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Abstract 

Channel-lobe transition zones (CLTZs) represent critical areas between the submarine 

slope and basin floor systems, where sediment gravity flows transition from confined to 

unconfined. In modern systems, this area is characterised by a distinctive assemblage of 

erosional and depositional features. However, the transfer of the CLTZ into the 

stratigraphic record is not well constrained.  

By the detailed study of various well-constrained exhumed base-of-slope systems within 

the Tanqua and Laingsburg depocentres of the Karoo Basin, South Africa, the sedimentary 

and stratigraphic record of CLTZs is investigated. The first detailed study of key 

depositional and erosional bedforms that characterise ancient CLTZs, including sediment 

waves and giant scour-fills, are presented. Their process record suggests complicated flow-

bedform interactions, where both the preservation and sedimentary characteristics are 

dependent on the evolution of the feeder channel and the lateral position to the channel-

mouth. Within the base-of-slope environments, juxtaposition of lobes and channel-fills is 

common. The lobes in these proximal fan environments are sandstone-prone and differ in 

facies and architectural characteristics to lobes downdip on the basin floor.  

The sand-rich nature and juxtaposition of elements in ancient CLTZs means that they are 

considered attractive hydrocarbon reservoir targets in the subsurface. However, fine-scale 

reservoir modelling and streamline simulations suggests that the relatively limited sand-

volume of channel-fills in comparison to lobe deposits in these environments can have a 

negative impact on reservoir performance due to its effect on reservoir connectivity.  

Overall, the stratigraphic record of CLTZs shows high diversity in architecture, facies 

characteristics and volume, which can be related to three primary controls: a) spatial 

variability, b) flow efficiency and c) channel evolution. These three controls infer that CTLZs 

are highly dynamic, migrating and changing in dimensions over time; this needs to be 

considered when assessing how CLTZs are recorded in the rock record.  
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Chapter 1: 
Thesis Rationale 

1.1 Thesis background 

A major physiographic transition zone on the Earth’s surface is the passage from 

submarine channels, which are conduits for confined sediment gravity flows, to submarine 

lobe systems, deposited by largely unconfined flows. Commonly, these channel-lobe 

transition zones (CLTZs) are found on the continental rise of passive margins, or at the 

base-of-slope on basin margins (Wynn et al., 2002a; Van der Merwe et al., 2014; Stevenson 

et al., 2015).  The majority of clastic sediment  is deposited on  basin-floor settings (e.g. 

Covault et al., 2011), however these sediment sinks are the least understood of all clastic 

systems in particular due to their deepwater setting. CLTZs have been imaged in multiple 

modern systems (e.g. Palanques et al., 1995; Nelson et al., 2000; Wynn et al., 2002a; 

Bonnel et al., 2005), and are characterized by a range of erosional (e.g. scours) and 

depositional (e.g. sediment waves) bedforms. The CLTZ acts as an area of sediment bypass 

(Wynn et al., 2002a; Stevenson et al., 2015) and is highly dynamic with complicated 

interactions between erosional and depositional processes. However, the transfer of this 

geographically defined zone into the stratigraphic record is not well understood. There 

remain significant inconsistencies between the interpretation of the stratigraphic record of 

CLTZs (e.g. Mutti and Normark, 1987; Gardner et al., 2003; Ito et al., 2014; Van der Merwe 

et al., 2014) and the recognition criteria from modern systems (Wynn et al., 2002a).  The 

widespread extent (> 10 km2) of these areas of sediment bypass (e.g. Palanques et al., 

1995; Wynn et al., 2002a) as recognised in modern systems suggests, however, that 

significant evidence should prevail within the stratigraphic record. The expression of CLTZs 

as surfaces or sedimentary packages is key to comparing the ancient and the modern. To 

establish criteria for the identification of the stratigraphic record of CLTZs, and to 
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understand process interactions in this key area of submarine fan systems, requires 

exhumed systems with exceptional outcrop control. 

The sedimentary infill of the Karoo Basin (South Africa) was identified in the early 90’s 

(Bouma and Wickens, 1991; 1994; Wickens, 1994) as a world-unique site for the study of 

sand-prone submarine fan systems, in particular due to the extensive nature of the 

exposure in combination with the accessibility of the outcrop. After more than 25 years, 

new discoveries are still being made, and in recent years the studies on these Permian age 

fan systems have significantly increased our understanding of the depositional architecture 

of basin-floor lobe deposits (Prélat et al., 2009; Prélat and Hodgson, 2013). These studies 

have focused on the most distal parts of the fan system in order to avoid erosional features 

such as scours and channels. The knowledge gained from analysis of lobe deposits in basin-

floor settings can be utilised to compare with the depositional architecture of lobes in 

more proximal base-of-slope settings, where erosional processes and variety in 

architectural elements complicate the stratigraphic record.   

The unpredictable nature of areas of rapid decrease in flow confinement, typical of CLTZ 

settings, makes it an important area for geohazard prediction. Turbidity currents are 

known to disrupt telecommunication infrastructure and pipelines (e.g. Urlaub et al., 2013). 

Furthermore, the seabed morphology associated with CLTZ environments can facilitate 

niche deep-water habitats (e.g. Crimes et al. 1992; Green et al., 1999; Callow and Mcllroy, 

2011), supporting specific opportunistic species within an otherwise low-relief seafloor 

landscape.  

Improved understanding of the stratigraphic record of the CLTZ environment and base-of-

slope settings is of great importance for the hydrocarbon industry for a number of reasons. 

Firstly, the detachment of submarine lobe deposits from their feeder channels (e.g. Mutti 

and Normark, 1987; Gardner et al., 2003; Van der Merwe et al., 2014) can act as a 

stratigraphic trapping mechanism, and therefore understanding the conditions behind lobe 
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detachment will help to improve stratigraphic trap appraisal. Recognition of stratigraphic 

traps is becoming increasingly important as in many exploration areas structural traps have 

been largely exploited (e.g.Walker, 1978;  Jennette et al., 2003; Prather, 2003; Stoker et al., 

2006). Furthermore, as the CLTZ acts as a zone of bypass (Wynn et al., 2002a; Stevenson et 

al., 2015), improved constraints on the facies characteristics and stratigraphic record of 

flow bypass can aid in the understanding of down dip deepwater exploration targets. In 

many exploration areas only a limited amount of borehole data is available, so the 

accurate recognition of bypass surfaces could lead to predictions of large volumes of 

sediment and therefore potential reservoirs down system. Finally the effect of channel-

and-lobe juxtaposition is not well understood, as most of the focus on fine-scale 

heterogeneities has been on slope channel systems (e.g. Alpak et al., 2013; Labourdette et 

al., 2013; Eschard et al., 2014). Due to the large volumes of sediment and sand-prone 

nature, lobe deposits have significant reservoir potential (e.g. Pirmez et al., 2000; Prélat et 

al., 2010) and may therefore represent more dominant reservoir components compared to 

channels. Outcrop study of CLTZ and base-of-slope environments can most efficiently aid in 

overcoming these problems, due to the importance of both 2D and 3D constraints and the 

understanding of sub-seismic scale architecture.  

This thesis examines the variety of depositional and erosional components of CLTZs and 

their representation within the stratigraphic record. It examines the implications of fine-

scale architecture on reservoir behaviour and attempts to unravel part of the complicated 

process record that is preserved in these areas by studying the deposits in detail.   

1.2 Key research questions 

The aims of this study can be divided in two main topics of which the first will carry the 

most significance, where it is attempted to document the variety of elements associated 

with ancient preserved CLTZ environments in the Karoo Basin (South Africa). This first topic 

is therefore subdivided into a set of problems.  
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1. Stratigraphic record of Channel-lobe transition zones 

 What are the key representative facies, architectural elements, and stacking 

patterns that characterize CLTZs in the rock record?  

Rationale: There are very limited criteria to differentiate CLTZ environments from lobe and 

channel-levee environments. 

 How is the assemblage of depositional and erosional elements that 

characterize channel-lobe-transition zones transferred into the stratigraphic 

record of base-of-slope settings? 

Rationale: The depositional process record of the different elements within the CLTZ is not 

well understood.  

2. Reservoir implications of fine-scale architectures in lobe and CLTZ reservoirs 

 What is the impact of channel-lobe juxtaposition and lobe amalgamation on 

base-of-slope reservoirs?  

Rationale: The impact of CLTZ-related fine-scale architectures  on reservoir connectivity 

within sand-prone base-of-slope settings is not well understood.  

1.3 Research objectives 

To answer the research questions stated in Section 1.2, the principal objectives of this 

thesis are: 

 To find key criteria for the recognition for scour-fills and sediment waves within 

the stratigraphic record; 

 To better understand the process record of erosional and depositional bedforms 

within channel-lobe transition zone settings; 

 To better define the variability in character of channel-lobe transition zones; 
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 To define the main factors controlling reservoir connectivity within base-of-slope 

environments.  

These objectives will be fulfilled within all following chapters of this thesis, by extensive  

studies on the ancient fan systems of the Karoo Basin (South-Africa). A summary of all 

generic insights will be discussed in Chapter 9.  

1.4 Lobe 2 JIP background 

The Lobe Phase 2 Joint Industry Project started in May 2012 and builds upon the results 

and experience of the earlier Lobe Phase 1 project. It was supported by a consortium of 16 

different companies and had its major focus on the Karoo Basin (South Africa), but also 

extended its scope to the Neuquén Basin (Argentina). Seven new research boreholes, 

totalling 2 km of core, were drilled as part of this research programme: three in the Tanqua 

area and four in the Laingsburg area. The scientific rationale for collecting these research 

boreholes was to provide direct calibration with outcrop datasets and constraining the 

depositional architecture of the system. Lobe Phase 2 has compiled the largest outcrop-

based dataset ever collected in terms of logged sections from lobe dominated successions 

and is one of only a small number of such projects that have been complemented by 

research wells. 

1.5 Field & core methodology 

An integrated dataset was collected from outcrop and research boreholes (See Appendices 

A and B). For this thesis, a large amount of sedimentary logs (127 in thesis, >200 collected) 

( See Appendix B.3) were collected from two fan systems in the Tanqua depocentre (Fan 3 

& Unit 5) and two fan systems from the Laingsburg depocentre ( Unit A5 & Unit B), with a 

cumulative thickness exceeding 4 km. Many of these sedimentary logs (> 1 km cumulative 

thickness) have been logged at centimetre scale. Correlation panels were created by 

following out key surfaces and using handheld GPS for accurate positioning. Well over a  
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thousand palaeocurrents (1083 in thesis, ~1500 collected ; See Appendix B.2) were 

measured from rippled bed tops, flute and groove marks. Correlations and the corrections 

on correlation panels and photo-panel interpretations were performed in the field. A 

GigaPan system was used for creating ultra-detailed photo-panels of large outcrop 

sections. For this thesis, a total of ~500 m of core has been logged at cm-scale detail from 

both the Tanqua and the Laingsburg areas (See Appendix A). During core logging a hand 

lens and a USB Dino-Lite were used for studying sub-centimetre features.  

1.6 Thesis outline 

 Chapter 2: Current understanding of channel-lobe transition zones and their 

stratigraphic record: Provides a literature background on channel-lobe transition 

zones (CLTZs) and highlights the inconsistencies between our understanding of 

CLTZ from recent systems and the stratigraphic record. 

 Chapter 3: Tectonostratigraphy of the SW Karoo Basin and deep-water 

architectural and facies framework: Introduces the stratigraphic framework and 

background information on the Karoo Basin, its dominant deep-water facies, 

architectural elements and methodology used for outcrop and core data 

collection. 

 Chapter 4: Giant scour-fills in ancient channel-lobe transition zones: architecture, 

facies and formative processes: Presents the first detailed record of giant scour-fills 

(> 15m deep; <1 km long) from ancient CLTZ environments. Two case studies from 

the Karoo Basin (Tanqua and Laingsburg depocentre) have been recorded in detail. 

Their process sedimentology and formation are discussed and explanations are 

given for the diversity in infill characteristics.  Published as: Hofstra, M., Hodgson, 

D.M., Peakall, J., Flint, S.S., 2015. Giant scour-fills in ancient channel-lobe transition 

zones: architecture, facies and formative processes. Sedimentary Geology, 329, 98-

114.  
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 Chapter 5: Architecture and morphodynamics of sediment waves in an ancient 

channel-lobe transition zone: Presents the architecture and facies characteristics of 

sand-prone sediment waves from ancient CLTZ environments. Different datasets 

from a base-of-slope system in the Laingsburg depocentre show pinch-and-swell 

bedforms (>1 m high; >20 m wavelength) with significant spatial facies variability 

on sub-metre scale. Their process record, the significance of scale and the 

importance of channel-mouth position are discussed in detail.  

 Chapter 6: The stratigraphic record of submarine lobe deposits at base-of-slope 

settings: Presents the stratigraphic record of submarine lobe deposits at base-of-

slope settings. Two base-of-slope systems from the Tanqua depocentre show High 

Amalgamation Zones and sandstone-prone tabular packages, which indicate the 

presence of lobes with alternative facies, architecture and stacking patterns 

compared to  lobes at basin-floor settings downdip. Differences in lobe 

characteristics are linked to flow efficiency and sediment grain size segregation.    

 Chapter 7: The impact of fine-scale reservoir geometries on streamline flow 

patterns in submarine lobe deposits using outcrop analogues from the Karoo Basin: 

Presents a full 3D reservoir modelling workflow to test the impact of fine-scale 

heterogeneities within basin-floor lobe complexes and CLTZ environments on 

reservoir connectivity. Synthetic reservoirs were created based on various outcrop 

datasets from the Karoo Basin. With the help of single-phase streamline flow 

simulations the impact of sedimentary concepts and fine-scale architectures on 

reservoir connectivity and performance is tested. Submitted as: Hofstra, M., 

Pontén, A.S.M., Hodgson, D.M., Peakall, J., Flint, S.S., Nair, K.N., (in review). The 

impact of fine-scale reservoir geometries on streamline flow patterns in submarine 

lobe deposits using outcrop analogues from the Karoo Basin. In: Petroleum 

Geoscience.  
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 Chapter 8: Controls on the stratigraphic record of the channel-lobe transition zone: 

Integrates the findings of previous chapters (2-5) and covers additional 

observations on CLTZs from the Karoo Basin, summarising generic insights. 

Preservation potential and the variability within the stratigraphic record is 

discussed, which is linked to position, efficiency and system evolution.  

 Chapter 9: Conclusions: Provides short summary answers for the key research 

questions that have been posed in Section 1.2 to give better insight how the main 

aims for this thesis (Section 1.3) have been covered.  
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Chapter 2: 
Current understanding of channel-lobe transition zones and 

their stratigraphic record 

 

Channel-to-Lobe Transition Zones (CLTZ), or Channel-lobe transitions, have been identified 

as important regions among submarine fan system (Mutti and Normark, 1987; 1991; 

Kenyon et al., 1995; Wynn et al., 2002a; Gardner et al., 2003; Van der Merwe et al., 2014; 

Pemberton et al., 2016). Submarine fan systems are the largest detrital accumulations on 

Earth (e.g. Shanmugam and Moiola, 1985; Mutti and Normark, 1987; Bouma, 2000), which 

are mainly fed by turbidity currents (e.g. Lowe 1982; Meiburg and Kneller, 2010): 

subaqueous turbulence-dominated sediment-laden gravity flows.  Until two decades ago, 

Channel-lobe transition zones were largely overlooked within studies on turbidite systems. 

However, the arrival of high resolution data (Fig. 2.1) from modern systems (e.g. Piper and 

Sayoye., 1993; Palanques et al., 1995; Morris et al., 1998; Wynn et al., 2002a; Habgood et 

al., 2003; Bonnel et al., 2005),  as an important information source for constraining the 

character of channel (elongated conduits for fully or partially confined flows) (e.g. 

McHargue et al. 2011) to lobe (unconfined lobate-shaped deposits) (e.g. Prélat et al., 2009) 

transitions has significantly reshaped our understanding.  

 However, progress in reconstructing CLTZ palaeogeography from outcrop studies has 

remained challenging due to the large surface area of submarine fan systems. 

The CLTZ was initially defined by Mutti and Normark (1987) as the area that shows the 

spatial transition from well-defined channels and channel-fills to well-defined lobes or lobe 

facies (Mutti and Normark, 1987; 1991; Wynn et al. 2002a). Among narrow and confined 

basins (e.g. Agadir Basin) with respect to flow size, clear lobe morphologies may be lacking, 

and CLTZ may show a downdip transition into what is described as basin-floor ‘sheet sands’ 

(Wynn et al., 2002a). The CLTZ is expressed as an area dominated by sediment bypass 

(Wynn et al., 2002a; Van der Merwe et al., 2014; Stevenson et al., 2015) and the location 
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of a CLTZ is largely dependent on the seabed gradient and flow conditions, occuring at any 

position along the profile of a turbidite system (Wynn et al., 2002a; Gardner et al., 2003; 

Stevenson et al., 2015). However, CLTZs are commonly associated with base-of-slope 

environments (e.g. Brunt et al., 2013a; Van der Merwe et al., 2014), related to an abrupt 

gradient change and lack of gravitational energy resulting in flow expansion and depletive 

conditions (Kneller et al., 1995; Mulder and Alexander, 2001). Canyon-mouth settings have 

also been classified as channel-lobe transition zone areas (Wynn et al., 2002a; Ito et al., 

2014), due to their similarity with channel-mouth settings. Some rare sediment bypass 

zones separating channels from lobes have also been constrained in the outcrop record 

(Van der Merwe et al. 2014). The mechanisms influencing the occurrence of detached or 

attached lobe deposits are however not well understood (Mutti and Normark, 1987; Van 

der Merwe et al., 2014). Furthermore, the mechanisms for the transfer of the spatially 

defined CLTZ into the stratigraphic record remains a rarely discussed issue. 
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Figure 2.1 (top) Shaded swath bathymetry of the Rhone Deep Sea Neo-fan. (bottum) 

Morpho-acoustic interpretation of the same dataset showing the independent nature 
of the Neo-channel mouth and a large scour field developed downdip of a slope 
break. (from Bonnel et al., 2005). 
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2.1 CLTZ bathymetric record 

The primary model for CLTZs as a bypass zone (Fig. 2.2), presented by Wynn et al. (2002a), 

is based on their bathymetric and acoustic backscatter expression in recent systems (e.g. 

Fig. 2.1). This model shows a spatial distribution of a characteristic assemblage of erosional 

and depositional bedforms (Fig. 2.1). The largest erosional features (amalgamated scours) 

focus close to the channel mouth, whereas depositional elements are primarily focused 

closer to the lobe downstream. As the CLTZ is a region of sediment bypass, where the 

majority of the sediment reaching the CLTZ is deposited further into the basin, the deposits 

that tend to be in this area are relatively coarse-grained, patchily distributed and 

extensively reworked (Wynn et al., 2002a).  

 

Figure 2.2 Planform bathymetric CLTZ model showing the spatial distribution of erosional 
and depositional features. Erosional elements are more prone close to the channel-
mouth and depositional elements dominate the areas proximal to lobe deposition. 
Redrawn from Wynn et al. (2002a). 
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2.1.1 Erosional bedforms 

Extensive seafloor erosion is expected in the region where turbidity currents exit channel 

confinement, due to significant flow expansion and increased turbulence (e.g. Palanques et 

al., 1995; Morris et al., 1998; Wynn et al., 2002a; Bonnel et al., 2005; Ercilla et al., 2008). In 

a well-defined modern expression of a CLTZ, this results in variety of erosional features 

(Fig. 2.2). The presence of these features changes with distance from the channel or 

canyon mouth.  

 Erosional lineation parallel to flow direction directly at break of slope 

These longitudinal streaks are up to 15 km long and typically space 0.5-2 km apart (Wynn 

et al., 2002a). Even though direct evidence is lacking, due to their proximity within 

channel-mouth settings they are believed to be of an erosional origin.  

 Large amalgamated scours  

Amalgamated scours have a rather chaotic appearance due to interference of multiple 

individual scours. They tend to form very proximal to the channel-mouth as a complex 

zone of erosional relief. Dimensions vary significantly, but typical depths are several 

metres, up to tens of metres, with maximum widths of 9 km and lengths of 6 km (Wynn et 

al., 2002a). More recently Macdonald et al. (2011a) have revealed the remarkable 

longevity (> 0.2 Myr) of some modern scours as well as the complicated cut-and-fill 

histories of composite (amalgamated) scour features.  Pre-existing irregularities in the 

substrate have been linked to the inception of larger scour features (Shaw et al., 2013).  

 Large isolated scours and small isolated chevron/spoon shaped scours  

Isolated spoon-shaped scours are mostly aligned parallel to the main flow direction (Fig. 

2.2). Typical dimensions are 20 m deep, 2 km wide, and 2.5 km long (Wynn et al., 2002a; 

Macdonald et al., 2011a). Due to resolution limitations of seabed imaging, the lower 

dimension limits are unknown. In a longitudinal cross-section the spoon-shaped scours are 

asymmetrical, with a steeper upslope face than its downslope face (Malinverno et al., 

1988; Morris et al., 1998; Wynn et al., 2002a; Macdonald et al., 2011a; Shaw et al., 2013) . 
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In a transverse cross-section they show a similar typical U-shaped morphology as most 

submarine channels (Wynn et al., 2002a). Chevron shaped scours (Morris et al., 1998) are 

commonly found in slightly more distal settings, away from the proximal and axial settings. 

Typical dimension are <10 m deep, 200-800 m wide and 400-100 m long (Wynn et al., 

2002a; Macdonald et al., 2011a). 

2.1.2 Depositional bedforms 

The following depositional bedforms have been associated with the bathymetric an 

acoustic backscatter record of CLTZs (Normark and Piper, 1991; Wynn et al., 2002a; 2002b; 

Ercilla et al., 2008): 

 Sediment waves 

Sediment waves are aligned orthogonal to the main flow direction, and have wavelengths 

of 1-2 km, wave heights of 4 m and crest lengths of maximum 4 km (Normark and Piper, 

1991; Wynn and Stow, 2002; Wynn et al., 2002b; Klaucke et al., 2004; Ercilla et al., 2008). 

Sediment waves are most abundant in the central and distal parts of the CLTZ and can 

show ‘high backscatter’ flow parallel streaks among modern datasets , which have been 

interpreted as reworking and erosion by subsequent flows  (Wynn et al., 2002a; 2002b). 

The few direct observations of sediment waves suggest a sand-gravel composition (Piper et 

al., 1985; Kidd et al., 1998; Migeon et al., 2001; Wynn et al., 2002b).   

 Sediment mounds 

Composed of gravel and pebbly sand and mostly located immediately downslope of large 

isolated erosional scours, suggesting a link between scour and sediment mound formation. 

Dimensions are typically up to 40 m long and 1.5 m high (Wynn et al, 2002a).  

 Patches of thin reworked sands 

Typically found in the more distal settings of CLTZs, showing very variable dimensions 

(metre to kilometre scale) (Wynn et al., 2002a). These reworked sands are recognised as 
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irregularly shaped patches, by sonar imaging and seem to be streaked out in a down 

current direction.  

2.2 CLTZ stratigraphic record 

A variety of sedimentary characteristics and bedforms have been ascribed to the CLTZ 

based on outcrop datasets (Mutti, 1977; Mutti and Normark, 1987; 1991; Wynn et al., 

2002a; Ito et al., 2014; Pemberton et al. 2016) Mutti and Normark (1987) were the first to 

characterise the CLTZ as an area of bed roughness and irregularity resulting from various 

depositional and erosional features (Fig. 2.3). Similarly, Ito et al. (2014) looked at a canyon-

mouth setting of the Boso Peninsula (Japan) and summarised a variety of elements and 

sedimentary characteristics associated with the outcrop expression of CLTZ settings.  

Erosional features are represented by scour-fills, which show a variety of morphologies and 

dimensions (Mutti and Normark, 1987; Ito et al., 2014), commonly around 1-5 m in depth 

and up to 50 m wide with exceptions of 10 m deep and 140 m wide. Mud-drapes are 

commonly observed in scour-fills associated with CLTZs (Mutti and Normark, 1987; Morris 

and Normark, 2000; Wynn et al., 2002a; Macdonald et al. ,2011a; Ito et al., 2014). In 

coarse-grained systems, such as the Boso Peninsula (Ito et al., 2014), these drapes (up to 

60 cm thick) have been reported to be primarily composed of sandy and coarse siltstones. 

The drapes are dominantly structureless, but can locally contain sandy laminations in the 

basal part and show sharp contacts with underlying and overlying deposits (Ito et al., 

2014). Scour-fills which do not show mud-draping are primarily represented by the exact 

same facies as surrounding deposits (Morris and Normark, 2000; Wynn et al., 2002a; Ito et 

al., 2014). Upstream-inclined backset bedding in scour-fills have also been reported (Ito et 

al., 2014), in association with subangular mudstone clasts and upstream-inclined basal 

erosional surfaces.  
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Figure 2.3 Main characteristics of submarine channels, channel-lobe transitions and lobe 
deposits as originally described by Mutti and Normark (1987). With: 1a = erosional 
channel; 1b = depositional channel; 1c =’zone of roughness’; 1d = lobate relief; 2a = 
beds truncating against channel margin; 2b = beds converging against channel edge; 
2c = bedding irregularity resulting from scours and large-scale bedforms; 2d = even-
parallel bedding; 3a = clast-supported conglomerates; 3b = mud-supported 
conglomerates; 3c = thin-bedded overbank deposits; 3d+e = coarse-grained, 
internally stratified sandstone facies; 3f = complete and base-missing Bouma 
sequences; 4a = deep and relative narrow scours locally associated with stone clasts; 
4b = armoured mudstone clasts; 4c = mud-draped scours; 4d = broad scours, locally 
associated with mudstone clasts; 4e = tabular scours invariably associated with 
mudstone rip-up clasts from underlying substratum; 4f = nests of mudstone clasts 
commonly showing inverse grading and ‘take-off’ attitude of individual clasts; 5a = 
slump units; 5b = impact features (redrawn from Mutti and Normark, 1987) 

 

The outcrop expression of depositional features within CLTZs is less well defined. They 

have generally been described as coarse-grained and internally stratified by Mutti and 

Normark (1987). In the Albian Black Flysch of NE Spain (Vicente Bravo and Robles, 1995) 

described some large scale hummock- and wave-like bedforms associated with CLTZs 

(Wynn et al., 2002a). The hummock-like bedforms show sinusoidal patterns in transverse 

and longitudinal sections with wavelengths ranging between 5 to 40 m and heights from a 

few decimetres up to 1.5 m, inferred to be genetically related to scours (Vicente Bravo and 

Robles, 1995). The wave-like bedforms varied in wavelengths ranging between 5 and 30 m 
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and amplitudes up to 0.7 m, showing symmetric to slightly asymmetric gravel-rich 

geometries. Similar wave-form bedding or tractional structures were also described by Ito 

et al. (2014) for the Boso Peninsula in pebbly medium to coarse-grained sandstones, with 

wavelengths (Type I in Ito et al., 2014) up to 40 m and heights up to 2 m. These tractional 

structures show lateral transitions towards plane parallel stratification (Type II), with 

typical upward transitions to graded or massive bedding. Isolated coarse-grained (pebbly 

sandstones to conglomerates) dunes (Type III) were also described, forming lenticular 

geometries (< 5 m long, <0.4 m height), intercalated or encased in sandy siltstones and 

showing foreset bedding inclined in the downcurrent direction. Pemberton et al. (2016) 

described cross-stratified depositional bedforms (1-4.5 m thick, 55- 135 m across) within a 

CLTZ setting of the Magallanes Basin of southern Chile, which were interpreted to have 

migrated upslope. 

Alongside bedforms, more general sedimentary characteristics have been attributed to the 

CLTZ. Ito et al. (2014) showed that the average bed thickness increases away from the CLTZ 

in the downcurrent direction. Furthermore, amalgamation of sandstones (cut-and-fill) is 

common and the ratio of siltstones relative to interbedded sandstones is gradually 

increasing in the downslope direction.  

 

2.2.1 Channel-lobe juxtaposition 

For characterising the CLTZ in the rock record, it is vital to look at lateral and longitudinal 

migration of features and deposits associated with this zone. The expression of the 

migration can be inferred from the juxtaposition (Fig. 2.4) of lobes and channel-fills 

(Gardner et al., 2003; Macdonald et al., 2011b; Morris et al., 2014a; Grundvåg et al., 2014; 

Pyles et al., 2015). Lobes in lobe complexes may show variable stacking behaviour (Fig. 

2.4), however longitudinal compensation of lobes has been previously largely overlooked 

(Pyles et al., 2015). Depositional cycles have been suggested by Gardner et al. (2003) based 

on the Brushy Canyon (US), with downdip extension due to channel propagation through 
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lobes and retreat due to filling and spilling of these same channel-elements. Among these 

studies (Gardner et al., 2003, Macdonald et al., 2011b; Morris et al., 2014a; Grundvåg et 

al., 2014; Pyles et al., 2015), the CLTZ is mostly defined by a surface or very limited 

deposits, instead of a rock volume with well-developed bedform features. Other studies 

have showed clear transitions from isolated and amalgamated scours to low aspect-ratio 

channels (Pemberton et al., 2016), indicating more significant CLTZ stratigraphy 

development.  

 

Figure 2.4 End-member models for distributive submarine fans. One end member contains 
CLTZs that are located at a common longitudinal position on the fan (left), whereas 
the other end member contains CLTZs that are located at variable longitudinal 
locations on the fan (right) (from Pyles et al., 2015) 

2.3 Base-of-slope and CLTZ sedimentary process record 

2.3.1 Flow divergence 

Unconfined basin-floor environments are dominated by lobe deposition (e.g. Shanmugam 

and Moiola, 1991; Shanmugam et al., 1995; Bouma et al., 2000; Johnson et al., 2001; 

Hodgson et al., 2006; Prélat et al., 2009; Flint et al., 2011) and lower slope settings are 

characterised by channel-levee systems (e.g. Peakall et al., 2000; Posamentier, 2003; 

Posamentier and Kolla, 2003; Kane et al., 2007; Wynn et al., 2007; Di Celma et al., 2011; 
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Hodgson et al., 2011). Therefore, the area in between the slope and basin-floor (the base-

of-slope) is prone to the development of CLTZs (e.g. Gardner et al., 2003; Hodgson et al., 

2006; Brunt et al., 2013a; Van der Merwe et al., 2014). Flow expansion is expected at the 

base-of-slope, as divergent flow behaviour will result from the gradient and confinement 

changes in this region (Kneller, 1995). ‘Non-uniform’ flow behaviour (velocity changes over 

distance) is predicted at slope changes, where a decrease in slope can result in depletive 

and divergent flow (Kneller and Branney, 1995). Fluctuations in flow velocity over time are 

typically classified as ‘unsteady’ (Fig. 2.5), where waxing flows occur when velocity 

increases over time and waning when velocity decreases.  

 

Figure 2.5 (top) Graphs showing time (t) versus flow velocity (u) and distance (x) versus 
flow velocity (u) and the different terminology used to describe unsteady and non-
uniform flow behaviour. (bottom) Diagram illustrating variance in flow behaviour 
depending on the type of gradient change. At the base-of-slope a decrease in slope is 
expected and therefore diverging and depletive flow behaviour (from Kneller et al., 
1995) 
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2.3.2 Froude-related fluctuations 

Due to the diverging and depletive character of flows reaching base-of-slope and CLTZ 

environments, many have related sedimentary and bedform characteristics of these zones 

to Froude number (1) fluctuations (Mutti and Normark, 1987; 1991; Mulder and Alexander, 

2001; Postma et al., 2009; Ito et al., 2014; Pemberton et al., 2016; Postma et al., 2016), and 

in particular around the critical Froude number (Fr = 1).The Froude number (1) is related to 

flow velocity (U), flow height (h) and the reduced gravity (g’), where the gravity constant 

(g) is influenced by the density difference between the flow mixture (ρmix) and the ambient 

fluid (ρ).   

 

Fr′ =
𝑈

√𝑔′ℎ
  𝑔′ = 𝑔

𝜌𝑚𝑖𝑥−𝜌

𝜌
[

𝑚

𝑠2]    (1) (From Postma et al., 2009) 

Some deposits within CLTZ settings have been associated with supercritical flow (Fr>1) 

conditions. For example, coarse-grained deposits within the canyon-fill (Ito et al., 2014) of 

the Boso Peninsula were interpreted to be formed under supercritical flow conditions from 

high-density turbidity currents.  

Other features, and in particular bedforms (Alexander et al., 2001; Lang and Winsemann, 

2013; Cartigny et al., 2011; 2014), are associated with a decelerating supercritical turbidity 

currents undergoing a hydraulic jump: The transition from supercritical conditions (Fr > 1) 

to subcritical conditions (Fr < 1) result in flow expansion and the formation of a standing 

wave. The development of backset bedding within scour-fills has been associated with 

flows undergoing a hydraulic jump (e.g. Ito et al., 2014; Postma et al., 2015). The 

accumulation of mudstone clast and pebbly sandstones has been linked to erosive 

turbidity currents generated by increased turbulence in association with the occurrence of 

a standing wave (Ito et al., 2014). A range of different bedforms (Cartigny et al., 2014), 

including cyclic steps, antidunes and chute-and-pool structures, have been experimentally 

linked to variance in the amplitude of Froude number fluctuations. It has been emphasised 
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that sediment waves are initially formed as antidunes (Morris et al., 1998; Wynn and Stow, 

2002) or as net-depositional cyclic steps (Symons et al., 2016), defined by upstream 

migration. Upstream migrating scour trains (Fildani et al., 2006; Covault et al., 2014) have 

been interpreted as net-erosional cyclic steps and linked to channel formation. Differences 

in the architectural style of the CLTZ, as an area of channel-lobe juxtaposition, has also 

been related to the criticality of incoming flows (Postma et al., 2016). Postma et al. (2016) 

suggested that systems, which have been fed by supercritical flows, are architecturally 

much more complicated. They state that these systems are characterised by erosive 

channels, offset stacked lobes, hydraulic jump related mouth bars and upslope onlapping 

backfill deposits. Systems which are fed by subcritical flows are dominantly characterised 

by depositionally-confined channel systems and more simple architectures.  

 

2.3.3 Rheological flow transformations 

Next to Froude-related flow transformations, rheological flow transformations (Fig. 2.6) 

have also been proposed to occur at channel-mouth settings (Talling et al., 2007; Ito, 

2008). The existence of hybrid event beds or linked debrites (Haughton et al., 2003; 2009; 

Hodgson, 2009; Baas et al., 2011) among submarine fan systems, representing a co-genetic 

sandy turbulent flow and muddy laminar flow is not well understood.  

It has been suggested (Talling et al., 2007; Ito 2008) that these deposits are the result of 

downfan rheological transitions of turbidity currents to debris flow at CLTZ settings (Fig. 

2.6). This transformation was interpreted to be triggered by the incorporation of many 

finer-grained clasts and sediments into a passing turbidity current by erosion of a muddy 

substrate, suppressing turbulence and increasing sediment concentrations in the near-bed 

flow layer. As intensive scouring is occurring at the CLTZ, the incorporation of muddy 

substrate and consecutive flow transformation is likely to occur in this region.   
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Figure 2.6 Schematic model for a downfan rheological transition from the channel mouth 
towards a distal lobe setting, proposed for the Lower-Pleistocene Otadai Formation. 
In the proximal Lobe setting, a stratified flow exists with a relative dilute turbidity 
current overriding a clast-rich debris flow (from Ito, 2008) 

 

2.3.4 Sediment bypass record  

Turbidity currents generally become depletive when diverging at channel-mouth settings 

(Kneller,1995) and may show rapid deposition due to the occurrence of a hydraulic jump 

(e.g. Russell and Arnott, 2003; Kostic and Parker, 2006; Postma et al., 2009). However, the 

existence of a transition zone (CLTZ) in between a channel/canyon and a lobe indicates an 

area dominated by sediment bypass (Wynn et al., 2002a; Stevenson et al., 2015). Evidence 

of sediment bypass is recorded in the sedimentary characteristics and bedform assemblage 

of this zone.  In this thesis, we define sediment bypass (Stevenson et al., 2015) as a net 

state of no or a negliable amount of deposition/erosion by a flow, being the result of either 

a single or multiple flows. Downdip bed thickness increase and a general lack of siltstones 

have been linked to active bypassing processes of turbidity currents at proximal 

environments (Ito et al., 2014). Mud-drapes within scour-fills have been related to the 
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bypass of high-density turbidity currents and subsequent deposition of fine-grained 

materials by depletive waning flows (Mutti and Normark, 1987; 1991; Morris and Normark 

,2000; Kane et al., 2009; Ito et al., 2014; Stevenson et al., 2015). Furthermore, the 

presence of isolated dunes has been interpreted to be created by sediment reworking of 

lag deposits by bypassing turbidity currents (Ito et al., 2014).  

 

2.3.5 Flow efficiency 

The character of the CLTZ has also been related to other basic flow factors, except for the 

criticality of the incoming flows (Postma et al., 2016), such as grain size distribution or 

sediment concentration, said to be controlling the efficiency of the flows exiting the 

channel-mouth (Mutti and Normark, 1987; Wynn et al., 2002a; Gardner et al., 2003). In 

high-efficiency systems, the CLTZ is predicted to be widely developed (Mutti and Normark, 

1987; Wynn et al., 2002a), while in non-efficient systems lobes may be directly connected 

to their feeder channels. Gardner et al. (2003) linked the limited development of CLTZ 

features in the Brushy Canyon Formation (Texas, USA) to low-concentration and low-

volume sandy flows, representing low-efficient conditions. Experimental studies looking at 

depositional bodies linked to a sudden loss in confinement, performed by Baas et al. (2004) 

suggested a strong relationship between grain size and CLTZ development. Flows 

containing a significant mud-component resulted in a much better developed CLTZ (Fig. 

2.7) with clear disconnection of the lobe and the channel. The CLTZ varied laterally from 

showing gradual thickness changes towards the lobe  at the levees and quite an abrupt 

transition at the central sections of channels. In general, grain size decreased gradually in 

the down-current direction, but near the CLTZ grain size decreased rapidly.  
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Figure 2.7 Model for fan morphology from depletive flows, separated by grain size and 
initial sediment concentration. A clear wedge-shaped expansion point can be 
observed with coarse-grained low-concentrated flows, whereas fine-grained flows 
result in more extensive CLTZ development (from Baas et al., 2004) 

 

 

2.4 Inconsistencies between ancient and recent system datasets 

As the CLTZ is a physiographic area, its expression in the modern as an assemblage of 

erosional and depositional bedforms is well constrained (e.g. Palanques et al., 1995; Wynn 

et al., 2002a; Bonnel et al., 2005). However, the transfer of this snapshot configuration into 

the rock record is an ongoing area of investigation. Our current understanding of the 

stratigraphic expression of CLTZs (Mutti and Normark, 1987; 1991; Ito et al., 2014) shows 

clear inconsistencies with elements characteristic of modern CLTZs (Fig. 2.8). Most 

elements recognised in recent systems are an order of magnitude larger compared to 

similar examples from the rock record (Fig. 2.8) (Wynn et al., 2002a; Ito et al., 2014). A 

wider variety of elements are known from the modern (Wynn et al., 2002a), of which some 

have not yet been described from the ancient. This includes mounds, reworked sands, 

lineations, variable scour geometries and there are only vary scarce observations of 
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sediment waves from ancient CLTZ settings (Vicente Bravo and Robles, 1995; Ito et al., 

2014; Pemberton et al., 2016), mostly lacking detail or the wider lateral constraint . The big 

scale of the bathymetric and acoustic backscatter datasets allows a thorough examination 

of channel to lobe transitions and submarine fans in general, but is also directly a limitation 

due to the lack of resolution for imaging high-resolution deep-water bedforms. Therefore, 

our understanding of the modern expression of the CLTZ is mostly limited by the resolution 

of sonar and shallow seismic datasets (Wynn et al., 2002a), which explain why sub-metre 

scale features have not been described among modern systems.  

Some reasons have been given why  larger features, such as amalgamated scours and 

sediment waves recognised within the modern, have not yet been described from the rock 

record. The lack of large scour-fills within the outcrop record has been related to the 

difficulty to differentiate them from channel-fills in purely 2D-transect views (Mutti and 

Normark, 1987; Wynn et al., 2002a). Modern systems have revealed complicated scour-fill 

histories where laterally adjacent scours do not necessarily evolve simultaneously and may 

show different infill patterns (Macdonald et al., 2011a).  

Furthermore, scour-fill sedimentation can be typically out-of-phase with external areas 

(Macdonald et al., 2011a). Clear recognition criteria are, however, still lacking for the 

differentiation of scour-fills from channel-fills. A lack of sediment waves within the outcrop 

record has been primarily related to their large wavelength (Piper and Konopoulos, 1994), 

making it difficult to recognise these bedforms within laterally limited outcrop expressions.  
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 Figure 2.8 Comparison between stratigraphic expression (from Mutti and Normark, 1987; 
Ito et al., 2014) and bathymetric expression of CLTZ with division in erosional and 
depositional elements (from Wynn et al., 2002a). There is clear inconsistency in both 
dimensions as well as the type of elements. 
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2.4.1 Lack of spatial constraint in the CLTZ stratigraphic record 

The modern expression of CLTZs only provides a timeslice of a dynamic and evolving 

system and is therefore not sufficient for understanding responsible processes and how 

CLTZs are transferred into the rock record. There is a significant on-going discussion into 

the importance of distinguishing between stratigraphic surfaces that are time transgressive 

and composite, and geomorphic surfaces that are rarely preserved in the rock record (e.g. 

Strong and Paola, 2009; Sylvester et al., 2011; Holbrook and Bhattacharya, 2012; Blum et 

al., 2013; Hodgson et al., 2016). This distinction between physiographic snapshot and 

stratigraphic transfer is important in understanding the preservation potential of CLTZs. 

The existing stratigraphic studies (Mutti and Normark, 1987; 1991; Ito et al., 2014) 

summarise elements associated with these zones, but fail to cover the relationship 

between different elements and their relative spatial and temporal distribution. It remains 

unclear how the spatial distribution of elements, such has been observed in the modern 

(Wynn et al., 2002a), is recorded in the stratigraphic record when the CLTZ is likely 

migrating and changing in character. When key facies criteria and stacking patterns can be 

defined due to the recognition of such features in outcrop, it will aid the recognition of 

CLTZs within 1D core records. 
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Chapter 3: 
Tectonostratigraphy of the SW Karoo Basin and deep-water 

architectural and facies framework 

 

The tectonostratigraphic development of the Western Cape, and the whole of the 

southern African continent, can be related to the evolution of western Gondwana (Grunow 

et al., 1996; Unrug, 1997; Tankard et al., 2009; Flint et al. 2011) (Fig. 3.1). Much of the late 

Palaeozoic tectonostratigraphic record has been removed in the southern parts of present 

South Africa, due to large-scale exhumation during regional Mesozoic strike-slip and 

extensional tectonics. The record in the Western Cape is therefore less complete than in 

other parts (Fig. 3.1) of western Gondwana, including South America and Antarctica (Flint 

et al., 2011).  

 

Figure 3.1 Overview of the extent of the Paraná, Huab and Main Karoo Basin (MKB - here 
referred to as Karoo Basin) and the Falkland Islands in southwestern Gondwana, in a 
250±50 Ma palinspastic position (modified from Faure and Cole, 1999). 

