow
mode needed to reduce the velocity.

5.4.3 Comparison of 2D approximation and 3D simula-

tions

Unlike velocity measurements, which can be taken on the centre plane away from

the walls, the observation of flow induced birefringence involves the integral of the

PSD though the entire depth of the flow cell. Consequently, flow induced bire-
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fringence (FIB) is always affected by the flow near the viewing windows which

produce a no-slip boundary condition. To ensure that the 2D approximation is

valid for birefringence measurements, in this section 2D and 3D birefringence

patterns for various materials will be compared to ascertain the extent of any

deviations from the 2D flow compared to a full 3D solution. Details of the nu-

merical solvers used for this investigation can be found in section 1.7, with the

meshes used detailed in section 5.3.

The 3D calculations are made using the euFlow static mesh solver. As ex-

plained in section 1.7, limits need to be imposed on the Pompom equations,

namely the entropic limit on the stretch, λ(t) ≤ q, and an arbitrarily large limit

on the trace of the UCM tensor. The limits are imposed using a ‘push-back’

function where each push-back function requires a user-inputted weight. This

requires some trial and error to find the required weight needed for each mode.

This is time consuming since the 3D simulations are found to be more sensitive

to the push-back weights used, making it harder for simulations to reach a steady

state.

To overcome these problems a version of the Pompom model called the DPP

model [Clemeur et al. (2003)] is used. The DPP model uses a variation on the

differential equation for the orientation which remains finite for all shear/strain

rates. To see the difference between the two orientation tensors it is convenient

to write the Pompom model’s orientation as an evolutionary equation in S rather

than A,

dS

dt
=

d

dt

(
A

traceA

)
=

1

trA2

(
trA

dA

dt
− A d

dt

(
trA
))

. (5.4.3)

Using the identity,

trace(K · S + S ·KT ) = 2K : S, (5.4.4)

the orientation differential equation for the original Pompom model can be written

as,
DS

Dt
= K · S + S ·KT − 1

τbtrA

(
3S − I

)
− 2S

(
K : S

)
. (5.4.5)

The differential equation (5.4.5) still contains a trA term and an approxi-

mation first suggested by Verbeeten et al. (2001) for the XPP model and used
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subsequently by Clemeur et al. (2003) for the DPP model and Clemeur et al.

(2004a) for the DCPP model is to make,

traceA = 3λ2. (5.4.6)

This gives the DPP orientation as,

DS

Dt
= K · S + S ·KT − 1

τbλ2

(
S − 1

3
I

)
− 2S

(
K : S

)
(5.4.7)

Although the stretch equation remains the same the entropic limit on the

stretch, λ(t) ≤ q, is removed for computational ease. This means that all modes

including linear, q = 1, modes have no upper bound on the stretch, and the only

influence on q is though the exponential reducing the stretch relaxation time.

Another important difference is a change to the exponential prefactor, ν∗. For

the Pompom model ν∗ = 2
q−1

for q > 1 and since there are no branch points,

ν∗ = 0 for q = 1, whereas for the DPP model ν∗ = 2
q

for all modes.

It should be noted that although linear modes (q = 1) can stretch in the DPP

model, in euFlow the linear (q = 1) modes are not solved and kept constant

(at q = 1) and so this is the approach adopted when solving transient uniaxial

and shear flows. The DPP model is compared to the Pompom model using the

spectra detailed in chapter 2. The temperatures of the experiments and fitted

theories are 155◦C for HDB2 and HDB6 and 140◦C for 1800S.

Figure 5.13 show transient plots of shear and uniaxial extensional viscosities

of the Pompom and DPP models. The comparison shows no significant difference

between the shear viscosities and the transient development of the uniaxial ex-

tensional viscosities. The largest difference between the two models is the steady

state value of the extensional viscosities. The DPP model predicts a higher steady

state value due to the removal of the limit on the stretch, however the differences

between the models are reasonable for a 2D-3D comparison to be made.

To compare the Pompom and DPP models further the 2D simulations of cross-

slot flow are shown in figure 5.14 for each material. The comparison between the

models shows that visual differences between the models are small although the

original Pompom model does produce sharper cusping along the outflow centre
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HDB2 HDB6 1800S

Figure 5.13: A comparison between the Pompom and DPP constitutive models for
the same spectra given in chapter 2. The comparison is made for three materials;
HDB2, HDB6 and 1800S in transient shear and uniaxial extension. The black
line shows the linear envelope and the coloured lines show various shear/strain
rates.

HDB2 HDB6 1800S

Figure 5.14: The Pompom and DPP constitutive models are compared in 2D
cross-slot flow for three materials; HDB2, HDB6 and 1800S. The results show
that the two models are comparable in cross-slot flow predicting the same number
of contours (at 20kPa each) for each material. However the Pompom model does
show sharper cusping down the outflow centre line.

line. The DPP model does produce very similar values for PSD and dU
dX

at the

stagnation point, the results of which are summarised in table 5.7. In 2D cross-

slot flow the Pompom model and the DPP model give very similar predictions

and therefore results from 3D simulations of the DPP model are assumed to be
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Table 5.7: The differences between the Pompom and DPP constitutive models in
2D cross-slot flow, with values of PSD and velocity gradient, dU

dX
, taken from the

stagnation point initially and after the transient development of the solution to
steady state.

t= 0.2s t= 10s
Pompom DPP Pompom DPP

HDB2 dU
dX

[s−1] 1.29 1.29 1.51 1.43
HDB2 PSD [kPa] 29.4 28.0 62.0 60.1

HDB6 dU
dX

[s−1] 1.29 1.29 1.58 1.59
HDB6 PSD [kPa] 37.3 37.2 126 125

1800S dU
dX

[s−1] 1.28 1.28 1.21 1.19
1800S PSD [kPa] 8.37 9.03 53.7 58.8

also valid for the Pompom model.

To calculate the PSD for a 3D simulation the polarisation of the light due

to the anisotropy the polymer needs to be calculated across the depth of the

geometry. Azzam (1978) and Fuller (1995) proposed Mueller calculus as a math-

ematical method for calculating the intensity of light passed though a medium.

As previously discussed by Clemeur et al. (2004b) the effect of the no-slip bound-

ary condition at the viewing windows means that to correctly calculate the PSD

there must be an integration over the light path through the medium. Each com-

ponent of the a series of optical elements, or optical train, is represented by a 4x4

Mueller matrix, M [Fuller (1995)].

euFlow is programmed to calculate the 3D birefringence with the following

equations in a post processing calculation. For the light source used in the ex-

periments in this work the light intensity, If , after passing through the medium

is given by,

If =
1

4
I (M11 −M44) , (5.4.8)

where I is the intensity of the light source and Mii are components of the Mueller

matrix. The Mueller matrix satisfies the differential equation [Azzam (1978)],

d

dz
M = m ·M, (5.4.9)

with the boundary condition that M = I4 at z = 0, where I4 is a 4x4 identity
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matrix. For a linearly birefringent medium m is given by [Azzam (1978)],

m =


0 0 0 0

0 0 0 −2Cσxy

0 0 0 C(σxx − σyy)

0 2Cσxy −C(σxx − σyy) 0

 , (5.4.10)

where C is the stress-optical coefficient.

Equations (5.4.9) and (5.4.10) reduce to solving three coupled differential

equations in z across the depth of the channel;

dM24

dz
= −2CσxyM44 (5.4.11)

dM34

dz
= C(σxx − σyy)M44 (5.4.12)

dM44

dz
= 2CσxyM24 − C(σxx − σyy)M34, (5.4.13)

which is solved with initial conditions, M24 = M34 = 0 and M44 = 1 and hence

the observed light intensity at the viewing window, z = d, is given by,

If (d) =
1

2
(1−M44(d)) . (5.4.14)

Clemeur et al. (2004b) used this technique in calculating FIB for channel and

contraction flows using various aspect ratios. The authors show that increasing

the aspect ratio improves the agreement between 2D and 3D calculations. They

also conclude the an aspect ratio of 10, as suggested by Wales (1976), provides

reasonable agreement. The cross-slot geometry used here has an aspect ratio of

around 7 and in the rest of this section the differences between 2D and 3D flow

will be examined.

All subsequent simulation presented are performed at the same input flux of

1.15mm.s−1 and the PSD contours are set at 20kPa per fringe. In table 5.8 the

values of the PSD and dU
dX

are compared at the stagnation point, and in the case

of the 3D simulation the value is taken at half the cell depth.

In figure 5.15 2D and 3D solutions of the DPP model are shown comparing

the PSD contours of the three materials already seen in this section. For HDB2
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HDB2 HDB6 1800S (t = 4s)

Figure 5.15: A comparison for the euFlow solution of the 2D approximation to
the actual 3D FIB for three materials; HDB2, HDB6 and 1800S. The figures show
that the aspect ratio is sufficient for the 2D approximation to accurately capture
the FIB PSD contours (at 20kPa each) at the side walls and around the SP for
each material. For 1800S high stress gradients on the outflow centre line meant
the numerical solution was only valid until around 4s.

Table 5.8: The differences is the PSD between the 2D approximation of the full
3D flow. The values were taken at the stagnation point and for 3D flow in the
centre plane of the geometry.

material 2D PSD 3D PSD difference % difference
[kPa] [kPa] [kPa] compared to 3D PSD [-]

HDB2 60.1 65.5 5.4 8.2
HDB6 125 131 6.0 4.6
1800S 58.8 58.0 0.8 1.38

the agreement at the channel walls and the SP fringes are excellent, except for a

slight discrepancy around the zero stress eye. For HDB6 the fringes at the channel

walls show good agreement as do the position of the fringes around the SP. The

2D model does predict half a fringe more than the 3D model despite the value

of the PSD at the SP having very similar values [c.f. table 5.8]. For the LDPE

1800S the simulation suffered from instabilities detailed in section 5.3, meaning

that a comparison between 2D and 3D models could only be made where the

solution was stable. The latest time that this could be done was at time t = 4s.

At this time the solutions of the 2D and 3D simulations match very well, both

predicting three PSD contours around the stagnation point.
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t=1.6 t=3.2 t=7.2

Figure 5.16: A comparison between the transient development of the FIB PSD
contours (at 20kPa each) for 2D and 3D cross-slot flow for the material HDB6.
At each time the 2D flow approximates the 3D birefringence well showing that
the 2D simulation accurately captures the transient development of full 3D flow.

Figure 5.16 shows the transient development of the PSD for HDB6, com-

paring 2D and 3D birefringence patterns. The figures show that the transient

development of the stress is the same for both 2D and 3D simulations. This is

confirmed in figure 5.17(right) where the transient development of the PSD and
dU
dX

at the centre point of the geometry are plotted. In the figure the PSD for

the 3D simulation is slightly higher than in the 2D case but for both geometries

the PSD reaches steady state at around, t = 2s. There is a slight discrepancy

in the values of dU
dX

initially but at steady state the 2D and 3D model gives the

same result. The behaviour of the PSD and dU
dX

along the stream line passing

through the SP [shown in figure 5.25] along the centre plane are compared to the

2D simulation in figure 5.17(left) at steady state. The figures show that the 2D

simulation approximates 3D flow very closely, implying the aspect ratio is large

enough for the 2D approximation to be valid.

For the rest of this work experimental results are compared to 2D simulations

of the original Pompom model assuming that the 2D approximation is valid for

the experiments discussed.

173



5.4 The Pompom model in cross-slot flow

Figure 5.17: left) A comparison between the 2D and 3D solutions for the values
of the PSD and dU

dX
along the stream line shown in figure 5.25. The figure shows

good agreement between 2D and 3D simulations. right) The transient develop-
ment of the PSD and dU

dX
at the SP (and centre plane for the 3D simulation) for

the material HDB6, comparing the 2D and 3D solutions. At all times the 3D
simulation predicts slightly higher PSD than the 2D model. Despite an initial
discrepancy at steady state dU

dX
is the same for 2D and 3D solutions.

5.4.4 Multimode Pompom model

In this section simulated 2D birefringence patterns are compared to experimental

results for a range of materials. The experimental results used in this work have

been previously presented by Coventry and Mackley (2008) and Hassell et al.

(2009) and I would like to acknowledge and thank Drs David Hassell and Timothy

Lord for providing the experimental images and LDV data.

As in previous chapters I will compare these experimental results to numerical

simulations using the Pompom parameters discussed in chapter 2. It was shown

in section 5.4.3 that the aspect ratio of the flow cell is sufficiently large for the

2D approximation to be valid and so only 2D simulations are presented from here

on.

In this section five materials are chosen to present how various material rheolo-

gies are observed in cross-slot flow and how well the Pompom constitutive model

captures flow phenomena. The comparisons made in this chapter are made at an

input flux of 1.15mm.s−1 unless otherwise stated [c.f. table 5.9]. The simulated
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Table 5.9: The experimental conditions for each material investigated in this
section. The initial strain rate is calculated from the Stokes solution and τ̄b is
taken from the spectra detailed in section 2.A.

material temperature velocity flux initial ε̇C τ̄b Wib

[◦C] [mm.s−1] [s−1] [s] [-]
CM1 155◦C 1.15 1.74 1.04 1.81

HDB2 155◦C 1.15 1.74 14.8 25.8
HDB6 155◦C 1.15 1.74 28.0 48.7
1800S 140◦C 1.15 1.74 1.38 2.40
1840H 150◦C 0.46 0.70 50.4 35.3

results were solved with euFlow and are presented as colour plots of PSD with

black contour lines representing the black fringes equally spaced at a fixed stress

value per fringe taken from Coventry (2006); Hassell et al. (2008).

