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Abstract

Scientific investigation of plasma phenomena can be undertaken through either ex-

periments, or numerical and analytical modelling, for which there are a number of

well-established options. Global models are quick to implement and have low compu-

tation cost, but approximate bulk values. Fluid models can take days to solve, but

provide spatial profiles.

This work details a different type of model, analytically similar to fluid models, but

computationally closer to a global model, and able to give spatially resolved solutions

for the challenging environment of electronegative plasmas. Equations are derived

to describe the time averaged spatial profiles of densities, fluxes, and temperatures.

Through extended analytical work and normalisations, the resulting differential equa-

tions can be solved with an initial value type integration scheme. This is found to be

hundreds of times faster than boundary value type methods.

Results and trends are analysed for a symmetrical capacitively coupled oxygen

plasma, and relationships between properties are found to conform to the existing

knowledge. The behaviour of the system is found to change depending on whether

or not the self-interaction of charged species is significant compared to the interaction

with the neutrals.

Results from the semi-analytical model agree well with a significantly more detailed

and computationally intensive fluid model. In addition to the bulk spatial profiles

agreeing both qualitatively and quantitatively, the values of other measured plasma

properties agree over a range of system pressures and powers. This comparison is

demonstrated to be favourable when contrasted with the results of a global model.

The dynamics of the neutral gas are found to be an important consideration for

plasma densities greater than around one part per million. In this model the frictional

forces from fast moving ions and thermal energy transfer from hot electrons are the

leading cause of disturbance to the neutral properties.
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Chapter 1

Introduction

1.1 Motivation

It would not be an overstatement to say that the use of plasmas in industrial pro-

cesses such as manufacturing and surface modification is prolific. The ability of low

temperature plasmas to provide activation energy for chemical reactions, without the

associated heat, and in a manner that allows selectivity and anisotropy, has enabled

otherwise impossible technological advances. Uses of plasma range from nanomanu-

facturing, to spacecraft propulsion, to treatment of chronic wounds, to conversion of

industrial waste into carbon based fuels. Despite their widespread use, there is still

much about their behaviour that is not understood. The interaction of charged and

neutral species over many different length and time scales leads to complex emergent

behaviours, the details of which are incredibly difficult to accurately describe.

In order to aid with investigations of such phenomena, plasma scientists often turn

to theoretical or numerical representations of plasmas, which are able to describe some

aspects of plasma science, through the use of certain assumptions about the way the

constituent particles interact. Detailed models are able to capture a large range of

phenomena, and can provide information on quantities not accessible through exper-

iment [1]. However, even though the capabilities of computer hardware and software

have increased dramatically over the last few decades, creating and running a highly

detailed model still poses a substantial challenge. Thus the community has developed

models that use a variety of approximations, allowing one to reduce the computational

complexity of modelling at the expense of some level of accuracy in the results achieved.

A common approach is to average the ensemble of particles over their thermal

motion, resulting in fluid-like equations for the density, flux, temperature etc. of each

12



1. Introduction 13

species, which can then be solved numerically. Detailed fluid models generally allow

for variation in time as well as at least one spatial dimension [1–4]. Typically the

equations are solved using a form of finite element analysis, which allows for simple

boundary conditions and solutions to capture local effects. Results obtained from these

models typically show good agreement with experiment for the limit of medium to high

collisionality [1, 4]. However, the computation time required to obtain these results

can range from hours to days, depending on the system and the techniques employed.

In order to combat this long time to reach solutions, global models have been de-

veloped [5–9], which allow for the solution of bulk properties through a collection of

approximations and empirical relations, including the neglection of all spatial deriva-

tives. This allows either rapid convergence to an equilibrium [5] or a description of time

evolution of bulk properties [6]. Despite the large number of assumptions made, these

models can provide reasonable estimations of bulk values and system trends within a

certain parameter space [10]. They are commonly used for systems containing complex

chemistries, as their rapid solution allows the inclusion of many different species and

reactions, which would be computationally infeasible with full fluid models [11, 12].

Unfortunately, due to the large number of assumptions made, and despite their

widespread use, global models are technically only valid for a small subset of discharges.

They struggle to provide good results for systems with high degrees of spatial non-

uniformity, or atypical discharges where the important empirical relations break down.

Their lack of spatial resolution means that they cannot accurately describe systems

where a large fraction of the plasma bulk is not uniform, a common occurrence as

spatial gradients often exist long before the development of a sheath. The empirical

relations used to link bulk values with sheath edge properties fail to account for the

different non-linear couplings that can occur for example between non-uniform densities

and power deposition profiles.

The work presented here aims to improve the options available to researchers by

bridging the gap that exists between global models and full fluid models. Computa-

tional complexity is exchanged for analytical intricacy, and differential fluid equations

are derived that can be solved in one spatial dimension through an initial value type

scheme, thus avoiding the high computation times associated with finite element meth-

ods. Example results are given, and compared with a full fluid model [13]. In order

to quantify the improvement over a global model, one is also created, and the three

models are compared together to show their agreements and limitations.
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In addition to this novel semi-analytical depiction of plasmas, equations are devel-

oped and included that describe the behaviour of the density and temperature of the

neutral gas from which the plasma is created. It has been shown that the effect of a

high density plasma on the background gas is non-trivial [14–18], and so not including

a full description of neutral properties would be negligent.

1.2 Outline

Chapter 2 provides necessary background knowledge of plasma physics, and derives

the fundamental system of equations used in the development of the semi-analytical

model. Also detailed are two examples of simple plasma models, to show the processes

and difficulties faced by the most basic of descriptions.

Chapter 3 details a semi-analytical model of an isothermal electronegative plasma.

Starting at the derivation of the basic equations, the process of normalisation is then

described. Once boundary conditions and external parameters are defined, the required

numerical techniques are given. Results from the model are analysed, and found to be

lacking when compared with a more detailed model.

Chapter 4 extends the analytical framework created in the previous chapter to include

electron energy transport. Additional derivation and normalisations are described.

Results are compared to the isothermal model, and again to that with more detail.

The benefits of including non-uniform electron temperature, and the remaining causes

of error are discussed.

Chapter 5 shows the development of a simple global model, and the analytic and

numerical methods required. Behaviour and trends are analysed, and compared to the

semi-analytical model. Benefits and limitations of the global model are discussed.

Chapter 6 describes the analytical work needed to obtain expressions for the neutral

gas properties, and shows the additional numerical schemes required to find solutions

to the extended model. Effects of including neutral dynamics are examined, and the

leading causes considered.

Chapter 7 compares the semi-analytical, global, and detailed fluid models together.

Results from each model are contrasted, and conclusions are drawn as to the efficacy

of each one.

Chapter 8 draws conclusions of this work, and details possible future objectives.

Appendix A is a description of the full fluid model used in comparisons across this

work.



Chapter 2

Theoretical Background

In order to understand the reasoning, the processes involved, and the outcomes of the

work presented in this document, one must first understand some basic concepts of

plasmas, generalised theoretical descriptions, numerical techniques, and the steps that

go into creating a simple model. This chapter covers the background knowledge required

to understand the work presented in the following chapters, and gives the reader an

understanding of the difficulties faced in modelling plasmas. For further information

on the topics covered, the reader is directed to more comprehensive works aimed at

those new to plasma physics, such as [19, 20].

2.1 Background Physics

Plasma, when denoting an ionised gas, is simply an extension of the three ‘classical’

states of matter. In a simplified view, the transition from solid to liquid and from

liquid to gaseous is defined by the breaking of bonds between the constituent particles

as more energy becomes available in the system. In the same manner, and again in

a simplistic picture, increasing the energy of particles in a gas will eventually lead to

the breaking of molecular bonds, if present, and the ionisation of atoms through the

escape of electrons. The resulting mixture of charged particles differs in a number

of important ways from the gas phase. Mainly, the presence of free charge carriers

introduces long range interactions between particles through electromagnetic forces,

and thus collective effects appear, such as very high electrical conductivity, coupling of

sound waves with magnetic fields, and filamentation.

Unlike collections of charged particles from high voltage devices such as the familiar

cathode ray tube, plasmas produce roughly equal numbers of positive and negative

15



2. Theoretical Background 16

charges. The combination of this and low electron inertia leads to the rapid motion of

electrons to neutralise any electric fields that may occur. This results in the concept

of ‘quasineutrality’, whereby the densities of positive and negative charges are roughly

equal if one measures above a certain scale length. This length scale, called the Debye

length, can be derived through a thought experiment of introducing a positive charge

and analysing the motion of the electrons in the electric potential that arises, and is

given in (2.1) [21].

λDe =

(
ε0kBTe
nee2

)1
2

(2.1)

In (2.1), ε0 is the permittivity of free space, kB is the Boltzmann constant, Te is

the electron temperature in degrees Kelvin, ne is the volumetric density of electrons,

and e is the elementary charge. At distances above this length scale, the plasma is

able to effectively shield itself from the effect of point charges and external electric

fields. The wording of formal definitions of a plasma vary, but their essence is that if a

partially ionised gas is larger than the Debye length, and there exist sufficient charged

particles within a sphere of radius λDe (the Debye sphere), then collective behaviour of

charged particles is significant, and the system is deemed to be in a plasma state [22].

A plasma does not necessarily contain only charged particles, it is possible to have

systems where the conditions for a plasma are met even if only fractions of a percent

of the gas atoms/molecules are ionised.

The behaviour of shielding charges also leads to a phenomenon known as a ‘sheath’.

If the plasma is in contact with a body biased to a certain potential, then charged

species will move such that the main body of plasma is protected from the intruding

potential, and a ‘skin’ region of non-quasineutrality will exist between the plasma and

the body. Even if the body in contact with the plasma is not biased, as is the case

with confining walls, then a sheath is created between the plasma and the wall. The

electron thermal velocity will be many times that of the ions, due to their small mass,

even if the electrons and ions have the same temperature. Thus in a situation where

a fully quasineutral plasma is confined by a wall, electrons will be very rapidly lost

to the wall. A thin region with net positive charge will be created, a sheath, until

the potential across it is sufficient to confine the majority of electrons, and the time

averaged current lost to the wall is zero. The potential drop across the sheath will serve

to accelerate the comparatively sluggish ions toward the wall, but confine the electrons

to the main body of plasma, often termed the ‘bulk’.

The potential drop that is required across the sheath in order to confine the majority
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of electrons depends on the electron energy distribution function (EEDF), a measure of

the probability of a random electron having a particular thermal energy. In a system in

thermal equilibrium, this distribution for all species, not just electrons, can be described

well by a Maxwell-Boltzmann distribution (commonly termed a ‘Maxwellian’), given

in (2.2) [19], where m and v are the mass and velocity, respectively, of particles that

make up the species.

f (v) = n

(
m

2πkBT

)3
2

exp

(
− mv2

2kBT

)
(2.2)

If one were to pick a particle at random from a population that had a Maxwellian

energy distribution, one would expect it to have a speed of 〈v〉 = (8kBT/πm)1/2, where

〈v〉 denotes the expectation value of particle speed. The inclusion of the population’s

temperature, T , in the expression hints at the formal definition of temperature, which

is a measure of the mean kinetic energy of particles that can be associated with their

thermal motion (as opposed to directed motion; see Section 2.4.3 for more details) [23].

This definition means that the temperature is not necessarily sufficient to fully describe

the energy distribution function of a particular species; one must also have information

about the shape of this distribution function. Species may have energy distribution

functions that cannot be described by a Maxwellian, or indeed by any analytical func-

tion, in which case the temperature provides an idea of how energetic the species is,

but cannot give the whole picture.

The concept of temperature is one that, in everyday life, is applied as a single

number to a substance. However there is no reason why a plasma, with its separate

constituents, cannot have different temperatures for each species. Indeed, this is ex-

actly the property that is exploited in so-called ‘low temperature’ plasmas. These are

plasmas in which the heavy particles typically have a temperature close to that of room

temperature (≈ 300 K), and not usually higher than 1000 K. In contrast the electrons

may have temperatures of 50 000 K or more, often expressed not in Kelvin but instead

as the mean electron energy measured in electron volts (eV), with 1 eV ≈ 11 604.5 K

for a Maxwellian.

This state of non-thermal equilibrium is maintained by giving energy mainly to

the electrons, and by ionising only a small fraction of the constituent particles. Due

in part to their small mass, the energy transfer from the electrons to other particles

is relatively inefficient. Any energy that is given to ions is efficiently transferred to
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the comparatively dense neutral gas, where it is quickly dissipated as heat. This large

disparity in temperatures allows one to create a complex chemical environment through

electron impact reactions, without the need for aggressive chemicals or solvents. This

has meant that they have found use in many branches of science, from the manufacture

of nanoscale devices, to altering the wettability of fabrics, to the treatment of chronic

wounds.

In order to sustain such a plasma, it stands to reason that there must be a net

energy deposition into the electrons in order to maintain their high temperature. This

is provided in the form of externally applied electrical fields, and the fast moving

electrons interact with these fields in a number of ways. One important mechanism is

that of ohmic heating, whereby electrons accelerated by an electric field collide with

other particles, thereby randomising their velocity and so converting energy from the

electric field into thermal energy. The term ‘ohmic’ arises due to this mechanism being

intrinsically linked to the resistivity of the plasma.

A common approach is to excite the plasma with a sinusoidal electric field, often

at radio frequencies (RF) in the kHz or MHz range. At the higher frequencies, the

electric field is able to be followed only by the low inertia electrons, and has very little

effect on the heavy ionic species. Depending on the precise mechanism of electrical

power deposition, the oscillating electric field can cause a modulation of the sheath

width. In capacitative discharges, the plasma can be visualised as held between two

conducting plates, one held at ground, and to the other an RF voltage is applied. In

this scenario, depicted in figure 1, electrons will oscillate between the two electrodes,

and sheaths will form on both sides, that grow and shrink with the RF cycle. The

boundary between the bulk of the plasma and the sheath, or sheath edge, is described

by a sudden drop in electrical potential. As the electrons have a velocity distribution,

as discussed above, some may move in such a way as to impinge upon the potential

barrier of the oscillating sheath edge. This will cause the electron to gain energy if the

sheath is expanding, or lose it if the sheath is contracting. However the effect averaged

over a whole RF cycle is a net energy gain [19]. The concept of electron heating from

the oscillating sheaths is known as ‘stochastic’ or ‘collisionless’ heating, and although

the description given above is logical, the precise mechanism of energy deposition and

transfer is still an active topic of research [24–27].

When a sheath exists between the plasma and a surface, either stationary or os-

cillatory, then positive ions are accelerated by the potential gradient that exists there.
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Figure 1: Simplified schematic of a radio frequency driven capacitively coupled
plasma.

These ions can impact on the surface with a kinetic energy equivalent to a significant

fraction of the RF driving voltage. The energy that the ion brings to the surface can be

transmitted to an electron, which may then escape from the surface. This is known as

secondary electron emission. The released electron is then accelerated away from the

surface by the sheath voltage, and so gains a large amount of energy, helping to heat

the plasma. It is possible in certain systems for this emission of secondary electrons to

be the dominant mechanism in sustaining the plasma, which is referred to as γ-mode.

One is able to obtain information about the transition between the bulk and the

sheath through the use of a variety of assumptions to derive some simple analytical

relations. One of those commonly used is the Bohm criterion, which gives a minimum

positive ion velocity required to sustain a sheath (2.3).

uB =

(
kBTe
mi

)1
2

(2.3)

This is derived by using the assumptions of Maxwellian electrons, cold ions (so

that Ti = 0 K), and no electron drifts for a collisionless DC sheath. Despite these

assumptions in the original derivation, this condition has been shown to be valid for

similar assumptions in an RF plasma [28]. Corresponding relationships have been

derived for other systems, such as those containing negative ions [29], whose presence

impacts on the equations for plasma potential used to derive (2.3). The appearance of

negative ions in plasmas has other major effects; see Section 2.6.2 for further discussion.

When early experimenters were investigating the behaviour of DC discharges formed

between two parallel electrodes, it was found that there was an unusual link between

the gas pressure, the inter-electrode distance, and the voltage required to create a
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plasma. As one varied either the pressure or the gap size, one found there was a

value of each that gave a minimum breakdown voltage. Values too high or too low

caused the required voltage to rise. Through observations, it was discovered that the

critical parameter for determining the breakdown voltage was the product of the gas

pressure and inter-electrode distance [30]. Through changing the pressure and gap size

simultaneously, it was found that maintaining their product constant also kept the

breakdown voltage roughly the same over a large pressure range from around 13 kPa

to 100 kPa. With a modern understanding of sheath physics, ionisation processes, and

secondary electron emission, it is possible to derive an expression that demonstrates

this, given in (2.4).

Vb =
Bpl

lnApl − ln [ln (1 + 1/γse)]
(2.4)

Here, the breakdown voltage Vb is calculated from the pressure-length product

pl, the secondary electron emission coefficient γse which is dependent mainly on the

electrode material, and the parameters A and B are determined experimentally, and

found to be roughly constant for any given gas [19]. This expression is often referred to

as the Paschen law, after the discoverer of the precursory empirical relationship. The

pressure-length product has been found to be applicable not just to DC discharges,

but also as a similarity parameter for RF excited discharges [31–33]. Plasmas that are

markedly different in their pressure or gap size will exhibit comparable behaviours if

they share the same pressure-length product, and it can also be seen in the requirement

for atmospheric pressure plasmas to be many times smaller than those operated at low

pressure.

2.2 Types of Plasma Model

Experimental plasma physics has made enormous progresses over the last few decades,

and researchers are able to measure an extraordinary variety of plasma properties,

however the complete diagnostic characterisation of low temperature plasmas is still a

far away aspiration. Until such a time, researchers will turn to models of plasmas in an

attempt to fill the gaps in their knowledge of a particular phenomena. When looking

to models of a plasma, researchers face a number of choices. Principle among these is

how much information about the plasma is required, how accurate it needs to be, and

how much computing power they have available. Typically if one requires only general

trends of a simplified system, then an analytic model can be used, which uses broad
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Figure 2: Conceptual comparison of the three main types of plasma model.

assumptions to build a system of analytical expressions that describe some aspects of

a plasma. This type of model is usually difficult to develop, but simple to use and can

provide useful information on system trends and links between phenomena.

If, however, one requires more than a simple description of plasma properties or

dynamics, then one must turn to numerical models. These use numerical methods to

describe systems that cannot be described by analytically solvable equations. Ideally

one would create a system that could apply first principles to each particle found within

the plasma, and thus completely detail all aspects of the plasma. Despite the capa-

bilities of computer hardware and software increasing dramatically since the advent of

scientific computing, creating and running such a model is still a technical impossibil-

ity. Thus the community have developed models that use a variety of approximations,

that allow one to reduce the computational complexity of modelling at the expense of

some level of accuracy in the results achieved. This has resulted in models that can

be broadly grouped into three distinct categories, depending on the assumptions made

and solution methods employed. These three categories, detailed below, can be de-

scribed by their analytical and computational difficulty, and contrasted by the amount

and quality of information they provide, as shown in figure 2.

One simple approximation to make is that particles within the system can be col-

lected into so-called ‘macro’ or ‘super’ particles, each one representing 105 to 109 phys-

ical particles [34–37]. This way the memory requirements of the model are reduced

to feasible amounts, but the computational complexity is still extreme. Calculating

the interactions between each element of an ensemble of ≈105 macroparticles is still a

huge computational load, and would require an impractical amount of time to calculate

anything useful. Thus models have been developed where the system domain is divided
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into units called ‘cells’, each containing a few hundred macroparticles. When calcu-

lating the influence of the ensemble on a single macroparticle, one applies the usual

formulae for interaction partners within the same cell, but the effect of macroparticles

found elsewhere is averaged to their nearest cell boundary. Thus the effective number

of interaction partners, and so the computational load, is greatly reduced.

This type of model, called a particle-in-cell (PIC) model, is typically able to pro-

vide a great deal of information about the plasma, but still requires a large amount

of computing power. As these models treat particles and solve Maxwell’s equations

directly, they need not make any assumptions about energy distribution functions, and

can thus provide such information as an output. However due to the direct treatment

of particles, the model naturally becomes more computationally expensive for systems

that introduce more particles, be this through geometry, system pressure, or otherwise.

Thus these models are typically limited to one or two dimensional descriptions of lower

pressure systems, where the number of particles is low, as is the frequency of collisions.

For systems where these conditions are met, PIC models tend to show very good agree-

ment with experiment, indeed it has been claimed that the results of PIC models are

“at least as accurate as those produced by any other technique” [38]. Unfortunately,

model time steps need to be low to capture all effects, and so these models can take

many days of real time to find solutions.

If the system to be modelled is comprised of species that can be approximated by a

particular energy distribution, then one can average the ensemble of particles over their

thermal motion resulting in fluid-like equations for the density, flux, temperature etc. of

each species, which can then be solved numerically. This process of thermal averaging

will be discussed in Section 2.4. Detailed fluid models generally allow for variation in

time as well as at least one spatial dimension [1–4]. Usually the equations are solved

using a form of finite element analysis, which allows for simple boundary conditions and

solutions to capture local effects. Results obtained from these models typically show

good agreement with experiment for the limit of medium to high collisionality [1, 4].

However, the relaxation time of these solutions can range from hours to days, depending

on the system and the techniques employed.

In order to combat this long time to reach solutions, global models have been de-

veloped [5–9], which allow for the solution of bulk properties through a collection of

approximations and empirical relations, including the neglection of all spatial deriva-

tives. This allows either rapid convergence to an equilibrium [5] or a description of time
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evolution of bulk properties [6]. Despite the high number of assumptions made, these

models can provide reasonable estimations of bulk values and system trends within a

certain parameter space [10]. They are commonly used for systems containing complex

chemistries, as their rapid solution time allows the inclusion of incredibly large numbers

of species and reaction pathways, which would be computationally infeasible with full

fluid models [11].

Unfortunately, due to the large number of assumptions made, and despite their

widespread use, global models are technically only valid for a small subset of discharges.

They struggle to provide good results for systems with high degrees of spatial non-

uniformity, or atypical discharges where the important empirical relations break down.

Their lack of spatial resolution means that they cannot accurately describe systems

where a large fraction of the plasma bulk is not uniform, a common occurrence as

spatial gradients often exist long before the development of a sheath. The empirical

relations used to link bulk values with sheath edge properties fail to account for the

different non-linear couplings that can occur for example between non-uniform densities

and power deposition profiles.

The three types of model detailed above are just the most common categories

into which plasma models are grouped. Models exist that combine aspects from the

different categories, or take a different approach entirely. A common form of ‘hybrid’

model is one that combines a kinetic treatment of electrons with a fluid description

of the heavy particle dynamics. This can take into account the often large deviations

from a Maxwellian energy distribution function that occurs in electrons, while allowing

the quicker solution of the heavy species which can remain approximately Maxwellian.

This work details the development of a different type of hybrid model, one that

builds on the analytical basis of fluid models, but extends it as far as possible an-

alytically before resorting to numerical methods. This new type of semi-analytical

modelling allows the use of much faster numerical schemes than full fluid models as

they are described above, through the casting of the equations as an initial value prob-

lem. However unlike global models, they can retain a level of spatial resolution, as

well as including most effects self consistently. This leads to a model of accuracy that

approaches that of a full fluid model, but has the computational characteristics of a

global model. Like fluid models, it is based on averaging species of particles over their

thermal motion, through what is known as the Boltzmann equation, the derivation and

use of which is treated in Section 2.4.



2. Theoretical Background 24

2.3 Particle interactions

A plasma, as discussed, can be considered as a multicomponent gas of interacting

particles. The plasma properties then depend heavily on the interactions of these

particles with fields, be these external or internal to the plasma. Interactions with

short range fields from other particles are usually referred to as collisions, despite the

concept of physical contact losing meaning at atomic scales.

2.3.1 Collision concepts

Collisions fall into two distinct categories. In elastic processes there is a conservation

of mass, momentum, and kinetic energy such that there are no changes to the internal

states of particles, and there is also no creation or destruction occurring. Should any

internal states be changed, or particles be created or destroyed, then the collision is

inelastic, as there is a transfer between kinetic and other forms of energy. This includes

processes such as excitation, ionisation, or dissociation of molecular species.

It is also important to distinguish interactions between charged particles, as these

involve the Coulomb force, and therefore take place at length scales much larger than

the atomic scale. This means that charged particles are able to interact simultaneously

with many others, whereas the fields from neutral species are strong only within the

electronic shell, and so collisions with neutrals are usually binary, or rarely three-body,

depending on the particle density. Despite this, the long range Coulomb interactions

can be approximated as multiple small binary collisions, and weakly ionised plasmas

are well described by this.

For the short range collisions, one can turn to the kinetic theory of gases, in which

particle motion is divided into collisions and the intervals between these collisions. As

the length and time scales of these collisions are much smaller than of other processes,

external fields can be neglected during collisional processes, and particle interactions

neglected between collisions. When determining the overall behaviour of particles, the

actual trajectories during a short range collision process do not need to be resolved,

and it is sufficient to know only the effect of each collision.

As collisional processes in plasmas involve the interaction of atomic and sub-atomic

species, theoretical considerations and predictions should be made using quantum me-

chanics. However the outcomes of a classical treatment are valid to a good approxima-

tion, and the procedures and concepts developed are still useful.

In order to build an understanding of the concepts involved with collisional processes
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Figure 3: Schematic of a binary collision between two hard spheres.

in a plasma, it is useful to begin with consideration of a simple elastic collision between

two hard spheres, with a lighter ‘projectile’ of radius R1 moving in the rest frame of

a heavier ‘target’ of radius R2. A collision only occurs if the two spheres come into

contact, which can be determined by measuring the distance between their centres; if

this distance is equal to the sum of their radii, RT = R1 +R2, then a collision occurs.

In order for this to happen, the initial trajectory of the projectile must be such that

the distance between the trajectory and a parallel line drawn through the centre of the

target, the impact parameter b, is less than RT , as shown in figure 3. As this process

is happening in three dimensional space, the requirement on the impact parameter

becomes such that for a collision to occur, the projectile must be ‘aimed’ at a circle of

diameter RT centred on the target. The area of this circle, σ = πR2
T , is known as the

cross section of the interaction, and is a measure of the likelihood of collision.

Although the picture of single particle interactions is useful, in reality reactions

occur between ensembles of particles, and more statistical description is required. This

is done by considering now a uniform ‘beam’ of the previous projectile particles with

flux Γ incident on a slab of targets, with a target density of ng, thickness dx and surface

area A. The fraction of projectiles lost from the beam can be found from the total

number of target particles ngAdx and how large their cross section is relative to the

beam area, as given in (2.5).

dΓ

Γ
= −ngAdx

σ

A
dΓ

dx
= −Γngσ (2.5)

This expression is simple to integrate in space, yielding an exponential decay, with a

characteristic length scale of λ = (ngσ)−1, which is the mean free path, and a measure

of the average distance a projectile will travel before colliding with a target. From the
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mean free path and the velocity of the projectile beam v, one can also obtain a mean

time between collisions as τ = λ/v. Concepts that will be used heavily in this work

are the inverse of this time scale, the collision frequency ν = ngσv and subsequently

the collision rate coefficient, being the collision frequency per unit density of the target

particles K = ν/ng = σv.

2.3.2 Real collisions

Each of the concepts detailed above is simple to understand in the case of hard sphere

interactions, however the situation becomes significantly more complicated when one

turns to collisions between real atomic or subatomic particles. The description of

classical mechanics is no longer valid, and one must turn to quantum descriptions of

phenomena, which are beyond the scope of this work. The most important outcome of

the quantum description is that the cross sections for interactions becomes dependent

on the impact velocity, and thus energy, of the associated particles. For example, in

noble gases the elastic scattering of electrons from neutral, ground state, atoms is non-

monotonic with the energy of the impacting electron. It was found that the mean

free path of an electron in Argon has a maximum when the incident electrons have an

energy of roughly 0.3 eV [39]. As classical mechanics dictates that the cross section for

an elastic collision is independent of energy, this feature was not explained until the

advent of quantum mechanics, and can be predicted through wave-like treatment of an

electron incident on a potential well.

Due to the unintuitive behaviour of collision parameters and their energy depen-

dence, obtaining values that can be used in numerical models is not trivial. Quantum

mechanical calculations can and have been performed for simple systems such as He-

lium [40] or Lithium [41], however they pose a significant challenge for more complex

systems. As such researchers have to rely on experimental measurements for values of

cross sections, collision frequencies, and the subsequent transport parameters and rate

coefficients.

Unfortunately the number of reactions that need to be considered, even for a com-

paratively simple gas mixture, can be large. For example, recent work on a fluid model

of a helium-oxygen gas mixture considered 16 species and 116 reactions [2]. The ad-

dition of realistic amounts of humid air to this system increased this to 59 species

and 1048 reactions [9], which required the use of a global model, and was still not a

comprehensive set of all possible reactions. A similar model of an argon/humid air
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plasma included 85 species and 1928 reactions [42]. Thus the amount of experimental

work that needs to go into measuring properties of various gases and gas mixtures is

immense, and so has been spread over a large number of research groups and many

decades of work. This creates issues in traceability, and it can often be difficult to find

primary sources for measurements. Thus values obtained from the literature are often

of unknown validity or accuracy. It is also sometimes unclear if given values are mea-

surements, calculations, or simply estimates. Results from models, simulations, and

occasionally experiments, are being legitimately called into question, as their outcomes

depend intricately on the values used for reaction rate coefficients (RRCs), and so an

unknown uncertainty on these values creates an unknown uncertainty in the results.

Although awareness of the issues surrounding plasma chemistry models is increasing,

and work is being done to address some of them [43], it is still difficult to say with

certainty that reaction rate coefficients being used are accurate. Despite this, the fo-

cus of this work is on the modelling technique itself, and not the precise quantitative

results for comparison with experiment. Thus cross sections and rate coefficients from

the literature are used.

2.3.3 Obtaining reaction rate coefficients

To obtain the most accurate values possible for reaction rate coefficients, it is necessary

to account for the energy dependence of cross sections, as discussed above. Values

for reaction rate coefficients are obtained through the multiplication and subsequent

integration over all energies of the energy dependent cross section, the species energy

distribution function, and the species velocity. Therefore it is necessary to know these

quantities over a large range of energies. As mentioned above, cross sections can be

obtained to reasonable accuracy through either quantum calculations or well designed

experiments. However the energy distribution function is not always known.

