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Abstract

Discriminative training, a.k.a. tuning, is an important part of Statistical

Machine Translation. This step optimises weights for the several statistical

models and heuristics used in a machine translation system, in order to

balance their relative effect on the translation output. Different weights

lead to significant changes in the quality of translation outputs, and thus

selecting appropriate weights is of key importance.

This thesis addresses three major problems with current discriminative

training methods in order to improve translation quality. First, we de-

sign more accurate automatic machine translation evaluation metrics that

have better correlation with human judgements. An automatic evaluation

metric is used in the loss function in most discriminative training methods,

however what the best metric is for this purpose is still an open question.

In this thesis we propose two novel evaluation metrics that achieve better

correlation with human judgements than the current de facto standard, the

BLEU metric. We show that these metrics can improve translation quality

when used in discriminative training.

Second, we design an algorithm to select sentence pairs for training the

discriminative learner from large pools of freely available parallel sentences.

These resources tend to be noisy and include translations of varying de-

grees of quality and suitability for the translation task at hand, especially

if obtained using crowdsourcing methods. Nevertheless, they are crucial

when professionally created training data is scarce or unavailable. There is

very little previous research on the data selection for discriminative train-

ing. Our novel data selection algorithm does not require knowledge of the

test set nor uses decoding outputs, and is thus more generally useful and



efficient. Our experiments show that with this data selection algorithm,

translation quality consistently improves over strong baselines.

Finally, the third component of the thesis is a novel weighted ranking-based

optimisation algorithm for discriminative training. In contrast to previ-

ous approaches, this technique assigns a different weight to each training

instance according to its reachability and its relationship to test sentence

being decoded, a form of transductive learning. Our experimental results

show improvements over a modern state-of-the-art method across different

language pairs.

Overall, the proposed approaches lead to better translation quality when

compared strong baselines in our experiments, both in isolation and when

combined, and can be easily applied to most existing statistical machine

translation approaches.



Contents

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Review of SMT Discriminative Training 11

2.1 SMT and Phrase-based Models . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Language Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Translation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 SMT Discriminative Training . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Maximum Likelihood Training . . . . . . . . . . . . . . . . . . . 18

2.2.2 Minimum Error Rate Training . . . . . . . . . . . . . . . . . . . 19

2.2.3 Perceptron and Margin-based Approaches . . . . . . . . . . . . . 21

2.2.4 Ranking-based Optimisation . . . . . . . . . . . . . . . . . . . . 23

2.3 Oracle Selection and Related Training Algorithms . . . . . . . . . . . . 25

2.4 SMT Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Word Error Rate Metrics . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 N-gram-based Metrics . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.3 Metrics with Shallow Linguistic Information . . . . . . . . . . . . 36

2.4.4 Trained Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Development Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . 38

i



CONTENTS

2.5.1 Development Data Selection with Test Set . . . . . . . . . . . . . 39

2.5.2 Development Data Selection without Test Set . . . . . . . . . . . 40

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Automatic Evaluation Metrics with Better Human Correlation 43

3.1 Regression and Ranking-based Evaluation . . . . . . . . . . . . . . . . . 44

3.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 ROSE Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 BLEU Deconstructed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 Limitations of the BLEU Metric . . . . . . . . . . . . . . . . . . 50

3.2.2 Simplified BLEU . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Experiments with ROSE and SIMPBLEU . . . . . . . . . . . . . . . . . 52

3.3.1 Document-level Evaluation . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Sentence-level Evaluation . . . . . . . . . . . . . . . . . . . . . . 57

3.4 SIMPBLEU for Discriminative Training . . . . . . . . . . . . . . . . . . 61

3.5 SIMPBLEU in WMT Evaluation . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Development Data Selection For Unseen Test Sets 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 LA Selection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.1 French-English Data . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Chinese-English Data . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.1 Selection by Sentence Length . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Selection by LA Features . . . . . . . . . . . . . . . . . . . . . . 82

4.4.3 Selection by LA Algorithm . . . . . . . . . . . . . . . . . . . . . 83

4.4.4 Diversity Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4.5 Machine Learned Approach . . . . . . . . . . . . . . . . . . . . . 86

4.4.6 Effect of Development Corpus Size . . . . . . . . . . . . . . . . . 88

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

ii



CONTENTS

5 Weighted Ranking Optimisation 91

5.1 Weighted Ranking Optimisation – Global . . . . . . . . . . . . . . . . . 92

5.2 Weighted Ranking Optimisation – Local . . . . . . . . . . . . . . . . . . 95

5.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.1 Cross-domain Experiments . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 WRO with LA Selection and SIMPBLEU . . . . . . . . . . . . . 101

5.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Conclusions 105

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

References 109

iii



CONTENTS

iv



List of Figures

2.1 Example of the decoding process . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Example of WER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Example of TER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Example of n-gram precision . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Example of METEOR alignment . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Smoothed BLEU Kendall’s τ with smoothing values from 0.001 to 100 . 59

4.1 Accuracy of development selection algorithms with increasing sizes of

development corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Standard deviation of the accuracy for the development selection method

with increasing sizes of development corpora . . . . . . . . . . . . . . . . 89

5.1 Example of PRO training samples, where the x and y axis represent the

feature values of the two translations . . . . . . . . . . . . . . . . . . . . 96

v



LIST OF FIGURES

vi



List of Tables

2.1 Example of phrase table . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Example of two English reference translations and seven candidate trans-

lations for Chinese source . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 ROSE Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Example of the use of mixed features for evaluation . . . . . . . . . . . . 48

3.3 Example of the use of mixed features for evaluation . . . . . . . . . . . . 48

3.4 ROSE and BLEU variants . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Document-level evaluation of ROSE-reg in with SVM kernel functions . 54

3.6 Document-level evaluation results . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Document-level evaluation results (Spearman’s ρ correlation) of ranking

task only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Document-level evaluation results (Spearman’s ρ correlation) of ROSE

with POS features for into English translation evaluation . . . . . . . . 56

3.9 SIMPBLEU’s document-level evaluation results (Spearman’s ρ correla-

tion) testing 1-4 grams and clipping . . . . . . . . . . . . . . . . . . . . 57

3.10 Sentence-level evaluation of ROSE. . . . . . . . . . . . . . . . . . . . . . 58

3.11 Sentence-level Kendall’s τ correlation of SIMPBLEU. . . . . . . . . . . . 59

3.12 Sentence-level SIMPBLEU evaluation (Kendall’s τ correlation) in 1 - 4

grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.13 Sentence-level evaluation for document ranking (Spearman’s ρ correlation) 61

vii



LIST OF TABLES

3.14 German-to-English head-to-head: figures represent how often metric in

column header beat metric in row. E.g. PABC4 ranked better than

PGBC4 31% of the times, while PGBC4 ranked better than PABC4

only 27% of the times, so they tied 42% of the times. In this case:

P (A) = 0.608 and K = 0.396 . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 Paired sentence-level significance tests against standard smoothed BLEU 63

3.16 WMT12 document-level Spearman’s ρ correlation between automatic

evaluation metrics and human judgements for translations into English . 64

3.17 WMT12 document-level Spearman’s ρ correlation between automatic

evaluation metrics and human judgements for translations out-of English 64

3.18 WMT12 sentence-level Kendall’s τ correlation between automatic eval-

uation metrics and human judgements for translations into English . . . 65

3.19 WMT12 sentence level Kendall’s τ correlation between automatic eval-

uation metrics and human judgements for translations out-of English . . 65

3.20 WMT13 document-level Spearman’s ρ correlation between automatic

evaluation metrics and human judgements for translations into English 66

3.21 WMT13 document-level Spearman’s ρ correlation between automatic

evaluation metrics and human judgements for translations out-of English 67

3.22 WMT13 sentence-level Kendall’s τ correlation between automatic eval-

uation metrics and human judgements for translations into English . . 67

3.23 WMT13 sentence-level Kendall’s τ correlation between automatic eval-

uation metrics and human judgements for translations out-of English . 68

3.24 WMT14 system-level (Trueskill) Pearson’s correlation between auto-

matic evaluation metrics and human judgements for translations out-of

English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.25 WMT14 system-level (Trueskill) Pearson’s correlation between auto-

matic evaluation metrics and human judgements for translations into

English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Features used to score candidate sentence pairs . . . . . . . . . . . . . . 77

4.2 Accuracy for random selection of development sentences with respect to

sentence length, French to English WMT13 news test set . . . . . . . . 82

viii



LIST OF TABLES

4.3 Accuracy for random selection of development sentences with respect to

sentence length, Chinese to English MT08 test set . . . . . . . . . . . . 83

4.4 Accuracy for development sentences selection with respect to LA features

only, French to English MWT13 test set. . . . . . . . . . . . . . . . . . 83

4.5 Accuracy comparing LA selection method with benchmark strategies on

French-English WMT13 news test . . . . . . . . . . . . . . . . . . . . . 84

4.6 Accuracy comparing LA selection method with benchmark strategies on

French-English WMT14 news test . . . . . . . . . . . . . . . . . . . . . 84

4.7 Accuracy comparing LA selection method with benchmark strategies on

Chinese-English MT08 test . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Performance with differing diversity threshold values, Chinese-English . 86

4.9 Performance with differing diversity threshold values, French-English . . 86

4.10 Performance of SVM-trained LA selection versus heuristic LA selection,

French-English WMT13 and WMT14 . . . . . . . . . . . . . . . . . . . 87

4.11 Performance of SVM-trained LA selection versus heuristic LA selection,

Chinese-English NIST08 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Settings of the PRO and WRO variants tested in our experiments . . . 98

5.2 BLEU results on the Chinese-English NIST MT08 test set. Boldface

figure indicates the best BLEU score among all variants . . . . . . . . . 98

5.3 BLEU results on the WMT13 French-English news test set . . . . . . . 99

5.4 Cross-domain test results on BTEC test set . . . . . . . . . . . . . . . . 100

5.5 Development corpus reachability test . . . . . . . . . . . . . . . . . . . . 100

5.6 NIST08 Chinese-English LASW setting: results measured with BLEU

and SIMPBLEU. Boldface figures indicate the best BLEU/SIMPBLEU

score among all variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.7 WMT13 French-English LASW setting: results measured with both

BLEU and SIMPBLEU. Boldface figures indicate the best BLEU/SIMPBLEU

score among all variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ix



LIST OF TABLES

x



1

Introduction

Machine Translation is the process of translating one human language to another lan-

guage automatically. This idea was first introduced by Warren Weaver in his memoran-

dum called ‘TRANSLATION’ in 1949. In the memorandum, Warren Weaver suggested

that the translation process can be treated as a decoding process. He wrote: “I look

at an article in Russian, I say ‘This is really written in English, but it has been coded

in some strange symbols. I will now proceed to decode.’”

Machine translation research began in the 1950s. Early machine translation systems

were rule-based, translating input sentences based on handcrafted rules which can

include bilingual dictionaries and grammars. The rule building process is normally

expensive: in order to achieve a certain translation quality level, the system needs

thousands of bilingual rules. Therefore, rule-based machine translation is difficult to

build and extend for other language pairs.

To overcome the limitation of rule-based machine translation, in the 1990s, Brown

et al. (1993) introduced ‘statistics-based’ machine translation. Statistical Machine

Translation (SMT) reduces human effort to a minimum: SMT automatically builds

statistical models from the analysis of bilingual (and monolingual) corpora. Equation

1.1 illustrates (Brown et al., 1993)’s SMT model. Instead of following translation rules,

SMT considers every possible English translation (e) of a foreign sentence (f), and as-

signs each possible translation a probability according to the statistical model Pr(e|f).

The probability indicates how likely it is that the English translation is a correct and

fluent translation of the foreign sentence. The ideal translation ê will be the translation

1



1. INTRODUCTION

with the highest probability, which is found by solving the arg max problem using a

decoding algorithm.

ê = arg max
e

Pr(e|f) (1.1)

Brown et al. (1993) decompose Equation 1.1 by using Bayes theorem to obtain

Equation 1.2. The translation probability is calculated by the product of Pr(f |e) and

Pr(e), where Pr(f |e) is the translation model, used to assign the likelihood of the

foreign words being translated as the English words, and Pr(e) is the language model,

used to measure the likelihood of the translation in the target language.

Pr(e|f) ∝ Pr(f |e)Pr(e) (1.2)

Equation 1.2 has two limitations: First, it combines the translation and language

model uniformly. This setting assumes we can obtain the real probability distributions

of Pr(f |e) and Pr(e). In real situations it may desirable to weight them differently.

Since the training corpora we use to built models only represent a small sample of

real world data, which can be very different from the probability distribution for the

entire population, assigning different weights to different components may yield better

translations. Second, the translation probability is only based on the translation and

language models. Modelling translation probabilities is very difficult, so there are

invariably errors and biases. Adding other components, such as a model of reordering

between different languages, may help obtain better translation. However, it is not

straightforward to integrate other statistical models into Equation 1.2.

In order to address these two limitations, Och & Ney (2002) proposed a Direct

Maximum Entropy Translation Model (referred to here as Och’s Model) We illustrate

Och’s Model in Equation 1.3:

Pr(e|f) ∝ pλM1 (e|f) (1.3)

where Pr(e|f) is modelled as the probability of M features pλM1
(e|f) in a linear combi-

nation. In this model we can obtain the translation with highest probability using the

following decision rule:

2



ê = arg max
e
{
M∑
m=1

λmhm(e, f)} (1.4)

where hm(e, f) are feature functions, such as language model and translation model,

and λm is their respective weights to indicate their relative importance. Under this

framework, the model weights can be learnt based on data, and additional features

(such as reordering or syntactic features) can be easily integrated into the model. This

is now the dominant approach in SMT research. More recent work has attempted to

add more features to it to improve translation quality. Chiang et al. (2009), for example,

includes thousands of features. Different feature weights λm can heavily affect the final

translation quality.

In order to find the optimum weights, approaches based on Och’s Model require

an additional training step, the so-called discriminative training or simply tuning.

The principle of SMT discriminative training is to discriminate correct translations

from incorrect translations generated by the SMT system, updating the feature function

weights iteratively to give most probable translations higher overall model score. The

correctness of translations is measured using an automatic evaluation metric against

human translations. It is expected that translations generated for unseen segments

with these weights will have the best possible quality, given the model.

Algorithm 1.1 shows a general discriminative training procedure. The training

corpus used is often called ‘development’ or ’tuning’ corpus, and it contains a set of

foreign sentences (the source sentences) and their respective human translations (the

reference sentences). The development corpus is normally distinct from the corpus

used to extract rule tables and compute feature functions, in order to simulate a real

world setting and avoid over-fitting. SMT discriminative training can be described as

a three-step procedure: 1. generation, 2. evaluation and 3. optimisation.

The generation step creates a set of candidate translations which are then used for

evaluation and optimisation. The candidate translations are a subset of all possible

translations and their feature values, given the source sentence. One cannot consider

all possible translations for discriminative training since the number of possible trans-

lations grows exponentially with the source segment length. To limit the number of

candidate translations, a common strategy is to select the top N most likely translation

3



1. INTRODUCTION

Algorithm 1.1 A general discriminative training algorithm

Require: Development corpora D = (f t, rt)Tt=1, initial weights Λ0

1: i = 0

2: while Not meet training criterion do

3: Generate N-best list of translation candidates Nb = (f tn, r
t
n)Tt=1n = 1N according

to ΛiH(e, f)

4: Evaluate translation candidates by automatic evaluation metric(e, r)

5: Optimise Λi+1

6: i = i+ 1

7: end while

8: return Λi

candidates for later steps; this list is normally referred to as the ‘N-best list’. The prob-

ability (or ‘model score’) is calculated as in Equation 1.4 with initial feature weights

manually or randomly assigned.

The evaluation step aims to measure the correctness of translations. Since the model

data distribution is different from the real world distribution, the most likely translation

judged by linearly combining feature scores is unlikely to be reliable. A different metric

is needed to evaluate the correctness of candidate translations. This is done using

automatic evaluation metrics, as thousands of translations need to be scored. Current

automatic evaluation metrics compare the similarity of each candidate translation to a

reference translation. The candidate that is most similar to the reference is considered

the best. The set of best translations for each source segment is referred to as the

‘oracle translations’.

Once all candidate translations are scored against reference translations, the third

step is to optimise the feature weights. New weights will replace the initial or current

ones by giving the model score the ability to discriminate oracle from non-oracle trans-

lations in order to produce the best possible translation for unseen segments. This can

be achieved in multiple ways. Och (2003) minimise the errors between model score and

automatic evaluation metrics, Watanabe et al. (2007) and Chiang (2012) maximise the

margin between oracle and non-oracle translations, and Hopkins & May (2011) redefine

this problem as a ranking problem, to rank correct translations better than incorrect

ones.

4



Although various SMT discriminative training algorithms have been proposed in

the last decade, many problems remain to be addressed. We discuss some of these

problems in what follows:

1. Existing automatic evaluation metrics cannot always reliably compute transla-

tion quality; the evaluation judgements are often very different from human

judgements, particularly at segment-level. Most automatic evaluation metrics

compute, at the surface level (word or sequence of words), the similarity between

the candidate and reference translations. However, most foreign sentences can be

translated in multiple ways and it is impractical to list every translation in the

reference set (Dreyer & Marcu, 2012). Some metrics apply deep linguistic analy-

sis to evaluate machine translation quality, but they are language-dependent and

often have relatively low correlation to human judgements.

2. Over-fitting is a common problem in machine learning and SMT discriminative

training also suffers from it, especially in unregularised training algorithms such

as MERT (Och, 2003), the most popular SMT discriminative training algorithm.

Recent research shows that applying a regularised objective function to these

training algorithms helps reduce the effect of over-fitting (Galley et al., 2013).

Over-fitting can also be related to the selection of development corpora: clean

and diverse training corpora can help reduce over-fitting.

3. The reachability of references is also a problem. This means that the SMT system

is unable to generate candidate translations for a source segment that is the same

as its reference translation. This problem may be caused by several reasons. One

possibility is that the words in the reference translation do not appear in the SMT

training corpus, or the translation of certain words has not been extracted. It

could also be because the reference is inherently wrong, which happens in crowd-

sourced corpora (Smith et al., 2013a). Both issues cause unreachable translations

which cannot be correctly scored by automatic evaluation metrics. Therefore,

we cannot learn useful information from unreachable translations to discriminate

between good and bad translations, and often this harms training.

4. Another problem is related to the limitations of Och’s Model. This model linearly

combines a set of features in order to reduce the complexity in decoding. The

5



1. INTRODUCTION

discriminative training process can be treated as a linear classification problem,

as we expect the trained model to be able to classify translations as correct or

incorrect. However, this problem is more complex than a simple binary classifica-

tion, as translation quality is a complex, non-linear function. The problem is that

non-linear SMT model would make decoding too complex computationally, and

therefore linear models are still the dominant approach. Training the parameters

of the linear model for each translation task can increase classification accuracy.

5. The use of N-best lists as an approximation is also a problem in discriminative

training. The size of the N-best list is usually not greater than 1, 000. This is a

very small number, compared to the total number of possible translations, which

often totals millions, so the N-best list contains a very small subset of all possible

translations (Dreyer & Marcu, 2012). Many correct translations or even the best

translation may fall out of the N-best list. Therefore, we may often mislabel the

oracle translations, affecting training quality.

6. The way of selecting oracle translations is another problem in SMT discriminative

training. Early SMT discriminative training algorithms select the candidates with

the best automatic evaluation metric score as the oracle translations. SMT de-

coders build the translation from smaller components (such as words or phrases),

therefore one translation can be achieved by multiple ways. As a simple example,

the translation ‘good morning sir’ could be built by using the phrases containing

‘good morning’ and ‘sir’, or ‘good’ and ‘morning sir’. Therefore, as stated in

Blunsom et al. (2008), the oracle should not only the best translation but also

the best combination of smaller components. Chiang (2012) points out that the

oracle translation selection should not consider an automatic evaluation metric

score only; the model score should also be taken in consideration. In other words,

the oracle should be a translation with high metric score and also high model

score, i.e., likely to be generated by the model.

7. Scalability is also a problem for reliably optimising weights with large feature

spaces. This is particularly an issue with the MERT algorithm, which is still used

as the default discriminative training algorithm in most SMT toolkits. Scalability

was not a major issue when MERT was introduced, as it was designed having as
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goal to optimise only 10-15 dense feature functions. However, with the increasing

number of features used in SMT models nowadays, including thousands of sparse

features, scalability becomes a critical issue. Research shows that the MERT

algorithm becomes unreliable if more than 15 features are used, and suggests

alternative training algorithm (Watanabe et al., 2007; Liang et al., 2006; Hopkins

& May, 2011) in those cases.

The aim of this thesis is to improve SMT discriminative training by solving or

minimising some these problems. Issues 6 and 7 cannot be solved solely by improving

discriminative training methods; they also require changing the decoding algorithm.

Problem 5 is a particular issue for SMT approaches with a large number of sparse

features, whereas our experiments are based on phrase-based SMT with only a handful

of dense features. Therefore, this thesis focuses on addressing problems 1, 2, 3, and 4.

1.1 Objectives and Scope

The aim of this thesis is to improve SMT discriminative training and, as a consequence,

improve SMT translation quality by addressing some of the problems discussed above.

The objectives involved in achieving this aim are:

• To address Problem 1, we develop new evaluation metrics focusing on specific

constraints related to their use for discriminative training, while at the same

time, making sure these metrics correlate well with human judgements. Other

requirements include factors influencing adoption by practitioners, such as ease of

use and portability. The underlying assumption is that the components of existing

evaluation metrics such as BLEU (Papineni et al., 2002), METEOR (Banerjee &

Lavie, 2005), TER (Snover et al., 2006), and others are sound, but the way in

which these metrics are formulated makes it difficult to adapt them for specific

training purposes.

• To address Problems 2 and 3, we will quantify the effects of the development data

selection strategy on tuning, particularly with respect to minimising over-fitting

(Problem 2) and avoiding unreachable translations (Problem 3). We consider the

scenario where adequate translation data for tuning may not be readily available,

and seek to improve over random corpus sub-sampling by intelligent selection

7



1. INTRODUCTION

methods. The assumption here is that adequate training data exists, but it needs

to be appropriately selected from larger and potentially noisy collections.

• We address the weaknesses of the Och’s Model (Problem 4) by designing a novel

online discriminative training algorithm where the feature weights can be updated

dynamically according to each source test sentence.

1.2 Research Contributions

This thesis contributes to SMT discriminative training in the following ways:

• A novel trained evaluation metric, Regression- and Ranking-based Optimisation

for Sentence-level MT (ROSE) (Song & Cohn, 2011). ROSE is a trained metric

that assigns weights to its features based on human judgements. The features used

in ROSE include n-gram, word count and part-of-speech (POS) tags. ROSE has

four variants: a regression-based approach – ROSE-reg, a ranking-based approach

– ROSE-rank, and their extended versions using POTS tags – ROSE-regpos and

ROSE-rankpos. ROSE-rank shows better correlation with humans than BLEU,

the the most commonly used metric for ranking translations. Both ROSE-reg

and ROSE-rank can be trained on languages other than the actual evaluation

language.

• A novel heuristic evaluation metric, SIMPBLEU (Song et al., 2013). SIMPBLEU

is designed based on the limitations of the BLEU metric. It is a more flexi-

ble metric which not only correlates well with human judges, but also leads to

more accurate discriminative training. In the WMT12 evaluation shared task

(Callison-Burch et al., 2012), SIMPBLEU showed better correlation with human

judgements than any other metric for out-of English document-level evaluation,

and in the WMT13 shared task (Macháček & Bojar, 2013), SIMPBLEU was also

the best evaluation metric among all submitted metrics for into English and out-

of English sentence-level evaluation, in addition to out-of English document-level

evaluation.

