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Abstract 

In this study, finite element analysis (FEA) was used to investigate the 

mechanical significance of anatomically modem human and Neanderthal 

mandibular morphology. First, the FEA approach applied here was successfully 

validated against results of an in vitro experiment and the relative importance of 

different input variables was assessed in a series of sensitivity analyses. Second, 

masticatory loads were simulated in models of anatomically modem human, 

Neanderthal and H. heidelbergensis mandibles to investigate the mechanical 

significance of specific aspects of human mandibular morphology and to assess 

differences in load resistance between these human taxa. 

The results are consistent with several previous hypotheses about the 

relationship between masticatory loads and human mandibular morphology. For 

example, it is confirmed that the uneven distribution of cortical bone in the human 

mandible is closely related to masticatory strains and that the unique symphyseal 

morphology of anatomically modern humans (i. e. the vertical orientation of the 

symphysis and the presence of a chin) is advantageous to resist certain 

masticatory loads. It is also shown that the resistance to masticatory loads overall 

has decreased since the Middle Pleistocene, which is likely to be related to a 

reduction of masticatory loads due to advances in food processing, and that 

Neanderthal craniofacial morphology was probably not specifically adapted to 

resist high anterior dental loads as suggested by some authors. 

In general, the results suggest that studying adaptations to masticatory 

loads is crucial in understanding the evolution and development of human 

craniofacial morphology. Previous research in this area was difficult because 

experi ments to test certain hypotheses cannot be conducted for ethical or practical 

reasons. This study shows how virtual modelling techniques like FEA now 

provide tools to investigate mechanical adaptation even when experiments are not 

possible, as in the case of fossil taxa. 
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Chapter 1: Introduction 
The evolution of the unique craniofacial morphology of anatomically 

modem humans has been of major interest since the early days of biological 

anthropology. Compared with their nearest living relatives, the chimpanzees, and 

other members of the genus Homo, anatomically modem humans show, for 

example, reduced facial prognathism, a high degree of flexion in the cranial base 

and a well-developed chin (Fig. 1.1). Numerous studies have looked at the 

variation of these features within anatomically modem humans as well as in 

extinct hominins. Early studies were either qualitative descriptions or applied 

distance and angle measurements to quantify single features. More recently, 

geometric morphometrics (GMM) has been applied to quantify 3D craniofacial 

shape variation (Bookstein et al. 1999, Bastir et al. 2004, Harvati et al. 2004, 

Rosas et al. 2006). 

Although there are abundant data on craniofacial morphology in 

anatomically modern humans and their closest relatives, the mechanisms that 

were responsible for the evolution of the distinct human morphology are not well 

understood. It is likely that the expansion of the brain, particularly the relative 

increase in size and position of the temporal lobes made a major contribution to 

the evolution of the facial features typical of modem humans (Spoor et al. 1999, 

Lieberman et al. 2002, Bastir et al. 2008). Another factor that might have played 

an important role in the evolution of modem human craniofacial morphology is 

the technological progress, which is observed in the Pleistocene: more advanced 

tools and new methods of food processing like cooking. It is commonly assumed 

that such advances in food processing and tool use led to a reduction of 

masticatory loads to which the face adapted (Brace 1979). This is supported by 

experimental studies, showing that softer and more processed foods impact on 

craniofacial size and shape (Beecher et al. 1983, Kiliaridis et al. 1985, Engström 

et al. 1986, Lieberman et al. 2004a). 

A fossil hominin group, that is highly relevant in this context is the 
Neanderthals. They are the fossil hominins with the most abundant preserved 
material and are thus the best documented. Although they are closely related to 

anatomically modem humans and were also advanced tool makers, they show 
different craniofacial features, for example, a large prognathic face, lack of a chin 

12 
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and the presence of a gap behind the third mandibular molar, the so-called 

retromolar space (Fig. 1.1). 

no retromolar 
space 

midfacial 
prognathism 

retromolar 
space receding 

vertical 
symphysis 
with chin 

symphysis 
without chin 

Fig. I. I. Some (if the differences between anatomically modern human (Icft) and Neanderthal 
(right) craniofacial morphology (redrawn after Klein 1999: 483, Fig. 61.48). 

Sonne of these are primitive features that also occur in older fossils, but the 

whole set of features is unique to Neanderthals. As potential explanations for the 

distinctive Neanderthal craniofacial morphology authors have suggested genetic 

drift (Coon 1962), an adaptation to cold, arid climate (Sergi 1962, Franciscus & 

Trinkaus 1988) or a combination of both (Howell 1951, Hublin 1998) as well as 

integrative effects of changes in the hasicranium combined with an adaptation of 

the respiratory apparatus to specific metabolic demands (Bastir 20O8). Some 

authors have suggested that Neanderthal craniofacial morphology represents an 

adaptation to certain mechanical loads, specifically to high loads on the incisors 

due to frequent use of the front teeth for purposes other than food processing 

(Smith 1983, Rak 1986, Denies 1987, Trinkaus 1987, Spencer & Demes 1993). 

It is most likely that the evolution of the modern human and Neanderthal 

craniofacial morphology is the result of a complex interplay of different factors so 

that mono-causal explanations cannot he sufficient (see e. g. review in Weaver 

2009). However, most of the hypotheses, which are discussed in the literature, are 
difficult to test due to the lack of data and suitable methods. Those, that have 

recently become better testable, are mechanical hypotheses thanks to the 
application of virtual modelling techniques like finite element analysis (FEA). 
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FEA has been used by engineers for decades, but is now increasingly 

applied in biology to study form-function relationships (Macho & Spears 1999, 

Rayfield et al. 2001, Preuschoft & Witzel 2004, Dumont et al. 2005). It allows the 

estimation of stresses and strains even in complex structures under loading by 

dividing these into a number of small, geometrically simple element. Taking into 

account measured or estimated material properties, muscle orientations and forces 

in a particular specimen, loads can he simulated that approximate the loading 

conditions in the living organism. FEA is especially useful, when experiments are 

not possible, as in the case of extinct taxa. 

The estimation of stresses and strains allows us to evaluate the ability of a 

hone to resist functional loads. When a hone is loaded, it undergoes deformation 

and the nature (magnitudes and direction) of this deformation is traditionally 

quantified by strain (E). Strain is defined its the change in length divided by the 

original length (AL/L). Stress ((T), on the other hand, is a measure for the internal 

forces in the loaded bone resulting from the deformation (Currey 2002) and is 

defined as force per unit area (F/A). Depending on how the load is applied, 

stresses and strains can be classified as compressive, tensile or shear (Fig. 1.2). 

Compression occurs when the hone becomes shorter, tension when it becomes 

longer and shear when one region of the hone moves parallel to an adjacent 

region. 

fý-"----ý-- 

ý` 

4 

abcd 
Fig. 1.2. Illustration cif the three types of stress and strain: a) undefornucd (1bject, h) compression, 
c) tension, d) shear. By convention, strains which describe a stretching oI' an object in tension and 
shear are positive, whereas strains which describe compression and thus a shortening of the object 
are negative. 

The relationship between stress and strain is described by the stress-strain 
curve (Fig. 1.3). When the stresses and strains are within the so-called elastic 
deformation region, there is a linear relationship between the two and the hone 

will return to its original condition after releasing the load. However, when the 
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amount of stress (or strain) increases beyond a certain point, the yield point, 
damage will be caused to the bone tissue. This second part of the curve above the 

yield point is the so-called plastic deformation region. If the stress increases 

further, the point of ultimate strength is eventually reached, which is the amount 

of stress or strain that the bone can maximally sustain before it breaks. 

ultimate strength 

yield strength 

Cl) 
Cl) 
N 

Cl) 

Strain 

Fig. 1.3. The relationship between stress and strain in a loaded bone. If the amount of stress is 
within the elastic deformation region, the bone will return to its original condition after the load is 
released. If the stress rises beyond the yield point and thus enters the plastic deformation region, it 
causes damage to the bone tissue. The ultimate strength is the stress, which the bone tissue can 
maximally sustain (redrawn after van Eijden 2000: 124, Fig. 2). 

The strength of a bone and thus its ability to resist loads without damage 

depends on the mechanical properties of the bone tissue and different aspects of 
its morphology: for example, its size, shape, microstructure, density or cortical 
thickness. FEA provides a tool to evaluate how well a bone resists certain 
functional loads and which aspects of morphology have an effect on load 

resistance, even when experiments are not possible because of ethical or practical 
reasons, as in humans or fossil taxa. Therefore, it could be a very useful tool to 

study the role of mechanical adaptations in the evolution of anatomically modern 
human and Neanderthal craniofacial morphology. However, to date, only few 
FEA studies have been applied to this area (Ichim et al. 2006a, 2006b, 2007a). 

This study uses FEA to investigate the mechanical significance of modern 
human and Neanderthal mandibular morphology. It aims to 1) quantify the 
differences in masticatory load resistance between Homo heidelbergensis, 
Neanderthals and modem humans, 2) examine whether some of the 
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Chapter 1: Introduction 

morphological features in modern human and Neanderthal mandibles might 

represent mechanical adaptations and 3) assess the potential and limitations of 

FEA for the study of human craniofacial evolution and development. 

It focuses on the mandible instead of the whole skull for a number of 

reasons: finite element (FE) modelling of whole skulls raises some 

methodological issues, for example, difficult and time-consuming virtual 

reconstruction because of the complex shape of the cranium and its often 

fragmentary preservation in fossils, problems in the creation of FE models 

because of cranial sutures, which can have different mechanical effects depending 

on their morphology (Rayfield 2005), and difficulties in the interpretation of 

results because of the diverse non-masticatory functions of the cranium, such as 

the protection of the brain and sensory organs. By concentrating on the mandible, 

this study analyses a relatively simple structure. The human mandible is a single 

bone in the adult and its main functional loadings arise through its role in 

mastication. Thus, mechanical adaptations to masticatory loads are likely to be 

more evident in mandibular than in other aspects of craniofacial morphology. In 

addition, there are numerous examples of very well preserved mandibles in the 

fossil record and recent comparative studies of modem human and Neanderthal 

craniofacial morphology have focused on the mandible so that this study can build 

on abundant data (Rosas & Bastir 2004, Nicholson & Harvati 2006, Rosas et al. 

2006, Bastir et al. 2007). 

However, before masticatory loads can be simulated in Neanderthal and 

modern human mandibles, the validity of the modelling approach as well as the 

effect of altering basic model attributes and input parameters need to be assessed. 

Therefore, a number of additional analyses have been conducted (Chapters 4-6). 

Chapter 4 presents a comparison of numerically predicted strains in FE models of 

a human mandible with the strain measurements from an in vitro experiment using 

the same specimen. It also discusses the importance of model resolution for the 

accuracy of the FEA results and how to best model internal bone morphology. In 

Chapter 5a sensitivity study is described, in which the effects of altering different 

model attributes and loading conditions are quantified and evaluated. Based on the 

results of this sensitivity study and their comparison with in vivo strain data from 

animal experiments, it discusses which combination of input variables provides 
the most realistic FE modelling of the human mandible under masticatory loads. 
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Then, it is tested whether the chosen modelling approach is realistic enough to 

allow the prediction of the internal morphology of the mandible based on strain 
distributions in models with modified morphology (Chapter 6). 

In the subsequent studies, masticatory loads are applied to different FE 

models in order to investigate the mechanical significance of some characteristic 

features of modem human and Neanderthal mandibles. Chapter 7 examines the 

relationship between the presence of a retromolar space, the shape of the anterior 

mandibular ramus and the internal morphology of the ramus. Chapter 8 describes 

how the orientation of the temporalis muscle affects different aspects of superior 

ramus morphology. In Chapter 9, different mechanical hypotheses regarding the 

evolution of the unique morphology of the human mandibular symphysis are 

tested. Finally, Chapter 10 compares the load resistance of H. heidelbergensis, 

Neanderthal and modern human mandibles and discusses in which way the 

observed differences might reflect adaptations to masticatory loads. 

In the now following Chapter 2 the literature relevant to this study of the 

mechanical significance of mandibular morphology in Neanderthals and modern 

humans is reviewed. It begins with a brief summary of what we know about 

mechanical adaptation in bone in general. This overview is followed by a 

description of human mandibular growth with special reference to potential 
functional adaptations occurring during development. Different theoretical and 

numerical models of human mandibular biomechanics are then summarised and 

their advantages and disadvantages are discussed. Finally, major aspects of 

modern human and Neanderthal mandibular morphology are described and 
functional hypotheses that try to explain the evolution and development of these 

morphologies are introduced. 
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Chapter 2: Literature review 

2.1. The mechanical adaptation of bone 

The form of a bone is closely related to its function. Since one of the 

skeleton's main functions is to act as a load-bearing structure, bones need to be 

strong enough to resist the loads they are commonly exposed to without major 

tissue damage, but they also have to be light enough to not impair the mobility of 

an animal. In principal, this can be achieved either by evolutionary or by 

physiological adaptations. The former result from natural selection and thus 

genetic modifications (Darwin 1859), the latter imply resorption and deposition of 

bone tissue during the lifetime of an individual regulated by mechanical stimuli 

(Wolff 1892) and are thus epigenetic processes. The basic mechanisms of 

evolutionary adaptation are commonly well known, the mechanical adaptation of 

bone as a physiological process, however, much less so. This brief review will 

therefore focus on the latter. 

Three terms are especially relevant for the discussion of the physiological 

adaptation of bone to mechanical stimuli and should be defined at the beginning: 

growth, modelling and remodelling. Frost (1983) defined "growth" strictly as an 

increase in size, "modelling" as the shaping of a bone during growth and 
"remodelling" as the turnover of the bone tissue during the lifetime of an 

individual (see glossary for more details). Here, the process of bone modelling 

and how this is related to mechanical stimuli is of special interest, but it should be 

noted that also bone remodelling is known to be influenced by mechanical stimuli 
(Lanyon et al. 1982, Currey 1984). 

The concept of bone functional adaptation dates back to the late nineteenth 

century. At that time, an engineer (Culmann 1864-1966) discovered similarities 
between the orientation of trabeculae in the proximal femur and the lines of 

principal stress drawn for a crane. Julius Wolff used this apparent link between 

trabecular architecture and lines of stress to develop a more general concept, 
known as Wolffs law (Wolff 1892). In brief, it states that every change in the 
form and function of a bone is followed by certain changes in its internal 

architecture and secondary alterations in its external conformation in accordance 
with mathematical laws (Roesler 1981,1987, Huiskes 2000). This suggests that 

18 



Chapter 2: Literature review 

bone is internally and externally structured to optimally resist mechanical stresses 

and thus the forces applied to it. 

There is a lot of empirical evidence that mechanical adaptation of the 

skeleton occurs as a physiological process, but it is so abundant and widespread 

that the short summary given here can only be selective in nature. In general, it 

has been shown that the process of bone deposition is associated with higher loads 

(Jones et al. 1977, Goodship et al. 1979, Lanyon et al. 1982, Rubin & Lanyon 

1987), whereas bone resorption is associated with lower loads (Moss & Meehan 

1970, Jaworski et al. 1980). 

For example, longitudinal studies of animals (Umemura et al. 1997) and 
humans (Bennell et al. 1997), who started an exercise regime, show that bone 

mass increases over time. Animal experiments, in which one of two load-bearing 

bones is surgically removed, show that the cortex of the remaining bone thickens 

(Jaworski et al. 1980, Lanyon et al. 1982). On the other hand, prolonged space 

flight and bed rest are known to reduce bone mass (Morey & Baylink 1978, 

Wronski et al. 1987). When bones that normally bear loads are immobilised in 

animal experiments, their mass, cortical thickness, and strength decreases 

(Uhthoff & Jaworski 1978, Jaworski et al. 1980). 

Due to this abundant evidence, it is widely accepted that bone is able to 

adapt to its mechanical environment. The underlying mechanisms and principles 

are, however, far less clear. Wolff (1892) suggested that the functional adaptation 

of bone follows mathematical rules, but did not say what these rules might be. 

Ever since, it has been a major challenge of biomechanical research to find these 

mathematical laws. 

The basis of each algorithm is the mechanical stimulus or parameter that is 

regarded as relevant for inducing either bone resorption or deposition. Several 

stimuli have already been suggested by different authors: for example, stress or 

strain magnitude (Roux 1881, Wolff 1892, Hart et al. 1984, Cowin 1984, Huiskes 
& Nunamaker 1984, Ruimerman et al. 2005, Tsubota & Adachi 2005), 

compression versus tension (Jansen 1920, Triepel 1922, Bassett 1965, Oxnard et 
al. 1994, Hirschberg 2005), strain energy density (Fyhrie & Carter 1986, Huiskes 

et al. 1987, Harrigan & Hamilton 1992, Weinans et al. 1992), strain gradient with 
depth (Currey 1968, Frost 1973) or strain rate (Cowin 1984, Lanyon & Rubin 
1984). 
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The simplest algorithms simply use stress or strain magnitudes or the 

magnitude of strain energy density. Strain energy density (SED) can be defined as 

the amount of work that could be done by a strained piece of material if it was 

allowed to relax to the unstrained state. Thus, it includes different kinds of strain 

(Currey 2002). In general, these theories that regard stress or strain magnitudes as 

the crucial stimuli assume that bone is deposited where strain magnitudes are 

large, and decreases, where magnitudes are low. 

Probably the most influential theory that is based on strain magnitudes is 

Frost's "mechanostat" concept (Frost 1987,2003). According to Frost (1987, 

2003), only strains beyond about 1000-1500 Ve result in bone mass increase. This 

threshold is called the minimum effective strain. Very low strains below 50- 

100 pc cause bone resorption instead. Between these limits is a zone, where bone 

mass neither increases nor decreases since bone resorption and formation are in 

equilibrium. Strains above 3000 pc result in damage of the bone tissue which is 

followed by increased bone apposition to repair this damage (Fig. 2.1). 
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Fig. 2.1. Bone deposition and resorption as a function of strain magnitude based on Frost's (1987) 
mechanostat theory. The strain range is divided into four zones that differ in the relation between 
bone formation and resorption. See text for details. 

Instead of considering only strain magnitude, some authors have suggested 
that strain polarity plays a role, which means that bone is deposited in areas under 
compression and resorbed in areas under tension (Jansen 1920, Triepel 1922, 
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Bassett 1965, Oxnard et al. 1994, Hirschberg 2005). A common example that 

illustrates the plausibility of this suggestion is a fractured long bone that has 

healed at an angle, but then straightens itself over time. Assuming that this long 

bone is under overall compression during locomotion, the curved hone 

experiences compression at its concave side, but tension at its convex side. If 

compression causes hone deposition and tension resorption, the bone will indeed 

straighten itself. However, although this simple rule works well for the periosteal 

surface, it would lead to an asymmetric cross-section of the bone (Fig. 2.2). As a 

solution, it has been suggested that bone surfaces which increase their concavity 

during loading undergo deposition, whereas bone surfaces which increase their 

convexity undergo resorption (Frost 1964). A simpler concept, but based on the 

sane principle, uses strain gradients instead of the degree of curvature (Currey 

1968). According to this, a positive gradient (i. e. stresses and strains become more 

tensile closer to the surface) leads to resorption, whereas a negative gradient (i. e. 

increasing compression towards the surface) leads to deposition. Experimental 

data suggest that there is indeed a high correlation between strain gradients and 

patterns of hone formation (Gross et al. 1997). 

.4 pop. 

Fig. 2.2. Modelling of a curved long home when home is deposited in areas under compression and 
resorhed in areas under tension. Left image: strains in the home loaded under compression. Positive 

signs indicate tension, negative signs compression. The strains are progressively less positive from 
the convex side to the concave inc. Right image: The arrows show the direction of home 

modelling, which is more pronounced on the periostcal surfaces than on the cndostcal , urfaces. 
This results in an asymmetric thickness of the cortical walls (redrawn after Currey 2002: 350, Fig. 
11.4). 

However, experimental studies have shown that time-dependent factors 

also play a role: for example, dynamic loads or in other words changing strains 
instead of static ones are necessary to affect bone mass (Hert et al. 1971, Lanyon 

& Rubin 1984, Rubin & Lanyon 1987) and that bone formation increases with 
higher strain rates (O'Connor et at. 1982, Skerry & Lanyon 1995). Strain rate is 
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the change of strain divided by the time in which the change occurred. 
Interestingly, a high strain rate even causes bone formation when magnitudes are 

relatively low (Rubin et al. 2001). 

In addition, there is evidence for a site specifity of strain sensing and 

responsiveness of bone cells (Skerry 2000). For example, the strains in the skull 
do not exceed one tenth of those in the long bones even under extreme conditions 
(Lieberman 1996, Lieberman & Crompton 1998). If the thresholds for bone 

resorption and deposition were universal, the very low strains in the cranium 

would lead to dramatic bone loss, which is not the case. A strain-based algorithm, 

which tries to predict mechanical adaptations in bone will have to take this site 

specifity into account (Currey 2002). 

This brief review shows that the mechanical adaptation of bone does not 
follow one simple rule. Since each of the mentioned stimuli can explain some 

aspects of the experimental data, there is probably more than one control system 

used for regulating mechanical adaptations in bone (Carter et al. 1987). In 

addition, it has to be considered that parameters like strain magnitudes or strain 

gradients are not the stimuli to which the bone cells react directly or, in other 

words, the proximate stimuli. Those proximate stimuli are rather deformations of 

the cell membrane or electrical effects caused by the flow of extracellular fluid, 

which are induced by strains, but the mechanisms involved are not well 

understood (Currey 2002). 

Another often cited stimulus relevant in this context is microdamage 

(Martin & Burr 1982, Carter 1984, Burr et al. 1985, Prendergast & Taylor 1994). 

Bone formation and resorption are then thought to be part of a repair mechanism 
targeted to maintain bone strength by resorbing damaged bone and replacing it 

with new bone (McNamara & Prendergast 2007). Indeed, there is experimental 

evidence that resorption cavities occur preferentially in regions of microdamage in 

cortical bone (Burr et al. 1985, Mori & Burr 1993). Thus, microdamage might 
also be an important proximate stimulus. 

Finally, it should be noted that bone modelling as well as remodelling are 
known to be influenced by a number of non-mechanical factors like nutrition, 
metabolic rate, hormones or blood supply (Herring 1993). These either have a 
direct effect on bone formation and re-/modelling or an indirect effect by altering 
the mechanical adaptation of bone. Testosterone, for example, can directly 
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activate bone and cartilage-forming cells, thus leading to longer, thicker and 
denser bones, but also stimulates muscle development, so that the muscle forces 

acting on the bones increase (Bouvier 1989, Buchanan & Preece 1992, Compston 

2001). 

Although the mechanism are not yet well understood in detail, there is 

common agreement that the mechanical environment has an important influence 

on bone modelling and remodelling. As described above, it seems that especially 

strain magnitudes and rates are relevant as ultimate stimuli in this context. In 

addition, strain is relevant for predicting failure of bone (Fig. 1.3) and thus is 

useful for evaluating mechanical adaptations through natural selection. Again, not 

only the magnitude is important, but also the repetition of the loading, since 

repeated loading can lead to fatigue fracture. The effect of such time-dependent 

factors like strain rate is difficult to study with finite element analysis (FEA), but 

strain magnitudes and their distribution can be evaluated. Most of the analyses in 

this study will therefore use either absolute or relative strain magnitudes to study 

mechanical adaptations, even though strain magnitude is certainly not the only 

relevant parameter. 
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2.2. Mandibular growth and the role of mechanical stimuli 

2.2.1. The "functional matrix" concept of Moss 

The studies cited above provide evidence that bone is principally able to 

respond to its mechanical environment by modelling or remodelling. Since the 

gross form changes of a bone occur during development, it is especially 
interesting to study the role of mechanical stimuli during ontogeny. With regard to 

craniofacial growth, it is widely assumed that mechanical factors play a major role 
in regulating skeletal growth and development. The theoretical basis for this is 

provided by the "functional matrix" concept of Moss (Moss 1962, Moss & 

Rankow 1968, Moss 1969, Moss & Salentijn 1969), which will be briefly 

described here. 

According to Moss (1962,1969), the skull consists of several functional 

cranial components, which carry out specific functions. Each of these components 
is composed of two parts: One is the functional matrix, which actually carries out 

the function (e. g. a muscle). The other is the skeletal unit, which protects and/or 

supports its functional matrix. This skeletal unit is not necessarily equivalent to a 

single bone. It can consist of several single bones (macroskeletal unit), parts of 
bones (microskeletal unit), cartilage or tendinous tissues. The key idea is that the 

growth of these skeletal units is determined by their associated functional 

matrices. As Moss and Salentijn (1969: 566) state, "all growth changes in the size, 

shape, and spatial position and, indeed, the very maintenance in being, of all 

skeletal units are always secondary to temporally primary changes in their specific 
functional matrices". 

There are two different ways in which a functional matrix is believed to 

act upon a skeletal unit. So-called periosteal matrices act upon skeletal units in a 
direct way, altering the form of the skeletal unit by bone resorption and 
deposition. These can be soft tissues like muscles and blood vessels, but also 
teeth. Capsular matrices on the other hand, are volumes that are enclosed and 
protected by capsules, for example, the brain in the neurocranium. They act upon 
functional cranial components as a whole by changing the volumes of the 
capsules, in which the functional matrices are embedded. This results in passive 
translation of the cranial components. According to Moss' theory, growth results 
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from a combination of both types of matrices. In other words, growth consists of 

two processes, translation and changes in form (size and shape). 
Figure 2.3 shows how the human mandible can be divided into several 

functionally and developmentally relevant subunits following Moss' theory (1962, 

1969). The growth pattern of each of these subunits is influenced by its respective 

functional matrix. Major units are the coronoid process, to which the temporalis is 

attached, the angular unit, to which the masseter and medial pterygoid muscles are 

attached, the alveolar unit, which provides support for the teeth and the condylar 

process, which is influenced by the action of the lateral pterygoid (Moss & 

Salentijn 1969, Sperber 2001). 

4\/ 7- Condylar process Coronoid process 

Alveolar process 

Angular process 

Corpus 

Chin unit 

Fig. 2.3. Schema of skeletal units of the mandible (Sperber 2001: 129, Fig. 12-2). 

Following Moss' ideas, bone growth is not genetically determined, but 

regulated by the interaction with functional matrices. In the case of periosteal 

matrices, the bone changes its size and shape as an adaptation to the mechanical 

environment, for example, to an increased load produced by a growing muscle. 
Some authors have criticised Moss' theory, because it relies entirely on such non- 

genetic interactions (e. g. Ranly. 1988). However, with regard to postnatal 

mandibular growth, it will be shown below that there is strong evidence for the 
important role of mechanical influences. The role of mechanical stimuli during 

prenatal development is much less certain, but some authors have suggested an 
impact of the mechanical environment also during this part of mandibular 
development. 
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2.2.2. Prenatal development 

During prenatal development, the mandible is one of the first bones that 

begins to ossify (Sperber 2001). In the 6`h week post conception (p. c. ) one 

ossification centre for each half of the mandible arises lateral to Meckel's 

cartilage in the first pharyngeal arch (Fig. 2.4). Upwards ossification forms a 

trough and later crypts for the developing teeth, whereas the spread of ossification 

dorsally and ventrally forms the body and ramus of the mandible (Lee et al. 2001). 

Meckel's cartilage becomes surrounded and invaded by bone, and since it cannot 

ossify, disappears by the 24`h week p. c.. Between the 10h and 14th weeks p. c., 

secondary accessory cartilages appear to form the head of the condyle, part of the 

coronoid process and the chin region. The secondary cartilage of the coronoid 

process develops within the temporalis muscle and ossifies before birth. The 

condylar cartilage is replaced by bone by the middle of the fetal development, but 

its upper part persists into adulthood, acting as both growth and articular cartilage 

(Sperber 2001). The cartilage at the symphysis menti ossifies at about the 7`h 

month p. c. in the form of variable mental ossicles. These ossicles unite with the 

adjacent bone, when the symphysis fuses during the first postnatal year (Gray et 

al. 2005). 

Condylar cartilage 

Coronoid cartilage 

Mandibular nerve 
Lingual nerve 

Meckel's cartilage 

Angular cartilage 

Mental ossicle Inferior alveolar nerve 

'" 
~+ 

Mandibular ossification centre 
Incisive nerve Mental nerve 

Fig. 2.4. Schema of the origins of the mandible. The centre of ossification is lateral to Meckel's 
cartilage at the bifurcation of the inferior alveolar nerve (Sperber 2001: 128, Fig. 12-1). 

Although several detailed descriptions of prenatal mandibular growth 

exist, which are mainly based on histological sections and more recently on 

computed tomography (CT) scans of fetal material (Blechschmidt 1973, Burdi & 

Spyropoulos '1978, Goret-Nicaise 1981, Goret-Nicaise & Dhem 1984, Radlanski 
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et al. 1999, Lee et al. 2001, Radlanski & Klarkowski 2001, Radlanski et al. 2003, 

Möller 2005), little is known about the role of mechanical adaptation during this 

growth period. It has been suggested that bone is formed when expanding 

cartilaginous cores slide against surrounding tissue, thus exerting a shearing force 

(Blechschmidt & Freeman 2004). According to these authors, this process occurs 

during the formation of mandibular bone next to Meckel's cartilage (Fig. 2.4). 

Another assumption of mechanical adaptation is related to the fact that initial 

woven bone formed along Meckel's cartilage is soon replaced by lamellar bone 

and typical Haversian systems are already present at the 5`h month p. c.. This bone 

remodelling occurs earlier than in other bones and has been interpreted as a 

response to early intense sucking and swallowing, which stress the mandible 

(Goret-Nicaise & Dhem 1984). Moss and Salentijn (1969) note that the coronoid 

process arises in the earlier formed anlage of the temporalis muscle, whose 

contractile abilities are already well developed in prenatal stages and which 

therefore acts as a functional matrix for the developing coronoid. 

2.2.3. Postnatal development 

Compared to the available data on prenatal mandibular growth, the 

postnatal development of the human mandible has been studied much more 
intensively. This is partly due to its great relevance for orthodontics. Many studies 

used metallic implants as reference marks in longitudinal radiographic studies 
(Björk & Skieller 1983, Iseri & Solow 2000). Recently, postnatal growth changes 
have also been visualised by virtual 3D reconstructions based on CT scans 
(Krarup et al. 2005). The key references for the postnatal growth of the mandible 

are the works of Enlow and colleagues (Enlow & Harris 1964, Enlow et al. 1982, 

Enlow 1992, Enlow & Hans 1996), which are strongly influenced by Moss' 

concept of functional matrices. 

Of all the facial bones, the mandible undergoes the most growth 
postnatally (Sperber 2001). It does not enlarge by simple symmetrical expansion, 
but grows predominantly in a posterior and superior direction (Fig. 2.5). During 
this upward and backward modelling, the whole mandible is moved forward and 
downward (Enlow & Hans 1996). The major sites of postnatal growth are at the 
condylar cartilages, the posterior borders of the rami, and alveolar ridges (Sperber 
2001). Bone deposition in these areas is mainly responsible for the increases in 
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height, length, and width of the mandible. At the same time bone resorption 

occurs in order to maintain the shape. The increase in length of the mandible is, 

for example, achieved by the deposition of bone on the posterior surface of the 

ramus with compensatory resorption on its anterior surface (Hans et al. 1995). 

Increase in width of the mandible is accomplished by deposition of bone on the 

outer surface and resorption on the inner surface (Enlow & Hans 1996). In 

addition, regional remodelling occurs, which involves selective resorption and 

displacement of individual mandibular elements (Enlow & Harris 1964). 

Fig. 2.5. Summary of mandibular growth. Surfaces that are depository are represented by light 
arrows, resorptive surfaces are shown by black arrows (Enlow 1992: 51, Fig. 4-4). 

The significance of mechanical stimuli for postnatal mandibular growth is 

well supported by clinical studies as well as animal experiments. Healthy and thus 

functionally intact teeth are necessary for the development and maintenance of the 

alveolar process: The alveolar bone does not form in individuals with anodontia, 

the absence of dentition (Gorlin & Pindborg 1964). In cases of oligontia (partial 

anodontia) as in Ellis van Creveld syndrome, the alveolar bone does not develop 

in areas where teeth are missing (Biggerstaff & Mazaheri 1968). These clinical 
data show that alveolar bone forms and resorbs in response to the presence or 

absence of teeth and, therefore, support the idea that teeth act as a functional 

matrix for the alveolar process. 

Similarly, there is abundant evidence for the necessity of intact 

masticatory muscles for the development of several mandibular units. Myotonic 

dystrophy patients, for example, who have lower activity of their masseter 
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muscles, are characterised by a large angle between the mandibular corpus and 

ramus as well as by abnormal bone changes (Kiliaridis et al. 1989, Ödman & 

Kiliaridis 1996, Zanoteli et al. 2002). Increased activity of the masticatory 

muscles is, on the other hand, associated with an anterior growth rotation of the 

mandible and well-developed angular, coronoid and condylar processes (Moller 

1966, Kiliaridis 1995). In animal experiments, bilateral resection of the jaw- 

closing muscles causes shortening of the ramal height and elongation of the 

molars (Fukazawa & Sakamoto 1982). Detachment of the temporalis muscle in 

rats (Washburn 1947, Moss & Meehan 1970) and cats (Avis 1959) leads to 

resorption of the coronoid process and marked alterations in its shape. Resection 

of the masseter muscle results in disappearance of the masseteric ridge, where the 

masseter attaches at the mandibular angle (Pratt 1943) as well as in an altered 

shape of the mandibular ramus (Yonemitsu et al. 2007). Removal of the medial 

pterygoid muscle is similarly followed by resorption of the angular process of the 

mandible (Moore 1973). Finally, removal of the superficial masseter or the medial 

pterygoid results in a greatly reduced angular process, but removal of both 

muscles leads to the complete absence of the angular process (Avis 1961). 

Surgical removal of muscles in animal experiments is, however, 

problematic, because it disrupts the blood supply and causes scarring, which 

might confound the effects of the altered stresses (Hirschberg 2005), but studies, 

in which motor neurons or motor nerves were lesioned instead of the muscles 

yielded similar results. Lesion of the masseteric nerve in rats, for example, stunted 

bone formation of the angular region and caused elongation of the molars 

(Kikuchi et al. 1978). 

Although there are a lot of empirical data showing that the mechanical 

environment plays a major role during the development of the mandible, the 

underlying mechanisms are poorly understood. On the one hand, this is due to the 

fact that bone modelling does not seem to follow any simple rule. There is, for 

example, no simple relationship between the location of muscle insertion areas 

and the general pattern of growth and modelling fields (Fig. 2.6). On the other 
hand, detailed data on the variation of timing and location of bone modelling 
fields are missing. These data would be necessary to directly compare 
developmental changes like the eruption or loss of teeth or the growth of the 

masticatory muscles with responses of the bone tissue. 
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Fig. 2.6. Comparison of muscle insertion areas and surface modelling fields on the buccal (felt 

column) and lingual (right column) sides of the human mandible. Top figures: muscle attachment. ". 
Bottom images: generalised pattern of resorptive (dark) and depository (light) fields Willow ct al. 
1982: 235, Fig. 7- I ). 

2.3. Mechanical models of the human mandible 

The human mandible is subjected to a variety of forces during mastication, 

produced by the masticatory muscles as well as reaction forces at the 

temporomandibular joints (TMJs) and the teeth. In order to study the nature of 

these forces as well as the resulting pattern of stresses and strains in mandibular 

bone, several biomechanical models have been used. These models can he divided 

into two major types: I) rigid-body models that treat the masticatory apparatus as 

a lever system consisting of rigid components and 2) deformation models that are 

concerned with how the mandible deforms under masticatory loads. Finite 

element models are an example of the second type. 

2.3.1. Rigid-body models 
lt is commonly thought that the human mandible, like the mammalian 

mandible in general, functions as a lever during biting, with the condyles as its 

fulcra (Fig. 2.7). In the past, some authors challenged this theory (Robinson 1946, 

Gingerich 1971, Tattersall 1973). They argued that the resultant of the muscle 
forces always passes through the bite point and not through the TMJ and that the 

condylar neck as well as the tissues of the TMJ are not able to withstand reaction 
forces during biting. Subsequent anatomical studies, however, demonstrated that 
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the tissues of the TMJ are indeed capable of dissipating considerable joint reaction 

forces (Hylander 1975). In addition, electromyographic (EMG) data suggest that 

the resultant muscle force does not always pass through the bite point (Hylander 

1975,1978, Smith 1978), for example, during powerful unilateral molar biting the 

resultant adductor muscle force passes between the bite point and the balancing 

condyle, which is the condyle on the side contralateral to the bite point (Hylander 

1975). The lever model, which implies that the TMJ is a load-bearing joint, is 

therefore well supported by experimental data. It is the basis of many principles 

commonly used in clinical and non-clinical functional morphology. 

Fj 

Fb 

F m 

j 
y-y -X---H 

Fig. 2.7. The human mandible functioning as a lever during kiting on the first molar. Only the 
vertical components of the muscle and reaction forces are shown. In order toi maintain a static 
equilibrium, the resultant muscle force (F) is divided into reaction force at the bite point (I i, ) and 
reaction force at the two condylcs (F) (Hylander 1992: 84, fig. 5-20). 

The standard lever model is largely based on Smith (197x). In this model, 

masticatory force components are represented simply by vertical vectors that are 

analysed in sagittal as well as frontal projections (Fig. 2.7). Thus, it allows 

estimation of the magnitude of the bite force, combined joint reaction force, and 

muscle resultant force on the basis of their spatial relationships. Although this 

simple model has been used in several studies (Hylander 1975,1992), it does not 

adequately predict some results of experimental studies. A major problem of this 

simplistic approach is that it does not imply any restrictions on muscle activity. It 

assumes that the activity of the masticatory muscles varies little during biting on 
different teeth, but EMG data suggest that this is not the case (Spencer 1999). 

As an alternative to this standard lever model, which Spencer (1998) 

termed the "unconstrained lever model", Greaves (1978) suggested a "constrained 
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lever model". In this model, masticatory muscle activity is restricted by the need 

to maintain compressive forces at both TMJs. Briefly, the model predicts that 

balancing side muscle activity depends on the position of the bite point. This is 

based on the concept of the "triangle of support" (Greaves 1978), which is formed 

by the bite point and the two condyles (Fig. 2.8). In order to keep both condyles 

under compression, the muscle resultant force has to pass through the triangle of 

support. When the bite point moves posteriorly, this is achieved by decreasing 

muscle activity on the balancing side. Thus, the muscle resultant force is shifted 

towards the working side and distraction of the working side TMJ is avoided. An 

EMG study by Spencer (1998) showed that the relative balancing and working 

side muscle activities change by bite point as predicted by Greaves' model. 

However, the results also indicate that other factors, for example, dental 

morphology and mandibular kinematics, have to be taken into account. Greaves' 

model is not sufficient to explain all findings. 

. l� . 1l,. . /13 . 111 . l� . 11, 

Fig. 2.8. Occlusal view of the human mandible showing the triangle of' support (shaded area), as 
defined by Greaves (1978), during incisor (a), premolar (h) and molar kiting (c). During molar 
biting, the muscle resultant force (M) has to move towards the working Side through it reduction in 
balancing side muscle activity. R- bite force, 

. 
I� - balancing side reaction force, working side 

joint reaction force (Spencer 199: 30, Fig. 3). 

Most of the early studies that modelled the mandible as a rigid body were 

limited to the sagittal plane (Robinson 1946, Gingerich 1971, Pruim et al. 1980, 

Throckmorton 1985). Only few studies projected the force-, and reaction forces 

onto both the frontal and sagittal plane (Hylander 1978, Smith 1978, Anton 1990, 

1994). These two projections are, however, still crude representations of' the 

complex masticatory system. 

The most appropriate approach to study mandibular hiomechanics is a 3D 

model of the magnitude and direction of all muscle and reaction forces. Thanks to 

advances in computer technology, the first 3D mathematical models were 
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introduced in the mid-eighties (Baragar & Osborn 1984, Osborn & Baragar 1985, 

Smith et al. 1986). In the following years, such models were used to study various 

aspects of muscle, reaction and bite forces in the human masticatory system 

(Koolstra et al. 1988, Koolstra & van Eijden 1992, Osborn 1995,1996). Whereas 

these early 3D models were only able to simulate static bites, the development of 

dynamic mathematical models, using multibody dynamic analysis (MDA), 

nowadays allows the study of the contribution of each masticatory muscle to jaw 

movements and how the muscles interact with the joints to move the jaw 

(Koolstra & van Eijden 1995,1996,1997,2001, Sellers & Crompton 2004, Curtis 

et al. 2008). 

2.3.2. Deformation models 

All the modelling approaches that have been cited here so far treat the 

mandible as a rigid body and focus on the study of forces acting on the mandible. 

In order to analyse the dissipation of these forces in the mandibular bone, a 

deformable model is needed. 
Often theoretical models that are used to understand the deformation of the 

mandible under masticatory loads treat the mandible simply as a curved beam 

(Hylander 1984,1985, Weijs 1989) or a bent long bone (Ashman & van Buskirk 

1987), as illustrated in Fig. 2.9. Although the simplicity of beam models is 

attractive and they have helped to explain some experimental findings (Hylander 

1984,1985), they are very limited, because they do not take into account the 

irregular mandibular shape. 

A more accurate representation of mandibular geometry can be achieved 

with FE models. FEA permits estimation of stresses and strains in a complex or 
irregular structure by dividing it into a number of small, geometrically simple 

elements. Forces and constraints (i. e. regions of immobility) can be applied to the 

model in order to simulate the loading that acts on the structure in vivo (Richmond 

et al. 2005, Rayfield 2007). 

Several studies have already applied FE modelling to the human mandible 
(Gupta et al. 1973, Knoell 1977, Haskell et al. 1986, Hart & Thongpreda 1988, 

Hart et al. 1992, Korioth et al. 1992, Tanne et al. 1993, Körioth & Hannam 1994a, 

1994b, Vollmer et al. 1999, Ichirr et al. 2006a, 2006b, 2007a, 2007b). One of the 
first mandibular FE models was developed by Gupta and colleagues (1973). The 
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model geometry was derived from measurements of a modem human mandible 

and provided only a crude representation of a mandibular segment, consisting of 

the canine and the postcanine dentition. Later, Knoell (1977) generated a model 

including the full mandibular dentition and the rami, but like Gupta and 

colleagues (1973), the shape of the model was only based on measurements and, 

therefore did not represent the shape of a mandible very well. 

Compression 
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Fig. 2.9. Stress in a curved beam resulting from lateral transverse bending (pulling the two ends of 
the beam apart as indicated by the two large arrows). The inner surface experiences tension and the 
outer surface compression. Stress is zero at the neutral axis and reaches greatest values at the inner 

and outer surfaces, while the stress magnitude increases towards the apex and is highest at the 
inner surface of the apex region (modified after van Eijden 2000: 131, Fig. 10). 