Various constitutive equations have been examined previously in a Cross-Slot

geometry. Bogaerds et al. (1999) showed that the Giesekus and PTT constitutive

models fail to predict downstream principal stresses in Cross-Slot geometry for

polymer solutions due to a failure to capture extensional stresses. Verbeeten

et al. (2002) compared the XPP, Giesekus and PTT constitutive models in a

cross-slot geometry using 2D simulations. For a LDPE melt at a low Weissenberg

number (Wi = 4.3) all three models showed a reasonable match with experiments,

although the Giesekus and XPP models perform slightly better than the PTT

model. Abedijaberi et al. (2009) compared experiments and simulations of the

flow of LDPE branched polymer melts in a lubricated cross-slot channel. Using

the Giesekus constitutive model the authors show that the model performs well

at a Weissenberg number, Wi = 21. However, for a high Weissenberg number

(Wi = 29) the Giesekus model fails to capture the optical data, although it is

reported that this could be due to limitations in the experimental technique.

The FIB of the LLDPE CM1 at 155◦C is shown in figure 5.18. CM1 is a linear

material with a average relaxation time of τ̄b = 1.04s. Since the material exhibits

no strain hardening and has fast orientation relaxation the PSD flow pattern is

Newtonian in shape, as seen for the one-mode Pompom model with Wb � 1.

The simulation of Pompom parameterisation for CM1 (which has qi = 1 for all

modes, i) captures the shape of the PSD well and produces the correct number
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Figure 5.18: The experimental FIB for the LLDPE CM1 and 2D simulation
results with PSD contours shown at every 40kPa. The shape of the simulated
PSD is very similar to the experiment and the Pompom spectra used predicts the
correct number of contours.

of fringes compared with the experiment.

The HDPE named HDB2 has a longer average relaxation time of τ̄b = 14.8s

and contains linear and sparsely branched molecules showing only a small amount

of strain hardening in SER uniaxial experiments. The FIB for HDB2 at 155◦C is

shown in figure 5.19 where the PSD pattern shows elongated diamonds around

the SP. The Pompom parameterisation used underestimates the number of fringes

shown in the experiment which suggests that HDB2 is more strain hardening

than SER measurements indicate. In the SER experiments all the polyethylenes

experienced sample rupture before steady state is reached. As a consequence the

values for q may be underestimated. This will also explain why the cusps in the

simulation are not as elongated compared to the experimental PSD.

Another HDPE similar to HDB2 is HDB6, which has an average relaxation

time of τ̄b = 28.0s. HDB6 displays more strain hardening than HDB2 due to a

larger content of LCB present. The FIB patterns for HDB6 at 155◦C are shown

in figure 5.20. For both HDPEs shown, the simulations predict more PSD fringes

on the channel walls than present in experiments despite the good prediction in

transient shear experiments seen in chapter 2. This is a general finding for all
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Figure 5.19: The experimental FIB for the HDPE HDB2 and 2D simulation
results with PSD contours shown at every 22kPa. The Pompom spectra used
predicts one less fringe than the experiment and the experiment has sharper
cusping, possibly indicating that the spectra for HDB2 should include more LCB.

LCB materials and is thought to be due to the presence of an abrupt contraction

upstream of the cross-slot which is discussed in Coventry (2006); Coventry and

Mackley (2008). For CM1 and HDB2 each fringe around the stagnation point

cusps along the outflow centre line. For HDB6 the PSD contours at steady

state, cusp either side of the outflow centre line forming a double cusp. Hassell

et al. (2009) called these double cusps, ‘W-cusps’. The appearance of W-cusps

is dependent on material and seem to be a function of branching. For HDB6

W-cusps are observed at all experimentally accessible velocity fluxes, ranging

from 0.23mm.s−1 (Wi = 9.74) to 4.6mm.s−1 (Wi = 195). The appearance and

formation of W-cusps is discussed in more detail in chapter 6.

Although the Pompom parameterisation for HDB6(a) captures the overall

shape of the PSD contours around the SP, near the centre line the Pompom model

does not display the W-cusp formation that is seen in experiments. Indeed, we

have not found any Pompom parameterisations that exhibit W-cusps.

For LDPEs the PSD contours are highly concentrated on the outflow centre

line. This is similar to the one-mode Pompom model with Ws � 1 [c.f. figure
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Figure 5.20: The experimental FIB for the HDPE HDB6 and 2D simulation
results with PSD contours shown at every 22kPa. The number of fringes and the
overall shape of the PSD is predicted well, however, the Pompom constitutive
model does not predict the W-cusps along the outflow centre line.

Figure 5.21: The experimental FIB for the LDPE 1800S and 2D simulation results
with PSD contours shown at every 24.5kPa. The number of fringes and large
stress gradient is predicted well, however, the Pompom constitutive model does
not predict the W-cusps along the outflow centre line. The double cuspsing is
narrow for 1800S and therefore is hard to see in this picture.
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Figure 5.22: The experimental FIB for the LDPE 1840H and 2D simulation
results with PSD contours shown at every 24.5kPa. The number of fringes and
stress gradient is predicted well, however, the again Pompom constitutive model
does not predict the W-cusps along the outflow centre line, easily seen on the
outer fringes.

5.9]. The dense LCB structure of LDPEs causes high levels of strain hardening

which in turn produces high stress gradients near the SP.

Figure 5.21 shows the experimental PSD for 1800S at 140◦C compared to

simulation results. At this flow rate 1800S does not exhibit W-cusps but they do

occur at higher flow rates [c.f section 5.5 and chapter 6]. The simulation of the

Pompom spectra shifted to 140◦C closely matches the experimental PSD, both

of which have three fringes around the SP. As discussed above, for higher flow

rates when W-cusps occur the Pompom model fails to capture the phenomena.

Figure 5.22 shows the FIB pattern for the LDPE 1840H at 150◦C with a

velocity flux of 0.46mm.s−1 (Wi = 35.3). Even at this low flow rate the high

viscosity and strain hardening, with τ̄b = 50.1s, produce approximately 9-12

fringes of stress concentrated on the outflow centre line. The Pompom spectrum

used matches the experiment well predicting ten fringes, but the experimental

PSD pattern also contains W-cusping close to the centre line which the Pompom

model does not capture.

As well as steady state, transient images of the build up of the experimental
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FIB can also be compared to simulations. Figure 5.23 shows the solution at six

different times for HDB6 leading to the steady state FIB seen in figure 5.20. The

plots show the transient nature of W-cusps, first occurring at 3.2s near the SP

and travelling downstream. Although the Pompom model captures the shape

of the PSD contours (but not the W-cusps) at steady state, at early times the

transient build up of stress occurs much quicker than in experiments. This may

be a consequence of the differences in the transient flow rate. In simulations

the flow rate switches on instantaneously at start up, whereas the flow rate in

the experiments grows over a finite time interval. Another discrepancy between

experiments and simulations is that between 5s and 11s the experimental PSD

pattern ‘collapses’ and the number of fringes at the SP decreases by one fringe.

For all materials exhibiting the W-cusp phenomena this pattern collapse is ob-

served, however simulations using the Pompom constitutive model fail to capture

the pattern collapse. Indeed, the solutions at 5s and 11s are visually identical.

As well as comparing the PSD as obtained from FIB, we can also compare the

predictions of the modification to the fluid velocity due to the polymeric stresses.

Figure 5.24 show how the level of stretch along the outflow centre line is predicted

to affect the fluid velocity for HDB6. The figure shows the two effects the stretch

has on the velocity. Near the stagnation point, the velocity increases as there is a

region of saturated maximum stretch. Further downstream the effect of gradients

in the stretch component slows the velocity down. This is similar to the one mode

Pompom model with intermediate q values [c.f. figure 5.10]. Figure 5.25 shows

the distribution of the velocity gradient dU
dX

at steady state, which equates to

the strain rate near the SP. Starting from the initial maximum value at the SP

of 3.5s−1 the maximum value at steady state is 4.4s−1, which is an increase of

25%. The averaging of multiple modes means that we do not find such dramatic

changes in strain rate as in the single-mode Pompom model.

The fluid velocity in the experiments were measured by laser-Doppler ve-

locimetry (LDV) [e.g. Coventry (2006)] for HDB2 at a velocity flux of 1.15mm.s−1

(Wi = 25.8) and 1840H at 0.46mm.s−1 (Wi = 35.3) measured along the upstream

and downstream centre lines as shown in figure 5.25. For HDB2 the Pompom

model predicts that the fluid velocity upstream is slower than the Stokes solution

at time, t = 0, which agrees well with the LDV data [c.f. figure 5.26]. Down-
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t=0 s t=3.2 s

t=1.5 s t=5 s

t=3 s t=11 s

Figure 5.23: The transient development of the experimental PSD for HDPE
HDB6 is compared to the transient PSD for the 2D simulated solution. In the
experiments W-cusps occur at a time of 3.2s near the SP. The simulated PSD
develops faster for simulations than experiment and W-cusps are not predicted
for any simulated solution time.
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Figure 5.24: A comparison of the velocity profile along the downstream symmetry
line for the simulated HDB6 Pompom spectrum as a function of time. Near the
stagnation point the velocity increases where regions of constant stretch occur,
but further downstream the flow is slowed by gradients in the stretch.

Figure 5.25: Flow patterns computed in the cross-slot for a multimode Pompom
model of HDB6(a) (155◦C) at steady state flow from simulation at a Weissenberg
number of ∼ 100: b) elongational flow rate distribution ∼ dU

dx
.
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Figure 5.26: Experimental results from laser-Doppler velocimetry (symbols) and
flow simulations (solid line) for the velocity profile as a function of position for
the stream line along the inlet-outlet symmetry plane for HDPE HDB2 at 155◦C.
See figure 5.25 for a depiction of the stream line used.

stream the Pompom model predicts a slight increase in velocity gradient near the

SP and a slight decrease in velocity downstream from the stagnation point, rela-

tive to the Stokes solution. This is similar to the predictions of HDB6 [c.f. figure

5.25]. The experimental data predicts the same behaviour but the velocity seems

to be higher for the experiments than for simulation near the SP. However these

differences are small compared to the noise levels in the LDV signal. Downstream

the LDV data does show a velocity overshoot as in the simulation but there are

not enough downstream data points to fully determine the velocity.

For 1840H [figure 5.27] the slower flow rate means that the data for each point

is much noisier than the data for HDB2. Despite this there is a clear trend that

the velocity downstream is significantly slower than the velocity upstream of the

SP, with a decrease of velocity gradient near the SP. The Pompom simulation pre-

dicts the same behaviour but to a lesser extent, perhaps suggesting there needs

to be more branching in the spectrum to slow the velocity down further. The

discrepancies seen could be a result of the Pompom parameters being fitted incor-

rectly, for example HDB2 cross-slot predictions show that more strain hardening

needs to be modelled.
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Figure 5.27: Experimental results from laser-Doppler velocimetry (symbols) and
flow simulations (solid line) for the velocity profile as a function of position for
the stream line along the inlet-outlet symmetry plane for LDPE 1840H at 150◦C.
See figure 5.25 for a depiction of the stream line used.

In general the Pompom constitutive model and the parameters fitted to simple

extensional rheology perform well in cross-slot flow, apart from failing to predict

the W-cusp phenomena. In the next we section examine whether the cross-

slot can be used to measure extensional viscosity, using numerical simulations to

determine the strain rate at the SP.

5.5 The cross-slot as a rheometer

In order to determine the steady state viscosity from cross-slot rheometry it is

important to achieve a steady state stress profile. It appears that even for the

highly branched LDPE, with long relaxation times, the birefringence patterns

equilibrate, with no further change, within the experimental time and strain win-

dow of about 6 Hencky strain units, indicating a steady state flow condition. This

steady state was observed to have been reached well before the end of the experi-

mental time frame for all the materials in our study. These visual observations of

the flow suggest that the residence times and total stains are sufficient to reach a

steady state in transient rheology. The time dependence of the stress profile has
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5.5 The cross-slot as a rheometer

Figure 5.28: Number of fringes per piston speed as a function of piston speed for
the LLDPE, HDPE and LDPE samples investigated at conditions indicated in
Figures 5.29, 5.30 and 5.31.

been discussed in more detail by Hassell et al. (2008) and shown in figure 5.23.

The intensity patterns of the birefringence can be transformed from PSD

into steady state extensional stress at the SP by counting the (fractional) fringe

number at the flow stagnation point. The first step to obtaining quantitative

data is to examine the limits of manual fringe counting. Figure 5.28 displays

this recorded ‘raw’ data as a function of the primitive machine-proxy for the

flow rate, the piston speed. The lower limit for the determination of tensile

stresses from the birefringence method is given by the necessary minimum of half

an established fringe. The resolution for the stress increases significantly with

a growing number of fringes since an error in the order of one fringe becomes

less pronounced for a higher number of fringes. Towards higher piston speeds

the spatial resolution of the optical equipment limits the maximum number of

fringes which can be distinguished in the 1.5mm wide cross-slot gap to about

40 fringes, with a possible error of ±3 fringes. The viscosity of the chosen PE

samples was high enough to obtain a reasonable number of fringes, which can be

used to compute the tensile stress, yet not so high as to lose fringe resolution.
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5.5 The cross-slot as a rheometer

From the shape of the resulting curves one can already estimate the qualitative

form of the elongational viscosity function ηE,std(ε̇) since the viscosity is related

to the number of fringes per piston speed via the stress-optical coefficient (SOC),

and the elongational rate will be approximately proportional to piston speed.

In Figures 5.29, 5.30 and 5.31 the black and white fringes from stress-induced

birefringence (photographs in the left part) are compared to the PSD intensity

profiles from euFlow/flowSolve simulations (color images in the right part) with

the PSD level increasing from blue to red. As before, for clarity black lines are

drawn to coincide with the dark experimental birefringence contours. The simi-

larity of both fringe patterns demonstrates a very good agreement and accurate

description of the stress level and distribution for each material as a function of

velocity flux.