 

Two sedimentary mega-successions (the Cape and Karoo Supergroups) from the Early 

Ordovician to Early Jurassic are separated by a major unconformity and were deposited in 

two laterally offset sedimentary basins in southern Africa, the Cape and Karoo Basins 

(Visser, 1997; Tankard et al., 2009): The Cape Supergroup (Fig. 3.2) comprises an 8 km-

thick succession of Early Ordovician to Early Carboniferous  shallow marine, deltaic and 
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fluvial deposits (Veevers et al., 1994) that was derived from a cratonic source to the north 

(Tankard et al., 1982). The Karoo Supergroup (Karoo Basin) (Fig. 3.2) overlies the Cape 

Supergroup and comprises 5.5 km of deep-marine to fluvial deposits that spans the Late 

Carboniferous to the early Jurassic. It was deposited in a series of smaller interconnected 

marine basins, linked to regional large-scale subsidence.  

Initially the major southern Gondwana basins, including the Karoo Basin, were interpreted 

to have developed in the late Palaeozoic in response to accretionary tectonics along the 

southern margin of Gondwana (De Wit and Ransome, 1992; Veevers et al., 1994; López-

Gamundi and Rossello, 1998). It was considered that the Karoo Basin developed as a 

retroarc foreland basin due to flexural subsidence driven by loading of the Cape Fold Belt 

(Fig. 3.2) lying along the southern margin of the basin (De Wit and Ransome, 1992; Cole, 

1992; Veevers et al., 1994; Visser and Praekelt, 1996; Catuneaunu, 2004; Catuneaunu et 

al., 1998). More recently, the Cape Fold Belt has been interpreted as a younger feature 

with the help of provenance analyses (Johnson et al., 1997; Andersson et al., 2004; Van 

Lente, 2004) and tectonostratigraphic analyses (Tankard et al., 2009). Only the youngest 

sediments of the Beaufort Group and above match up with the Cape Fold Belt as a 

sedimentary source, according to sedimentary provenance data (Van Lente, 2004). 

Therefore the subsidence of the Karoo Basin during its deep water phase is more likely to 

have been controlled by dynamic topography related to subduction (Pysklywec and 

Mitrovica, 1999) and has been linked to mantle flow influenced by foundering of basement 

blocks (Tankard et al., 2009). At the time of deposition of the Ecca Group, these basement 

blocks may have acted as a buried basin boundary, influencing the position of the shelf 

edge (Tankard et al., 2009).  
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Figure 3.2 (top) Regional geology of the Western Cape Province, showing location of the 
Laingsburg and Tanqua depocentres (red boxes), inboard of the post-depositional 
Cape Fold Belt. The Cape Fold Belt is subdivided into the Cederberg Branch and 
Swartberg Branch. The ‘L’ indicates the location of the town of Laingsburg. (bottom) 
Lithostratigraphy of the Western Cape area showing the division between the Cape 
Supergroup and the Karoo Supergroup (modified from Flint et al., 2011) 
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3.1 Stratigraphic framework of the Karoo Supergroup 

The late Carboniferous Dwyka Group is the oldest succession of the Karoo Supergroup (Fig. 

3.2) and marks the onset of the Karoo Basin sedimentation, being comprised of an 800 m 

thick package of diamictites, varves and glacio-fluvial deposits (Visser, 1989; Visser and 

Young, 1990). A northern sediment source has been interpreted and the glacial 

sedimentation of the Dwyka Group coincided with the positioning of Gondwana around 

the South Pole (Visser, 1997) (Fig. 3.1). The Ecca Group is comprised of a 2 km-thick 

succession of Permian age and initiated post-glacial maximum, being predominantly 

composed of siliciclastic deposits (Wickens, 1994; Flint et al., 2011). The basal succession of 

the Ecca Group is slightly carbonaceous, being composed of claystones and cherty 

claystones with tidal carbonates of the Prince Albert Formation (< 180 m thick), overlain by  

organic-rich claystone of the Whitehill Formation (~30 m thick). The condensed nature of 

both these formations indicates low clastic supply rates during deposition (Flint et al., 

2011). The overlying Collingham Formation (< 70 m thick) shows an increase in siliciclastic 

input and is composed of dark carbonaceous claystones interbedded with thin-bedded 

siliciclastic turbidites. These deposits are characterised by a high concentration of ash beds 

and a regionally extensive 1 metre thick chert bed (the Matjiesfontein chert), which is used 

as a stratigraphic marker due to its uniform thickness over at least 5000 km2 (Flint et al., 

2011). 

The Upper Ecca Group was deposited in two depocentres (Fig. 3.2) within the 

southwestern Karoo Basin: the Laingsburg depocentre, which comprises the Vischkuil, 

Laingsburg, Fort Brown, and Waterford formations, and the Tanqua depocentre, which 

comprises the Tierberg, Skoorsteenberg, Kookfontein and Waterford formations (Wickens, 

1994; Fig. 3.3). Both show a shallowing-upward succession from distal basin-floor through 

submarine slope to shelf edge and shelf deltaic settings (Wickens, 1994; Flint et al., 2011).  
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The deep-water infill of both depocentres show sand-rich fan systems separated by thick 

(1-20 m ) claystones.  The majority of these claystones have been interpreted to be of a 

hemipelagic origin (deposition by a combination of vertical settling and slow lateral 

advection; e.g. Stow and Tabrez, 1998), due to their regional extensive nature (tens of 

kilometres). Furthermore the presence of ash beds, lack of siltstone materials and high 

level of bioturbation in this claystone intervals deviates from the mudstone character as 

observed at initiation and retreat of submarine fan systems, indicating they have been 

deposited over long timescales.     

 

3.1.1 Tanqua Depocentre 

The Tanqua Depocentre is located in the present-day south-western corner of the Karoo 

Basin, and its fill is composed of both the Lower and Upper Ecca Group. The Tierberg 

Formation (> 600 m thick; King et al., 2009) marks the initiation of the deep-water fill of 

the Upper Ecca Group in the Tanqua depocentre (Fig. 3.3) and mainly comprises dark 

basinal mudstones (Bouma and Wickens, 1991; Wickens, 1994). The Skoorsteenberg 

Formation (~400 m thick) forms the main deep-water succession and is comprised of a 

total of four fine-grained and sand-rich submarine fan systems (Fans 1-4) (Bouma and 

Wickens, 1991; Wickens, 1994; Wickens and Bouma, 2000; Johnson et al., 2001; Hodgson 

et al., 2006) and one lower slope to base-of-slope unit (Unit 5) (Wild et al., 2005; Hodgson 

et al., 2006). Patterns of fan initiation, growth, decay and abandonment was identified 

within this succession based on basinward and landward movement of fan fringes, 

common to basin-floor fans (Hodgson et al., 2006). The grain size range is narrow within 

this formation, varying between mud and fine-grained sand. The Skoorsteenberg 

Formation is overlain by the Kookfontein Formation (~ 240 m thick) (Fig. 3.3) (Bouma and 

Wickens, 1991; Wickens, 1994), representing dominantly slope and shelf-edge deltaics 

(Wild et al., 2009) and the deltaic Waterford Formation (~120 m thick), marking the overall 

progradation of the sedimentary system to the northeast.  
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Figure 3.3 Stratigraphic column of the deep-water deposits from the Laingsburg and 
Tanqua depocentres. The Fan systems and Units which have been studied in detail 
within this thesis are highlighted in red (modified from Hofstra et al., 2015) 

 

3.1.2 Laingsburg Depocentre 

The Laingsburg Depocentre, also located in the south-western part of the Karoo Basin (Fig. 

3.2), comprises a shallowing upward succession of the Vischkuil, Laingsburg, Fort Brown 

and Waterford Formations. The deep-water succession was initiated by distal basin plain 

turbidites, hemipelagic claystones and debrites of the Vischkuil Formation (< 270 m) 

(Kuenen, 1963; Theron, 1967; Van der Merwe, et al. 2009; 2010; 2011). The contact 

between the Vischkuil and Laingsburg Formations varies from an unconformity in the north 

of the depocentre to a correlative conformity in the south, which has been interpreted as 

evidence for basin-floor topography at this time (Sixsmith, 2000). The Laingsburg 

Formation (< 800 m) comprises two sand-rich turbiditic intervals (Unit A and Unit B), 

separated by a 40 m thick hemipelagic claystone interval (Wickens, 1994; Grecula, 2000; 

Flint et al., 2011). Of these sedimentary units, Unit A is the thickest (150-350 m) and can be 

subdivided in seven sandstone dominated packages of 15-100 m thickness (A1-A7), 

separated by regional hemipelagic mudstone and thin-bedded siltstone packages of 1-15 m 
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thickness. Mudstone units between A3-A4 and between A5-A6 are generally thicker, with a 

higher fraction of hemipelagic material. Coupled with regional stratal stacking patterns, 

this mudstone unit hierarchy was used by Flint et al. (2011) to group A1-A3 into a lowstand 

sequence set with the A3-A4 mudstone interpreted as the related transgressive and 

highstand sequence set; the combination forming a lower Unit A composite sequence. A4 

and A5 were grouped into another lowstand sequence set and, together with the A5-A6 

mudstone form a middle Unit A composite sequence. Similarly A6 and A7 are interpreted 

as a lowstand sequence set, and form an upper Unit A composite sequence with the lower 

part of the 40 m thick A-B mudstone.  

The regional A-B mudstone contains a sharp-based and sharp-topped stratified fine-

grained sandstone unit that is up to 15 m thick and lies 10 m below the base of Unit B 

(Grecula et al., 2003a)   referred to as the A-B interfan. Unit B comprises a 50-225m thick 

sandstone-prone package. A base of slope setting for B in the area west of Laingsburg was 

interpreted by  Grecula et al. (2003a) based on its stratigraphic position overlying the 

basin-floor fans of Unit A and being overlain by ~500 m of incised and levee-confined slope 

channel complexes (Grecula et al., 2003a; Flint et al., 2011). Two contemporaneous NE 

trending channel-levee systems that map down dip (eastward) to distributive deepwater 

systems are exposed within Unit B over a 25 km dip section, with strike control over some 

20 km (Grecula et al., 2003a). Regional mapping combined with sedimentological and 

stratigraphic analysis indicates that Unit B comprises three depositional sequences (B1, B2, 

B3) (Grecula et al., 2003a; Brunt et al., 2013a).The overlying Fort Brown Formation is 

composed of five sand-prone units (Unit C-G) (Fig. 3.2) forming an overlying slope system 

and mud-prone prodelta succession (Flint et al., 2011; Hodgson et al., 2011; Van der 

Merwe et al., 2014). The Waterford Formation (< 800 m) (Wickens, 1994; Jones et al., 

2013, 2015) comprises the top of the Ecca Group and is mainly defined by sand-prone 

shelf-edge deltaic deposits.  
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3.1.3 Sediment provenance 

Despite the extent and thickness of the infill of both the Tanqua and Laingsburg 

depocentres, the sediment source is believed to be very similar throughout the whole 

stratigraphy (Andersson et al., 2004; Van Lente, 2004). Geochemical analyses have 

suggested that the deep-water sediments were derived from a felsic igneous source 

associated with an active continental-margin setting (Van Lente, 2004). Within the 

claystones between the sand-prone fan systems, a stratigraphic increase of igneous 

contributions has been observed (Andersson et al., 2004). 

The most likely candidates for source terranes for both depocentres are believed to be the 

Sierra Pampeana granites and schists as well as the Patagonian batholith from the North 

Patagonian Massif (Van Lente, 2004; Fildani et al., 2007). There may have also been some 

contribution derived from the late Precambrian Cape Granite Suite (Van Lente, 2004). 

The mineral composition of the sandstones is very similar throughout both depocentres 

with a major component of mono- and polycrystalline quartz (Scott et al., 2000) and minor 

amounts of feldspar, detrital muscovite and biotite and a wide variety of heavy minerals. 

Even though the transport pathway is inferred to be long and grain size range is very 

narrow (clay to fine sandstone), the sediments are still rather immature (Scott et al., 2000), 

showing mostly subrounded to subangular grains and minimal alteration of micas and 

feldspars.  

3.2 Facies framework 

The sedimentary facies of both the Skoorsteenberg Formation (Johnson et al., 2001; 

Hodgson et al., 2006; Prelat et al., 2009) and the Laingsburg Formation (Grecula et al., 

2003a; 2003b; Sixsmith et al., 2004; Flint et al., 2011) have previously been described in 

detail. A brief summary of the lithofacies encountered within both formations from 

outcrop and core datasets is here presented. These lithofacies are combined into facies 
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associations in the following Chapters (4-8), used to define the environment of deposition 

among various architectural elements. 

 

3.2.1 Structureless sandstone 

 

Figure 3.4 Representative photographs from outcrop (left) and core (right) of structureless 
sandstone facies. The Dino-Lite image was taken from core.   

 

Table 3.1  Summary of the characteristics of structureless sandstone facies and its 
associated depositional environments. 

 

Feature Characteristics and interpretation 
Depositional 
environment 

Channel-axis, lobe axis, frontal lobe fringe. 

Description 

Thick-bedded; Occasional dewatering pipes and dishes that are well preserved 
in core; widespread amalgamation along erosion surfaces; can contain 
mudstone chips and carbonaceous material. Grain size ranges from upper to 
lower fine sand, with rare medium sand. 

Basal bounding 
surface 

Sharp, erosive, loading. 

Upper bounding 
surface 

Sharp to normally graded. 

Bed thickness Variable <1 m to amalgamated sections of >10 m. 

Outcrop width / 
geometry 

Beds can be traced out for several 100s of metres. 

Other aspects 
Commonly found among Highly amalgamated zones (HAZ) that can pass 
laterally into stratified successions without bounding erosion surfaces. 
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3.2.2 Planar-laminated sandstone  

 

Figure 3.5 Representative photographs from outcrop (left) and core (right) of planar-
laminated sandstone facies. The Dino-Lite image was taken from core.   

Table 3.2  Summary of the characteristics of planar-laminated sandstone facies and its 
associated depositional environments. 

 

 

Feature Characteristics and interpretation 
Depositional 
environment 

Lobe axis, lobe off-axis, lobe fringe. 

Description 
Thick to medium bedded; planar parallel laminated; usually normal 
graded, lower fine sand and very fine sand. 

Basal bounding surface Sharp, loaded. 

Upper bounding surface Sharp to normally graded. 

Bed thickness 0.1 m -1 m. 

Outcrop width / 
geometry 

Commonly part of lateral facies change to structureless thick-bedded 
sandstone or medium-bedded wavy ripple laminated sandstone 

Other aspects  N/A 
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3.2.3 Wavy-laminated sandstone 

 

Figure 3.6 Representative photographs from outcrop (left) and core (right) of wavy-
laminated sandstone facies.  

 

Table 3.3  Summary of the characteristics of wavy-laminated sandstone facies and its 
associated depositional environment. 

 

  

Feature Characteristics and interpretation 
Depositional environment Lobe off-axis 

Description 
Medium-to thin-bedded. Wavy/convolute laminated sandstones with 
wavelengths between 10-50 cm, can be asymmetric with steeper + 
shallower limbs. Increase upward within individual beds. 

Basal bounding surface Sharp, loaded. 

Upper bounding surface Sharp to gradational. 

Bed thickness 0.1 m -1 m. 

Outcrop width / geometry 
Lateral and stratigraphic transition into current ripple and climbing 
ripple laminated sandstone. 

Other aspects N/A 
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3.2.4 Ripple-laminated sandstone 

 

A: Current ripple-laminated 

 
Figure 3.7 Representative photographs from outcrop (left) and core (right) of current ripple-

laminated sandstone facies.   

 

 

Table 3.4  Summary of the characteristics of current ripple-laminated sandstone facies and 
its associated depositional environments. 

 

 

 

Feature Characteristics and interpretation 

Depositional 
environment 

Lobe off axis, lobe lateral fringe, external levee/overbank. 

Description 
Medium to thin-bedded very fine to fine grained sandstone. Low angle 
to high angle ripple lamination. Stoss-side preservation is common. 
Grainsize is very fine and lower fine sand. 

Basal bounding surface Sharp. 

Upper bounding surface Sharp to gradational. 

Bed thickness 0.05 m-1 m (up to 3.5 m in case of amalgamation). 

Outcrop width / 
geometry 

Lateral facies transition to planar laminated sandstone can occur. 
Extensive for several 100 ms. Amalgamation of multiple beds is 
common, creating greater (>1 m) bed thicknesses. 

Other aspects N/A 
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B: Climbing ripple-laminated 

 
Figure 3.8 Representative photographs from outcrop (left) and core (right) of 
climbing ripple-laminated sandstone facies. The Dino-Lite image was taken from 
core.   

 

Table 3.5  Summary of the characteristics of climbing ripple-laminated sandstone facies 
and its associated depositional environments. 

  

Feature Characteristics and interpretation 

Depositional environment Lobe off axis, lobe fringe, overbank. 

Description 
Medium-to-thin-bedded very fine to fine grained sandstone. Ripple 
foresets can be draped by silt; grainsize very fine and lower fine sand. 

Basal bounding surface Sharp. 

Upper bounding surface Sharp to gradational. 

Bed thickness 0.05 m to ~1 m, but commonly 0.1-0.2 m. 

Outcrop width / geometry 
Extensive for several 10s metres, facies transitions towards climbing 
ripple lamination or planar lamination. 

Other aspects N/A 
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3.2.5 Siltstones 

 

Figure 3.9 Representative photographs from outcrop (left) and core (right) of siltstone 
facies.  

 

 

Table 3.6  Summary of the characteristics of siltstone facies and its associated depositional 
environments. 

 

 

 

 

 

 

 

Feature Characteristics and interpretation 
Depositional environment Lobe fringe, bypass-dominated areas. 

Description 
Normally planar bedded. Rare ripples. Interbedded very fine-grained 
sandstone beds. 

Basal bounding surface Sharp. 

Upper bounding surface Sharp to transitional. 

Bed thickness 
Individual beds are typically <0.05 m, Packages that range from 0.1m 
to >10 m in thickness. 

Outcrop width / geometry Packages can be traced for several kilometres. 

Other aspects Constant sedimentary characteristics throughout the package 
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3.2.6 Folded siltstones and sandstones 

 

Figure 3.10 Representative photographs from outcrop (left) and core (right) of folded 
siltstones and sandstones facies. The Dino-Lite image was taken from core.   

 

 

Table 3.7  Summary of the characteristics of folded sandstones and siltstones facies and its 
associated depositional environments. 

 

 

Feature Characteristics and interpretation 

 Depositional environment Slide deposits, channel margin, scour margin. 

 Description 
Weak deformation to highly contoured and folded thin bedded 
sandstone and siltstone beds. 

Basal bounding surface Sharp to erosional. 

Upper bounding surface Sharp to gradational. 

Outcrop thickness from 10s cm to 10s metres. 

Outcrop width / geometry >5 kms 

Other aspects N/A 
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3.2.7 Claystones 

 

Figure 3.11 Representative photographs from outcrop (left) and core (right) of claystone 
facies. The Dino-Lite image was taken from core.   

 

Table 3.8  Summary of the characteristics of claystone facies and its associated 
depositional environment. 

 

 

 

 

 

 

 

Feature Characteristics and interpretation 

Depositional environment Hemipelagic background sedimentation. 

Description 
Little to no internal stratification seen at outcrop. Thin laminations 
of very fine silt may be seen in fresh surfaces. 

Basal bounding surface Normally gradational, occasionally sharp. 

Upper bounding surface Sharp, occasionally erosional. 

Outcrop thickness Variable, from 10s cm to several metres. 

Outcrop width / geometry Extensive, locally eroded. 

Other aspects N/A 
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3.2.8 Intraclast conglomerate 

 

Figure 3.12 Representative photographs from outcrop (left) and core (right) of intraclast 
conglomerate facies. The Dino-Lite image was taken from core.   

 

 

Table 3.9  Summary of the characteristics of intraclast conglomerate facies and its 
associated depositional environments. 

  

Feature Characteristics and interpretation 

Depositional environment Channel-fill, lobe axis, bypass areas. 

Description 
Angular to sub-rounded claystone and siltstone clasts supported 
by sandstone matrix. Locally clast supported. 

Basal bounding surface Sharp, erosional. 

Upper bounding surface Sharp. 

Outcrop thickness 10s cm to metres. 

Outcrop width / geometry Commonly limited by erosion surfaces, lenticular shaped. 

Other aspects N/A 
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3.2.9 Banded sandstone 

 

Figure 3.13 Representative photographs from outcrop (left) and core (right) of banded 
sandstone facies. The Dino-Lite image was taken from core.   

 

 

Table 3.10  Summary of the characteristics of banded sandstone facies and its associated 
depositional environments. 

 

 

 

 

 

 

Feature Characteristics and interpretation 
Depositional environment Lobe axis, lobe off-axis 

Description 
Alternating layers of clean and mud-rich sandstone bands. Clean 
layers can load into the mud-rich ones. Occasionally mud chips, 
carbonaceous material and/or plant fragments in mud-rich bands. 

Basal bounding surface Sharp to transitional 

Upper bounding surface Sharp, gradational 

Outcrop thickness From 0.1m up to several metres when beds are amalgamated 

Outcrop width / geometry 
Can be associated with overlying ripple laminations or chaotic 
sandstone/siltstone. Extensive for 10s metres. 

Other aspects N/A 
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3.3 Architectural element framework 

Many deep-water studies within the Karoo Basin have focussed on the identification and 

characterisation of architectural elements (e.g. Johnson et al. 2001; Hodgson et al. 2006; 

Grecula et al. 2003a; Prélat et al. 2009; Brunt et al. 2013a). The most important elements 

within these deep-water fan systems will be briefly discussed.  

 

3.3.1 Lobes 

Early lobe models (Mutti, 1977; Mutti and Sonnino, 1981) created a division within two 

main domains: ‘sandstone lobe’ (characterised by a high sandstone percentage) and ‘lobe 

fringe’ (characterised by a lower sandstone percentage). In the scheme of Mutti (1977), 

the central ‘sandstone lobe’ represents approximately one third of the total areal extent of 

the lobe while the ‘lobe fringe’ represents the other two thirds. The internal architecture 

of lobes is commonly described as highly continuous deposits with a parallel-sided bedding 

style (Chapin et al., 1994; Mahaffie, 1994). 

 

Figure 3.14 Schematic showing nomenclature used to describe different lobe components 
and environments (from Prélat et al., 2009) 
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Recent work indicates a more complicated depositional architecture (Prélat et al., 2009), 

with four environments of deposition (Fig. 3.4) in a single lobe: axis, off-axis, fringe, and 

distal fringe. Among basin-floor lobes, these four depositional environments do not have a 

simple radial distribution about an apex or from the lobe centroid, but are organised in a 

complicated finger like distribution. As a result, in dip and strike directions, it is possible to 

transition back and forth between the same environments of deposition, formed by the 

stacking of the component lobe elements (Fig. 3.5). Transitions between different 

environments of deposition occur without passing through erosional surfaces and can take 

place over short distances (< 100 m) (Prélat et al., 2009). Highly amalgamated zones (HAZs) 

are prone in lobe apex areas (Hodgson et al., 2006), described as a zone of increased 

amalgamation of sandstone beds, ranging between 3 and 20 m in thickness, 100 to 400 m 

in width, and up to 3 km in length, and pass laterally into more stratified deposits. HAZs 

have been interpreted as the down-dip equivalent of feeder channels, marking the 

transition from confined to unconfined environments (Hodgson et al., 2006). 

 

Figure 3.15 Hierarchical scheme used to differentiate scales within distributive lobe systems 
(Prélat et al., 2009) 
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Within the hierarchical scheme (Fig.3.5) for distributive systems proposed by Prélat et al. 

(2009), a lobe element (~2 m thick) is formed by a set of multiple event beds. Multiple lobe 

elements (2-3) typically form one lobe (~5 m thick). Lobes can stack to form lobe 

complexes (~50 m). Multiple lobe complexes eventually build up a submarine fan system. 

Different lobes and lobe elements are separated by thin-bedded siltstone-prone units. In 

the original scheme of Prélat et al. (2009) these were interpreted as interlobes and 

interlobe elements (Fig. 3.5), but collection of additional data led to their reinterpretation 

as distal lobe fringes of compensationally stacked lobes, where the abrupt facies changes 

in 1D-sections mark avulsion surfaces (Prélat and Hodgson, 2013).  

 

3.3.2 Channel-fills 

Another important architectural element within submarine fan systems, and in particular 

within slope and base-of-slope environments, are submarine channels. Channel systems at 

base-of-slope settings (Fig. 3.6) typically vary between 150- 500 m wide and 8 – 70 m in 

depth (e.g. Johnson et al., 2001; Van der Werff and Johnson, 2003; Hodgson et al., 2006; 

Brunt et al., 2013a) and can both be erosionally and constructionally confined, where the 

latter may show extensive levees over 20 km in width (Fig. 3.6).  
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Figure 3.16 Variance in channel architectures and dimensions among base-of-slope settings 
(from Brunt et al., 2013a) 

 

Weakly confined channels contrast with entrenched channels as they show beds thinning 

away from the amalgamated channel axes and broad channel wings (Brunt et al., 2013a). 

Axial channel-fills show similar characteristics among the different channel architectures, 

being dominantly composed of amalgamated structureless sandstones with a basal layer of 

mudstone clast conglomerates (Johnson et al., 2001; Van der Werff and Johnson, 2003; 

Hodgson et al., 2006; Brunt et al., 2013a). Channel-margins are more variable in both 

architecture and facies. The margins of unconfined channels (Fig. 3.6) may show ripple-

laminated or  planar-laminated thin-bedded sandstones and siltstones, typically thickening 

and coarsening upward (Grecula et al., 2003a; Brunt et al., 2013a).   
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Chapter 4: 
Giant scour-fills in ancient channel-lobe transition zones: 

formative processes and depositional architecture 

4.1 Summary 

Scours are common features of modern deep-marine seascapes, particularly downstream 

of the mouths of slope channels within channel-lobe transition zones (CLTZs). Their 

dimensions can easily exceed hundreds in width and length (100-2000 m), and tens of 

metres in depth (1-100m). However, the stratigraphic architecture of large (>100 m width) 

scours have not been described in detail from exhumed CLTZs. Here, the infill of two 

erosional features (0.5-1 km long and 15-20 m thick) from the Permian Karoo Basin 

succession, South Africa, are presented from palaeogeographically well-constrained CLTZs; 

one from Fan 3 in the Tanqua depocentre and one from Unit A5 in the Laingsburg 

depocentre. The basal erosion surfaces of the features are asymmetric with steep, 

undulating, and composite upstream margins, and low gradient simple downstream 

margins. The basal infill consists of thin-bedded siltstone and sandstone beds cut by 

closely-spaced scours; these beds are interpreted as partially reworked fine grained tails of 

bypassing flows with evidence for flow deflection. The erosional features are interpreted 

as giant scour-fills. The Unit A5 scour-fill shows a simple cut-and-fill history with lateral and 

upward transitions from siltstone- to sandstone-prone deposits. In contrast, the Fan 3 

scour-fill shows headward erosion and lengthening of the scour surface suggesting 

temporal changes in the interaction between turbidity currents and the scour surface. This 

relationship could support the occurrence of a hydraulic jump during scour formation, 

while the majority of the fill represents deposition from subcritical flows.  Different scour 

preservation mechanisms can be used to explain the style of infill. The architecture, 

sedimentary facies and palaeoflow patterns of the scour-fills are distinctly different to well 

documented adjacent basin-floor channel-fills at the same stratigraphic levels. The 

recognition of scour-fills helps to constrain their sedimentological and stratigraphic 
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expression in the subsurface, and to improve our understanding of the stratigraphic 

architecture of channel-lobe transition zones. 

4.2 Introduction 

Large scours are readily recognised erosional bedforms on modern deep-marine seabeds 

(e.g., Palanques et al., 1995; Morris et al., 1998; Wynn et al., 2002a; Bonnel et al., 2005; 

Fildani et al., 2006; Macdonald et al., 2011a; Maier et al., 2011; Shaw et al., 2013; Covault 

et al., 2014; Paull et al., 2014). Commonly, these scours are concentrated within channel-

lobe transition zones (CLTZs), a relatively unconfined area dominated by sediment bypass 

that separates the mouths of channel feeder systems from lobes (Mutti and Normark, 

1987, 1991; Kenyon et al., 1995; Wynn et al., 2002a). Scours commonly form fields 

consisting of many individual and coalesced scours (e.g., Wynn et al., 2002a; Macdonald et 

al., 2011a; Shaw et al., 2013). The occurrence of scours is commonly interpreted (Komar, 

1971; Mutti and Normark, 1987, 1991; Garcia and Parker, 1989; Garcia, 1993; Macdonald 

et al., 2011a; Ito et al., 2014), and occasionally demonstrated (Sumner et al., 2013), to be 

related to flows that have undergone a hydraulic jump (transformation from supercritical 

to subcritical flow conditions), triggered by changes in flow velocity and/or density. These 

changes in flow behaviour are predicted to occur in base-of-slope to basin floor transitions 

where there are abrupt changes in gradient and degree of confinement (e.g., Alexander et 

al., 2008; Ito, 2008).  

Although observations of small-scale scours and megaflutes in ancient systems are 

abundant (e.g., Macdonald et al., 2011a), large-scale features are not well documented. 

Megascours associated with Mass Transport Deposits (MTDs) have been constrained by 

various seismic examples (e.g., Moscardelli, 2006; Sawyer et al., 2009; Ortiz-Karpf et al., 

2015) on slope settings and in some outcrop examples from lower slope to base-of-slope 

deposits (Pickering and Hilton, 1998, their Fig. 63; Lee et al., 2004; Dakin et al., 2012). In 
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these cases, erosional depressions are tens of metres deep and filled with chaotic deposits. 

In contrast, large scour-fills in turbidite systems are rarely identified in outcrop, therefore 

their recognition criteria are poorly constrained. Dimensions of turbidite-filled scours are 

reported from various outcrop-related studies including: 1) the Ross Formation (Ireland) 

with typical dimensions of 0.3-3.5 m in depth and 1 to 45 m in length (Chapin et al., 1994; 

Elliott, 2000a, 2000b; Lien et al., 2003; Macdonald et al., 2011b); 2) the Albian Black Flysch 

(Spain) with 1-5 m deep and 5-50 m wide scours (Vicente-Bravo and Robles, 1995); 3) the 

Cerro Toro Formation (Chile) with scour depths of metres and widths of tens of metres 

(Winn and Dott, 1979; Jobe et al., 2009); 4) the Windermere Group with scours up to 

several decimetres deep and several tens of centimetres to many tens of metres wide 

(Terlaky et al., 2015); 5) the composite scours of several metres depth in the Macigno 

Costiero Fm., Italy (Eggenhuisen et al., 2011); and 6) the Boso Peninsula (Japan) with 

erosional features filled with backset bedding up to 140 m wide and 10 m deep (Ito et al., 

2014). These dimensions are an order of magnitude smaller than the scour dimensions 

described from modern systems (> 10 m depth and > 100 m width) (e.g., Wynn et al., 

2002a; Macdonald et al., 2011a). Scour-fills may be underrepresented in the rock record 

because outcrop limitations mean that they may have been misidentified as channel-fills 

due to cross-sectional similarity (Mutti and Normark, 1987, 1991; Wynn et al., 2002a; 

Normark et al., 2009). Furthermore, the stratigraphic expression of the CLTZ, including 

scour-fills, is rarely fully exposed or well-constrained in ancient systems (Mutti and 

Normark, 1987, 1991; Gardner et al., 2003; Ito et al., 2014; van der Merwe et al., 2014). 

Here, the morphology and depositional architecture of two exhumed large-scale erosional 

features from the Permian succession of the Karoo Basin, South Africa, are described in 

detail: one example from Fan 3 of the Tanqua depocentre and the other from Unit A within 

the Laingsburg depocentre. Previous mapping has constrained the palaeogeographic 

context of both locations to areas where there is a down-dip architectural change from 
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channel- to lobe-dominated deposits (Morris et al., 2000; Van Der Werff and Johnson, 

2003; Sixsmith et al., 2004; Hodgson et al., 2006; Jobe et al., 2012; Prélat and Hodgson, 

2013). The objectives of this paper are to: i) evaluate the origin of these distinctive 

erosional features; ii) compare the erosional and depositional history to channel-fills; iii) 

develop recognition criteria for scour-fills in outcrop; iv) discuss the role of erosional 

bedforms in improving our understanding of the stratigraphic expression of CLTZs within 

ancient submarine systems; and v) aid investigations into the role of hydraulic jumps in 

deep-water bedform development. Accurate recognition and description of large-scale 

erosional architectural elements has important implications for the robust application of 

outcrop studies to improve reservoir models and reduce uncertainty in subsurface 

investigations. 

 

Figure 4.1 Location map of the Laingsburg and Tanqua depocentres within the Western 
Cape (South Africa) and schematic interpretations of the Fan 3 and Unit A5 fan 
systems (based on Sixsmith et al.,2004) and Hodgson et al.,2006). White dots 
indicate study locations, with KRF = Kleine Riet Fontein and WH = Wilgerhout. Images 
taken from Google Earth. 
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4.3 Regional setting 

The Karoo Basin is one of a number of Late Palaeozoic to Mesozoic basins that formed at 

the southern margin of Gondwana (De Wit and Ransome, 1992; Veevers et al., 1994; 

López-Gamundi and Rossello, 1998). The Karoo Basin has been interpreted traditionally as 

a retroarc foreland basin with subsidence purely caused by the loading of the Cape Fold 

Belt (e.g., Johnson, 1991; Cole, 1992; Visser, 1993; Veevers et al., 1994; Catuneanu et al., 

1998). More recent interpretations suggest that subsidence during the Permian was 

caused by dynamic topography effects due to subduction (Tankard et al., 2009) in a pre-

foreland basin stage. The southwest Karoo Basin is subdivided into the Laingsburg and the 

Tanqua depocentres (Fig. 4.1) of which the deepwater fill of both depocentres is 

represented by the Ecca Group. The Ecca Group (Fig. 4.2) comprises a 2 km-thick 

shallowing-upward succession from distal basin-floor through submarine slope to shelf-

edge and shelf deltaic settings (Wickens, 1994; Flint et al., 2011). 

4.3.1 Tanqua depocentre 

This study focuses on part of Fan 3 of the Skoorsteenberg Formation, which is one of four 

sand-rich basin-floor fan systems (Fig. 4.2) (Bouma and Wickens, 1991, 1994; Wickens and 

Bouma, 2000; Johnson et al., 2001). Fan 3 is the most extensively studied fan system of the 

Skoorsteenberg Formation, as it shows the most complete outcrop extent (Hodgson et al., 

2006). The Fan 3 study area, Kleine Riet Fontein, is located in the southwestern corner of 

the Fan 3 outcrop, which is the most updip location (Figs. 4.1, 4.3A). An integrated outcrop 

and research borehole dataset has established the isopach thickness of Fan 3, and the 

relative spatial and temporal distribution of sedimentary facies, architectural elements and 

palaeocurrents (Johnson et al., 2001; Hodgson et al., 2006; Prélat et al., 2009; 

Groenenberg et al., 2010).  
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Figure 4.2 Stratigraphic column of the deep-water deposits from the Laingsburg depocentre 
and the Tanqua depocentre, based on Prélat et al. (2009) and Flint et al. (2011).  The 
fan systems discussed in this chapter (Fan 3 and Unit A5) are highlighted. 

 

The axis of the system is located farther to the east along depositional strike in the 

Ongeluks River area (Fig. 4.3A) and is characterised by distributive basin floor channel 

systems with overall palaeocurrent to the NNE (van der Werff and Johnson, 2003; Sullivan 

et al., 2004; Hodgson et al., 2006; Luthi et al. 2006). The distributive character of the 

channel-systems at Ongeluks River (Fig. 4.3A), the more deeply erosional character of the 

channels in overlying Fan 4 and Unit 5, and the thinning to the south (Oliveira et al., 2009), 

all suggest that the southwestern outcrop-limit of Fan 3 is a proximal off-axis base-of-slope 

setting (Johnson et al., 2001, van der Werff and Johnson, 2003; Luthi et al., 2006; Hodgson 

et al., 2006; Jobe et al., 2012). The Kleine Riet Fontein area was previously studied in detail 
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by Jobe et al. (2012) and interpreted as an area receiving unconfined flows, supported by 

the wide spatial distribution of numerous metre-scale scour features.  

 

Figure 4.3 Detailed maps of case study areas with locations of sedimentary logs, and 
outlines of Fan 3 (A) and Unit A5 (B). Solid line in A indicates the main profile 
illustrated in Figure 4.6 and the dotted lines indicate the additional profiles of Figure 
4.8A. Palaeocurrents are indicated and are taken from thin-beds underlying the 
erosion surfaces. Images taken from Google Earth. 
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4.3.2 Laingsburg depocentre 

The proximal basin floor system of the Laingsburg Formation is divided into Units A and B 

(Sixsmith et al., 2004; Brunt et al., 2013a) (Fig. 4.2). The 350 m thick Unit A comprises sand-

prone sub-units A1-A7, which are separated by regionally extensive mudstones (Sixsmith et 

al., 2004; Flint et al., 2011; Prélat and Hodgson, 2013). The studied outcrop is in the 

‘Wilgerhout’ area within Unit A5, a 100 m thick and more than 50  km long package of 

sandstones and siltstones on the northern limb of the post-depositional Baviaans syncline 

(Figs. 4.1, 4.3B), close to the town of Laingsburg. Palaeogeographically, the study area is 

located in the axis of the A5 system on the basin floor (Sixsmith et al. 2004) (Fig. 4.1). The 

large number of sand-rich channel-fills that characterise the upper part of A5 in this area 

point to a location close to the base-of-slope and/or close to the mouths of large 

distributary channels (Sixsmith et al., 2004; Prélat and Hodgson, 2013). 

 

4.4 Methodology and datasets 

Stratigraphic correlations were completed in the field using closely-spaced sedimentary 

logs (see Appendix B.3), photomontages, and walking out key surfaces with a handheld 

GPS to construct architectural panels. In the Fan 3 Kleine Riet Fontein study area (4.6 km2), 

a total of 20 sedimentary logs was collected (Fig. 4.3A). More than 550 palaeocurrent 

measurements (See Appendix B.2), primarily from ripple cross-lamination, were collected 

and tied to specific stratigraphic units. Due to the variability in direction of ripple cross-

laminations, a high number of measurements were collected from ripple foresets to 

ensure an accurate palaeoflow direction. The main outcrop face consists of a 3.5 km long, 

N-S depositional dip section. Several E-W orientated gullies to the east of the main outcrop 

face provide additional depositional strike control (Fig. 4.3A). Thin siltstone packages 

within the regional claystones between Fan 2 and Fan 3 provide local correlation datums.  
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Within the Wilgerhout area of Unit A5 a total of 17 sedimentary logs along a ~ 500m 

depositional dip (W-E) section was collected (Fig. 4.3B) (See Appendix B.3). The regional A5 

to A6 mudstone (Sixsmith et al., 2004; Flint et al., 2011; Cobain et al., 2015) was used as 

the datum for all correlations. A total of 44 palaeocurrents was measured (See Appendix 

B.2) solely from ripple cross-laminations and give an average eastward directed palaeoflow 

(082°) (Fig. 4.3B). Where the tectonic tilt was > 20° the azimuth of well exposed planar 

foresets was measured and restored. 

 

4.5 Facies associations 

The deep-water deposits of the Karoo Basin show a limited grain size distribution ranging 

from claystone to fine-grained sandstones. Both Fan 3 and Unit A consist of mainly thin-

bedded siltstones and very fine- to fine-grained sandstones. Flow conditions were 

interpreted from the described facies characteristics. A total of six distinct facies 

associations was identified based on field observations and are described in detail below. 

Facies associations are closely based on previous Karoo Basin studies (Johnson et al., 2001; 

van der Werff and Johnson, 2003; Grecula et al., 2003a; Hodgson et al., 2006; Prélat et al., 

2009; Brunt et al., 2013a). 

4.5.1 Thick structureless sandstones (Fa1) 

Thick (>1 m) fine-grained sandstone beds with little to no internal structure can form 

amalgamated sandstone packages up to 5 m thick and are tabular (tens to hundreds 

metres wide). Weak normal grading is observed at bed tops, where planar- and ripple-

cross lamination may be preserved. Locally, bed bases and/or tops can show planar 

laminations (section 4.5.2) and/or banding (section 4.5.3). The sandstone beds can contain 

a minor amount of dispersed sub-angular mudstone clasts (Fig. 4.4A). Flame structures and 

tool (drag) marks are observed at bed bases.  
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These deposits are interpreted as rapid fall-out from sand rich high-density turbidity 

currents (Kneller and Branney, 1995; Stow and Johansson, 2002) with clasts representing 

traction-transported bedload (see section 4.5.2 and 4.5.3 for interpretation of planar 

laminated and banded intervals). Flame structures are associated with syn-depositional 

dewatering (Stow and Johansson, 2002). 

 

Figure 4.4 Representative photographs of main sedimentary facies in the case study areas, 
with (A) structureless fine-grained sandstone with floating siltstone clast (Fa1) – Unit 
A5; (B) Interpreted photograph showing upward steepening climbing ripple-
laminated sandstone bed passing into stoss-side preserved climbing ripples (Fa2) – 
Fan 3 (C) Banded sandstone (Fa3) – Unit A5; (D) Lateral discontinuous thin-bedded 
siltstones and sandstones with small-scale erosive marks – UnitA5 (Fa4-2). Difference 
in scale between pictures has been notified.   

 

4.5.2 Medium-bedded laminated sandstones (Fa2) 

These medium- to thick-bedded (0.2 to 3 m thick), very fine-grained to fine-grained 

sandstones show various sedimentary structures. Ripple lamination, in particular climbing 

ripple lamination, is abundant (25-70% of all laminated sandstones), showing high angles 

of climb with stoss-side preserved lamination (>45° on stoss-side preserved laminae) (Fig. 

4.4C). Some beds show a clear upward increase in the angle of climb and proportion of 
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stoss-side laminae preservation. Where planar lamination is present it is commonly at bed 

bases. Bases of thicker-bedded structured beds are sharp and the basal part is commonly 

structureless. Bed tops show abrupt normal grading to fine siltstone. Bed geometries can 

show lateral thickness variations on tens of metres scale.  

High angles of climb and stoss-side preservation in ripple-laminated sandstones are 

indicative of rapid unidirectional aggradation rates (Jopling and Walker, 1968; Allen, 1973; 

Jobe et al., 2012; Morris et al., 2014a). When sedimentation rate exceeds the rate of 

erosion at the ripple reattachment point, the stoss-side deposition is preserved and 

aggradational bedforms develop (Allen, 1973). This style of tractional deposition is 

attributed to rapid deceleration of the flow and deposition from moderate-to low-

concentration turbidity currents (Allen, 1973; Jobe et al., 2012). The planar laminations 

within the structured sandstones are interpreted to be deposited under upper stage plane 

bed conditions (Allen, 1984; Talling et al., 2012).  

4.5.3 Banded sandstones (Fa3) 

This facies association comprises medium- to thick-bedded fine-grained sandstones (20 to 

200 cm, on average 40 cm), with diffuse laminae of over 1 cm thickness (Figs. 4.4B, 4.5A2). 