• An investigation of the relationship between development corpora and SMT dis-

criminative training quality. This includes the relationship of corpus size and

8
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corpus diversity. Our findings include: 1) The length of the training sentence

affects the training quality: overly long/short should be avoided for training.

2) Diverse training corpora reduces over-fitting. 3) Increasing training corpus

size leads to very limited improvements; a corpus with 30,000–70,000 words is

sufficient to train a standard phrase-based system.

• A novel data selection algorithm for SMT discriminative training based on the

findings above: the LA selection algorithm (Song et al., 2014). It focuses on the

selection of development corpora to achieve better translation quality on unseen

test data. Models trained on LA selected corpora achieved improvements of over

2.5 BLEU points in translation quality over those trained on randomly selected

corpora.

• A novel discriminative training algorithm that adjusts the sampling strategy for

the ranking-based optimisation algorithm PRO (Hopkins & May, 2011): Weighted

Ranking Optimisation (WRO). WRO shows significant improvements over the

standard PRO sampling strategy.

• A transductive learning technique for the WRO algorithm where each training

sentence is weighted according to its reachability and similarity to the test sen-

tence. This algorithm is able to optimise parameter values for each input sentence

individually and leads to better translation quality.

1.3 Thesis Outline

This thesis includes six chapters. In Chapter 2 we review the existing developments in

SMT discriminative training, including research in automatic evaluation metrics and

strategies for development corpora selection.

In Chapter 3 we propose two novel evaluation metrics, ROSE and SIMPBLEU,

which are then used as scoring function in discriminative training. ROSE is a sentence-

level data-driven metric, combining word count and simple linguistic features. Addi-

tional features can be easily incorporated in the ROSE framework. SIMPBLEU is a

language-independent metric which does not require training data and can work at

both document- and sentence-level. In the WMT evaluation campaigns, ROSE and
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SIMPBLEU achieved better correlation with human judgements than the BLEU met-

ric, with SIMPBLEU having the best human correlation among all metrics in WMT12

and WMT13.

In Chapter 4 we analyse various aspects in development corpus selection and propose

a novel development corpus selection algorithm, the LA selection algorithm. Previous

development corpus selection algorithms either require knowledge of the test set (Li

et al., 2010; Lu et al., 2008; Zheng et al., 2010; Tamchyna et al., 2012) or information

from the decoder (Cao & Khudanpur, 2012). The LA selection algorithm does not

require either of them; it relies on word-alignment and shallow linguistic information.

LA’s low run time requirements makes it especially suitable for large scale data se-

lection from crowdsourced, potentially noisy translations. Our experiments show that

models trained on LA-selected corpora perform significantly better than those trained

on data randomly selected, and comparably to those trained on professionally created

development corpora.

The new SMT discriminative training algorithm – Weighted Ranking Optimisation

(WRO) – is introduced in Chapter 5. WRO is a ranking-based optimisation algorithm

based on (Hopkins & May, 2011)’s PRO algorithm. Different from the standard off-line

global training algorithm PRO, where a single set of weights is learnt for all test sen-

tences, WRO is a online local training algorithm whose parameters are trained for each

source test sentence. WRO is only slightly slower than the global training algorithm

and its parallel computation design makes it feasible for real time translation. This

chapter also puts together the data selection method, discriminative training algorithm

and metrics proposed in this thesis.

Chapter 6 summarises the thesis by reviewing its key findings and results and dis-

cusses possible future work. All proposed approaches lead to better translation results

individually, and we obtain further improvements by combining them.
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2

Review of SMT Discriminative

Training

Our goal is to improve SMT discriminative training focusing on three aspects: 1)

designing better evaluation metrics, 2) designing algorithms to relevant select training

data from potentially noisy parallel sources, and 3) designing discriminative training

algorithms to weight each training instance according to its contribution to training.

In this chapter we review the relevant background that will provide a basis for the

following chapters.

The experiments in this thesis are conducted using the phrase-based SMT archi-

tecture. Therefore, our SMT literature review focuses on phrase-based approaches to

translation. The discriminative training review includes four parts: 1) Training algo-

rithms and training criteria, 2) Oracle selection strategies and related training algo-

rithms, 3) Automatic evaluation metrics, and 4) Development data selection strategies.

2.1 SMT and Phrase-based Models

Before reviewing to SMT discriminative training algorithms, we first give a brief overview

of SMT and the decoding process. Consider Brown et al. (1993)’s SMT model, as pre-

viously discussed in Chapter 1, which formulates the translation process as finding the

string ê in Equation 2.1.

ê = arg max
e

Pr(e|f) = arg max
e

Pr(f |e)Pr(e). (2.1)
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The basic components in this model are the translation model, Pr(f |e), language

model, Pr(e), and an algorithm to solve the arg max problem. Until nowadays, these

are the three most important components in SMT. In what follows we give an overview

of these components and outline the candidate generation process.

2.1.1 Language Model

The language model (Equation 2.2) measures the probability of sequences of word

in the target language. It is estimated using a corpus of the target language only.

The probability of a sequence eI1 = e1, e2, · · · eI is calculated as the product of the

probabilities of each word conditioned on all previous words:

Pr(eI1) =
I∏
i=1

Pr(ei|ei−1
1 ). (2.2)

Calculating Equation 2.2 is not an easy task. Consider a 30-word long sentence.

The probability of the last word has to be conditioned on the previous 29 words.

Given language variability, it is unlikely that the previous sequence of 29 words will

have appeared in the training corpus, which makes it difficult to model this probabil-

ity distribution. Additionally, computing many such sequences is resource intensive.

To simplify the problem, it is common to consider only n previous words as history.

Equation 2.2 can thus be rewritten as:

Pr(eI1) =
I∏
i=1

Pr(ei|ei−1
i−n). (2.3)

The model in Equation 2.3 is referred to as the ‘n-gram language model’, where an

n-gram is a sequence of n words. This is the most common type of language model

used in SMT and n typically ranges between 3 and 5. The size of n is dependent on

the size of the training corpus available for training the language model.

2.1.2 Translation Model

The translation model measures the probability of a translation given a foreign text

(source). This is estimated based on a corpus parallel sentences. However, the same

problem occurs as for language modelling: it is unfeasible to model the probability
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2.1 SMT and Phrase-based Models

distribution of full sentences, given that sentences do not tend to be repeated in a cor-

pus. Therefore, we also need break down the problem. The first generative translation

model introduced by Brown et al. (1993) breaks this problem into words. Consider lf

is the length of the foreign input (in words), le is the length of target in English. The

IBM models treat translation as a mapping process, where English words are mapped

into foreign words. This mapping is called alignment, a. The translation probability

of a foreign sentence f can be calculated as the product of the lexical probabilities,

t(fj |eaj ), of each foreign translation in words fj , given its aligned English words eaj .

The product of lexical probabilities is then normalised by a term which reflects the

number of possible alignments, ε
(le+1)lf

. In the IBM 1 model, each foreign word has to

align to one word in the English side. In practice, languages differ and some foreign

words may not have mappings to English words, for example, many function words in

Chinese do not have a direct mapping to English. In this case, we align foreign words

to a Null token, which is treated as a special English word, such that the total number

of alignable ‘words’ is (le + 1). Therefore, the number possible alignments between f

and e is (le+ 1)lf , and the sum of all possible probabilities has to be 1. The word-based

IBM 1 model is formulated as:

Pr(f, a|e) =
ε

(le + 1)lf

le∏
j=1

t(fj |eaj ) (2.4)

ε ≡ Pr(lf |f) (2.5)

aj ∈ [1 · · · le] ∪Null. (2.6)

The IBM 1 model is the first generative translation model. It does not take into

account word order, nor the possibility of adding words to the translation. Brown

et al. (1993) proposed several more advanced word-based models (IBM 2-5 models),

which aim to handle these shortcomings. These models still provide the basis for

most current SMT approaches. In phrase-based SMT, the alignments these and other

word-based models produce are used as a starting point for phrase extraction. Marcu

& Wong (2002); Koehn et al. (2003) have shown that phrase-based models are better

able to handle divergences between languages, including short distance word-order, and

differences in number of words. Phrase-based models break down Pr(f |e) into phrases

rather than words. The phrase, as proposed by Koehn et al. (2003), is formulated as

13



2. REVIEW OF SMT DISCRIMINATIVE TRAINING

Pr(f |e) =
I∏
i=1

φ(f̄i|ēi)d(.), (2.7)

where the foreign sentence and its translation are divided into I phrases, with a phrase

being a sequence of words observed in the corpus, as opposed to a linguistically mo-

tivated construction. The translation probability can be calculated as the product of

each phrase translation probability φ(ēi|f̄i) with an added reordering model d(.). The

phrase probability φ(ēi|f̄i) is obtained by relative frequency counts in a bilingual par-

allel corpus that has been word-aligned. Phrase probabilities are stored in a ‘phrase

table’. Table 2.1 is an example of a phrase table, showing the English translation op-

tions for several Chinese phrases with their translation probability. This is a simplistic

example. In practice, the phrase table contains other scores as well, such as the inverse

translation probability and translation probabilities for words within phrases. Reorder-

ing and adding/dropping words is modelled by having multi-word phrases, where the

length of phrases in the two languages can be different.

Several recent benchmarks show that the phrase-based models present state of the

art or competitive performance for most language pairs (Bojar et al., 2014). For this

reason, in this thesis we build on phrase-based models. Other popular translation

models include hierarchical phrase-based SMT (Chiang, 2007) and syntax-based SMT

(Yamada & Knight, 2002), which we will not discuss in this thesis.

ZH EN probability

我 I 0.8

我 me 0.2

要 want 0.5

要 wish 0.5

我要吃 I want eat 0.8

要吃 want eat 0.6

吃 eat 0.9

鱼 fish 0.8

吃鱼 eat fish 0.7

... ... ...

Table 2.1: Example of phrase table
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2.1.3 Decoding

In the last two sections we briefly described the language model and translation model.

If we apply these two models using Och’s framework to score translation candidates,

the probability of an English translation is calculated as:

Pr(e) = λ1 ×
I∑
i=1

Pr(ei|ei−1
i−n) + λ2 ×

I∑
i=1

φ(ēi|f̄i)d(.). (2.8)

The translation probabilities of all possible translations are obtained as outlined in

Equation 2.8. In order to search for the highest scoring translation among them we

need to solve the arg max problem in Equation 1.4. The process to solve this problem

is called decoding. In what follows we give a brief review of (Koehn, 2004a)’s beam

search decoder. This beam search decoder will be used to built the SMT systems for

our experiments in subsequent chapters.

The decoding process builds the full translation sequentially from left to right by

selecting possible sub-translation from the phrase table. We illustrate the example of

generating the Chinese sentence ‘我要吃鱼’ in Figure 2.1. It starts from an empty

hypothesis, where a hypothesis means a partial translation. In our example, we use

square box to illustrate the hypotheses, f is the foreign word covered (translated)

so far, e is the translation of covered foreign words so far, P is the current partial

translation probability and ID is the hypothesis identifier. The empty hypothesis is

then expanded to a new hypothesis by picking a translation option in the phrase table to

cover (translate) some of the untranslated foreign words. In order to allow reordering in

the translation, the foreign words do not have to be covered sequentially. For example,

in Figure 2.1, from the empty hypothesis we can either pick translation options for

the first Chinese word ‘我’ or for any other Chinese word. We continue expanding the

resulting hypotheses in the same manner, until all the foreign words are covered (each

word can only be translated once). We can then find the best translation by following

links to the best hypothesis in the last stack, i.e., the hypothesis with the best score

P . For example, the best hypothesis in our example is ‘fish (id:14)’, and tracing the

link to the previous hypotheses we obtain ‘I want eat (id:8)’. The best translation will

thus be ‘I want eat fish’. In discriminative training we are more interested in the top

n best translations rather than the one best translation. We refer to this list of top

translations as the ’N-best list’.
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A problem with this process is that it often generates too many hypotheses: the

number of possible hypotheses is (lf !)m, where m is number of possible translations

in the phrase table. If every foreign phrase has 10 possible translation options, our

example would have (4!)10 hypotheses. Therefore it becomes too complex and inefficient

to search for the best translation in such a large hypotheses space. There are many

ways in which the number of hypotheses generated can be limited during the decoding

process.

To reduce the search complexity, first we can set a reordering limitation for decoding,

which can be done in several ways (Lopez, 2009). For instance, a fixed difference of

up to 5 positions between the source and target word orders can be set as this limit.

This constraint can in theory end up eliminating the best translation, although certain

assumptions based on the language pair under consideration can be safely made. For

example, one would not expect major differences in word order between languages like

English and Spanish.

A second method to reduce the search complexity is called recombination: if two

hypotheses have the same last n English words, the same last foreign words and the

same number of foreign words covered, we can keep only the hypothesis with the high-

est probability and safely drop the other ones without the risk of pruning the best

hypothesis. For example, in Figure 2.1, hypotheses ID 8 and ID 9 both cover three

Chinese words ‘我要吃’ and translate into the same English sequence ‘I want eat’. In

this case, we can drop the lower probability hypothesis, ID 8, and keep only hypothesis

ID 9.

A third method for efficient search is called pruning. Pruning limits the number

of hypotheses in each stack. Stacks are used as data structure to organise hypotheses

according to the number of words covered (as illustrate at the bottom of each blue

rectangle in Figure 2.1). If the number exceeds this limit, the lowest probability hy-

potheses will be dropped. In our example, if we limit the stack size to 3, the lowest

probability hypothesis in stack 2, ID 4, will be dropped and thus no more hypotheses

will be expanded from ID 4. Pruning is risky because hypotheses which contain the best

translation may be dropped early based on the limited information available, leading

the decoder to produce sub-optimal translations.
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f:_ _ _ _ 

e:
P: 1
ID:0

f:  我 _ _ _ 

e:me
P: 0.2
Id:1

f:  我 _ _ _ 

e:I
P: 0.8
ID:2

f:_ _  吃 _ 

e:eat
P: 0.9
ID:3

f:  我要 _ _ 

e:wish
P: 0.4
ID:6

f:  我要 _ _ 

e:want
P: 0.1
ID:4

f:    我 要 吃 _ 

e:want  eat
P: 0.72
ID:9

f:   我要吃鱼

e:eat fish
P: 0.28
ID:12

f:   我要吃 鱼

e:fish
P: 0.58
ID:13

f: 我要吃 _

e:eat
P: 0.09
ID:8

f:  我要吃鱼

e:fish
P: 0.072
ID:11

f:  我要吃 _  

e: I want eat
P: 0.8
ID:10

f:   我要吃 鱼

e:fish
P: 0.64
ID:14

f:  我要 _ _ 

e:want
P: 0.4
ID:5

1 Word 
Translated 

f:_  要吃 _  

E: want
P: 0.45
ID:7

2 Words 
Translated 

3 Words 
Translated 

4 Words 
Translated 

Figure 2.1: Example of the decoding process: square boxes illustrate hypotheses, f is the

foreign word covered (translated) so far, e is the translation of covered foreign words, P is

the current partial translation probability and ID is the hypothesis indicator.

2.2 SMT Discriminative Training

SMT discriminative training is commonly referred to as ‘tuning’. As previously men-

tioned, it is a training step for SMT used to optimise the feature function weights.

The first SMT discriminative training algorithm was a maximum likelihood approach

proposed by Och & Ney (2002). Soon afterwards Och (2003) introduced the Minimum

Error Rate Training (MERT) algorithm, which focuses directly on translation quality,

having as target to minimise the number of errors produced by the decoder. Currently,

SMT discriminative training can be categorised into maximum likelihood training, min-

imum error training, perceptron training, margin-based training and ranking-based

training. In this Section we review the most popular discriminative training algorithms

in each of these categories.
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2.2.1 Maximum Likelihood Training

Maximum likelihood training (MLT) was proposed by Och & Ney (2002) as the first

discriminative training algorithm for Och’s Model. Similar to early SMT algorithms,

MLT has been adapted from its application in speech recognition. The MLT training

criterion for machine translation is shown in Equation 2.9.

Λ̂ = arg max
Λ
{
S∑
s=1

log pΛ(es|fs)} (2.9)

This formulation assumes that we have a development corpus

{ES1 , FS1 } = {(e1, f1), (e2, f2), . . . (eS−1, fS−1), (eS , fS)}

containing S sentence pairs, and the system has M features to be optimised, with

corresponding feature weights denoted as Λ = {λ1, λ2, . . . λM−1, λM}. MLT attempts

to maximise the likelihood of having reference translation among candidate translations.

However, this training criterion poses a problem for machine translation. Different from

speech recognition, in MT there is normally not a unique good translation for a foreign

sentence; the foreign sentence can be translated in multiple ways which will all count

as correct translations. To address this issue, Och & Ney (2002) adapted Equation 2.9

into Equation 2.10.

Λ̂ = arg max
Λ
{
S∑
s=1

1

Rs

Rs∑
r=1

log pΛ(es,r|fs)} (2.10)

The new training criterion assumes that each foreign sentence fs contains an Rs

number of references, with each reference denoted as es,r. In this case, the initial likeli-

hood function in Equation 2.9 is averaged by the number of references. Equation 2.10

allows multiple reference for each training sentence, but with the current formulation

of phrase-based SMT, including pruning in decoding and phrase extraction, and the

size limitation of N-best lists, often none of the reference translations can be found

in the N-best list, causing zero likelihood. In this case, maximising the probability of

producing a reference translation is infeasible. A new training criterion was proposed

to maximise the probability of the oracle translation:

Λ̂ = arg max
Λ
{
S∑
s=1

1

Rs

Rs∑
r=1

log pΛ(es,oracle|fs)}, (2.11)
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where the oracle translation in Och & Ney (2002) is the candidate with the minimum

word error rate with respect to the reference(s). We will discuss other choices for oracle

translation in Section 2.3.

Och (2003) state that maximising the oracle translation likelihood has little rela-

tion to translation quality of unseen data. (Och, 2003) proposes a new discriminative

training algorithm, MERT, to replace the MLT algorithm.

2.2.2 Minimum Error Rate Training

MERT was proposed by Och (2003) to replace the maximum likelihood training algo-

rithm. Instead of maximising the likelihood of the oracle candidate translation, MERT

focuses on minimising the number errors (commonly by maximising a metric like BLEU)

produced by the decoder. The latter is believed to be more closely related to transla-

tion quality. MERT is the most widely used discriminative training algorithm in SMT

and therefore we adopt it as one of the baseline algorithms in subsequent chapters.

The training criterion of the MERT algorithm is given in Equation 2.12:

Λ̂ = arg min
Λ
{
S∑
s=1

N∑
n=1

Error(rs, es,n)}. (2.12)

The objective in MERT is to minimise the total number of errors in candidate

translations. The error function Error(.) is measured by automatic evaluation metrics

comparing the system output, es,n, against a reference translation (we will review

different automatic evaluation metrics in Section 2.4). The complete process is outlined

in Algorithm 2.1. To reduce computational costs, similar to MLT, MERT limits the

scoring during training to an N-best list of translations. The errors in Equation 2.12

correspond to the total number of errors made by each individual translation candidate

(es,n) in the N-best list, where n is the candidate’s index in the list.

MERT applies Powell’s algorithm to search for the minimum error value in one

dimension (λc) at a time, optimising one parameter at a time while keeping the re-

maining parameters (λmm 6= c) fixed. Och (2003) adapted this search algorithm to

reduce the size of the search space. The improved search algorithm only goes through

the threshold points that affect the best candidate in the N-best list. Threshold points

are those points where, if λc is changed, the top translation candidate in the N-best list
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Algorithm 2.1 MERT algorithm

Require: Training data D = (fs, rs)Ss=1, Initial weights Λ0

1: t = 0, Errorprevious = +∞, Errortotal = +∞
2: while Errorprevious − Errortotal > threshold do

3: Errorprevious = Errortotal

4: Errortotal = 0

5: Generate N-best list Nb according to Λt

6: for Each candidate es,n in Nb do

7: Calculate error Error(rs, es,n)

8: Errortotal = Errortotal + Error(rs, es,n)

9: end for

10: Update Λt+1 by using Powell’s search

11: t = t+ 1

12: end while

13: return Λt

also changes. Using the LLM formulation, the top probability candidate translation

will be:

ê = arg max{
∑
m6=c

λmhm(ex, f) + λchc(ex, f)}, (2.13)

and because λmm 6= c remain unchanged, we can denote
∑

m 6=c λmhm(ex, f) as a con-

stant u(ex, f), such that Equation 2.13 then can be written as

ê = arg max{u(ex, f) + λchc(ex, f)}. (2.14)

The threshold point between candidates e1 and e2 is reached when the candidates

have the same model score with same λc. This can be calculated by Equation 2.15:

u(e1, f) + λchc(e1, f) = u(e2, f) + λchc(e2, f) (2.15)

λc =
u(e2, f)− u(e1, f)

hc(e1, f)− hc(e2, f)
. (2.16)

The fact that MERT directly addresses translation quality and can be customised to

use different evaluation metrics as scoring function led to a very successful adoption in

SMT discriminative training. However, MERT has several limitations. These include:
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Algorithm 2.2 Online Training Algorithm

Require: Training data D = (f i, ri)Ii=1, Initial weights Λ0

1: for tth iteration K iterations do

2: for ith sentence pair in Training data D do

3: Generate candidate Pool according to Λt

4: Obtain oracle translations O from candidate pool

5: Update Λti towards to O

6: end for

7: end for

8: return Λ =
∑KI
ti=1 Λti
KI

1) MERT uses an N-best list as an approximation to the full space of translations, and

therefore the reference or other correct translations may be missing from the N-best

list. 2) The MERT objective function is unregularised and thus may overfit. 3) The

loss function used in MERT (normally BLEU) is non-convex and non-smooth, which

makes it unreliable for large feature spaces (more than 10-15 parameters).

To address these problems, Kumar et al. (2009) use lattice decoding to encode more

translation candidates than an N-best list. Tillmann & Zhang (2006), Liang et al.

(2006) and Yu et al. (2013) use forced decoding to force the decoder to produce the

reference translation. Zens et al. (2007), Smith & Eisner (2006), Li & Eisner (2009) and

Arun et al. (2010) minimise the expected error instead of real error. Gimpel & Smith

(2012) proposed a structured ramp loss and convert a non-convex loss function into a

convex loss function to minimise over-fitting. We will cover some of these algorithms

in subsequent sections.

2.2.3 Perceptron and Margin-based Approaches

Perceptron and margin-based optimisation algorithms perform SMT discriminative

training as a binary classification problem, by discriminating oracle from non-oracle

translations in order to update weights such that the model is more likely to produce

oracle translations. Different from MLT and MERT, the algorithms we review in this

section use online training: the weights are updated after each training sentence pair.

The advantage of an online approach is that we can improve the training immediately

when a training instance is available. These algorithms can also be applied in off-line
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training, with the final weights defined as the average of all previous weights to reduce

over-fitting.

Perceptrons have been successfully applied for learning in many natural language

processing tasks. Liang et al. (2006) applied the perceptron algorithm in SMT dis-

criminative training. The objective is to minimise the hidden variables (such as the

probability of translation model and language model) between the oracle and predicted

translations. The update rule used in Liang et al. (2006)’s perceptron algorithm is

given in Equation 2.17.

Λt+1 = Λt +H(f, et, ht)−H(f, ep, hp), (2.17)

where the H(f, et, ht) is the target and H(f, ep, eh) is the prediction. The new weights

Λt+1 will be updated when the prediction is not equal to the target with current weights

Λt. In SMT, the prediction is the arg max in Och’s Model and the target is the oracle

translation. (Liang et al., 2006) proposed three target (oracle) selection strategies,

which we will discuss in Section 2.3.

Λ̂t+1 = arg min
Λt+1

‖Λt+1 − Λt‖2 + C
∑
et,ep

ξ(et, ep)

s.t.