The initial strain rate and material specific average relaxation times are given

in the tables so that the particular Weissenberg numbers can be estimated for

a particular flow condition. However, these numbers can only give an average

since all materials have a relatively wide range of relaxation times due to the

width of the molar-mass distribution and also the heterogeneity of the long-chain

branching structure. Also the true strain rate will depend upon the fluid rheology.

For each material, the variation in FIB as a function of flow rate shows several

similarities. Although the number of fringes increases with increasing flow rate

[c.f. Hassell and Mackley (2009); Hassell et al. (2009, 2008); Verbeeten et al.

(2002)], the overall shape of the PSD pattern for each material remains similar.

For example CM1 (figure 5.30) retains the symmetric diamond pattern associated

with Newtonian flow in section 5.4.1. Also, HDB1 and HDB2 retain the same

asymmetric diamond contours and HDB6 exhibits W-cusps for all flow rates (fig-

ure 5.29). For the LDPEs, each material exhibits W-cusps but only for the higher

Weissenberg numbers. All the LDPEs contain highly stretched material along the

outflow centre line, even for Weissenberg numbers less than unity.
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5.5 The cross-slot as a rheometer

HDB1 HDB2 HDB6 (a)
ε̇C 155◦C 155◦C 155◦C

[s−1] τ̄b = 5.61s τ̄b = 14.8s τ̄b = 28.0s

0.35

0.70

1.74

3.48

6.95

Figure 5.29: Flow-induced stress birefringence patterns at steady state flow for
HDPE HDB series at different initial strain rates, or Weissenberg numbers, Wi,
calculated using the average relaxation time indicated. The stress profile is evi-
dent from the fringe patterns and the simulated data are presented with a series
of contours, using the same optical constant of 22kPa for all materials.
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CM1 CM2 CM3
ε̇C 155◦C 155◦C 155◦C

[s−1] τ̄b = 1.09s τ̄b = 16.3s τ̄b = 18.0s

0.35

0.70

1.74

3.48

6.95

Figure 5.30: Flow-induced stress birefringence patterns at steady state flow for
HDPE CM series at different initial strain rates, or Weissenberg numbers, Wi,
calculated using the average relaxation time indicated. The stress profile is evi-
dent from the fringe patterns and the simulated data are presented with a series
of contours, using the same optical constant of 40kPa for all materials.
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1800S 1840H Dow150R(a)*
ε̇C 140◦C 155◦C 160◦C ε̇∗C

[s−1] τ̄b = 1.38s τ̄b = 50.1 τ̄b = 428 [s−1]

0.35 0.035

0.70 0.070

1.74 0.174

3.48 0.35

6.95 0.70

Figure 5.31: FIB stress patterns at steady state flow for three LDPEs at different
initial strain rates, or Weissenberg numbers, Wi. Note, for Dow150R the strain
rates are a factor 10 lower than for 1800S and 1840H. The stress profile is evident
from the fringe patterns and the simulated data are presented with a series of
contours, using the same optical constant of 24.5kPa for the three slowest flow
rates, and for clarity 49kPa for the two fastest flow rates.
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5.5 The cross-slot as a rheometer

5.5.1 Steady state elongational planar viscosity from stag-

nation point analysis

At the SP the steady state viscosity in planar extension may be deduced from

the fringe number and calculated local extension rate. Producing a steady state

extensional viscosity curve from the cross-slot extensional rheometer (CSER) pro-

vides a new fitting tool to parameterise the Pompom constitutive theory. Match-

ing the steady states in extension should improve qualitative FIB predictions. For

example the materials HDB2 produces fewer PSD contours than are observed in

experiments. This is probably due to sample rupture in stretching experiments

and so using CSER to find the true steady state would give matching FIB pre-

dictions and HDB2 would be parameterised more accurately.

In predicting CSER steady state extensional viscosity curves various errors

must be analysed to establish the precision of these measurements. Three val-

ues are needed to produce a data point, namely the number of PSD fringes,

the SOC and the strain rate. The PSD fringes count has a minimum error of

half a fringe, which is most significant at small fringe numbers, i.e. when < 2

fringes are visible. When the total number of fringes exceeds ∼ 15, the fringe

visibility at the SP is poor, with errors of ±3 fringes, but this has less effect

on the viscosity curve. For each fringe to carry a fixed stress contribution the

linear stress-optical relation must be valid with a well defined SOC. A SOC of

2.34 · 10−9Pa−1 which is equivalent to 22kPa of stress per fringe is used for the

HDPEs, 2.19 · 10−9Pa−1 equivalent to 24.5kPa of stress per fringe for the LDPEs

and a SOC of 1.29 · 10−9Pa−1 giving 40kPa of stress per fringe for the LLDPEs.

This agrees with previous experimental measures of the SOC using the MPR

[Coventry (2006); Hassell et al. (2008)] and fall well within literature range of

1.2− 2.4 · 10−9Pa−1 [Macosko (1994)]. Errors in the SOC are likely to be of order

10% which is smaller than the fringe counting error. The predicted error from

CSER extensional measurements is shown on figure 5.32 and this shows that the

least viscous samples (CM1, HDB1 and 1800S) have significant error at the lower

strain rates, when less than two fringes are observed.

To define the viscosity the simulated strain rate is used, which can vary from

the initial strain rate by up to 25%. In section 5.4.4 it was shown that the
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5.5 The cross-slot as a rheometer

Figure 5.32: The predicted error for CSER extensional viscosity measurements
for a range of materials used in this study. The largest error bars occur for the
less viscous materials (CM1, HDB1 and 1800S) for the lower strain rates when
less than two fringes are observed.

velocity predictions of the Pompom model showed good agreement with LDV

data. Since the viscosity is a function of strain rate, errors in the strain rate will

produce a 45◦ translation of the data. Errors up to 20% have little visible effect

on the extensional viscosity predictions. The strain rate was simulated for each

experimental flow rate for all the materials evaluated in this chapter and it was

found that the strain rate deviated from its initial value by the almost the same

factor for each material, seemingly independent of flow rate. In section 5.4.1 it

was shown how the Pompom branching parameter affects the velocity field, so it

is not unreasonable that the transient development of the strain rate is a function

of material.

In comparing the SER and cross-slot it should be noted the two experiments

measure different extensional flow types. The SER measures uniaxial extensional
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5.5 The cross-slot as a rheometer

flow whereas the cross-slot approximates planar extensional flow. For Newto-

nian fluids there is a factor 4
3

difference between these two viscosities. However

in non-linear response in extension the difference between the two flow types is

diminished [Laun (1986); Laun and Schuch (1989); Laun and Münstedt (1978)].

At extension rates above a Wib � 0.5, the tube segments align with the exten-

sional axis so that K : S ' ε̇. The Pompom constitutive model captures this

diminishing effect and in the limit of high strain rate gives the same extensional

viscosity for both flow types [Inkson et al. (1999)]. For clarity of the onset of

high non-linear response the Pompom predictions for both uniaxial and planar

extension are shown in figures 5.33, 5.34 and 5.35.

The results from the combination of birefringence analysis and flow-rate pre-

dictions are presented in figures 5.33, 5.34 and 5.35, in terms of steady state

extensional viscosity as a function of extension rate. Also plotted are the maxi-

mum values of the stress obtained in the SER extensional experiments performed

on the same samples, testing the hypothesis that these values are attained at the

onset of plateau stress. The steady state extensional viscosity predictions of the

Pompom parameterisation for each model in both uniaxial and planar flow are

included.

For the linear LLDPE CM1 (figure 5.34) and the HDPE HDB1 with little

LCB content (figure 5.33) the SER and CSER extensional viscosity data are in

good agreement with the small discrepancy between the data being explained by

the difference between uniaxial and planar extensional flow. This is shown by the

Pompom predictions agreeing with each flow type for these materials.

The discrepancy between uniaxial and planar extension is smaller for CM2

(figure 5.34) and HDB2 (figure 5.33), where the data is in the non-linear strain-

hardening regime. For these two materials the CSER data is slightly higher than

the SER data and the Pompom planar prediction. In the cross-slot simulations

the Pompom spectra used for CM2 and HDB2 did not capture the same number

of fringes as was experimentally found (c.f. figures 5.30 and 5.29). This finding

supports idea that the SER stretching experiments do not reach the steady state

plateau at the point where the sample breaks and so these materials are more

strain hardening than the SER experiments predict. Hence, the CSER steady

state extensional viscosity curves provide a tool for improving rheological testing
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5.5 The cross-slot as a rheometer

Figure 5.33: Elongational viscosity ηE as a function of strain rate from uniaxial
(open symbols) and cross-slot experiments (closed symbols) for the branched
HDPE HDB series. Also shown are the Pompom predictions in uniaxial (solid
lines) and planar (dashed lines) extension.

and parameterising materials where sample breakup limits transient SER data.

For the materials HDB6 (figure 5.33), 1840H and Dow150R (figure 5.35) a

different trend is observed. Operating in the experimental window where the

difference between uniaxial and planar extension is nominal, the CSER data is

significantly lower than that of the SER experiments for all strain rates. As seen

in the previous analysis of CSER (figure 5.32) this discrepancy is larger than the

imprecision in the CSER measurements. However, all these materials exhibit W-

cusps for all flow rates (figures 5.29 and 5.31). Therefore, since one birefringence

image shows the strain history of the material in that flow rate this suggests an

overshoot in transient extensional flow with the maximum observed extensional

viscosity being larger than the final steady state value.

The materials CM3 (figure 5.34) and 1800S (figure 5.35) provide an interest-
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5.5 The cross-slot as a rheometer

Figure 5.34: Elongational viscosity ηE as a function of strain rate from uniaxial
(open symbols) and cross-slot experiments (closed symbols) for the branched
HDPE CM series. Also shown are the Pompom predictions in uniaxial (solid
lines) and planar (dashed lines) extension.

ing cross-over behaviour. For 1800S at low strain rates both the SER and CSER

experiments, within the noise levels of the CSER, predict a linear response (con-

firmed by the FIB pictures (figure 5.31) showing a single cusping pattern). How-

ever, for the higher strain rates the CSER gives a lower steady state value than

the SER measurements with W-cusps in the FIB pictures. For the material CM3

the experiments are within the non-linear regime and the predictions of the two

experimental methods cross-over at a strain rate of around 10s−1. However, it is

unclear whether the FIB pictures (figure 5.30) exhibit W-cusps at these higher

strain rates as the resolution is not good enough to decipher the highly packed

fringes.

One explanation for the discrepancy between the CSER and SER measure-

ments on the more highly branched polymers is that the stress growth curves are
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5.5 The cross-slot as a rheometer

Figure 5.35: Elongational viscosity ηE as a function of strain rate from uniaxial
(open symbols) and cross-slot experiments (closed symbols) for the LDPE ma-
terials used in this study. Also shown are the Pompom predictions in uniaxial
(solid lines) and planar (dashed lines) extension.

non-monotonic, rising to a maximum before falling towards a lower steady state

viscosity plateau. In this case, the SER measurements would pick up the transient

maximum and register a higher viscosity than the steady state cross-slot value.

Such an overshoot has been observed in LDPEs by Bach et al. (2003); Rasmussen

et al. (2005), who found a viscosity overshoot in uniaxial elongational.

5.5.2 Discussion

Our investigation demonstrates both how the steady state flow behavior in elon-

gation can be determined from cross-slot measurements and also that the molec-

ular structure influences the steady state extensional response in such a way as

a function of deformation rate. Analyzing polymer melts in a confined reservoir
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like the cross-slot geometry using the multi-pass rheometer avoids free surface

distortions.

For the steady state elongational viscosity determined in the cross-slot geome-

try we found a good qualitative agreement with the maximum values determined

in uniaxial elongation for materials with a single cusp pattern. For materials that

show W-cusps the CSER gives significantly lower values for the viscosity which

is consistent with the existence transient maximum in the extensional stress of

some LCB melts. This is discussed in more detail in the next chapter.

The determination of the ‘priority’ branching q-spectrum by the Pompom

model is not a trivial task and sometimes is an ill-posed problem since, in the

case of restricted data sets, there are multiple solutions to fitting a multimode

Pompom spectrum that accounts for limited uniaxial elongational data equally

well. However, by using a combination of CSER and sample stretching tests

like the SER, the model parameter space becomes much more restricted. For

this reason matching the predicted stress-induced birefringence patterns could

become a highly valuable tool in analysing the branching structure of a polymer

melt.

Using the rheology and flow modelling procedure described in this study it is

possible to pinpoint the relaxation times and parameters which are affected by

long-chain branching structure differentiating both between classes of LCB ma-

terials and between materials of different branching density within a single class.

Accordingly, this technique can be used to infer information on the molecular

structure of the polymeric sample.

The questions raised by new data and modelling of this work, specifically the

differences in maximum extensional stress of the SER, and the steady state stress

of the CSER, and specific flow features such as ‘W-cusping’ observed at high

Weissenberg numbers of the LDPE samples and for all Weissenberg numbers of

HDB6, may suggest new physics as yet not captured in molecular models.

5.6 Evaluating Pompom parameterisations

Using the cross-slot data we can now analyse how the Pompom parameterisations

described in chapter 2 are able to capture the cross-slot flow and in particular
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the different spectra fitted to HDB6 and Dow150R are examined to determine

the sensitivity to the fitting of the Pompom non-linear parameters.

HDB1 shows good agreement between the extensional rheology from the SER

and the CSER, with the discrepancy between the results accounted for with the

difference between uniaxial and planar extension. This is shown by the Pompom

steady state predictions which is shown in figure 5.33. However, figure 5.29 shows

significantly more cusping in experimental FIB than in the Pompom predictions

for all strain rates. Since the fringe number and hence the steady state viscos-

ity are well modelled by the Pompom model, this cusping is caused by a small

contribution of some high molecular weight LCB molecules. This would be pa-

rameterised in the Pompom spectra by increasing the branching numbers, qi, for

the slowest modes. In the current spectra for HDB1 only the slowest mode has

q > 1, with a value of q = 2 for this mode. Increasing the branching number of

this mode could be done to try and improve the visual cusping of the simulated

FIB.