This style of lamination is characterised by an alternation between lighter and darker 

bands, and is referred to as banded sandstones. Lighter bands are well sorted and quartz-

rich, whereas organic fragments and/or mudstone clasts and micaceous materials are 

commonly found within the poorly sorted darker bands. The banding is dominantly planar 

and parallel to sub-parallel, but can be mildly wavy. Centimetre-scale scour surfaces and 

loading are common at the bases of lighter bands. Within thicker beds dominated by 

banded sandstone beds, the bases are structureless and sharp
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Figure 4.5 (A) Representative facies photographs from the Fan 3 feature. (A1) Thin-bedded sandstones and siltstones deposits showing the 
difference in the character below (Fa4-1) and above (Fa4-2) the basal erosion surface. (A2) Internal truncation within medium-bedded 
banded sandstone. (A3) Truncation surface on top of thin-bedded fine-grained deposits with structured (rippled) sandstone on top with 
mudstone clast conglomerate at the base. (A4) Undulating basal erosion surface truncating thin-bedded deposits. (A5) Photopanel of the 
steep stepped southern margin with the locations of A1 & A2 indicated.  (B) Representative facies photographs of Unit A5 feature indicated 
in Fig.4.11C with (B1) Thin-bedded siltstones interbedded with occasional thin coarse-grained sandstone. Individual siltstone beds show 
thicknesses >3cm (Fa4-2). (B2) Small scale soft-sediment deformed sandstones (Fa6). (B3) Composite erosion surface with initial mudstone 
clast conglomerate and banded sandstones, with laminae parallel to the erosion surface, on top. (B4) Pinchout of sandstone bed within 
siltstone thin-beds of the western margin indicated by the white line. 
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Banded sandstones differ from planar-laminated sandstones due to the thickness of the 

laminae (>1 cm), the thickness of the laminated interval within individual event beds (>1 

m) and the absence of any major grain size differences between laminae. The observations 

indicate highly concentrated, aggradational but fluctuating flow conditions. These 

conditions are present during deposition in traction carpets under high-density turbidity 

currents (Lowe, 1982; Sumner et al., 2008, 2012; Talling et al., 2012; Cartigny et al., 2013) 

and have not been linked to a generic flow regime. This is comparable to the H2 division of 

Haughton et al. (2009) and the Type 2 tractional structures of Ito et al. (2014).  Combined 

with the thickness of individual beds within this facies group, these deposits support an 

interpretation of high aggradation rate and/or possibly long-duration of individual events.  

4.5.4 Thin-bedded sandstones and siltstones (Fa4) 

Thin (<20 cm) very fine-grained sandstones are interbedded with laminated siltstones (<1 

cm to 5 cm). Ripple lamination, including low-angle climbing ripple lamination, is common 

within the sandstone beds. This facies association group can be subdivided into 1) tabular 

sandstones with planar and ripple laminations (Fa4-1), and 2) lenticular sandstones and 

siltstones associated with numerous centimetre-scale erosion surfaces (Fa4-2; Fig. 4.5A1). 

Locally, Fa4-2 sandstone beds contain mudstone clasts (<1 cm) (Fig. 4.5A3) and can be 

associated with mudstone and siltstone clast conglomerates (max 0.5 m thick, 1-2 m long) 

that are clast-supported with a fine-grained sandstone matrix. Within Unit A5, thin (<5 cm) 

medium-grained, poorly sorted lenticular sandstone beds that are at least 10 m long (Fig. 

4.5B1) are associated with Fa4-2 siltstones. The Fa4-2 siltstones of Unit A5 are thicker 

bedded (>3 cm) (Fig. 4.5B1).  

The tabular bed geometry and predominance of current ripple lamination in Fa 4-1 are 

interpreted to indicate deposition from lower phase flow conditions within sluggish dilute 

turbidity currents (e.g., Allen, 1984). The occasional planar laminated sandstone indicates 
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upper phase flow conditions (Best and Bridge, 1992) but with a transition to lower phase 

flow conditions due to ripple-laminated tops.  

The Fa 4-2 group supports a higher energy environment compared to the FA4-1 group, 

because of the presence of mudstone clasts and numerous erosion surfaces. The fine-

grained siltstone deposits of the Fa4-2 group are interpreted to represent a combination of 

the tails of bypassing turbidity currents, lag formation and continued reworking of the 

substrate by long lived turbidity currents, similar to channel-margin deposits (Grecula et 

al., 2003a, Brunt et al., 2013a; Stevenson et al., 2015). The mudstone clast conglomerates 

are interpreted as bedload material, derived from a mud-rich substrate, and therefore 

represent lag deposits of highly energetic bypassing turbidity currents. This facies 

association shares many similarities to the sediment bypass facies identified within the 

CLTZs of sand-detached lobe systems in the Laingsburg area (van der Merwe et al., 2014). 

Fluctuations between depositional and erosional processes results in the interbedding of 

siltstones and sandstones, including thin and lenticular medium-grained sandstone beds, 

and multiple erosion surfaces (Stevenson et al., 2015). The presence of unusually thick 

siltstone beds, and medium-grained sandstones, which are very rare in the Ecca Group, 

within the Unit A5 Fa4-2 facies group is evidence of localised deposition. The climbing 

ripple lamination within thin-bedded sandstones indicates rapid aggradation rates (Allen, 

1973; Jobe et al., 2012).  

 

4.5.5 Soft sediment deformed (SSD) deposits (Fa5) and claystones (Fa6)  

The Fa5 facies group is represented by localised tightly folded and contorted heterolithic 

units (0.2-0.5 m thick) of thin-bedded siltstones and sandstones (Fig. 4.5B2). Fa5 

represents a minor portion of the infill (<1%), the deposits rarely exceed 2 m in length with 

deformation structures of 10’s of centimetres in width and occurs only within the basal 

infill towards the margins of both features in close association with Fa4-2. Thick, regionally 
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extensive units of Fa6 claystones occur as drapes to the deepwater sandstone units in both 

depocentres. 

Due to their marginal location and limited proportions, the contorted thin bed units are 

interpreted to represent local remobilisations, above erosional relief. Fa 6 represents 

condensed intervals of hemipelagic deposition, during periods of regional shutdown in 

coarse-grained sediment supply (Hodgson et al., 2006; Flint et al., 2011). 

4.6 Depositional architecture 

Both the Fan 3 and the Unit A5 feature are defined by composite and asymmetric basal 

erosion surfaces that exceed the extent of the exposures (~350 m long in A5; ~1000 m long 

in Fan 3) and incise 15-20 m into underlying deposits. The palaeoflow directions of 

underlying and overlying deposits indicate that they are orientated sub-parallel to regional 

palaeoflow directions and that the updip margins are highly irregular. The Fan 3 exposure 

is orientated 150-330° with a 340° average palaeoflow at this location (n = 435).  The Unit 

A5 exposure is orientated 075-255° with a 082° average palaeoflow (n = 44). The type and 

distribution of sedimentary facies and internal stacking patterns differ between the two 

cases, and are discussed separately. 

 

4.6.1 Fan 3 feature; Tanqua depocentre 

The location of the Fan 3 erosional feature (Fig. 4.6) is in the middle of a north-south 

orientated outcrop in the Kleine Riet Fontein area (Figs. 4.1, 4.6). Mapping of thickness, 

facies, and system-scale sedimentary architecture with the lack of channel-fills in this area 

compared to the Ongeluks River area to the south-east supports a proximal off-axis 

environment (Johnson et al., 2001; Hodgson et al., 2006; Jobe et al., 2012) (Fig. 4.3A). The 

overall palaeoflow is northwards (Fig. 4.7). 
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Figure 4.6. Facies correlation panel of main section (solid line in Fig. 4.3A) of the erosional feature at Kleine Riet Fontein in Fan 3 with 
palaeocurrents shown, with n = number of measurements, μ = mean palaeoflow and σ = standard deviation. Solid white lines indicate bed 
boundaries. The fill is divided into a lower (LP) and upper package (UP) and a total of seven infill elements as indicated in the bottom right 
cartoon. The boundary between the lower and upper package is indicated by a light blue dashed line. Facies association 1 (Fa1) has been 
subdivided into structureless and banded and/or planar laminated facies; Facies association 2 (Fa2) has been subdivided into ripple and 
planar laminated facies.    
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The underlying deposits can be subdivided into a sandstone-prone package dominated by 

Fa2 and an overlying siltstone-prone package dominated by Fa4 (Figs. 4.6, 4.7). A minor 

stratigraphic change in mean palaeoflow is identified between these two packages, from 

NNE (033°) to NNW (336°) (Fig. 4.7). The feature shows an erosional cut into the siltstone-

prone package. All Fan 3 deposits below and above the basal erosion surface extend 

beyond the study area and are therefore more laterally extensive than the erosional 

feature itself. The basal erosion surface forms a series of metre-scale steps on the steep 

(max. 50°) updip southern margin (Figs. 4.5A4, 4.6). The full geometry of the northern 

margin is obscured, but the overall thinning of the fill suggests a low-angle confining 

surface (Fig. 4.6). Sedimentary sections taken towards the east (Fig. 4.3A) of the main N-S 

profile (Fig. 4.6) indicate eastward shallowing of the basal erosion surface and thinning of 

the infill directed perpendicular to regional palaeoflow (Fig. 4.8A).  

The architecture of the fill is established by identification of elements, characterised by 

abrupt changes in bed thickness and facies across bounding surfaces (Figs. 4.6, 4.9, 4.10). 

The infill is subdivided into seven elements that are grouped into two distinct packages 

based on difference in facies proportions and across a composite erosion surface (Figs. 4.6, 

4.8B). The lower package is up to 6.5 m thick and comprises elements 1 and 2 separated by 

an internal truncation surface and abrupt changes in bed thickness (Fig. 4.6). Both 

elements comprise (Fig. 4.8B) thin-bedded siltstones and climbing ripple laminated 

sandstones (Fa4-2) containing small (1-4 cm) mudstone-chips and minor (20-40 cm thick) 

folded thin-bedded deposits (Fa5). The lower package is only present in the northern part 

of the fill. The upper package is up to 12 m thick and comprises elements 3-7 (Figs. 4.6, 4.9, 

4.10). The upper package elements are predominantly medium- to thick-bedded laminated 

sandstones (Fig. 4.8B) including beds with upward steepening climbing ripple-lamination 

with increasing stoss-side preservation (Fa2) (Fig. 4.4C).  
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Figure 4.7. Palaeocurrent distribution within the Kleine Riet Fontein area (Fan 3) subdivided 
into underlying, fill and overlying deposits. The asterisk shows the more detailed 
stratigraphic change in palaeoflow direction as also indicated in the main correlation 
panel of Fig. 4.6 (K7). Background image taken from Google Earth. 
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Each of these elements shows lateral thickness changes (scale of metres) and there is a 

transition to more thinly-bedded deposits (Fa4) towards the margins of all elements (Fig. 

4.6) which were not truncated. Elements 3, 4 and 5 are more laterally restricted (Figs. 4.9, 

4.10) and show more substantial bed thickness variability compared to the upper elements 

(6 and 7). Element 4, and to a lesser extent element 6, thicken where the underlying 

elements thin (Figs. 4.6, 4.9). Elements 5 and 7 contain some banded sandstones (Fa3) 

directly overlying the basal erosion surface at the southern margin (Fig. 4.5A2), which show 

a northward facies transition to structureless sandstone (Fa1). Elements 3, 4 and 5 (Figs. 

4.9, 4.10) show bedsets (3-7 m thick) that comprise four to five 0.5 to 2.0 m-thick 

dominantly climbing-ripple laminated sandstone beds, which are interbedded with thin 

siltstones (<0.1 m). They are thickest near the southern margin, and pass into thin 

siltstones (<5 cm) in a northward direction (over 50-150 m). Successive pinchouts occur 

southward, such that the beds shingle updip. Where normally graded sandstone beds 

thicken they amalgamate, as can be seen in element 5 (Fig. 4.10B). Due to accessibility 

issues, the exact orientation of the bedding is difficult to measure directly, but outcrop 

sections of elements 3 and 5 (Figs. 4.9, 4.10) indicate a shallow southward (updip) 

depositional dip (a few degrees). In addition, beds in element 3 dip upstream 

approximately 2-4° relative to the underlying laterally extensive bedding (Fig. 4.9).  

  



69 

 

Figure 4.8. (A) Fence diagram showing the 3D architecture of the Kleine Riet Fontein (Fan 3) 
erosional feature. Palaeoflow of the underlying thin-bedded deposits is indicated 
(average = 336°). The infill thins-out both in the eastward and southward directions. 
See Figure 4.3A for log locations. (B) Detailed log of the fill (K8, see Figs. 4.2,4.6 for 
location) showing the division in infill elements. Element 3 pinches out at K8. 
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Elements 6 and 7 do not preserve clear bed stacking patterns, although lateral variability in 

bed thickness is observed. Within the individual elements there are no clear vertical 

trends, however the combination of the upper and lower packages together forms a 

stepped coarsening and thickening upward profile (Fig. 4.8B) within the axis of the feature. 

 

Figure 4.9. (A)Panoramic view of infill element 3, with (B) Abrupt bed pinch-out in the 
northern direction, and (C) Truncation of elements in southern direction. Location of 
(A) is indicated in Figure 4.10.  

 

The palaeoflow patterns within the erosional feature in the Kleine Riet Fontein area are 

diverse and show lateral and stratigraphic variations. The lower package preserves a 

dominant south-easterly orientation (134°) within element 1 at its most southern limit, 

which becomes more eastward (093°) within element 2 (Fig. 4.6, K7). About 200-300 m to 

the north, element 2 has a dominant NNE to NE (025° – K8, 035° – K9; Figs. 4.6, 4.7) 

palaeoflow direction. In the upper package, there is a NE to SE spread (average = 096°) 

except for element 7, which shows an overall NE direction (028°) at its northern limit and a 
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more NNW direction (345°) near its southernmost limit (Fig. 4.6). The thin-bedded deposits 

above the fill of the feature have a NNE palaeoflow (028°, n=57), which is more closely 

aligned to the underlying deposits (Fig. 4.6) and the regional trend.  

 

Figure 4.10. Panoramic photopanels and division of infill elements, displaying the internal 
architecture within the Kleine Riet Fontein erosional feature (Fan 3). The seven 
elements have a complicated bed geometry and stacking patterns with abrupt pinch-
outs southwards and northwards. Element 4 (Inset A) and 5 (Inset B) both show 
stacked bedsets with depositional dips in an overall southern (updip) direction. The 

boxes show the locations of inset A, B and Figure 4.9.  

 

A second large-scale erosional feature 800 m to the north (around K13, Fig. 4.3A) is 

situated at the same stratigraphic level in Fan 3, and shares many similarities in 

architecture and infill facies. The infill of this erosional feature exhibits an average NNW-

directed (330°) (n=17) palaeoflow, similar to the underlying thin-bedded deposits. An 

irregular erosion surface (~15°) has a measured ENE orientation (070°), which is in dip 

direction to palaeoflow and is overlain by structured sandstones. Three hundred metres to 

the east, another erosion surface (~6°) is approximately orientated NNW (335°), which is 

parallel to the palaeoflow, and is evident from discordance in bed dips within the thin-
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bedded deposits. The basal surface has a minimum width of 500 m perpendicular to 

palaeoflow and cuts at least 10 m into underlying deposits. Close to the western margin 

the fill consists solely of Fa2 facies, but eastwards where the fill thickens, it consists of a 

lower package of thin-bedded siltstones and sandstones (Fa4-2) and an upper package of 

structured sandstones (Fa2) that are locally amalgamated. 

4.6.2 Unit A5 feature; Laingsburg depocentre 

The erosional feature at Wilgerhout lies in the upper half of Unit A5 (60-70 m from the 

base) within a succession of stacked lobes locally cut by sand-rich channel-forms (Prélat 

and Hodgson, 2013). A large channel (>600 m wide and >15 m deep) filled by amalgamated 

structureless sandstones (Fa1) is present at the top of the A5 succession in this location. 

The association of channels and lobes in this area supports a base-of-slope setting, within 

the upper part of the Unit A5 system based on regional mapping (Sixsmith et al., 2004; 

Prélat and Hodgson, 2013). The exposure is limited to a 1 km long E-W orientated section. 

Regional palaeoflow patterns are towards the ENE (Sixsmith et al., 2004), which is 

consistent with measurements from the infill deposits (Fig. 4.11). The section shows a 

steep (2-50°) and stepped western (updip) margin.  

The fill consists of three distinct sedimentary packages. A lower package (1.5-5 m thick) 

comprises thin-bedded siltstones with rare banded or ripple laminated fine-grained 

sandstone beds (Fa4-2) (Fig.4.11). Locally, thin (<30 cm) mudstone clast conglomerates 

directly overlie the basal erosion surface. Multiple small-scale (<20 cm deep) cross-cutting 

erosional surfaces incise into thin-bedded siltstones in the basal ~0.5 m of the fill, but 

decrease towards the top. Thin (2-3 cm) and lenticular moderately sorted medium-grained 

sandstones are present within the siltstones and individual normally graded siltstone beds 

are thick (> 3 cm) (Fig. 4.5B1). The middle package (0.5-10 m thick) comprises medium-

bedded banded (Fa3) and structureless sandstones (Fa1) interbedded with siltstones, 

which pass abruptly from sandstone-dominated to siltstone-dominated (Fa4-2) associated 
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with bed pinch-out at the western margin (Fig. 4.5B3). Some minor tightly folded deposits 

(Fa5) (Fig. 4.5B2) occur within the siltstone dominated western margin succession. The 

upper package (3-8.5 m thick) comprises thick-bedded sharp-based structureless partially 

amalgamated fine-grained sandstones (Fa1) interbedded with the occasional banded 

sandstone and thin-bedded siltstone (Fig. 4.11).  

This package extends beyond the limits of erosional confinement, but increases in 

thickness above the deepest point of the basal erosion surface. Within all three infill 

packages no clear vertical stratigraphic trends have been observed. However, the 

combination of the three infill packages together (Fig. 4.11B –W15) shows a stepped 

coarsening- and thickening-upward trend above the basal surface. Above the upper 

package a 4 m-thick fining- and thinning-upwards unit is present (Fig. 4.11). As these 

siltstone-prone deposits are tabular, they are not considered to be part of the fill.  
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Figure 4.11. (A) Panoramic view of the Unit A5 case study showing the undulating western (updip) margin. (B) Facies correlation panel of the Unit 
A5 feature and W15 sedimentary log of scour-fill showing a coarsening- and thickening-upward pattern within the infill and a fining- and 
thinning-upward trend above the fill. (C)  Zoomed-in section of the western margin. Locations of the Unit A5 facies photos within Figure 4.5 
are indicated.   
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4.7 Discussion 

4.7.1 Origin and infill of erosional features  

The average palaeocurrents from underlying and overlying deposits indicate that the large 

asymmetric erosion surfaces described from Fan 3 (Tanqua) and Unit A5 (Laingsburg) are 

dip-sections (Figs. 4.3, 4.6, 4.11). The steeper upstream surfaces dip at angles of 4-50° (Fan 

3) and 2-50° (Unit A5), with prominent metre-scale steps and multiple erosion surfaces 

indicating the composite nature of the basal surface. In the Kleine Riet Fontein area (Fan 

3), the transverse to downstream section is shallow (~3.5°) and smooth (Fig. 4.6), and 

shows prominent asymmetry in three dimensions with shallowing of the basal surface 

perpendicular to the regional palaeoflow (Fig. 4.10A). Palaeocurrents within the basal infill 

are more diverse (ranging from N to SE) than the underlying and overlying deposits (NNE-

NNW), with palaeoflow differences of up to 180° (Fig.4. 7).  

An asymmetric and composite basal erosional surface with stacked smaller-scale elements 

could support interpretation of a sinuous submarine channel-fill. However, in a cut through 

a sinuous channel-fill, the general palaeocurrent is expected to be dominantly parallel to 

channel banks (dip sections) (Parsons et al., 2010; Wei et al., 2013; Sumner et al., 2014) 

and are only rarely found to be at high angles to the basal surface (Pyles et al., 2012). 

Known exhumed examples of outer bank deposits have relatively higher energy facies such 

as conglomerates, and coarse-grained and/or amalgamated sandstones (e.g., Young et al., 

2003; Labourdette et al., 2007; Hodgson et al., 2011; Janocko et al., 2013) compared to 

inner bank deposits, which does not match with the observed distribution of facies and the 

relatively low-energy character of the Kleine Riet Fontein infill. Furthermore, channel 

sinuosity is predicted to be low for the slope gradients of base-of-slope and basin-floor 

channel bends (e.g., Clark et al., 1992 – close to 1.0 sinuosity at 1:1000 slope angles), 

especially in sand-prone systems without levee confinement and at mid-high 

palaeolatitudes (50-60°S) at which the Karoo system formed (Peakall et al., 2012, 2013; 
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Morris et al., 2014b; Cossu et al., 2015). Consequently, given the low predicted sinuosities 

it is unlikely that channel bend facies would be at high angles to the regional slope. In 

contrast, the morphology of the basal surface, the palaeocurrent pattern, and distribution 

of sedimentary facies support interpretation of large-scale scour-fills, with prominent 

steep headwalls and lower-angle downstream margins. Basin-floor channel-fills in the Ecca 

Group have been described by several authors (e.g., Johnson et al., 2001; Sixsmith et al., 

2004; Sullivan et al., 2004; Brunt et al., 2013a), and are dominantly characterised by 

structureless sandstone, highly amalgamated in the axis of the fills and more thin-bedded 

towards the margins and top of the fills. Where well preserved, the basal erosion surface 

and facies distribution of basin-floor channels are symmetrical (Sullivan et al., 2004; Luthi 

et al., 2006), and typically ~250-350 m wide and 15-20 m thick (Pringle et al., 2010; Brunt 

et al., 2013a). The large-scale scour-fills described, therefore, are distinctly different to the 

published examples of basin-floor channel fills from the Karoo Basin in terms of their 

architecture, facies types and distributions, and relationship of palaeoflow to the bounding 

surface, as well as to sinuous channels from other settings. The erosional feature within 

the Kleine Riet Fontein area of Fan 3 has been previously interpreted as a channel-fill. 

Morris et al. (2000) classified it as a crevasse channel-fill, whereas van der Werff and 

Johnson (2003) interpreted it as the distal depositional part of an overbank channel-fill 

with a SE-NW orientation. Implicit in both interpretations was that the depositional 

architecture is different to the basin-floor channel-fills, at the same stratigraphic level 7-8 

km to the east in Ongeluks River (e.g., Sullivan et al., 2004; Luthi et al., 2006). 

The basal fine-grained fill (Fa4-2) in both scour-fills is interpreted to indicate sediment 

bypass and the deposition of low-energy tails of flows. The interpretation of thin-bedded 

deposits indicating sediment bypass has been previously made for channel-fills (e.g., 

Beaubouef and Friedmann, 2000; Grecula et al., 2003a; Brunt et al., 2013a; Hubbard et al., 

2014; Stevenson et al., 2015). However, the thicknesses of individual siltstone beds (>3 cm) 
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within Unit A5 fill is distinctive, and is interpreted to indicate the capture of flow tails in a 

scour depression, in a similar manner to thick siltstones in internal levee successions (Kane 

and Hodgson, 2011). In the Kleine Riet Fontein feature (Fan 3), the diverse palaeoflow 

directions in the basal siltstone units suggest deflection and spreading of flow at the 

upstream end. Complex flow patterns are known to be associated with flutes and scours 

(e.g., Eggenhuisen et al., 2011) with flows exhibiting a recirculating separation cell that 

forms downstream of the scour lip as the basal high velocity part of the flow is jetted over 

the depression (Allen, 1971; Farhoudi and Smith, 1985; Karim and Ali, 2000). This may 

occur in both subcritical and supercritical flows. When the palaeoflow patterns of element 

2 (at K7, K8, K9) are compared with the streamline patterns of the spindle-shaped 

erosional marks of Allen (1971), and assuming a scour orientated with the flow direction of 

the underlying deposits (336°), there is a close fit in terms of variance and spread (Fig. 

4.12). Therefore, the observed palaeoflow patterns can be explained by the presence of a 

flow separation cell and the generation of reversed bedload transport at the bottom of the 

flow when passing through the depression (Fig. 4.12).   

The second erosional feature located 800 m downstream of the Kleine Riet Fontein scour is 

similar in architecture and fill. It shows erosion and downcutting surfaces both 

perpendicular and parallel to regional palaeoflow. The morphology suggests this second 

erosional feature is also a large composite scour-fill (>300 m wide). As this northern scour 

is at the same stratigraphic level, it indicates there may be a larger area of erosional 

bedforms present. This supports Jobe et al. (2012), who interpreted Kleine Riet Fontein as 

an area that received unconfined flows. A spatial distribution of multiple scour-fills in this 

proximal off-axis area adjacent to distributive channels in Ongeluks River (Fig. 4.3) supports 

interpretation of a channel-lobe transition zone close to the base-of-slope.  
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Figure 4.12. Streamlines based on Allen (1971) and possible linkage to lateral and 
stratigraphic variance observed at K7, K8 and K9 with n = number of measurements, 
μ = mean palaeoflow and σ = standard deviation.  These streamlines account for an 
idealised megaflute morphology with an orientation of 336° (based on underlying 
deposits). See Figure 4.6 for log location and exact stratigraphic intervals.    

 

4.7.2 Flow-scour dynamics  

The merging of multiple erosion surfaces at the steep and stepped upstream margin of 

both scour-fills point to their composite origin, with multiple flows shaping the morphology 

of the basal surface. The basal successions of both scour-fills are similar. However, bed 

architecture, stacking patterns, erosion surfaces, and facies of the upper elements (3-7) in 

the Kleine Riet Fontein feature point to a more complicated interaction between flow and 

seabed relief in a later stage of scour evolution.  
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Figure 4.13. Interpretation of the Kleine Riet Fontein (Fan 3) erosional feature based on the 
infill elements. It is unknown how far the deposits of element 1, 2 and 3 extended on 
the southern margin as the basal surface of element 5 modified the previous infill. 
The palaeocurrent distribution of the underlying thin-beds is orientated to the NNW 
(336°).  It must be noted that this section includes a significant change in orientation 
around log K6 from 345° (almost parallel to the underlying palaeoflow) to 030° 
(transverse to the underlying palaeoflow), indicated within the map at the bottom 

right. Image taken from Google Earth.   

 

In the Unit A5 feature, the irregular basal surface suggests that, after initial development 

of the scour, the upstream margin was weakly modified, with little evidence of headward 

erosion. Minor internal erosion surfaces exist, but generally beds taper towards the 

upstream margin. The stratigraphic transition from the siltstone- to sandstone-prone 

deposits points to initial sediment bypass (multiple erosion surfaces and medium-grained 

sandstone lenses) followed by a period of aggradation (structureless Fa1 and banded 

sandstones Fa3) as the depression filled. The tabular nature of the bedding and the lack of 

clear supercritical bedforms, suggests a subcritical nature for the infill.   

In the case of the Kleine Riet Fontein scour, the evolution of the scour is assessed from the 

architecture and stacking patterns of the elements (Fig. 4.13). The position of the upstream 



80 

margin of the scour during deposition of element 1 was downstream of the current 

position of element 2, which was deposited after another phase of erosion, evident from 

the stepped basal erosional surface (Fig. 4.6). Element 3 shows a similar southward 

migration after reshaping of the updip margin and only partial infill of the depression. 

Element 4 is interpreted to have largely filled the accommodation in the downstream and 

lateral part of the scour. This was truncated by another erosional event that reshaped the 

updip margin and removed large parts of element 2 and 3. Element 5 and 6 have slightly 

erosional bases, but mostly infill available accommodation by stacking in a downstream 

direction. Element 7 has a more uniform thickness but modified the updip margin (Figs. 

4.6, 4.13). The interpreted evolution of the basal surface suggests that the initial scouring 

phase(s) may not be preserved due to sequential deepening and widening of the scour. 

The stacking of the elements and internal erosion surfaces in the Kleine Riet Fontein scour-

fill indicate upstream migration (Fig. 4.13) and lengthening of the original scour surface 

through headward erosion. Headward erosion, or backward incision, occurs in both 

supercritical and subcritical flows (e.g., Izumi and Parker, 2000; Hoyal and Sheets, 2009). 

The sedimentary facies and bed geometries of the elements in the upper package are 

characterised by stoss-side preserved steep climbing-ripple dominated sandstones that 

indicate rapid localised fallout from relatively low-concentration turbidity currents. 

Climbing ripple lamination extends across almost the whole length of the scour-fill until in 

close proximity of the upstream head of the scour. The shallow (a few degrees) upstream 

depositional dip observed in a number of the infill elements (3, 4, 5) resemble backset 

bedding (Fig. 4.9). Backset bedding has been linked to abrupt changes in confinement (Ito 

et al., 2014), associated with the occurrence of a hydraulic jump (Jopling and Richardson, 

1966; Lang and Winsemann, 2013; Cartigny et al., 2014; Ito et al. 2014). The backset 

deposits, and the majority of the scour-fill, are characterised almost exclusively by climbing 

ripple-lamination (Fa 2). These deposits may be either the product of rapid settling from 

the downstream parts of hydraulic jumps as the scour migrated headward, or the products 
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of subsequent infill by subcritical currents after being previously cut by flows that 

underwent a hydraulic jump. The measurements of hydraulic jumps over giant scours in a 

natural gravity current demonstrate, however, that the hydraulic jump enhances upward 

fluid movement for large distances downstream of the hydraulic jump (Sumner et al., 

2013), and therefore minimises sedimentation within the scour. Additionally, the presence 

of climbing ripple lamination very close to the head of the scour suggests that this final 

phase was the product of depositional subcritical flows. In combination with the lack of 

evidence for any depositional features typical of supercritical conditions, other than the 

backset bedding in elements 3-5, the fill of the scour was predominantly by subcritical 

flows. Thus the inception, deepening, and sediment bypass phases of these giant scours 

may have been associated with hydraulic jumps in supercritical flows, whereas their infill 

was dominantly the product of later subcritical flows. This contrasts to the supercritical 

deposits interpreted in other examples of backset bedding (Jopling and Richardson, 1966; 

Lang and Winsemann, 2013; Cartigny et al., 2014; Ito et al., 2014). 

The infill character of the scour to the north of the main Kleine Riet Fontein scour is very 

similar, with a lower siltstone-prone package and an abrupt change into an upper climbing-

ripple dominated sandstone package. This suggests both features share a similar 

depositional history, which could be due to an internal control linked to an updip avulsion, 

or an external control such as a substantial change in turbidity current energy and/or size. 

Existing local seabed depressions consisting of partially filled scours could have triggered 

hydraulic jumps and subsequently reshaped their morphology in a similar manner in both 

scours, followed by lower energy subcritical flows, explaining the similarity in infill 

character. 

4.7.3 Preservation of giant scour-fills 

Within scour fields in modern systems, coalescence of scours is a common phenomenon 

(e.g., Parker, 1982; Macdonald et al., 2011a; Fildani et al., 2013; Shaw et al., 2013). It has 
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been emphasized that changes in the behaviour of flows as they pass over the erosional 

relief of small-scale scours leads to the development of larger depressions (e.g., Shaw et 

al., 2013). This could be due to either the development of flow separation zones, 

enhancing erosion, or the triggering of a hydraulic jump (Sumner et al., 2013).  

 

Figure 4.14. Cross plot of width and depth data of scours and megaflutes from ancient 
(outcrop) and modern systems. Scour data from Macdonald (2011a). Channel 
trendline is based on Clark and Pickering (1996). 

 

A scale gap remains, however, between scours documented from the modern seabed and 

megaflutes and scours interpreted from outcrop studies (Fig. 4.14). Exhumed scours of the 

scale described here, and filled with turbidites, have not been described in detail 

previously. However, the scale of these scour-fills coincides with the range known from 

modern-day scours (Fig. 4.14) in CLTZs (e.g., Kenyon et al., 1995; Wynn et al., 2002a; 

Macdonald et al., 2011a), which are able to reach significant dimensions due to their 
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composite character and upstream migration. This study shows that within sand-rich 

turbidite systems, such as in the Karoo Basin, scour-fills of dimensions documented from 

modern system can be preserved, and care is needed to discriminate them from 

submarine channel-fills.  

 

Figure 4.15. Conceptual model to explain different mechanism of long-lived composite 
scours preservation from the initial formation (T1) to final depositional configuration 
(T2) depending on the character of the infill: coarsening and thickening upward (A) or 
fining and thinning upward(B).  Two scenarios are proposed for coarsening- and 
thickening-upward infills (A): A1 – Scour preservation due to a position adjacent to an 
erosional channel during propagation with increased overbank deposition; A2 – Scour 
preservation at the maximum extent of channel propagation followed by infill by lobe 
retrogradation with decreased overbank deposition. Two scenarios are proposed for 
finning- and thinning-upward infills (B): B1 – Scour preservation due to a position 
adjacent to a leveed channel during propagation; B2 – Scour preservation due to 
channel avulsion and successive infill of scour by lobe fringe materials. 

Scours can be obliterated as channels propagate (Macdonald et al., 2011a) over lobes 

(Jegou et al., 2008; Macdonald et al., 2011b; Morris et al., 2014a). However, several 

mechanisms can be invoked to explain the preservation of large-scale composite scour-

fills: i) large-scale avulsion of the main feeder system prior to channel propagation into the 

scoured CLTZ area; ii) the presence of scours at the maximum extent of channel 
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propagation into the basin; and/or iii) lateral position during channel propagation. The 

character of scour fills will differ by the mechanism of preservation (Fig. 4.15). CLTZs are 

more laterally extensive areas (in modern systems ~500km - >10,000 km2) (Wynn et al., 

2002a) compared to channel systems, so that scours can be preserved adjacent to 

propagating channel-levee systems. The infill signal will depend on the nature of the 

channel system. During propagation of a leveed channel a fining- and thinning-upward infill 

will develop as higher parts of density stratified flows are stripped off during levee growth 

(Fig. 4.15 B1). In contrast, propagation of channels without levees could result in a 

coarsening- and thickening-upward profile due to the increasing volume of overspill as the 

channel propagates over the CLTZ (Fig. 4.15 A1). The exact infill style of scours adjacent to 

channels will depend on the rate of channel propagation to rate of scour infill. In the case 

of maximum channel propagation (Fig. 4.15 B2), coarsening- and thickening-upwards 

would be expected as the scour fills by sands during retrogradation of lobes. In the case of 

channel avulsion prior to complete fill of the scour, a fining- and thinning-upward profile 

would form from lobe fringe deposits (Fig. 4.15 B2). Both examples described here have a 

stepped coarsening- and thickening-upward infill (Figs. 4.6, 4.11). Within (A) of Figure 4.15, 

their depositional history is most likely related to (one of) the two presented preservation 

mechanisms (A1 and A2).The simple cut-and-fill character of the Unit A5 scour-fill, which is 

linked to initial bypass succeeded by increasing deposition that fits best with maximum 

channel propagation (Fig. 4.15 A2). In contrast, the composite infill of the Fan 3 scours 

indicates proximity to a high energy setting, such as adjacent to an erosional channel (Fig. 

4.15 A1).   

4.8 Conclusions 

This study reports the first detailed documentation of exhumed giant (>1000-1500 m long) 

turbidite-filled scours from deep-marine settings. Palaeogeographically, both scour-fills are 

constrained to base-of-slope channel-lobe transition zone settings. The scour-fills exhibit 
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composite and downstream-asymmetric basal erosion surfaces, with internal erosion 

surfaces. The sedimentary infills show stepped coarsening- and thickening-upwards trends, 

with the basal fine-grained deposits being associated with low-energy tails of bypassing 

turbidity currents and subsequent reworking. The simple infill architecture of the Unit A5 

scour suggests a rather straightforward cut-and-fill history, possibly preserved by being 

situated at the maximum extent of channel propagation. Palaeoflow patterns within the 

Fan 3 Kleine Riet Fontein scour indicate complicated deflected flow patterns, which 

supports interpretation of headward recirculation and downstream flow expansion. The 

facies and architecture of the Fan 3 Kleine Riet Fontein scour-fill, however, points to a 

more dynamic history of interactions between flows and the relief of the scour, resulting in 

a more complicated architecture with evidence for headward erosion and a series of large 

internal erosion surfaces. This is interpreted to be due to scour preservation adjacent to an 

erosional channel during propagation.  

The steep updip margins, stepped coarsening- and thickening upward successions of 

dominantly subcritical flow deposits, and internal palaeocurrent dispersal patterns 

contrast with laterally and stratigraphically adjacent basin-floor channel-fills. Despite their 

palaeogeographic setting and evidence for formation by hydraulic jumps, their fills, 

including backset deposits, do not support deposition from supercritical flows. 

Documenting the facies and architecture of scour-fills is important for the identification 

and description of areas dominated by sediment bypass in the rock record, and has 

consequences for the accurate geological modelling of CLTZs.  



86 

Chapter 5: 
Architecture and morphodynamics of sediment waves in an 

ancient channel-lobe transition zone 

 

 

5.1 Summary 

In modern systems, submarine channel-lobe transition zones (CLTZs) show a well-

documented assemblage of depositional and erosional bedforms, however their 

stratigraphic record is poorly constrained. Several locations from an exhumed fine-grained 

base-of-slope system (Unit B, Karoo Basin) show exceptional preservation of sandstone 

beds with distinctive morphologies and internal facies distributions. The regional 

stratigraphy, lack of confining surface, wave-like morphology, size and facies characteristics 

support an interpretation as sediment waves within a CLTZ setting. Some sediment waves 

show steep (10-25°) unevenly spaced (10-100m) internal truncation surfaces that are 

dominantly upstream-facing, which suggests significant spatio-temporal flow fluctuations. 

Their architecture indicates individual sediment wave beds are formed by upstream 

accretion, where each swell grows individually due to differential deposition rather than 

simultaneously as a sinusoidal wave. These depositional processes do not correspond with 

known bedform development under supercritical conditions. A combination of 

compensation-driven lateral switching of the flow and fluctuations around the critical 

Froude number are suggested to be responsible for their complicated architecture and 

facies patterns. A scale and formative process-based classification is applied for these 

sediment waves, as stacking behaviour may vary depending on the scale of observation. 

Differences in bedform characteristics between the two study areas are related to the 

position within CLTZ settings. The depositional architecture of turbidite bedforms highlights 

the importance of understanding the influence of dynamic erosional and depositional 

processes commonly present in channel-lobe transition zones. 
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5.2 Introduction 

Modern submarine fan systems are characterised by a wide range of depositional and 

erosional bedforms at channel-lobe transition zones (CLTZs) (Mutti and Normark, 1987; 

Normark and Piper, 1991; Palanques et al., 1995; Morris et al., 1998; Wynn et al., 2002a; 

2002b; Macdonald et al., 2011a). Bedforms are rhythmic features that develop at the 

interface of fluid flow and a moveable bed (e.g. Southard, 1991; Van der Mark et al., 2008; 

Baas et al., 2016). 

 

Figure 5.1 A) A planform view of crescent-shaped sediment waves on the Monterey Canyon 
floor from autonomous underwater vehicle-collected multibeam data. Modified from 
Paull et al. 2011. B) High resolution seismic-reflection profile collected across the Var 
Sediment Ridge in the Var Turbidite System showing kilometre-scale sediment wave 
architectures. Modified from Migeon et al. 2012.  

Sediment waves are commonly identified bedforms within CLTZs (Wynn and Stow, 2002; 

Wynn et al., 2002b), and have been extensively described from modern systems (Fig. 5.1) 

(Normark and Dickson, 1976; Damuth, 1979; Lonsdale and Hollister, 1979; Piper et al., 

1985; Malinverno et al., 1988; Praeg and Schafer, 1989; Howe, 1996; Kidd et al., 1998; 

Morris et al., 1998; McHugh and Ryan, 2000; Migeon et al., 2001; Normark et al., 2002; 
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Wynn and Stow, 2002; Wynn et al., 2002a; Heinïo and Davies, 2009). Few examples have 

been identified in ancient deep-marine settings (Winn and Dott, 1977; Piper and 

Kontopoules, 1994; Vicente Bravo and Robles, 1996; Ito and Saito, 2006; Ito, 2010; 

Campion et al., 2011; Ponce and Carmona, 2011; Morris et al., 2014b; Postma et al., 2014; 

Pemberton et al. 2016) (Fig. 5.2). Sediment waves show significant variation in grain size 

(from mud- to gravel-dominated), which has been linked to their depositional setting (Fig. 

5.2B) (Wynn and Stow, 2002), where the coarser-grained sediments typically concentrate 

within channels and channel/canyon mouth settings. Furthermore, ancient sediment 

waves are dominantly coarse-grained (coarse-grained sand to gravel), whereas modern 

examples are dominantly fine grained (silt to mud) (Figs. 5.2A, 5.2C). The lack of exhumed 

fine grained sediment waves has been ascribed to their long wavelength (Fig. 5.2C) (Piper 

and Kontopoulos, 1994).  

Some finer grained exceptions have been described from the Cerro Toro Formation by 

Campion et al. (2011) with 35% sandstone volume, and the Karoo Basin by Morris et al. 

(2014b) with shingled very-fine-grained sandstone beds, both from (proximal) external 

levee settings (sensu Kane and Hodgson, 2011).  

The stratigraphic record of sediment waves from CLTZ and channel-mouth settings is not 

widely documented (Figs. 5.2A, 5.2B). Vicente Bravo and Robles (1995) described 

hummock-like and wave-like depositional bedforms from the Albian Black Flysch, NE Spain. 

The hummock-like bedforms showed a sinusoidal pattern in transverse and longitudinal 

sections, which could be isolated but more likely form bedform fields with wavelengths 

ranging from 5 to 40 m and heights from a few decimetres to 1.5 m. The hummock-like 

bedforms were inferred to be genetically related to local scours and probably developed 

within a CLTZ setting. The wave-like bedforms seen in longitudinal sections exhibit 

symmetric to slightly asymmetric gravel-rich bedforms with wavelengths ranging between 

5 and 30 m and amplitudes from a few cm to 0.7 m.   
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Figure 5.2 Sediment wave dimensions (crest height versus wavelength) from modern and 
ancient systems grouped on the basis of type of dataset (A), setting (B) and grain size 
(C). Data taken from Normark and Dickson (1976); Winn and Dott (1977); Damuth 
(1979); Lonsdale and Hollister (1979); Piper et al. (1985); Malinverno et al. (1988); 
Praeg and Schafer (1989); Piper and Kontopoulos (1994); Vicente Bravo and Robles 
(1995); Howe (1996); Kidd et al. (1998); Morris et al. (1998); Nakajima et al. (1998); 
McHugh and Ryan (2000); Migeon et al. (2001); Wynn et al. 2002a; 2002b; Normark 
et al. (2002); Ito and Saito (2006); Heinïo and Davies (2009); Ito (2010); Campion et 
al. (2011); Ito et al. (2014); Ponce and Carmona (2011); Morris et al. (2014b); Postma 
et al. (2014). 
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Ponce and Carmona (2011) identified  sandy conglomeratic sediment waves  with 

amplitudes up to 5 m and wavelengths ranging between 10 to 40 m at the northeast 

Atlantic coast of Tierra del Fuego, Argentina. Ito et al. (2014) described medium- to very 

coarse-grained sandstone tractional structures from a Pleistocene canyon-mouth setting 

within the Boso Peninsula, Japan, with wavelengths up to 40 m and crest heights up to 2 

m. 

These coarse-grained examples from Japan, Argentina and Spain lack detailed internal 

facies descriptions and structure. Consequently, the recognition and detailed description of 

finer-grained sandstone-dominated depositional bedforms in channel mouth settings is 

lacking. Furthermore, it remains unclear which processes are responsible for the formation 

of sediment waves within CLTZ settings, as both initial deposition from highly-concentrated 

turbidity currents and subsequent reworking by lower concentration flows have been 

proposed (Wynn et al., 2002b). Here, multiple stratigraphic sections from well-constrained 

base-of-slope systems (Unit B, Karoo Basin) are documented in detail. These sections 

contain distinctive fine to very-fine sandstone depositional bedforms with complicated 

architectures, facies and stacking patterns associated with submarine channel-mouth 

settings. The aims of this chapter are: 1) to improve understanding of their depositional 

architecture and facies patterns, 2) to investigate bedform hierarchy and stacking patterns, 

and 3) to constrain their formative processes.  

5.3 Regional setting 

The southwest Karoo Basin is subdivided into the Laingsburg and the Tanqua depocentres. 