Λt+1 · (h(f, et)− h(f, ep)) + ξ(et, ep) ≥ Loss(et, ep)

ξ(et, ep) ≥ 0

Loss(et, ep) = metric(et)−metric(ep),

where ξ(et, epj) is a slack variable, and C is a constant to control how much the slack

variable influences the objective function. The automatic evaluation function is denoted

as metric(.) and measures the correctness of a candidate, and Loss(et, ep) is the loss

function of MIRA. The training objective is to keep the margin between oracle and

non-oracle translations no less than the loss difference, and at the same time, make

updates as small as possible to avoid over-fitting. Watanabe et al. (2007)’s MIRA

algorithm uses an N-best list in the training by setting the oracle translations to the

top k candidates in the N-best list.

MIRA shows better performance than the perceptron algorithm and scales better

than MERT. However, MIRA needs to solve a number of constraints and therefore is
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Algorithm 2.3 PRO algorithm

Require: Training data D = (rt, f t)Ss=1, Initial random weights Λ0,Γ,Ξ

1: for ith iteration K iterations do

2: Sampled rank R = {}
3: for sth sentence pair Training data D do

4: s = {}
5: Generate N-best list Nb according to current weight λi

6: while length(s) < Γ do

7: random sample candidate pair (es, e
′
s)

8: if |metric(es, )−metric(e′s, )| > threshold then

9: add [|score(es, )− score(e′s, )|, (h(fs, es)− h(fs, e
′
s)))] to s

10: end if

11: end while

12: sort s according to [|metric(es, )−metric(e′s, )|
13: add Ξ samples in s with top BLEU difference to R

14: end for

15: Update weights Λi+1

16: end for

17: return Λi+1

more difficult to implement than the perceptron or MERT algorithms, and does not

outperform MERT in a standard small feature space.

2.2.4 Ranking-based Optimisation

Ranking-based optimisation treats the SMT discriminative training as a ranking

problem, in which we seek to rank the translation candidates in the correct order

according to their quality. The first attempt is Hopkins & May (2011)’s pairwise

ranking optimisation (PRO). PRO is illustrated in Algorithm 2.3. Different from the

training algorithms already reviewed, which classify the candidate into oracle and non-

oracle, PRO classifies candidate pairs into ‘correctly ranked’ and ‘incorrectly ranked’.

However, enumerating all possible pairs in the N-best is impractical, even with a small

100-best list the number of pairs is still be impractical. PRO proposes a sampling

strategy to avoid that problem. This strategy is shown from Line 3 to Line 14 of

Algorithm 2.3.
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The sampling process first selects a random pair Γ from pairs of candidate in the

N-best list and then generates samples according to Equation 2.18.

h(e, f)− h(e′, f) =

{
1 if metric(e)−metric(e′) > 0
−1 if metric(e)−metric(e′) < 0

(2.18)

which computes the feature vector difference between two candidates. In Equation 2.18,

we assume candidate e has higher model score than candidate e′; the sample is labelled

positive if the candidate e also has a higher automatic evaluation score than candidate

e′ (i.e., it is correctly ranked), and negative if e has a lower automatic evaluation score

than e′ (i.e., it is incorrectly ranked).

Two problems with PRO are that 1) The automatic evaluation metric is not really a

‘gold-standard’, i.e., the metric is not 100% reliable and often very different from human

judgements; and 2) Often the candidates in the N-best list are very similar to each

other. Therefore, the algorithm may mislabel some of the samples if the candidate pairs

are similar (and thus score bad translations higher and than a good translation). To

minimise this problem, PRO uses a threshold to filter out pairs with very little difference

in metric scores, only producing Ξ pairs with the largest metric score difference from the

initially selected Γ pairs. With the selected samples, the new weights can be optimised

by any off-the-shelf classifier. Hopkins & May (2011) use the maximum entropy model

optimisation. Bazrafshan et al. (2012) suggests changing sample labels to real numbers

(Equation 2.19):

h(e, f)− h(e′, f) = score(e)− score(e′), (2.19)

where weights are optimised by linear regression to achieve faster convergence.

In Hopkins & May (2011)’s experiments, PRO-trained systems show better transla-

tion performance (in BLEU score) than MERT- and MIRA-trained systems with both

high and low feature space dimensionality. In addition, PRO can be easily applied to

several SMT approaches. Therefore, we consider the PRO algorithm as another base-

line training algorithm in subsequent chapters. One issue with PRO is its sampling

strategy: uniformly sampling is not the optimum way to select sample pairs, as we will

discuss in Chapter 5.
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2.3 Oracle Selection and Related Training Algorithms

In the last section we reviewed some of the most popular discriminative training ap-

proaches in SMT. Apart from MERT and PRO, all existing algorithms use oracle

translation(s) as the target for classification. This section will review the state of the

art oracle selection strategies and the discriminative training algorithms related to the

selection strategy.

The first SMT discriminative training algorithm – MLT – maximises the probability

of reference candidates (candidates with same translation as the reference translation),

but is severely limited by the reachability issue, i.e. the reference may not be in the

N-best list, or is not in the space of translation candidates, and thus cannot be found

by the decoder. MLT compromises by targeting the lowest error candidate instead of

the reference. This compromise is the first type of oracle translation: the candidate

with the highest metric score. The most widely used automatic evaluation metric is

the BLEU metric, so we call this type of oracle maxBLEU oracle.

The maxBLEU oracle strategy has been adopted by many training algorithms such

as Watanabe et al. (2007)’s MIRA and Liang et al. (2006)’s perceptron. However, in

cases where reference candidates can be found by decoder, one just needs to ensure

the reference candidates are listed in the N-best list and then use directly the reference

candidate as the oracle. For that, Liang et al. (2006) adjust the decoding algorithm

to force the decoder to produce the reference translation (if the reference is reachable)

and set the oracle translation as the reference candidate. We call this type of oracle the

reference oracle. Although the reference oracle approach cannot be widely applied in

all cases, it directly focuses on the reference translation and reduces the risks of errors

due to suboptimal evaluation metrics.

Chiang et al. (2008b) proposed a different approach for oracle selection: the ora-

cle should not only depend on the metric score or the reference translation, but also

consider the model score. If the maximum BLEU candidate or reference candidate is

very difficult to generate by the decoder (i.e., it can only be generated with a very low

model score), the updated weights targeted on this candidate may be too extreme. To

avoid this problem, the oracle should contain low error and it should be easy enough

for the model to move it to the top of the N-best list. Chiang et al. (2008b)’s oracle

selection strategy, here called mixed oracle, is defined as:

25



2. REVIEW OF SMT DISCRIMINATIVE TRAINING

eoracle = arg max
e

(metric(e)− µ(metric(e)−model(e))), (2.20)

where metric(e) is the metric score of candidate e, model(e) is its model score, and µ

is a constant to control the reliability on the model score. If µ = 0, Equation 2.20 is

the maxBLEU oracle, and if µ = 1, it is the 1-best candidate according to the model

score. Chiang et al. (2008b) suggest µ = 0.5. Based on the mixed oracle selection

strategy, Gimpel & Smith (2012) proposed a ramp loss function that can be used in

both perceptron and margin-based training algorithms. It considers a loss function

that incorporates both metric and model scores as components for oracle selection.

The three oracle selection strategies select certain translations based on the reference

and/or model score. However, in Section 2.1.3 we showed that a translation can be

achieved in multiple ways (the so called derivation d). Therefore, Blunsom et al. (2008)

state that targeting only a certain translation is not enough, we should also target

the right way to produce the translation, or the oracle derivation. The difficulty

there is that we normally have a reference translation to help select oracle candidate

translations, but we do not have reference derivations. To solve this problem, Blunsom

et al. (2008) treat the derivation d as a latent variable, where the probability of a

candidate translation e is the sum of all its derivations (∆(e, f)):

pΛ(e|f) =
∑

d∈∆(e,f)

pΛ(d, e|f). (2.21)

The conditional probability of d is calculated by Equation 2.22:

pΛ(d, e|f) =
exp

∑
m ΛmHm(d, e, f)

ZλM1
(f)

, (2.22)

where Hm(d, e, f) =
∑

r∈d hm(f, rule) is the sum of the feature scores of all translation

rules (rule) used in the derivation d, and the probability is normalised by ZλM1 (f),

which is the sum of all derivation feature scores (exp
∑

m ΛmHm(d, e, f)). The ∆(e, f)

in Equation 2.21 represents all derivations of the translation e for the foreign sentence

f .

With the latent variable model, Blunsom et al. (2008) maximise the posterior prob-

ability of the reference candidate translation with all its derivations, subject to a Gaus-

sian prior (p0(Λ) = exp(−Λ2
k/2σ

2)2):
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Λ̂ = arg max
Λ

pΛ({ES1 , FS1 })p(Λ). (2.23)

Up to now our review of the four existing oracle selection strategies, for the reference

oracle and oracle derivations targeting the candidates that are exactly the same as the

human reference, it may not be possible to produce the reference candidates for all

training instances, which are thus discarded, resulting in a far from efficient use of

the data available. maxBLEU oracle and mixed oracle do not require the oracle to

match exactly the reference translation, instead choosing a candidate with the fewest

errors. This improves the use of data, but risks reliance due to inaccurate evaluation

metrics. Yu et al. (2013) proposed an oracle selection strategy targeting partially

reachable reference candidates. This approach is based on the assumption that the

decoder may be unable to produce the full reference translation for a sentence, but can

normally produce partial reference translations. For example, in Table 2.2 Candidate

8: ‘torrential rain disaster kills file action count alignment each’. This translation

does not exactly match references, but if only consider the boldface portion, that is an

exact match. These partial reference translations are called ‘y-good’ translations, and

the non-matching partial translations are called ‘y-bad’ translations.

(Yu et al., 2013) use ‘y-good’ translation oracles with the perceptron algorithm in

SMT discriminative training. In order to use these partial translations they proposed

two novel updating strategies: early update and max-violation update. Different

from (Liang et al., 2006)’s perceptron, (Yu et al., 2013) update the feature weights

before the full candidate translation is generated.

The full candidate translation is generated by series hypotheses expansion steps,

and pruning will result in only keeping a limited number of hypotheses with the high-

est model score in the beam. If the ‘y-good’ translation fall out of the beam, the early

update strategy will stop decoding and update the weights to reward the ‘y-good’ trans-

lation and penalise the highest model score (‘y-bad’ translation). The max-violation

update does not stop the decoding but uses a trace back step after decoding to find

the step where ‘y-good’ and ‘y-bad’ have the largest difference and updates the weights

based on these partial translations.

The early update and max-violation update strategies efficiently use all available

data and do not rely on an evaluation metric to approximate oracles, avoiding risks

of errors due to evaluation metrics. However, similar to the reference oracle approach,
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Example 1

Source: 印度西部豪雨成灾四十三人丧生

Reference 1: torrential rain disaster kills 43 people in western india

Reference 2: heavy rains plague western india leaving 43 dead

Candidate 1: torrential rain disaster

Candidate 2: torrential torrential torrential torrential rain disaster

Candidate 3: rain torrential disaster

Candidate 4: torrential rain disaster kills 43 people in western india

Candidate 5: 43 people killed in disastrous torrential rain in western india

Candidate 6: heavy rains plague western india leaving 43 dead

Candidate 7: torrential rains hit western india , 43 people dead

Candidate 8: torrential rain disaster kills file action count alignment each

Table 2.2: Example of two English reference translations and seven candidate translations

for Chinese source

these y-good oracle also require forced decoding to produce y-good translations, and

thus cannot be used with some decoders that cannot perform forced decoding. In

addition, a sentence can be translated in multiple ways. An ‘y-bad’ translation may

be not a bad translation at all, so applying ‘y-good’ oracle selection in early updates

could penalise a correct translation.

In this section we reviewed five oracle selection strategies that are used in current

discriminative training algorithms. Among these, maxBLEU has wider applicability

than the other oracle selection strategies, as it can be applied with any kind of SMT

decoder. The problem of maxBLEU oracle is that it is affected by the accuracy of

the automatic evaluation metric used. In the next section, we will review current

developments in translation evaluation metrics.

2.4 SMT Evaluation Metrics

Automatic evaluation metrics are used to assess the machine translation quality. Ide-

ally, they should provide an assessment that is as close to what a human would do,
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considering both the Adequacy and Fluency of the translation. Adequacy refers to

how much of the source text meaning is conveyed by the translation. Fluency refers to

how grammatical and readable the translation is.

Most of the popular discriminative training algorithms require an evaluation metric

to compute their loss function. The WMT11 (Callison-Burch et al., 2011) Tunable

Metrics Task shows that using the same discriminative algorithm to optimise a different

evaluation metric can lead to a training quality difference of up to 10%. That is,

different metrics penalising different aspects of translation quality result in different

training performances. In this section, we will review some of the most widely used

machine translation evaluation metrics. In general, we can categorise them into: word-

based and linguistically motivated. The word-based approaches measure word

similarity between the candidate and reference segments without considering any deeper

linguistic information.

Early word-based metrics for SMT evaluation are based on the Word Error Rate

(WER) metric, which was first introduced for speech recognition. Unlike speech recog-

nition, machine translation evaluation has to account for differences in word order

between the translation candidates and the reference, a problem that does not exist

in speech recognition and is poorly addressed by WER. In addition, multiple equally

good outputs are possible in machine translation. Although one we can create multiple

references to improve the evaluation quality, this is an expensive process and in practice

it is virtually impossible to list all valid translations for each test sentence.

Papineni et al. (2002) introduced a metric especially designed for machine trans-

lation evaluation, BLEU. Instead of measuring single word level matching between

reference and system output, BLEU takes into account longer n-grams, offering a more

flexible and reliable strategy to measure the similarity between the candidate and ref-

erence translation. BLEU is a precision-oriented metric and uses a brevity penalty as

an proxy for recall. METEOR (Banerjee & Lavie, 2005) considers both precision and

recall and uses stemmers, WordNet and paraphrase dictionaries to account for inexact

word matches such as synonyms. More details about these metrics will be given in

Section 2.4.3.

Some evaluation metrics include deeper linguistic information to evaluate trans-

lation quality. For instance, TESLA (Liu et al., 2010) includes part of speech (POS)
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tags and lemmas, while Liu & Gildea (2005) propose a tree based metric which eval-

uates translation quality at syntactic level. Many of these metrics follow a machine

learning approach to combine multiple components with various linguistic information

(Corston-Oliver et al., 2001; Quirk, 2004; Albercht & Hwa, 2008; Specia et al., 2009;

Blatz et al., 2004) or decoder information (Specia & Gimenez, 2010). In next sections,

we will review a few popular evaluation metrics in detail.

2.4.1 Word Error Rate Metrics

Word error rate (WER) is the earliest automatic evaluation metric used in machine

translation. We review WER and two improved variants: position-independent error

rate (PER) Tillmann et al. (1997) and translation edit rate (TER) Snover et al. (2006).

The original WER formulation measures the Levenshtein distance between words in

the candidate and reference translations. WER is defined as the ratio between minimum

number of errors to the number of words in the reference, i.e., the minimum distance

between the two versions. Errors include substitutions, deletions and insertions:

WER =
min(S +D + I)

N
(2.24)

where S is the number of substitutions, D it the number of deletions, I is the number

of insertions and N is the number of words in the reference.

Table 2.2 shows a list of candidate translations with two reference translations for

the Chinese sentence ‘印度西部豪雨成灾四十三人丧生’ (Heavy rains plague western

India leaving 43 dead). Figure 2.2 illustrates the counts of errors in WER. For transla-

tion candidate ‘43 people killed in disastrous torrential rain in western india’, one can

either count 4 deletions and 5 insertions, or 6 substitutions and 1 insertion, but the

latter has fewer errors and therefore is chosen, resulting in WER = 7/9.

WER works well in speech recognition as an ideal recognition candidate should be

identical to the reference. However, we can translate one foreign sentence into English

in many different ways. These translations may use different words (synonyms), or be

written with different word orders, but still be correct and grammatical. Considering

the examples in Table 2.2, Candidates 4, 5 and 6 are perfect translations for the Chinese

sentence ‘印度西部豪雨成灾四十三人丧生’ while Candidates 1, 2 and 3 are poor

translations which miss important information.
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Reference : torrential rain disaster kills 43 people          in                                                western  india

Candidate :                                            43 people killed in disastrous torrential rain   in  western india                

 Errors:              D         D           D     D                       I             I                  I           I     I

Reference : torrential  rain       disaster  kills     43          people              in western  india

Candidate :     43       people     killed     in    disastrous torrential rain   in western india                

 Errors:              S         S            S           S           S              S            I 

Figure 2.2: Example of WER, ‘D’ indicates a deletion, ‘I’ indicates an insertion and ‘S’

indicates a substitution. The example candidate has 4 deletions and 5 insertions (9 errors)

or 7 substitutions and 1 deletion (8 errors). The latter has fewer errors and is therefore

used as the error count, so the WER for this candidate will be 7/9

If we only provide Reference 1, the WER score for Candidate 4 is 0, meaning a per-

fect translation without any error. However, Candidate 5 has WER 7/9, and Candidate

6 has WER 9/9 (8 substitutions and 1 deletion), which means a completely incorrect

translation. Candidates 1 and 2, both with WER 6/9, are incorrectly considered better

translations than Candidates 5 and 6.

From the example above, we can see the WER is very unreliable as a measure

of translation quality. To address this shortcomings, Tillmann et al. (1997) extended

WER into a position-independent word error rate (PER) metric for machine transla-

tion evaluation. PER addresses the problem of differences in word order in translation

by ignoring the position in which words are translated. PER’s computation

includes the number of words in the candidate which are different in the reference

(substitutions), the number of words in the reference that do not belong to the candi-

date (deletions), and the number of words in the candidate that do not appear in the

reference (insertions):

PER = −
(Error −max(0, (T −N))

N

)
, (2.25)

where Error is the total number of errors (substitutions + deletions + insertions) of

a candidate. PER limits the score to range between 0 and 1 by capping it to 1 if the

candidate length (T) is longer than the reference length (N). As an example, let us

apply PER to score candidates in Table 2.2. Based on Reference 1, the PER scores for

Candidates 1-6 are: 6/9, 6/9, 6/9, 0/9, 4/9, 6/9 respectively. Candidate 4 is scored

the best. In this example, PER does better than WER but still cannot adequately
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Figure 2.3: Example of TER, ‘I’ indicate a insertion and ‘S’ indicate a substitution.

Compared to WER (Figure 2.2), by shifting ‘torrential rain’ to the beginning of the sentence

and ‘43’ after ‘people killed’, the error is reduced to 3 substitution and 1 insertion, plus 2

shifts, resulting in a TER score of 6/9

discriminate a good quality translation such as Candidate 6 from poorer candidates

(Candidates 2 and 3). This issue is addressed by Snover et al. (2006), with another

variant of WER: the Translation Edit Rate (TER) metric. TER measures translation

quality with multiple references, and is defined as shown in Equation 2.26.

TER =
minshift(S +D + I)

average(N)
. (2.26)

The TER score is obtained by the number of edits against average number of refer-

ence words. Similar to WER, the edits include insertions, deletions and substitutions,

and additionally the ’shift’ operation to model permutation of blocks of words: a

sequence of words of any length which is found in a different position to that of the

reference is considered a single edit to avoid multiple errors being counted because of

phrase reordering in machine translation.

Considering References 1 and 2, according to the TER metric, Candidates 4 and

6 in Table 2.2 can be distinguished from poor translations. Candidates 4 and 6 are

identical to References 1 and 2, respectively. By allowing the shift of words (Figure

2.3), Candidate 5 has a TER score of 6/9.

PER and WER are more suitable metrics for machine translation evaluation than

WER, but the treatment given by PER and TER to word order is not adequate to

measure the fluency of the candidates, an important criterion when measuring the

quality of translations. For example, in Table 2.2, both Candidates 1 and 3 are poor

translations, but Candidate 1 is clearly better than Candidate 3 in terms of fluency. In

the next Section, we will review n-gram-based metrics that can offer a better treatment

for both fluency and adequacy.

32



2.4 SMT Evaluation Metrics

Reference 1: torrential rain disaster kills 43 people in western india

Reference 2: heavy rains plague western india leaving 43 dead

Candidate 7: torrential rains hit western india , 43 people dead

Figure 2.4: Example of n-gram precision: green words indicate a unigram match to

Reference 1 and red words indicate a unigram match to Reference 2. A green box indicates

a bigram match to Reference 1

2.4.2 N-gram-based Metrics

Instead of measuring only word matches, n-gram-based metrics consider matches of

sequence of n words. The most famous n-gram-based metric is BLEU (Papineni et al.,

2002). BLEU measures the clipped n-gram precision (with n normally equal to 1-4) be-

tween a candidate translation and one or more human authored reference translations.

BLEU is composed by three components: n-gram precision, clipping and brevity

penalty:

BLEU = BP × exp
( N∑
n=1

wnlog(pn)
)
, (2.27)

where pn is the n-gram precision, wn is the relative weight of each n-gram precision

and BP is the brevity penalty. N-gram precision is the ratio between the number

of matched n-grams and the total n-grams in candidate translation, measured for all

candidates in the document:

pn =

∑
C∈{Candidates}

Countclip(n-grammatched ∈ C)∑
C′∈{Candidates}

Count(n-gramtotal ∈ C ′)
, (2.28)

where Countclip(n-grammatched) is the number of clipped n-grams in the candidate that

also appear in the reference (see ’clipping’ below), and Count(n-gramtotal) is the number

of n-grams in the candidate.

One advantage of measuring precision as opposed of recall is that it makes it easier

to evaluate translations based on multiple reference translations. Figure 2.4 shows an

example of using multiple references in n-gram matching. The coloured words indicate

the unigram (word) matches; green indicates words in Candidate 7 matching words in

Reference 1, and red indicates words matching Reference 2. The boxes indicate bigram
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matches between the candidate and the references. In this example, the candidate

matches unigrams ‘torrential’, ‘western’, ‘india’, ‘43’ and ‘people’ with Reference 1,

and in addition matches ‘rains’ and ‘dead’ with Reference 2. The unigram precision

will be 7/9. There only two bigrams, ‘43 people’ and ‘western india’, which match

Reference 1 (and Reference 2), so the bigram precision will be 2/8.

Clipping aims at penalising over generated words in candidates, such as in Can-

didate 2 in Table 2.2. Candidate 2 is a poor translation that misses large amounts of

information and repeatedly generates the word ‘torrential’. However, it still has a very

high unigram precision (6/6). To avoid this type of sentence being rewarded, BLEU

limits the maximum count of an n-gram match to the maximum number of times the

n-gram occurs in any of the reference translation. In our example, the unigram ‘torren-

tial’ only appears once in Reference 1. Therefore unigram matches of ‘torrential’ can

only be counted once. In this case the clipped unigram precision for Candidate 2 will

be 3/6.

The brevity penalty (BP) component penalises translations which are too short.

BLEU is a precision-based metric since the denominator is the number of n-grams in

the candidate translation. Therefore, without a brevity penalty, BLEU would be biased

towards shorter candidate translations. Consider Candidate 2 in Table 2.2, which only

translates a small part of the Chinese source sentence ‘豪雨成灾’, and misses most

of the source information. Assume we only use up to trigram precision, without the

brevity penalty, the uni-, bi- and trigram precision are all one, resulting in the sentence

scoring as a perfect translation. However, this is a poor translation and the brevity

penalty downgrades its score based on its length relative to the reference’s length. The

brevity penalty is defined as

BP =

{
1 if c > r

e(1− r
c
) if c ≤ r, (2.29)

where c is the candidate sentence length and r is the reference sentence length. If

multiple references are used we choose between average reference length or the reference

with closest length to that of the test candidate translation. The penalty increases

exponentially as c become shorter than r.

Until nowadays, BLEU is the most widely used evaluation metric and is commonly

applied in the SMT discriminative training algorithms as a loss function. However,
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BLEU is designed to measure translation quality at the document level, and has been

shown unreliable for sentence-level evaluation. Consider again the example in Figure

2.4. In this example, the candidate does not have 3- and 4-gram matches with either

of the references. This will cause the overall BLEU score to be zero, which is unin-

formative. Evaluation at the sentence level is required in many discriminative training

algorithms, such as PRO and MIRA. A simple solution to overcome this issue and make

BLEU more applicable to sentence level evaluation is the add-α smoothing strategy.

