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Abstract 

Uncertainty Analyses provide the quantitative level of confidence that can be held in 

the results of a measurement or computational simulation. Different Error and Uncertainty 

Analysis methods are used to estimate the error and uncertainty in the output of Compu- 

tational Electromagnetic simulations in this thesis. The Uncertainty Analysis methods are 

compared in terms of their ability to accurately quantify the mean, uncertainty and ninety 

five per cent confidence intervals in the output of the simulations, as well as in terms of their 

computational expense. 

Through this work the Monte Carlo Method, the Method of Moments and the Polyno- 

mial Chaos Method are implemented into the Finite Difference Time Domain method. The 

Monte Carlo Method and the Method of Moments are also implemented into the Interme- 

diate Level Circuit Model. These Uncertainty Analysis methods are applied to a number of 

specific examples, from simple examples that have analytic solutions, to more realistic and 

complex Electromagnetic Compatibility scenarios. 

Performing both Error and Uncertainty Analyses enables an investigation on the rela- 

tionship between the errors and uncertainties, in the output of simulations, to be conducted. 

Different Computational Electromagnetic methods are also used in this thesis to determine 

the differences in the uncertainty in the output of simulations performed using the different 

methods. 

In Electromagnetic Compatibility the output of interest is often a curve viewed in 

the frequency domain. The Feature Selective Validation method is used in this thesis to 

compare the mean, uncertainty and ninety five percent confidence interval curves formed 

from the different Uncertainty Analysis methods. Curve Alignment techniques are also 

used to determine the extent to which the errors and uncertainties in the output curves are 

amplitude and frequency errors and uncertainties. 

The results obtained in this thesis show that, of the three uncertainty analysis meth- 
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ods investigated, the Monte Carlo Method is the most accurate method providing the best 

estimates of the uncertainty in various Computational Electromagnetic simulations. As ex- 

pected, this method is also shown to be the most computationally expensive method. The 

Method of Moments is the most practical method to use, to obtain an estimate of the un- 

certainty, due to its computational efficiency. However, at resonant frequencies the Method 

of Moments forms large peak overestimations of the uncertainty. The research in this thesis 

explains that these overestimations arise in part because of the resonant nature of the output 

curves, which is a common feature of data formed in Electromagnetic Compatibility studies. 

The Polynomial Chaos Method can provide slightly more accurate estimates of the output 

uncertainty than the Method of Moments, but there are situations when this method cannot 

be used. The Polynomial Chaos Method is also found to be computationally more expensive 

than the Method of Moments. 

The work in this thesis shows that there is no relationship between the overall size of 

the output uncertainty in a simulation and the underlying model used to form this simula- 

tion, or the accuracy with which the simulation is performed. It may therefore be possible 

to use computationally efficient, less accurate Computational Electromagnetic methods to 

efficiently estimate the uncertainty in the output of a simulation formed using a computa- 

tionally more expensive, more accurate method. If a fast Computational Electromagnetic 

method is used then the Monte Carlo Method is preferred as it will keep the accuracy of the 

uncertainty estimate as high as possible. One of the most consistent findings of this work is 

that the Uncertainty Analyses are computationally expensive when compared to perform- 

ing a single simulation using only the mean input parameters of the system. Researching 

computationally efficient ways of quantifying the output uncertainty is one of the key areas 

of future work. 

The results in this thesis highlight the importance of quantifying the frequency errors 

and uncertainties as well as the amplitude errors and uncertainties. This is especially impor- 

tant in Electromagnetic Compatibility where small frequency variations can cause large am- 

plitude variations due to the resonant nature of the output data. The novel curve alignment 

methods proposed in this thesis enable the successful analysis of these frequency errors and 

uncertainties. It is also suggested that considering the frequency or x-domain differences be- 

tween two curves provides a useful additional measure that can be used within the Feature 

Selective Validation method. 
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1.1 Background to the Research 

Electromagnetic Compatibility (EMC) involves the study of the electromagnetic inter- 

actions that occur between different electronic and biological systems. An electronic system 

must be immune to external sources of electromagnetic interference, and should not inter- 

fere with the normal operation of other electronic or biological systems. The immunity and 

interference of electronic systems is determined by performing different laboratory exper- 

iments, from which measurements are obtained. EMC practitioners are required to follow 

many standards and guidelines. One such standard (ISO/IEC 17025 [1]) requires that labo- 

ratory EMC measurements are accompanied by an appropriate estimate of the uncertainty 
in the measurements [2]. 

In recent years computational resources have advanced at a tremendous rate. This 

advancement has allowed many sophisticated Computational Electromagnetic (CEM) meth- 

ods to be developed. It is now common practice to use CEM simulations to obtain estimates 

of EMC measurements that may be too difficult or expensive to obtain from a laboratory 

experiment. Currently no standards exist that require the results obtained from computa- 
tional simulations to be accompanied by an appropriate estimate of the uncertainty in the 

results. Recently an IEEE standard has been approved for the "Validation of Computational 

17 
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Electromagnetics Computer Modeling and Simulations" [3]. This standard outlines the nec- 

essary steps for validating CEM models and simulations. One step in this process involves 

the use of the Feature Selective Validation (FSV) method to compare the results of a CEM 

simulation with some other reference data in order to validate the CEM model used. The 

current standard does not require that an approximate estimate of the uncertainty in the 

output of a CEM simulation must be formed during the validation process. Quantifying 

this uncertainty is important as it provides the quantitative level of confidence that may be 

held in the results and thus allows for a statistical comparison with other reference data, 

such as the results obtained from an equivalent experimental measurement. Future editions 

of this standard should require that the results of all CEM simulations are accompanied by 

an approximate estimate of the uncertainty in the results. This thesis investigates different 

methods that may be used to quantify the uncertainty in the output of CEM simulations. 
The work carried out in this thesis may provide useful contributions for future editions of 

the IEEE standard. 

Researchers from many other scientific fields already form uncertainty estimates for 

the results of their computational simulations. Examples of these scientific fields include 

Climate modelling [4-7], Meteorology [8; 9] and Computational Fluid Dynamics (CFD) [10- 

15], amongst many others. To enable a discussion of the different forms of uncertainty anal- 

ysed in computational models, the terms error and uncertainty must first be defined. These 

definitions are used in this thesis to identify some of the sources of error and uncertainty 

that exist in CEM simulations. There has been a significant amount of research on Error 

and Uncertainty Analyses in CFD [10-15], and so this discipline is chosen to provide the 

formal definition of the errors and uncertainties in computer models. The following defini- 

tions come from the American Institute of Aeronautics and Astronautics (AIAA) report on the 

verification and validation of CFD simulations [I1]. 

Definition 1.1 Error: A recognisable deficiency in any phase or activity of modelling and simulation 

that is not due to lack of knowledge. 

Errors are introduced into computer models via the approximations and assump- 
tions that are made in forming the model. Since these approximations and assumptions 

are known, the errors they produce can be analysed [101. 

Definition 1.2 Uncertainty: A potential deficiency in any phase or activity of the modelling process 
that is due to lack of knowledge. 
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This definition of uncertainty is also known as epistemic or systematic uncertainty 
and is often referred to as a "Type B" uncertainty [2]. Epistemic uncertainty is the uncer- 
tainty that arises due to lack of knowledge [16], this type of uncertainty can be reduced by 

gaining more knowledge. Aleatory uncertainty is another type of uncertainty which arises 
from stochastic or random behaviour in the system. This uncertainty, which is often referred 
to as a "Type A" uncertainty, does not exist in deterministic computational simulations. 

Epistemic uncertainties arising in computational simulations can be further categorised 

into two groups. The first, is the uncertainty in how well the mathematical model represents 

the true behaviour of the real physical system [15]. This uncertainty, which is known as 

model form uncertainty, is very difficult to determine [15] but can be reduced by verifying 

the model against physical measurements. The second type of uncertainty is the uncertainty 

that arises due to a lack of precise input parameter data [15]. If there are uncertainties in the 

input parameter data, then there will be uncertainties in the output. This type of uncer- 

tainty is often known as parameter uncertainty [15]. It is the parameter uncertainty that will 

be investigated throughout this thesis. 

Climate models suffer from a large amount of model form uncertainty [5]. This uncer- 

tainty arises because it is very difficult to determine how well the climate models represent 

the real physical climate. The time scales involved in climate forecasts are of the order of 
decades, making it difficult to verify the results of the forecast against physical measure- 

ments [5]. In contrast to climate models the time scales involved in weather forecasts are of 

the order of days [5]. This makes it much easier to verify the weather models against phys- 
ical measurements and subsequently modify the models, reducing the amount of model 
form uncertainty. 

Both climate modelling and weather forecasts suffer from parameter uncertainties. It 

is well known that weather systems are chaotic and a small change in an input parameter 

can form large changes in the output: this is perhaps most well known as the Butterfly Ef- 

fect. The uncertainty in the state of weather and climate systems therefore increases with 

the temporal length of the forecasts. Monte Carlo approaches form the basis of all current 
Numerical Weather Prediction (NWP) systems that are used to forecast the weather, and es- 

timate the uncertainty in the forecast [8]. Monte Carlo simulations use many selected input 

parameters to estimate the output Probability Distribution Function (PDF) of the system. 
Performing many Monte Carlo simulations can be computationally expensive [8], differ- 

ent sampling strategies have therefore been formed that reduce the computational expense. 
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Since the uncertainty in the output grows with the time of the forecast, inputs are selected 
that are known to maximise the uncertainty in the output [8]. This results in a reduction of 
the parameter space and therefore a reduction in the cost of the Monte Carlo simulations. 
The resulting simulations are known as an ensemble of simulations [5; 8]. The uncertainty in 

CEM simulations will not necessarily increase with the time of the simulation. The sampling 

methods used in NW? systems are therefore not necessarily applicable to the quantification 

of uncertainty in CEM. 

The model form uncertainty in both CFD and CEM is smaller than for climate and 

weather forecasts. The mathematical models that are used to explain the different phenom- 

ena occurring in CFD and CEM have been verified by many people over many years. The 

Uncertainty Analyses in CFD concentrate on the uncertainties due to a lack of precise knowl- 

edge of the input parameters [10-15]. These analyses use probabilistic methods such as the 

Monte Carlo Method (MCM), Bayesian Inference, the Polynomial Chaos Method (PCM) and 

the Method of Moments (MoM). The MoM should not be confused with the CEM technique, 

known as the Moment Method and described in detail by Harrington [17]. The probabilistic 

MoM is the method outlined in the internationally accepted Guide to the Expression of Uncer- 

tainty in Measurement (GUM) [16]. The MoM is also used in the United Kingdom Accreditation 

Service (UKAS) guide to quantifying the uncertainty in physical EMC measurements [2]. 

The output formed from CEM simulations normally involve resonant peaks with 

large Q-factors. These resonances are not present in data obtained from Climatology, Me- 

teorology or CFD. It is therefore necessary to determine whether the different Uncertainty 

Analyses, used within these different disciplines, may be applied to the results of CEM sim- 

ulations. The main aim of this thesis is to investigate possible methods that may be used 

to quantify the uncertainty in the output of CEM simulations. These different methods are 

compared in terms of their accuracy and computational expense. 

Definitions 1.1 and 1.2 may be used to identify the sources of error and uncertainty 
in different CEM methods. One example of an error that may exist in Finite Difference 

Time Domain (FDTD) simulations is the error formed from modelling a curved surface in 

the discrete FDTD mesh. It is known that the surface is not modelled correctly, this results 
in an error in the output. Uncertainties arise due to lack of knowledge, for example the lack 

of precise information on the material properties of some dielectric that is being modelled 

computationally. The lack of knowledge in the material parameter results in an uncertainty 
in the output of the model. Each CEM simulation requires a set of inputs which may or 
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may not have some associated uncertainty. If the PDFs associated with the uncertain input 

parameters are known, then the uncertainty in the output of the CEM simulation may be 

found using probabilistic Uncertainty Analysis (UA) methods. 

There has already been a significant amount of research analysing the errors that exist 
in CEM simulations, such as the FDTD method. Some of this previous work is discussed in 

Chapter 2. From this work it appears that many of the errors, arising in the FDTD method, 

are reduced when the cell size and temporal step size used in the simulations are reduced. 
Approximate Error Analyses are formed using this fact in Chapter 4. It is apparent that 

less work has attempted to quantify the uncertainty in the output of CEM simulations. The 

principle aim of this thesis is to investigate different methods that may be used to quantify 

parameter uncertainty. Some of the previous research into uncertainty in CEM is outlined 
below. 

During the course of this project, there has been a recent increase in the number of 

researchers attempting to formulate methods of uncertainty quantification in CEM. In 2006 

Chauviere published work involving the implementation of the PCM into a higher order 
discontinuous Galerkin solution of Maxwell's equations [181. The PCM approximates the 

quantity of interest as a sum of orthogonal polynomials, which are selected from specific 

basis sets. Chauviere found that the PCM could accurately quantify the output uncertainty, 

giving results that were in good agreement with results obtained from the MCM [181. The 

PCM was also shown to be much more computationally efficient than the MCM. Chauviere's 

work however only estimated the output uncertainty due to one uncertain input parameter. 

The accuracy of this method with increased numbers of uncertain input parameters needs 

to be analysed. The computational expense of the PCM will increase significantly for more 

complex CEM simulations, which have multiple uncertain input parameters. A novel imple- 

mentation of the PCM into the FDTD method is outlined in Section 4.7.4 of this thesis. This 

method is analysed for a variety of simulations, with multiple uncertain input parameters. 

Researchers at Nottingham University have also recently attempted to formulate meth- 

ods to efficiently quantify the uncertainty in CEM simulations [19-221. Recent publications 

[19-21] propose two methods that may be used to efficiently quantify uncertainty in CEM. 

Ajayi discusses the use of a Direct Solution Technique (DST) to quantify uncertainty [19]. 

This technique is simply the application of the well known MoM, outlined in GUM [161 and 

by UKAS [2], into simple electronic circuit theory and the Transmission Line Matrix (TLM) 

method. Ajayi used this method to estimate the uncertainty in the first resonant frequency 
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of simple electromagnetic problems [19]. This work can also be found in Ajayi's thesis [23]; 

Ajayi's work has been carried out in parallel to and independently from the research in the 

present thesis. Ajayi found that the computationally efficient MoM works well for small 

parameter variations, giving results that are in agreement with results obtained from the 
MCM [19]. This work concentrates on the performance of the MoM at the first resonance. 
In the present thesis uncertainties are quantified between OGHz and 3GHz for electrically 
large problems, encompassing many more of the resonant features that are present in EMC 

data. The different UAs are also applied to more realistic examples from EMC, in the present 
thesis. These EMC scenarios are simulated using two different CEM techniques. Through 

this work it is shown that the approximations used to form the MoM can cause the method 

to underestimate and overestimate the uncertainty in the results of resonant EMC data. 

The use of Unscented Transforms (UT) to efficiently estimate uncertainties has also 

been proposed by researchers at Nottingham University [20; 211. This technique uses speci- 

fied points to discretise the continuous PDFs associated with the different input parameters. 

Using this technique the uncertainty can be quantified more efficiently but once again the 

method is only accurate for smaller input parameter variations [21]. The methods efficiency 

also decreases for more complex simulations containing many uncertain input parameters 

[21]. 

1.2 Aims and Objectives 

The main aim of this thesis is to determine the accuracy and computational efficiency 

of a number of well known UA techniques, when applied to CEM simulations of realis- 

tic EMC scenarios. The probabilistic UA techniques analysed in this thesis are the MCM, 

the MoM and the PCM. These different UA methods are used to analyse the uncertainty 

in the output of FDTD and Intermediate Level Circuit Model (ILCM) simulations. The er- 

rors and uncertainties arising from the CEM simulations will be quantified for frequencies 

from OGHz to 3GHz. This broad frequency range will include many of the highly resonant 
features that are often present in EMC data. 