For the materials HDB2 and CM2 the Pompom calculations produced less FIB

fringes (figures 5.29 and 5.30, respectively) than was experimentally observed for

all strain rates. This is a result of the fact that the steady state extensional

viscosity in the CSER is found to be higher than in the SER (figures 5.33 and

5.34, respectively). Since these materials exhibit only a small amount of strain

hardening, stretching experiments are prone to sample rupture which limits the

total strain achievable. CSER is not limited by the same free surface problems

and larger total strains can be seen. To improve the Pompom parameterisation

of HDB2 and CM2, the non-linear Pompom parameters should be fitted to the

transient SER data and the steady state CSER data to fully capture the rheology

of the material. This shows that the CSER is a valuable tool for further probing

the extensional rheology of these materials with a low content of LCB.

For the materials that exhibit W-cusps the current Pompom model provides

less insight into the their rheology since it does not capture this double cusping

phenomena. This is discussed in the next chapter in more detail. However, the

various spectra for the materials HDB6 and Dow150R that were fitted in chapter

2 can still be compared. Figure 5.36 shows that between the three HDB6 spectra

there is little difference in the visual shape of the PSD contours, however due
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Figure 5.36: A comparison of the PSD for the three HDB6 spectra explored
in this work. Only various contour levels have been selected for clarity. As
none of the parameterisations show W-cusps then none of the spectra predict
the experimental PSD distribution. However, away from the outflow centre line
HDB6(a) (RED) predicts the PSD contours with better accuracy than HDB6(b)
(BLUE) and HDB6(c) (GREEN), both of which predict an extra PSD fringe
when compared to experimental FIB images.

to the slightly higher steady states of HDB6(b) and HDB6(c) these two spectra

predict an extra fringe compared to HDB6(a). Thus HDB6(a) provides the best

match to the experimental observations away from the outflow centre line [c.f.

figure 5.20].

The differences between the two Pompom spectra fitted to Dow150R (Dow150R(a)

and Dow150R(b) taken from Hassell et al. (2008)) are most clearly distinguished

by looking at the steady state extensional viscosity curves. In figure 5.37 the

Pompom extensional viscosity predictions of each spectra are compared to the

data taken from both the SER and the CSER. As previously stated, the lower

values of the CSER suggests a transient extensional overshoot so both spectra

over predict the steady state, although Dow150R(a) is the closest match.

Investigating cross-slot flow with respect to LCB provides two tools for analysing

extensional rheology of materials, namely, the visual FIB contours which indicate

the extent to which a material is being stretched, and the quantitative steady state

predictions that can provide a useful tool for parameterising Pompom spectra.

In both cases the predominant Pompom non-linear parameter is the branching
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Figure 5.37: The steady state extensional viscosity for the LDPE Dow150R. The
open symbols are the maximum values taken from SER experiments and the
closed symbols are taken from CSER fringe counting. The Pompom predictions
for two spectra, Dow150R (a) and (b), are also shown. With the CSER data
indicating a transient overshoot in extension the spectra Dow150R(b) is an un-
reasonable estimation of the extensional rheology of the material.

number, q, which strongly contributes to the extensional state.

5.7 Conclusions

The cross-slot provides a stern test of the performance of the Pompom model in a

flow with both extensional and shear components, as is commonly found in more

complex geometries occurring in industrial polymer processing. The stagnation

point itself provides a point of unlimited strain and so probes the limits of the

deformation of the backbone segments.

Initial investigations of a one mode Pompom model showed that the two Weis-

senberg numbers for the orientation and stretch relaxation defined the shape of

the PSD pattern. These Weissenberg numbers also characterise the flow modifi-

cations. Above a stretch Weissenberg number of one the value of the branching

priority is the dominant non-linear parameter controlling how the velocity gra-

dient at the stagnation point is modified. Such a flow modification provides an
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indirect coupling of modes in a multimode model. An example of this was high-

lighted for a two mode Pompom model, where the parameters were chosen to

show how a large reduction of the strain rate at the SP would cause faster modes

to relax. Although this reduces the stress contribution from this particular mode

along the outflow centre line it did not reduce the overall PSD (as this is domi-

nated by the slower mode). In a more general case the effects of flow modifications

are important for ascertaining viscosity data where a reliable strain rate needs to

be known.

Another important investigation is the relevance of 3D flow effects, especially

with respect to variations between the FIB of 3D experiments and 2D flow simu-

lations. A version of the Pompom constitutive model, known as the DPP model

was chosen to aid in 3D numerical simulations of cross-slot flow. It was shown

that for the geometry used in this work a 2D approximation was valid and a good

approximation for both the PSD and the strain rate at the SP.

A comparison was made between the Pompom cross-slot predictions and ex-

perimental results for a range of LLDPEs, HDPEs and LDPEs. The high content

of LCB in the LDPEs produced much higher stress gradients near the SP and

was clearly distinguishable from the other materials. For the materials with a

low content of LCB, for example HDB2 and CM2, although the shape of the

PSD was reproduced, the Pompom parameters used predicted less FIB contours

than found in experiments. This was attributed to the much higher total strains

obtained in cross-slot flow compared to stretching experiments, thus there existed

more strain hardening than the SER predicted. All of the LDPEs and the more

LCB HDPEs clearly exhibited W-cusping along the outflow centre line. This is

not captured by the Pompom constitutive model and is a failing of the model

which is not dependent on parameterisation.

To investigate this further the FIB pictures taken at steady state were trans-

lated into a steady state extensional viscosity with the use of a SOC and the

strain rate at the stagnation point calculated from simulations. To give con-

fidence in the simulated strain rate the predicted strain rate was compared to

LDV experiments for a HDB2 and 1840H. The Pompom model predicted the ve-

locity along the inflow and outflow channel and showed the dependence of LCB

on the transient development of the strain rate at the SP. Further LDV data is
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needed to confirm the predicted strain rate obtained from simulations, for ex-

ample HDB6 has similar LCB to HDB2 but shows W-cusps similar to 1840H. If

the low branching priorities of HDB6 speed the flow up as predicted, this would

imply the Pompom constitutive model accurately captures flow modifications in

the cross-slot and that W-cusps are not the result of flow modification but result

from the constitutive behaviour.

Steady state extensional viscosity curves were produced using CSER for each

material. For the materials HDB2 and CM2 the extensional steady state had

a higher viscosity than predicted from the SER data, even taking into account

the difference between uniaxial and planar extension, suggesting that the SER

experiments did not reach steady state before the sample ruptured. Therefore,

using CSER and the SER in combination would give more accurate details on the

extensional rheology of these two materials. For the materials exhibiting W-cusps

the CSER steady state data is lower than the SER prediction. Since the cross-slot

FIB pictures show the whole strain history of the experiment, it would suggest

that there is a transient extensional overshoot from the maximum extensional

viscosity to a lower steady state value.

In the next chapter, the W-cusp phenomena is discussed in detail and an em-

pirical adjustment is made to the Pompom constitutive model so that it produces

an overshoot in transient extension.
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Chapter 6

Cross-slot Flow: an overshoot in

extension

In the previous chapter the Pompom constitutive model was compared to exper-

imental flow induced birefringence (FIB) and it was shown that the model failed

to capture the experimentally observed W-cusps. Also, it was shown how the

cross-slot FIB could be used as an extensional rheometry (CSER) by counting

the FIB contours around the generated stagnation point. The data taken from

the CSER showed a lower steady state than the maximum viscosity measured by

the SER for the cases when W-cusps appear. Furthermore, FIB pictures show

the whole strain history of the one flow rate, which supports the idea that the

existence of a transient overshoot in extension causes the appearance of W-cusps.

In this chapter the W-cusp phenomena is examined in detail. Noting that

W-cusps are a function of long chain branching (LCB) in a material, an extra

empirical relaxation mechanism is considered in the context of the Pompom model

with the aim to show that modelling a transient overshoot in extension will pro-

duce W-cusps in the principal stress difference (PSD) of cross-slot simulations.

This extra relaxation mechanism has a characteristic time scale which will be

explored for simple transient flows. This new model will have to satisfy both the

transient development of shear and extensional experiments from chapter 2 and

the steady state extensional data taken from the CSER.

We will examine whether this model is able to reproduce the W-cusps seen
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in FIB experiments. Although the mechanism causing a transient extensional

overshoot is not derived from molecular rheology it can still confirm that this is

a flow characteristic that can explain W-cusps and provides a potential base line

for new molecular rheological understanding to be introduced that will naturally

give rise to this overshoot.

6.1 Introduction

In the last chapter it was shown that W-cusps formed for a variety of LCB

polyethylenes and this correlated to the steady state extensional viscosity data

produced from cross-slot FIB being lower than the maximum extensional viscosity

that was measured with the SER stretching rheometer. Some of the experimental

images were taken from Hassell et al. (2009), however the simulations are not

those presented in this paper. The clear observation that W-cusps occur for

the materials with the highest content of LCB, for example all the LDPEs in

this study, shows that W-cusps are a function of branching. In another study,

Soulages et al. (2008) produced cross-slot FIB images with a lubrication layer at

the viewing windows producing a slip boundary condition. The FIB for a LDPE

named 1810H, which is similar to the LDPE 1840H in this study, also exhibits

the W-cusp phenomena in this 2D flow and this suggests that W-cusps are not a

consequence of 3D flow effects.

To show further the effect of branching on the formation of W-cusps figure 6.1

examines the FIB and steady state extensional viscosity of the HDB series which

has a well characterised synthesis and LCB [Inkson et al. (2006)]. For HDB1

and HDB2 with the lowest amount of LCB, the FIB shows a single cusp with

the CSER steady state viscosity values above the SER measurements. As the

content of LCB increases the CSER data becomes lower than the SER maximum

with HDB4 exhibiting small W-cusps, while the more branched HDB6 shows even

more pronounced W-cusps.

The FIB image along the inlet centre line of the cross-slot flow shows the strain

history of the experiment. This indicates that the maximum stress occurs away

from the outflow centre line so that the largest extensional stress occurs before a

lower steady state value. For all the cross-slot Weissenberg numbers investigated,
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HDB1 HDB2 HDB4 HDB6

Figure 6.1: A comparison of the extensional rheology of the HDB series using
SER and CSER data and FIB images taken at an initial strain rate of 1.74s−1.
The comparison shows that W-cusps are a function of branching in a material
as they only occur for the highly branched HDB4 and HDB6. Also, when W-
cusps occur the steady state CSER data falls below cross-slot data indicating an
extensional overshoot.

HDB4 and HDB6 exhibited W-cusps as they probe the strain hardening regime.

An example of the variation in W-cusps with flow rate (shown as average velocity

flux, defined in section 1.7), or Weissenberg number is shown in figure 6.2 for

HDB6. The Weissenberg number is defined as Wi = ε̇C τ̄b, where ε̇C is the strain

rate at the SP and τ̄b is the average relaxation time shown in table 6.1.

Similarly the FIB for all the experimentally available flow rates for the LDPEs,

1840H and Dow150R showed even sharper W-cusps than for the HDPEs. An

example of this is shown in figure 6.3 where the FIB for Dow150R is shown for

three flow rates. Due to the high concentration of cusps along the outflow centre

line and the sharpness of the W-cusps, the W-cusps become harder to observe and
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UQ = 0.46mm.s−1 UQ = 1.15mm.s−1 UQ = 2.3mm.s−1

Wi = 19.7 Wi = 48.7 Wi = 97.4

Figure 6.2: FIB images of HDB6 at three flow rates. All flow rates are in the
non-linear strain hardening regime and W-cusps are exhibited for all experimental
rates and the width and length of the W-cusps are similar for each flow rate.

UQ = 0.023mm.s−1 UQ = 0.046mm.s−1 UQ = 0.115mm.s−1

Wi = 15 Wi = 30 Wi = 75

Figure 6.3: FIB images of Dow150R at three flow rates. All flow rates are in the
non-linear strain hardening regime and W-cusps are exhibited for all experimental
rates and the width and length of the W-cusps are similar for each flow rate.

the insets in each figure show a zoomed region to highlight the double cusping.

The LDPE 1800S provides a material with a larger content of LCB yet with

a low enough viscosity to see the transition from a linear stress response to a

non-linear strain hardening stress response. Figure 6.4 shows that this transition

occurs at a Weissenberg number of 4.8 and the strain hardening regime coincides

with W-cusps appearing along the outflow centre line.

Another phenomena associated with the observation of W-cusps is the de-

pendence of temperature. This is illustrated for the material HDB2 in figure 6.5

where a transient W-cusps is observed at the temperature of 140◦C for a velocity
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UQ = 1.15mm.s−1 UQ = 2.3mm.s−1 UQ = 4.6mm.s−1

Wi = 2.4 Wi = 4.8 Wi = 9.6

Figure 6.4: FIB images for 1800S at three flow rates. The lower viscosity of 1800S
means the linear response is accessible with the cross-slot and as the flow rate
increases W-cusps appear by the highest flow rate shown.

flux of UQ = 1.15mm.s−1, yet no W-cusps are observed at a temperature of 155◦C

(Wi = 28). The PSD pattern collapse that causes the vanishing of the W-cusp at

steady state at 140◦C (Wi = 47.7) is also seen for other LCB materials, for exam-

ple HDB6 in figure 5.23. Although the number of branches will remain constant

with temperature, the two relaxation times for the orientation and stretch will be

shifted in equal amount, thus keeping their ratio constant. Shifting the Pompom

parameters from 155◦C to 140◦C produces more pronounced strain hardening for

a given flow rate as the relaxation times of each mode increases. This increases

the Weissenberg number for the given flow rate and the resulting flow moves

further into the non-linear regime.