The Ecca Group comprises a ~2 km-thick shallowing-upward succession from distal basin-

floor through submarine slope to shelf-edge and shelf deltaic settings (Wickens, 1994; Flint 

et al., 2011). The deep-water deposits of the Karoo Basin have a narrow grain size range 

from clay to upper fine sand. Within the Laingsburg depocentre, Unit B, the focus of this 

study, is stratigraphically positioned between underlying proximal basin-floor fan deposits 
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of Unit A (e.g. Sixsmith et al., 2004; Prélat and Hodgson, 2013) and the overlying 

channelised slope deposits of the Fort Brown Formation (Unit C-G; e.g. Hodgson et al., 

2011; van der Merwe et al., 2014). Unit B comprises a 200m thick section at the top of the 

Laingsburg Formation (Grecula et al., 2003a; Flint et al., 2011; Brunt et al., 2013a), and is 

subdivided in three subunits, B.1, B.2 and B.3 (Flint et al., 2011; Brunt et al., 2013a). Unit B 

is well-exposed for more than 350km2 providing both down dip and across strike control 

(Brunt et al., 2013a) with over 15km long exposed sections along the limbs of the Baviaans 

and Zoutkloof synclines and Faberskraal anticline (Fig. 5.3A). The stratigraphic context, and 

the documented downdip transition from sandstone-prone channel-fills to lobe complexes 

(Grecula et al., 2003a; Pringle et al., 2010; Brunt et al., 2013a), supports an interpretation 

of a base-of-slope setting for Unit B in the study area.  

Brunt et al. (2013a) presented a depositional model for the complete Unit B based on data 

from 38 different localities. Subunit B.1 was interpreted to comprise two distinct base-of-

slope systems supplied by flows that entered the basin from the south. The base of subunit 

B.2 shows progradation in the most southern system, whereas a switch of feeder area from 

south to west is implied in the other. In the overlying subunit B.3, the extent of fining- and 

thinning-upward thin-bedded deposits incised by channel-complexes, is interpreted to 

represent an extensive channel-levee system on the lower slope (Brunt et al., 2013a).  
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Figure 5.3 A – Location map of the Laingsburg depocentre within the Western Cape. The 
transparent overlay with black lining indicates the total exposed area of Unit B. 
Important outcrop areas are highlighted, including the sections studied in this 
chapter: Doornkloof and Old Railway. B – Zoomed-in maps of the two sections 
including palaeocurrent distributions. The outcrop outlines are indicated by solid 
lines. Red line indicates Section I (Figure 5.4), blue line on DK-unit B2 represents 
Section II (Figure 5.6). 
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5.4 Methodology and dataset 

 Two areas were studied in detail (Fig. 5.3B): one located in the southern limb of the 

Zoutkloof Syncline (Doornkloof) and one located in the southern limb of the Baviaans 

Syncline (Old Railway) (Fig. 5.3). Stratigraphic correlations using closely-spaced sedimentary 

logs, photomontages, and walking out key surfaces and individual beds with a handheld 

GPS enabled construction of architectural panels. Where the exposure allowed sub-metre-

scale sedimentary logs, individual beds could be correlated over multiple kilometres. 

Within the Doornkloof area (Figs. 5.3B, 5.4), 11 long (>20-200m) sedimentary logs, 

supported by 31 short (<5 metres) detailed sedimentary logs were collected along a 2 km 

long E-W section (See Appendix B.3). Particular emphasis was placed on bed-scale changes 

in facies to construct detailed correlation panels. Additionally, a research borehole drilled 

330 m north of the studied outcrop section (DK01) intersected the lower 92 m of Unit B 

(Fig. 5.3). Within the Old Railway area (Fig. 5.3B), eight short and closely spaced (5-20m 

distance) detailed sedimentary sections were collected. Palaeocurrents were collected 

purely from ripple-laminated bed tops, with 117 palaeoflow measurements at Doornkloof 

and 87 from the Old Railway area (See Appendix B.2).
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Figure 5.4 Complete stratigraphic panel of the Doornkloof section showing the subunit subdivision and the location of the two detailed 
sedimentary sections (I, II) indicated and the position of the DK01 core. The TSI-silt (Brunt et al. 2013a) between the AB interfan and subunit 
B1 has been used as a stratigraphic datum. The middle correlation panel shows section I of Unit B1; the position of Bedform a and the 
palaeoflow patterns have been indicated. The bottom correlation panel shows the detailed facies distribution within Bedform a and its 
internal truncation surfaces. Outcrop photograph locations shown in Figure 5.5 ( 1-4 on the lowermost sub-panel) and Figure 5.6A have been 
indicated as well as location of correlation panel in Figure 5.6B.
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5.5 Facies and architecture 

Both study areas contain sandstone-prone packages that comprise bedforms with 

substantial downdip thickness and facies changes without confinement by an incision 

surface. The rate of thickness change and the range of sedimentary facies are markedly 

different from that documented in basin-floor lobes (e.g. Prélat and Hodgson, 2013). 

Depositional bedforms in both study areas are present within a sandstone-prone (>90%) 

package of dominantly medium-bedded structured sandstones, interbedded with thin-

bedded and planar-laminated siltstones. The grain size range is narrow, from siltstone to 

fine-grained sandstone, with a dominance of very-fine sandstone.  

5.5.1 Facies characteristics 

The sedimentary facies within the bedforms are subdivided into four types: structureless 

(F1), banded to planar-laminated (F2), ripple-laminated (F3), and sandstone and mudstone 

clast conglomerates (F4). 

F1: Structureless sandstones show minimal variation or internal structure and are uniform 

in grainsize (fine-grained sandstone). Locally, they may contain minor amounts of 

dispersed sub-angular mudstone clasts (1-10 cm). These sandstones are interpreted as the 

deposits from rapid fall-out from sand rich high-density turbidity currents (Kneller and 

Branney, 1995; Stow and Johansson, 2002; Talling et al., 2012) with mudstone clasts 

representing traction-transported bedload. Flame structures at the bases of structureless 

beds are associated with syn-depositional dewatering (Stow and Johansson, 2002). 

F2: Banded and planar-laminated sandstones show large variations in character. The 

differentiation between planar-laminated and banded facies is based on the thickness and 

character of the laminae. In banded sandstones, laminae are 0.5-3 cm thick and defined by 

alternations of clean and dirty sand bands, rich in mudstone chips and/or plant fragments. 
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Planar-laminations show <1 cm thick laminae that are defined by clear sand-to-silt grain-

size changes. Furthermore, bands can be wavy or convolute, show substantial spatial 

thickness variations (<1 cm) at small (<1 m) spatial scales, and exhibit subtle truncation at 

the bases of darker bands. Banded facies are mudstone clast-rich when close to underlying 

mudstone clast conglomerates. Several banded sandstone beds could be traced upstream 

into mudstone clast conglomerates.  

Planar-lamination and banding are closely associated, and in many cases are difficult to 

distinguish. This suggests that their depositional processes are closely related and are 

combined here into a single facies group. Planar laminated sandstones are interpreted to 

be deposited under upper stage plane bed conditions (Allen, 1984; Best and Bridge, 1992). 

The banded facies are interpreted as traction carpet deposits from high-density turbidity 

currents (Lowe, 1982; Sumner et al., 2008; Talling et al., 2012; Cartigny et al., 2013) and are 

comparable to the Type 2 tractional structures of Ito et al. (2014) and the H2 division of 

Haughton et al. (2009). It has been emphasised that deposits related to traction carpets 

can show large variation in facies characteristics (e.g. Sohn, 1997; Cartigny et al., 2013). 

F3: Climbing ripple-laminated sandstones, commonly with stoss-side preservation. Ripple 

lamination is most common at bed tops, but occasionally at bed bases, overlain by an 

amalgamation surface. Climbing ripple-lamination is interpreted as high rates of sediment 

fallout with limited tractional reworking from flows within the lower flow regime (Allen 

1973; Southard and Boguchwal, 1990). Locally, mudstone clasts (<1-4 cm) have been 

observed within ripple-laminated segments. These mudstone-clasts are interpreted to be 

the result of overpassing of sediments on the bed (Raudkivi, 1998; Garcia, 2008). When 

sedimentation rate exceeds the rate of erosion at the ripple reattachment point, the stoss-

side deposition is preserved and aggradational bedforms develop (Allen, 1973). This is 

indicative of high rates of sediment fallout (Jopling and Walker, 1968; Allen, 1973; Jobe et 
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al., 2012; Morris et al., 2014a), attributed to rapid flow deceleration from moderate-to-low 

concentration turbidity currents (Allen, 1973). 

F4: Mudstone clast conglomerate deposits form discrete patches (<20 m long and <0.3 m 

thick), which commonly overlie erosion surfaces. Mudstone clasts (<1 cm – 10 cm) vary 

from subangular to well-rounded. They are dominantly clast supported with a matrix of 

fine-grained sandstone. Mudstone clast conglomerates are interpreted as lag deposits (e.g. 

Stevenson et al., 2015) from energetic and bypassing high-density turbidity currents.   

5.5.2 Bed architecture: Doornkloof – Subunit B.1 

At Doornkloof (Fig. 5.3), subunit B.1 has an average thickness of ~5 m (Fig. 5.4) and is 

composed of thin- to thick-bedded sandstones, thin-bedded siltstones and lenticular 

mudstone clast conglomerates (0.1-0.3 m thick, 1-70 m wide) (Figs. 5.5-1,  5.5-2, 5.6). 

There are substantial lateral variations in bed thicknesses and sandstone-to-siltstone 

proportions along the 1.5 km long dip section (Fig. 5.4). Locally, medium- to thick-bedded 

sandstones occur, which comprise bedforms within a package of thin-bedded siltstones and 

sandstones. These bedforms show lateral changes to more tabular thin-bedded sandstones 

and siltstones (log 01/log 08 Fig. 5.4). Within the exposed section (~ 2 km), there are three 

sandstone-prone bedform-dominated sections (200 m to 300 m in length) separated by 

more siltstone-prone sections (150 to 400 m in length), which have an overall tabular 

appearance (Fig. 5.4). The Dk01 core (Fig. 5.4, 5.5) is located 330 m to the north of the 

western limit of Section I where Unit B.1 is a ~5 m thick package of interbedded thin 

structured sandstones and laminated siltstones (Fig. 5.4). Multiple erosional surfaces are 

present at the base, and overall in the DK01 core the Unit B.1 succession fines- and thins-

upwards. Palaeoflow of the B.1 subunit is dominantly ENE-orientated (082°) (Fig. 5.2B) but 

shows some deviation within the eastern part of the section (42 – Fig.5.4) towards the NNE 

(023°).  
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Figure 5.5 Representative outcrop photographs from Section I and II and descriptive DK01 
core log of Unit B1, with 1) Bedform a with ripple-top morphology on top of a local 
mudstone clast conglomerate deposit; 2) Internal truncation surface (dotted line) in 
banded division within Bedform a; 3) Mudstone clast conglomerate layer below 
Bedform a ; 4) Mudstone clast-rich banded section of Bedform a. 5) Lower section of 
westward orientated truncation surface in Bedform b; 6) Upper section of westward 
orientated truncation surface in Bedform b; 7) Banded sandstone division in Bedform 
b; 8) West-facing truncation surface in Bedform c. See Figure 5.4 and Figure 5.6 for 
locations. Interpreted position of Bedform a is indicated within the DK01 core log. 
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The medium- to thick-bedded sandstones within the sandstone-prone sections of Section I, 

orientated (079°-259°) subparallel to palaeoflow, show large lateral variations in thickness 

and facies. The bedforms comprise structureless (F1), planar-laminated to banded (F2), and 

ripple-laminated (F3) sandstones. The facies, architecture and thickness changes of one 

particular amalgamated bed (Bedform a) is described in detail (Fig. 5.3). Bedform a thickens 

(up to 2.5 m) and thins (<20 cm) multiple times, forming a down-dip pinch-and-swell 

morphology. Bedform a shows shallow erosion (<0.5m deep; <30m long) locally at the bed 

base and occasionally amalgamates with the underlying stratigraphy (Fig. 5.6A). Where it 

exceeds 0.5 m thickness, banded (F2) sandstone is dominant, occasionally underlain by 

structureless (F1) divisions, or with climbing ripple-lamination at the bed top (F3). Where 

Bedform a is thin (<0.5 m thick), it is dominated by climbing-ripple lamination (F3). Below 

Bedform a, mudstone conglomerate patches (<30 m long; 5-30 cm thick) can be observed 

at various locations over the complete section. In some locations (e.g. 16/18, Fig. 5.4) 

banded sandstone (F2) beds (Fig. 5.5-4) can be observed within the mudstone clast 

conglomerate patches. These banded beds pinch out or show a transition towards 

mudstone clast conglomerates upstream, and amalgamate with Bedform a downstream 

(Fig. 5.6A). At the same stratigraphic level as Bedform a, the DK01 core shows one 20 cm 

thick bed with angular mudstone clasts (<1-5cm), here correlated as the same unit. 

In Bedform a, six truncation surfaces (10-25°) are identified within the eastern limit of the 

section (Fig. 5.4), where it exceeds 1 m in thickness. All truncation surfaces are sigmoid-

shaped and flatten out upstream and downstream within the bed. Sigmoidal truncation 

surfaces are most dominant in the upper portion of the bed, where they are westward 

(upstream) facing. The five westward (upstream) orientated truncation surfaces are spaced 

15-20 m apart, and are associated with abrupt local upstream thinning. They cut banded 

(F2) and ripple-laminated (F3) sandstone facies, and are sharply overlain by banded 

sandstone facies (F2) with bands aligned parallel to the truncation surface. 
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Figure 5.6 A - Mudstone clast conglomerate patch at the bottom of Bedform a, with clean 
true-scale photopanel (top) and interpreted vertical exaggerated (Ve = 1.8) 
photopanel (bottom). It shows a basal erosion surface overlying thin-bedded 
sandstones, multiple ‘floating’ sandstone patches, upstream orientated pinch-out 
and downstream orientated amalgamation. Location of photograph is shown in the 
lowest panel of Figure 5.4. B – Facies correlation panel of local swell in Unit B.1. 
Bedform a is located at the base of the sandstone package. See middle panel of 
Figure 5.4 for location and lower panel of Figure 5.4 for symbol explanations.   

 

One eastward (downstream) orientated truncation surface (Fig. 5.5-3) in the lower part of 

the bed is observed at log 17 (Fig. 5.4). The abrupt upstream thinning (SW) and more 

gradual downstream thickening (NE) gives Bedform a, an asymmetric wave-like morphology 

in dip section. At abrupt bed thickness changes associated with steep truncation surfaces 

(>15°) (16/19/21 Fig. 5.4), shallow scour surfaces (<0.35 cm) can be observed cutting into 

the top surface of Bedform a, overlain and onlapped by thin-bedded siltstones and 

sandstones. Within the banded facies (F2), isolated lenses of ripple-lamination (F3) are 

present (up to 30-40 cm long and 10 cm thick) (Fig. 5.4 – log 19). Mudstone and siltstone 

clasts (0.2-5 cm diameter) dispersed throughout structureless (F1) sections are typically 
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well rounded, and rarely sub-angular. At the eastern limit of Section I stratigraphically 

below Bedform a, another ‘pinch-and-swell’ sandstone bed abruptly increases in thickness 

downstream and amalgamates with Bedform a (Fig. 5.4 – Log 21). Where this bed thickens, 

Bedform a thins abruptly (Fig. 5.3 – Log 23/24). The thin-bedded and siltstone-prone 

deposits overlying Bedform a show more laterally constant geometries, thicknesses and 

facies. However, around log 02/07 (Fig. 5.4), a package of sandstone beds thickens locally 

(>100 m long, <5 m thick) above Bedform a (Fig. 5.6B). Bedform a pinches and swells 

multiple times within this interval to a maximum of 0.5 m and comprises similar facies as 

downstream (F1, F2, F3), but lacks internal truncation surfaces. The bed directly above 

Bedform a thickens where Bedform a thins and vice versa (Fig. 5.6B). The sandstone beds in 

the top of the package show much more limited thickness variations (~10 cm) and 

dominantly comprise climbing ripple-laminated sandstone (F2). All sandstone beds above 

Bedform a either pinch-out or show a facies transition towards fine siltstone in both 

western and eastern directions (Fig. 5.4).  

5.5.3 Bed architecture: Doornkloof – Subunit B.2 

The sandstone bed morphology and facies characteristics at the base of subunit B.2 share 

many affinities with the deposits described within subunit B.1 (Fig. 5.7B). Palaeoflow of 

subunit B.2 is generally NE-orientated (040°) and shows a shift from NE (046°) in the 

western part of the section, which deviates northwards in the eastern part of the section 

(030°) (n=47, Figs. 5.2, 5.7B), indicating the section is subparallel to palaeoflow (dip 

section). Subunit B.2 dominantly comprises medium-bedded structured sandstone (Fig. 

5.7A). Closely spaced-logs collected from the main face at the base of B.2 (Section II – Fig. 

5.4) are used to trace out individual beds over a distance of 230 m and track internal facies 

changes. Two beds (Bedform b and Bedform c) change in thickness (0.5- 2 m for Bedform b 

and 0.3-1.2 m for Bedform c) and contain multiple internal truncation surfaces of which six 

are westward (upstream) facing and one is eastward (downstream) facing. 
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Figure 5.7 A – Panoramic view of the base of subunit B.2 at the DK-section. B – Facies correlation of the II-section with Bedform b and c. The top 
panel shows the thickness variability of these beds and the surrounding stratigraphy; the lower panel shows the internal facies distribution of 
Bedform b and c. Rose diagrams show palaeoflow measurements around Section II. Internal truncation surfaces and location of the facies 
photos shown in Figure 5.5 (5 to 8) and Figure 5.8 have been indicated. See Figure 5.4 for meaning of log symbols.
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Truncation surfaces cut climbing ripple-laminated facies (F3) with maximum angles varying 

between 20-30° that shallow out and merge with the base of the bed. They flatten out in 

the downstream direction within the bed and are overlain by banded sandstone facies (F2). 

In Bedform b, the rate of westward thinning is more abrupt than eastward, giving an 

asymmetric wave-like morphology (Fig. 5.7B). This abrupt westward thinning is coincident 

with locations of westward (upstream) orientated truncation surfaces. In the eastern part, 

110 m separates two truncation surfaces, in an area associated with bed thinning. 

However, towards the western part of Bedform b, there is only 25-30 m between the 

westward (upstream) orientated truncation surfaces, and these are not accompanied with 

abrupt bed thinning.  

There is a high degree of lateral and vertical facies variability within Bedform b and c (Figs. 

5.7B, 5.8). Commonly, lateral facies changes are accompanied by bed thickness changes. 

Locally, within the thicker parts of beds, bases are mudstone clast-rich. Bed tops show 

climbing ripple-laminated facies at most locations. Banded sandstone facies overlie the 

truncation surfaces. Some of the ripple-laminated facies (F3) within the middle or lower 

parts of Bedform b and c indicate flow directions that deviate (NW to N) from the regional 

palaeoflow (NE) (Figs. 5.8A, C, D). Detailed analysis of well-exposed sections (Fig.5.8) 

indicates that many laminated and banded sections are wavy and separated by low angle 

truncation or depositional surfaces. Ripple-laminated facies are present locally (Fig. 5.8C, 

D) (<10 cm thick; couple of metre wide patches) within the dominantly banded/planar-

laminated facies (F2), as well as flame structures (Fig. 5.8D). Bedform b is topped in the 

easternmost exposure by a scour surface that cuts at least 0.5 m into Bed b and 

amalgamates with an overlying pinch-and-swell bed (Fig. 5.7B). Medium- to thin-bedded 

structured sandstones are present above and below Bedform b and c, which do not show 

any facies or thickness changes over the exposed section.  
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Figure 5.8 Examples of Internal bed structure and facies changes within Unit B2 
(Doornkloof), with one example from Bedform c (A), two from Bedform b (C and D) 
(see Figure 5.4 and Figure 5.7 for locations) and one (B) from a structured bed at the 
top of the Doornkloof section within log 24 (see Figure 5.3 for location). All these 
examples show vertical internal facies changes, which include planar-lamination, 
wavy-lamination/banding and ripple-lamination. 
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The base of subunit B.2 in the DK01 core, at the same stratigraphic level as Bedform b and 

c, comprises thick-bedded structureless (F1) to banded (F2) (>3 m) sandstones. Bed bases 

are sharp and structureless and contain a variable amount of mudstone clasts (<1 cm). The 

middle to upper parts of these beds show banded facies (F2) with clear mudstone clast-rich 

and -poor bands, which pass through wavy lamination to climbing ripple (F3) and planar 

lamination at bed tops.  

Above Section II, a 15 m thick sandstone package shows a substantial increase in bed 

thicknesses (max 4.5 m), mainly due to bed amalgamation (Fig. 5.7A). Some of these beds 

show a wave-like (asymmetric) morphology, similar to that observed in Bedforms b and c. 

Abrupt bed thinning or pinch-out is common. These pinch-outs are primarily associated 

with deposition, with rare examples of bed truncation by erosion surfaces. Bounding 

surfaces can be identified within the sandstone package, which are defined by successive 

upstream depositional bed pinchout points (Fig. 5.9), with local (<2 m long) shallow erosion 

(<0.3 m) surfaces. The bounding surfaces separate at least two different depositional 

elements, which show downstream bed shingling of three to four sandstone beds. The two 

elements are stacked in an aggradational to slightly upstream orientated manner (Fig. 5.9). 

These elements are topped by a >60m thick package of tabular and laterally continuous 

medium- to thin-bedded structured sandstones. The Dk01 core shows a transition from 

thick- to medium-bedded, dominantly banded (F2), sandstones towards more medium- to 

thin-bedded structured (F3) sandstones at the same stratigraphic level where the 

transition to the >60m thick package is observed in outcrop.  
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Figure 5.9 Bedset architecture within the main Unit B2 outcrop face at the Doornkloof area. 
Key bounding surfaces have been defined based on successive bed pinch-out (set 
boundaries) with multiple (3-4) downstream-orientated stacked and weakly 
amalgamated bedforms. While the internal bed configuration is downstream 
orientated, the bedform sets stack with an upstream orientation. 
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5.5.4 Bed architecture: Old Railway – Subunit B.2 

At this locality on the southern limb of the Baviaans Syncline the lower 10 m of subunit B.2 

is exposed for 100 m EW (Fig. 5.3B). Here, B.2 is a medium- to thin-bedded sandstone-

prone unit that shows substantial lateral thickness changes without evidence of a basal 

erosional confining surface (Fig. 5.10). Mean palaeoflow is ESE (121°) (Fig. 5.3B), indicating 

the exposure is sub-parallel to depositional dip. The sandstone beds are dominantly 

climbing ripple laminated, with some banded/planar laminated and structureless divisions.  

Multiple climbing ripple laminated beds contain dispersed small mudstone and siltstone 

clasts (Fig. 5.10-1). The section is characterised by an alteration of beds showing typical 

pinch-and-swell geometries (0.5-2 m) and more tabular thin-bedded (<0.5 m) sandstones. 

Locally, individual beds pinch-and-swell multiple times over a distance of ~40m, with 

wavelengths varying from 15 m to >40 m. Where there are swells, bed bases are erosional 

(Fig. 5.10-2). Siltstones comprise only ~10% of the succession and are thin-bedded and 

planar-laminated, with intercalated thin very fine-grained sandstones (<1 cm).  

In the top of the section, a 40 cm thick sandstone bed abruptly fines and thins downstream 

to a centimetre-thick siltstone bed (Fig. 5.11A). This bed thickens and thins along a 12m 

length (Fig. 5.11A) forming sandstone lenses, before regaining original thickness (40 cm). 

Within this zone, the bed laterally grades to siltstone and is perturbed locally by 

centimetre-scale scour surfaces. At log 04 (Fig. 5.10A), a bed that pinches downstream has 

a downstream-orientated scour on its top surface, which is overlain by thin-bedded 

sandstones and siltstones that pass upstream out of the scour surface. A downstream 

thickening bed with an erosive base truncates these beds. 
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Figure 5.10 Subunit B.2 within the Old Railway area. A- Facies correlation panels of the section with bedform distribution (top) and facies 
distribution (bottom). B- Zoomed-in facies correlation panel of most eastern section with 1. – mudstone clasts within a climbing-ripple 
laminated bed, indicating sediment overpassing, and 2. – bed splitting indicating erosion and amalgamation. See Figure 5.3 for locations and  
lowest panel in Figure 5.4 for meaning of log symbols. Location of Figure 5.11A is indicated. 
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The majority of the observed pinch-and-swell bedforms stack in a downstream direction 

(Fig. 5.10A). However, occasionally a bed stacks in an upstream manner. This is similar to 

the stacking patterns observed within subunit B.2 at the Doornkloof section (Fig. 5.9). By 

following the depositional character, two depositional elements can be identified (Fig. 

5.11B), which stack in an overall aggradational manner. 

 

Figure 5.11 A - Sketch of bed showing transient pinch-out to a thin siltstone bed (see Figure 
5.10B for location), with A1 – pinch-out to siltstone and A2 – local scouring of bed top 
B – Division of the Old Railway section in two depositional elements based on 
observed stacking patterns. 

 

5.5.5 Sediment waves within channel-lobe transition zones 

Both studied sections show bedforms with clear pinch-and-swell morphology that are 

subparallel to flow direction. These bedforms developed in a base-of-slope setting without 

any evidence of a large-scale basal confining surface. Bed-scale amalgamation and scouring 

are common in the two study areas, however the more significant component of 

downstream bed thickness changes is depositional. Their geometry and dimensions (>1m 

height; 10-100m wavelength), support their classification as sediment waves (Wynn and 

Stow, 2002). The bedforms described from the Doornkloof area (Beds a-c) show clear 
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asymmetric pinch-and-swell morphologies, related to internal upstream-facing truncation 

surfaces (Figs. 5.4, 5.7). The well-constrained base-of-slope setting, the lack of confining 

erosion surfaces, and the depositional nature of Unit B downdip are consistent with an 

interpretation that the sediment waves formed within a CLTZ setting.  

5.6 Discussion 

5.6.1 Bed-scale process record 

The depositional record of sediment wave deposits from CLTZ settings in Unit B are diverse 

and show significant variations in facies on the sub-metre scale. The characteristics of the 

sediment wave deposits from the two Unit B datasets will be discussed and compared.  

Doornkloof section 

Facies of the sediment waves identified at the Doornkloof section are characterised by an 

assemblage of structureless intervals (F1), banding (F2), and climbing ripple lamination 

(F3). Local patches of structureless sandstone facies (F1) (Figs. 5.4, 5.7B) at bed bases, 

suggest periods of more enhanced deposition rates (e.g. Stow and Johansson, 2002), 

during initiation of deposition. The sediment waves are however dominated by banded 

and planar laminated facies, related to traction-carpet deposition (Sumner et al., 2008; 

Cartigny et al., 2013). This suggests net deposition from high concentration flows during 

most of bedform development. The high degree of variation (band thickness, presence of 

shallow truncations, wavy nature) in the banded sandstone facies (F2) is explained by 

either 1) turbulent bursts interacting with the traction carpet, or 2) waves forming at the 

density interface between the traction carpet and the overlying lower-concentration flow, 

possibly as a result of Kelvin-Helmholtz instabilities, or a combination of both processes  

(Figs. 5.5, 5.8) (Sumner et al., 2008; Cartigny et al., 2013). There is a strong spatial and 

stratigraphic relationship between mudstone clast conglomerates (F4) (Fig. 5.6) and 

mudstone clasts within banded sandstone facies (F2). As the deposits underlying shallow 

erosion surfaces are siltstone-prone, the mudstone clast materials must have an origin 
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further upstream. They are therefore interpreted as lag deposits (e.g. Stevenson et al., 

2015), corresponding to low net-aggradation rates from high-concentration flows. The 

angular mudstone clasts suggest a relative local source area and can possibly be linked to 

upstream scouring. Scours have been documented upstream of sediment waves in modern 

CLTZs (Wynn et al., 2002a) and similar relationships have been interpreted in the Albian 

Black Flysch of NE Spain (Vicente Bravo and Robles, 1995; Wynn et al., 2002a). The 

transition from banded facies (F2) to climbing ripple-laminated facies (F3), commonly 

observed at the top of individual beds, represents a transition from net depositional high 

concentration flows, to steady deposition from moderate to low concentration flows. The 

dominance of this facies group at bed tops (Figs. 5.4, 5.7) is interpreted as the product of 

less-energetic and more depositional tails of passing flows.  

 

 

Figure 5.12 Simplified model showing the upstream accretion process of the sediment 
waves in the Doornkloof area associated with the banded facies (F2). Due to 
continuous draping on top of the truncation surfaces, crest height should increase in 
the downstream direction. 

 

To better understand the process record and evolution of the Unit B sediment waves, it is 

important to be able to distinguish the record of a single flow from that of multiple. The 

Doornkloof sediment waves built depositional relief, although internally they show 

evidence of erosion (Figs. 5.4, 5.5, 5.6, 5.7). The majority of the observed bed thickness 

changes within the sediment waves at the Doornkloof section coincide with the presence 

of steep internal truncation surfaces (Figs. 5.4, 5.7). The preservation of upstream-facing 

truncation surfaces (Figs. 5.4, 5.7), implies a significant component of bedform accretion at 

the upstream end (Fig. 5.12) and therefore an upstream younging direction within the area 
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of observation. To be able to preserve truncation surfaces with angles up to 25° (close to 

the angle-of-repose), erosion, and the deposition on top of the erosion surface, are likely 

to be the result of a single flow event. Furthermore, within Unit B.2 all truncation surfaces 

of Bedform b and c merge towards the bed base as a single surface (Fig. 5.7), leaving 

underlying strata untouched and due to the absence of bed splitting suggest a single flow 

origin for the entire bedform. Within Bedform a of Unit B.1, the underlying gravel patches 

show upstream pinch-out of sandstone beds and downstream amalgamation with Bedform 

a (Fig. 5.6A) reflecting multiple flow events and resulting in marked difference in bedform 

architecture and bed thickness compared to Bedform b and c. However, all upstream 

facing truncation surfaces in the main sandstone body merge, towards a single surface 

within the deposit, in a similar manner to Bedform b and c, suggesting a single flow origin 

for the sediment wave morphology. Furthermore,  Bedform a can be followed out for ~ 

1000 m in upstream direction, showing many small-scale (< 5 m lateral distance) purely 

depositional undulations in the western end (Figs. 5.4, 5.6B) linked to the deposits on top 

of the most upstream truncation surface, and therefore is the result of the youngest 

depositional phase of Bedform a. The lack of similar undulating sandstone deposits, below 

Bedform a at this upstream location (Fig. 5.4), suggests that each upstream facing 

truncation surface in Bedform a further downstream, cannot be the result of different flow 

events.  Therefore, within each sediment wave within the Doornkloof section (Bedform a, 

b and c), the evidence supports the initiation and development of the bedform during the 

passage of a single flow event. In comparison to Bedform b and c in Unit B.2, the sediment 

wave of Bedform a appears to have initiated across a series of earlier deposited gravel 

patches (Figs. 5.6A, 5.6B) and downstream thickening sandstones. Similar steep internal 

scour surfaces to those observed in these bedforms have been highlighted by Hiscott 

(1994), which were linked to energetic sweeps from a stratified flow. Consequently, it is 

suggested that these scour surfaces are the result of spatio-temporal flow fluctuations 

from a single flow event. A similar depositional history of waxing and waning behaviour 
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within a single flow was inferred from the sediment waves of the Miocene Austal foreland 

Basin, Argentina, described by Ponce and Carmona (2011). However the Doornkloof 

sediment wave architecture  can not be explained by the depositional model proposed by 

Ponce and Carmona (2011), as this model assumes each independent lense-shaped 

geometry is created  and reworked simultaneously, and subsequently draped, linked to 

flow deceleration. The Doornkloof sediment also show draping over lens-shaped 

geometries (Fig. 5.12), however the ‘lenses’ are clearly not disconnected, as is the case in 

the Austral foreland Basin, but instead directly linked to the draping phase. 

The presence of younger bedforms on top of older swells, such as at the upstream location 

of Bedform a (Figs. 5.4 (logs 2-7), 5.5B) or the sediment waves overlying Bedform b in Unit 

B.2 (Fig. 5.9), suggests that initial bedform deposition acts as a nucleus for later sediment 

wave development. Therefore, larger composite bedform structures can be created as the 

result of multiple flow events.  

Old Railway section 

In the Old Railway section (Fig. 5.10), erosional bed bases and bed amalgamation are 

common, particularly where there is depositional thinning of underlying beds, indicating 

that the ‘pinch-and-swell’ bedforms present at this section are the result of multiple flow 

events. However, the bed amalgamation only has limited impact on bedform thickness as 

thickness increase dominantly occurs beyond the point of amalgamation and must 

therefore be of depositional nature. The more uniform facies distribution and lack of 

internal truncation surfaces within these bedforms (Fig. 5.10) do not suggest spatial-

temporal fluctuations of the same order as observed in the Doornkloof area. The Old 

Railway bedforms classify as sediment waves (Wynn and Stow, 2002) with dimensions of 

15 to >40 m wavelength (extending outside outcrop limits) and 1-2m amplitude, however 

their maximum bed thicknesses (1-1.5 m) is more limited than at the Doornkloof area (>2.5 

m), climbing ripple-laminated facies (F3) is more dominant and banded facies (F2) are 
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almost absent. This F3 dominance indicates that their morphology is primarily controlled 

by depositional processes, similar to the Doornkloof section but  from low concentration 

turbidity currents compared to high concentration flows at the Doornkloof section. 

5.6.2 Spatial variations within a sediment wave field 

The differences observed in CLTZ sediment wave character between the Doornkloof and 

Old Railway sections are most likely related to the feeder channel, including factors such as 

channel dimensions, magnitude of the incoming flows, and the distance and orientation 

from the channel mouth.  

Previous studies (Brunt et al., 2013a) suggest that all feeder channels within the Unit B 

base-of-slope system were similar in dimensions, suggesting that the character of 

sediment waves is unrelated to variations within feeder channels connected to different 

sediment wave fields (Doornkloof and Old Railway). Alternatively, the facies and 

architectural differences could be related to their position relative to the channel-mouth.  

Dominance of lower flow-regime facies (F3) such as climbing ripple-lamination is 

commonly associated with overbank or off-axis environments (e.g. Brunt et al., 2013a; 

Kane and Hodgson, 2011; Rotzien et al., 2014). 
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Figure 5.13 Spatial division within a channel-lobe transition zone between a depositional 
bedform area (DB) and an erosional bedform area (EB) following Wynn et al. (2002a). 
Differences in characteristics of sediment waves are explained by spatial differences 
between the axis and the marginal areas of the deposition-dominated fields (DB) of a 
CLTZ. 

 

A similar dominance of lower flow-regime facies (F3) among the flow parallel Old Railway 

section (Fig. 5.10) could therefore possibly show a more marginal cross-cut through a 

sediment wave field in comparison to the Doornkloof section (Fig. 5.13). The overall 

prevalence of more energetic facies (F1, F2, F4) and erosion suggest the Doornkloof area 

was within a more axial position (Fig. 5.13). Furthermore, within the Doornkloof area, it 

also shows that climbing ripple deposition (F3) becomes more dominant, where the 

bedforms significantly pinch (<0.5 m) away from the central areas of deposition (e.g. 

Bedform a; Fig. 5.4), but still with a significant banded sandstone component (Fig. 5.6B).  

The differences in expression of the Unit B sediment waves suggest that the stratigraphic 

record of CLTZ environments exhibit substantial spatial variability. Furthermore, there is 

evidence to suggest that initial sediment wave architecture can involve both upstream 
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orientated accretion (Doornkloof area), and downstream orientated accretion (Old railway 

section) within a single flow, depending on the position with respect to the channel mouth. 

Even though 3D control on morphology is lacking, it can be expected that this variance in 

depositional behaviour between axial and marginal areas will have influence on planform 

crest morphology and will lead to the crest curvatures, which are commonly observed 

within the modern seafloor (e.g. Wynn et al., 2002b). Furthermore, the preservation 

potential of the sediment waves such as those from the Doornkloof section is expected to 

be a lot less than in comparison to sediment wave deposits at marginal positions, like the 

Old Railway section, due to channel propagation (Fig. 5.13).  

5.6.3 Spatio-temporal flow fluctuations 

Fluctuations in depositional behaviour in a single flow can be expected in environments 

where turbidity currents exit confinement (e.g. Kneller and McCaffrey, 1999, 2003; Ito et 

al., 2008; Ponce and Carmona, 2011), and where flows pass over a rugose seabed (e.g. 

Groenenberg et al., 2010; Eggenhuissen et al., 2011). Flow non-uniformity does not only 

affect the loci of deposition but also the depositional facies (Kneller and Branney, 1995; 

Kneller and McCaffrey, 1999) and can manifest itself within a single event bed at a fixed 

geographical point (e.g. Kneller and McCaffrey, 2003; Kane et al., 2009; Ponce and Camona, 

2011). 

When individual flow events are responsible for the facies transitions and steep sigmoidal 

truncation surfaces within a single bed such as observed at the Doornkloof section (Figs. 

5.4, 5.7), it implies significant waxing and waning flow behaviour. Such large fluctuations in 

flow concentration and depositional behaviour (Fig. 5.14A) can be related to variety of 

factors acting at CLTZ settings.  Waxing and waning behaviour can be induced by flow 

splitting at the channel-levee system updip, where the primary ‘channelised’ flow may 

reach the sediment wave field earlier than the secondary ‘overbank’ flow. However, this 

would imply significant velocity and concentration differences and therefore significant  
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depositional facies differences between the two stages, which does not fit with what is 

observed (Fig. 5.14A). Furthermore, it would not explain great number of flow fluctuations 

interpreted within a single flow event bed. Therefore other mechanisms need to be 

proposed.  

 

 

Figure 5.14 A - Interpretation of flow behaviour and depositional record at a single location 
by linkage to facies patterns within the Doornkloof sediment waves. The time steps 
are indicated within the bed profile. B – Different models to explain facies changes 
linked to large flow fluctuations within the channel-mouth sediment waves with: 1) 
Hydraulic fluctuations within a single passing flow causing significant density 
fluctuations; 2) The ‘Hose effect’ with a high-density flow axis showing inter-flow 
compensation over the duration of the flow. Reference location (X) would therefore 
receive the energetic axis of the flow at one point in time (left), but the less energetic 
off-axis at a later point in time (right); 3) Combined effects, where the more energetic 
core shows both hydraulic fluctuations and compensational lateral migration 
behaviour. 

 

Fluctuations of the Froude number 

The net-depositional record of waxing and waning flow conditions (Fig. 5.14A) at a single 

location (1D) within the Doornkloof sediment waves (Fig. 5.14B-1) could be related to 

fluctuations around the critical Froude number. Fluctuations of the turbidity current 
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Froude number are expected in areas of abrupt flow expansion at a break in slope, such as 

at the base-of-slope (Garcia, 1993; Wynn et al., 2002b). Turbidity currents that undergo 

transitions from supercritical to subcritical conditions (a hydraulic jump) have been linked 

to the formation of erosional and depositional bedforms, such as sediment waves ( Vicente 

Bravo and Robles, 1996; Wynn and Stow, 2002; Wynn et al., 2002b; Symons et al., 2016). 

When supercritical, flow thinning can cause local erosion, which can be followed 

downstream by rapid subcritical flow expansion and deposition. Sediment waves that show 

upstream migration of crestlines have typically been associated with supercritical 

conditions (Wynn and Stow, 2002; Symons et al., 2016), where the stoss-side is defined by 

deposition and the lee-side by erosion.  

Evidence of upstream accretion could support a supercritical nature for the Doornkloof 

sediment waves, however they do not migrate upstream due to a depositional focus at the 

stoss-side. The architecture of the internal truncation surfaces resembles the type II and 

type III antidunal bedforms described by Schminke et al. (1973). However, these antidunes 

in the Laacher See area are clearly building out at the stoss-side of the bedform. Instead, 

the Doornkloof sediment waves show truncation and draping at bed swelling locations 

followed by the deposition of another bed swell upstream, which may or may not be 

truncated (Fig. 5.12). This means that each swell grows individually rather than 

simultaneously as a sinusoidal wave. Kubo and Nakajima (2002) observed similar 

differential deposition for sediment wave development under subcritical flow conditions in 

physical and numerical experiments. Additionally, consistency in wavelength is lacking for 

both bed thickness changes (10-100 m) as well as the distance between individual 

truncations (5- >100 m), which does not comply with the wavelength consistency that is 

expected when sediment wave development is purely explained by Froude number 

fluctuations (e.g. Alexander et al., 2001).  

The ‘hose effect’  
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Alternatively, there could be a spatial control on the development of sediment waves, 

based on flow-deposit interactions and momentum of the flow core (Fig. 5.14B-2). As a 

turbidity current leaves the confinement of a channel it will not immediately lose its 

momentum (e.g. Choi and Garcia, 2001), and due to the contrast with the ambient fluid it 

is not at first instance greatly affected by density gradients. Due to flow-deposit 

interactions with depositional and erosional relief around the channel-mouth, the flow 

core may shift around during bedform aggradation. Most studies on flow-deposit 

interactions focus on temporal changes in flow conditions (e.g. Kneller and McCaffrey, 

2003; Groenenberg et al., 2010), but rarely consider lateral changes within a single 

turbidity currents. A single location within a sediment wave field may receive the energetic 

flow core at one time linked to erosion and/or deposition from a high concentration flow, 

and the less energetic and dilute depositional flow margin at other times, comprising a 

combined record of fluctuating energy levels (Fig. 5.14B-2). Similar behaviour within a 

single unconfined flow has been described in basin-floor settings of the Cloridorme 

Formation (Parkash, 1970; Parkash and Middleton, 1970) and at levee settings of the 

Amazon Channel (Hiscott et al., 1997). The ‘hose effect’ would result in a composite 

depositional record as the core of the flow sporadically moves laterally, repeatedly 

superimposing high energy conditions onto lower energy conditions, therefore explaining 

the inconsistency in wavelength.  

Even though sediment wave architecture does not support depositional behaviour such as 

that of antidunes or cyclic steps, it is likely that lateral flow movement operated 

simultaneously (Fig. 5.14B-3) with fluctuations in the Froude number to produce the 

observed architectures and facies patterns of the Doornkloof sediment waves.  
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5.6.4 Sediment wave hierarchy 

 

The larger scale architecture of both Unit B sections shows diversity in stacking patterns 

across different scales of observation (Fig. 5.15). An architectural hierarchy is established 

(Straub and Pyles, 2012), similar to channel (e.g. Clark and Pickering, 1996; Gardner and 

Borer, 2000; McHargue et al., 2011) and lobe (e.g. Deptuck et al., 2008; Prélat et al., 2009) 

systems, based on the recognition of bounding surfaces and depositional geometries. The 

larger-scale architecture of Unit B.2 of both studied sections (Figs. 5.9, 5.11B) reveals 

several depositional bounding surfaces, which mark an abrupt upstream shift in the locus 

of deposition of individual sediment waves.  

When an architectural subdivision is applied based on scale and formative processes, 

distinction can be made between microforms, mesoforms, and macroforms (Jackson, 

1975) (Fig. 5.15). Microforms comprise facies-scale bedforms such as ripples, while 

mesoforms are larger (dune)-scale bedforms (Jackson, 1975). Based on the process 

interpretations, sediment waves that lack evidence of bed amalgamation (e.g. Bedform b 

and c) are classified as mesoforms in this study. Macroforms represent bedset 

development by multiple flows, which is evident from bed amalgamation. 