Since the output of interest is evaluated at a number of frequencies, the output of 
the CEM simulations forms a curve in the frequency domain. This curve is referred to as 
the output curve in this thesis. Different methods are used, in this thesis, that aid in the 

analysis of curves. The FSV method is used to compare two different curves in terms of 
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their amplitude and feature differences. The method returns a metric that describes how 

similar the two curves are. In this thesis the FSV method is used in a novel way to test 

for the convergence of the MCM. It is also used to compare the means and uncertainties 

produced by the different UA methods with benchmark results. These comparisons help 

determine the performance of the different UA methods in the various examples. 

Research into different probabilistic UA methods has found that the methods are all 

computationally expensive, especially when applied to complex computational simulations 

involving many uncertain input parameters. The computational expense of the UA meth- 

ods may be reduced by using less accurate computationally cheaper CEM simulations to es- 

timate the uncertainty in more accurate computationally more expensive simulations. The 

uncertainty estimate will be accurate if the uncertainty in the output is independent of the 

CEM technique used or the accuracy with which the CEM technique is implemented. An 

additional aim of this thesis is to determine the relationships between the errors and uncer- 

tainties arising from different CEM simulations. 

Currently Error and Uncertainty Analysis methods concentrate on quantifying the 

errors and uncertainties in the amplitude of the various output curves. Often errors and 

uncertainties arise as frequency shift errors and uncertainties as well as amplitude errors and 

uncertainties. The final aim of this thesis is to investigate possible ways of quantifying the 

frequency errors and uncertainties that arise in CEM simulations. The frequency errors and 

uncertainties may be calculated by aligning the curves used to obtain the output errors and 

uncertainties. Once the curves are aligned the aligned amplitude errors and uncertainties 

may be obtained. Different methods are investigated in this thesis that attempt to align the 

output curves. The errors and uncertainties calculated without aligning the output curves 

are referred to as the unaligned amplitude errors and uncertainties in this thesis. In Chapter 

4a relationship between the unaligned amplitude errors and the aligned amplitude and 

frequency errors is derived. Similar novel derivations are given for the relationship between 

the aligned and unaligned uncertainties formed using the MCM. These relationships show 

that no information is lost by considering the aligned amplitude and frequency errors and 

uncertainties. 

The remaining structure of this thesis is as follows: 

Chapter 2 describes a number of CEM methods that are used to study EMC. A consideration 

of some of the sources of error and uncertainty that may exist in different FDTD simulations 

are given. 
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Chapter 3 introduces the different methods that aid in the analysis of errors and uncertain- 
ties when the output of interest is a curve. This discussion begins with a description of 
the FSV method, and the ways in which this method is used in this thesis. Following this 

a number of novel curve alignment techniques are introduced that have been previously 

published in 124]. 

Chapter 4 considers the different methods that may be used to quantify the error and un- 

certainty in the output of CEM simulations. The novel implementation of the PCM into the 

FDTD method is discussed in detail. The different Error and Uncertainty Analysis methods 

that are used in this thesis are identified. 

Chapter 5 contains the first example that is used to test the different Error and Uncertainty 

Analysis methods. This one dimensional example has an analytic solution from which the 

analytic error and uncertainty in the output can be obtained. These analytic errors and un- 

certainties are used to test the accuracy of the different approximate Error and Uncertainty 

Analysis methods. 

Chapter 6 introduces a more complicated three dimensional example that also has an ana- 

lytic solution. Once again the different Error and Uncertainty Analysis methods are com- 

pared in terms of their accuracy and computational expense. From these first two examples 

it is concluded that the MCM provides the best estimates of the mean and uncertainty in the 

output of the CEM simulations. This method is therefore used as the benchmark method in 

the remaining examples, which do not have analytic solutions. At the end of this chapter 

another example is introduced, which shows that the PCM is not suitable in all situations. 

Chapter 7 contains more realistic EMC examples that are used to compare the different UA 

methods. It is found that the methods are in excellent agreement in some EMC scenarios. 

However in other more complex EMC examples the more efficient MoM is shown to overes- 

timate the uncertainty in the output, when compared to the benchmark MCM. The resonant 

nature of the output curves exacerbates the overestimations at particular frequencies. 

Chapter 8 provides the major conclusions that are drawn from this work. The future con- 

tinuation of this work is also considered. 
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2.1 Introduction 

Electromagnetic Compatibility concerns itself with the interaction of electronic sys- 
tems with other electrical and biological systems. The electronic system under consideration 

must not be susceptible to Electromagnetic Interference (EMI) caused by the fields radiated 
from other electrical systems. At the same time the electronic system should not interfere 

with the performance of other electronic or biological systems. 

The satisfactory operation of a device is usually tested by ascertaining how immune 

the device is to certain levels of interference [25, p. 5]. This is often done experimentally in 

the lab, however there are often cases where it is too expensive or awkward to perform these 

experiments physically. An example of such a case is in the EMC analysis of aircraft. The 

time and money required to conduct a full EMC analysis of an aircraft is extremely costly. 

A European project is due to begin soon, which will attempt to transfer some of the exper- 

imental EMC analyses to computational simulation. This project aims to computationally 

model High Intensity Radiated Fields in Synthetic Environments (HIRF SE) [26], making use 

of existing CEM models and developing new models. The output of these computational 

models will be subject to some level of uncertainty, and will contain some amount of error. It 

is the aim of this thesis to investigate different ways to quantify the errors and uncertainties 

in such CEM simulations. 

Excellent progress in electromagnetic field modelling has been made in recent history 

[271. From the advent of digital computers in the 1960s, the first computational electromag- 

netic models were formed to provide insight into engineering problems [25, p. 41. Over the 

years, as computer hardware has become more powerful, computational models have de- 

veloped into sophisticated methods used to study different scenarios in EMC. This chapter 

introduces previous work summarising some of the main methodologies that are used in 

CEM. In recent years these CEM techniques have been modified and improved, however 

for the purposes of the discussion in this chapter it is sufficient to consider only the unmod- 

ified conventional techniques. It is fairly simple to apply the MCM and the MoM to all of 

these CEM methods, because the MCM and the MoM simply use the output formed from 

the CEM simulations. When applying the PCM to different CEM simulations a modification 

of the CEM technique is required. The PCM may therefore be harder to implement into the 

different CEM simulations. This thesis concentrates on applying the Error and Uncertainty 

Analyses to the FDTD method. As such the majority of this chapter is devoted to the FDTD 

method: how it works, the different boundary conditions that are used and the stability 
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criteria. 

Using Definition 1.1, some of the sources of error in the FDTD method are identified. 

There has already been a significant amount of previous work providing understanding into 

how these errors affect the output of FDTD simulations. Some aspects of this work are out- 
lined in this chapter. Using Definition 1.2, some possible sources of parameter uncertainty 

that arise in CEM simulations are identified. Compared to the amount of previous work on 

the errors in CEM simulations, significantly fewer formal studies have been carried out on 

the affects of parameter uncertainty. It is the main aim of this thesis to investigate methods 

that can be used to quantify the parameter uncertainty in different CEM simulations. 

2.2 Computational Electromagnetic Methods 

Many CEM methods that are used to solve specific EMC problems have implemen- 

tations that allow a solution to be calculated in either the frequency or time domain. Often 

however, the methods are more computationally efficient when used in one or other of the 

domains. The CEM methods may therefore be split into two groups: the frequency do- 

main and time domain methods. If a CEM method is more computationally efficient when 

used in the frequency domain then it is referred to as a frequency domain method; a similar 

statement can be formed for time domain methods. 

Frequency domain methods used in EMC include the Integral Equation Method of 

Moments (IEMoM), the Finite Element Method (FEM) and the ILCM method. The ILCM 

method is a more recent method that has shown some success in modelling different EMC 

scenarios, such as the Shielding Effectiveness (SE) of a shielded enclosure [28]. The time do- 

main methods include the Transmission Line Matrix (TLM) method and the FDTD method. 

There are many other methods that are used in CEM, however it may be argued that the 

methods described in this chapter comprise the most popular methods that are used. Two 

other high frequency techniques that are used in EMC are the Geometrical Theory of Diffrac- 

tion (GTD) [29] and the Uniform Geometrical Theory of Diffraction (UTD) [30]. These two 

methods will not be discussed in this chapter. The majority of this thesis is devoted to the 

errors and uncertainties in the FDTD method. This method is therefore described in detail 

in Sections 2.3 and 2.4. 

The frequency and time domain methods produce frequency and time responses of 
the output quantity of interest. In EMC the output of interest is usually shown in the fre- 



2.2. Computational Electromagnetic Methods 28 

quency domain. For example, the output of interest may be the SE of a structure at par- 

ticular frequencies. The time responses of the output quantity of interest, produced by the 

time domain methods, are therefore usually transformed into frequency responses via a Fast 

Fourier Transform (FFT). In the majority of this thesis the quantity of interest is the frequency 

response of the absolute value of the electric field, relative to a 1V/m input excitation. This 

quantity is referred to as the normalised electric field in this thesis. In EMC this frequency 

response curve is often converted into decibels, however in this thesis the normalised fields 

remain in linear units. In the latter part of this thesis the output of interest is the frequency 

response of the SE of a structure, in decibel units. 

The following sections provide the details of some of the main CEM methods used in 

EMC. Throughout these discussions references are made to the problem space of a certain 
CEM model. The problem space is the three dimensional geometric space that contains the 

electromagnetic problem for which the solution is sought. 

2.2.1 Integral Equation Method of Moments 

The IEMoM makes use of the integral form of Maxwell's equations. A usual EMC 

scenario often involves electromagnetic waves scattering from certain geometric structures. 

The integral form of Maxwell's equations may be solved numerically to obtain the values of 

the resulting surface charges and currents that exist on the geometric structures. The surface 

charges and currents are used to obtain quantities of interest such as the near field, far field 

or radar cross section. The integral equations are solved numerically using the Method 

of Moments, which is different from the probabilistic UA method used later in this thesis. 

Harrington describes the use of this method to solve electromagnetic problems in an early 

paper [31] and more recently in [17]. Perhaps the most widely used computer software that 

uses the IEMoM is the Numerical Electromagnetics Code (NEC) [32]. 

The Electric Field Integral Equation (EFIE) and the Magnetic Field Integral Equation 

(MFIE) are obtained from Maxwell's equations. Using the EFTE, the surface currents induced 

on an obstacle may be calculated given knowledge of the incident electric field E. This is 

achieved by representing the integral as a linear operator L, operating on the surface current 
J. This reduces the EFIE to 

LJ=fix E (2.1) 

where fi is the unit normal to the surface of interest. By expanding the surface current in 
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terms of some known basis polynomials Ji as 

N 

J= aiJt (2.2) 
i=i 

equation (2.1) becomes 
N 

a; LJ; =nxE. (2.3) 

The ai in the above equations represent coefficients that need to be found in order to solve 
for J. Taking inner products of the above equation with some weighting functions wi pro- 
duces a set of N simultaneous equations that may be rewritten in matrix form as 

((wiLJ3)) (aj) = (win x E)). (2.4) 

where i, j=1, ..., N. The matrix on the right hand side of this equation contains the exci- 

tation fields and the vector (a? ) contains the coefficients required to calculate the currents 
J. Equation (2.4) may be considered as being analogous to Ohm's law, with the first matrix 

on the left hand side representing the mutual impedances of the system. This matrix is re- 
ferred to as the impedance matrix. If the impedance matrix is nonsingular then it may be 

inverted and multiplied to the matrix on the right hand side of equation (2.4). This provides 

a means of calculating the coefficients a3 and hence the surface currents may be calculated 

using (2.2). 

In more general problems there may be many conducting bodies. The surface currents 

induced on these bodies will form fields that scatter onto other bodies in the problem space. 

The interaction of these different bodies may be represented using other integral equations. 

For wires it is possible to derive a Thin Wire Integral Equation (TWIE); integral equations 

can also be derived for conducting surface patches and volumes. In reality it is impossible 

to determine the current density at every point in the problem space. The structures in the 

problem space are therefore split up into a series of wire segments, patch segments and 

volume segments. For every pair of segments the mutual impedances may be calculated 

using the different integral equations and the Moment Method. These impedance terms 

form an impedance matrix similar to that given above. Incorporating the incident electric 
fields into another matrix yields a matrix equation which is equivalent to (2.4). This matrix 

equation may be solved to obtain the different current densities on the individual segments. 

Since the impedance matrix is formed from the impedance terms for each pair of seg- 
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ments, the computational expense of the IEMoM increases as the number of segments in- 

creases. The larger the impedance matrix the more time and memory is required to perform 
the matrix inversion required to solve the matrix equation. The accuracy of the IEMoM re- 
lies on the segmentation of the obstacles in the problem space, and on the choice of basis 

functions used for each section. Details of the different basis functions that maybe used can 
be found in [33, p. 192-198]. 

Thus far the use of the IEMoM has been described for the specific case where the 

bodies involved are electrically conducting. The method may be modified to include di- 

electric bodies [17, p. 97-99] and magnetic bodies [17, p. 99-1011 (with permeabilities other 

than the free space value). More generalisable hybrid techniques have also been developed 

that include bodies that are both dielectric and magnetic [17, p. 101-105]. Using the gener- 

alised hybrid IEMoM it is possible to form a solution to any electromagnetic problem [17, 

p. 104]. This generalised technique is however more computationally expensive. The large 

computational expense limits the applications for which the IEMoM is generally used. If 

for example a im3 dielectric and magnetic cube were to be modelled using subcubes of 

0.1m3 then there would be 1,000 interacting terms [17, p. 105]. If this cube has three electric 

current bases and three magnetic current bases then the resulting matrix operators would 

contain nine million elements [17, p. 1051. Storage and inversion of these matrices would be 

extremely computationally costly [17, p. 105]. 

The IEMoM is most widely used to study the performance of antennas, which can be 

constructed easily out of electrically conducting wires and surfaces. These types of prob- 

lem can be solved accurately and extremely efficiently by the IEMoM, because the matrix 
inversions involved are small. The IEMoM can determine the size of the electric field at 

any arbitrary distance from an antenna being modelled, at any given set of frequencies. In 

EMC scenarios such as this the IEMoM is computationally more efficient than time domain 

techniques. To obtain the same electric field using time domain solvers the calculation of 

all electromagnetic field components, at all mesh points in the problem space, and for many 

time steps, is required. This is computationally intensive, especially if the resulting field is 

only required at a number of specific frequencies. 

2.2.2 Finite Element Method 

Brauer [34] suggests that the FEM was first established by Turner, Clough, Martin and 
Topp [35] in 1956. In this seminal paper, the method was used to analyse structural problems 
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Figure 2.1: A typical triangular finite element in 2D. 

in the aircraft industry. The term Finite Element was first associated with this method by 

Clough in 1960 [361. The method is based on splitting the volume of the problem space into 

elements. These elements may be shaped arbitrarily so long as the elements fill the whole 

problem space. The vertices of these elements are often referred to as the nodes or mesh 

points, and the edges and surfaces of the elements are known as the finite element mesh. 

Electromagnetic fields that exist in the mesh can be described in terms of their associ- 

ated potentials. The potential at a point inside an element is represented as a function of the 

position inside the element. The functions that are commonly used are linear or quadratic 

functions. Each element will also have associated material properties, representing the ma- 

terial that is being modelled. Excitations may be applied to points in the finite element mesh, 

and constraints may be applied to certain edges and surfaces to represent different bound- 

ary conditions. A detailed account of the FEM is given by Silvester and Ferrari [37]. The 

discussion that follows considers the FEM in 2D, following reference [37, p. 28-391 closely. 