The use of CT to obtain a more accurate model was pioneered by Hart and 

Thongpreda (1988) and then further improved by higher resolution and more 

realistic material properties. A very sophisticated model was used by Korioth and 

colleagues (1992) as well as Korioth and Hannam (1994a, 1994b), who defined 

for example seven materials with different elastic properties, which included a 
distinction between enamel and dentin as well as different parts of the periodontal 
ligament around each tooth root. Nowadays, the use of CT data for building FE 

models is the standard, so that depending on the resolution of the scan, 

geometrically very accurate models can be created. 

In general, FE modelling is highly useful for the study of the biomechanics 

of the human mandible, since for practical and ethical reasons it is not possible to 
directly measure bone strain in the mandibles of living human subjects. The only 

alternatives to FE modelling are in vitro experiments with either fresh or dry 
human mandibles (Ralph 1975, Ralph & Caputo 1975, Mongini et al. 1979, 
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Daegling et al. 1992, Daegling & Hylander 1994, Throckmorton & Dechow 1994, 

Daegling & Hylander 1998, Meyer et al. 2002, DuChesne et al. 2003) or in vivo 

experiments with non-human primates (Hylander 1979a, 1979b, 1984,1985, Ross 

& Hylander 1996, Ross 2001). However, mandibular morphology varies 

tremendously between different primate taxa, so that the application of results to 

humans has to be done with caution. In vitro experiments, on the other hand, do 

not allow simulation of the actions of the various masticatory muscles due to 

practical limitations. 

The results of FE models of the human mandible are in general 

qualitatively similar to those of experimental studies. Experimental as well as 

modelling data indicate that the mandible of humans as well as non-human 

primates experiences three main types of deformation during static biting and 

mastication: sagittal bending, rotation (torsion) of the corpora around their long 

axes and lateral transverse bending (Fig. 2.10), which pulls the two rami apart 

(Hylander 1984,1985, van Eijden 2000). Chapter 8 will discuss an additional type 

of deformation that is relevant for the stresses at the symphysis: dorsoventral 

shear, which results from the action of the balancing side jaw adductors that 

elevate the balancing side whereas the bite force pushes the working side 
downward. Sagittal bending occurs as a result of the vertical components of 

muscle forces, the reaction forces at the condyles and the bite force at the teeth . 
On the balancing side, it leads to compression at the lower margin of the mandible 

and tension at the upper margin, while a reverse bending moment occurs on the 

working side. During incisal biting, sagittal bending on both side of the mandible 
is equal, but during unilateral biting, the deformations of the working and 
balancing sides differ. Korioth and colleagues (1992) demonstrated predominant 

sagittal bending of the balancing side corpus, but sagittal bending and torsion of 

the working side during unilateral molar biting. This torsion of the mandibular 

corpora about their long axes, which is caused by the position of the resultant 
force of the jaw adductors lateral to the long axis of each corpus, results in a 

narrowing of the dental arch (Korioth & Hannam 1994a). Lateral transverse 
bending is mainly produced by the laterally directed force components of the 

temporal and masseter muscles and causes compression at the buccal surface of 
the mandible and tension at the lingual surface with increasing magnitudes 

r 
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towards the symphysis, as illustrated in Fig. 2.9 (Korioth et al. 1992, van Eijden 

2000). 

Even though FE modelling has provided valuable insights into the stresses 

and strains in the mandible during biting and mastication, FE models have the 

disadvantage that they are static and, thus, do not take into account the dynamics 

of the masticatory system. A very promising approach is, therefore, the 

combination of FE and rigid-body modelling, which has recently been pioneered 

by Koolstra and van Eijden (2005,2006). They modelled the cranium and 

mandible as dynamic rigid bodies, whereas the TMJ contained two layers of' 

deformable articular cartilage and a freely movable, deformable cartilaginous 

articular disc in between. These deformable parts were modelled using FEA. The 

next challenge is to not only apply FE modelling to the TMJ within a dynamic 

model, but to model the whole mandible as a dynamic as well as deformable 

structure. 

Sagittal bending 

Fmw 

Fj 

Transverse bending Torsion 

Fig. 2.10. Loading of a mandible during a unilateral molar hits. Fº, is the bite force, I mº, and 1-111,, 
and I : jº, and h: j� are the muscle and joint forces at the balancing and working sides. The distortion 
of the corpus can he described as a combination of sagittal bending, torsion, and lateral transverse 
bending (van Eijden 20(H): 130, Hig. 9). 

All the FEA studies cited above have in common that they use more or less 

realistic models of human mandibles in order to study how the human mandible in 
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general deforms during masticatory function. This approach can be termed 

inductive and allows to develop general ideas about form-function relationships 
based on a particular case or to test how a specific structure resists to certain loads 

(Witzel & Preuschoft 2005, Rayfield 2007). 

However, FEA can also be used to synthesize structures applying general 

mechanical principals like Wolffs (1892) law, which is a rather deductive 

approach. Pioneering work in this area has been carried out by Witzel and 

colleagues (Witzei & Preuschoft 2005, Witzel 2006,2007). 

. In their approach, which they termed FESS (finite element structure 

synthesis), the starting point is a simple homogeneous block to which 

physiological loadings are applied. Simply by the iterative removal of areas with 

low compressive stress, they are able to generate crania that resemble the original 

specimens not only in external but also internal morphology, for example with 

regard to the position of foramina and sinuses. They argue that such a successful 

synthesis of the real morphology allows then to deduce in vivo loads, which is 

particularly interesting in the case of fossil taxa, for whom the precise in vivo 
loads are not known (Sverdlova & Witzel in press). However, this builds on the 

assumption that cranial morphology or the morphology of the whole skeleton is 

determined almost solely by its function has a load-bearing structure. Other 

relevant factors like developmental, phylogenetic or functional constraints are 

mostly ignored in their structure synthesis (Rayfield 2007). 

Alternatively, FEA can be used in a hypothetical-deductive way, by 

altering loads or morphology to test certain hypotheses. For example, the 

mechanical significance of certain morphological features can, be studied by the 

removal or addition of these features in an FE model (Ichim et al. 2006b, Strait et 

al. 2007). This hypothetical-deductive approach is the one, which is mainly 

applied here (e. g. Chapters 7 to 10). However, some analyses like the validation 

and sensitivity studies described in Chapters 4 and 5 use a rather inductive 

approach. 
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2.4. Neanderthal and anatomically modern human mandibular morphology 

and relevant functional hypotheses 

2.4.1. Overview 

Neanderthal and anatomically modern humans differ considerably in 

mandibular morphology. For example, Neanderthal mandibles typically have 

large anterior teeth relative to the size of their posterior teeth (Brace 1964a, 1979, 

Trinkaus 1983,1984, Wolpoff 1999), a gap between the third molar and the 

ramus, the so-called retromolar space (Coon 1962, de Lumley 1973, Stringer et al. 

1984, Condemi 1991, Franciscus & Trinkaus 1995, Arensburg & Belfer-Cohen 

1998, Rak 1998, Rosas 2001), and a posteriorly placed coronoid process with a 

large vertical height often exceeding that of the condylar process and resulting in 

an asymmetric sigmoid notch (Rak 1998, Rak et al. 2002). Like other archaic 

members of the genus Homo, they also show a receding symphysis, which lacks a 

well developed mentum osseum or chin (Fig. 2.11). 

The mandibles of anatomically modern humans, on the other hand, have a 

relatively vertically orientated symphysis with a clearly protruding mentum 

osseum. Normally, there is no gap between the third molar and the ramus and the 

superior ramus is characterised by a more anteriorly placed coronoid process and 

a deep, symmetric sigmoid notch (Rak 1998, Rak et al. 2002). In addition, the 

anterior teeth are relatively smaller, that means to the posterior teeth (Wolpoff 

1971, Brace et al. 1981, Bailey & Hublin 2005,2006). 

In the literature, some other features, that differ between Neanderthal and 

anatomically modern human mandibles have been discussed, for example, the 

position of the mental foramen relative to the dentition (Stringer et al. 1984, 

Condemi 1991, Arensburg & Belfer-Cohen 1998, Hublin et al. 1998, Coqueugniot 

2000, Rosas 2001, Coqueugniot & Minugh-Purvis 2003). However, this review 

will only focus on those aspects of morphology that have been linked to 

masticatory biomechanics. These are 1) the symphyseal morphology, 2) the 

retromolar space and 3) the superior ramus morphology. Their variation will be 

described briefly and the relevant functional hypotheses will be introduced. In 

addition, how differences in tooth size and dental wear patterns have led to more 

general hypotheses about mechanical adaptations in modern human and 
Neanderthal craniofacial morphology will be considered. 
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Fig. 2.11. Morphological differences between modern human (left) and Neanderthal (right) 

mandibles (redrawn after Klein 1999: 381, Fig. 6.8). 

2.4.2. Symphyseal morphology 
It is generally accepted that a well-developed chin is one of the unique 

characteristics of anatomically modern humans. Some archaic members of the 

genus Homo, especially some Neanderthal fossils, have been said to show 

incipient chins or some elements of the mentum osseum (McCown & Keith 1939, 

Ascenzi & Segre 1971, Wolpoff et al. 1981, Smith 1984, Lieberman 1995, Rosas 

1995, Lam et al. 1996, Stefan & Trinkaus 1998a, 1998b, Wolpoff 1999), but its 

consistent presence is found only in early and recent populations of Homo sapiens 

(Schwartz & Tattersall 2000, Dobson & Trinkaus 2002). 

However, different definitions of this feature have been used in previous 
descriptions of its variation in archaic and modem human samples. Sometimes, 

the human chin has been identified solely on the basis of the general 

protrusiveness of the symphyseal region (Smith 1984, Lieberman 1995, Lam et al. 
1996, Wolpoff 1999), but there are actually more morphological details that are 

relevant in the description of this feature. 

Following the definitions of Weidenreich (1936), three anatomical 

characteristics should be evaluated in order to judge the extent of chin 
development (Fig. 2.12): the incurvatio mandibulae, mentum osseum, and 
trigonum mentale. The incurvatio is the concavity between the alveolar process 

margin and the basilar portion of the external symphysis. The mentum osseum is 

the anterior projection of the basilar symphysis. A mentum osseum exists when 
the basilar portion forms an equally rounded swelling across the symphysis. By 
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contrast, a trigonum mentale occurs when the anterior projection of the basal 

symphysis exhibits a distinctly triangular shape when viewed from the front 

(Weidenreich 1936). These definitions have been the basis for several 

comparative studies of archaic and modem humans (Bräuer 1984, Lieberman 

1995, Rosas 1995, Rak 1998, Quam & Smith 1998, Dobson & Trinkaus 2002). A 

study by Schwartz and Tattersall (2000) based the identification of the human 

chin on the presence of an inverted "T-shaped" structure consisting of a 

symphyseal keel and a distended inferior mandibular margin. 
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Fig. 2.12. Features of the mandibular symphysis. A: mentum osseum (anterior view); B: trigonum 

mentale (anterior view); C: lateral symphyseal view with a trigonum mentale. Abbreviations: mo - 
mentum osseum, tim - trigonum mentale, tl - tuberculum laterale, im - incurvatio mandibulae, fm 

-fossa mentalis. (redrawn after Quam & Smith 1998: 412, Fig. 4). 

According to these authors (Schwartz & Tattersall 2000), who studied a 

large sample of modern human and Neanderthal specimens, none of the 

Neanderthals studied shows this inverted "T-shaped" structure, which is seen in 

modern H. sapiens. This is also the case for juvenile specimens: Although the "T- 

shaped" structure seems to be already present before birth in modern humans, it is 

missing in juvenile Neanderthal mandibles (Schwartz & Tattersall 2000). The 

uniqueness of modern human chin morphology is also supported by the 

observations of Dobson and Trinkaus (2002). However, their comparison with 

Mid-Pleistocene specimens indicates that there is a trend through time in which 

the mentum osseum is incomplete to absent in the Middle Pleistocene, but 

sometimes present in Neanderthals, even though lacking the clear development of 

a trigonum mentale. 

Several explanations for the evolution of the human chin have been put 
forward: Early suggestions included the idea that this feature is a result of the 

reduction of the dental arch while the length of the inferior corpus was maintained 
(Hrdli6ka 1911, Robinson 1913) or the result of a forward shift of the basal 
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portion of the mandible under the alveolar process during development (Bolk 

1924, Biggerstaff 1977). It has also been suggested that it is linked to the 

evolution of speech (Walkhoff 1904, Ichim et al. 2007a). Later proposals 

considered the role of masticatory loads: One hypothesis, the so-called 

"hypofunction" hypothesis stated that the chin evolved because of an overall 

reduction of the dentition and masticatory musculature in anatomically modern 

humans (Riesenfeld 1969). DuBrul and Sicher (1954) suggested that the chin 

serves to buttress the symphysis against medial transverse bending caused by the 

action of the lateral pterygoid muscles that squeeze the rami together and produce 

labial tension and lingual compression at the symphysis. White (1977) proposed, 

in contrast, that the chin provides resistance to lateral transverse bending 

(wishboning) causing labial compression. More recently, Daegling (Daegling 

1990,1993a) hypothesised that the human chin represents a structural response to 

resist vertical bending in the coronal plane resulting from torsion of the corpora 

around their long axes (Fig. 2.10). 

FEA allows investigation of whether or not the chin has an impact on 

mandibular load resistance. Therefore this method has recently been used to study 

the mechanical significance of the human chin (Ichim et al. 2006a, 2006b, 2007a). 

Interestingly, the results of these studies do not confirm that the presence of a chin 
is relevant for the resistance to masticatory loads. However, the methodology used 

in these studies can be further improved with regard to model geometry as well as 

applied loads and constraints. One aim of this study will therefore be to also apply 
FEA, but using improved methodology to test the mechanical significance of the 

human symphyseal morphology (Chapter 9). 

2.4.3. The retromolar space 

The retromolar space, a gap between the third mandibular molar and the 

anterior margin of the ascending ramus, is probably one of the most frequently 

cited Neanderthal characteristics (Coon 1962, Trinkaus 1983, Stringer et al. 1984, 

Rak 1986, Trinkaus 1987, Condemi 1991, Wolpoff 1999). Often it is considered 
to be a Neanderthal autapomorphy (Stringer et al. 1984, Condemi 1991), although 
it is also present in other Pleistocene Homo specimens and sometimes in living 

populations (Franciscus &, Trinkaus -1995, Arensburg & Belfer-Cohen 1998, 

Nicholson & Harvati 2006). Thus, it is not unique to the Neanderthals. However, 
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it occurs among them at a higher frequency than in most other Pleistocene Homo 

samples (Franciscus & Trinkaus 1995). 

By definition, a retromolar space can only be identified after the eruption 

of the third molar and, thus, only in adult mandibles. In the case of juvenile 

specimens, where just the deciduous or first two permanent molars are present, it 

is only possible to make predictions about later adult morphology. Nevertheless, 

the development of this trait has been discussed by several authors. For example, 
it has been proposed that the retromolar space develops at the end of the growth 

period (Tillier 1988). In contrast to this, Ponce de Leon and Zollikofer (2001) 

suggested an early rather than late ontogenetic origin of the retromolar space, 
based on their finding that the mandibular corpus and rami are at a more posterior 

position relative to the dentition in juvenile Neanderthals compared to modem 
humans. According to Bastir and colleagues (2007), such an early onset of the 

retromolar space is, however, unlikely, since facial growth in general terminates 

rather late in ontogeny. As these conflicting ideas show, it is necessary to conduct 
further studies on the ontogenetic development of the retromolar space. 

Several causes for the high frequency of retromolar spaces in Neanderthals 

have been suggested: an anterior shift of the dental arcade (Coon 1962, Howells 

1974, Wolpoff 1999), a posterior "retreat" of the zygomatic and anterior ramal 

regions relative to a fixed molar position (Trinkaus 1987), a shortening of the 

dental arcade either resulting from reduced molar size (Rak 1986), a forward shift 

of the third molars (Rak & Hylander 2007) or from a combination of anterior 

migration of the postcanine dentition and posterior migration of the anterior 
dentition (Spencer & Demes 1993). 

A study by Franciscus and Trinkaus (1995) demonstrated that the high 

frequency of retromolar spaces in Neanderthals might be best seen as a combined 

result of reduced dental arcade lengths and ramus breadths in the context of little 

or no reduction in overall mandibular length. A relationship between the 

retromolar space and mandibular dimensions is supported by the results of Rosas 
(2001), which show that retromolar space length correlates significantly with the 

maximum length and height of the corpus in the Simas de los Huesos sample. It is 

also confirmed by Nicholson and Harvati (2006), who found that retromolar gaps 
in modern humans are related to increased mandibular size. 
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In contrast, Rak and Hylander (2007) suggested that the retromolar space 

is related to larger jaw gape in Neanderthals. According them, the forward shift of 

the third molars produces a larger vertical distance between the upper and lower 

third molars than in a mandible with the same gape size, in which the third molars 

have not shifted anteriorly. However, the potential benefits of this larger gape 

remain unclear. 
The authors that suggested that the retromolar space is linked to 

mechanical adaptations (Spencer & Demes 1993, Rak & Hylander 2007) 

generally consider its relevance for bite force production, rather than the effect of 

the retromolar space on force dissipation in the mandible. However, the region 

between the third molar and the mandibular ramus is likely to be highly strained 

during masticatory function, since it lies between the attachment sites of the jaw 

closing muscles, which pull the mandible upwards, and the high reaction forces 

that occur at the molar dentition. So, it is interesting to see whether the presence 

or absence of a retromolar space has an effect on the structural rigidity of this 

region. This will be tested here with FEA (Chapter 7). 

2.4.4. Superior ramus morphology 
The superior part of the mandibular ramus of Neanderthals has been 

characterised by a shallow, asymmetric sigmoid notch and a posteriorly oriented 

coronoid process, which often exceeds the condylar process in height, while in 

anatomically modern humans the coronoid process is said to have the same height 

as the condylar process and both are separated by a deep notch with its deepest 

point approximately at the midpoint between the two processes, as illustrated in 

Fig. 2.11 (Rak 1998, Rak et al. 2002). 

Rak and colleagues (2002), who quantified superior ramus morphology by 

tracing mandibular notch contours and superimposing them, found that 
Neanderthals differ significantly in this feature from modern humans and other 
Pleistocene Homo fossils. They suggest that this morphology is unique to the 
Neanderthal lineage. The uniqueness of Neanderthal ramus morphology has, 

however, recently been questioned by Wolpoff and Frayer (2005). Based on 

qualitative descriptions of Neanderthal, other Pleistocene archaic human and early 
modern human mandibles, these authors concluded that a shallow, asymmetric 

ramal notch is not an exclusive Neanderthal feature, since it also occurs in more 
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ancient hominins and early modern humans. In addition, they found some 

Neanderthal mandibles with a rather deep instead of a shallow ramal notch. It is 

therefore likely that the aspects of superior ramus morphology identified by Rak 

(1998) and Rak and colleagues (2002) are, as with the retromolar space, not 

unique to Neanderthals but rather occur among them with a higher frequency than 

in other hominins (Franciscus & Trinkaus 1995). 

Rak (1998) as well as Rak and colleagues (2002) mention that the typical 

Neanderthal ramal morphology seems to already be present in infant and juvenile 

specimens like Roc de Marsal, Teshik-Tash, and Krapina 53. Another study 

(Minugh-Purvis & Lewandowski 1992) showed that a posteriorly oriented 

coronoid process can also be found in modern children around the time of 

eruption of the permanent anterior dentition. While this morphology disappears, 

or is deemphasized in modern humans during development, European 

Neanderthals usually retained posteriorly oriented coronoid processes into 

adulthood. 
Most propably the variation in superior ramus morphology is closely 

related to the function of the temporalis, which attaches to the coronoid process 

(Simon & Moss 1973, Minugh-Purvis & Lewandowski 1992). Indeed, animal 

experiments support a close link between temporalis function and the size and 

shape of the coronoid process as well as of the sigmoid notch. The detachment of 

the temporalis muscle or specific muscle portions in animals (Washburn 1947, 

Avis 1959, Moss & Meehan 1970) leads to the marked alterations in the shape of 

the coronoid and the sigmoid notch. 

Another functional explanation has been suggested for the relatively low 

condyle of Neanderthals. Rak and Hylander (2003) suggested that this closer 

proximity of the condyle to the occlusal plane, in combination with other features 

of the Neanderthal masticatory system, for example, the retromolar space, 
increased the maximum jaw gape (but see Wolpoff and Frayer 2005 for a 
discussion of the variation in condylar height). 

The effect of different morphological features on gape size can be studied 

with rigid-body models. In contrast, the hypothesised relationship between 

superior ramus morphology and temporalis function can be investigated with 
FEA, since it relates to bone modelling, which is regulated by strains. This will be 

the aim of the study presented in Chapter 8. 
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2.4.5. Dental size and wear patterns 
For the study of functional adaptations in the mandible, the morphology 

and wear of the dentition can provide valuable information. There is abundant 

literature about tooth morphology and size as well as dental wear in anatomically 

modern humans and Neanderthals (Brace 1964a, 1967, Wolpoff 1971, Molnar 

1972, Wallace 1975, Frayer 1977, Brace 1979, Wolpoff 1979, Trinkaus 1983, 

1984, Bailey & Hublin 2005,2006). Here only some selected findings regarding 

dental size and wear patterns in relation to functional demands will briefly be 

described. 

From the Middle to Late Pleistocene there is a trend to reduction in size of 

the permanent posterior dentition, which is linked with reduction of overall 

mandibular size and robusticity (Brace 1979, Franciscus & Trinkaus 1995, 

Wolpoff 1999, Nicholson & Harvati 2006, Quam et al. 2009). This decrease in 

tooth size has been explained as a result of new food preparation techniques, for 

example, cutting, pounding, grinding and cooking with heated stones (Brace 1979, 

Wolpoff 1999). Such technological shifts likely decreased the time spent in and 

power of mastication, thus reducing loads on the postcanine teeth (Franciscus & 

Trinkaus 1995). Consequently, the selective pressure that had previously 

maintained tooth size during the Middle Pleistocene was probably reduced so that 

random changes in the genome leading to a structural reduction were not selected 

against, which has been termed "probable mutation effect" (Brace 1964b, 1979). 

Neanderthals also show such a reduction of postcanine tooth size, as 
comparisons between early and late Neanderthals have revealed (Brace 1979). 

Their incisors, however, remained relatively large, so that the incisors became 

larger in relation to the postcanine dentition (Brace 1964a, 1967,1979, Trinkaus 

1983,1984, Wolpoff 1999). This increase in relative size of the incisors 

distinguishes Neanderthals from H. erectus as well as Upper Palaeolithic modern 
humans, although the absolute values for anterior and postcanine tooth size show 
a great deal of overlap (Stefan & Trinkaus 1998a, Bailey & Hublin 2005,2006). 
Why Neanderthals maintained relatively large incisors while selective pressures 
were probably reduced due to advances in food processing, requires explanation. 

Whereas the function of the posterior teeth is to crush food during 

mastication, the function of the anterior teeth is not so evident. Sometimes the 
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incisors are referred to as "cutting teeth", but it is known from modern hunter- 

gatherers that the anterior teeth actually serve as a clamp, to hold the objects that 

are then manipulated by the hands, for example, pulling them in order to tear them 

or cutting them with a knife (Brace 1975,1977,1979). Based on the assumption 

that there was no major dietary difference between Neanderthals and their 

predecessors (but see e. g. Perez-Perez et al. 2003), it has been suggested that the 

relatively large incisors might be due to the use of the anterior teeth for more than 

just food processing (Brace 1967, Wolpoff 1975, Brace 1979, Brace et al. 1981). 

Thus, their function as a clamp would have been extended to non-edible objects, 

whose manipulation was important for human survival, while the selective 

pressures acting on the molar dentition decreased because of advances in food 

processing. 

This hypothesis is consistent with the dental wear pattern found in adult 

Neanderthals. Neanderthals show a tendency to wear the anterior teeth down more 

rapidly down than the posterior teeth, resulting in extreme labial rounding of the 

maxillary teeth in older individuals (Patte 1959, Brace 1964a, Heim 1976, Brace 

1979, Wolpoff 1979, Trinkaus 1983,1984, Wolpoff 1999). However, most 

descriptions are solely qualitative descriptions based on few fossils (Wallace 

1975, Heim 1976, F. H. Smith 1976, Trinkaus 1983). An exception is a study by 

P. Smith (1976), who compared dental attrition in Neanderthals and early modem 

humans from Europe and the Near East. According to her results, the wear pattern 

was similar for all Mousterian specimens, including the presumably early 

anatomically modem individuals from Skhül and Qafzeh, but differed from that in 

the Upper Palaeolithic specimens in showing more severe attrition anteriorly than 

posteriorly. As in recent humans, the Upper Palaeolithic specimens showed 

relatively more wear on the posterior teeth (P. Smith 1976). A more recent study 

provides a detailed analysis of the rate of bevelling (i. e. the bevelling angle) 

relative to tooth wear in incisors of Neanderthals, Inuits and Puebloan 

Amerindians (Ungar et al. 1997). Although these authors found similar patterns in 

the three samples, the Neanderthal specimens had significantly greater bevelling 

in more worn teeth than either recent human sample. In addition, microwear data 

show a high density of labiolingual wear striae and enamel chipping on the 

occlusal surfaces of anterior Neanderthal teeth (Ryan 1980). 
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However, the use of the anterior teeth for other activities than food 

processing is not the only potential cause for this distinctive dental wear pattern 

oberserved in Neanderthals. Alternatively, high levels of abrasives in the diet of 

Neanderthals have been suggested (Martin 1923, Siffre 1923, Wallace 1975, 

Puech 1979,1981), but if abrasives in the diet were the cause, it is difficult to 

imagine why only the anterior teeth and not the posterior teeth show such a 

pronounced wear, particularly since Neanderthal molars are characterised by 

absolutely and relatively thinner enamel compared to modern human molars 

(Molnar et al. 1993, Smith & Zilberman 1994, Olejniczak et al. 2008). In addition, 

microwear data indicate that Neanderthals consumed less abrasive food items 

(such as meat or fruit) and/or processed their food in a more efficient way (e. g. by 

cooking) than Middle Pleistocene populations, since Neanderthal teeth show 

fewer striations (Perez-Perez et al. 2003). There is also a growing evidence from 

isotope studies that by far the largest part of Neanderthal diet consisted of 

relatively non-abrasive meat (Richards et al. 2000, Bocherens et al. 2001, 

Bocherens et al. 2005, Richards et al. 2008, Richards & Trinkaus 2009). 

Therefore, it seems unlikely that abrasives in the diet can explain the typical 

dental wear pattern seen in Neanderthals. 

The suggestion that this wear pattern was caused by the regular use of the 

anterior teeth for activities other than food processing, in contrast (Stewart 1959, 

Coon 1962, Brace 1962,1964a, 1967, Brace et al. 1981, Trinkaus 1983), 

convincingly explains why the anterior teeth are more rapidly and severely worn 
than the posterior teeth and is consistent with the currently available data on 
Neanderthal diet. In addition, microwear analyses of labial incisor crowns 
frequently reveal transverse scratches that have been related to cutting objects 
held in the teeth with lithic implements (Martin 1923, Koby 1956, Patte 1960, de 

Lumley 1973, Trinkaus 1983, Lalueza-Fox & Frayer 1997). 

Until recently, the use of teeth for manipulating non-edible objects was 

common in several human populations. This was especially the case for Inuits 

who used their teeth for a variety of different tasks (Molnar 1972, Cybulski 1974, 
Merbs 1983, Larsen 1985, Milner & Larsen 1991). The high mechanical demands 

on the anterior teeth resulting from this tooth use led to a high frequency of severe 
tooth wear, pulp exposure, resorption of tooth roots and finally tooth loss as well 
as to a high prevalence of degenerative changes in the TMJ (herbs 1983). In 
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addition, it has been shown that the frequent non-masticatory use of teeth in Inuits 

is linked with aspects of craniofacial morphology and an ability to produce higher 

bite forces compared to other populations (Hylander 1977). A similar link 

between non-masticatory use of the teeth and craniofacial morphology has been 

suggested for Neanderthals. 

2.4.6. The anterior dental loading hypothesis 

Some of the features described above like the relatively large and heavily 

worn anterior teeth and the high prevalence of degenerative changes in the TMJ of 

Neanderthals have been cited as evidence for the regular use of the front teeth for 

other purposes than food processing (Stewart 1959, Coon 1962, Brace 1962, 

Brace et al. 1981, Smith 1983, Trinkaus 1983, Smith & Paquette 1989). This 

provided the basis for the "anterior dental loading hypothesis" (ADLH), which 

suggests that the typical Neanderthal craniofacial morphology can be partly 

explained as an adaptation to regular heavy anterior dental loads that resulted 

from such non-masticatory activities (Smith 1983, Rak 1986, Demes 1987, 

Trinkaus 1987, Spencer & Demes 1993). 

The first author who interpreted Neanderthal facial morphology in terms of 
biomechanical adaptations was Smith (1983). Based on Hylander's (1977) study 

of Inuit craniofacial morphology, Smith (1983) suggests that the Neanderthal face 

was exposed to high bending stresses during anterior dental loading. According to 

his explanation, these bending stresses occurred, because the bite forces at the 

maxillary incisors acted on a long moment arm resulting from prognathism and 

the posterior positioning of the anterior root of the zygomatic arch in the 

Neanderthal face. In order to resist these bending moments, the midfacial region 

of Neanderthals increased in height, since this enlarged the second moment of 

area of cross sections of the face (Smith 1983). 

Instead of the sagittal bending proposed by Smith (1983), Rak (1986) 

suggests that the high loading of the anterior teeth resulted in sagittal rotational 

stresses or, in other words, around a transverse axis (Fig. 2.13). In order to 

counter these stresses, the infraorbital region changed from a more coronal to a 

more sagittal orientation as well as to a more triangular shape. Both features 

constitute the typical mid-facial prognathism of Neanderthals. Thus, Rak (1986) 
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explains Neanderthal mid-facial projection in terms of an adaptation to rotational 

stresses. 
Another theoretical approach to the biomechanical adaptation of 

Neanderthals was introduced by Demes (1987). Unlike Smith (1983) and Rak 

(1986), who each consider only one type of loading, Demes (1987) considers 

three different loading situations resulting from high loads on the anterior 

dentition: torsion around a transverse axis, torsion around a sagittal axis and 

sagittal bending (Fig. 2.13). She agrees that the Neanderthal face represents an 

adaptation to high anterior loads combined with long lever arms, but estimates the 

stresses and mechanical adaptations differently from Smith (1983) and Rak 

(1986), for example, in contrast to Smith (1983), who assumes that the increased 

height of the mid-facial region improves the resistance to sagittal bending, Demes 

(1987) suggests that resistance to this loading regime is provided by the inflated 

maxilla, the convex midfacial profile and the straight infrazygomatic contour in 

the frontal plane. Counter to Rak (1986), she proposes that the sagittal orientation 

of the infraorbital region in Neanderthals does not improve the resistance to 

torsional moments around a transverse axis. 

Fig. 2.13. Torsional movements during unilateral incisal biting as suggested by Rak (1986) and 
Demes (1987). Left figure: torsion around a transverse axis, right figure: torsion around a sagittal 
axis. Arrows indicate bite force, rotational moments and distribution of torsional stresses in a 
section (Demes 1987: 298, Fig. 1,299, Fig. 2a). 

In addition to the purely theoretical discussion öf Demes (1987), Trinkaus 

(1987) evaluated Rak's (1986) model based on maxillary and mandibular 

measurements of fossil specimens. His results indicate that Rak's idea of the 

Neanderthal mid-facial projection as an adaptation to rotational stresses around a 

transverse axis does not adequately fit the available data. Therefore, 

Trinkaus (1987) suggests an alternative model, which he calls the "zygomatic 
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retreat model". Like Rak (1986) as well as Smith (1983) and Demes (1987), he 

assumes that the Neanderthal face had to resist elevated levels of biomechanical 

stress produced by frequent non-masticatory usage of the anterior dentition. 

However, in contrast to Rak (1986), who considered the reorientation of the 

infraorbital plate as the dominating and autapomorphic feature of the Neanderthal 

face, Trinkaus (1987) proposes that the Neanderthal face should be primarily 

viewed as the product of maintaining the ancestral condition of total facial 

prognathism combined with the derived condition of posterior migration of the 

zygomatic root and anterior ramus area relative to the dental arcade. Accordingly, 

the maintenance of total facial prognathism is a consequence of high anterior 
dental loading and the selection for large anterior teeth, whereas zygomatic retreat 
is the result of the general reduction of facial massiveness during the late Middle 

Pleistocene and early Upper Pleistocene. Trinkaus (1987) assumes that the 

primary functional effect of zygomatic retreat was reduced mechanical advantage 

of the primary masticatory muscles and thus a shift towards less powerful 

mastication, which is also reflected by the reduction of post-canine dentition and 

mandibular robusticity compared to the Neanderthals' predecessors. 
The relationship between zygomatic retreat and a shift to less powerful 

mastication (Trinkaus 1987) leads to a problem for the ADLH. Although it is 

suggested that the Neanderthal face is adapted to high anterior dental loading, it is 

also assumed that the masticatory configuration is rather disadvantageous for 

producing large bite forces, due to the combination of prognathism and the 

posterior positioning of the masticatory muscles (Smith 1983, Trinkaus 1987). 

However, if Neanderthals were adapted to high anterior dental forces, they should 

also be able to generate these. 

Subsequent studies tried, therefore, to estimate the bite force production 

capability and efficiency of Neanderthals (Ant6n 1990, Spencer & Demes 1993, 

Anton 1994, O'Connor et al. 2005). Spencer and Demes (1993) evaluated the 

position of the masticatory muscles relative to the TMJ and concluded that 
Neanderthals had increased ability to produce large anterior bite forces compared 
to anatomically modem humans. Ant6n (1990,1994), on the contrary, estimated 
smaller bite forces in Neanderthals than in modem humans. Finally, the most 
recent 3D rigid-body modelling study by Connor and colleagues (2005) suggests 
that Neanderthals and modem humans were equally able to produce anterior bite 
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forces. The differences in bite force production that these authors found were 

between large robust individuals and small gracile individuals rather than between 

anatomically modern humans and Neanderthals. Thus, the results of these 

previous studies are rather contradictory and further studies should be conducted 

to test the ADLH. 

A recent GMM study of a large sample of modern human and Neanderthal 

mandibles tried to investigate the general relationship between morphology and 

non-masticatory tooth use (Nicholson & Harvati 2006). Interestingly, Neanderthal 

specimens showed a similar mandibular shape to North American Arctic 

populations, which are known for using their teeth for non-masticatory purposes. 
The authors of this study suggest, therefore, that at least some features related to 

non-masticatory functional demands are shared between these two groups. 
However, since the Upper Palaeolithic and H. heidelbergensis specimens also fell 

close to the Arctic sample, the results are difficult to interpret. 

It seems that testing the relationship between anterior dental loading and 
facial morphology is a task that cannot be fulfilled with morphometric analyses 

alone and the previous tests of the ADLH have only focused on the bite 

production capability and efficiency. If Neanderthals were adapted to high 

anterior dental loads, they should not only show greater ability in producing high 

forces at the incisors, but also in dissipating these than, for example, modem 
humans. This prediction will be tested here with FEA (Chapter 10). 

2.4.7. Adaptations to reduced masticatory loads due to food processing 
As described above, reduction of postcanine tooth size as well as overall 

mandibular size and robusticity is evident in the human fossil record since the 
Middle Pleistocene (Brace 1979, Franciscus & Trinkaus 1995, Wolpoff 1999, 

Nicholson & Harvati 2006, Quam et al. 2009). This gracilisation does not only 

apply to the lineage that leads to anatomically modern humans, but can be also 
observed in the Neanderthal lineage, when early Neanderthals that date to the last 
interglacial are compared with late classic Neanderthals (Franciscus & Trinkaus 
1995). 

At the same time, there is archaeological evidence for a trend towards 

more advanced tools and the regular use of fire (e. g. reviewed in Klein 1999) and 
dental microwear data suggest a major shift towards a less abrasive diet from the 
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Middle to the late Pleistocene, probably caused by an improvement of food 

processing techniques (Perez-Perez et al. 2003). Some authors have suggested, 

therefore, that the reduction in craniofacial size and robustictiy since the Middle 

Pleistocene is the result of new food preparation techniques, for example, cutting, 

pounding, grinding and especially cooking (Brace 1979, Franciscus & Trinkaus 

1995, Wolpoff 1999). Such advances in food processing certainly improved the 

digestibility of the food and made food softer and smaller in particle size, so that 

less occlusal force and fewer chewing cycles were required for food breakdown 

(Lucas & Luke 1984, Lieberman et al. 2004a). This reduction of masticatory loads 

could have had an impact on mandibular morphology by either reducing the 

selection pressure for maintaining a large dentition and robust mandibular 

morphology (Brace 1979), and/or by reducing strains in the bone that stimulate 

craniofacial growth (Lieberman et al. 2004a). 

That the consumption of soft, processed food does indeed have an effect 

on craniofacial growth is shown by animal experiments. Those animals that are 

raised on soft, processed food have lower strains in the skull during mastication 

and show reduced craniofacial growth resulting in smaller skulls of different 

shape to those of individuals raised on hard, unprocessed food (Beecher et al. 
1983, Kiliaridis et al. 1985, Engström et al. 1986, Lieberman et al. 2004a). In 

humans, those experiments are, of course, not possible, but similar changes in 

craniofacial morphology have been reported from populations that changed their 
dietary habits, for example, due to the introduction of agriculture, the 
industrialisation or colonisation (Carlson 1976, Carlson & van Gerven 1977, 
Corruccini 1984,1990, Varrela 1992). For example, in Australian aborigines 

mandibular and maxillary dimensions have decreased during the last century, 

which coincides with the transition to a modern, industrially processed diet 

(Corruccini 1984,1990). 

The same mechanism might be responsible for the gracilisation trend since 
the Middle Pleistocene. Unfortunately, it is not possible to fully test this 
hypothesis due to the lack of data and the fact that direct experiments are not 
possible. However, the prediction can be made that if there was an adaptation to 

reduced masticatory loads, then the resistance to masticatory load should have 
decreased over time. With FEA it is possible to test whether load resistance has 
indeed decreased, which will be described in Chapter 10. 
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Chapter 3: Material and Methods 

3.1. Introduction 

This study uses a variety of different techniques for the creation, 

manipulation and mechanical loading of virtual models as well as for measuring 

strains in experimentally loaded bones. In order to predict stresses and strains in 

the bone, the method of finite element analysis (FEA) is applied, which requires a 

sequence of work steps (Fig. 3.1). Based on computed tomography (CT) scans of 

mandibles, virtual 3D models are created and converted into FE meshes. In the 

case of fragmentary specimens this 3D reconstruction also includes the 

reconstruction of missing parts. Additional virtual manipulation can be applied to 

modify the morphology of specimens, for example, changing one aspect of 

morphology while keeping all other aspects constant so that the effect of varying 

particular morphological features can be tested. The final FE models are then 

loaded and the resulting stresses and strains calculated. In order to make sure that 

the stresses and strains are predicted accurately, the modelling approach should be 

validated against strain measurements from an in vitro experiment. After the 

successful validation, the models can be used to simulate the masticatory loads 

that occur in vivo. For this purpose, the muscle forces need to be calculated as 

accurately as possible. This chapter will provide a general overview of the 

methods used and will describe those work steps that provide the common basis 

for the different studies. Those work steps, which are only relevant for specific 

studies, are described in detail in the respective chapters. 
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Fig. 3.1. The main steps involved in CT-based FE modelling. 
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3.2. Modern human specimens 
Table 3.1 provides an overview of all the modern human specimens used 

for FE modelling in this study. This sample consists of four adult mandibles that 

were chosen because of their good preservation. All of them are almost complete, 

so that FE models could be created without major virtual reconstruction work. 

One of the mandibles (ANAT 800) is associated with a cranium. As will be 

described later (under 3.8); this cranium was used to determine the orientation of 

muscle force vectors in the FE models. Unfortunately, the exact age, sex and 

geographic provenance of these specimens is not known. They belong to the 

anatomical collection of the Hull York Medical School, UK, apart from the 

specimen ANAT 800, which is part of the skeletal collection of the University of 

Leeds, UK. In addition to the specimens that were used for the FE modelling, CT 

data of 13 adult mandibles (5 males, 8 females) were used to take measurements 
for the study described in Chapter 7. 

Specimen Description 

cranium (left C missing, left 12 damaged) and mandible with 
ANAT 800 complete dentition but resorbed alveolar bone between left 

M1 and M2, probably male 

H-A 001 mandible with congenitally missing M3s, probably female 

mandible with complete dentition apart from in vivo loss of 
H-A 002 right M3 and post mortem damage of right P1, resorbed 

alveolar bone in the molar region, probably male 

H-A 004 mandible with complete dentition apart from damaged 
incisors and left C, probably male 

Head 2006D partly dissected head of a 75 years old white male, in vivo 
loss of several teeth and resorbed alveolar bone 

Table 3.1. Modern human specimens used for FE modelling. In addition, measurements were 
taken on 13 well preserved modern human mandibles (5 males, 8 females) for the study described 
in Chapter 7. 
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Fig. 3.2. CT-based 31) models of the modern human mandibles used for 11 
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a) ANAT 800, h) H-A 0l, 0 H-A 002, d) H-A 004. 
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In order to gain detailed 3D data about the distribution of the muscle 

attachment areas and the shape and orientation of the muscles or muscle portions, 

a partly dissected head from an embalmed human cadaver (Head 2006D) taken 

from the Anatomy Unit of the Hull York Medical School was CT-scanned and 

based on this scan a 3D model of the skull and the masticatory muscles was 

created. 
For the validation experiment, the isolated adult mandible H-A 004 was 

chosen because of good bone preservation, albeit with slightly damaged dentition. 

Since the loading experiment put the mandible at risk of being destroyed, a 

specimen was preferred that already showed some damage. 

3.3. Fossil specimens 

The fossil specimens used in this study include crania and mandibles of 

European Neanderthals, Homo heidelbergensis and one early anatomically 

modern human from the Near East that were chosen for this study because of their 

exceptionally complete preservation. Some authors use different terminology to 

refer to these specimens, for example, by using the term "archaic Homo sapiens" 
for Neanderthals and Homo heidelbergensis (Bräuer 1984, Wolpoff 1999), but 

here the most commonly used terminology is preferred. Table 3.2 provides an 

overview of all the fossil specimens used in this study. In the following, basic 

information like site location, year of discovery and dating will be given for each 
fossil. 

The oldest specimen of the sample is the Mauer mandible, which was 

discovered 1907 in a sand quarry about 10 km southeast of Heidelberg, Germany. 