One possible route is to assume that all species have a Maxwellian energy dis-

tribution function with a characteristic temperature. This way an analytical form is

known for the distribution function, and the integration is trivial. However the as-

sumption of a Maxwellian is often not valid, particularly for the electrons in a low

pressure system [44–46], and so calculations of reaction rate coefficients may be over or

underestimated by many orders of magnitude (see figure 4 for example). Therefore it is

desirable to have an estimate of the EEDF, and calculations of reaction rate coefficients

from it.
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It is possible to obtain a much more rigorous approximation of the EEDF for a given

set of conditions from a set of energy dependent cross sections. This is achieved through

the numerical solution of a simplified version of the electron Boltzmann equation,given

in (2.16), as implemented in the widely used tool BOLSIG+ [47]. An assumption

is made that in the absence of a magnetic field, the electric field and all collision

probabilities are uniform over the spatial scale of the electron mean free path. This

then allows one to express the Boltzmann equation in spherical coordinates, and to

then simplify the angular dependence through the expansion into spherical harmonics.

It has been found that using more than the first two terms in this expansion gives a

negligible improvement in solutions, apart from under extreme conditions [46]. It is also

the case that approximations used in fluid models break down within the same region

of parameter space, so the use of more detailed expansions for fluid models is moot.

Further to the use of spherical harmonics, BOLSIG+ also simplifies the Boltzmann

equation by assuming a steady state electric field and an EEDF that is constant in

both space and time. Instead a spatial and time dependent electron density is used to

account for these changes, through an exponential growth model.

The effects of collisions are carefully considered, and separate terms are used to ac-

count for the elastic, (de)excitation, ionisation, attachment, and electron-electron col-

lision processes. From these considerations, a differential equation can be constructed

to describe the EEDF as a function of electron energy. BOLSIG+ solves this equation

numerically through a finite element method and discretising in energy space. It is

able to provide an EEDF from a given value of the normalised electric field strength,

but from this EEDF a mean electron energy (Te) can be found. The tabulated values

of interaction cross section with electron energy are then used to find reaction rate

coefficients for the given EEDF. It is then a simple matter of running the solver mul-

tiple times for different conditions to provide a table of reaction rate coefficients as a

function of Te.

As an example of the occasionally striking differences between possible reaction rate

coefficients, figure 4 shows values obtained via BOLSIG+ compared with relations taken

from the literature [9, 48–51] for the electron impact ionisation of O2 into O+
2 . While

the data from BOLSIG+ calculates the EEDF, the formulae used by the references

given are found by assuming a Maxwellian EEDF and combining this with measured

cross sections. Clearly the difference between these two approaches is significant, but

even among the Maxwellian assumptions there are differences approaching one order
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Figure 4: Comparison of different estimates of the reaction rate coefficient for ion-
isation of molecular oxygen through electron impact, as a function of mean electron
energy.

of magnitude. This demonstrates the aforementioned difficulties that researchers face

when choosing chemistries and the associated reaction rate coefficients.

2.4 The Boltzmann Equation and its Moments

As with many systems that consist of a large number of particles, a statistical descrip-

tion is well suited to plasmas. This makes use of a distribution function: a mathematical

construction that describes the position and velocity of every particle in the system at

a given point in time. Through averaging this distribution function, one can extract

macroscopic values, such as density and temperature, that represent observations of

the ensemble of particles.

In order to describe a particle’s position and velocity, one first needs a system to do

so. A particle in Cartesian coordinates can be described as having a position r = îx+

ĵy+ k̂z, where î, ĵ, k̂ refer to unit vectors of the principle axes of the coordinate system.

A similar orthogonal coordinate system can be imagined for the particle velocity, so

that v = îvx + ĵvy + k̂vz. These two coordinate systems, referred to as configuration

space and velocity space respectively, can be combined into a single six-dimensional

phase space. Each particle is then represented by a single point in this space, and as

particles move or accelerate, their representative points describe a trajectory through

the phase space. Thus a complicated system of a large number, N , of particles, can be

fully described at a given time by N points in phase space.

From the placement of points within phase space, one can create a distribution
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function fα(r,v, t) that describes the density of points at every position in space that

represent particles of type α. This scalar function is positive and finite, as well as

continuous, and must also tend toward zero for large values of v. As this distribution

function contains a full description, one can obtain macroscopic values and properties

of the system through its manipulation. For example, if fα(r,v, t) is independent of r

and t, isotropic in (does not depend on the direction of) v, then the particles of type

α are in thermal equilibrium.

For numerical properties, one must take various averages of the distribution func-

tion, as mentioned above. For example, to find particle density as a function of space,

one takes the velocity average of the distribution function through integration, as given

in (2.6).

nα(r, t) =

∫
v
fα(r,v, t) d3v (2.6)

Similarly, to find the average particle velocity, which would represent an organ-

ised flow of particles, one must multiply the distribution function by particle velocity,

integrate over all velocities, then divide by the number of particles in the volume of

integration. This results in (2.7).

uα(r, t) = n−1
α (r, t)

∫
v
vfα(r,v, t) d3v (2.7)

This demonstrates how one can use the distribution function to find macroscopic

properties, but one must also be able to find the distribution function itself. Its be-

haviour in time and phase space is described by the Boltzmann Equation, and following

is a brief derivation [23, 52].

2.4.1 The Boltzmann Equation

Consider that each particle described by fα(r,v, t) is acted on by an external force F .

A particle at position (r,v) at a time t will find itself at a new location (r′,v′) at a time

t+ dt. It then follows that the new position can be described by a pair of Newtonian

equations, (2.8) and (2.9), where a = F /mα is the acceleration of each particle due to

the external force.

r′(t+ dt) = r(t) + v dt (2.8)

v′(t+ dt) = v(t) + a dt (2.9)
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Neglecting collisions for the moment, all particles in the initial volume element

d3r d3v will be in a new volume element, d3r′ d3v′ after time dt. This is described by

(2.10).

fα(r′,v′, t+ dt) d3r′ d3v′ = fα(r,v, t) d3r d3v (2.10)

The volume element itself may change due to particle motion; the relationship

between the old and new volumes is described by the Jacobian of the transformation.

For (2.8) and (2.9) the Jacobian can be shown to be unity [23] so that d3r′ d3v′ =

d3r d3v. This then allows (2.10) to become (2.11).

[
fα(r′,v′, t+ dt)− fα(r,v, t)

]
d3r d3v = 0 (2.11)

As the time interval dt is considered small, one can Taylor expand the new distri-

bution function about the old, neglecting terms of order dt2 and higher, as shown in

(2.12).

fα(r + v dt,v + a dt, t+ dt) = fα(r,v, t)

+

[
∂fα
∂t

+

(
vx
∂fα
∂x

+ vy
∂fα
∂y

+ vz
∂fα
∂z

)
+

(
ax
∂fα
∂vx

+ ay
∂fα
∂vy

+ az
∂fα
∂vz

)]
dt+O(dt2)

(2.12)

Using the common differential operators for both configuration and velocity space

(2.13) and (2.14), and inserting the result of (2.12) into (2.11), one arrives at (2.15),

known as the Boltzmann Equation.

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(2.13)

∇v = î
∂

∂vx
+ ĵ

∂

∂vy
+ k̂

∂

∂vz
(2.14)

∂fα
∂t

+ v ·∇fα + a ·∇vfα = 0 (2.15)

Note that (2.15) is a conservative equation, and, as stated above, neglects collisions

and particle interactions. The effect of collisions on the system is to add or remove

particles from the volume element being considered between the times t and t + dt.

This consideration actually results in a simple modification to (2.15), with the effect

of collisions on the distribution function replacing the conservative zero, as shown on
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the right hand side (RHS) of (2.16).

∂fα
∂t

+ v ·∇fα + a ·∇vfα =
δfα
δt

∣∣∣∣
c

(2.16)

The precise form for (δfα/δt)|c is not trivial, and depends on the system being

analysed and the assumptions being made. More details of this collision term will be

discussed in Section 2.4.4.

2.4.2 The General Transport Equation

Similarly to how macroscopic values can be obtained through multiplication then inte-

gration of the distribution function, the equations describing the temporal and spatial

variation of the macroscopic quantities can also be found from applying a similar pro-

cess to (2.16) [23]. Let χ(v) represent some function of particle velocity that gives one

of the macroscopic quantities. By multiplying (2.16) by χ(v) and integrating over all

v, one obtains a transport equation for the macroscopic quantity described by χ. The

multiplication by χ(v) and inclusion of the velocity integrals results in (2.17), which

will be solved over the next few equations.

∫
v
χ
∂fα
∂t

d3v +

∫
v
χv ·∇fα d

3v +

∫
v
χa ·∇vfα d

3v =

∫
v
χ
δfα
δt

∣∣∣∣
c

d3v (2.17)

For the first term in (2.17):∫
v
χ
∂fα
∂t

d3v =
∂

∂t

∫
v
χfα d

3v −
∫
v
fα
∂χ

∂t
d3v

=
∂

∂t
(nα 〈χ〉)

(2.18)

〈χ(r, t)〉 =
1

nα(r, t)

∫
v
χ(r,v, t)fα(r,v, t) d3v (2.19)

In (2.18), the independence of the velocity integration on time is used to separate

the terms, and the second term on the RHS vanishes due to the dependence of χ on

only v. In (2.18) and following expressions in this section, 〈χ〉 denotes the average

value of χ with respect to velocity space, as defined by (2.19). Comparable logic can

be used on the second term in (2.17), since configuration space, velocity space, and
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time coordinates are independent. This results in a second average term.∫
v
χv ·∇fα d

3v = ∇ ·
∫
v
vχfα d

3v −
∫
v
fαv ·∇χ d3v

−
∫
v
fαχ∇ · v d3v

(2.20)

= ∇ · (nα 〈χv〉) (2.21)

The third term of (2.17) can be expanded similarly, but the resulting integrals are

slightly more technical.∫
v
χa ·∇vfα d

3v =

∫
v
∇v · (aχfα) d3v −

∫
v
fαa ·∇vχ d

3v

−
∫
v
fαχ∇v · a d3v

(2.22)

For the first term on the RHS of (2.22), the integral can be expressed as the sum of

three triple integrals, each of the form (2.23). As detailed previously, the distribution

function must vanish as the velocity approaches infinity, as no physical system exists

where particles have infinite velocity. Thus the three parts are each zero, and so the

first term of (2.22) is also zero.

∫∫∫
∂

∂vx
(axχfα) dvx dvy dvz =

∫∫ (
aχfα

∣∣∣+∞
−∞

)
dvy dvz (2.23)

The last term of (2.22) also vanishes if one can assume that the components of

the external force applied are independent of the corresponding velocity components.

Therefore one is left with only the central term, which can be formulated as the integral

found in (2.19). Thus the third term of (2.17) becomes a third average term, as given

in (2.24). ∫
v
χa ·∇vfα d

3v = −nα 〈a ·∇vχ〉 (2.24)

Collecting the results of (2.18), (2.21) and (2.24), one obtains the general transport

equation, (2.25), where the term on the RHS represents the change in χ due to collisions.

∂

∂t
(nα 〈χ〉) + ∇ · (nα 〈χv〉)− nα 〈a ·∇vχ〉 =

δ

δt
(nα 〈χ〉)

∣∣∣∣
c

(2.25)

2.4.3 Moments of the Boltzmann Equation

Using the general transport equation (2.25), one can replace χ with various functions

to find expressions that describe the transport of macroscopic properties of the plasma.
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These are known as moments of the Boltzmann Equation, and the order of the moment

is determined by the power of v found in χ. The result is a set of equations that

describe the behaviour of the plasma approximated as a fluid that has the macroscopic

properties of density, velocity, pressure and so forth, determined by the averages over

the particle distribution function. In this section, the subscript denoting that terms

can be applied to any particle has been omitted for brevity.

To find the zeroth moment, one uses χ = 1 and substitutes into (2.25) the following

terms, arriving at (2.26). The result for the second term uses the expansion of v = u+

w, where u and w represent the directional (flow) and random (thermal) components

of particle velocity, respectively.

〈χ〉 = 1 〈χv〉 = u

∇vχ = 0
δ

δt
(n 〈χ〉) =

δn

δt

∂n

∂t
+ ∇ · (nu) =

δn

δt
(2.26)

Equation (2.26) describes the conservation (or continuity) of particles, relating the

change in time to the difference between the flux gradient and the creation and de-

struction of particles through collisions, these being chiefly chemical reactions.

For a description of the conservation of momentum, one uses the first moment,

obtained by equating χ = mv. However, the derivation is easier if one first uses

χ = mvx, as shown in the following equations. This derivation uses the definition of

the pressure tensor p [52], as given in (2.27).

pij = nm 〈wiwj〉 (2.27)

This is commonly separated into a scalar pressure p = 1
3nm

〈
w2
〉

= nkBT and a

stress tensor π, as shown in (2.28), where I is the identity matrix, and δkl is the Dirac

delta function.

p = pI + π (2.28)

πkl = nm
〈
wkwl − 1

3w
2δkl

〉
(2.29)

For the first term in (2.25), 〈χ〉 = mux. By substituting in (2.26), one arrives at
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the expression below:

∂

∂t
(mnux) = mn

∂ux
∂t

+mux
∂n

∂t

= mn
∂ux
∂t
−mux

∑
i

∂

∂ri
(nui) +mux

δn

δt

For the second term of (2.25), 〈χv〉 = m 〈vxv〉 can be expressed using the pressure

tensor as given in (2.27) and (2.28). By again splitting v into directional components:

〈mvxvi〉 = m 〈(ux + wx) (ui + wi)〉

= muxui +m 〈wxwi〉+mux 〈wi〉+m 〈wx〉ui

= muxui +m 〈wxwi〉

= muxui +
pxi
n

By summing equations for each dimension i, one obtains an expression for the

second term of (2.25), where the pressure tensor has been split through the use of

(2.28).

∇ · (n 〈χv〉) = m
∑
i

∂

∂ri
(nuxui) +

∂p

∂rx
+
∑
i

∂πx,i
∂rx

(2.30)

For the third term of (2.25), ∇vχ = mx̂, so that the acceleration term becomes

simply mn 〈ax〉. The collision term is also reasonably simple at this stage, with the

result for the first term being used to give the expression below:

δ

δt
(n 〈χ〉) = m

δ

δt
(nux)

Through collection of terms, one arrives at an expression for one of the coordinates

of momentum.

mn
∂ux
∂t

+mn
∑
i

ui
∂ux
∂ri

+
∂p

∂rx
+
∑
i

∂πxi
∂rx

+mn 〈ax〉 = m
δ (nux)

δt
−mux

δn

δt
(2.31)

The coordinate x can be replaced with either of the other Cartesian components to

obtain a set of three equations that can be combined into a single vector expression,

given in (2.32), where ma has been replaced with the Lorentz force, and Ze is the

charge on each particle.

mn

[
∂u

∂t
+ (u ·∇)u

]
+ ∇p+ ∇π − nZe [E + v ×B] = m

δ (nu)

δt
−muδn

δt
(2.32)



2. Theoretical Background 36

An expression that describes the conservation of energy can be found by using

χ = mv2/2 to obtain the second moment of the Boltzmann Equation. Naturally, due

to the addition of another power of v, the derivation is more complicated than that of

the first moment. The following definitions are used in the derivation [52], where 〈K〉 is

the expectation value of total kinetic energy for particles, comprised of the directional

kinetic energy Kf and that from thermal motion KT . Q is the total energy flux

carried by all particles, encompassing the heat flux density q due to random motion,

and considerations for energy transport due to directed motion.

〈K〉 =

〈
mv2

2

〉
=
mu2

2
+

〈
mw2

2

〉
= Kf +KT

Q = 1
2nm

〈
vv2
〉

= q + nKfu+ nKTu+ pu

q =
nm

2

〈
ww2

〉
For the terms of the general transport equation:

〈χ〉 =

〈
mv2

2

〉
= 〈K〉

〈χv〉 =

〈
vmv2

2

〉
=
Q

n

∇vχ = ∇v

(
mv2

2

)
= mv

∴ 〈a ·∇vχ〉 = 〈F · v〉

Substituting these into (2.25) and again using the Lorentz Force, one arrives at
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(2.33), where the magnetic field term vanishes due to the vector identity (a× b)·a = 0.

∂

∂t
(n 〈K〉) + ∇ ·Q− nZeu ·E =

δ

δt
(n 〈K〉) (2.33)

The first two terms of (2.33) will be expanded below, using the definitions given

above, and (2.26) and (2.32) for the expansion of ∂n/∂t and ∂u/∂t respectively.

∂ (n 〈K〉)
∂t

= mnu
∂u

∂t
+

3

2
kBn

∂T

∂t
+

(
1

2
mu2 +

3

2
kBT

)
∂n

∂t
(2.34a)

mnu
∂u

∂t
= nZeu ·E − u ·∇p− u ·∇π −mnu2∇ · u

+mu · δ (nu)

δt
−mu2 δn

δt

(2.34b)

(
1

2
mu2 +

3

2
kBT

)
∂n

∂t
= −1

2mu
2n∇ · u− 1

2mu
2u ·∇n− 3

2kBTn∇ · u

− 3
2kBTu ·∇n+

(
1

2
mu2 +

3

2
kBT

)
δn

δt

(2.34c)

∇ ·Q = ∇ · q + ∇
(
nu1

2mu
2
)

+ ∇
(
nu3

2kBT
)

+ ∇ (pu) + ∇ (πu)
(2.35a)

∇
(
nu1

2mu
2
)

= mnu2∇ · u+ 1
2mnu

2∇ · u+ 1
2mu

2u ·∇n (2.35b)

∇
(
nu3

2kBT
)

= 3
2kBnu ·∇T + 3

2kBnT∇ · u+ 3
2kBTu ·∇n (2.35c)

∇ (pu) = p∇ · u+ u ·∇p (2.35d)

∇ (πu) = π∇ · u+ u ·∇π (2.35e)

Fortunately, a large number of terms within (2.34) and (2.35) either cancel or

combine, so that upon substitution one is left with only eight terms in the general

second moment, as given in (2.36). This equation describes the transport of energy

in the system, treating the directional and thermal motion separately, and accounting

for anisotropies in the distribution function over random velocities through the viscous

stress tensor, π.

3
2kBn

∂T

∂t
+ 3

2kBnu ·∇T + p∇ · u+ π∇ · u+ ∇ · q

=
δ (n 〈K〉)

δt
−mu · δ (nu)

δt
+
(

1
2mu

2 − 3
2kBT

) δn
δt

(2.36)
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2.4.4 Collisional Terms

In order to complete the picture of the transport equations, one must consider what

happens to the particle density, momentum, and energy upon collisions. One needs

to account for changes due to both elastic and inelastic collisions, where appropriate.

Interpretations of the effects of collisions can differ and, unlike the moments of the

Boltzmann equation given above, there is no single definitive route for their derivation.

Thus different authors may use slightly different expressions for the collision operators.

The collision terms presented in this work are collated from a number of texts [19, 20,

23, 52] in an attempt to provide a comprehensive description of the effect of elastic

collisions on both momentum and energy transfer between species. There are some

caveats with the approach presented here, notably in the neglection of charge exchange

and super-elastic collisions. The former are neglected as they have no net effect in

a 1D system, and the latter as they are not expected to be of significance within

the parameter range being investigated. The effect of inelastic collisions are also not

included in momentum or energy transfer descriptions below, as the energy transfers

that result are considered separately, and their effect on momentum transfer is assumed

to be small when compared to the more frequent elastic collisions.

The change in particle density, δn/δt, is the simplest term to derive, as only chemical

reactions and electronic excitations/de-excitations can change the number of particles

of a particular species. Thus the change in particle density due to collisions can be

expressed as given in (2.37), where GRα denotes whether a particle of type α is created

(+1) or destroyed (−1) by the reaction Rα, which has the rate coefficient KR and

collision partners nR1 and nR2 .

δnα
δt

=
∑
Rα

GRαnR1nR2KR (2.37)

For momentum changes, one must take primarily elastic collisions, also referred

to as momentum transfer collisions, into consideration. By considering binary hard

sphere collisions between particles of different types, one can derive an expression that

gives the change in momentum of a species α due to collisions with a second species

β as proportional to the relative drift velocity of the two species. The proportionality

constant for this interaction is the collision frequency for the two species, often defined

as ναβ = nβKαβ, where Kαβ is the collision rate coefficient [19, 23].

One effect that is often overlooked is that of temperature gradients on energy de-
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pendent collision frequencies. For species that have strong thermal gradients (namely

electrons), the collision frequency can change considerably on the scale of the average

distance between collisions. This results in an anisotropy in the average number of

collisions experienced by particles, and so a net change in momentum. The magni-

tude of this effect can be estimated by considering the change in collision frequency

over the mean free path of the particles, resulting in the final term in (2.38), where

Tαβ = (mαTβ +mβTα) / (mα +mβ) [52].

mα
δ (nαuα)

δt
=−

∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ)

+ nαkB
∑
β

Tαβ
ναβ

dναβ
dTαβ

∇Tαβ

(2.38)

A similar hard sphere model can be used to find the change in kinetic energy upon

collisions [52], given in (2.39).

δ (n 〈K〉)
δt

=−
∑
β

3
mαmβ

(mα +mβ)2nαnβKαβkB (Tα − Tβ)

−
∑
β

mαmβ

(mα +mβ)2nαnβKαβ

[
mαu

2
α −mβu

2
β

+ (mβ −mα)uα uβ
]

(2.39)

With these collision terms, the first three moments of the Boltzmann Equation

can be fully constructed. With the zeroth (2.40) and first moments (2.41), a simple

substitution suffices, but for the group of collision terms in the second moment (2.42),

some collection and cancellation of terms occurs.

∂nα
∂t

+ ∇ · (nαuα) =
∑
Rα

GRαnR1nR2KR (2.40)

mαnα

[
∂uα
∂t

+ (uα ·∇)uα

]
+ ∇pα + ∇πα − nαZαe [E + vα ×B]

= −
∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ) + nαkB

∑
β

Tαβ
ναβ

dναβ
dTαβ

∇Tαβ

−mαuα
∑
Rα

GRαnR1nR2KR

(2.41)
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3
2kBnα

∂Tα
∂t

+ 3
2kBnαuα ·∇Tα + pα∇ · uα + πα∇ · uα + ∇ · qα

= −
∑
β

3
mαmβ

(mα +mβ)2nαnβKαβkB (Tα − Tβ)

+
(

1
2mαu

2
α − 3

2kBTα
)∑
Rα

GRαnR1nR2KR

+
∑
β

mαm
2
β

(mα +mβ)2nαnβKαβ (uα − uβ)2

− nαuαkB
∑
β

Tαβ
ναβ

dναβ
dTαβ

∇Tαβ

(2.42)

2.4.5 Closure Terms

The three equations (2.40) to (2.42) fully describe the transport of their respective

properties. However in each expression is a reference to the next higher moment,

meaning that one will always have more variables than equations, and thus an unsolv-

able system, unless one makes assumptions to close the equation set. For species that

are largely isothermal, a common assumption is ∇Tα = 0. This truncates the series

of moments at the first, leaving just two equations. However if this is not suitable,

then an expression must be found for the heat flux, qα. If a species has a high enough

density that one can assume that most collisions will be with itself, then Fourier’s

Law of thermal conductivity is applicable (2.43), where hα = haTα + hb is the thermal

conductivity of the species. If, however, most collisions occur with another species,

then a different formulation must be used, such as the weakly ionised approximation

for electron heat flux (2.44) [52], where the species α is assumed to collide only with

the species β.

qα = −hα∇Tα (2.43)

qα = −
(

5

2
−
Tαβ
ναβ

dναβ
dTαβ

)
k2
B

nαTα
mαναβ

∇Tα − nαkBTαuα
Tαβ
ναβ

dναβ
dTαβ

(2.44)

2.5 Numerical Solution Methods

The expressions that result from the Boltzmann equation and the moments are highly

nonlinear and strongly coupled between species. This makes finding an analytical

solution impractical, if not impossible. Thus one must resort to numerical methods for

approximating solutions. As the equations are differential, it is numerical integration

methods that are used to solve them. This section details some of the families of

numerical integrators available and some of their benefits and weaknesses.
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In general, systems of differential equations can have an infinite number of solutions.

Particular solutions are obtained by specifying values of variables so as to constrain

the possible solutions. For a simple differential equation such as y′ = f(x, y), where f

is an arbitrary function of the dependent variable y and the independent variable x,

one can specify a condition on either y or y′ at any value of x. Systems of differential

equations and their constraints can be grouped into two types of ‘problems’. Those

with constraints at only one value of the independent variable are fully specified at that

point, and are referred to as initial value problems (IVPs), as numerical integration

starts at a single position with the specified initial values, and progresses from there.

Boundary value problems (BVPs) are those with conditions at two or more positions,

as the integration must take place between these values of x, known as the ‘boundaries’

of the integration.

Solution methods for IVPs compared with BVPs differ greatly in their construc-

tion, behaviour, capabilities and applications. IVP solution methods typically involve

evaluating y′ at a specific point, then using this gradient to estimate the value of y

after a small step in x. In order to solve a BVP one typically breaks up, or discretises,

the range of x between the boundary locations. Starting from an initial estimate, that

value of y at each point is updated using estimations built from the surrounding points

and an approximation of the derivatives. This process is continued until some con-

dition is met, usually some sort of convergence tolerance, such as specifying that the

change in y between each iteration must be below a certain value. This sort of solu-

tion method is well suited to ‘large’ problems; those with a variety of different physics

phenomena or a complicated region of space and time over which the integration is to

be performed. However the computation time required to perform all of the iterations

necessary is significant, and often calls for the use of large scale computers. Due to

one of the motivations for this work being the quick solution time and accessibility of

the model, the methods for solving BVPs are unsuitable, and so the focus will be on

creating and solving an IVP.

Similar to the discretisation used for BVPs, a numerical integration of an IVP is

typically computed at distinct points. Starting from the initial condition at x0 = a,

successive points are defined by xn+1 = xn + h, where h is a step length. For the

following descriptions h is constant for all x, but in general this need not be the case.

From the Taylor expansion of y (xn+1) = y (xn + h) for small h about the point xn,

one can truncate terms to arrive at an approximation for y (xn+1) in terms of the
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differential expression f (x, y).

y (xn + h) = y(xn) + hy′(xn) + 1
2h

2y′′(xn) +O(h3) (2.45)

y (xn + h) ≈ y(xn) + hf (xn, yn) (2.46)

The approximation in (2.46) is referred to as Euler’s Method, and is the simplest

numerical integration method in a family of schemes known as linear multistep methods.

These methods are suitable for use in solving not just single differential equations, such

as y′ = f(x, y), but also any system of differential equations that can be expressed in

the form of (2.47), where η are the initial conditions at the point x = a for each of

the variables contained in the vector y. Systems containing higher than first order

differentials of y can be reduced to the form of (2.47) through the introduction of

additional variables.

y′ = f (x,y) , y (a) = η (2.47)

The solution to such a system is, as mentioned above, found for a series of discrete

points yn = y (xn). A linear multistep method is defined as having a linear relationship

for determining the sequence {yn} and can be given generally as (2.48) [53], where k

is the step number of the method, and αj , βj are constants.

k∑
j=0

αjyn+j = h
k∑
j=0

βjfn+j (2.48)

Methods for determining the coefficients αj , βj vary. They can be found through

Taylor expansion and subsequent truncation as for (2.46), numerical integration, or

interpolation. If the coefficient βk 6= 0, then the expression for yn+k is self dependent,

and the method is denoted implicit, otherwise yn+k is given directly and the method

is explicit. Explicit methods are simpler to implement, but implicit methods can be

made more accurate, and tend to be more numerically stable than explicit methods of

the same step number [54]. However, through the self dependence, implicit methods

require the iterative solution of a nonlinear equation at each point.

One can combine implicit and explicit methods into a single method by first com-

puting the predictor ŷn+k using an explicit method. The function f̂ (xn+k, ŷn+k) is

then calculated and used in the application of an implicit method to ‘correct’ the first

estimation. These are called predictor-corrector methods, and their most common

implementation is Predict-Evaluate-Correct-Evaluate (PECE).
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Through integration of a polynomial of degree k fitted to the previous k points,

one obtains a linear expression for yn+k in terms of yn+k−1 and fn, ..., fn+k−1, which

is an explicit method. If one includes the point yn+k in the polynomial and performs

the same manipulation, then an implicit expression in terms of yn+k−1 and fn, ..., fn+k

is produced [53]. The family of numerical integration methods created through this

process are called Adams methods, with the explicit and implicit forms known as

Adams-Bashforth and Adams-Moulton respectively. The common procedure of using

Adams methods for both the predictor and corrector in a PECE scheme creates what

is referred to as an Adams-Bashforth-Moulton method [55].

2.6 Early 1-D Time Averaged Fluid Models

The concept of describing a plasma as a combination of interacting fluids is not a

new one, and can be traced back to the earliest models of plasmas. Descriptions of

the behaviour of charged species using ensemble values, as opposed to a particulate

picture, were performed in the 1920’s for collisional [56, 57] and collisionless [58] cases.

The application of this concept to plasmas containing negative ions was performed

reasonably soon afterward [59], with a note that the Schottky model fitted surprisingly

well to diatomic gases. The work was revisited over the years, with attempts to describe

the three component plasma using diffusion transport coefficients [60–62], However to

develop these models, assumptions such as constant α must be made, which has since

been found to be debatable.

Advances were also made in the investigation of electropositive plasmas, where it

was shown to be possible to provide an analytic solution for the intermediate pres-

sure regime [63]. It was also described how the assumptions of quasineutrality [64] or

isothermal electrons [65] can be dropped in a two component plasma, through the use

of other approximations and numerical integration.