Consider a triangular element in 2D space. Figure 2.1 shows this element in the x- 

y plane, a similar figure is given in [37, p. 32]. The potential U within the element can be 

approximated linearly as [37, p. 32] 

U=a+bx+cy (2.5) 

where a, b and c are constants that need to be determined. If the potentials U1, U2 and U3, 

corresponding to the nodes at (x1, yi), (x2) y2) and (x3i y3) respectively, are known then the 
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objective is to solve the matrix equation [37, p. 40] 

U1 1 xl y1 a 

U2 =1 X2 y2 b (2.6) 

U3 1 X3 /3 C 

to obtain a, b and c. This results in the following relation for the potential inside the element 

-1 
I 21 Y1 1u1 

U= xy1 x2 Y2 U2 (2.7) 

1 23 Y3 U3 

This maybe rewritten as the sum [37, p. 39] 

where 

U(x, J) =Z Uiai (x, y) (2.8) 

i=l 

1 
a1(x, y) = 2A 

[(x2y3 - x3Y2) + (Y2 - y3)x + (x3 - x2)y} (2.9) 

A is the area of the element and the indices may be clyclically interchanged to form equations 

for a2(x, y) and Q3 (Xi y). 

The energy tim(e) stored inside element e may be related to the potential U (to within 

a constant multiplier) as [37, p. 34] 

W(e) =1 
JVUVUdA (2.10) 

where the integral is performed over the 2D area of the element e. Substituting in equation 
(2.8) yields 

33 fVciVjdA. 
W(e) = UU(2.11) 

i=1 j=1 

Defining the elements of the stiffness matrix S(e) as 

5ýý) = jVasVa3dA (2.12) 

the energy may be expressed as 
W (e) =1 UTS(e)U (2.13) 

2 
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Figure 2.2: Joining two triangular finite elements in 2D; nodes are renumbered to account for continuity across 
elements. 

where U is the column vector containing the vector potentials [37, p. 34]. The elements of 

S(e) are easily calculated since the terms Va; in the integral are simply constants. Note that 

S(e) is called the stiffness matrix as the FEM originated from structural analysis. 

The discussion above outlines how to determine the energy stored in each element 

given the potentials at the nodes. In the FEM the problem space is split into many joined 

elements. The energy stored in all of these elements may be found by considering the joining 

of the elements. Consider the two elements being joined in Figure 2.2, this figure is similar 

to one given in [37, p. 35]. These two elements share common nodes at the joining edge and 
by continuity the potential at these nodes must be the same. The combined stiffness matrix 
is formed by adding the matrix elements of the individual stiffness matrices SW and Sib) 

(corresponding to elements a and b) where the nodes touch, and adding a new row and 

column for the extra potential. This yields the combined stiffness matrix [37, p. 371 

S11) + 566) 

'521 'f S46 

S(a) 

"''56) 

S12 + S64) S13) 
S65) 

S22) '544 S23) 
45 

532 
533 0 

554 O 
555 

(2.14) 

This joining of elements may be repeated until a stiffness matrix is formed for the whole 

problem space. 

The principle of minimum potential energy asserts that the potential U will distribute 

itself in such a way as to minimize the stored energy in the field [37, p. 29]. The total stored 
energy W is quadratic in each component of the potential vector U [37, p. 37]. Thus to 
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minimise the stored energy it is sufficient to set [37, p. 37] 

aw äUk (2.15) 

where k refers to one of the nodal potentials. Some of the nodal potentials will be con- 

strained by boundary conditions or excitations. To account for this the combined stiffness 

matrix, representing the whole problem space, may be partitioned to separate out the terms 

related to the constrained terms. If f and p relate to free and prescribed nodes, then the total 

stored energy may be written as [37, p. 38] 

I( 
UT fU) 

Sff Sf p 
Ur 

(2.16) 
2p( Spf 5PP UP 

To solve for the minimum stored energy, this matrix equation must be differentiated with 

respect to the free nodal potentials and the resulting differential must be set to zero. Doing 

this results in the matrix equation [37, p. 38] 

Uf ( Sff s', ' 
)=U. 

Up 

This can be rearranged to give the full solution of the unconstrained nodal potentials 

Up = -Sff-1SfpUp. 
(2.18) 

Now that the electric potentials are known at the nodes, the electric potential anywhere 

inside the problem space may be interpolated. This method is easily generalisable to three 

dimensions, where tetrahedral elements can be used in place of the triangular elements used 

in the two dimensional case. Different materials and sources may also be incorporated into 

the FEM: for more details on the FEM the reader is referred to [371. 

The FEM is capable of modelling complex geometric shapes [25, p. 91], such as an air- 

craft. The triangular and tetrahedral elements, used in the two and three dimensional FEM, 

conform accurately to different shapes. The FEM generally models complex geometries 

more accurately than conventional FDTD and TLM methods, which use orthogonal meshes 
[25, p. 911. More recently however FDTD and TLM schemes have been developed with vari- 

able grid sizes. These modified methods model different structures more accurately. 

The FEM is less computationally efficient than the IEMoM when modelling simple 
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z 

Figure 2.3: A metal box with an aperture undergoing scattering from an incident field P. "'e' 

structures in a large problem space containing mainly free space. The FEM is however better 

if large volumes of dielectric are being modelled. In this case the IEMoM requires a large 

amount of storage to model the dielectric bodies, as discussed in the previous section. The 

FEM is therefore best suited to bounded problems containing complex geometries and many 
different materials. 

2.2.3 The Intermediate Level Circuit Model 

The ILCM method uses circuit models to represent the electromagnetic interactions 

that occur in different EMC scenarios. One particular use of this method is for the efficient 

prediction of the SE of a rectangular box containing a rectangular aperture [28]: Figure 2.3 

represents the type of box being modelled. This particular implementation of the ILCM 

method expands on previous ILCM approaches [38-40]. In Chapter 7 the uncertainty anal- 

yses will be applied to this implementation of the ILCM method and the FDTD method to 

determine whether the uncertainty in the output is dependent on the CEM method used. 
From now on, in this thesis, the shielded box implementation of the LLCM method is re- 
ferred to simply as the ILCM method. A brief description of the ILCM method is given 

below. The mathematical arguments required to form this method are complex and detailed 

and they have been omitted here for brevity. 

The ILCM method models the shielding enclosure as an equivalent circuit made up 

of coupled transmission lines. The equivalent circuit diagram is represented in Figure 2.4, 

which is similar to the diagram given in [281. The incident electric field is represented as a 

potential V,, producing a free space current IFS that flows through a resistor, with a resis- 
tance of free space (377fä). This portion of the equivalent circuit model is known as the free 
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Figure 2.4: The equivalent circuit model for a metal box excited by an incident field. 

space circuit [28]. The rest of the box is modelled as a waveguide, which supports differ- 

ent modes of excitation. These waveguide modes are represented in the equivalent circuit 

model as a series of transmission lines, one for each mode. The characteristic impedances 

of the transmission lines Z, (') are equal to the transverse ratio of the electric and magnetic 
fields for the particular mode. 

The aperture is itself considered to be a transmission line, which has at its centre a 

resistance representing the radiation resistance of the aperture in the box. Babinet's Principle 

[41] is used to relate the resistance of a dipole antenna to the resistance at the centre of the 

aperture. The dipole resistance can be calculated using NEC [32] for a dipole formed by the 

metal remaining from cutting the aperture out of the box. Once the resistance across the 

slot has been calculated, the electric field in the aperture is calculated when it is subjected 

to some incident field [28]. By considering the coupling of the aperture with the rest of the 

box, the initial excitation of each wave guide mode may be found [28]. 

The initial potential of each waveguide mode V(9 is related to the free space current 

IFS via a transimpedance Z(%) as Vti') = Z(`) IFS [28]. The initial modal excitation Trans g Trans 

and the free space current are used to calculate the transimpedances of the system via this 

relationship. The fields set up in the waveguide will reflect back towards the aperture, 
increasing the potential in the free space circuit. Using the principle of reciprocity, reactive 

electromotive forces e, ), are set up in the free space circuit, one for each mode [28]. This 

ensures that mode coupling takes place by altering the current IFS flowing through the 

free space resistor and hence altering the excitation of all modes in the waveguide. The 

transimpedances of the system are used to determine the change in the free space current 

free circuit 
IFS 
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arising from the fields reflected back up the waveguide towards the aperture. The resultant 

voltages of the different waveguide modes V, ß'9 are then calculated and used to obtain the 

the electric field at any point within the box. This electric field is then used to calculate the 
SE of the box. 

This method has been shown to efficiently obtain the SE of a number of different 

boxes. The simulations performed using the ILCM method by Konefal [28] were over 3900 

times faster than the same simulations performed using the TLM method. The results of the 

TLM simulations were used to validate this ILCM method. Konefal noted that the method's 

accuracy relies on the aperture of the box having a small ratio for the aperture height to the 

aperture length. 

The ILCM method may be applied to more general EMC scenarios. The formation 

of different models is however not as simple as for the other CEM methods described in 

this chapter. Different ILCM models have to be formed depending on the setup of the EMC 

scenario. The method described above can be used to estimate the SE of a shielded box of 

any size. Its use is however limited to that of a shielded box. To apply the method to different 

EMC scenarios the whole system must first be modelled as a set of coupled circuits. 

2.2.4 Transmission Line Matrix Method 

The TLM method was proposed by Johns and Beurle [42] in 1971. Initially the method 

was implemented into 2D. In this 2D method Telegrapher's equations for a lossless 2D trans- 

mission line are identical to Maxwell's equations in 2D, under transformations of electro- 

magnetic fields into transmission line currents and potentials, and physical material pa- 

rameters into the capacitance and inductance of a transmission line. This implies that 2D 

electromagnetic problems can be modelled by a 2D transmission line. In the TLM method 

a mesh of transmission line segments, connected in parallel, are used to approximate the 

continuous space in a discrete way. These segments connections are known as shunt con- 

nections. It is also possible to connect the segments in series, as outlined in [43, p. 71-90], 

however the underlying mathematics is identical for both the series and shunt connections. 

Figure 2.5 shows a shunt connection of two transmission lines. Each of these lines 

has an equal impedance Z1 in free space. Scattering of the electromagnetic field in the TLM 

mesh is considered by relating the four incident voltages Vi, in at each node to the scattered 
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Figure 2.5: A shunt connection: the junction of two transmission lines for the 2D TLM method. 

voltages 0,1 11 by a scattering matrix S as 

Vl, scat s+ 11 

V2, scat S21 

V3, scat S31 

V4, scat S41 

s12 S13 S14 V1, in 

S22 S23 S24 V2, in 

S32 S33 S34 v3, in 

S42 S43 S44 v4, in 

(2.19) 

This matrix equation can be investigated by considering a pulse incident on one of the lines 

connected to the node. The load seen by this line is the combination of the loads on the 

remaining three lines, which are connected in parallel. These lines each have an impedance 

ZZ, and therefore the load seen by the line with the incident pulse is Z1/3. The reflection 

coefficient of the incoming pulse, which is represented by the diagonal elements of S, is 

Z1/3-Zl 1 
Sjj =Z`/3+Zi=-2. (2.20) 

The non diagonal elements of S represent the transmission coefficients to the other three 

lines. In the case of the pulse this produces transmission coefficients 

Sjk=1+Sjj=2 (2.21) 
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Thus the scattered voltages on each of the lines due to the incident pulse are calculated by 

I 
Vl, scat -1 111 Vl, in 

V2, scat 11 -1 11 V2, in 

V3, scat 211 
-1 1 V3, in 

(2.22) 

V4, scat 111 -1 V4, in 

In the TLM mesh these nodes are all connected, thus the scattered voltage pulses from one 

node become the incident voltages for the adjacent nodes. Different boundary conditions 

may be added into the TLM mesh, and material properties within the mesh may be intro- 

duced by altering the scattering matrix. Details on the implementation of the boundary 

conditions and materials properties into the 2D method are given in [43, p. 95-1051. 

In 1986 Johns [44] proposed a successful 3D implementation of the TLM method. This 

3D implementation is fairly complex because two independent electromagnetic polarisa- 

tions are possible in each direction, thus a 3D TLM mesh must have two transmission lines 

for each direction. Johns suggested the symmetrical condensed node, which has 12 transmis- 

sion lines entering it. These transmission lines are assigned to the two possible polarisations 

on each of the six faces of the cube containing it. Using this node the TLM method works in 

much the same way as for the 2D case, using scattering matrices to relate the incident and 

scattered voltages at each node. These incident and scattered voltage pulses are calculated at 

discrete time steps. The voltage at each time step is then transformed to the corresponding 

field at that time step, resulting in the time domain response of the electromagnetic fields, 

at discrete points in the mesh. For more details on the 3D TLM method see [43, Ch. 6]. 

Previous work has shown that the TLM method is numerically equivalent to the 

FDTD method [45]. In much of the work in this thesis the Error and Uncertainty analyses are 

applied to the FDTD method. The similarities between the TLM and FDTD methods mean 

that these UAs should also be applicable to the TLM method. Time domain methods such 

as the T LM method and the FDTD method are most suitable to bounded electromagnetic 

problems containing many regular geometric bodies. Since these time domain methods are 

converted into the frequency domain via a FFT the frequency response obtained is broad. 

The frequency domain methods are often more suitable for forming frequency responses 

over narrower frequency bands. To increase the accuracy of the TLM and FDTD methods, 

or to obtain reliable data at higher frequencies, more nodes need to be introduced into the 

TLM and FDTD meshes. Introducing more nodes increases the computational expense of 
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these time domain methods. 

This section has considered a number of popular CEM methods that are used in EMC 

analyses. The UAs introduced in Chapter 4 may be used to estimate the uncertainty in all of 
these CEM methods. In the next section the FDTD method is described in detail. The error 

and uncertainty in different FDTD simulations are determined in Chapters 5-7. 

2.3 The Finite Difference Time Domain Method 

In 1966 Yee [46] published a numerical method for solving electromagnetic problems 
in the time domain. This method, known as the Finite Difference Time Domain (FDTD) 

method, is based on Maxwell's equations for electric and magnetic fields. The differential 

operators in Maxwell's equations are approximated by finite difference equations. These 

approximate equations can be solved for numerically subject to some general input param- 

eters. What follows is a detailed discussion of the FDTD algorithm. 