Within Unit B.1 of the Doornkloof section, macroform development is limited, but the 

section shows a ‘macroform’ swell in the upstream end (Figs. 5.4, 5.6B) which is 

aggradational in nature, while Bedform a is defined by upstream orientated thickening as it 

shows downstream thinning where an underlying bedform is thickening (Fig. 5.4).  The 

much thicker Unit B.2 systems of both sections shows an out-of-phase stacking of 

mesoforms in a downstream manner (Figs. 5.9, 5.10), as the swells stratigraphically shift 

downdip. 
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Figure 5.15 Synthesis model of the Unit B.2 sediment waves based on scale and formative 
processes, illustrating the hierarchical division into micro-, meso-, macroforms and 
macroform complexes. The stacking behaviour between the macroform and 
macroform complex scale is clearly different, but similar within Unit B.2 in both the 
Doornkloof as Old Railway sections. 

 

Additional depositional bounding surfaces have been defined that separate multiple 

bedsets (macroform) and therefore may form larger depositional elements (300 - >1km 

wavelength, >10 m high, depending on the section), here referred to as composite 

macroform (Fig. 5.15). Within one composite macroform as defined in both Unit B.2 

sections (Figs. 5.9, 5.11B), multiple macroforms stack in an aggradational to slightly 

upstream orientated manner (Fig. 5.15), as the bounding surfaces are defined by an abrupt 

upstream orientated shift of depositional swelling.  

A downstream orientated shift of mesoform swells as recognised in both Unit B.2 sections 

could be related to channel system propagation, shifting the focus of sediment wave 
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formation downstream. However due to limitations on lateral outcrop control, none of the 

sediment waves have been completely exposed and therefore it remains challenging to 

fully comprehend the larger scale architecture and the underlying reasons for the observed 

stacking behaviour.    

However, the overall ‘macroform complex’ stacking patterns within the outcrop window 

are strongly aggradational, which may explain their preservation as well as the large 

volume of rock in the record (e.g. Fig. 5.9). In an overall more strongly progradational 

system, the axis of a sediment wave field is unlikely to be preserved as the feeder channel 

propagates into the basin (e.g. Hodgson et al., 2016) 

A sediment wave hierarchy associated with shifts in depositional focus and stacking 

behaviour has important implications for the measurement of sediment wave dimensions 

in other types of data sets (Fig. 5.2). The identification of the bounding surfaces within 

sediment waves in shallow seismic datasets (Fig. 1B) of modern systems is dependent on 

data resolution and changes in acoustic impedance are related to lithological boundaries 

(e.g. Link and Weimer, 1991; Migeon et al., 2001; 2012). The outcrop examples described 

here, permit the sub-seismic architecture to be identified. We speculate that the 

inconsistency in migration directions observed within modern coarse-grained sediment 

waves (Wynn and Stow, 2002; Symons et al., 2016) could also be related to different scales 

of observation (Fig. 5.15) rather than invoking fundamentally different process origins. This 

complicated nature reveals that sediment waves represent an important record for 

understanding flow characteristics and interaction with depositional relief on lower slope 

to basin-floor settings.  
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5.7 Conclusions 

The architecture of exhumed fine-grained sandstone bedforms from a base-of-slope 

system are documented in detail. They show complicated lateral and stratigraphic changes 

in facies comprised of an assemblage of ripple-laminated, banded and structureless 

sandstone. Due to their setting, lack of confining surface, wave-like morphology and 

dimensions, they are interpreted as sediment waves. Individual beds can be traced out 

over significant flow parallel distances (>1 km). The spatial relationships to upstream 

submarine channel-fills and downstream lobe deposits support their formation in channel-

lobe transition zones (CLTZs). In one of the two study areas, the sediment waves show 

clear steep (10-25°) internal truncation surfaces that are unevenly spaced and dominantly 

facing in the upstream direction indicating significant spatio-temporal flow fluctuations 

from a single flow event. Their architecture suggests the depositional processes do not 

correspond with bedform development under supercritical conditions, as each swell grows 

individually due to differential deposition rather than simultaneously as a sinusoidal wave. 

Internal flow compensational behaviour could have a major influence on sediment wave 

development acting together with Froude-number fluctuations in areas of abrupt flow 

expansion. Individual sediment wave beds (mesoforms) can show variable stacking 

behaviour, but commonly stack in a downstream manner, forming larger bedforms 

(macroforms and composite macroforms). Due to occasional upstream shifts of the 

depositional focus, the sediment wave packages have an overall aggradational character. 

Where truncation surfaces are rare, climbing ripple-laminated facies is the dominant 

facies, and bed thicknesses rarely exceed the 1-1.5 m. Here, the sediment waves are 

influenced by moulding and deposition of the lower concentrated parts of bypassing flows 

related to development in a position lateral to the channel-mouth. Sediment waves are a 

vital component of the bedform assemblage found in CLTZs and represent an important 

process record for sediment bypass in base-of-slope settings. 
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Chapter 6: 
The stratigraphic record of submarine lobe deposits at base-

of-slope settings 

 

6.1 Summary 

Commonly in submarine systems, the base-of-slope marks the transition from confined to 

unconfined flows, which leads to the development of sand-rich lobe deposits. Typically, 

these proximal deposits are incised during channel avulsion and propagation, which means 

that their fine-scale architecture and facies characteristics are poorly defined. Multiple 

integrated outcrop and borehole datasets are presented from base-of-slope successions 

within the Karoo Basin, South Africa. The recognition of high aspect ratio sandstone-prone 

packages that are not confined by erosion surfaces indicates that a significant portion of 

the base-of-slope depositional record is composed of lobes. Downdip thinning and facies 

transitions suggest that some lobe bodies at the base-of-slope represent discrete bodies, 

disconnected from basin floor lobe deposits. These lobes are characterised by an 

abundance of banded sandstones at their axis, climbing-ripple lamination and 

aggradational bedforms in the off-axis, and sandstone-prone thin-bedded fringes (>75%). 

This is in contrast with larger, siltier, and more hybrid-bed prone lobes at basin-floor 

settings. Based on these results and comparisons with other systems, two main lobe types 

are defined: narrow and simple lobe bodies with a relatively high abundance of banded 

and ripple-laminated sandstones, dominant in base-of-slope settings, and more radial 

complicated lobe bodies which may show finger-like geometries and have a relatively high 

abundance of structureless sandstones, linked debrites and siltstones, dominantly found at 

basin-floor settings. Flow efficiency is inferred as the primary mechanism controlling 

differences in both lobe characteristics as depositional locus. The recognition of this 

variability in lobe character has significant implications for our understanding of the 



128 

evolution of submarine fan systems and our understanding of connectivity within deep 

water reservoirs. 

6.2 Introduction 

Major advances in the resolution of seismic and seabed datasets have revealed that the 

architecture of submarine lobes (e.g. Pirmez et al., 2000; Deptuck et al., 2008; Jegou et al., 

2008) is much more complicated than previously envisaged. Recent outcrop-related 

studies have supported the presence of fine-scale lobe architecture and facies distributions 

(Prélat et al., 2009; Groenenberg et al., 2010; Macdonald et al., 2011b; Straub and Pyles, 

2012; Grundvåg et al., 2014; Morris et al., 2014a; Spychala et al., 2015; Terlaky et al., 2016; 

Masalimova et al., 2016). Many studies have focussed on the most distal parts of the basin 

floor system (Prélat et al., 2009; 2010; Groenenberg et al., 2010), where, due to the lack of 

erosional elements, the depositional architecture of lobes is well preserved. In more 

proximal locations, channel systems can propagate through previously deposited lobe 

deposits (Gardner et al., 2003; Jegou et al., 2008; Macdonald et al., 2011b; Brunt et al., 

2013a; Grundvåg et al., 2014; Morris et al., 2014a), leading to juxtaposition of lobes and 

channel-levees (Pyles et al., 2014; Hodgson et al., 2016), and partial preservation of lobe 

deposits.  

Base-of-slope regions preserve a complicated stratigraphic record of both depositional and 

erosional processes (e.g. Gardner et al., 2003; Pyles et al., 2014; Hofstra et al., 2015). Base-

of-slope lobe systems are sandstone-rich (80-90%) (Gardner et al., 2003; Berhardt et al., 

2011; Brunt et al., 2013a; Morris et al., 2014a; Masalimova et al., 2016) in comparison to 

more distal basin floor environments (Hodgson et al., 2006; Prélat et al., 2009), making 

them attractive exploration targets (Prather et al., 2016). System confinement influences 

lobe dimensions (e.g. Prélat et al., 2010; Spychala et al., 2015, Marini et al. 2015), however 

lobe properties such as facies characteristics and architecture can also vary between lobes 

deposited at lower slope to base-of-slope settings preceding channel propagation (Morris 
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et al., 2014a), and basin-floor lobes (Prélat et al., 2009; Prélat and Hodgson, 2013). 

Different lobe types within a single system have been identified in the Golo Fan (Deptuck 

et al., 2008) and the Amazon Fan (Jegou et al., 2008). The reasons for the existence of 

these differing lobe characteristics are not well understood. However, the fine-scale 

architecture and sedimentology of lobe deposits in base-of-slope settings and the criteria 

to differentiate them are poorly constrained.  

The objectives of this chapter are to 1) investigate the stratigraphic record of base-of-slope 

systems, 2) establish recognition criteria to identify submarine lobe deposits within base-

of-slope settings, 3) compare the depositional record of lobes across different settings 

within the same system, and 4) attempt to explain differences in lobe characteristics 

observed across these settings.  

6.3 Regional setting 

The Karoo Basin is one of a number of Late Palaeozoic to Mesozoic basins that formed at 

the southern margin of Gondwana (De Wit and Ransome, 1992; Veevers et al., 1994; 

López-Gamundi and Rossello, 1998) and is divided into the Laingsburg and Tanqua 

depocentres. This study focuses on the Tanqua depocentre (Fig. 6.1) in the southwestern 

part of the Karoo Basin, which shows a deepwater fill, represented by the Ecca Group. The 

Ecca Group comprises a 2 km-thick shallowing-upward succession from distal basin floor 

through submarine slope to shelf-edge and shelf deltaic settings (Flint et al., 2011). 
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Figure 6.1 Stratigraphic column on the left shows the deep-water stratigraphy of the 
Tanqua depocentre. A) Location of the Tanqua depocentre within the Western Cape. 
B) Location map of Tanqua depocentre  with transparent overlay showing a sketch 
reconstruction of Fan 3 system, light transparent area in the top of the figure 
indicates where the basin floor lobes have been described by Prélat et al. (2009). C) 
Subdivision of the most proximal Fan 3 exposures. D) Location map of Unit 5 study 
area with overlay showing a sketch reconstruction of the Unit 5 system. 

 

6.3.1 Tanqua depocentre 

The focus of this study is on Fan 3 and Unit 5 of the Skoorsteenberg Formation, which are 

both sand-rich basin floor fan systems (Fig. 6.1) (Bouma and Wickens 1991; 1994; Wickens 

and Bouma, 2000; Johnson et al., 2001). Fan 3 is the most extensively studied fan system 

of the Skoorsteenberg Formation, as it shows the most complete outcrop extent (Hodgson 

et al., 2006). An integrated outcrop and research borehole dataset has established the 

isopach thickness of Fan 3, and the relative spatial and temporal distribution of 

sedimentary facies, architectural elements and palaeocurrents (Johnson et al., 2001; Van 

der Werff and Johnson, 2003; Hodgson et al., 2006; Prélat et al., 2009; Groenenberg et al., 

2010). The Fan 3 study area is located in the most proximal outcrop extent of Fan 3 from 

the Ongeluks River area in the east to the Kleine Riet Fontein area in the west (Fig. 6.1C).  

Distributive channel-systems have been previously defined within the Ongeluks River area 

(Johnson et al., 2001; Van der Werff and Johnson, 2003; Luthi et al. 2006; Hodgson et al., 
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2006; Jobe et al., 2012) with an overall palaeocurrent to the north/northeast. The southern 

outcrops are characterised by the presence of giant scour-fills (Fig. 6.1C) (Hofstra et al., 

2015), erosionally-confined channel-fills in overlying Fan 4 and Unit 5, and abrupt thinning 

to the south (Oliveira et al., 2009). These observations support that the southern outcrops 

are within a base-of-slope setting (Fig. 6.1C) (Hodgson et al., 2006). 

Unit 5 (Fig. 6.1) outcrops mark the transition from a slope to basin-floor environment (Van 

der Werff and Johnson, 2003; Wild et al., 2005; Hodgson et al., 2006), fed by multiple 

channel systems (Fig. 6.1D) in contrast to the underlying point sourced fan systems (Hodgson 

et al., 2006). The presence of slope channel complexes updip (Wild et al., 2005) and 

unchannelised distributive deposits downdip (Van der Werff and Johnson, 2003), agrees 

with an interpretation of the Blaukop area as a lower slope to base-of-slope setting. 

Kirschner and Bouma (2000) interpreted the Blaukop area (Fig. 6.1D) as a distributive 

channel-levee and overbank system. 

6.4 Facies associations 

The facies characteristics of the Fan 3 and Unit 5 deposits can be divided into four main 

facies associations (Fig. 6.2), based on primary observation and facies divisions from 

previous studies in the Karoo Basin (e.g. Hodgson et al., 2006; Brunt et al., 2013a; Hofstra 

et al., 2015). 

6.4.1 Fa1 – Medium to thick-bedded, amalgamated sandstones 

This facies association represents thick fine sandstone beds, which commonly form 

amalgamated sandstone packages (1 – 20 m) (Fig. 6.2). These deposits show a lot of lateral 

variability, and can be subdivided into two subgroups based on internal structure, 

thickness and architecture: 
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Figure 6.2 Division of the most common and important facies associations for base-of-slope 
settings with examples from outcrop and core and representative measured sections 
from the Fan 3 and Unit 5 systems. See Figure 6.4 for log symbol meaning.  
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Fa1A- Amalgamated structureless sandstones with little to no internal structure, which 

form 5-20m thick low-aspect ratio elements, and < 5m thick high-aspect ratio elements 

(tens to hundreds metres wide). Where bed tops are preserved, they may show some 

banding (see Fa1B) and weak normal grading with planar- and ripple-cross lamination. 

Locally, these sandstone beds contain minor amounts of dispersed sub-angular mudstone 

clasts and flame structures, and tool marks are observed at bed bases. These deposits are 

interpreted as rapid fall-out from sand-rich high-density turbidity currents (Kneller and 

Branney, 1995; Stow and Johansson, 2000) with clasts representing traction-transported 

bedload (see section Fa1B and 6.4.2 for interpretation of planar laminated and banded 

intervals). Flame structures are associated with syn-depositional dewatering (Stow and 

Johansson, 2000). 

Fa1B - Medium- to thick-bedded amalgamated fine sandstones (0.2-2.5 m), with a 

dominance of diffuse cm-thick laminae (Fig. 6.2). These laminae are characterised by an 

alternation between lighter and darker bands, referred to as banding. The banding is 

dominantly planar and parallel to sub-parallel, but can be wavy. The light bands are well-

sorted quartz-rich laminae and the dark bands comprise poorly sorted sands and silts with 

organic fragments, mudstone chips and micas. Centimetre-scale scours and loading are 

common at the bases of lighter bands. The bases of thicker beds dominated by banded 

sandstone beds are structureless and sharp, showing close affinity with Fa1A.  

Banded sandstones differ from planar-laminated sandstones due to the thickness of the 

laminae (1-4 cm), the thickness of the laminated interval within individual event beds (0.5-

2 m) and the absence of any major grain size differences between laminae. The 

observations support highly concentrated, net aggradational but fluctuating flow 

conditions. These conditions are present during traction carpet deposition by high-density 

turbidity currents (Lowe, 1982; Sumner et al., 2008, 2012; Talling et al., 2012; Cartigny et 
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al., 2013) and have not been linked to a generic flow regime. This is comparable to the H2 

division of Haughton et al. (2009) and the Type 2 tractional structures of Ito et al. (2014).  

 

6.4.2 Fa2 - Medium-bedded laminated sandstones 

Medium- to thick-bedded (0.2 to 3 m thick), very fine to fine sandstones with various 

sedimentary structures (Fig. 6.2). Climbing ripple lamination, is abundant (25-70% of all 

laminated sandstones), showing high angles of climb with stoss-side preserved lamination 

(up to 45° with stoss-side preserved laminae). Some beds show a clear upward increase in 

the angle of climb and proportion of stoss-side laminae preservation. Where planar 

lamination is present it is common at bed bases, and when > 1 m thickness bases are 

commonly sharp and structureless. Bed tops show normal grading to fine siltstone and bed 

geometries can vary in thickness on the tens of metres scale.  

High angles of climb and stoss-side preservation in ripple-laminated sandstones are 

indicative of rapid unidirectional aggradation rates (Jopling and Walker, 1968; Allen, 1973; 

Jobe et al., 2012; Morris et al., 2014a). When sedimentation rate exceeds the rate of 

erosion at the ripple reattachment point, the stoss-side deposition is preserved and 

aggradational bedforms develop (Allen, 1973). This style of tractional deposition is 

attributed to rapid deceleration of the flow and deposition from moderate-to low-

concentration turbidity currents (Allen, 1973; Jobe et al., 2012). The planar laminations 

within the structured sandstones are interpreted to be deposited under upper stage plane 

bed conditions (Allen, 1984; Talling et al., 2012).  

6.4.3 Fa3 - Tabular thin-bedded sandstones and siltstones 

This facies association is represented by thin (<20 cm) very fine sandstones, which are 

interbedded with laminated siltstones (0.5- 5 cm) (Fig. 6.2). Ripple lamination is common, 

including low-angle climbing ripple lamination. The tabular bed geometry and 

predominance of current ripple lamination in Fa3 are interpreted to indicate high rates of 
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sediment fallout with limited tractional reworking from flows within the lower flow regime 

(Allen 1973; 1984; Southard and Boguchwal, 1990). Rare planar laminated sandstone 

indicates upper phase flow conditions (Best and Bridge, 1992) but with a transition to 

lower phase flow conditions due to ripple-laminated bed tops.  

6.4.4 Fa4 - Irregular thin-bedded sandstone & siltstones, and mudstone clast 

conglomerates 

Fa4 represents a combination of thin-bedded lenticular (fine to medium) sandstones and 

siltstones associated with numerous centimetre- to decimetre-deep erosion surfaces and 

mudstone/siltstone clast conglomerates (Fig. 6.2). Commonly, mudstone clast 

conglomerates form lenses (max 0.5m thick, 1-2m long), and are clast-supported with a 

fine sandstone matrix. Locally, very fine sandstone beds contain mudstone clasts (<1 cm) 

or are unusually coarse (medium sandstone) and show normal grading. 

The presence of mudstone clasts and numerous erosion surfaces suggests that Fa4 

represents a high energy environment. The mudstone clast conglomerates are interpreted 

as bedload material, derived from a mud-rich substrate, and therefore represent lag 

deposits of highly energetic bypassing turbidity currents (e.g. Stevenson et al., 2015). The 

thin lenticular sandstone deposits are interpreted to represent a combination of the 

reworking of the substrate by bypassing turbidity currents, and deposition from the tails of 

these flows. This facies association shares many similarities to the sediment bypass facies 

identified within the CLTZs of sand-detached lobe systems in the Laingsburg area (Van der 

Merwe et al., 2014). The climbing ripple lamination within thin-bedded sandstones 

indicates rapid aggradation rates (Allen, 1973; Jobe et al., 2012).  
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6.5 Base-of-slope architectures 

Previous studies (Johnson et al., 2001; Grecula et al., 2003a; Hodgson et al., 2006; Brunt et 

al., 2013a), provide a good general constraint on the variety of large-scale elements and 

architectures that are represented within base-of-slope settings of the Karoo Basin (Fig. 

6.3).  

 

Figure 6.3 Summary of all large-scale architectural elements expected at base-of-slope 
settings, divided by erosional or depositional nature (based in part on Brunt et al. 
2013a). In a broad perspective, the architecture of infill can be divided into two styles 
and the architecture of depositional elements can be divided into three different 
deposit styles. 

 

6.5.1 Erosional elements 

Erosionally-confined channel-fills have been identified within base-of-slope settings in the 

Karoo Basin (Grecula et al., 2003a; Luthi et al., 2006; Brunt et al., 2013a) with typical 

dimensions (150-400 m wide; 8-20 m deep) (Fig. 6.3) consistent with other systems around 

the world (e.g. Posamentier, 2003; Pringle et al., 2003; McHargue et al., 2011). Brunt et al. 

(2013a) identified entrenched, weakly-confined, and levee-confined channel bodies. Due 

to a lack of slope on the basin floor, these channel systems tend to show more distributive 
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patterns (e.g. Van der Werff and Johnson, 2003; Hodgson et al., 2006; van der Merwe et 

al., 2014). Scour-fills are commonly observed adjacent to channel-fills in base-of-slope 

settings (e.g. Jobe et al., 2012; Ito et al., 2014; Hofstra et al., 2015; Pemberton et al., 2016), 

with a range of dimensions (<1 -20 m deep; <1-1500 m long). Making confident distinctions 

between channel- and scour-fills can be challenging given the 2D limitations of outcrop 

studies, however some key criteria have been identified (Hofstra et al., 2015) (Fig. 6.3).  

6.5.2 Depositional elements 

The mapping of high aspect ratio architectural elements based on the identification of 

bounding surfaces marking abrupt facies changes without significant erosion, and the 

recognition of distinctive architectural characteristics, such as high-amalgamation zones 

(HAZs) (Fig. 6.3) (Hodgson et al., 2006; Prélat et al., 2009; Groenenberg et al., 2010), 

supports identification of lobe deposits. Lobe deposition precedes channel propagation as 

a system advances (Macdonald et al., 2011b; Brunt et al., 2013a; Grundvåg et al., 2014; 

Morris et al., 2014a; Hodgson et al., 2016). Commonly, this means that lobe deposits are 

incised by channels resulting in partial preservation and making their identification more 

challenging.  

A clear distinction between sand-prone deposits that originated from overspilling flows 

(overbank) and the fringes of lobe deposits can be problematic where the stratal 

relationship between adjacent architectural elements is unclear (Fig. 6.3). Extensive levee 

successions have been identified above lobes in base-of-slope settings in the Laingsburg 

depocentre (Morris et al., 2014a; 2014b; van der Merwe et al., 2014). In the Tanqua 

depocentre, however, the stratigraphic relationships between channel-fills and 

surrounding stratigraphy are rarely observed (Fig. 6.3) (Van der Werff and Johnson, 2003; 

Hodgson et al., 2006). A levee-lobe transition zone has been considered (Morris et al., 

2014b; Hodgson et al., 2016), but recognition criteria has not been established. Therefore, 

given their laterally extensive geometry and incision by channels, we refer to thin-bedded 
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and sand-rich successions as lobe fringes for simplicity, although it is likely that some of 

these deposits arise from overspill (Fig. 6.3). Examples of the depositional and erosional 

elements are provided in the ‘Results’ section  below.  

 

6.6 Results 

6.6.1 Fan 3 – base-of-slope system 

The focus of this study is on the Syfer and Driefontein area (Fig. 6.1C) between the most 

south-western outcrop limit of Kleine Riet Fontein and the most south-eastern outcrop 

limit of Ongeluks River. The Ongeluks River area preserves a distributive channel system in 

the axis of Fan 3 (Johnson et al., 2001, van der Werff and Johnson, 2003; Sullivan et al. 

2004; Luthi et al., 2006; Hodgson et al., 2006), while the Kleine Riet Fontein area shows 

giant scour-fills that incise into thin-bedded climbing ripple laminated sandstones in an off-

axis setting (Jobe et al., 2012; Hofstra et al., 2015). In contrast, the Syfer and Driefontein 

area is characterised by an abundance of tabular deposits and lack of large-scale erosion 

surfaces. The tabular deposits comprise thick-bedded structureless and banded (Fa1) 

sandstones, medium-bedded structured (Fa2) sandstones and thin-bedded siltstones and 

sandstones (Fa3) (Fig. 6.2).  

At two locations (A and B) within de Syfer and Driefontein area (Figs. 6.1C, 6.4), high-

aspect ratio sandstone packages are located, which are defined by amalgamated 

sandstones (Fa1) with shallow erosion surfaces (<0.5 m) at their bases. At Loc 1 (Fig. 6.4A), 

thick-bedded structureless sandstones (Fa1A) form an amalgamated 20 m thick package 

(Fig. 6.4A), with bed splitting in both northern and southern directions. Where sandstone 

beds are non-amalgamated, they tend to show banded tops (Fa1B). Locally, mudstone clast 

conglomerates (Fa4) are common (Fig. 6.4A) between structureless amalgamated 

sandstones. The package shows a transition to more tabular, thin-bedded and fine-grained 

deposits at the top of the section, and is underlain by thick-bedded tabular sandstones.  
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Figure 6.4 Two localities (Loc 1 and 2) within the Syfer and Driefontein area (see Figure 6.1 
for location), with A) strike section of an amalgamated package of dominantly thick-
bedded structureless and banded sandstones, showing a 200 m wide zone dominated 
by bed amalgamation. B) Strike section of an amalgamated package of dominantly 
banded sandstones, showing bed splitting and facies transitions to climbing-ripple 
laminated sandstones towards the western margin. C) Cartoons showing the 
difference in dimensions and facies characteristics between the two amalgamation 
zones observed within the Syfer/Driefontein area. Palaeocurrents have been 
indicated, with with n = number of measurements, μ = mean palaeoflow and σ = 
standard deviation 
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Palaeoflow (n=51) is dominantly towards the east (Fig. 6.4A), implying the amalgamated 

zone is exposed as a strike-section with a maximum width of 200 m. 

At Loc 2 (Fig. 6.4B), the top of the Fan 3 exposure, which is stratigraphically just below (~10 

m) the amalgamated sandstone package at Loc 1, shows a sandstone package that can be 

mapped out for approximately 400 m (Fig. 6.4B). The section shows increasing bed 

amalgamation from WNW to ESE, and the amalgamated facies is dominated by 

structureless (Fa1A) and banded sandstones (Fa1B). Where bed splitting occurs, abrupt 

facies changes can be observed from banded sandstones (Fa1B) to climbing ripple-

laminated sandstones (Fa2). The position of bed splitting and facies change, shifts 

westwards up through the section. Palaeoflow (N=15) is NNE-orientated, indicating this is a 

strike-section of an amalgamated sandstone package with a minimum width of 375m (Fig. 

6.4).  

The limited amount of erosion and the lack of a confining erosion surface, and the lateral 

change in bed amalgamation supports both these packages (Loc 1 and Loc2) being High 

Amalgamation Zones (HAZs) (Hodgson et al., 2006; Prélat et al., 2009; Groenenberg et al., 

2010) interpreted as lobe apex settings. Dimensions of HAZs can be variable (3-20m thick, 

100-400m wide; Hodgson et al., 2006). The two examples here however,  show distinct 

characteristics (Fig. 6.4C): The amalgamated package at Loc 1, has a lower aspect ratio 

(height: width = 1: 10), is dominated by structureless sandstones (Fa1A) in the axis with 

more banded sandstone facies (Fa1B) at the margins, compared to Loc 2, which shows an 

amalgamated package with a higher aspect ratio (height: width = 1:75) and a dominance of 

banded sandstones (Fa1B) in the axis and climbing ripple-laminated sandstones (Fa2) at 

the margins. There is a strong association between facies transitions and the presence of 

amalgamation. At Loc 2, banded and structureless sandstones (Fa1) amalgamate into a 

single sandstone package, but where bed splitting occurs there is a facies transition to 

climbing ripple-laminated sandstones (Fa2) and no erosion at bed bases. At Loc 1, the 
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margins of the HAZ are dominantly composed of structureless sandstones with banded 

tops (Fa1), with shallow basal scours. The low aspect ratio (Fig. 6.4C) and the similarity in 

dimensions and facies with nearby channel-fills (e.g. Brunt et al., 2013a) suggests that the 

amalgamated sandstone package at Loc 1 may be located closer to up-dip channel-

confinement in comparison to Loc 2.   

Intercalated with the tabular sandstone-prone packages from de Syfer/Driefontein 

towards the Kleine Riet Fontein area (Fig. 6.1C) are numerous shallow erosional features (< 

2 m deep; 10 - >70 m wide) (Fig. 6.5). These smooth-sided features cut into and are filled 

by medium- to thin-bedded structured sandstones (Fa3) and siltstones (Fa4), which thin 

beyond the limits of the erosion surface. Both strike (Fig. 6.5A) and dip (Fig. 6.5B) sections 

have been observed. The dimensions, orientation to palaeoflow, and similarity between 

the underlying and infill facies supports an interpretation of small-scale scour-fills. The 

presence of scour-fills among the tabular medium-bedded structured sandstones suggests 

these features represent a record of both unconfined flow bypass, and rapid deposition 

from relatively low concentration flows due to the dominance of climbing ripple-

lamination. Jobe et al. (2012), who focussed on the Kleine Riet Fontein area (Fig. 6.1C) of 

Fan 3, noted a wide range of dimensions (10-30m wide, 1-5m deep) and an apparent 

random stratigraphic distribution of scour-fills.  

The Ongeluks River area (Fig. 6.1C) towards the east shows erosionally-confined low-

aspect ratio elements that cut into tabular high-aspect ratio elements (Fig. 6.6A). The low-

aspect ratio elements are dominantly composed of amalgamated structureless sandstones 

(Fa1A) with basal mudstone clast conglomerates. The tabular deposits show much more 

variability within facies characteristics and are composed of a combination of structureless, 

banded and climbing ripple laminated sandstones, and siltstones (Fa1; Fa2; Fa3), with 

subtle lateral bed thickness changes.  
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Figure 6.5 Two examples of small-scale erosional features (< 2 m deep) within medium-
bedded laminated sandstones (Fa3) of Fan 3. See Figure 6.1 for locations. A) strike-
section through a ~50 m wide smooth erosional surface and B) dip-section through a 
> 10 m long erosional surface showing a fill with abrupt bed pinch-out. 
Palaeocurrents have been indicated, with with n = number of measurements, μ = 
mean palaeoflow and σ = standard deviation 

 

The low-aspect ratio elements are interpreted as channel-fills, in agreement with previous 

authors (Johnson et al., 2001; Van der Werff and Johnson, 2003; Sullivan et al. 2004; Luthi 

et al., 2006; Hodgson et al., 2006). The tabular deposits have been previously referred to as 

‘inter-channel highs’ (Van der Werff and Johnson, 2003), and interpreted as overbank 

deposits (Luthi et al., 2006). However, they are exceptionally sandstone-prone (Fig. 6.6A2) 

and share facies affinities with the HAZs (Fig. 6.4) towards the west as well as the lobes 

identified by Morris et al. (2014a). Therefore, the high aspect ratio thick- to medium-
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bedded sandstone packages are here interpreted as lobe deposits incised by channels. 

Intercalated thin-bedded and relative siltstone-rich (Fa3/Fa4) packages are more 

challenging to interpret with confidence, and may represent either channel 

overbank/levee or lobe fringe deposits.  

 

Figure 6.6 A) Part of the main Ongeluks River outcrop face showing dip sections of: B) 
erosional-based low aspect-ratio elements, dominated by amalgamated structureless 
sandstones (Fa1A), previously interpreted as channel-fills (Johnson et al. 2001; Van 
der Werff and Johnson, 2003; Luthi et al. 2006; Hodgson et al. 2006) cutting into 
sandstone-prone tabular deposits and C) detailed section of the same sandstone-
prone tabular deposits. Main palaeoflow in the Ongeluks River area is ENE 
orientated. See Figure 6.1 for location. 

 

6.6.2 Unit 5 – base-of-slope system 

The Unit 5 study focuses on a 2 km2 area (Figs. 6.1, 6.7) where the outcrop provides good 

constraints on the three dimensional architecture. This is supported by a dataset of 26 

closely spaced sedimentary logs (See Appendix B.3), 191 palaeocurrent measurements 

(See Appendix B.2), primarily from ripple-lamination, and one cored borehole (BK01) sited 
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150 m away from the nearest outcrop (Fig. 6.7). The core intersects the lower 46.5 m of 

Unit 5 and allows bed-to-bed correlation to the nearby outcrop (Fig. 6.8A).  

The stratigraphy of Unit 5 in the Blaukop area is dominated by tabular beds showing an 

assemblage of thick-bedded structureless and banded sandstones (Fa1), medium-bedded 

structured sandstones (Fa2) and thin-bedded structured sandstones and siltstones (Fa3) 

(Fig. 6.7). Palaeoflow is overall NNE orientated (Fig. 6.7), with a stratigraphic change from 

NE at the base of Unit 5 towards WNW at the top of the section (Fig. 6.8A) 

Thickness changes attributed to depositional (Fig. 6.9A1) and erosional relief (Fig. 6.9A2) 

are common. Shallow erosion surfaces (<0.5m deep, 10’s of metres wide) incise into thick- 

and medium-bedded sandstone (Fa1 and Fa2) and are overlain by a variety of facies 

associations (Fa1, Fa2, Fa3). In some cases, these features were filled by a single deposit 

(Fig. 6.9A2), resulting in depositional relief above an erosional base. Furthermore, medium-

bedded laminated very fine sandstones can comprise asymmetric sinusoidal laminations 

(Fig. 6.9A3). These aggradational bedforms show multiple normal grading patterns and 

abrupt grain-size breaks (Fig. 6.9A3), indicating they comprise multiple event beds (Fig. 

6.9A3). They are similar to the sinusoidal bedforms observed in lobes from base-of-slope 

and lower slope settings by Morris et al. (2014a). Thick-bedded and amalgamated 

sandstones (Fa1) comprise ~50% of the sandstone-prone top package and are widespread 

over the exposed area (>1km wide). They show evidence of widespread shallow (<0.5m) 

scouring, with strike and downstream thinning, resulting in sharp transitions with 

underlying deposits. Overall, the proportion of siltstone is limited (<10%) and most thin-

bedded sandstones and siltstones (Fa3) are concentrated in the basal 10 m of the ~40 m 

thick succession. The BK01 core reveals that some thin-bedded sandstones are part of Fa4 

as they show irregular and erosive bases (Fig. 6.9B1) with unusually coarse bed bases 

(medium sandstone) and mudstone clast and chip materials (<1cm - 5cm) at the base (Fig. 

6.9B2).  
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Figure 6.7 Facies correlation panels and 3D-framework of Unit 5 within the Blaukop area. 
Log and BK01 core locations are indicated. Palaeoflow is overall NNE orientated. See 

Figure 6.1 for location. Palaeocurrents have been indicated, with with n = number of 
measurements, μ = mean palaeoflow and σ = standard deviation 
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Figure 6.8 A) Sedimentary log of the top sandstone-prone 25 m of the BK01 core with 
presence of aggradational bedforms (black bars), bypass indicators and stratigraphic 
palaeoflow fluctuations (from outcrop - with with n = number of measurements, μ = 
mean palaeoflow and σ = standard deviation). All eleven depositional elements are 
indicated as well as the reason behind each element boundary (B1-B4). See Figure 6.4 
for remaining symbol explanations. B) Depositional element interpretation and 
division in three depositional cycles. See Figure 6.11 for further explanation.   
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The tabular deposits that comprise most of the stratigraphy (Fig. 6.7) are incised by two 

erosionally-confined low-aspect ratio amalgamated sandstone bodies (300-350m wide; 

>10m deep). The basal erosion surfaces of both bodies show steep stepped profiles that 

cut thin- to thick-bedded sandstones (Fa1, Fa2 and Fa3). The margins show small quantities 

of mudstone clast conglomerates (Fa4) and soft-sediment deformed deposits (Fig. 6.7). 

Both bodies are topped by tabular >1 km wide structureless, banded and laminated thick-

bedded sandstones (Fa1 Fa2) that form a ‘wing’-like architecture (Fig. 6.7). 

A simple division can be made between tabular high-aspect ratio bodies and erosionally-

confined low-aspect ratio bodies, following a similar approach to the Fan 3 dataset. Due to 

their dimensions, architecture, facies characteristics of their infill (Fa1) and base-of-slope 

setting, the low-aspect ratio bodies are interpreted as channel-fills (e.g. Kirschner and 

Bouma, 2000; Hodgson et al., 2006; Brunt et al., 2013a) (Fig. 6.3). Soft-sediment deformed 

deposits at the margins of channels represent local margin collapse. Kirschner and Bouma 

(2000) classified all amalgamated high aspect-ratio sandstone packages also as channel 

bodies (their Type II), representing a distal variant of the low-aspect ratio channel body. 

However, due to the minor basal erosion (<0.5 m deep) and high aspect-ratio (>600), a 

lobe interpretation is here preferred. The low aspect-ratio channel-fills are overlain by 

high-aspect ratio lobe bodies (Fig. 6.7), resembling ‘channel-wings’. 
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Figure 6.9 Small-scale architectural elements within tabular deposits from outcrop (A) and 
bypass indicators (B) within the BK01 core (see Figure 6.7 for location). (A1) Abrupt 
downstream bed thinning of laminated medium-bedded sandstone; A2) Metre-scale 
scour feature filled by a single bed showing relative positive relief above the scour-
surface. A3) Aggradational bedform composed of multiple beds showing long 
wavelength (>50 cm) wavy laminations. Top shows uninterpreted and bottom shows 
interpreted outcrop example; B1) Multiple irregular erosion surfaces among thin-
bedded and ripple-laminated sandstones; B2) Abrupt  normal grading within thin-bed 
(6 cm) from medium sandstone to fine siltstone, with irregular mudstone clasts (<1 
cm – 5 cm) at the bed base.   

6.7 Defining elements in the base-of-slope stratigraphic record 

The Fan 3 and Unit 5 base-of-slope systems are sandstone-prone (80-90%) and show a 

large diversity in erosional and depositional architectural elements. The stratigraphic 

variability of facies associations among the base-of-slope stratigraphy of both systems 

contrasts with that of the more distal reaches (Fig. 6.10A), where basin-floor lobes have 
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been well-documented (Prélat et al., 2009). In distal areas, the stratigraphy is marked by 

numerous abrupt stratigraphic alterations between thick-bedded sandstones (Fa1) and 

siltstones (Fa4), forming packages of 4-8 m and <2 m respectively (Fig. 6.10A). These 

stacking patterns are interpreted to reflect updip channel avulsion and compensational 

stacking patterns (Prélat and Hodgson, 2013). In comparison, packages of tabular deposits 

within base-of-slope successions show more subtlety in stratigraphic facies association 

changes and are not intercalated with laterally extensive lobe distal fringe deposits, making 

it more challenging to define individual lobes (Fig. 6.8). In both base-of-slope systems, high 

aspect-ratio sandstone packages have been interpreted as lobes, due to their sand-prone 

nature, bed thicknesses (some > 1 m), stratigraphic thickness variability (Figs. 6.6C, 6.7) 

and minor erosion below bed bases (Figs. 6.6C, 6.7). Furthermore, High Amalgamation 

Zones (HAZs) (Fig. 6.4) comprise the core of these high aspect ratio elements and are 

interpreted as the apex of lobe deposits. The juxtaposition of channel systems and lobes at 

base-of-slope regions (Johnson et al., 2001, van der Werff and Johnson, 2003; Luthi et al., 

2006; Hodgson et al., 2006) indicates channel propagation (Pyles et al. 2014). However, 

alternative criteria have been established to support the identification of lobe deposits in 

base-of-slope settings.  
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Figure 6.10 A) Differences in stratigraphic bed thickness and facies variability among 
tabular deposits between proximal (A1 - Kleine Riet Fontein) and distal (A2 - 
Gemsbok Valley) locations within Fan 3. See Figure 6.1 for locations. B) Division in 
depositional elements interpreted as four different lobes  within the Ongeluks River 
area of Fan 3. See Figure 6.8 for explanation of B1-B3 

.   

All tabular deposits from both base-of-slope systems can be separated in depositional 

elements on the basis of stratigraphic facies association changes, bypass indicators, lateral 

changes in facies and bed thicknesses, changes in palaeoflow patterns and the constrains 

of basal erosional surfaces of channel-fills (Figs. 6.8A, 6.10B). Based on these criteria, four 

depositional elements can be defined in the sandstone-prone tabular package of the 

Ongeluks River area (Fan 3) (Fig. 6.10B), varying in thickness between 1 – 5 m. In the 

Blaukop area (Unit 5), 11 depositional elements have been identified, varying between 0.5-

5.5 m thickness (Fig. 6.8A). Element boundaries were identified based on one of the 

following factors (Fig. 6.8A): sharp transitions to either thick-bedded sandstones, or thin-

bedded sandstones and siltstones, change of facies association with bypass indicators and 
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change of facies association combined with known proximity of basal erosional channel 

surfaces.  

Depositional elements characterised by thin-bedded deposits are generally thinner (0.5 – 

1.5m), compared to depositional elements characterised by thick-bedded and 

amalgamated deposits (3 – 5.5m). The thin-bedded packages of the high-aspect ratio 

elements show indictors of sediment bypass (Stevenson et al., 2015) at various 

stratigraphic levels, in the form of irregular erosion surfaces, mudstone clast materials and 

unusually coarse bed bases (Fa4) (Figs. 6.8A, 6.9B). The combined record including thin-

bedded sandstones and siltstones (Fa3), representing more distal and less energetic flow 

conditions, suggests substantial variations in flow energy among these thin-bedded 

packages. Furthermore, the tabular deposits within the Blaukop area (Unit 5), show 

substantial stratigraphic variations in palaeoflow patterns (Fig. 6.8A), indicating that they 

likely represent a stack of architectural elements.   

The various depositional elements are linked to environment of deposition (Figs. 6.8B, 

6.10B, 6.11A) based on the present facies associations (Figs. 6.2, 6.3). Packages of 

unconfined thick amalgamated (Fa1) sandstones are interpreted as lobe axis locations 

(Hodgson et al., 2006; Prélat et al., 2009), while medium to thin-bedded laminated 

sandstones (Fa2) are associated with lobe off-axis or proximal overbank environments 

(Prélat et al., 2009; Brunt et al., 2013a).  
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Figure 6.11 Interpretation of all tabular depositional elements within the Blaukop area of 
Unit 5. See Figure 6.7 for log locations. With A) Division in depositional elements and 
the facies variability within B) Planform interpretations and depositional history of 
the twelve depositional elements with division between lobe and channel-overbank 
deposits based on palaeoflow patterns and lateral facies transitions. The location of 
the BK01 core (See Figure 6.8 for interpretation), metre-scale scour features and 
aggradational bedforms are indicated. The depositional history can be divided into 
multiple progradational and retrogradational phases (cycles). C) Detailed strike-
section through depositional elements 4 and 5, showing thickness/facies changes 
occurring in multiple directions. The channel-fill is slightly off-centre from the thickest 
part of element 5. Aggradational bedforms are abundant within the thickest parts of 
Element 4. See Figure 6.4 for symbol explanation. Palaeocurrents have been 
indicated, with with n = number of measurements, μ = mean palaeoflow and σ = 
standard deviation  
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Thin-bedded sandstones and siltstones (Fa3) are associated with lobe fringe, but may well 

represent a transition to levee/overbank deposits (Prélat et al., 2009; Brunt et al., 2013a). 

The planform expression of the elements (Fig. 6.11B) have been reconstructed for the 

Blaukop area (Unit 5) based on palaeoflow, thickness patterns and the observed facies 

transitions. The reconstructions (Fig. 6.11B) show lateral and longitudinal juxtaposition of 

lobes and channels and indicate a cyclic process of channel propagation and retreat or 

avulsion, similar to the build-cut-fill-spill model of Gardner et al. (2003). Three main cycles 

of downdip channel propagation and retreat can be identified (Figs. 6.8B, 6.11B). The first 

four depositional elements define one cycle,  and the younger two cycles include the two 

identified channel systems (Element 6 and 9 - Figs. 6.7, 6.11), both overlain by younger 

lobes (Element 7 and 10). Based on stratigraphic palaeoflow patterns (Fig. 6.8A) and lateral 

facies changes (Figs. 6.7, 6.11), the younger depositional elements indicate less significant 

lateral shifting behaviour in comparison to the older depositional elements (Fig. 6.11B).  