2.6.1 Previous Electronegative Models

A model was created in 1980 that describes the radial profiles of charged species in

a positive column created in an electronegative gas without simplifying to transport

coefficients [66]. The momentum equation was developed for electrons, positive, and

negative ions under the assumptions of axial uniformity, isothermality (and therefore

constant reaction rates), and a Boltzmann equilibrium for the electrons. Along with

Poisson’s equation, the equations were integrated between a symmetry condition at the
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centre to a boundary with a perfectly insulating wall [64]. With the consideration that

negative ions are confined almost exclusively to the volume, an edge boundary condition

was specified for the negative ions stating that the integrated volume production and

loss rates must be equal, which can be alternatively stated as a requirement for the

negative ion flux at the wall to be zero. This boundary condition was realised by

adjusting the central value of the negative ion density until the condition on the flux

was met to a given tolerance.

The authors provided a physical justification for the observed negative ion flux,

in that the electric field required to equalise the electron and ion currents is of suf-

ficient strength, due to the high temperature of the electrons, that the force on the

cold negative ions is large enough to overcome their diffusion. It was further found

that the central negative ion density is not directly controlled by the rates of electron

attachment/detachment, but instead is always large enough to provide a negative flux

near the origin. Along with this new insight into confinement of the negative ions,

evidence was seen of a stratification of the discharge into an electronegative core with

an electropositive edge, a feature now known to be characteristic of a wide variety of

electronegative plasmas [67–69].

This work was used a few times, notably to show that in plasmas with high elec-

tronegativity the electron density profile becomes flat as the system moves toward an

ion-ion plasma in the central region [70]. It was also used in an attempt to recreate the

charged species density profiles using measurements of E/N in an SF6 discharge [71].

The first significant extension of this work came about in 1988 through the assump-

tion of quasineutrality and high pressure [72], which allowed the analytic investigation

to be extended before resorting to numerical integration. These two assumptions al-

lowed the edge boundary condition to be simplified to ne(L) = 0 and provided an

analytical expression for α0 dependent on the ion mobilities and the rates of ionisation,

electron detachment, and electron attachment, when these quantities are assumed to

be spatially uniform. It was also determined that, when posed in a dimensionless form,

the system of equations generated another eigenvalue, referred to in this and later work

as λ, that related the reduced electric field (E/N) to the product of gas density and

discharge size (NL). This is analogous to the well known relationship between electron

temperature and pressure-length product that arises from a simplified treatment of an

electropositive plasma. This parameter λ is also a function of the same parameters as

α, but not an analytic one. The rates and mobilities can be collected into just two
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dimensionless parameters, denoted as P and Q in this work and across the literature,

which are measures of the electron attachment and detachment rates respectively.

The authors applied their model to oxygen, taking into consideration reactions

involving O2

(
1∆g

)
and atomic O. Using experimentally determined densities of the

excited and atomic species, and literature estimates of reaction rate coefficients, they

calculated the resulting E/N as a function of NL. When compared with experimental

data, the results give a favourable qualitative agreement, but overestimate E/N by

approximately 50 % across the range investigated.

After this point in time, a much greater rate of investigation is seen, arguably lead

by the work of one group [73–76]. Their work made significant analytical advances

on the earlier models, and performed investigations across a broad range of parame-

ter space. At the same time, parallel progress was being made in the understanding

of electronegative plasmas through other means, such as kinetic (global) models [77],

investigation of the sheath boundary [29], and the development of more detailed, com-

putationally intensive fluid models [78].

Of the works submitted in those few years, the most relevant are the descriptions of

the system at ‘moderate’ pressures, where ion inertia is not important, but neither are

three body collisions [74, 76]. The two models developed in this regime differ in their

dominant reaction mechanisms, and have markedly different behaviours. In the situa-

tion where P,Q < 1, meaning that the rates of electron attachment and detachment are

similar, but ionisation is dominant over both of them, it was found, perhaps counterin-

tuitively, that electronegativity is inversely relational to P . Furthermore, both species

of ions are confined to a strongly electronegative ‘core’, while the electrons are largely

unaffected by changes in P [74]. From a more practical standpoint, it was also found

that the system was highly sensitive to initial conditions. The authors worked around

this using their rigid boundary conditions and a restructuring of the equation system

to perform their integration from the wall to the centre, but even then numerical root

finding was required.

In the second collisional model, ion-ion and electron-ion recombination are included

as additional destruction mechanisms. The resulting equations are greatly restricted

in their possible parameter range, hinting perhaps at the potential for instabilities

induced by the non-linearities of charged particle recombination. An investigation of

strongly electronegative scenarios, with α ≥ 10, was performed. It was found that the

plasma is necessarily structured as before, with an electronegative core, but that the
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transition between the two regions is sudden, and its relative position in the discharge

is directly controlled by P [76]. It is also postulated that systems containing negative

ions cannot have electron-ion recombination without ion-ion recombination, although

the model does not include electron detachment destruction of negative ions, so the

effect of this additional destruction mechanism is unclear.

After this work was performed, the investigation of electronegative plasmas pro-

ceeded in largely different directions, as experimental techniques were developed [4, 79–

81] and computational resources improved [82–84]. There was also an increase in the

use of ‘global’ modelling to investigate systems with large numbers of reactions [85, 86],

as their relatively simple numerics lend themselves well to the investigation of the com-

plexities of molecular electronegative discharges.

There was still, however, some interest in increasing the analytical insight into

electronegative plasmas, particularly in the low pressure environment [87–90]. This

work culminated in a number of ‘review’ style publications [67–69, 91] that attempted

to summarise the understanding gained by the community since the first influential

fluid model in 1980. Although some analytical type work has been performed since

then [92–94], the majority of modelling investigations have proceeded with relatively

large, computationally intensive codes, that are admittedly highly accurate, or on global

models for chemical kinetics.

Of the models that are similar in capabilities and methodologies to that developed

in this work, a comparison of the key features is given in table 1.

2.6.2 Derivation of Simple 1-D Time averaged Models

If one is to fully understand the development of a new fluid model, it is useful to have a

background knowledge of simple fluid models. The principles of equation development

are similar, and so are some of the issues that arise.

Ambipolar Diffusion

One of the earliest fluid type models can be attributed to Schottky [56], who created

a description now referred to as ambipolar diffusion. This theory considers the steady

state of a one dimensional, two component plasma amongst a static background of

neutral particles in a high pressure regime, where the mean free path of the ions is

significantly less than the dimensions of the system. Thus the motion of ions (and

electrons) across the plasma is dominated by collisions with the neutral species, and
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Table 1: Comparison of previous models of electronegative plasmas of the semi-analytical type.

Concept Hurlbatt
Edgerly &

v. Engel [66]

Ferreria

et al [72]

Daniels

et al [74]

Franklin

et al [76]

Lichtenberg

et al [87]

Geometry Planar Cylindrical Cylindrical Cylindrical Cylindrical Planar

Driving voltage RF DC DC DC DC RF

Species 4 3 3 3 3 3

Reactions 10 3 5 3 4 3

Dominant Destruction Detach/Recom Detach Detach Detach Recom Recom

Electron Profiles Self Consistent Boltzmann Self Consistent Self Consistent Self Consistent Boltzmann

Negative Ion Profiles Self Consistent Self Consistent Self Consistent Self Consistent Self Consistent Boltzmann

Ion Temperatures Uniform Zero Uniform Uniform Uniform Uniform

Electron Temperatures Self Consistent Uniform Uniform Uniform Uniform Uniform

Reaction Rates f(Te, Tg) Uniform Uniform Uniform Uniform Arrhenius

Elastic Collisions Explicit Explicit Drift/Diffusion Drift/Diffusion Drift/Diffusion Drift/Diffusion

Inelastic Collisions 8 No No No No 1

Collisionality Medium/High Low/Medium High High High Medium/High

Central Boundary Symmetry Symmetry Symmetry Symmetry Symmetry Symmetry

Edge Boundary Sheath Insulating Wall Sheath Sheath Sheath Sheath

Electric Field Quasineutrality Poisson’s Eq. Quasineutrality Quasineutrality Quasineutrality Quasineutrality

Neutrals Self consistent Background Background Background Background Background

Method1 SI + NR TE + SI + NR BVP SI + NR or AA SI + NR or AA AA + I

1 SI = Spatial Integration, NR = Numerical Root Finding, TE = Taylor Expansions, AA = Analytic Approximations,

BVP = Boundary Value Solver, I = Other Iteration
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other elastic collisions are neglected. Other approximations are that viscosity effects

can be neglected, there is no magnetic field, and there is only one type of chemical

reaction: ionisation. The equations are closed by assuming that both ions and electrons

are isothermal, with Ti = 300 K and Te to be determined.

By applying the above assumptions to (2.40) and (2.41), and considering quasineu-

trality (ne ≈ ni = n), an ideal gas equation of state (p = nkBT ) for both species, and a

zero net current (niui = neue = nu), one arrives at a set of three equations describing

three quantities. The particle continuity expressions for both species are identical, and

given in (2.49), where KI is the reaction rate coefficient for the ionisation process,

and the momentum conservation of ion and electrons is described by (2.50) and (2.51)

respectively [20].

(nu)′ = nngKI (2.49)

kBTin
′ − neE = −minuνig (2.50)

kBTen
′ + neE = −menuνeg (2.51)

In order to extract further insight from (2.50) and (2.51) before solution, they are

often rearranged into the forms of (2.52) and (2.53), where two new quantities are

introduced. The diffusion coefficient, Dα = kBTα/mαναg describes the motion from

thermal diffusion alone, and the mobility µα = e/mαναg is a measure of the collision

limited motion due to electric fields [19].

nu = nµiE −Din
′ (2.52)

nu = −nµeE −Den
′ (2.53)

Through the combination of (2.52) and (2.53), one obtains an expression for the

necessary electric field that maintains quasineutrality despite the differing diffusion

properties of the ions and electrons.

E = −De −Di

µe + µi

n′

n
(2.54)

Substitution of this ambipolar electric field into (2.52) or (2.53) allows the retrieval

of a single diffusion parameter, the ambipolar diffusion coefficient, given below.

Da =
µiDe + µeDi

µi + µe
(2.55)



2. Theoretical Background 49

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Distance from centre (2x/l)

D
en

si
ty

 (
n/

n 0)

Figure 5: Normalised density profile of both electrons and positive ions in a simple
two fluid ambipolar diffusion model.

Subsequently, (2.52) or (2.53) can be written as (2.56), which combined with (2.49),

gives a simple linear second order differential equation for the plasma density, given in

(2.57)

nu = −Dan
′ (2.56)

n′′ = −ngKI

Da
n (2.57)

For a plasma contained between two planar electrodes at x = ±l/2, and by setting

boundary conditions as n(0) = n0 and n(l/2) = 0, a symmetric solution to (2.57) is

obtained, given below.

n(x) = n0 cos

(ngKI

Da

)1
2
x

 (2.58)

The boundary conditions specify that (ngKI/Da)
1/2 = π/l, if the sheath region is

neglected that would exist between the plasma at the wall. This means that (2.58) is not

only an expression for the spatial profile of the plasma density that shows independence

on all other plasma parameters, but one can also obtain the electron temperature

through its control of KI and Da.

As the only remaining variable in (2.58) is the central density, it is a simple matter

to normalise to the value at the centre, and thus plot a profile of how the plasma

density varies from the centre to the edge of the discharge, as shown in figure 5.

As one might expect, the strict restrictions placed upon the ambipolar model mean
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that its applicability and accuracy are limited. A zero plasma density at the edge of the

system causes singularities in both the particle velocity and the ambipolar electric field,

showing that the boundary conditions necessary to achieve an analytic solution are not

self consistent. Furthermore, the single reaction considered is a gross oversimplification

as even in the simplest of cases, such as a plasma in a mono-atomic gas like Helium

or Argon, there are a myriad of processes that need to be considered in order to fully

describe the system [95, 96]. However, if the assumptions made were to be relaxed,

then attempts to obtain an analytic solution become increasingly more complicated,

and quickly reach intractability [97–99], and so numerical treatments are required.

Introduction of negative ions

Plasmas have found a great deal of use in industrial applications due to their unique

chemical environment, and in particular plasma etch processes underlie some of the

largest international manufacturing industries. Many of the processes call for the use

of substances with a certain degree of electron affinity, leading to the formation of

significant numbers of negative ions, and the creation of ‘electronegative’ plasmas.

Densities of negative ions can be expressed through a measure of the electronegativity,

α, taken as the ratio of negative ion to electron densities. This value can range from

less than one in low power discharges in weakly electronegative gases [9] up to ≈ 104

under certain conditions [100]. The presence of these negative ions has a dramatic

effect on the plasma by introducing strong non-linearities into describing equations,

which manifest in physical systems as temporal instabilities, complex spatial structures

involving non-monotonic electric potentials, and coupling of previously independent

plasma parameters.

By making assumptions comparable to those used in the model previously de-

scribed, it is possible to produce a set of equations similar to those used to create

the ambipolar diffusion expressions. One major difference is that the quasineutrality

conditions becomes ni = nn + ne, and so the positive ion and electron densities are no

longer interchangeable. Thus the momentum conservation expressions for the positive

ions, negative ions, and electrons become (2.59) to (2.61) respectively.

niui = niµiE −Dini
′ (2.59)

nnun = −nnµnE −Dnn
′
n (2.60)

neue = −neµeE −Den
′
e (2.61)
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Again, using (2.59) to (2.61), quasineutrality, and a zero net current (niui =

nnun + neue), one is able to create an equation for the positive ions that has the

same form as (2.56), however the diffusion coefficient that arises is dependent on the

densities of negative ions and electrons, so the equation cannot be solved indepen-

dently as it was previously [101]. In order to approach an analytic solution for this

three component plasma, which allows one to gain further insight to the interrelations

of the different species and their properties, one must make further assumptions. A

common assumption for the negative particles is that they are in thermal equilibrium

with a confining electrostatic potential, φ, a so called ‘Boltzmann equilibrium’ (2.62)

and (2.63).

ne = ne0 exp

(
eφ

kBTe

)
(2.62)

nn = nn0 exp

(
eφ

kBTn

)
(2.63)

This assumption implicitly also assumes that drifts are dominated by thermal mo-

tion and that the particle energy distribution function can be described by a Maxwellian

(2.2). The drift condition may hold for electrons under certain conditions, but is highly

questionable for the negative ions. For the assumption of a Maxwellian, this situation is

reversed; the heavy negative ions are more likely to be well described by (2.2), whereas

the electrons are often highly non-Maxwellian [102]. However, these assumptions allow

one to describe the plasma using only three equations, given in (2.64) to (2.66) [20].

(niui)
′ = ne0ngKI exp

(
eφ

kBTe

)
(2.64)

−eφ′ = miνigui (2.65)

ni = ne0 exp

(
eφ

kBTe

)
+ nn0 exp

(
eφ

kBTn

)
(2.66)

Despite the reasonably simple appearance of these equations, they are not able to be

integrated analytically, as the coupling between variables is too strong. Approximate

analytical solutions to this simple three component plasma have been obtained by

constraining the system to regions of parameter space in which some terms can be

neglected or cancelled, for example [87], but numerical integration is required to obtain

actual solutions to (2.64) to (2.66). Furthermore, solutions require a more rigorous

specification of system parameters than in the ambipolar diffusion model presented

previously. Solutions are specific to the physical parameters of the discharge chamber,
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as well as the process gas in which the plasma is created.

Simple models such as those just described have their use in being able to highlight

possible unintuitive behaviour and interplay between the different plasma properties.

However, their ability to accurately predict the intricate dynamics and emergent prop-

erties of these systems is highly debatable, due to the occasionally very strict assump-

tions that need to be made in order to reach an actual description of the plasma. The

ability to reduce the number of assumptions made while maintaining a system of equa-

tions that can be used to understand the links between variables would be valuable.

However the likelihood of there existing such expressions that do not require numerical

intervention to reach full solutions is low. Additionally, the systems described in the

simple models above do not represent any known real plasma; as mentioned previously,

even in a mono-atomic gas there are complex processes and multiple excited states that

need to be considered to encompass all possible behaviour. The addition of molecular

species into a plasma increases this complexity many times over.

In addition, analytical progression from the fluid equations is difficult and time

consuming. It is more common to resort to finite element methods because they are

much simpler to implement. However as discussed previously, these can take a great

deal of computation time to obtain a solution. A system that is able to describe a

complex plasma without resorting to a finite element solution would be highly valuable

for the flexibility and greatly reduced computational cost that it would provide. The

development of such a system is described over the next few chapters, culminating in

a model that is able to describe an electronegative plasma with non-uniform electron

temperatures including neutral dynamics.



Chapter 3

Modelling an Isothermal

Electronegative Plasma

The development of the new semi-analytical model begins in this chapter with the de-

scription and demonstration of a model of a three component isothermal plasma. The

equilibrium state of the three most important charged species is considered in a con-

stant neutral background, and equations are created to describe the interactions of the

three fluids with the neutrals and each other. It is found that numerical solution is not

as simple as just performing the integration, and numerical methods are detailed that

allow the solution of a wide variety of conditions.

3.1 Equation Development

In order to examine the capabilities of more detailed equations than those described

in Section 2.6.2, a model will be constructed to find the equilibrium (or time aver-

aged) state of a three component electronegative plasma existing in a constant neutral

background. The species considered are one positive ion (i), one negative ion (n), and

electrons (e). It is assumed for this model that the entire plasma bulk is quasineutral,

all species are isothermal, and that the neutral density is constant. These assumptions

are recognised not to be valid for all conditions, but are appropriate for a system in

which the sheaths are small compared with the bulk width, and the ionisation fraction

is low. Further assumptions are that viscosity and convective effects are negligible.

These two approximations are valid if the thermal part of the velocity distribution

is large compared with the directional part and there is no external magnetic field

applied [52], both of which are met in the plasma to be modelled.

53
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Figure 6: Schematic of the discharge being modelled. x denotes the dimension being
analysed.

The physical system to be modelled is a capacitively coupled, RF excited plasma

contained between two infinitely planar electrodes, as shown in figure 6. This ar-

rangement simplifies matters by allowing the investigation to take place only along

the inter-electrode dimension, while maintaining comparability to real symmetric dis-

charges.

3.1.1 Approximation Application

By applying the isothermal, equilibrium and magnetic field approximations to the

Boltzmann moments (2.40) to (2.42), one obtains a slightly simplified system of general

equations (3.1) and (3.2), particularly because the energy conservation equation (2.42)

is made unnecessary by the isothermal approximation.

∇ · (nαuα) =
∑
Rα

GRαnR1nR2KR (3.1)

mαnα

convection︷ ︸︸ ︷
(uα ·∇)uα +∇pα +

viscosity︷ ︸︸ ︷
∇πα −nαZαeE

= −
∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ)−mαuα

∑
Rα

GRαnR1nR2KR

(3.2)

Further simplifications are made to (3.2) through the removal of the terms describ-

ing the effects of convection and viscosity, as discussed above and indicated in the

equation. The pressure gradient is also expanded, using the ideal gas equation of state

p = nkBT .

∇ · (nαuα) =
∑
Rα

GRαnR1nR2KR (3.3)

kBTα∇nα = nαZαeE −
∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ)

−mαuα
∑
Rα

GRαnR1nR2KR

(3.4)
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Application of these assumptions leads to (3.3) and (3.4), which describe density

and flux gradients for all of the species in the system.

3.1.2 Normalisation Scheme

In order to increase insight, clarify relationships between plasma properties, and expe-

dite the numerical solution of the equations, the system is normalised so as to remove

all dimensions. The choice of normalisation scheme is highly influential on the function-

ality and interpretation of the resulting model. The scheme used, given below, builds

on the work of Raimbault and Liard [103, 104] and applies it to an electronegative

plasma. In this scheme: nf is the gas fill density; mi is the mass of the positive ion;

uB = (kBTe/mi)
1/2 is the positive ion Bohm velocity; K0 is a normalisation reaction

rate coefficient; and Te is the electron temperature. As the model is one dimensional,

vectors are also converted to scalars in the normalisation.

nα =nfNα uα =uBVα

KR =K0εR mα =miMα

Tα =
Te
γα

x =
uB
nfK0

X

nαuα =nfuBΓα
d[Y ]

dx
=
nfK0

uB
[Y ]′

It is interesting to note that the total system size is not included in the normalisation

scheme. As an effect of this, there is a coupling of the pressure and system length, as

is known to happen in physical systems, such that the pressure length product of the

model can be extracted independently of the pressure, as shown in (3.5), where L is the

normalised system length. This value is useful for comparison with physical systems,

but is not required for the operation of the model.

pl = nfkBTgl

= nfkBTg
uB
nfK0

L

pl =
kBTguB
K0

L Pa m (3.5)

In the following application of the normalisation scheme to (3.3) and (3.4), the form

of the Bohm velocity and the inverse nature of the temperature normalisation are used

to remove all unnecessary constants from the equations.
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From (3.3):

∇ · (nαuα) =
∑
Rα

GRαnR1nR2KR

nfuB
nfK0

uB
Γ′α = n2

fK0

∑
Rα

GRαNR1NR2εR

Γ′α =
∑
Rα

GRαNR1NR2εR (3.6)

From (3.4):

kBTα∇nα =nαZαeE

−
∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ)

−mαuα
∑
Rα

GRαnR1nR2KR

kBnfTe
nfK0

uB
γ−1
α N ′α =nfeNαZαE

−min
2
fK0uB

∑
β

MαMβ

Mα +Mβ
NαNβεαβ (Vα − Vβ)

−miuBn
2
fK0MαVα

∑
Rα

GRαNR1NR2εR

kBTeγ
−1
α N ′α =

uBe

nfK0
NαZαE

−miu
2
B

∑
β

MαMβ

Mα +Mβ
NαNβεαβ (Vα − Vβ)

−miu
2
BMαVα

∑
Rα

GRαNR1NR2εR

kBTeγ
−1
α N ′α =

uBe

nfK0
NαZαE

− kBTe
∑
β

MαMβ

Mα +Mβ
NαNβεαβ (Vα − Vβ)

− kBTeMαVα
∑
Rα

GRαNR1NR2εR

γ−1
α N ′α =

e

kBTe

uB
nfK0

NαZαE

−
∑
β

MαMβ

Mα +Mβ
NαNβεαβ (Vα − Vβ)

−MαVα
∑
Rα

GRαNR1NR2εR
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N ′α = γαNαZαζ

− γα
∑
β

MαMβ

Mα +Mβ
εαβ (NβΓα −NαΓβ)

−Mα
Γα
Nα

γα
∑
Rα

GRαNR1NR2εR

(3.7)

In the last step used to obtain (3.7), a normalised electric field, ζ, was introduced,

as defined by (3.8). The normalised flux was also used to eliminate the particle velocity,

as the particle conservation equation (3.6) is in terms of fluxes; velocity is not used

elsewhere.

E =
kBTe
e

nfK0

uB
ζ (3.8)

The expressions given in (3.6) and (3.7) can be built into a system that describes the

behaviour of the densities and fluxes of an arbitrary number of species across a region

of space. The equations are coupled between species through the collision terms; the

densities through both elastic and reaction collisions, whereas the fluxes are directly

coupled only through creation and destruction mechanisms. There is also a coupling

between charged species densities through the electric field, as shown below.

The use of Poisson’s equation is known to adversely affect the numerical complexity

of fluid models by introducing a high level of stiffness into the equation set, which

requires more complicated numerical solvers and smaller step sizes than a non-stiff

equation set [105]. To avoid this, Poisson’s equation is discarded and a different electric

field term is used. This electric field is obtained from (3.7) and the quasineutrality

condition (3.9). By collecting terms that are independent of the electric field, so that

(3.7) becomes N ′α = ZαγαNαζ + Cα, it is straightforward to derive an ‘equilibrium’

electric field, given in (3.10). This field can be explained as the electric field necessary

to counteract all of the forces acting on the charged species, in order to maintain

quasineutrality, as would be expected in an equilibrium system. This expression, like

(3.6) and (3.7) can be applied to an arbitrary number of species.

∑
α

ZαNα = 0 (3.9)

∑
α

ZαN
′
α = 0

∑
α

Z2
αγαNαζ +

∑
α

ZαCα = 0
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ζ
∑
α

Z2
αγαNα = −

∑
α

ZαCα

ζ =

−
∑
α
ZαCα∑

α
Z2
αγαNα

(3.10)

Further to the expressions used in the system of differential equations, there are a

handful of other useful expressions that arise from the assumption of a time averaged

quasineutral plasma. As well as the aforementioned quasineutrality, the total current

through the system must be zero at all locations, otherwise a charge imbalance would

arise. Similarly, to prevent a net change in the mass contained in the system, the mass

flow of species must also sum to zero. These two concepts can be expressed in terms of

species fluxes, and are named current (3.11) and mass conservation (3.12) respectively.

∑
α

ZαΓα = 0 (3.11)

∑
α

MαΓα = 0 (3.12)

3.2 Parameter Specification

In order to obtain solutions for a system built using these equations, which is to be

done numerically as previously discussed, one must obtain numbers for each of the

remaining quantities. The species densities and fluxes require values provided by the

boundary conditions. Values or expressions must also be determined for those variables

that are not accounted for in the integration. The particle mass (mα) and charge (Zα)

are simply determined by the species included in the model, but the rate coefficients

for elastic collisions and chemical reactions, Kαβ and KR respectively, will need to be

obtained from literature values for the specific reactions, and may be energy dependent.

Temperatures for species will need to be estimated, or used as controls for the model,

depending on the species.

3.2.1 Boundary Conditions

In order to perform a numerical integration, boundary conditions need to be specified.

The densities and fluxes of each species each require a definition for at least one point

in space. The species fluxes are simple to define: symmetry across the discharge centre

requires that the species fluxes be zero at the centre. As the system being investigated
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Figure 7: Isothermal model boundary conditions. Central plasma conditions are on
the left, edge values are on the right.

is symmetric, any non-zero flux across the centre would represent a deviation from

equilibrium, which does not agree with the assumption of time averaging. The species

densities are not prescribed by symmetry or other assumptions made, however at this

point it is useful to recognise that the definition of electronegativity is still valid, and

that it can be used to reduce the boundary conditions that are required. Thus the

central densities of the three species are determined through the normalised central

electron density and the electronegativity. These conditions are demonstrated in fig-

ure 7, which also shows that the species fluxes have specified values at the edge, as is

discussed below.

An unfortunate side effect of the normalisation scheme is that, due to the decoupling

of the physical discharge parameters, the spatial extent of the plasma is not known until

the edge boundary conditions are met. As the system edge is the start of a sheath,

then the obvious measure for detecting this point is the Bohm criterion, which specifies

the positive ion velocity at the boundary between the bulk and sheath, as discussed in

Section 2.1. This then allows the specification of the ion flux at the outer boundary.

As the negative ion flux is assumed to be zero at this point (see below), then one can

also state boundary values for the electron and neutral fluxes through the current and

mass conservation equations.

As the system to be modelled is fully quasineutral, only the bulk plasma is consid-

ered, and integration stops at the sheath edge. If one combines this with the knowledge

that the negative ion flux is always towards the centre due to the confining potential

that exists, and that no negative ions are produced in the sheath, then the negative ion
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flux must be zero at the sheath edge. This does not mean that the negative ion flux is

always zero at the system edge; non-negligible negative ion fluxes have been reported

in a variety of real and theoretical systems [106–111]. However the assumptions applied

to be able to effectively solve the model preclude these system from being described by

this model.

Due to having boundary conditions at both the centre and edge of the system, the

negative ion flux is overdetermined, and its edge boundary condition can be used to

determine a value for the central electronegativity, which would otherwise be a free

parameter. The normalised central electron density is to be used as a control variable

for the model, as the relative plasma density is an important parameter in physical

systems.

Through the collection of boundary conditions described above, and from examina-

tion of the equation set built using (3.6) and (3.7), it is apparent that the model requires

the specification of only the temperature of each species and the central normalised

electron density.

Up to this stage in the development of the model, the system has remained general,

and applicable to any chosen set of species. In order to provide values for the particle

properties and the reaction rate coefficients, one must choose the species to be modelled

and the reactions between them.

3.2.2 Species and reaction selection

In order to test the model under development, a relatively simple test case gas is de-

sired, one that provides negative ions but can be well described with a minimum of

other required species, and is also well studied so that the necessary literature values

are available and comparisons can be drawn with previous work. Oxygen fits all of

these requirements, and is additionally relevant for a number of industrial processes,

such as sterilisation, growth of metal oxide films, or modification of surface work func-

tions [112–114]. The properties of an oxygen plasma can be moderately well described

by considering only the dominant ionic species O+
2 and O− [13]. However, one must

also take into account the effects of one of the molecular excited states, O2

(
1∆g

)
,

which takes part in a number of the dominant reactions [115]. It is an important re-

action partner for the O− negative ion, and an additional ionisation pathway for the

creation of O+
2 . Unfortunately, as O2

(
1∆g

)
is influenced heavily by wall interactions,

it is not possible to include it as a self consistent fluid in the model. To provide a
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Table 2: Reaction set to be used for modelling of an oxygen discharge

Code Reaction Process

I O2 + e− → O+
2 + 2e− Ionisation

IM O2 + e− → O− + 1
2O2 Dissociative attachment

EN O+
2 + e− → O2 Electron attachment

neutralisation
ED O− + e− → 1

2O2 + 2e− Electron impact
detachment
neutralisation

SI O2

(
1∆g

)
+ e− → O+

2 + 2e− Ionisation
SB O2

(
1∆g

)
+ e− → O− + 1

2O2 Dissociative attachment

MN O+
2 + O− → O2 + 1

2O2 Mutual Neutralisation

SD O2

(
1∆g

)
+ O− → O2 + 1

2O2 + e− De-excitation detachment

eg O2 + e− → O2 + e− Momentum transfer

ig O2 + O+
2 → O2 + O+

2 Momentum transfer

ng O2 + O− → O2 + O− Momentum transfer

value for the fractional density of O2

(
1∆g

)
, fs = n̄O2(1∆g)/n̄O2 , data taken from a full

fluid model [116] was analysed for a range of conditions. It was found that a simple

polynomial fit as a function of Te well described the behaviour of the O2

(
1∆g

)
density

fraction, as it varied between 10% and 30%.

The restriction to these particular species also removes additional excited states of

O2, atomic oxygen and associated excited states, ozone (O3), and other ionisation states

of these species. By further assuming that the model applies to low pressure systems,

and so three body collisions can be neglected, the set of reactions for oxygen is reduced

from 117 to just 11 [117], which are shown in table 2. Some of these reactions generate

atomic oxygen, the behaviour of which is also dominated by wall interactions. As wall

interactions are not considered, the product of these reactions is instead represented

as 1
2O2.