2.3.1 Finite Difference Time Domain in One Dimension 

The propagation of electromagnetic waves is determined by Maxwell's two curl equa- 

tions. In their most general form these equations are [47, p. 3411 

VxE = -äB (2.23) 

and VxH= 
ýD 

+j (2.24) 

where E is the electric field, D is the electric displacement field, H is the magnetic field, B 

is the magnetic flux density and J is the electric current density. For simplicity, consider the 

case where the electromagnetic fields are propagating through a linear, isotropic, homoge- 

neous dielectric with a permittivity, permeability and conductivity denoted by e, a and o, 

respectively. In such a media the following relations hold: 

D= eE (2.25) 

B= µH (2.26) 

and J= aE. (2.27) 
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Substituting equations (2.25)-(2.27) into equations (2.23) and (2.24) yields 

VxE = -µýH (2.28) 

and VxH= Eat + cE. (2.29) 

Equations (2.28) and (2.29) can be rewritten in index notation as 

äH., 
_1 

(My 
_ 

aEz (2 30) 
at µ az ay 

aHy 
' 

äE, z C 
_ 

aEy 
(2.31) 

at µ ax az 
äHx 

-1 
(2ýEx 

_ 
My) 

(2.32) 
at ay ax J 

and 

aEy 
- 

1 (aHx 
_ 

aHy 
- UE) (2.33) 

at ay az J 

aEy 
_ - 

1 (OH, aH, x _ OED) (2.34) 
at E az ax 

aEz 
_ 

1 ( aHy 
_ 

aHx 1 
(2.35) rEx at 7 äx ) ay 

Consider an electromagnetic wave propagating in the negative x-direction, with its electric 

field component oriented in the z-direction, and its magnetic field component oriented in 

the y-direction. For this particular electromagnetic wave Maxwell's equations reduce to 

ax, 
_i 

aEx 
at _µ ax (2.36) 

andaäx ^ 
E(aa--QE, z). (2.37) 

The above two equations are a set of hyperbolic partial differential equations. In 1960 Lax 

and Wendroff [48] proposed the use of a central derivative approximation to solve such 

equations. For a function f (x) the central derivative approximation takes the form 

Of (x) 
,,, .f 

(x + h/2) -f (x - h/2) 
öx h (2.38) 

where h represents a small constant. This approximation is a finite difference approxima- 

tion, and is the origin of the first half of the name of the FDTD scheme. Applying the finite 



2.3. The Finite Difference Time Domain Method 42 

difference approximation to equations (2.36) and (2.37) yields 

Hy (x, t+ At/2) - HH(x, t- At/2) 
_1 

Ez(x + Ax/2, t) - E, (x - Ax/2, t) (2,39) 
At /2 Ax 

and 

Ez (x, t+ At/2) - Ez (x, t- At/2) 
-1 

(H(x + Ax/2, t) - Hy (x - Ox/2, t) 
At Ax 

QEE(x, t)) . (2.40) 

Here At represents a small interval in time and 0x represents a small interval in space. 
Notice that Ez is evaluated at three different points in time, in equation (2.40). If another 

approximation is made, namely 

E� (x, t) ; ý-, 
Ez(x, t+ it/2) 

2 
E, (x, t- it/2) (2.41) 

then equation (2.40) can be rewritten as 

Ez(x, t+ At/2) - E.. (x, t- At/2) 1 (HH(x + Ax/2, t) - HH(x - Ax/2, t) 
At el Ox 

-a 
E, (x, t+ Li t/2) + E, (x, t- Ot/2)) 

(2.42) 
2J 

The electric field is only evaluated at two places in equation (2.42). Equations (2.39) and 

(2.42) may be rewritten as 

H , (x, t +, W12) =H , (x, t- of/2) + At Ez(x + Ax/2, t) - Ez(x -A x12, t) (2.43) 
11 Ax 

and 

EZ(x, t+ At/2) =1 - OtQ/2eEz(x, 
t- At/2)+ 

1+ Ata/2E 
At + x/2, t) - H(x - x/2, t)\ 

(2 44) 
(1 + itQ/2) 

(Hv(x 

Ax 
1. 

Using equation (2.43) the magnetic field can be calculated at a position x and time t+ At/2, 

on the condition that the magnetic field is known at the same position and a time At before, 

and the electric fields are known at positions Ox/2 either side of x and at a time At/2 before. 

The electric field can be calculated, at a position x and time t+ it/2, in a similar way by 

using equation (2.44). 
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To calculate the electric fields and magnetic fields along some interval of the x-axis 
for some interval in time, space and time must first be discretised [49, p. 75-79]. Spatially 

the interval on the x-axis can be split up into points that are separated by Ax, where the i'th 

point is given by xi = iI x. Similarly time can be split into time steps At, where the n'th time 

step is denoted as ttt = ndt [49, p. 75-79]. This forms a mesh of points in space and time. If 

the electric field is evaluated at the points xi and at times to then the magnetic fields may be 

calculated at points xi+1/2 and times tn+1/2 by using equation (2.43). The fields E, z (xi, t,, ) are 

denoted as E2 (i) from now on for ease of notation. Applying this discretisation to equations 

(2.43) and (2.44) yields [46] 

Hý+1/2(i + 1/2) = Hý-1/2(i + 1/2) + 
At En (i + 1) - En (i - 1) 

(2.45) 
A Ax 

and 

n+1 i1- C1to2e E"i 
x 

() 
1+ Oto/2e 

Ex ) 

At (Hr1/2(i + 1/2) - Hy+i/2(i -1/2) (2.46) 
E(1 + ztP/2E) Ax 

It is convenient to collect the material parameters and the time and spatial steps together to 

give 

a 
1- Lta/2e (2.47) 
1+ Leta/2e 

At (2.48) 
OxE(1 + Ota/2E) 

and "y = 
At 

" 
(2.49) ýAx 

Using these terms the FDTD update equations become 

Hý +1/2(i + 1/2) = Hy -1/2(i + 1/2) +y (En (i + 1) - E: (i - 1)) (2.50) 

and 
Ez+l(i) = aEE`(i) +Q (H+1/2(i + 1/2) - lr+112(i - 1/2)). (2.51) 

If the electric fields are known at positions x= and x=+Ax, at time t,, and the magnetic 

field is known at position xi + Ox/2, at time t,, - At/2, then the magnetic field can be 

calculated at position x; + Lx/2 and time to + At/2, using equation (2.50). Similarly the 
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Figure 2.6: The FDTD mesh points in one dimensional space and time. The electric field is evaluated at the dots 
(Q) and the magnetic field is evaluated at the crosses (x). The arrows represent the three field values that are 
used to calculate the next field point in time. 

electric field can be calculated using knowledge of the fields at previous time steps using 
equation (2.51). This forms the basis of the staggered (or leap-frog) FDTD scheme [49, p. 77]: 

electric and magnetic fields are updated at spatial positions set at half a cell apart and at 
alternating half integer time steps. Figure 2.6 represents the space-time mesh points in 1D, 

and shows how each field is updated by using other field values from previous time steps. 
The update equations (2.50) and (2.51) represent the FDTD algorithm for the propa- 

gation of electromagnetic waves along the x-axis. To use these equations the electric and 

magnetic field values need to be given initial values at time t=0. Initially the field values 

are set to zero to represent free space. To initialise an electromagnetic wave in the one di- 

mensional mesh a certain amount of electric field is added in at certain points in the mesh 

over a number of time steps. The amount of field added in at each time step, and the points 

at which the field is added, depends on the input excitation that is being modelled. The 

input excitation for position i and time step n may be represented as EEý, (i). Adding this 
input excitation into the FDTD update equation (2.51) yields 

`+i(i) = aEx`(i) +, 6 (H+h/2(i + 1/2) - Hy+i/2(i - 1/2)) + Ee`x, (i) (2.52) 

It is possible to add in other input excitations such as the fields arising from currents and 
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potential differences. 

The 1D FDTD update equations (2.50) and (2.52) are relatively easy to implement into 

a computer code, and can be used to provide an efficient and accurate way of studying 
1D electromagnetic problems. In the real world however, electromagnetic experiments are 

performed in 3D. The 3D FDTD update equations are introduced in the next section. 

2.3.2 The Finite Difference Time Domain Method in Three Dimensions 

So far the FDTD update equations have been derived for the case of a 1D electromag- 

netic wave polarised in the z direction. The derivation can be easily scaled up to form the 

FDTD scheme in 2D and 3D. To obtain the 3D FDTD scheme, central derivative approxima- 

tions are applied to equations (2.30)-(2.35). These equations are then discretised into time 

t= nLt, and space x= iIx, y= jLy and z= kLz. By using a uniform spatial step size Al 

in all spatial directions, the 3D FDTD update equations may be written as 

Ha+2(Z, j i-k+ä)=Hx 5(i, j-Fý, k-ýä)+ ryI (1,. 7+ä, k+1)-Ey(tiý7-I-ä, k) 

+Ez(i, j, k+2)-Ez(i, j+1, k+1)) (2.53) 

Hv+2(iß ýý7ýk-} 2)=Hy '(i-I-ýýýýký-ý-ý'y 
(E7(i++äEz(i, 

3, +z) 

., 
(i+a'7, k)-E7(i+I', j, k+1)) (2.54) En 

1_ 

Hz+2(m 
'j+4, k)=HZ '(i+ýl'j+z'k)+'Y 

(E(i+ 
, j+l, k)-En(i+ý, j, k) 

+Eyn (2.55) 
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x 

Figure 2.7: Electromagnetic field values required to calculate H; +1/2(i + 1/2, j+ 1/2, k). 

Eý(i+1,. 7, k)=aEy(i+1, ß, k)+0(Hz+2(t+?, j+2, k)-Hz+'(i+ßv7�k) 

+Hy+2 (i+ß, 7, k-Z)-Hý+2(i+ ß, 7, k+ý)) (2.56) 

Eý+1(i, j+z, k)=aE(i, j+2, k)+Q(Hx+2(i, j+ , k+; )-Hx+'(i, j+ k- ) 

) (2.57) 
22 +Hz 2 (i- z'j+-1, k)-Hz+2(i+I, j+ilk) 

+1(i, 7, k+; ) =aEz (i, j, k+; ) +13 
(if(i(i 

+ 12 2 , ß, k+ 1) - Hv+(i - 1, ß, k+ 
ä) 

+z, k+z)J (2.58) Hx+ß(i, 7 -;, k+ 2) -Hi+2 (i, j 

where the material parameters and temporal and spatial step sizes are combined to form 

_ 
1-AtQ/2E (2.59) 
1+ /tQ/2E 

p= 
At 

OlE(1 + Otv/2E) 
(2.60) 

and y= 
Ate 

. (2.61) 

The material parameters in equations (2.59)-(2.61) need not be isotropic nor homogeneous. 

To model an inhomogeneous anisotropic material, different material parameter values need 

to be stored for different cell positions and for the different field directions. 

The 3D FDTD update equations use field values calculated at staggered cell positions 

and half integer time steps to update the next set of field values. Starting at time t=0 with 
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all electric and magnetic field values equal to zero, the magnetic field values at positions half 

a step away from the nodes of the FDTD mesh may be calculated. These are then used to 

calculate the electric field at the next half integer time step at the nodes of the FDTD mesh. A 

certain amount of input excitation may then be added into the electric field values. This field 

will propagate through the mesh in space and time as the field values are updated at each 

time step. Figure 2.7 shows the field values required to calculate the Hz field component: 

the required field values surround the Hz component. This is the case for the update of all 

the field components. 

To complete the FDTD update scheme, the update of the fields near the boundary 

of the problem space needs to be considered. It is impossible to calculate the field values 

over an infinite problem space as this would require an infinite amount of computer time 

and memory. Instead the problem space is confined to a bounded volume. This volume 

forms a cuboid, the edges of which correspond to the nodes of the mesh, where the electric 

field values are calculated. Since FDTD update equations use field values surrounding a 

node to calculate the electric field at the node, some value of the magnetic field outside of 

the problem space is required to update the electric field at a node on the boundary. The 

magnetic field is not known outside the problem space, and so the FDTD update equations 

cannot be used to update the electric field at the boundary. Certain boundary conditions 

are required to enable the calculation of the electric field at the boundary. These boundary 

conditions are described in more detail in the next section. 

2.3.3 Boundary Conditions for the Finite Difference Time Domain Method 

There are a number of boundary conditions that may be used alongside the FDTD 

method. Three such methods are described briefly in this section. These are a Perfectly 

Electrically Conducting (PEC) boundary, Mur's Absorbing Boundary Condition (ABC) and 
Berenger's Perfectly Matched Layers (PML). 

Perfectly Electrically Conducting Boundaries 

PEC boundaries are perhaps the simplest type of boundaries. These boundaries are 

used to simulate the enclosure of the problem space in a metal structure such as a reverbera- 

tion chamber. To implement these boundary conditions the electric field is set to zero at the 

nodes on the boundary. These boundaries will have zero transmission, reflecting all waves 
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that are incident upon them. 

Mur's Absorbing Boundary Conditions 

Often CEM simulations are used to model the scattering of electromagnetic fields in 

free space. In these cases boundary conditions are required that give no reflection of elec- 
tromagnetic waves back into the problem space. The required boundaries must transmit 
(or radiate) all outgoing waves to simulate what would happen in free space. Engquist and 

Majda [50] considered the use of one-way wave equations to simulate outgoing waves at 

the boundary [49, p. 2441. Mur [511 formed simple ABCs by applying finite-differences to 

these wave equations. These boundary conditions are really radiating boundary conditions, 

however Mur referred to them as absorbing boundaries because the boundary effectively 

absorbs all the waves that radiate out of the problem space. 

To derive the Mur ABC in 3D at the free space boundary x=0, consider the wave 

equation 
a2f 
'X 

+ 
ay 

f+ 

(9z2 c2 5t2 =0 (2.62) 

where f is a scalar field component and c represents the speed of light in free space [49, 

p. 247}. Defining a differential operator 

äýa2 
a2 a2 a2 22 +äy2 + äz2 c2 ät2 

D2 + Db + Dz Dt (2.63) 

equation (2.62) may be rewritten as 
Lf=0. (2.64) 

It is possible to factorise this equation [52, p. 244-247] to give 

L f= L+L` f= 0 (2.65) 

where 

L} = Dx +: 
2-1 

S2 (2.66) 
c 

L- = Dx - 
Dt 1- S2 (2.67) 
c 

S=I 
(2 Dz). (2.68) 
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Equation (2.65) can be separated into two equations as 

L+ f=0 (2.69) 

L- f=0. (2.70) 

At this point the Taylor series expansion of 1- S2 may be truncated to form simplified 

approximate solutions of (2.69) and (2.70). The so called first order Mur ABCs are formed 

by truncating the square root as 
1-S2=1. (2.71) 

This truncation is valid for small values of S, or more physically when the outgoing wave 

is normal to the x=0 boundary, and the partial derivatives in the y and z direction are 

therefore equal to zero. In reality outgoing waves are not always normal to the boundaries 

in 3D. This results in a reflection of some of the outgoing wave back into the problem space, 

which creates an error in the final result. 

Substituting the Taylor series truncation (2.71) into equations (2.69) and (2.70) yields 

(Dx + 
ýt) 

f=0 (2.72) 

(Dx - 
)f=o. 

(2.73) 

C Applying finite differences to these equations at the x=0 boundary leads to 

fn+1(O) = f"(1) + 
cOt + lax 

(fn+1(1) - f"(0)) . (2.74) 

A similar equation is obtained for the upper boundary x= NxAx, namely 

fn+1(Ný) = fn(Ný _ 1) + ct - Ax (fn+1(N - 1) - fn(Nx)) (2.75) 
cOt + Ax 

where Nx is the highest cell position in the x direction. The scalar field component f may 
be substituted with Ey or Ez to obtain the update equations for the field components at the 

boundary x=0. Similar equations are obtained for the update of the electric field at the 

exterior boundaries in the y and z directions. 

Mur's simple ABC has been shown to be successful [49, p. 248] when implemented 

within the FDTD method. These ABCs will be used in the implementation of the FDTD 

method in this thesis. The inaccuracy of the Taylor series approximation used to form these 
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first order ABCs has already been highlighted. Further errors will be introduced into the 
FDTD simulation by the finite difference approximations that are used in forming the ABCs. 

The errors formed by the approximations used to form the Mur ABCs will be discussed in 

more detail in Section 2.4.2. 

A considerable number of alternative boundary conditions have been proposed since 
Mur's ABC. Trefethen and Halpern [53] generalised Mur's ABCs for higher order approxi- 

mations to give better accuracy. Higdon [54] proposed a method to cancel out the outgoing 

waves, which are incident upon the boundary at different angles, using a linear combina- 

tion of plane waves. These methods, and other similar methods showed some small success 

in increasing the accuracy of the boundary conditions. However it was not until 1994 that 

a significant improvement in the accuracy of boundary conditions was made by Berenger 

[55]. Berenger proposed the use of a PML to absorb all outgoing waves. This method is 

described in more detail in the next section. 