Following its first description by Schoetensack (1908), it has become the type 

specimen of H. heidelbergensis. Palaeomagnetic data suggest an age of 640 to 
735 ka (Hambach 1996). Most authors agree that the Mauer mandible should be 

placed at the beginning of the Neanderthal lineage, in which the typical 
Neanderthal features only evolved later (Howell 1960, Stringer et al. 1984, Dean 

et al. 1998). 

Kabwe 1 (Broken Hill 1) is an almost complete H. heidelbergensis 

cranium, which was discovered in 1921 in a zinc mine in North Rhodesia, the 
today's Zambia (Woodward 1921). There are no radiometric dates available for 
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this specimen, but based on the associated fauna an age of 300 to 600 ka is 

commonly assumed (Vrba 1982, Klein 1994). 

Specimen Dating Site References location 

H. heidelbergensis 

Mauer 1 640-735 ka Germany Schoetensack (1908) 

mandible Czarnetzki et al. (2003) 
Mounier et al. (2009) 

Kabwe 1 300-600 ka Zambia Woodward (1921) 
cranium Pycraft et al. (1928) 

Singer (1958) 

Ehringsdorf F* 200-250 ka Germany Schwalbe (1914) 
mandible MacCurdy (1915) 

VMek(1993) 

H. neanderthalensis 
Krapina 59 120-140 ka Croatia Gorjanovi6-Kramberger (1906) 
mandible Smith (1976) 

RadovW et al. (1988) 

Tabun Cl* 100-130 ka Israel McCown and Keith (1939) 
mandible Quam and Smith (1998) 

Regourdou 1 65-75 ka France Piveteau (1964) 

mandible Maureille et al. (2001) 

La Quina 9* 65-75 ka France Martin (1926) 
mandible Stefan and Trinkaus (1998b) 

Verna (2006) 

Guattari 1 51-57 ka Italy Sergi (1974) 
cranium Piperno and Scichilone, eds. (1991) 

H. sapiens 
Skhül 5 100-130 ka Israel McCown and Keith (1939) 
cranium and 
mandible 

Table 3.2. Sample of fossil specimens. See Figures 3.3 and 3.4 for the preservation of these 
specimens. *Specimens not used for FE modelling, only for the measurements described in 
Chapter 7. 

The cranium Guattari 1 (Circeo 1) was discovered in a coastal cave at 
Monte Circeo about 100 km southeast of Rome, Italy, in 1939 (Sergi 1974, Sergi 

1991). The associated glacial fauna as well as radiometric dating suggest an age 
between 51 and 57 ka (Grün & Stringer 1991, Schwarcz et al. 1991). 
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The almost complete adult mandible Krapina 59 (or Krapina mandible J) 

comes from the Croatian site Krapina, which yielded more than 800 Neanderthal 

remains, belonging to more than 80 individuals (RadovZic et al. 1988). These 

fossils were found in a collapsed cave about 40 km northwest of Zagreb at the 

beginning of the 20`h century. According to electron-spin resonance data, the 

Krapina material has an estimated age between 120 and 140 ka (Rink et al. 1995). 

The young adult skeleton Regourdou 1 was discovered 1957 in a collapsed 

cave near Lascaux in the Dordogne, France (Piveteau 1964). Based on the 

sedimentology, the associated fauna and artefacts, it has been suggested that this 

partial skeleton has an age of 65 to 75 ka (Bonifay 1964, Vandermeersch 1965). 

The FEA sample thus consists of two very different Neanderthal specimens: the 

large and robust early Neanderthal mandible Krapina 59 and the smaller, less 

robust and much younger mandible Regourdou 1, which is, in addition, 

characterised by unusually small teeth compared to other Neanderthals (Maureille 

et al. 2001). 

Skhn15 is an almost complete skull, which was found 1932 together with 

the remains of nine other individuals at the rock shelter Mugharet es-Skhül of 

Mount Carmel 19 km south of Haifa, Israel (Garrod & Bate 1937, McCown & 

Keith 1939). Thermoluminescence, uranium-series and electron-spin resonance 

dating suggest an age of 100 to 130 ka (Stringer et al. 1989, Grün et al. 2005). 

Commonly the Skhül remains are regarded as an archaic type of H. sapiens 

(Trinkaus 1984, Stringer et al. 1989). 

All these fossil mandibles that were used for FE modelling, are not only 

very well preserved, but also show relatively few pathologies: some arthritic 

flattening of the condyles of Krapina 59 and Skhül 5 (McCown & Keith 1939, 

Wolpoff & Frayer 2005) as well as osteophytes and a depression on the left 

condyle of Mauer 1, probably resulting from a trauma (Czarnetzki et al. 2003). 

However, these pathologic changes do not cause a problem for the FEA, since the 

stresses and strains in the condyles and the condylar necks are not of interest here. 

In addition to the specimens used for FE modelling, three more fossil 

mandibles were measured for the study described in Chapter 7: the 

H. heidelbergensis specimen Ehringsdorf F (Schwalbe 1914, MacCurdy 1915, 

V16ek 1993) with an estimated age of 200 to 250 ka (Mallick & Frank 2002), the 

early Neanderthal specimen Tabun Cl (McCown & Keith 1939, Quam & Smith 
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1998) dating between 100 and 130 ka (Grün & Stringer 2000, Mercier & Valladas 

2003) and the Neanderthal mandible La Quina 9 (Martin 1926, Stefan & Trinkaus 

1998h) with an estimated age of 65 to 75 ka (Mercier 1992, Dehenath & Jelinek 

1999). These specimens were too fragmentary to he included in the FEA sample. 
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Fig. 3.3. ('T-based 31) models of the fossil mandibles: a) Mauer I. h) Krapina 59, c) Rt gourdou I, 
d) Skhül 5. 
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5 cm 

Fig. 3.4. CT-based 31) models of the crania used in this study: a) Kabwe I, h) Guattari I. 

c) Skhül 5, d) ANAT SOO. 
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3.4. Data acquisition with computed tomography 

Computed tomography (CT) is a method for creating cross-sectional 

images of an object with the use of X-rays. The X-rays, which are attenuated by 

the object, are detected by sensors, converted into electrical signals and digitised. 

In the next step, computer-based image reconstruction, an attenuation value is 

assigned to each pixel. Since each cross-section is scanned from different angles, 

it is possible to calculate the spatial distribution of these attenuation values. In 

order to obtain an image, the values are converted into grey levels. Thus, an image 

of the cross-section is created, which displays the densities of the sectioned 

structures with different shades of grey (Thurn & Bücheler 1992, Wegener 1992, 

Grumme et al. 1998). 

The stack of all slices of a CT scan can be regarded as a data volume, 

which can be used to create a 3D model of the scanned object. At the level of the 

single slice, this means that each scanned cross-section actually represents a 

volume due to the slice thickness. Thus, each pixel corresponds to a volume 

element (voxel), whose dimensions are determined by the edge lengths of the 

pixel and the slice thickness (Fig. 3.5). Consequently, the attenuation value (i. e. 

CT number), which is calculated for each pixel, expresses the average attenuation 

of the X-rays by the tissue included in the voxel (Thorn & Bücheler 1992, 

Wegener 1992). 

r.; __I 

Fig. 3.5. Diagram of a CT slice showing the relationship between Pixel size, slice thickness and 
voxel dimensions (Spoor et al. 2000: 129, Fig. 2). 
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For scanning ex vivo bone tissue, three types of CT are available: medical 

CT, microCT (iCT) and synchrotron tomography, which differ significantly in 

their technical principles as well as in the resolution of the scans they produce. In 

medical CT scanners an X-ray source as well as an array of detectors rotate 

around the specimen. Modern scanners use the principle of spiral or helical CT, in 

which the specimen is continuously moved forward during the scan. The 

measurements are thus taken in a spiral trajectory. This allows reconstruction of 

cross-sectional images at any position by means of interpolation from the spiral 

measurements (Buzug 2008). 

pCT scanners differ from medical CT scanners in that the specimen itself 

is rotated during the scan, rather than the source/detector system. In addition, this 

method can provide image data with a much higher spatial resolution than medical 

CT scanners. Depending on the size of the scanned objects or the field of view, 

which is chosen, a spatial resolution of single-digit micrometer values can be 

achieved (Spoor et al. 2000). Another advantage is that iCT scanners usually 

produce isotropic voxels (i. e. pixel size and slice thickness are identical). In 

medical CT scans, the slice thickness is usually larger than the pixel size, which 

results in anisotropic voxels. 

Even better scans in terms of resolution can be achieved with synchrotron 

tomography. This technique uses the electromagnetic high energy radiation 

produced by a synchrotron. Whereas the X-ray beams used in medical and iCT 

scanning consist of a continuum of wavelengths, the synchrotron radiation is 

typically monochromatic and has a short wave length, which produces cross- 

sectional images with an extremely high spatial and contrast resolution (Zollikofer 

& Ponce de Leon 2005). Thus, synchrotron tomography even allows visualisation 

of dental microstructures like the Retzius lines in tooth enamel (Mazurier et al. 
2006, Tafforeau & Smith 2008). 

The specimens used in this study have been scanned with medical CT, 

1CT as well as synchrotron tomography (Table 3.3). The CT scans of fossil 

specimens were provided by other researchers and were therefore rather diverse 

with respect to the scanner type and resolution. The modern human specimens, in 

contrast, were scanned by our research group using two different scanners, 
depending on the size of the respective specimen. 
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Specimen Scanner 

Resolution 
(mm) 

X, y z 

Source 
of scan 

H-A 001 X-Tek HMX 160 iCT 0.146 0.146 1 

H-A 002 left X-Tek HMX 160 pCT 0.120 0.120 1 

H-A 002 right* X-Tek HMX 160 pCT 0.121 0.122 1 

H-A 004 GE Medical Systems BrightSpeed 0.488 0.625 1 

H-A 004 left X-Tek HMX 160 pCT 0.135 0.135 1 

H-A 004 right X-Tek HMX 160 pCT 0.122 0.122 1 

ANAT 800 GE Medical Systems BrightSpeed 0.488 0.625 1 

Head 2006D GE Medical Systems BrightSpeed 0.488 0.625 1 

Mauer 1 Philips T310 0.437 1.500 2 

Kabwe 1 Siemens Somatom Plus 4 0.470 0.500 2 

Ehringsdorf F* BIR ACTIS 225/300 iCT 0.148 0.148 3 

Krapina 59 Siemens Sensation 16 0.295 0.400 3 

Tabun C I* Philips T350 0.656 1.500 2 

Regourdou 1 ESRF Grenoble 0.350 0.350 3 

La Quina 9* ESRF Grenoble 0.350 0.350 3 

Guattari 1 Siemens Somatom HIQ-S 0.490 1.000 3 

Skhül 5 Siemens Multidetector Scanner 0.488 0.500 3 

Table 3.3. List of the CT-scanned specimens with the resolutions of the reconstructed image 
stacks. *Specimens not used for FE modelling, only for measurements described in Chapter 7. In 
addition, medical CT scans of 13 modern mandibles (pixel size and slice thickness of 0.455- 
0.533 mm and 0.625-1 mm respectively) were used for Chapter 7. ESRF = European Synchrotron 
Radiation Facility in Grenoble. Source of each scan: 1= Hull York Medical School, 2=F. 
Zonneveld and F. Spoor, 3= www. nespos. org. 

pCT scanning of the smaller specimens was undertaken with the X-Tek 

HMX 160 iCT system (X-Tek Systems Ltd., Tring, UK) at the Engineering 

Department of the University of Hull, using a copper filter. The primary 
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reconstructions were performed using NGI CT Control Software (X-Tek Systems 

Ltd., Tring, UK). The resulting data volumes were exported as 16-bit TIFF image 

stacks. 

pCT scans were also obtained of two adult modem human mandibles 

(H-A 002 and H-A 004), but since these specimens were larger than the maximum 

field of view of the scanner, each half of the mandibles was scanned separately. 

For the final 3D model the halves were later put together in Amira 4.1.1 (Mercury 

Computer Systems, Inc., USA). One of these mandibles, H-A 004, was used in the 

validation experiment. The same mandible was also scanned with a medical CT- 

scanner in order to study the effect of the scanning resolution on FEA results. 

Medical CT scans were taken with a GE Medical Systems BrightSpeed 

scanner (General Electric Co., USA) using the helical mode of the machine. 

Voltage and exposure were set to 120 kV and 11 mA respectively. The "SOFT"' 

convolution kernel of the scanner was chosen because it uses a relatively neutral 

filter without any edge enhancement, which would have biased the thickness of 

bone structure. The image stacks were reconstructed with a slice thickness and an 

interval of 0.625 mm and exported in DICOM format. 

Most of the fossil specimens were scanned with different medical CT 

scanners, but with similar or better resolution than the medical scans of the 

modem material. Only the CT scans of the Mauer 1 Guattari 1 and Tabun Cl have 

a considerably larger slice thickness, which results in a lower spatial resolution in 

the z-direction, the direction in which the specimen was moved through the 

scanner. 

Two Neanderthal specimens, the mandibles Regourdou 1 and La Quina 9, 

were scanned with synchrotron tomography using the European Synchrotron 

Radiation Facility in Grenoble, France. Based on the high-resolution raw data, 

sections were reconstructed and saved as a 32-bit RAW file. The original 32-bit 

image data was then downsampled and exported as 8-bit TIFF image stacks with a 

resolution of 0.350 mm in all directions. 

3.5. Virtual 3D reconstruction 
In order to obtain a 3D representation of a scanned object based on a CT 

image stack, several work steps are necessary. One major task is to determine the 
boundaries between adjacent materials. This can be done by defining density 
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thresholds or by manually separating structures. Incomplete specimens require 

additional reconstruction work, like mirror imaging or the virtual refitting of 
fragments. In this study all 3D image processing was performed using the 

commercial software Amira 4.1.1 (Mercury Computer Systems Inc., USA). 

A CT image displays a spectrum of grey scale values that represent the 

densities of the scanned objects. In order to generate a 3D model, it is necessary to 

define a threshold value, which separates the structure of interest from 

surrounding ones. However, finding the optimal threshold is not a trivial problem. 

Due to the limited resolution, the boundaries between adjacent structures are not 

clearly defined. At the interface between two materials (e. g. bone and air) there is 

a gradual decrease of the CT numbers from one tissue to the other rather than an 

abrupt change (Fig. 3.6). Another problem results from the fact that changes in the 

viewer control settings (window level and width) can severely affect the visual 

appearance of the CT images, especially along the boundaries of structures. 
Therefore, threshold values that are just based on the apparent boundaries have 

been shown to be inaccurate (Koehler et al. 1979, Baxter & Sorenson 1981, Hara 

et al. 2002, Coleman & Colbert 2007). 

The results of phantom studies, in which objects with a simple geometry 
and known dimensions have been scanned, indicate that the true interface between 

two adjacent materials is located halfway between the two CT number values of 

these materials (Ullrich et al. 1980, Eubanks et al. 1985). This position is known 

as the half-maximum height (HMH). As Figure 3.6 shows, it can be calculated as 
the mean of the maximum and minimum density values along a row of pixels that 

spans the boundary transition (Ullrich et al. 1980). The HMH has proved to 

produce reliable results when used for measuring human vertebrae (Ullrich et al. 
1980), the oval window in primate crania (Coleman & Colbert 2007), the 

trabecular architecture of long bones (Fajardo et al. 2002) and even fossilised 

cortical bone and enamel (Spoor et al. 1993). 

However, these studies also showed the potential problems in the 

application of this method. Fajardo and colleagues (2002) found that it is 
important to sample the appropriate region of interest because bone types of 
different densities yield different HMH values. In addition, it is advisable to use 
an elaborated HMH protocol (Fajardo et al. 2002; Coleman & Colbert 2007) for 
3D reconstructions. A threshold based on the HMH value of a single slice might 
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not he accurate for a 3D model, which consists of hundreds of slices. Therefore, 

this study uses the modified HMH protocol suggested by Fajardo and colleagues 

(2002), which calculates the mean HMH value for several randomly selected 
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Fig. 3.6. I)cterntinint the threshold for separating hone and au. 'Ihr graph shows grey values 
along a row of pixels that crosses the boundary between hone and air in a CT slice. The arrow 
indicates the position of the half-maximum height (HMI I ). 

Sometimes the density ranges of two adjacent materials are too similar to 

be separated semi-automatically by a threshold value. This IS usually the case with 

fossilised hone vs. sediment or dentine vs. alveolar hone, where only manual 

separation can be performed. For this purpose, different manual editing tools are 

used to select or separate structures in the CT slices. In order to ensure that these 

structures are also separated in the final 3D model, not only the CT slices of the 

original orientation, but also those of the two orthogonal orientations have to be 

edited. 

Besides separating adjacent structures, manual segmentation is sometimes 

useful to close artificial holes in the 3D model, which might appear in areas where 

the bone is very thin. In these areas, due to the limited resolution of ('"F images, 

two different materials like hone and air can occupy the same voxel. The CT 

number of such a voxel thus represents a mixture of two different densities and 

might therefore be below the minimum threshold chosen for hone. This effect is 

known as partial volume averaging (Spoor et al. 2000). Since such artificial holes 

would cause artefacts in the FEA results, they were manually closed during the 

segmentation work for this study. This procedure was mainly applied to the 

mandibular condyles, where the cortical bone is typically very thin. 

Missing fragments or cracks in the bone would likewise lead to biased FE 

results and therefore need to he corrected by manual reconstruction. A common 
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method of virtual reconstruction in palaeoanthropology is mirror imaging 

(Zollikofer et al. 1995, Thompson & Illerhaus 1998, Zollikofer & Ponce de Leon 

2005). In practical terms, the whole dataset of a specimen is mirrored, the intact 

counterparts of missing fragments are segmented and finally fitted into the 3D 

model of the specimen. Small cracks in the bone or gaps between virtually refitted 
fragments can be closed by manually editing the CT slices. 

Figure 3.7 provides an overview of the virtual reconstruction of the 

specimens used in this study. In Krapina 59, the missing fragment of the right 

ramus as well as the left third molar and its socket were reconstructed by mirror 

imaging of the intact contralateral parts. The missing first premolars, on the other 

hand, were reconstructed by doubling the preserved second premolars on each 

side. The mandibles of Regourdou and Mauer exhibit complete dentition. 

However, in the case of Regourdou it was necessary to reconstruct the whole left 

ramus by mirror imaging and to take the mandibular angles as well as the lateral 

parts of the condyles from Krapina 59, since these fragments were completely 

missing. The reconstruction of Mauer did not require the inclusion of fragments 

from other specimens, but it did require time-consuming manual rebuilding of 

alveolar bone around the incisors. The mandible of Skhül 5 is so complete that it 

only required some manual filling of cracks or the reconstruction of very small 
fragments of bone and teeth. However, since the specimen is filled with sediment, 

time-consuming manual segmentation was necessary to segment the internal bone 

structure. At first, the border between cortical bone and the cancellous network as 

well as sediment was defined. Then a threshold was applied to separate cancellous 
bone from the sediment, since the latter has a higher density than the former. In 

this way, an approximation of the distribution of cancellous bone could be 

achieved. 

In addition to the reconstruction of missing parts in the fossil specimens, 

some reconstruction work was also necessary in two modern specimens (H-A 002 

and ANAT 800). In H-A 002 the right M3 was lost in vivo and some post mortem 
damage is present at the right P1. Therefore, the intact left half was mirrored to 

create a mandible with complete dentition. In specimen ANAT 800, the alveolar 
bone around the left M1 is damaged so that missing bone was reconstructed by a 
combination of mirror-imaging and manual editing. 
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cm 

Figure 3.7. Fossil specimens before (left column) and alter the reconstruction of missing 
fragments and teeth (right column): a) Mau er I. h) Krapina 59, c) Kcguurdo u I, (l) Skühl 5. 
Reconstructed parts are shown in dark grey. 
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3.6. Virtual manipulation of morphological features 

In addition to the creation of 3D representations, virtual modelling 

techniques offer various tools to manipulate the geometry of models. By manually 

editing the CT slices internal cavities in bones can be filled or trabecular bone can 

be removed. By combining 3D image processing with geometric morphometrics 

(GMM), the shape of models can be manipulated or mean shapes of groups of 

specimens can be generated. These manipulated models can then be used for FEA 

in order to test hypotheses about form-function relationships. One major 

advantage of manipulating FE models is that the mechanical effect of the presence 

or absence of single features can be studied. 

The most straightforward way of manipulating a 3D model is to use the 

standard editing tools of commercial 3D image processing software. Using such 

tools, it is possible to easily change the cortical thickness of a bone by adding or 

deleting voxel layers or to fill internal cavities (Reina et al. 2006, Strait et al. 

2007). In this study, the internal morphology of the bone is modified in different 

ways (Chapters 4,6,7,9,10 ). For example, the thickness of the cortical bone in 

the mandibles is changed with Amira in order to generate models with constant 

cortical thickness (i. e. without local variations in cortical thickness). By 

comparing the FEA results of these with the ones of the original models, it is 

possible to see whether local variations in cortical thickness can be predicted by 

the stress and strain distribution; for example, whether thick cortical bone is found 

where stresses and strains are high in the constant cortical thickness model 
(Chapter 6). 

Another method of manipulating a 3D model is to change its shape with 
the application of 3D morphing algorithms. Different morphing procedures are 

used in virtual modelling. A popular approach is to automatically wrap auxiliary 

surfaces or nets over the source and target specimens and then compute the 

necessary transformation from the source to the target surface (Lazarus & 
Verroust 1998, Sigal et al. 2008). Although this method yields good morphing 

results when applied to whole objects (Sigal et al. 2008), it is less suitable for 

partial morphing of structures (i. e. changing one feature but keeping the shape of 
the rest of the model constant). This study, therefore, applies landmark-based 

morphing (i. e. warping) for simulating the presence of absence of morphological 
features (Fig. 3.8). Using Amira, landmarks or semilandmarks were manually 
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placed on the source surface model. The target shape was then defined by placing 

corresponding landmarks on the CT slices of the same specimen. In order to hold 

the shape of the rest of the model constant, additional landmarks were placed on 

the surface of the source model and the coordinates of these were added to the 

landmark set of the target shape. The warping was then performed by applying the 

Bookstein thin-plate splines transformation as implemented in Amira, a triplet of 

thin-plate splines (Bookstein 1989). Thin-plate splines are interpolation functions, 

which can be used to warp a reference and a target shape. Thin-plate splines are 

analogous to bending of a thin metal sheet in which bending energy is minimised, 

resulting in a deformation that is as smooth as possible (Zelditch et al. 2004). 

Warping is applied here to study the biomechanical effects of 

morphological difference in the mandibular symphysis, for example, presence 

versus absence of the human chin or the orientation of the symphysis (Chapter 9). 

The target shapes for these warpings were manually defined or taken from 

landmark data from other specimens. 

ý. ý 

R 

Fig. 3.8. Lanitniark-hascd warping in Antira. Iipper ruw: original model on lhr let[, ýkanccrl inudel 
on the right. Bottom row: mid-sagittal sections though the symphysis showing the stages of the 
warping: a) original symphyseal shape, h) super, nmposiIion with target shape and c) target shape 
after warping. The black landmarks on the original 31) model are anchor landmarks used I'or 
keeping the shape of the teeth and the posterior mandible constant. 
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3.7. Voxel-based finite element modelling 

Finite element modelling permits the estimation of stresses and strains in a 

complex or irregular structure like a bone by dividing it into a number of small, 

geometrically simple elements, called finite elements. The elements are linked at 

their corner points, the so-called nodes. Based on the displacements of these nodes 

during loading, it is possible to calculate the stresses and strains in the whole 

object. Each of the finite elements possesses user-specified material properties so 

that the mechanical behaviour of the real object can be simulated. Forces and 

constraints (i. e. regions of immobility) can then be applied to the model in order 

to mimic the loadings that act on the structure in vivo (Richmond et al. 2005, 

Rayfield 2007). 

In this study, the non-commercial finite element software VOX-FE is 

used, which has been developed in collaboration between the Functional 

Morphology and Evolution Unit of the Hull York Medical School and the 

Departments of Engineering and Computer Sciences of the University of Hull. 

Unlike standard commercial FEA software packages, which have been designed 

for engineering applications, VOX-FE has been especially developed for 

biologists. Thus, the modelling of forces and constraints is very straightforward. 

Muscle attachments can be modelled by selecting areas on the surface of an area 

with a brush tool and the directions of muscle force vectors can be interactively 

varied with the mouse courser. 

A major difference between VOX-FE and most other FEA software lies in 

the way in which the FE model is created. FE models can be generated either 

using surface-based or voxel-based reconstruction. When the surface-based 

approach is chosen, the outlines of an object are manually traced in individual CT 

slices and then linked using computer-automated design (CAD) software 
(Marinescu et al. 2005, Strait et al. 2007) or the thresholded CT data (i. e. the CT- 

based surface model), is converted into a 3D wireframe, which is then converted 
into a FE mesh (e. g. Dumont et al. 2005). Alternatively, 3D surface scans can be 

converted into FE meshes with this technique, but in this case no information 

about the internal structure is obtained. In practice, the surface-based approach 
involves a number of steps using different software applications with different 

capabilities, including mesh-repairing tools to fix the frequent errors, which occur 
during the FE meshing of surface models (Rayfield 2007). Thus, model creation 
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becomes a very time-consuming act. In addition, the accuracy of models can often 
be relatively low, especially when the models are created by manual outlining and 

the resulting wireframes have to be reduced because of the common limits of 

applied FE software. 
In contrast, the voxel-based reconstruction technique, which is used for the 

generation of VOX-FE models, directly converts each voxel of the segmented CT 

data into a 3D finite element (Vollmer et al. 2000, van Rietbergen et al. 2003, 

Verhulp et al. 2008). Thus, the fast creation of high-resolution FE models is 

possible. Since the geometry of the FE mesh is a direct conversion of the voxel 

structure, the meshing procedure is very straightforward and free from those 

errors that frequently occur during surfaced-based FE reconstruction. Therefore, 

subsequent time-consuming mesh repairing procedures are not necessary. 
An aspect, which is closely related to the way in which the FE model is 

generated, is the type of the finite elements. In general, the elements can have a 

triangular or quadrilateral shape in 2D FE models, and a tetrahedral or cuboidal 

shape in 3D meshes (Fig. 3.9). Referring to the number of nodes per edge, the 

elements can be either of a linear (i. e. with two nodes per edge) or quadratic (i. e. 

with three nodes per edge) type (Richmond et al. 2005, Rayfield 2007). 

Tetrahedral elements are advantageous for meshing complex geometrical shapes 

with curved surfaces, but they bear the risk that their aspect ratio becomes so high 

that strains are overestimated (Beaupre & Carter 1992). Cuboidal elements (as in 

VOX-FE) are in general more accurate, but have the disadvantage that they 

produce biased results due to the stepped surfaces of the models compared to the 

more realistic smooth surfaces of FE models made of triangular elements. 
However, the higher the resolution of model is, the smaller are the element edges 

and thus the steps that make up the surface are less severe. VOX-FE models are 

composed of equally sized cubic elements with eight nodes, one on each corner of 
the element (Fig. 3.9). Quadratic elements, which have three nodes per edge, are 

actually more accurate, since they allow the strains to vary within each element. 
However, as they have many more nodes than linear elements, the FEA becomes 

computationally much more expensive (Rayfield 2007). Since voxel-based FE 

models commonly have more than a million elements, a linear type of element has 

been chosen for VOX-FE so that computation time stays within reasonable limits. 
Stepping is dealt with by averaging of adjacent voxel values, although the user 
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needs to ensure that the FEA results are not over-smoothed, so that resolution is 

not lost. 
VOX-FE 

of ZI. 
abc 

Fig. 3.9. Finite element types. a) 2D linear triangular and quadrilateral, b) 2D quadratic elements, 
c) 3D linear and quadratic elements. The elements used in VOX-FE are linear and cuboidal 
(adapted from Rayfield 2007: 550, Fig. 5). 

Due to the high resolution of voxel-based FE models, the calculation of 
FEA results cannot be performed on a common PC within a reasonable time 

frame. Therefore, only the application of forces, constraints, model properties and 

the visualisation of the results is done on a PC with VOX-FE, while the actual 

calculation of the displacements is performed on an EAGLE high-performance 

cluster (HPC) with 32 processors or nodes (Cisco-Eagle Inc., Dallas, Texas) at the 

Department of Computer Sciences of the University of Hull. On this HPC, the 

solution of the FEA is performed with the non-commercial and Linux-based 

solver PARA-BMU, which is a modified row-by-row iterative solver, similar to 

that reported by van Rietbergen and colleagues (1996). This solver was developed 

by the Functional Morphology and Evolution Unit of the Hull York Medical 

School in collaboration with the Departments of Engineering and Computer 

Science and Medical Physics of the University of Hull. 

Figure 3.10 provides an overview of the tasks performed using VOX-FE 

and other software applications to conduct an FEA. First, a 3D model, which has 

been created with Amira and exported as a BMP-image stack is converted into an 
FE mesh with VoxToVec, a Windows-based application, which was developed 

together with VOX-FE. After importing the FE model into VOX-FE, material 

properties, forces and constraints are defined by the user. The values for the 

mechanical properties, force magnitudes, constraint directions as well as the 3D 

coordinates of the nodes, to which the forces and constraints have been applied, 

are then exported as a text file. Together with the model, this script file is sent to 
the HPC and the PARA-BMU solver is started. Depending on the number of finite 

elements, the applied loads and the number of used HPC-nodes, the solution of 
the FEA can take some minutes to several hours. After successful solution, the 
x-, y- and z-displacements for each node are saved in a text file. Based on this so- 
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called displacement file VOX-FE calculates the stresses and strains. These can 

then be either visualised as colour-coded contour maps or stress and strain values 

from selected locations can be exported as text files. 
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Fig. 3.10. Illustration of the tasks performed by VOX-FE and other software applications used for 
this study. The actual FEA is performed by a LINUX-based solver (PARA-BMU) running on a 
high-performance cluster (HPC). 

In mathematical terms, FEA aims to find approximate solutions for partial 

differential equations (Fagan 1992, Zienkiewicz et al. 2005). When the number of 

elements and thus the number of unknown variables in the system of equations is 

very high, as in the case of VOX-FE models, a direct solution is not possible. 

Therefore, an iterative approach is used, in which the solution is stepwise 
improved until equilibrium is achieved. 

The user defines two parameters that are highly important for the 

successful solution of the FE model: the tolerance value and the maximum 

number of iterations. The former value determines the difference between the 

results of two calculation steps that is tolerated. If the difference is below this 

value, the FEA calculation stops, since it has fulfilled the user-defined criterion of 
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equilibrium. The latter parameter defines how many iterations the solver can use 

for its calculation. The maximum number of iterations is only useful in the case 

where the FE model cannot be solved and prevents infinite attempts at a solution. 

If the number of maximum iterations is too low, the calculation stops before it 

reaches a difference smaller than the threshold. Therefore, it is important to use a 

combination of a high number of maximum iterations and not too small a 

tolerance value to ensure that the calculation stops because of the threshold and 

not because of the limited number of iterations. 

How severely the FEA results are affected by too low a value of maximum 

iterations, is shown by a simple example. By creating an artificial CT image stack 

in Photoshop, a simple tube model was generated. This model is loaded under 

four-point-bending by pulling the two ends in one direction while the tube is 

constrained at two points on one side. Due to the simplicity of the model and the 

loading, it is possible to intuitively predict the resulting strain pattern: a uniform 

high strain area between the two constraints. However, when the number of 

maximum iterations is set to 1000, the strain pattern is very heterogeneous 

(Fig. 3.11). Only when the number is increased to at least 4000 is the resulting 

strain pattern consistent with the predictions. Increasing the number beyond this 

value does not cause any further changes in the results. Therefore, 1000 iterations 

are not sufficient to calculate a realistic solution. Instead, the maximum value of 

4000 allowed the calculation to reach the user-defined equilibrium. 

increasing strain 

Fig. 3.11. Strain distributions in a tube under four-point-bending to illustrate the effect of an 
insufficient number of iterations. Upper image: a model in which convergence has not been 
reached because of a user-defined too low number of iterations (1000), lower image: convergence 
could he reached thanks to a sufficient maximum of iterations (4000). 

This example shows that too low a number of iterations can lead to very 

misleading results. However, since the required number of iterations depends on 
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the number of elements as well as the complexity of the model, the value that is 

sufficient for this simple tube model cannot be generalised. In prior studies of 

high-resolution FE models, values of 40,000 iterations or more can be found 

(Verhulp et al. 2008). Similarly high values (20,000-50,000) are therefore used in 

this study, taking into account the resolution and complexity of the individual 

models. 
In addition to the parameters that control the FEA calculation itself, model 

parameters are important for the accuracy of the final results. These include the 

forces, constraints as well as the material properties assigned to the model. When 

the physiological loading of a bone like the mandible is to be simulated, the forces 

and constraints have to be consistent with anatomical descriptions of relevant 

muscles and joints, and physiological data such as bite force measurements, 

estimates of muscle forces and recorded activation patterns of the muscles. The 

material properties assigned to the model should ideally be based on 

measurements of the same specimen or of comparable specimens, for example, 

other individuals of the same species or in the case of extinct species of closely 

related extant species. 

The material properties of a bone can be either homogeneous (i. e. they do 

not vary between the different parts of the bone) or heterogeneous (i. e. they vary 

within the bone). At the level of the single finite element, the material properties 

can either be isotropic (i. e. the elastic constants have the same values in all 

directions) or anisotropic (i. e. the elastic properties of the material are not equal in 

all directions). When the material properties differ in each of three perpendicular 

directions, they are called orthotropic (van Eijden 2000, Currey 2002). 

Experimental studies have shown that the cortical bone of human mandibles, like 

other mammalian mandibles, has heterogeneous as well as orthotropic material 

properties (Arendts & Sigolotto 1989,1990, Dechow et al. 1992,1993, Schwartz- 

Dabney & Dechow 2003). Fewer studies have measured the material properties of 

cancellous bone in the human mandible, but the results indicate that properties 

vary between different regions, for example, in the condyle compared to the 

corpus (Misch et al. 1999, Giesen et al. 2001). Due to the computational limits of 

the solver PARA-BMU, the material properties of the models in this study are 
homogeneous and isotropic. However, the results of prior FE studies suggest that 
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even such simplistic models are able to provide reasonable stress and strain 

estimates (Strait et al. 2005, Kupczik et al. 2007). 

In order to assure that the FE models in this study are similarly realistic, a 

validation experiment is performed. For this purpose, a simple, reproducible load 

is applied to a dry human mandible and the resulting strains are measured. An FE 

model of the same specimen is then loaded and constrained in the same way and 

the estimated strains are compared with the experimental results (Chapter 4). 

3.8. Estimation of muscle forces 

When such a validation against in vitro data has been successful and the 

basic model attributes like model geometry and material properties have proven to 

be realistic, modelling of in vivo loading can be attempted. The biggest challenge 

is to model the forces of the masticatory muscles accurately. This requires the 

correct spatial distribution of muscle insertions, orientation of the lines of actions 

of the muscles as well as correct force magnitudes. 

The insertion areas of the human masticatory muscles are published in 

many anatomy textbooks (Gray et al. 2005). These are, however, generalised and 

simplified. Actually, there is considerable interindividual variation in the location 

and distribution of these attachment areas in humans (Goto et al. 1995). 

Attachment areas defined in the FE model should ideally be estimated based on 

measurements from the same individual, but for this study only dry human 

mandibles were available and it is not possible to obtain the exact muscle 

attachments in the fossil specimens. It was therefore necessary to assume grossly 

similar spatial distributions of attachment areas in the different individuals, taking 

into account morphological differences like different ramus breadths. The gross 
distribution is defined based on published illustrations of the respective insertion 

areas as well as on a partly dissected head of one human cadaver (Head 2006D). 

This head was CT-scanned (see 3.2 and 3.4 for more information about the 

specimen and the scanning parameters) so that a 3D model of the skull and the 

masticatory muscles could be created (Fig. 3.12). 

The line of action for each masticatory muscle is required for the accurate 
orientation of muscle vectors in the FE model. Ideally, it is estimated based on the 

muscle itself, by cutting the muscle into parallel slices and then connecting the 

centroids of these successive slices with a curve. This can be done by dissecting 
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the muscle or estimating these centroids based on CT and magnetic resonance 

imaging (MRI) scans, which provide virtual slices through the muscle (An et al. 

1984, Koolstra et al. 1989,1990, van Spronsen et al. 1997). 

  Superficial mass( 
  Deep masseter 
  Temporalis 

  Medial pterygoid 

  Lateral pterygoid 

Fig. 3.12.31) model of the human jaw-closing muscles. The model is based on a CT scan of a 

cadaveric head (Head 20061)). From left to right: frontal, lateral and inferior views. 

Most biomechanical models of the human masticatory apparatus are 

however based on the so called "straight-line" approach, in which the centres of 

origin and insertion of muscles or muscle portions are simply connected by 

straight lines (Pruim et al. 1980, Osborn & Baragar 1985, Anton 1990,1994, 

Koolstra & van Eijden 1995, Trainor et al. 1995, Osborn 1996, O'Connor et at. 

2005). Although functional units and other aspects of muscle anatomy are ignored 

by this approach, it seems to provide a reasonable approximation of muscle force 

direction (O'Connor et al. 2005). A major advantage of this approach is that it can 

be applied to dry skulls and thus also to fossils. Therefore it has been used here. 

Two specimens in the sample, one modern human (ANAT 800) and the early 

anatomically modern human Skhül 5, were represented by almost complete skulls 

so that the estimation of the lines of action was straight forward. However, the rest 

of the sample consisted of isolated mandibles. Therefore, crania from other 

individuals had to be used: the cranium ANAT 800 for the remaining modern 

human specimens, Guattari 1 for the two Neanderthal mandibles and Kabwe I for 

the H. heidelbergensis mandible (see 3.2 for more information about these 

specimens). After a simple threshold segmentation and in the case of Guattari I 
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and Kabwe 1a reconstruction of the damaged right halves of the crania by mirror 

imaging, the 3D models of these crania were fitted to the respective mandibles by 

rotation, translation and scaling in Amira (Fig. 3.13). The orientation of the lines 

of action was then determined by connecting the origin and insertion of each 

muscle or muscle portion. 

  Superficial masseter 
  Deep masseter 

Anterior & posterior temporalis 

  Middle temporalis 

  Medial pterygoid 

  Inferior lateral pterygoid 

Fig. 3.13. Reconstructed skulls and applied muscle forces. Upper row: the modern human 
ANAT 800, bottom row: a H. heidelbergensis reconstruction using Mauer I and Kahwe 1. Not to 
scale. 
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The maximum muscle force can be obtained by measuring the 

physiological cross-sectional area (PCSA) of each muscle, which is the total 

cross-sectional area of all muscle fibres at a specific length, and multiplying it by 

the intrinsic strength of skeletal muscle (O'Connor et al. 2005). For human 

masticatory muscles, several PCSA measurements are available (Schumacher 

1961, Pruim et al. 1980, Weijs & Hillen 1985,1986, van Spronsen et al. 1989, 

McDevitt 1989, van Eijden et al. 1995,1996,1997). For this study the 

measurements by van Eijden and co-workers (1995,1996,1997) are used 

(Table 3.4), since they provide the most detailed PCSA estimates, not only for 

whole muscles but also for muscle portions. However, in the case of fossil 

specimens, PCSA values can only be estimated based on measurements taken on 

the bone (Demes & Creel 1988). Here, the PCSA values for the Neanderthals 

were taken from O'Connor and colleagues (2005), who used bony proxies to 

estimate raw PCSAs, which they then multiplied by correction factors based on 

the comparison of their raw PCSAs for a sample of dry modem human skulls (n = 

26) with published mean values of actual masticatory muscle PCSAs obtained 

from in vivo magnetic resonance and CT scans (Weijs & Hillen 1986, Hannam & 

Wood 1989). Since they do not provide estimates for H. heidelbergensis, raw 
PCSAs were measured on Mauer 1 and Kabwe 1 using their methodology and 
definitions: 

Masseter: The product of masseteric "length" and "width". "Length" was 
defined as the length of the muscle origin on the zygomatic arch. "Width" was 
defined as the mediolateral distance, projected onto the Frankfurt horizontal plane, 
between the lateral edge of the zygomatic arch and the centroid of the muscle 

insertion area on the mandibular ramus. 
Temporalis: The area enclosed by the temporal fossa, projected onto the 

Frankfurt horizontal plane 

Medial pterygoid: The area of the triangle formed by the following three 

points on the interior aspect of the mandible: the gonion, the anteroinferior point 
of muscle insertion, and the superoposterior point of insertion on the ramus. 

The resulting raw PCSAs were then divided by the correction factors 

given by O'Connor and co-workers (2005): 0.99,0.64 and 0.26 for masseter, 
temporalis and medial pterygoid respectively. The final PCSA values are 
presented in Table 3.4 together with the published values for modem humans and 
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Neanderthals. However, it has to be noted that despite the correction factors, the 

PCSA values for the fossil specimens can only be regarded as crude estimates due 

to difficulties in measuring the required dimensions and the unknown relationship 

between estimated and real PCSA values in extinct taxa. 

PCSAs (cm2) 
Muscle 

H. sapiens' H. neanderthalensis2 H. heidelbergensis3 

Masseter 10.3 11.9 10.8 

Temporalis 13.3 13.3 15.4 
Medial pterygoid 6.0 11.9 10.0 

Inferior lateral pterygoid 2.8 - - 
'van Eijden et at. (1995,1996,1997), n=8 
20, Connor et al. (2005), n=3 (Amud 1, La Chapelle, La Ferrassie 1) 
3 based on measurements of the reconstructed H. heidelbergensis skull (Mauer mandible and 
Kabwe cranium) using the methodology of O'Connor et al. (2005). 

Table 3.4. Mean physiological cross-sectional areas (PCSAs) of the masticatory muscles in 

modern humans, Neanderthals and H. heidelbergensis. 

In order to obtain the maximum force for each muscle, all PCSA values 

were multiplied by the intrinsic strength of skeletal muscle. In this study a value 

of 32 N/cm2 was used, which is in concordance with published estimates of 

intrinsic muscle strength (Weijs & Hillen 1985, van Spronsen et al. 1989). 

Table 3.5 shows the final values for the maximum forces of the masticatory 

muscles. In order to model the different portions of masseter and temporalis 

individually as in modern humans, the maximum masseter and temporalis forces 

of Neanderthals and H. heidelbergensis were divided using the same relationships 
between the muscle portions as in modem humans (van Eijden et al. 1997). The 

PCSA and thus the maximum force of the inferior lateral pterygoid could not be 

estimated in the fossil specimens. In order to include this muscle for a relatively 

comprehensive modelling of the masticatory forces, the same values as for 

modern humans were assumed. 
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Muscle forces (N) 
muscle 

H. sapiens H. neanderthalensis H. heidelbergensis 

Superficial masseter 218 253 229 

Deep masseter 112 129 117 

Anterior temporalis 168 169 195 

Middle temporalis 137 138 159 

Posterior temporalis 119 119 138 

Medial pterygoid 192 382 315 

Inferior lateral pterygoid 90 90 90 

Table 3.5. Maximum muscle forces based on PCSA estimates in modern humans, Neanderthals 
and H. heidelbergensis, multiplied by an intrinsic muscle strength of 32 N/cm2. Due to the lack of 
PCSA data for the lateral pterygoid in the fossil taxa, the same maximum force as in modern 
humans is applied. 