3.2.3 Reaction Rate Coefficients

In order to include the reactions listed in the model, one needs to obtain values that

can be used to describe them. As discussed in Section 2.3, values for reaction rate

coefficients are not always simple to obtain. As the primary focus of this work is

currently model development and comparability, the reaction rate coefficients to be used

are obtained in a similar manner to those used in [13], with rate coefficients for reactions

involving electrons calculated using BOLSIG+, as discussed in Section 2.3.3. The
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Figure 8: Dependence on mean electron energy of reaction rate coefficients for reac-
tions involving electrons.

output from the program is tabulated values of reaction rate coefficient as a function of

mean electron energy. It is possible to then estimate the value of these rate coefficients

for any value of mean electron energy by interpolating between two known values.

However, interpolation from a table is significantly more computationally expensive

than evaluating a function. It was found that all of the rate coefficients could be well

estimated, to within roughly 1%, by the function given in (3.13), where the coefficients

aR,n are found through linear regression in logarithmic space.

KR = exp

[
9∑

n=1

aR,n ln (Te)
n−1

]
(3.13)

Reactions between heavy species can be estimated through assuming a Maxwellian

EDF, and values for these have been taken from the literature. Some, such the mutual

neutralisation coefficient [118], are easy to find, but others require a significant amount

of searching. The set of rate coefficients used in the model are given in table 3, and

those listed as a function of electron energy are plotted in figure 8. The coefficients

used by the model to recreate these curves as a function of Te can be found in table 4.

At this stage it is useful to specify the species temperatures as Ti = Tn = Tg =

300 K, and Te as a control parameter.
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Table 3: O2 reaction rate coefficients to be used in the isothermal model. Tg in Kelvin.
f (Te) indicates RRC estimated from function fitted to tabulated data.

Code Reaction RRC (m3s−1) Reference

I O2 + e−→O+
2 + 2e− f (Te) [119]

IM O2 + e−→O− + 1
2O2 f (Te) [120]

EN* O+
2 + e−→O2 f (Te) [82, 120]

ED O− + e−→ 1
2O2 + 2e− f (Te) [120]

SI O2

(
1∆g

)
+ e−→O+

2 + 2e− f (Te) [117]
SB O2

(
1∆g

)
+ e−→O− + 1

2O2 f (Te) [121]

MN O+
2 + O−→O2 + 1

2O2 2× 10−13
(

300
Tg

)
[118]

SD O2

(
1∆g

)
+ O−→O2 + 1

2O2 + e− 3× 10−16
(
Tg
300

)0.5
[117]

eg O2 + e−→O2 + e− f (Te) [119]

ig O2 + O+
2 →O2 + O+

2 1× 10−15
(
Tg
300

)0.5
[117]

ng O2 + O−→O2 + O− 2× 10−15 [122]

* Recombination to excited state and subsequent de-excitation is consid-
ered but not explicitly included.
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Table 4: Fitting coefficients aR,n from (3.13) for reactions that are a function of Te, given to 5 significant figures.

Code
n

1 2 3 4 5 6 7 8 9

I -0.047732 0.93623 -7.2361 27.384 -49.657 30.313 4.9540 36.203 -95.053

IM -0.0060283 0.11377 -0.82932 2.851 -4.2799 1.1865 0.76977 5.7634 -44.443

EN 0.00056304 -0.011162 0.087716 -0.34414 0.68838 -0.57155 -0.25464 -0.27301 -30.937

ED -0.00057099 0.012191 -0.10469 0.45519 -1.0201 1.0269 -0.54625 2.4233 -34.404

SI -0.035885 0.69742 -5.3128 19.589 -33.475 15.708 6.6035 36.267 -89.567

SB -0.0014788 0.025949 -0.16598 0.40976 0.08844 -1.8681 0.73798 4.7871 -40.999

eg 0.00046639 -0.0091317 0.06973 -0.25547 0.42606 -0.17783 -0.19301 0.64854 -31.011
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3.3 Numerical Solution

The model as described so far gives a description of the featured properties for a region

of space between the discharge centre and the sheath. As mentioned previously the

equations require solution through numerical methods, and so this region must be

discretised. There is a choice between two families of solution methods, as the model is

currently suitable for integration as either a BVP or IVP. Formulation as a BVP would

allow a reasonably simple solution through discretisation, but this faces the same long

execution time as a full fluid model. Solving the system as an IVP gives the potential

for a greatly reduced integration time, at the expense of a more complicated numerical

scheme. As one of the main motivations for this model is fast computation, the ability

to solve as an IVP is valuable. This section details the numerical considerations and

algorithms required to solve the system as such.

3.3.1 Numerical Integration Method

Many tools are available to perform initial value integration of systems of first order

ordinary differential equations, as the problem is one faced by many disciplines. Ded-

icated applications exist, as do libraries for a large variety of programming languages

and environments. Due to its flexibility, availability, and reputation, the numerical

schemes are developed in MATLAB. For numerical integration, the ode113 routine

in MATLAB 7.14 [123] is used, which employs a predictor-corrector, linear, variable

order, multistep solver (Adams-Bashforth-Moulton method [124]). See Section 2.5 for

more details on numerical integration methods.

The boundary conditions specified in figure 7 indicate that the integration as an

IVP is best performed spatially from the centre of the discharge to the sheath edge.

Despite not being solved as a typical boundary value problem, it is still highly beneficial

to have known system bounds. However, as previously mentioned, the physical size

of the plasma is not known before the integration is complete. Thus in order to have

definitive integration bounds, a different coordinate must be used. The only variable

known to be monotonic over the discharge, and have defined centre and edge values for

all discharge conditions, is the normalised positive ion velocity, Vi = Γi/Ni. As shown

in figure 7 and discussed in Section 3.2.1, the sheath boundary is determined by the

point at which the positive ions reach the Bohm velocity. As velocities are normalised

to this value, the integration bounds are determined by Vi = 0 at the centre, and Vi = 1

at the edge. This change is effected by simply dividing the calculated gradients by V ′i
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(3.14) and including an extra variable, with a spatial derivative of 1, to track the true

spatial coordinate.

V ′i =

(
Γi
Ni

)′
=
NiΓ

′
i − ΓiN

′
i

N2
i

V ′i =
Γ′i − Γi (lnNi)

′

Ni
(3.14)

It is worth noting that despite there existing a modified Bohm criterion for elec-

tronegative plasmas [29], it is derived by assuming that both negative ions and electrons

are in Boltzmann equilibrium with the plasma potential (see Section 2.1), and that neg-

ative ions are present at the sheath edge. As neither of these assumptions hold in this

system, the modified Bohm criterion is not considered here.

A further change to the integration scheme is made by transforming the equations to

describe the natural logarithm of density values. This is done to improve the numerical

stability of the integration, due to the occasionally large differences between density

values, and also prevents overshoot to negative density if the automatic step size is

too large. To make this change, (3.7) is divided by the species density to provide the

logarithmic derivative, and then (3.6) and (3.7) are updated to accept Lα = ln (Nα) as

arguments, as shown in (3.15) and (3.16).

Γ′α =
∑
Rα

GRαεR exp (LR1 + LR2) (3.15)

L′α = γαZαζ

− γαe−Lα
∑
β

MαMβ

Mα +Mβ
εαβ

(
eLβΓα − eLαΓβ

)
−MαΓαe−LαγαΓ′α

(3.16)

3.3.2 Electronegativity Minimisation

As shown in figure 7, the negative ion flux (Γn) is required to be zero at the sheath

edge, that is Γn,L = 0, where L refers to edge values. As symmetry dictates also

that Γn,0 = 0, it is the species densities that have control over whether or not this

edge boundary condition is met. As mentioned above, Γn,L is controlled indirectly

by the central electronegativity α0. It is therefore necessary to repeat the integration

with different values of α0 and minimise the value of |Γn,L|. Unfortunately, due to
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Figure 9: Example of how the edge value of negative ion flux depends on the central
electronegativity. At the limit of double precision, there is a jump discontinuity close
to, but not at, Γn,L = 0. Finding the root of this function through the use of gradients
or fitting would most likely fail.

the highly non-linear characteristics of the equation system, the parameter space of

α0 and Γn,L is not trivial, and can contain steep gradients and discontinuities, as

demonstrated in figure 9. Thus standard root finding routines often fail to converge, or

are impractically slow. In order to have an automatic solution, a custom root finding

algorithm is required.

The algorithm starts with a very low value (10−2) for the electronegativity, which

is increased until two values are found that bracket the solution. From here, the

algorithm progresses using minimisation by bisection, with a variety of integration

outputs being used to indicate in which direction the minimisation should progress to

avoid the discontinuities. The routine continues until either |Γn,L| < 10−10 × Γi,L or

the value of α0 is specified to the working numerical precision. Relating the negative to

positive ion flux means that the minimisation tolerance is expressed as a relative value,

enabling the same value to be used regardless of the input conditions. This proves to

be a robust method for a large range of input conditions.

3.3.3 Perturbations

Despite the minimisation routine being able to give the required α0 to the limit of

double precision (approximately 15 significant figures), there are still cases where the

highly non-linear nature of the equations prevents the condition Γn,L = 0 from being

met to an acceptable level, through an inability to specify a precise enough α0.

Each set of initial conditions can be considered the starting point for a trajectory
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Figure 10: Demonstration of the concept of using perturbations to overcome sensitiv-
ity in initial conditions in computational systems. Points show the discretised starting
conditions, and the bold line is numerical path taken.

in the full parameter space, approximated by the numerical integration process. Under

certain conditions, these trajectories are highly divergent, and those that meet the

edge boundary conditions may differ in their initial state from those that do not by

an impractically small amount. To access these trajectories one of two things must

happen. One could increase the working precision of the integration, allowing access

to more initial trajectories. Although this is a rigorous solution, it drastically increases

the computation time. The alternative is to join the desired trajectory at a later point

in the integration, when the difference between them in parameter space is large enough

to be resolved at the working precision, as shown in figure 10.

Thus the trajectories are accessed part way through the integration, through small

perturbations to the ion densities, on the order of ∆N/N ≈ 10−7. A bisection type

search is performed on the best solution found using the α0 minimisation by applying

a small increase to the positive and negative ion densities, equal to d × Nn, where

d0 = 10−7, at integration output points until the last point is found that does not

change the sign of Γn,L. From here a second bisection is performed on d until either

(Nn + d×Nn) is specified to double precision or the tolerance on |Γn,L| is met, which

is 10−10 × Γi,L as mentioned above. In the case that (Nn + d×Nn) is specified to the

limit of double precision without the condition on Γn,L being met, then the perturbation

process is repeated. An example of this process is given in figure 11.

The perturbation of order 10−7 is smaller than or comparable to the change in

densities between each integration step, so the effect on the final solution compared

with increasing the working precision is negligible.
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Figure 11: Example of the perturbation process. Shown in (a) are the charged species
densities profiles with α0 specified to the limit of double precision, but with Γn,L 6= 0.
In (b) a single small perturbation is applied, increasing the ion densities by roughly
one part in 107. The downstream effect of this small change is clear.

3.4 Results

When creating a model, being confident of the assumptions, analytics, and numerics

behind it does not guarantee that the results from it are correct or even sensible. To

make judgements on this, the model must be used to generate outputs, and these

outputs analysed. This process will be started by investigation of the model outputs

from a single set of input conditions, chosen to represent typical operating parameters

found in the literature [49, 82, 86, 125, 126]. From the inputs, profiles of densities and

fluxes are calculated as described, and these are shown in figure 12.

3.4.1 Typical Conditions

The first thing that one may notice in these plots is that there are two distinct regions

in space. From the centre, charged species densities, given in figure 12(a), are approx-

imately parabolic, but there is then a transition into some sort of presheath structure.

This behaviour was described by [67], and fits in with their idea of a collisional elec-

tronegative plasma where the negative ion behaviour is dominated by electron detach-

ment, as opposed to recombination processes. For the discharge shown, the maximum

mean free paths, as a fraction of the discharge length, of the positive and negative ions

are 1.5 % and 0.73 % respectively, and for the electrons it is 8 %. This shows that the

discharge is collisional, and it can also be shown through analysis of the reaction rates

that this particular plasma falls within the detachment dominated regime.

Further examination of these plots shows that all of the boundary conditions de-

tailed in figure 7 are met, and that the conservation laws (3.11) and (3.12) hold. These
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Figure 12: Normalised species densities (a) and fluxes (b) for the isothermal model,
with input parameters of Te = 4 eV and Ne0 = 3.3× 10−7. The spatial coordinate has
been normalised for ease of understanding.

can also be confirmed numerically. When looking at the species fluxes, it could be

interpreted that the electrons are retarded as they approach the edge, which would

contradict the usual understanding of the electrons and positive ion streaming out

from the discharge centre. In fact, the steady decrease in electron density means that

the electron velocity is monotonically increasing across the discharge.

3.4.2 Multiple Inputs

The results from a single set of inputs are encouraging, but the model must also be

able to handle a large range of discharge conditions. For this reason, a selection of

results were calculated for a number of different electron temperatures and densities;

these are given in figures 13 to 15.

Looking first at the plots of density, in figure 13, it is shown that the change in

electron temperature has the largest impact. Increasing the electron density by four

orders of magnitude has very little effect on these results. The profiles taken with Te =

3.8 eV are similar to the density shown in figure 12, with an approximately parabolic

trajectory for each species, and a small transition region at the edge. In fact, the

densities for the lower electron density (Ne0 = 1 × 10−10) are closest to parabolic;

the profiles given in figure 13(b) have been influenced by the increase in the electron

density, and the densities do not fall as rapidly as those with lower Ne0.

Turning to the effect of increased electron temperature, there is a dramatic change

in the density profiles, and the electronegativity has increased markedly. Instead of

all three charged species decreasing together, the electron density is roughly constant,

and ion densities drop until the negative ion density is very low. Then there is a
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Figure 13: Normalised species densities for different values of electron temperature
and density. Te = 3.8 eV in (a) and (b), and 5 eV for (c) and (d). Ne0 = 1× 10−10 in
(a) and (c), and 1.4× 10−6 for (b) and (d).

change in behaviour, and the electron density drops off while the negative ions slowly

decay to zero. Looking back to [67], this adheres to their description of the difference

between ‘structured’ and ‘non-structured’ discharges. The ‘structure’ being referred to

in this instance is the separation of the plasma bulk into an electronegative core, and a

(mostly) electropositive edge region. They use the ratios of the positive and negative

ion mobilities and production rates to determine a dimensionless numerical measure of

the degree of structuring that should occur. The results presented so far all agree with

this measure, and fall the appropriate side of the structured/non-structured boundary.

Turning to the results for the particle fluxes, given in figure 14, the interpretation

of these plots is found to be more abstract than for the species densities. In the

‘unstructured’ results, parts (a) and (b) of figures 13 and 14, there is again the sudden

transition into a presheath, but this time the effect of the change in electron density

is clearer. Although the numerical values for the initial flux gradients are greater in

figure 14(b) than in figure 14(a), as the plasma density is higher, they are lower relative

to the rest of the discharge. This could be due to the plasma density remaining higher

for further, and so increasing the flux gradients later in the integration.
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Figure 14: Normalised species fluxes for different values of electron temperature and
density. Te = 3.8 eV in (a) and (b), and 5 eV for (c) and (d). Ne0 = 1 × 10−10 in (a)
and (c), and 1.4× 10−6 for (b) and (d).

This is in contrast to the results for the structured discharge, given in figures 14(c)

and (d), where, like the density results, the two sets of profiles are qualitatively almost

indistinguishable. This identical behaviour despite the electron density differing by

four orders of magnitude can be attributed to the high electron temperature drastically

increasing certain rate coefficients. The system behaviour is then determined more by

the reactions between electrons and neutrals than those between charged particles,

so increasing the plasma density has a smaller impact on the relative creation and

destruction rates than similar changes at a lower electron temperature. Also worth

noting is that although the negative ion density is very small from a normalised position

of 0.6 onwards, the magnitude of the negative ion flux is still quite high. This indicates

that the velocity of negative ions is large in the outer section of the plasma, and is

explained by a confining potential that accelerates any negative ions that are created

outside of the electronegative core.

Further to the predictions of [67], qualitative agreement can be shown with ex-

perimental results. For the results with high electron temperature given in figures 13

and 14, the ion density profiles match well qualitatively with the low pressure results
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Figure 15: Normalised species densities (a) and fluxes (b) for Te = 5 eV and Ne0 =
1× 10−4.

from [127].

When gathering the example results given in figures 13 and 14, it was discovered

that at Te = 3.8 eV, it was not possible to obtain a result for a relative electron

density of greater than 10−6. However, it was possible at Te = 5 eV, the results of

which are shown in figure 15. Comparing this result to figures 13(d) and 14(d) it

is clear that the increase in electron density now has an effect. Although the flux

behaviour is similar, the density profiles are notably different. In particular, although

the ‘structured’ behaviour remains, the electronegativity is lower, and similar to that of

the low electron temperature examples. This indicates that at higher plasma densities,

changes to the density can cause changes to the behaviour of the system, in contrast

to low electron density where such properties are almost wholly dependent on the

electron temperature. However, further insight requires a more detailed investigation

to be carried out, which will also provide more information on the inability to solve for

certain conditions.

3.4.3 Parameter Sweep

One of the main advantages of the semi-analytical model is the short time taken to

provide a solution. This means it is possible to conduct a detailed investigation of

behaviour over a large range of input parameters in a practical amount of time. An

automated sweep across a wide range of electron densities and temperatures was per-

formed, with 2000 individual runs of the model taking an average of 60.4 seconds per

run, although the majority of runs took less than 26 seconds. This disparity will be

discussed later. The relative electron density was varied logarithmically from 10−10 to

10−2, and the electron temperature linearly from 3.5 eV to 7 eV. In order to investigate
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Figure 16: Behaviour of central electronegativity as a function of electron density
and temperature input to the isothermal model.

the behaviour of the model over such a broad range, it is useful to designate single nu-

merical values that can provide insight into the characteristics of each run. The central

electronegativity (α0) is known to be non-trivially altered by both input parameters,

and so this has been plotted as a function of the input parameters in figure 16.

There are two features of this plot that are immediately apparent. One is that

the lack of solution at high electron density and low electron temperature has a clear

boundary, but not a trivial shape. The other obvious feature is that there is a maxi-

mum in electronegativity at a certain electron temperature of roughly 5.6 eV. A third

important feature, but one that does not stand out as much, is that the electronega-

tivity exhibits differing behaviours either side of a relative electron density of around

10−6.

If one refers to the profiles of species fluxes, it is clear that the positive and negative

ion fluxes, Γi,0 and Γn,0, are always positive and negative, respectively. The same is

true of their respective initial gradients, Γ′i,0 and Γ′n,0. Through investigation of the

initial conditions, it becomes clear that if either Γi,0 < 0 or Γn,0 > 0 then the numer-

ical integration rapidly deteriorates to a situation that is unphysical, often through a

collapse or explosion of densities. It can be said that the central flux gradients must

adhere to the inequalities Γi,0 ≥ 0 and Γn,0 ≤ 0, otherwise the initial conditions are

unphysical for the assumptions that build this model.

From (3.6) and table 2 it is possible to give expressions for both Γ′i,0 and Γ′n,0 as a

function of the initial conditions Te, Ne0, and α0. These are given in (3.17) and (3.18),
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where the dependence on Te is through the values for reaction rate coefficients.

Γ′i,0 = (1− fs)Ng,0Ne,0εI −Ni,0Nn,0εMN −Ni,0Ne,0εEN + fsNg,0Ne,0εSI (3.17)

Γ′n,0 = (1− fs)Ng,0Ne,0εIM −Ni,0Nn,0εMN −Nn,0Ne,0εED

− fsNg,0Nn,0εSD + fsNg,0Ne,0εSB

(3.18)

Each of these two expressions can be rearranged into an inequality that is quadratic

in α0, using Ng = 1. Nn = α0Ne, and Ni = (1 + α0)Ne, as given in (3.19) and (3.20).

(1− fs)Ng,0Ne,0εI −Ni,0Nn,0εMN −Ni,0Ne,0εEN + fsNg,0Ne,0εSI ≥ 0

(1− fs)Ne,0εI − (1 + α0)α0N
2
e,0εMN

− (1 + α0)Ne,0εEN + fsNe,0εSI ≥ 0

[(1− fs)Ne,0εI + fsNe,0εSI −Ne,0εEN ]

− α0

[
N2
e,0εMN +Ne,0εEN

]
− α2

0N
2
e,0εMN ≥ 0

[(1− fs) εI + fsεSI − εEN ]− α0 [Ne,0εMN + εEN ]− α2
0Ne,0εMN ≥ 0 (3.19)

(1− fs)Ng,0Ne,0εIM −Ni,0Nn,0εMN

−Nn,0Ne,0εED − fsNg,0Nn,0εSD + fsNg,0Ne,0εSB ≤ 0

(1− fs)Ne,0εIM − (1 + α0)α0N
2
e,0εMN

− α0N
2
e,0εED − fsα0Ne,0εSD + fsNe,0εSB ≤ 0

[(1− fs)Ne,0εIM + fsNe,0εSB]

− α0[N2
e,0εMN +N2

e,0εED + fsNe,0εSD]− α2
0N

2
e,0εMN ≤ 0

[(1− fs) εIM + fsεSB]

− α0[Ne,0εMN +Ne,0εED + fsεSD]− α2
0Ne,0εMN ≤ 0

(3.20)

As each of the expressions (3.19) and (3.20) contain simple quadratics, it is easy

to find the roots of the associated equations as functions of electron temperature and

density. It is found that (3.19) provides an upper bound, and (3.20) a lower bound

on the possible values of α0. As the electron temperature and density change, these

bounds shift independently. In some cases they cross, meaning that there is no physical

value of α0 that meets both inequalities. If a detailed search is performed on where

this occurs, it is found that the electron density-temperature parameter space is split

into two regions. The boundary between these two regions is plotted over the previous

parameter sweep results in figure 17.
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Figure 17: Behaviour of central electronegativity as a function of electron density
and temperature input to the isothermal model, including the theoretical boundary of
validity.

It is clear that this theoretical restriction plays a large role in determining where

solutions to the model exist, but also that it does not give the full picture. The stepping

that is evident in the electronegativity results and some of the discrepancy between the

edge of the solutions and the theoretical limit can be explained by the comparatively

coarse stepping used in the parameter sweep. It may also be partly due to the different

method of calculation used in the root finding of (3.20) compared with in the model.

As some reaction rates differ by many orders of magnitude, numerical artefacts can

be caused by performing calculations in a different order, leading to a difference in

the reported root. However, at the low electron densities and temperatures, there is a

discrepancy that cannot be explained by these effects.

It is possible to explain the issues at the lowest electron temperatures through a

numerical issue, rather than a theoretical one. As the electron temperature decreases,

the value of α0 that gives the correct Γn,L moves closer to the lower bound given by

(3.20). This means that for a given electron density, the absolute value of Γ′n,0 at

the correct value of α0 decreases as one decreases the electron temperature. On top

of this the magnitude of the gradient dΓ′n,0/dα0 increases with decreasing electron

temperature. These two effects compound into a dramatically increased sensitivity to

initial conditions at the lower electron temperatures. This can be seen in figure 18.

Shown is the negative correlation between the computation time needed, which is

indicative of the number of perturbations required, and the distance of the ‘correct’ α0

from the lower bound from (3.20).
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Figure 18: Scatter plot demonstrating the negative correlation between the compu-
tation time of the isothermal model and the distance between the final value of α0 and
the lower bound. The Pearson correlation coefficient between the logarithms of the
two variables is -0.820, indicating a strong negative correlation. Data is taken from the
same model runs as figure 16.

As an explanation for the lack of solution at values of Te lower than 3.3 eV, as the

sensitivity increases, the computation time is indicative of the computational difficulty

of finding the correct solution. Thus as the electron temperature drops below about

3.5 eV, the computational difficulty starts to increase dramatically, before the solver

automatically terminates the execution due to the excessive computation time. There

is also the question of how many perturbations can be applied before the result starts

to deviate from the actual solution.

A similar situation is observed at higher values of Te if the electron density causes

one to approach the limit of validity shown in figure 17. Closer to this line the sensi-

tivity and computational complexity increase, and so the model is unable to provide

solutions that are close to it in parameter space. This dramatic increase in compu-

tational difficulty also explains the previously mentioned disparity between the mean

and median of the execution times for this data.

With the parameter space irregularities explained, it is now desirable to investi-

gate the actual behaviour of the electronegativity across the valid parameter range. A

cursory observation of the electronegativity values shows that at low electron densi-

ties, α0 depends almost exclusively on the electron temperature. At higher electron

densities, this situation is reversed, and most of the dependence is on electron density.

At the lower electron densities, there is also a clear maximum in electronegativity at
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Te ≈ 5.6 eV, though this disappears as the behaviour of α0 changes to depend on Ne0.

The explanation of the change in behaviour is that at low ionisation fractions, the

negative ion destruction pathways involving neutral species dominate many times over

those between charged particles only. However, as one increases the ionisation fraction,

reactions between charged species start to become important. This then elicits a mode

transition such that destruction of negative ions through collisions with positive ions

and electrons starts to noticeably alter the dominant reactions of the system, at an ion-

isation fraction of around 10−6, causing a reduction in electronegativity with increasing

electron density. The change in behaviour is over too wide a range of conditions to be

observed in a typical experiment, however an inverse trend of electronegativity with

input power has been demonstrated [128], along with the expected positive trend of

electron density with input power.

Turning to the relationship between α0 and Te, there is a clear maximum at the

lower electron densities. Through analysis of the behaviours of the various reaction

rates and how they influence the electronegativity, it is found that there is a concurrent

minimum in the expression for fs, the fractional density of O2

(
1∆g

)
, which is entirely

responsible for the maximum shown in figure 16. As reported in [116], the precise

density of O2

(
1∆g

)
is highly dependent on specific discharge properties, such as the

surface loss probability. As O2

(
1∆g

)
is an important destruction pathway for O−,

the electronegativity is also affected in this manner, particularly when the rate of

destruction through electron impact detachment is small due to a low electron density.

Due to this sensitivity, and because the maximum in electronegativity is solely due to

the density of O2

(
1∆g

)
, it is not clear whether or not this maximum should exist, or

if it is an artefact of the model itself.

It is reported in [129] that the electronegativity should decrease with increasing

system pressure, although these results were obtained from a PIC model that does

not self consistently solve for the O2

(
1∆g

)
density, but assumes it is constant. As

shown in figure 19, the electron temperature is strongly negatively correlated with the

system pressure-length product, which is consistent with both simple theoretical de-

scriptions [19] and experimental results [45]. Thus the increase of electronegativity

with increasing Te would be consistent with the findings of [129], which can be seen

between electron temperatures of 3.3 eV to 5 eV. As temperatures above this range are

beyond the scope of the empirical relation used for the density of O2

(
1∆g

)
, the results

for electronegativity at higher electron temperatures above around 5.5 eV, particularly
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Figure 19: Behaviour of system pressure-length product as a function of electron den-
sity and temperature for the isothermal model. The contours are spaced logarithmically
to capture the large variation.

those having Ne0 ≤ 10−6, are considered incorrect. This is conformant with the gen-

eral inability of fluid models to provide accurate results at low pressures, due to the

breakdown of the assumption of high collisionality.

The predictions of simple theoretical treatments of plasmas state that in a physical

system, Te is determined by the system pressure-length product, and ne by the input

power density. The power deposition into the plasma is not considered in this model,

so the second prediction is moot. Looking in more detail at figure 19, it is clear that

although the first prediction broadly holds, there is some dependence of p · L on the

electron density, most noticeably at higher values of Ne0, and as one approaches the

limit of possible solutions discussed previously. This can again be attributed to the

self interaction of the plasma as the charged species density increases, which is not

considered in the theoretical predictions.

3.5 Conclusions

In order to demonstrate the inaccuracies of the isothermal model, detailed data was

obtained from a full fluid model [13] to compare against (see Appendix A for more

details). The relative electron density and mean electron energy from a set of data

from the full fluid model was used to perform a run of the isothermal model, and the

gas density from the full fluid model was used to unravel the normalisations in the

results. The absolute charged species densities of each model are given in figure 20.
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Figure 20: Comparison of charged species density profiles from (a) the isothermal
model and (b) a full fluid model for a relative electron density of 6.15×10−8 and mean
electron energy of 3.56 eV.

As the full fluid model includes a great deal more information, including space

charges, time resolution and no assumptions on isothermality of the electrons, the

large differences between the two results shows that the isothermal model performs

poorly. Although the electronegativity differs by less than 10 %, the rest of the density

information disagrees. In particular, the full fluid model has profiles that are far from

parabolic, and actually non-monotonic. There is also a difference in the spatial scale

of the two models. In the full fluid model, solution is through a boundary value

integration, and so the spatial extent is prescribed. Although the inclusion of space

charges means that the discharge length of the semi-analytical model will be different

compared with the full fluid model, it should be smaller due to the space taken by the

sheath, and not greater as shown in figure 20(a).

Despite the results obtained from this isothermal model appearing mostly sensible,

there is still a disparity between the model results and those given in experiments and

other models. Qualitative agreements are hard to come by, and quantitative agreements

do not exist.

When investigating the literature for experimental results to compare against, data

was found for the spatial profile of electron temperature, in a discharge that has condi-

tions that fall within the remit of the isothermal model [130]. Experiments and models

have shown that the electron temperature in this type of discharge is far from constant,

and can vary by a few eV across the discharge [36, 131, 132]. This can also be seen

in results from the full fluid model. If one looks at how a few eV affects reaction rate

coefficients, as given in figure 8, it is clear that a few eV could change reaction rates

by multiple orders of magnitude. In particular, the ionisation rates for the creation of
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O+
2 are very strongly affected by small changes in electron temperature in the region

of 3 eV to 4 eV.

Despite the obvious inaccuracies of the isothermal model, the fact that the results

are not preposterous shows that the theoretical and numerical procedures used are

valid, and that it is the assumptions that require changing. This is presented in the

next chapter.