This strategy adds a small value (e.g. α = 1) to both the numerator and denominator

in the n-gram precision computation to avoid obtaining zero precision scores for longer

n-grams. Note that different α values will affect the accuracy of BLEU, as we will

discuss in Chapter 3.

A major advantage of the BLEU metric is its ability to consider n-grams rather

than individual words to measure fluency as opposed to adequacy only. However, it

has three major well known limitations. The first is the use of the brevity penalty as

an approximation of recall. Consider the candidates in Table 2.2. Candidates 1 and 2

deliver the same amount of information, but the over generated word in Candidate 2

breaks the grammar rules of English. However, with the brevity penalty the 1-3-gram

BLEU score for Candidate 1 is 0.135, while Candidate 2 has a BLEU score of 0.698,

indicating that Candidate 2 is a much better translation than Candidate 1.

The second problem is that using higher order n-grams tends to over-bias towards

fluency. For example, in Table 2.2 unigram to 4-gram precision for Candidates 7 and

8 are: 0.78, 0.25, 0, 0, and 0.44, 0.375, 0.285, 0.16 respectively, making the overall

geometric mean n-gram precision of 0 for Candidate 7 and 0.29 for Candidate 8. Even

if we add a smoothing value α = 11, the overall n-gram precision for Candidates 7

and 8 are 0.26 and 0.39. Thus Candidate 8 would be judged a better translation than

Candidate 7. In fact, Candidate 8 is a very poor translation missing almost half of the

information in the original Chinese sentence; Candidate 7 is much better. Lin & Och

(2004) and Zhang et al. (2004) analyse the contribution of each n-gram order to the

overall BLEU measure. They found that unigrams and bigrams account for 95% of the

overall precision, and thus adding higher order n-grams is unnecessary.

1The smoothed unigram to 4-gram precision for Candidates 7 and 8 are: 0.8, 0.33, 0.125, 0.14, and

0.5, 0.44, 0.375, 0.286 respectively.
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The third problem of BLEU is that fails to account for synonyms and verbal in-

flections, such as words ‘rains’ and ‘plague’ in Candidate 6, which express the same

or similar meaning as ‘rain’ and ‘disaster’ in Reference 1, but are considered as mis-

matches. BLEU handles this problem by adding multiple references, such as the use

of both References 1 and 2 in the example. However, multiple reference require more

human effort and are difficult and costly to obtain in many cases.

2.4.3 Metrics with Shallow Linguistic Information

This section will review some of the metrics that consider not only the matching of words

or n-grams, but also the matching of synonyms, part-of-speech (POS) and inflections of

words. We categorise these variants of linguistic information as shallow as they are still

mostly limited to word-level processing and do not require significant computation time

to be extracted. Metrics of this type include wpBLEU (Popović & Ney, 2009) which

measures BLEU over both words and POS tags; TESLA (Liu et al., 2010) and MaxSim

(Chan & Ng, 2008), both weighed n-gram-based approaches, with weights given by

analysis of POS tags, synonym and phrase-level semantics; and METEOR (Banerjee &

Lavie, 2005) – which uses stemming, WordNet and paraphrase dictionaries to consider

word inflections, synonyms and paraphrases. METEOR is the most popular of these

metrics.

METEOR was designed to address the shortcomings of the BLEU metric. ME-

TEOR only considers unigram overlap between the candidate and the reference. It

uses F-score to combine precision and recall to measure translation adequacy, while

fluency is measured by a fragmentation penalty. The unigram matchings can be exact,

consider stems, synonyms or paraphrases. METEOR is defined as:

Score =
10PR

R+ 9P
∗ (1− Penalty), (2.30)

and

Penalty = 0.5× #chunks

#unigrams matched
(2.31)

where P is unigram precision, R is the unigram recall and Penalty is a component to

penalise matching of short n-grams.

METEOR calculates its final score in three steps. The first step is alignment,

where the words in the candidate and the reference sentences are aligned. Each word
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Reference :    torrential rain disaster kills 43 people in western  india

Candidate 1 : torrential rain disaster

Reference :    torrential rain disaster kills 43 people in western  india

Candidate 2 : rain  torrential  disaster

Figure 2.5: Example of METEOR alignment. A line between the candidate and the

reference indicates an alignment and box indicates a chunk. Both candidate have three

alignments but Candidate 1 has one chunk, and therefore would be considered a better

translation than Candidate 2 according to METEOR

can only be aligned once and the aligned words have to meet one of the following

three conditions: 1) the word in candidate is identical to the word in reference, 2) the

word stems in the candidate and reference match, or 3) the words in the candidate

and reference are synonyms or paraphrases. The last two matches require WordNet to

search for stems and synonyms.

The second step groups all aligned words into chunks, where a chunk is the largest

n-gram of non-grouped words in the candidate that aligns to the reference. For example,

Figure 2.5 shows the alignment and grouping step of METEOR, where a box of words

represents a chunk. Both candidates have three aligned words to the reference, but

Candidate 1 has them in a single chunk as the n-gram ‘torrential rain disaster’ also

appears in the reference. Candidate 2 has three chunks as the largest n-gram matching

against the reference is for unigrams only: ‘rain’, ‘torrential’ and ‘disaster’. Each of

these constitutes a chunk.

The final step of METEOR is to calculate the penalty in Equation 2.31. The overall

score is then given according to Equation 2.30.

2.4.4 Trained Metrics

The metrics previously described measure machine translation quality based on the

overlap between words in the candidate and reference translations. Although metrics

like METEOR and TESLA also include linguistic information, this is still done at

the word or phrase level, and therefore they do not capture syntactic information and

other contextual relationships. These metrics are efficient to compute in large sets
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of translations, which is crucial for discriminative training. Additionally, they can be

easily applied or adapted to different languages. However, in order to obtain more

accurate evaluation, we may need analyse deep linguistic information such as syntactic

or semantic trees. Various metrics have been designed that incorporate deep linguistic

informations. Liu & Gildea (2005) propose tree-based metrics which count matchings

at the sub-syntactic tree level. Corston-Oliver et al. (2001) train a decision tree to

determine whether the candidate is machine translated (poor translation) or human

translated (good translation). 46 features were used, some of which (such as tree

branching features) require a POS tagger and parser. Although Corston-Oliver et al.

(2001)’s decision tree metric is not very applicable to distinguish translation quality

among several machine translated candidates, the approach started a new direction

in machine translation evaluation research under which many features that represent

different aspects of quality can be combined.

Most of the subsequent work on trained metrics tends to use regression-based mod-

els to obtain continuous scores rather than only binary scores. These are trained to

predict various types of scores and therefore avoid the need for reference translations at

evaluation time. For example, Blatz et al. (2004) combine a number of features reflect-

ing the confidence of the translation system, the complexity of the source segment and

the fluency of the translated segment, among others, to predict BLEU/NIST/WER

scores, while Specia et al. (2009); Specia & Gimenez (2010) predict human scores for

post-editing effort. Trained approaches outperform reference-based metrics in terms of

correlation with human judgements.

2.5 Development Data Selection

In SMT, as in many learning tasks, the accuracy of the models is heavily dependent

on the training data used to build them. Two factors are particularly important. The

first is the domain of the training data and its similarity to the domain of the test

data. If the training data is drawn from the same source as the test data, we expect to

obtain better translation accuracy. The second is the level of noise in the training data.

Sources of noise in discriminative training include misaligned training sentence pairs

and unreachable target sentences. Training quality normally increases if clean data is

used by filtering out these sources of noise. In this section we will review research on 1)
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selecting development corpora based on a given test set and 2) selecting development

corpora without knowing what the test set will be.

2.5.1 Development Data Selection with Test Set

Over-fitting is a common problem in discriminative training whereby the learned pa-

rameters are able to discriminate training data well, but fail to discriminate unseen

(test) data. The problem can be reduced by improving the training algorithm, or by

selecting training data that is more similar to the test set. The assumption of this

approach is that we have large data pool of potentially relevant training instances DF ,

and we know the data that needs to be translated, i.e., the test data T . In addition,

we assume that discriminative (re-)training is possible before translating each test set.

During retraining, we can select the subset of DF which is most similar to T as the

training data, i.e.:

D∗ = arg max
D⊆DF

Sim(D,T ). (2.32)

The problem of this setting is how to define the similarity function Sim(.). A

straightforward method is to apply one of the evaluation metrics introduced before to

measure the similarity between sentences in the test set and development data pool.

However, word based metrics such as BLEU and WER only measure the overlap be-

tween words without weighting the importance of the words. Function words and

punctuation overlap between sentences do not reliably indicate similarity. Therefore,

previous work has applied information retrieval techniques, which measure the similar-

ity between sentences by the cosine distance of Term Frequency and Inverse Document

Frequency (TF-IDF) (Lu et al., 2008; Hildebrand et al., 2005). TF-IDF represents

each sentence as a vector containing m vocabulary terms W = {w1, w2, · · · , wm}. The

TF-IDF of wi in a sentence will be calculated as

wi = tfi × log(idfi), (2.33)

where tfi is number of occurrences of wi in the sentence, and idfi is calculated by

idfi =
number of sentences

number of sentence containing wi
. (2.34)
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TF-IDF provides a fast and weighted similarity metric, but it only considers the

similarity at word-level. Eck et al. (2005) and Liu et al. (2012) combine TF-IDF with

evaluation metrics that are also able to measure weighted similarity of sequences of

words.

Similarity scores given by both TD-IDF and evaluation metrics are based on the

assumption that two sentences are similar if they have the same words or sequences of

words. (Li et al., 2010) however suggests that for SMT training the similarity should

be based on what the SMT model believes is similar. Li et al. (2010) define a new

similarity function where the similarity of two sentence f1 and f2 is measured by the

similarity of their feature score vectors, where H(ê, f) is the feature score vector of

the most probable translation candidate ê for f . The drawback of this approach is

that is requires translating the entire pool of sentences that could be candidate for the

development dataset.

Sim(f1, f2) = Sim(H(ê, f1), H(ê, f2)), (2.35)

2.5.2 Development Data Selection without Test Set

Similarity to the test set is not the only important criterion to define a good quality

development dataset. Additionally, in a more realistic setting we do not know the test

sets which will be used at system training time. In principle the system could be used

to translate any new text. Therefore, selecting good quality development data without

access to test sets is important for SMT discriminative training.

Cao & Khudanpur (2012) use a separability measure to select SMT discriminative

training samples. The idea is that candidates in a good development corpus should be

easily separable by both BLEU scores (B(D)) and feature vector scores (J(D)). The

approach in Cao & Khudanpur (2012) is defined as follows:

Q(D) = B(D)× J(D) (2.36)

B(D) is a score separability metric that can be calculated as follows: we consider

R1 is the set of oracle candidates in the N-best-list, Ri and i 6= 1 is the set of other

candidates in the N-best-list, N is the size of the N-best-list, and M(.) is the document
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level metric score of the set (for example, M(R1) is the document level metric score for

the set of best candidates). The B(D) can be defined as:

B(D) =
(N − 1)M(R1)2∑

i 6=1M(Ri)
(2.37)

J(D) is a class separability score that measures the separability between oracle

candidates (class 1) and non-oracles (class 2). We consider mi is the mean feature

vector of class i, m1,2 is the mean feature vector of all candidates and Ci is the set of

candidates in the class i. The J(D) is defined as follows:

J(D) =
tr(
∑2

i=1(m1 −m1,2)(mi −m1,2)T )

tr(
∑2

i=1
1
|Ci|
∑

x∈Ci(x−mi)(x−mi)T )
(2.38)

Cao & Khudanpur (2012)’s method does not require knowledge of the test sentences

to be translated and therefore is suitable for use in off-line global feature weight training.

However, this method requires decoding a large set of N-best lists to calculate the

suitability of a training sentence and therefore it may not be applicable to large scale

development data selection.

2.6 Summary

In this chapter we reviewed background and previous work on discriminative training,

including algorithms, evaluation metrics and data selection methods. In summary, in

order to obtain better discriminative training accuracy, four main aspects are relevant in

discriminative training algorithms: 1) Training criteria that are closely related to SMT

translation quality, for example, using MERT instead of maximum likelihood training;

2) Suitable oracle selection strategies, given that the reference or maximum BLEU

candidates are not always a suitable target for parameter updates; 3) More accurate

automatic evaluation metrics for positive/negative labelling of training instances ; 4)

better training data, whereby data is more closely related to the segments that will be

translated in the future, but also generally ‘clean’ and more useful. In the following

chapters, we design and improve discriminative training algorithms based on existing

training criteria, and propose solutions to improve discriminative training focusing on

challenges 2-4.
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3

Automatic Evaluation Metrics

with Better Human Correlation

Automatic evaluation metrics are fundamentally important for machine translation,

allowing comparison of systems performance, measurements of progress over time, and

efficient training. As we previously discussed, metrics are one of the main components in

discriminative training, which is used as gold scoring function to discriminate between

good and bad translations. The BLEU metric has been used as the default gold scoring

function in most state-of-art SMT systems (Koehn et al., 2007; Li et al., 2009), but other

metrics such as METEOR (Banerjee & Lavie, 2005), TER (Snover et al., 2006) and

TESLA (Liu et al., 2010) have also showed promising results for this purpose. Previous

work has shown that the effectiveness of discriminative training heavily depends on the

evaluation metric used (Callison-Burch et al., 2011). Current evaluation metrics can be

grouped into two classes: heuristic approaches, like BLEU, and those using supervised

learning trained on human judgement data. Trained metrics normally provide better

correlation with human judgements. In addition, they are flexible to the inclusion of

various features. However, they are highly dependent on training data, which is often

specific to each language pair. Heuristic approaches are less flexible but do not require

training data, and therefore can be considered language-independent.

This chapter introduces two novel automatic evaluation metrics, ROSE and SIMP-

BLEU. ROSE (Section 3.1) is a trained metric that uses only simple features that are

portable across languages and fast to compute. It is sentence level, as opposed to

document level, which allows it to be used in a wider range of settings. SIMPBLEU
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(Section 3.2) is a heuristic metric based on BLEU. It explores new variants of BLEU

which address the limitations of the original metric, resulting in a more flexible metric

that is not only more reliable, but also allows for more accurate discriminative train-

ing. Our experimental settings to test these metrics and their results are described in

Section 3.3.

3.1 Regression and Ranking-based Evaluation

BLEU is still the most commonly used metric in automatic machine translation evalu-

ation. However, several drawbacks have been identified for this metric (Chiang et al.,

2008a; Callison-Burch et al., 2006; Banerjee & Lavie, 2005), most notably that it omits

recall (substituting this with a penalty for overly short output) and that it is not easily

applicable at sentence level. Metrics such as METEOR (Banerjee & Lavie, 2005) ac-

count for both precision and recall, but their relative weights are difficult to determine.

In contrast to heuristic metrics, trained metrics use supervised learning to learn

directly from human judgements. This allows the combination of different features and

can better fit specific tasks, such as evaluation focusing on fluency, adequacy, relative

ranks or post-editing effort. Previous work includes approaches using classification

(Corston-Oliver et al., 2001), regression (Albercht & Hwa, 2008; Specia et al., 2009;

Specia & Gimenez, 2010), and ranking (Duh, 2008). This work achieved good results

and better correlations with human judgements than purely heuristic metrics.

Automatic metrics must find a balance between several key issues: 1) applicability

to texts of different sizes (documents and sentences); 2) ease of portability to different

languages; 3) runtime requirements and 4) correlation with human judgements. Previ-

ous work has typically ignored at least one of these issues. For example, BLEU applies

only to documents, while trained metrics tend to be specific to a given language pair

and are slow to compute.

This section presents ROSE, a trained metric which is loosely based on BLEU,

but seeks to further simplify its components so that it can be used for sentence-level

evaluation. This contrasts with BLEU which is defined over documents, and must be

coarsely approximated to allow sentence level application. The increased flexibility of

ROSE allows the metric to be used in a wider range of situations, including during

decoding. ROSE uses a linear model with a small number of simple features. The
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model is trained using regression or ranking against data with human judgements. The

benefits of using only simple features are that ROSE can be trivially ported between

target languages, and that it can be run very quickly. Features include precision and

recall over different sized n-grams, and the difference in word counts between the candi-

date and the reference sentences, which is further divided into counts of content words,

function words and punctuation. An extended version also includes features over POS

tag sequences but is less portable across languages than standard ROSE.

3.1.1 Model

ROSE is defined as a linear model and its weights are trained by a Support Vector

Machine (SVM) (Joachims, 1999). It is formulated as

S = WF (e, r), (3.1)

where W is the feature weights vector and F (c, r) is a function which takes candidate

translation (e) and reference (r), and returns the feature vector. S is the response

variable, measuring the “goodness” of the candidate translation. A higher score means

a better translation, although the magnitude is not always meaningful.

We propose two methods for training: a linear regression approach, ROSE-reg,

trained to match a human evaluation score, and a ranking approach, ROSE-rank,

trained to match the relative ordering of pairs of translations assigned by human judges.

Unlike ROSE-reg, ROSE-rank only gives a relative score between sentences, indicat-

ing that translation A is better than translation B, or vice versa. The features used

in ROSE will be listed in Section 3.1.2, and the regression and ranking methods are

described in Section 3.1.3.

3.1.2 ROSE Features

The features used in ROSE are listed in Table 3.1. These include counts over string

n-gram matches, word counts and counts for POS n-grams.

N-gram string matching features are used to measure how closely the candidate

sentence resembles the reference in terms of the words used. Both precision and recall

are considered. Word count features measure length differences between the candidate

and the reference, which is further divided into function words, punctuation and content
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words. POS features are defined over POS n-gram matches between the candidate and

the reference and are aimed at measuring similarity in terms of sentence structure. We

describe these features in detail in what follows.

String Matching Features

The string matching features include precision, recall and F1-measure over n-grams

of various sizes. N-gram precision measures how many n-grams match between the

sequences of words in the candidate sentence and the reference sentences:

pn =
Countclip(n-grammatched)

Count(n-gramcandidate)
(3.2)

where Countclip(n-grammatched) are the matched counts of n-grams (to the reference)

in the candidate sentence and Count(n-gramcandidate) is the total number of n-gram

occurrence in the candidate.

Recall is also taken into account in ROSE, so clipping was deemed unnecessary in

the precision calculation: repeating words in the candidate will increase precision but

at the expense of recall. Recall is calculated as

pn =
Count(n-grammatched)

Count(n-gramreference)
, (3.3)

where Count(n-gramreference) is the total number of n-grams occurrence in the refer-

ence. If multiple references are available, the n-gram precision follows the same strategy

as BLEU: the n-grams in the candidate can match any of the references. For recall,

ROSE will match the n-grams in each reference separately, and then choose the refer-

ence with maximum recall.

Word Count Features

The word count (WC) features measure the length ratio between the candidate and

reference sentences.

WC =
num. of words in candidate

num. of words in reference
(3.4)

In a sentence, content words are more informative than function words (grammatical

words) and punctuation. Therefore, the number of content words in the candidate
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Description

n-gram precision, n=1...4

n-gram recall, n=1...4

n-gram F-measure, n=1...4

Average n-gram precision

Word count

Function word count

Punctuation count

Content word count

n-gram POS precision, n=1...4

n-gram POS recall, n=1...4

n-gram POS f-measure, n=1...4

n-gram POS string mixed precision,

n=1...4

Table 3.1: ROSE Features. The dashed line separates the core features from the extended

POS features (for ROSE-regpos and ROSE-rankpos)

is a important indicator in evaluation. Besides measuring the length difference for

the entire candidate and reference sentences, we measure the ratio of function words,

punctuation and content words between the candidate and the reference. We normalise

this difference by the length of the reference, which allows comparability between short

versus long sentences. If multiple references are available, we choose the ratio that is

closest to 1.

Part-of-Speech Features

The string matching and word count features only measure similarities on the lexical-

level, and not over sentence structure or synonyms. To add this capability we include

Part-of-Speech (POS) tag features, which work in similar ways to the string matching

features, but using POS tags instead of words. They measure precision, recall and

F-measure over POS tag n-grams (n=1...4). In addition, we include features that mix

tokens and POS tags.

The string/POS tags mixed features are used for handling synonyms. One limitation

of string n-gram matching is that it is not able to deal with words in the candidate
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Example

Reference: A/DT red/ADJ vehicle/NN

Candidate 1: A/DT red/ADJ car/NN

Candidate 2: A/DT red/ADJ rose/NN

Candidate 3: A/DT red/ADJ red/ADJ

Table 3.2: Example of the use of mixed features for evaluation. Using string matching

only, the three candidates obtain the same score, but with mixed POS features we determine

that Candidate 3 is worse than Candidates 1 and 2

which are synonymous of words in the reference. One approach for doing so is to use

an external resource such as WordNet, like in METEOR (Banerjee & Lavie, 2005).

However this would limit the portability of the metric. Instead, we use POS tags as

a proxy. In most cases synonyms share the same POS. We can reward such potential

synonyms by considering n-grams over a mixture of string and POS tags: either string

or POS in candidate matching a reference’s string or POS will be treated as a matching.

Example

Reference: A/DT red/ADJ vehicle/NN

Candidate 1: A/DT red/ADJ car/NN

Candidate 2: A/DT red/ADJ rose/NN

Candidate 3: A/DT red/ADJ red/ADJ

Table 3.3: Example of mixed string/POS matches. Green tokens indicate matches and

red tokens indicate mismatches. Using mixed feature we can determine that Candidate 3

is worse than Candidates 1 and 2

For example, considering the example in Table 3.2, all three candidates match 2

unigrams and mismatch the last word in the reference. If only string n-gram matching

is used (as illustrated in Table 3.3), all candidates will receive the same score (2/1/0

uni/bi/trigrams), which means these three candidates have same translation quality.

However, Candidate 1 is a better translation, because car is a synonym of vehicle, and

they share the same POS. In our mixed features we match either the POS tag or the
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actual string, so that Candidates 1 and 2 will be scored 3/2/1 for uni/bi/trigrams

and Candidate 3 remains scored as 2/1/0. In this case, Candidate 1 will be ranked

higher than Candidate 3. Although the mixed feature cannot distinguish the difference

between Candidates 1 and 2, they do not require WordNet, so they are more applicable

across languages.

3.1.3 Training

The linear model combining the various features described above is trained on human

evaluation data in two different ways: ranking and regression. In both cases we used

the SVM-light tool (Joachims, 1999), which implements SVM Regression and SVM

Ranking algorithms. In the ranking model, the training data is a set of candidate

translations labelled with their relative rankings, as given by human annotators. For

regression, we use a different dataset: human annotations of post-editing effort (this

will be further described in Section 3.3). The SVM regression algorithm learns weights

with minimum magnitude that limit prediction error to within an accepted range with

a soft-margin formulation (Smola & Scholkopf, 2004).

3.2 BLEU Deconstructed

Trained metrics such as ROSE show better correlation with human judgements than

BLEU (see, for example, the WMT 2011 results (Callison-Burch et al., 2011)). However

trained metrics require human labelled data for training and are less reliable when

applied to languages and domains different from the training set. Therefore they have

not been commonly adopted for discriminative training.

BLEU was designed for evaluating MT output against multiple references, and over

large documents. However, evaluating translations at sentence level with a single refer-

ence is much more common in MT research. Popular evaluation campaigns such as those

organised by the WMT workshop only provide one reference for test and development

corpora. In addition, many state-of-the-art discriminative training algorithms require

sentence-level evaluation metrics (Liang et al., 2006; Chiang et al., 2008b; Hopkins &

May, 2011). Often this means using a sentence-based approximation of BLEU, which

can unduly bias the system and affect overall performance. BLEU has been shown to

perform less well when applied at the sentence or sub-sentence levels, and when using
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only one reference (Chiang et al., 2008a; Callison-Burch et al., 2006; Banerjee & Lavie,

2005). One reason is that in this setting BLEU has many zero or low counts for higher

order n-grams, and this has a disproportional effect on the overall score. As previously

mentioned, another problem with BLEU is its brevity penalty, which has been shown

to be a poor substitute for recall.