Berenger's Perfectly Matched Layers 

B6renger's PML produces significantly less unwanted reflections at the boundary of 

a FDTD mesh than Mur's ABC [33, p. 516]. The PML is based on the fact that a plane wave 

incident on a half space has zero reflection (perfectly matched), so long as the material pa- 

rameters of the half space are [33, p. 516] 

O Q* 

co µa 
(2.76) 

In the above equation co and µo are the usual permeability and permittivity of free space 

respectively, and a and v* are the electrical and magnetic conductivity of the half space 

material respectively. The use of magnetic conductivity assumes the existence of magnetic 

monopoles, which cause Maxwell's equations to become symmetric: a phenomenon known 

as electromagnetic duality. The existence of magnetic charge may be an exciting concept 

for mathematicians and theoretical physicists, however for Berenger's PML the physical 

existence of magnetic monopoles is innmaterial. Assuming the existence of magnetic charge 

at the boundary does not affect the physics of the interior of the FDTD mesh except to reduce 

the unwanted reflections from the boundary. 

The above condition works well to reduce the reflection of normally incident plane 

waves. However, a wave that is not normally incident on the exterior boundary will not 
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be perfectly matched [33, p. 5161. To overcome this problem Berenger proposed that the 

magnetic field components may be artificially split into two subcomponents each with an 

associated magnetic conductivity [33, p. 516]. Berenger originally proposed the use of a PML 

in 2D. By splitting the magnetic fields near the 2D boundary, Maxwell's equations become 

9E,, 
E0 _ 

äHx 
- -Y - (2.77) 

at ay 
aE 

co 
aHZ 

- vxEy (2.78) 
at cox 

8H, zx 
= l2o 

My 

- - axH. x (2.79) 
at ax 

ttoaHxy _ 
äEx 

- Q*Hz y y 
(2.80) 

at ay 

where the magnetic field is split into H,, = Hzy + Hzy, and the conductivities associated 

with different components are represented by a, oy, ax and Q* [33, p. 516]. This splitting 

of the magnetic field allows waves, which are incident on the PML at any arbitrary angle 

of incidence, to be perfectly matched. Incident waves are in effect decomposed into their 

different oriented components, which are then matched separately by setting 

and 
crý 

= 
aý 

. Co NL0 (0 PO (2.81) 

To implement the PML at the upper x boundary set Q,, = vy* =0 and let Qy = vxeo/po 
be a constant [33, p. 516]. Under these conditions, the solution of the modified Maxwell's 

equations (2.77)-(2.80) become [33, p. 516] 

Hx = Hoe", '--'('t)e""' COSO+y sin 45) (: cos¢/eac)x (2.82) 

E= (-isin0+9cos¢) 
4011- 

Hx (2.83) 

for a wave travelling with an angular frequency w, at an angle of 0 to the positive x-axis, 
in the x-y plane. The constant c in equation (2.82) represents the speed of light and Ho is 

the amplitude of the magnetic field. The energy of the outgoing wave is dissipated through 

the exponential decay factor, thus zero reflections are obtained so long as the values of x are 

allowed to be infinitely large [33, p. 516]. Since the fields decay exponentially with x, expo- 

nential differencing must be used to discretise equations (2.77)-(2.80). The update equation 
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obtained for equation (2.78) is [33, p. 516] 

j+ 1) i_1 -oxot/EO 
HZ +i/2(i +2+ 2) - Hz +1/2(i 

-2 Eý+1(i, j-I-iE(i, j+2) ßy(1-e 0x 
(2.84) 

This 2D derivation of the PML was later extended to 3D by Katz, Thiele and Taflove [56]. 

For practical implementations the PML thickness is truncated, at some distance where 

most of the outgoing energy is absorbed [33, p. 517]. A PEC boundary is then used at the out- 

ermost points, which causes some reflection of outgoing waves back into the mesh. These 

reflections, however, are significantly smaller than the reflections produced by Mur's ABCs. 

The thicker the PML boundary, the smaller the reflections back into the FDTD mesh, but the 

larger the computational expense. Research has been carried out to obtain the optimal thick- 

ness of the PML boundary required to balance the accuracy with the computational expense 

of the boundary condition [571. Although the PML has been shown to be more accurate than 

Mur's ABC, it is also more complicated to implement and requires extra computational ex- 

pense. Therefore, the Mur ABC is used in the implementation of the FDTD method in this 

thesis. 

The different boundary conditions that may be implemented into the FDTD have 

been discussed in this section. The next section describes a more accurate FDTD scheme, 

which makes use of higher order finite difference approximations of the partial derivatives 

in Maxwell's equations. 

2.3.4 A Higher Order Finite Difference Time Domain Method 

This section briefly outlines a higher order FDTD method first introduced by Fang [581 

in 1989. This method relies on higher order finite difference approximations of the deriva- 

fives in Maxwell's equations. These higher order derivatives make Fang's FDTD scheme 

more accurate than the original scheme proposed by Yee. The order of accuracy of Yee's 

FDTD method and Fang's higher order method are discussed in more detail in Section 2.4. 

The following discussion of Fang's higher order scheme is as given by Taflove in [52, p. 76- 

77]. 

Fang proposed the use of the higher order temporal derivative 

(Of n+i/z f'n+l - fn (At)2 Of n+1/2 4 ät - At - 24 ät3 + o(At) (2.85) 
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in Maxwell's equations. If f is a variable representing the electric or magnetic field then its 

third order derivative with respect to time can be related to different spatial derivatives, of 
the electric and magnetic fields, using Maxwell's equations. This results in the relations [52, 

p"77l 

T093 
H 

=µv x 
[1V 

x 
(! 

vxE)+(VxH_aE)J (2.86) 

=-Vx{! vx[! (vxH_aE)]} 

(VxH-aE). (2.87) 
fVx 

VxEIll 
)+T2 

2 (/I \ 

These expressions are greatly reduced for the 1D case, or for the case where the permeability, 

permittivity and conductivity are constant. The spatial derivatives in equations (2.86) and 
(2.87) are approximated by second order central derivatives in Fang's FDTD scheme. The 

other spatial derivatives appearing in Maxwell's equations are approximated by a higher 

order spatial derivative, namely 

of 
- 

27(f(i + 2) - f(i - 2)) - (f(i+ !2 
-2 

)- f(ti - 2)) + 0(0 4) (2.88) öx 240x 

where f denotes the scalar field components used in Maxwell's equations. These deriva- 

tive approximations are chosen to maintain the order of accuracy of the higher order FDTD 

scheme. 

This higher order FDTD scheme provides higher order derivative approximations for 

the derivatives in Maxwell's equations. Once again only the fields from the previous half 

integer time step are required to update the fields at the next time step. The scheme may well 

be more accurate than Yee's original FDTD scheme, however the scheme is more difficult to 

implement and more computationally expensive, especially in 3D and when the material 

parameters vary spatially. 

Fang's higher order FDTD scheme will be investigated as a possible method that may 
be used to analyse the error in simulations performed using Yee's original scheme. This is 

described in more detail in Chapter 4. In the next section the stability criteria is introduced. 

This criteria maintains certain physical laws within the FDTD schemes. 
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2.3.5 Stability Criteria 

In one time step the FDTD scheme allows the field at one point to affect the field 

values at only the nearest points. It is therefore important that the time step is small enough 
to record the effects of a wave passing through the problem space. If the time step is too 
large, then a wave may have passed over a number of points before the field values at these 

points are updated: this causes the simulated solution to become unstable. To maintain 

stability in 3D the time step is chosen so that a wave travelling at the speed of light c will 

not pass by one cell before the field values are updated at the next time step. This causes the 

time step to take on a maximum value, namely 

Di- C\y 
* 2+O 2+Oz2) 

Z. (2.89) 

This temporal step size limit is known as the Courant limit [49]. The Courant stability crite- 

ria asserts that the speed of light limits the rate at which information is propagated through 

the FDTD mesh [33, p. 503]. If a uniform spatial step At is used in each direction then 

of < \. (2.90) 

Similar stability criteria may be obtained for the 1D and 2D FDTD methods. For the 1D case 

stability is maintained so long as 

At < 
Al (2.91) 
c 

and in the 2D case the stability is maintained so long as 

At < (2.92) 
cV2 

Thus, the temporal step size required to maintain stability is inversely proportional to the 

square root of the dimension of the FDTD simulation. In practice a step size of 

2c 
(2.93) 

is used in 3D, however this step size satisfies the Courant condition for FDTD simulations 

of all dimensions. Using this time step a wave will propagate from an electric field node to 

the nearest magnetic field and then to the next electric field node in two time steps. 

There are many other considerations that must be taken into account when forming 
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a reliable FDTD scheme. Different implementations of the FDTD method will produce dif- 

ferent sources of error. Some of these sources of error will be identified in the next section, 

using Definition 1.1. 

2.4 Sources of Errors in Finite Difference Time Domain Simula- 

tions 

The sources of errors described in this section are meant to act as a general introduc- 

tion to some of the main errors that should be analysed in any general FDTD simulation. 
These errors are by no means a complete error taxonomy for the FDTD scheme. Each sim- 

ulation and application of FDTD introduces different types of error. To discuss some of the 

sources of errors, the definition of the order of accuracy is required. A similar definition can 
be found in [49, p. 63]. 

Definition 2.1 Let f be a smooth function that depends on some variable x, which when operated 

on by the continuous operator A gives 

A. f (x) = Fexact" (2.94) 

Suppose AA is a discretised approximation of A, which depends on the discrete interval Ax of x, 

and let the operation of AA., on f (x) be given by 

ADxf (x) = F0x. (2.95) 

The order of accuracy of the approximate operator Aox is said to be p if the error in the operation on 

f (x) by Aox satisfies 
Error = Fpx - Fexact a (Ox)p. (2.96) 

This definition will be used to obtain the order of accuracy of the conventional FDTD method 
in the next section. 
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2.4.1 Truncation, Discretisation and Dispersion Errors 

In the derivation of the field update equations (equations (2.45) and (2.46)) the deriva- 

tives in Maxwell's equations were approximated by using the central difference approxima- 

tion (2.38) 
af (x) 

,, 
f (x + Ax/2) -f (x - Ax/2) 

äx Ox 

where f is a smooth function dependent on x. In accordance with Definition 2.1, the contin- 
uous operator Aexact = 8/Ox is approximated by the discrete operator 

Tl/2 - T-1/2 
Aoy = (2.97) 

Ax 

where T is a translation operator defined by Tf (x) =f (x + Ax) [59, p. 3]. 

Performing the Taylor series expansion of f (x+Ox/2) and f (x-Ax/2) gives [49][p. 38] 

023 
fý4)(x) 

... 
(2.98) f (x +A x/2) =f (x) +2f (x) + 

2! 

X 

22\ 1 
22 f"(x) + 

: 
f(3)(X) +4! 

24 l 2 

and 

f (x - Ox/2) = f(x) - 
Ox 

f, (x) + 
A22 

f"(x) - 
A23 

f(1) (x) +4 24 
f (4) (x) 

.... 
(2.99) 

Using these expansions Aa., f (x) can be rewritten as 

AX3 
AoJ (x) = 

[1(x) 
+ 

-x 
f, (x) + 

022 
f 11(X) + 3AI23 

f (3) (x) +4 
24 

f (4) (X) 

- 
(. 

f (X) 
- 

Ox 
f (x) + 

A22 
f�(X) - 

A23 

.f 
(3) (x) +4 

24 
.f 

(4) (x) JJ ýzx + ... 

=f'(x) + 
2'42 

f(3)(x) +.... (2.100) 

The error in the finite difference approximation is 

Error = AAx f (x) - Aexnctf(x) 

= (f'(x) + 242 
f3 (x) +... )- f'(x) 

_ 
ý42 

f (3)(x) oc L1 x2. (2.101) 

Using Definition 2.1 it is clear that the central difference approximation is second order accu- 
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rate. Since the FDTD method uses central differences for the temporal and spatial derivative, 

the method is second order accurate in time and second order accurate in space [49, p. 39]. 

FDTD simulations performed with this order of accuracy are referred to as (2,2) FDTD sim- 

ulations; the numbers in the brackets referring to the order of accuracy in space and time 

respectively. Using a similar argument to that given above, it can be shown that Fang's 

higher order FDTD method [58] is 4th order accurate in both space and time. Simulations 

performed using Fang's higher order method are referred to as (4,4) FDTD simulations. 

In forming the central difference approximations, which are used in the FDTD method, 

the Taylor series expansion of a function is truncated. The error introduced by the central 

difference approximation is therefore known as the truncation error. The FDTD method also 

requires the discretisation of Maxwell's equations, which introduces a finite mesh size. This 

approximation of Maxwell's equations introduces errors that are known as discretisation er- 

rors. The discretisation error is related to the truncation error because the truncation error 

of each first derivative is dependent on the mesh size (Ax in the above equations). Both the 

discretisation and truncation errors tend to zero as the mesh size becomes infinitesimally 

small. 

There are a number of ways to analyse the truncation and discretisation errors in a 

FDTD simulation, these will be discussed in more detail later. Researchers have previously 

gained an insight into the truncation and discretisation errors by analysing the dispersion 

error [60], [61]. Dispersion is a direct consequence of the central difference approximation 

which introduces discretisation and truncation errors. The discretisation and truncation 

errors cause the phase velocity of a wave, travelling through an FDTD mesh, to be lower 

than the speed of light. In higher dimensional problem spaces the wave speed is dependent 

on the angle at which the wave propagates with respect to the mesh axis [49, p. 110-123]. 

Therefore, a wave travelling in two or three dimensions will have different propagation 

velocities in different directions causing the wave to disperse. The extent of the dispersion 

is also affected by the wavelength of the waves propagating through the FDTD mesh. The 

derivation of the dispersion relation for FDTD is given below. This derivation and the results 

that follow from it are well documented: the reader is referred to [49, p. 110-123] and [33, 

p. 502-506]. 

Consider a wave with an angular frequency w and wavenumber k, travelling in a 
lossless 2D space. The electromagnetic wave will satisfy Maxwell's equations, which in 2D 
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are 

axx 1 aEz 
(2.102) 

at µ ay 
My 1 aEz 

(2.103) at µ äX 
aE, z 1 ally aHx 

(2.104) at -E ax - ay 
Discretising and using central difference approximations, these equations become 

HH+1/2(i, j+ z) - Hx-1/2(i, j+ 2) 1 En, (i, j + 1) - Ez (i, j) 
At -µ Ay 

(2.105) 

Hy+l/2(i i- 2,? ) - Hy -1/2(E i- 2,7) 1 Ez (i i-1,7) -`(i, i) (2.106) 
At Ax 

EE+l(i, j) -E 
(i,; ) 

_1 
Hy+l/2(i + 2, j) - Hy+i/2(i - 2,7) 

At -E 0x 

_Hx+112(i, 
7 + 2) - Hx+1/2(Z, ß _ ý) (2.107) 

Numerical dispersion relationships can be derived by substituting the solution of a 

single frequency planar wave into the above FDTD update equations [49, p. 1101. A 2D 

plane wave solution that may be used for this purpose takes the form: 

Ez (i, j) E0 ef(wnßt-k cosOißx-k sinOjßy) (2.108) 

j) = H0 e1 -1( Lit_k COS ýbix-k sin 45jß') (2.109) 

= 
("nßt-kcos Oißx-ksin¢jßy) Hb (i, j) Hyoeý (2.110) 

where E 9, H., o and Hbo are constant coefficients, and 0 is the angle of propagation of the 

wave relative to the x-axis. Substituting this plane wave solution into equations (2.105)- 

(2.107) and using the relation 

sin x= 2V7== 
(evTz 

-e 
fix) (2.111) 
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yields [49, p. 111] 

Hx 
0_ 

OtE, 
zp sin (k sin OAy/2) 

(2.112) 
PAY sin (wit/2) 

H_- 
AtEZO sin (k cos OOx/2) 

(2.113) ýo - PAX sin (wAt/2) 
(wLt) At H0 (ksincY) H0 /k cos x\ Ep sin =Ef Qy sin - Ax sin I2 Iý . 