Chapter 4

Non-Uniform Electron

Temperature

In the previous chapter, it was shown that while it is possible to create an isothermal

model of an electronegative plasma, the results do not elicit great confidence. This is

partly as, in reality, the temperature of the electrons is far from constant in space or

time, and so an isothermal approximation is not valid. In this chapter, the extension

of the model to provide a self-consistent evaluation of the spatial profile of electron

temperature will be demonstrated. Discussions of electron heating and power deposition

effects will take place, and the effect on the solutions when compared to the isothermal

model will be examined.

4.1 Equation Development

The plasma being described in this chapter, and the assumptions made, are otherwise

the same as is detailed in Chapter 3, and so the representations of the zeroth Boltzmann

moment are the same as given in (3.3). However, as the assumption of isothermal

electrons has been removed, there are differences to consider. For the first moment

of the Boltzmann equation, the inclusion of an electron temperature gradient means

that when simplifying the pressure term in (3.2), a temperature gradient term emerges

and must be included on the RHS of (3.4). As mentioned in Section 2.4.4, it is also

important to consider the effect that the spatially varying temperature has on elastic

collisions. As the electron-neutral elastic collision rate coefficient is energy dependent,

a gradient in electron temperature will also create a gradient in elastic collision rate.

This results in a spatially varying mean free path, and so particles travelling in opposite

82
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directions, but otherwise identical, will experience different number of collisions, and

so there will be a net effect on the average particle momentum.

Crucially, there is now an additional equation for the electron energy balance, the

full form of which is given in (2.42). There is also the need to provide an expression

for the electron heat flux, which is discussed in Section 2.4.5, and given in (2.44).

4.1.1 Assumption Application

The assumptions from the isothermal model, with the exception of that of isothermal

electrons, are applied to equations (2.40) to (2.42). In addition, a combination of three

assumptions Te � Tg, me � mg, and ne < ng allow the simplification of the terms in

(2.41) and (2.42) involving the effect of temperature gradients on the elastic collision

rate. This is shown in (4.1) where the dimensionless factor ge is derived to be a function

of Te.

Teg
νeg

dνeg
dTeg

≈ Te
ngKeg

d (ngKeg)

dTe
(4.1a)

=
Te

ngKeg

[
ng

dKeg

dTe
+Keg

dng
dTe

]
(4.1b)

≈ Te
Keg

dKeg

dTe
(4.1c)

= ge (Te) (4.1d)

Power deposition in a collisional RF plasma is mostly in the form of ohmic heating,

as discussed in Section 2.1. As the electric field oscillates, electrons are driven back

and forth across the plasma and extract energy from the RF field through collisions

with the neutral species. However, as the equations describing this model are time

averaged, this effect is not captured. In order to deposit energy in the electrons, an

external power source must be included in the energy balance equation. Applying these

considerations results in (4.2) to (4.4), where Se is a volumetric power deposition in

W m−3. Also included in this term are energy losses through inelastic collisions, as will

be discussed later.

∇ · (nαuα) =
∑
Rα

GRαnR1nR2KR (4.2)

kBTα∇nα =nαZαeE −
∑
β

mαmβ

mα +mβ
nαnβKαβ (uα − uβ)

−mαuα
∑
Rα

GRαnR1nR2KR−nαkB∇Tα + nαkBgα∇Tα︸ ︷︷ ︸
for e- only

(4.3)
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3
2kBneue ·∇Te + nekBTe∇ · ue + ∇ · qe = Se

+
(

1
2meu

2
e − 3

2kBTe
)∑
Re

GRenR1nR2KR − neuegekB∇Te

+
∑
β

memβ

(me +mβ)2nenβKeβ

[
mβ (ue − uβ)2 − 3kB (Te − Tβ)

] (4.4)

As can be seen in (4.4), it is the gradient of the heat flux that is required for solution

of the equation set. The two parts of the electron heat flux gradient are derived below,

and the result is given in (4.5).

∇qe = ∇
[
−
(

5

2
− ge

)
k2
B

neTe
meναβ

∇Te − genekBTeue
]

= ∇
[
−
(

5

2
− ge

)
k2
B

neTe
meναβ

∇Te

]
+ ∇ [−genekBTeue]

∇
[
−
(

5
2 − ge

)
k2
B

neTe
meναβ

∇Te

]
=

−
k2
B

me

 neTe
νeg

∇Te (−∇ge) +
(

5
2 − ge

) Te
νeg

∇Te∇ne

+
(

5
2 − ge

) neTe
νeg

∇2Te +
(

5
2 − ge

)
ne∇Te

∇Teνeg − Te∇νeg
ν2
eg



∇
[
−
(

5
2 − ge

)
k2
B

neTe
meναβ

∇Te

]
=

−
k2
B

me

 ne
νeg

Te
dge
dTe

(∇Te)
2 +

(
5
2 − ge

) Te
νeg

∇Te∇ne

+
(

5
2 − ge

) neTe
νeg

∇2Te +
(

5
2 − ge

) ne
νeg

(∇Te)
2 −

(
5
2 − ge

) ne
νeg

ge (∇Te)
2



∇
[
−
(

5
2 − ge

)
k2
B

neTe
meναβ

∇Te

]
= −

(
5
2 − ge

)
k2
B

neTe
meνeg

∇2Te

−
(

5
2 − ge

)
k2
B

Te
meνeg

∇Te∇ne −
[
(1− ge)

(
5
2 − ge

)
− Te

dge
dTe

]
k2
B

ne
meνeg

(∇Te)
2

∇ (−kBgeneTeue) = −kBgeneTe∇ (neue)− kBgeneue∇Te

− kBneueTe
dge
dTe

∇Te



4. Non-Uniform Electron Temperature 85

∇ · q =−
(

5
2 − ge

)
k2
B

neTe
meνeg

∇2Te −
(

5
2 − ge

)
k2
B

Te
meνeg

∇Te∇ne

− kBgeneue∇Te −
[
(1− ge)

(
5
2 − ge

)
− Te

dge
dTe

]
k2
B

ne
meνeg

(∇Te)
2

− kBgeTe∇ (neue)− kBneueTe
dge
dTe

∇Te

(4.5)

4.1.2 Normalisation

The system of equations (4.2) to (4.5) are to be normalised in a similar fashion to those

in Section 3.1.2. The only difference is that, as Te is no longer constant, temperatures

will be normalised to the central electron temperature, so that Tα = Te0/γα. This also

changes the used definition of the Bohm velocity to u2
B = kBTe0/mi, so that the edge

criterion is not affected by the evolution of the electron temperature through space. The

derivation of a Bohm criterion requires Maxwellian electrons in a collisionless plasma,

and so any expression for it is only ever an estimation of the sheath edge. Indeed, the

existence, or not, of any rigorous expression for a sheath edge, and the form that it

may take, is an ongoing topic of contention [133–138]. These are the justifications for

the slight differences that may exist between the definition of uB presented here, and

those found elsewhere.

With these small changes to the normalisation scheme in mind, the normalisations

are applied to (4.2) to (4.5) below. From (4.2):
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For brevity, the normalisation is applied to (4.3) as it applies to electrons. The

term involving the gradient of the elastic collision rate is removed for species that are

not electrons. From the normalisation scheme, T ′α/Te0 = −γ′α/γ2
α, which is used in the
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following derivations.
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For ease of understanding, the normalisations will be applied separately to (4.4)

and (4.5), and the two results will then be combined. Were they to be combined before

normalisation, the resulting expression would be unwieldy and incredibly difficult to

follow. The elastic collision frequency gradient coefficient is already dimensionless, so

does not need normalisation. Both it and its relative energy derivative, Te
dge
dTe

, are

untouched by the normalisation process also because later steps to find values for them

are made easier by doing so.

Starting at (4.4), and introducing a normalised volumetric power deposition, Σe =
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From (4.5), the expression for the electron heat flux gradient:
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In the final step to generate (4.9), the following relations are used:
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The equation for the electron energy balance to be used in the model is now found

by substituting (4.9) into (4.8). To help control the size of the resulting expression,

it is also useful to replace the collection of chemical reactions with the flux gradient,

from (4.6). Terms are first collected into those that share derivatives. The resulting

expression is then rearranged to provide an equation for γ′′e , given in (4.10).

(
5
2 − ge

) Ne

MeNgεeg

γ′′e
γ3
e

=−
(

5
2 − ge

) 1

MeNgεeg

γ′e
γ3
e

N ′e + Σe

+

[
(3− ge)

(
5
2 − ge

)
− Te

dge
dTe

]
Ne

MeNgεeg

γ′2e
γ4
e

+
Γe
γe

N ′e
Ne

+

(
3
2 − Te

dge
dTe

)
Γe
γ′e
γ2
e

+

[
1
2Me

Γ2
e

N2
e

−
(

5
2 − ge

)
γ−1
e

]
Γ′e

+
∑
β

MeMβ

(Me +Mβ)2 εeβ

[
Mβ

(NβΓe −NeΓβ)2

NeNβ
− 3NeNβ

(
γ−1
e − γ−1

β

)]



4. Non-Uniform Electron Temperature 90

γ′′e =− γ′e
N ′e
Ne

+

[
3− ge −

Te
dge
dTe

5
2 − ge

]
γ′2e
γe

+

{
MeγeNgεeg(

5
2 − ge

)
Ne

}

×

{
Γeγe

N ′e
Ne

+

(
3
2 − Te

dge
dTe

)
Γeγ

′
e +

[
1
2Meγe

Γ2
e

N2
e

−
(

5
2 − ge

)]
γeΓ
′
e

− γ2
eΣe + γe

∑
β

MeMβ

(Me +Mβ)2 εeβ

[
γeMβ

(NβΓe −NeΓβ)2

NeNβ

− 3NeNβ

(
1− γe

γβ

) ]}
(4.10)

Similarly to the previous chapter, (4.6), (4.7) and (4.10) can be build into a system

of equations that fully describes the gradients of densities and flux for all species, as

well as the second differential of the electron temperature.

In order to perform a numerical integration of this system, a number of modifica-

tions must be made. Equations are reformulated again to use the natural logarithm

of species densities, as discussed in Section 3.3, and given below in (4.11) to (4.13).

As numerical integrators typically deal only with first order differential equations, an

additional variable must be included to follow the gradient of γe, and the gradient of

this new variable is then equal to the right hand side of (4.13).
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(4.13)

4.2 Model Development and Implementation

As in the previous chapter, the equation system developed requires further informa-

tion and numerical methods to be specified. The additional parameters laid out in
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Figure 21: Non-isothermal model boundary conditions. Central plasma conditions
are on the left, edge values are on the right.

Section 3.2 are largely unchanged. Boundary conditions are added for γe and γ′e, and

two additional reactions are included as they are important electron energy loss path-

ways.

For the boundary conditions, γe must be unity at the centre, due to its definition

through the central electron temperature, and symmetry across the discharge must

once again be maintained, so the derivative of γe should be zero at the centre. There

are no particular constraints on the edge values of either the electron temperature

coefficient or its gradient. These conditions, and those from before, are summarised in

figure 21.

As previously noted, there are some additional parameters that require specifica-

tion. As the electron temperature is being solved for, all of the important processes

that affect it must be considered. This includes energy losses through inelastic colli-

sions and chemical reactions. All of the reactions considered in the isothermal model

that take energy from electrons must be included, as well as two additional reactions.

Both the excitation of O2 to O2

(
1∆g

)
and the dissociation of the created O2

(
1∆g

)
are non-trivial energy sinks for the electrons [115]. Despite the produced species not

being solved for, these processes shall be included in the electron energy balance, as

discussed later. The reaction set is summarised in table 5.

As in Section 3.2.3, reaction rate coefficients that depend on electron temperature

are found using BOLSIG+, and then approximated by a function fitted in logarith-

mic space, given in (4.14). These rate coefficients are plotted as a function of Te in
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Table 5: O2 reaction rate coefficients to be used in the non-isothermal model, including
the energy loss of any electrons acting as reaction partners. Tg in Kelvin. f (Te)
indicates RRC estimated from function fitted to tabulated data. References are the
same as for table 3.

Code Reaction RRC (m3s−1)
Energy
Loss (eV)

I O2 + e−→O+
2 + 2e− f (Te) 12.06

IM O2 + e−→O− + 1
2O2 f (Te) 4.78

EN* O+
2 + e−→O2 f (Te) Te

ED O− + e−→ 1
2O2 + 2e− f (Te) 1.56

SI O2

(
1∆g

)
+ e−→O+

2 + 2e− f (Te) 11.08
SB O2

(
1∆g

)
+ e−→O− + 1

2O2 f (Te) 3.5

MN O+
2 + O−→O2 + 1

2O2 2× 10−13
(

300
Tg

)
—

SD O2

(
1∆g

)
+ O−→O2 + 1

2O2 + e− 3× 10−16
(
Tg
300

)0.5
—

SDO† O2 + e−→O2

(
1∆g

)
+ e− f (Te) 0.977

SA† O2

(
1∆g

)
+ e−→ 2× 1

2O2 + e− f (Te) 5.02
eg O2 + e−→O2 + e− f (Te) 0

ig O2 + O+
2 →O2 + O+

2 1× 10−15
(
Tg
300

)0.5
—

ng O2 + O−→O2 + O− 2× 10−15 —

* Recombination to excited state and subsequent de-excitation is considered but not
explicitly included.

† Used only in calculating electron energy loss [117].

figure 22(a), and the coefficients that result from the fitting in logarithmic space are

given in table 6.

KR = exp

[
9∑

n=1

aR,n ln (Te)
n−1

]
(4.14)

The form of (4.14) has the property of being differentiable, which makes it simple

to find an expression for the elastic collision frequency gradient coefficient, discussed

in Section 2.4.5, and given as ge ≈ Te/Keg × dKeg/dTe, as shown in (4.15).

ge ≈
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dTe

=Te
d lnKeg

dTe

=Te
d

dTe

[
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aeg,n ln (Te)
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]

=Te

[
T−1
e

9∑
n=1

(n− 1)aeg,n ln (Te)
n−2

]

ge =
8∑

n=1

naeg,n+1 ln (Te)
n−1 (4.15)
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Figure 22: Dependence on electron temperature of (a) reaction rate coefficients and
(b) elastic collision gradient factors.

The differentiation can be continued to provide an expression for the relative energy

derivative of ge, which appears in (4.13) as Te
dge
dTe

, as provided in (4.16).

Te
dge
dTe

=Te
d

dTe

[
8∑

n=1

naeg,n+1 ln (Te)
n−1

]

=Te

[
T−1
e

8∑
n=1

(n− 1)naeg,n+1 ln (Te)
n−2

]

Te
dge
dTe

=

7∑
n=1

n(n+ 1)aeg,n+2 ln (Te)
n−1 (4.16)

These two dimensionless factors are given in figure 22(b). Both ge and Te
dge
dTe

can be

seen to be of order unity. Therefore, as they appear in (4.12) and (4.13) as modifiers to

coefficients just over unity, their effect is clearly non-negligible, and terms containing

them can be changed in magnitude by tens of percent, depending on the conditions.

These factors are often neglected in the development of plasma models, and so compar-

isons of this work with other models are expected to show differences of a few percent

due to this discrepancy.

The last additional parameter to consider is the net power deposition into the

electrons, appearing as Σe in (4.13). This has to account for both the ohmic power

deposition from the RF excitation and the energy losses through collisions.

Beginning with the RF power deposition, it is possible to express a total power

deposition for a given plasma, and so too an average volumetric power deposition.

However it is known that the power deposition varies in space [27], so a single value

for the whole discharge is unrealistic. The current density in the plasma over time

is well described by a sinusoidal function j0 sin(ωt), with amplitude j0. As the total
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Table 6: Fitting coefficients aR,n from (4.14) for reactions that are a function of Te, given to 5 significant figures.

Code
n

1 2 3 4 5 6 7 8 9

I -0.047732 0.93623 -7.2361 27.384 -49.657 30.313 4.9540 36.203 -95.053

IM -0.0060283 0.11377 -0.82932 2.851 -4.2799 1.1865 0.76977 5.7634 -44.443

EN 0.00056304 -0.011162 0.087716 -0.34414 0.68838 -0.57155 -0.25464 -0.27301 -30.937

ED -0.00057099 0.012191 -0.10469 0.45519 -1.0201 1.0269 -0.54625 2.4233 -34.404

SI -0.035885 0.69742 -5.3128 19.589 -33.475 15.708 6.6035 36.267 -89.567

SB -0.0014788 0.025949 -0.16598 0.40976 0.08844 -1.8681 0.73798 4.7871 -40.999

SDO -0.00093892 0.018877 -0.1502 0.58968 -1.1291 0.80334 -0.32208 2.1916 -37.504

SA -0.005622 0.11432 -0.92646 3.7534 -7.6609 6.5417 -1.5338 6.3768 -42.284

eg 0.00046639 -0.0091317 0.06973 -0.25547 0.42606 -0.17783 -0.19301 0.64854 -31.011
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current density in the plasma must be conserved, j0 is constant in both space and

time. In reality the current would be comprised of the currents of the various charged

species, as well as a displacement current. However in the plasma bulk, and particu-

larly in the parameter range covered by the model, the current is almost exclusively

electron current, and so the other terms are neglected. By using the classical power

deposition formula, and averaging over time, an expression is found for the time aver-

aged volumetric power deposition as a function of j0 and the plasma DC conductivity,

σDC(x) = e2ne(x)/(meνeg(x)), as given in (4.17) [19, 20].

Se(x) = S̄ohm(x) =
j2
0

2σDC(x)
(4.17)

As the current density amplitude is constant in space and time, j0 can be specified

as a control parameter for the model to describe the total power being deposited into

the electrons, with a self consistent spatial variation arising from the dependence of

σDC on the electron density and electron-neutral elastic collision rate.

To find a value for the normalised power deposition, Σe,P , the following steps are

taken.

Σe,P (x) =
Se(x)

n2
fK0kBTe0

(4.18)

=
1

2

j2
0me

e2n2
fkBTe0

ngKeg(x)

ne(x)K0

Σe,P (x) = J2
0

Ngεeg(x)

Ne(x)
(4.19)

J2
0 =

j2
0me

2e2n2
fkBTe0

(4.20)

In (4.20), J2
0 is no longer a true representation of current density, as normalisa-

tion factors have been moved between quantities in the intermediate steps. It can be

interpreted as the ratio between a measure of the electron streaming kinetic energy

j2
0me/(2e

2n2
f ) and the central electron thermal energy kBTe0. This would mean that

(4.19) translates to a conversion from one to the other, at a rate determined by the

elastic collision term, as could be expected from an ohmic heating mechanism.

The volumetric rate of energy loss through inelastic collisions, Σe,I , is also included

in Σe, and so needs to be found. The volumetric rate of energy loss through a given

reaction is simply the volumetric reaction rate multiplied by the energy lost taken from

table 5. The total loss rate Σe,I is then the summation of all of these individual rates,

as given in (4.21), where ER is the energy loss of reaction R from table 5. The net
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volumetric rate of change in electron energy from external sources follows trivially as

Σe = Σe,P − Σe,I .

Σe,I =
∑
Re

ER
kBTe0

εRNR,1Ne (4.21)

The numerical methods to be used are unchanged from the isothermal model; the

only difference from the perspective of the integration routine is the addition of two

variables in the scheme. As neither γe nor γ′e have a direct association with the edge

boundary conditions, the numerical routines used are not affected by their inclusion,

and all of the information supplied in Section 3.3 also applies here. Implementation of

the new equation set is then trivial compared with that for the isothermal model, as it

simply requires the modification of existing code to include the new variables.

4.3 Results

As before, investigation of the model will begin with the analysis of the output of a

single set of initial conditions, chosen to be similar to a real oxygen CCP [125, 139].

As some systems are characterised by absolute power, and some by current, (4.19) is

used to convert between central values of Σe,P and J2
0 .

4.3.1 Typical Conditions

Figure 23(a) shows the charged species densities for a typical discharge, where par-

ticularly apparent is the transition between the bulk region and the presheath. This

can also be seen in the fluxes, given in figure 23(b), which additionally give a clear

visual indication of the current and particle flux conservations that result from the

equation set. The steady increase of Te through the discharge is shown in figure 23(c),

as is the spatially resolved ionisation rate. These three plots together show how the

system behaviour is affected by the sharp dependence of, in particular, KI on Te in

this energy range. As Te increases, reaction rate coefficients alter rapidly due to their

individual nonlinear trends, and species behaviour can change quickly in space. This

is the cause of the sudden transition into a presheath. Close to the edge, the dropping

electron density almost causes a turnover in the ionisation rate, despite the continued

increase in Te. In a physical system, Te would reach a peak just inside the sheath,

then tend toward zero as one approaches the wall. However the lack of sheath in this

model means that if one were to continue the integration beyond the Bohm criterion,

Te would keep increasing, as the relationship of deposited power with N−1
e means both
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Figure 23: Example spatial profiles from the non-isothermal model for Te = 4 eV,
Ne0 = 3.3× 10−7, and J2

0 = 3.06× 10−15. Given are (a) charged species densities, (b)
species fluxes, and (c) the electron temperature with the primary production rate for
positive ions.

become singular as Ne → 0.

It is known that there is a link between the volumetric power being deposited

into a plasma, and the resulting electron density [19, 20]. Equations in simple global

models can determine the plasma density through a relationship between the volumetric

power density and the system geometry. However, the assumptions used to obtain

this relationship are not valid in this context, and so the corresponding link in the

normalised system described by the model developed here is not as trivial to uncover.

As the geometry of the model is not fully realised before the numerical integration is

complete, it is not possible to obtain a similar simple relationship, but it is still possible

to investigate the links between the two.

The unit system described in (4.18) can be split into an energy (kBTe0) density

(nf ) per unit time (nfK0), as to be expected from a volumetric power deposition. If

two discharges have differing geometries, for example two non-infinite planar discharges

with different electrode areas, but the same plasma parameters (ne0, Te0 etc.) then one

would expect that the volumetric power density would remain the same. In the region

of low density in the isothermal model, the electron density can increase without other
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Figure 24: Effect of a constant current density compared with a constant energy
deposition rate per electron. Plots show (a) electronegativity and (b) pressure-length
product as a function of electron density for each of the two cases.

plasma parameters changing, as shown in figure 17. In this sort of situation, one would

expect the volumetric power deposition rate to increase with the electron density, as all

energy losses from the system would also grow. It is not unreasonable then to expect

that the energy deposition rate per electron would be similar across a range of densities.

If one estimates the normalised energy deposition rate per electron for the example

case [125, 139] one finds an answer close to unity, implying that in the normalised

system of units Σe,P ≈ Ne0, which would mean that each electron receives one unit

of energy (kBTe) per unit of time (nfK0). To investigate this, a number of model

runs were performed at low plasma density (1× 10−10 to 3× 10−9)and a constant

electron temperature of 4.5 eV. The input current density was either calculated using

Σe,P = Ne0 and (4.19), or kept constant at 3.07 × 10−20, which is the value found

through Σe,P = Ne0 at the central data point.

As shown in figure 24, there are changes in plasma parameters for a constant current

density, but only imperceptible differences if the energy per electron is kept the same.

This indicates that if one wishes to perform an investigation in the parameter space(
Te0, Ne0, J

2
0

)
, then in order to isolate the effect of changing the current density, one

must ensure that the power per electron remains constant by using (4.19). A base case

current density J2
base can be found by setting Σe,P = Ne0, which results in (4.22), giving

the base current density as a function of relative electron density and central electron

temperature (via εeg).

J2
base =

N2
e0

εeg,0Ng0
(4.22)
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4.3.2 Multiple Inputs

In the previous chapter, it was identified that there are certain distinct regions of be-

haviour in the parameter space of electron temperature and density. It is hypothesised

that these regions will still exist, as their underlying causes are still present. To as-

certain this, the model was run with various combinations of high or low Te0 and Ne0,

with J2
0 = J2

base. To investigate the effect of altering the current density, each of these

runs was then repeated with J2
base multiplied by either 0.5 or 5. The results of these

runs are shown in figures 25 to 27.

Upon inspection of these figures, it is reassuring to see that the differentiation

between the ‘structured’ and ‘unstructured’ discharges is still present. There is a clear

difference in the density profiles presented in figure 25 between those with a high or low

Te0. However, like that shown in figure 23(a), the ‘unstructured’ plasmas with a low Te0

now exhibit a clear peak in the ion densities at the edge of a bulk region. These density

peaks have been seen in experiment [127], and were shown to be more pronounced at

higher pressures, and therefore lower electron temperatures. As discussed above, this is

due to the nonlinear behaviour of reaction rate coefficients with electron temperature.

As well as the same change in behaviour between high and low values of Te0 that

is exhibited in the isothermal model, there is also still the same lack of effect from

changing Ne0. The electron density in figure 25(h) is three orders of magnitude higher

than that in figure 25(e), but the results appear identical unless one looks at the

axes. The effect of changing the current density again has a marked difference between

systems with a high or low electron temperature. At a high Te0, the effect of altering

J2
0 on the behaviour of the densities is insignificant. At the low electron temperature,

the effect of increasing the system current density is to increase the degree of non-

linearity, increasing the height of the density peak and making the transition between

bulk and presheath more severe. However the visible changes are mostly limited to

the downstream region of the plasma; the electronegativity is only strongly affected by

very high values of current density, as shown in figure 24(a).

The effects of parameter changes on the species fluxes are even less remarkable than

those on the densities. Aside from the same transition from unstructured to structured

that was seen in the isothermal model, the only noticeable difference between the plots

shown in figure 26 is a slight increase in the magnitude of fluxes at the system edge at

higher current densities.

Turning to the plots of electron temperature and ionisation rate shown in figure 27,
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Figure 25: Density profiles that result from the non-isothermal model with various
combinations of central electron temperature, electron density, and current density.
Te0 = 3.5 eV for (a) – (c) and 5 eV for (d) – (i). Ne0 = 1.17 × 10−8 for (a) – (f) and
1.49 × 10−5 for (g) – (i). Current density is the same for each column of graphs, and
is given above the first row.
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Figure 26: Spatial profiles of species fluxes given by the non-isothermal model for the
same conditions as given in figure 25.
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Figure 27: Behaviour of electron temperature and demonstration of non-trivial reac-
tion rate profiles generated by the non-isothermal model, for the same conditions as
given in figure 25.
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one can find a reason for the lack of interesting behaviour that results from a change

to the current density at high Te0. In figures 27(d) to (i) the electron temperature

varies only slightly across the whole plasma, by a maximum of around 0.4 eV at the

higher current densities. This is contrasted with the behaviour at a low Te0, where

Te increases by a few eV across the discharge. Due to this large change in electron

temperature, the reaction rate coefficients change dramatically, as discussed above.

The behaviours of the reaction rates are also changed the most by increasing the

current density, where the slight increase in Te compounds with the higher plasma

density towards the edge resulting in, for example, a dramatically increased ionisation

rate, as shown in figures 27(a) to (c). Looking at the behaviours at high Te0, the high

electron temperature at the centre of the discharge means that not only is the ionisation

reaction rate coefficient already high, but the dependence of it on Te is reduced, as can

be deduced from figure 22(a). As a result of this, the modest increase in electron

temperature across the discharge is unable to compete with the corresponding drop

in electron density, and so, at J2
0 = J2

base and below, the ionisation rate actually

drops between the centre and edge of the system. Increasing the current density does

combat this effect to some degree, and there is a net increase in ionisation rate, but

the difference is too small to make noticeable changes to the plasma behaviour. It

is interesting to observe that despite the radically different initial conditions of the

systems demonstrated, the edge value of Te is comparable among all of them, between

5 eV and 5.5 eV.

One property that is affected by the current density is the system pressure-length

product, as demonstrated in figure 24(b). It was found that increasing the current

density above J2
base causes the value for p · L to decrease, more so for low values of

Te0 but still observable for high electron temperatures. This can be simply explained

by the increase in resulting energy deposition rate causing the electron temperature

gradient to increase, which causes all of the changes to the reaction rate coefficients

and other subsequent effects to occur sooner in the spatial coordinate. This results in

the integration terminating sooner in space, and so a narrower discharge is reported.

From an overall perspective, the effect of a high central electron temperature is to

reduce the steepness of gradients and generally create calmer spatial profiles. Decreas-

ing Te0 or increasing the current density, causes properties to change more suddenly in

space. These sudden changes, evident particularly in the density peaks in figures 25(a)

to (c), increase the sensitivity of the model to the initial conditions, and cause the re-
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Figure 28: Behaviour of electronegativity as a function of electron density and tem-
perature for (a) the non-isothermal model and (b) the isothermal model, including the
limit of theoretical validity discussed Chapter 3. Dashed contours are shown at integer
values of α0 for clarity.

quirement of perturbations. However, the gradients, and therefore the sensitivity, are

reduced when compared to the isothermal model. Comparing the gradients of fluxes

in figure 14(a) to those in figures 26(a) to (c) it is clear that the spatial profiles in

the non-isothermal model are less prone to sudden changes in direction, due to the

high values of Te toward the edge of the system. This should improve the numerical

issues that the isothermal model struggled with at lower electron temperatures. This

question, and others, can be answered by executing a parameter sweep comparable to

that performed for the isothermal model.

4.3.3 Parameter Sweep

Whilst computing the parameter sweep, it was noted that the new model generally pro-

duces results faster than the isothermal model. Across the same parameter range as

given in figure 17, the average computation time was 22.4 seconds, compared with 60.4

seconds for the isothermal model. There was also significantly less variation in compu-

tation time, which indicates that there were less model runs requiring perturbations.

This can be seen to be true in figure 28, which shows equivalent parameter sweeps

from both the new and isothermal models. In the non-isothermal model, the model

is able to provide data for central electron temperatures lower than that accessible by

the isothermal model, and this only with a small number of perturbations.