6.8 General characteristics of base-of-slope lobe deposits 

The presented Fan 3 and Unit 5 cases demonstrate that lobe deposits comprise a 

substantial part of the base-of-slope stratigraphy (Figs. 6.10B, 6.11). In Blaukop (Unit 5), 

the reconstructions (Figs. 6.8B, 6.11B) support the view that the majority of the deposits 

among high-aspect ratio tabular elements (>75%) are lobe deposits, which permits their 

key characteristics to be considered (Figs. 6.12, 6.13).   

6.8.1 Facies distributions 

Within the studied base-of-slope systems, the lobe axis is characterised by a combination 

of banded (Fa1A) and structureless (Fa1B) sandstones (Figs. 6.4, 6.6C, 6.7), where banding 

commonly overlies structureless sandstone (Figs. 6.6C, 6.8A, 6.12). The relative portions of 

banded sandstones and structureless sandstones varies (e.g. Fig. 6.4), which is partially 

related to eroded bed tops, resulting in dominantly structureless sandstones in the most 

proximal locations (Fig. 6.12). These axial facies (Fa1) show facies transitions (Fig. 6.4B) 
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towards medium-bedded dominantly climbing ripple laminated sandstones (Fa2) in the 

lobe off-axis (Fig. 6.12). Within the Blaukop area, aggradational bedforms (Morris et al., 

2014a) (Figs. 6.8A, 6.9A3, 6.11B, 6.11C) are predominantly identified in axial positions, 

from axis to frontal off-axis lobe environments. Thin-bedded sandstones and siltstones 

characterise the fringes of lobes in base-of-slope settings (Fa3) (Fig. 6.2). In contrast to the 

laterally extensive and siltstone-rich lobe fringes in more basinward positions (e.g. Prélat et 

al., 2009; Prélat and Hodgson, 2013), these fringes are sandstone-rich (75%-95%). 

Furthermore, lobe fringe elements represent a relative minor part of the base-of-slope 

lobe stratigraphy (10-15%).  

 

Figure 6.12 Idealised downstream facies transition of a single depositional flow within a 
base-of-slope lobe deposit. The upper part of the most proximal deposit has a lower 
preservation potential due to erosion and amalgamation. 

 

6.8.2 Lobe architecture 

The large dip and strike extent of lobes (e.g. Prélat et al., 2010) and their remnant form 

where cut by channels, means that quantification of lobe dimensions is challenging. 

However, the planform reconstructions (Fig. 6.11B) of lobes in the Blaukop area provide 

some constraint on their size and shape, and suggest that they form simple and narrow 

architectural bodies (Fig. 6.13). HAZs among the base-of-slope systems show some 

variation in dimensions and facies characteristics (Fig. 6.4), which in part can be associated 

with its longitudinal position. Metre-scale scour features are common among lobe deposits 

in both systems (Figs. 6.5, 6.9A2, 6.13). In the Blaukop area (Unit 5), scour-fills among 

amalgamated sandstones (Fa1) are related to proximal and axial lobe environments (Fig. 
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6.11B). Scours within medium- to thin-bedded facies (Fa3; Fa4), are predominantly 

preserved lateral to the channels that propagated into the basin (Hofstra et al. 2015) (Fig. 

6.11B).  

 

Figure 6.13 Summary conceptual model of a base-of-slope lobe architecture with the 
distribution of facies and small-scale architectural elements. The given dimensions 
are estimates due to the limitations of the used outcrop datasets. 

 

The thickness of the lobe deposits varies between 5.5 to <0.5 m (Figs. 6.8, 6.10B), 

depending on its position within the lobe (axis to fringe; Fig. 6.13). Elements 1,2, 4 and 5 

show clear thinning in both lateral and downdip directions (Figs. 6.11A, 6.11B). Facies 

distributions (Figs. 6.11B, 6.11C) indicate that the lobes can comprise multiple across strike 

transitions over short distances (< 1km). Dip-orientated transitions are not well 

constrained. The frontal lobe off-axis (Element 1 and 4) (Figs. 6.11B, 6.11C) can be narrow 

(~ 500 m wide, >3 km long). (Fig. 6.13).  
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6.8.3 Comparison with existing lobe types 

The key characteristics of the lobes defined from the two base-of-slope systems can be 

compared to well-developed characteristics of different lobe types from various settings 

(Prélat et al., 2009; Prélat and Hodgson, 2013; Grundvåg et al., 2014; Morris et al., 2014a; 

Spychala et al., 2015). 

In comparison to lobes described from basin-floor settings (Prélat et al., 2009; 

Groenenberg et al., 2010), the base-of-slope systems differ in lobe facies characteristics, 

distributions and architecture. The studied Fan 3 and Unit 5 base-of-slope systems (<5.5 m) 

are limited in thickness compared to the lobe thicknesses recorded on the basin-floor (up 

to 10-m) (Prélat et al., 2009). The frontal fringes of basin floor lobes are abundant in hybrid 

event beds (Hodgson, 2009; Prélat et al., 2009), which show an upper argillaceous division, 

rich in mudstone clast and carbonaceous materials (Haughton et al., 2009; Hodgson, 2009; 

Kane and Pontén, 2012; Fonnesu et al., 2015). Hybrid event beds are completely lacking 

within both base-of-slope records. Axial facies of basin-floor lobes are defined by thick 

packages (~ 5 m) of amalgamated structureless sandstones (Prélat et al., 2009). Banded 

sandstones (Fa1b), which are common within base-of-slope lobe deposits, have not been 

reported from the basin floor lobe deposits. The base-of-slope lobe deposits are more 

heavily modified by erosional features, through juxtaposition of channel systems (Figs. 

6.6B, 6.7) and scours (Figs. 6.5, 6.9A2), meaning that the remnant geometries are common. 

Lobes at basin-floor settings show shallow (m-scale) scouring, but only in axial positions at 

the base of HAZs (Prélat et al., 2009; Groenenberg et al., 2010).  

The lobe deposits from both base-of-slope systems share affinities with frontal lobe 

deposits, reported from Unit C3 (Fort Brown Formation) and exposed in the adjacent 

Laingsburg depocentre (Morris et al., 2014a). Frontal lobes, or splays, are lobate bodies 

deposited ahead of a feeder channel that lengthens into the basin and incises through its 
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own deposit (Normark et al., 1997; Morris et al., 2014a). They are sandstone-prone and 

shows an abundance of climbing-ripple laminated sandstones and aggradational bedforms 

(Fa2), and lack hybrid event beds. Furthermore, the architecture of these lobes is 

characterised by relatively low-aspect ratios and mounded geometries (Morris et al., 

2014a), which is similar to the lobes identified in this study. However, little has been 

documented on the fine-scale architecture of these frontal lobe deposits (Morris et al., 

2014a). 

 

6.8.4 Proximal-to-distal lobe or discrete bodies? 

The lobe characteristics of the two base-of-slope systems are clearly distinct from lobes 

reported from basin-floor settings within the same depocentre (Prélat et al., 2009). 

However, given the dimensions of lobes (Prélat et al., 2010), it is possible that the studied 

lobes of the base-of-slope systems represent the updip portion of the lobes studied 

downdip, and form a physically connected body. However, downdip thinning and facies 

transitions (Fig. 6.11) have been observed in the lobes at Blaukop (Unit 5) and the  frontal 

fringes differ in character to frontal fringes observed at the basin-floor, where they are 

characterised by structureless sandstones and linked-debrites. Also, finger-like protrusions 

observed mostly within basal lobes of the Tanqua fan systems (Prélat et al., 2009; 

Groenenberg et al., 2010), have not been observed within the base-of-slope systems. In 

the Central Basin of Spitsbergen (Grundvåg et al., 2014), channel-lobe juxtaposition was 

also observed within base-of-slope settings and lobes could be traced out towards pinch-

out on the basin-floor. However, the most proximal lobe deposits within the Central Basin 

are much more uniformly thick-bedded and/or amalgamated (Grundvåg et al., 2014) and 

do not show the same degree of facies variability as observed within the base-of-slope 

systems (Fan 3 and Unit 5) here described. Furthermore, the similarities in lobe 

characteristics with lobes from similar settings within the Laingsburg depocentre (Morris et 

al., 2014a), which have been interpreted as separate bodies from basin-floor (terminal) 
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lobes downdip, suggests that a large part of the base-of-slope lobes here identified are 

likely to be disconnected from basin-floor lobes downdip. 

The thickness of the channel-fills (5-10 m), however, exceeds that of the maximum lobe 

thickness (5 m) identified within both base-of-slope systems, which suggest that the 

(majority of the) channels more likely fed thicker lobes (10 m) downdip on the basin-floor. 

The difference in character in both dimensions and facies characteristics between HAZs 

observed in base-of-slope settings (Fig. 6.4C) supports that some elements (Fig. 6.4A) may 

represent the updip expression of basin floor lobes, while others (Fig. 6.4B) are part of 

thinner lobes with different  sedimentary characteristics. Therefore, the base-of-slope 

record most likely represents a combination of both the updip expressions of thicker basin-

floor lobes as well as the relative more downdip expression of thinner base-of-slope lobes 

which reach less far basinward. This has important implications for submarine fan 

architecture and the connectivity within. 

6.9 Discussion 

Based on facies and architectural characteristics (sand-prone nature, climbing ripple-

lamination, aggradational bedforms, lack of hybrid beds, narrow and mounded 

geometries) the lobes defined from the Fan 3 and Unit 5 base-of-slope systems would 

classify as frontal lobes (Morris et al., 2014a). However there is no evidence of levee build-

up stratigraphically above these lobe deposits, as has been observed in the Fort Brown 

Formation (Morris et al., 2014a).  The reconstructions of one of the two systems has 

revealed a cyclic process of lobe deposition, channel incision and propagation, and 

retrogradation (Figs. 6.8B, 6.11B), similar to the BCFS-model of Gardner et al. (2003).  

Within such a cyclic process, not all of the lobe deposits are defined by channel 

propagation, and may well be incised by genetically-unrelated channels that feed basin-

floor lobes downdip, and therefore do not correspond with the definition of a frontal lobe 
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(Normark et al., 1997; Morris et al., 2014a).  To be able to uncover the true reasons behind 

these variations in lobe characteristics within a single system, proper classification is 

needed.  

6.9.1 Submarine lobe classification 

Variability in lobe character within a single fan system has been observed in other systems 

(e.g. Deptuck et al., 2008; Jegou et al., 2008). To cover this variance in lobe character a 

classification is proposed based on morphological and sedimentary characteristics (Fig. 

6.14). Previous lobe classifications made distinctions based on the characteristics of related 

channels (e.g. Shanmugan and Moiola, 1991), the character of the surrounding 

stratigraphic package (Pickering, 1981), the geographic position (intraslope) (Spychala et al. 

2015) and/or system evolution (frontal, terminal, crevasse) (Prélat et al. 2009; Morris et al. 

2014a). However, a system evolution classification is interpretative and precludes making 

comparisons between ancient and active systems. For example, frontal lobes (Morris et al., 

2014a) will be ‘terminal’ lobes of the system at a certain point during system evolution. 

Similarly, channel character may evolve over time (e.g. Deptuck et al., 2003; Hodgson et 

al., 2011; 2016) and not represent the initial state at time of lobe development. Also, lobes 

cover large areas (Prélat et al., 2010) and may not be constrained to a single geographic 

zone. Furthermore, if individual lobe bodies are variable within a system, a single 

geographic area may show a combination of different lobe types and may not be 

exportable to other systems. 

However, lobes have also been classified based on morphological characteristics (Deptuck 

et al., 2008; Jegou et al. 2008). Within the Amazon Fan (Jegou et al., 2008) a division of two 

lobe types (Type I and II) was primarily based on morphological differences and 

dimensions, while within the Golo Fan the division between PILs (Proximal Isolated Lobes) 

and CMLs (Composite Mid-fan Lobes) was based on lobe size, architecture, feeder channel 

and setting. Differentiating lobe deposits based on their morphological and 
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sedimentological characteristics is more valuable, as it is independent of system evolution 

and geographical position and may be more exportable to different systems and datasets. 

Through integration of the results presented in this study and previous work from the 

Karoo Basin (Prélat et al., 2009; Prélat  and Hodgson, 2013; Brunt et al., 2013a; Morris et 

al., 2014a; Spychala et al., 2015), two lobe types are proposed that differ in both 

architecture and facies characteristics (Fig. 6.14): ‘narrow lobes’ with lower aspect ratios, 

smaller surface areas and simple geometries, and ‘radial lobes’ with higher aspect-ratios, 

greater surface areas and more complicated fine-scale architecture. 

 

Figure 6.14 Conceptual models of ‘Narrow Lobes’ and ‘Radial lobes’ with associated 
characteristics regarding architecture, facies and dominant setting within the Karoo 
Basin. These lobe types are comparable to similar divisions made in the Golo Fan and 
the Amazon Fan. 
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This classification aligns with similar distinctions made in other systems (Fig. 6.14) (Deptuck 

et al., 2008; Jegou et al., 2008): the PILs at the toe-of-slope from the Golo Fan represent 

small ellipsoid bodies compared to the larger and architectural complex CML downdip 

(Detptuck et al., 2008), the ‘Type I’ lobes of the Amazon Fan form ellipsoid and narrow 

bodies compared to the more radial morphologies of the ‘Type II’ lobes which cover larger 

surface areas (Jegou et al., 2008). 

6.9.2 Effect of flow efficiency 

The presence of lobes with different characteristics within a single system can be related to 

an interplay of external or internal factors. External factors such as system confinement 

(Prélat et al., 2010), could explain the large-scale morphological differences between 

‘Narrow lobes’ and ‘Radial lobes’ (Fig. 6.14), but not their variance in facies and fine-scale 

architectural differences. In the Amazon Fan (Jegou et al., 2008), variance in lobe 

morphology (elongate and radial) between different lobes was observed within the same 

unconfined basin-floor settings. Therefore, internal factors related to the input flow 

properties at time of lobe development are more likely to be involved, such as grain size, 

concentration, volume or flow criticality (e.g. Gladstone et al., 1998; Al Ja’Aidi et al., 2004; 

Baas et al., 2004; Amy et al. 2006; Postma et al. 2016). These flow parameters have an 

influence on flow efficiency (e.g. Gladstone et al., 1998; Bouma, 2000; Al Ja‘Aidi et al., 

2004), which is here defined  as the carrying capacity of flows leaving channel 

confinement. Flow efficiency has been linked both to the expression of channel-lobe 

transition zones (CLTZ) (e.g. Mutti and Normark, 1987; Wynn et al., 2002a; Gardner et al., 

2003; Van der Merwe et al., 2014), as well as the architecture of  the deposits downdip 

(e.g. Al Ja’Aidi et al., 2004; Baas et al., 2004; Hodgson et al. 2016). Therefore, it has to be 

considered as an important first order control for lobe characteristics. A variety of flow 

properties can influence flow efficiency, as discussed below. 
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1) Froude-number  

Recent studies have related architectural differences of lobes to the critical densimetric 

Froude number of turbidity currents (e.g. Lang and Winsemann, 2013; Postma and 

Cartigny, 2014; Postma et al., 2016) .The more complicated architecture of CMLs in the 

Golo Fan is explained by Postma et al. (2016) by the supercritical nature of the turbidity 

currents. The PILs were supplied by inefficient surge-like flows and by subcritical 

deposition throughout. Within experimental studies, ‘supercritical lobes’ (Hamilton et al., 

2015) are fed by fully erosional ‘bypass’ channels, which show continuous backfilling 

before avulsion occurs at the avulsion node. This contrasts to the ‘subcritical lobe’ 

(Fernandez et al., 2014) that show channels formed by levee building and lobe deposition 

occurring directly beyond the slope break (Postma et al., 2016).  

Within the systems of the Karoo Basin, the ‘narrow lobes’ show abundant indications for 

subcritical flow conditions, due to the abundance of ripple-laminated facies (Morris et al. 

2014a). However there have been no observations (Hodgson et al., 2006; Prélat et al., 

2009; Prélat and Hodgson 2013; Groenenberg et al., 2010) that support supercritical flow 

conditions (e.g. Lang and Winsemann 2013; Postma et al. 2014) feeding ‘radial lobes’ 

farther downdip. Furthermore, the inferred dominance of levee building within subcritical 

versus supercritical depositional conditions (Postma et al., 2016) does not comply with the 

PILs of Deptuck et al. (2008) as they are fed by gullies and erosive channels, instead of the 

CMLs, which are fed by leveed channels, although outboard of large and stable conduits. 

2) Variable flow efficiency related to other basic flow properties  

The efficiency of turbidity currents has also been related to flow properties (Mutti and 

Normark, 1987; Gardner et al., 2003) such as sediment concentration,  grain size or flow 

velocity and size. Deptuck et al. (2008) related differences between PILs and CMLs within 

the Golo Fan to five factors: 1) sediment properties and flow velocity; 2) the number and 

frequency of flows; 3) changes in gradient and seabed morphology; 4) lobe lifespan; and 5) 
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feeder channel geometry. Deptuck et al. (2008) also noted that these factors are inter-

related, but mainly depend on the initial flow properties (1) such as concentration, grain 

size, flow velocity and flow volume. Similarly, Gardner et al. (2003) attributed the Brushy 

Canyon fan system with relatively inefficient and sand-prone, low-volume flows. The 

relative impact of these basic flow properties on deposit morphology can however be 

different. Grain size is considered to have a much more significant impact than sediment 

concentration on the dimensions and morphology of the deposits (Gladstone et al., 1998; 

Baas et al., 2004; Amy et al., 2006), and has been inferred as a first-order control on fan 

system morphology (e.g. Reading and Richards, 1994; Galloway et al., 1998). Differences in 

length-to-width ratios between depositional bodies were linked to sediment concentration 

and grain size within experimental studies on the morphology of depletive turbidity 

current deposits (Al Ja’Aidi et al., 2004; Baas et al., 2004). More efficient flows were 

predominantly achieved with higher portion of fines, which generated more radial 

distributive patterns and started depositing at some distance from the point of flow 

expansion (Baas et al. 2004). In comparison, purely coarse-grained inefficient flows created 

more elongated morphologies directly at the point of expansion. Increasing flow volume 

also resulted in more elongated morphologies (Al Ja’Aidi et al., 2004). Differences in facies 

characteristics between lobe types can be linked to concentration and grain size. Facies 

characteristics of the ‘narrow lobes’ among the base-of-slope systems of the Karoo Basin 

suggest that they were fed by low-concentration and sand-dominated flows, due to the 

dominance of climbing-ripple lamination and their general lack of silt-grade material 

(<10%). The limited lobe width is therefore likely related to limitations of flow grain size 

and concentration. 

In comparison, the ’radial lobes’ in basin-floor settings are more siltstone-prone, indicating 

they were fed by efficient flows with a more significant portion of fine-grained materials. 

Similarly, Deptuck et al. (2008) suggested that flows feeding CMLs periodically had more 
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suspended mud compared to flows feeding PILs, which supports a greater fine-grained 

component. A greater mud-component would also fit with hybrid event beds being solely 

observed within ‘radial lobes’ (Hodgson 2009; Prélat et al., 2009; Grundvåg et al., 2014).  

However, this does not yet explain why in some systems there is a marked relationship 

between the geographical position and type of lobe present (Deptuck et al., 2008; Prélat et 

al., 2009; Morris et al., 2014a), and not in others (Jegou et al., 2008; Grundvåg et al., 2014). 

Grain size distributions and/or flow concentrations can however be altered due to a variety 

of reasons, either by 1) alteration of the sediment properties at the source, or 2) sediment 

segregation occurring in between the source and the channel-mouth. ‘Narrow lobes’  like 

frontal lobes (Posamentier and Kolla, 2003; Morris et al., 2014a) indicate overall inefficient 

flow properties, due to deposition near the channel mouth, and are fed by flows with the 

fine grained component stripped off from density stratified flows into external levee 

successions (Posamentier and Kolla, 2003; Hodgson et al., 2016). Several mechanisms can 

however be proposed for limiting the sediment segregation by channel-levee systems and 

thus maintaining the fine-grained fraction to the channel mouth: 1) an absence of levees or 

2) underfit flows in channel-levee systems, where the fines stay confined to the channel. 

An absence of levees could be caused either by i) being in an early phase of fan 

development (early lobes), ii) due to an updip avulsion by a levee breach (Brunt et al., 

2013b; Ortiz-Karpf et al. 2015), or, iii) as a result of channels being strongly incised.  

These different mechanisms that can impact the concentration and grain size of flows 

implies that both ‘narrow lobes’ and ‘radial lobes’ (Fig. 6.14) could develop at all times and 

geographical positions during the development of the system. However, the inefficient 

nature of the flows feeding ‘narrow lobes’, makes it much more likely that they are 

deposited in and around the base-of-slope (Deptuck et al., 2008; Brunt et al., 2013a; 

Morris et al., 2014a), when segregation occurs at the slope. Within mud-rich systems like 

the Amazon Fan (Jegou et al., 2008), ‘narrow lobes’ may reach further into the basin as 
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they are still efficient at the base-of-slope but may lose this efficiency due to sediment 

segregation by basin-floor levee systems. Lobes within the Eocene Central Basin of 

Spitsbergen (Grundvåg et al., 2014) show most similarities with ‘radial Lobes’, due to their 

distribution of linked debrites and siltstone-prone fringes (Fig. 6.14). Their proximal basin-

floor to base-of-slope setting does however suggest that ‘radial lobes’ are not necessarily 

situated at (distal) basin-floor settings.    

6.9.3 Implications for channel-lobe transition zones within the Tanqua fan systems 

Variance in flow efficiency will impact connection between the feeder channel and lobe, 

and therefore the character of the CLTZ (e.g. Baas et al., 2004; Postma et al., 2016). 

However, within both the Amazon Fan and Golo Fan, none of the lobe types indicates the 

presence of detachment zones and all lobes appear to be connected to feeder channels. 

Similarly due to the thickness of the channel-fills within both studied base-of-slope systems 

(Fan 3 and Unit 5) they are more likely to have fed thicker ‘radial lobes’ on the basin-floor.  

Deptuck et al. (2008) did however suggest that the larger, wider lobes within the Golo Fan 

(CMLs) were initially supplied by sediment transported beyond the base-of-slope before 

levees were constructed, which explains why CMLs are located outboard of stable and 

long-lived feeder channels (Deptuck et al., 2008). This would imply that at time of lobe 

initiation, lobes fed by efficient flows can be detached from feeder channels but may 

evolve into an attached lobe due to subsequent channel propagation, resulting in a 

combined record of unconfined and confined bypass. Some of the inferred morphological 

differences between radial and elongated lobes could be linked to CLTZ character.  Hybrid-

bed prone (finger-like) lobe fringes have been linked to updip extensive scouring of muddy 

substrate at CLTZ settings (e.g. Talling et al., 2007; Ito, 2008), which suggests that the lack 

of hybrid-bed prone fringes and finger-like morphologies among elongated lobes can be 

due to their limited CLTZ development. 
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The presence of features such as large scour-fills (Hofstra et al., 2015) within the Kleine 

Riet Fontein area (Fig. 6.1B), does indicate there might have been initial periods of non-

channelised sediment bypass when more efficient flows reached the base-of-slope, feeding 

the basin-floor lobes downdip. The stratigraphic position of these giant scour-fills within 

the top of Fan 3, suggests that part of the basin-floor lobes could have developed either 

due to updip levee-breach (Brunt et al., 2013b; Ortiz-Karpf et al. 2015) or deepening of the 

feeder channel, resulting in an efficiency increase of the flows reaching the base-of-slope.  

 

6.10 Conclusions 

Several integrated datasets presented from base-of-slope settings within the Karoo Basin 

indicate that these sand-rich environments dominantly comprise lobe deposits. The 

character of these base-of-slope lobes varies substantially from basin floor lobes in terms 

of facies and architecture. They share affinity with frontal lobes, but do not always precede 

channel propagation. The identification of downstream thinning and facies changes 

suggests that base-of-slope and basin floor lobe deposits most likely represent different 

depositional bodies. A division is proposed between small narrow lobes, dominantly found 

at the base-of-slope and wider, radial lobes at the basin-floor. Narrow lobes are 

architecturally simple, and show a relative high proportion of climbing ripple-laminated 

and banded sandstones. In contrast, radial lobes can be architectural more complicated 

with finger-like protrusions, and show a high proportion of structureless sandstones, 

hybrid beds and laterally extensive siltstones. Similar divisions have been proposed for the 

Golo Fan and Amazon Fan. The narrow lobes at base-of-slope settings are defined by 

channel juxtaposition and metre-scale scour features, while radial lobes show an overall 

lack of channel incision and predominant compensational stacking behaviour in basin-floor 

settings. The character differences between narrow and radial lobes are likely to be related 

to the efficiency of flows that fed the depositional bodies, of which variations in grain size 
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may be the most significant factor. As differences in flow efficiency can both be related to 

the degree of flow segregation by channel-levee systems as well as changes to the initial 

sediment supply, it may explain why different lobe types are not constrained to specific 

geographical areas in some systems. The recognition of these two lobe types has 

important implications for understanding the stratigraphic record of CLTZs as well as the 

evolution and the internal architecture of submarine fan systems as a whole.  
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Chapter 7: 
The impact of fine-scale reservoir geometries on streamline 

flow patterns in submarine lobe deposits using outcrop 
analogues from the Karoo Basin 

 

7.1 Summary 

Improved prediction of the recovery of oil-in-place in basin-floor fan reservoirs requires 

accurate characterisation and modelling of multiscale heterogeneities. The use of outcrop 

analogues is a key tool to augment this process by documenting and quantifying 

sedimentary architecture, hierarchy, and sedimentary facies relationships. A 3-D geological 

modelling workflow is presented that tests the impact of fine-scale heterogeneities within 

basin-floor lobe complexes on reservoir connectivity. Construction of geological models of 

a basin-floor lobe complex allows realistic depositional architecture and facies distributions 

to be captured. Additionally, detailed models are constructed from channelised areas 

within a basin-floor lobe complex. Petrophysical modelling and streamline analysis are 

employed to test the impact on reservoir connectivity between lobe models with i) 

vertically-stacked facies with coarsening- and thickening-upwards trends in all locations, 

and ii) lateral facies changes with dimensions and distributions constrained from outcrop 

data. The findings show that differences in facies architecture, and in particular lobe-on-

lobe amalgamation, have a significant impact on connectivity and macroscopic sweep 

efficiency, which influence theproduction results. Channelised lobe areas are less 

predictable reservoir targets due to uncertainties associated with channel-fill 

heterogeneities. The use of deterministic sedimentary architecture concepts and facies 

relationships have proven vital in the accurate modelling of reservoir heterogeneities. 
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7.2 Introduction 

Hydrocarbon production targets are moving towards more challenging reservoir types, 

including offshore turbidite reservoirs in ultra-deepwater settings (>1500 m). Typically, the 

construction of geological models for these reservoirs uses a combination of subsurface 

seismic and well data. Well data is particularly sparse during the early phase of projects 

(Strebelle et al., 2003; Pyrcz and Deutch, 2014) and seismic resolution is inadequate to 

constrain 3D reservoir connectivity and heterogeneity distribution. Therefore, outcrop 

analogues and conceptual models are applied to reduce this uncertainty (e.g. Bryant and 

Flint, 1993; Pringle et al., 2006; Howell et al., 2014).  

Application of outcrop data helps to capture architectural complexity and heterogeneities 

within submarine fan (sheet) systems (e.g. Kleverlaan and Cossey, 1993; Richards and 

Bowman, 1998; Drinkwater and Pickering, 2001) and to constrain stochastic-based 

modelling of facies and petrophysical properties (Alabert and Massonnat, 1990; Joseph et 

al., 2000; Stephen et al., 2001; Amy et al., 2013). A small number of studies have 

performed stochastic-based modelling of submarine lobe deposits, where individual 

compensationally stacked flow events were modelled to create lobate geometries or 

sheet-like splays (Pyrcz et al., 2005; Saller et al., 2008; Zhang et al., 2009). Recent work 

(e.g. Pirmez et al., 2000; Beaubouef et al., 2003; Deptuck et al., 2008; Prélat et al., 2009, 

2010; Macdonald et al., 2011b; Straub and Pyles, 2012) has demonstrated that submarine 

lobe architecture and facies trends are often not as simple as the classical models (e.g. 

Mutti et al., 1977; Mutti and Sonnino, 1981) , and involve order and hierarchy (Prélat et al., 

2009; Straub & Pyles, 2012) which may not be covered within purely stochastic modelling 

methods. The planform extent of submarine lobes in the subsurface can be resolved by 

seismic mapping (Saller et al., 2008), however smaller-scale elements and heterogeneities 

cannot be seismically resolved. Attributes (Fig. 7.1), such as lobe amalgamation and 

internal facies transitions (e.g. Stephen et al., 2001; Zhang et al., 2009) have proven to 
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have a major impact on reservoir model predictions, but their relative impact is poorly 

constrained. Other attributes such as finger-like geometries within lobe fringe areas 

(Groenenberg et al., 2010) and the juxtaposition of channels and lobes in Channel-Lobe 

Transition Zone-s (CLTZs), have never been captured in published reservoir modelling 

work.  

 

Figure 7.1. Simplified cartoon of a basin-floor submarine lobe complex showing distinct 
subenvironments with A – confined channel systems, B – distributive channel 
network, C – high amalgamation zone (HAZ), D – distal lobe environment. Based on 
Kane and Pontén (2012). 

 

The architectural complexity of submarine channel-levee complexes and their influence on 

reservoir performance (e.g. Clark and Pickering, 1996; Stephen et al., 2001; Larue, 2004; 

Larue and Friedmann, 2005; Sprague et al., 2005; Mayall et al., 2006; Schwarz and Arnott, 

2007; Barton et al., 2010; Pringle et al., 2010; Alpak et al., 2013; Labourdette et al., 2013; 

Eschard et al., 2014) has been widely studied. The main focus of this work was on the 

diversity of channel architecture and heterogeneities within channel-fills, such as channel 

base drapes (e.g. Larue and Friedmann, 2005; Barton et al., 2010; Alpak et al., 2013). 
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Detailed studies on facies characteristics in turbidite reservoirs (e.g. Stephen et al., 2001; 

Falivene et al., 2006; Scaglioni et al., 2006) demonstrate that heterogeneities across a 

range of scales influence connectivity and compartmentalisation of the reservoir. Pore and 

textural properties in structured and normally graded sandstones will affect flow 

properties of the bed and the system as a whole (Stephen et al., 2001). The focus on the 

presence or absence of large-scale baffles and barriers such as shale drapes (e.g. Stephen 

et al., 2001; Saller et al., 2008; Barton et al., 2010; Pyrcz and Deutsch, 2014) will not 

capture the whole spectrum of heterogeneities. In contrast to channel-levee complexes, 

there are only a small number of fine-scale reservoir heterogeneity studies from channel-

lobe transition zones, despite being important deep-water reservoir targets. Connectivity 

of channel-fills with overbank deposits (Eschard et al., 2014), and reservoir performance 

differences between lobe and channel-fill dominated deposits (Zou et al., 2012) are poorly 

understood. Zou et al. (2012) noted that sheet-prone sandstones provide more sustained 

production than channel-prone sandstones due to a significant decrease in sweep 

efficiency in the latter. Margin connectivity within channel-lobe contacts can be in many 

cases much better compared to channel-channel or channel-levee contacts (Funk et al., 

2012). 

In this chapter, the aim is to study and quantify the impact of different conceptual 

stratigraphic and sedimentological models of deep-marine lobes on reservoir behaviour 

and fluid flow predictions, and compare these sedimentological and stratigraphic factors to 

other uncertainties within reservoir modelling. This aim was addressed through the 

application of both ‘hard’ (geometric) and ‘soft’ (understanding) data ( sensu Howell et al. 

2014) from outcrop analogues of exhumed basin-floor lobe and channel-lobe transition 

zone deposits from the Karoo Basin, South Africa.  Soft data includes conceptual models, 

characteristic facies for architectural elements and their lateral or vertical facies 

relationships. The objectives of this study are to follow a deterministic modelling approach 
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to investigate the effect of sub-seismic heterogeneities within lobe complex sub-

environments (Fig. 7.1) on reservoir connectivity, including 1) lobe amalgamation, 2) facies 

transitions and distributions and, 3) channelisation. Sensitivity tests on various 

petrophysical models are performed with the help of 275 single-phase streamline flow 

simulations.  

 

7.3 Methods 

Outcrop datasets from the Tanqua depocentre were used to construct sedimentary facies 

grid models (Fig. 7.2) within a cornerpoint grid mesh using the commercially available 

software ReservoirstudioTM. The sketch-based interface and cornerpoint grid of the 

software permits construction of complicated depositional architectures of lobes and 

channels, including fine-scale vertical heterogeneity with a low amount of total grid cells. 

Conventional modelling methods using Cartesian grid meshes are unable to capture small-

scale heterogeneities as they are limited to the shape and size of the cells (Aarnes et al., 

2008; Jackson et al., 2015).  

Separate grid frameworks were used to construct a lobe complex (full lobe-scale models) 

and two channel-lobe transition zone scenarios (lobe-scale sector models) (Fig. 7.2). Single-

phase flow streamline simulations were performed between vertical injector and producer 

wells, to investigate differences in connectivity and production performance (Fig. 7.2).  
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Figure 7.2 Illustration of the complete workflow that has been followed, including 
geological modelling, reservoir modelling and flow simulation.  All data input is 
indicated by arrows. The table shows the main uncertainties within each modelling 
step, the number of submodels produced, how the uncertainties were covered, and 
why multiple models were required. ‘CLTZ’ refers to channel lobe transition zone, 
‘BFL’ to basin floor lobe complex model, ‘OR’ and ‘BK’ to the ‘Ongeluks River’ and 
‘Blaukop’ datasets respectively, and ‘Ch’ and ‘no-Ch’ to channels and no-channels 
respectively – see text for further details. 

 

7.3.1 Regional setting of outcrop analogues 

The Karoo Basin is one of several late Palaeozoic to Mesozoic basins that formed on the 

southern margin of Gondwana in response to convergent-margin tectonism (De Wit and 

Ransome, 1992; Veevers et al., 1994; López-Gamundi and Rosello, 1998). The 

southwestern area of the Karoo Basin is divided into two depocentres: the Tanqua and 

Laingsburg depocentres (Flint et al., 2011). In the Tanqua depocentre (Fig. 7.3), the upper 

Ecca Group comprises a shallowing-upwards succession from distal basin-floor mudrocks 

(Tieberg Formation), through basin-floor fans (Skoorsteenberg Formation) to shelf-edge 

delta deposits (Waterford Formation). The Late Permian Skoorsteenberg Formation 

(Fildani et al., 2009; McKay et al., 2015) is 400 m in thickness and comprises five distinct 
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sand-rich submarine fan systems, which are separated by laterally extensive hemipelagic 

mudstones (Johnson et al., 2001; Van der Werff and Johnson, 2003; Hodgson et al., 2006). 

Fan 3 is the most extensively studied system (Bouma and Wickens, 1991, 1994; Sullivan et 

al., 2000; Johnson et al., 2001; Van der Werff and Johnson, 2003; Hodgson et al., 2006; 

Hofstra et al., 2015), showing the transition from base-of-slope to distal pinch-out. Prélat 

et al. (2009) and Groenenberg et al. (2010) studied the basin-floor lobe deposits within Fan 

3 and showed the importance of autogenic processes that drive compensational stacking 

patterns. Unit 5 represents the transition from a basin floor to slope environment (Van der 

Werff and Johnson, 2003; Wild et al., 2005; Hodgson et al., 2006), and was fed by multiple 

channel systems, in contrast to the underlying point sourced fan systems (Hodgson et al., 

2006).  

 

Figure 7.3. Location map of the Tanqua depocentre showing the outcrop analogues that 
have been used for facies modelling and the stratigraphic column of the Tanqua 
deep-water deposits (based on Hofstra et al., 2015). The basin floor lobe complex 
models (BFL) were based on a large dataset from Prélat (2010) collected within the 
medial to distal parts of Fan3. For the CLTZ-models two different datasets were used: 
one from Fan3 (OR) and one from Unit 5 (BK). The dashed outline represents the 
inferred outline of Fan 3. 
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7.3.2 Outcrop data collection and interpretation 

Three study areas were used to build facies model frameworks: a distal basin-floor lobe 

dataset of Fan 3 (BFL) based on Hodgson et al. (2006), Prélat et al. (2009) and Prélat 

(2010), and two newly collected datasets from CLTZ environments, one from Fan 3 and one 

from Unit 5 (Fig. 7.3). For reconstructing a full-scale basin-floor lobe complex, the 

hierarchical scale and sedimentary concepts of Prélat et al. (2009) and Prélat and Hodgson 

(2013) have been followed. These provide a unique data-set from the medial to distal 

areas (Fig. 7.3) with closely spaced measured sections across a 150 km2 study area of Fan 3 

with lateral constraints on individual lobes and facies distributions due to good outcrop 

extent and limited amount of erosion (Fig. 7.4). Lobe facies maps and lobe thickness 

information (Prélat et al., 2009; Groenenberg et al., 2010) underpin the facies modelling of 

the basin-floor lobe complex.  

 

Figure 7.4 Panoramic views of the Fan 3 lobe complex at two locations at the Gemsbok 
Valley area. The level of lobe-on-lobe amalgamation is clearly different between both 
locations. Lobe numbers have been indicated, interlobes and interfan mudstones are 
presented in greyscale. 

 

For the CLTZ models, two segments from base-of-slope channelised lobe areas were 

chosen and sedimentary log data collected: Ongeluksriver (OR) of Fan 3 and Blaukop (BK) 

in Unit 5 (Fig. 7.3). These study areas augment previous work (Kirschner and Bouma, 2000; 
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Sullivan et al., 2000, 2004; Van der Werff and Johnson, 2003; Hodgson et al., 2006; Luthi et 

al., 2006) and show clear differences in the character of channel-fills and channel volumes 

and their stratigraphic and physical relationship with underlying lobe deposits.  

 

Figure 7.5 A - Panoramic view of central channelised area of the OR-section and its facies 
distribution based on log-data. Due to an exposure bias, the most dominant facies 
that can be observed is structureless sandstone. Red lines indicate erosion surfaces. B 
- Typical channel-fill facies, with B1 – mud clast conglomerates, both clast-supported 
(bottom) and matrix-supported (mid to top), B2– Soft-sediment deformed siltstones 
and sandstones at the channel margin, B3 – Structureless amalgamated sandstones 
and B4 – Banded argillaceous sandstones.   

The OR area preserves a distributive channel network that incises tabular sand-prone 

packages which have been referred to as ‘intra-channel highs’ (Van der Werff and Johnson, 

2003; Sullivan et al., 2004; Luthi et al., 2006) (Fig. 7.5). Due to their sandstone-prone 
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nature and variation in bed thicknesses, they are here interpreted as a combination of lobe 

and overbank deposits. A new dataset was collected (See Appendix B.2) with thirty-four 

measured sections (25-50 m spacing) within a 2 km wide EW-trending section, which form 

the basis of the OR model framework. The eight channel-fills show a range of cross-

sectional geometries (100-550 m wide, 4-10 m deep), and are vertically and laterally 

stacked with occasional lateral overlap (Fig. 7.5). 

The BLK-section of Unit 5 shows two confined channel systems (~300-350 m wide and  >10 

m deep) incised into sandstone-rich deposits (Kirschner and Bouma, 2000). Twenty-seven 

sedimentary logs were collected in a 2 km2 area with close-spacing (10 to 100 m apart) 

(See Chapter 6, Fig.6.7), permitting the construction of a 3D framework. In addition, one 

fully cored borehole (BK01) was drilled 150 m away from the nearest outcrop, allowing 

bed-to-bed correlation with the outcrop dataset (See Chapter 6, Fig.6.8).  

 

7.3.3 Basin floor lobe complex (BFL) 

The medial to distal part of the Fan 3 lobe complex consists of six lobes, and facies and 

thickness maps have been constructed for four of them (Fig. 7.6). Thin beds between lobes 

were originally referred to as interlobes (Prélat et al. 2009), although Prélat and Hodgson 

(2013) subsequently interpreted these as the distal fringes of other lobes, due to 

compensational stacking. Facies models were constructed for a lobe complex including the 

four lobes (Fig. 7.6) and at the scale of the model (20 km x 40 km x 70 m) the interlobes 

were treated as through-going fine-grained units. Due to this rectangular mesh framework 

(20 km x 40km), rectangular cells were used, 200 m wide (x) and 300 m long (y) and with 

variable z cell dimensions (0.25 - 20 m). ReservoirstudioTM permits complicated planform 

architectures of submarine lobes to be drawn and constructed. The scheme of Prélat et al. 

(2009) was applied to define four distinct sub-environments of lobe deposition: axis, off-

axis, fringe and distal fringe. This subdivision was also applied within the modelling 
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process; however the fringe and distal fringe were combined to a single ‘fringe’ 

sedimentary facies zone. Sedimentary facies associations were attributed to each of the 

zones within the lobe models, creating realistic facies distributions and vertical stacking 

patterns. Distinct lobe areas (zones) were created that closely follow the patterns of the 

original facies distribution (Fig. 7.6) including lobe fingers (Groenenberg et al., 2010). With 

only three sedimentary facies zones, some simplification of facies modelling was 

necessary. No distinction was made between frontal and lateral fringes, and hybrid-bed 

prone areas (Hodgson, 2009) were not included. Lobe and interlobe thickness information 

were implemented in each individual lobe, and adapted for each lobe zone.  

 

Figure 7.6 Left - Log showing the Fan 3 basin-floor lobe complex and its division into six 
different lobes (based on Prélat et al., 2009). Right - Plan view of the simplified facies 
zones of four lobes used to construct the lobe complex facies models (based on 
Prélat, 2010). All individual lobes show an irregular ‘finger-like’ facies distributions in 
frontal fringe areas.   
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Two conceptual models of lobe architecture and facies distribution were tested (Fig. 7.7): 

Model A, ‘classic’ lobe model (coarsening- and thickening-upwards at all locations within 

the lobe) and Model B, the Karoo-based conceptual lobe model (facies transitions from 

axis to fringe and allowing lobe amalgamation). The classic model (Model A) (Fig. 7.7) 

follows the Marnoso model of Ricci-Lucchi (1975); Mutti (1977); Mutti and Sonnino (1981); 

Piper and Normark (1983) or the ‘Depositional Lobes’ model from Shanmugam and Moiola 

(1991), in which all facies zones are vertically stacked within each lobe. This implies that 

fringe zones formed the base of each lobe and covered the whole lobe area. The remaining 

lobe zones show progressively smaller surface areas, mimicking a stratigraphic pattern of 

coarsening- and thickening-upwards across the entire volume of the lobe, implying an 

overall progradational pattern (Prélat and Hodgson, 2013). The facies-transition model 

(Model B - Prélat et al., 2009) (Fig. 7.7) shows multiple lateral transitions from axis to fringe 

areas to capture compensational stacking of lobe elements. The axial lobe areas were 

made slightly erosional, mimicking lobe amalgamation in axial areas (Prélat et al., 2009). 

Different facies associations have been attributed to each lobe zone based on sedimentary 

log data. A total of three different facies associations were used for the basin-floor lobe 

complex models: thick-bedded structureless sandstone (Fa1), medium-bedded structured 

sandstones (Fa2) and thin-bedded siltstones and sandstones (Fa3).  