(2.114) 

Equations (2.112) and (2.113) are then substituted into equation (2.114) to obtain [49, p. 111] 

I1 sin 
(wAt ll2=I 

-1 sin 
(kcosx)]2 

+I- sin 
(ksinY)]2 

(2.115) 

where c= 1/ µe is the speed of the travelling wave in the material. Equation (2.115) repre- 

sents the numerical dispersion relation of the 2D FDTD algorithm [49, p. 111]. Notice that as 
At, 0x and Ay tend to zero, equation (2.115) tends to the numerical dispersion relation for 

the continuous case [33, p. 5041: 
(W)2=k2. (2.116) 

It is possible to compare the discrete and continuous numerical dispersion relations 

for different wave propagation angles 0, and different cell sizes Ax. To do this consider 

the case where the 2D mesh has square cells such that Al = Ox = Ay. Using the Courant 

stability criteria derived earlier, the time step may be written in terms of the spatial step as 
At = AI/2c. In reality the phase velocity of the travelling wave should be 

w 
c= (2.117) 

which is independent of the angle of propagation of the wave. The phase velocity of the 

wave in the discrete case is found by rearranging equation (2.115) to obtain w in terms of 

the wavenumber k or vice-versa, and then using the definition of the phase velocity v, = 

w/k. Figure 2.8 shows the ratio of this phase velocity to the continuous wave speed c, for 

different propagation angles: this figure is as found in [33, p. 506] and [49, p. 118]. From this 

figure it can be seen that the ratio of the wave speeds differ from the ideal value of one, for 

propagation angles closer to the FDTD mesh axes. The ratio of the wave speeds also differs 

for larger cell sizes. Using a smaller cell size is more accurate, producing phase velocities 

that are closer to the continuous wave speed c. Usually it is accepted that using a cell size 

that gives a ratio of Ol/A = 1/10, is sufficiently accurate. 
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This section has discussed the truncation, discretisation and dispersion errors. The 

fact that these errors decrease as the cell size of the FDTD mesh decreases is used in Chapter 

4 when considering approximate Error Analysis methods. 

2.4.2 Boundary Errors 

The errors produced by the approximations made when forming the Mur ABCs may 

be analysed in a similar way to the dispersion errors in the previous section. Consider a 

monochromatic plane wave propagating in 2D towards the x=0 Mur boundary at an angle 

of 0 to the normal of the boundary. The 2D plane wave can be represented by [33, p. 514-515] 

Ez (i, j) = Eo exp 
{ (wnOt +k cos gi0x +k sin ¢bj1 y) 

} (2.118) 

where E0, w and k are the amplitude, angular frequency and wavenumber of the wave re- 

spectively. The error in the Mur ABC causes the plane wave to reflect at the x=0 boundary. 

Thus the electric field solution at the boundary is the sum of the incident wave and the 

reflected wave in the positive x direction: 

E7(ij) = Eoevf, -, l(wnot+k sin Ojov) (evTkcosc1thx) + Re *vr--'(k cos o'0x)) 
. (2.119) 
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Figure 2.8: Ratio of the discrete phase velocity to the continuous wave speed for different propagation angles. 
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Figure 2.10: Absolute value of the reflection 

coefficient for different cell sizes. 

The constant R is the reflection coefficient, which is determined by substituting (2.119) into 

the Mur ABC update equation (2.74). For the first order Mur ABCs this substitution yields 

[33, p. 514] 

R= `ejkcos x 
Ox sin (wAt/2) cos (k cos OAx/2) - cAt cos (wOt/2) sin (k cos OOx/2) 
Ax sin (wAt/2) cos (k cos ¢Ox/2) + cLt cos (wzt/2) sin (k cos OAx/2) 

(2.120) 

It is possible to obtain a similar expression for the reflection coefficient of the higher order 

Mur ABC. Setting cLt = Ax in equation (2.120) gives the desired zero value for the reflection 

coefficient. However setting cLt = Ax violates the Courant stability criteria for the 2D 

FDTD method [33, p. 515]. By ensuring that the Courant stability condition is maintained, 

errors from the Mur ABC will appear in the output of the FDTD simulation. 

Consider the case where Al = Ax = Ay, and the time step is At = 11/2c. Figure 2.9 

shows the magnitude of the reflection coefficient for the first and second order Mur ABCs, 

for different propagation angles [33, p. 515]. This figure shows that the reflection coefficient 

is smaller in general for the second order Mur ABC, however the reflection coefficient in- 

creases to one for waves with grazing incidence upon the boundary. Figure 2.10 shows the 

magnitude of the reflection coefficient for the first order Mur ABC, for different angles and 

different cell sizes. Figure 2.10 shows that the reflection coefficient decreases as the ratio of 

the cell size to the wavelength of the propagating wave decreases. However the reflection 

coefficient increases to one for plane waves with grazing incidence upon the boundary, no 

matter how small this ratio is. 

An approximate Error Analysis is introduced in Chapter 4 that considers the use of 

smaller mesh cells to provide more accurate FDTD simulated output. It has been shown 
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in this section that reducing the cell size will reduce the boundary error to some extent; 
however in this thesis no explicit method is used to quantify the error in the output due to 

boundary errors. 

As discussed previously the PML boundary conditions are more accurate than the 
Mur ABCs. The Mur ABCs introduce more unwanted reflections back into the FDTD mesh 

than the PML. It would therefore be possible to estimate the error in the output of an FDTD 

simulation due to the Mur ABC, by using an equivalent simulation that uses PML bound- 

aries. The difference between the output of the simulation using Mur ABCs and the output 

of the simulation using a PML will provide an estimate of the output error due to the Mur 

boundary. It may be argued that since a simulation using a PML has been performed then 

the more accurate output formed from this simulation should be used in place of the output 

from the simulation with Mur ABCs. If however many simulations were to be performed, 

it may be computationally cheaper to use the Mur ABCs and to estimate the error in these 

simulations using one simulation performed with a PML. This method of error estimation 

is not investigated in this thesis. 

The error estimation methods introduced in Chapter 4 attempt to quantify the error 

in the output of FDTD simulations due to the truncation and discretisation errors. These 

Error Analyses are used in Chapters 5 and 6 to obtain the error estimate for a number of 

FDTD simulations. The error estimations are compared to the true error, which is obtained 

analytically, to determine the accuracy of the approximate Error Analyses. The analytical 

error includes all errors, it is therefore possible to determine whether the Error Analyses are 

accurate despite ignoring some of the sources of error (such as the error due to the boundary 

conditions). 

2.4.3 Staircasing Errors 

Staircasing errors arise from introducing a mesh to numerically solve Maxwell's equa- 

tions. Unfortunately material parameters can only be defined at the discrete spatial points 

of the mesh. If a circle is modelled on the 2D mesh then it is constructed out of the squares 

that make up the mesh. The circle appears in the simulation with a stair-stepped boundary 

(as shown in Figure 2.11) and is therefore not circular. The stair-stepped boundary may act 

quite differently from a smooth circular boundary. Thus errors are introduced when sim- 

ulating curved surfaces in discrete orthogonal meshes. These errors are called staircasing 

errors. 
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Figure 2.11: Simulation of a circle on a two dimensional mesh. The perimeter of the squares will be the simulated 
circle when applied to the mesh. 

Much work has already been carried out on the analysis of staircasing errors, includ- 

ing work by Cangellaris and Wright [62], Akyurtlu [63] and Holland [64]. Cangellaris and 

Wright compared the results obtained by sending electromagnetic waves at a perfect elec- 

trical conductor that was aligned parallel to and at 45 degrees to the axis of the mesh. They 

found that the propagation of the waves was dependent on the wavelength of the waves 

used and the cell size of the mesh [62]. Akyurtlu gives a similar analysis of the staircasing 

errors for a general air-dielectric boundary. They found that as the relative permittivity of 

the dielectric is increased the errors converge to the results for an air-PEC interface [63]. 

Holland compared two different meshes, a stair-stepped orthogonal mesh and a coarse con- 

formal mesh, to model a conducting strip and a conducting circular cylinder. The model 

using the stair-stepped mesh was found to be less accurate than the model using the coarse 

conformal mesh, which fitted the canonical results much more closely [64]. 

These staircasing errors are introduced by the discretisation of Maxwell's equations: 

an approximation that was required to form the FDTD method. By using a more refined 

mesh, with cells of a smaller size, curved surfaces will be modelled more accurately. Thus, 

the staircasing error also decreases for more refined FDTD meshes. 
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2.4.4 Numerical Round-off Errors 

Numerical round-off errors arise from the numerical precision used to record the field 

values at each point in space and time [65, p. 100-103]. This precision must be finite as only a 
finite amount of computer memory exists [65, p. 100-103]. When field values are rounded off 

errors are introduced. These errors are propagated through the simulation as field values 

are updated using previously rounded off field values. Normally field values are stored as 

floats which can hold up to six significant figures [65, p. 100-103]. Some idea of the numerical 

round-off errors could be obtained for a simulation that uses floats by performing a second 

simulation using doubles to store the field values, and comparing the two simulations. Dou- 

bles will hold approximately twice as many significant figures as floats, which will increase 

the accuracy of the simulation. Roache argues that numerical round-off errors are negligible 

compared to other forms of error [65, p. 100-103]. Thus, no analysis of the numerical errors 

in FDTD simulations is made in this thesis. 

2.5 Sources of Parameter Uncertainty in Computational Electro- 

magnetism 

This thesis aims to investigate the uncertainty in the output of CEM simulations due 

to the uncertainty in the input parameters. This type of uncertainty is known as parameter 

uncertainty. Quantifying the uncertainty in a result indicates the level of confidence that 

may be held in that result. Examples of the types of inputs that may have an associated 

uncertainty are the: 

9 geometric positions of materials in the problem space, 

" physical sizes of these materials, 

9 material parameter values such as the permittivity, permeability and conductivity, 

. input excitation parameters such as amplitude and phase, 

. position of the output (measurement) points. 

The values of some of these inputs may not be exactly known, for example there may be an 

uncertainty in the value of the permittivity of a dielectric being modelled. Other inputs may 
be known to certain tolerances, such as the length of a metal sheet. As with determining 
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the uncertainty in the results of physical EMC experiments, expert knowledge is required 

to determine the sizes of these input uncertainties, and the associated PDFs. The work in 

this thesis concentrates on investigating different methods to quantify the uncertainty in 

the output of CEM simulations when given a set of uncertain input parameters, and does 

not consider the accurate determination of these uncertain input parameters. The material 

parameters of free space are used in the examples in this thesis, for simplicity these values 

are assumed to have a zero associated uncertainty. 

As discussed in Chapter 1 there has already been some previous research into uncer- 
tainty in CEM. This research includes work by Chauviere, Hesthaven and Lurati [18] and 

Ajayi, Ingrey, Sewell, and Christopoulos [19]. Chauviere et al concentrated on implementing 

Polynomial Chaos into a high-order discontinuous Galerkin method, which was proposed 

by Hesthaven and Warburton [66] as a possible method for solving Maxwell's equations in 

the time domain. Ajayi et al used another approximate method to determine parameter un- 

certainty, known as the Method of Moments (MoM) [16]. This method is not the same as the 

well known method used in CEM (referred to as IEMoM in this thesis), but is a statistical 

method for determining the output uncertainty given a set of input uncertainties. Despite 

this previous work it is evident that there has been considerably more research analysing 

the errors in CEM simulations. This thesis aims to investigate different methods that may 

be used to quantify parameter uncertainty in CEM simulations. 

2.6 Discussion 

This chapter has introduced a number of CEM methods that are used within EMC 

research. In particular this chapter has discussed the FDTD method in detail. The boundary 

conditions used in the FDTD method have been described, as well as a higher order FDTD 

method and the stability criteria. 

Some of the sources of error and uncertainty that exist in the FDTD method have 

been discussed. It is clear that there has been a significant amount of research analysing the 

errors in the FDTD method. From this work it may be concluded that many of the errors 

arising in the FDTD method are reduced when the cell size and time step used in the FDTD 

simulations are reduced. This fact will be used later in the thesis to form approximate Error 

Analysis methods. 

Less work has been carried out on the uncertainty in the output of CEM simulations. 
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This thesis will concentrate primarily on quantifying the uncertainties in the output of CEM 

simulations. The MCM, MoM and PCM are used in this thesis to quantify parameter uncer- 

tainty. The MCM and MoM use the output of CEM simulations to quantify the uncertainty: 

these two methods may therefore be used to analyse the uncertainty in any of the CEM 

techniques discussed in this chapter. The PCM requires a modification to the different CEM 

techniques before it can be used to quantify the uncertainty. More work is therefore required 

to implement the PCM into the various CEM techniques described in this chapter. 

The discretised FDTD mesh, which introduces errors into the output of the FDTD sim- 

ulations, will also affect the accuracy of the chosen UA methods. Consider the quantification 

of the output uncertainty due to a geometric uncertain input parameter. Using the MCM to 

quantify this uncertainty will result in many sample coordinates being formed for the un- 

certain parameter. These coordinates may not necessarily coincide with the FDTD mesh. To 

perform the different MCM simulations the coordinates must be reassigned to the nearest 

mesh node, introducing an error into the UA. The discretisation, used in the FDTD method, 

therefore has the potential to introduce errors into the different UA methods. 

As discussed in Section 2.2 the output from a CEM simulation is usually a frequency 

response curve. The error and uncertainty in this output will also be a curve. The next chap- 

ter introduces a number of numerical methods that are used in this thesis to help analyse 

the error and uncertainty in output curves. 
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3.1 Introduction 

As discussed in Chapter 2, the output of CEM simulations are often frequency re- 

sponse curves. In this thesis the error and uncertainty in these output curves will be deter- 

mined. In order to facilitate this a number of different numerical techniques are needed to 

analyse the output curves; these techniques will be discussed in this chapter. 

Firstly the Feature Selective Validation (FSV) method will be discussed. This is a 

method for comparing curves, first proposed by Martin in his thesis [671. The method, 

which is described in Section 3.2.1, compares curves in terms of their amplitude and feature 

differences. The FSV method is used in a number of different ways in this thesis, as outlined 
in Section 3.2.3. 

67 
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Curve alignments are used alongside the Error and Uncertainty Analyses, in this the- 

sis, to determine the manifestation of the errors and uncertainties in the output frequency 

response curves. The errors and uncertainties in the output curves manifest themselves as 

amplitude and frequency errors and uncertainties. Section 3.3 provides more details on the 

need for curve alignments, when performing Error and Uncertainty Analyses. Three dif- 

ferent methods that may be used to align curves are introduced in this section. The first 

two methods (Peak Matching and Interval Correlation) are novel methods that are shown 

to align different curves well. The third method (Dynamic Time Warping) also aligns curves 

very well, however the alignment process distorts the curves severely. These severe dis- 

tortions will affect the results of subsequent Error and Uncertainty Analyses. The Peak 

Matching (PM) method is shown to provide better alignments than the Interval Correlation 

(IC) method in the majority of test cases. The PM method is also shown to be computa- 

tionally faster than the IC method. Much of this work on curve alignment has already been 

published in [24]. 

3.2 The Feature Selective Validation Method 

The Feature Selective Validation (FSV) method was developed as a tool for validating 

Computational Electromagnetic (CEM) models [67]. One step in validating CEM models 

involves comparing the results of CEM simulations with results obtained by laboratory ex- 

periments. The FSV method provides a way of comparing output curves produced by a 

CEM simulation with similar curves produced by physical measurement. If the comparison 

determines that the curves are in good agreement then support is provided for the validity 

of the CEM model. Often an experimenter will compare two curves visually, using their 

experience and knowledge to determine how similar the two curves are [68]. These visual 

comparisons may not be consistent; different experimenters may come to different conclu- 

sions about the similarity of the curves. The FSV method attempts to provide a consistent 

way of comparing two curves in a nonsubjective way. 