The final step in the estimation of muscle force magnitudes is the scaling 

of the calculated maximum force for each muscle or muscle portion according to 

its activation. This is required since the masticatory muscles generate only a part 

of their maximum force during masticatory function. The recruitment pattern (i. e. 

the relative activation of each masticatory muscle and its portions), varies 

considerably between different masticatory tasks, for example, biting on the left 

M1 vs. the incisors. This is well documented in humans by abundant 

electromyographic (EMG) data (Moller 1966, Ahlgren 1966, Pruim et al. 1980, 

Blanksma & van Eijden 1990, Blanksma et al. 1992, Blanksma & van Eijden 

1995, Blanksma et al. 1997, Spencer 1998). 

Scaling factors' 

Muscle Incision Canine bite Molar bite 

Right Left Right Left Right Left 
Superficial masseter 0.40 0.40 0.46 0.58 0.72 0.60 
Deep masseter 0.26 0.26 0.46 0.58 0.72 0.60 
Anterior temporalis 0.08 0.08 0.54 0.14 0.73 0.58 
Middle temporalis 0.06 0.06 0.48 0.20 0.66 0.67 
Posterior temporalis 0.04 0.04 0.42 0.26 0.59 0.39 
Medial pterygoid 0.78 0.78 0.55 0.47 0.84 0.60 
Inferior lateral pterygoid 0.71 0.71 0.43 0.93 0.30 0.65 
'Nelson (1986), Korioth et al. (1992), Korioth & Hannam (1994) 

Table 3.6. Muscle force scaling factors used for different bites. 
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Table 3.6 presents the scaling factors used for the different bites that will 

be modelled here. These scaling factors by Nelson (1986) are the same ones that 

have already been used in several FEA studies of human mandibles (Korioth et al. 

1992, Korioth & Hannam 1994a, Reina et al. 2006, Ichim et al. 2006a, 2007b). In 

order to obtain the muscle force magnitudes to be applied to the FE model the 

estimated maximum force of each muscle or muscle portion is multiplied by the 

respective scaling factor. It is likely that Neanderthals and H. heidelbergensis had 

different activation patterns, since differences in craniofacial morphology can 

have an influence on the relative activation of the masticatory muscles (Moller 

1966), but since the muscle recruitment patterns of these taxa are unknown, the 

same scaling factors as for modem humans are here applied to them. 

3.9. Strain measurements using speckle interferometry 

Usually, strain in a bone under loading is measured with strain gauges that 

are glued to the bone surface. In the literature, numerous examples can be found 

of studies that successfully measured strains in different bones under in vitro as 

well as in vivo loading with strain gauges (Knoell 1977, Mongini et al. 1981, 

Hylander et al. 1987, Daegling 1993b, Throckmorton & Dechow 1994, Daegling 

& Hylander 2000, Vollmer et al. 2000, Strait et al. 2005, Kupczik et al. 2007). 

However, the use of strain gauges involves a number of technical problems. The 

reliability of the measurements depends, for example, on the quality of the solder 

connections, the amount of glue used to attach the strain gauges to the bone 

surface or the temperature and humidity of the environment. In addition, the bone 

surface needs to be flat to attach gauges, and if it is not, obtaining good adherence 

to the surface can be problematic. Finally, strain gauges only yield measurements 

for single points on the surface. As such, when they are used for the validation of 

an FE model, for which the pattern of strain distribution over the whole surface is 

relevant, they provide only limited data. 

In order to visualise strain distribution patterns, photoelastic material, for 

example, plastic, instead of strain gauges has been used in some in vitro studies. 
In some of these studies, the external surface of the mandible was coated with a 
layer of photoelastic material to study surface strains (Mongini et al. 1979, 

Calderale et al. 1986, Meyer et al. 2002), in other studies, photoelastic material 
was used to produce replicas of the mandible so that the internal strain distribution 
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pattern could be visualised (Ralph 1975, Ralph & Caputo 1975, Standlee et al. 

1977,1981). However, a major problem with this approach is that the mechanical 

properties of plastic are considerably different from those of bone (van Eijden 

2000). In addition, this method only visualises the strain distributions, but does 

not provide measurements of the strain magnitudes, which are also important for 

the validation of an FE model. 

A novel method for measuring surface strains, which is based on the 

principle of speckle interferometry overcomes these problems. Speckles are 

granular patterns, which appear when an optically rough surface (i. e. its height 

variation is in the order of or greater than the wavelength of the light, which 

applies to most surfaces) is illuminated with coherent light (Yang & Ettemeyer 

2003, Basara 2007). These speckles can be used to obtain information about the 

illuminated surface and have, therefore been applied in various ways, for example, 

for the measurement of surface roughness (Wykes 1977), contour (Jones & 

Butters 1975), vibration (Archbold & Ennos 1968), deformation (Archbold et al. 

1969, Archbold et al. 1970, Leendertz 1970) or the detection of cracks (Hung et 

al. 1975). 

For measuring surface strains of bones, two of these applications are 

relevant: the measurement of surface deformation and the measurement of surface 

contour. Figure 3.14 illustrates the principle of deformation measurements with 

speckle interferometry. A laser light is divided into two beams: one beam is used 

to illuminate the object surface (object beam), the other one is used as a reference 
beam. Before it reaches the camera, the back-scattered light from the object 

surface is recombined with the reference beam. The two wave fronts interfere and 

thus create an interferogram, which is detected by a camera. When the surface is 

deformed, the phase difference between the object and the reference beams 

changes. This phase difference is then used to calculate the deformation of the 

surface. If one reference and one object beam are used, only the displacement in 

one dimension can be measured, but with at least three light sources and thus 

three different directions of illumination a 3D displacement measurement of the 

surface is possible. 
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Fig. 3.14. Principle of strain measurements with speckle pattern intcri'cromet ry: a) undcformed 
state, b) del rmed state. Note the changing phase shift (cý) between object and reference beam 
during the deformation. CCD = charged coupled device, an electronic light sensor used in digital 

cameras (adapted from Yang & Ettemeyer 2003). 

In order to measure stresses and strains in complex surfaces, it is necessary 

to measure the surface shape. The setup for the shape measurements is similar to 

that for the measurement of surface deformations, but in this case the beams are 

slightly shifted over the surface (Zou et at. 1992). Since there is no surface 

deformation, the phase changes, which result from the shifting of the heims and 

thus the paths of light, encode information about surface shape. Based on these 

phase changes, it is possible to calculate the depth of the object surface in the 

viewing direction. 

This study uses a DANTEC Q-100 measuring system (DANTEC 

Dynamics GmbH, Ulm, Germany), which allows the measurement of stresses and 

strains as well the 3D shape of a surface. It consists of a laser box, an optical 

sensor, a control unit and a Windows PC on which the supplementary image 
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processing software IstraQ100 2.7 is installed (Fig. 3.15). The optical sensor of 

the Q- 100 system consists of four laser light sources and a digital camera. During 

measurement, the bone surface is thus illuminated from four different directions 

and the speckle images are recorded by the camera. The speckle images are then 

evaluated with the IstraQ l00 2.7 software, while the control unit acts as the 

interface between the software and the two other hardware components of the 

system: the laser box and the optical sensor. 

The application of the Q-100 DSPI system for measuring surface strains 
involves the following work steps: First the measuring area on the surface of the 

test specimen is freed from dust and dirt and covered with a thin layer of white 

spray in order to create a non-reflecting surface. For reliable measurements, the 

Q-l00 sensor has to be stably mounted onto the object so that it does not shift or 

tilt during the measurement. This is achieved by gluing a removable adapter ring 

to the object's surface, to which the front end of the sensor is attached. After the 

fixation of the sensor and the set-up of the system with the IstraQ l OO 2.7 

software, the shape of the measuring surface is recorded. Loads are then applied 

and the deformations are recorded by subtracting the reference images from the 

images of the deformed surface. 

1` 
Adaptor ring 

Fig. 3.15. the Q-IOO I)SFI A 1k L() niluments, 1)) it' all riuent t)I the four laser 
light sources and the digital camera in it, optical sensor (image h front Barara 2007: 62, Fig. 3. I2). 
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Fig. 3.16. Steps involved in the evaluation of speckle interferometry patterns with the IstraQ100 
2.7 software: a) phase maps, each representing the phase differences for one illumination direction, 
b) visualisation of the x-, y- and z-displacements, c) strain maps. 

-. 0 

Li 

0 

The image resulting from a deformation of the surface is a speckle pattern 

with fringes that represent lines of the same deformation. The distance between 

the fringes equals a displacement of half the wavelength of the light used. It is 

important to keep the number of fringes per measurement low, since a too high 

number of fringes affects the accuracy of the measurement. As a guideline, not 

more than four or five fringes should occur on an image. In order to achieve this, 

high loads have to be divided into smaller load steps. Thus, the total deformation 

between the reference and the final load is fragmented into a number of fringe 

patterns, each including only the recommended number of fringes. In addition, 

noise in the speckle patterns can occur at the margins of a surface or where the 

surface is orientated at a steep angle relative to the light sources. For accurate 

calculation of the displacements, such areas of noise have to be excluded from the 

measurement. Based on the fringe pattern, the phase differences between the 

reference and the deformed state are calculated and visualised as phase maps for 

each direction of the illumination (Fig. 3.16). In the following step, the x-, y- and 

z-components of the deformation for each pixel are calculated. Based on these 

displacement values, the stresses and strains are finally calculated and visualised. 
The stress and strain maps can be visualised in 2D, or in 3D when the 

contour data are used to generate a 3D surface model. Thus, this technique offers 

an ideal tool for comparisons with 3D FE models, since the 3D strain maps of the 

measuring field can be directly superimposed onto the corresponding area of the 

FE model. 
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Chapter 4: Validity of the used modelling approach: comparing the 

numerical predictions with the results of an in vitro experiment 

4.1. Introduction 

Prior FEA studies of human mandibles differ significantly with regard to 

basic model attributes like mesh resolution and type as well as material properties. 

In this study, some of these basic attributes (mesh type and number and type of 

material properties) are predefined by the use of the FE software VOX-FE, but to 

date its modelling approach has not been validated against experimental data. 

Other attributes like model resolution and material properties can be varied in 

VOX-FE, but it is not clear which values are necessary to predict experimental 

results most accurately. Before attempting to model complex physiological loads, 

it is therefore necessary to test the validity of basic model attributes against the 

results of a controlled in vitro experiment. In the following, it is reviewed how 

prior FEA studies of human mandibles differ with regard to these basic attributes 

and the effects of varying these parameters on the accuracy of FEA results is 

considered. 

In the first FE models of human mandibles, model geometry was derived 

from manual measurements, which resulted in rather crude representations of 

mandibular shape (Gupta et al. 1973, Knoell 1977). Later studies used CT data 

and could thus achieve a much more accurate model geometry (Hart & 

Thongpreda 1988, Vollmer et al. 2000). Nowadays, the application of pCT data 

allows the creation of highly detailed FE models, which even include small 
foramina or the trabecular network within the bone (van Rietbergen et al. 2003, 

Verhulp et al. 2008). Thus, there has been a clear trend towards more accurate 

model geometry in FE modelling, but high-resolution models based on iCT data 

require powerful hardware and/or long processing times. It is therefore worth 

examing the extent to which high-resolution data are required to address a certain 

question and how much the model resolution can be reduced without affecting the 

quality of the results. 
The model resolution is closely linked to the meshing approach and the 

resulting element types. Most published FE models of human mandibles consist of 
tetrahedral elements, which are typically larger than the voxels in the original CT 

scans (Ichim et al. 2006b, 2007b). Direct voxel conversion (i. e. each voxel in the 
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segmented CT image stack is converted into finite elements) has been mainly 

applied to long bones, particularly to create high-resolution models of the 

trabecular structure within the femur (van Rietbergen et al. 2003, Verhulp et al. 

2006, Chevalier et al. 2007, Verhulp et al. 2008, Tsubota et al. 2009), but has 

hardly been used in FEA studies of mandibles (Vollmer et al. 2000, van Ruijven 

et al. 2007). As discussed under 3.7, direct voxel conversion allows a fast and 

error-free creation of FE meshes, but the resulting models have stepped surfaces 

in contrast to the smooth surface of tedrahedral meshes, which might affect the 

accuracy of the results depending on the element size (Yeni et al. 2005). 

Another aspect closely linked to model resolution is the way in which the 

internal structure, particularly the geometry and the material properties of the 

cancellous bone are modelled. Unless extremely high-resolution PCT data is 

available, it is not possible to model the geometry of the trabecular network 

accurately. The spatial resolution needs to be so high that the diameter of a single 

trabecula is at least depicted by two voxels (Scherf & Tilgner 2009). Otherwise 

partial volume averaging (see 3.5) does not allow accurate segmentation, since the 

attenuation values of bone and air get mixed within the voxels. In addition, the 

scanning parameters have to be optimised in order to reduce image blurring and 

soft tissue, which can cause major problems for the correct identification of bone 

boundaries, should be removed completely prior to scanning. Since most CT 

datasets used for the FEA of mandibles do not fulfil these requirements, many FE 

studies have modelled the cancellous bone as a homogeneous bulk tissue using 

different material properties (Korioth et al. 1992, Tanne et al. 1993, Korioth & 

Hannam 1994a, Ichirr et al. 2006b). A major problem with this approach, 

however, is that it does not account for the large variations in density of the 

trabecular network between as well as within specimens. It is therefore worth 

examining whether modelling cancellous as bulk material really can produce more 

realistic results than simple threshold segmentation. 

The material properties assigned to models also differ substantially 
between prior studies. The simplest approach is to assign homogeneous and 
isotropic elastic properties to the model (Gupta et al. 1973, Knoell 1977, Ichim et 

al. 2006b), which is also the approach used in this study. However, studies that 

measured the material properties of fresh and dry human mandibles have shown 
that material properties are actually heterogeneous and orthotropic (Arendts & 
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Sigolotto 1989,1990, Dechow et al. 1992,1993, Schwartz-Dabney & Dechow 

2003). Most FE studies of human mandibles have therefore tried to account for 

either the heterogeneity, orthotropy or both (Korioth et al. 1992, Korioth & 

Hannam 1994a, Vollmer et al. 2000). In order to model the heterogeneous 

distribution of material properties, some voxel-based FEA studies assigned the 

elastic modulus of each finite element automatically, based on the attenuation 

value of the corresponding voxel in the original CT dataset (Vollmer et al. 2000). 

The elastic properties assigned by this method are however isotropic, so that 

orthotropy is not accounted for. Other studies have used heterogeneous as well as 

orthotropic or at least transverse isotropic material properties based on 

experimental measurements (Korioth et al. 1992, Hart et al. 1992, Korioth & 

Hannam 1994a). Validation studies have shown that the predicted strain 

magnitudes of such orthotropic heterogeneous models come closest to 

experimental results, but that nonetheless isotropic homogeneous models are well 

able to predict overall strain distributions (Marinescu et al. 2005, Strait et al. 

2005, Kupczik et al. 2007). 

However, as has been described in the previous chapter (3.9), traditionally 

bone strains in such experiments have been measured with strain gauges, which 

only provide single point measurements on the surface. The spatial distribution of 

strain magnitudes is thus measured with very limited resolution. The optical full- 

field and non-contact strain measurement technique of electronic or digital 

speckle pattern interferometry (ESPI or DSPI) overcomes this problem (Jones & 

Wykes 1989, Yang & Ettemeyer 2003). To date, few studies have applied DSPI to 
bone, either for measuring strains (Tyrer et al. 1995, Su et al. 2005, Kessler et al. 
2006, Yang et al. 2007, Yang & Yokota 2007) or elastic properties of loaded 

bones (Zhang et al. 2001, Zaslansky et al. 2005, Shahar et al. 2007, Barak et al. 
2009). The results of these studies confirm the high reliability and practicality of 
this technique compared to strain gauges. However, the use of DSPI as a tool for 

validating FE models of bones has not yet been explored, except for a study that is 

part of this work (Gröning et al. 2009). 

In this study, DSPI is used to measure surface strains in a dry human 

mandible under simple loading in the laboratory and the results are compared to 
FE models of the same specimen. The major aims of this validation study are: 1) 

to test the accuracy of the used voxel-based FE modelling approach with isotropic 
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homogeneous material properties, 2) to evaluate to what degree different scan and 

model resolutions as well as different ways of modelling the internal geometry of 

the bone affect the validity of the FEA results and finally 3) to assess the potential 

and limitations of this novel technique for the validation of FE models in the field 

of bone mechanics. 

4.2. Material and methods 
The experimental strain analysis was performed on a dry adult human 

mandible (H-A 004), which is complete apart from some damage to the anterior 

dentition and two holes in each ramus, since this specimen was attached to a 

cranium with metal springs. 
During the experiment, loads were applied to this mandible with a Lloyd's 

EZ50 tensile testing machine (Ametek-Lloyd Instruments Inc., UK). The 

mandible was placed upside down in the machine so that it rested on the two 

condyles and the anterior teeth (Fig. 4.1). Compressive loads were then applied to 

the mandibular angles on both sides of the mandible. In total, eight load series 

were conducted, in which the loads were increased in 50 N steps from 0 to 250 N. 
Deformations were measured using a Q-100 DSPI measuring system (see 

3.9 for technical details). Two measuring areas on the right side of the mandible 

were selected, each ca. 25 x 33 mm in size, which is the maximum field of view 

of the Q-100 DSPI system. Figures 4.1 and 4.2 show the location of the 

measuring fields on the mandible. Prior to loading of the specimen, the bone 

surface in the respective areas was covered with a thin layer of white spray 
(DIFFU-THERM developer BAB-BCB, Technische Chemie KG, Herten, 

Germany) in order to create a non-reflecting surface and the three-legged adaptor 

rings for the Q-100 sensor were glued onto the bone surface using X60 two 

component adhesive (HBM Inc., Darmstadt, Germany). After the mandible was 

placed in the tensile testing machine, the sensor was fixed to one of the adaptor 

rings. 

First, the 3D surface topography was measured in each illuminated area 
prior to loading. This topographic measurement allows the accurate calculation of 
the strains even on objects with complex surface contours (Yang & Yokota 2007). 
Next, the loads were applied and the resulting speckle patterns were used to 
estimate x-, y- and z-displacements for each load step using IstraQlOO 2.7 
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software (DANTEC Dynamics GmbH, Ulm, Germany). From these, maximum 

(Ei) and minimum principal strain (E3) were computed and exported as 2D and 31) 

colour-coded maps and text data files. 
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Fig. 4.1. Drawing and photo of the expert mental setup. The arrow in the drawing indicates the 
position and orientation of the applied force, which acts symmetrically on both sides of the 
mandible (H-A 004). The dashed rectangles highlight the two measurement area- (a) and (h). 'the 
photo shows the mandible in the mechanical testing machine, with the two adaptor rings and the 
Q-100 I)SPI sensor attached to the upper ring on the mandibular corpus. 
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Fig. 4.2. tIts ul'the two, iIIiiimnatcd area" of the hunt , uu-face: a) area on the mandihul, ir corpus 
around the mental foramen and h) central area of' the mandibular raunus around an artificial hole. 
The thin white lines indicate the boundaries of the measurement areas, whereas the while 
rectangles show the linear areas from which strain profiles were extracted. Scale harz = Icut. 

In order to create FE models of the test mandible, the specimen was ('T- 

scanned prior to mechanical testing (see 3.4 for additional details). Iligh- 

resolution iCT data were obtained using an X-Tek HMX 160 N('1' system. Since 

the mandible was slightly above the size limit for this scanner, the two halves of 
the specimen were scanned separately. The primary reconstruction resulted in 

16-bit TIFF image stacks with a voxel size of 0.122 mm for the right half and 
0.135 mm for the left half. 
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In addition, medical CT scans were taken of the specimen with it GE 

Medical Systems BrightSpeed scanner. The image stacks were reconstructed with 

a pixel size of 0.488 nim and it slice interval of 0.625 nom and exported as 

DICOM image stacks. Figure 4.3 illustrates the difference in resolution between 

the medical and the pCT scan. 

Fig. 4.3. Coronal C"I slices through the right sccund molar: a) mcIical ('"I scan with a voxcl site 

of 'O. 498 x 0.49) x 0.625 nom, h) pCT scan with a voxel size of 0.122 nim in all directions. 

Image segmentation was performed using Aniira. Bone and teeth were 

separated from the surrounding air by a user-defined density threshold. The voxels 

of the segmented medical CT scan were converted into an isotropic data set with it 

resolution of 0.488 nom in all three axes. The pCT data already consisted of 

isotropic voxels, but since the two sides of the mandible were scanned 

individually with the tCT scanner, the segmented data volumes of the two halves 

were reconnected in Amira by landmark-guided superimposition of the 

overlapping areas. 

In order to distinguish between the effects of scan resolution and nli)del 

resolution (i. e. element size), the 3D model based on the iC i' dataset was 

downsampled to the voxel size of the low-resolution model (O. 4KK mm in all axes) 

and thus an additional model was created (Fig. 4.4). This model was also used to 

test the effect of modelling the cancellous tissue in two different ways. f or this 

purpose, the whole volume encapsulated by the cortical shell was filled and 
defined as an extra material using the segmentation tools of Amira (Fig. 4.5). 

The resulting 3D volume datasets were exported as BMI' image stacks and 

converted into finite element meshes by direct voxel conversion resulting in 

element numbers and sizes of ca. 450, OO0 (ca. 600, (X)0 for the models including 
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cancellous tissue as an extra material) and 0.488 n1m respectively for the low- 

resolution models and 19.6 million elements with a size of 0.135 min for the high- 

resolution pCT model. 

The FEA was performed using VOX-FE (Fagan et al. 2007). Isotropic 

material properties of 17 GPa for Young's modulus (E) and 0.3 for Poisson's 

ratio (v) were assigned to both bone and teeth, which are values that lie within the 

range of published values for human mandibles (Ashman & van Buskirk 1987, 

Arendts & Sigolotto 1989,1990, Dechow et al. 1993, Schwarte-Dahncy & 

Dechow 2003). In the model, in which cancellous tissue was included as a hulk 

material, cortical hone was assigned the same material properties as above, but 

different Young's moduli were defined for the cancellous hone tissue: F, = 

0.056 GPa based on measurements of cancellous hone tissue in the human 

mandibular corpus (Misch et al. 1999), E=0.431 GPa based on measurements of 

the cancellous tissue in the human mandibular condyle (Gieren et al. 2001 ), and 

E=1.5 GPa, which is the highest value found in recently published FFA Studies 

of human mandibles (Field et al. 2008). In all cases the same Poisson's ratio as for 

cortical hone was applied (v = 0.3), which is consistent with prior FEA studies 
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that modelled cancellous hone as a bulk tissue (Korioth et al. 1992, Korioth & 

Hannam 1994a, Choi et at. 2005, Ichim et al. 2006h, Field et al. 2008) 

`1 

\ý 

\` 

\' 

" model. Fig. 4.5. Material representing cancellous hone tissue within the downsamplcd NCI' 
Cortical hone and teeth have been made transparent. 

To summarise, 6 different models were analysed: 1) the high-resolution 

model based on the pCT scan, 2) the low-resolution model hatted on the medical 

CT scan, 3) the downsampled pCT model, 4) the downsampled model with 

cancellous tissue as an extra material with E=0.056 GPa, 5) with F=0.431 (; Pa 

and 6) E=1.5 GPa. 

In order to simulate the experimental loading conditions, the FE models 

were constrained in the vertical axis at the tips of the anterior teeth and the 

condyles, with vertical compressive forces applied to a small region of the 

mandibular angle on each ranlus (Fig. 4.6). The number of constrained or loaded 

nodes was chosen to be inversely proportional to the resolution of the FI: models, 

in order to ensure that the loaded surface areas were of similar size in the different 

models. Solution of the FE models was carried out on a 32 processor Eagle I11'(' 

(high-performance cluster) with ca. 10,000 iterations for the low-resolution model 

and ca. 50,000 for the high-resolution model. 
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I 

Y 

Z 
Fig. 4.6. Low- and high-resolution FE models and the illustration of the houndary conditions. Lett: 
Iow-resolution model based on the medical CT scan (element si/c = 0.498 ntm). The arrow points 
at the nodes where the vertical force (maximum = 250 N) was applied. The two triangle. indicate 

the constrained nodes. At these nodes only displacements in the y-axis were prevented. Right: 
high-resolution model based on the pCT scan (element size = 0.135 mm). 

In order to quantify the changes in the experimentally measured strain 

magnitudes with increasing load, the mean maximum (c1) and minimum principal 

strains (C3) were calculated for each load step and load series, considering the 

values for every eighth point in the measurement area, which were approximately 

1.1 mm apart. These average strain values were then used to compute the mean 

for each load step for all series. The reliability of these overall means was 

evaluated by calculating standard errors. To compare the experimental and FEA 

results, 3D surface models based on the DSPI shape measurement were created 

and superimposed on the CT-based 3D models in Amira using its automatic 

surface alignment tool. Thus, the measuring areas could he matched between the 

experiment and the FE models. Corresponding profiles of maximum and 

minimum principal strain values were then exported from the FEA results and the 

measured strain maps. Since the spatial resolution of the Q-100 DSPI measuring 

system is limited to typically 0.5 mini (Barara 2007), several parallel profile 

measurements were taken per measuring field, covering an area of ca. 1.5 mnm 

width X 25 mm length (Fig. 4.2). Based on these parallel profiles, a mean strain 

profile for each sampled area was calculated. For consistency with the profiles 
from the DSPI strain naps, which represent a 2D projection, the FE: A profiles 

were scaled according to the projected distance between start and end point of 

each profile. The variance of the DSPI strain profiles was quantified by 
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computing the standard deviations of the corresponding strain values from the 

different recordings. 

4.3. Results 

Figure 4.7 shows that the recorded strain magnitudes are linear with 

increasing load in both areas under investigation. Only the strains measured 

during the second load step on the mandibular ramus deviate from this pattern. In 

this load step the mean maximum principal strain is higher than expected, while 

the minimum principal strain is lower than expected. The standard errors differ 

between the two measuring areas. Those for the mean maximum principal strain 

are considerably larger than the ones for minimum principal strain in the ramus, 

and vice versa in the corpus. However, for the maximum load of 250 N, which is 

used here for the comparison between measured and predicted strains, the 

standard error is only ±8 is (9% of the mean) for maximum principal strain in the 

ramus and ±4 Ve (-5% of the means) or below for the other three mean strain 

values. In addition, the DSPI colour-coded strain maps yielded a very consistent 

strain pattern across the load series as well as across the load steps within each 

series. 

When the experimental and FEA results are compared, the contour maps 
for the maximum load of 250 N show very good concordance with regard to the 

spatial distribution of low and high strain areas as well as principal strain 
directions (Fig. 4.8). Figures 4.9 and 4.10 show the variations of the measured 
and predicted maximum and minimum strains through the two sample areas. The 

similarity between the experimental and predicted curves is striking: most 

predicted values lie within two standard deviations of the mean experimental 

values. 
Interestingly, the two original FE models based on the medical and PCT 

scans yield largely similar results despite the significant difference in resolution. 
The greatest difference occurs in the right (posterior) half of the mandibular ramus 
region, where the minimum principal strain values predicted by the low-resolution 

medical CT model fall outside the range of two standard deviations of the mean 
experimental values, while the predictions of the high-resolution model lie within 
this range. A more locally restricted difference between the two models is found 
in the area directly below the mental foramen. Here the medical CT model 
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predicts the minimum principal strain distribution very accurately, but the 

magnitudes are lower than the ones measured in the experiment. The strain 

magnitudes predicted by the high-resolution model are, in contrast, very close to 

the experimental means. 
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Fig. 4.7. Measured mean maximum and minimum principal strain values against the applied load 
for the two measurement areas. The bars represent the standard error for each load step. 

The model that was created by downsampling the high-resolution pCT 

model to the element size of the medical CT model, yields strain profiles that are 

very similar to those of the two original models. However, in the two areas, where 

the original models differ, directly below the mental foramen and in the posterior 

half of the mandibular ramus, the strain magnitudes predicted by the 

downsampled model lie between the two original models, but fall a bit closer to 

the values of the high-resolution model and thus also to the experimental mean 

values. 
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Fig. 4.8. Comparison of predicted and measured minimum principal strains in the two 
measurement areas for an applied load of 250 N. The FE model shown is the high-resolution PCT 
model (element size = 0.135 mm). Top and third rows: measurement area on the mandibular 
ramus; second and bottom rows: measurement area on the mandibular corpus. The black lines 
indicate the strain directions. 
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Fig. 4.9. Comparison of' the mean experimental and predicted maximum and minimum principal 
strain profiles through the mandibular ramus area (applied load = 250 N). The models differ in the 
resolution of the original CT scans and element size or only in element size. 

Figures 4.11 and 4.12 illustrate the effect of modelling the cancellous 

bone tissue in different ways. The strains predicted by the models, in which 

cancellous bone was modelled as a bulk tissue with different material properties 

than cortical bone, are very similar to the strains predicted by the original 

downsampled model, in which those trabeculae that could be segmented by 

thresholding have the same material properties as the cortical bone. Some strain 

values, for example, minimum principal strain in the posterior half of the ramus 

are slightly better predicted by the models with cancellous tissue as a separate 

material, but others, for example, maximum principal strain in the anterior third of 

the mandibular ramus are better predicted by the original downsampled model. 
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Fig. 4.10. Comparison of the mean experimental and predicted maximum and minimum principal 
strain profiles through the mandibular corpus area (applied load = 250 N). The models differ in the 

resolution of the original CT scans and in element size or only in element size. 

Changing the Young's modulus of the cancellous tissue results in only 

minor strain differences. The smaller the values for Young's modulus, the higher 

are the strain magnitudes, but this is an increase of less than 10 Pr in most areas. 

The increase is a bit larger locally for minimum principal strain in the corpus, but 

still only of ca. 20 pc. Like the original downsampled model, the predicted strain 

values of the different cancellous tissue models lie mainly within two standard 

deviations from the experimental means. None of the models predicts the 

experimental values consistently better than the others. A lower Young's modulus 

results in slightly more realistic strain values in one area, for example, for 
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minimum principal strain below the mental foramen, but in another, for example, 

the right end of the same strain profile, a higher Young's modulus leads to slightly 

more accurate results. 
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Fig. 4.11. Comparison of the mean experimental and predicted maximum and minimum principal 
strain profiles through the mandibular ramus area (applied load = 250 N). The models differ with 
regard to the geometry and the material properties of the cancellous hone tissue. 
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Fig. 4.12. Comparison of the mean experimental and predicted maximum and minimum principal 
strain profiles through the mandibular corpus (applied load = 250 N). The models differ with 
regard to the geometry and the material properties of the cancellous hone tissue. 
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4.4. Discussion 

The results of this study show that the application of DSPI yields 

consistent and reliable measurements of bone strains. In addition, the 

correspondence between the experimental and FEA results is very good, not only 

with regard to strain magnitudes and their spatial distribution but also with regard 

to principal strain directions. The strains predicted by all models are very similar 

overall, despite the large differences in model resolution and original scan 

resolution as well as the geometry and material properties of the cancellous tissue. 

Only in one area, the posterior ramus region (Fig. 4.9) did model and scan 

resolution have a major effect. 
This high degree of correspondence is remarkable, since homogeneous and 

isotropic elastic properties were assumed in the FE models, although 

measurements of the material properties of fresh and dry human mandibles show 

that the elastic properties are actually heterogeneous and orthotropic (Ashman et 

al. 1984, Arendts & Sigolotto 1989,1990, Dechow et al. 1993, Schwartz-Dabney 

& Dechow 2003). In addition, strain gauge validation studies, using Macaca 

fascicularis crania and mandibles, suggest that orthotropic heterogeneous models 

produce strain magnitudes closest to experimental results, whereas isotropic 

homogeneous models show the lowest correspondence (Marinescu et al. 2005, 

Strait et al. 2005). These differences relate particularly to the strain directions and 

magnitudes, more than the distribution maps which are generally consistent with 

the patterns measured in both in vitro and in vivo experiments (Strait et al. 2005, 

Kupczik et al. 2007). However, the results of this study indicate homogeneous and 
isotropic elastic properties are sufficient, at least in this experimental setup, to 

accurately predict strain distribution, strain magnitudes as well as strain 
directions. It is possible that varying values for the elastic properties might 
improve the fit between our measured and predicted strains, but given the quality 

of correspondence between the experimental and modelling estimates the gains 

are likely to be small. 

The results also have implications regarding model creation. Unlike most 
FEA studies, which use tetrahedra or polyhedra of varying shape resulting in 

smooth model surfaces (Rayfield et al. 2001, Strait et al. 2005), the FE models in 

this study have been created by the direct conversion of voxels into brick elements 
(Fagan et al. 2007). Although this meshing approach is very straightforward and 
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fast, the use of brick elements creates an artificially stepped model surface. 

However, the comparison between the FEA results and the DSPI measurements 

indicates that the surface strains can still be predicted accurately by brick element 

models with a sufficient number of elements. The predictions of the high- 

resolution iCT model come very close to the experimental results and 

downsampling the model to a much larger element size has only a small effect on 

the accuracy. This indicates that a brick element size of 0.488 mm in all directions 

is already sufficient to model surface strains accurately. 

The model based on the low-resolution medical CT scan also produced 

realistic results. Only in one region, the posterior half of the ramus, did it fail to 

adequately predict the strain field. Nowadays, the application of VCT scanning 

allows the creation of highly detailed FE models (van Rietbergen et al. 2003, 

Verhulp et al. 2008), but the large data sets require significant computing power 

and processing time. The finding that the two models based on a high-resolution 

pCT scan and a low-resolution medical CT scan predict similar strains, indicates 

that FE models based on relatively low resolution CT scans can be sufficient, 

especially if only the relative strain distribution across the bone surface is of 

interest, but the model resolution needs to be increased, when strain gradients in 

small areas are to be assessed accurately. 

By comparing the results of the medical CT scan model with those of the 

downsampled VCT scan model, which both have the same element size of 0.488 

mm in all directions, the effect of the scan resolution can be evaluated in isolation 

from element size. As expected, in those areas where the medical and original 
high-resolution pCT models differ, particularly in the posterior ramus region, the 

downsampled pCT model predicts strain values that come closer to the measured 

strains. Figures 4.4 illustrates the most likely reason for this. At the height of the 

profile measurements, the ramus is filled with a relatively dense trabecular 

network. Due to the low spatial resolution and the blurriness of the images of the 

medical CT scan (Fig. 4.3), thresholding based on the half-maximum height 

protocol results in a model with an artificially solid cross-section in this region, 

since the attenuation values of bone and air are averaged within voxels (Fig. 4.4). 

The transverse sections though the corpus at the border of the mental foramen 

show little differences between the segmentation results based on the medical and 

the pCT scan. Accordingly, the strain profiles from the same location are very 
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similar between the models. These results show that scan resolution does not 

necessarily have a global effect on the strains, but that the effects can vary 

between different regions within the same specimen, so that the strain pattern 

across the surface might be altered slightly. FEA studies that compare the results 

from models based on scans with varying resolution need to take this into account 

as a potential source of error. Ideally, all specimens of a sample are scanned with 

the same scanner and identical scanning parameters to achieve maximum 

comparability. 
Interestingly, modelling the cancellous bone in different ways has only a 

small effect on the strains and none of the respective models is consistently better 

in predicting the experimental strains. This is surprising, since the range of 

Young's modulus values assigned to the cancellous tissue as an extra material 

cover the relatively large range of published values from measurements of human 

mandibular cancellous tissue (Misch et al. 1999, Giesen et al. 2001). The highest 

value of 1.5 GPa, which was taken from an FE study (Field et al. 2008), is even 

above this range as well as above the range of Young's moduli for cancellous 

tissue in other human bones, which spreads from 0.004 to 0.350 GPa 

(Hodgskinson & Currey 1992). Nonetheless, the model with this high Young's 

modulus predicts the experimental strains as well as the other models. The strain 

differences between the models with cancellous tissue as an extra material and the 

original downsampled pCT model, in which large trabeculae were segmented by 

threshold segmentation, are slightly larger, but it cannot be stated that any of these 

models is better in predicting the measured strains. It seems that a semi-automatic 

threshold segmentation can yield results that are as good as those from a time- 

consuming manual segmentation of cortical bone and cancellous tissue. 

Again, this is surprising since the resolution of the iCT scan did not allow 

to extract the whole trabecular network by one threshold, so that only large 

trabecular struts are present in the model. In addition, the downsampling of the 

model resulted in a further reduction of the network (Fig. 4.4). However, a major 

advantage of this approach is that it takes the gross geometry of the trabecular 

network into account and thus the variation in its density within the bone. When 

the cancellous bone tissue as a whole, including the trabeculae as well as the holes 

between them, is modelled as one material, such density variations can be 

simulated by heterogeneous material properties, but this requires time-consuming 
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manual image processing or an algorithm that automatically converts the 

attenuation value for each voxel into a Young's modulus value. If heterogeneous 

properties are assigned manually, then there is the problem that published data on 

the mechanical properties of cancellous tissue in the human mandible are 

insufficient for modelling the variation within the whole bone (Misch et al. 1999, 

Giesen et al. 2001). Modelling the gross geometry of the trabecular network and 

applying the same mechanical properties to cortical bone and to the cancellous 

bone material (i. e. the bone within each trabecular) appears to be more 

straightforward. Experimental measurements and FEA studies have shown that 

the Young's modulus of human cancellous bone material is indeed very similar to 

that of cortical bone (see Currey 2002: 149 for an overview of published values). 

These measurements refer to cancellous bone in long bones, but it can be assumed 

that the values are also similar for cancellous bone in the mandible. The FE 

models in the subsequent studies (Chapters 5 to 10) will, therefore, follow the 

same approach: trabeculae will be segmented by thresholding and the same 

mechanical properties as for cortical bone will be applied to them. 

Finally, this study shows that the application of DSPI to the evaluation of 
bone strains is very promising. Only two potential drawbacks of this method can 
be reported. Firstly, the load applied during measurement must be small since 

there is an upper limit to the number of displacement fringes that can be recorded 
(Archbold et al. 1970). Therefore, larger loads have to be divided into smaller, 
incremental loads and the experimental setup needs to be adjusted accordingly. 
Secondly, DSPI is a highly sensitive measurement technique, thus mechanical 

vibrations or any motion caused by inappropriate fixture of the specimen can 

result in uninterpretable data (Yang & Ettemeyer 2003, Yang et al. 2007). 

Consequently, very stable and controlled loading is required, which induces some 

practical limitations for experimental studies. It is likely that the variance of our 

observed strain values can be partly explained by instabilities in our experimental 

setup, for example, some minor movements might have occurred at the condyles 

and at the points of contact between the tooth roots and the alveolar sockets 
during loading. 

However, the advantages of DSPI compared to strain gauges outweigh the 
few drawbacks of this technique. The DSPI equipment is easy to handle, the 
application non-destructive and the measured strain distribution over the surface 
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can be visualised and directly compared with equivalent strain contour plots in FE 

models. In addition, the method can measure the strain on curved surfaces and 

around features, such as in the mandible presented here. Since DSPI is a full-field 

measurement technique, many data points are generated with each measurement, 

so that statistical methods can be applied to test hypotheses. In this study, only 

one-dimensional data from profiles across the surfaces have been used for a 

quantitative comparison between experimental and FEA results. For future 

validation studies however, the application of DSPI offers the opportunity to 

apply statistical methods that compare the complete 3D strain or displacement 

pattern of the DSPI maps with the FEA results. 
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Chapter 5: Modelling the human mandible under masticatory loads. 

Which input variables are important? 

5.1. Introduction 

The validity of an FE model depends on several factors: its geometry, the 

material properties assigned to the model as well as the external forces and 

constraints, which are applied. The relative importance of these for the results of 

the FEA can be estimated by sensitivity analyses (Dar et al. 2002, Marinescu et al. 

2005, Ross et al. 2005, Strait et al. 2005). During a sensitivity study, one or more 

input parameters are varied and the effect on the resulting stresses and strains is 

quantified. Such an estimate of the relative importance of the different input 

parameters is particularly required when decisions have to be made as to how best 

to simplify the model, for example, in order to save computing time or because of 

limitations of the software used, without severely compromising the accuracy of 

the results. Ideally, sensitivity studies are combined with validation studies in 

order to estimate not only how large the effect of changing one variable is, but 

also to assess which combination of parameters leads to the most accurate results. 

If the function of a bone in the living organism is to be simulated, model 

geometry and material properties can be validated against data from in vitro 

experiments (Chapter 4). However, the forces and constraints depend on attributes 

of the system, which cannot be simulated with in vitro experimental setups. In the 

case of mandibles, these are, for example, the orientation, forces and activation 

patterns of the masticatory muscles and how movements of the mandibles are 

guided and restricted by the intact temporomandibular joints (TMJs). In order to 

test whether the forces and constraints applied in the model are realistic, the 

predicted strains would therefore have to be compared against the bone strains 

measured in vivo. In vivo strain data have been collected for mandibles of a 

number of different mammals including, for example, bovids and camelids 
(Williams et al. 2009), sheep (Thomason et al. 2001), hyraxes (Lieberman et al. 
2004a), pigs (Marks et al. 1997, Liu & Herring 2000), opposums (Crompton 

1995) and non-human primates (Hylander 1979b, 1984, Hylander & Crompton 

1986, Hylander et al. 1987, Ross 1993, Ross & Hylander 1996, Hylander et al. 
1998). For ethical reasons it is not possible to measure in vivo strains in the human 

mandible. This study is therefore restricted to the comparisons of the overall strain 
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distributions and ranges of strain magnitudes known from animal experiments, in 

order to test the validity of the used modelling approaches. 

Prior FEA studies that have tried to simulate masticatory loads, differ 

significantly with regard to input variables: for example, whether periodontal 

ligament (PDL) and the soft tissue in the TMJs is modelled or whether forces or 

constraints are applied to bite points and joint facets. These differences regarding 

basic input variables might have a major influence on the results, but often 

published FEA results are not accompanied by sensitivity studies, which have 

assessed the consequences of changing input parameters. In the following, it is 

reviewed how prior FEA studies vary with regard to some of these input variables 

and briefly described why these variables are relevant. 