As shown in section 5.5.1 there exists a cross-over behaviour in the steady state

extensional viscosity for the LLDPE material CM3. At low and intermediate

strain rates the CSER gives a higher steady state viscosity than the highest

strain SER measurements, whereas at a strain rate of around 10s−1 the CSER

data crosses over to predict a lower steady state value than the SER data. This

coincides with the appearance of W-cusps at these higher strain rates, as shown

in figure 6.6. This is the only material where both single and double cusps

appear in the strain hardened regime. This suggests that there is some relaxation

mechanism acting on a small enough time scale such that only large strain rates

produce a sufficient Weissenberg number for the phenomena to become dominant.
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140◦C 140◦C 155◦C
t = 2.5s t = 10s t = 10s

Figure 6.5: The effects of temperature on the appearance of W-cusps for HDB2
is shown at a flow rate of UQ = 1.15mm.s−1. At 140◦C (Wi = 47.7) a transient
W-cusp is found at early times which disappears as the PSD pattern collapses by
steady state, whereas no W-cusps are found for HDB2 at 155◦C (Wi = 28) for
any flow rate.

UQ = 2.3mm.s−1 UQ = 4.6mm.s−1 UQ = 9.2mm.s−1

Wi = 63 Wi = 125 Wi = 251

Figure 6.6: For the LLDPE CM3, the CSER and SER data cross-over at a strain
rate of around 10s−1 and at a similar strain rate possible W-cusps appear in
cross-slot flow. Here the transition between single and W-cusps occurs in the
non-linear regime.

This series of observations provides an initial test for any constitutive model

to correctly capture the rheology of W-cusps. As previously stated, the Pompom

model as it stands fails to capture W-cusps for any of the materials and flow

conditions mentioned. There is evidence to suggest that W-cusps are caused by

a transient overshoot in extension since the FIB contours show the strain history

of the material for each flow rate used. In the next section an empirical alteration

to the Pompom model is introduced to produce a transient overshoot in uniaxial
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extension and this model is then examined in 2D cross-slot flow.

6.2 Transient overshoot in extension

Evidence for the existence of a transient overshoot in extensional viscosity for

branched polyethylenes was obtained by Bach et al. (2003). They performed

uniaxial stretching experiments using a filament stretching device fitted with

an active feedback device that adjusted the plate separation to give a constant

extension rate at the centre of the sample. They are able to stretch to strains

beyond the point at which the filament necks allowing Hencky strains of around

six to be reached. For the case of a LDPE they found a transient overshoot in the

extensional stress. In a subsequent paper Rasmussen et al. (2005) used the same

apparatus to test two more LDPE samples. The authors show that both LDPE

samples show a transient overshoot in extension for a range of extension rates and

for one sample showed that an overshoot was present at two temperatures. Steady

state extensional values were also able to be determined for some intermediate

strain rates.

Nielsen et al. (2006) used this apparatus to study a melt of polystyrene Pom-

pom molecules. The Pompom molecules have a narrow molar molar mass dis-

tribution and approximately q = 2.5 branches on each branch point. Using the

previous method of measuring transient extension the authors show that there

exists an overshoot in transient extension, however no steady state value was

determined.

The molecular origin of this transient overshoot in extensional flow is not

understood. By incorporating tube pressure into the integral molecular stretch

function (MSF) constitutive model Rolon-Garrido and Wagner (2009); Wagner

and Rolon-Garrido (2008) were able to fit the Pompom data in Nielsen et al.

(2006). However, the existence of a tube pressure that occurs when the tubes are

deformed is a controversial idea whose molecular origin is unclear. The Pompom

data used did not reach steady state and so it could not be determined if the

correct steady state was predicted by the model.

The Pompom constitutive model cannot produce a transient overshoot in

extension. This is because once the tube segments align with the flow axis,
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6.2 Transient overshoot in extension

K : S ' ε̇ and the stretch equation reduces to an autonomous first order ODE,

so that λ cannot overshoot its steady state value. To produce an overshoot the

Pompom model given by equations (1.6.52, 1.6.53, 1.6.54 (differential model),

1.6.48 and 1.6.49) requires an additional stretch relaxation process that depends

upon S.

If this additional relaxation mechanism is driven by advection and not molec-

ular relaxation then it must be proportional to the deformation rate of the back-

bone, hence the relaxation time should be of the form,

1

τ∗
= f(S)|S : K|. (6.2.1)

We propose that the relaxation occurs as a function of aligned backbone segments,

with the measure of alignment being given by,

f(S) = CR
(
S : ST

)α
, (6.2.2)

where the parameter α is used to define how aligned material should be to trigger

this additional relaxation, typically α � 1, so that the function f is very small

except close to full alignment.

Finally, we introduce a second parameter, CR, to control the contribution of

this relaxation mechanism and this gives a new transient relaxation time of,

1

τ∗
= CR

(
S : ST

)α |S : K|. (6.2.3)

The additional relaxation time, τ∗, is added into the dynamic stretch equation

in addition to the original entropic stretch relaxation time, τs, which gives,

Dλ

Dt
= λS : K −

(
1

τs
+

1

τ∗

)
(λ− 1) eν

∗(λ−1), (6.2.4)

where ν∗ = 2
q−1

.

Since τ∗ is a function of S it can cause a transient overshoot in extension

through its own transient nature. The relaxation time becomes dominant for

highly aligned tube segments, the measure of which is controlled by the parameter,
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6.2 Transient overshoot in extension

Figure 6.7: A one mode Pompom model, {G = 100Pa, τb = 5s, q = 10, r = 4},
in uniaxial extension showing variations in the power law α from 10 to 1000 with
CR = 2. The strain rates used were 0.01s−1, 0.1s−1, 1s−1 and 10s−1. As α is
increased so does the amount of alignment needed for the extra relaxation time,
τ∗, to become dominant. This has the effect of delaying relaxation until a higher
Hencky strain has been reached causing a bigger difference between the maximum
and steady state extensional viscosity.

α. In an extensional flow the factor 1
τ∗

is small unless Szz ∼ 1 with other terms

close to zero.

For small values of α ∼ O(1), the stretch relaxation is gradual and causes

no overshoot, just a lower steady state extensional viscosity. For larger values

of α ∼ O(100) this factor only becomes dominant for only very aligned material

occurring at large strains, this is illustrated in figures 6.7 and 6.8. In figure 6.7 the

extensional viscosity is shown for a one mode Pompom model for strain rates of

0.01, 0.1, 1 and 10 reciprocal seconds. The one mode parameters are {G = 100Pa,

τb = 5s, q = 10, r = 4} and the different lines show various choices of the power

α with a fixed value of CR = 2. The figure shows that the steady state value

of the overshoot Pompom (OPP) model does not depend on α, but the higher

the value of α the more highly aligned S must be to trigger the relaxation of τ ∗.

Hence, more strain hardening is experienced for higher values of the power, α.
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6.2 Transient overshoot in extension

Figure 6.8: A plot of the measured alignment, (S : ST )α, for the uniaxial
extension shown in figure 6.7. As α is increased so does the strain taken for the
measured alignment to approach unity and thus delays the transient overshoot.

Figure 6.8 shows the value of (S : ST )α for the same one mode Pompom model

in uniaxial extension, seen in figure 6.7. Only the highest strain rates (1 and 10

reciprocal seconds) align enough material for τ∗ to become non-trivial and for

these two strain rates the various choices of α are shown. As before, the higher

the value of α the longer it takes to orientate the material enough for this extra

relaxation to contribute.

Since varying the power law does not alter the steady state the value of CR

can be used as an additional fitting parameter. Figure 6.9 shows the one mode

Pompom model for various choices of CR and a fixed power law, α = 100. As the

parameter CR is increased so does the contribution of τ∗ and the steady state value

of extensional viscosity decreases. An important difference between variations in

α and variations in CR is the way in which each parameter affects how quickly

the steady state is reached. For various choices of CR [c.f. figure 6.9] there is little

difference in the Hencky strain at which steady state is achieved (approximately

a Hencky strain of 4.5). For the three choices of α in figures 6.7 and 6.8 the larger

values of α reach steady state later than smaller values. This is because the larger
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6.2 Transient overshoot in extension

Figure 6.9: A one mode Pompom model, {G = 100Pa, τb = 5s, q = 10, r = 4},
in uniaxial extension showing variations in the parameter CR from 1 to 5 with
α = 100. The strain rates used were 0.01s−1, 0.1s−1, 1s−1 and 10s−1. The
parameter CR does not affect the strain needed to achieve an overshoot but it
does affect the dominance of τ∗ and thus determines the steady state extensional
viscosity.

the choice of α, the more aligned the orientation must be before the overshoot

relaxation becomes dominant. This in turn means that for larger values of α more

strain hardening is experienced, making the difference between the maximum and

steady state values of the extensional viscosity larger and delaying steady state.

For the choices shown in figures 6.7 and 6.8, where α = 10, 100, 1000 the Hencky

strain at which steady state is observed is approximately 3, 4, 5, respectively.

It is also important to consider the how the maximum stretch condition, λ < q,

is affected by this additional term. Figure 6.10 shows a one mode Pompom model

with G = 100Pa, τb = 10s, r = 4 for choices of q = 3, 10, 20 and the overshoot

parameters chosen were α = 1000 and CR = 2. In figure 6.7, the maximum

stretch condition (q = 10) was only reached for CR = 0. Lowering the value of

the branching parameter to q = 3, means that the stretch reaches its maximum,

but then relaxes back to a lower steady state value. The steady state is also lower

for smaller values of q due to the effect of branch point withdrawal, i.e. that the
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6.2 Transient overshoot in extension

Figure 6.10: A one mode Pompom model, {G = 100Pa, τb = 5s, r = 4}, in
uniaxial extension showing variations in the branching priority, q, with CR = 2
and α = 1000. The strain rates used were 0.01s−1, 0.1s−1, 1s−1 and 10s−1. The
figure shows how the branching priority effects the extensional viscosity in the
case maximum stretch is reached (q = 3) and even when the maximum stretch is
not reached (q = 10 and 20).

ν∗ parameter contains a q dependence. This can be seen by comparing the cases

of q = 10 and q = 20, where in both cases the maximum stretch condition is not

achieved yet the steady state for q = 10 is lower than for q = 20. Thus although

overshoot relaxation time, τ∗ is not a function of the branching parameter, q, the

branching priority still affects the steady state extensional viscosity. Since the

overshoot relaxation time is a function of orientation alignment and not stretch,

the relaxation becomes dominant at the same strain for each choice of branching

priority, q.

In transient shear flow the extra stretch relaxation is negligible (as the orienta-

tion tensor S does not become sufficiently aligned) and the stress response is left

unchanged. However, in chapter 4 there were some discrepancies in the Pompom

model at large strain amplitudes and this maybe due to inadequate modelling

of stretch relaxation. It is evident that more detailed understanding of stress
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6.2 Transient overshoot in extension

Figure 6.11: Figure a) shows the one mode Pompom model used in figure 6.7,
examining how the power law α affects W-cusps in cross-slot flow. The red line
shows α = 10, the green line shows α = 100 and the green line shows α = 1000.
Figure b) shows the one mode Pompom model used in figure 6.9, examining how
the parameter CR affects W-cusps in cross-slot flow. The red line shows CR = 5,
the green line shows CR = 2 and the blue line shows CR = 1.

relaxation is needed to fully capture all aspects of LCB melt rheology, however

the model presented here is sufficient for exploring the presence of W-cusps in

flow birefringence and their relationship to transient extensional flow.

In cross-slot flow the difference between the maximum extensional stress and

the steady state value determines the size of the W-cusp and transient develop-

ment of the extensional stress overshoot will determine the shape of the W-cusps.

This is illustrated in figure 6.11 where in figure (a) the effect of varying the power

law parameter on the shape of a PSD contour (of value 3kPa) for a fixed CR = 2

is shown. A lower power law, α = 10, strongly relaxes the stretch and the double

cusps are shorter and wider than for a higher power law. This is analogous to the

extensional viscosity shown in figure 6.7, where the lower power law relaxes faster

producing the shorter cusp. The width of the W-cusps are a function of strain

history. The lower power law relaxes the stretch faster than the higher power law

and would exhibit a W-cusp at a lower Hencky strain and hence the W-cusps are

wider.

Figure 6.11(b) shows the various choices of CR previously shown in figure 6.9

for a fixed power law of α = 100. Figure (b) shows one fixed PSD contour, the
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6.2 Transient overshoot in extension

Figure 6.12: The stream line shown in figure 5.25 is plotted as a function of
distance from the SP showing variations in (a) α and (b) CR. Negative distance
from the SP shows the PSD and S : ST along the centre of the inlet channel and
positive distance shows the outlet channel.

same as in figure (a) of 0.3kPa. The contours are all the same width which is

associated with α, however the length of the cusp is shorter for higher values of

CR where stronger stretch relaxation occurs. Unlike the case for variations in

α, the parameter CR affects both the maximum and steady state values of the

extensional viscosity.

To quantify the behaviour of the OPP constitutive model figure 6.12 plots

the PSD and S : ST along the stream line shown in figure 5.25 as a function

of distance from the SP. In figure 6.12(a) the various choices in α from figure

6.7 are shown and figure (b) shows the choices of CR used in figure 6.9. In

figure 6.7 the value of α did not have any effect on the steady state value of the

extensional viscosity, thus the differences at and downstream of the SP arise from

flow modifications. The main differences in figure (a) occur in the inlet section of

the stream line, upstream from the SP. Here the stress grows towards the SP and

overshoots as a function of strain history, with the various power laws showing

the same behaviour as in figure 6.7. The transient development of S : ST varies

slightly with power law again due to flow modification.