The FSV method is outlined in detail in [68]. Comparisons provided by the method 

have been validated against comparisons given by approximately 50 EMC engineers from 

several countries [69]. More recently, improvements have been made to the FSV method 

[70]. In the next section details of the FSV method are given, following the work in [68] and 

[70]. 
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3.2.1 Details of the Feature Selective Validation Method 

The FSV method was developed using evidence from the psychology of visual per- 

ception [68]. This evidence suggests that when individuals study pictures, their eyes are 

drawn to the areas of high "feature density" [68]. When asked different questions about the 

picture, the individual's eyes move to different parts of the picture [68]. This knowledge can 

be used to help determine how people compare curves. Curves are made up of individual 

features that are ordered and spaced in a particular way [68]. An engineer comparing two 

curves will be drawn to the individual features of the two curves. Whilst comparing the 

curves the engineer will ask themselves questions such as "How similar are the amplitudes 

of the curves? " and "Do the features of the curves align? " [68]. This will draw the engineer's 

attention to different parts of the curves. 

Using these concepts it was suggested that a useful way to compare curves would 

be to determine the differences in the overall amplitudes of the curves seperately from the 

differences in the "high frequency" features of the curves [68]. This is done by separating 

the original curves, under comparison, into their low frequency and high frequency compo- 

nents. The low frequency components represent the overall amplitude of each curve, whilst 

the high frequency components represent the features of each curve. These components 

are used to determine an Amplitude Difference Measure (ADM) and a Feature Difference 

Measure (FDM), for the two curves being compared. These difference measures are then 

combined to give an overall Global Difference Measure (GDM) [68]. The ADM has more re- 

cently been modified to include an Offset Difference Measure (ODM). The ODM represents 

the "dc offset" of the two curves; including this measure improves the performance of the 

FSV method [70]. 

The difference measures are determined on a point by point basis, it may therefore be 

necessary to interpolate one of the curves so that the two curves are evaluated at the same 

points. If the curves are sufficiently sampled and the interpolation does not produce a curve 

that is significantly different from the original curve, then the interpolation will not affect 

the results [68]. Duffy noted that there are a number of weighting factors that are required 

to calculate the difference measures [68]. These weighting factors have been obtained by 

optimising the method, so that the results of the FSV comparisons are in agreement with the 

results obtained via visual interpretation [68]. 
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Figure 3.1: The low and high pass filters. 

Implementing the Feature Selective Validation Method 

The following procedure provides all the details needed to implement the FSV method: 

these details are as in [68] and [70]. The two curves will be referred to as datasets 1 and 2 in 

the following algorithm: 

1. Read in the datasets 1 and 2 and interpolate, if necessary, over the same data points. 

2. Fourier Transform both datasets. In this thesis a FFT is used to do this. 

3. Obtain the "dc" datasets by taking the inverse Fourier transform of the first four points 

in the transformed datasets. These "dc" datasets are referred to as dcl and dc2, corre- 

sponding to the original datasets 1 and 2. 

4. Obtain the "low" datasets from the transformed data. 

(a) Sum the intensities of the remaining transformed datasets (from point 5 onwards), 

to produce the Total Intensity of each dataset. 

(b) Obtain a 40% cutoff point (for each dataset) by summing the intensities, again 

from point 5, until the total reaches 40% of the Total Intensity. The 40% cutoff 

point used in the FSV method is the lowest of the two cutoff points calculated 

for each dataset. A "break-point" five data points above the cutoff point is then 

found. This break point, referred to as point Nb here, provides a transition win- 

dow between the low and high data regions. Duffy [68] notes that the 40% value 

was determined from sensitivity tests aimed to ensure that the FSV method was 

in agreement with visual comparisons. 

(c) Window the transformed datasets using a linearly decreasing envelope from point 
Nb-5 to point Nb +5 (as illustrated in Figure 3.1, taken from [68]). This essentially 



3.2. The Feature Selective Validation Method 71 

low pass filters the transformed datasets. 

(d) Inverse Fourier transform the windowed data to obtain the "low" datasets Lol 

and Lot, corresponding to the original datasets I and 2. 

5. Obtain the "high" datasets from the transformed data by first windowing the data us- 
ing the high pass envelope (as illustrated in Figure 3.1), essentially high pass filtering 

the datasets. The "high" datasets are obtained by taking the inverse Fourier transform 

of the windowed data. The "high" datasets, corresponding to the original datasets 1 

and 2, are referred to as Hil and Hie respectively. 

6. Calculate the ODM on a point-by-point basis using 

ODM(i)=ODMi= (S+exp{(al} (3.1) 

where 

idcl (i) I- Idc2 (i) I (3.2) 

N 

a=N E(Idcl(n)I + Idc2(n)f) (3.3) 
n=1 

i represents the ith data point and N is the total number of data points. The point-by- 

point representation of the ODM is represented by ODM; here. 

7. Calculate the ADM on a point-by-point basis using 

ADM(i) = ADMi = 
lal+ODMi (3.4) 

where 

a= ILoi(z)l - IL02(i)I (3.5) 
N 

and 3=N1: (iLol(n)j + (Lo2(n)I). (3.6) 
n=1 

Again i represents the ith data point and the point-by-point representation of the ADM 

is represented by ADM; here. 

8. Calculate the mean value of ADM, to give an overall difference measure, using 

ADM = 
EN 

1IADMti 
(3.7) 
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FSV value (e. g. ADMt) FSV interpretation 
ADMi <0.1 Excellent 

0.1 <ADMi <0.2 Very good 
0.2<ADM1 <0.4 Good 
0.4<ADMi <0.8 Fair 
0.8<ADM= <1.6 Poor 

1.6<ADMf Very poor 

Table 3.1: FSV Interpretation Scale. 

9. Calculate the ADM histogram. The values of the ADM, FDM and GDM can be di- 

vided into six groups each with an associated language descriptor: excellent, very 

good, good, fair, poor and very poor. The histogram is formed by determining the 

proportion of points that have ADM, values that belong to each of the six groups. Ta- 

ble 3.1 shows the six groups that the ADMi (or FDM1 or GDMJ belong to, and the 

qualitative description for each group. This table was originally published in [68]. 

10. Calculate the derivatives required to form the FDM. These derivatives accentuate the 

high rate of change features in the original curves [681. The first derivatives of the Lo 

and Hi datasets are formed using a central difference scheme as 

Lo'(i) = Lo(i + Nd) - Lo(i - Nd) (3.8) 

and Hi(i) = Hi(i + Nd) - Hi(i - Nd) (3.9) 

(3.10) 

where Nd =2 here. The second derivatives of the Hi datasets are also required to form 

the FDM, these are calculated as 

Hi'(i + Nd) - Hi'(i - Nd) (3.11) 

where Nd =3 here. 

11. Calculate FDM;, the point-by-point value for the FDM. The FDM; are formed from 

three components: FDM1(i), FDM2(i) and FDM3(i). These three components are cal- 
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FSV Value (X) Visual Scale Value V Qualitative Descriptor 
X<0.1 V=1+ lOX Excellent 

0.1 <X<0.2 V=2+ 10(X - 0.099) Very good 
0.2 <X<0.4 V=3+ 5(X - 0.199) Good 
0.4<X<0.8 V=4+2.5(X-0.399) Fair 
0.8 <X<1.6 V=5+1.25(X - 0.799) Poor 

1.6 <X V=6 Very poor 

Table 3.2: Rule base for the conversion of FSV values to a visual scale [681. 

culated using the derivatives calculated in step 10 as 

FDM1(i) =2 
ILo (i)I - ILoä(i)I 

(3.12) 
N En=1(ILoI(n)I + ILo2(n)I) 

FDM2 i= 
IHii(i)I - IHi (i)I 

(3.13) () En i(IHii(n)I + IHi2(n)I) 
FDM3(i) = 

IHi1(i) I- IHi"(i)1 (3.14) 
7.2 i(IHii(n)I + IHiz(n)I) 

The FDMi is then obtained using 

FDM(i) = FDM1 = 2JFDM1(i) +FDM2(i) +FDM3(i)J. (3.15) 

12. Calculate the mean value of FDM in the same way as for the ADM. 

13. Calculate the FDM histogram in the same way as for the ADM. 

14. Calculate GDMi, the point-by-point GDM as 

GDM4 = ADM; + FDM; . (3.16) 

15. Calculate the mean value of the GDM and the GDM histogram in the same way as for 

the ADM and FDM. 

16. Convert the ADM, FDM and GDM mean values to the visual scale, with values from 

1-6 (1 corresponding to an "excellent" match and 6 to a "very poor" match). This scale 

is useful as it gives the qualitative description for the comparison, and the degree to 

which the comparison belongs to this group descriptive. For example a comparison 

may be determined to be "fair". and using the visual scale it may be determined that 

the comparison is closer to being "good" than "poor". Table 3.2 shows the conversion 

of the ADM, FDM or GDM value (represented by X) to the visual scale value V. 
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This ends the algorithm for the FSV method. In the next section some results of FSV 

comparisons will be given to show the strengths and weaknesses of the method. Following 

this an improvement to the FSV method is proposed. 

3.2.2 Results of Feature Selective Validation Comparisons 

Figure 3.2 shows two datasets that shall be compared using the FSV method. These 

datasets are taken from [69]. Visually it looks like these two curves are fairly similar, es- 

pecially at lower frequencies. At higher frequencies the curves become less similar. Fig- 

ure 3.3 shows the point-by-point GDM values for the two curves, calculated using the FSV 

method. This figure agrees qualitatively with our visual comparison of the curves showing 

that at lower frequencies the GDM takes on lower values, implying that the curves are good 

matches in this region. The GDM values are much larger at the higher frequencies, which 

implies that the two curves are not similar in this region. 

The histogram in Figure 3.4 shows the proportion of points that belong to the six indi- 

vidual qualitative groups. The majority of the points lie in the "good" and "fair" group. This 

agrees with the visual comparisons collected by 50 engineers [70]. In fact the 50 engineers 

concluded that the two curves, in this case, were slightly more similar than the comparison 

determined by the FSV method. The FSV gave a mean GDM value on the visual scale of 

0.35 

0.3 

0.25 

4 

0.2 

e 
0.15 

M. 
E 

0.1 

0.05 

0 

Data 1 
Data 2 --r - 

0 50 100 

frequency (arbitrary units) 

150 200 

Figure 3.2: Datasets I and 2. 
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4.2847, which implies that the curves are a "fair" match, and are closer to being a 

"good" match than a "poor" match. 

The datasets in Figure 3.2 are fairly well aligned. When curves are not aligned, it may 

be argued that the FSV method does not provide a comprehensive comparison of the two 

curves. The two curves in Figure 3.5 are the sine and cosine functions. These two curves 

are exactly the same, apart from being shifted in the frequency domain by a constant phase 

shift of it/2. Comparing these two curves using the FSV method results in a GDM of six, 

implying that the curves are a "very poor" match. However, it is clear that these two curves 

share more similarities than is determined by the FSV comparison. The FSV method may 

be improved by first aligning the two curves under comparison. The frequency shifts F(i) 

(at each point i) required to align the two curves can be used to form a frequency (or x- 

domain) Difference Measure (XDM). This XDM can be calculated on a point-by-point basis 

in a similar manner as for the ADM: 

XDMi =1N 
IF(i)l (3.17) 

N 
ýn=1 (I fl (n)l + l. 12(n)! ) 

where fl (n) and f2(n) are the frequencies of the two respective curves at the point n. The 

FSV method may then be used in the same manner as before, but using the aligned curves. 

It is important that the curves are still analysed over their shared domain, for the sine and 

cosine curves some of the domain will be lost in aligning the curves (assuming they are 

0 10 20 30 40 50 60 
frequency (arbitrary units) 
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originally fixed to the domain illustrated in Figure 3.5, and not continuous over an infinite 

domain as is actually the case). If the curves are aligned properly then the ADM and FDM 

should reduce, because a proportion of the amplitude and feature differences will appear in 

the XDM instead. Using curve alignment in this way provides more information as to the 

differences between the curves; determining whether the differences are amplitude, feature 

or frequency differences. 

Under this new scheme the GDM is redefined as 

GDM$ =c ADM; + FDMs? + XDMz . (3.18) 

The coefficient c may be varied to allow better agreements with visual comparisons. If we 
take c to be one, then the new mean GDM (on the visual scale) obtained for the sine and 

cosine curves will be 1.250. This implies that the curves are an excellent comparison with a 

small shift in the x-domain. More work is needed to refine this new scheme; work which is 
beyond the scope of this research project and is left for future work. For the purposes of the 

comparisons in this thesis the original FSV method is used. The next section briefly outlines 

where the FSV method will be used in this thesis. 

3.2.3 Using the Feature Selective Validation Method 

There are three main ways that the FSV method is used in this thesis. Firstly it is used 

to test the performance of different Error and Uncertainty Analysis methods. The results 

of different analyses are compared with benchmark results. If the results of the different 

analyses are similar to the benchmark results then it may be concluded that the analyses are 

providing accurate results. 

Secondly the FSV method is used, in a novel way, to determine when FDTD simula- 

tions undergoing progressive mesh refinements form a converged solution. It is well known 

that FDTD simulations are more accurate when performed on finer meshes. To obtain good 

accuracy of FDTD simulations whilst minimising the computational expense of the method, 

the FDTD simulations are often performed on progressively refined meshes. The meshes 

may be refined by a factor two, so that the number of cells in each axis and the number of 

time steps is doubled and the cell size and the time steps are halved in size. If the results 

of an FDTD simulation do not differ by much before and after a refinement then it is con- 

cluded that convergence has been reached. In EMC the results of interest are often frequency 
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domain curves. In this thesis the FSV method is used to compare the results of the FDTD 

simulations obtained before and after each refinement. If the FSV method determines that 
the results are good matches then it may be concluded that the FDTD simulations have con- 

verged for that mesh refinement. The FSV method has never before been used in this way 

to test for convergence. 

In general, convergence is tested by performing a subjective visual comparison of the 

curves formed after successive refinements. Testing for convergence in this way is less reli- 

able than using the FSV method because different experimenters may disagree on the extent 

to which the curves match. Other more standard methods of testing for convergence in- 

volve determining when the difference between the curves has decreased to a certain value. 

It may be argued that using the FSV provides a more rigorous assessment of the overall 

comparison of the output curves. 

The FSV method is also used in this thesis to test the convergence of MCM simula- 
tions. The MCM will be discussed in more detail later, a brief description is given here. 

In this thesis the MCM is used to estimate the uncertainty in a simulation by performing 

many simulations with different input parameters. The outputs of these many simulations 

(also curves in the frequency domain) are used to form the mean and standard deviation of 

the output. The uncertainty in the outputs is the standard deviation of the different output 

curves, formed on a point-by-point basis. In this thesis the mean and uncertainty in the 

simulations are both frequency domain curves. The accuracy of the MCM increases with 

the number of simulations that are used to construct the mean and uncertainty. After many 

simulations have been performed the MCM will reach convergence. At convergence the 

mean and uncertainty curves will not change significantly even if more simulations are per- 

formed. The FSV method is used in this thesis to compare the mean and uncertainty curves 

produced after N simulations with the same curves produced after N+50 simulations. If the 

curves are determined to be excellent matches then it may be concluded that the curves have 

not changed much even after 50 extra simulations were performed, and therefore conver- 

gence has been reached. The FSV method has never before been used to test for convergence 

in this way. The benefits of using the FSV method in this way is that the comparisons are 

consistent and nonsubjective. Since visual comparisons are not needed, the MCM simula- 

tions can be stopped automatically when it has been determined that convergence has been 

reached. 
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Figure 3.6: Unaligned exact solution and 
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3.3 Curve Alignment Methods 

In Chapters 5-7 it is shown that curve alignments may be used to decompose the error 

and uncertainty in an output curve into the aligned amplitude error, aligned frequency error, 

and aligned amplitude and frequency uncertainties. This provides more information about 

the manner in which the errors and uncertainties, in an output curve, manifest themselves. 