Whether PDL should be modelled as an extra material with specific 

material properties in order to obtain realistic bone strains, is of major importance 

for the model creation process. In general, FE models of whole mandibles or 

crania are created based on CT scans of dry specimens, where PDL is no longer 

present, or in the case of fresh specimens the resolution of the scan is not 

sufficient enough to allow automatic threshold segmentation. Therefore, the 

inclusion of PDL as an extra material requires time-consuming manual 

segmentation: painting with a virtual brush around each tooth root in the CT 

slices. Most FEA studies of non-human crania and mandibles do not include a 

layer of PDL with specific material properties (Rayfield et al. 2001, Strait et al. 

2007), but FEA studies of human mandibles commonly include it (Korioth et al. 
1992, Korioth & Hannam 1994a, Vollmer et al. 1999, Reina et al. 2006, Ichim et 

al. 2007b). FEA studies, which model the PDL differ significantly in the material 

properties they assign to it, ranging from different types (e. g. homogeneous vs. 

heterogeneous) of linear elastic material properties (Andersen et al. 1991, Korioth 

et al. 1992, Korioth & Hannam 1994a, Reina et al. 2006, Ichim et al. 2007b), to 

bilinear and nonlinear elastic material properties (Vollmer et al. 1999, Cattaneo et 

al. 2005, Kober et al. 2006b, Cattaneo et al. 2009). Only a few studies have 

validated the chosen material properties against experimental data or included 

sensitivity analyses (Andersen et al. 1991, Rees & Jacobsen 1997, Cattaneo et al. 
2005, Ichim et al. 2007b). A sensitivity study using a human mandible found that 

including the PDL as a bilinear elastic material results in lower strains in the 

alveolar bone and that the PDL thus functions as a force absorbing structure 
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(Kober et al. 2006b). However, the effect on other regions of the mandible has not 

yet been investigated with FEA, so that further sensitivity studies need to be 

conducted. 
How the reaction forces at the TMJ are modelled in FEA studies is also 

highly variable. Some authors model these as forces, which they apply either to 

the mandibular condyles or the glenoid fossae (Rayfield et al. 2001, Rayfield 

2005), whereas in FEA studies of human mandibles constraints are usually 

applied to the joints (Haskell et al. 1986, Korioth et al. 1992, Korioth & Hannam 

1994a, Reina et al. 2006, Ichim et al. 2006a, 2007b). The latter is either done by 

constraining the mandibular condyles directly (Haskell et al. 1986, Reina et al. 

2006), or indirectly by creating layers of soft material around the condyles to 

mimic the buffering effect of the cartilage in the TMJ (Korioth et al. 1992, Tanne 

et al. 1993, Korioth & Hannam 1994a, Tanaka et al. 1994, Kober et al. 2004, 

2006a, 2006b, Ichim et al. 2007b). As with the PDL, the creation of such 

additional layers around the condyles or of a simplified TMJ requires time- 

consuming manual image processing. It is therefore worth testing, whether this 

additional work really results in more realistic loading conditions. To date, only 

one sensitivity study seems to have tested the effect of including TMJ soft tissue 

in an FE model of a human mandible, with the conclusion that it has a major 

effect on the strains in the mandible (Kober et al. 2004). 

Prior FEA studies also differ in how they model the bite force acting on 

the dentition. Some authors apply a force to the respective teeth (Hart et al. 1992, 

Rayfield et al. 2001, Rayfield 2005, Witzel & Preuschoft 2005, Pierce et al. 
2008), but in most FEA studies the occlusal surface of the teeth is constrained and 

the bite force is thus modelled as a reaction force (Haskell et al. 1986, Korioth et 

al. 1992, Korioth & Hannam 1994a, Dumont et al. 2005, Reina et al. 2006, Ichim 

et al. 2006a, 2007b, Strait et al. 2007). Both modelling approaches can be 

biologically justified. Applying a force to a tooth makes sense as the force acting 

on the tooth does not only depend on the action of the masticatory muscles, but 

also on the material properties of the respective food item. On the other hand, one 

can argue that during mastication no external force is applied to teeth, only when 

the teeth are used as a clamp in combination with the hands in order to, for 

example, break very large objects. The forces that enter the system are thus only 
the muscle forces, which result in reaction forces at the joint surfaces and the bite 
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point. Although it is likely that the two different approaches to the modelling of 

bite forces in FEA will result in different findings, there are no published data that 

allow an assessment of this. 

In addition, there is no consensus about the direction of constraints in FE 

models of crania and mandibles when masticatory loads are to be modelled. With 

regard to the constraints at the bite point, two different approaches are used in the 

literature: constraints in all three axes (Dumont et al. 2005, Strait et al. 2007) or 

only in the axis perpendicular to the occlusal plane (Haskell et al. 1986, Korioth et 

al. 1992, Korioth & Hannam 1994a, Reina et al. 2006, Ichim et al. 2006a, 2007b). 

Theoretically, both can be justified from a biological point of view. In the case of 

perfect occlusion of all teeth, there should be no transverse movements during the 

powerstroke of mastication after the breakdown of a food item or during 

clenching. However, in the case of animals specialised on grinding, or in 

malocclusion or when teeth are highly worn, substantial transverse movements 

should occur. The constraints used at the TMJ also differ between studies. In 

many FEA studies models are constrained at the TMJ in all three axes (Korioth et 

al. 1992, Korioth & Hannam 1994a, Dumont et al. 2005, Strait et al. 2007), but in 

some studies the constraints are limited to the vertical axis alone or the vertical 

axis and one horizontal axis (Witzel & Preuschoft 2005). In general, each of these 

FEA studies uses only one set of constraints and the effects of altering the 

directions of the constraints are not examined. 

Finally, it is important to know whether a change in the orientation of 

muscle vectors has a large effect on the FEA results. The orientation of the muscle 
lines of action can be obtained from measurements on dissected cadavers or from 

CT and MRI scans of cadavers or living animals and humans (Koolstra et al. 

1990, van Spronsen et al. 1997). It is also possible to estimate the lines of action 

by connecting origin and insertion of the masticatory muscles in dry skulls 

(O'Connor et al. 2005). Many FEA studies use muscle vector orientations that 

have been obtained from sources other than measurements from the same 
individual (Reina et al. 2006, Strait et al. 2009). This procedure is necessary, 

when only isolated mandibles or crania are available, which is particularly the 

case with fossil specimens. However, because of interindividual variation in 

cranial morphology, the lines of action between different individuals can have 

different orientations, because the spatial relationship between origin and insertion 
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depends on cranial morphology. Consequently, there is a need to assess the effects 

of changes in the orientation of muscle vectors. A prior sensitivity study on a 

macaque mandible showed that the orientation of external forces has a significant 

effect on FEA results (Marinescu et al. 2005). 

This sensitivity study aims to estimate the relative importance of the input 

variables described above. By using an FE model of a dry human mandible, it will 

quantify and evaluate the effects of: 

1) adding PDL as an extra material with specific mechanical properties 

2) adding simplified TMJs with layers of soft tissue material 

3) modelling the bite force as an external force vs. as a constraint 

4) altering the directions of constraints 

5) changing the orientations of muscle force vectors 

In addition, the resulting strain magnitudes are compared with in vivo data 

from animal experiments. Based on these comparisons, and by including 

published data about strain thresholds for bone remodelling and fracture, it will be 

discussed how to create realistic FEA models of a human mandible under 

masticatory loads within the limits of the used FEA software. 

5.2. Material and methods 
The FE models for this study were created based on a iCT scan of a dry 

human mandible (H-A 002) obtained with an X-Tek HMX 160 iICT system. The 

two halves of the specimen were scanned separately, since the mandible was 

slightly above the size limit for this iICT scanner. Because of pre-mortem loss of 

the right third molar, only the CT scan of the intact left half was then used for 

further image processing. The primary reconstruction resulted in a 16-bit TIFF 

image stack with a voxel size of 0.12 mm in all three directions, but in order to 

save computing time, the stack was downsampled, so that the voxel size was 

increased to 0.24 mm in all three directions. 

Image segmentation was performed with Amira. Bone and teeth were 

separated from the surrounding air by a user-defined density threshold based on 

the HMH protocol (Ullrich et al. 1980, Spoor et al. 1993, Fajardo et al. 2002, 

Coleman & Colbert 2007). After the threshold segmentation a ca. one to two 

114 



Chapter 5: Modelling the human mandible under masticatory loads 

voxel thick (= 0.24-0.48 mm) layer of periodontal ligament was created by 

painting around each tooth root (Fig. 5.1). This was easily performed since the 

borders of the tooth roots and of the surrounding alveolar hone were clearly 

visible in the CT slices. The resulting 3D model of the left heminiandihle was 

then mirror-imaged in order to create a model of an intact mandible with complete 

dentition. An additional model with simplified TMJs was created by adding two 

blocks (ca. 20 x 15 x 15 mm) including the articular surfaces of glenoid fossae, 

which had been segmented based on a medical CT scan of a human cranium. 

These blocks were positioned above the condyles using measurements taken from 

a magnetic resonance scan of a human head. On each side the space between the 

glenoid fossa and the articular surface of the condyle was then manually filled so 

that a layer of ca. 3 mm (Fig. 5.2) was created, which comes close to thickness 

measurements of the TMJ soft tissue in human cadavers (f lansson ct al. 1977). 

a 

Fig. 5.1. Creation of periodontal ligament (111)1. ) in a ('"I'-hased 31) Windel of the inaudible 
11-A 002. Left image: euromal CT slice with manually selected P1)1. (white line). Right image: 31) 
model with completed PD1, (dark grey) within the transparent mandible. 

The final models were transformed into FE meshes with element numbers 

of ca. 2.8 (no TMJs) and 4.4 million (with TMJs). Isotropic material properties of 
17 GPa for Young's modulus and 0.3 for Poisson's ratio were assigned to hone 

and teeth, including the blocks representing cranial hone at the 'I M. ls, whereas a 
Young's modulus of 0. (X)3 GPa and a Poisson's ratio of O. 45 were chosen for the 

periodontal ligament as well as the soft tissue layers in the TMJs. These are values 
that lie within the published range for the cortical hone of' human mandibles 
(Ashman & van Buskirk 1987, Arendts & Sigolotto 1999,199O, Dcchctw et al. 
1993, Schwartz-Dabney & Dechow 2003), PDL ("Panne et al. 1997, Andersen et 
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al. 1991, Jones et al. 2001, Poppe et al. 2002, Dorow et al. 2003) and the soft 

tissue of the TMJ (Tanne et al. 1991, Chen et al. 1998, Beek et al. 2000, Koolstra 

& van Eiiden 2005). 
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/ 

Fig. 5.2. FE model of the mandible H-A 002 including PDL and simplified TMJs. The small 
triangles indicate constrained nodes. Small image: rotation of the vector for the superficial 
masseter by 10° anteriorly and posteriorly. 

Two bites were simulated: a bite on the right first molar and in addition an 

incisal bite using the muscle force estimates listed under 3.8. For each bite the 

model attributes and boundary conditions were varied, resulting in 14 different 

load cases overall (Table 5.1). These load cases do not represent all potential 

combinations of the varied input variables. Some theoretically possible 

combinations of constraint axes at the teeth and joints would be insufficient for 

the successful solution of the model and were thus not tested. In addition, the 

effect of altering each input variable was in general only tested for one 

combination of constraint directions in order to limit processing time. 

After the solution, element strain values were calculated based on the 

nodal displacements and the maximum (E, ) and minimum principal strains (c3) 

were extracted from ca. 1200 evenly distributed elements on the periosteal bone 
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surface (Fig. 5.3). The overall difference in strain values between models was 

quantified by calculating the Euclidean distance between each pair of models. 

This was computed as the square root of the sum of squared differences between 

the principal strains of the two models. In addition, the mean cl or c3 value was 

calculated for each vertical row of sample elements labially and lingually in order 

to create horizontal mean strain profiles stretching from the right to the left most 

posterior point of the mandibular ramus, thus excluding the condylar heads and 

necks, where strains are expected to be affected by the constraints placed on the 

condylar surfaces. The strains in the in the teeth and the PDL were also excluded 

from the quantitative comparison. These mean strain profiles allowed evaluation 

of differences in the strain distribution between models. 

Load case TMJ PDL 
Constraints 

Muscle forces 
Teeth Condyles/TMJ 

Molar bite no yes y xyz all 

no yes xyz yz all 

no yes xyz y all 

yes no xyz xyz all 

yes yes xyz xyz all 

yes yes xyz y all 

yes yes y xyz all 

yes yes 50 N xyz all 

yes yes xyz xyz sup. mass. 

yes yes xyz xyz sup. mass. +10° 

yes yes xyz xyz sup. mass. -10° 
Incision no yes y xyz all 

yes yes y xyz all 

yes yes xyz xyz all 

Table 5.1. Varied model attributes and boundary conditions. The axes have the following 
orientations: x= medio-lateral axis, y= axis perpendicular to the occlusal plane, z= axial axis. In 
order to test the effect of changing muscle vector orientation, the angle of the line of action of the 
superficial masseter (sup. mass. ) with the z-axis was increased by 10° (point of origin moved 
posteriorly) and decreased by 10° (point of origin moved anteriorly). 

Additionally, differences in strain patterns between two models with 
identical geometry were compared by subtracting the strain value for each element 
of one model from the value for the same element in the second model with a 

simple Windows-based application that complements VOX-FE and visualising the 
differences between all element strain values of the two models as a colour-coded 
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map in VOX-FE. Differences in the strain orientations were evaluated by 

comparing the orientations of the maximum principal strain eigenvectors for the 

selected surface elements. 

Fig. 5.3. Selected points for the extraction of surface element strains. 

5.3. Results 

Tables 5.2 to 5.4 show the Euclidean distances between the models. They 

indicate that the by far largest effect on the strains is measured when an external 

force is applied to the bite point instead of a constraint vertical to the occlusal 

axis, followed by the effect of' including simplified 'I'MJs and varying some 

directions of the constraints. Smaller effects are measured, when the orientation of 

the force vector for the superficial masseter 11, varied and PDI. IS included as an 

extra material. 

The strain profiles (Figures 5.5-5.10) reveal that for most models the 

mean tensile and compressive strains are within the range of' ±100 to 1000 pl.. 

Only the model, in which a force was applied to the bite point shows higher 

strains, and in the model without TMJ during an incisal bite, magnitudes below 

100 pt: occur. In addition, magnitudes above I(XX) pc are observed at the posterior 

margins of the mandibular rami of several models. 

As Figure 5.5 shows, the presence of a PDL does not change the surface 

strains at the mandibular rami, but increases tensile and compressive surface 

strains on the mandibular corpus. The 3D visualisation of the strain differences 

(Figure 5.4) reveals that the increase in strains is largest (? 200 pt; ) around the 
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alveolar sockets and in some areas of the anterior mandible. Tensile strains are 

increased at the base of the anterior mandible and compressive strains are 

increased in the region of the chin. In addition, a decrease of maximum and 

minimum principal strains occurs lingually below the working side premolars and 

the constrained M1 respectively. 

Load cases EDs for E, EDs for c3 

no PDL/PDL 2234 2696 

no TMJ/TMJ (incisal bite) 7798 9460 

no TMJ/TMJ (molar bite) 8524 11709 
bite force/constraint at bite point 51400 55903 

sup. mass. vector minus 10° 1190 1216 

sup. mass. vector plus 10° 1458 1332 

Table 5.2. Euclidean distances (ED) for maximum (Ei) and minimum principal strains (e3) 
between different models. The models for testing the effect of including TMJs were constrained at 
the bite point in the y-axis and at the joints in all three axes. See Table 5.1 for details of the 
boundary conditions in the other models. 

xyz-y-y xyz-yz-yz y-xyz-xyz 

xyz-y-y 8658 8706 

xyz-yz-yz 8159 2246 

y-xyz-xyz 8130 2629 

Table 5.3. Euclidean distances for different constraints applied to the model without TMJs. The 
constraint directions are given in the following order: bite point - left condyle - right condyle. 
Values in the upper right half of the matrix represent distances for maximum principal strain. 
Values in the lower left half are the distances for minimum principal strain. 

xyz-xyz-xyz xyz-y-y y-xyz-xyz 
xyz-xyz-xyz 6384 6158 

xyz-y-y 8942 6992 

y-xyz-xyz 7267 10643 

Table 5.4. Euclidean distances for different constraints applied to the model with TMJs Labelling 
and arrangement of the values as in Table 5.3. 
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Fig. 5.4. Difference plots for the absence vs. presence of a PDL as an extra material: a) maximum 
principal strain, h) minimum principal strain. The upper row shows the labial and buccal surface, 
the bottom row the lingual surface. 

Including simplified models of the TMJs has a much larger overall effect 

on the strains than including the PDL. Tensile and compressive surface strains are 

increased in almost the whole corpus and the balancing side ramus for both biting 

tasks when TMJs are included (Figures 5.6 and 5.7). The difference is especially 

pronounced during incisal biting. When nodes on the condyles are fixed during 

simulated incision, mean strain magnitudes in the corpus hardly exceed 200 is 

and very low strain magnitudes (<l00 ge) are found below the constrained 

incisors. Constraining the condyles indirectly via simplified TMJs results in much 

higher tensile strains on the buccal side of the corpus (>400 µE) as well as higher 

compressive strains at the lingual symphysis (>1000 µE). During the molar bite 

the largest increase in strains (by up to 400 pe) is observed below the working 

side premolars and at the posterior margin of the balancing side ramus. This is 

especially true of compressive strains on the lingual side of the ramus, where 

mean magnitudes of ca. -2200 is are reached in the model with a TMJ. The strain 
differences over the right working side ramus during molar bite, are relatively 

small, unlike the large differences see in the corpus, apart from a decrease in 
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compressive strains on the lingual side of the posterior ramus margin (by ca. 

700 µc). 
The most dramatic change in strain values is observed when a vertical 

force of 50 N is applied to the occlusal surface of the right M1 instead of vertical 

constraints. Figure 5.8 shows that the application of this force results in much 

higher tensile strains on the labial side of the corpus and compressive strains on 

the lingual side (<_ ±1000 Ve vs. -±500 µe). At the posterior margins of the 

mandibular rami the strains go up to ±6000 µc when the force is applied to the 

m i. 

Changing the directions of the constraints also has a marked effect on the 

strains in the model without as well as with simplified TMJ (Tables 5.3 and 5.4). 

In general, strains increase when displacements in more directions are possible, 

especially at the joints. Compare, for example, the two models with the 

constraints xyz-xyz-xyz and xyz-y-y in Figure 5.9. However, although the strains 

increase overall with reducing constraints, the tensile and compressive strains are 

not equally affected. Labially and buccally, tension is increased when the degrees 

of freedom are reduced, whereas compressive strains stay relatively constant apart 

from the posterior part of the working side ramus. This increase in labial tension 

is especially pronounced around the constrained Ml. Lingually, the effect on 

tensile and compressive strains is more similar, with compressive strains tending 

to increase more than tensile strains. In addition to this general pattern, the chosen 

constraints at the bite point have a local effect on the strains below the constrained 
Ml. Constraining the occlusal surface of the MI in all directions instead of only 
in the vertical axis results in an increase of tensile strains in this area. 

Finally, varying the orientation of the vector for the superficial masseter 

on both sides of the mandible has a noticeable effect on the strains in the 

mandibular corpus (Figure 5.10). A more oblique orientation of the vectors 
(+10°) results in lower principal strains, whereas a more vertical orientation (-10°) 

of the vectors leads to higher strains. The latter increase is especially pronounced 
for labial compressive strains and for lingual tensile strains below the working 

side canine. Figure 5.11 shows that unlike the magnitudes, the orientations of the 

principal strains change only slightly when the orientation of the superficial 

masseter is altered. 
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Chapter 5: Modelling the human mandible under masticatory loads 

Fig 5.11. Effect of altering the orientation of the superficial masseter on the 
maximum principal strain directions. a) original orientation of the muscle forces, 
b) muscle forces rotated anteriorly by 10°, c) muscle forces rotated posteriorly by 
10°. 

5.4. Discussion 

All tested variables have an effect on the principal strain magnitudes, but 

their relative importance varies to a large degree. The mean strain profiles reveal 

that these effects are sometimes very local and that tensile and compressive strains 

are often affected in different ways. 

Compared to other input variables, the presence vs. absence of PDL as an 

extra material has a relatively small effect compared to the effects of changing the 

other variables, when the Euclidean distances for the whole periosteal surface are 

considered. However, when the strain distribution across the surface is taken into 

account, pronounced local differences are visible especially in the anterior part of 

the mandible, including local increases as well as decreases of strains. Since an 

overall increase of strains is observed in the corpus, especially in the alveolar 

region, a force absorbing function of the PDL as suggested by Kober and co- 

workers (2006b) cannot be confirmed, at least with the material properties chosen 
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for this study. The Young's modulus used for PDL is relatively high at 0.003 GPa 

(3 MPa), since values as low as 0.07 MPa are found in the literature (Andersen et 

al. 1991). It is possible that the increase in corpus strains would be different for 

smaller values for Young's modulus, but the results of a previous sensitivity study 

indicate that even dramatic changes in PDL stiffness have only a negligible effect 

on the strains in the corpus (Chen & Chen 1998). Other sensitivity analyses have 

not only studied the effect of changing the material properties of PDL in detail 

and but also validated their chosen material properties against experimental data, 

including heterogeneous and non-linear mechanical properties, which are not 

testable with VOX-FE (Andersen et al. 1991, Rees & Jacobsen 1997, Cattaneo et 

al. 2005). These results show that, especially for comparative studies, where 

differences in tooth morphology and thus shape of the PDL within the mandible 

exist between taxa, it is advisable to create a layer of PDL, since this might have a 

significant effect on local strain patterns, which is especially relevant if strain 

magnitudes in the alveolar bone are of interest. 

Whether the mandibular condyles are constrained directly or indirectly via 

simplified models of the TMJs has a big effect on strain magnitudes (Fig. 5.6-7): 

strains increase considerably, particularly during incisal biting, when simplified 
TMJs are included. The extremely low strains below the incisors as well as the 
low overall values in the mandibular corpus suggest that the model is 

overconstrained when the surface of the condyles is constrained directly. One 

would not expect that strains are smallest in the bone below the teeth which are 
loaded, and as such this model appears to be less realistic than the one with TMJs. 

During unilateral molar biting, the effect of including TMJs is not as extreme as 
during incisal biting, but it is still pronounced, particularly below the constrained 
M1 and at the posterior border of the balancing side ramus. Again, the model with 
directly constrained condyles shows relatively low strains below the constrained 
tooth, whereas the model with TMJs exhibits a peak of higher strains in that area 

and thus appears more realistic in this regard. The results of this sensitivity study 
therefore confirm previous results, which have shown that including TMJ joint 

capsules allows the FE model to deform more and thus helps to avoid 
overconstraining the model (Kober et al. 2004). However, the soft tissue within 
the TMJ could only be modelled very crudely. Thus, the model cannot, for 

example, account for the differences in the mechanical properties of the articular 
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cartilage layers and the articular disc or their viscoelastic properties (Beek et al. 

2001, Koolstra & van Eijden 2005,2006). A more accurate representation of TMJ 

morphology and mechanical properties could have an effect on the strains in the 

mandible, which needs to be tested in future sensitivity studies. 

The largest impact on the strains is found when an external force is applied 

to the biting tooth instead of a vertical constraint, the former leading to extremely 

high strains in the posterior ramus. As the deformations reveal, these high strains 

close to the constraints at the joints are caused by deformation of the mandible 

around the medio-lateral axis through the joints. Although constraining the joints 

in all three axes is sufficient for the solution of the FEA, it does not keep the 

model stable enough. Other authors have successfully applied external forces to 

bite points in their FE models (Rayfield et al. 2001, Rayfield 2005, Witzel & 

Preuschoft 2005, Pierce et al. 2008). However, these studies model the cranium. A 

cranium can be sufficiently constrained by fixing the area of the occiput, where 

the neck muscles attach, and the artefacts resulting from the constraints are far 

enough away from the region of interest, which is typically the face. As the results 

of this study show, a mandibular model cannot be sufficiently stabilised by 

constraining the joints alone. If the bite force is to be modelled as an external 

force, it is necessary to apply additional constraints, as has been done, for 

example, by Hart and co-workers (1992). However, these additional constraints 

are difficult to justify if the aim is to model masticatory loads realistically. 

Therefore, it seems more feasible for FE models of mandibles to constrain the 

respective bite points and only simulate the muscle forces as external forces. 

Another alternative is to import boundary conditions from multibody dynamic 

analyses. Since those forces are in equilibrium, the strain artefacts around the 

constrained nodes are negligible. 

The directions of the applied constraints also have a major impact on the 

results. Overall, strains decrease as the model is increasingly constrained. 

Interestingly, when displacements in the transverse or x-axis are possible, tensile 

strains increase more on the labial/buccal surface than compressive ones and the 

opposite is the case on the lingual surface. This pattern is consistent with medial 

transverse bending (i. e. the bending that occurs when the mandibular rami are 

squeezed together), if the mandible is assumed to behave in principle like a curved 
beam (Fig. 2.9). 
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The fact that constraining the biting teeth in all three axes as opposed to 

only one axis results in higher local strains during a molar bite, but in much lower 

strains during incision can be probably explained by the spatial distribution of the 

constrained nodes. When the occlusal surfaces of all four incisors are fixed, this 

stabilises the whole symphyseal region, whereas the constraints applied during 

molar biting only apply to one tooth, so that they only very locally prevent 

displacements. 

It is not straightforward to decide upon the best combination of 

constraints. In general, the aim should be to constrain the model as little as 

possible, since artefacts appear at the constrained nodes and the adjacent areas and 

the deformation of the whole model is limited by the constraints. Following this 

principle, the most favourable combination would be to constrain the bite point in 

all three axes, but the joints only in the vertical axis, since this is the minimum 

number of constraints necessary to keep the model stable. In the case of molars it 

could be further argued that constraints in all three axes at the occlusal surface 

simulate idealised occlusion with the corresponding upper molar most 

realistically, since the intertwining cusps prevent horizontal movements. 

Constraining the condylar surfaces only in the vertical axis makes sense from a 

functional point of view, since this is the major direction of the joint reaction 

force and the freely movable articular discs within the TMJs allow principally 

horizontal movements of the condyles. Thus, using this set of constraints should 

have a similar effect to including simplified TMJs. Indeed, the strain patterns are 

very similar, except for the posterior part of the balancing side ramus, which are 
larger in the model with TMJs, especially on the lingual side (Figures 5.7 and 

5.9). 

During incision, however, the situation is different. Horizontal movements 

at the occlusal surfaces should be possible, since they are not prevented by 

intertwining cusps, but constraining the teeth as well as the joints only in the 

vertical axis would not stabilise the model sufficiently for a solution of the FEA. 

Including simplified TMJs provides a solution, since the model can be constrained 
in all three axes at the joints without overconstraining it. 

The observation that a 10° rotation of the force vector of the superficial 

masseter has a relatively large effect on the strain in the corpus, especially on the 

working side corpus, indicates how important the muscle vector orientations are 
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for the accuracy of the results. This is also supported by the observed asymmetry 

in the strains during the simulated incisal bite, which is most probably due to 

minor differences in vector orientations between the left and right side (Fig. 5.6). 

The results confirm those of a previous sensitivity study, which showed that even 

small changes in the direction of external forces result in significant changes in 

the predicted strains (Marinescu et al. 2005). The lines of action of the 

masticatory muscle should be, therefore, estimated as carefully as possible, ideally 

based on the measurements of the same individual. Unexpectedly, the strain 

orientations are remarkably stable, which suggests that only a change of the 

overall load type and thus type of deformation will have an effect on the strain 

directions. 

Due to the lack of in vivo strain data for human mandibles, no direct 

validation is possible. Differences in mandibular morphology, muscle forces and 

muscle recruitment patterns between species are likely to have a significant 

influence on the bone strains. However, it is interesting to compare the results 

with the general strain patterns known from animal experiments, especially from 

non-human primates. 

It seems to be a general pattern of mammalian mandibular function that 

tensile and compressive strains are higher on the mandibular corpus of the 

working side than on the balancing side, although this working sidelbalancing side 

ratio differs between species (Hylander 1979b, Hylander & Johnson 1994, 

Williams et al. 2009). These in vivo strains have been typically measured on the 

buccal side of the corpus below the molar dentition. If this pattern is generalisable 

to humans, those of our models seem to be most realistic, where the biting M1 is 

constrained in all three axes, because such constraints result in higher tensile 

strains below the molar dentition. 

While strains in the working side corpus are commonly higher than on the 
balancing side, the opposite is the case, when the buccal sides of the condylar 

processes and the adjacent areas on the rami are considered (Hylander 1979a). All 

models, those with, as well as without TMJ, show the same pattern. 
Another general pattern, observed in non-human primates, is that strains 

are higher on the lingual side than on the labial side of the symphysis due to the 
higher curvature on the lingual surface (Hylander 1984,1985, Hylander & 
Johnson 1994). Since human mandibles are short anteroposteriorly and wide 
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mediolaterally and thus have a less pronounced curvature than, for example, 

cercopithecine mandibles, the differences between labial and lingual strains 

should be smaller, but still measurable. This is the case in all models with TMJs 

during a molar bite and for the model with TMJ, in which the teeth were only 

constrained in the vertical axis during an incisor. The other models show 

relatively equal strains on the labial and lingual side of the symphysis. 

Strain measurements in macaques also show that the strains on the buccal 

side of the working side corpus are much higher than on the labial symphysis 

during mastication (Hylander & Johnson 1994). The models that best fit this 

prediction are the models with TMJs and in which the bite point is constrained in 

all three axes. In contrast, the model, in which the condylar surfaces are 

constrained in all three axes does not show this pattern. 
Unfortunately, in vivo strain data from incision are scarce. Based on a few 

experiments in macaques, it appears that the maximum principal strains on the 

labial symphysis are typically much higher during incision than during unilateral 

molar biting, whereas the difference in minimum principal strains is less 

consistent (Hylander 1984), and that the maximum and minimum principal strains 

on the buccal side of the mandibular corpus below the molars are very similar to 

the balancing side strains at the same location during unilateral molar biting 

(Hylander 1979b). The models with TMJs, in which the incisors are only 

constrained in the vertical axis seem to come closest to this pattern. The model, in 

which the condylar surfaces are fixed, on the other hand, shows symphyseal 

strains that are much lower than the ones during a unilateral molar bite, which is 

probably due to the fact that the model is overconstrained. 

In addition to comparing the results with the general strain patterns known 

from in vivo experiments, it is worthwhile to compare the predicted maximum 

strain magnitudes with those measured in in vivo experiments. In galago and 

macaque mandibles compressive strains up to -2100 is and -1500 µE respectively 
have been measured during molar biting on the buccal surface below the molar 
dentition (Hylander 1979b). Maximum tensile strains between 2000 and 2500 is 
have been reported for the lingual side of the symphysis (Hylander 1984). In the 

mandibles of some other mammals lower maximum strain values (below 

±1000 µE) were measured (Williams et al. 2009). However, these are 

measurements from single points and differences in gauge location might explain 
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some part of the observed variation of strain magnitudes. In general, maximum 

and minimum strain magnitudes between 2000 and 3000 tc seem to be close to 

the upper limit of functional strains occurring in adult load bearing bones during 

routine behaviours like swimming, running, flying and biting (Rubin 1984, 

Lanyon & Rubin 1985). All those models, in which the bite points were 

constrained, produced strain values that are below this measured physiological 

maximum: The strains rarely exceed ±1000 pe and the highest observed strains 

are around -2000 pe at the posterior balancing side ramus of the models with 

TMJs. Only in the model, in which a force was applied to the bite point, strains up 

to ±6000 pc occur at the ramus. Most bone materials yield in tension at about 

2000 pc (Currey 2002). In a living individual, these extremely high strains would 

cause damage to the bone tissue and are thus unlikely to be realistic. 
So far, only the strain magnitudes have been considered for the 

comparison with experimental data, but in order to obtain a complete picture, 

strain directions should also be evaluated. As with strain magnitudes, direct 

validation is not possible because of the lack of in vivo strain data from human 

mandibles. However, alternatively, the predicted strain directions can be 

compared with the directional differences in mechanical properties, since the latter 

are likely to be linked with functional strains. Figure 5.12 shows the axes of 

maximum stiffness in human mandibular cortical bone (Schwartz-Dabney & 

Dechow 2003) and the predicted maximum and minimum principal strain 
directions during a unilateral molar bite in a model including PDL and TMJs 

which are constrained in all three axes. Interestingly, some correspondences can 
be found. Overall, the maximum principal strain directions on the buccal side are 

very similar to the measured axes of maximum stiffness, but in the two areas with 
the highest magnitudes of minimum principal strain, the posterior margin of the 

mandibular ramus and below the constrained M1, it is the minimum principal 

strain directions, which correspond well with the axes of maximum stiffness. On 

the lingual side, there is good correspondence between these axes and the 

minimum principal strain directions in most areas of the ramus and the posterior 
corpus, but a better fit of the maximum principal strain directions where 
maximum principal strain magnitudes are very high, at the base of the anterior 
corpus and the anterior margin of the ramus. These results suggest that there is no 
simple relationship between the axes of maximum stiffness and the directions of 
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one of the principal strains, but that the strain magnitudes or maximum/minimum 

principal strain ratios need to be considered as well. The comparison presented 

here is only preliminary and based on a single load case only, but further studies 

should explore these relationships. Eventually, such comparisons might provide 

an additional indirect validation for FE models when in vivo strain data are not 

available. 

Maximum principal strain (NE) 

inn dnn Ann 80 
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iU 
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Fig. 5.12. Comparison of maximum and minimum principal strain directions with the measured 

axes of maximum stiffness of the mandibular cortical bone by Schwartz-Dabney and Dechow 

(2003: 258, Fig. 3). The strain directions (black lines) have been taken from a simulated molar 
bite. The TMJs and the occlusal surface of the right Ml are constrained in all three axes. 
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To summarise, it can be stated that the alteration of each variable has an 

effect on the strains. While varying in degree, the effects are all large enough to be 

relevant for the biological interpretation of the strains. Therefore, caution is 

required in the definition of these input variables. Due to the lack of in vivo strain 

data from human mandibles, it is difficult to decide on the most realistic 

combination of these variables. However, the comparison of results with the 

general strain patterns and the maximum strain magnitudes measured in animal 

experiments combined with some basic assumptions about jaw mechanics allow 

some general conclusions: 1) The application of a force to the bite point instead of 

constraints is not advisable for human and probably mammalian mandibles in 

general, since it results in artificially high strains on the mandibular rami unless 

additional constraints are applied or the forces are in equilibrium. 2) PDL should 

be included as an extra material, if strains in the mandibular corpus, especially in 

the anterior mandible and the alveolar bone, are of interest. 3) The fixation of the 

condylar surfaces results in overconstraining of the model, particularly during 

incisal biting. 4) Constraining the occlusal surface of the biting tooth in all three 

axes seems to be most realistic if a molar bite is simulated. 5) Constraining the 

occlusal surface only in the vertical axis appears to be most realistic during an 

incisal bite. 6) Including simplified models of the TMJs allows teeth to be 

constrained in such different ways by fixing the model at the joints without 

overconstraining it. 7) Since a change in the orientations of muscle forces has a 

pronounced effect on the strain magnitudes in the mandibular corpus, the lines of 

action of the masticatory muscles should be estimated as accurately as possible, 

ideally based on measurements of the same individual of which the model is built. 

The models used for the following chapters have been built and loaded by 

considering these points. However, this study tested the effects of only a small 

number of the possible alterations of input variables, because the calculation of 

the displacements in high-resolution voxel-based FE models as well as the 

extraction and evaluation of strain values is very time-consuming. For future 

sensitivity studies it would be useful to have some automatic or semi-automatic 

technique to alter variables and extract results. 
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Chapter 6: Comparison of predicted strain patterns and the 

distribution of cortical bone in a human mandible 

6.1. Introduction 

There is abundant evidence for a close relationship between bone mass and 

functional loads. For example, cortical bone thickness decreases when bones that 

normally bear loads are immobilised (Uhthoff & Jaworski 1978, Jaworski et al. 

1980), or increases when bones are exposed to higher loads (Jones et al. 1977, 

Lanyon et al. 1982). This relationship is relevant for understanding variation in 

cortical bone thickness between species, individuals or bones on the left and right 

sides of the same individual (Ruff et al. 1993, Trinkaus et al. 1994, Ruff et al. 

1994, Trinkaus 1997, Lieberman et al. 2004b). In addition, it has been suggested 

that variation of cortical thickness within a bone can be explained by this 

relationship: that unevenly distributed cortical bone is associated with unevenly 

distributed stress in the bone during functional loads (Demes et al. 1984, Daegling 

& Hotzman 2003). 

Most studies that have investigated the relationship between stress 
distribution and the distribution of cortical bone, have been conducted on long 

bones, particularly on the femur (Ohman et al. 1997, Demes et al. 2000, Lovejoy 

et al. 2002), but some studies have also applied the principle to the mandible 
(Demes et al. 1984, Daegling 1989, Daegling & Grine 1991, Daegling 2002, 

Fukase 2007, Fukase & Suwa 2008). For example, it has been shown that the 
distribution of cortical bone in the human mandibular symphysis corresponds with 

expected load patterns: Bone is particularly concentrated at the lower lingual 

aspect of the symphysis, which is assumed to experience high tensile stress during 

mastication (Fukase 2007, Fukase & Suwa 2008). 

In the posterior corpora of anthropoid mandibles, cortical bone is thicker 
buccally than lingually, which has been explained as a result of the combined 
effects of the vertically directed bite force and the torsion of the mandibular 
corpora around the anteroposterior axis (Demes et al. 1984). In vitro experiments 
with human mandibles (Daegling & Hotzman 2003) have shown that this 
combination of loads does indeed lead to the strain pattern predicted by Demes 

and colleagues (1984). In contrast, the results of a recent FEA study suggest that 
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the asymmetric distribution of cortical bone in the human mandible is not related 

to masticatory strains (Ichim et al. 2007b). 

Studying the relationship between stress or strain distribution and the 

distribution of cortical bone with FEA is not straightforward. Healthy adult bones 

can be expected to be more or less optimally adapted to the loads they experience 

during normal function. Where stresses are high, more bone should be deposited, 

which results in a better load resistance of the bone in that area reflected by a 

decrease in strain. The stress and strain distribution observed in an adult bone 

cannot be expected to reflect the distribution prior to adaptation, for example, at 

earlier ontogenetic stages, since cortical thickness will vary as a result of 

adaptation, thus altering the distribution of stresses and strains under load. When 

stresses and strains are low in one area, this can be either due to the particular load 

and the overall shape of the bone or because the bone has successfully adapted to 

the load by, for example, increasing its density or cortical thickness. 

Ideally, FEA studies intended to test the relationship between stress and 

strain distribution and the distribution of cortical bone should therefore use 

models, which represent the bone before it adapted to functional loads. In this way 

predictions about mechanical adaptation can be tested. Using juvenile specimens 

would be one option, but is problematic, in part because the required data (e. g. 

material properties, EMG, muscle force magnitudes) is often not sufficiently 

known to build and load FE models accurately. More importantly, it is 

questionable whether there is ever a stage during ontogeny, in which the bone is 

not adapted to the functional loads it experiences. Rather, through constant 

modelling and remodelling, it is likely that a growing bone is always more or less 

adapted to the current mechanical environment. A more fruitful approach is to 

create and load models with a hypothetical internal morphology that is not 

adapted, that are, for example, completely solid or have an equal cortical thickness 

throughout. Recently, this approach has been applied to a human mandible (Reina 

et al. 2006). By applying an internal bone remodelling algorithm to an FE model, 
in which all internal cavities had been filled, Reina and co-workers (2006) were 

able to generate a distribution of bone density and elastic properties similar to that 
in the real specimen. 

The present study will adopt a similar approach in using models with 
hypothetical "unadapted" internal morphology in order to test whether an 
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association exists between the strain pattern resulting from simulated masticatory 
loads and the distribution of cortical bone. If such a relationship can be confirmed, 

this will potentially not only support prior functional hypotheses about the 

distribution of cortical bone in the human mandible, but also indicate that the 

chosen model attributes and loading conditions are probably realistic. In addition, 
different strain parameters are used for the comparison, in order to investigate 

which show the closest relationships with the distribution of cortical bone. 

6.2. Material and methods 
The human mandible that was chosen for this study (H-A 002), is the same 

that has been used for the sensitivity study (Chapter 5). The virtual reconstruction 

of this specimen is therefore described in detail in Chapters 5, as are the steps in 

creation of PDL and simplified models of the TMJs. Based on this original model, 

two hypothetical models were created using the automatic and manual 

segmentation tools available in Amira: one model, in which all internal cavities 

were filled and a second, in which an arbitrary equal cortical bone thickness of 

ca. 1.7 mm (= 7 voxel layers, each 0.24 mm thick) was created (Fig. 6.1). 

The two hypothetical models were converted into VOX-FE meshes and 

material properties were defined as described in Chapter S. Seven different load 

cases were simulated for each model: incision with all four incisors, right and left 

canine bites (including the lateral incisors and the first premolars), bites on the 

right and left first molars and bites on the right and left second molars) using the 

muscle forces listed under 3.8. The aim was to simulate a wide spectrum of load 

cases consistent with the range of normal mandibular loading since adaptation is 

expected to reflect this range rather than any particular bite. The models were 

always constrained at the simplified TMJs in all directions. The occlusal surfaces 

of the teeth were constrained in all directions during unilateral bites and only in 

the vertical axis during incision. 

After the solution of the FEA, for each load case values for the following 

parameters were calculated: maximum principal strain (c1), minimum principal 
strain (c3) and von Mises strain (c, ). Von Mises strain is a function of all principal 
strains (c1, s2, E3) and can be used to predict failure in a ductile material under load. 
Thus, it is also assumed to have some biological significance. In order to create 
summary contour plots representing the peak strain pattern over all load cases 
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(Fig. 6.2), the maximum strain value for each finite element across the different 

load cases was selected from the exported element strain value files and 

accumulated in a new cumulative contour plot (Witzel & Preuschoft 2005, 

Kupczik et al. 2009). 

loop, 
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Fig. 6.2. Creation of a summary peak strain contour plot for four different load cases. The upper 
row shows strain contour plots for four load cases (incisal bite, right canine bite and bites on the 
first and second right molars). The summary plot at the bottom shows the maximum strain value 
for each element across the different load cases. 

The peak contour plots were then compared with the distribution of 

cortical bone in three different ways: 1) Sections through the filled FE model were 
visually compared with the corresponding CT slices. 2) The surface peak strain 

map from the FE model with equal cortical bone thickness was visually compared 

140 

Fig. 6.1. l'ransvcrsc sections through the original model (Icft) and the model with equal cortical 
bone thickness (right). 