In figure 6.12(b) the three choices of CR have the same S : ST for all points

on the stream line which shows that the power law α has the dominant effect on
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flow development. The PSD is similar approaching the SP, but as the overshoot

factor becomes dominant the choices of CR affect the maximum and steady state

values of the PSD in the same way as in the uniaxial stretching flow shown in

figure 6.9. The smallest maximum and steady state is associated with the largest

value of CR since this provides the strongest stretch relaxation.

6.2.1 Multimode overshoot Pompom model

To parameterise the polyethylene samples in this study a multimode version of the

OPP constitutive model is needed. As in chapter 2 the linear parameters {Gi, τbi}
are fitted to linear oscillatory data and in this section the same linear parameters

as in previous sections are chosen, detailed in appendix 6.A. To simplify the fitting

process the assumption is made that the overshoot parameters, {CR, α}, are the

same for each mode. The Pompom non-linear parameters are fitted through trial

and error using the original spectra detailed in section 2.A as a starting point.

The Pompom parameters for each material modelled in this section can be found

in section 6.A with the overshoot parameters used detailed in table 6.1.

The parameters in this modified model are chosen to fit both the transient

extensional viscosity from the SER and the steady state measurements from the

CSER. In addition for the LDPE Dow150R, experimental data is available up

to Hencky strain of around 7. This data has been provided by Dr. Henrik

Rasmussen and colleagues at the Technical University of Denmark, for which I

would like to acknowledge their kindness and efforts in providing the data for

this study. The extensional stress for Dow150R was measured using a filament

stretching rheometer (FSR), the techniques of which are described in Bach et al.

(2003); Rasmussen et al. (2005). The data for Dow150R from the FSR is shown

in figure 6.13 for strain rates of 0.003s−1, 0.01s−1, 0.03s−1, 0.1s−1 and 0.3s−1.

Overlayed with this data is the original SER data for Dow150R which shows

excellent agreement between the two experiments for experimentally available

strains. The maximum extensional viscosity measured by the FSR is higher than

that achieved by the SER and for strain rates of 0.01s−1, 0.03s−1 and 0.1s−1

there exist a transient overshoot in the measurements. Also shown are steady

state values obtained from the CSER data, which are in reasonable agreement
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6.2 Transient overshoot in extension

Figure 6.13: A plot comparing extensional data and OPP theory for Dow150R.
Strain rates range from 0.003s−1 to 0.3s−1 and OPP parameters can be found in
tables 6.1 and 6.2. The closed symbols show the SER data already considered
in this work, the open symbols show new data from the FSR achieving higher
Hencky strains than the SER and the blocks show the steady state predictions
from CSER analysis. All three experiments agree closely and the OPP parame-
terisation matches the experiment very well.

for strain rates of 0.03s−1 and 0.1s−1, where the FSR measurements have reached

or are near steady state.

The OPP constitutive model has been parameterised to fit the maximum

extensional viscosity, as well as the steady state values for strain rates of 0.03s−1

and 0.1s−1. The OPP parameters chosen were α = 1000 and CR = 0.8. These

values also capture the steady state predicted by the CSER for the strain rate

0.3s−1, where the transient data does not extend to the overshoot. The OPP

parameterisation performs well except for the two slowest strain rates, where the

maximum is lower than the experimental data. The parameterisation is optimized

in the regime where cross-slot FIB picture are available to analyse the translation

from simple uniaxial stretching to 2D cross-slot flow, and the discrepancies at the

lower strain rates lie outside this regime.

For the other materials investigated in this chapter only SER and CSER data
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6.2 Transient overshoot in extension

Figure 6.14: The extensional data from both the SER (left) and CSER (right) is
shown for HDB6. The strain rates used range from 0.01s−1 to 30s−1. The lines
show the fitted OPP parameterisation found in tables 6.1 and 6.3, with the model
fitted to transient SER data and steady state CSER data.

is available. Therefore, to fit the OPP non linear parameters it is assumed that α

is of the order 103, in agreement with the findings for Dow150R, and the parameter

CR is used to control the difference between the maximum transient value of the

extensional viscosity and the steady state value. Each parameterisation is fitted to

capture the transient startup flow from SER measurements and the steady state

extensional viscosity from CSER analysis. Also the findings detailed in section

6.1 are used to capture the correct rheology of the transient extensional overshoot

with the results of 2D cross-slot simulation discussed in the next section.

Figure 6.14 shows the comparison for HDB6 between the transient and steady

state data and the predictions of the OPP spectrum given in table 6.3. A value

of α = 1000 was chosen and since cross-slot FIB pictures indicate W-cusps at

all experimental rates a value of CR = 2 was chosen so that there exists a tran-

sient overshoot for strain rates larger than 0.03s−1. There is a slight discrepancy

between transient SER measurements and theory for strain rates of 0.1s−1 and

0.3s−1, but this will have little effect on the cross-slot analysis in the next section.

The cross-slot flow experiments on LDPE 1800S showed that W-cusps did

not occur until strain rates of around 2s−1 at 140◦C. The transient SER data was
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Figure 6.15: The extensional data from both the SER (left) and CSER (right)
is shown for 1800S. The strain rates used range from 0.082s−1 to 24.6s−1. The
lines show the fitted OPP parameterisation found in tables 6.1 and 6.2, with the
model fitted to transient SER data and steady state CSER data.

measured at 155◦C and then shifted using WLF theory as was previously done

in chapter 2, producing shifted strain rates of 0.082s−1, 0.41s−1, 0.82s−1, 1.64s−1,

4.1s−1, 8.2s−1, 16.4s−1 and 24.6s−1, shown in figure 6.15. Again the power law,

α = 1000 and CR = 0.5 is chosen to produce smaller overshoots in the stress

response for strain rates less than 2s−1, with the high strain rates exhibiting a

larger transient overshoot due to the strain rate dependence of τ∗.

The LLDPE CM3 exhibits strain hardening at similar flow rates to 1800S.

However unlike 1800S, CM does not show W-cusps until the higher strain rate of

10s−1. This behaviour is captured using a small value of CR = 0.2 and α = 1000.

In figure 6.16 this transition can be seen in the transient plot comparing theory to

SER data, with a small overshoot occurring for strain rates higher than 1s−1. This

produces the cross-over behaviour seen in the plot of the steady state extensional

viscosity, where initially the CSER data is higher than SER data, but both theory

and experimental data cross-over at a strain rate of 5s−1.

At 155◦C the CSER steady state extensional viscosity measurements of the

HDPE HDB2 are higher than the maximum value obtained from SER stretching

experiments with only single cusps being observed for all available strain rates

at 155◦C. However, reducing the temperature from 155◦C to 140◦C produces a
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Figure 6.16: The extensional data from both the SER (left) and CSER (right)
is shown for CM3. The strain rates used range from 0.01s−1 to 10s−1. The lines
show the fitted OPP parameterisation found in tables 6.1 and 6.3, with the model
fitted to transient SER data and steady state CSER data.

transient W-cusps at a strain rate of 1.7s−1. The transient nature of the W-cusps

is a result of the relaxation of the PSD pattern with time, which is seen for all

LCB materials in experiments [c.f. figure 5.23]. Since the W-cusp observed is

not only transient but small in size it could be possible for a W-cusp to exist at

155◦C, which is either too small to see or the PSD pattern relaxes to quickly for

it to be visible. In figure 6.17 SER data is shown at 155◦C and TTS shifted to

140◦C using WLF theory [c.f. chapter 2]. This increases both relaxation times

but the ratio of relaxation times and other non-linear parameters remain fixed.

Although the overshoot Pompom constitutive model is not fully described by

molecular physics, it is still capable and flexible enough to capture a variety of

rheologies in simple uniaxial extension. In the next section the OPP parameter-

isations discussed here are compared to FIB images to examine how overshoot

rheology affects the PSD in cross-slot FIB.

6.3 Results

In this section we use the OPP constitutive model discussed in the last sections

to calculate the stress distribution in cross-slot flow and compared it to the ex-
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Figure 6.17: The OPP constitutive model is fitted to HDB2 at 140◦C (left) and
155◦C (right) on the same axis scale. The OPP parameters are given in tables
6.1 and 6.4 with only the linear parameters varying with temperature.

Table 6.1: A table showing the Pompom overshoot parameters used for fitting
extensional data in figures 6.13 to 6.17. The parameters are the same for each
mode in the multimode spectra given in tables 6.2 to 6.4 and are also chosen to
be independent in temperature for HDB2.

material temperature CR α τ̄b
[◦C] [-] [-] [s]

CM3 155◦C 0.2 1000 18.0
HDB2 140◦C 0.1 1000 27.4
HDB2 155◦C 0.1 1000 14.8
HDB6 155◦C 2.0 1000 28.0
1800S 140◦C 0.5 1000 1.38

Dow150R 160◦C 0.8 1000 428

perimental FIB images. All the simulations presented in this section were solved

using the euFlow software. To resolve the W-cusping along the outflow centre

line the horizontal mesh density was increased near the centre line. The solution

was found to be independent on the a limit on trace(A) at a value of 10000. For

all simulations in this section the PSD is shown as colour distribution and black

contours of constant PSD representing the black FIB fringes. For clarity only the

centre and downstream channel are shown so that the height of each image shows

full cross-section of the outflow channel.
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Figure 6.18: A comparison of between FIB in cross-slot flow and 2D simulations
of the OPP parameterisation for HDPE HDB6. The OPP parameterisation is
detailed in table 6.3 and shown in figure 6.14. The black lines in the simulations
represent the black contours of the experimental PSD for initial strain rates of
ε̇C = 0.70s−1, ε̇C = 1.74s−1 and ε̇C = 3.48s−1 from top to bottom.

The HDPE named HDB6 shows the clearest FIB images of W-cusps. The

simulation results for the OPP model are shown in figure 6.18 for three initial

strain rates of ε̇C = 0.70s−1, ε̇C = 1.74s−1 and ε̇C = 3.48s−1 giving Weissenberg

numbers of 19.6, 48.7 and 97.4, from top to bottom. The OPP model captures

the W-cusp rheology well, predicting both the form of the fringe pattern and the

fringe number to within half a fringe for all three Weissenberg numbers, although

the size of the W-cusps is over predicted near the SP. As with the original Pompom

model the OPP model fails to capture the overall pattern collapse [c.f figure 5.23]
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Figure 6.19: A comparison between the OPP simulations and the experimentally
measured position of the FIB contours of constant PSD for HDB6 at three flow
rates.

observed for all W-cusping materials and the transient development of the pattern

is much faster in simulations than in experiments. In experiments the W-cusps

initially occur at a strain of around 5, where as in simulations W-cusps first occur

at a strain of 2.

The clarity of the experimental FIB images means that PSD measurements

of the position of each fringe can be analysed across the SP stream line shown

in figure 5.25, the results of which are shown in figure 6.19. The results shown

in figure 6.19 confirm the visual agreement of the PSD contours. The simula-

tions with Weissenberg numbers of 19.6 and 48.7 both over-predict the stress at

all positions along the stream line, and for all Weissenberg numbers the size of

PSD overshoot is over-predicted. Downstream of the SP the stress relaxation

of the cusps is not predicted well. Visually this corresponds to simulations not

predicting the appearance of the lower fringe orders away from the SP along the

outflow centre line. This is a consequence of choosing the relaxation term to be

proportional to K : S.

Figure 6.20 shows a similar comparison for the LDPE Dow150R comparing ex-

perimental FIB to OPP parameterisations at initial strain rates of ε̇C = 0.035s−1,

ε̇C = 0.070s−1 and ε̇C = 0.174s−1, corresponding to Weissenberg numbers of 15,
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30 and 75, respectively. For the simulation at Weissenberg number 15 a steady

state solution could not be reached. In figure 6.20 the solution is shown at a

Hencky strain of 5.04 which shows the initial formation of the W-cusps at the

SP only. For the other two simulations a steady state was reached and W-cusps

can be observed along the whole outflow centre line. The W-cusps exhibited by

Dow150R show bigger cusps than HDB6 which can be interpreted as a larger dif-

ference between the maximum extensional viscosity and the steady state value.

The OPP parameterisation of Dow150R was fitted against uniaxial stretching

data from the FSR which was able to measure strains of up to 7 and hence the

transient extensional overshoot was modelled accurately. This is reflected in the

excellent agreement between cross-slot simulations and experimental FIB with

the PSD contours are accurately predicted in both number and position for all

flow rates examined. Although, as with HDB6 the observed transient pattern

collapse is not captured in simulations and the size of the W-cusps is slightly over

predicted.

The key feature of the low viscous LCB material 1800S is the observed tran-

sition from single cusps to W-cusps associated with the transition from linear

to non-linear extensional stress response. The cross-slot simulations of the OPP

parameterisation discussed in the last section are compared to FIB images in

figure 6.21, where as the initial strain rate is increased though ε̇C = 1.74s−1,

ε̇C = 3.48s−1 to ε̇C = 6.95s−1 (Weissenberg numbers of 2.4, 4.8 and 9.6, respec-

tively). The size of the W-cusps increases and closely matches the shape and

number of experimental PSD fringes. The experimental image for the largest

flow rate is the poorest quality image but it seems that the OPP spectrum over

predicts the number of fringes by 1-2 fringes, which is a result of the parameter

values chosen.

The PSD patterns of HDB2 at two different temperatures highlighted the

temperature dependence of the formation of W-cusps for the same initial strain

rate of ε̇C = 1.74s−1, giving a Weissenberg flow numbers of 47.7 at 140◦C and

25.8 at 155◦C. Figure 6.22 shows a transient experimental W-cusp at 2.5s for

a temperature of 140◦C (top), which disappears by the steady state (middle).