Previous research has sought to address these problems. Doddington (2002) sug-

gests using arithmetic mean instead of geometric mean. Zhang et al. (2004) shows

that unigram and bigram precision contribute over 95% of overall precision, and state

that adding higher order n-gram precision introduces a bias towards fluency over preci-

sion. This led us to question the effect of removing or substituting some components in

BLEU, especially for sentence-level evaluation. In this section, we provide experimen-

tal analysis of each component in BLEU aiming to design better evaluation metrics for

sentence-level MT evaluation and MT system tuning with a single reference.

3.2.1 Limitations of the BLEU Metric

We reviewed the BLEU metric in detail in Chapter 2. In this section we will discuss the

limitations of this metric. First, in a short document or sentence, there is a high prob-

ability of obtaining zero trigram or 4-gram precision, which makes the overall BLEU

score equal zero due to the use of geometric mean. Similarly, very low (but non-zero)

counts disproportionately affect the final score. A common method to alleviate this

effect is smoothing the counts (Lin & Och, 2004; Owczarzak et al., 2006; Koehn et al.,

2008; Hanneman et al., 2008), e.g. adding α both to the numerator and denominator

of Equation 2.28. This avoids zero precision scores and zero overall BLEU score. How-

ever, different α values will affect the accuracy of the approximation, and it is unclear

what a reasonable value to use is.

BLEU supports multiple references, which makes it hard for it to obtain an estimate

of recall. Therefore, recall is replaced by the brevity penalty (BP). Banerjee & Lavie

(2005) state that the BP is a poor substitute for recall. Banerjee & Lavie (2005); Liu

et al. (2010); Song & Cohn (2011) include recall in their metrics and achieve better

correlation with human judgements compared to BLEU.

Lin & Och (2004) analysed BLEU at the sentence level using Pearson’s correlation

with human judgements over 1 to 9 grams. In order to apply BLEU for sentence level,

they add one to the count of each n-gram. Results show that BLEU with only unigram

50



3.2 BLEU Deconstructed

precision has the highest correlation with adequacy (0.87), while adding higher order n-

gram precision factors decreases the adequacy correlation and increases fluency. Overall

they recommend using up to 5-gram precision to achieve the best balance. Zhang et al.

(2004)’s experiments show that unigram and bigram precision contribute over 95% of

the overall precision. They also found that adding higher n-gram precision leads to

a bias towards fluency over adequacy. However, it is not clear whether fluency or

adequacy is more important, with recent evaluation favouring ranking judgements that

implicitly consider both fluency and adequacy (Bojar et al., 2014; Macháček & Bojar,

2013; Callison-Burch et al., 2012, 2011, 2010, 2009).

These limitations affect the possible applications of BLEU, particularly for SMT

discriminative training. In discriminative training, the references are given, and we

want the decoder to produce translations with high BLEU score. Current solutions

rank translations in N-best lists (Liang et al., 2006; Och, 2003) or explicitly search

for the maximum BLEU translation and use this for discriminative updates (Arun

& Koehn, 2007; Liang et al., 2006; Tillmann & Zhang, 2006; Chiang et al., 2008b).

In order to efficiently search for the maximum BLEU translation we need to be able

to evaluate BLEU over partial sentences. However, clipping and high order n-grams

make it unfeasible to apply BLEU during decoding. Thus the process relies on coarse

approximations.

3.2.2 Simplified BLEU

In an attempt to better understand and simplify BLEU so that it meets our require-

ments, we analyse each component of BLEU and seek a solution to improve the above

mentioned shortcomings, especially for sentence-level evaluation. We test the effect of

the brevity penalty as well as a recall-based BLEU. Further, we test how each compo-

nent contributes to BLEU. We will use following notation for each component:

• P: Precision

• R: Recall

• A: Arithmetic mean

• G: Geometric mean
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• B: Brevity penalty

• 1, 2, 3, 4 : 1 to 4-grams

• C: Clipping

Note that our short-hand for standard BLEU is PGBC4, while a metric for clipped

recall over unigrams and bigrams with no brevity penalty is labelled RGC2.

3.3 Experiments with ROSE and SIMPBLEU

This section introduces the settings for the experiments with the ROSE and SIMP-

BLEU as standalone metrics. We will compare the evaluation results of several ROSE

and SIMPBLEU variants (these variants are listed in Table 3.4) with standard BLEU

against human judgements. The baseline BLEU version is David Chiang’s implemen-

tation1.

ROSE variants

Regression-based ROSE without mixed POS features (ROSE-reg)

Regression-based ROSE with mixed POS features (ROSE-regpos)

Ranking-based ROSE without mixed POS features (ROSE-rank)

Ranking-based ROSE with mixed POS features (ROSE-rankpos)

SimpBLEU variants

Standard BLEU (PGBC4)

BLEU with arithmetic avg (PABC4)

BLEU with recall (RGBC4)

BLEU with recall and arithmetic avg (RABC4)

BLEU with 1(2,3,4) grams (PGBC1(2,3,4))

BLEU with 1(2,3,4) grams without clipping (PGB1(2,3,4))

BLEU without BP (PGC4) BLEU with recall without BP (RGC4)

Table 3.4: ROSE and BLEU variants

The training data used for ROSE are sentences judged by humans in WMT10

(Callison-Burch et al., 2010). A regression model was trained based on sentences with

1https://github.com/tylin/coco-caption/blob/master/pycocoevalcap/bleu/bleu scorer.py
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human annotation for post-editing effort. The three levels used in WMT10 are “OK”,

“EDIT” and “BAD”, which we treat as response values 3, 2 and 1. In total, 2, 885

sentences were used in the regression model training. The ranking model was trained

based on sentences with human annotation as ranking, with tied results allowed at

training time. 1, 675 groups of sentences were used for training, where each group

contains five sentences manually ranked from 1 (best) to 5 (worst). In order to test

ROSE’s ability to adapt to a new language without training data, ROSE was only

trained with English data.

In order to test the portability of the metrics, our experiments are based on four

languages: English (en), French (fr), Spanish (es) and German (de). A function word

list was created for each language and used in ROSE for feature extraction. Each

function word list contains the 100 most common function words in the language.

English POS tags were generated using NLTK (Bird & Loper, 2004), and POS features

were only used for into English translation evaluation.

The experiments include two parts: document-level evaluation and sentence-level

evaluation. The detailed settings for each part are described in the following two

Sections.

3.3.1 Document-level Evaluation

For document-level, we follow WMT08’s (Callison-Burch et al., 2008) evaluation pro-

cedure, whereby we first rank each document by human using following evaluation

methods:

• Ranking: Humans judge the candidate sentences by ranking them in order of

quality. To apply this to whole documents, documents are ranked according to

the proportion of the candidate sentences in a document that are better than all

of the other candidates.

• Constituent Ranking: The constituent task also involves human ranking judge-

ments, but operates over chosen syntactic constituents, instead of entire sentences.

• Yes/No: In this task human judges decide whether or not a particular part of a

sentence is acceptable. This is applied to document-level evaluation by calculating

the proportion of YES sentences in the document.
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Then we compare each BLEU variant evaluation results against human rankings

using Spearman’s ρ correlation:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (3.5)

where di measures the difference between the rank value assigned to sentence i by the

system versus the human, and the n is number of sentences in the document. ρ varies

between 1 and -1, where higher scores indicate that the automatic evaluation metric has

higher correlation with human judges. For example, ρ = 1 means that the automatic

evaluation metric ranks the documents in the same order as human judges do, and

ρ = −1 means the ranking is opposite to that of human judges.

Our test corpora are from all systems submitted in WMT08 for the “test2008”

test set, with each document including more than 500 sentences. We selected Spanish,

French and German into and out-of English. The final score is the average of the BLEU

variant Spearman’s ρ correlation with the human rankings in three tasks of ’Ranking’,

’Constituent’ and ’Yes/No’:

SVM kernel es-en fr-en de-en avg

Linear 0.76 0.93 0.58 0.75

Polynomial 0.76 0.92 0.59 0.76

RBF 0.77 0.95 0.54 0.75

Table 3.5: Document-level evaluation of ROSE-reg with different SVM kernel functions.

The results were computed as the average Spearman’s ρ correlation for the yes/no, ranking

and constituent tasks. Boldface numbers indicate the best correlation in each language

In the document-level experiment, we first compute ROSE-reg with three SVM ker-

nel functions. Results are shown in Table 3.5. The performance is similar with all kernel

functions. However, the linear kernel results in faster training and prediction times,

making the metric more applicable in decoding. Therefore, a linear kernel function was

used in ROSE for the follow up experiments.

Table 3.6 shows the document-level evaluation performance of ROSE (without POS

features) and SIMPBLEU variants. The best performing metric is SIMPBLEU with

arithmetic average (PABC4). PGB4 (BLEU without clipping) performs the same as

BLEU, and thus we can say that the effect of clipping on BLEU is not noticeable here.
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BLEU ROSE-reg ROSE-rank RGBC4 PABC4 PGB4

es-en 0.80 0.76 0.76 0.81 0.80 0.80

fr-en 0.95 0.93 0.95 0.93 0.94 0.95

de-en 0.59 0.58 0.57 0.58 0.68 0.59

en-es 0.78 0.73 0.74 0.75 0.81 0.78

en-fr 0.94 0.94 0.89 0.94 0.94 0.94

en-de 0.72 0.80 0.78 0.72 0.77 0.72

avg. 0.80 0.79 0.78 0.79 0.82 0.80

Table 3.6: Document-level evaluation results (Spearman’s ρ correlation). The results

were computed as the average Spearman’s ρ correlation for the yes/no, ranking and con-

stituent tasks

However, in some of the following experiments (Table 3.9) we found that clipping affects

lower n-gram SIMPBLEU variants.

Rank-task PGBC4(BLEU) ROSE-reg ROSE-rank

es-en 0.66 0.57 0.85

fr-en 0.97 0.97 0.96

de-en 0.69 0.69 0.76

avg.(into en) 0.77 0.74 0.86

en-es 0.85 0.75 0.69

en-fr 0.98 0.98 0.93

en-de 0.88 0.93 0.94

avg.(from en) 0.90 0.89 0.88

Table 3.7: Document-level evaluation results (Spearman’s ρ correlation) of ranking task

only

The overall performance of ROSE variants and recall-based SIMPBLEU are slightly

better than BLEU at document level, but note that ROSE-rank has much better ρ

correlation than BLEU for the into English ranking task. These results are shown in

Table 3.7, which lists the ROSE evaluation results for the ranking task only. From the

table, ROSE-rank wins over BLEU with almost 0.1 ρ correlation gain (0.86 vs 0.77) for

into English translation evaluation. However, BLEU is still slightly better than ROSE-

rank for out-of English translation evaluation (0.90 vs 0.88). This may be because
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ROSE-rank is trained only on into English human ranking data.

All Task ROSE-reg ROSE-regpos ROSE-rank ROSE-rankpos

es-en 0.76 0.78 0.76 0.76

fr-en 0.93 0.94 0.95 0.95

de-en 0.58 0.59 0.57 0.52

avg. 0.76 0.77 0.76 0.74

Table 3.8: Document-level evaluation results (Spearman’s ρ correlation) of ROSE with

POS features for into English translation evaluation

Table 3.8 shows the evaluation performance of ROSE with POS features. According

to the table, the performance of the regression-based ROSE is improved across all

three language pairs by adding the POS features. For the ranking-based model, adding

POS features leads to no variation for Spanish into English and French into English

evaluation, and to worse results for German into English. The reason behind this is

not clear, but these results show that the regression model is more reliable than the

ranking model with POS feature sets.

Table 3.9 shows the evaluation performance of BLEU variants with different n-gram

orders with and without clipping. According to the table, with clipping the BLEU

variants using tri- and four-grams have better correlation with humans on the English

evaluation, but for other languages, evaluation using only unigram and bigram leads to

better performance. In order to obtain the best evaluation performance we recommend

using different n-gram orders in different languages. For English evaluation the best

BLEU performance should include all four grams, but for French, Spanish and German

we suggest only using unigrams in BLEU. For other languages a safe option is to use up

to trigrams, as the overall best performance in our test was obtained with the BLEU

variant using up to trigram precision.

If we remove clipping in BLEU, except for English into Spanish translation, the

performance drops when reducing the order of n-grams. This may be because although

over generating words increases the lower order n-gram precision, it can degrade the

higher order n-gram precision. Clipping is thus more important for lower order n-grams.

In addition, the test data is produced by BLEU-tuned systems, so sentences with over
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generated words will most likely already have been penalised. Therefore, we do not

suggest removing clipping from BLEU.

BLEU Variants with clipping

PGBC4(BLEU) PGBC3 PGBC2 PGBC1

es-en 0.79 0.79 0.79 0.77

fr-en 0.95 0.95 0.94 0.93

de-en 0.59 0.59 0.59 0.55

en-es 0.74 0.80 0.80 0.81

en-fr 0.93 0.93 0.93 0.93

en-de 0.71 0.71 0.72 0.72

avg. 0.79 0.80 0.79 0.79

BLEU Variants without clipping

PGB4 PGB3 PGB2 PGB1

es-en 0.79 0.79 0.79 0.76

fr-en 0.95 0.95 0.94 0.92

de-en 0.59 0.59 0.59 0.56

en-es 0.77 0.80 0.80 0.81

en-fr 0.93 0.93 0.93 0.88

en-de 0.71 0.70 0.70 0.70

avg. 0.79 0.79 0.79 0.78

Table 3.9: SIMPBLEU’s document-level evaluation results (Spearman’s ρ correlation)

testing 1-4 grams and clipping

3.3.2 Sentence-level Evaluation

For sentence-level evaluation we follow the procedure from WMT09 (Callison-Burch

et al., 2009), which uses Kendall’s τ correlation (Equation 3.6) to measure metrics’

quality:

τ =
number of concordant pairs - number of discordant pairs

total pairs
, (3.6)

where ranked lists of translations according to humans judgements and metric’s score

are compared by counting the number of concordant and discordant relative ordering

of pairs of translations, ignoring pairs with ties in either human or metric rankings.
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We use Kendall’s τ correlation to compare the sentence rankings produced by BLEU

and all of our variants against human rankings. The human rankings were collected

from WMT09, from all languages into English evaluation task data. After removing

tied rankings, the test set contains 1, 702 pairs of ranked sentences.

We also test sentence-level evaluation for document evaluation performance: we

evaluate each sentence in the document and take the average sentence scores for a

document-level score. An add α smoothing is used for sentence-level BLEU, where the

default α value in this experiment is 1. In subsequent experiments we also test different

α values for smoothing and their effect on sentence-level BLEU performance.

Metric Kendall’s tau

BLEU-smoothed 0.17

ROSE-reg 0.12

ROSE-regpos 0.16

ROSE-rank 0.20

ROSE-rankpos 0.17

Table 3.10: Sentence-level evaluation (Kendall’s τ correlation) of ROSE. Boldface num-

bers indicate the best Kendall’s τ correlation

Table 3.10 shows the sentence-level evaluation results of ROSE variants. According

to the table, ROSE-rank has the best overall score in all versions of ROSE and BLEU.

This result corroborates the document-level evaluation results: with appropriate train-

ing data, ranking-based ROSE is able to reach better human correlation than BLEU

in ranking tasks. The results also show that adding the POS tag features helps the

regression model (ROSE-regpos), but it degrades the performance of the ranking model

(ROSE-rankpos).

Table 3.11 shows the SIMPBLEU sentence-level evaluation results. According to

the table, SIMPBLEU variants with arithmetic average (i.e., Precision with ABC4,

which we refer to as PABC4) has the best performance, increasing BLEU’s Kendall’s

τ from 0.1774 to 0.2103. Compared to ROSE, PABC4 shows even better performance

than ROSE-rank (0.2103 vs 0.206). We also found that PGBC4’s (BLEU precision with

GBC4) performance slightly decreases without clipping at sentence level. Without the

brevity penalty, BLEU’s performance drops both in the precision and recall variants,
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Precision Recall

GBC4 0.17 0.15

GB4 0.17 0.15

ABC4 0.21 0.16

AC4 0.19 0.11

BC4 0.16 0.11

ABC4(no-smooth) 0.19 0.15

Table 3.11: Sentence-level Kendall’s τ correlation of SIMPBLEU. Except for ABC4 (no

smoothing), add one smoothing is used with all metrics

with a larger drop for the recall variant. This shows that the BP is not only a recall

replacement in BLEU, it is also an important feature for evaluation. Non-smoothed

arithmetic BLEU variants are comparable (only slightly worse) to the smoothed variant.

Figure 3.1: Smoothed BLEU Kendall’s τ with smoothing values from 0.001 to 100

A question that naturally follows is how important smoothing of counts is to

sentence-level evaluation. Figure 3.1 shows the results of smoothing α values from

0.001 to 100. In our experiments, the average sentence length is 23 words. When α

is less than 1, smoothing has no effect on the performance of any BLEU variant. The
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best smoothing value was found to be 3. The performance tends to drop beyond this

value. Results also show that arithmetic average has better correlation than geometric

mean with small smoothing values, and tends to reach similar performances with large

smoothing α values. Smoothing with brevity penalty (Equation 3.7) leads to better

performance than without brevity penalty smoothing, and the results are more reliable

as the smoothing value increases.

BPsmooth = e(1− r+α
c+α

) (3.7)

The reason we recommend smoothed BP is that adding a smoothing value is equiva-

lent to adding to the sentence length of the test and reference sentences, which affect the

length ratio. We added the same smoothing value to the BP component to neutralise

this effect. Smoothing the BP component is sensible when considering sentence-level

application, as the effect of a single sentence on document-level BP is very small.

Table 3.12 compares the performance of BLEU variants by using different n-gram

sizes for sentence-level evaluation. At sentence-level, geometric mean variants of BLEU

have the best performance when using unigrams and bigrams, even without clipping,

but for the arithmetic average variant, adding trigrams improves performance.

grams PGBC PGB PABC

1-4 grams 0.17 0.17 0.21

1-3 grams 0.19 0.18 0.21

1-2 grams 0.21 0.19 0.20

1 grams 0.18 0.16 0.18

Table 3.12: Sentence-level SIMPBLEU evaluation (Kendall’s τ correlation) in 1 - 4 grams

The results in Table 3.13 are the Spearman’s correlation for document-level eval-

uation by using sentence-level BLEU variants. According to these results, the over-

all accuracy at sentence-level is lower than that of BLEU variants at document-level.

Arithmetic average variants still outperform geometric mean variants.
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PGBC4(BLEU) RGBC4 PABC4 PGB4

es-en 0.79 0.79 0.79 0.79

fr-en 0.93 0.92 0.92 0.93

de-en 0.55 0.59 0.58 0.55

en-es 0.76 0.75 0.76 0.76

en-fr 0.93 0.93 0.93 0.93

en-de 0.66 0.80 0.70 0.66

avg. 0.77 0.78 0.78 0.77

Table 3.13: Sentence-level evaluation for document ranking (Spearman’s ρ correlation)

3.4 SIMPBLEU for Discriminative Training

Up until now we have applied our SIMPBLEU as standalone metrics to human evalua-

tion data, testing whether our variant metrics result in better ranking of MT outputs.

However, it remains to be tested whether the metrics can also work effectively as a

loss function for tuning a translation system. This can be seen as an extrinsic way of

testing the metric, which will encounter a much wider variety of outputs than those

present in MT evaluation data. For instance, empty sentences, overly long output, etc.

In this experiment we investigate parameter tuning of the following SMT system:

a Moses phrase-based approach (Koehn et al., 2007) which we tune using cmert-0.5,

David Chiang’s implementation of MERT. We use the following (default) features:

• reordering model

• language models

• translation models, including forward and backward lexical probabilities, word

count and phrase count

• word penalty.

The training data to build models for this experiment was the Europarl-v6 German

to English corpus. For tuning, the dev-newstest2010 German to English development

set from WMT10 (Callison-Burch et al., 2010) was used. For test, the test set from

WMT11 (Callison-Burch et al., 2011) was used. For manual evaluation, we randomly
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picked 50 unique output sentences from five versions of the system (where differences

stem from the stochastic tuning process) for human ranking from best to worst.

The human ranking was done using Amazon Mechanical Turk and MAISE (Zaidan,

2011). For each ranking, source and reference sentences were provided, plus five can-

didate translations placed in random order. Each unit was ranked five times, by five

different annotators. Annotation agreement was then measured as the average Cohen’s

Kappa coefficient (Cohen, 1960), which is a normalised agreement measure (Equation

3.8):

κ =
P (A)− P (E)

1− P (E)
, (3.8)

where P(A) is percentage of times annotators agree with each other, and P(E) is the

probability of agreement by chance. In our experiment P (E) = 1
3 (candidate A can be

ranked better than B, equal to B, or worse than B, so the probability of agreement by

chance is 1
3). We also calculate intra-agreement for each annotator, such that annotators

with low intra-annotator agreement can be filtered out from our experiments.

PABC4 PGBC4 PGBC2 PGB4 RGBC4

PABC4 – 0.27 0.26 0.25 0.29

PGBC4 0.31 – 0.29 0.28 0.28

PGBC2 0.33 0.29 – 0.21 0.26

PGB4 0.28 0.29 0.23 – 0.24

RGBC4 0.33 0.32 0.29 0.28 –

Table 3.14: German-to-English head-to-head: figures represent how often metric in

column header beat metric in row. E.g. PABC4 ranked better than PGBC4 31% of the

times, while PGBC4 ranked better than PABC4 only 27% of the times, so they tied 42%

of the times. In this case: P (A) = 0.608 and K = 0.396

We had 42 annotators from the Amazon Mechanical Turk platform, producing a

total of 250 rankings. Only 143 rankings were kept after filtering out six annotators

with low intra annotator agreement. According to the filtered results (Table 3.14),

arithmetic average BLEU ranks 31% better than geometric mean BLEU. PGBC2 and

PGBC4 have the same performance. BLEU with clipping is slightly better than the

version without clipping (0.29 vs 0.28).
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According to results we showed above, BLEU can be improved for sentence-level

evaluation by substituting geometric mean with arithmetic average, precision with re-

call and adjusting the order of n-grams. We now test the significance of the three BLEU

variants by using the paired bootstrap re-sampling method introduced in (Koehn,

2004b). We randomly draw 50 groups (each group contains five ranked sentences)

from the WMT09 test set to produce a test corpus, and test Kendall’s τ of BLEU

variants in this test corpus. We repeat this process 1000 times. Significance values are

obtained as the percentage of BLEU variants that are better than standard BLEU.

Three pairs of significance test results are listed in Table 3.15. All three BLEU vari-

ants are better than standard BLEU in more than 80% of the time; the two arithmetic

variants are better than standard BLEU in more than 90% of the time.

Metric Significance (%)

PABC4 92.6

PABC3 90.9

PGBC2 84.0

Table 3.15: Paired sentence-level significance tests against standard smoothed BLEU

We also perform a binomial test for variants PABC4 & PGBC4. We obtain p-

value equal 0.5811, i.e., there is no significant difference between arithmetic average

and standard BLEU.

3.5 SIMPBLEU in WMT Evaluation

The Workshop on Statistical Machine Translation (WMT) provides a platform for

evaluating and comparing evaluation metrics. In 2012 we submitted the SIMPBLEU

PABC3 variant to the WMT competition. The WMT12 official results are listed in

Tables 3.16-3.19. In all tasks (that these tables cover these various settings), our

PABC3 shows better correlation with human scores than BLEU. In addition, PABC3

also proved very competitive against other metrics and ranked best for document-level

out-of English evaluation test sets.