Chapter 6: Comparing strain patterns and the distribution of cortical bone 

with a 3D map of cortical thickness variation in the same specimen. This 3D 

cortical thickness map was created by defining the endosteal and periosteal 

surfaces as two separate surfaces and visualising the minimum distances between 

the two as a colour-coded map using the "distance module" in Amira. This 

required some additional manual segmentation like deleting trabecular bone. 3) 

The correspondence between surface strains in the FE model with equal cortical 

bone thickness and the cortical thickness variation in the original specimen was 

quantified by defining 111 evenly distributed points on the bone surface and 

extracting the strain value as well as the minimum distance to the endosteal 

surface for each point (Fig. 6.3). The association between strain magnitudes and 

cortical bone thickness was then quantified by calculating correlation coefficients. 

Fig. 6.3. Sampling points for measuring strain magnitudes and cortical hone thickness. 

6.3. Results 

Figure 6.4 shows the Summary von Mises strain contour plots for section,, 

through the solid model as well as the corresponding CT slices. In general. the 

highest strain magnitudes are found at the hone Surface and directly below as well 

as in areas where dense trabecular bone is seen in the corresponding CT slices. 

Low strain areas, on the other hand, correspond in general with areas, where no 

hone exists or where only few traheculae are present. Only in some regions, for 

example, the lateral surface of the iamus or in the symphysis, strains are relatively 

low, where cortical bone is present in the real specimen. The corona) section 

through the posterior corpus shows a big difference in strain magnitudes between 

the buccal and lingual sides. In the upper half of the section, strains are much 
higher buccally than lingually. This corresponds with the thicker cortical hone on 
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the buccal side compared to the lingual one. In the symphyseal cross-section, 

strains are higher lingually than labially, which also corresponds with the 

difference in cortical bone between the labial and the lingual sides of the 

symphysis. 

The spatial distribution of surface strains is shown for the model with 

equal cortical bone thickness (Fig. 6.5). The highest strains are found below the 

molar dentition labially and lingually, at the anterior margin of the mandibular 

ramus, the base of the corpus, the sigmoid notch and the posterior margin of the 

ramus just below the condyles. These are also the areas, where the highest cortical 

hone thickness is measured. The majority of the ramal surfaces as well as the 

anterior labial symphysis show relatively low strains, which corresponds with the 

thin cortical hone that is found in these areas. 
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Fig. 6.4. Comparison between C'l' slices and corresponding slices though the filled Fl model with 
von Mises strain (s,, ) contour plots: a) coronal section through the posterior corpus between M2 
and M3, h) transverse section through the mental foramen, c) mid-sagittal sections through the 
symphysis. Note that two different colour ranges are used to visualise the strain distribution in the 
symphysis. 
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Increasing strain 
MON. 

Fig. 6.5. Comparison between predicted von Mises strain (c, ) distribution in the FE model with 

equal cortical hone thickness and the cortical hone thickness variation in the original specimen. 
The black areas in the 3D cortical thickness map are those which cannot he compared with the 
FEA. 

Strain parameter r p 

von Mises strain (f:, ) 0.3 5 < 0.0005 

Maximunm principal strain (vi) 0.45 < 0.0001 

Minimum principal strain (t;; ) -0? 0 < 0.05 

Max. /min. principal strain ratio ct:, /t:; ) 0.13 < 0.5 

Maximum shear strain 0.42 <0.0001 

Table 6.1. Correlation coefficients and P-values for cortical thickness and strain distribution using 
different strain parameters. 

The association between strain patterns and variation of cortical bone 

thickness is quantified by the correlation coefficients listed in Table 6.1. In 

general, the correlation coefficients are quite low, but they differ considerably 

between the different strain parameters. The highest correlations, which are also 

highly significant, are found for maximum principal strain (c1) and maximum 

shear strain (y,,, ax). The latter is defined as the difference between maximum and 

minimum principal strain (Ei- W. The lowest correlations are given for minimum 

principal strain (e3) and the maximum/minimum principal strain ratio (Ei/c3). 
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6.4. Discussion and conclusions 

The comparison of predicted strains in the two hypothetical models with 

the distribution of cortical bone in the original mandible yields a good match 

between the two. In the solid model high strain areas correspond with regions 

where cortical bone or a dense trabecular network is found. In the model with 

equal cortical bone thickness they correspond with areas where the cortical bone 

is particularly thick. Only in few areas is the correspondence between the strain 

pattern and the distribution of cortical bone is low. 

The observation that the highest strains are found at the surface of the solid 

model and directly below can be explained by the occurrence of bending, since 

during bending strain magnitudes increase with the distance from the neutral axis, 

which runs through the centre of the bone (Currey 2002). This is also illustrated 

by Figure 2.9. The highest strains within the solid model are close to the roots of 

the molars, where high strains occur because of the constraints applied to the 

occlusal surfaces of the teeth in order to simulate the effect of the bite force acting 

on the teeth. The constraints at the molar teeth are certainly also the reason for the 

high surface strains below the molar dentition in the model with equal cortical 

thickness. 

The good overall correspondence between the strain distribution and the 

distribution of cortical bone confirms prior studies that have suggested a link 

between the two in the mandible (Demes et al. 1984, Daegling 1989, Daegling & 

Grine 1991, Daegling 2002, Fukase 2007, Fukase & Suwa 2008). The strain 

patterns observed in the solid model are very similar to the distribution of bone 

density reported by Reina and co-workers (2006), who applied an internal bone 

remodelling algorithm to a filled FE model of a human mandible and also found a 

good match between the resulting density maps and the distribution of bone in the 

original specimen. Their muscle force magnitudes are very similar to the ones 

used in this study. The constraints at the joints and occlusal surfaces are, however, 

rather different, which suggests some robusticity of these results. In addition, this 

study shows that the distribution of bone can be reasonably well predicted by 

simple summary strain contour plots even without applying a complex time- 

dependent remodelling algorithm like Reina and co-workers (2006). 

The peak. von Mises strain map in the solid model also clearly reflects the 
difference in cortical bone thickness between the buccal and lingual sides of the 
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posterior corpus, which is typical for anthropoid mandibles (Demes et al. 1984). 

This suggests that the uneven distribution of cortical bone in the posterior corpus 

is indeed related to masticatory loads. A prior FEA study by Ichim and colleagues 

(Ichim et al. 2007b) did not confirm this relationship, most probably because they 

only looked at the strain distributions from single load cases instead of summary 

contour plots derived from several load cases and because the internal 

morphology of the their model was not altered, so that they did not control the 

variation of cortical thickness within the bone. As discussed above, only the use 

of hypothetical models, in which this variable is controlled, allows investigating 

whether the distribution of cortical bone is determined by the strain patterns 

resulting from functional loads. 

In addition, the strains in the symphysis of the filled model correspond 

well with the general distribution of cortical bone in the human symphysis, which 
is thicker lingually than labially. The results seem to confirm the suggestion of 

some authors that this distribution of cortical bone is directly linked to masticatory 

strains (Fukase 2007, Fukase & Suwa 2008). Although, it needs to be further 

explored why the strains in the symphyseal region are in general rather low 

compared to the posterior corpus. 
The good correspondence overall between strain patterns and bone 

distribution indicates that the modelling approach used, particularly the applied 
forces and constraints, is relatively realistic. The low correspondence between 

strain patterns and the distribution of cortical bone in some areas could be due to 
the fact that not all relevant load cases have been modelled, for example, biting on 
the third molars or the second premolars was not simulated because of the lack of 
the respective muscle force data. 

This might also be the reason, why the correlation coefficients are 

relatively low. Thus only a small part of the variance in cortical bone thickness 

can be explained by strain differences. Interestingly, maximum principal strain 
and maximum shear strain show the highest correlation coefficients, while 
minimim principal strain and the maximum/minimum principal strain ratio yield 
poor correlations. This corresponds well with the fact that bone is weaker under 
tension and shear than under compression (Currey 2002). Thus, it would be 

advantageous for bone to increase its thickness especially in those areas, where 
high tensile and shear strains occur. This should be further investigated. 
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Sensitivity studies could explore the effect of altering input variables, 

especially the muscle forces, on the summary strain plots. It is possible that the 

correlation between strain and cortical bone distribution is improved with 

different, more realistic boundary conditions. However, sensitivity studies of this 

kind would require the solution of numerous FE models for each input value, 

since several load cases have to be applied in order to obtain a comprehensive 

summary contour plot and thus call for supercomputing or massive processing 

time. 

In general, the use of hypothetical models like those in this study might be 

very useful as a validation tool, where in vivo strain data cannot be collected, as in 

humans or extinct species, assuming that the mechanisms and principles of the 

mechanical adaptation of bone are universal in vertebrates. 

With the models used in this study it has been possible to predict were 
bone is needed to resist certain loads within an existing external form. By 

modifying aspects of the external form this approach allows to study how internal 

and external morphology are related, which will be shown in the following 

Chapter 7. 
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Chapter 7: Internal morphology of the mandibular ramus and its 

relation to the presence or absence of a retromolar space 

7.1. Introduction 

The retromolar space, a gap between the third mandibular molar and the 

anterior margin of the ascending ramus, is probably one of the most frequently 

cited Neanderthal characteristics (Coon 1962, Trinkaus 1983, Stringer et al. 1984, 

Rak 1986, Trinkaus 1987, Condemi 1991, Wolpoff 1999). Often it is considered 

as a Neanderthal autapomorphy (Stringer et at. 1984, Condemi 1991), although it 

is also present in other Pleistocene Homo specimens as well as sometimes in 

living human populations (Franciscus & Trinkaus 1995, Arensburg & Belfer- 

Cohen 1998, Nicholson & Harvati 2006). Thus, it is not unique to Neanderthals, 

but occurs among them at a higher frequency than in most other Pleistocene 

Homo populations (Franciscus & Trinkaus 1995). 

Different explanations for the high frequency of retromolar spaces in 

Neanderthals have been put forward: an anterior shift of the dental arcade (Coon 

1962, Howells 1974, Wolpoff 1999), a posterior shift of the zygomatic and 

anterior ramal regions relative to a fixed molar position (Trinkaus 1987) or a 

shortening of the dental arcade either resulting from reduced molar size (Rak 

1986), a forward shift of the third molar (Rak & Hylander 2007) or a combination 

of anterior migration of the postcanine dentition and posterior migration of the 

anterior dentition (Spencer & Demes 1993). It has also been suggested that the 

high frequency of retromolar spaces in Neanderthals is the result of reduced dental 

arcade length combined with a reduced ramus breadth in the context of little or no 

reduction in overall mandibular length (Franciscus & Trinkaus 1995). 

Whereas the hypotheses above try give a reason for the high frequency of 

a retromolar space in Neanderthals, one could also ask what the mechanical effect 

of having or not having a retromolar space is. The region between the third molar 

and the mandibular ramus is especially interesting from a mechanical point of 

view, since it lies between the attachment sites of the jaw closing muscles, which 

pull the mandible upwards, and the high reaction forces that occur at the molar 
dentition. Thus, it can be expected that this area is exposed to high stresses and 

strains during masticatory function. Indeed, FEA studies of human mandibles by 

other authors (Korioth'et al. 1992, Choi et al. 2005, Ichim et al. 2006a) as well as 
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the study described in the previous chapter show that high stresses and strains 

occur in the bone posterior to the third molar and in the lower half of the anterior 

ramus, when physiological loads are simulated. 

As described in detail in Chapter 2, there are abundant empirical data that 

confirm the close relationship between bone mass and functional loads, for 

example, how cortical hone thickness decreases when hones that normally hear 

loads are immobilised (Uhthoff & Jaworski 1978, Jaworski et al. 1990), or 

increases when bones are exposed to higher loads (Jones et al. 1977, Lanyon et al. 

1992). In addition to these empirical data, the results of the previous chapter show 

that there is a high correspondence between the strain pattern resulting from 

simulated physiological loading and the variation in cortical thickness within the 

human mandible. 

This study investigates whether the cortical hone distribution in the 

anterior ramus is related to the absence/presence of a retromolar space and 

whether it is possible to predict differences in cortical thickness in the ramus with 

FEA. Preliminary visual comparisons of CT scans of' number of modern human 

as well as Neanderthal and H. herdelbergensis mandibles suggest that there night 

be a relationship, but that a third factor needs to be considered, which is the angle 

of the anterior ramus (Fig. 7.1). 

It appears that in mandibles without a retroniolar space the halal portion of 
the anterior ramus tends to have a more sagittal orientation, providing space for 

the third molar and that in these mandibles a thickening of' the cortical hone on the 
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Fig. 7.1. Variation in the di, tancr between molar d 011111 il and raniu", anlrriur raniu" 'li. tpe an(I 
cortical home distribution within the ramus in modern humans, Neandcrih tk and 
H. heidelher, i'en. si. c, as seen in transverse CT slices. Note the more , agittally orientated anterior 
surface of the ramus in mandibles where the space between molars and ramus is reduced, and the 
more unequal distribution of cortical hone at the medial and lateral edges of the anterior ramus. 
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lateral side of the anterior rarnus can be observed. This lateral thickening of the 

cortical hone might be explained by the simple mechanical principal that higher 

stresses and strains occur, where surfaces meet at an acute angle (Denies et al. 

1984, Demes 1987). If this model is correct, this would be the case in mandibles 

without a retromolar space (Fig. 7.2). Alternatively, the presence/absence of a 

retromolar space could have a direct effect on the stress and strain distribution in 

the anterior ramus, since it is likely that the stiffness of the area as well as the 

loading conditions change with the distance between the molars and the ramus. 

Figure 7.3 gives an overview of the three variables of interest and the 

possible causal relationships. The first part of this study will test whether 

relationships do exist between the respective variables using it traditional 

morphometric approach. The second part of this study will test the effect of single 

variables on the strain pattern in the bone by virtual modification of single 
features and FEA. 

Fig. 7.2. Ihr t1ýlý, thr, i, ýýI icIati�n, htp hci ccin Ihr Iýrr. rnýr/al�ýnir ul a ieli�iu(IL11 ýliarr anal 
the shape of the anterior ranius: a) rctrom olar space present, h) retrolnolar space absent. 
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Distance between molars 
and ramus 

i 
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Angle of anterior ramus --------- Distribution of cortical bone 

Fig. 7.3. Possible causal relationships between the three variables of interest. 

7.2. Material and methods 

For the morphometric study, CT scans of 18 adult modern human and 7 

fossil mandibles were used. Table 7.1 gives an overview of the measured 

specimens. 
For each specimen the measurements were taken on a transverse section 

along the occlusal plane and on both sides of the mandibles, unless one side was 

too damaged to take measurements. These measurements are defined as follows 

(Fig. 7.4): 

1. Relative position of the most posterior molar: The projected distance 

between the most posterior point on the margin of the alveolar socket of 

the most posterior molar (i. e. the third molar if the dentition is complete 

and the second molar, if third molars were missing in vivo) and the most 

anterior point on the ramus. Positive values are assigned when the most 

posterior point of the molar is anterior to the most anterior ramus point. 

Negative values are used, when the molar point is posterior to the ramus 

point. 

2. Angle of the anterior ramus: The angle between the coronal plane and a 

line connecting the most anterior point of the lateral surface of the ramus 
and the most anterior point of the medial surface of the ramus. 

3. Cortical thickness ratio, which describes the relation between the cortical 
thickness on the medial side and the cortical thickness on the lateral side 

of the anterior ramus: The minimum distance between the endosteal 
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surface and the most anterior and medial point of the ramus divided by the 

minimum distance between the endosteal surface and the most anterior and 

lateral point of the ramus. 

Based on these measurements bivariate plots were generated and the correlation 

coefficients for the three possible pairs of the variables were calculated as a 

measure of association. 

Specimen Tuxoni Measured sides 

Mauer 1 

Ehringsdorf F 

Krapina 59 

Tabun Cl 

La Quina 9 

Regourdou I 

Skhül 5 

18 modern humans 

H. heidelhergensis left and right side 

H. heidelhergensis only right side 

H. neanderthulensis left and right side 

H. neanderthulensi. s only left side 

H. neunderthulensis only left side 

H. neunderthulensis only right side 

H. supiens left and right side 

H. sapiens left and right side. I only right side 

Table 7.1. List of measured mandibles. See sections 3.2 and 3.3 for more details about the 
"hrcinirns. 

H'ii.. 7.4. luti. tj . ýt wli ii it,, iiii,. j, , , [, ,,, I[ I ., i, J, -II . i. 11 11 i. tII, i I! ' ;, it II I'll I ., ý,. (, W, t1�Il along the occlusal Plane): a) diNtanre hei \ren the Most lin'te I(l inul; u . ºnýl he iuh). t anterior p(Iint 
of the ramus, h) angle between the coronal plane and a tangent along the anterior ranºus, c) cortical 
thickness measurements at the lateral and medial edges of the anterior ramus. 

For the FEA, two of the best preserved mandibles were selected to 
represent the extremes of the range of molar position in relation to the raunt s One 
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is a modern human mandible (H-A 00? ) with a ramus clearly overlapping the 

third molar in lateral view and one a Neanderthal mandible (Rdgourdou 1) with a 

characteristic retromolar space. The CT scanning parameters as well as the virtual 

3D reconstruction of these two specimens are described in detail in Chapters 3 

and 5. 

In order to be able to predict where thicker cortical hone is needed to resist 

higher strains, the existing variation in cortical hone thickness has to be removed. 

Therefore, an equal cortical hone thickness of ca. 1.7 mm was created in all 

models as described in Chapter 6. 

The effect of the presence/absence of a retromolar space (defined as the 

distance between the most posterior molar, not necessarily the third molar, and the 

ramus) as well as the angle of the anterior ramus on the strain magnitudes and 

distribution, was tested by modifying morphological features in the 3D models 

with Amira. In order to investigate the effect of the presence/absence of a space 

behind the most posterior molar, the third molars in the modern human mandible 

were removed and in the Neanderthal specimens one additional molar on each 

side was added (Fig. 7.5). The mechanical significance of the anterior ramal angle 

was studied by transplanting the anterior ramus of the Neanderthal specimen into 

the modern human mandible and vice versa (Fig. 7.6). 
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Jig. 7.5. Rciii al oI the third mol: u', in the iii Jetft human nian&Iihlr and . idldlllk n 01 Mk, i, mili 
molars" in the Neanderthal mandible to test the mechanical significance of the presence/absence of 
a space between molars and ramus. 
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The final models were transformed into FE meshes and material properties 

and boundary conditions as described in Chapter 5 were defined, using modern 

human muscle forces for the modern human mandible and estimates of 

Neanderthal muscle forces for the Neanderthal mandible (for values see 3.8). For 

each model, four load cases were simulated: incision, right canine bite, bite on the 

right first molar and bite on the right second molar. 

The resulting local deformations in the models were quantified using von 

Mises strains. In order to obtain a summary contour plot for all load cases, the 

maximum strain value for each finite element across the different load cases was 

selected, as described in the previous chapter. Based on these surninary contour 

plots, strain values fron 50 elements on the periosteal and endosteal surfaces at 

the most anterior points of the lateral and medial margins of the anterior ramus 

were exported and the mean strain values for each selected area were calculated. 
This procedure was applied to the working as well as the balancing side ramus 

and the maximum values were selected for the analysis. 
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7.3. Results 

Figures 7.7 to 7.9 sho the plots fur the three possible hairs of the three 

va fables. For all three hairs, strong linear relationships can he ohserved. In detail. 

these relationships are I)a decrease in the angle of the anterior ranUus with 

increasing distance between the most posterior molar sind the r, tmu,, 2) an 

increase of the cortical thickness ratio (i. e. its convenience toi one), with 

decreasing angle of the anterior ramus, 3) an increase of- the cortical thickness 

ratios with increasing distance between the most posterior molar and the ranlus. 

The correlation coefficients for all three pairs of' variables are above 0.7 and 

highly significant (Table 7.2) and the graphs do not show any extreme outliers 

(Fig. 7.7-7.9). All specimens fall relatively clone to the regression lines. 

Variahlc I Variable 2rp 

Rclative molar h0s1tiun Angle of anterkw r, inmw -0.76 < 0. (001 

('urtical thickness ratio Angle of anterior i amus AS I<O. 000 

Relati' e molar position Cortical thickness ratio, 0.72 < 0.0001 

Table 7 
. 
2. ('orrclation cocflicicnts and P-values fur the three hair" of ýari. ýhIe . 
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Fig. 7.7. Position of the most posterior molar in relation to the ramus against the angle of the 
anterior ramus. The regression lines in this and the following figures are based on the whole 
sample, thus including H. sapiens, H. neanderthalen. cis and If. heidelhrrr'ensis. 
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Fig. 7.8. Cortical thickness ratio against the angle of the anterior ramus. 
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Fig. 7.9. Relative position of the most posterior molar against cortical thickness ratio. 

Figures 7.10 and 7.11 , unirau ri,, e the results )i the the voll WWII 

strain values t'runi the medial and lateral corner" o the anterior ranuus as well as 

the contour plots uf- transverse sections through the ranti. In hoth mandihics, the 

artificial removal or addition of' molars, has little or no effect can the strain (pattern 
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in the anterior ramus (compare model A with model B in Figures 7.10 and 7.11). 

However, the exchange of anterior ranmus morphology between the two 

mandibles results in different strain patterns (compare model A with model C in 

Figures 7.10 and 7.11). In the Neanderthal mandible with a modern human 

anterior ramus shape the lateral strains increase slightly (by 76 pt; or 71% ) and the 

medial strains drop by 250 pi, or 34"T compared to the original model of' the 

Neanderthal mandible. In the modern human mandible with a Neanderthal 

anterior ramus shape the lateral strains drop by 443 pc or 22(%, whereas the 

medial strains decrease slightly compared to the model with unmodified ramus 

(67 tc or Wi ). When the strain distributions in the two original, unmodified 

mandibles are compared, the modern human mandible shows a striking difference 

between lateral and medial strain values (difference of 1560 tc or 76(/ ), whereas 

in the Neanderthal mandible lateral and medial values are more similar (difference 

of 358 is or 3317c). 
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Fig. 7.10. Von Mises strain values and contour plots for the three models of the Neanderthal 
mandible: A) model with original shape and dentition, B) model with added "fourth molars" and thus lacking a retromolar space, C) model with original dentition but modified ramus (anterior 
ramus replaced with the one of the modern human mandible). 

156 



Chapter 7: Retromolar space 

w 
1 

C 
CU 
4- 
N 
O 
0 

2500 

2000 

1500 

1000 

500 

o_ 1 

ýý f7 

ABC 

1000 NE 

500 pE 

I0 PE 

Q lateral 

  medial 

Fig. 7.11. Von Mises strain values and contour plots for the three models of the modern human 

mandible: A) model with original shape and dentition, B) model with third molars removed to 
create a "retromolar space", C) model with third molars removed and ramus modified (anterior 

ramus replaced with the one of the Neanderthal mandible). 

7.4. Discussion and conclusions 

The results of the morphometric part of this study show that the distance 

between the ramus and the most posterior molar, the angle of the anterior ramus 

and the distribution of cortical bone within the anterior ramus are closely related 

with each other. The FEA part of this study suggests that these relationships can 

be explained by the simple 2D model shown in Figure 7.2, since the observed 

strain patterns fit in well with the predictions of this model. 

As predicted, there is no direct effect of adding or removing molars on the 

strain patterns. Additional sensitivity analyses conducted during this study have 

shown that this is also the case when the third molars and artificially added 

"fourth molars" in the Neanderthal mandibles are loaded. In contrast, modification 

of anterior ramus morphology results in different strain values. The difference 

between lateral and medial strains increases when the anterior ramus is shaped as 

f 
,, 
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in a mandible without a retromolar space and decreases when the anterior ramus is 

shaped as in a mandible with a retromolar space. Thus, the simplified 2D model is 

able to predict the overall differences in the strain pattern, although it is only a 

crude representation of the complex 3D morphology of the human mandible. 
However, despite the good correspondence between the overall strain 

patterns and the model predictions, the modification of ramus morphology only 

has a small effect on some strain values. The lateral strains in the Neanderthal and 

medial strains in the modem human mandible do not differ much between the 

original models and the mandibles with modified ramus morphology. This is 

probably due to two factors: 1) The actual differences in morphology are much 

more subtle than the differences between the simplified 2D shapes (Fig. 7.2). The 

shape of the lateral edge of the anterior ramus is for example not that different 

between the chosen Neanderthal and modem human mandible. 2) The strain 

distribution in the anterior ramus not only depends on the morphology of this 

particular region, but also on the overall shape of the mandible and the loading. 

For example, high strain values in a certain area might not be primarily the result 

of the morphology of this particular area, but the result of its position within the 

whole structure. In this case, changing the morphology of this particular area 

would have only a minor or no effect on the stresses and strains. 

The combination of 3D FEA with the virtual modification of 
morphological features allows the effect of local morphological changes within 

the whole complex structure of a bone to be explored. By controlling potential 

confounding variables, it offers an almost experimental approach to test 

theoretical predictions. This approach appears to be especially useful if it is 

combined with data from traditional or geometric morphometric analyses as in 

this study. Thus, it is possible to study first whether or not variables are associated 

and then as a second step to test whether this reflects a causal relationship in a 

mechanical sense. 

As pointed out at the beginning, this study did not attempt to address the 

question as to why retromolar spaces occur with a higher frequency in 
Neanderthals than in other Pleistocene Homo taxa or modem humans. Instead it 

aimed to investigate the effect of a retromolar space on the internal bone structure. 
Nevertheless, the result of this study that strains are unchanged despite the 
artificial removal or addition of molars, allows the conclusion to be drawn that it 
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is unlikely that a retromolar space occurred more often in Neanderthals because it 

improved the resistance to masticatory loads. Having the molar dentition closer or 

further away from the ramus does not result in a change of the stiffness of that 

region. However, the results do not rule out the possibility that a retromolar space 

was mechanically advantageous in a different way or the side effect of mechanical 

adaptations as has been suggested by some authors (Spencer & Demes 1993, Rak 

& Hylander 2007). These suggested a forward shift of the molar dentition 

(resulting in a retromolar space) to keep the molars within the most efficient bite 

zone (Spencer & Demes 1993) or to create a larger vertical distance between the 

upper and lower molars for the same gape size (Rak & Hylander 2007). 

Finally, the results of this study should be seen within the broader context 

of interplay between developmental constraints and mechanical adaptations. Here, 

the spatial requirements of the molar dentition seem to place constraints on the 

external shape of the anterior ramus. This creates certain mechanical conditions to 

which the internal structure of the bone adapts. In future studies, it would be 

interesting to investigate this interplay between developmental constraints and 

mechanical adaptations in the mandibular ramus during ontogeny. 

159 



Chapter 8: Superior ramus morphology 

Chapter 8: Superior ramal morphology and its relation to the 

orientation of the temporalis' lines of action 

8.1. Introduction 

The superior part of the mandibular ramus , hews L-oll"iderahIL' 

morphological variation in Pleistocene as well as modern humans (Fig. 8.1). 

Some authors have suggested that Neanderthals show a unique superior ramal 

morphology (Rak 1998, Rah et al. 2002): a shallow, asymmetric signioid notch 

and a posteriorly orientated coronoid process, which often exceeds the condylar 

process in height, while modern humans are said to have a coronoid process of the 

same height as the condylar process and a deep, symmetric signroid notch 

approximately at the midpoint between the two processes. This distinction has 

recently been challenged on the basis of the large variation within anatomically 

modern humans, Neanderthals and H. heidelhergen. tii. c (Wolpoff & grayer 2(H)5). 

However, even if' these aspects of superior ramal m orpholo y arc not 

unique to Neanderthals, they occur among them with high frequency, which is 

interesting from a functional perspective. 'I he cu, rc, no ld process provides the 
insertion area for the temporalis muscle, which is one of the most powerful 

muscles of' mastication in humans. It is commonly assumed that the Irittl)uralis 
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muscle acts as a part of a functional matrix (see 2.3.1 for a detailed description of 

the concept) for the coronoid process during growth (Moss 1962, Moss & 

Rankow 1968, Moss & Salentijn 1969, Moss & Meehan 1970): During 

masticatory function the contracting temporalis fibres apply forces to the coronoid 

process that stimulate bone resorption and deposition. Thus, the form of the 

coronoid process is altered depending on the magnitudes and directions of the 

muscle forces. In addition, it has been suggested that the form of the sigmoid 

notch is largely determined by the form of the coronoid process: that an anteriorly 

oriented coronoid process is associated with a shallow notch, a posteriorly 

oriented coronoid process with a deep notch (Simon & Moss 1973). Therefore, the 

form of the sigmoid notch should also be affected by the action of the temporalis. 

Indeed, animal experiments support a close link between temporalis 

function and the size and shape of the coronoid process as well as of the sigmoid 

notch. The detachment of the temporalis muscle in rats (Washburn 1947, Moore 

1959) leads to the resorption of the coronoid process and marked alterations in its 

shape. The selective removal of the posterior and middle temporalis fibres in rats 

results in a more anteriorly orientated coronoid process (Avis 1959) and a 

shallower sigmoid notch (Moss & Meehan 1970). 

Simon and Moss (1973) have used the latter observation to explain the 

morphological variation of the superior ramus in modem human and Pleistocene 

populations. They hypothesised that when the activity of the anterior, vertically 

orientated fibres of temporalis dominates this produces an anteriorly oriented 

coronoid process and a shallow sigmoid notch, whereas high activity of the 

middle and posterior fibres, which have a more horizontal orientation, generates a 

posteriorly oriented coronoid process and a deep sigmoid notch. In contrast to 

this, Neanderthals are said to have a posteriorly oriented coronoid process but 

shallow sigmoid notch and modem humans an anteriorly oriented coronoid 

process but a deep sigmoid notch (Minugh-Purvis & Lewandowski 1992, Rak 

1998, Rak et al. 2002). It seems likely that these differences between 

Neanderthals and modem humans are also linked to temporalis function and 

anatomy, but maybe in a different way than in the cited animal experiments. 
Experimental detachment of muscle fibres is not possible in humans but 

FEA allows "virtual experiments".. Muscle forces can be added or deleted and 
their orientation can be altered arbitrarily. This study will investigate the effect on 
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the strain distribution in the superior ramus of virtually removing temporalis 

fibres. It is well known that that alterations of loading and resulting changes in the 

strain distributions influence bone modelling (e. g. Lanyon & Rubin 1984). In 

consequence, variations in strain distributions observed during such virtual 

experiment might be used to infer where bone would be resorbed or deposited in 

the mandible. While there is still debate about how strains relate to bone 

modelling in general (see 2.1 for a review) bone deposition usually occurs where 

peak strains are large and resorption where strains decrease. Additionally, some 

authors have suggested that strain polarity plays a role: that tension causes bone 

resorption, and compression bone formation (Jansen 1920, Triepel 1922, Bassett 

1965, Oxnard et al. 1994, Hirschberg 2005). Ideally, bone modelling in response 

to changes in the temporalis should be studied by simulating the actual modelling 

processes. 
This study is, however, limited to the evaluation of the changes in the 

strains. If bone modelling is directly related to strain magnitude, than Simon and 

Moss' (1973) hypothesis predicts that the removal of the middle and posterior 

temporalis fibres (given that total temporalis force is kept constant) should 

increase strains at the anterior margin of the coronoid process but decrease strains 

posteriorly, whereas removal of the anterior fibres should decrease strains at the 

anterior margin and increase strains at the posterior margin. In addition, the 

effects of virtual removal of temporalis fibres on strains at the deepest point of the 

sigmoid notch will be examined to see if these decrease as would be predicted by 

the observations of Simon and Moss (1973). If strain polarity plays an important 

role, then the same distribution as for low and high magnitudes would be expected 

for compressive and tensile strains respectively. 

8.2. Material and methods 
For this study, a modern human mandible with dentition complete apart 

from congenitally absent third molars was chosen (specimen H-A 001). The initial 

image processing (i. e. the definition of a density threshold for bone and teeth and 
the addition of a layer of periodontal ligament around each tooth root) was 

performed using the original pCT scan of the specimen with a voxel size of 
0.15 mm in all directions (see Table 3.3 for more information about the scan). In 

order to reduce processing time, the model was then downsampled to a voxel size 

162 



Chapter 8: Superior ramus morphology 

of 0.3 mm. Two simplified TMJs were added as described in Chapter 5 and the 

model was converted into a FE mesh with ca. 2 million elements. 

After defining material properties (see Chapter 6 for values), a unilateral 

molar bite was simulated by constraining the occlusal surface of the right M1 and 

the corners of the TMJs in all three axes and applying the muscle force 

magnitudes and orientations as described in section 3.8. In order to assess the 

effect of removing temporalis fibres, two additional load cases were modelled 

(Table 8.1): 1) by deleting the forces representing the middle and posterior 

temporalis fibres on both sides of the mandible and adding these forces to the 

force representing the anterior temporalis, 2) by deleting the force for the anterior 

temporalis and assigning it to the middle and posterior portions so that the ratio of 

the force magnitudes between middle and posterior fibres was kept constant 

(Fig. 8.2). The respective muscle forces of removed fibres were thus not simply 

deleted, but distributed over the remaining muscle portions to allow comparison 

of the strain distributions when the same force is applied in different ways. 

Muscle force magnitudes (N) 

Temporalis portion All portions present' 
Anterior portion 

Middle and 
posterior portions removed removed 

W B WB WB 

Anterior 123 97 -- 284 235 
Middle 91 92 161 157 -- 
Posterior 70 46 123 78 -- 
'based on PCSA measurements from van Eijden and co-workers (1995,1996,1997), n=8 

Table 8.1. Force magnitudes in N applied to the temporalis portions on the working (W) and 
balancing (B) sides for the three different load cases. 

Based on the node displacements of the solved models, maximum (cl) and 

minimum principal strain (C3) and von Mises strain (E�) were calculated for each 
finite element. The differences in the strain distributions between the load cases 

were visualised by difference contour plots: The strain value for each element of 

one model was subtracted from the value for the same element in the second 

model with the resulting differences between all elements visualised as a colour- 

coded contour map. 
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Additionally, element strain values (c,, F3, c) were extracted from four 

locations, each covering an area of 100 finite elements (Fig. 8.3): 1) the anterior 

margin of the coronoid process, 2) the tip of the process, 3) the posterior margin 

of the process and 4) the area around the deepest point of the sigmoid notch when 

the mandible is orientated so that the occlusal plane is horizontal. The extracted 

maximum and minimum principal strain values were used to calculate the 

minimum/maximum principal strain (E1/E3) ratio for each of the locations, so that 

differences in the ratio between tensile and compressive strains could be evaluated 

in addition to the comparison of the strain magnitudes. 

\\ 
y J' 

Anterior temporalis 
  Middle temporalis 

  Posterior temporalis 

Fig. 8.2. Modelling of the three temporalis portions. Left image: buccal view, right image: lingual 
view. The mandible used is H-A 001. 

2 

Fig. 8.3. Areas from which surface strain values were extracted: 1) the anterior margin of the 
coronoid process, 2) the tip of the process, 3) the posterior margin of the process and 4) the area 
around the deepest point of the sigmoid notch. All the strains were extracted from the working side 
ramus. 
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8.3. Results 

In general, the strain magnitudes in the coronoid process and the adjacent 

areas are low compared to other regions of the mandible (see e. g. Chapter 5). At 

the four sampling locations, maximum and minimum principal strain values do 

not exceed ±500 is (Fig. 8.5). The strain magnitudes at the working side ramus 

are higher than at the balancing side ramus, but the strain distributions as well as 

the differences observed between load cases do not differ appreciably between 

sides. The strain values presented in Figures 8.4-8.7 and Table 8.2 are therefore 

only from the working side ramus. 

The strain distributions show considerable local variation (Figure 8.4) 

between the three load cases. The most dramatic absolute difference in strain 

magnitudes is found at the anterior margin of the coronoid process. Alterations in 

the strain magnitudes, but less pronounced than at the anterior margin, are also 

observed at the deepest point of the sigmoid notch as well as at the posterior 

margin and the tip of the coronoid process. 

The removal of the anterior temporalis portions leads to a considerable 
decrease in tensile strains at the anterior margin of the coronoid process. At this 

location a maximum principal strain of ca. 170 is is measured in the original load 

case, but only ca. 20 is in the load case without the anterior temporalis portion, 

which is a decrease of 89% (Fig. 8.5, Table 8.2). In addition, there is a local 

increase of 37% in maximum principal strain at the bottom of the sigmoid notch 

as well as some increase at the bottom and the top of the posterior margin. At the 

centre of the posterior margin and the tip of the coronoid process maximum 

principal strain decreases slightly by ca. 12%. The minimum principal strain at the 

four locations is affected in a very similar way by the removal of the anterior 

temporalis, being reflected by the similar percentage changes (Table 8.2). The 

only exception is the posterior margin of the coronoid process, where minimum 

principal strain decreases dramatically by 76%, while the maximum principal 

strain only decreases by 12%. Consequently, the E1/E3 ratio at this location is 

altered (Fig. 8.6). 

When all portions of the temporalis are present, the posterior margin of the 

coronoid process is loaded under compression, which is reflected by a c1/c3 ratio 
below one. The E1/E3 ratios for the other three locations are above one and 
therefore tension dominates in these areas. The removal of the anterior temporalis 
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portion result, in a E1/E3 ratio, which is above one at all four areas, indicating that 

they are under net tension. 

A£1 

0 
b 

lp 

10 

  1A 

Strain difference (NE) 

-200 -100 0 100 200 

Fig. 8.4. Strain difference maps for the working side ramus showing the differences in strain 

magnitudes in the two load cases with deleted temporalis portions from those of the original load 

case with all three temporalis portions: a) effect of deleting the anterior temporalis, h) effect of 
deleting the middle and posterior temporalis. Differences are shown for maximum principal strain 
(ei), minimum principal strain (c3) and von Mises strain (ev, ). 

Percentage changes in strain magnitudes 

Locations Anterior temporalis Middle and posterior 
removed temporalis removed 

EI E3 £, E1 £3 E, 

1 -89 -90 -89 118 121 54 

2 -13 -14 -12 48 74 39 

3 -12 -76 -57 61 115 52 
4 37 43 38 -37 -23 -47 

Table 8.2. Percentage increase and decrease in strain magnitudes as a result of removing different 

temporalis portions. Shown are percentage changes for maximum principal strain (e, ), 11161111 11.1111 
principal strain (as) and on Miscs strain (Ev). {? ach percentage value is computed as Ilh-al/al"IUII 
(a = strain value from the model with all tenipuralis portions, h= strain value from a model with 
tcmporalis portions deleted). Positive value, indicate an increase in strain magnitudes, ne ative 
values a decrease. 

The comparison of the von Mises strain values, which combine principal 

strains, at the four locations indicates that the removal of the anterior teniporalis 

AE3 DEv 
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leads to a decrease in von Mises strains at all locations on the coronoid process 

except at the deepest point of the sigmoid notch where strains increase by 38% 

(Fig. 8.7). 

The removal of the middle and posterior temporalis has the reverse effect 

on the strains. At the anterior margin of the coronoid process maximum and 

minimum principal strains increase dramatically by more than 100% (Table 8.2, 

Fig. 8.5). As Figure 8.4 shows, this area of increased strains covers the whole 

anterior part of the coronoid process up to its tip, where maximum principal strain 

increases by ca. 50% and minimum principal strain by ca. 75%. A pronounced 

increase is also measured on the posterior margin. Here the maximum principal 

strain increases by ca. 60% and the minimum principal strain by more than 100%. 

At the bottom of the sigmoid notch, maximum and minimum principal strains 

decrease by 37 and 23% respectively. 

Unlike the removal of the anterior portion, the deletion of the middle and 

posterior portion of the temporalis does not change the EI/E3 ratios much 

(Fig. 8.6). In the original load case with all temporalis portions present the 

anterior margin and the tip of the coronoid process as well as the bottom of the 

sigmoid notch are under net tension, while the posterior margin of the coronoid 

process is under net compression. The same pattern is observed when the middle 

and posterior portion are removed. 
In keeping with the results for maximum and minimum principal strains, 

removal of the middle and posterior temporalis portions results in an increase in 

von Mises strain magnitudes at all locations on the coronoid process, but in a 
decrease in the sigmoid notch (Fig. 8.7). 
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8.4. Discussion and conclusions 
As the results of this FEA study indicate, the virtual removal of temporalis 

portions has a marked effect on the strain magnitudes at the coronoid process and 

the sigmoid notch. To summarise, the removal of the anterior temporalis portion 

results in lower principal and von Mises strains at the coronoid, particularly at its 

anterior margin, and higher strains at the bottom of the sigmoid notch, whereas 

the removal of the middle and posterior temporalis portions leads to dramatically 

increased strains at the coronoid process, again especially at its anterior margin, 

and lower strains at the bottom of the sigmoid notch. In addition, the removal of 

the anterior temporalis results in a different distribution of net tension and 

compression, so that the posterior margin of the coronoid process is under net 

tension, while it is under net compression when all temporalis portions are 

present. 
The finding that the removal of the anterior temporalis results in lower 

strains at the anterior margin of the coronoid, whereas the removal of the middle 

and posterior temporalis leads to higher strains in that area is consistent with 

predictions that derive from the work of Simon and Moss (1973) that strains at the 

anterior margin should be higher when the vertical anterior temporalis fibres are 

more active and lower when the more horizontally oriented middle and posterior 
fibres are dominant. 

The results for the posterior margin of the coronoid process are however 
less consistent with the predictions. When the anterior temporalis is removed, the 

strains just below the tip of the process and at the bottom of the posterior margin 
increase as predicted, but decrease at the centre of the margin. And the removal of 
the posterior and middle temporalis results in an increase of strain along the whole 

margin, not a decrease. 

The alterations of the strains in the sigmoid notch are similarly surprising. 
The strains in this area decrease when only the anterior temporalis is active, but 
increase when only the middle and posterior temporalis are active. If bone was 
resorbed where strains decrease and deposited where they increase, the sigmoid 
would become deeper in the former case and shallower in the latter, which is 

exactly the opposite of what has been predicted based on Simon and Moss (1973). 
However, these results are consistent with the differences between Neanderthals 

and modem humans (Rak 1998, Rak et al. 2002), since a deepening of the 
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sigmoid notch would be associated with a forward shift of the anterior coronoid 

margin and bone deposition in the notch with a backwards shift. 