Aside from this obvious difference, there are a couple of other disparities between

the two models picked out by figure 28. The first, also related to numerical effects, is

that results are able to generated much closer to the theoretical limit of validity. Some

of the reportedly valid points in parameter space even lie on the ‘wrong’ side of the
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Figure 29: Behaviour of central electronegativity as a function of electron density and
temperature, demonstrated over a larger range of parameter space than was possible
with the isothermal model.

theoretical limit, though this is most likely a discretisation error creating disparities

between the theoretical and integral solutions, as discussed in Section 3.4.3. This new

ability of the non-isothermal model is due, again, to the increased stability of the

integration caused by the high edge values of Te. As mentioned in the previous section,

the electron temperature reaches a similar edge value regardless of the central values Te

or Ne. This is true across the whole of the parameter space given in figure 28(a), with

the edge temperature always falling between 4.93 eV and 5.23 eV, and so the stability

of each model is similar.

The other difference between the two models’ results is that, for the same central

electron temperature, the electronegativity is consistently slightly higher in the non-

isothermal model. This small difference is clearer to see if one looks at where the

contour lines, plotted at integer intervals, intersect the axes. This can be understood in

terms of how the electron temperature affects the negative ion flux across the discharge,

and the interplay between the central electronegativity and the edge negative ion flux.

Looking at the results for the isothermal model, it can be deduced that for a higher

electron temperature, the resulting value of Γn,L is higher, and so the electronegativity

is increased to return it toward zero (see figure 9 for the inverse relationship between

α0 and Γn,L). In the non-isothermal model, the electron temperature increases across

the discharge, and so the mean value for Te is higher than that in the isothermal model.

This creates a similar situation to that caused by raising Te in the isothermal model,

and results in an increased central electronegativity through the same relationship
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Figure 30: Behaviour of pressure-length product as a function of electron density and
temperature given to the non-isothermal model.

between α0 and Γn,L.

As discussed above, the non-isothermal model is able to provide results for lower

electron temperatures than the isothermal model. It is thus possible to extend the

parameter sweep, which is shown in figure 29. In this new area of parameter space, the

plasma density is so low as to render any changes to Ne0 inconsequential. The trends

identified previously simply continue, though the theoretical validity limit becomes

increasingly more restrictive as the electron temperature drops.

Turning to the system pressure, the behaviour is found to be altered with the ad-

dition of non-isothermal electrons. The trends exhibited in figure 30 are the same as

those for the isothermal model in figure 19, however at the lower electron temperatures,

the pressure-length product obtained is significantly lower. For 3.5 eV, and low elec-

tron density, the isothermal model gave a pressure-length product of around 10 Pa m,

whereas in figure 30 it is just below 1 Pa m.

This difference can be attributed to the same effect as is seen when increasing the

current density. Namely, the increased electron temperature in the non-isothermal

model causes behaviours to occur sooner in the integration, and thus a narrower dis-

charge is obtained.

Despite these differences, the general trends in data are still similar, and so too

conform with the community knowledge about pressure-length product and Te, and

power density and ne, discussed in the previous chapter. With regards to the relation

between power density and electron density, in a physical system this is interpreted that
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if one changes only the volumetric power deposited in the plasma, then to a first order

approximation only the plasma density will change, and not the electron temperature or

other properties. As both the electron density and the current density (linked to power

deposition via (4.19)) are able to be specified in this model, it is difficult to ascertain

whether this relationship applies or not. However, at low densities in figures 29 and 30,

a variation in the normalised electron density does not affect anything other than the

current density due to the use of J2
base. This effect can also be seen in figure 24, where

maintaining J2
0 = J2

base for different values of Ne0 changes the power deposition, but

in such a way as to keep other behaviours the same. Therefore the relationship of an

approximately linear dependence of plasma density on volumetric power deposition [19]

can be inferred.

4.3.4 Comparisons

The data in figure 20(b) taken from the full fluid model described in Appendix A are

again used to compare the results of this semi-analytical model with a more detailed

model. This is done to see how the neglection of time dependencies, sheath effects, and

wall properties affect the model. It is known that wall interactions play a significant

role in oxygen plasmas [140], particularly for the dynamics of O2

(
1∆g

)
, which takes

part in a number of the dominant reactions [115]. It is an important reaction partner

for the O− negative ion, and an additional ionisation pathway for the creation of O+
2 .

Therefore of particular interest is how the empirical inclusion of O2

(
1∆g

)
in the semi-

analytic model compares to the self consistent inclusion in the full fluid model. The time

averaged values of central electron temperature (found using (4.23)), relative electron

density, and normalised current density were calculated for results from the full fluid

model and input to the semi-analytical model. These results were then denormalised,

and plotted together in figure 31.

〈Te〉 =

∫
Tenedt∫
nedt

(4.23)

Unlike the conclusion of the previous chapter, there is excellent quantitative and

qualitative agreement between the bulk density and temperature profiles of the two

models, however the differences in behaviour, due to discrepancies such as the lack of

sheath, are clear. The full fluid model can support a deviation from quasineutrality

through the solution of Poisson’s equation, whereas in the semi-analytical model, the

charged particle densities collapse rather than create a net space charge. The full
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Figure 31: Comparison between density profiles of (a) the semi-analytical and (b) full
fluid models for a plasma generated in pure oxygen at 60 Pa, with a central electron
temperature of 3.319 eV, between two planar electrodes 4 cm apart. In the full fluid
model, these electrodes are supplied from a 300 Vpp, 13.56 MHz RF source, and the
current density can be calculated as J0 = 13.08 A m−2. Individual density profiles
of (c) positive ions, (d) negative ions, and (e) electrons are overlaid to clarify the
similarities between the two models. A comparison of the electron temperature profiles
for each model is also given (f).
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fluid model transitions smoothly into a sheath, and indeed it is difficult to determine

where the bulk ends and sheath begins without a rigorous definition [141], whereas the

transition between bulk and sheath is significantly sharper in the semi-analytic model.

Further differences can be seen in the position of the transition, as well as in the

exact value of the electronegativity. These can both be explained by differences in not

only the spatial profiles but also the time dependencies of power deposition and mean

electron energies. Significant temporal modulation of electron temperatures can be seen

under certain conditions, due to both ohmic and non-ohmic heating mechanisms [142–

144]. This behaviour is not captured in the semi-analytical model, but is in the full fluid

model, as can be seen in figure 50 in Appendix A. As some reaction rate coefficients

have highly non-linear dependencies on the electron temperature, this modulation in

time can have effects on the time averaged behaviour of reaction pathways. As the

electronegativity is largely controlled by the balance between creation and destruction

mechanisms of negative ions, the inclusion or neglection of these temporal effects will

lead to differences in the reported results.

The consideration, or not, of the effect of the spatial gradient of the electron tem-

perature on elastic collisions will also be a source of difference between the two models,

as mentioned in Section 4.2. The inclusion of the ge factor in the semi-analytical model

has the effect of altering the downstream behaviour of the density, flux, and tempera-

ture profiles, mostly through the terms found in the electron energy transport equation

(4.13).

Additionally, as a side effect of the enforcement of quasineutrality, the integration

terminates with a smaller spatial extent than the full fluid model. This is fully expected

as no sheath can exist in a quasineutral system. One can estimate the true pressure-

length product if one has knowledge of the approximate fractional sheath size of the

physical system being modelled.

4.4 Conclusions

With regards to the result presented in figure 31, it is clear that although the qualitative

and quantitative agreement between the semi-analytical and full fluid models is very

good, there are still notable differences. While the spatially dependent power deposition

profile included in the semi-analytic model allows, for example, the capture of non-

monotonic density profiles, the precise spatial positioning of features differs between

the two models. This is due to the neglection of space charges in the semi-analytical
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model, and thus the agreement between the two models decreases as one progresses

toward the sheath, due to the breakdown of quasineutrality. As convenient as it is

to imagine a distinct boundary between the sheath and the plasma bulk, this is not

the case in a physical system, and so a gradual degradation in performance is to be

expected as the space charge density builds.

Despite these differences, the closeness of the bulk width between the two models is

encouraging, as the source of the spatial dimension is different in each model. In the full

fluid model, which does not apply any normalisations, the system size is prescribed,

and the plasma properties are solved for through the use of a boundary value type

solution. In the semi-analytical model the opposite is true, and the system size is one

of the outputs.

This order of cause and effect between plasma properties and the physical dimen-

sions of the system may seem incongruous to one who is more familiar with the physical

reality of obtaining a discharge within a vessel of a given size. However it is a necessary

and important part of the model that has been created, and attempting to constrain

the physical dimensions would cause a return to the boundary value type problem, and

associated high computation cost that this model is specifically designed to avoid. This

order of relations also means that the model is ideal for use in reactor design, as it is

typically specific plasma parameters that are desired, and the system geometry that is

unknown.

The neglection of the sheath affects the system not only through a change in edge

characteristics, but also by preventing the flow of information from any wall interactions

back into the bulk, making it impossible to self consistently portray the behaviour of

species dominated by wall effects, such as O2

(
1∆g

)
[140]. Despite this, figure 31

shows that the bulk is largely unaffected, particularly the value of the electronegativity

which is mostly dependent on the reaction set used by the model. The assumption

of quasineutrality also forbids the creation of stratified pre-sheath structures (double

layers), known to appear under certain conditions [5, 145, 146]. Despite these issues,

the assumption of quasineutrality, and thus the removal of Poisson’s equation from the

system, prevents the creation of a stiff set of differential equations, and thus improves

both the model simplicity and computation time dramatically. The improvement in

computational performance achieved by discarding Poisson’s equation is so great that

it is deemed a necessary sacrifice to improve the usefulness of the model.

Some of the inaccuracies introduced by the assumption of quasineutrality may be
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able to be alleviated by coupling the model with an analytical or semi-analytical de-

scription of an RF sheath. Such models already exist [147–149], and such a coupling

has been previously performed [150]. Care would be needed to ensure that the bound-

ary conditions of each model were consistent, but a successful combination of the two

models could improve the results obtained, not in the least due to the improvement

in the estimation of the spatial extent of the system. It may also allow some form of

feedback to occur between the bulk plasma and the wall, introducing the possibility

for improved descriptions of species dominated by wall effects.

A further known loss of information comes from the time averaging of equations.

It is known that electronegative plasmas exhibit temporal instabilities under certain

conditions [6, 125, 151, 152]. The combined loss of stratified pre-sheaths and temporal

instabilities may help to explain some of the region where no solutions are possible. As

shown in [6, 125, 139] the appearance of instabilities occurs as one increases the plasma

power toward the transition to γ-mode, which itself cannot be captured due to the lack

of wall interactions. References [139] and [152] also report that instabilities are more

frequent at higher pressures. These observations agree with the theoretical prediction of

the validity boundary shown in the parameter sweep. This implies that the restrictions

on the central ion fluxes that determine the theoretical limit can be worked around

if one allows the system to contain oscillations or regions of non-monotonic electric

potential. Either of these effects could introduce otherwise disallowed changes to the

downstream ion fluxes, relaxing the constraints at the centre. This would explain why

a time averaged, quasineutral system is unable to resolve the areas of parameter space

that are missing in results such as figure 29.

Overall, the results presented in this chapter indicate that the model created would

be well suited for use in helping to understand the properties of electronegative dis-

charges. Due to the ability to specify plasma parameters directly, it is more appropri-

ate for investigations of general properties of planar discharges, or designing a device

around a particular plasma, than for modelling a specific device. However, due to the

rapid time to solution, it is practicable to perform broad yet detailed investigations of

parameter space, from which the behaviour of a given geometry could be extracted.

Some questions still remain, however, that will be addressed in the next chapters.

It is not currently clear how the semi-analytical model would compare to a global

model; one that is spatially averaged and uses empirical relations to estimate the effect

of spatial variation. This sort of model boasts widespread use, but is known to be
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less than perfect for systems that do not fit within the limited range of the relations

used [145].

It has been shown [14–18] that at high plasma densities, the properties of the neu-

trals are changed by the presence of the plasma. Therefore one could expect there

is a feedback onto the plasma itself due to the subsequent alteration of the interac-

tions between the plasma and neutral species. Including neutral dynamics into the

semi-analytical model would allow the investigation of this effect in great detail, and

could potentially lead to further understanding of the complexities of electronegative

plasmas.



Chapter 5

Global Model

Global models are widely used throughout the plasma physics community, due to their

ease of use and rapid generation of results. They can also be comparatively simple to de-

velop and implement. In this chapter, a global model is created that can be used in later

comparisons with the semi-analytical model, in order to investigate the differences in

performance and accuracy. Trends are compared between the global and semi-analytical

models, and the benefits and pitfalls of global models are discussed. Exclusively in this

chapter, temperatures appear in equations measured in both Kelvin and eV. They are

distinguished by a superscript K or e respectively.

5.1 Global Model Creation

The global model is at its heart still a fluid model, in that it stems from the moments

of the Boltzmann equation. However as the name suggests, it involves the removal

of all spatial derivatives, and considers only what happens in the bulk and at the

sheath boundary. Assumptions are made as to the transport of species from the bulk

to the sheath. The inclusion of quasineutrality, as well as the treatment only up

to the bulk-sheath boundary, requires that the sheaths are taken to be small and

collisionless. Considerations are made for conservation of mass and energy, but as

there are no spatial dimensions, the first Boltzmann moment detailing momentum

conservation is discarded. The model in this chapter has been developed based on

the work of Monahan and Turner [145], which in turn builds on the work of Kim et

al. [5, 10] and Monahan [153]. Changes have been made to allow for a different reaction

set and reactor parameters.

113
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5.1.1 Derivation

Starting then from the zeroth moment of the Boltzmann equation (2.26), one must

balance the creation (and destruction) of species in the bulk with their loss to the

walls. This, followed by a division by the plasma volume, gives (5.1).

V
∂nα
∂t

= V
∑
Rα

GRαnR1nR2KR −A (nαuα)L

∂nα
∂t

=
∑
Rα

GRαnR1nR2KR −
A

V
(nαuα)L (5.1)

As mentioned above, the first moment of the Boltzmann equation is not considered

here. Thus the next consideration is the balance of energy, where only the most ener-

getic species, the electrons, are considered. In a similar manner to the zeroth moment,

the collection of volume processes that involve changes in energy are balanced with

the transport of energy to the walls. Starting from (2.36), one discards the spatial

derivatives and terms involving flow, and expands the collision term to include total

absorbed power (Pabs), total power loss through both elastic (Pel) and inelastic (Pinel)

collisions, and the power lost per ion-electron pair to the wall.

3

2
V kBne

∂TKe
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KegnengkB
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)
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Re∑
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ERKRnR,1ne

+
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2
kBT

K
e

∑
Rα

GRαnR1nR2KR

(5.6)

For clarity, the energy terms associated with collisions have been collected in the

volumetric term Scolls, and for computational ease, T ee is expressed in eV, as denoted by

the superscript. The collisional energy losses given in (5.6) are, in order, thermal energy

transfer to neutral species through elastic collisions, losses from inelastic collisions

where εR is the electron energy loss of reaction R, and thermal changes through the

addition and removal of electrons due to chemical reactions. In (5.5) the rate of change

of T ee is the difference between the volumetric power absorption, Sabs, and the losses
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due to collisions and species lost to the wall. Wall losses are represented by the last

term in (5.5), where εs is the energy per ion-electron pair that is lost to the wall via

the sheath. The magnitude used for this energy loss term is that of Monahan and

Turner [145], given in (5.7), where V̄s is the mean sheath voltage.

εs =

[
Γ(ξ3)Γ(ξ6)

Γ(ξ5)Γ(ξ4)
+

Γ(ξ3)2

Γ(ξ5)Γ(ξ1)

]
3

2
kBT

K
e + eV̄s (5.7)

In (5.7), Γ (ξp) is the gamma function of ξp = p/2x. In this case, x is a value that

describes the deviation of the EEDF from a Maxwellian, through the formula given in

(5.8) [145, 154].

f (E) =
x(

3
2kBT

K
e

)3/2 Γ (ξ5)3/2

Γ (ξ3)5/2
E1/2 exp

(
− 1(

3
2kBT

K
e

)x [Γ (ξ5)

Γ (ξ3)

]x
E

)
(5.8)

As the model is to describe an RF CCP, the mean sheath voltage, V̄s, is determined

from equations derived by Liebermann and Lichtenberg [19] that relate the mean sheath

voltage, plasma current density, and volumetric power deposition. By time averaging

the expression that determines sheath voltage from the sheath widths in a symmetric

CCP, and substituting in a relation for the sheath width and current density, one arrives

at (5.9), which gives the sheath voltage in terms of the current density amplitude j0,

electron density, and driving frequency ω.

V̄s =
3

4

j2
0

eε0neω2
(5.9)

Using the relation that determines the ohmic power deposition from the current

density and plasma conductivity, (5.10), one can then combine (5.9) and (5.10) to

arrive at (5.11), an expression for the mean sheath voltage in terms of the ohmic power

deposition.

Sohm =
1

2
j2
0

meνeg
e2ne

(5.10)

V̄s =
3

2
Sohm

e

meνegε0ω2
(5.11)

In order to determine the wall flux of a particular species, one needs to turn to

empirical relations, as without spatial resolution there is no self consistent way of

determining all of the species densities at the sheath edge. Similarly to the semi-

analytical model, an assumption is made that the negative ion density is zero at the

sheath edge, so that (nnun)L = 0. This also has the effect that the positive ion and
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electron densities and wall fluxes are equal. If one assumes that the ions leave the

system with the Bohm velocity, then only the ion density is needed to specify the edge

ion flux.

The sheath edge ion density is often given as a fraction of the central density, such

that ni,s = hlni,0, where the factor of hl is given by empirical relations or limited

approximations. The determination of this factor was first discussed by Godyak and

Maksimov [155] for a simple two component plasma. The relations for electronegative

plasmas are understandably more complicated than those for the electropositive case.

Much research has been conducted on the topic, and Monahan [153] has established an

anzatz through the combination of three limited approximations that appears to give

good results when compared to a PIC model. The factor used in this work, and the

components, are given in (5.12), where the assumption of Ti = Tn = 300 K has been

made, lp is the plasma length, and λi is the ion mean free path.

h2
l = h2

a + h2
b + h2

c (5.12a)
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1
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As the negative ion wall flux is zero, that of both positive ions and electrons can

be expressed as a single value, given in (5.13), where ni is the ion density as calculated

by the model.

(ni,eui,e)L = hlniuB (5.13)

The final unknown to be found in (5.5) is the plasma surface area to volume ratio.

This can be found through simple geometrical considerations, assuming that the system

is the same as in the semi-analytical model. For a plasma contained between two square,

planar electrodes of side a separated by a distance of b, the volume and surface area

are given by the simple relations V = a2b and A = 2a2 + 4ab.

A

V
=

2a2 + 4ab

a2b
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A

V
=

2

lp
(5.14)

The full set of equations can then be found through the combination of (5.1), (5.5)

to (5.7) and (5.11) to (5.14). An important simplification can be made to reduce the

number of equations by considering the quasineutrality equation ni = nn + ne. As

the ion densities can be found from just the electron density and electronegativity,

α = nn/ne, the two ion density equations from (5.1) can be replaced by a single

equation for the electronegativity. From the differentiation of α = nn/ne, one can

derive an equation for the rate of change of the electronegativity, given in (5.15).
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A

V
(neue)L (5.15)

Thus the system is described by three differential equations for electronegativity,

electron density, and mean electron energy, given in (5.16).
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(5.16c)

These equations can be solved simultaneously with the only inputs, other than

estimates of the initial conditions, being the absorbed power density Sabs, the plasma

length lp, the neutral gas density ng, and the reaction rate coefficients, which are the

same as those used in Chapter 4. For ease of understanding, the neutral gas density is

taken from a supplied pressure-length product.

5.1.2 Solution

The equations for the global model appear simpler than those for the semi-analytical

model, but are unfortunately still too complex for an exact analytical solution. The

nonlinear combinations of quantities, for example in the expression for collisional energy
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losses (5.6), means that it is impossible to separate the variables sufficiently to approach

a solution analytically. Thus numerical solutions are required.

In contrast to the semi-analytical model, the evolution of the global model equations

over their independent variable is not the end goal. It is the equilibrium point that is

of interest, in order to compare with the time averaged solution of the semi-analytical

model. This means that a numerical integration scheme is not the only option, but a

numerical minimisation could be used to find the point in parameter space where all

three time derivatives approach zero. This works well for certain discharge parameters,

and is quicker computationally than performing a numerical integration, but fails to

provide a solution in some cases. Unfortunately, problems with pre-built numerical

minimisation routines are occasionally difficult to diagnose, as the algorithms used are

often complex, and the underlying code prioritises efficiency over readability. Thus in

these situations it is quicker and easier to gain insight through the use of a simple

numerical integration scheme. This was performed using the ode45 routine in Matlab,

which uses a pair of explicit Runge-Kutta formulae for efficient and reasonably accu-

rate solutions (see Section 2.5 for more details). For simplicity across a wide range of

discharge parameters, it was decided to use numerical integration for solution of the

global model for all situations. The small computation time increase for certain pa-

rameters was considered to be a reasonable trade off for the additional insight gained

through the exposure of the temporal evolution of parameters.

As is often the case with numerical solutions, it is not possible to reach a true exact

equilibrium of the global model through numerical integration. Small scale oscillations

are always present, even in systems that in theory should reach an absolute stability,

caused by numerical noise from a variety of sources. These can include, but are not

limited to, rounding errors due to finite numerical precision, integration overshoot past

the point of equilibrium, or nonlinear coupling between the equations. Despite these

issues, the model is able to approach an equilibrium with accuracy on the order of

10−10 or less.

5.2 Results and Comparisons

In the same manner as for the semi-analytical model, a single run of the global model

is investigated first. Values for the pressure-length product and the power deposition

are chosen to be within the range that is investigated by the semi-analytical model,

and the plasma length is chosen as 4 cm, the same as in the full fluid model. The
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Figure 32: Time dependent outputs for the global model with a pressure-length
product of 1 Pa m, plasma length of 4 cm, and power absorption of 1 kW m−3.

input conditions are chosen based roughly on the results of the semi-analytical model,

however the point of equilibrium reached by the global model is the same for any

reasonable initial conditions.

The time evolution profiles of the three dependent variables are given in figure 32.

The logarithmic time axis is to demonstrate that the system undergoes a rapid change

in all three parameters, before settling onto a trajectory that takes it to an equilibrium

point. Once on this trajectory, the system is comparatively slow (in the independent

variable) to converge. Investigation of phase space (ne, α0, Te) shows that for a sensible

range of initial conditions (2 eV < Te < 8 eV, 0.1 < α0 < 5, 10−8 < Ne0 < 10−4) the

system behaves in the same manner. This indicates that for this set of parameters,

there is a stable node in phase space, that is attracting for the range of initial condi-

tions explored. There are small scale oscillations around the equilibrium point, on the

order of the accuracy of the integration (10−10). A linearisation about the supposed

equilibrium point shows that it is not a true stable node, and that the derivatives of all

three parameters are not concurrently zero, so there will always be a small degree of

uncertainty. This may also explain why the numerical minimisation routines struggled

under certain conditions.

As mentioned, one of the most appealing features of global models, and one of

the main drivers behind their widespread use, is the time taken to get results. The

data in figure 32 took approximately 0.84 seconds to generate, and this is true for a

large range of input conditions. Due to this, it is relatively trivial to generate detailed

parameter sweeps. The results of such a sweep are presented in figures 33 and 34, for a

range of conditions comparable with those observed in the semi-analytical model, but

maintaining the plasma length at 4 cm.

Unfortunately, the global model has approximately opposite inputs and outputs

when compared to the semi-analytical model. This makes it difficult to compare the
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Figure 33: Behaviour of the global model (a) electron density and (b) electron tem-
perature as a function of pressure-length product and absorbed power.

two, particularly as each has three input parameters. Keeping one of the global model

inputs constant is not the same as keeping any of the semi-analytical model inputs

constant, and so direct numerical comparison of such results is not possible, and con-

trasting trends requires caution.

Figure 33(a) shows how the absolute electron density varies over the parameter

range explored. It is clear that ne has a much stronger dependence on the absorbed

power, which agrees with the previously discussed community expectations. The de-

pendence is almost linear, with ne ∝ S0.965
e0 . The behaviour of the electron temperature,

shown in figure 33(b) is less straightforward, and exhibits different trends at low and

high powers. This change has a parallel in the semi-analytical model, where at a low

relative electron density in figure 30 there is a relationship only between the pressure-

length product and electron temperature. In both models, this changes at higher

powers, and higher electron densities, where plasma self-interaction starts to affect the

behaviours.

Although direct numerical comparisons cannot strictly be made, it is interesting to

note that the electron temperature in the low power region does not drop far below

4 eV for the range of pressure-length product shown. In comparison with the semi-

analytical model, this is closer numerically to the behaviour of the isothermal version,

as would be expected.

The trends that can be found in these two plots are the same as for the semi-

analytical model; there is an inverse relationship between Te and pL at low powers.

In the high power regime of the semi-analytical model the pressure-length product in-

creases for increasing density (and power) as the electron temperature is kept constant.

If one traces a contour of constant Te in the right hand section of figure 33(b) then

both the electron density and pressure-length product are seen to increase as the power
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Figure 34: Behaviour of the global model electronegativity as a function of pressure-
length product and absorbed power.

rises, which are the same trends as seen in the semi-analytical model.

One property that is an output of both models is the electronegativity. The be-

haviour of α0 is shown for the global model in figure 34, over the same range as the

previous results. Once again, there is a clear transition between the low and high den-

sity modes, however this time the agreement between the two models is more difficult to

illustrate. In the low density regime, the relationships are the same, with a dependence

almost exclusively on pressure-length product, or electron temperature in figure 29.

In the high power region of both models there is a transition of the electronegativ-

ity dependence to mostly on the electron density and input power. Figure 29 shows

that for the semi-analytical model the dependence of the electron temperature has the

same direction in both the low and high density regimes. In the global model the gra-

dient of the electronegativity with respect to pressure-length product, for a constant

input power, changes sign across the transition. This appears to be a contradiction

between the models, but as mentioned one must take care to ensure that one is com-

paring the same things, as the inputs and outputs of each model are different. It was

shown in figure 33(a) that the absolute electron density remains roughly constant as

the pressure-length product changes, which would lead one to expect that the horizon-

tal axes in figures 29 and 34 are approximately equivalent. However, it is the relative

electron density that is used in the semi-analytical model. While the absolute electron

density is shown to have only a slight dependence on the pressure-length product in

the global model, this is not the case for the relative electron density, as Ne ∝ ne/pL.
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Thus the relative electron density has an inverse relationship with the vertical axis in

figure 34, which is stronger than the trend of α0 at a constant input power in the high

density regime. This means that, in the global model, for a constant relative electron

density, the gradient of the electronegativity with respect to pressure-length product

does not change sign across the mode transition, and so agreement is found with the

semi-analytical model.

5.3 Conclusions

The contents of this chapter demonstrate that it is comparatively easy to build a

simple global model, even for an electronegative plasma. Once it is built, the numerical

solution is uncomplicated and requires a relatively small amount of computation time.

The global model developed here is reasonably simple, but it is possible to include

additional physics or chemistry to create a highly detailed model that describes a very

complex plasma [12, 156]. For these, and other, global models, seemingly sensible

results can be generated for a wide range of input conditions. The combination of

speed, flexibility, and detail, as well as the ease of development and use, means that

global models have a large user base in the plasma physics community, and are often

a first point of call to understand a new phenomenon.

However, this flexibility is not always a good thing. Global models will often suc-

cessfully provide results using inputs that are well outside the range in which their

assumptions hold. One must be careful not to draw conclusions from data that is

not necessarily valid. Although this statement is of course true for any model or even

experiment, it is occasionally more difficult to be certain for global models. There is

usually no sudden change in results between a valid region and an invalid one, and

one must be aware of the assumptions used in the model’s development to know which

region is being investigated.

With regards to the global model developed here, the results presented are within

the valid region of all of the approximations, with perhaps the exception of isothermal

electrons. It is not clear where in parameter space, if ever, this assumption is valid, as

there will always be spatial gradients in any plasma. Despite this, the trends in the

results agree with the semi-analytical model, which does contain spatial information.

As is to be expected, the behaviour of the electron temperature, in particular, is closer

to the isothermal version of the semi-analytical model, for which doubt has been cast

on the results. As discussed, differences in the input and output parameters mean that
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a direct numerical comparison or wide ranging data is not possible. Contrasting in

this way is only possible for specific cases, and this will be performed in Chapter 7

alongside a full fluid model.

The results and conclusions drawn in this chapter show that global models are

a highly valuable tool for the plasma physics community, and they allow the rapid

investigation of occasionally complex environments. However, their results must be

analysed carefully, as the assumptions used in their development are relatively severe,

and the applicability of global models is limited by their lack of spatial self consistency.



Chapter 6

Neutral Dynamics

In the previous chapters, it was shown that the type of semi-analytical model that has

been developed is able to provide useful data for a plasma in a pure oxygen background.

However, the question has been raised as to the effects of including the neutral back-

ground as a self consistent species. This chapter deals with the derivations and imple-

mentations necessary to make this happen, and shows what effect it has on results from

the model.

6.1 Equation Development

The addition of a self-consistent neutral species, or rather, the removal of the assump-

tion of a constant neutral background, can be easily implemented by including an

additional instance of (4.12) for the neutral species. However, the neutrals are also

strongly affected by heating; energy from the plasma is transferred to them increasing

the neutral temperature. This causes a rarefaction of the gas through the ideal gas

law [16], and possibly dissociation of molecular species. Further decreases in the neu-

tral density are proposed to arise from the effect of the pressure balance between the

neutrals and the plasma species, particularly the high temperature electrons [17], as

well as the ‘pumping’ of neutrals through a process of ionisation, transport to the wall,

and subsequent neutralisation [157].

With this in mind, it is also necessary to include an energy transport equation for

the neutral species. This will be the same as (4.8), but the heat flux is determined by the

Fourier law (2.43), as the neutrals are assumed to interact mostly with themselves. As

the temperature gradient is expected to be comparatively low [158] the terms involving

gα can be removed from both the momentum and energy balance equations.