The bottom picture shows the flow at 155◦C where no W-cusp can be seen for

any solution time at any flow rate. The OPP simulations do show W-cusps at
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Figure 6.20: A comparison of between FIB in cross-slot flow and 2D simulations
of the OPP parameterisation for LDPE Dow150R. The OPP parameterisation is
detailed in table 6.2 and shown in figure 6.13. The black lines in the simulations
represent the black contours of the experimental PSD for initial strain rates of
ε̇C = 0.035s−1, ε̇C = 0.070s−1 and ε̇C = 0.174s−1 from top to bottom.

both temperatures and the W-cusps are more pronounced at 140◦C and so partly

capturing the experimental findings. The PSD pattern does not show a collapse

in the PSD pattern for the simulations at 140◦C. This finding is similar for all

the W-cusping materials and is a flow feature not captured correctly by either the

original Pompom model or the OPP model. HDB2 was parameterised to include

a small transient overshoot, with CR = 0.1 being the smallest of any material,

and the resultant PSD contours have less pronounced cusping as a result. This

is most evident at 140◦C where the cross-over from single to double cusps causes
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Figure 6.21: A comparison of between FIB in cross-slot flow and 2D simulations
of the OPP parameterisation for LDPE 1800S. The OPP parameterisation is
detailed in table 6.2 and shown in figure 6.15. The black lines in the simulations
represent the black contours of the experimental PSD for initial strain rates of
ε̇C = 1.74s−1, ε̇C = 3.48s−1 and ε̇C = 6.95s−1 from top to bottom. The W-cusps
increases in size with increasing flow rate as the strain rate increases as the flow
becomes more non-linear.

the PSD contours to be much more rounded across the outflow centre line than

experimental contours.

Flow modifications of the velocity gradients due to Pompom parameters es-

pecially near the SP, were modelled well by the original Pompom model and any

other constitutive model should capture these developments. The OPP model

was examined for each parameterisation in this chapter and the results were sim-
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Figure 6.22: A comparison of between FIB in cross-slot flow and 2D simulations
of the OPP parameterisation for HDPE HDB2. The OPP parameterisation is
detailed in table 6.4 and shown in figure 6.17. The black lines in the simulations
represent the black contours of the experimental PSD for initial strain rate of
ε̇C = 1.74s−1. The figure shows a transient experimental W-cusp at 2.5s for a
temperature of 140◦C (top), which disappears by the steady state (middle). The
bottom picture shows the flow at 155◦C where no experimental W-cusp can be
seen for any solution time at any flow rate.

ilar to that of the original model, differing only due changes in parameterisation.

An example of this is shown in figure 6.23 which is the only material in this

section that LDV measurements were available. The figure shows that velocity

along the SP stream line shown in figure 5.25 and compares the original Pompom

model and the OPP model to experimental data and the initial Stokes prediction.
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Figure 6.23: A comparison of LDV measurements of HDB2 compared with euFlow
simulated results of both the original Pompom model and the OPP model.

The prediction of the OPP model is similar to the original model and predicts

an increase in velocity along the outflow centre line near the SP and a decrease

in the velocity downstream compared to the Stokes solution.

For the LLDPE CM3 the transition from single to double cusping occurs

at strain rate of approximately 10s−1, coinciding with an apparent cross-over

from the CSER steady state data initially being higher than the SER maximum

and then falling below the SER maximum at this strain rate. The comparison

to experimental FIB images was made at initial strain rates of ε̇C = 3.48s−1,

ε̇C = 6.95s−1 and ε̇C = 13.9s−1, corresponding to Weissenberg number of 63, 125

and 251 from top to bottom in figure 6.24. The OPP model was parameterised

to attempt to capture this result but figure 6.24 shows that the OPP model

predicts W-cusps at all three experimental strain rates investigated. It appears

to be difficult to capture this phenomena using one set of OPP parameters for all

modes as each mode becomes highly aligned for all three strain rates.

Overall the OPP constitutive model exhibits W-cusps that are clearly depen-

dent on the parameterisation used. Furthermore, fitting the OPP parameters to

a combination of SER and CSER data gives W-cusps very similar to those ob-

served in experimental FIB. We have not performed 3D simulations of the OPP
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Figure 6.24: A comparison of between FIB in cross-slot flow and 2D simulations
of the OPP parameterisation for LLDPE CM3. The OPP parameterisation is
detailed in table 6.3 and shown in figure 6.16. The black lines in the simulations
represent the black contours of the experimental PSD for initial strain rates of
ε̇C = 3.48s−1, ε̇C = 6.95s−1 and ε̇C = 13.9s−1 from top to bottom.

model in cross-slot flow. Although any differences from planar 2D melts are ex-

pected to be negligible based on the studies carried out in section 5.4.3 the full

3D birefringence could still have an effect on the size and width of W-cusps.

6.4 Conclusions

In chapter 5 the analysis of cross-slot FIB images predicted lower steady state

extensional viscosity than the maximum value obtained from the transient SER
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measurements. Also, for all the cases where this happened the experimental PSD

contours showed W-cusps that the Pompom model could not predict. These find-

ings are consistent with the observation of a transient extensional overshoot as

reported by Hassager and coworkers for various LDPEs using a filaments stretch-

ing rheometer (FSR). Although the data from the FSR was only available for the

LDPE named Dow150R it showed good agreement with SER and CSER data.

The Pompom constitutive model cannot produce a transient extensional over-

shoot due to the mathematical structure of the stretch equation. In this chapter

the Pompom model was adapted to predict an overshoot. The modification is

empirical and not based on an underlying relaxation mechanism. The aim be-

ing to see whether such a constitutive behaviour would reproduce the W-cusp

phenomena.

An additional relaxation term was added to the stretch equation which was

only dominant when molecules became highly aligned and provided a relaxation-

rate proportional to the strain rate. The overshoot Pompom model (OPP) has

two extra parameters to control the transient overshoot and steady state values.

For simplicity these parameters are kept the same for each mode in a multimode

sum. The OPP model successfully captured the rheology of Dow150R, where

the transient extensional overshoot was observed using the FSR and was sub-

sequently flexible enough to capture a variety of extensional rheologies for four

other materials.

The OPP model was subsequently tested by comparing simulations to ex-

perimental FIB images from cross-slot flow. The model successfully predicts the

appearance of W-cusps as a direct consequence of a transient extensional viscosity

overshoot. Moreover, it is able to capture both the shape and values of the PSD

contours for HDB6, Dow150R and 1800S. The OPP model still fails to capture

the observed transient pattern collapse observed for W-cusping materials and as

a result the size of the W-cusps is generally over estimated near the SP. The

collapse was also not observed in the original Pompom model and the presence of

the extra relaxation mechanism does not produce this collapse. This is most no-

ticeable for HDB2 where at 140◦C a W-cusp observed at 2.5s collapses to a single

cusp at steady state. Despite the changes in the stress near the stagnation point

the addition of the extra relaxation parameter has little effect on the predicted
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flow modifications to the velocity gradient, and for HDB2 the simulation shows a

similar good agreement with LDV measurements to the original Pompom model.

The OPP model does however fail to capture some of the downstream detail.

This could be due to the form of the OPP relaxation term. For example if the flow

is switched off, this extra relaxation factor vanishes instantly which is probably

not physical. Although the OPP constitutive model can be successfully used to

explore the consequences of a transient overshoot in extensional rheology, there is

a need to refine this model and to obtain a molecular description of the physical

processes causing this overshoot.

6.A Pompom overshoot parameters

This appendix provides a detailed list of all the Pompom parameter sets used in

this chapter when modelling a transient overshoot in extensional flow.

Dow150R, 160◦C, 12 modes 1800S, 140◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 64715.5 0.0040 - 1 42020.9 0.0050 - 1
2 45406.6 0.0129 - 1 9803.49 0.0100 - 1
3 23491.1 0.0415 - 1 7989.03 0.0200 - 1
4 19983.8 0.1341 - 1 5305.43 0.0398 - 1
5 12836.6 0.4329 4 7 3444.06 0.0794 2.2 12
6 8565.19 1.3978 4 9 2448.64 0.1585 2.2 14
7 5152.39 4.5138 4 11 1209.93 0.3162 2.2 15
8 2934.19 14.576 4 15 768.726 0.6310 2.2 16
9 1436.93 47.068 4 20 346.388 1.2589 2.2 17
10 635.072 151.99 3 23 99.1665 2.5119 2 18
11 176.198 490.81 2.2 40 36.4592 5.0119 2.1 23
12 45.9648 1584.9 1.5 70 18.9970 10.000 3 26

Table 6.2: A list of OPP parameters for materials 1800S and Dow150R used
throughout this chapter. The transient extensional viscosity is fitted to SER data
and the steady state is fitted to CSER data. For Dow150R, data was provided
from Dr. Henrik Rasmussen using the method described in Bach et al. (2003).
Overshoot parameters are detailed in table 6.1.
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HDB6, 155◦C, 12 modes CM3, 155◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 219226 0.0009 - 1 197183 0.00631 - 1
2 179387 0.0028 - 1 49850.2 0.01954 - 1
3 37873.9 0.0093 - 1 30146.8 0.06051 - 1
4 32981.4 0.0306 - 1 17211.6 0.18738 - 1
5 18896.9 0.1009 - 1 6621.89 0.58028 - 1
6 11820.4 0.3333 - 1 3547.50 1.79699 - 1
7 6053.40 1.1009 7 2 1190.06 5.56486 6 8
8 2767.03 3.6361 7 2 383.948 17.2233 6 9
9 840.575 12.009 7 5 87.1977 53.3670 6 9
10 224.024 39.662 3 13 10.2032 165.265 4 12
11 26.7746 130.99 3 17 0.74761 511.789 4 20
12 1.94559 432.63 3 20 0.03567 1584.89 4 25

Table 6.3: A list of OPP parameters for materials HDB6 and CM3 used through-
out this chapter. The transient extensional viscosity is fitted to SER data and
the steady state is fitted to CSER data. Overshoot parameters are detailed in
table 6.1.

HDB2, 140◦C, 12 modes HDB2, 155◦C, 12 modes
Mode, i Gi[Pa] τb,i[s] τb,i/τs,i qi Gi[Pa] τb,i[s] τb,i/τs,i qi

1 430729 0.0025 - 1 416266 0.0010 - 1
2 91384.1 0.0072 - 1 145434 0.0028 - 1
3 83724.1 0.0204 - 1 99807.2 0.0081 - 1
4 32763.0 0.0580 - 1 44018.9 0.0231 - 1
5 12540.5 0.1653 - 1 17207.4 0.0658 - 1
6 8608.09 0.4707 - 1 9847.42 0.1874 - 1
7 3772.95 1.3405 - 1 5903.77 0.5337 - 1
8 2375.31 3.8178 10 2 2938.59 1.5199 10 2
9 874.985 10.873 15 3 1242.94 4.3288 15 3
10 30.3711 30.968 12 4 370.909 12.328 12 4
11 16.7271 88.197 10 6 79.9261 35.112 10 6
12 16.8162 251.19 1.5 8 24.9864 100.00 1.5 8

Table 6.4: A list of OPP parameters for materials HDB2 at 140◦C and 155◦C used
throughout this chapter. The transient extensional viscosity is fitted to SER data
and the steady state is fitted to CSER data. Overshoot parameters are detailed
in table 6.1.
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Chapter 7

Conclusions

7.1 Objectives

The subject of this thesis was to examine the rheology of long chain branched

polymer melts. The Pompom constitutive model of McLeish and Larson (1998)

which was subsequently developed by Blackwell et al. (2000); Inkson et al. (1999);

Lee et al. (2001) was examined in a variety of flows.

The Pompom constitutive model, based on the idea of the Doi and Edwards

tube model [Doi and Edwards (1986)], models the inter-molecular interactions in

a polymer melt by replacing constraining entanglements with a topological tube

of confinement. Molecular details such as the molecular weight of the arms and

backbone as well as the number of Pompom arms then determine the governing

relaxation dynamics. The relaxation of molecular section between branch points

occurs via two distinct processes; a relaxation of the chain to its equilibrium length

(stretch relaxation) and a slower relaxation of orientation through reptation.

My study of the Pompom model and LCB melt rheology comprises of two

linked themes. First, for the Pompom model to be a reliable constitutive equa-

tion it must be able to predict the stress in a wide range of different flows with

the same set of parameter values. To test the Pompom model I examine its per-

formance against experimental data in three different flows. In particular, choos-

ing appropriate parameter values for the Pompom model remains a challenge as

some flows are more sensitive to the values of certain parameters. Second, since
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in general the microstructure of a polymer melt is unknown is it possible to use

experimentally determined values of the Pompom parameters to infer information

on the polymer microstucture.

The overall goal would be to predict and hence synthesize the optimal polymer

architecture for a given purpose, rather than investigating the suitability of an

existing polymer.

7.2 Concluding remarks and future work

This thesis is focused on the multimode Pompom (mPP) constitutive model.

Each Pompom mode has four parameters, {Gi, τbi , ri, qi} and a multimode model

requires many modes to captures the various time scales of a given rheology. In

this work it was shown the 12 modes is sufficient for capturing the rheology of

most materials. The Pompom parameters infer the molecular detail of a given

polymer and so correctly parameterising the mPP model can be done to ascertain

this detail. This relies on both the correct theoretical modelling of LCB polymers

and experimental techniques being sensitive to the Pompom parameters.