If the idea of strain polarity as a stimulus for bone modelling is applied 
(Jansen 1920, Triepel 1922, Bassett 1965, Oxnard et al. 1994, Hirschberg 2005), 

there is no clear pattern visible. Almost all locations, from which strains were 

extracted, are under net tension, apart from the posterior margin of the coronoid in 

two of the load cases. This should lead to resorption of a large part of the 

coronoid, even if all temporalis fibres are present, which cannot be the case. 
However, additional studies are necessary to properly investigate the 

relationship between temporalis function and specific aspects of the superior 

ramus morphology. Ideally, more than just one load case should be modelled in 

order to obtain a more complete image of the strain distribution in this region. In 

addition, bone adapts to its function by continuous remodelling activity and each 

alteration of the morphology will alter the strain pattern slightly. It is therefore not 

possible to predict the change in form due to remodelling based only on the initial 

strain patterns. 
Instead of just quantifying strains and making assumptions about potential 

bone remodelling activity, it would be better to actually simulate bone modelling 
by combining FEA with bone modelling algorithms. Moreover, this study 

virtually removed temporalis fibres in an adult mandible. In the animal 

experiments discussed by Simon and Moss (1973), the respective fibres were 

excised in young juveniles (Moss & Meehan 1970). In order to simulate the 

experiments properly, it would be interesting to use juvenile mandibles and apply 
bone remodelling algorithms to these. In addition, the attachment of the muscle 
fibres in the FE could be modelled more realistically. Currently, only nodes on the 

model surface are selected to apply muscle forces. Histological studies have 

however shown that the temporalis tendons attach to the mandible in different 

ways, for example, via a fibrocartilage tissue or by directly inserting into the bone 

(Hems & Tillmann 2000). If this could be modelled in the FE model accurately, it 

might change the strain pattern. 

Although the simplicity of the present study does not allow the 

relationship between temporalis function and morphological changes in the 
superior ramus to be tested directly, it shows that the strains in this region are 
altered significantly when temporalis portions are removed and the orientation of 
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the muscle force is thus changed. This supports the idea that variations in superior 

ramus morphology among Pleistocene and modem humans are indeed closely 

linked with differences in temporalis anatomy and function. 

Theoretically, there are several potential reasons why Neanderthals might 

have been different in this respect. One reason is the different cranial morphology 

compared to modern humans. The orientation of the temporalis fibres is defined 

by the spatial relationship between their origin and insertion, which depends on 

the ramal height, breadth and angulation as well as the form of the cranium, for 

example, a low and elongated neurocranium should result in more horizontally 

oriented temporalis fibres, whereas a high and short neurocranium should lead to 

a more vertical orientation. In addition, experimental data suggest that the relative 

activity of the temporalis portions is closely linked with different aspects of 

cranial and mandibular morphology, particularly with the degree of prognathism 

(Moller 1966). Therefore, it is likely that Neanderthal temporalis anatomy and 

function were different to those of modern humans. 

Finally, there is abundant experimental data which show that the relative 

activity of different portions within each masticatory muscle also depends on the 

task (Moller 1966, Vitti & Basmajian 1977, Blanksma & van Eijden 1990, 

Blanksma et al. 1992, Blanksma & van Eijden 1995, Murray et al. 1999). For 

example, the anterior temporalis fibres are especially active during an upwards 

pull of the mandible whereas the more horizontal posterior fibres are particularly 

active when the mandible is retracted (Gray et al. 2005). 

The differential activation of the temporalis portions has been used to 

explain the typical Neanderthal superior ramus morphology as an adaptation to 

frequent paramasticatory use of the front teeth (Minugh-Purvis & Lewandowski 

1992). These authors argue that such use of the front teeth led to a frequent 

stimulation of the posterior temporalis so that a posteriorly oriented coronoid 

process was retained into adulthood. However, such behavioural interpretations 

should be treated with caution. Even if a link between a posteriorly oriented 

coronoid process and the activity of the posterior temporalis could be confirmed, 
it would not necessarily indicate a behavioural adaptation. As mentioned above, 

certain fibre orientations or differential activities of muscle portions can be 

likewise the effect of the overall cranial and mandibular form and the spatial 

relationship between different aspects of the masticatory apparatus. The 
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morphological variation in the superior ramus should be therefore not seen in 

isolation but in the context of the considerable variation of cranial and mandibular 

form in the Pleistocene as well as in modern human populations. 

This study has only provided some first, preliminary results regarding the 

relationship between temporalis and superior ramus morphology. Future studies 

should further investigate this link, for example, by altering the orientation of 

muscle vectors instead of deleting them and modifying the morphology of the 

superior ramus and studying the effect on the strain distribution. However, 

eventually, studies should combine FEA with a bone modelling algorithm since 

the evaluation of strain distributions can only provide limited information. 
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Chapter 9: The mechanical significance of anatomically modern 
human symphyseal morphology 

9.1. Introduction 

It is generally accepted that a clearly protruding mentum osseum or chin is 

a feature unique to anatomically modem humans. Although some archaic 

members of the genus Homo, especially some Neanderthal fossils have been said 

to show incipient chins or some elements of the mentum osseum (McCown & 

Keith 1939, Ascenzi & Segre 1971, Wolpoff et al. 1981, Smith 1984, Lieberman 

1995, Rosas 1995, Lam et al. 1996, Stefan & Trinkaus 1998a, 1998b, Wolpoff 

1999), its consistent presence is only found in early and recent populations of 

Homo sapiens (Schwartz & Tattersall 2000, Dobson & Trinkaus 2002). 

Closely linked with the emergence of the human chin is a change in the 

orientation of the mandibular symphysis. In anatomically modem humans, the 

symphysis is more vertical (Fig. 9.1) than in earlier hominins and other primates. 

This change of symphyseal orientation occurred together with the emergence of 

the chin during the later Pleistocene (Stefan & Trinkaus 1998b, Dobson & 

Trinkaus 2002). 

The uniqueness of the modem human symphyseal morphology has led to 

speculation about its functional significance. Some have suggested that the chin is 

linked to other unique aspects of modem human evolution like the development of 

speech (Walkhoff 1904, Ichim et al. 2007a), or the reduction of the dentition and 

masticatory musculature resulting in "hypofunction", and thus a functionally 

deficient mandible (Riesenfeld 1969). The speech hypothesis is difficult to test 

and seems unlikely, since stresses and strains during speech can be assumed to be 

much lower than during incision and mastication. The "hypofunction" hypothesis 

has been convincingly ruled out by Daegling (1990,1993a), who questioned the 

comparability of the experimental basis of this hypothesis and pointed out that 
there is no convincing evidence for the assumption that human mandibles are 
structurally weak compared to those of other primates. 

Other authors have tried to explain the human chin as a buttress to resist 
specific loads occurring during masticatory function (DuBrul & Sicher 1954, 
White 1977, Daegling 1990,1993a). From in vivo strain measurements in non- 
human primates, especially Macaca fascicularis, it is known that the primate 
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symphysis is primarily loaded in four ways (Hylander 1984, l985). During 

incision and the powerstroke of mastication, these are: 1) lateral bending in the 

transverse plane (LTB or wishboning), 2) dorsoventral shear (DVS), and 3) 

vertical bending in the coronal plane caused by a twisting of each corpus around 

its anteroposterior axis (CB). In addition, medial transverse bending (M-1'13 or 

reverse wishhoning) occurs during jaw opening (Figure 9.2). 

Fig. 9.1. SVIIij I v'c tI , i'"� ý'. Ii, 'ii, td lL u�ur, l, 111i, il<ir, /, . iii, I i/ ýI1I( )iN . ii ki. il 111.1 I, i 
Krapina 58, c) Krahina 51). X11 1e uurduu I. rl Sklml S and _) iutulcrn hunn: ui, (l, h). N�t to 
, calc. Specimens are orientated s that the occlusal plane is hori, unial. 

The occurrence of these load types is due to the recruitment pattern and 

orientation of the lines of action of the masticatory muscles. When the jaw is 

opened, MTB occurs due to the medially directed force component of' the lateral 

pterygoid muscles that squeezes the rani together, resulting in labial tension and 

lingual compression at the symphysis. During the powerstroke DVS at the 

symphysis is created by the vertical component of the balancing side jaw adductor 

muscle force, which elevates the balancing side of the mandible (Hylander 1984, 

1985). Wishhoning, which occurs at the end of the powerstroke, is associated with 

late peak activity of the balancing side deep masseter coupled with a residual 

force from the decreasing activity of the working and balancing side superficial 

masseters (Hylander et al. 1987, Hylander & Johnson 1994). Since the line-, of 
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action of these muscles are partly horizontal, the two halves of the mandible are 

pulled apart like a wishbone, causing labial compression and lingual tension. 

Finally, since the resultant force of the adductor muscles is located lateral to the 

long axis of each mandibular corpus, the corpora rotate about their long axes, 

which results in eversion of the lower border and inversion of the postcanine 

alveolar process. This axial torsion of the corpora causes vertical bending in the 

coronal plane with compression at the alveolar region and tension at the 

Q 

E* 

g 
d 

Fig. 9.2. Potential loads at the human symphysis (luring masticatory function (inurlilicrl alter 
Fukasc 2007: 56, Fig. I ). White arrows indicate the effect (4 the muscle frorces. Black ant ws show 
the stresses on the labial surface of the hone at the syiuphy, is. Tensile stresses are visualised by 

arrows pointing away from each other, compressive stresses by arrows pointing tuwarrs each 
other, shear stresses by arrows on top of each other pointing in dilfercnt direction,. a) wishh(rning 
or lateral transverse bending (L'I'l; ), h) J(rrsrrventral shear (I)VS), c) vertical bending in the 

coronal plane due to an axial rotation of the mandibular corpora (('li) and (l) reverse wishhuning 
or medial transverse bending (MT13). 

According to Hylander (1984,1085), the mandibular synihhysis can adapt 

to these loads in different ways: for example, by increasing its lahio-lingual 

thickness to counter CB and transverse bending (i. e. M'J'li and I: I'li), and 
increasing its cross-sectional area, especially at the lower aspect of the synuhhysis 

to better resist DVS, or increasing its vertical height to counter ('13. In addition, an 
increase of cross-sectional area of the symphysis helps to counter all load types. 

Other authors have explained the human chin as an adaptation to some cri' 
these particular loads described by Hylarider (1994). DuE3rul and Sicher ( 1954) 
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suggested that the chin serves to buttress the symphysis against MTB, which 

produces labial tension at the symphysis. White (1977) proposed the contrary, that 

the chin provides resistance to LTB resulting in labial compression. Finally, 

Daegling (1990,1993a) hypothesised that the human chin represents a structural 

response to resist CB, which leads to tension at the labial symphyseal base. He 

argues that LTB became less important when the length of the mandible was 

reduced during the evolution of anatomically modem humans, since in a shorter 

mandible the masticatory muscles have less leverage, but that the degree of 

vertical bending does not change. 

When these three hypotheses are compared with the experimental data, 

two of them appear to be less likely, assuming that the in vivo strain 

measurements in non-human primates can be generalised to humans. As Dobson 

and Trinkaus (2002) pointed out, the medial transverse bending hypothesis of 

DuBrul and Sicher (1954) seems to be weak, since it is wishboning, which is the 

primary transverse bending regime during masticatory function, whereas reverse 

wishboning only occurs during jaw opening and results in much lower 

symphyseal stress than wishboning (Hylander 1984). White's (1977) hypothesis, 

on the other hand, is in concordance with the experimental data with its emphasis 

on wishboning, at least on first glance. However, because the degree of curvature 

of the bone surface is higher lingually than labially, lingual stresses and strains 

should be higher than the labial ones during transverse bending (Young 1989, van 

Eijden 2000). This is confirmed by in vitro experiments (Hylander 1984,1985). It 

is therefore unclear, why in humans no lingual buttress, such as a superior 

transverse torus or a simian shelf has evolved, as in other primates. In addition, it 

has been argued that a stronger inclination of the symphysis is an efficient way to 

counter wishboning. Like a superior torus it increases the second moment of area 

about the vertical axis (Hylander 1984, Daegling 1990, Ravosa 1991, Daegling 

2001). If wishboning played an important role during the evolution of modern 

human symphyseal morphology, it is unclear why the human symphysis became 

more vertically orientated and thus less well adapted to counter wishboning. 

Given the experimental evidence, Daegling's (1990,1993a) hypothesis is 

most convincing. Recently, Dobson and Trinkaus (2002) tested its predictions by 

quantitative comparison of symphyseal cross-sections of Middle and Late 

Pleistocene specimens and anatomically modern humans. Their findings suggest 
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that there is indeed a trend towards less resistance to wishboning during the later 

Pleistocene, while CB resistance is maintained. This is as predicted by Daegling 

(1990,1993a), but Neanderthals and early modem humans did not differ 

significantly regarding wishboning resistance, although Neanderthals have 

significantly longer mandibles. However, in this study bending resistance could 

only be estimated by linear measurements based on the outer contours of the 

symphysis. With finite element analysis (FEA), on the other hand, it is possible to 

simulate the respective bending loads and quantify bending resistance of different 

symphyseal morphologies more accurately. 

The most recent attempts to test the biomechanical significance of the chin 

and the vertical orientation of the human symphysis have therefore used FEA 

(Ichirr et al. 2006a, 2006b, 2007a). Ichirr and co-workers (2006b) created 

different hypothetical symphyseal shapes in a simplified beam model and in a CT- 

based model of a human mandible and applied loads that represent the three major 

symphyseal loads, wishboning, DVS and CB. In a subsequent study they also 

simulated physiological loading during incision and molar biting (Ichirr et al. 

2006a). They found very similar strains in all models and concluded that the 

evolution of modem human symphyseal morphology is therefore unrelated to the 

mechanical demands placed upon the mandible during masticatory function 

(Ichim et al. 2006a, 2006b). Instead, they suggested that the chin evolved as an 

adaptation to the forces generated by the muscles of the tongue and other perioral 

muscles and is thus closely related to the development of human language (Ichirr 

et al. 2007a). 

While Ichim and colleagues (2006a, 2006b, 2007) used a powerful 

methodological approach to test the mechanical significance of the modern human 

symphyseal morphology, their study does not allow all relevant questions to be 

addressed. In particular: 1) Although they created an inclined symphysis or 
hypothetical simian shelf in their simplified beam model, they did not test the 

effect of symphyseal inclination in their CT-based model of a human mandible. 2) 

Their hypothetical flat-symphysis model differs from the original model with a 

chin not only in the absence of a chin, but also in other aspects of the symphyseal 

cross-section, such as the shapes of the whole lingual as well upper labial 

surfaces. Therefore, the mechanical effect of a labial thickening at the lower 

aspect of the symphysis was not studied in isolation. 3) Finally, the simplified 
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load cases modelled in their first study (Ichim et al. 2006b) were not 

physiologically representative, for example, the rami were constrained instead of 

the condyles and no constraints were placed on the teeth, although these loads 

(CB, LTB and DVS) occur during the powerstroke of incision and mastication 
(Hylander 1984,1985) and the direction of the torsional load used for simulating 
CB was opposite to that observed in experiments with macaques (Hylander 1984). 

Thus, the strain patterns observed during these simplified load cases might not be 

representative of the real strains occurring during masticatory function. 

This study will therefore use a similar methodology to Ichim and co-workers 

(2006a, 2006b), but different hypothetical symphyseal shapes and loading 

conditions. Thus, it aims to investigate the mechanical significance of modern 
human symphyseal morphology (i. e. vertical orientation and presence of a chin) 

more comprehensively. Based on previous discussions in the literature, the 
following hypotheses are tested: 

1) The presence of a chin, as compared to a vertical symphysis without chin, 

should have the following effects (Hylander 1984,1985): 1) better 

resistance to CB, 2) better resistance to transverse bending (LTB and 
MTB) due to the increase in labio-lingual thickness of the symphysis, and 
3) better resistance to DVS due to the increase in cross-sectional area of 
the lower aspect of the symphysis. 

2) A vertically orientated symphysis should show: 1) better resistance to CB, 
but 2) weaker resistance to transverse bending (LTB and MTB) than an 
inclined symphysis (Hylander 1984, Daegling 1990, Ravosa 1991, 
Daegling 2001). 

3) When a modern human symphysis is compared with a symphysis of 

another member of the genus Homo without a chin, for example, a 
Neanderthal, Daegling's hypothesis (1990,1993a) makes the following 

predictions: 1) The CB-resistance should be equal between the two, and 2) 

the resistance to wishboning should be reduced in the modern human 

symphysis. 

In addition, physiological loading during incision and a molar bite will be 

simulated to test, which symphyseal morphology appears to be most effective in 
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resisting more complex loads that come closer to the actual conditions during 

masticatory function. 

9.2. Material and methods 

For this study, an adult human mandible with complete permanent 

dentition, apart from the congenitally missing third molars, was chosen 

(H-A 001), which is the same mandible that has been used for the study described 

in the previous chapter. 

Details about the reconstruction of this specimen are therefore given in 

Chapter 8. Three models with modified cross-sectional form of the symphysis 

were then created from this base model using thin-plate splines ("Bookstein warp" 

in Amira): 1) a vertically orientated symphysis without mentum osseum, 2) the 

same symphysis as in 1) inclined lingually by 20°, and 3) a Neanderthal 

symphysis (Figure 9.3). In all these models the shape of the rest of the mandible 

was kept constant by ca. 500 anchor landmarks, which were approximately evenly 

distributed across the surface of the mandible excluding the symphyseal region. In 

the case of the first two warped models the target shape was completely 

hypothetical. For the creation of a Neanderthal symphysis, however, the target 

shape was the cross-sectional symphyseal shape of the Neanderthal mandible of 

Regourdou 1. Based on a synchrotron CT scan of this specimen with a reduced 

voxel size of 0.35 mm, a surface model was created, superimposed onto the 

modern human mandible by matching the two occlusal planes (molars to incisors) 

and scaled to the same vertical symphyseal height. Finally, the symphyseal cross- 

sections were superimposed using the alveolar margin. 

Potential confounding variables like cross-sectional area, symphyseal 

height and cortical bone thickness that are likely to have a significant effect on the 

stress and strain magnitudes and pattern (Hylander 1984,1985, Daegling 1993a), 

were controlled by creating: 1) equal cross-sectional areas in the hypothetical 

chin-less vertical and inclined symphysis, 2) equal symphyseal heights, and 3) 

equal cortical bone thickness of 1.8 mm in all models. Thus, the effects of 

changes in cross-sectional symphyseal shape and orientation could be studied 

systematically. Cancellous bone was not modelled, since its geometry would have 

been altered by the warping into different symphyseal shapes, which would have 

affected the comparability of the models. 
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Fig. 9.3. Variation in symphyseal shape between the models. Left row: coýnihlete ntu(el", right 
row: right halves of models removed. a) original human symhhyscal shape, h) vertical synihhysis 
without chin, c) inclined symphysis, d) Neanderthal symhhyscal shape. Note that the LIMniraI hung 

thickness is kept the same in all the models. 

Fig. 9.4. Areas on the labial (a) and Iinsual , ynihhy`i, (b) Inunt which surface "train values wcrc" 
extracted for quantitative comparison. Fach measurement area is ca. 27 x 1.5 mni in , ic. Scale 
Kars =I cm. 
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The final 3D volumes were exported as BMP stacks and converted into FE 

meshes by direct voxel conversion converted into a finite element, resulting in 

models with ca. 1.3 million elements. The identical material properties as used for 

the previous studies were then applied to the models, including PDL as an extra 

material. 
Four load cases (Figure 9.5) were modelled to simulate the major load types 

known from experiments with non-human primates (Hylander 1984,1985). While 

these loading scenarios are significant simplifications, the applied forces and 

constraints were defined in a physiologically reasonable manner, for example, 

constraints were placed on the superior condylar surfaces and the occlusal 

surfaces of teeth and the loads were applied to the insertion areas of the 

masticatory muscles, based on a dissection and a CT scan of a male human 

cadaver. 

- LTB or wishboning was simulated by applying a laterally directed force to 

the insertion areas of superficial and deep masseter on both sides and 

constraints were applied to a linear area on the superior condylar surface in 

the vertical axis and to the right first molar in all three axes. The applied 
force was 80 N on each side, equally divided among the two portions of 
the masseter. 

- MTB or reverse wishboning was simulated by applying a medially 
directed force to the insertion areas of the medial pterygoids and the 
inferior heads of the lateral pterygoids using the same constraints as in the 

wishboning case. The applied force was 80 N on each side, equally 
divided between medial and lateral pterygoids. 

- DVS was modelled by applying an upwardly directed force of 80 N 

distributed equally among the attachment areas of the jaw closing muscles 
(superficial and deep masseter, anterior, middle and posterior temporalis 

and medial pterygoid) on the left ramus, while the right condyle was 
constrained in the vertical axis and the right first molar in all three axes. 

- CB resulting from a twisting of each corpus around its anteroposterior axis 
was simulated by applying a medially directed force (400 N) to the 
occlusal surface of the first and second molars on each side and a laterally 
directed force (400 N to the insertion areas of the superficial masseter on 
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each side, while the condyles were constrained in all three axes and the 

tips of the medial incisors were constrained in the vertical axis. 

In addition to these simplified loading regimes, physiological loading during 

incision and a unilateral molar bite on the right M1 was simulated (see 3.8 for the 

details about the muscle forces). For these load cases, the model included TMJs, 

which were constrained in all three axes. The occlusal plane of the right Ml was 

also constrained in all directions, whereas the incisors were constrained in the 

vertical axis only. 

The maximum (a1) and minimum principal strains (C3) as well as von 

Mises strains (cv) were used in the evaluation of the models. For quantitative 

comparisons of the results, strain values were extracted from vertical linear areas 

through the midsagittal section on the labial and lingual surfaces of the 

symphysis, each ca. 27 x 1.5 mm in size, ranging from slightly below the alveolar 

margin of the incisors to the base of the symphysis (Fig. 9.4). 

4ý > 

d 

Displacement (mm) 

0 0.06 0.1 0.15 0.2 

Fig. 9.5. Displacement plots for the simplified load cases with a 20: 1 scale deformation. a) LTR, 
h) DVS, c) CB, d) MTB. The outlines of the undeformed models are shown in grey. The small 
black triangles indicate constrained nodes (each triangle represents a constraint in one axis), while 
the large arrows visualise the external forces applied to the models. 
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9.3. Results 

Simplified load cases 

The displacement plots for all simplified load cases confirm that the 

applied forces and constraints resulted in the expected deformations (Fig. 9.5). 

Figure 9.6 provides an overview of the maximum and minimum principal strains 

at the labial and lingual sides of the symphysis and thus allows an assessment of 

the distribution of compressive and tensile strains in the different load cases. LTB 

results in dominant labial compression and lingual tension, whereas MTB causes 

dominant labial tension and lingual compression, which is consistent with the 

behaviour of a curved beam (Hylander 1984,1985, Young 1989, van Eijden 

2000). In CB and DVS compressive and tensile strains on the two sides of the 

symphysis have relatively equal magnitudes, suggesting that these load cases are 
free from transverse bending. 

Figure 9.7 shows the mean von Mises strains on the labial and lingual side 

of the symphysis of each model. In each loading scenario the lingual strains 

exceed the labial ones, which is again the strain distribution expected from a 

curved beam (Hylander 1984,1985, Young 1989, van Eijden 2000). 

To test the different hypotheses, the models are compared pair-wise by 

considering differences in mean labial and lingual strain magnitudes (Fig. 9.6-9.7 

and Table 9.1) and the strain profiles along the labial and lingual surfaces of the 

symphysis (Fig. 9.8-9.10). 

When the model with the modern human symphyseal shape is compared 

with the model in which the chin has been removed it is found that the absence of 

a chin results in ca. 20 to 30% higher tensile strains on the labial side during CB 

and MTB, while the compressive strains change little. During LTB the opposite 

pattern with regard to tensile and compressive strains is observed. On the lingual 

side, tensile and compressive strains are equally affected by the removal of a chin. 
During transverse bending an increase of 10% is observed for maximum and 

minimum principal strain, while during CB the strains remain virtually equal. 
Tensile as well as compressive strains increase by ca. 30 and 10% respectively on 
the labial side and ca. 10% on the lingual side during DVS. 
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Fig. 9.6. Maximum and minimum principal strains at the lahial and lingual surface' of the 
symhhysis during the simplified load cases. The difference between maximum and nºininwnº 
principal strain values for each model and load case represents the maximum shear strain (Y, 11; � 
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Fig. 9.8. Vertical strain profiles for maximum and minimum principal strains on the labial and 
lingual surfaces of the symphysis. The location of each value on the surfaces is indicated by the 
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Fig. 9.9. Strain profiles for maximum and minimum principal strains on the labial and lingual 
surfaces of the symphysis. At the top: CB, at the bottom: molar bite. For more details sec legend of 
Fig. 9.8. 
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Strain differences between the models in percent 

Load cases Chin vs. no chin 
Vertical vs. Modern vs. 

inclined Neanderthal 

EI £3 C, El £3 E� El E3 C, 

Labial 
CB 20 6 10 48 -4 15 80 -1 25 

DVS 29 10 17 16 -21 -3 0 -20 -20 
LTB -4 22 10 -29 -11 -16 -48 -40 -44 
MTB 22 -5 9 -11 -30 -17 -40 -48 -44 
Incision 
Molar bite 

22 
40 

-5 
4 

9 
16 

2 
65 

-16 
-3 

-3 
28 

-4 
82 

-17 
4 

-11 
32 

Lingual 
CB -6 -2 -4 -27 -5 -15 -10 -12 -13 
DVS 10 13 11 -16 0 -8 -16 -26 -13 
LTB 10 9 10 -31 -31 -30 -32 -23 -30 
MTB 9 10 10 -32 -32 -31 -24 -32 -31 
Incision 10 11 11 -12 -19 -15 0 -10 -7 
Molar bite -2 3 0 -28 -7 -14 -21 -15 -17 

Table 9.1. Strain differences between the models in percent for maximum principal strain (el), 

minimum principal strain (e3) and von Mises strain (e, ). For each pair the percentage value is 

computed as ((a-b)/a)*100 (a = first mentioned model in the table for each pair, b= second 
mentioned model). Positive values indicate an increase in strain magnitudes, negative values a 
decrease. 

The strain profiles (Fig. 9.8-9.9) reveal a very similar pattern in general for 

the chinned and the non-chinned models: where strains are relatively high or low 

in one model, the same is observed in the other. However, there are two regions 

where the patterns differ. In the lower third of the labial symphysis, compressive 

strains show a relative decrease during DVS, whereas in the non-chinned model 

the strains remain as high as at the centre of the labial symphysis. During LTB, 

tensile strains show a local decrease at the centre of the labial symphysis in the 

non-chinned model, which is not seen in the original chinned model. The latter is 

also observed for labial compressive strains during MTB. During CB, the smallest 

values for tensile and compressive strains on the labial side of the chinned 

symphysis are found at the most anteriorly projecting part of the Inentum osseum. 
This decrease in strains is not observed in the non-chinned symphysis. 

The lingual rotation of the non-chinned symphysis by 20° results in much 
lower strains during transverse bending. Labially, tensile strains decreases by ca. 
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30% and compressive strains by ca. 10% during LTB and vice versa during MTB. 

Lingually, tensile as well as compressive strains are reduced by ca. 30% during 

both transverse bending regimes. During CB, a marked increase of labial tensile 

strains by 48% is found, but also a reduction of compressive strains of 27% on the 

lingual side. During DVS, one principal strain increases, while the other decreases 

or does not change. This is observed labially and lingually. The von Mises strains 

remain therefore relatively constant: They decrease only slightly by 4 and 8% 

labially and lingually. 

Despite these differences in magnitude, the overall pattern of variation is 

similar between the vertical and the inclined symphysis. In some regions, 

however, the inclined symphysis shows a pronounced local decrease in strains 

compared to the vertical symphysis model: a reduction of tensile strains at the 

centre of the lingual symphysis during CB and DVS, and a reduction of 

compressive strains at the centre of the labial symphysis during DVS. During 

LTB the inclination of the symphysis results in a pronounced decrease in tensile 

strains in the lingual alveolar region and the lower half of the labial symphysis, 

and a decrease of compressive strains at the same locations during MTB. 

When the model with the Neanderthal symphysis is compared with the 

original modern human model, a pronounced decrease in strain magnitudes is 

found during transverse bending. Labially, compressive and tensile strains are 

reduced by ca. 40 to 50% and lingually by ca. 20 to 30%. During DVS, the 

principal strains decrease by 16 to 26% apart from the tensile strains on the labial 

side, which remain the same. In CB lingual compressive and tensile strains are 

also lower (by ca. 10%) in the Neanderthal symphysis. However, on the labial 

side the tensile strains show a very pronounced increase of 80%. 

The strain profiles (Fig. 9.10) differ more between the Neanderthal 

symphysis and modern human symphysis than between the other models, but 

some of these differences are very similar to the ones found between the vertical 

non-chinned symphysis and the inclined symphysis. So, the Neanderthal 

symphysis behaves similarly to the inclined symphysis under loading, whereas the 

modern human symphysis behaves similarly to the non-chinned vertical 

symphysis. These differences are 1) a pronounced local decrease in tensile strains 

at the centre of the lingual Neanderthal symphysis during CB, which is the point 

of maximum labio-lingual thickness, 2) a marked decrease of tensile strains at the 
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same location during DVS, 3) a pronounced decrease in tensile strain magnitudes 

at the lingual alveolar region during LTB (and of compressive strains during 

MTB), 4) an increase in labial tensile strain magnitudes at the lower border of the 

alveolar region and 5) at the base of the symphysis during CB, 6) an increase in 

tensile strain magnitudes at the labial base of the symphysis during DVS. In 

addition, compressive strains are markedly reduced in the upper half of the lingual 

Neanderthal symphysis during DVS and tensile strains are particularly reduced at 

the centre of the labial Neanderthal symphysis during LTB (compressive strains 

during MTB). 

Incision and molar bite 

Figures 9.11 and 9.12 show the magnitudes of maximum and minimum 

principal strains and von Mises strains for the two simulated biting tasks. Labially, 

compressive strains reach higher magnitudes than tensile ones. Lingually, the 

pattern is reversed. This indicates that reverse wishboning occurred, which results 

in labial compression and lingual tension. In addition, the displacements and 

strain profiles indicate that in the simulated molar bite DVS and CB occur and 
during the incision load some degree of sagittal bending. The pattern of strain 
differences between the models for the two biting tasks is similar to the general 

pattern found for the simplified load cases. 

The removal of the chin leads to an increase in labial tensile strains of 
ca. 20% and 40% during the simulated incision and the molar bite respectively, 

whereas the compressive strains remain constant. On the lingual side neither 

compressive nor tensile strains are affected by the removal of the chin during the 

molar bite, but an increase of ca. 10% of compressive and tensile strains is 

observed during incision. The strain profiles reveal that the observed differences 

are due to an overall increase in strain magnitudes in the non-chinned symphysis, 
while the spatial pattern of strain variation is very similar between the two 

models. 
The inclination of the symphysis results in 16 and 19% lower compressive 

strain magnitudes on the labial and lingual sides respectively during incision 

relative to the model with a. vertical symphysis, while the tensile strains only 
decrease on the lingual side (by, 12%). During a molar bite, however, the 
differences are more pronounced. Labially, the tensile strains increase by 65% and 
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Fig. 9.11. Maximum and minimum principal strains on the labial and lingual , urface of the 

symphysis during a simulated incision and molar bite. The difference between m axinnini and 
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When the modern human P, Compared with the Neanderthal 

principal strain magnitudes are by 6 to I71/ lower in the Neanderthal .\m pIiy, il 

lahially and lingually during incision. but during the molar hite the luhial tein,, ile 

strain,, are dramatically higher in the Neanderthal wmphvýis (hy 42'; ). while tlºe 

lingual `trains are reduced by ca. 15 and 200 for cunºhre�ive and ins de strains 

respectively. The strain profiles for the unilateral molar hire indicate that the 

dramatic reduction of labial tensile , (rain" occur" hriº arll\ at the Ninon) of the 

alveolar region and the base of' the symhhysis. and this is very similar to the 

diff'erence` observed durin`e (13. The reduction of tensile strains on the Iin"ual 

siele occur,, mainly at the centre of the lingual symphysis. where the maximum 
lahio-lingual thickness is reached. This also very similar to the pattern seen in (-I? i 

and DVS. 
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9.4. Discussion and conclusions 

The results of this study show that changes in symphyseal shape have a 

profound effect on the strain magnitudes and spatial distributions, even it 

variables like symphyseal height, cross-sectional area and cortical hone thickness 

are kept constant. The predictions based on the hypotheses described at the 

beginning are mainly confirmed by the results: 

I) The presence of a chin, as compared to a vertical symphysis without chin, 

should lead to better resistance to CB, transverse bending (L'I'B and M'I i3 ) 

and DVS (Hylander 1984,1985). This is confirmed since in all load cases, 

the symphysis with a chin better resists loads than the non-chinned vertical 

symphysis, as shown by lower labial and lingual strains. 

2) A vertically orientated symphysis should show a better resistance to ('ft. 

hut a weaker resistance to transverse bending (l: 1'13 and M'I'ß) than an 
inclined symphysis (Hylander 1984, Daegling 1990, RavOsa 1991, 

Daegling 2001). This is mostly confirmed by the results since during ('li, 

the labial tensile strains are much lower in the vertical symphysis 

compared to the inclined symphysis, but tensile strains on the lingual side 

also show a pronounced local increase. During transverse bending the 

vertical symphysis shows considerably higher strains than the inclined 

symphysis. 
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3) When a modern human symphysis is compared with a Neanderthal 

symphysis without a chin the CB-resistance should be equal between the 

two and the resistance to wishboning should be reduced in the modem 

human symphysis (Daegling 1990,1993a). This is confirmed since the 

modem human symphysis shows less resistance to transverse bending, but 

relatively equal or in some regions greater resistance to CB. 

In all load cases, the symphysis with a chin better resists loads than the 

non-chinned vertical symphysis. This result is consistent with the predictions 

based on Hylander (1984) according to which an increase in labio-lingual 

thickness of the symphysis should improve the resistance to CB and transverse 

bending and a concentration of bone in the inferior part of the symphysis should 

lead to better resistance to CB and DVS. Both of these features are associated 

with the presence of a chin and might therefore be responsible for the observed 

decrease in-strains. Sincescortical thickness was kept constant during this study, 

the effect of concentration of bone at the lower aspect of the symphysis was not 

studied in the strict sense, rather the effect of increasing the cross-sectional area of 

the inferior part of the symphysis was investigated. As expected, the most 

pronounced decrease in strains in the chinned model is found in the lower half of 

the symphysis, where the cross-sectional area is increased, and especially at the 

most anteriorly projecting part of the chin, where the labio-lingual thickness of the 

symphysis reaches its maximum. 

The rotation of the non-chinned vertical symphysis by 20° proves very 

effective in improving the resistance to transverse bending, labially and even more 

so lingually. This confirms the prediction by previous authors (Hylander 1984, 

Daegling 1990, Ravosa 1991, Daegling 2001) that an inclined symphysis is better 

at resisting transverse bending than a vertical one. Since in this study cortical 

thickness and cross-sectional area were kept constant between the two models, the 
decrease in strains can be attributed solely to the difference in the orientation of 
the symphysis. During CB and DVS the inclination of the symphysis does not 

result in a better load resistance. The values for von Mises strain during DVS are 

very similar in the vertical and the inclined symphysis. This is consistent with 
Hylander's (1984) finding that the resistance to DVS is mainly dependent on the 

cross-sectional area of the symphysis, which was kept constant between the two 
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models. During CB, the labial tensile strains are much lower in the vertical 

symphysis, but tensile strains on the lingual side also show a pronounced local 

increase at the centre of the symphysis. Thus, the prediction that a vertical 

symphysis is better in resisting CB than an inclined one (Hylander 1984, Daegling 

1990, Ravosa 1991, Daegling 2001) can in general be confirmed, but the overall 

decrease in strains is achieved at the expense of a local increase of tensile strain 

on the lingual side of the symphysis, which would require morphological 

adaptations, for example, a local increase in cortical bone thickness. 

The comparison between the modern human and the Neanderthal 

symphyses yields marked strain differences for DVS and both transverse bending 

loads. During these load cases, the Neanderthal symphyseal shape results in 

clearly lower strains labially as well as lingually, whereas during CB, the lingual 

strains are similar between the two models and labial strains are higher in the 

Neanderthal symphysis. The improved resistance to DVS in the Neanderthal 

symphysis might be simply due to the ca. 8% larger cross-sectional area of this 

symphysis compared to the modem human one, since DVS-resistance mainly 

depends on cross-sectional area (Hylander 1984). The finding that the modem 

human compared to the Neanderthal symphysis is clearly less effective in 

resisting transverse bending, but equally or more resistant to CB, when labial 

strains are considered, confirms Daegling's (1990,1993a) hypothesis. 

Dobson and Trinkaus (2002) also found a trend towards less resistance to 
transverse bending during the later Pleistocene, but did not find a significant 
difference between Neanderthals and early modem humans regarding transverse 

bending resistance. As such, they could not fully confirm Daegling's (1990, 

1993a) hypothesis. The present study did not include symphyses of early modem 
humans and it is therefore possible that the observed strain differences between 

the anatomically modem human and the Neanderthal symphysis would be smaller 
if an early anatomically modem human mandible had been tested. Nonetheless, 

the application of FEA in this study allowed a test of the direct mechanical effects 

of different symphyseal shapes, whereas Dobson and Trinkaus (2002) could only 

estimate the resistance of symphyseal cross-sections based on measurements. 

In addition, the use of two hypothetical symphyseal shapes in this study 

yielded results that are worth further consideration. Daegling (1990,1993a) 

suggested that the presence of a chin reduces tensile strains at the base of the 
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symphysis during CB, which is advantageous since bone is weaker under tension 

than under compression. This can be confirmed by comparing the strain profiles 

of the chinned and the non-chinned models. If, however, the chin evolved to 

buttress the symphysis against CB, this conflicts with the finding that the presence 

of a chin has the smallest effect during CB. The chin is more effective in reducing 

the strains in DVS and transverse bending. Thus, it seems that the increase in 

labio-lingual thickness and cross-sectional area associated with the presence of a 

chin does not have such a large effect in CB as in the other load cases. However, 

the effect of the concentration of bone at the symphyseal base and thus an increase 

in bone mass by increasing the cortical thickness, has not been examined here. 

Studies of the internal morphology of the human symphysis have shown that the 

highest cortical bone thickness is found at the lower lingual aspect of the 

symphysis and labially at the mental protuberance (Fukase 2007, Fukase & Suwa 

2008). Following Hylander (1984), such a concentration of bone should improve 

resistance to CB and DVS. Therefore, it is likely that the presence of a chin 

combined with a concentration of cortical bone at the lower aspect of the 

symphysis buttresses the human symphysis very effectively against CB and DVS, 

but not against CB specifically. 

Unfortunately, published experimental data do not clearly indicate which 

symphyseal load case is predominant during human masticatory function. In 

cercopithecine primates, it is wishboning that causes the highest strains at the 

symphysis during the powerstroke of mastication, followed by DVS (Hylander 

1985). EMG data from humans are very different from those of cercopithecine 

primates (Moller 1966, Hylander & Johnson 1994) and if wishboning or reverse 

wishboning occurs in humans, it is unlikely to have a large effect in the relatively 

short and wide human mandible because of the shorter moment arms associated 

with wishboning and the less sharp curvature at the symphysis (Daegling 1990, 

1993a, Hylander & Johnson 1994). 

That transverse bending resistance has become less important for the 

human symphysis is supported by the results of our comparison between the 

vertical and inclined symphyses. Since the inclined symphysis proves very 

effective in resisting transverse bending, it is difficult to imagine, how a more 

vertically orientated symphysis could evolve during human evolution if transverse 

bending remained the predominant symphyseal load type. A vertical symphysis is, 
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however, not disadvantageous in resisting CB or DVS. Together with the fact that 

the emergence of the chin is highly correlated with an increasingly vertical 

symphysis during the later Pleistocene (Dobson & Trinkaus 2002) this provides 

further support for Daegling's (1990,1993a) hypothesis. It also shows that the 

evolution of the chin should not be seen in isolation but in the context of an 

increasingly vertical symphysis, since it is likely that these two aspects of modem 

human symphyseal morphology are, from a mechanical point of view, closely 

interconnected. 

To date, the change in symphyseal orientation during human evolution has 

not been as much discussed as the emergence of the chin. Given the evidence 

from this study, it is possible that a vertical symphysis evolved because it 

provided better resistance to altered masticatory loads like an increase in the 

relative importance of CB, or because other factors like the reduction of maxillary 

prognathism or developmental constraints favoured the development of a more 

vertical symphysis in the absence of selection for strong transverse bending 

resistance. Our results cannot provide a clear answer to this question. If CB 

became relatively more important during human evolution, a vertical symphysis 

would have decreased overall tensile strains, but at the expense of locally 

increased strains on the lingual side of the symphysis. 

Although the theoretical division of masticatory loading into simple load 

cases is very useful for understanding of the mechanisms of functional adaptation 

in the symphysis, there is the risk of oversimplification, since the overlap of these 

loads during masticatory function might result in more complex strain patterns. 
The deformations during our incision and molar bite simulations represent a 

mixture of CB, DVS and transverse bending, but interestingly CB is the 

predominant load type of the simulated molar bite. As in the CB simulations, the 

modem human symphysis shows better resistance than the Neanderthal one, since 

the tensile strains on the labial side are very much reduced. The comparison of 

strain magnitudes and patterns between the other models shows that this is 

primarily the result of the vertical orientation of the modern human symphysis. 
In general, the results of this study confirm prior mechanical hypotheses 

about the modem human as well as symphyseal morphology in general and show 
that the use of FEA can be very useful for testing such hypotheses, since the 

effects of specific loads and morphological features can be studied if confounding 
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variables are carefully controlled. Future FEA studies could also explore the 

mechanical significance of sexual dimorphism in human chin morphology. It is 

possible that the different chin forms of males and females are the result of sexual 

selection since sexual dimorphism in chin morphology is closely related to facial 

attractiveness (Barber 1995) and/or caused by the direct influence of sex 

hormones on mandibular growth as known from animal experiments (Moutier et 

al. 1992, Fujita et al. 2001, Fujita et al. 2004), but this is difficult to test. 

Alternatively, sexual dimorphism in chin morphology could reflect mechanical 

adaptations to different masticatory forces in males and females resulting, for 

example, from differences in mandibular dimensions and muscle force 

magnitudes, which can be studied with FEA (Daegling 1993a). 

However, for a full understanding of the evolution of human symphyseal 

morphology, it will be necessary to obtain more data on masticatory function in 

modern humans and apes and to create more realistic models. In addition, which 

mechanical parameters are most relevant for assessing how well a bone resists 

loads needs to be clarified, for example, tensile or compressive stresses and 

strains, von Mises stress or strain energy density. In this study, special attention 

was drawn to the increase and decrease of tensile strains, since bone is weaker 

under tension than under compression and the reduction of tension has been used 

as a major argument for the evolution of the human chin (DuBrul & Sicher 1954, 

Daegling 1990,1993a). However, there is no consensus in the biomechanical 

literature yet that the morphology of bones is indeed optimised to this criterion. 
Better understanding of what parameters are important would provide a better 

basis for comparative FEA studies in future. 
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Chapter 10: Variation of load resistance in mandibles of late Homo 

10.1. Introduction 

Since the Middle Pleistocene human mandibular morphology has changed 

considerably. In general, there has been a trend towards reduced overall size and 

robusticity as well as to smaller tooth dimensions, especially with regard to the 

postcanine dentition (Brace 1979, Franciscus & Trinkaus 1995, Wolpoff 1999, 

Nicholson & Harvati 2006). This gracilisation is visible not only in the lineage 

leading towards anatomically modern humans, but also within Neanderthals 

(Franciscus & Trinkaus 1995). 