In WMT13 we submitted a precision (PABC3) and a recall (RABC2) SIMPBLEU

variants to the workshop (Table 3.20-3.23). Our recall variant outperformed the preci-
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cs-en de-en es-en fr-en avg

SEMPOS 0.94 0.92 0.94 0.80 0.90

AMBER 0.83 0.79 0.97 0.85 0.86

TERRORCAT 0.71 0.76 0.97 0.88 0.83

PABC3 0.89 0.70 0.89 0.82 0.82

TER 0.89 0.62 0.92 0.82 0.81

BLEU 0.89 0.67 0.87 0.81 0.81

POSF 0.66 0.66 0.87 0.83 0.75

BLOCKERRCATS 0.64 0.75 0.88 0.74 0.75

WORDBLOCKEC 0.66 0.67 0.85 0.77 0.74

XENERRCATS 0.66 0.64 0.87 0.77 0.74

SAGAN-STS 0.66 n/a 0.91 n/a n/a

Table 3.16: WMT12 document-level Spearman’s ρ correlation between automatic eval-

uation metrics and human judgements for translations into English

en-cs en-de en-es en-fr avg

PABC3 0.83 0.46 0.42 0.94 0.66

BLOCKERRCATS 0.65 0.53 0.47 0.93 0.64

ENXERRCATS 0.74 0.38 0.47 0.93 0.63

POSF 0.80 0.54 0.37 0.69 0.60

WORDBLOCKEC 0.71 0.37 0.47 0.81 0.59

TERRORCAT 0.65 0.48 0.58 0.53 0.56

AMBER 0.71 0.25 0.50 0.75 0.55

TER 0.69 0.41 0.45 0.66 0.55

METEOR 0.73 0.18 0.45 0.82 0.54

BLEU 0.80 0.22 0.40 0.71 0.53

SEMPOS 0.52 n/a n/a n/a n/a

Table 3.17: WMT12 document-level Spearman’s ρ correlation between automatic eval-

uation metrics and human judgements for translations out-of English

sion variant, and achieved very promising results in the competition: RABC2 SIMP-

BLEU ranked the best evaluation metric at document level for out-of English evalua-

tion, and the best evaluation metric at sentence level for both into and out-of English

evaluations.
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en-cs en-de en-es en-fr avg

SPEDE07-PP 0.26 0.28 0.26 0.21 0.25

METEOR 0.25 0.27 0.25 0.21 0.24

AMBER 0.24 0.25 0.23 0.19 0.23

TERRORCAT 0.18 0.19 0.18 0.19 0.19

PABC3 0.19 0.17 0.19 0.13 0.17

XENERRCATS 0.17 0.18 0.18 0.13 0.17

POSF 0.16 0.18 0.15 0.12 0.15

WORDBLOCKEC 0.15 0.16 0.17 0.13 0.15

BLOCKERRCATS 0.07 0.08 0.08 0.06 0.07

SAGAN-STS n/a n/a 0.21 0.20 n/a

Table 3.18: WMT12 sentence-level Kendall’s τ correlation between automatic evaluation

metrics and human judgements for translations into English

en-cs en-de en-es en-fr avg

METEOR 0.26 0.18 0.21 0.16 0.20

AMBER 0.23 0.17 0.22 0.15 0.19

TERRORCAT 0.18 0.19 0.18 0.18 0.18

PABC3 0.20 0.13 0.18 0.10 0.15

ENXERRCATS 0.20 0.11 0.17 0.09 0.14

POSF 0.15 0.13 0.15 0.13 0.14

WORDBLOCKEC 0.19 0.10 0.17 0.10 0.14

BLOCKERRCATS 0.13 0.04 0.12 0.01 0.08

Table 3.19: WMT12 sentence level Kendall’s τ correlation between automatic evaluation

metrics and human judgements for translations out-of English

For WMT14, we did not submit our metrics to the official competition, but we

tested them after the evaluation campaign. For WMT14, the organisers changed the

document ranking method by introducing the Trueskill algorithm (Sakaguchi et al.,

2014). In previous years, document were ranked based on the percentage of sentences

in the document rated better than in other documents. However, Sakaguchi et al.

(2014) argued that this approach does not consider the effects of document groupings.

A ‘lucky’ document may end up rated highly only because it is always compared with
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fr-en de-en es-en cs-en ru-en avg

METEOR 0.984 0.961 0.979 0.964 0.789 0.935

DEPREF-ALIGN 0.995 0.966 0.965 0.964 0.768 0.931

UMEANT 0.989 0.946 0.958 0.973 0.775 0.928

MEANT 0.973 0.926 0.944 0.973 0.765 0.916

SEMPOS 0.938 0.919 0.930 0.955 0.823 0.913

DEPREF-EXACT 0.984 0.961 0.937 0.936 0.744 0.912

RABC2 0.978 0.936 0.923 0.909 0.789 0.909

BLEU-MTEVAL-INTL 0.989 0.902 0.985 0.936 0.695 0.883

PABC3 0.989 0.846 0.832 0.918 0.704 0.858

BLEU-MTEVAL 0.989 0.895 0.888 0.936 0.670 0.876

BLEU-MOSES 0.993 0.902 0.879 0.936 0.651 0.872

CDER-MOSES 0.995 0.877 0.888 0.927 0.659 0.869

NLEPOR 0.945 0.949 0.825 0.845 0.705 0.845

LEPOR 0.945 0.934 0.748 0.800 0.779 0.841

NIST-MTEVAL 0.951 0.875 0.769 0.891 0.649 0.827

NIST-MTEVAL-INTL 0.951 0.875 0.762 0.882 0.658 0.826

TER-MOSES 0.951 0.833 0.825 0.800 0.581 0.798

WER-MOSES 0.951 0.672 0.797 0.755 0.591 0.753

PER-MOSES 0.852 0.858 0.357 0.697 0.677 0.688

Table 3.20: WMT13 document-level Spearman’s ρ correlation between automatic eval-

uation metrics and human judgements for translations into English

poorer document. The Trueskill algorithm is inspired by the Xbox Live online gaming

ranking system (Herbrich et al., 2007), where each document is considered a player.

Every player (document) has the same skill level and uncertainty at the beginning,

which follows a Gaussian distribution. The Gaussian mean represents the player’s

current skill, while its variance represents the uncertainty. Trueskill first selects the

player with highest uncertainty (high variance) and picks its opponent with similar

skill (mean) to compete (sentence-level comparison). After each round of competition,

Trueskill updates the skill estimates and uncertainty according to their current skill

level and uncertainty. Large skills difference and low variance will result in the system

making larger skill updates. Low skill difference and high variance will conversely

results in smaller skill updates. Therefore, a system will compete against other systems
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3.5 SIMPBLEU in WMT Evaluation

en-fr en-de en-es en-cs en-ru avg

RABC2 0.924 0.925 0.830 0.867 0.710 0.851

LEPOR 0.904 0.900 0.841 0.748 0.855 0.850

NIST-MTEVAL-INTL 0.929 0.846 0.797 0.902 0.771 0.849

CDER-MOSES 0.921 0.867 0.857 0.888 0.701 0.847

NLEPOR 0.919 0.904 0.852 0.818 0.727 0.844

NIST-MTEVAL 0.914 0.825 0.780 0.916 0.723 0.832

PABC3 0.909 0.879 0.780 0.881 0.697 0.829

METEOR 0.924 0.879 0.780 0.937 0.569 0.818

BLEU-MTEVAL-INTL 0.917 0.832 0.764 0.895 0.657 0.813

BLEU-MTEVAL 0.895 0.786 0.764 0.895 0.631 0.794

TER-MOSES 0.912 0.854 0.753 0.860 0.538 0.783

BLEU-MOSES 0.879 0.786 0.759 0.895 0.574 0.782

WER-MOSES 0.914 0.825 0.714 0.860 0.552 0.773

PER-MOSES 0.873 0.686 0.775 0.797 0.591 0.744

Table 3.21: WMT13 document-level Spearman’s ρ correlation between automatic eval-

uation metrics and human judgements for translations out-of English

fr-en de-en es-en cs-en ru-en avg

RABC2 0.303 0.318 0.388 0.260 0.234 0.301

METEOR 0.264 0.293 0.324 0.265 0.239 0.277

Pearson correlationDEPREF-ALIGN 0.257 0.267 0.312 0.228 0.200 0.253

DEPREF-EXACT 0.258 0.263 0.307 0.227 0.195 0.250

PABC3 0.238 0.236 0.287 0.208 0.174 0.229

NLEPOR 0.225 0.240 0.281 0.176 0.172 0.219

SENTBLEU-MOSES 0.229 0.218 0.266 0.197 0.170 0.216

LEPOR 0.235 0.221 0.236 0.187 0.177 0.211

UMEANT 0.161 0.166 0.202 0.160 0.108 0.160

MEANT 0.158 0.160 0.202 0.164 0.109 0.159

Table 3.22: WMT13 sentence-level Kendall’s τ correlation between automatic evaluation

metrics and human judgements for translations into English

that have similar performance.

Another change in the document-level ranking from WMT14 was that human cor-
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en-fr en-de en-es en-cs en-ru avg

RABC2 0.261 0.254 0.231 0.192 0.245 0.236

METEOR 0.236 0.203 0.175 0.160 0.203 0.195

PABC3 0.219 0.197 0.187 0.148 0.175 0.185

NLEPOR 0.200 0.199 0.163 0.139 0.188 0.178

SENTBLEU-MOSES 0.214 0.177 0.171 0.139 0.173 0.175

LEPOR 0.206 0.179 0.178 0.084 0.205 0.170

Table 3.23: WMT13 sentence-level Kendall’s τ correlation between automatic evaluation

metrics and human judgements for translations out-of English

relation was calculated using Pearson’s correlation coefficient rather than Spearman’s

ρ correlation. The organisers argue that Spearman’s ρ disregards the absolute differ-

ences in the scores and that his may be unfair to some metrics. In contrast, Pearson’s

correlation is able to take into account the score difference between human and metric

judgements. The correlation metric in WMT14 is calculated by Equation 3.9:

κ =

∑n
1 (Humani −Human)(Metrici −Metric)√∑n

1 (Humani −Human)2
√∑n

1 (Metrici −Metric)2
, (3.9)

where Human is the human score vector and Metric is the metric score vector, Human

and Metric are their means, respectively.

Here we present the WMT14 document-level evaluation results using Trueskill

ranked documents. The evaluation method is same as in Section 3.3.1, where we com-

pare our SIMPBLEU variants against other metrics submitted to WMT14. Table 3.24

and Table 3.25 show the SIMPBLEU variants Pearson’s correlations in comparison with

other metrics submitted to WMT14. Our RABC2 still shows strong correlation with

human judges, and is ranked the best metric in the out-of English translation tasks.

3.6 Summary

In this chapter we focused on Problem 3 discussed in Chapter 1 – the design of better

automatic evaluation metrics for discriminative training. We introduced the ROSE and

SIMPBLEU metrics, both of which achieve better human correlation than BLEU. We
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en-fr en-hi en-cs en-ru en-de avg

RABC2 0.943 0.985 0.974 0.927 0.335 0.833

APAC 0.950 0.940 0.973 0.926 0.346 0.827

PABC3 0.937 0.981 0.967 0.911 0.318 0.823

CDER 0.949 0.949 0.982 0.938 0.278 0.819

METEOR 0.941 0.975 0.976 0.923 0.263 0.816

AMBER 0.928 0.990 0.972 0.926 0.241 0.811

NIST 0.941 0.981 0.985 0.927 0.200 0.807

ELEXR 0.885 0.962 0.979 0.938 0.260 0.805

TBLEU 0.932 0.968 0.973 0.912 0.239 0.805

BLEU 0.937 0.973 0.976 0.915 0.216 0.803

TER 0.954 0.829 0.978 0.931 0.324 0.803

PER 0.936 0.931 0.988 0.941 0.190 0.797

BLEU NRC 0.933 0.971 0.974 0.901 0.205 0.797

WER 0.960 0.516 0.976 0.932 0.357 0.748

Table 3.24: WMT14 system-level (Trueskill) Pearson’s correlation between automatic

evaluation metrics and human judgements for translations out-of English

applied SIMPBLEU as part of a loss function for MERT training and the human judges

ranked SIMPBLEU-tuned translations better than BLEU-tuned translation.

ROSE’s overall performance was close to that of BLEU at document and sentence

levels. However, it performed better on tasks it was specifically trained for, such as

ROSE-rank at document-level and ROSE-regpos for the syntactic constituents task.

Results also showed that when training data is not available for the language pair of

interest, ROSE trained on data for a different language pair could still produce reason-

able scores (only slightly worse than BLEU). Smoothed BLEU slightly outperformed

ROSE for sentence-level evaluation. This might be due to the fact that the rankings

in the training data are not expert judgements, and consequently can be very noisy for

model learning.

In SIMPBLEU, we analysed and tested components in BLEU. In order to address

the shortcomings of BLEU at sentence level, we experimented with variants of the met-

ric. Results showed that sentence-level BLEU variants underperform their document-

level counterparts, and that precision-based metrics often have better performance
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fr-en hi-en cs-en ru-en de-en avg

DISCOTK-PARTY-TUNED 0.977 0.943 0.956 0.975 0.870 0.944

LAYER 0.973 0.893 0.976 0.941 0.854 0.927

DISCOTK-PARTY 0.970 0.921 0.862 0.983 0.856 0.918

UPC-STOUT 0.968 0.915 0.898 0.948 0.837 0.913

VERTA-W 0.959 0.867 0.920 0.934 0.848 0.906

VERTA-EQ 0.959 0.854 0.927 0.938 0.842 0.904

TBLEU 0.952 0.932 0.954 0.957 0.803 0.900

BLEU NRC 0.953 0.823 0.959 0.946 0.787 0.894

BLEU 0.952 0.832 0.956 0.909 0.789 0.888

UPC-IPA 0.966 0.895 0.914 0.824 0.812 0.882

PABC3 0.959 0.856 0.940 0.799 0.848 0.880

CDER 0.954 0.823 0.826 0.965 0.802 0.874

APAC 0.963 0.817 0.790 0.982 0.816 0.874

REDSYS 0.981 0.898 0.676 0.989 0.814 0.872

REDSYSSENT 0.980 0.910 0.644 0.993 0.807 0.867

NIST 0.955 0.811 0.784 0.983 0.800 0.867

DISCOTK-LIGHT 0.965 0.935 0.557 0.954 0.791 0.840

METEOR 0.975 0.927 0.457 0.980 0.805 0.829

TER 0.952 0.775 0.618 0.976 0.809 0.826

RABC2 0.958 0.549 0.935 0.806 0.876 0.825

WER 0.952 0.762 0.610 0.974 0.809 0.821

AMBER 0.948 0.910 0.506 0.744 0.797 0.781

PER 0.946 0.867 0.411 0.883 0.799 0.781

ELEXR 0.971 0.857 0.535 0.945 -0.404 0.581

Table 3.25: WMT14 system-level (Trueskill) Pearson’s correlation between automatic

evaluation metrics and human judgements for translations into English

than recall-based metrics. In addition, arithmetic mean outperformed geometric mean

consistently across languages and for sentence and document-level evaluation. The

smoothing parameters are less important for sentence-level evaluation with arithmetic

mean; for geometric mean, smoothing both in n-gram precision and brevity penalty

leads to better performance.

Our experiments also showed that higher n-grams appear to be unnecessary, and
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3.6 Summary

clipping is only important when using lower order n-grams. However, this did not hold

for tuned models, suggesting that the human evaluation data from WMT is heavily

biased towards similar SMT models (those trained on BLEU).
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4

Development Data Selection For

Unseen Test Sets

The quality of discriminative training in Statistical Machine Translation is heavily

dependent on the quality of the development corpus used, and on its similarity to the

test set. This chapter introduces a novel development corpus selection algorithm – the

LA selection algorithm. It focuses on the selection of development corpora to achieve

better translation quality on unseen test data and to make training more stable across

different runs, particularly when manually created development sets are not available,

and for selection from noisy and potentially non-parallel, large scale web-crawled data.

The LA selection algorithm does not require knowledge of the test set, nor the decoding

of the candidate pool before the selection. In our experiments, development corpora

selected by the LA algorithm lead to improvements of over 2.5 BLEU points when

compared to random development data selection from the same larger datasets.

4.1 Introduction

Discriminative training quality is closely related to the quality of training samples in

the development corpus and, to a certain extent, to the proximity between this corpus

and the test set(s). In their experiments, Hui et al. (2010) demonstrate that by using

different development corpora to train the same SMT system, translation performance

can vary up to 2.5 BLEU points using a standard phrase-based system (Koehn et al.,

2007). Gains obtained from a sensible choice of development data have been shown to
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be even greater in a cross-domain setting (Pecina et al., 2012). Building a ‘suitable’

development corpus is an important problem in SMT discriminative training.

A suitable development corpus should aid discriminative training to achieve better

quality, and thus yield better translations. Previous research on selecting training sam-

ples for the development corpus can be grouped into two categories: i) selecting samples

based on the test set (transductive learning), or ii) selecting samples without knowing

the test set (inductive learning). Research in the first category focuses on how to find

samples similar to the ones on which the system will be tested. Li et al. (2010), Lu et al.

(2008), Zheng et al. (2010), and Tamchyna et al. (2012) measure similarity based on

information retrieval methods, while Zhao et al. (2011) select similar sentences based

on edit distance. These similarity-based approaches have been successfully applied to

the local discriminative algorithm proposed in Liu et al. (2012). The disadvantage of

these approaches is that the test set needs to be known before model building, which

is most often an artificial scenario.

Our research belongs to the second category. Previous work on development data

selection for unknown test sets include Hui et al. (2010); Cao & Khudanpur (2012).

Hui et al. (2010) suggest that training samples with high oracle BLEU scores1 will lead

to better training quality. Cao & Khudanpur (2012) confirmed this finding and also

demonstrated that better training data exhibits high variance in terms of BLEU scores

and feature vector values between oracle and non-oracle hypotheses, arguing that these

are more easily separable by the learning machine algorithms used for tuning. Both

of the above approaches achieved positive results, but require decoding the candidate

development data to obtain BLEU scores and feature values, which may be too slow if

the pool for data selection is extremely large.

Another potential way of improving training quality based on a development corpus

is to increase the size of this corpus. However, high-quality, sentence-aligned parallel

corpora are expensive to obtain. In contrast to data used for rule extraction in SMT,

data used for SMT discriminative training is required to be of better quality for reliable

training. Development data is therefore often created by professional translators. In

addition, increasing the development corpus size also increases the computational cost

and the time required to train a model. It is therefore also important to determine

1Oracle BLEU scores are those computed for the closest candidate translation to the reference in

the N-best list of the development set.
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how much data is sufficient to build a suitable development corpus. Web crawled or

crowd-sourced data is much cheaper than professionally translated data, and research

exploiting these types of data (Zaidan & Callison-Burch, 2011; Uszkoreit et al., 2010;

Smith et al., 2010; Resnik & Smith, 2003; Munteanu & Marcu, 2005; Smith et al., 2013a)

has already been successfully applied to machine translation, both in phrase extraction

and discriminative training. However, they do not provide a direct comparison between

their selected data and professionally built development corpora.

In order to address these problems, in this thesis we introduce a novel development

corpus selection algorithm, the LA Selection algorithm. LA Selection combines

sentence length, bilingual alignment and other textual clues, as well as data diversity

for sample sentence selection. It does not rely on knowledge of the test sets, nor on

the decoding of the candidate sentences. Our results show that the proposed selection

algorithm achieves improvements of over 2.5 BLEU points compared to random selec-

tion. We also present experiments with development corpora for various datasets to

shed light on the following aspects that might have an impact on translation quality as

well as on the stability of the results over different runs: namely, that sentence length

has substantial effect on the development corpus, and that if the right selection process

is chosen, large development corpora offer fewer benefits over smaller ones.

The remainder of this chapter is structured as follows: We will describe our novel LA

selection algorithm in Section 4.2. Experiments and results are presented in Sections

4.3 and 4.4, respectively, where we also discuss the training quality and scalability

across different corpus sizes.

4.2 LA Selection Algorithm

The proposed development corpus selection algorithm is comprised of two main steps:

(i) selecting training sentence pairs by sentence Length, and (ii) selecting training

sentence pairs by Alignment and other textual clues. We call it LA selection. It

also has an additional step to reward diversity in the set of selected sentences with

respect to the words they contain. The LA algorithm assumes that a good training

sample should have a ’reasonable’ length, be paired with a good quality translation, as

primarily indicated by the word alignment clues between the sentences in the candidate

pair, and enhance the existing set in terms of diversity.
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Algorithm 4.1 LA Development Data Selection Algorithm

Require: Data Pool D = (f t, rt, at)Tt=1, Number of words N , length limits λlow and

λtop

1: Selected = (), Tmp = ()

2: for di = (f i, ri, ai) in D do

3: if length(f i) > λlow and length(f i) < λtop then

4: Extract features featureList from di

5: Calculate feature score featureScore according to featureList

6: Add (featureScore, di) to Tmp

7: end if

8: end for

9: Sort Tmp according to featureScore from high to low

10: while Selected length LS < N do

11: for di in Tmp do

12: if maxSimi(f i, Selected[f j ]Jj=J−200) < 0.3 and simi(f i, ri) < 0.6 then

13: Add (f i, ri) to Selected

14: LS = LS + length(f i)

15: end if

16: end for

17: end while

18: return Selected

LA selection is shown in Algorithm 4.1. Assume that we have T sentence pairs in

our data set D. Each sentence pair di in D contains a foreign sentence f i, a translation

of the foreign sentence ri and the word alignment between them ai. We first filter out

sentence pairs below the low length threshold λlow and above the high length threshold

λtop (Line 3). Sentence length has a major impact on word alignment quality, which

constitutes the basis for the set of features we use in the next step. Shorter sentences

tend to be easier to align than longer sentences, so our algorithm would naturally be

biased to selecting shorter sentences. However, as we show later in our experiments,

sentences that are either too short or too long often have a negative effect on training

quality. Therefore, it is important to set both upper and lower thresholds on sentence

length. Based on empirical results, we suggest set λlow = 10 and λtop = 50, as we will

discuss in more detail in Section 4.4.1.

After filtering out sentences using the length thresholds, we extract the feature

76



4.2 LA Selection Algorithm

+/- Alignment Features

+ Source alignment ratio (LAR)

+ Target alignment ratio (RAR)

+ Source & target alignment ratio (TAR)

- Top three largest fertilities ratio (AFer.1 ... 3)

+ Source largest contiguous span ratio (SLCSR)

+ Target largest contiguous span ratio (TLCSR)

- Source largest discontiguous span ratio (SLDSR)

- Target largest discontiguous span ratio (SLDSR)

Text-only Features

+ Source and target length ratio (STLR)

- Target function word penalty (TFWP)

Table 4.1: Features used to score candidate sentence pairs

values for each remaining candidate sentence pair. The features used in this thesis

are listed in Table 4.1. The first column of the Table contains the sign of the feature

value, where a negative sign indicates that the feature will return a negative value,

and a positive sign indicates that the feature will return a positive value. The actual

features, which we describe below, are given in the second column. These include

word alignment features, which are computed based on GIZA++ alignments for the

candidate development set, and simpler textual features. The alignment features used

here are primarily adapted from Munteanu & Marcu (2005):

The alignment ratio is the ratio between the number of aligned words and length

of the sentence in words:

Alignment Ratio =
No. Aligned Words

Sentence Length

A low alignment ratio means that the data is most likely non-parallel or represents

a highly non-literal translation. In both cases, these sentence pairs are likely to prove

detrimental to discriminative training.