Within Model A the number of facies groups decreases from axis to fringe, with Fa3 being 

spread over the complete surface area of the lobe, Fa2 only covering the two inner zones 

(off-axis and axis) and Fa1 being focused within the axis. All together this resembles a 

coarsening-upward trend. 
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Figure 7.7 The two lobe construction models that have been applied with Lobe Model A: 
Stacking of all elements, creating a thickening/coarsening pattern at every single 
location of the lobe (based on Mutti, 1977), and Model B: Facies transitions from axis 
to fringe (based on Prélat et al., 2009) with allowance of axial lobe amalgamation. 
The sketched fan in the middle shows the section (dashed white line) of the system 
(basin-floor lobe complex) that has been modelled. Different facies submodels were 
constructed for model B with a division into bottom, middle and top sections. B1: 
Simplified facies division with a single facies association for each lobe zone and no 
vertical division; B2: Multiple facies associations in top and bottom within off-axis 
areas and in fringe areas; and B3: Multiple facies associations within all lobe zones, 
including middle section of the off-axis areas. 

 

For Model B, three sub-models were constructed with different proportions of facies 

associations for the different lobe zones (Fig. 7.7). The vertical lobe structure was divided 

in three packages (top, middle and bottom) of which the middle portion was twice as thick 

as the top and bottom portions. The three sub-models represent three different levels of 
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internal detail with B1 – one facies group for each lobe zone, B2 – multiple facies groups 

for off-axis and fringe zones, B3 – multiple facies groups for all lobe zones. Due to these 

differences in facies proportions within the lobe zones, the style of facies transitions that 

has been modelled from axis to fringe is more abrupt in B1 and B2 than in B3. Attempt was 

made to keep the overall facies volumes constant between the different BFL models (Fig. 

7.7), to prevent major reservoir performance differences due to variance in overall 

petrophysical properties. 

 

7.3.4 CLTZ environments (OR and BK) 

Small-scale sector models (2 km x 2 km x 70 m) were created for the two CLTZ 

environments (BLK and OR) (Fig. 7.8). All non-channel deposits, including lobes, have been 

modelled as background layering, representing infinite tabular bodies. This is considered to 

be sufficient due to the minimal lateral changes in thickness or facies documented at the 

scale of model in the outcrop data collected from the non-channel deposits. Channel-fills 

within basin-floor settings of the Karoo Basin dominantly comprise well-sorted 

structureless sandstones (e.g. Sullivan et al., 2000; Johnson et al., 2001; Van der Werff and 

Johnson, 2003; Brunt et al., 2013a), and are well exposed at outcrop (Fig. 7.5A). Areas of 

poor exposure were interpreted as intra-channel overbank and lobe deposits. Sedimentary 

thicknesses and facies distributions were based on sedimentary log-data (Figs. 7.5, 7.8). 

Realistic depositional architectures for the channel bodies were based on a combination of 

outcrop observations and generalised models of base of slope channels within the Karoo 

(e.g. Van der Werff and Johnson, 2003; Brunt et al., 2013a). Some of the tabular 

sandstone-prone deposits within the BK study area, have been interpreted as very high-

aspect ratio channel-fills (Kirschner and Bouma, 2000). However, due to their uniform 

thickness over the study area and tabular nature, here they are interpreted as lobes and 

overbank material and constructed as part of the background layering. Typically, basin-

floor channel-fills (200-400 m wide, 5-10 m deep) in the Karoo Basin are comprised of four 
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main facies groups (Brunt et al., 2013a; Fig. 7.5B): amalgamated structureless sandstone 

(Fa1), medium-bedded banded argillaceous or ‘dirty’ sandstone (Fa5), mudstone clast lag 

conglomerate (Fa4) and soft-sediment deformed deposits (Fa6). Fa 1 is the dominant facies 

group (>75%; Fig. 7.4A). Typically, with a conventional modelling technique using a regular 

grid, the channel-fill would be represented by a single facies group , as the incorporation of 

minority facies would lead to an impractically large number of grid cells. However, the 

heterolithic character of the facies groups can have significant influence on the reservoir 

properties. Therefore, two versions of the channel-fills were applied: one with a single-

facies fill (Fa1), and one with the addition of the minor facies groups (Fa 1A, Fa4, Fa5 and 

Fa6). Due to the lack of longitudinal constraint on the channel-fills, standard deviations 

(0.1-0.5 m) were set for the thickness modelling of each individual facies package. In each 

CLTZ model, the x and y cell dimensions were set to 100m x 100m, while the z cell was 

variable between 0.1 to 20 m, depending on the scale of the modelled architecture. 

Petrophysical properties are likely to be different in thick amalgamated structureless 

deposits (Fa 1A) and stratified normally graded sandstones (Fa1B), and therefore a 

distinction is made. The OR dataset (Fig. 7.8A) was used to construct two alternative sub-

models, OR-A and OR-B, with different levels of detail. OR-A represents a simplified (up-

scaled) facies model, only including the facies groups that represent the majority of the 

facies (Fa1A, Fa1B, Fa2 and Fa3) and a more detailed and realistic facies model (OR-B) with 

the addition of Fa4, Fa5 and Fa6 groups. In addition, some of the background packages 

were separated into smaller facies packages. Within OR-B the sandstone-rich units were 

separated into structureless, banded and structured sandstones (Fa1B, Fa2 and Fa4) and 

the sandstone-poor units into thin-bedded siltstones and structured sandstones (Fa2 and 

Fa3). The total number of grid cells increased by an order of magnitude (from 70x103 in 

OR-A to 50x104 in OR-B) with the down-scaling from OR-A to OR-B.  
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Figure 7.8 CLTZ reservoir block models with A - OR submodels including a simplified 
(upscaled) facies distribution (OR-A) and a detailed (downscaled) facies distribution 
(OR-B); B - BK submodels with two of the three having different levels of detail within 
channel-fills (BK Ch1 & BK Ch2) and one excluding the channels completely from the 
model (BK no-Ch). A full block-model of Bk Ch1 is shown as an example. Note that the 
facies proportion differences between the different submodels are limited. 
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Three sub-models were built with the BK-dataset, which were used to understand the 

influence of channel architecture on reservoir connectivity. The configuration of the 

background layering was kept constant and consists of a combination of structured 

sandstones (Fa2), banded sandstones (Fa5) and thin-bedded sandstones and siltstones 

(Fa3). Two sub-models showed different levels of channel-fill detail: BK-A single facies 

group for entire channel-fill, and BK-B enhanced channel-fill facies with the addition of Fa4, 

Fa5 and Fa6. A third sub-model (BK-C) was constructed, where the channel-fills were 

completely removed and comprised only background layering. In both the OR and BK 

models, differences within facies proportions of sub-models were minor (Fig. 7.8). 

7.3.5 Petrophysical property modelling 

No petrophysical property dataset is directly usable from the outcrop analogues which 

have been altered due to burial metamorphism and weathering (Fildani et al., 2009). 

Therefore, data were obtained from the Glitne Field, a small oil field within Palaeocene 

turbidites in the upper part of the Heimdal complex in the South Viking Graben, Norwegian 

North Sea (Keogh et al., 2008). Previous authors have used geometrical constrains and 

facies information from the Tanqua submarine systems as an outcrop analogue for the 

Glitne system (Hodgetts et al., 2004; Keogh et al., 2008).  

Therefore, petrophysical properties and production data from this field were used for fluid 

modelling purposes of this study. Core plug permeability measurements were used from 

the most central exploration well (15/5-5) within the field (Fig. 7.9A). The well is positioned 

between two other exploration wells which have been interpreted as a feeder channel 

(15/5-6) and a lobe fringe environment (15/5-3) (Avseth et al., 2001). Well 15/5 represents 

a setting where both channel and lobe deposits are interpreted. The core plug 

measurements were assigned to different facies associations by use of core photographs 

(e.g. Fig. 7.9A). These data provided a basic understanding of the range in permeability 

values (1.2-1200 mD/cP) that can be expected from the various facies associations and the 
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assumption is made that these core plug measurements are representative for the 

proposed facies groups over their complete cell volume (Ringrose & Bentley, 2015). 

Remaining permeability values (Fa3; Fa4) were based on Amy et al. (2013). To account for 

the heterolithic character of some of the facies groups (horizontal versus vertical 

permeability), Kv/Kh permeability factors were applied to certain facies groups (Fig. 7.10) , 

primarily based on Amy et al. (2013).. A permeability factor was also applied within the 

banded sandstone facies group (Fa5) as the Glitne core data indicated low permeabilities 

within argillaceous intervals (Fig. 7.9A) (9 mD/cP compared to >200 mD/cP in non-

argillaceous sandstones). 
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Figure 7.9 A-  Glitne Field core photos from well 15/5. Two core plug permeability 
measurements (A1 and A2) were undertaken within this sand-prone section (~5m), 
showing two completely different permeability values, associated with a higher 
argillaceous content in A1, blocking pore space between individual grains. B - 
Example of porosity range of the structureless sandstones (Fa1), determined based 
on the dataset of Bennes and Hamon (2007). Both permeability data from the Glitne 
field and grain size data from the outcrop record have been used to determine the 
range in porosity values. The shades of grey indicate the ‘fine sands’ group range for 
the associated permeability or grain size range.
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Figure 7.10 Table showing the range in porosity and permeability values applied within the petrophysical modelling, including core and outcrop 
examples. For certain facies groups (Fa2, F3 and Fa5) a permeability factor (Kv/Kh) was implemented to account for the expected 
heterogeneity within them.
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Commonly, banded sandstones show a clean dewatered sandstone base and an 

argillaceous top (Hofstra et al., 2015), an estimate of 0.0125 Kv/Kh (10/800) was applied 

for the banded facies group. Highest permeability readings (1200 mD/cP) within the 15/5 

core are associated with dewatered (dish and pillar structures) clean sands (Stow and 

Johansson, 2000). As this value is significantly higher than other structureless sandstone 

readings (300-600 mD/cP) a division was made between dewatered amalgamated 

structureless sandstones (Fa1A) and thick-bedded non-dewatered structureless sandstones 

(Fa1B). For the Fa3 and Fa4 groups, permeability factors (Kh/Kv) have been estimated as 

the dominance of normal grading and the interbedding with low-permeable siltstones will 

result in heterogeneous vertical petrophysical properties (Scaglioni et al., 2006).  

As porosity data were not available from the Glitne Field, estimations were applied based 

on the collection of core porosity data from subsurface Tertiary turbidite systems of 

Bennes and Hamon (2007) (Fig. 7.9B) and Amy et al. (2013). Both ‘permeability-porosity’ 

and ‘grain size-porosity’ cross-plots were used to determine porosity ranges for each 

sedimentary facies group (Fig. 7.9B). The porosity range was based on the spread of data-

points present within this study. To account for the uncertainty within petrophysical 

properties, ranges were set (Fig. 7.10) and a total of 25 petrophysical property realisations 

were performed for every submodel within RMSTM
2012 (Fig. 7.11).  
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Figure 7.11 A - Example porosity realisation of BFL-Model B2 showing stacked lobes and a 
decrease in porosity from axis to fringe. B - Fence diagram of a horizontal 
permeability (Kh) realisation of BFL-Model B2, showing clear differences between 
axial and fringe facies. A total of 25 petrophysical property realisations were 
performed for every submodel. 

 

7.3.6 Streamline simulation set-up 

To test connectivity within the reservoir models, single-phase flow simulations have been 

performed using the streamline analysis tool in RMSTM
2012 (blue fluid/red fluid simulation in 

industry appellation). This simulation tool allows extremely fast analysis of flow patterns 

within reservoir models, even when the model is complicated and/or large. The main 
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advantage of this method is that a large number of simulations can be run in a short 

amount of time (e.g. Brandsæter et al., 2001). This allows the performance of a large 

number of sensitivity tests to look at the relative impact of various factors on flow 

patterns. The visual representation of flow patterns, called streamlines, show the path of 

fluid particles through a reservoir, given constant pressure and reservoir conditions. Within 

the streamline simulation procedure, the boundary conditions are defined by the well 

rates and the structural boundaries. Once the pressure distribution is calculated, the 

velocity field is determined, which forms the basis for the streamlines. 

With the help of these streamlines, differences between scenarios in the preferred flow 

paths can be identified readily. Due to the large number of simulations (275), the tracer 

breakthrough times (TBT) between injector and producer wells can be used to evaluate the 

connectivity within the reservoir. A fast tracer breakthrough between injector and 

producer well is here associated with increased connectivity and/or permeability contrasts 

(Hovadik and Larue, 2007). As the flow of any fluid or gas in a reservoir is primarily 

controlled by the spatial distribution of permeability and pressure gradients (Hewett, 

1986), contrasts in the permeability due to the presence of different lithofacies will impact 

reservoir connectivity. For a number of scenarios, drainage functions are performed with 

the help of generated time-of-flight parameters and pore volumes. These drainage 

functions give predictions of the production rate using calculated pore volume, time of 

flight parameters and production/injection regions from the streamline simulation output. 

7.3.7 Well set-up 

In the basin-floor lobe complex (BFL), two injector-producer pairs (Fig. 7.12) were sited: 

one in the axis of the complex (Axis) and one in the fringe area (Fringe). Within the OR-

models, three injector-producer pairs were placed, longitudinal to the channel orientation 

(Fig. 7.12), with injectors and producers penetrating the same channel system (Loc1, Loc2 

and Loc3). For the BK-models, one injector-producer pair was placed longitudinal to 
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channel orientation, penetrating both channel systems (Fig. 7.12). Well positions were kept 

constant between all simulations. 

Dynamic rock, dynamic fluid (light oil) and reference pressure were based on data from the 

Glitne Field. Fluid injection and production occurred over the complete modelled interval. 

To assure a steady state was reached within each simulation, sensitivity tests were 

performed and the solution time was set to 10 years (3650 days). The distance between 

injector and producer was always set to a minimum 1km to ensure active flow. In some 

cases, where multiple injector-producer pairs are present within a single model, an injector 

of one pair may interfere with the results of a producer well of another pair. The effects of 

different injectors on the producer wells could be separated during the streamline 

simulations and to prevent any possible interference, only the paired-well data (1 km 

distance) have been included within the results. Flow rates and well pressures from both 

producers and injectors were based on well data from the Glitne Field and kept the same 

between different realisations, in order to allow constant pressure and reservoir conditions 

for the performance of streamline simulations.   
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Figure 7.12 Well setup for BFL, OR and BK models. Injector and producer pairs were set at 
different locations with a fixed 1 km distance in between. Within the BFL-model two 
injector-producer pairs were located at different locations within the complex, an 
example of flow streamlines within a fully heterogeneous reservoir is shown on the 
right. Within the CLTZ models, the producer-injector pairs were orientated along 
channel orientation and positioned so that they penetrated the channel bodies. In the 
BK-model the wells penetrated the margins of both channel systems. 
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7.4 Streamline simulation results 

7.4.1 Basin floor lobe complex (BFL) 

 

Figure 7.13 Breakthrough time (TBT) histograms of all performed BFL model streamline 
simulations. The histograms show the results for the 25 simulations that were run for 
each well pair. Model A shows similar TBT’s for different locations within the system, 
while Model B clearly shows differences depending on location. The lower three 
histograms show the difference between the Model B submodels. The results of 
various two-tailed t-tests have been given to the right. 

 

Simulation results of Model A (coarsening- and thickening-upwards) and Model B (facies 

transitions) (Fig. 7.7) are compared using TBT histograms (Fig. 7.13) that show the spread 

in breakthrough times between injector-producer pairs in different realisations. These 

different realisations are the result of the stochastic approach on the petrophysical 
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modelling (Fig. 7.2). Within Model A, the timing of breakthrough is similar for both 

locations, but with a slightly larger spread at the ‘Fringe’ location. In Model B, however, the 

breakthrough at the ‘Axis’ is on average more than a year (1.3) later than at the ‘Fringe’. 

Two-tail t-tests (0.05 significance level), assuming unequal variances, confirms that the 

results from both locations are distinctive populations (Fig. 7.13). Drainage functions 

performed for Model A and B at the ‘Axis’ (five per model) indicates that within Model B 

production rates are significantly higher directly from the start of production and that 

cumulative production is on average over 40% higher (Fig. 7.14) after the first 40 years. 

Timing of breakthrough between Model B1 and B2 is similar at both well locations, which is 

confirmed by two-tailed t-tests (Fig. 7.13). However, the TBT results of Model B3 (Fig. 

7.13), show a significantly reduced average breakthrough time at the ‘Axis’ (confirmed by 

t-test – Fig. 7.13) of 2 years compared to Model B2. The wells at the ‘Fringe’ within Model 

B3 on the other hand show very similar results to Model B2. Furthermore, a substantial 

difference (~60% in 40 years) in cumulative production can be observed between the ‘Axis’ 

and the ‘Fringe’ in Model B (B2) within a lobe complex (Fig. 7.14). 

 

Figure 7.14 Production curves showing difference in overall cumulative production between 
Model A and B and between locations within Model B2. The curves are composed 
from the (limited) spread resulting from a total of 5 different petrophysical 
realisations for each submodel. 
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7.4.2 CLTZ models 

The TBT results of the OR and BLK models have been summarised in Figure 7.15. Within 

the upscaled version of the OR-model (OR-A), breakthrough takes longer (2-3 years) for all 

well locations compared to the more realistic sub-model (OR-B). Within OR-B, the timing of 

breakthrough is not only shorter but also more uniform at the different well pairs. Within 

both the OR-A and OR-B simulations, streamlines from all wells are observed to focus along 

the main channel-fill sandstones (Fa1A) (Fig.7. 15).  

Similar effects on TBT can be observed between BK Ch1 and BK Ch2 with an average 

decrease of breakthrough time of 4 years. The non-channelised model (BK no-Ch) shows 

minimal differences with slightly shorter breakthrough timing compared to BK Ch1 

confirmed by a t-test (Fig. 7.15). Drainage functions have also been performed and show 

distinct variation between the submodels after the first 10 years (Fig. 7.15). The lowest 

production rates are reached within (BK Ch2), while the highest production rates are seen 

within the non-channelised model (BK no-Ch). However, differences within cumulative 

production between the submodels are limited (3-8% in 40 years) and only become 

significant after the first 20 years. Active pore volume has also been calculated for the BK-

models, to see if part of the observed production differences could be related to 

differences in reservoir volume. Active pore volume is the segment of the total pore 

volume that can be produced from before breakthrough occurs. Differences between BK 

Ch1 (3.34x106 m3) and BK Ch2 (3.30x106 m3) are minimal. However, by removing the 

channels completely (BK no-Ch – 3.05x106 m3), active pore volume was reduced by more 

than 8%. This indicates that total reservoir volume is not the controlling factor as the 

models with the largest active pore volume (BK Ch1 and BK Ch2) show lower production 

rates.  
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Figure 7.15 (A) Breakthrough time (TBT) histograms of all CLTZ models (OR and BK). Only 
limited differences can be observed between locations. A significant shift can be 
observed between the upscaled version (OR-A) and the downscaled version (OR-B). 
Streamlines in both models are all focused within the main channel facies (Fa1) as 
shown in the example below. The BK-model shows a similar shift in TBT from BK Ch1 
to BK Ch2. Only a limited reduction (t-test results are given) is observed between BK 
Ch1 and BK no-Ch in breakthrough time. Production curves are not very different in 
all three cases, (based on 5 different simulations) but highest cumulative production 

is reached within the non-channelised model (BK no-Ch). (B) Summary table 
showing all the model alterations that have been studied and the average 
results from all performed streamline simulations and drainage functions. 
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7.5 Discussion 

7.5.1 Interpreting streamline simulation results  

The single phase-flow experiments were designed to study the relative differences in 

connectivity within reservoirs. A slow breakthrough time of the injected fluid within the 

producer well indicates that the injector and producer are poorly connected within the 

reservoir, which can have negative consequences for production rates. On the other hand, 

early breakthrough often has negative implications for recovery factors due to expensive 

water cycling and low vertical sweep efficiency within the reservoir (e.g. Brouwer et 

al.,2001; Brouwer and Jansen, 2002; Alhuthali et al., 2006). Therefore, the sensitivity 

studies and their implications on the timing of breakthrough can help to rank different 

probable scenarios of reservoir performance. When breakthrough times have proven to be 

distinct (t-test) between sub-model results, it shows that the effect of the change applied 

in the facies model is significant enough to be discriminated from the uncertainty 

associated with petrophysical properties. A higher uncertainty (high standard deviation) 

within the results is mostly related to the greater impact and uncertainty within the low-

permeable deposits on the connectivity of the system, compared to the high-permeable 

deposits. The use of simplistic reservoir models, before adding more complicated variables 

is widely referred to as ‘top-down modelling’ (e.g. Williams et al., 2004). By adding more 

variables to simplistic models, a large variety of different scenarios can be created which 

can highlight the most significant uncertainties, called ‘procycling’ (Larue & Hovadik, 2012). 

Procycling is considered a useful process for uncertainty analysis, especially for deep-water 

reservoirs (Larue & Hovadik, 2012; Saikia et al., 2015).   

Basin floor lobe complex (BFL) 

The modelling results of the medial to distal basin floor lobe complex (BFL) show that the 

choice of conceptual geological model (Model A or B) has a major influence on the best 

well placement strategy. Within Model B, there is a clear difference observed in both 
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breakthrough time and production from the axial lobe complex areas (Axis) compared to 

more fringe positions (Fringe). This is related to the lateral facies changes that have been 

implemented within Model B and are not present within Model A. Furthermore, Model B 

has a significantly better production rate (Fig. 7.14). This is largely related to the 

petrophysical property differences between the two models as the nature of Model A with 

all lobe zones stacked in combination with the facies maps will result in different facies 

proportions. The average permeability of Model B (156 mD) is therefore over 50% higher 

than within Model A (92 mD), which will impact production results. Reservoir performance 

differences are therefore related to both the facies structure as well as facies proportions 

differences related to the conceptual models applied within Model A and B. The B-

submodels indicate that facies changes applied within the off-axis/fringe environments do 

not significantly influence the connectivity of the system (B1 and B2). Changes applied in 

the axis of the lobes (B3), where lobe amalgamation occurs, have a much more significant 

impact. In this case, the addition of Fa2 within the axial lobe areas improved the vertical 

connectivity, even though its volume was limited (14.3% of axis – Fig. 7.7). Also, the results 

demonstrate that when heterogeneity is increased within the axial areas, performance 

differences between well locations are less apparent. The adjustments within lobe style 

modelling of the BFL models prove to have significant impact on predicted reservoir 

performance. In many cases, this uncertainty in modelling of sedimentary architecture is 

more significant than the large uncertainties associated with the petrophysical modelling 

(spread in TBT results).    

CLTZ Models 

The results from the CLTZ-block model indicate that channel-fills within channelised lobe 

areas can have a variable effect on reservoir performance. Wells within the coarse, 

upscaled version of the OR-model (OR-A) take more than 3 times longer to reach 

breakthrough compared to the downscaled version (OR-B). In both the detailed model 
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(OR-B) and the upscaled version (OR-A), fluid flow streamlines concentrate within the 

channel-fills (Fig. 7.15A). However, the heterogeneities of the minor facies associations 

within OR-B have a major effect on pressure concentration, which results in the 

compartmentalisation of the reservoir, indicated by the early breakthrough.  

The BK-model confirms that heterogeneities within minor facies groups of channel-fills 

have substantial impact on reservoir connectivity. Differences in performance between BK 

Ch1 and BK Ch2 are also related to vertical compartmentalisation of the reservoir, resulting 

in early breakthrough. The similarity in results of BKCh1 and BK No-Ch also indicates that 

the channel-fills only have a limited influence on the performance of the reservoir. In 

addition, according to the drainage functions (Fig. 7.15A), the channel fills still have a 

slightly negative effect on production when they are well-connected (BK Ch1) with the 

background deposits (lobes and overbank), compared to when no channel fills are present 

(BK No-Ch). The more favourable petrophysical properties of the channel-fill facies (Fa1A) 

(Fig.7.10) compared to the sand-prone and volumetrically larger background deposits will 

in both the BK Ch1 and the BK Ch2 (Fig. 7.8) cases act as a pressure leak, which reduces the 

drainage area of the reservoir. Production differences between the three cases are mostly 

due to the full vertical injection and production, which ensures injection and production 

over the whole vertical interval. Production differences could well become more significant 

if injection or production would not occur over the complete reservoir interval, as vertical 

permeability boundaries will become much more important.  

7.5.2 Implications on reservoir performances within CLTZ environments   

Stratigraphic juxtaposition of basin-floor channels and lobes, such as observed in the 

Tanqua depocentre outcrops (e.g. Luthi et al., 2006; Fig. 7.4A), has a variable effect on 

reservoir performance (Fig. 7.15B), and depends on the nature of the lobe deposits and the 

presence of flow barriers or baffles at the base of and within the channel-fills. With 

injection over the full vertical thickness of the fan, interlobe (distal fringe) heterogeneities 
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do not have much effect when the deposits are sufficiently sand-prone. Other factors such 

as inter-channel barriers have proven to substantially change reservoir predictions (Fig. 

7.15). These barriers include channel bases that are at least partly overlain by mudstone 

clast conglomerates. As these mudstone clast conglomerates could provide high 

permeability in the case of matrix-supported types but very low permeability in the case of 

clast-supported types, a wide range in permeability (10-5000 mD) has to be accounted for. 

Furthermore, the impact of heterogeneities caused by (partly) argillaceous sandstones 

have been considered. OR-B and BK-B both show a clear overall switch to early 

breakthrough with the addition of these vertical heterogeneities (Fig. 7.15B). This shows 

that the combination of multiple heterogeneous facies groups can influence flow pathways 

within the reservoir.  

However, these intra-channel barriers (consistent basal mudstone clast conglomerate layer 

and argillaceous sandstones in the top of the fill) that have been added in the CLTZ 

submodels (OR-B and BK Ch2) may represent an end member scenario as basin-floor 

channel-fills show limited spatial variety and variability between channel-fills (e.g. Brunt et 

al., 2013a). According to Alpak et al. (2013), the presence of mud drapes, including 

mudstone clast-conglomerates, at the channel-base is most important when assessing 

recovery factors. However, the probability of channel bases overlain by mudstones in base-

of-slope and basin-floor settings according to Alpak et al. (2013) is significantly less (<10%) 

than compared to slope channel-fills where mudstone drapes across the base of channels 

are more common and interpreted to indicate sediment bypass (e.g. Barton et al., 2010; 

Hubbard et al., 2014; Stevenson et al., 2015). Eschard et al. (2014) observed lenses of 

matrix-supported (claystone) materials in their study of the basin floor system of the Pab 

Formation and noted that the lateral extension of these units is commonly limited. In the 

case of Eschard et al. (2014), the flow streamlines were able to bypass the heterogeneities 

due to local erosion and therefore only had limited impact. This implies that even though 
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the channels within a channelised lobe area (CLTZ) are considered to have better 

connected margins compared to upslope channel-levee systems (Funk et al., 2012; Alpak et 

al., 2013), there is a great level of uncertainty accompanying the behaviour of these 

boundaries and associated performance of CLTZ-reservoirs. Due to the combination of 

relatively low total volumes of channel-fills compared to surrounding deposits including 

lobes, the distributive character and the uncertainty within channel-fill behaviour, 

channelised-lobe environments may be considered as a higher risk as an exploration target 

than conventional ideas might suggest.  

Alternative areas of better vertical connectivity are high amalgamation zones (Stephens et 

al., 2001; Hodgetts et al., 2004; Hodgson et al., 2006) at lobe apexes. Within these areas 

there is an overall lower chance of reservoir compartmentalisation compared to 

channelised lobe areas, due to the lack of horizontal flow barriers. Also the impact of 

abrupt facies changes (in the case of an erosive barrier) compared to gradual facies 

changes (in the case of facies transitions), may have important consequences for the 

pressure distribution and fluid migration rates. The BFL model results show that 

amalgamation of lobe axes has a significant impact on reservoir performance.  
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7.5.3 Ranking reservoir performance 

 

 

Figure 7.16 Summary conceptual model of macroscopic sweep efficiency versus tracer 
breakthrough time (TBT) within different lobe sub-environments. Different scenarios 
have been plotted and grouped into: non-amalgamated, amalgamated and 
channelised lobe areas. Both an early and late breakthrough will have negative 
consequences for sweep efficiency with a slow breakthrough indicating a badly 
connected injector-producer pair with low production rates and a very early 
breakthrough or a very well-connected injector-producer pair, but with significant 
loss of drainage area. Most uncertainty is associated with channelised lobe areas as 
heterogeneities can possibly cause compartmentalisation of the reservoir, whereas 
this does not occur within amalgamated lobe (HAZ) areas.   

 

Streamline simulations are commonly used for ranking reservoir performance before more 

comprehensive flow simulations are initiated (e.g. Idrobo et al., 2000) and can also be used 

when complicated grids or high number of grid cells make flow simulation challenging. 

Comparing the macroscopic sweep efficiency between the different scenarios gives a good 

indication of problem areas as well as identifying the areas of interest for exploration 

within deep-marine fan systems. The well-constrained depositional architecture of the 

Karoo Basin lobe complexes (Hodgson et al., 2006; Prélat et al., 2009), further 
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understanding from the modelling results of this study, and previous stochastic modelling 

results (e.g. Stephens et al., 2001; Funk et al., 2012; Alpek et al., 2013), have been 

integrated to develop a model on recovery (macroscopic sweep) efficiency within basin-

floor fan systems. A division has been implemented based on sub-environments (Fig. 7.16): 

channelised lobe, amalgamated lobe and non-amalgamated lobe areas. Different scenarios 

have been attributed to each sub-environment linked to heterogeneity differences. 

Macroscopic sweep efficiency has been linked to the timing of breakthrough. As only for a 

limited number of models drainage functions (Fig. 7.14; 7.15) were run, the general 

assumption was made that both slow and rapid breakthrough will result in relatively low 

recovery with limited drainage areas. A good non-compartmentalised and connected 

reservoir with good-to-intermediate porosity will result in the best total recovery. The 

most variability in performance can be seen among the channelised lobe areas (CLTZ) (Fig. 

7.16, circles). The possibility of both compartmentalised and non-compartmentalised 

channelised lobes, makes the prediction of macroscopic sweep efficiency within these 

environments more challenging. Less uncertainty is associated with amalgamated lobe 

areas (Fig. 7.16, pentagons) where good vertical and horizontal connectivity are predicted. 

Amalgamated lobe areas as a reservoir will therefore have higher chances of good 

recovery rates and will be less of an exploration risk compared to channelised lobe areas.  

7.6 Conclusions 

A 3-D geological modelling workflow is presented from outcrop data collection, through 

constructing reservoir models to performing single-phase flow simulations. The workflow 

highlights the importance of understanding fine-scale sub-seismic sedimentary 

architecture. Various sensitivity tests were performed by applying geologically realistic 

scenarios for sedimentary architecture and facies distributions of submarine lobe deposits 

and channel-fills. Results show that the conceptual model applied for a specific case study 

can have significant influence on the reservoir connectivity and macroscopic sweep 
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efficiency, especially when lobe amalgamation is considered. The implications on 

connectivity by alternations in facies within the high net lobe axis areas are much more 

significant compared to similar changes within lobe off-axis to fringe areas. Juxtaposition of 

channel-fills and lobe deposits, which is common in CLTZs, has diverse effects on reservoir 

performance depending on the presence of inter-channel barriers and the sand-prone 

nature of the lobes. In CLTZs, due to the high degree of uncertainty of heterogeneities 

associated with channelised lobe areas, they can be considered a more challenging 

production target compared to areas of lobe amalgamation where good horizontal and 

vertical connectivity are more certain. For the construction of geologically realistic 

reservoir models, it remains vital to collect quantitative data from fine-scale architectures 

within outcrop analogues, which may form significant reservoir heterogeneities, and to 

develop and test conceptual models, such as can be done with the well-constrained basin-

floor fan systems of the Karoo Basin.  
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Chapter 8: 
Controls on the stratigraphic record of the channel-lobe 

transition zone 

 

The envisaged configuration of ancient CLTZs is based primarily on observations of modern 

systems (e.g. Palanques et al., 1995; Nelson et al., 2000; Wynn et al., 2002a; Bonnel et al., 

2005) that represent a geomorphic snapshot of an evolving and dynamic part of deep-

water systems. The morphological features that are present within such systems can 

represent large numbers of events operating over long timescales (e.g. Macdonald et al., 

2011a).  

An assemblage of features associated with CLTZs in modern systems have been identified 

within the outcrop record of the Karoo Basin in this study (Fig. 8.1), including amalgamated 

scour-fills (Chapter 4), isolated scour-fills (Chapter 6) and sediment waves (Chapter 5). 

CLTZs have been identified in ancient successions (Mutti and Normark, 1987; Gardner et 

al., 2003; Ito et al., 2014; Pemberton et al., 2016); however, the transfer of this 

geomorphic palimpsest into the stratigraphic record is poorly constrained (Fig. 8.1). The 

detailed outcrop studies from locations with excellent palaeogeographic control show the 

preservation of complicated architectures across a range of hierarchical scale of both 

erosional (Chapter 4) and depositional (Chapter 5) bedforms. To elucidate the stratigraphic 

record of CLTZs, it is essential to consider the variance among flow-bedform interactions, 

and how this may influence bedform preservation.  
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Figure 8.1 Outcrop expression of major CLTZ elements covered in this study and as defined 
from modern systems, including giant scour-fills (a) from Chapter 4, sediment waves 
(b) from Chapter 5 and variable geometries of metre-scale scours (c1 and c2) from 
Chapter 6. 

8.1 Flow-bedform interaction 

The outcrop dataset of this study (Chapter 4-6) shows large-scale variability in bedform 

architecture within CLTZ settings, which is most likely related to the interaction between 

bypassing flows and existing erosional and depositional bedforms. Irregularities within the 

substrate may act as ‘weaknesses’ and bypassing turbidity currents may have a tendency 

to interact (e.g. Eggenhuisen and McCaffrey, 2012). For example, large-scale scours 
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(Chapter 4) are formed due to the erosion by consecutive flows of existing irregularities in 

the substrate, by processes such as headward incision.  

 

Figure 8.2 Simplified diagrams showing the variability in flow-bedform interactions that 
have been observed in this study, with positive feedback to the left (bedforms acting 
as nucleus) and negative feedback to the right. Palaeoflow is from left to right. 

 

Furthermore, sediment wave (Chapter 5) deposition can form positive relief, acting as a 

nucleus for further sediment wave development. In both of these examples, the original 

bedform provided a positive feedback in the development of larger or composite bedforms 

formed by consecutive flows. 

Among modern systems a distinction is often made among small-scale scours between 

chevron/v-shaped and spoon/u-shaped (e.g. Wynn et al.2002a). The reasons behind the 

observed differences in planform architecture are however not well understood. It is 

possible that their architecture is related to the sedimentological properties of the 

substrate. However, differences in dimensions (<20 m deep, <2 km wide, <2.5 km long for 

spoon-shaped; few m’s deep, <0.8 km wide, < 1 km long for chevron-shaped) may also 

suggest that their morphological differences can be related to the number of flows 

responsible for their formation, where chevron-shaped scours may have a single flow 

origin, while spoon-shaped ones most likely are the result of multiple. 

 However, scours have also shown to enhance deposition from the tails of turbidity 

currents (Chapter 4) due to ‘flow capture’, or local scouring at points of abrupt 

depositional thickness changes within sediment waves (Chapter 5). In the latter, successive 

flows (partly) remove the depositional bedform as an irregularity within the substrate (Fig. 
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8.2), acting as a negative feedback. Whether turbidity currents interact with bedforms in 

the CLTZ, through a positive or negative feedback, has implications for the depositional 

architecture preserved in the rock record. Erosion will modify or remove bedforms, while 

deposition will increase preservation potential. During the passage of a single turbidity 

current, these interactions can be highly variable, as variation is expected in different parts 

of the flow (e.g. erosive flow head, bypassing flow body, depositional tail). Furthermore, 

within modern systems, such as along the northeast Atlantic continental margin 

(Macdonald et al., 2011a), interaction between a scoured-substrate and a single flow has 

been proven to be highly variable, as scour-fill histories of laterally adjacent scours indicate 

they do not necessarily evolve simultaneously.  

The overall manner of flow-bedform interaction is likely to be strongly related to the 

sedimentary evolution of the feeder channel.  

8.2 Preservation potential of CLTZ elements within an evolving fan 

system 

To better understand the stratigraphic record of CLTZs, and to make comparisons with 

modern systems, it is important to consider the preservation potential of different features 

in response to system evolution. Submarine fan systems are defined by progradational 

and/or retrogradational phases (e.g. Posamentier et al., 1991; Richards et al., 1998; 

Hodgson et al., 2006; 2016). Therefore, the stratigraphic record of CLTZs is highly 

dependent on the evolution of the feeder channel.  

CLTZ development will vary among the different phases of fan system evolution (Fig. 8.3). 

Within a prograding system, the CLTZ will be incised during feeder channel propagation, 

partially limiting the development of features and deposits. In a retrogradational phase 

existing CLTZ elements will be preserved as channels aggrade. However this will eventually 

prevent further CLTZ development due to direct contact with the lobes downstream. Most 

extensive CLTZ development can be expected in between the progradational and 
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retrogradation phases, at the maximum extent of channel propagation. As the system will 

be static and aggradational, the CLTZ will have more time to develop (Fig. 8.3). Overall, 

only progradational and static phases in the evolution of a fan system ought to be 

considered for CLTZ development.    

 

 

Figure 8.3 Conceptual Wheeler diagram showing variance in CLTZ development during fan 
system evolution. During retrogradational phases, CLTZ development will be limited 
by channel aggradation and physical channel and lobe connection. 

 

8.2.1 Time and rate of channel propagation 

The CLTZ can be preserved as a surface (e.g. Chapter 6; Elliott, 2000b; Gardner et al., 2003) 

and a net-depositional volume of rock (e.g. Chapter 4; Pemberton et al., 2016). The style of 

preservation must be related to time and the number of events that are needed to develop 

CLTZ related bedforms.  

To preserve the deposits associated with the CLTZ during system progradation, 

accommodation is required. When the system is characterised by rapidly propagating 

channels, there may not be enough time or accommodation to form substantial features or 
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deposits, creating a ‘weak’ CLTZ signal where channels appear to be directly juxtaposed 

with lobes. However, a CLTZ within a stationary to slowly propagating system will have a 

stronger signal with better developed features, which is more likely to be preserved as a 

volume of rock. Therefore CLTZ development could be more substantial at a high 

subsidence rate or at fixed or limited channel propagation, 

 This is supported by the variance in the volume of CLTZ associated facies within scour-fills 

(Chapter 4). When the scour-fill is preserved adjacent to channel propagation, bypass-

related facies only represent a limited quantity of the infill (<25%). However, when the 

scour-fill is preserved at the maximum extent of channel progradation, a greater portion of 

the infill can be related to the CLTZ (50%), which can be explained by relative static CLTZ 

behaviour (Fig. 8.3). Similarly, the preservation of thick packages of sediment waves 

(Chapter 5) is aided by fixed to very slow progradation of the feeder channel.  

The CLTZ is not only limited to base-of-slope environments as channels also terminate on 

the slope or on the basin-floor. However, CLTZs are better developed at base-of-slope 

settings, as flows reaching the base-of-slope will naturally expand and leave channel 

confinement (Kneller, 1995). The CLTZ will therefore have a greater tendency to be static 

or propagate much more slowly in base-of-slope settings, resulting in an enhanced 

development of CLTZ features and deposits.  

8.2.2 Spatial control 

In addition to a temporal control, there is also a significant spatial control on the 

preservation of CLTZ elements. Overall, axial CLTZ areas are less prone to preservation 

compared to the edges (Fig. 8.4), as CLTZ margins have a tendency to be net-depositional 

and are less prone to reworking by channel-propagation. In the case of a propagating 

channel, the preservation potential may vary among the various elements as CLTZs spread 

out in a radial pattern from the channel-mouth (Fig. 8.4). Elements, such as amalgamated 

scour-fills, focus close to the channel-mouth (Wynn et al., 2002a) and are therefore most 
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probably utilised by, and obliterated during, channel propagation. In comparison, 

depositional bedforms such as sediment waves, tend to be deposited in the distal reaches 

of CLTZs (Fig. 8.4), and therefore cover a wider lateral extent, making it less likely they are 

(completely) cannibalised during channel propagation. As proximal elements are more 

prone to be cannibalised, this could lead to a stratigraphic record where erosional 

elements are relatively unrepresented compared to depositional elements.  

 

 

Figure 8.4 Preservation potential of various elements and areas within the CLTZ 
stratigraphic record of a prograding system. The overall preservation 
potential (C) is composed of the likeliness to be cannibalised by channel 
propagation (A) and the likeliness to be cannibalised or seriously modified due 
to scouring (B). 

 

However, the preservation of different elements is also affected by the propagation of 

erosional elements within the CLTZ (Fig.8.4B) and, in particular, by formation of scours. The 

elements most proximal within a CLTZ area, which are preserved adjacent to channels that 

propagated, are not likely to be significantly altered as they will transition abruptly from a 
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CLTZ to a channel-overbank environment. More distal CLTZ settings will be altered by 

scouring as the CLTZ migrates down dip, although the margins will in this case also have a 

greater tendency to be preserved. Large amalgamated scour-fills associated with adjacent 

channel propagation have been identified (Chapter 4) in outcrop, proving that it is possible 

to preserve these elements within the rock record. This is related to the simultaneous 

evolution of scours during channel propagation, where initial small-scour features at CLTZ 

margins (Fig.8.4B) may evolve to larger amalgamated scours as the channel-mouth 

advances. They are preserved in the rock record through infill by overbank flows as the 

channel propagates adjacent to these features. This down dip migration of the CLTZ itself 

will have a negative impact on the preservation of depositional elements, compared to 

erosional elements. Depositional elements tend to form in the distal reaches of the CLTZ, 

and therefore may endure a longer phase of CLTZ propagation compared to the most 

proximal elements. The internal architecture of sediment waves (Chapter 5) suggest a first 

order depositional control on their formation and therefore they are prone to be eroded 

when the channel extends, instead of migrating further downstream. The overall 

preservation potential (Fig. 8.4C) of CLTZs and their elements within a prograding system is 

therefore much more significant at the margins compared to its axis. 

8.3 Primary controls on the CLTZ stratigraphic record 

The stratigraphic record of CLTZs shows a high degree of variability, especially among the 

architectures and facies characteristics of the different bedforms (Chapter 4; Chapter 5). 

This raises major complications for the identification of ancient CLTZ settings within purely 
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1D datasets (core), as there are no clear key recognition criteria established. 

 

Figure 8.5 Summary diagram showing the CLTZ stratigraphic record variability. Each 
quarter represents different depositional conditions as the depositional record can be 
linked to three first order controls: spatial variability, flow efficiency and channel 
evolution. The top half represents conditions where channel system is static over time 
and the lower half an overall progradational system.  The left half represents efficient 
conditions and the right half non-efficient conditions. Within each quarter the axial 
record is indicated with an ‘A’, while the marginal record is indicated with an ‘M’. The 
different coloured bars represent associated architectural elements.  
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The sedimentary variability of CLTZs can be quantified by assessing the major controls on 

CLTZ preservation. Based on the results of this study, three primary controls are postulated 

to influence the depositional character of the channel-lobe transition zone: 

1) Spatial variability 

2) Flow efficiency 

3) Channel evolution  

These three controls combined properly cover the variability within the CLTZ record (Fig. 

8.5). 

8.3.1 Spatial variability 

Similar to lobes and channels (e.g. Prélat et al., 2009; Brunt et al., 2013a), variation exists in 

the depositional record from axial to fringe positions within channel-lobe transition zones 

(Fig.8.5). Deposition and erosion by the flow axis leads to different stratigraphic patterns 

compared to deposition and erosion by flow margins. Within CLTZ and base-of-slope 

environments, axial positions tend to be very prone to banded and structureless 

sandstones. Marginal positions are more prone to climbing ripple-laminated sandstones 

and are relatively poor in structureless and banded sandstone (Fig.8.5).  