Several authors have suggested that this morphological change is the result 

of new food preparation techniques (e. g. cutting, pounding, grinding and 

especially cooking) developed since the Middle Pleistocene (Brace 1979, 

Franciscus & Trinkaus 1995, Wolpoff 1999). Microwear analyses have shown 

that there is a trend towards a less abrasive and softer diet since the Middle 

Pleistocene, most probably due to food processing (Perez-Perez et al. 2003). Such 

advances in food preparation techniques certainly improved the digestibility of the 

food and made food softer and smaller in particle size, so that less occlusal force 

and fewer chewing cycles were required for food breakdown (Lucas & Luke 

1984, Lieberman et al. 2004a). It is possible that this reduction of masticatory 

loads had an impact on mandibular morphology in two ways: 1) by reducing the 

selection pressure for maintaining a large dentition and robust mandibular 

morphology (Brace 1979), 2) by reducing strains in the bone that stimulate 

craniofacial growth (Lieberman et al. 2004a). 

The latter is supported by animal experiments which have shown that 

softer and more processed food does indeed lead to a reduction of strains in the 

skull and to reduced craniofacial growth resulting in smaller skulls of different 

shape when compared to individuals raised on hard, unprocessed food (Beecher et 

al. 1983, Kiliaridis et al. 1985, Engström et al. 1986, Lieberman et al. 2004a). 

Similar changes in craniofacial morphology have been reported from human 

populations that developed new techniques of food processing, for example, due 

to the introduction of agriculture or the industrialisation (Carlson 1976, Carlson & 

van Gerven 1977, Corruccini 1984,1990, Varrela 1992). Based on this evidence it 

is likely that a part of the variation in mandibular morphology in late Horno can be 

199 



Chapter 10: Load resistance in late Homo 

explained by adaptations to more processed and soft food. This is not an 

hypothesis that can be fully tested due to the lack of data and the fact that direct 

experiments are not possible, but the prediction can be made that if there was an 

adaptation to reduced masticatory loads, resistance to masticatory load should 

have decreased over time, and this can be tested with FEA. 

However, when Neanderthal morphology is considered, the picture 

becomes more complex. Although a gracilisation trend including a reduction in 

postcanine tooth size is also observed in Neanderthals (Stefan & Trinkaus 1998b), 

the reduction in tooth size does not apply to their incisors, which remained large 

(Brace 1979). Some authors have therefore suggested a specific selective force 

acting on the Neanderthal anterior dentition that is not related to food processing 

but to the manipulation of non-edible objects (Brace 1967, Brose & Wolpoff 

1971, Wolpoff 1975, Brace 1979). The relatively large incisors together with their 

shovel-shape and typically high degree of wear compared to the postcanine 
dentition as well as the high prevalence of degenerative changes in the TMJs of 
Neanderthals have been regarded as evidence that Neanderthals used their front 

teeth regularly for such non-food processing purposes (Stewart 1959, Brace 1962, 

Coon 1962, Brace et al. 1981, Smith 1983, Trinkaus 1983, Smith & Paquette 

1989). This idea provided the basis for the "anterior dental loading hypothesis" 

(ADLH), which suggests that the typical Neanderthal craniofacial morphology 

can be partly explained as an adaptation to regular heavy anterior dental loads that 

resulted from the use of the front teeth as a tool (Smith 1983, Rak 1986, Demes 
1987, Trinkaus 1987, Spencer & Demes 1993). 

Previous studies that have tried to test the ADLH focused on bite force 

production capability and efficiency of Neanderthals (Anton 1990, Spencer & 

Demes 1993, Ant6n 1994, O'Connor et al. 2005). If Neanderthals are specifically 

adapted to regular high anterior dental loads as the ADLH posits, then they should 
have been able to produce higher bite forces on the anterior dentition than modern 
humans and should have been more efficient in doing so. However, studies that 
tested this prediction yielded contradictory results (Ant6n 1990, Spencer & 
Demes 1993, Ant6n 1994, O'Connor et al. 2005). Spencer and Demes (1993) 

evaluated the position of the masticatory muscles relative to the TMJ and 
concluded that Neanderthals had increased ability to produce large anterior bite 
forces compared to anatomically modern humans. Ant6n (1990,1994), on the 
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contrary, estimated smaller bite forces in Neanderthals than in modern humans. 

The most recent 3D modelling study by O'Connor and colleagues (2005) suggests 

that Neanderthals and modern humans were equally able to produce anterior bite 

forces. The differences in bite force production that O'Connor and co-workers 

(2005) found were between large robust individuals and small gracile individuals 

rather than between anatomically modern humans and Neanderthals. 

However, all of the studies that have tried to test the ADLH to date have 

only considered the production of bite forces. So far, differences in load resistance 

between modem humans and Neanderthals have not been explored, although such 

differences are also likely to be of importance in testing the ADLH. This study 

will apply FEA to simulate masticatory loads in mandibles of H. heidelbergensis, 

Neanderthal and anatomically modem humans and evaluate differences in load 

resistance between them. The aim is to test the predictions of the ADLH as well as 

predictions that arise from the hypothesis that the overall gracilisation trend in late 

Homo is the result of reduced masticatory loads. 

internal bone Csize 

structure material f properties 
external At 

shape load resistance 

Fig. 10.1. Factors that potentially have an impact on the load resistance of a bone. In this study 
primarily the effects of size and cortical bone thickness (as one aspect of internal bone structure) 
are investigated. 

Furthermore, by controlling variables, the potential causes of differences 

in load resistance will be explored. Figure 10.1 illustrates which factors are likely 

to have a major effect on the load resistance of a mandible. The exact material 

properties of bone tissue of extinct taxa are unknown and thus the effect of this 

variable cannot be explored here. The other aspects of mandibular morphology 

can however be studied in well preserved specimens. In this study, especially the 

effect of size and cortical bone thickness, one aspect of the internal bone structure, 

will be investigated. The following predictions will be tested: 

1) If Neanderthals are specifically adapted to resist high loads on the 

incisors, strains should be lower in Neanderthal mandibles than in other mandibles 
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of late Homo when incision is simulated and these differences should be larger 

than during molar loading. 

2) If late Homo mandibles have become adapted to lower masticatory 

loads due to advances in food processing, load resistance should have decreased 

over time. Strains resulting from masticatory loads should therefore be highest in 

the most recent specimens and decrease with increasing age of the specimens. 

3) If size and cortical bone thickness cause differences in load resistance 

and thus strains, then controlling these factors should decrease the variation in 

strain magnitudes. The more important the factor is for load resistance, the greater 

should be the effect on the strain variation when it is controlled. 

10.2. Material and Methods 

The sample consisted of 7 mandibles of modern and fossil humans. 

Table 10.1 provides some information about the specimens. More details about 

the specimens and their respective CT scans can be found in Chapter 3. Three of 

these mandibles (Regourdou 1, H-A 001, H-A 002) have already been used for the 

studies described in the previous chapters and thus FE models of these specimens 

were already available. 

The remaining models were created by applying the same methodology as 
described before, using thresholding and manual segmentation tools in Amira. 

Fragmentary specimens were reconstructed by mirror-imaging and manual closure 

of small cracks (more details under 3.5). After the initial segmentation and 

additional reconstruction of the fossil specimens, a layer of PDL was added to the 

models by drawing a thin line around each tooth root in the CT slices and 

simplified models of the TMJs were attached to the condylar surfaces. In the next 

step those datasets that consisted of anisotropic voxels (Mauer 1, Krapina 59, 

ANAT 800) were converted into isotropic datasets. In order to control for cortical 

thickness, one additional model was created for each specimen, in which the 

cortical bone had an equal thickness of 1.7-1.9 mm. 

The final 3D volume datasets were exported as BMP image stacks and 

converted into finite element meshes by direct voxel conversion. Table 10.2 lists 

the resulting element number and element size for each model. The material 
properties assigned to the models were identical to the ones for all previous 
analyses. After assigning the material properties and defining the muscle 
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attachment areas and muscle vector orientations, the following loading scenarios 

were modelled (see 3.8 for details about the muscle forces): 1) incision with 

modem human muscle forces applied to all specimens, 2) incision with estimated 

muscle forces based on bony proxies for the fossil specimens, 3) bite on the right 

M1 with modem human forces for all specimens, 4) bite on the right M1 with 

estimated muscle forces for the fossil specimens. For the incision simulation, the 

models were constrained in the axis vertical to the occlusal plane at the incisors 

and for the molar bite in all axes at the occlusal surface of the respective molar. 

For both load cases the blocks representing the TMJs were constrained in all three 

axes at their upper corners (see Chapter 5). 

Specimen Taxon Estimated age 

ANAT 800 H. sapiens modern 

H-A 001 H. sapiens modem 

H-A 002 H. sapiens modem 

Skhü15 H. sapiens 100-130 ka (Stringer et al. 1989, Grün et al. 2005) 

R6gourdou 1 H. neanderthalensis 65-75 ka (Bonifay 1964, Vandcrmecrsch 1965) 

Krapina 59 H. neanderthalensis 120-140 ka (Rink et al. 1995) 

Mauer 1 H. heidelbergensis 640-735 ka (Hambach 1996) 

Table 10.1. Mandibular specimens included in this FEA. More information about the specimens is 
given in sections 3.2 and 3.3. 

The resulting deformations in the models were quantified using von Mises 

strain (Ev, ). Differences in strain patterns and magnitudes were then evaluated by 

comparing the colour-coded contour plots and strain values from 123 selected 

locations on the bone surfaces. These locations represent landmark and 

semilandmark positions that were applicable to all mandibles, after they were all 

orientated so that the occlusal plane was horizontal. Examples of these positions 

are: the tip of the coronoid, the most inferior point on the corpus below the right 
M1, the point half way between the former point and the alveolar margin of the 

right M1 on the buccal surface. Figure 10.2 shows the positions of these points on 
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one of the mandibles. The extracted strain values were used to calculate the mean 

strain magnitudes and standard deviations. In order to compare the interindividual 

variation in strain magnitudes between different analyses, the standard deviations 

were divided by the overall mean for each analysis, so that the variation could be 

compared despite differences in magnitudes between the analyses. 

Number of elements Element size in 
Specimen Equal cortical mm Orginal models thickness models 

ANAT 800 492995 418967 0.488 

H-A 001 2138871 1575227 0.300 

H-A 002 3333138 3055907 0.240 

Skhü15 753880 564580 0.488 

Regourdou1 2037088 1597548 0.350 

Krapina 59 4852796 3691602 0.295 

Mauer 1 1426412 913633 0.437 

Table 10.2. Finite element numbers and element sizes of the models. 

In order to test the effect of size on the variation of strain magnitudes, the 

strain values were scaled following the methodology of Dumont et al. (2009). 

These authors showed that von Mises stress in FE models of different size can be 

compared when they are scaled according to the cube root of their volume 
squared, which approximates their surface areas. For this purpose, the volume of 

each mandible, including bone, teeth and PDL, but excluding the blocks 

representing the TMJs, was measured in Amira and the mean volume for all 

specimens was calculated (67.76 cm3 for the original models, 47.3 cm3 for the 

equal cortical thickness models). The scaling factor for each model was then 

calculated as (model volume)V3 divided by (mean volume)213. Finally, these 

scaling factors (Table 10.3) were multiplied with the von Mises strain values. 
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Specimen 

Original models 
Equal cortical thickness 

model,, 

Volume in cm` Scaling factor Volume in cm` Scaling factor 

ANAT 800 49.61 0.8 1 41. (X) 0.72 

11-A 001 50.24 0.82 35.03 0.64 

Il-A 002 38.16 0.68 34.33 0.64 

Skhül5 72.58 1.05 48.55 0.80 

Regourdou 1 69.33 1.02 50.39 0.82 

Krapinu 59 91.51 1.22 61.78 (1.94 

Mauer 1 102.86 1.32 60.06 0.92 

Table 111.3. Vi luinc-, (1I the model., Cw1ki Iin s the I MU hloLk' and ealculaied ýeaItn_ taýIýýrý liar 

'calin; _ (lit: , train nia`, nitu(lr, 10 the mran \olunnc of the "pecintrn,. 

" 

" 

_. vo "" 
"" 

Fig. IIL?. I. nklniark and , cmil itim Ik po, tlimv, on the hone , iiiltLL' u, rkI III the L"\ua. III III III 
strains \aIucs. 

10.3. Results 

Figure 10.3 , hºwws the von Miss, strain magnitude" for ineikion \ýitlº 

identical modern hunlan ntuIcle forces applied to all , I)ccinten. 'I'Ite hi`ýhc t 

strains are found in the modern human specimens, e, Ipecially in the anterior 

corpus. One modern human specimen (H-A (102) also shows high drain s in the 

left posterior corpus and ranlus, which is 111o`t hruhahly glue to dli(Ierences in 

muscle force orientation,, between the left and right siele (see Chapter 51. 'Ihr 

strains in the two Neanderthal specimens are at the bottom of the tttºýdern hunt; ºn 
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range or helow. At almost all locations the early Neanderthal Krapina 59 shows 

lower strains than the Neanderthal Rcgourdou 1. Even lower strains are found in 

the H. heidelhergensis mandible Mauer 1. The lowest strains in the mandibular 

corpus are, however, found in the early anatomically modern specimen Skhül 5. 

Fig. 10.4 shows the strain values for incision, when the Neanderthal'. and 

the H. heicle/het-gensis are loaded with muscle force magnitudes that have been 

estimated based on their anatomy. These higher muscle force, result in higher 

,, train values in the respective specimens, so that they are now within the modern 

human range or in the case of the Mauer mandible on the lower border of this 

range. 
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Figures 10.5 shows the von Miser strain contour plots for a bite on the 

right MI with modern human muscle forces applied to all specimens. As for 

incision there is a large variation in strain magnitudes within the sample of 

modern human specimens. Two specimens (II-A001 and I l-A 002) show 

relatively high strains in the mandibular corpus, particularly anteriorly to the right 

M 1. In addition, one of these specimens (H-A 002) exhibits very high strains over 

the posterior half of the balancing side corpus. The third modern human specimen 

(ANAT 800) and the early anatomically modern specimen Skhül 5 `how similarly 

high strains only directly around the biting tooth and in some "mall areas of the 

rami. The two Neanderthals and the Mauer mandible show the lowest strains: 

compared to the other specimens, high strains only occur directly below the 

constrained MI. 

The large variation of strain magnitudes is also clearly visible in the 

extracted strain values from the original analyses, in which cortical thickness and 
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size were not controlled (graph at the top of Fig. 10.6). The early anatomically 

modern SUCH 5 is close to the bottom of the range, but still within the ranee. The 

strain values from the two Neanderthals and the Mauer mandible are. however. 

slightly below this range at most locations. When cortical thickness i' kept 

constant, this pattern changes slightly. The chain values in the area around the 

constrained tooth increase in all fossil specimens relative to the modern human 

values, so that the values of the fossils are mainly within the modern human range 

in this area. A more pronounced effect is visible when the strains are scaled. The 

variation within the modern human specimens is then considerably reduced and 

the strain values of the fossil specimens move more into the modern human range. 

WAW 

4W 

Mauer Krapina 59 RAgourdou I 

increasing strain 

Fig. 10.5. Von Miscs strain contour plots for it hits on the right MI. Iddentical nwdcrn human 
muscle k rcc magnitudes have been applied to all specinicns. 

The use of estimated muscle forces haled on bony proxies for the 
Neanderthals and H. Iieidelhergensis" yields very similar strain differences overall 
to those observed above, where the same muscle forces were applied as to the 

modern human specimens. However, there is, in general, it slightly larger area of 

overlap with the modern human strain values (Fig. 10.7). Controlling cortical 
thickness and size results in the same effects, but this time, Hinre `train values 
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from the Mauer mandible and the two Neanderthals fall into the centre of the 

modern range. 
A summary of the differences in strain magnitudes between the specimens 

and how controlling cortical thickness changes the variation of strain magnitudes 

is provided by Table 10.4. It shows that the variation in strain magnitudes is 

always larger during molar biting than during incision. In addition, it confirms 

that controlling cortical thickness and even more so controlling size reduces the 

variation in strains between the specimens. 
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10.4. Discussion and Conclusions 

The simulation of incision and biting on the right M1 results in very 

different strains between the specimens even when identical muscle forces are 

applied to them. The largest differences can be observed in the anterior half of the 

corpus. Here, the highest values are found in the modern human specimens. The 

strains in the fossils are at the bottom of or below the modem human range. 

Controlling cortical thickness has an effect on the results by increasing the overlap 

of strain values in the fossil specimens with the modem human range of strain 

values. However, the largest effect is however achieved when size is controlled. 

The variation of strain values is then considerably reduced and the strain values of 

the fossil specimens move into the modern human range. 

The ADLH predicts that Neanderthals are better adapted to anterior dental 

loads and should thus show lower strain magnitudes during simulated incision 

than other mandibles of late Homo. The strains in the anterior corpus of the two 

studied Neanderthals are indeed lower compared to the modern human specimens, 

especially in the anterior corpus, when modern human muscle force magnitudes 

are applied. However, even lower corpus strains are measured in the 

H. heidelbergensis specimen Mauer 1 and the early anatomically modern 

mandible Skhül 5. In addition, the differences in load resistance between the 

Neanderthal and modern human specimens disappear, when the Neanderthal 

mandibles are loaded with "Neanderthal muscle force magnitudes" instead of 

modern human ones (Fig. 10.4). Finally, the strain differences between the groups 

are not larger than during molar biting. 

So, at least with regard to the mandible, it can be stated that there is no 

evidence that Neanderthals are specifically adapted to better resist anterior dental 

loading than H. heidelbergensis or modem humans. Instead, they seem to better 

resist masticatory loads in general compared to the, studied modem human 

mandibles and are thus similar to the H. heidelbergensis specimen Mauer 1 and 
the early anatomically modem human Skhül 5. In other words, the differences in 

strain magnitudes lie between all studied fossil specimens on the one hand and the 

modem mandibles on the other, not between Neanderthal and non-Neanderthal 

specimens. Therefore, the resistance to anterior dental loading in the studied 
specimens seems to rather depend on the general robusticity including size and 
bone thickness of each mandible instead of the presence or absence of 
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Neanderthal morphology. These results are similar to the results of the 3D rigid- 
body modelling study of O'Connor and colleagues (2005), which also suggest a 
dichotomy between robust and gracile specimens instead of Neanderthals vs. 

modern humans with regard to bite force production. 

Beyond the investigation of specific mechanical adaptation in 

Neanderthals, this study aimed to check whether or not there is a general trend 

towards less resistance to masticatory loads through time. If advances in food 

processing led to a reduction of masticatory loads to which the mandibles adapted, 

there should be an increase in strains with decreasing age of the specimens. 

Although the sample size used here is too small to test this prediction statistically, 

the results confirm such a trend overall. The highest strains are found in the 

modern human specimens, whereas the lowest strains are found in the 

H. heidelbergensis mandible. Interestingly, there is also a difference between the 

two Neanderthals in the sample. The early Neanderthal specimen Krapina 59 

shows lower strains overall than the classic Neanderthal Regourdou 1. The picture 

becomes more complex however, when Skhü15 is considered. As expected, it lies 

at the bottom of the modern human range during a molar bite, but that it shows 

lower strains than the Neanderthals during incision is rather surprising and 
deserves further investigation. 

In general, the results of this study support the hypothesis that there was a 
trend towards an adaptation to reduced masticatory loads since the Middle 

Pleistocene. This decrease in load resistance is certainly the result of a 
combination of morphological changes, but two morphological variables have 

been explicitly tested here. As the results show, the differences in cortical bone 

thickness explain some part of the variation in strain magnitudes. This is not 

surprising, given the large differences in cortical bone thickness between the 

modem human and the fossil specimens (Fig. 10.8) and the fact that the cortical 
thickness is known to be critical in resisting bending, since during bending strains 
increase with the distance from the neutral axis and are thus highest in the cortical 

shell. However, a larger part of the variation seems to be due to the size 
differences between the specimens, which have been quantified here as the 
differences in volume2/3. If the strains are scaled based on the mean volumev3 of 
the specimens, the differences between the modem human and the fossil 

mandibles disappear. 
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Thus, the dichotomy between large, robust and small, gracile individual' 

that was found by O'Connor and co-workers (2(H)5) regarding force production 

seems also to he true for the resistance to loads. In addition, experiment,, and 

measurements of human populations have shown that reduction rat masticatory 

loads due to the consumption of more processed soft 10x(1 leads to a decrease in 

mandibular dimensions or skull dimensions in general (Carlson 1976, Carlson & 

van Gerven 1977, Corruccini 1984,1990, Varrela I9Y2). It seems that sue iti the 

major variable that changes when masticatory loads decrease. However, it is also 

the most easily measured variable. External shape, internal hone geometry or the 

mechanical properties of' hones are more difficult to measure and I: u- fewer data 

are therefore available to evaluate how they are related to change, in inasticatuýry 

loads. 

The application of' F IA to test the effect of* each variable and thus to 

evaluate their relative importance is certainly a promising approach, but how to 

best control certain variables is not always straightforward. One example is the 

question which muscle forces are to he applied to specimens in c"olliparative 

studies. In this study, two approaches have been used. First. Identical muscle force 

magnitudes based can estimate,, of' modern human forces were applied to all 

specimens to allow it direct comparison. but this leads to artificially low muscle 
forces in the case of' the fossil specimens. 'I heref'ore, the fossil `heciinens were 

also loaded with muscle forces estimated based rin bony proxies. liowever, tile 

use of bony proxies for the calculation of' the physiological cross-sectional area 
(PCSA) and thus the maximum force of it muscle can only he a very crude 
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estimate. So, both approaches raise methodological problems, but it is advisable to 

apply both in order to evaluate the robusticity of the results. 
Another variable that can affect the comparability of the strains between 

specimens is model resolution. As has been discussed in Chapter 4, a low spatial 

resolution and image blurriness can result in inaccurate model geometry, for 

example, an overestimation of cortical bone thickness. The CT scans used for this 

study are quite variable regarding their spatial and contrast resolution (see 3.4) so 

that some part of the variation in strain magnitudes is certainly due to differences 

in scan resolution. However, the largest variation in scan resolution is found 

within the modern human sample, which suggests that the differences between the 

modern human and the fossil strain values are real. In addition, potential 

overestimations of cortical thickness due to low scan resolution were controlled 
by creating models with equal cortical bone thickness. It is reassuring that the 

strain differences in these models were very similar to the ones in the original 

models. So, it seems that the error introduced by differences in scan resolution is 

relatively small, but, ideally, future comparative FEA studies should try to use CT 

scans obtained from the same scanner and identical setting in order to achieve 

maximum comparability. 
Finally, the comparability of the results, at least for testing the ADLIH, 

could be significantly improved by including anatomically modern human 

specimens from prehistoric and extant hunter-gatherer populations instead of 

specimens from modern agricultural or industrialised societies, since differences 
in diet, food processing techniques and overall robusticity as potential 
confounding variables should be controlled as much as possible. The Near Eastern 

early anatomically modern specimens from Skühl and Qafzch arc especially 
interesting in this context, since they were not only associated with Mousterian 

artefacts, which are similar to the tools attributed to Neanderthals (Garrod & Bate 
1937), but also show the same macro- and microwcar pattern as Neanderthals (P. 
Smith 1976, Perez-Perez et al. 2003). Future FEA studies could investigate how 
these not only compare with Neanderthals but also with Upper Palaeolithic 

populations. 

In order to study adaptation to reduced masticatory load resulting from 

new ways of food processing, it would be interesting study a sample from a 
population, in which a relatively abrupt change of food processing techniques 
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occurred, for example, during the introduction of agriculture or industrialisation. 

Thus geographic as well as genetic variation could be kept small and differences 

in load resistance are likely to reflect adaptations to the new diet. Additionally, it 

would be most interesting to include subadult specimens in order to study 

adaptations to reduced loads during ontogeny. 

Probably the most important result of this study is that it shows how large 

the intraspecific variation in strain distributions and magnitudes can be. This 

stresses the need to increase sample sizes in FEA studies. Most FEA studies, even 

comparative ones (Wroe et al. 2007, Wroe 2008, Strait et al. 2009), have modelled 

only one specimen per taxon. This is mainly due to the fact that the creation and 

loading of an FE model is a time-consuming task. However, the morphological 

variation within species is thus completely ignored. Faster model creation 

methods, like direct voxel conversion, allow to increase sample sizes and will in 

future also allow the application of statistical methods to quantify differences in 

load resistance. 
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Chapter 11: Conclusions 
In this study, finite element analysis (FEA) was used to investigate the 

mechanical significance of anatomically modern human and Neanderthal 

mandibular morphology. First, the FE modelling approach was successfully 

validated and the importance of different input variables was assessed in a series 

of sensitivity studies (Chapters 4 and 5). Second, masticatory loads were 

simulated in FE models of anatomically modern human, Neanderthal and 

H. heidelbergensis mandibles in order to investigate the mechanical significance 

of specific aspects of human mandibular morphology or to compare the load 

resistance of whole mandibles (Chapter 6 to 10). 

11.1. Review of key findings 

The FE modelling approach (the combination of mesh type and material 

properties) applied here had not been validated before. It was therefore necessary 

to compare the FEA results with strain measurements from an in vitro experiment, 
in which a dry human mandible was loaded in a simple, controlled way 
(Chapter 4). The comparison between the numerical predictions and the 

experimental results yielded a very good correspondence between the two and, 

additionally, the effects of scan and model resolution as well as different ways of 

modelling the trabecular bone tissue were evaluated. From a methodological point 

of view, this study was interesting, because it applied a novel strain measurement 
technique, digital speckle pattern interferometry (DSPI) for measuring bone 

strains in the in vitro experiment. It has been shown that this full-field strain 
measurement technique provides reliable results even for complex and curved 
bone surfaces and that it offers several advantages for the validation of FE models 
compared to strain gauges. 

The subsequent sensitivity study (Chapter 5) showed how sensitive F EA 

results are to changes in input variables and that varying some input variables has 

a larger effect than varying others. These results confirm that it is absolutely 
crucial to apply the correct loads and constraints and that it is also desirable to 
include soft tissue elements like periodontal ligament (PDL) and the cartilaginous 
parts of the temporomandibular joints (TMJs). Although the modelling of 
masticatory loads could not be validated against in vivo data, since those are 
lacking from human mandibles, it has been shown that some of the combinations 
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of input variables yield strain distributions that are consistent with general 
findings from animal experiments and theoretical predictions. Those combinations 

that showed the highest consistency were used in the following analyses 
(Chapter 6 to 10). 

When this approach was applied to model several masticatory loads in two 

models with altered internal morphology (i. e. one model had an equal cortical 
bone thickness, the other was completely filled with bone material) the peak strain 

maps showed a high correspondence with the distribution of cortical bone in the 

real mandible (Chapter 6). This finding supports the idea that the distribution of 

cortical bone in the mandible is related to the distribution of masticatory strains 

(Demes et al. 1984, Daegling 1989, Daegling & Grine 1991, Daegling 2002, 

Fukase 2007, Fukase & Suwa 2008). One example is the strain difference found 

between the buccal and lingual sides of the posterior corpus, which corresponds to 

the uneven distribution of cortical bone in the same area (Demes et al. 1984). 

These findings also indicate that the modelling approach used here is realistic 

enough to predict major aspects of mandibular morphology, since it is unlikely 

that this remarkable correspondence is the result of pure chance. This kind of 

comparison between peak strain maps in models with hypothetical internal 

morphology and the distribution of cortical bone might be thus considered as a 

potential validation method if in vivo strain data are missing. 
The same approach was also applied to study the relationship between the 

presence or absence of a retromolar space, the shape of the anterior ramus and the 
distribution of cortical bone within the ramus (Chapter 7). First, a significant 
relationship between these three variables was determined in a morphometric 
study. Then, the effects on the strain distribution of changing ramus shape and of 
creating/removing a "retromolar space" by adding or removing teeth were 
investigated with FEA, using models without variation in cortical bone thickness. 
It was shown that the presence or absence of a space between the ramus and the 
most posterior molar did not have an effect on the strain distribution in the ramus, 
but changing the shape of the anterior ramus did in an expected manner. It is 
hypothesised that the cortical thickness distribution within the anterior ramus 
depends on ramus shape, which itself is influenced by the spatial demands of the 
molar dentition. - 
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The subsequent study showed that superior ramus morphology can be 

linked to the orientation of the temporalis' lines of action (Chapter 8). Deleting 

temporalis portions resulted in strain distributions that were partly expected based 

on the results of animal experiments (Avis 1959, Moss & Meehan 1970). This can 

be related to the typical differences in superior ramus morphology between 

anatomically modern humans and Neanderthals (Rak 1998, Rak et al. 2002). The 

results support the idea that these morphological differences might be related to 

differences in the orientation of temporalis fibres or different activations of the 

individual temporalis portions during masticatory function, but further studies are 

necessary to confirm this relationship. 
In addition to those two aspects of ramus morphology, the mechanical 

significance of symphyseal morphology was studied (Chapter 9). Anatomically 

modem human symphyseal morphology is unique with regard to the vertical 

orientation of the symphysis and the presence of a chin. By altering the shape of 

the symphysis in a human mandible, it was shown that the modem human 

morphology is advantageous for resisting coronal bending in the vertical plane, 

but disadvantageous for resisting transverse bending. In general, the results 

support Daegling's (1990,1993a) hypothesis, which states that the modern human 

chin evolved because of a reduction of transverse bending and relative increase in 

coronal bending during human evolution. Thus, the results are rather different to 

those of recent FEA studies (Ichim et al. 2006a, 2006b), which did not find a 

relationship between the presence of a chin and resistance to masticatory loads. 

Finally, FEA of several mandibles of anatomically modem humans, 

Neanderthals and H. heidelbergensis were conducted (Chapter 10) in order to test 

two more general hypotheses about mechanical adaptations in late homo: 1) the 

so-called anterior dental loading hypothesis (ADLIH), which posits that many 

aspects of Neanderthal craniofacial morphology arc adaptations to frequent high 

loads on the anterior dentition (Smith 1983, Rak 1986, Demes 1987, Trinkaus 

1987, Spencer & Demes 1993), 2) the hypothesis that advances in food processing 

since the Middle Pleistocene have reduced masticatory loads to which the face 

adapted and thus became less resistant to masticatory loads (Brace 1979, 

Franciscus & Trinkaus 1995, Wolpoff 1999). The results could not confirm that 
Neanderthal mandibles are specifically good in resisting anterior dental loads, but 

rather that they are good at resisting masticatory loads in general compared to 
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modern humans. However, the results are consistent with the food processing 

hypothesis as they confirm a trend to less resistance to masticatory loads through 

time. Although it is not here possible to test the relationship of this decrease in 

load resistance with advances in food processing, it is most likely that changes in 

food processing played a major role, as animal experiments and observations in 

human populations suggest (Carlson 1976, Carlson & van Gerven 1977, Beecher 

et al. 1983, Corruccini 1984, Kiliaridis et al. 1985, Engström et al. 1986, 

Corruccini 1990, Varrela 1992, Lieberman et al. 2004a). By controlling variables, 

it could be shown that the decrease in load resistance is primarily due to a 

decrease in size and to a lesser degree to a decrease in cortical bone thickness. 

However, the results also stress the need for a larger sample size for such 

comparative studies, since even in the small sample used here, large variations in 

load resistance were observed within the modern human specimens. 

11.2. Implications for future research 

This study has applied a number of new approaches, which are very 

promising for future research on human craniofacial evolution and development. 

In addition, some analyses have been limited by the currently available 

techniques, so that they could not fully answer certain questions. With advances in 

computing power and the further development of existing software applications, 

future studies will be able to explore these questions further. 

The successful validation presented here (Chapter 4) suggests that the full- 

field strain measurement technique of DSPI should be used in future validation 

studies, if the DSPI equipment is available. Unlike strain gauges, which measure 

strains only at single points, DSPI provides a measurement of the strain 
distribution over the whole measured surface. Here, the measured strain 
distributions were compared with the FEA results only by visual comparison of 
the contour maps and by plotting strain profiles. Future studies could, however, 

take into account all points on the measured surface and quantify the match 
between numerical predictions and experimental results in a more sophisticated 

way using multivariate statistics. 

In addition, the use of models with hypothetical morphologies has proven 
to be very useful for testing mechanical hypotheses. By altering features, for 

example, by landmark-based warping, while keeping the rest of the morphology 
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constant, it was possible to investigate the mechanical significance of single 

features. The control of gross aspects of morphology like size and cortical bone 

thickness allowed their relative importance for variations in load resistance to be 

studied. This approach of virtually manipulating morphology is very promising 

for future studies in functional morphology since it allows causal analyses that can 

complement and test the functional predictions of statistical analyses. It is 

particularly useful for palaeoanthropology, because experiments are not possible 

in the case of fossil taxa and often difficult in extant humans and non-human 

primates for ethical reasons. This study is the first that has applied such an 

approach to fossil hominins and it will certainly inspire future studies in this area. 

The use of models with hypothetical morphologies proved especially 

useful in studying the relationship between strain distributions and internal bone 

geometry. As described above, a high correspondence between the two was found. 

It will be interesting to see whether the addition of more load cases (e. g. biting on 

the third molars or biting on large objects with resulting differences in muscle 

orientations) results in an even better match. Further, when the external shape is 

altered, it is possible to investigate the relationship between shape and internal 

bone structure, which is also a very promising approach for future studies. 

To understand how the shapes of bones adapt to functional loads will be a 

major challenge for future research. It is known that the shapes of bones relate to 

diverse functions, not only to load resistance, for example, to protect organs, 

allow certain movements or provide mechanically advantageous attachments for 

muscles, and that some aspects of bone shape are the non-functional consequence 

of developmental or phylogenetic constraints. The internal morphology (i. e. 

cortical bone thickness and geometry of the trabecular network) of bones, on the 

other hand, is most probably mainly determined by their roles as load-bearing 

structures, but the relationship between functional load and internal bone 

geometry is still not straightforward (Currey 2002, Cunningham & Black 2009). 

Understanding the relationship between functional loads and outer bone shape is 

therefore even more difficult, if so many other factors play a role. Since bone 

modelling, which determines the gross shapes of adult bones, occurs during 

development, future studies should focus more on subadult individuals if they 

want to investigate how bone shape adapts to mechanical loads and ideally this 

research should be accompanied by analyses of bone resorption and deposition in 
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real specimens, either using histological sections or scanning electron microscopy 

of bone surfaces. Some pioneering work using this approach has been done on 

macaque crania (Kupczik et al. 2009). In future, this approach will hopefully also 
be applied to humans. 

Another aim of future FEA studies should be to increase sample sizes. As 

the results presented in Chapter 10 indicate, there can be a large variation between 

individuals of the same species. Since comparative FEA studies have to date been 

limited to typically just one specimen per species (Wroe et al. 2007, Wroe 2008, 

Strait et al. 2009), intraspecific variations in strain magnitudes and distributions 

have not been considered. However, in order to study differences in load 

resistance between, for example, two species, it is necessary to quantify this 

variation. 

If sample sizes get larger, it will be also possible to use geometric 

morphometrics (GMM) in order to warp models into statistically defined target 

forms, for example, means of populations, extremes of variation or regressions of 

form on biomechanically or ecologically interesting variables. The first studies 

that have combined FEA and GMM in such a way yielded promising results 

(Pierce et al. 2008, O'Higgins et al. 2009). In addition, the combination of GMM 

and FEA could provide a new tool for quantifying and evaluating FEA results, 

since deformations occurring during loading can be also treated as form changes. 

This latter, post-FEA application of GMM and associated statistical tools is 

currently being explored. Especially sensitivity studies and comparative studies 
based on large sample sizes could benefit from this new approach. 

Future FEA studies should also try to simulate physiological loading more 

accurately. The necessary data can partly be provided by additional experimental 
data or, especially in the case of fossil taxa, where no experiments are possible, 
from multi-body dynamic analyses (MDA). MDA models arc becoming 

increasingly sophisticated and by including optimisation algorithms allow us to 

make predictions about muscle activation patterns for different masticatory tasks 
(Langenbach et al. 2006, Curtis et al. in press). These resulting muscle forces can 
then be directly imported into FEA software and thus applied to an FE model. 
Applying loads in this way has two major advantages: 1) The forces are by default 
in equilibrium, so that artefacts caused by constraints are negligible. 2) The 

automatic force export from an MDA allows fast creation of additional load cases, 
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for example, changes in muscle forces at different sizes of gape or during the 

break down of food with different mechanical properties, so that the forces acting 

on the skull during mastication can be simulated more comprehensively. 
The long-term aim should be to combine rigid-body (MDA) and 

deformation (FEA) models in a single software application. Such a combined 
MDA-FEA model of the human masticatory apparatus has been developed 

recently, but the only deformable part of this model was the soft tissues of the 

TMJ (Koolstra & van Eijden 2005,2006, Koolstra & Tanaka 2009). In future, 

such combined models could also include FE models of the bone. With advances 

in computing power this should be feasible soon. 
Finally, in order to investigate mechanical adaptations during development 

FEA needs to be combined with bone modelling algorithms, since the evaluation 

of stresses and strains in a static form can only provide very limited information 

(see discussion in Chapter 8). If the FE model adapts to applied loads, form- 

function relationships can be studied directly. Some pioneering work using this 

approach has been done on a sauropod cranium using a simple block as a start 
form, which iteratively adapts to the applied loads by removal of low strain areas 
(Witzel & Preuschoft 2005). By applying a bone modelling algorithm to subadult 
individuals, it would be possible to study the mechanical adaptation of bone form 

during development. Currently, such a bone modelling algorithm is integrated in 

the FEA software VOX-FE. However, there is no consensus about the mechanical 
stimulus that modulates the modelling of bone, like stress or strain magnitudes, 

strain gradients or strain frequency (see 2.1). The next step should, therefore, be to 

compare the results of different algorithms with the form changes observed in 

experiments. Some of the data presented here (particularly in Chapter 8) provide a 

good basis for such future modelling studies. 
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ADLH - Anterior dental loading hypothesis (Smith 1983, Rak 1986, Demes 

1987, Trinkaus 1987, Spencer & Demes 1993) 

Balancing side - Non-chewing side, the side contralateral to the chewing or 
biting side 

Bone modelling - The gross shape changes of a bone by resorption and 
deposition on its endosteal and periosteal surfaces during development 

(Currey 2002) 

Bone remodelling - Deposition and resorption involving only a small packet of 

bone, the basic multicellular unit (BMU) and affecting principally all 

surfaces, including vascular cavities. Typically, the amount of bone is 

unchanged by this process; new bone merely replaces old bone (Currey 

2002). 

Boundary conditions - Loads and constraints applied to a finite element model 
Cancellous bone material - The solid bone of which the individual trabeculac 

consist (Currey 2002) 

Cancellous bone tissue - The whole trabecular structure, including the holes 

between the trabeculae (Currey 2002) 

CB - Coronal bending in the vertical plane 

Constraint - Region of immobility in a finite element model 
CT - Computed tomography 

DSPI - Digital speckle pattern interferometry, a full-field optical strain 
measurement technique 

DVS - Dorsoventral shear 
EMG - Electromyography 

FEA - Finite element analysis 
GMM - Geometric morphometrics 
HMH - Half-maximum height protocol 
Isotropic - Referring to material properties: having the same properties in all 

directions, referring to voxel dimensions: having the same dimensions in all 
directions 

Landmarks - Points of correspondence, matching within and between 

populations. Biologically, they are discrete, homologous anatomical loci 
(Zelditch et al. 2004). 
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LTB - Lateral transverse bending 

Maximum principal strain (cl) - The most tensile strain at a point in a strained 

object. By convention maximum principal strain values are positive. Its axis 
is perpendicular to the axis of the minimum principal strain. 

Maximum shear strain (y. x) - The difference between maximum and minimum 

principal strain at a point, defined as sI - C3. The axis is midway between the 

maximum and minimum principal strain axes (inclined at 45° to the 

principal strain axes) 

MDA - Multibody dynamic analysis 

Minimum principal strain (c) - The most compressive strain at a point in a 

strained object. By convention minimum principal strain values are negative. 

Its axis is perpendicular to the axis of the maximum principal strain. 

MRI - Magnetic resonance imaging 

MTB - Medial transverse bending 

Neutral axis - The line of zero fibre stress in any given section of an object 

subject to bending (Young 1989) 

Orthotropic - When the material properties differ in each of three perpendicular 
directions 

PCSA - Physiological cross-sectional area of a muscle, which is the total cross- 

sectional area of all muscle fibres at a specific length 

PDL - Periodontal ligament 

Poisson's ratio (v) - When an object is, for example, tensed in one direction, it 

contracts in another (Poisson effect). The Poisson's ratio is the lateral strain 
divided by axial strain, thus representing how much the sides of a material 

will contract as it is tensed (or, conversely, how the material will expand as 
it is compressed). 

Powerstroke - Forceful contact of food between the occlusal surfaces of the 

upper and lower teeth. It is one of the three basic strokes during a chewing 

cycle. The other two are the opening and the closing strokes (llylander 
1992). 

Robusticity - General term that refers to the strength of a bone as reflected by its 
size, shape and cortical thickness. 

Second moment of area (I) - Or second moment of inertia, a measurement, 
which reflects the resistance of a beam to bending. It is the moment of 
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inertia of an area with respect to an axis, which is the sum of the products 

obtained by multiplying each element of the area by the square of its 

distance from the respective axis (Young 1989). 

Semilandmarks - Points on a geometric feature (curve, edge or surface) defined 

by their positions on that feature (e. g. at 50% of the length of the curve, 

Zelditch et al. 2004). 

STD - Standard deviation 

Strain (E) - Quantifies the deformation in an object under load. Strain is defined 

as the change in length divided by the original length (DUL). In 

biomechanics it is usually measured in microstrain (µc). 

Stress (a) - Is a measure for the internal forces in the loaded bone resulting from 

a deformation (Currey 2002) and is defined as force per unit area (F/A). 

Thin-plate splines - Interpolation functions, which can be used to warp a 

reference and a target shape. Thin-plate splines are analogous to bending of 

a thin metal sheet in which bending energy is minimised, resulting in a 
deformation that is as smooth as possible (Zelditch et al. 2004). 

TMJ - Temporomandibular joint 

Von Mises strain (cv, ) - Also called equivalent strain, a function of all principal 

strains (Ei, C2, E3), which can be used to predict failure in a ductile material 

under load 

Working side - Chewing or biting side 
Young's modulus of elasticity (E) - Describes the elasticity of a material. It is 

defined as stress/strain in the linear region of the stress-strain curve 
(Fig. 1.3). The higher the value is, the stiffer is the material. 
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