Word fertility is the number of foreign words aligned to each word. The word

fertility ratio is the ratio between word fertility and sentence length. We use the top

three largest fertility ratios as three features:

Fertility Ratio = − Word Fertility

Sentence Length
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This feature can detect a common feature of unsupervised alignment algorithms: garbage

collection, whereby the aligner uses a rare word in one sentence to erroneously account

for many difficult words to align in the parallel sentence.

Our definition of contiguous span differs from that of Munteanu & Marcu (2005):

we define it as a substring in which all words have an alignment to words in the other

language. A discontiguous span is defined as a substring in which none of the words

has an alignment to any word in the other language. The contiguous span ratio,

CSR, is the length of the longest contiguous span over the length of the sentence:

CSR =
LC

Sentence Length

The discontiguous span ratio, DCSR, is the length of the longest discontiguous

span over the length of the sentence:

DCSR = − LDC

Sentence Length

where LC is the length of the contiguous span and LDC is the length of the discon-

tiguous span.

In addition to the word alignment features, we use source and target length

ratio, LR, to measure how close the source and target sentences in the pair are in

terms of length:

LR =


TL
SL if SL > TL

SL
TL if TL > SL

where TL is target sentence length and SL is source sentence length.

Finally, the target function words penalty, FP , penalises sentences with a large

proportion of function words or punctuation tokens:

FP = e−
nfw
TL

where nfw is the number of function words or punctuation tokens, and TL is the target

sentence length. We only consider a target language penalty for practical reasons, but

a source language penalty could also be used.

Once we obtain these feature values for all candidate sentence pairs, we apply two

approaches to calculate an overall score for the candidate. The first is a heuristic

78



4.2 LA Selection Algorithm

approach, which simply sums up the scores of all features for each sentence (with

some features negated as shown in Table 4.1). The second approach uses machine

learning to combine these features, similar to what was done in Munteanu & Marcu

(2005) to distinguish between parallel and non-parallel sentences. Here, a binary SVM

classifier is trained to predict samples that are more similar to professionally created

sentences. The labelling of the data was therefore done by comparing professionally

created translations against badly aligned translations from web-crawled data. The

heuristic approach achieved better performance than the machine learning approach,

as we will discuss in Section 4.4.3.

Line 9 through Line 17 in Algorithm 4.1 describe the sentence pair selection proce-

dure based on this overall feature score. The candidate sentence pair and its features

are stored in the Tmp list, and sorted from high to low according to their overall fea-

ture scores. The algorithm takes candidate sentence pairs from the Tmp list until the

number of words in the selected development corpus Selected reaches the limit N . If

the candidate sentence pair passes the test in Line 12, the sentence pair will be added

to the selected corpus Selected.

Line 12 has two purposes: first, it aims at increasing the diversity of the selected

development corpus. Based on our experiments, candidate sentence pairs with similar

feature scores (and thus similar rankings) may be very similar sentences, with most

of their words being identical. We therefore only select a sentence pair whose source

sentence has less than 0.3 BLEU similarity when compared to the source sentences in the

last 200 selected sentence pairs to reduce computational complexity (the computational

cost increases linearly with the number of selected words, so we set this threshold to

ensure fast runtime). The second purpose is to filter out sentence pairs that are not

translated, i.e., sentence pairs with the same words in the source and target sides.

Untranslated sentence pairs are a problem in web-crawled data, therefore we filter out

sentence pairs whose source and target have a BLEU similarity score of over 0.6. 1

1Source and target sentences with high BLEU similarity have a high number of matching words

and n-grams; this is unlikely in a translation.
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4.3 Experimental Settings

We build a standard phrase-based SMT systems using Moses with its default features.

Word alignment and language model are obtained using GIZA++ and IRSTLM with

their default settings. For discriminative training we use the MERT (Och, 2003) algo-

rithm. Two language pairs are used in the experiments: French-English and Chinese-

English.

4.3.1 French-English Data

To build a French to English system we used the Common Crawl corpus (Smith et al.,

2013b). We filtered out sentences with a length of over 80 words and split the cor-

pus into training (Common Crawl training) and tuning (Common Crawl tuning) sets.

The training subset was used for phrase table, language model and reordering table

training. It contains 3, 158, 523 sentence pairs (over 161M words) and average source

sentence length of 27 words. The tuning subset used was the “Noisy Data Pool” to

test our LA selection algorithm. It contains 31, 929 sentence pairs (over 1.6M words),

and an average source sentence length of 27 words. We compared the performance

of our selected corpora against a concatenation of four professionally created develop-

ment corpora (Professional Data Pool) for the news test sets distributed as part of the

WMT evaluation Callison-Burch et al. (2008, 2009, 2010): ‘newssyscomb2009’, ‘news-

test2008’, ‘newstest2009’ and ‘newstest2010’. Altogether, they contain 7, 518 sentence

pairs (over 392K words) with an average source sentence length of 27 words. As test

data, we took the WMT13 (average source sentence length = 24 words) and WMT14

(average source sentence length = 27 words) news test sets.

4.3.2 Chinese-English Data

To build the Chinese to English translation system we used the non-UN and non-HK

Hansards portions of the FBIS (LDC2003E14) training corpus (1, 624, 512 sentence

pairs, over 83M words, average source sentence length = 24 words) and tuning cor-

pus (33, 154 sentence pairs, over 1.7M words, average sentence length = 24). The

professionally created development corpus in this case is the NIST MT2006 test set1

1It contains 4 references, but we only apply the first reference to make it comparable to our selection

algorithm.
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(1, 664 sentence pairs, 86K words, average sentence length = 23 words). As test data,

we used the NIST MT08 test set (average source sentence length = 24 words).

Recall that for both language pairs, the test sets and professionally created devel-

opment corpora belong to the same domain, namely news, for both French-English and

Chinese-English. In addition, the test and development corpora for each language pair

have been created in the same fashion, following the same guidelines. Our pool of noisy

data, however, includes not only a multitude of domains that differ from news, but also

translations created in various ways as well as noisy data.

4.4 Results

Our experiments are split into six parts: Section 4.4.1 examines how sentence length

in development corpora affects the training quality; Section 4.4.2 presents an ablation

study of features in the LA algorithm; Section 4.4.3 compares our LA selection algo-

rithm against randomly selected corpora and against professionally created corpora;

Section 4.4.4 explores different diversity filter thresholds; Section 4.4.5 focuses on the

performance of the LA algorithm where features are combined using machine learning;

and Section 4.4.6 discusses the effect of development corpus size by testing translation

performance with corpora of different sizes.

4.4.1 Selection by Sentence Length

In order to test how sentence length affects the quality of discriminative training, we

split the development corpus into six parts according to source sentence length1

ranges (in words): [1-10], [10-20], [20-30], [30-40], [40-50] and [50-60]. For each range,

we randomly select sentences to total 30, 000 words as a small training set, we train

a discriminative model based on the small training set and we test the translation

performance on WMT13 and NIST MT08 test set. We repeat the random selection

and training procedure five times (Clark et al., 2011) and report average BLEU scores

in Tables 4.2 and 4.3.

Table 4.2 shows the results for French-English translation. From this table, we can

see that corpora with sentence lengths of [30-40] and [30-50] lead to better transla-

tion quality than random selection, with a maximum average BLEU score of 25.62 for

1The sentence length we use later in this chapter is also based on the source sentence
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Rand. 1-10 10-20 20-30 30-40 40-50 50-60 10-50

avg. 24.36 22.85 23.61 24.43 25.62 24.62 22.94 25.54

std. 0.84 0.65 0.80 0.51 0.40 1.06 0.99 0.84

Table 4.2: Accuracy for random selection of development sentences with respect to

sentence length on the French-English WMT13 news test set. Shown is the average BLEU

score and the standard deviation measured over five runs

sentence length [30-40], outperforming random length selection by 1.26 BLEU points.

Corpora with sentences in [10-20] and [20-30] perform slightly worse than random se-

lection, while corpora with very short or very long sentences perform the worst.

Table 4.3 shows the results for Chinese-English translation. Corpora length in

ranges [10-20], [20- 30], [30-40] and [40-50] lead to better translation performance than

random selection. As for French-English translation, corpora with very short or very

long sentences showed the worst performance, with a lower BLEU score than random

selection.

Based on the above results, the best sentence length for discriminative training is not

fixed, as it may depend on language pairs and corpus type. However, sentence lengths

below 10 words and above 50 words lead to poor results for both language pairs. We

conducted another experiment selecting development corpora that excluded sentences

with length below 10 and above 50. The results are shown in column [10-50] of both

Tables. Compared to random selection, length range [10-50] improved BLEU scores by

1.18 for French-English, and by 0.54 for Chinese-English. We therefore suggest avoiding

sentence pairs with fewer than 10 or more than 50 words for discriminative training.

Note that our systems were developed on corpora with an average sentence length of

around 25 words, which is typical in most freely available training corpora, although

the thresholds may differ for corpora with very different sentence lengths.1

4.4.2 Selection by LA Features

In this section we will test the features used in the LA selection algorithm in terms of

their contribution to the algorithm. The results are shown in Table 4.4. The single

1For example, both Europarl and News-Commentary WMT corpora have an average of 25 words

on their English side.
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Rand. 1-10 10-20 20-30 30-40 40-50 50-60 10-50

avg. 18.79 18.11 20.00 19.63 18.85 19.29 18.53 19.33

std. 0.83 0.29 1.45 1.00 0.85 1.38 0.81 1.16

Table 4.3: Accuracy for random selection of development sentences with respect to sen-

tence length on the Chinese-English MT08 test set. Shown is the average BLEU score and

the standard deviation measured over five runs

Rand. AFer.1 AFer.2 AFer.3 TFWP STLR SLCSR

avg. 24.36 24.28 24.16 23.17 22.13 23.65 23.08

std. 0.84 0.13 0.24 0.24 0.66 0.11 0.15

TLCSR SLDSR TLDSR LAR RAR TAR All Features

avg. 22.94 23.13 23.32 23.05 23.17 25.09 25.88

std. 0.59 0.22 0.42 0.09 0.88 0.20 0.16

Table 4.4: Accuracy for development sentences selection with respect to LA feature

only on the French-English MWT13 test set. Shown is the average BLEU score and the

standard deviation measured over five runs

most informative feature is the Total Align Ratio (TAR), leading to an average BLEU

score of 25.09. Apart from this feature, no other feature on its own outperformed

random selection. However, when combining all of these features we achieved a BLEU

score improvement of 0.79 over that achieved by TAR alone, in addition to relatively

low standard deviation.

Some features are clearly more informative than others. For example, the largest

fertility ratio (AFer1) leads to better BLEU performance than the second and third

largest fertility ratios (AFer2 and AFer3). Although our heuristic LA selection combines

all features uniformly, it is likely that non-uniform weighting could lead to even better

results.

4.4.3 Selection by LA Algorithm

In what follows we compare the performance of our LA selection algorithm against

randomly selected and professionally created corpora. We set λlow = 10 and λtop = 50

and select a development corpus with no more than 30, 000 words. The results are
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reported in Tables 4.5, 4.6 and 4.7, again reporting statistics over five runs.

Table 4.5 shows the results for the French-English WMT13 test set. Note that

LA selection improves BLEU by 1.36 points compared to random selection, and also

improves over using sentence length (10-50) only as selection criterion. The performance

of the LA selected corpus is slightly lower (0.1 BLEU) than that of the professionally

created corpus (Prof.), but the system is much more robust with much lower standard

deviation (std). The fact that the results are so close is surprising: The professionally

created development sets were drawn from the same domain as the test sets (news),

and were created using the same translation guidelines as the test set. Findings for the

Fr-En WMT14 test set (Table 4.6) and Chinese-English MT08 (Table 4.7) are similar.

Systems trained on corpora selected by LA increase by 1.21 and 2.53 BLEU points over

random selection, respectively. For the WMT14 test set, the corpus selected by LA

show slight improvements over the professionally created corpus (26.40 vs. 26.31) with

a lower variance.

Rand. 10-50 LA10-50 Prof.

avg. 24.36 25.54 25.72 25.82

std. 0.84 0.84 0.01 0.23

Table 4.5: Accuracy comparing LA selection method with benchmark strategies on the

French-English WMT13 news test. Shown are BLEU scores and std. dev. when using

development corpora selected by length (10-50), the LA selection algorithm (LA10-50),

randomly (Rand.), and a corpus created by professionals (Prof.)

Rand. 10-50 LA10-50 Prof.

avg. 25.19 25.31 26.40 26.31

std. 0.30 0.14 0.04 0.16

Table 4.6: Accuracy comparing LA selection method with benchmark strategies on the

French-English WMT14 news test. Shown are BLEU scores and std. dev. when using

development corpora selected by length (10-50), the LA selection algorithm (LA10-50),

randomly (Rand.), and a corpus created by professionals (Prof.)
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Rand. 10-50 LA10-50 Prof.

avg. 18.79 19.33 21.32 23.49

std. 0.83 1.16 0.83 0.31

Table 4.7: Accuracy comparing LA selection method with benchmark strategies on

the Chinese-English MT08 test. Shown are BLEU scores and std. dev. when using

development corpora selected by length (10-50), the LA selection algorithm (LA10-50),

randomly (Rand.), and a corpus created by professionals (Prof.)

4.4.4 Diversity Filter

This experiment tests the effect of the different diversity filter thresholds, which range

from 0.2 to 1. A low diversity filter threshold results in a selected development corpus

with high diversity (i.e., more unique words) but a lower overall score for the other

features in the LA selection method. A threshold equal to 1 means no diversity filtering

is performed. The results are shown in Tables 4.8 and 4.9, where sentence lengths are

allowed to range from 1 to 80 words.

Table 4.8 shows the results for Chinese-English. Notice that the corpora with

the least diversity filtering leads to the worst performance, with thresholds of 0.8-1.0

achieving BLEU scores of around 20. Decreasing the threshold until 0.6 leads to BLEU

score increases of up to 21.49. This result is almost 1.5 points (absolute) higher than

with no filtering. The BLEU score drops as the threshold continues to decrease. This

can be attributed to the fact that increasing the diversity forces the algorithm to select

sentences from the pool that are deemed bad by the other features, such as sentence

pairs with poor alignments.

Table 4.9 illustrated the results for French-English. The best BLEU score is also

achieved when the threshold is 0.6 (BLEU 25.57), but this result is not significantly

better than for other thresholds. We believe that this is due to the fact that the

French-English data pool has higher diversity than the Chinese-English data, so that

incorporating diversity into our selection algorithm has little effect. To validate this

claim, we investigated the diversity of the selected sets: without diversity filtering, the

French-English selected corpus contains 6, 229 unique words while the Chinese-English

corpus only contains 5, 234 unique words (see the ‘words’ row in Tables 4.8 and 4.9).

When increased to the best performance threshold of 0.6, the Chinese-English corpus
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added 460 new words, while for French-English only 48 new words were added. This

confirms that the French-English corpus has higher diversity to start with, and that

the diversity strategy for French-English had only limited effect.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

avg. 20.49 20.98 20.99 21.24 21.49 20.64 20.08 19.88 20.07

std. 0.29 0.20 0.28 0.15 0.25 0.24 0.33 0.58 0.53

words 6213 5917 5808 5756 5694 5598 5360 5303 5234

Table 4.8: Performance with differing diversity thresholds, evaluated on the Chinese-

English MT08 test set. Lower values of the threshold indicate greater diversity. We report

average BLEU, std. deviation and number of unique words in selection

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

avg. 25.48 25.37 25.39 25.45 25.57 25.45 25.49 25.49 25.55

std. 0.22 0.19 0.16 0.19 0.18 0.17 0.08 0.07 0.15

words 7417 6473 6298 6280 6277 6275 6262 6244 6229

Table 4.9: Performance with differing diversity thresholds, evaluated on the French-

English WMT13 news test set. Lower values of the threshold indicate greater diversity.

We report average BLEU, std. deviation and number of unique words in selection

4.4.5 Machine Learned Approach

We also experiment with using the SVM classifier to combine features in the LA selec-

tion algorithm, as previously discussed. The classifier was trained using the SVMlight1

toolkit with RBF kernel with its default parameter settings. We selected 30, 000 words

from the professionally created WMT development corpus as positive training sam-

ples, and used the sentence pairs from our corpus with the lowest LA selection score

as negative training examples, selecting 30, 000 words worth of data as our negative

examples in order to balance the two classes. Results for sentence selection using the

examples with the highest classification scores (i.e. distance for hyperplane in direction

of positive class) are shown in Tables 4.10 and 4.11.

1http://svmlight.joachims.org/
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The LA selection method with the SVM classifier outperforms random selection,

but does worse than our heuristic approach. A reason may be the quality of the train-

ing data: both our positive and negative training examples will contain considerable

noise. The professionally created WMT corpora include some odd translations, so the

alignment features will be less reliable. Moreover, this is a harder problem than the

one introduced in Munteanu & Marcu (2005), since their pool of candidate samples

contained either parallel or non-parallel sentences, which are easier to label and to dis-

tinguish based on word alignment features. Our pool of candidate samples are parallel,

with our selection procedure aiming to select the highest quality translations from this

pool.

WMT13 test set

SVM RANDOM LA heuristic

avg. 25.42 24.36 25.54

std. 0.08 0.84 0.01

WMT14 test set

SVM RANDOM LA heuristic

avg. 26.08 25.19 26.40

std. 0.08 0.30 0.04

Table 4.10: Performance of SVM-trained LA selection versus heuristic LA selection on

the French-English WMT13 and WMT14 news test sets. Also shown is random selection,

reporting average BLEU and std. deviation over five independent runs

NIST test set

SVM RANDOM LA heuristic

avg. 20.33 18.79 20.92

std. 1.45 0.83 0.43

Table 4.11: Performance of SVM-trained LA selection versus heuristic LA selection on

the Chinese-English NIST08 test set. Also shown is random selection, reporting average

BLEU and std. deviation over five independent runs
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4.4.6 Effect of Development Corpus Size

Now we consider the question of how much development data is needed to train a phrase-

based SMT system. To test this, we experiment with corpora containing between

10, 000 words (about 500 sentences) and 150, 000 words (7, 500 sentences), with an

incremental step of 10, 000 words. We run MERT training five times on each increment

and report the average BLEU scores. The test set is the WMT13 news test.

Figure 4.1 shows how BLEU changes as we increase the development corpus size.

The three lines represent the BLEU scores of three systems: Random selection from

the French-English tuning dataset (blue line), LA selection from the same pool (red

line), and professionally created WMT development corpus (green line). Note that

performance increases as corpora sizes increase for all techniques up to 70, 000 words

(2, 000-3, 000 sentence), after which performance is stable. The professionally created

corpus achieves the best performance regardless of corpus size. Note, however, that the

LA selection technique is only slightly worse, with less than 0.1 BLEU difference, for

corpora sizes ≥ 30, 000 words. Random selection clearly performs poorly compared to

both.

Figure 4.2 shows the standard deviation over five runs for the same experiment.

Random selection presents the largest standard deviation (greater than 0.6 BLEU) for

training corpora of sizes below 50, 000 words. The maximum standard deviation is

1.93 at 30, 000 words. With larger development corpus sizes, the standard deviation

of random selection is still higher than that of LA selected and professional data. LA

selection has a much lower average standard deviation, which is mostly lower even than

for the professionally created data.1 This is important for real application settings,

where repeated runs are not practical and robust performance from a single run is

imperative.

These results confirm the findings of Hui et al. (2010). Increasing the amount of

data is not the best solution when creating a development corpus. Better data – rather

than more data – leads to better training quality. A development corpus with 30k to

70k words is enough to produce stable translation results in our setting.

1Given a specific pool of sentences, the LA algorithm is deterministic, so any random effects are

purely derived from the discriminative training process. For the randomly and professionally selected

data, however, are affected by different sets selected from the pool and this may lead to higher standard

deviations.
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Figure 4.1: Accuracy of development selection algorithms with increasing sizes of de-

velopment corpora. The horizontal axis shows corpus size, and the vertical axis, BLEU

scores, evaluated on the French-English WMT13 news test set. The three curves denote

random selection, our proposed LA selection algorithm and professional translation

Figure 4.2: Standard deviation of the accuracy for the development selection method

with increasing sizes of development corpora, evaluated on the French-English WMT13

news test set. The horizontal axis shows corpus size, and the vertical axis, standard

deviation over BLEU results
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4.5 Summary

In this chapter we demonstrated how the choice of the development corpus is critical

for good discriminative training performance. The standard practice of sourcing ex-

pensive human translations is not practical for many SMT application scenarios, and

consequently making better use of existing parallel resources is paramount. Length is

the most important single criterion for selecting effective sentences for discriminative

training: overly short and overly long training sentences often harm the training per-

formance. Using large development sets brings only small improvements in accuracy,

and a modest development set of 30k-70k words is sufficient for good performance.

Out main contribution in this chapter, the LA sentence selection algorithm, selects

high quality and diverse sentence pairs for training. We showed improvements over

random selection of up to 2.5 BLEU points (Chinese-English). This approach is com-

petitive with manually selected development sets, despite having no knowledge of the

test set, test domain, and without engaging expert translators. In future work, we plan

to improve the classification technique for automatically predicting training quality by

means of alternative methods for extracting training examples and additional features

to distinguish between good and bad translations.
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Weighted Ranking Optimisation

A number of SMT discriminative training algorithms have been proposed in the past

10 years since the development of Och & Ney (2002)’s model. These go from maximum

likelihood training (Och & Ney, 2002) and minimum error rate training (Och, 2003)

to margin based training (Tillmann & Zhang, 2006; Watanabe et al., 2007), and most

recently pairwise ranking based training (Hopkins & May, 2011). Hopkins & May

(2011)’s Pairwise Ranking Optimisation (PRO) shows two main advantages over other

training algorithms:

• It scales well for large feature spaces while still reliable in small ones.

• It can be easily adapted to any SMT decoder without changing decoding methods.

PRO’s framework is similar to MERT, and does not require special decoding

strategies such as forced decoding.

As a result, many SMT researchers find that the PRO algorithm is a good substitute

for the MERT algorithm.

The PRO algorithm aims to rank translation candidates in correct order. However,

since the candidate space for one training sentence is too large, PRO performs random

sampling of Ξ candidate pairs for training, with a common number of samples Ξ = 50

Hopkins & May (2011). Compared with the entire candidate space, this number is

extremely small, and thus the samples should be chosen in a sensible way. In our

research, the sample selection considers the following criteria:

• The correctness of the sampled pair is measured by automatic evaluation metrics.

These metrics may not always indicate the true correctness of the candidates.
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• Because of the limited number of samples and the limitations of LLM itself, the

most important candidates should have higher priority in sample selection. For

example, the best (metric score) candidate in the N-best list is more important

than other candidates since the aim of SMT discriminative training is to adjust

the system to produce the best candidate.

• Samples should have different weights according to their importance. For exam-

ple, samples from unreachable training instances should be less important than

other samples. Unreachable sentences indicate the inability of the SMT system

to translate them and we may not be able to learn useful information from this

kind of sentence. Also, samples that are more closely related to the test sentences

should obtain higher weights than other samples to reduce over-fitting.

The sampling strategy of the PRO algorithm only considers the first issue by trying

to increase the metric difference between two candidates in order to have confidence

in the correctness measurement. The second and third issues are ignored in PRO.

In this chapter, we introduce Weighted Ranking Optimisation (WRO) to take these

three issues into account. Our WRO algorithm includes two parts: the first part

is Weighted Ranking Optimisation Global (WRO-global), which is a global off-line

training algorithm. This part is similar to other global training algorithms such as

PRO, insofar as the test sentence is unknown and one global weight can be trained

by WRO-global to be used to translate any unseen segment. The second part is the

Weighted Ranking Optimisation Local (WRO-local), a local online training algorithm

which, in contrast to the global algorithm, trains weights for each test sentence.