The examination of erosional and depositional bedforms within CLTZs has also revealed 

that their character is highly dependent on their position (Chapter 4; Chapter 5) relative to 

the feeder channel. Sediment waves show spatial variability in facies dimension and 

architecture, where axial sediment waves are more dominated by banded sandstones, 

show internal truncation surfaces and reach greater thicknesses (>1.5 m). In comparison, 

sediment waves in more marginal positions are dominated by climbing-ripple laminated 

facies, lack internal truncation surfaces and are more limited in thicknesses (< 1.5 m). 

Similarly, giant scour-fills (Chapter 4) show significant variations in infill facies and internal 

architecture, which can be associated with their location relative to the channel-mouth. 
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Scour-fills preserved adjacent to prograding channels, are dominated by climbing-ripple 

laminated sandstones compared to scour-fills preserved at the maximum extent of channel 

propagation, which show more structureless and banded sandstones.     

 

8.3.2 Flow efficiency  

Flow efficiency, which is controlled by factors such as flow concentration, volume, grain 

size and Froude number, has been advocated as a first order control on CLTZ character 

(Mutti and Normark, 1987; Gardner et al., 2003). In this study, it has also been related to 

differences in characteristics between the lobes deposited at lower slope to base-of-slope 

settings and lobes deposited at basin floor settings (Chapter 6). In more efficient systems, 

deposition tends to occur further down dip of the feeder channel-mouth compared to 

more inefficient systems (e.g. Mutti and Normark, 1987). Therefore, CLTZs are predicted to 

be much more areally extensive in efficient systems compared to inefficient systems. 

When looking at lobe (apex) facies (Chapter 6), this relates to an abundance of banded and 

(stoss-side preserved) climbing ripple-laminated sandstones in inefficient systems, and 

abundance of more siltstones and structureless sandstones in more efficient systems. 

Overall, the CLTZ is more extensive, thin and widespread when incoming flows are 

efficient, compared to less extensive and more deposition-dominated when incoming 

flows are generally inefficient.   

 

8.3.3 Channel evolution 

The last major control on CLTZ preservation is the evolutionary behaviour of the feeder 

channel, which is regarding CLTZ development (Section 8.2) best divided between static 

and progradational (Fig. 8.5). Within the Karoo fan systems both unattached and attached 

fan systems have been identified (Van der Merwe et al., 2014). As unattached systems are 

preserved in the rock record, it implies that feeder channels do not always propagate fully, 
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to connect with the lobe systems down dip. This could be either due to sudden up dip 

avulsion, leaving the system underdeveloped, very slow progradation rates in general, or 

at maximum channel extent within the developing fan system. If a channel is able to 

propagate (quickly) through the CLTZ, it will significantly alter its stratigraphic record. 

 

8.3.4 Summary of stratigraphic variability in CLTZ expression 

Preservation potential, channel evolution and setting are key parameters when considering 

the transfer of the CLTZ into the stratigraphic record. After initial development of erosional 

and depositional bedforms, their eventual preservation in the rock record depends on the 

character of successive flow-bedform interactions. CLTZs can be represented by a single 

surface or a volume of rock, being highly dependent on the propagation rate of the feeder 

channel. CLTZs can be dynamic, and migrate, and lengthen or shorten through time. Base-

of-slope settings are hypothesized to show better developed CLTZ features, as CLTZs tend 

to be more static in these settings. Marginal areas are better preserved compared to axial 

areas where the juxtaposition of channel/levees and lobes may be the expression of the 

CLTZ. The characteristics of CLTZ deposits and features vary significantly depending on 

location, flow efficiency and the style of channel evolution. By considering these three first 

order controls, the stratigraphic record of the CLTZ can be better elucidated.  
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Chapter 9: 
Conclusions 

 

9.1 Addressing the key questions 

Here, the key research questions established in Chapter 1 are addressed within the scope 

of this study. The answers to the questions lead to recommendation for future research 

directions.  

9.1.1 How is the assemblage of depositional and erosional elements that 

characterise CLTZs and base-of-slope settings transferred into the 

stratigraphic record? 

A wide assemblage of depositional and erosional elements associated with CLTZs have 

been identified and presented in this thesis by the use of an integrated core and outcrop 

dataset. These elements have been tied to observations from CLTZs documented in 

modern systems including large amalgamated scour-fills (Chapter 4) and sediment waves 

(Chapter 5). The elements preserve a high degree of complexity in their facies distribution 

patterns and a high level of variability in the depositional architecture. Some giant-scour-

fills show simple cut-and-fill histories, while others show evidence of headward incision 

and temporal changes in the interaction with the scour surface. The infill may show 

variable facies characteristics, but their thickening/coarsening upward structure over the 

complete fill differentiates them from base-of-slope channel-fills. Sediment wave deposits 

show clear evidence of upstream migration, but do not resemble known supercritical 

bedform structures. Hierarchical scales have been identified in both depositional 

(sediment waves – Chapter 5) and erosional (giant scour-fills – Chapter 4) bedforms, 

indicating long time scales for their development. A major part of the depositional record 

in base-of-slope settings is represented by lobes (Chapter 6), which are typically juxtaposed 

against sandstone-rich channel-fills. These lobes represent simple independent 

architectural bodies with different characteristics compared to the basin-floor lobes 
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downdip: They are relatively abundant in banded and climbing ripple-laminated sandstone 

and poor in linked debrites, structureless sandstone and siltstone. Differences in 

characteristics can be associated with alterations in flow efficiency that impact both lobe 

and CLTZ character. The preservation of elements that characterise the CLTZ and base-of-

slope in the rock record depends on a number of factors (Chapter 8), wherein the style of 

channel evolution is important to consider. As the features defining the CLTZ suggest long 

time-scales for their development (Chapter4; Chapter 5), the stratigraphic record of CLTZs 

may be less well preserved within a rapidly propagating channel compared to a system 

where the channel propagates slowly (Chapter 8). How flows interact with erosional and 

depositional bedforms is highly variable and determines how they are eventually 

preserved within the rock record. Features that develop at the margins of CLTZ have the 

largest potential to be preserved (Chapter 8), as has been observed with giant scour-fills 

(Chapter 4) and sediment waves (Chapter 5). Overall, the assemblage of depositional and 

erosional elements associated with CLTZs, show very diverse characteristics depending in 

particular on the location relative to, and the evolution, of the feeding channel.  

 

9.1.2 What are the key representative facies, architectural elements, and stacking 

patterns that characterize CLTZs in the rock record?   

This study has provided a comprehensive description of the characteristics of major 

channel-lobe transition zone elements, their dominant facies and stacking behaviour. A 

number of facies groups are particularly prone within CLTZ and base-of-slope 

environments: 

- Banded sandstones 

- Structureless sandstones 

- Mudstone clast conglomerates 

- Climbing-ripple laminated sandstones 
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- (Laterally restricted) thin-bedded siltstones  

 

Particular facies groups can be more dominant within CLTZ deposits, depending on the 

architectural element or sedimentary environment that is involved (Fig. 9.1). Facies 

characteristics vary especially between marginal and axial positions, where margins are 

dominated by climbing ripple laminated sandstones, while axes show more banded and 

structureless sandstones. Scour-fills differ from channel-fills as they show thickening and 

coarsening upward structures over the complete fill, while channel-fills are rather uniform 

in facies and are dominated by thick amalgamated structureless sandstones (Chapter 4). 

Lobe deposits at the base-of-slope show an abundance of banded and climbing-ripple 

laminated sandstones (Chapter 6). Sediment waves are dominated by banded sandstones 

when preserved in axial locations, while they are richer in climbing-ripple laminated 

sandstones at the margins of CLTZ settings (Chapter 5).  

The stacking behaviour of sediment wave deposits within the studied outcrop sections 

proves to be complicated, as individual event beds dominantly stack in a downstream 

manner, but due to abrupt upstream-orientated shift of the depositional focus, the system 

is aggradational on a larger scale. Lobe deposits at the base-of-slope (Chapter 6) show both 

lateral and longitudinal juxtaposition of lobes and channels, as well as cycles of downdip 

propagation and retreat. This is in contrast to stacking patterns of basin-floor lobes 

downdip, which are primarily driven by lateral compensation.  

Overall, the CLTZ record in base-of-slope settings is highly variable (Chapter 8), depending 

on channel-evolution, position relative to the channel-mouth and flow efficiency. CLTZ 

development is expected at progradational and aggradational phases of fan evolution, but 

is largely prevented at retrogradational phases. CLTZs are better developed at base-of-

slope settings, aided by slow propagation rates of channels in these locations.   
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Figure 9.1 Synthesis of base-of-slope elements showing the variation in facies 
characteristics and distribution as discussed within this study. Channel fills based on 
confined and unconfined base-of-slope channels of Brunt et al. (2013a). 

 

9.1.3 What is the impact of fine-scale sedimentary architecture in lobe complex and 

channel-lobe transition reservoirs? 

A complete modelling workflow has been presented, including field data collection 

(Chapter 6), facies modelling, petrophysical modelling and flow simulations to test the 

impact of fine-scale architectures within lobe complexes and channelised lobe 

environments (Chapter 7). The simulation results have shown that juxtaposition of 
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channel-fills and lobe deposits, common at base-of-slope settings (Chapter 6), has diverse 

effects on reservoir performance. This depends on the presence of inter-channel barriers, 

such as mudstone clast conglomerates and argillaceous sandstones, as well as the sand-

prone nature of the channelised lobes. When inter-channel barriers are common, their 

presence has serious negative consequences for reservoir connectivity (Chapter 7). Base-

of-slope systems are exceptionally sand-prone (>80%), and lobes represent a substantial 

part of the stratigraphy (Chapter 6). In comparison with slope settings, channel-fills may 

not represent the largest reservoir volume within base-of-slope systems. Even when there 

is good connection between channel-fills and surrounding stratigraphy, they may act as 

‘thief sands’ because of their good petrophysical properties (Chapter 7). Due to the high 

uncertainty of heterogeneity distribution associated with channelised lobe areas, they can 

be considered as challenging production targets. Areas of lobe amalgamation, however, 

may involve much less uncertainty, always showing both good horizontal and vertical 

connectivity.   

 

9.2 Suggestions for future work 

9.2.1 Giant scour-fill architecture 

This study includes the first detailed description of large-scale amalgamated scours from 

channel-lobe transition zone settings in ancient deepwater deposits (Chapter 4). With 

criteria established to help support the recognition of scour-fills in Hofstra et al. (2015), 

similar architectures and infill characteristics may be identified from other outcrop records. 

Additional examples would increase our understanding of how these architectural 

elements are preserved in the rock record and how they can be differentiated from 

channel-fills, for example from the Peïra Cava or Ross Formation. Furthermore, this study 

has revealed that the architecture and infill of these scours can be highly variable, which is 

related to position relative to the channel mouth and to system evolution. This requires 
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further investigation to gain a better understanding on what controls both the 

characteristics and the preservation potential of giant scour-fills. 

Experimental and numerical modelling approaches may aid further in the understanding of 

the formation of the complicated architectures of these features.    

9.2.2 The process record of sediment waves 

Detailed examination of the architecture and facies distributions of sediment waves within 

CLTZ settings (Chapter 5) has revealed that their process record is much more complex 

than previously assumed (e.g. Wynn and Stow, 2002; Symons et al., 2016). Similar 

bedforms have not been described elsewhere, from either outcrop, seismic or 

experimental studies. Even though along strike variations have been incorporated within 

these studies, the 3D-architecture of these bedforms is still weakly  constrained, which 

limits our understanding of their process record.  In other areas,  like the Albian Black 

Flysch (Vicente Bravo and Robles, 1996) or the Favignana Calcarenites of Sicily (Slootman 

et al., 2016)  3D-architecture is much better exposed, and detailed study of these areas will 

massively aid within our understanding.  

The Karoo systems are defined by a very narrow grain size distribution and these bedforms 

may look different in systems with a wider grain-size range (e.g. Neuquen Basin, Peïra 

Cava), due to the importance of grain size on bedform formation. I have proposed likely 

primary controls and interactions on their formation, including compensation-driven flow 

fluctuations. These controls will need further investigation, most ideally by numerical or 

experimental approaches, to be able to fully comprehend the depositional architecture of 

these bedforms. Furthermore due to recent advances in imaging and measuring 

techniques of active submarine systems (e.g. Khripounoff et al., 2003; Xu et al., 2004; 

Sumner et al., 2013; Talling et al., 2013), it is possible to track the development of 

sediment waves by individual flow events, which can give vital information for their 

process record.  
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9.2.3 Recognition of sand-prone sediment waves in high-resolution seismic datasets 

The sedimentary packages in which sediment wave deposits related to CLTZs have been 

identified in the Karoo Basin (Chapter 5) are very sandstone-prone (>90%) (Brunt et al., 

2013a). If similar packages would be studied by means of high-resolution seismic, it 

remains unclear to which level the architectures here described would be recognised 

within these datasets, as the number of internal reflectors may be highly limited due to the 

uniform lithology. It would be valuable to restudy existing shallow reflection seismic 

datasets of sediment waves within CLTZ settings (e.g. Bonnel et al., 2005; Kuang et al., 

2014) to gain a better understanding of how the described architectures relate to sediment 

wave architectures in recent systems.   

 

9.2.4 Differentiation between overbank and lobe environments 

It remains very challenging to make clear distinctions between levee/overbank and lobe 

off-axis to fringe environments within outcrop and core datasets (Chapter 6) because the 

processes operating in both these sedimentary environments are similar. A proper 

distinction between both environments will aid in defining the stacking behaviour of lobes 

within submarine fan systems from 1D core. Given that levees have a larger map-view 

‘footprint’ than channels (e.g. Kane and Hodgson, 2011; Morris et al., 2014b), in areas 

where there is juxtaposition of lobes and channels the ‘levee-lobe’ transition zone (LLTZ) 

should be more extensive than the true channel-lobe transition zone. It may be possible to 

improve this understanding  by more detailed identification of all sedimentary features of 

both environments and, in particular, through the use of integrated datasets where direct 

correlation of core to architecture is possible.   

 

9.2.5 Understanding submarine mid-fan areas 

This study has suggested that the stratigraphic record of fan systems at base-of-slope 

settings is substantially different to the stratigraphic record at distal basin floor settings, 
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including the characteristics of the lobe deposits that are present in these settings (Chapter 

6). However, the work has not covered how the transition between the two areas is 

characterised. For example, it is unclear if the two described lobe types (basin-floor and 

base-of-slope) are discrete elements or if a transition exists from one to the other, with 

‘hybrid’ lobes showing characteristics of both. Further investigation is needed to connect 

the base-of-slope areas with the areas down dip. This will require detailed mapping and 

characterisation work. Furthermore, it is unclear how these different lobe types may be 

represented in the case of a stepped slope profile (e.g. McGilvery and Cook, 2003; Prather, 

2003; Adeogba et al., 2005), where each flat may act as a small-scale basin-floor.     

 

9.2.6 Quantifying the preservation potential of CLTZs 

Key to unraveling the stratigraphic record of CLTZs within outcrop and core is 

understanding the preservation potential of its different elements (Chapter 8). Suggestions 

have been made for major controls on CLTZ preservation, including flow efficiency 

influencing CLTZ dimensions and the evolutionary character of the system. Off-axis CLTZ 

environments have been proposed to be best preserved in the rock record. The 

development and preservation of CLTZs and their elements could potentially be further 

improved by experimental and numerical modelling methods by looking in detail on 

subjects such as the interaction between turbidity currents and irregularities in the 

substrate or the influence of decreased flow confinement at  the channel mouth and a 

break-in-slope. Also, capturing flow dynamics within modern systems (e.g. Black Sea, 

Medocino Canyon), such as active measurements of a hydraulic jump (Sumner et al., 

2013), may massively improve our understanding of CLTZ preservation.   
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Appendix A 

LOBE 2 core details 

Within Appendix A all details on the sedimentary cores studied for this thesis and the LOBE 

2 project are presented.  

A.1 LOBE 2 core locations 

 

 

 

 

 

 

 

 

 

 

 

Core UTM   

      

OR01 405628 6368089 

BK01 412230 6379945 

KK01 402474 6372476 

GBE01 415248 6386042 

      

DK01 460983 6331775 

ZKN01 464561 6333936 

BSL01 472843 6325459 
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A.2 LOBE 2 core descriptions 

Legend  

Cl = Clay 

MSi = Muddy Siltstone 

FSi = Fine Siltstone 

CSi = Coarse Siltstone 

VFS = Very Fine Sandstone 

LFS = Lower Fine Sandstone 

UFS = Upper Fine Sandstone 

MS = Medium Sandstone 

 

Thin-bedded: 0-0.1m 

Medium-bedded: 0.1-0.5m 

Thick-bedded: >0.5m 

 

A.2.1 BK01 – Unit 5 

Core interval:   46.50-0.00 m 

Total thickness:  46.5 0m 

Box:    BK01 1-10 

 

Description 

The boundary between Fan 4 and Unit 5 is marked by two claystones .The top of the upper 

claystone is used to define the stratigraphic base of Unit 5, although the sedimentary facies 

at the top of Fan 4 and the base of Unit 5 are very similar. 

0-13 m: The basal 13 m of Unit 5 shows little variability and comprises an interbedded thin-

bedded FSi and normal-graded thin to medium-bedded (up to 50 cm) VFS package. The 

sandstone beds show both planar parallel- and ripple cross-lamination. Some ripple cross-

laminated beds are climbing. Sandstone bed thickness slightly increases upwards, while 

bioturbation becomes less prone.  

13-25 m: The following 8 m interbedded package is characterised by medium-bedded LFS 

beds with climbing-ripple lamination with stoss-side preservation.  A number of these beds 

show initial inverse, followed by normal grading.  Bioturbation is low to absent in the basal 

part of Unit 5.  A number of erosion surfaces are identified within this thin-bedded interval.  

25-46.5 m: The first thick LFS beds start to appear alternating with packages (0.5-4 m) of 

thin-bedded sandstones and siltstones. Thick-bedded sandstones (>1 m) are mostly 

structureless but show bands of mudstone chips and climbing-ripple lamination or convolute 

laminations at bed tops. Bed bases are sharp, and can be erosional and occasionally contain 

mudstone clast materials.  Multiple erosion surfaces are also present within the thin to 

medium-bedded sandstones. 
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A.2.2 BK01 – Fan 3 

Core interval:   152.20-121.44 m 

Total thickness:  30.76 m 

Box:   BK01 27-33 

 

Description 

0-5.7 m: The basal 6m shows a thickening upwards package with 2m of thin-bedded FSi, 

overlain by interbedded thin to medium-bedded LFS/VFS and FSi. Multiple medium-

bedded sandstone beds show sharp erosive structureless bases and mustone chip-rich 

banded tops.  

5.7-30.8 m: The main stratigraphy of Fan 3 shows an alteration between a total of four 

thick-bedded LFS intervals (2-6 m) and four packages of medium to thin-bedded VFS and 

FSi (1-2 m). The thick-bedded sandstones are dominantly structureless with mustone chip-

rich tops.  Bed amalgamation is common. The thin-bed packages show numerous erosional 

surfaces and are sandstone-prone.  Ripple- and planar-lamination are common and 

biotubation levels are medium to low. Some medium-bedded LFS contain a substantial 

amount of rip-up mudstone clasts at the base and smaller mudstone chip fragments at the 

top of the bed.  The top of Fan 3 shows an abrupt finning/thinning-upwards sequence from 

thin-bedded VFS to FSi. 

 

A.2.3 KK01 – Fan 3 

Core interval:   166,39-65.24 m 

Total thickness:  101.15 m (incl. partial duplication) – 59.65 m (without duplication) 

Box:   KK01  15-37 

 

NOTE: A large thrust fault is present within the top of Fan 3, duplicating a substantial part 

(41.5 m) of the stratigraphy.  

Description 

0-5.5 m: The basal 5 m shows a thickening-upwards package of thin to medium-bedded 

VFS-LFS and FSi. Sandstone beds show ripple-lamination, including climbing. The interval 

has a medium level of bioturbation.  

5.5-27.4 m: This is followed by a >20 m interval of dominantly thick-bedded structureless 

LFS. Two 1 m thick intervals of more thin-bedded VFS are present at the lower part. The 

structureless sandstones show numerous amalgamation surfaces and banded tops in the 

upper section.  
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27.4–38.5 m: A thick package of thin- to medium-bedded VFS-LFS with occasional thin-

bedded FSi. Ripple-lamination is common within the sandstone beds, including climbing. 

Some of the sandstone beds in the base contain mudstone chips concentrated in bands 

chips. 

38.5–46.0 m: Thick-bedded dominantly structureless LFS, similar to the 5.5-27.4 m 

package. The sandstone beds can be rich in mudstone chips and occasionally contain 

mudstone rip-up clasts. Bed bases are sharp and abrupt grain size breaks indicate 

amalgamation surfaces.  

46.0–65.2 m: An overall thinning upwards succession of medium to thin-bedded structured 

VFS and thin-bedded FSi.   Numerous erosion surfaces are present within the base of this 

package.  Sandstones show a combination of ripple, planar and convolute lamination.  

Planar lamination becomes more common within the thin-bedded top of Fan 3.  

FAULT: The fault-zone is characterised by heavily fractured and distorted sediments 

including skewed and folded siltstone beds and completely fractured lower fine 

sandstones. Quartz veins can be observed all over. The occurrence of distortion is rather 

abrupt in the base, but the number of fractures fades out more gently towards the top. 

The total damage zone is 8.4 m thick.   

A 2.4 GBE01 – Unit 5  

Core interval:   80.31 – 0.99 m 

Total thickness:  79.32 m 

Box:    GBE01 01-18 

 

NOTE: A large fault zone and possibly thrust is present within the middle of the Unit 5 
stratigraphy. There is however no direct evidence of duplication.  

Log has not been drawn 

Description 

0-26.4 m: The base shows an overall thickening upwards succession of interbedded thin-

bedded siltstones and pass to towards medium-bedded structured and normal-graded 

VFS-LFS sandstones. Sandstones show planar, ripple and convolute laminations. Climbing 

ripple lamination is common. A number of erosion surfaces are present within the top of 

the package. 

26.4-35.1 m: Thick structureless amalgamated UFS with the occasional mudstone chip or 

clast.   

45.23- 47.1 m: Fault zone showing folded and tectonically deformed sandstones with 

numerous quartz veins. At the top a breccia is present.  

47.1m-21.08 m: Thick-bedded mostly structureless LFS with the occasional medium-

bedded structured VDS. Bed amalgamation is common. Tops show planar or climbing 

ripple lamination.  
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21.08-0.99 m: Overall sandstone-prone thickening upwards package from interbedded 

structured thin-bedded and medium-bedded VFS to structureless LFS at the top. 

Sandstones are dominantly planar laminated, but also show ripple lamination. Some thin 

planar-laminated FSi beds are present among the sandstones.   

 

A 2.5 GBE01 – Fan 3 

Core interval:   143.64-134.52 m 

Total thickness:  9.12 m 

Box:    GBE01 31-32 

 

Description 

143.6-140.8 m: The basal 1.8 m is comprised of a weakly bioturbated thin-

bedded FSi interval.  

140.8-136.8 m: A 4 m thick sandstone-prone thickening-upwards succession. 

Bases of sandstone beds in the first 1.5 m are dark, possibly due to a high silt or 

mud component. Internal structures within the sandstones are purely planar-

laminated and no ripple-lamination has been observed. The top 2 m shows 

medium-bedded structureless LFS with argillaceous (siltstone and mudstone) 

clast-rich tops.  Several beds have a planar-laminated and normal-graded 

division at the top of the argillaceous division.  

136.8-135.0m: The basal 20 cm is siltstone-prone (FSi) with multiple erosion 

surfaces and a 8 cm thick clast-rich debrite. The remaining 1.1 m shows a 

thinning-upwards package of medium to thin-bedded VFS with structureless 

bases and banded/planar-laminated/ripple-laminated tops. Overall, it shows an 

low level of bioturbation.  

135.0-134.5m: The top 50cm of Fan 3 is defined by a fine to muddy thin-bedded 

FSi interval with a moderate level of bioturbation.  

 

A 2.6 OR01 - Unit 5 

Core interval:   50,28-0,70 m  

Total thickness:    49.58 m (top of Unit 5 has not been reached)  

Box:     OR01 01-11 

 

Description 

0-13. 6m: The boundary between Fan 4 and Unit 5 is not well defined. The top of the last 

true >10 cm thick claystone has been defined as the base of Unit 5, which shows an overall 
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coarsening- and thickening-upwards succession with an interbedding of thin-bedded MSi-

FSi and normal-graded VFS towards more medium-bedded VFS. Sandstone beds show both 

planar and ripple-lamination. Multiple erosion surfaces are present within a thin-bedded 

interval towards the top. A minor amount of sandstone beds are mudstone chip-rich and 

show banding.  

13.6-23.11 m: Alternation between thick mostly structured VFS sandstones and 

interbedded intervals of thin-bedded normal-graded VFS and thin-bedded FSi. Sandstones 

show a combination of planar, convolute and ripple lamination, including climbing. Various 

erosion surfaces are present in some of the thin-bedded intervals.   

23.11-39.2 m: One >15 m thick structureless FS without clear amalgamation surfaces. The 

base shows a 20cm thick soft sediment deformed package of muddy materials, which does 

not seem to be structurally related. Various mudstone chip stringers are randomly 

dispersed within the sandstone. 

39.2-49.6 m: Sandstone-prone package of thin to medium-bedded structured VFS-LFS with 

the occasional thin-bedded FSi. The package contains a high number of erosion surfaces 

within the thin-bedded packages, especially at the top. Sandstones show both planar and 

ripple lamination, but are dominated by climbing ripple lamination.   

 

A 2.7 OR01 – Fan 3 

Core interval:   212.93 – 151.45 m  

Total thickness:   61.48 m  

Box:     OR01 33-47 

 

Description 

213-210.6 m: The base of Fan 3 is marked by a 2.4 m thin-bedded FSi interval with a 

moderate level of bioturbation. The top contains a number of thin ripple-laminated 

sandstone beds with erosive bases.  

210.6-205.5 m: Thick to medium-bedded LFS are interbedded with thin-bedded VFS. The 

thick-bedded structureless sandstone beds have sharp bases and show large numbers of 

mudstone chip and clast materials, predominantly in bed bases and tops. No clear 

amalgamation surfaces are present. The thin-bedded sandstones are generally planar-

laminated and erosional bases are not uncommon.  

205.5–187.2 m: Thick-bedded amalgamated structureless LFS-UFS. Bed tops contain 

mudstone chip-rich bands and bed bases are occasionally dewatered.  

187.2- 164.0 m: Alteration between thick-bedded structureless LFS and interbedded 

intervals of medium-bedded structured VFS and thin-bedded FSi. Thick-bedded sandstones 
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show banded tops and sharp bases, occasionally with rip-up mudstone clasts. Medium-

bedded sandstones are dominantly ripple or convolute laminated.     

164.0-151.5 m: Thick-bedded LFS with limited bed amalgamation. Bed tops show both 

mudstone-chip banding as ripple-lamination. The top shows a rapid thinning upwards 

sequence to medium-bedded VFS and thin-bedded FSi with a moderate to high level of 

bioturbation.   

 

A 2.8 DK01 – Unit B1 

Core interval:   91.60 m-86.52 m 

Total thickness:  5.08 m 

Box:    DK01 18-17 

Description 

Unit B1 consists of an interbedded package of laminated thin-bedded FSi and thin to 

medium-bedded VFS. The top of the package is more siltstone prone than the base. 

Several erosive surfaces are present among the interval. VFS beds are structured and 

normally graded showing an assemblage of climbing ripple-lamination, planar-lamination 

and wavy laminations. Except for in the base, there is hardly any bioturbation present 

within this interval  

B1  B2 Clay 

Core interval:   86.52-86.25 m 

Total thickness:  0.26 m 

Box:   DK01 17 

Description 

The claystone interval between subunit B1 and B2 is exceptionally thin. It shows no 

evidence of bioturbation or any other structure.  

 

A 2.9 DK01 – Unit B2 

Core interval:   86.25- 0.00m 

Total Thickness:  86.25m 

Box:    DK01 17-01 

Description 

86.25- 81.75 m: Slightly thickening/coarsening upwards package of thin-bedded Fsi and 

thin to medium-bedded VFS. Several erosive surfaces are present within this package. 
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Sandstone beds are structured and occasionally show mudstone clasts at the base of the 

bed.  Structures include climbing ripple, planar and wavy lamination. Thin sandstone beds 

are mostly planar-laminated. Some sandstone beds at the base of this package contain 

muddy bands with dewatering flame structures.  

81.75-66.75 m: Thinning upwards package of thick to medium-bedded LFS and VFS. 

Occasionally interbedded with thin intervals of thin-bedded FSi. The thickes LFS have 

dominant structureless bases with mudclast materials and mudclast chip bands at the top 

of the bed. Medium-bedded sandstones show a combination of ripple, wavy and planar 

laminations. Erosional bases within the sandstones are abundant.  

66.75m-23.50 m: Thick package of interbedded medium to thin-bedded structured VFS 

and thin-bedded FSi. Locally erosional surfaces are abundant at sandstone bed bases. 

Structures include ripple (including stoss-side preserved climbing), wavy and planar 

lamination. Thin sandstone beds show dominantly planar lamination. 

23.50-0.00 m:  Package of interbedded thin-bedded VFS and thin-bedded FSi. Siltstone 

beds are often planar laminated. Sandstone beds show dominantly ripple-lamination, but 

can also show wavy and planar lamination. Thicker sandstone beds often include climbing 

ripple-lamination. Bioturbation is almost absent.  
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A.3 LOBE 2 descriptive core logs 

BK01- Unit 5 

 



279 

BK01 – Fan 3 
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KK01 – Fan 3 
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GBE01 – Fan 3 

 

 

 



282 

OR01 – Unit 5 
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OR01 – Fan 3 
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DK01 – Unit B 
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Appendix B 

Outcrop data details 

Within Appendix B, all details on sedimentary log data which could not be presented within 

any of the thesis chapters, is presented.  

B.1 Outcrop log locations 

Chapter 4 

System Area     UTM Zone 

Fan 3 Kleine Rietfontein  34 H 

Panel log name UTM Base 
UTM 
Top   

K1 397003 6369068 397067 6369076 

K2 397010 6369707 - - 

K3 396946 6369739 397002 6369728 

K4 396935 6369791 396974 6369817 

K5 396963 6369839 396954 6369832 

K6 396830 6369952 396961 6369899 

K7 396958 6370156 397145 6370104 

K8-K9 397217 6370202 397197 6370269 

K10 397160 6370499 397339 6370410 

K11 397434 6371072 397517 6371027 

K12 397539 6371251 397574 6371247 

K12 - - 397625 6371295 

K13 396788 6371481 396715 6371540 

K14 397796 6369904 397518 6370083 

K15 398127 6370001 397958 6370045 

K16 398462 6369936 398497 6369942 

K17 397885 6369852 397922 6369867 

K18 397868 6369788 397839 6369777 

K19 397189 6369631 397170 6369694 

K20 398384 6369369 398403 6369393 

K21 397021 6368618 397047 6368590 

K21 397010 6368657 397028 6368689 

K22 397420 6368815 - - 
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System Area     UTM Zone 

Unit A5 Wilgerhout River  34 H 

Log Name UTM Base 
UTM 
Top   

W1 485982 6327777 - - 

W2 485987 6327780 - - 

W3-W4-W5 486033 6327807 - - 

W6 486060 6327815 - - 

W7 486089 6327899 486061 6327775 

W8-W9 486082 6327825 - - 

W10 486109 6327805 - - 

W11 486130 6327831 - - 

W12 486168 6327837 486158 6327817 

W13 486194 6327894 486230 6327814 

W14 486229 6327853 486232 6327835 

W15 486257 6327819 486256 6327920 

W16 486330 6327877 - - 

W17 486368 6327953 486363 6327881 

 

 

Chapter 5 

System Area     UTM Zone 

Unit B Doornkloof  34 H 

Log Name UTM Base 
UTM 
Top   

01 460500 6331182 - - 

02 460920 6331379 - - 

03 460934 6331384 - - 

04 460983 6331396 - - 

05 461005 6331402 - - 

06 461058 6331404 - - 

07 461082 6331435 - - 

08 461312 6331435 461309 6331513 

09 461330 6331499 - - 

10 461355 6331501 - - 

11 461379 6331506 - - 

12 461407 6331508 - - 

13 461433 6331512 - - 

14 461458 6331514 - - 

15 461482 6331514 - - 

16 461503 6331518 - - 

17 461531 6331519 - - 

18 461550 6331524 - - 

19 461567 6331527 - - 

20 461624 6331485 461594 6331552 

21 461627 6331536 - - 

22 461683 6331502 461669 6331676 

23 461681 6331554 - - 

24 461713 6331527 461808 6331735 

25 461791 6331625 461792 6331640 
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26 461836 6331622 461866 6331653 

27 461847 6331625 - - 

28 461860 6331625 - - 

29 461869 6331627 - - 

30 461878 6331627 - - 

31 461886 6331629 - - 

32 461894 6331629 - - 

33 461904 6331630 - - 

34 461912 6331630 - - 

35 461923 6331638 461926 6331658 

36 461962 6331628 - - 

37 461953 6331623 - - 

38 462002 6331630 461991 6331659 

39 462081 6331631 462029 6331661 

40 462047 6331636 - - 

41 462080 6331630 462028 6331661 

42 462502 6331582 462548 6331753 

Chapter 6 

 

System Area   UTM Zone 

Unit 5 Blaukop  34H   

Panel Log name UTM Base UTM Top   

01 412073 6378737 412072 6378754 

02 412378 6379118 - - 

03 412529 6379118 412542 6379105 

04 412505 6379188 412527 6379149 

05 412664 6379212 412671 6379200 

06 412785 6379168 412773 6379154 

07 412711 6379251 412743 6379230 

08 412626 6379348 - - 

09 412583 6379358 - - 

10 412532 6379392 - - 

11 412487 6379424 - - 

12 412472 6379437 - - 

13 412334 6379620 - - 

14 412260 6379656 - - 

15 412234 6379668 - - 

16 412175 6379702 - - 

17 411880 6379870 411855 6379888 

18 411931 6379968 - - 

19 411978 6380071 411962 6380087 

20 412168 6380112 412199 6380093 

21 412319 6380194 412319 6380174 

22 412273 6380230 412300 6380186 

23 412369 6380430 412394 6380416 

24 412378 6380514 412402 6380442 

25 412404 6380607 412415 6380614 

26 412416 6380656 412435 6380622 
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System Area     UTM Zone 

Fan 3 Ongeluks River  34 H 

Log Name UTM Base 
UTM 
Top   

OR01 403898 6365901 - - 

OR02 403968 6365922 403946 6365943 

OR03 403991 6365929 - - 

OR04 404122 6365968 - - 

OR05 404175 6365976 - - 

OR06 404216 6365976 - - 

 

 

System Area     UTM Zone 

Fan 3 
De 
Syfer   34 H 

Log Name UTM Base 
UTM 
Top   

Sy1 400654 6367407 400689 6367428 

Sy2 400597 6367677 400636 6367656 

Sy03 399547 6367597 399568 6367600 

Sy04 399593 6367578 - - 

Sy05 399612 6367567 - - 

Sy06 399641 6367548 - - 

Sy07 399682 6367522 - - 

Sy08 399707 6367504 - - 

 

System Area     UTM Zone 

Fan 3 Kleine Riet Fontein  34 H 

Log Name UTM Base 
UTM 
Top   

KRF01 396958 6370156 397145 6370104 
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B.2 Palaeoflow data 

 

Chapter 4 

Kleine Riet Fontein – Fan 3 

  K1      K7      K8   

Base Middle Top  Base Middle Top  Base Middle Top 

342 55 88  29 212 75  12 62 30 

  355 34  59 160 148  38 90 8 

  28 0  355 155 150  54 5 31 

  0 52  34 134 146  74 25 40 

  88 90  17 168 143  32 68 20 

  308 340  22 142 83  24 343 22 

   70  354 108 140  345 338 58 

   88  118 168 85  18 26   

   82  102 161 85  24 358   

   60  98 142 96  310    

   42  133 108 112  356    

   92  80 168 40  355    

      154 161 44  78    

      138 144 6  31    

      92 114 36  345    

      48 146 60  11    

      45 140 48  65    

      114 122 26  20    

      158 90 22  17    

      42 115 34  40    

      164 103 60  33    

      46 50 98  45    

      34 204 106  34    

      82 190 10  18    

      78 98 22  15    

      38 63 31  35    

      37 154 54  36    

      78 68 17  18    

      56 144 53  27    

      82 190 62       

      38 166 28       

      37 135         

      62 137         

      74 136         

      92 118         

      153 42         

      202 38         

      78 60         
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      62 50         

      42 120         

      78 40         

      74 56         

      93 134         

      136 68         

      186 161         

      129 161         

      98 98         

      60 62         

      76 112         

      32 120         

      114 98         

      88 152         

      78 100         

      38 70         

      115 54         

      100 74         

      112 60         

      85 118         

      100 78         

      94 55         

      49 18         

      74 30         

      104 60         

      95 54         

      170 94         

        92         

        80         

        60         

        24         

        88         

        74         

        94         

        54         

        106         

        173         

        60         

         54          

 

 

 

 

K9      K11      K12   

Base Top  Base Middle Top  Base Middle Top 



291 

58 157  12 62 30  342 338 349 

355 156  38 90 8  353 335 5 

50 185  54 5 31  341 30 3 

60 154  74 25 40  338 350 30 

18 136  32 68 20  348 340 8 

344 135  26 343 22  30 0 10 

74 10  345 338 58  358 355 340 

  10  18 26 308  2 320 325 

  22  24 358 340  40 338 305 

  9  310 78 350  253 352 335 

  354  356 50 290  354 338 348 

  22  355 352 302  0 348 355 

  342  78 50 334  42 358 346 

  16  31     21 338 8 

  244  345     288 335 332 

  0  11     328 35 0 

  10  65     32 20 2 

  13  20     17 350 345 

  55  17     33  355 

  18  40     28  300 

  25  33     12  302 

  359  45     15  355 

  348  34     330  309 

  46  18     34  333 

     15     4  308 

     35     345  328 

     36     44  340 

     18     348  348 

     27        8 

     94        315 

     332        332 

     40        358 

     352        335 

     58          

     78          

     56          

     310          

     125          

     130          

     110          

     152          

     42          

     60          

     5          

     204          

     149          

     50            
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  K13      K14      K15   

Base Middle Top  Base Middle Top  Base Middle Top 

325 348 290  68 50 314  56 306 270 

305 298 325  348 350 318  88 338 236 

342 26 328  38 358 348  72 350 236 

280 4 334  80 34 343  40 336 350 

330 340 320  40 350 20  82 340 330 

326 14 270  354 6 300  32 0 298 

4 15 349  14 338 335  48 4 310 

325 345 308  340 355 270  78 0 0 

282 345 262  292 14 352  52 354   

14 332 306  300 32 342  58 350   

345 342 292  260 352 4  52 10   

4 0 345  258 14 36  32 8   

330 358 325  298 0 16  40 48   

326 345 274  264 26 346  50 0   

342 3 290  316 22 346  10    

342 302 325  270 352 0  350    

14 326 355  340 322 32  354    

   325  333 30 18  332    

      354 0 8  6    

      328 8 0  28    

      5 358 9  38    

      35 354 8  326    

      2 28 12  340    

      340     26    

      76     34    

      350     358    

      348     348    

      32     12    

      28     0    

      38     4    

      352     346    

            330    

            16    

            6    

            350    

            350    

            325    

            338    

            0    

            350    

            350    

            310    



293 

            340    

            338    

            340    

              10     

 

 

K16    K17    K19    K20   

Middle Top  Base  Base Middle Top  Middle Top 

18 100  62  24 280 2  100 358 

22 32  42  342 0 350  10 354 

68 36  90  28 312 5  350 0 

0 126  95  2 8 298  18 296 

42 34  16  4 10 334  348 284 

54 58  18  332 350 322  352 326 

22 100  86  314 358 342  46 298 

     356  358 342    350 315 

     18  334 34    16 338 

     340  14 308    354   

     350  328 352        

     0  352 338        

     354    2        

     334    318        

          0        

          320        

          334        

          300        

          0        

          328        

          335        

          345        

          20        

          0        

          320        

          316        

          344        

          340        

          336        

          328        

 

 

 

 

Wilgerhout – Unit A5 
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Unit A5 
Scour-
fill   Underlying heterolics 

 95  94 

 73  76 

 103  107 

 75  92 

 101  73 

 89  83 

 70  89 

 94  85 

 107   

 71   

 79   

 89   

 94   

 86   

 95   

 94   

 92   

 99   

 89   

 101   

 95   

 96   
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Chapter 5 

Doornkloof – Unit B 

 

Unit 
B1     

Unit 
B2   

Log 
# 2 

04-
07 15 

22-
24  20 22 24 

 108 82 134 65  88 342 108 

 110 88 122 116  310 308 65 

 65 78 90 114  286 270 348 

  60 80 125   315 358 

  90 135 70   315 73 

  85 85 55   270 60 

  110 68 60   318 58 

  98 108 85   335 25 

  118 110 120   286 54 

    70    31 

    84    80 

    110    65 

    104    38 

        68 

        35 

        95 

        60 

        5 

        42 

        38 
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Old Railway – Unit B 

 

Unit B2 WEST   EAST     

 120 124  144 138 134 

 190 116  110 119 104 

 180 145  132 72 145 

 142 103  113 114 112 

 128 138  130 109 104 

 145 139  144 100 96 

 126 120  118 112 138 

 119 108  107 128 122 

 138 107  99 130 126 

 110 137  118 140 136 

 108 111  110 125 100 

 123 122  95 114 118 

 140 106  124 119  

 142 92  111 106  

 128 150  112 135  

 122   126 142  

 108   103 115  

 102   117 122  

 

 

Chapter 6 

Blaukop – Unit 5 

Log # 22 21 20 18 11 7 26 3 2 9 14 15 24 25 16 17 

LOBE1 30 78     344?                   20   

 44 34                         26   

 36 26                         82   

 48 42                         40   

LOBE 
2                             24   

LOBE 
3   66                             

   32                             

   330                             

   350                             

LOBE 
4         332                       

         14                       

         275                       

         340                       

         346                       

LOBE 
5   38       46 316     350       30 5   



297 

   38       74 315             310 20   

   64       344 20             338 18   

   40         350             278 350   

             350             68     

             0             318     

             12             342     

             10             80     

             0             322     

             346             344     

             358             52     

LOBE 
6                             15   

                             0   

                             25   

LOBE 
7               8 332         0     

               10           18     

                           32     

                           28     

                           8     

                           30     

LOBE 
8                             74   

                             58   

                             55   

                             40   

                             340   

                             50   

LOBE 
9      32                 280 348       

     310                 310 300       

     330                   297       

     30                   294       

     28                           

     330                           

     0                           

     28                           

LOBE 
10                     14   355     40 

                     0   0     20 

                     270   274     38 

                     0   315     40 

                     340   314     54 

                     20   320     52 

                     354   355     32 

                     298   325       

                     38   342       

                         340       

                         298       
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                         10       

LOBE 
11       110               330       350 

       42                       340 

                               340 

 

  



299 

B.3 Original outcrop logs 
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Chapter 4 

Kleine Riet Fontein – Fan 3 
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306 



307 
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Wilgerhout – Unit 5 
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Chapter 5 

Unit B – Doornkloof 
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Chapter 6 

Unit 5 – Blaukop 
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