124
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The only new derivation steps that are required are to find ∇ · qg, the subsequent

normalisation, and the resulting final expression for the energy balance that comes

from substituting it into (4.8). As part of the derivation, normalised versions of the

two constants in the Fourier law of thermal conductivity must be used, which are given

below.

ha =
k2
B

miK0
Λa hb =

k2
BTe0
miK0

Λb

From (2.43):

qg =− (haTg + hb)∇Tg

∇ · qg =−∇ [(haTg + hb)∇Tg]

∇ · qg =− ha(∇Tg)
2 − (haTg + hb)∇2Tg (6.1)

nfK0

uB
nfuBkBTe0Q

′
g =−

k2
B

miK0

n2
fK

2
0

u2
B

T 2
e0Λa

(
T ′g
Te0

)2

(6.2)

−
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2
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(
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)
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Te0
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(
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(
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(
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−1
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)(
2
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g

−
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Q′g =− (3Λa + 2Λbγg)
γ′2g
γ4
g

+
(
Λaγ

−1
g + Λb

) γ′′g
γ2
g

(6.3)

The normalised expression (6.3) can be inserted directly into (4.8) to provide an

equation for the neutral energy balance, as shown below.

γ′′g =

 (3Λa + 2Λbγg)
γ′2g
γ2
g

+ 3
2Γgγ

′
g + γgΓg

N ′g
Ng

+

(
MgγgΓ

2
g

2N2
g

− 5

2

)
γgΓ

′
g

+
∑
β

{
MgMβ

(Mg +Mβ)2γgεgβ

[
Mβγg

(NβΓg −NgΓβ)2

NgNβ

−3NgNβ

(
1− γg

γβ

)]} × (Λaγ
−1
g + Λb

)−1

(6.4)

The expression given in (6.4), while still unwieldy, is not as complex as the equiva-

lent expression for electrons, and whilst two new parameters are introduced, they are

constants so do not require more than a single value for any given input conditions. As
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Figure 35: Boundary conditions for the semi-analytical model including non-
isothermal neutrals. Central plasma conditions are on the left, edge values are on
the right.

before, this equation must be transformed into one that takes the logarithmic densities

as arguments, for the numerical benefits that this gives. This is given in (6.5).

γ′′g =

 (3Λa + 2Λbγg)
γ′2g
γ2
g

+ 3
2Γgγ

′
g + γgΓgL

′
g

+

(
1
2MgγgΓ

2
ge
−2Lg − 5

2

)
γgΓ

′
g

+
∑
β

{
MgMβ

(Mg +Mβ)2γgεeβ

[
Mβγg

(
eLβΓg − eLgΓβ

)2
exp (Lg + Lβ)

− 3 exp (Lg + Lβ)

(
1− γg

γβ

) ] } × (Λaγ
−1
g + Λb

)−1

(6.5)

6.2 Model Development and Implementation

With new variables come new boundary conditions. The assumption is made that the

neutral species are in contact and thermal equilibrium with a wall held at 300 K, and

that the density at the edge also returns to the gas fill density nf [104]. Although

this is not fully consistent with the charged species boundary being the sheath edge,

it can be interpreted as assuming that the sheath has negligible impact on the neutral

properties, either because it is thin, or because the charged species densities are too

low within to have any effect. Unfortunately this means that the boundary conditions

for both the neutral density Ng and the neutral temperature coefficient γg are specified

at the edge of the discharge, and unconstrained at the centre, as shown in figure 35.
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Figure 36: Thermal conductivity of pure oxygen at a constant pressure of 10 Pa.
Results for pressures from 0.1 Pa to 1× 105 Pa are imperceptibly different.

This means that a numerical scheme must be developed to make initial guesses on

the central neutral properties, and then adjust them until the edge boundary conditions

are met in a minimisation or root finding type problem. This scheme will be detailed

later.

As far as additional parameters are concerned, the only additions compared with

the non-isothermal model of Chapter 4 are the thermal conductivity constants. The

values for these are obtained using data provided by the National Institute of Standards

and Technology, accessible in an online database [159]. This data and the linear fit used

to obtain the coefficients are both given in figure 36. From the linear fit, the coefficients

are ha = 7.6478× 10−5 W m−1 K−2 and hb = 4.4068× 10−3 W m−1 K−1. For the other

necessary parameters, such as reaction rate coefficients or inelastic energy losses, these

are unchanged from those detailed in Chapter 4.

As mentioned above, there is a requirement for a new numerical scheme due to the

boundary conditions of the neutral properties. Similarly to the negative ion flux, the

neutral density and temperature are specified at the edge of the integration, but unlike

Γn, they are free parameters at the centre. As Γn,L is largely independent of both

Ng,0 and Tg,0, with the exception of the weak effect of elastic collisions, the neutral

parameters can be found separately to α0. However as the density and temperature

are closely coupled, it is logical to solve for them simultaneously. Unfortunately the

shared parameter space of Ng,L and Tg,L is non-trivial for the inputs Ng,0 and Tg,0,

and contains discontinuities and inaccessible regions. In order to work around this,

iterative values ofNg0 and Tg0 are chosen based on the record of past attempts. Starting

from an initial point of Ng0 = 1 and Tg0 = 300 K, the next two attempts are found

through a simple independent linear extrapolation, using Nn+1
g0 = 1 + Nn

g0 −Nn
gL and
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Tn+1
g0 = 300 + Tng0 − TngL, where the superscripts are iteration indices.

If this has not found a solution after three attempts, then a 2D co-dependent linear

regression is applied. This assumes that the edge values for the neutral density and

temperature are linear functions of both central values, as given in (6.6) and (6.7).

NgL = anNg0 + bnTg0 + cn (6.6)

TgL = atNg0 + btTg0 + ct (6.7)

So that the fit can be easily applied to multiple points, each of these expressions

can be given in matrix form as Ys = XAs, where the subscript can be either n or t,

and the matrices are given below for a fit being applied to p trial points.

Yn =


NgL,1

NgL,2

...

NgL,p

 Yt =


TgL,1

TgL,2
...

TgL,p

 X =


Ng0,1 Tg0,1 1

Ng0,2 Tg0,2 1
...

...
...

Ng0,p Tg0,p 1

 An =


an

bn

cn

 At =


at

bt

ct



The fit can be applied independently to each equation using standard linear regres-

sion techniques [160] to give the fit parameters An and At. The regression formula

used is As = (XᵀX)−1XᵀYs, where Xᵀ denotes the matrix transpose of X. Once

these are found, then (6.6) and (6.7) are rearranged to the form in (6.8) and (6.9) to

avoid issues with rank deficient matrices in the next fit.

NgL − cn = anNg0 + bnTg0 (6.8)

TgL − ct = atNg0 + btTg0 (6.9)

To estimate the values of Ng0 and Tg0 that give the correct edge boundary condi-

tions, these two equations can now be treated simultaneously. They can be expressed

this time as a single matrix equation, CG = E, with the matrices again given below.

C =

an bn

at bt

 G =

Ng0

Tg0

 E =

 1− cn

300− ct


From these, matrix inversion of C is used to find the next estimate of the central

neutral properties. As the equations (6.8) and (6.9) are treated simultaneously, the

resulting combined estimate for Ng0 and Tg0 is that which should give the best values
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for both of the respective edge values, given the information and assumptions used in

the two stage regression.

This linear regression technique is applied to the previous three iterations until the

correct central values are attained, or until four points are found that bound the region

in which the correct solution should lie in parameter space. The regression is then

applied to the four bounding points that have the minimum total error on the neutral

edge properties, defined as (NgL − 1)2 + (Tg0/300− 1)2.

If no bounding area is found within a number of iterations, then a Monte Carlo

technique is used to find more suitable points in the parameter space. This selects

a random point that is biased toward points with a small error, but away from large

clusters of points, to ensure that a discontinuity is not being focussed on.

These new numerical techniques are implemented in a layer around the previous

methods of electronegativity minimisation, including the perturbations, as finding the

correct neutral properties requires that the other boundary conditions are also met.

6.3 Results

Investigation of the effects of including self-consistent neutrals begins with a single

model run taken at a high electron temperature and density. High values are chosen as

it has been shown that, as is to be expected, the impact of the plasma on the neutral

species is higher at high plasma densities and temperatures [103].

6.3.1 Example Profiles

Results for a plasma with a central temperature of 4.8 eV and a relative electron density

of around 10−4 are shown in figure 37.

The profiles of charged species properties are much the same as for the non-

isothermal model of Chapter 4. Numerical analysis indicates that it is just within the

criteria for a structured plasma, as would be expected for a system with a high electron

temperature. The species fluxes do not display any unusual behaviour, and the electron

temperature profile is as one would expect from the non-isothermal model. Despite the

plasma properties exhibiting roughly the same behaviour as the non-isothermal model,

it is clear from figure 37(d) that the neutral species are affected by the presence of the

plasma. The density is reduced in the centre by around 10 %, and the temperature has

increased by 28 K, also around 10 %.
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Figure 37: Spatial profiles for the properties of a high density plasma including
neutral dynamics, with Te0 = 4.8 eV, Ne0 = 2.13 × 10−4, and J2

0 = J2
base. Shown are

(a) charged species densities, (b) all species fluxes, (c) electron temperature, and (d)
neutral properties.

Unlike the charged species, the gradients of the neutral species are generally shallow,

and slow to change. Due to the relatively high density of the neutral species, the

addition or removal of individual particles through chemical reactions does not have

as great an effect as on the charged species. This is the case for both the neutral

density (4.7) and temperature (6.4) gradients, both of which contain terms for the

change in their respective quantities due to changes in the number of particles through

chemical reactions. The coupling between the plasma and the neutrals is therefore

mostly through elastic collisions, the effects of which do not change as rapidly in space.

The details of the various effects on the neutral density and temperature were

analysed, and it was found that interactions with the fast and heavy positive ions, and

the high energy electrons, dominate over the other terms in (4.12) and (6.5). These

findings are given in figure 38, which each show only the most dominant terms.

As shown, the density is mostly controlled by the temperature variation, although

there is some influence from the positive ions toward the edge of the system, as they

gain velocity. Although the streaming velocity of the electrons is comparable to that



6. Neutral Dynamics 131

0 0.2 0.4 0.6 0.8 1
−0.005

0

0.005

0.01

0.015

0.02

0.025

Normalised Position

N
eu

tr
al

 D
en

si
ty

 G
ra

di
en

t T
er

m
 (

ar
bs

)

 

 

Temperature Gradient
Positive Ion Drag
Negative Ion Drag

(a)
0 0.2 0.4 0.6 0.8 1

10
−6

10
−4

10
−2

10
0

Normalised Position

N
eu

tr
al

 T
em

pe
ra

tu
re

 G
ra

di
en

t T
er

m
 (

ar
bs

) 

 

 

Chemical Reactions
Positive Ion Momentum Transfer
Negative Ion Momentum Transfer
Electron Thermal Energy Transfer(b)

Figure 38: Spatial profiles of the dominant causes of neutral (a) density and (b)
temperature changes for the system given in figure 37.

of the positive ions, with a mass five orders of magnitude lower their direct influence

on the density through friction is insignificant. For the neutral temperature, it is once

again the energetic ions that have the greatest impact at the edge, but in the centre the

energetic electrons cause the most heating. Surprisingly, there is a noticeable energy

gain from the chemical reactions that take place, though the effect is small compared

with the other energy sources. If one calculates what the net effect of the heating is

on the neutral density, one finds that it is responsible for about 85 % of the depletion

of neutrals in the centre of the discharge. This shows that, for a plasma with these

parameters, the heating effect is the most important if one wishes to understand why

the neutral density at the centre is reduced.

In order to investigate how the discussed effects change for different input condi-

tions, another run of the model was performed with a low electron temperature and

density. The corresponding results for this are given in figures 39 and 40. The be-

haviours of the charged species are the same as for the non-isothermal model without

neutrals, presented in Chapter 4, and shown is an unstructured plasma with the density

peaks at the edge of the bulk. The fluxes and electron temperature have changed in

the same manner as for the non-isothermal model without neutral dynamics.

However, to the casual observer, figures 37(d) and 39(d) are identical. Only the

axes belie the differences that do exist, as both vertical axes have had to be modified to

measure the difference from the wall value for their respective variable. This is because

the changes in both the neutral temperature and density are on the order of one part

in 106 across the discharge. In figure 40, the balance between the various terms has

shifted slightly, as is to be expected with different charged species profiles, however

there are no significant changes in what the dominant effects actually are. This shows
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Figure 39: Spatial profiles for the properties of a low density plasma with neutral
dynamics, with Te0 = 3.4 eV, Ne0 = 4.17×10−9, and J2

0 = J2
base. Shown are (a) charged

species densities, (b) all species fluxes, (c) electron temperature, and (d) neutral prop-
erties.

that the interaction of the charged species with the neutrals is controlled by the same

mechanisms regardless of the plasma properties, but that the magnitude of the total

effect is changed.

Due to the increased numerical complexity, and particularly the computationally

challenge of the neutral boundary condition parameter space, the model now takes

significantly longer to run. Systems with a low plasma density, and so a minor impact

on the neutral properties, behave much the same as before. However should the model

need to implement the more complicated numerical schemes described in the previous

section, the computation times increase. The low density example in figures 39 and 40

took just under 40 seconds to complete, but the first example with a significant neutral

depletion took roughly 100 seconds to reach a solution. This has implications for the

parameter sweeps, as they will now take longer. Fortunately, 100 seconds is still many

times shorter than a full fluid model.
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Figure 40: Spatial profiles of the dominant causes of neutral (a) density and (b)
temperature changes for the system given in figure 39.

6.3.2 Parameter Sweep

The parameter sweep created using the neutral dynamics model was considerably more

computationally expensive than that for the model presented in Chapter 4. Without

neutral dynamics, the average execution time for a set of initial conditions that produces

a solution was 27.2 seconds. When the neutrals are included, this increases to 40.0

seconds. The majority of the area explored has a similar run time between both

models, but as shown in the results, this is because the neutral properties are not

heavily affected unless the plasma is hot and with a high charged species density, such

as that in figure 37.

In order to visualise the effect that the plasma has on the neutrals, plots have been

created from a parameter sweep over the same range as for the previous models, and

are given in figure 41.

In figure 41(a), the degree of neutral gas depletion is shown, calculated as the

relative difference between the edge and centre values of neutral density 1−Ng0. Fig-

ure 41(b) shows the central neutral temperatures for the same points in parameter

space. Both plots appear similar on their relative scales, further evidencing the strong

correlation between the two values. Also apparent is the aforementioned requirement

for the plasma to be comparatively dense and energetic in order to markedly affect the

neutral properties.

Despite the agreement with the prediction that gas depletion is only seen in dense

plasmas, in figure 41, both the degree of neutral gas depletion and the neutral tem-

perature are seen to decrease for higher electron temperatures. This can be linked

to figure 30, where it is shown that the system pressure-length product strongly de-

creases with increasing Te0. Therefore, although the causes for depletion are stronger
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Figure 41: Behaviour of the central neutral (a) density and (b) temperature values
as a function of central electron temperature and density for the semi-analytical model
with neutral dynamics.

at a higher electron temperature, they are also more limited in space and thus have a

smaller net effect on the neutral properties. Also apparent in these results is the diffi-

culty in obtaining solutions when the neutral properties are heavily affected. In contrast

to the non-isothermal model without neutral dynamics, at high electron densities and

temperatures the model is unable to provide reliable data close to the theoretical va-

lidity boundary. Other than this, the results presented in figure 41 are not surprising,

and fit in with the previous results and the expectations of the system.

As the interesting data in figure 41 is confined to a small region, a more detailed

investigation was performed of the top right section of the parameter space explored.

The results of this are given in figure 42, and show two important features. Firstly,

there is no deviation from the trends discussed above, nor are there any discernible

small scale changes. The second feature is the difficulty evident in obtaining solutions

for a high degree of neutral gas depletion. There is no distinct boundary beyond which

solutions are impossible. Instead as the degree of depletion increases, there is a gradual

breakdown, where holes in the results begin to appear with no obvious pattern. This

is further indication that the issue is numerical, rather than analytical, and could

potentially be solved through a different numerical scheme.

As the neutral density is reduced for a high plasma density, it is expected that

this will have some feedback onto the plasma, due to the important interactions with

the neutral species. In order to determine this, the difference was calculated between

the resulting plasma parameters for the model with and without the neutral dynamics

included, as ∆α0 = α0,neuts − α0,noneuts and ∆pL = (pL)neuts − (pL)noneuts. These

measures can be seen plotted in figure 43.

It figure 43(a) it can be seen that, even at low gas depletion levels, there is an impact
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Figure 42: Behaviour of the central neutral (a) density and (b) temperature values
over a more detailed region of the parameter space explored in figure 41.

on the plasma. The reduction in neutral density causes a drop in the electronegativity

and an increase in the system pressure-length product. Both of these trends can be

understood through the alteration of the balance of the reaction set. In the same

way that a high electron density alters the system behaviour by causing plasma self

interaction processes to increase in importance, a reduction in neutral density will

decrease the rates of plasma-neutral interactions. Although the cause is different,

the effect of shifting the balance of dominance more toward plasma self interaction is

the same. Therefore one would expect that the trends between increasing Ne0 and

decreasing Ng0 are the same, and indeed this is the case. Looking back at figures 29

and 30 it is shown there that both the electronegativity reduction and pressure-length

increase with increasing Ne0, and that the effect on α0 is greatest, with the change in

pressure-length product being restricted closer to the limit of validity. With changes

of over 60 % in the electronegativity, and up to 80 % in the pressure-length product,

the impact of neutral dynamics on the plasma can be very large, when compared to

the model excluding neutrals.

6.4 Conclusions

It has been shown that it is possible to include neutral dynamics in a semi-analytical

model of an electronegative plasma, but not without adding to the already high degree

of complexity. The increase to twelve simultaneous nonlinear differential equations

leads to very strong coupling between species, and the requirement for performing root

finding in such a system causes computational difficulties, which have not been entirely

overcome.

Despite these difficulties, results have been obtained and they show how impor-
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Figure 43: Calculated differences between (a) the electronegativity and (b) the pres-
sure length product between results from the semi-analytical model with and without
neutral dynamics.

tant the impact of neutral dynamics are on systems with a relatively high degree of

ionisation. Significant impacts on the plasma and neutral species are seen at relative

densities of 10−4 and above, but minor effects are seen for plasma densities at one part

in 106. Plasmas with such fractional densities are common [45, 161, 162], particularly

in industrial applications where the neutral species can be important for the process,

and so a non-uniform density profile would be detrimental. It is therefore important

to understand the reasoning behind the neutral gas depletion, and what effects it has

on both the neutral and plasma species.

The common reported effects considered important for neutral gas depletion are gas

heating [17], ion drag [163], electron pressure effects [14, 164], and ion pumping [157]. In

this model it is shown that the gas heating and ion drag effects are certainly important,

however the ion pumping is not able to be investigated, due to the lack of a wall and

subsequent feedback.

For the electron pressure effect, a simple analytical approach [158] indicates that

the total pressure, that is the sum of all species partial pressures, is an invariant. One

could expect that this would result in a reduction of neutral pressure, and so a depletion

effect, in high density discharges where the electron partial pressure is comparable to

the gas fill pressure. If a similar analysis is performed on either (4.3) or (4.7), then

it is found that terms remain involving the electric field and the chemical reactions,

indicating that although the frictional forces are zero sum, there are other effects that

mean that in a more detailed fluid model, a pressure analysis is not as simple as

investigating an invariant.

It is also worth considering that the difference between discussing partial pressures

and talking about the impact of hot electrons on cold neutrals is also the distinction
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between fluid and particle effects. When investigating a fluid model, the separation

between the two concepts is blurred due to the very nature of the fluid equations. Any

effect attributed to partial pressures, must in reality be caused by elastic collisions be-

tween particles. The interaction of electrons with the neutrals through elastic collisions

is accounted for in this model, by the transfer of both thermal energy and momentum,

and yet there is no explicit ‘pressure’ interaction. It can be argued that the supposed

electron pressure effect is simply a combination of gas heating and friction that arises

from the difference between the macro- and microscopic viewpoints. Therefore includ-

ing electron pressure as a possible cause of neutral gas depletion alongside heating and

friction is superfluous.



Chapter 7

Cross-Model Comparison

One of the key motivations for this work is to provide an alternative type of model

that can complement both global and full fluid models. It should allow researchers to

investigate phenomenon that are not captured by global models, but are impractical

to study using full fluid models. It is clear from the work and results detailed in

the previous chapters that the new semi-analytical model provides more information

than global models, in the form of spatial profiles of particle densities, fluxes, and

temperatures. It is also able to spatially resolve reaction rates, and the importance of

non-uniform electron temperatures and power deposition has been demonstrated.

However it is not currently clear if the results from the semi-analytical model accu-

rately portray the system being modelled, namely a parallel plate oxygen RF CCP. In

order to determine this, one would ideally compare the results with accurate and pre-

cise measurements of such a system. Unfortunately there are a relatively large number

of parameters required to provide a full comparison with the semi-analytical model,

and no published experiment has been found that provides a comprehensive enough

suite of measurements of the correct type of discharge.

In order to work around this, comparisons will be made with the full fluid model

detailed in Appendix A. This 1D, time resolved model has been compared with exper-

iment and a PIC simulation via real and simulated measurements of phase resolved

optical emission spectroscopy (PROES) [13, 35, 165, 166], and makes for a credible

source of spatial profiles of an oxygen plasma.

The full fluid model naturally differs from the semi-analytical model in a number

of ways. In order to remove a significant difference, comparisons will be drawn with

the model of Chapter 4, as the effect of neutral dynamics is not included in the full

fluid model. There are also differences in the derivation and implementation of the

138
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underlying equations that could lead to discrepancies.

Although both models are based on the moments of the Boltzmann equation as

found in Section 2.4.3, they differ in a number of ways in the subsequent formulation of

the transport equations that are actually used. Both the full fluid and semi-analytical

models describe heavy particles as fluids, and electrons semi-kinetically through the

use of reaction rate coefficients obtained from BOLSIG+, as described in Section 2.3.3,

however the two models differ markedly in their description of elastic collisions be-

tween species. The full fluid model uses the drift diffusion approximation, described

in Section 2.6.2, and so a number of terms are discarded or collected to allow elastic

collision effects to be summarised by two parameters. In contrast, the semi-analytical

model performs a collection of terms only after all of the effects of elastic collisions

have been considered, as detailed in Section 2.4.4. This results in more complex equa-

tions, but a more comprehensive description of how elastic collisions affect the system.

In particular, the treatment of energy transport using diffusion coefficients causes the

neglection of a number of terms that appear in (2.42), such as the consideration of

how the creation and destruction of particles affects the kinetic and thermal energy

of a species. The drift diffusion treatment also precludes the consideration of how the

energy dependence of the elastic collision rate creates effects due to steep temperature

gradients, the importance of which is discussed in Section 4.2.

In addition to the treatment of elastic collisions, there are major differences in the

treatment of terms related to the inclusion and effects of electric fields. The most

severe of these differences is arguably the presence of Poisson’s equation in the full

fluid model, compared with the assumption of quasineutrality in the semi-analytical

model. This difference has implications mainly for the behaviour of each model at the

edges of the system. As discussed in Section 4.3.4, differences arise between the two

models due to the ability, or not, to resolve the sheath. The removal of the sheath

means that the solutions of the semi-analytical model are known to be unphysical at

the edge of the system, and attempts to continue the solution into the region where a

sheath would exist result in singularities in a number of properties.

As the full fluid model is able to resolve the full electric field in time as well as

space, it is able to include an explicit ohmic heating term as the product of the electron

flux and the electric field. In contrast, the semi-analytical model must approximate

the ohmic heating through the assumption of a sinusoidal current density of a given

amplitude, as discussed in Section 4.2.
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Figure 44: Behaviour of reported electronegativity for the full fluid, semi-analytical,
and global models as a function of (a) pressure or (b) current density.

7.1 Comparison of Results

The full fluid model is computationally expensive to run, and so a limited parameter

sweep was generated, with a variation in either system pressure or driving voltage

for a pure oxygen symmetric RF CCP in a 4 cm gap. For each of these data points,

the central electron density and temperature, and the current density, were extracted,

and the semi-analytical model from Chapter 4 was run with these inputs. The global

model was placed within a minimisation routine to find the background gas density

and plasma length that gave the best combination of central electron density and

temperature, when compared to the full fluid model. A number of the resulting graphs

are plotted over the next few pages, in figures 44 to 46.

The central electronegativity for each model is shown as a function of pressure,

at a constant driving voltage of 300 Vpp, in figure 44(a) and a function of current

density, at a constant pressure of 40 Pa, in figure 44(b). Looking first at the pressure

response, it is clear that all three models follow the same trend of electronegativity being

approximately inversely proportional to the pressure. There are differences however

between them, notably that the semi-analytical model consistently underestimates the

electronegativity. Conversely, the global model results are mostly higher than that of

the full fluid model, but there is a deviation from this at lower pressures.

In figure 44(b) all three models report a roughly constant value for α0, as is to be

expected as this system is in the low density regime. The semi-analytical model has a

nearly identical trend to the full fluid model, but the absolute number is around 25%

lower, as expected from the 40 Pa result in figure 44(a). For the global model, again the

absolute number for the electronegativity is closer to that of the full fluid model, but
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Figure 45: Behaviour of the reported plasma bulk length for the full fluid, semi-
analytical, and global models as a function of (a) pressure or (b) current density.

the trend is not. At the higher current densities the result becomes less predictable,

and the trend changes from point to point.

Looking at both parts of figure 44 together, there is an overall message that the

global model is potentially more accurate in the value of the electronegativity in this

parameter range, but that the semi-analytical model is more consistent. In particular

at lower pressures or at higher current densities the global model deviates from the

expected trends. The issues at low pressure are a known issue for fluid models, due

to the breakdown of collisionality assumptions, and it may be that the global model

fails at a higher pressure than the other two, due to the lack of self consistency in the

spatial variation.

As all three models share the same reaction set, it is expected that they should

all have similar values for the electronegativity. However figure 44 demonstrates that

this is not the case. The lack of sheath physics, and potentially also the lack of self

consistent O2

(
1∆g

)
, has an effect on both the semi-analytical and global models. As

for the higher accuracy of the global model, it is possible that the empirical relations

used, particularly that for the edge to centre density ratio, hl, are able to compensate

for this lack of spatial information, with regards to the reaction balance of species.

However this is not the case for all of the plasma properties.

Figure 45 shows how the size of the plasma bulk changes for each model at a

specific set of conditions, found from the full fluid model as before. The sheath width

in the full fluid model was calculated by finding the point s where a spatial integration

of the electron density from the edge to s equated a spatial integration of the net

charge density from s to the centre of the discharge [141]. The bulk width can then be



7. Cross-Model Comparison 142

0 50 100 150
0

1

2

3

4

5
x 10

−7

Pressure (Pa)

Io
ni

sa
tio

n 
F

ra
ct

io
n

 

 

Full Fluid
Semi−Analytical
Global

(a)
5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−7

Current Density (A m−2)

Io
ni

sa
tio

n 
F

ra
ct

io
n

 

 

Full Fluid
Semi−Analytical
Global

(b)

Figure 46: Behaviour of the reported ionisation fraction for the full fluid, semi-
analytical, and global models as a function of (a) pressure or (b) current density.

calculated trivially from this. For the global and semi-analytical models, the bulk width

is simply the reported pressure-length product divided by the prescribed pressure, as

neither model resolves the sheath. As previously, results for this are plotted as a

function of either pressure or current density.

In figure 45(a) the behaviour is seen to be different for each model. The full fluid

model has a small but steady increase in bulk width as the pressure increases. For the

semi-analytical model, the quantitative agreement with the full fluid model is good,

but with the exception of data at 15 Pa, the value decreases slightly with pressure.

This is not the case for the global model, which has a distinct inability to accurately

specify the pressure-length product when programmed to provide a specific absolute

electron density and temperature.

These last findings are repeated when the current density is varied, as shown in

figure 45(b). Although the trends of each model are now similar, the accuracy and

precision of the global model are mediocre. Conversely, the semi-analytical model is

able to give good results for this measure. The small discrepancy with pressure variation

is likely due to the inverse relationship between pressure and electron temperature.

At higher pressures, the low value of Te across the bulk means that the high energy

sheaths may play a more significant role in controlling the plasma behaviour, despite

their diminished size.

The final measure to be compared is the ionisation fraction resulting from each

model, which is given in figure 46. In the pressure variation, figure 46(a), the trend is

the same for all three models. While the semi-analytical and full fluid models agree both

qualitatively and quantitatively, the global model consistently reports lower values.



7. Cross-Model Comparison 143

This is repeated in the variation with current density in figure 46(b). The difference

between the semi-analytical and full fluid models is around 15%, but the global model

reports an ionisation fraction roughly half of the other two. This shows how, without

spatially resolved reaction rates, the global model struggles to account for the correct

amounts of species creation and destruction, resulting in an underestimation of the

ionisation fraction.

7.2 Conclusions

The results presented in this chapter are all within the low density and ‘unstructured’

regimes. This means that the majority of plasma properties are dependent more on

the electron temperature than on the plasma density. Therefore in figures 44 to 46

the plots with pressure on the abscissa can be broadly said to describe the trends and

accuracy of each model, while the plots with a variation in current density provide

more information about the precision and reproducibility of behaviours.

The same underlying reaction set, and the shared basis on fluid equations, mean

that results from each model are expected to be similar, which is broadly true. However

the differences in approaches and methodology mean that there will be discrepancies.

The assumption, or not, of quasineutrality, and the lack of self consistent excited states

in the semi-analytical and global models have caused a loss of information, and create

inaccuracies. Even with the spatial resolution of the semi-analytical model, there are

spatial effects, such as double layers, that are not captured. Despite these issues, the

assumption of quasineutrality, and thus the removal of Poisson’s equation from the

system, prevents the creation of a stiff set of differential equations, and thus improves

both the model simplicity and computation time dramatically.

Discrepancies between the models are also thought to arise due to the very sensi-

tive nature of certain reaction rate coefficients, in particular those for ion creation, as

shown in figure 22(a). While the full fluid model uses a lookup table and linear in-

terpolation to find reaction rate coefficients as a function of electron temperature, the

semi-analytical and global models use fitted functions to improve computational effi-

ciency. Even though these functions are accurate to within 1%, this may be enough to

create sufficient differences that compound over the course of the numerical integration.