5.1 Weighted Ranking Optimisation – Global

This section introduces the Weighted Ranking Optimisation Global (WRO-global) al-

gorithm, which is used for off-line global weight optimisation and prior sample selection

for WRO-local (which will be introduced in Section 5.2). Before going into the details

of WRO-global we first give a brief reminder of PRO algorithm (the details of the PRO

algorithm were described in Chapter 2). PRO treats SMT discriminative training as a

binary classification problem where the goal is to classify a pair of candidates as best

and worst ranked and the ranking is determined by an evaluation metric against a
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reference. The candidate pairs are uniformly randomly selected from the N-best list,

and the candidate pairs with small BLEU difference (less than 0.05) are discarded to

ensure the reliability of the ranking correctness.

PRO has at least two limitations in the sampling phase. First, PRO’s random

sampling is not the optimum way for selecting samples since the target is not clear.

As we only select a small sample from the whole space, a clearer target should give

better training quality. We will call these targets oracles: in WRO, the oracles are

the top 10 percent of all candidates in the N-best list in terms of metric score. The

second problem is that all sampled sentences are equally important. Although we select

the same number of samples for each training sentence, there are certainly differences

among sentences. For example, as discussed in the previous section, reachable sentences

can be more important than unreachable ones.

Our WRO algorithm focuses on these two limitations of PRO. The WRO-global

procedure is shown in Algorithm 5.1. Similar to PRO, we use N-best list Nb as one

of our candidate pools for sample selection. We also create another list called oracle

list, Nboracle. We select the top 10 percent of all candidates in the N-best list with the

highest metric score as oracles and store them in the oracle list.

The sampling procedure includes two steps: first, a Γ number of candidate pairs

{es, e′s} are randomly selected from the two lists, where es and e′s are represented by

their corresponding feature values h(es) and h(e′s). Contrary to PRO, WRO focuses

on ranking the oracle translations in the correct order among all candidates. In this

case, we define the candidate es as an oracle that is randomly selected from the oracle

list Nboracle, and e′s is the non-oracle that is randomly selected from the N-best list

Nb. We select e′s from whole N-best list (if e′s is also included in the top 10 percent

candidates with highest metric score, then the candidate with the better metric score

candidate is considered oracle). The selected candidates are then evaluated by an

automatic evaluation metric metric(.). The sampled pair with a metric difference (i.e.

metric(es)−metric(e′s)) below the threshold will be discarded to ensure the confidence

of the measurement. After the first step, we choose additional Ξ pairs with the greatest

metric difference to generate our training instances.

The training instance and its label generation is the same as in PRO, except that

we also add a global weight (weightGlobal) to each training instance to indicate its
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Algorithm 5.1 Weighted Ranking Optimisation – Global

Require: Development corpus D = (f t, rt)Ss=1, Initial random weights Λ0, Γ = 5000,

Ξ = 50

1: for ith iteration K = (1, 2, . . . , k) iterations do

2: MegaM Training instances R = {}
3: for sth sentence pair development corpus D do

4: Calculate global weight according to Equation 5.3

5: rs = {}
6: Generate N best list Nb according to current weight Λi

7: Copy the top 10 percent best BLEU candidates in Nb to Nbtop

8: while length(rs) < Γ do

9: random select candidate es from Nbtop

10: random select candidate e′s from Nb

11: if |score(es, )− score(e′s, )| > threshold then

12: generate samples x according to Equation 5.1

13: add sample x to rs

14: end if

15: end while

16: Sort s according to |score(es, )− score(e′s, )|
17: Add Ξ samples with largest BLEU difference in rs to R

18: end for

19: Update weights Λi+1 according to R by MegaM Optimiser

20: end for

21: return Λi+1, R

importance. In this case our training instances are:

{+, weightGlobal, h(es)− h(e′s)} if metric(e)−metric(e′) > 0 (5.1)

{−, weightGlobal, h(es)− h(e′s)} if metric(e)−metric(e′) < 0 (5.2)

The global weight weightGlobal is used to penalise the training samples generated

from the unreachable training sentences. For the datasets in our experiments in this

chapter, empirical results have shown that a translation dataset with a BLEU score

of 0.4 has acceptable translation quality. Therefore, we downweight the training sen-

tence exponentially if the oracle candidate BLEU score is below 0.4. The weightGlobal
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parameter is defined as:

weightGlobal =

{
1 if BLEUTop ≥ 0.4
eBLEUTop−0.4 if BLEUTop < 0.4

, (5.3)

where the BLEUTop is the oracle candidate BLEU score

After the sampling and training instance generation, we can optimise the weights

by any off-the-shelf binary classifier that support weighted training instances. In our

experiment, we use the MegaM (Daume, 2004) classifier, which is the same one used in

PRO.

5.2 Weighted Ranking Optimisation – Local

This section introduces Weighted Ranking Optimisation Local (WRO-local), which is a

transductive setting of WRO. The local feature weights are trained for each test sentence

before translation. The reason we apply transductive learning here is because of the

limitations of linear combination of features in Och’s Model. Consider the example in

Figure 5.1, where we have a development corpus containing two sentences 我要吃鱼

and 是八月十五号, and we generate two translation candidates for each sentence. By

applying the global PRO algorithm we can obtain four classifier training samples, two

positively labelled and two negatively labelled. We illustrate these training samples

in Figure 5.1b, where squares indicate negative training samples and stars indicate

positive training samples. From the figure we can see there is no single set of weights

able to correctly classify both sentences. One option would be to add more features,

but this would require feature engineering. Instead, we apply a transductive setting

and optimise local parameters for each sentences.

Local based SMT discriminative training was first proposed by Liu et al. (2012).

Their local training algorithm dynamically updates the development corpus according

to the each input test sentence and retrains the feature weights based on the updated

development corpus. They assume the existence of a large development data pool and

a standard development corpus. Before translating a test sentence, the local training

algorithm first compares the string similarity of the test among each sentence in the

large development data pool and subsequently retrieves the N most similar sentences

in the pool with the standard development corpus to generate the local development

corpus.
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Source Candidates Feature Vector BLEU PRO sample

我要吃鱼 Me want eat fish <1,1> 0.3 {-, <-1,0>}

I want eat fish <2,1> 0.8 {+,<1,0>}

是八月十五号 it is august fifteenth <1,2> 0.9 {+,<-2,0>}

august 15th <3,2> 0.5 {-,<2,0>}

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Negative Training Instances Positive Training Instances 

a

b

Figure 5.1: Example of PRO training samples, where the x and y axis represent the

feature values of the two translations

(Liu et al., 2012)’s local training algorithm delivered better translation results than

the global training algorithm. However, this algorithm requires an additional devel-

opment data pool, which is harder to apply to resource poor language pairs. In our

WRO-local approach, instead of retrieving more additional data, we re-weight the ex-

isting training sentences in the standard development corpus and we do not require

additional development data.

The WRO-local procedure is shown in Algorithm 5.2. In order to improve efficiency

in the online translation scenario, the training samples and global weights are pre-

generated by WRO-global. As a result, we only need to load the pre-generated training

samples and update the local weights. The local weight is the combination of the

global weight and the string similarity between the test sentence and the development

sentence. We define the local weight calculation as follows:

weightLocal =
α1 × weightGlobal + α2 × SIMI(fs, t)

α1 + α2
, (5.4)

where α1 and α2 are the interpolation weights used to adjust the importance between

96



5.3 Experiments and Results

Algorithm 5.2 Weighted Ranking Optimisation – Local

Require: Develop Corpus D = (fs1 , r
s
1)Ss=1, Global Training Samples R = (rs)

S
s=1, Test

sentence t

1: for sth sentence pair Training data D do

2: Compute Similarity score simi(fs, t)

3: for Sample x in rs do

4: Calculate weightlocal = α1×SIMI(fs,tk)+α2×weight
α1+α2

5: Replace weightglobal in x with weightlocal

6: end for

7: end for

8: Update Λlocal according to R by MegaM Optimiser

9: return Λlocal

similarity and global weight. The string similarity is called transductive weight, which

is measured by the BLEU metric as:

SIMI(fs, t) = BLEU(fs, t), (5.5)

where the scaling is only used to avoid the effects of computations with very small

scores.

5.3 Experiments and Results

For details on the experimental setup and language selection we refer the reader to

Section 4.3 in Chapter 4, as the experiments in this section use the same settings with

the randomly selected development set. The baseline SMT discriminative training

algorithm is the Moses implementation of PRO. The N-best lists used in both PRO

and WRO are obtained by running 16 iterations of PRO optimisation with default

settings. We repeat the N-best lists generation process 5 times for each test and report

the average results. Interpolation weights for local weights (Equation 5.4) α1 and α2

are 1 and 10 respectively. We also test the performance of each component in WRO,

namely oracle selection, the reachability penalty (Equation 5.3) and the transductive

setting (BLEU similarity term for the local weight). The settings used for each WRO

variant are shown in Table 5.1.
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Description

Baseline PRO Moses implementation of PRO

Global weight Samples weighted with global weight only, without oracle selection

OS Oracle selection only, samples are equally weighted

Trans Samples weighted only with BLEU similarity (Equation 5.5)

Trans-OS Samples weighted with BLEU similarity, with oracle selection

WRO-Global WRO with global weight and OS

WRO-Local WRO with local weight and OS

Table 5.1: Settings of the PRO and WRO variants tested in our experiments

Average BLEU Score Standard Deviation

Baseline PRO 21.27 0.058

Global weight 21.41 0.036

OS 21.53 0.038

Trans 21.69 0.078

Trans-OS 21.71 0.063

WRO-Global 21.51 0.035

WRO-Local 21.74 0.085

Table 5.2: BLEU results on the Chinese-English NIST MT08 test set. Boldface figure

indicates the best BLEU score among all variants

Table 5.2 shows the performance for Chinese-English translation in each variant

of WRO and PRO. WRO-local improves the BLEU score over the baseline PRO by

almost 0.5. This procedure is composed of three components: oracle selection (OS),

global weight, and transductive weight (‘Trans’ in the Table – note that the local weight

is obtained by a combination of transductive weight and global weight - see Equation

5.4). According to the table, the baseline PRO algorithm can be improved by adding

any of the components. The most effective component is the transductive weight, which

improves BLEU by more than 0.4 when compared with PRO.

Table 5.3 shows the performance for French-English translation using the WMT13

test set. Similar to Chinese-English results, all WRO variants reach better performance

than baseline PRO. Again, WRO-Local has the best average BLEU score (25.78).

However, WRO-Local only brings a small improvement over WRO-Global (0.2 BLEU
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Average BLEU Score Standard Deviation

Baseline PRO 25.65 0.031

WRO-Global 25.76 0.047

Trans 25.67 0.046

Trans-OS 25.72 0.058

WRO-Local 25.78 0.045

Table 5.3: BLEU results on the WMT13 French-English news test set

score improvement). One possible reason may be that the development corpus does not

contain sentences that are similar to those in the test set. We compared the document

level lexical (uni-gram) similarity between the test set and development set for both

Chinese and French. The results show that in the French development corpus, the

lexical similarity is 0.118, and in the Chinese development corpus, it is 0.103. In order

to further investigate this problem we conducted a more challenging experiment in next

section, where we test the training performance on the BTEC test set, which is not

from the same domain as our training and development corpus.

5.3.1 Cross-domain Experiments

In this section we test WRO performance when translating an out-of-domain test set.

The test set used in this section is the Basic Travel Expression Corpus (BTEC). The

domain in this corpus is travel, with informal and colloquial language, while the domain

of the FBIS corpus used before is mainly news, using formal written English. The main

purpose of this experiment is to test the performance of the local training method in

different domains.

The next experiment tests the WRO and baseline PRO BTEC translation per-

formance on three different development corpora, which are: the FBIS tuning corpus

(same tuning set as used in the last section), the official BTEC tuning corpus, a mixed

corpus containing both BTEC and FBIS sentences. Results are shown in Table 5.4.

The FBIS tuned system has the best overall performance on baseline PRO and

WRO-Local when compared against BTEC and MIXED tuned systems. However, for

the FBIS tuned systems, WRO-Local has the worst performance against the baseline

and against WRO-Global.
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FBIS tuned

Average BLEU Score Standard Deviation

Baseline PRO 19.82 0.076

WRO-Global 19.92 0.049

WRO-Local 19.74 0.060

BTEC tuned

Baseline PRO 19.14 0.097

WRO-Global 19.25 0.109

WRO-Local 19.24 0.048

MIXED tuned

Baseline PRO 19.72 0.076

WRO-Global 19.94 0.041

WRO-Local 19.75 0.072

Table 5.4: Cross-domain test results on BTEC test set

Average BLEU Score Standard Deviation

FBIS(zh-en) 27.83 0.053

WMT13(fr-en) 29.79 0.013

BETC(zh-en) 14.73 0.085

Table 5.5: Development corpus reachability test

In BTEC tuned systems, WRO-Global and WRO-Local have similar performance

and thus WRO does not benefit from the local setting. Comparing the BTEC tuned

and the FBIS tuned systems, we found that the overall performance of the BTEC tuned

system is much worse than that of the FBIS tuned system. Therefore, a development

corpus with better similarity cannot guarantee better discriminative training quality.

In the MIXED tuned systems, the baseline PRO performance scored in between

BTEC and FBIS tuned systems. However, note that both WRO-Global and WRO-

Local achieve the same performance as the FBIS tuned system. The WRO algorithm

shows better reliability than PRO.

To investigate the cross-domain discriminative training issue more closely, we con-

ducted a reachability test, reporting the document level oracle BLEU score for each
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development corpus. The results are given in Table 5.5. We found that the BTEC de-

velopment corpus has very low reachability by our system, with an average document

level oracle BLEU score of only 14.73. Combined with the results in Table 5.3, we con-

clude that learning from low reachability sentences is harmful to SMT discriminative

training. This conclusion corroborates our findings in Chapter 4.

5.3.2 WRO with LA Selection and SIMPBLEU

This section combines SIMPBLEU, LA selection and WRO (we call it LASW). In the

experiments in Section 5.3, the systems are tuned using a randomly selected corpus.

In this section we will train systems with LA selected corpora, and replace the scoring

function by SIMPBLEU. We refer to settings tuned with an LA selected corpus as -LA,

and to settings scored with SIMPBLEU for tuning as -S. For example, PRO-LA refers

to a system tuned with the PRO algorithm and LA selected corpus, while WRO-G-

SLA refers to a system tuned with WRO-Global, LA selected corpus and scored by

SIMPBLEU.

Table 5.6 shows the results for Chinese to English using the LASW setting. Since

SIMPBLEU does not support multiple references evaluation, we evaluate the system

output on each reference individually and report average scores. In this case, we have

four references that can be very different from each other, hence the results for SIMP-

BLEU contain much higher standard deviation than those for BLEU. As shown in Table

5.6, PRO tuned with an LA selected corpus (PRO-LA) leads to better scores according

to both BLEU and SIMPBLEU. This result is consistent with those in the previous

chapter – tuning with the LA selected corpus results in a higher translation accuracy

using both MERT and PRO algorithms. Additionally, WRO-Global and WRO-Local

with the LASW setting (WRO-G-SLA and WRO-L-SLA) lead to better performance

than without the LASW setting. WRO-Local with the LA selected corpus and SIMP-

BLEU (WRO-L-SLA) improves by 0.62 in BLEU and 1.54 in SIMPBLEU over a PRO

tuned system.

Table 5.7 shows the results for French to English using the LASW setting. Again,

the LA selected PRO tuned system improves performance in both BLEU and SIMP-

BLEU (25.74 vs 25.65 and 61.12 vs 60.77). The LASW setting with WRO cannot

further improve BLEU scores over the original setting, with both Global and Local
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BLEU avg. BLEU std. SIMPBLEU avg. SIMPBLEU std.

PRO 21.27 0.058 43.69 1.428

PRO-LA 21.36 0.058 44.17 1.512

WRO-Global 21.51 0.035 43.76 1.428

WRO-G-SLA 21.74 0.043 45.05 1.575

WRO-Local 21.74 0.085 44.19 1.462

WRO-L-SLA 21.89 0.050 45.23 1.571

Table 5.6: NIST08 Chinese-English LASW setting: results measured with BLEU and

SIMPBLEU. Boldface figures indicate the best BLEU/SIMPBLEU score among all variants

BLEU avg. BLEU std. SIMPBLEU avg. SIMPBLEU std.

PRO 25.65 0.031 60.77 0.089

PRO-LA 25.74 0.265 61.12 0.307

WRO-Global 25.76 0.047 60.98 0.055

WRO-GSLA 25.32 0.212 61.00 0.342

WRO-Local 25.78 0.045 61.10 0.050

WRO-LSLA 25.43 0.093 61.57 0.034

Table 5.7: WMT13 French-English LASW setting: results measured with both BLEU

and SIMPBLEU. Boldface figures indicate the best BLEU/SIMPBLEU score among all

variants

LASW WRO achieving worse BLEU scores (0.44 and 0.35 lower). This may be be-

cause the original WRO setting is optimised for BLEU, while the LASW setting is

optimised for SIMPBLEU. When measuring performance with SIMPBLEU, we con-

firm this assumption: both the LASW settings of WRO achieve better scores than the

original setting. The best system is WRO-Local with LA selected corpus and SIMP-

BLEU (WRO-L-SLA), whose SIMPBLEU score increases 0.8 over standard PRO.

5.3.3 Summary

In this chapter we proposed a novel discriminative training algorithm: WRO. WRO

is a ranking-based optimisation algorithm inspired by PRO. Our algorithm improves

the sampling strategy used in PRO, which targets the learning of correct rankings for

oracles rather than from random samples. The selected samples are weighted by the
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global and local weights to indicate their importance. In WRO-local, the weights are

adjusted according to each individual test sentence and a unique set of parameters is

optimised for that test sentence. With our WRO-local, the limitation of linear feature

combination (Problem 7 in Section 1) is minimised.

In our experiments, WRO improves translation quality when compared with PRO

in both in-domain and out-of-domain test scenarios and demonstrates better reliability

with different training data. In future work, the similarity measure function should

not only depend on word level similarity but should also consider the relationship

between words, e.g., a syntax-based similarity measurement. Another way to improve

performance is to adjust the weighting method. We also experimented with combining

LA and SIMPBLEU with WRO, which led to further improvements over WRO.

Finally, in our experiment only 14 features were used for decoding, while state-

of-the-art research has shown that exploring thousands of features can be beneficial.

Changing parameters with a small feature set has limited effect. Future work should

investigate high dimensional feature spaces.
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Conclusions

This thesis proposed improvements in SMT discriminative training in order to produce

translation outputs that are more human acceptable. Our main contributions spanned

over three directions: by developing new evaluation metrics, quantifying the effect of

development data selection and designing better discriminative training algorithms. We

introduced our approaches for three components in Chapters 3 to 5.

In Chapter 3, we proposed new evaluation metrics to replace BLEU in discriminative

training: the ROSE and SIMPBLEU metrics. ROSE is a trained metric, which can

be customised using two training methods – a regression-based method and a ranking-

based method. Our experiments showed that except in ranking tasks, the regression-

based metric is more reliable than the ranking-based one. It is also more tolerant to

differences in between the training and test data. However, the ranking-based metric

performed the best in evaluation tasks aimed at ranking translations.

SIMPBLEU is a heuristic approach based on BLEU which directly addresses sev-

eral limitations of BLEU. We analysed the components of BLEU and designed a metric

that is more easily adjustable for different training purposes. SIMPBLEU is not only

more reliable but also allows for more accurate discriminative training. We found that

a precision-based variant of the metric has better correlation with human judgements

than a recall-based variant. Clipping is more important in lower order n-gram preci-

sion metric variants, but unnecessary for higher order n-gram precision versions of the

metric. We also suggested replacing geometric mean in BLEU by arithmetic mean.

Our BLEU variants with arithmetic mean achieved better performance than geometric

mean for both sentence and document-level evaluation. In addition, the use of arith-
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metic mean makes smoothing techniques less important for sentence-level evaluation.

Regarding smoothing, we found that different smoothing values affect the metric’s ac-

curacy in different ways. Finally, we applied SIMPBLEU to discriminative training.

Human evaluation shows that a model trained on SIMPBLEU results in significantly

better performance than a model trained on standard BLEU.

In Chapter 4 we analysed the relationship between development corpus and transla-

tion performance and designed a novel corpus selection algorithm – LA selection, which

can be used for SMT discriminative training data selection without prior knowledge

of the test set. The LA selection algorithm focuses on data selection from noisy and

potentially non-parallel, large scale web-crawled data. The main features used in LA se-

lection are related to word alignment and sentence length. The algorithm aims to select

parallel training sentences that have better word alignment and a reasonable number of

words. In our experiments, models trained on LA-selected data led to improvements of

up to 2.5 BLEU scores over models trained on randomly selected sentences. The per-

formance achieved with LA-selected data is comparable to that obtained with datasets

created manually.

Our findings also pointed out that sentence length is particularly important in

discriminative training. Overly long sentences are difficult to to translate, while very

short sentences will most likely result in very similar translation candidates in the N-

best lists. In both cases, the candidates cannot be well discriminated by the training

algorithms. Our recommendation is to avoid using sentences with length below 10

words or above 50 words for discriminative training. Additionally, we examined the

effects of the size of development datasets in the training performance. The results

showed that using large development sets brings only small improvements in accuracy

and a modest development set of 30k-70k words is sufficient for good performance.

In Chapter 5 we described a novel SMT discriminative training algorithm – Weighted

Ranking Optimisation (WRO). WRO is a ranking-based optimisation algorithm with

an improved strategy to generate training instances: instead of using random samples

of candidate pairs, it samples oracle candidate pairs. Therefore, it focuses on optimis-

ing system parameters in order to rank the best translation into the correct order. It

also assigns weights to each training sentence to penalise training sentences which are

difficult to generate by the system.
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Finally, we introduced the WRO-Local algorithm, a transductive learning version

of WRO. Instead of one global weight for all unseen test sentences, WRO-Local op-

timises weights for each input test sentence. In our experiments, WRO-Local led to

improvements of 0.5 BLEU scores when compared to PRO.

6.1 Future Work

The algorithms proposed in this thesis led to improvements in translation quality in

various tasks. Discriminative training is however a very broad and challenging topic.

Based on our main findings, we suggest the following as main avenues for future work.

• An SMT automatic evaluation metric is important in discriminative training but

currently no specific evaluation metric has been specifically designed for it. Dis-

criminative training algorithms use evaluation metrics that were created to com-

pare systems or measure system progress over time, but this is not the optimal

solution. Designing a metric for discriminative training is thus an important fu-

ture direction. For example, PRO tends to use BLEU as the evaluation metric,

but BLEU was not designed for sentence-level evaluation, nor for ranking similar

translations. Another aspect is that current evaluation metrics do not support

dynamic programming and are not decomposable, hence they cannot be used

as (part of) scoring function during decoding. The decoder needs to rely on the

model score to produce N-best lists, even if references are already available during

decoding. Designing metrics that can be used as (part of) a scoring function could

improve the quality of training, or at least improve the quality of the candidate

pool that is generated, i.e., the N-best list.

• Trained evaluation metrics are able to combine many features to achieve better

evaluation quality. The main problem of this approach is the need of training data,

making it difficult to apply metrics for low resource settings. Our experiments

showed that it is possible, with some loss in performance, to use training data

in one language to build metrics for other languages. Exploring better ways to

transfer models across languages/settings is an interesting direction.
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• The quality of discriminative training is directly dependent on the training data

available in many aspects, such as the target reachability, source length and sim-

ilarity to test data. We experimented with uniformly combining relevant features

reflecting these aspects to select training samples for discriminative training. This

led to improved training quality when compared to random data selection. How-

ever, we were not able to further improve the training accuracy by using more

elaborate ways to combine these features to select data, in particular, by using

machine learning algorithms. This is because a good understanding of the rela-

tionship between training data and the training quality is still missing. Therefore

it is difficult to label instances to train models on the usefulness of data for dis-

criminative training. Exploring this relationship and better methods to improve

data selection approach are thus an interesting research directions.
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