To fit a mPP parameters experimental data is needed. Typically, the linear

parameters, {Gi, τbi}, are fitted to the dynamic moduli and the non-linear pa-

rameters {ri, qi} are fitted to transient extensional and shear data. Transient

extensional data is the most sensitive to the non-linear parameters as the flow

stretches the Pompom backbones and the finite limit on the stretch can be ex-

amined. Examinations of the mPP parameterisation for a given LCB polymer

are limited both experimentally and theoretically. In stretching experiments the

total strain achievable is often limited through sample rupture and as a result

the steady state extensional flow is never established. Hence, any mPP param-

eterisation cannot be guaranteed to capture the correct extensional rheology of

a material. From a theoretical viewpoint it was shown in chapter 2 that three

different mPP spectra could be derived to give the same response in extensional

flow. This demonstrates potential ambiguity when attempting to infer molecular

detail for the parameter values.

In this work I looked for other flow types to help characterise the mPP model

and this requires first checking the performance of the Pompom constitutive
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model in each flow type. If a mPP spectra satisfies multiple experimental flow

types then this indicates that the Pompom model is capable of capturing the

full rheology of a material. In parameterising multiple flow types the space of

compatible Pompom parameters is reduced, which reduces the ambiguity in any

inferred molecular detail.

The first flow considered was a shear step-strain where a commonly observed

experimental finding of polymer melts is that the relaxation modulus, G(γ, t), is

time-strain separable (TSS), i.e. that G(γ, t) = G(t) · h(γ), where G(t) is the

linear relaxation modulus and h(γ) is a function of strain only, known as the

damping function. Unlike some other constitutive models the Pompom model is

not explicitly TSS. However, if a material is observed to shows TSS, the mPP

spectrum for this materials should also.

It was shown in chapter 3 that Pompom spectra fitted to transient extensional

and shear data did perform well in step strain, predicting experimentally observed

TSS for a range of different polyethylenes. The HDPE named HDB6 was an

exception, where TSS was observed experimentally the Pompom parameterisation

deviated significantly from these findings.

To look at how a mPP parameterisation produces TSS I found the specific

conditions required for the Pompom model to have exact TSS and thus produce

a branched damping function. This was done by taking the continuous limit of

{G, r, q} as a function of orientation relaxation time, τb. With the conditions

that for G(τ) ∼ τ b and for constant non-linear parameters, {q, r}, the Pompom

relaxation modulus is exactly TSS and as a consequence of this its relaxation

modulus is factorisable. The Pompom spectra used closely approximate these

conditions for exact TSS with HDB6 showing the biggest deviation. Furthermore,

with parameters taken from the Pompom spectra the branched damping function

showed excellent agreement with experimentally predicted damping data.

The study into shear flow is continued with the study of oscillatory shear,

in particular how the stress response is affected in large amplitude oscillatory

shear (LAOS). The stress response can be accurately quantified with the use of

Fourier transform rheology (FTR) and much attention is focused on the third

Fourier components as they are strongly dependent on the non-linear Pompom

parameters.
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An initial investigation into a one mode Pompom model highlighted that the

absolute value of the third harmonic is strongly dependent on the relaxation ratio,

r, and only weakly dependent on the branching priority, q. Furthermore, the low-

strain asymptote of the third Fourier coefficient is independent of the branching

priority, and so provides a unique method for examining and parameterising the

stretch relaxation times, τsi . This technique also avoids experimentally difficult

large strain amplitudes.

The low strain asymptote can be used test the non-linear predictions of the

branch-on-branch (BoB) rheology. This theory models reaction chemistry and

produces a very detailed polymer architecture that is mapped onto a multimode

Pompom spectrum that can have thousands of modes. Solving so many modes

would be computationally difficult but comparisons of data at low strain is pos-

sible through asymptotic solutions. Although data is only available for three

frequencies, the asymptotes give a very accurate prediction of the low strain

stress response of the absolute third harmonic. This is a good indicator that

the BoB spectra capture the correct rheology in non-linear SAOS and that accu-

rate information can be inferred about the molecular structure of each material

studied.

In the regime of non-linear strain amplitude, where the Fourier components

deviate from this asymptote, the Pompom spectra fitted to extensional data pre-

dicted this deviation well. The spectra could be distinguished relative to branch-

ing structure when looking at the relative magnitude of the third harmonic. How-

ever, when looking at the individual components deviations appeared, where the

mPP did not match the experimental measurements. Investigations into the Pom-

pom model reveal that this is not dependent on the choice of Pompom parameters

leading to the conclusion that the Pompom model fails at large strain amplitude.

In studying LAOS the low strain asymptotes were ideal for examining the

dense mode spectrum produced by the BoB algorithm. However, the specific

experimental measurements at low strain amplitude are still required to examine

the higher Fourier coefficients as a function of frequency. Further more, this study

focused on the third Fourier coefficients and potentially extra information could

be learned by examining the higher Fourier coefficients for both the low strain

asymptotes and in LAOS itself.
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A general conclusion from shear flow is that Pompom parameterisations fitted

to extensional data perform well in shear. However, the converse is not true as

shear flow is relatively insensitive to the branching priority, compared to exten-

sional flow that stretches molecules in the same direction as the flow gradient.

To examine the branching structure of the Pompom model the remainder of this

thesis looked at stagnation point (SP) flow in a cross-slot geometry. The SP

causes the molecules to become highly stretched along the outflow centre line.

This closed geometry flow does not suffer from the same instabilities occurring in

free surface stretching experiments. This means that much higher total strains

are achievable compared to the SER stretching rheometer, In addition by exam-

ining the flow induced birefringence (FIB) along the inlet centre line the transient

growth for a given flow rate can be determined.

For polyethylenes with moderate levels of branching the Pompom model ac-

curately predicts the flow birefringence pattern, which has a maximum value

of PSD at the stagnation point. For fluids with short relaxation times so that

Wi � 1 (for example the LLDPE called CM1) the pattern has four fold symmetry

seen for a Newtonian flow. As relaxation times increase, this symmetry is lost

and a cusped diamond pattern is produced. Increasing the flow rate and hence

the Weissenberg number, produces an increasing amount of contours with high

stresses along the outlet centre line. However, for polyethylene with significant

proportion of LCB content this single cusp pattern gives way to doubly cusping

principal stress difference (PSD) contours along the outflow centre line. This phe-

nomenon is not reproduced by the mPP model. Although flow modifications can

cause the contributions from individual modes to have a W-cusp, the total PSD

remains single cusped. To investigate the rheology of the cross-slot experiments

the FIB pictures, showing contours of constant PSD were interpreted as steady

state extensional viscosity curves. The steady state data is dependent on accu-

rate determination of the stress-optical coefficient (SOC) and the strain rate at

the SP, along with the assumption that 3D flow effects are negligible. The initial

study into the Pompom equations in cross-slot flow show that 3D effects could

be neglected for this geometry and 2D simulations would provide an accurate

comparison. It was then subsequently shown that flow modifications are strongly

dependent on the Pompom backbone stretch, λ, and in particular variations of
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the strain rate at the SP are strongly dependent on whether or not the maximum

stretch conditions is reached. This implied that to correctly model flow modifica-

tions the LCB structure of a material needs to have accurately determined mPP

parameters.

Using the simulated strain rate steady state extensional viscosity curves were

compared to the maximum extensional viscosity achieved using the SER. For

all materials with a significant LCB content the cross-slot extensional rheology

(CSER) data was lower than the maximum viscosity recored with the SER and

this trend coincided with the observation of W-cusps in the FIB images. Con-

versely for linear polymers or lightly branched materials the CSER predicted

higher steady state values than the SER, where the lack of strain hardening

would enhance surface flow instabilities and in these cases only single cusping ap-

peared along the outflow centre line. The conclusion of this study is that W-cusps

are consequence of a transient extensional overshoot, which has been reported in

literature using other extensional rheometers [e.g. Bach et al. (2003); Rasmussen

et al. (2005)]. The Pompom model as it stands cannot produce this transient

extensional overshoot and hence cannot produce W-cusps.

An empirical relaxation rate was added to the ODE for the backbone stretch to

produce a transient extensional overshoot by relaxing the backbone stretch when

material becomes highly aligned. The OPP model can successfully capture vari-

ous overshoot rheologies and these results translate into W-cusps in 2D cross-slot

simulations. To ascertain the correct extensional rheology further measurements

from other extensional stretching rheometers should be used to fully clarify the

relation between uniaxial extension and cross-slot flow. It should also be noted

that full 3D FIB is still necessary to check for differences from 2D simulations,

these were not possible with the current euFlow software. Also more experimen-

tal data from LDV measurements would be needed to clarify the accuracy of the

mPP predictions of flow modifications.

The OPP constitutive model does have limitations. Since the extra stretch

relaxation is an empirical term it cannot be used to infer molecular architecture

or physical relaxation. The extra relaxation term is proportional to the velocity

gradient and so when the flow is stopped it would vanish instantly. In shear

the extra relaxation term does not make a significant contribution. In LAOS

238



7.2 Concluding remarks and future work

deviations from experimental data were found at strain amplitudes of order unity

and perhaps this could be accounted for with a full molecular description of the

same physical process causing the transient extensional overshoot.

Although the molecular rheological process that causes a transient extensional

overshoot is not yet understood, the extensional rheology that materials exhibit in

both stretching experiments and cross-slot SP flow has been successfully charac-

terised. Furthermore, various experimental techniques in both LAOS and CSER

have been identified that infer key molecular detail and provide a basis for any

new molecular physics being modelled.
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branching in metallocene-catalyzed polyethylenes investigated by low oscilla-

tory shear and uniaxial extensional rheometry. Macromolecules, 35:1038–1048,

2002. 55, 56, 106, 107

G. H. McKinley and O. Hassager. The Considére condition and rapid stretching
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T. Neidhöfer, M. Wilhelm, and B. Debbaut. Fourier-transform rheology experi-

ments and finite-element simulations on linear polystyrene solutions. Journal

of Rheology, 47(6):1351–1371, 2003. 109, 126, 127

K. Osaki. On the damping function of shear relaxation modulus of entangled

polymers. Rheologica Acta, 32:429–437, 1993. 91

A. J. Peacock. Handbook of Polyethylene. Marcel Dekker Inc., 2000. 3, 49

Petro-Polymers. World LDPE market. WebSite, 2009. URL http://www.

petropolymers.com/a392560-world-ldpe-market-to-reach-about.cfm. 2

N. Phan-Thien. Understanding Viscoelasticity, Basics of Rheology. Springer-

Verlag, Berlin, 2002. 21

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, and M. Metcalf

(Foreword). Numerical Recipes in FORTRAN 90. Cambridge University Press,

UK, 1996. URL http://www.nrbook.com. 112

J. M. Rallison and E. J. Hinch. Do we understand the physics in the constitutive

equations. Journal of Non-Newtonian Fluid Mechanics, 29:37–55, 1988. 22

J. Ramirez and A. E. Likhtman. Reptate: Rheology of entangled polymers, toolkit

for analysis of theory and experiment. http://www.reptate.com, 2007. 18,

53, 92

H. K. Rasmussen, J. K. Nielson, A. Bach, and O. Hassager. Viscosity overshoot in

the start-up of uniaxial elongation of low density polyethylene melts. Journal

of Rheology, 49(2):369–381, 2005. 195, 208, 216, 238

D. J. Read, C. Das, M. Kapnistos, D. Auhl, D. Doelder, I. Vittorias, and T. C. B.

McLeish. From reactor to rheology in ldpe modeling. In XVTH INTERNA-

TIONAL CONGRESS ON RHEOLOGY - THE SOCIETY OF RHEOLOGY

80TH ANNUAL MEETING, PTS 1 AND 2, volume 1027 of AIP CONFER-

ENCE PROCEEDINGS, pages 424–426, 2008. 139

V. H. Rolon-Garrido and M. H. Wagner. The damping function in rheology.

Rheoloigca Acta, 48(3):245–284, APR 2009. 208

250

http://www.petropolymers.com/a392560-world-ldpe-market-to-reach-about.cfm
http://www.petropolymers.com/a392560-world-ldpe-market-to-reach-about.cfm
http://www.nrbook.com


REFERENCES

P. E. Rouse. A theory of linear viscoelastic properties of dilute polymer solutions

of coiling polymers. Journal of Chemical Physics, 21(7):1272–1280, 1953. 25

M. Rubinstein and R. H. Colby. Polymer Physics. Oxford University Press,

Oxford, 2003. 21, 50

P. Rubio and M. H. Wagner. LDPE melt rheology and the Pompom model.

Journal of Non-Newtonian Fluid Mechanics, 92:245–295, 2000. 73, 78

G. Schlatter, G. Fleury, and R. Muller. Fourier transform rheology of branched

polyethylene: Experiments and models for assessing the macromolecular archi-

tecture. Macromolecules, 38:6492–6503, 2005. 55, 56, 109, 110

J. F. M. Schoonen, F. H. M Swartjes, G. W. M. Peters, F. P. T. Baaijens, and

H. E. H Meijer. A 3D numerical/experimental study on a stagnation flow of

a polyisobutylene solution. Journal of Non-Newtonian Fluid Mechanics, 79

(2-3):529–561, 1998. 151

O. Scrivener, C. Bernera, R. Cressely, R. Hocquart, R. Sellin, and N. S Vlachos.

Dynamical behaviour of drag-reducing polymer solutions. Journal of Non-

Newtonian Fluid Mechanics, 5:475–495, 1979. 149

M. L. Sentmanat. Miniature universal testing platform: from extensional melt

rheology to solid-state deformation behavior. Rheologica Acta, 43(6):657–669,

2004. 52, 106

I. Sirakov, A. Ainser, M. Haouche, and J. Guillet. Three-dimensional numeri-

cal simulation of viscoelastic contraction flows using the Pompom differential

constitutive model. Journal of Non-Newtonian Fluid Mechanics, 126:163–173,

2005. 151

J. Soulages, T. Schweizer, D.C. Venerus abd J. Hostettler, F. Mettler, M. Kröger,
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