This may partially explain another disparity between the models, which is the ap-

parent differences in the relationships between pressure-length product and electron

temperature. For the global model, this difference can be explained away by the in-
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flation of the necessary temperature caused by the isothermal assumption, but the

semi-analytical model also requires a slightly higher electron temperature to match the

full fluid model. A modest increase of 2 % to 3 % on the central electron temperature

can cause the electronegativity reported by the semi-analytical to match that from

the full fluid model almost perfectly. This inconsistency may be in part due to the

difference in approaches for obtaining reaction rate coefficients, but is also likely to be

affected by the removal of the sheath. It is also likely that the lack of time dependencies

has an impact on this. As the reaction rate coefficients are non-linearly dependent on

electron energy, even a sinusoidal modulation of Te over time will change the net rate

coefficient for some reactions. Given the over linear relationship of the ionization rate

coefficients, many of the mean values would be expected to rise when the temperature

oscillates in the region 3 eV to 5 eV.

It is not just the semi-analytical and global models that must be questioned. The

full fluid model is still a fluid model, and as such has limitations and inaccuracies. In

particular, it uses the drift diffusion approximation, which assumes that fluid transport

can be described by thermal diffusion and electric field mobility coefficients. Like the

detailed fluid equations used in the semi-analytical model, these assumptions break

down at low pressure, when collisionality can no longer be assumed. However, as terms

are discarded to form the drift diffusion equations, they may break down at a higher

pressure than those used in the semi-analytical model. Thus discrepancies between

the two at the lower pressures could arise from either model, or both, as the dropping

collisionality affects them in different ways.

Also at the lower pressure scales, the global model is seen to deviate, particularly

in the accuracy of the electronegativity. This is thought to be due to the encroachment

of the sheath onto the bulk at low pressures, which will reduce the effectiveness of the

empirical relations used, such as the derivation of the energy loss due to the sheath,

given as εs in (5.7). Although the sheath encroachment is also expected to affect the

semi-analytical model, this effect does not appear to be as severe.

In the global model, the density of charged species is seen to be an issue, manifesting

as discrepancies in the ionisation fraction, and as a need to extend the plasma to obtain

the correct electron density. The densities are mostly controlled by the power balance,

which is heavily reliant on empirical relations such as the sheath energy losses and

the edge to centre density ratio. This shows that the lack of spatial information in

the global model causes large errors in the pressure-length product and the ionisation
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fraction.

Conversely, the discrepancies between the semi-analytical and full fluid models are

within what would be expected due to the lack of consideration of time dependencies

and sheaths, and are generally smaller than those between the global and full fluid

models. The inclusion of spatial resolution of ionisation profiles in the semi-analytical

model allows for much better estimation of plasma densities than the approximations

of a zero dimensional model. The limitations of the global model are clear, and can be

largely attributed to the empirical relations required for the centre to edge density ratio,

which are approximate at best within their limited parameter range, and of unknown

behaviour outside it.



Chapter 8

Conclusions and Outlook

The work in this document describes the creation and testing of a novel semi-analytical

model for the investigation of electronegative plasmas with neutral dynamics. It was

shown that it is possible to develop a model based on the fluid moments of the Boltz-

mann equations that is able to describe a four component plasma including negative

ions and neutral dynamics. It is also possible to solve this as an initial value type prob-

lem. This treatment enables the model to provide solutions on a time scale of seconds

to handfuls of minutes on a standard 2.5 GHz x86 64 processor, compared with a full

fluid model taking around ten hours on a dedicated compute server.

Casting the equations as an initial value problem does not come without difficulty,

and the complicated equation set calls for non-standard numerical algorithms. The

high degree of non-linearity between the expressions means that links between inputs

to and outputs from the numerical integration are not always trivial, and may not even

be continuous or differentiable. For systems such as these, MATLAB was found to be a

suitable development environment, even though other languages may be faster compu-

tationally. The transformation of differential equations into spatial profiles was made

much simpler by the suite of included solvers and algorithms, and the live development

environment facilitated fast troubleshooting.

Once the algorithms were implemented successfully, the generation and analysis

of data followed quickly. A theoretical limit for the parameter range over which the

model can provide solutions was described, and verified using a parameter sweep. De-

spite closely meeting this criterion, the model failed to provide data that compared

well to other sources. It was found that using an isothermal approximation for the

electrons was inappropriate for this model. The occasionally large spatial variation of

the reaction rate coefficients, in particular that of ionisation processes, is important to

146
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resolve in order to accurately describe the plasma behaviour. In order to do so, one

requires the spatial profile of the electron temperature.

To include electron temperature variations, an expression for the deposited ohmic

power was derived based on the RF current density and the plasma conductivity. This

allowed the model to self consistently solve for the gradient of the electron temperature

over the integration space. Inclusion of the electron energy transport equation allowed

the model to recreate the results of a time resolved, non-quasineutral model with

reasonable accuracy, with the obvious exception of the sheath. This improvement also

reduced the numerical difficulties faced by the model, and results were obtained to show

that the theoretical validity limit provides exactly the boundary of possible solutions.

From the results of the developed model, a number of conclusions can be drawn. The

various parameter sweeps show that in this normalised system there are two distinct

regions of operation. At a low plasma density, the system behaviour is independent

of the plasma density, provided that the central electron temperature and the ohmic

power deposited per electron remains constant. Above a relative plasma density of

roughly 10−6, interactions between charged species start to become important, and a

mode transition is seen into one dominated by plasma self-interaction. This includes

changes to the behaviours of electronegativity and the relationship between electron

temperature and system pressure-length product.

It has been discussed that there are three main potential sources of error, when this

model is compared to the full fluid model. The enforcement of quasineutrality means

that no charge separation can occur, nor is it possible to have non-monotonic electric

potentials. The semi-analytical formulation and casting as an initial value problem

means that this model is unable to capture time dependent effects, or phenomena that

arise from the interaction of the plasma with the chamber walls. This lack of wall

interaction means that the model is unable to self consistently include an important

metastable excited state of oxygen, O2

(
1∆g

)
. This excited state is destroyed primarily

through wall interactions, and diffuses freely through the discharge. Another important

effect that is not captured due to the lack of wall is the presence of secondary electrons.

This precludes the model from being able to capture the ‘gamma mode’ that is exhibited

at elevated powers in real systems.

The restriction of quasineutrality means that instabilities in space, such as double

layers, are not present, and the time averaging of equations removes temporal instabil-

ities too, both of which are effects known to be important in electronegative plasmas.
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Although the conditions under which instabilities occur depend on the precise sys-

tem properties, they have been shown to broadly occur at higher pressures and higher

powers [132]. These findings correlate with the hypothesis that the limitations pre-

scribed by the central density gradients, which lead to the theoretical validity limit,

can be circumvented by irregularities in either time or space. The boundary defined

by the derivation of the theoretical limit prevents the model from accessing regions of

high electron density with low electron temperature, which would be observed at high

pressures and powers in a physical system.

Despite these potential issues, the comparison with a model that is able to capture

time dependencies, wall interactions, and space charges, shows that there is still agree-

ment with the results for density profiles in the bulk. The semi-analytical model is

able to provide a good estimate of the electronegativity, and other plasma properties,

despite the lack of sheath.

So that the usefulness of the semi-analytical model could be gauged against a global

model, one of these widely used models was developed. It was shown that while some of

their outcomes are useful, they can be unreliable in their results for particular measures.

Although they are a quick way to gain insights into certain phenomena, one must take

care to understand their limitations and the applicability of the assumptions made

in their development. The global model was found to be restricted in accuracy by

the lack of spatial information, and the empirical relations used to try and overcome

this. In this respect it was concluded that although global models have their use

for quick investigations and modelling of chemically complex discharges, the semi-

analytical model was a more robust model for the parameter range investigated.

The semi-analytical model was extended to include neutral dynamics, and account

for the transport of energy to, from, and within the neutral fluid. It was determined that

the additional physics provided by neutral dynamics should be considered if the system

is in the region of parameter space where plasma self-interaction becomes important.

For a plasma density greater than roughly 1 part per million the neutral density at the

centre of the discharge is reduced, through a process known as neutral gas depletion.

This effect has been seen and investigated previously, with the possible causes being

identified by the community as gas heating, electron pressure effects, frictional forces,

and ‘ion pumping’.

In the discussion of neutral dynamics in Chapter 6, it was concluded that gas heating

and frictional forces play the dominant and next most important roles, respectively. It
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was discussed that electron pressure effects, although intuitively correct, are not well

defined in the theoretical framework. The only interactions between the electron and

neutral fluids are through elastic and inelastic collisions between particles, of which

the elastic collisions are considerably more frequent (see figure 22(a)). Through the

separation of motion into random and directed velocities the effect of these collisions

can be split into a transfer of either randomly distributed or direct kinetic energies,

which correspond to either heating or friction respectively. Thus the concept of pressure

plays no part when interactions are considered at a particle level.

The results of this work show that the applicability of the semi-analytical model

is similar to that of a full fluid model, and the results for the plasma bulk are quanti-

tatively comparable, but the time cost to the user is hundreds of times smaller. The

normalisations applied allow the model to describe a wide variety of systems with a

single result, and outcomes are relevant for any discharge that can be approximated as

symmetric and infinitely planar. These same normalisations, and the resulting collec-

tion of inputs and outputs, define a model that is more suited to the investigation of

general properties of planar discharges, or perhaps device design, than the modelling of

a specific device. Such an investigation is still possible, however, as the short compu-

tation time allows one to perform detailed investigations of large regions of parameter

space. This model would be particularly useful in the fast characterisation of systems

with a high degree of non-uniformity.

The uncertainties introduced by the removal of time dependencies, space charges,

and wall interactions, were shown to be restricted mainly to the sheath region. It is

likely that the error introduced by these effects is smaller than the effect of uncertainty

in the reaction rate coefficients used. As has been discussed, cross sections and reaction

rate coefficients that are found in the literature are often difficult to trace to an original

source. Their associated uncertainty can also be problematic to pin down. Despite work

to alleviate this [43], it is still an ongoing issue in the plasma physics community, that

can create a lack of confidence in the results of modelling.

A number of possibilities exist for the extension and improvement of the work

described in this document. It would be highly beneficial to improve the numerical

robustness of the algorithms used to determine the correct central neutral properties.

It is possible to obtain results through manual control and monitoring, however this is

a particularly time consuming process, and an automated solution would be very much

preferred.
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It would be desirable to extend the system to the modelling of arbitrary gases,

with the potential for more than four species. In theory the equations developed

are applicable to any number of species and reactions, however the practicalities of

the involved numerics would make this a difficult and extensive task. Modelling of a

different electronegative gas with a similar reaction set and dominant species, such as

chlorine [161], would be an appropriate first step toward this goal.

Finally, it would also be advantageous to investigate a method by which the lack of

wall interactions could be circumvented, so that species dominated by surface effects

could be modelled self consistently. Unfortunately at this stage an empirical inclusion

is the only known solution.



Appendix A

Time Resolved 1D Fluid Model

In Chapters 3, 4, 7 and 8, a detailed fluid model is used as a point of comparison. This

model, developed by A. Greb [13, 116, 140, 167] and used with kind permission, is a

self-consistent fluid model able to provide one dimensional, time resolved descriptions

of symmetric or asymmetric capacitively coupled plasmas.

A.1 Model Description

The model is based on a basic set of equations derived from the first three moments of

the Boltzmann equation, (2.26), (2.32) and (2.36), combined with Poisson’s equation

for the electric potential and field. With the application of the drift diffusion approx-

imation, and the retention of time derivatives, the resulting equations are somewhat

different to those used in the semi-analytical model. Given below are the equations

used in the full fluid model for mass, flux, and electron energy conservation in (A.1)

to (A.3) respectively. These are combined with Poisson’s equation for the electric po-

tential (A.4), which is used to find the electric field. In these expressions, symbols are

as in the main body of this work, with the addition of the mean electron energy in joules

(ε), the electric potential (φ), and the electron energy flux (Fε = 5
3neueε−

5
3neDe∇ε).

∂nα
∂t

+ ∇ (nαuα) =
∑
Rα

GRαnR1nR2KR (A.1)

(nαuα) = ZαnαµαE −Dα∇nα (A.2)

∂ (neε)

∂t
+ ∇Fε =− eneueE

−
∑
Re

GRenR1neKR −
∑
β

3
me

mβ
νeβne (Te − Tβ)

(A.3)
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∇2φ = − e

ε0

∑
α

Zαnα (A.4)

For closure of Poisson’s equation, the electric potential is specified to be zero at

the grounded electrode, and the amplitude of a sinusoidally oscillating driving voltage

is specified at the driven electrode. For asymmetric systems, this driving voltage can

include a non-zero offset, calculated self-consistently from the flux balance.

The boundary conditions for the included species are determined through expres-

sions of the expected flux of particles incident at the chamber walls. For the heavy

species, this is a combination of the mean thermal flux, derived from diffusion the-

ory [168], and any direct motion due to an electric field. These are given in the first

and second terms respectively of the right hand side of (A.5). In this expression, vth is

the mean thermal velocity, given in (A.6), x̂ is the unit vector normal to each electrode,

and a = 1 if ZαE · x̂ > 0, or zero otherwise.

(nαuα) · x̂ = 1
4vth,αnα + aZαnαµαE · x̂ (A.5)

vth,α =

√
8kBTα
πmα

(A.6)

For the electrons, secondary electron emission is considered, as discussed below.

Thus the boundary conditions for electron flux and energy must take this into account,

and do so in (A.7) and (A.8) respectively. In these generalised expressions, ηβ is the

secondary electron emission coefficient for species β, and εη is the initial energy of

electrons created through secondary emission, to be defined below.

(neue) · x̂ = 1
4vth,ene −

∑
β

ηβ (nβuβ) · x̂ (A.7)

Fε · x̂ =
5

3

1
4vth,eneε− εη

∑
β

ηβ (nβuβ) · x̂

 (A.8)

For the model as it is applied to a pure oxygen discharge, the full reaction set is

reduced based on experimental data [79, 86, 128]. Similar to the work on the semi-

analytical model described in this work, the main positive ion is taken to be O+
2 , and the

dominant negative ion is O−. Both of these are shown to account for at least 90% of ions

of their respective charge within the parameter regime covered by the full fluid model.

Unlike the semi-analytical model, the full treatment allows O2

(
1∆g

)
to be included as a

separate species. The density of O2

(
1∆g

)
is controlled by a similar boundary condition
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to the other species, and given in (A.9), where the subscript s denotes quantities relating

to O2

(
1∆g

)
, and ss is the surface loss probability for O2

(
1∆g

)
.

O2

(
1∆g

)
Wall Flux = 1

4ssnsvth,s (A.9)

The value for the surface loss probability, ss, is not simple to obtain. It depends

not only on the material composition of the chamber walls, which can vary in time,

but also on physical properties such as surface roughness and temperature. Literature

values for the surface loss probability of O2

(
1∆g

)
vary from 1 × 10−5 [118] to 7 ×

10−3 [169]. Comparisons with experiments for this model suggest that a value of

1× 10−5 is appropriate for stainless steel electrodes [116], and so this is the value used

in data generated for the comparisons in this work.

The species interactions considered in this model are the same as for the semi-

analytical model, given in table 5. There is a slight difference in that the elastic

collision rate coefficients are wrapped within the diffusion and mobility coefficients for

the relevant species, and the effect on the neutral background gas is not considered. In

addition, the effects of strong electric fields on the ion mobilities are considered. The

ion temperature is also carefully considered, and while left at 300 K in the bulk, the

effect of high electric fields in the sheath is accounted for through an empirical relation

inversely proportional to the square root of the electric field strength.

In the same way as for the semi-analytical model, reaction rate coefficients for

interactions involving electrons are calculated using the tool BOLSIG+. As discussed in

Chapter 7, they are included in the model not as functions, but as look-up tables against

electron temperature. This is potentially more accurate than using fitted functions, and

other computational overheads in the boundary value solution method employed by the

full fluid model are potentially larger than the time required to compute values from

the look-up tables.

The reactions are also accounted for as energy loss mechanisms, through inelastic

collisions. Ohmic power deposition is included self consistently, as the electric field and

electron fluxes are both time and space resolved.

As the whole plasma is resolved, including contact with the wall, it is possible to

allow for the emission of secondary electrons (see Section 2.1). For impacting O+
2 ions,

the probabiliy of secondary electron emission was found empirically to be 0.05 for a

stainless steel electrode surface. However, this is only an estimate, as like other surface

interaction coefficient, the precise values depends on a myriad of surface properties.
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The initial energy of emitted electrons was taken to be 0.5 eV [170].

The set of partial differential equations is solved using a finite element method,

implemented in COMSOL Multiphysics. The differential equations are applied to a

two dimensional mesh in space and time, the spatial extend being the inter-electrode

distance, and the time period being a single RF cycle. In this case these are 4 cm and

1/13.56 MHz ≈ 73.75 ns respectively. The mesh is linearly distributed in time, with 74

discrete points in time (for roughly 1 ns per point), but the 200 points in the spatial

direction are focussed toward the edges. This is because the gradients are steeper in

nearly every quantity within the sheath region, and so to improve accuracy without a

dramatic increase in computation time, the mesh is concentrated there.

As with all boundary value solvers, the model requires an initial estimate of the

system before solution can begin. It was found [167] that uniform profiles of species

densities and electron temperature do not cause numerical instabilities. These uniform

profiles are used unless there are results available from a solution with similar param-

eters, in which case these results are taken as initial conditions to reduce the time

necessary to reach convergence.

Another consideration required to increase the computational efficiency is that the

heavy species operate at a much slower time scale than the electrons. This means that

the electrons reach their state of convergence many times faster than the ionic species

and neutrals. As the time step within the mesh is required to be short to capture

electron behaviour, the means that the simulation is left with ‘converged’ electrons,

but many iterations remaining before the heavy species are solved for. To combat this,

a system is implemented whereby effective time averaged reaction rate coefficients are

calculated from the converged electron state. These are then used to perform a separate

convergence to generate an estimate of the equilibrium state. As the heavy particles

fluctuate much less than electrons during a single RF cycle, this equilibrium state is a

reasonable approximation for the heavy particle behaviour. The full simulation is then

continued from this state. This has been estimated to decrease the computation time

required by over an order of magnitude.

A.2 Example Results

The data generated by the full fluid model is resolved in both space and time. Although

time averaged values are used to compare against the semi-analytical model, it is still

worth looking at the time resolved output to gain insight and understanding as to what
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Figure 47: Time and space dependence of the electron density as reported by the full
fluid model.

may be missing. To this end, a number of results are presented here for a run used in

the comparisons, which has been generated for a symmetric oxygen plasma operated

at 40 Pa driven by 300 Vpp across two parallel electrodes 4 cm apart.

As an example of the non-trivial behaviour of species, figure 47 shows how the

electron density varies as a function of space and time. It shows that, as well as the

expected central peak and lowering density toward the edges, the density in the plasma

bulk is roughly constant in time, whereas the sheaths are clearly visible and heavily

modulated. This is even clearer to see in figure 48, which shows the spatial profiles of

the charged species densities at four equally spaced points in the RF cycle.

In figures 48(a) and (c) the electron density can be seen to be highly asymmetric,

due to the sheaths being at their maximum and minimum extents at those points.

When the two sheaths are roughly equal in size, then the electron density profile is

closer to symmetry. This is in contrast to both of the ion densities, which remain

symmetric and practically unchanged through the RF cycle.

As discussed in Section 4.2, the ohmic power deposition is intrinsically a time

dependent phenomenon, as well as being known to vary in space. In order to qualify

this, figure 49 was generated, which shows the volumetric ohmic power deposition

across the whole model mesh.

As shown, the power deposition is quite isolated in both space and time. Although
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Figure 48: Charged species densities at relative phases in the RF cycle of (a) 0, (b)
π/2, (c) π, and (d) 3π/2.

there is deposition across the plasma bulk, it is highest on the bulk side of the expanding

sheath, as the encroaching electric field interacts with the electrons flowing toward the

walls. When the sheath collapses, it can be seen to actually remove energy from the

electrons, though this effect is small when compared to the total net ohmic power.

This localisation in time and space is expected to have an impact on the electron

temperature, and indeed this is the case.

Figure 50 shows how the electron temperature is modulated in both space and

time. In figure 50(a) the full range of temperature is resolved, and the extreme values

inside the sheath are shown. As the electron density within the sheath is negligible

(see figure 47), it is the region of high temperature close to the sheath, but still within

the bulk, where the highest rate of ionisation occurs. This can be seen more clearly in

figure 50(b).

It can also be seen in figure 50(b) that the electron temperature varies by a moderate

amount across the whole discharge. Even across the centre of the plasma (x = 2 cm),

there is modulation of ±10 % in this example. As would be expected from the data

given in figure 22(a), this has an impact on the net particle gains and losses.
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Figure 49: Time and space dependence of the ohmic power deposition as reported by
the full fluid model.
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Figure 50: Electron temperature as a function of space and time. Both figures show
the same data, but (b) restricts the colour scale to resolve behaviour in the bulk.



Acronyms

BVP boundary value problem

CCP capacitively coupled plasma

EEDF electron energy distribution function

IVP initial value problem

PECE Predict-Evaluate-Correct-Evaluate

PIC particle-in-cell

PROES phase resolved optical emission spectroscopy

RF radio frequency

RHS right hand side

RRC reaction rate coefficient
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Symbol Name Description

Dα Diffusion Coefficient Coefficient describing the thermal drift motion

of species α.

E Electric Field Electric Field measured in V m−1.

ζ Normalised Electric

Field

Normalised electric field, equal to

euBE/(nfK0kBTe0).

e Elementary charge Electrostatic charge of a single proton.

1.602 177× 10−19 C.

ε Mean Electron

Energy

The mean electron energy measured Joules.

εR Normalised Reaction

Rate Coefficient

Normalised energy dependent rate coefficient for

reaction R.

εαβ Normalised Elastic

Collision Rate

Coefficient

Normalised energy dependent rate coefficient for

elastic collisions between species α and β.

ε0 Permittivity of free

space

Absolute dielectric permittivity of a classical

vacuum. Equal to 8.854 188× 10−12 F m−1

Eth,R Reaction Threshold

Energy

Threshold energy of reaction R measured in

Joules.

Fε Electron Energy

Flux

A measure of the total energy flux due to

electron motion.

Γα Normalised Particle

Flux

Normalised flux of particles of type α, equal to

NαVα.

gα Elastic Collision

Frequency Gradient

Coefficient

A temperature dependent coefficient describing

the relative change in collision frequency over a

temperature gradient of species α.
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GRα Particle Gain

Coefficient

The number of particles of type α gained

through reaction R. Particle loss has a negative

coefficient.

j Current Density Current density measured in A m−2.

j0 Current Density

Amplitude

Amplitude of sinusoidal current density

measured in A m−2.

J2
0 Normalised Squared

Current Density

Amplitude

Normalised representation of the squared current

density amplitude, equal to j2
0me/(2e

2n2
fkBTe0).

K0 Normalisation

Reaction Rate

Coefficient

Reaction rate coefficient to which others are

normalised.

kB Boltzmann constant Relationship between particle energy and

macroscopic temperature for an ideal gas. Equal

to 1.380 649× 10−23 J K−1

KR Reaction Rate

Coefficient

Energy dependent rate coefficient for reaction R,

measured in s−1 m−3.

Kαβ Elastic Collision

Rate Coefficient

Energy dependent rate coefficient for elastic

collisions between species α and β, measured in

s−1 m−3.

Lα Logarithmic

Normalised Particle

Density

Logarithm of normalised particle density, equal

to lnNα.

λD Debye length Length scale for the range of electrostatic effects

in a plasma. Equal to
(
ε0kBTe
nee2

)1
2

Mα Normalised Particle

Mass

Normalised mass of particles of type α, equal to

mα/mi.

mα Mass Mass of a single particle of species α, given in kg.

µα Mobility Coefficient describing the drift motion of a

charged species α within an electric field.

Nα Normalised Particle

Density

Normalised density of particles of type α, equal

to nα/nf .

nα Particle Density Volumetric density of species α, given in m−3.
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nf Gas Fill Density The density of feed gas that exists before a

plasma is present, given in m−3, and calculated

from p = nkBT .

ω Driving Frequency The frequency of the driving voltage/current in

an RF plasma, in radians per second.

φ Potential Electrostatic potential in Volts.

P̄ohm Mean Volumetric

Ohmic Power

Deposition

Volumetric rate of power deposition into the

plasma from ohmic sources, measured in W m−3.

qα Heat Flux Heat flux of species α measured in W m−2.

Qα Normalised Particle

Heat Flux

Normalised heat flux of particles of type α, equal

to qα/(nfuBkBTe0).

σDC Plasma DC

Conductivity

Conductivity of plasma in the low frequency

limit, measured in Ω−1 m−1.

Σα Normalised

Volumetric Power

Density

Normalised volumetric rate of power deposition,

equal to Pα/(n
2
fK0kBTe0).

Tα Temperature Thermodynamic temperature of species α

measured in Kelvin (K).

T eα Temperature Thermodynamic temperature of species α,

measured in eV.

uB Bohm Velocity The minimum required flow velocity of positive

ions at the bulk to sheath boundary, given in

m s−1.

Vα Normalised Particle

Velocity

Normalised velocity of particles of type α, equal

to uα/uB.

vα Particle Velocity Velocity of a single particle of species α, given in

m s−1.

uα Flow Velocity Collective velocity of species α, given in m s−1.

wα Thermal Velocity Randomised velocity of a single particle of

species α, given in m s−1, related to the pressure

of species α.

vth Mean Thermal

Velocity

Mean thermal velocity of species α, equal to

(8kBTs/πms)
0.5.
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νR Reaction Rate Energy dependent rate for reaction R, measured

in s−1.

ναβ Elastic Collision

Rate

Energy dependent rate of elastic collisions

between species α and β, measured in s−1.

x̂ Surface Normal The unit vector perpendicular to the surface at

which it is defined, equal to ±1 in a one

dimensional system.

Zα Particle Charge Electric charge on particles of typ α, in numbers

of elementary charges.
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Zeitschrift für Physik, 75(3):171–190, 1932. [in German].

[60] R. Seeliger. Die diffusionstheorie der positiven säule in elektronegativen gasen.
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Polytechnique, 2009.

[104] J.-L. Raimbault, L. Liard, J.-M. Rax, P. Chabert, A. Fruchtman, and

G. Makrinich. Steady-state isothermal bounded plasma with neutral dynamics.

Physics of Plasmas, 14(1):013503, 2007.

[105] M. J. Kushner. Plasma modelling techniques. In Summer School on Fundamen-

tals of Low Pressure and High Pessure Plasmas, 21st International Symposium

on Plasma Chemistry, Cairns, Australia, 2013.

[106] C. Courteille, A. M. Bruneteau, and M. Bacal. Investigation of a large volume

negative hydrogen ion source. Review of Scientific Instruments, 66(3):2533, 1995.

[107] P. Bruggeman, F. Iza, D. Lauwers, and Y. A. Gonzalvo. Mass spectrometry study

of positive and negative ions in a capacitively coupled atmospheric pressure RF

excited glow discharge in He–water mixtures. Journal of Physics D: Applied

Physics, 43(1):012003, 2009.

[108] P. Chabert and T. E. Sheridan. Kinetic model for a low-pressure discharge with

negative ions. Journal of Physics D: Applied Physics, 33(15):1854–1860, 2000.

[109] R. N. Franklin. The plasma-wall boundary region in negative-ion-dominated

plasmas at low pressures. Plasma Sources Science and Technology, 9(2):191–198,

2000.



References 173

[110] M. A. Lieberman, A. J. Lichtenberg, and A. M. Marakhtanov. Instabilities in

low-pressure inductive discharges with attaching gases. Applied Physics Letters,

75(23):3617, 1999.

[111] S. Takayanagi, T. Yanagitani, and M. Matsukawa. Unusual growth of poly-

crystalline oxide film induced by negative ion bombardment in the capacitively

coupled plasma deposition. Applied Physics Letters, 101(23):232902, 2012.

[112] A. A. Bol’shakov, B. A. Cruden, R. Mogul, M. V. V. S. Rao, S. P. Shama, B. N.

Khare, and M. Meyyappan. Radio-frequency oxygen plasma as a sterilization

source. AIAA Journal, 42(4):823–832, 2004.

[113] D. A. Carl, D. W. Hess, M. A. Lieberman, T. D. Nguyen, and R. Gronsky. Effects

of dc bias on the kinetics and electrical properties of silicon dioxide grown in an

electron cyclotron resonance plasma. Journal of Applied Physics, 70(6):3301,

1991.

[114] A. Vesel and M. Mozetic. Surface modification and ageing of PMMA polymer by

oxygen plasma treatment. Vacuum, 86(6):634–637, 2012.

[115] J. T. Gudmundsson and M. A. Lieberman. On the role of metastables in capac-

itively coupled oxygen discharges. Plasma Sources Science and Technology, 24

(3):035016, 2015.

[116] A. Greb, K. Niemi, D. O’Connell, and T. Gans. The influence of surface prop-

erties on the plasma dynamics in radio-frequency driven oxygen plasmas: Mea-

surements and simulations. Applied Physics Letters, 103(24):244101, 2013.

[117] D. S. Stafford and M. J. Kushner. O2(1∆) production in He/O2 mixtures in

flowing low pressure plasmas. Journal of Applied Physics, 96(5):2451, 2004.

[118] B. F. Gordiets, C. M. Ferreira, V. L. Guerra, J. M. A. H. Loureiro, J. Nahorny,

D. Pagnon, M. Touzeau, and M. Vialle. Kinetic model of a low-pressure N2-O2

flowing glow discharge. IEEE Transactions on Plasma Sciences, 23(4):750–768,

1995.

[119] S. A. Lawton and A. V. Phelps. Excitation of the b1Σ+
g state of O2 by low energy

electrons. The Journal of Chemical Physics, 69(3):1055–1068, 1978.



References 174

[120] F. X. Bronold, K. Matyash, D. Tskhakaya, R. Schneider, and H. Fehske. Radio-

frequency discharges in oxygen: I. Particle-based modelling. Journal of Physics

D: Applied Physics, 40(21):6583–6592, 2007.

[121] P. D. Burrow. Dissociative attachment from the O2 (a1∆g) state. Journal of

Chemical Physics, 59(9):4922, 1973.
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