For example an error in a simulation may manifest itself as a frequency shift in the output 

curve [71]. In this case the results of the simulation will have a frequency shift with respect 

to the exact solution: an example of this is shown in Figure 3.6. By taking the difference 

between the two curves in Figure 3.6 the unaligned amplitude error is obtained, which is 

shown in Figure 3.8. This error is an overestimation of the amplitude error, caused by the 

frequency shift between the curves. The overestimation can be reduced by first aligning 

the curves: the aligned curves are shown in Figure 3.7. The frequency shifts required to 

align the curves are the aligned frequency errors. Taking the difference between the aligned 

curves results in the aligned amplitude error. The aligned amplitude and frequency errors 

are shown in Figures 3.9 and 3.10 respectively. It is clear that for this example the error in 

the simulated solution is due to both an amplitude and frequency shift. The amplitude error 

formed before aligning the curves (Figure 3.8) is much bigger than the amplitude error after 

alignment (Figure 3.9). The overestimation of the unaligned amplitude error is greater at the 

higher frequencies, where there are greater frequency shifts (frequency errors). By aligning 

the curves it is possible to decompose the error in the simulated solution into the frequency 

and amplitude errors. 

In the next three sections, three methods are introduced that can be used to align 
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Figure 3.10: Frequency response of the aligned frequency error. 

curves. The first two methods, Peak Matching (PM) and Interval Correlation (IC), are novel 

methods that have been previously published in the Applied Computational Electromagnetic 

Society Conference 2007 [24]. In the discussion that follows, references will be made to a 

target curve being aligned to a reference curve. The reference curve may be chosen as the 

data set which is known to be more accurate, or it may be chosen arbitrarily. The objective 

assessment is the frequency shift between features in the curves. 

3.3.1 Curve Alignment via Peak Matching 

This method calculates the frequency shifts required to align two curves by linearly 

interpolating the frequency differences between the corresponding maxima and minima of 

the curves. In the following algorithm the maxima and minima of the curves are referred to 

as peaks with positive and negative sense respectively. The algorithm is as follows: 

1. Find the maxima and minima of the curves by determining where the derivatives of 
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the curves change from a positive value to a negative value or vice-versa. 

2. Find the characteristics of the peaks. These are the peak amplitude, frequency, Q value, 
left fall off and right fall off. The left and right fall off are the number of points between 

the peak and the neighbouring left and right peak of opposite sense. 

3. For each peak (denoted as peak j) on the first curve: 

(a) For each peak (denoted as peak k) on the second curve: 

i. Determine how many peak characteristics the two selected peaks are most 

similar on. This number represents a score for the two peaks, so a score of 

three may mean that peak j and peak k are the closest in amplitude, Q-factor 

and left fall off, but not frequency or right fall off. The maximum possible 

score for two peaks is five. 

ii. Assign this score to the (j, k)'th element of a score matrix. 

4. Loop through the score matrix and match any pair of peaks that have a score of five, 

and remove them from the data set. Before matching ensure that the peaks are close 

enough in frequency. For the curves aligned in this thesis, peaks are matched if they 

are less than five percent of the total frequency range apart. 

5. Repeat step 4 for peaks with a score of four, and then for peaks with a score of three. 

6. Whilst there are still peaks in the data set that can be matched, repeat steps 3,4 and 5 

using these remaining peaks. 

7. For each pair of matched peaks calculate the frequency difference between the peaks, 

referencing it as the frequency difference occurring at the frequency of the peak on the 

target curve. 

8. Use this data to linearly interpolate frequency shifts all along the target curve. 

9. Shift the target curve by the interpolated amounts to align it with the reference curve. 

It is possible to sort through the peaks (after step 1) removing the peaks that are due 

to noise. This can be done by removing peaks that are less than a certain distance away from 

neighbouring peaks of opposite sense and/or peaks that are less than a certain height. The 

PM method used in this thesis does not attempt to remove peaks that are due to noise. 
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After the target curve is shifted, a cubic spline of this curve may be required to ensure 

that it is being evaluated at the same frequency points as the reference curve. If the target 

curve is shifted so that its endpoint is at a lower value than the endpoint of the reference 

curve, then the cubic spline will produce errors after this endpoint. The aligned curves 

must therefore be cropped at the points preceding these errors. 

Once the curves are aligned, the aligned amplitude difference can be calculated at 

each frequency. The frequency shifts required to align the two curves provide the frequency 

differences between the curves. In cases where the target curve needs to be shifted by a sig- 

nificant amount, the PM method may not exactly align the curves in the first instance. How- 

ever, by repeatedly applying the PM method to the aligned curves, an even better alignment 

may be achieved. It is important to test whether the repeated application of the PM results in 

a better alignment. This test is carried out by calculating the absolute amplitude difference 

between the curves before and after each application of the PM method. If the amplitude 

difference is lower after alignment it is assumed that the application of the PM method has 

provided a better alignment of the curves. Otherwise, the PM method has not provided 

a better alignment and the curves fed into the PM method are chosen as the final aligned 

curves. 

3.3.2 Curve Alignment via Interval Correlation 

The second method of aligning curves is based on the use of cross correlation to align 

curve segments. Some of the numbers in the following algorithm are quite specific, they 

were obtained by optimising the performance of the method through a number of trials. 

The algorithm is as follows: 

1. For numbers of intervals N ranging from 9 to 12. 

(a) Split the curves into N intervals, each with an equal number of points. 

(b) For linear stretching factors a from 0.9 to 1.11 (incrementing by 0.01). 

i. Stretch the target curve in the frequency domain by the stretching factor a. 

Since the stretchings/compression are linear, the first point on the target 

curve is not stretched at all whereas the last point is stretched by the maxi- 

mum amount. 

ii. Obtain the correlation coefficient of the two curves, in the first interval. 
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(c) Find the stretching factor which maximises the correlation coefficient be- 

tween the target and reference curves, for the first interval. 

(d) Stretch the target curve linearly in the frequency domain by amax" 

(e) Fix the points in the first interval and move onto the next interval. 

(f) Repeat steps (b)-(e) for all intervals using the data beginning at the end of the last 

fixed interval, to the end of the data set. 

(g) Store these two aligned curves 

(h) Calculate the correlation coefficient of the aligned curves. 

2. Find the number of intervals Nm,, ax that gave the maximum correlation coefficient of 

the curves after alignment. 

3. The curves aligned using N,,,, ax intervals represent the final aligned curves. 

This algorithm has been modified since its publication in [24]. The modification was intro- 

duced to determine whether the curves could be aligned further using the same method. 

After the curves are aligned, the correlation coefficient of the two curves is obtained. The 

whole alignment process is then repeated using these two aligned curves. After each align- 

ment the correlation coefficient of the newly aligned curves is calculated. If this correlation 

coefficient is greater than the correlation coefficients of the two curves before alignment, then 

the alignment process is repeated again, otherwise the two curves before this last alignment 

are taken to be the final aligned curves. Performing multiple alignments in this way is com- 

putationally costly, the number of alignments has therefore been limited to ten to reduce the 

computational expense. 

Q) M 
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ý: ý 
`.: 

Target curve 

frequency (f ) 

Figure 3.11: The Interval Correlation technique. The first four intervals have been realigned and fixed. The 
target curve is being stretched by a factor a to obtain the highest correlation for the fifth interval. 

Figure 3.11 represents the alignment process for a simple example. The amount the 

curve has to be stretched provides information on the frequency difference at each fre- 

0123456 
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quency. Once the curves are aligned a more accurate determination of the amplitude dif- 

ference can be obtained. 

This method relies on the range of the stretching factors a used. If two curves do 

not align well then more severe stretching factors are required. If the curves are allowed to 

stretch too far then an incorrect alignment may result. By performing a number of align- 

ments using different stretching factors it was found that using stretching factors 0.9 <a< 

1.11 gave optimal performance. The quality of the alignment is also dependent on the num- 

ber of intervals used, so the alignment process is performed for different numbers of inter- 

vals (typically 9-12). Of these alignments, the alignment which gives the highest correlation 

between the two curves is used. The numbers of intervals that are used in the alignment 

process were chosen as they seemed to produce the best alignments, other intervals could 

also be looped through but this would add to the computational expense of the method. 

3.3.3 Curve Alignment via Dynamic Time Warping 

Dynamic Time Warping (DTW) is a very successful method, first used in speech recog- 

nition, to align waveforms in the time domain [72]. The DTW method involves finding a 

match between the points on two curves, which minimises the distance between the two 

curves. The end points of both curves are always matched in DTW [72]. One of the main 

limitations of DTW is that it does not cope well with the case where one curve has more 
features (maxima/minima) than the other [67]. 

The following algorithm describes how the DTW method works. This algorithm is 

based on two curves, one with n points and the other with m points. 

1. For each point on one curve find the absolute difference between the amplitude of the 

point and the amplitude of all other points on the other curve. These differences form 

a matrix where the (i, j)'th element is the absolute difference between the amplitude 

at the i'th point on one curve and the amplitude at the j'th point on the other curve. 

2. Starting at (1,1) form paths that will end up at (n, m). For each path construct a cu- 

mulative path value, called the path cost c, by cumulatively summing the absolute 
difference values of all the points in the path and dividing by the number of points in 

the path. 

3. A path can only reach the point (i, j) in the matrix by stepping from the points (i - 
1, j-1), (i-1, j)or(i, j-1). 
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Figure 3.12: An example of the Dynamic Time Warping process applied to two curves. Here c;, j is the cumula- 
tive path cost for the path that passes through (i, j). The path that passes through (i, j) is the path that has the 

minimum path cost out of c; _1, ß, c;, j_1 or c: _1,3_1. 

4. Minimise the differences between the points in the curves by picking the path with the 

smallest path value. So the path that involves the point (i, j) will be the path ending 

at (i - 1, j- 1), (i - 1, j) or (i, j -1), with the minimum path value and the point (i, j). 

5. Using this method calculate the path that joins (1,1) and (n, m) with the minimum 

path value. 

The frequency domain of the target curve is warped so that the points on the two 

curves match up according to the minimum path. The amount the target curve is shifted in 

frequency represents the frequency difference between the two curves. Once the target curve 

is aligned to the reference curve the aligned amplitude difference between the two curves 

maybe calculated. Warping the axes of the target curve can cause violations of monotonicity, 

where a number of points are warped so that they occur at a single frequency. At these 

frequency points it is possible to replace the value of the curve on the y-axis with the mean 
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value of all the points that now occur at the single frequency. Processing the data in this way 

may cause the form of the target curve to change slightly, which would introduce errors into 

the results of subsequent error and uncertainty analyses. 

3.3.4 Comparing the Performance of the Curve Alignment Methods 

The three methods of curve alignment were applied to four sets of example curves 

that appear later in this thesis, and one set that is taken from an EMC validation example 

[241, [281. These five sets of example curves are referred to as Case 1-Case 5 in the follow- 

ing discussion. To test the performance of the three alignment methods, three metrics are 

calculated before and after alignment. The first metric that is used is the GDM on the vi- 

sual scale, calculated using the FSV method. If the GDM reduces after alignment then the 

curves are more similar after alignment, which provides support that the alignment process 

has worked. The second metric used is the correlation coefficient: the closer the correla- 

tion coefficient is to one, the better the alignment. Lastly the Average Absolute Amplitude 

Difference (AAAD) is calculated before and after alignment. This AAAD metric is defined 

as 

AAA -D= 
Eti I IQ'2i - ali 

E(3.19) I ali J 
(3.19) 

where n is the number of points on the two curves, and al; and a2i are the amplitudes of 

the reference and target curve respectively, at the i'th point. This AAAD gives us a measure 

of the amplitude difference between the curves before and after alignment. Curves that 

are aligned better should have a lower AAAD value in general. The three curve alignment 

methods are also compared in terms of the amount of computational time they take. 

The results obtained using the curve alignment methods, when applied to the curves 
from Case 3, are shown in Figures 3.13-3.15. All three methods work well here to align 

the target curve to the reference curve. The DTW method may however be too severe, dis- 

torting the target curve through the alignment process. An example of one of these severe 

distortions is found at 750MHz in Figure 3.15; at this frequency the target curve is stretched 

to a horizontal line taking a constant value over the surrounding frequencies. Some of the 

information in the target curve will be lost through this distortion. The IC and PM align- 

ments distort the curves less severely because the frequency shifts used to align the curves 

are smaller. 

Figures 3.16-3.18 show the FSV comparisons, the correlation coefficients and the AAAD 
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Figure 3.13: Case 3 curves aligned via the PM method. 
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Figure 3.14: Case 3 curves aligned via the IC method. 
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Figure 3.15: Case 3 curves aligned via the DTW method. 
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Figure 3.19: Computational runtime relative to 

the runtime of the IC method. 

for the five test cases, before and after alignment with each method. In all cases except Case 

1 the PM method gives better FSV comparisons, higher correlation coefficients and lower 

AAAD values, than before alignment. This suggests that the PM method aligns the curves 

well. The IC method performs well in Cases 3-5, however in Case 1 the FSV comparison is 

higher than for the unaligned case suggesting that the IC method may not have aligned the 

curves as well. The same is true for Case 2 where the curves aligned by the IC method have 

slightly higher GDM and AAAD values, and a slightly lower correlation coefficient than for 

the unaligned curves. In Case 3 the IC method performs slightly better than the PM method, 

having lower GDM and AAAD values and a higher correlation coefficient. However the PM 

method performs better than the IC method in Cases 2,4 and 5. 

In all five cases the DTW method produces very good alignments of the curves, how- 

ever as discussed earlier and in [24] the DTW method can warp the curves severely. The 
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Error and Uncertainty Analyses performed on curves aligned via the DTW method suffer 

from this severe warping of the curves. 

Figure 3.19 shows the computational runtime of the PM and DTW methods relative 
to the computational runtime of the IC method. It is clear that the PM method is the fastest 

method. For all five cases shown here the computational runtime of the PM method is less 

than 4% of the IC computational runtime. The PM method also gives better comparisons 

than the IC method in the majority of cases, and does not severely distort the curves as the 

DTW method does. Therefore in the majority of cases in this thesis the PM method will 

be used to align the curves. In Chapter 7 there is one case where the IC method provides 

a better alignment than the PM method; the IC method is used to align the curves in this 

case. As mentioned earlier in Case 1 both the PM and IC method fail to provide a better 

alignment of the curves, when tested using the three metrics. This may be the case for other 

curves that undergo alignment in this thesis. If the AAAD is larger after alignment than 

before alignment, for curves aligned in this thesis, then it is concluded that the alignment 

process has not worked well. In this case the original curves are used instead of the aligned 

curves in any subsequent analyses. 

3.4 Discussion 

The output of a CEM simulation is often a frequency response curve. In this chapter 

a number of numerical analyses have been introduced, which are useful when determining 

the errors and uncertainties in output curves. 

The FSV method may be used to compare two curves in terms of their overall ampli- 

tude and feature differences. This method is used, in this thesis, to test for the convergence 

of the FDTD under increasing mesh refinements. The method is also used to test for the con- 

vergence of the MCM. This is a novel way of testing for convergence, it is useful because the 

comparisons are consistent and nonsubjective. The comparisons also provide a quantitative 

measure of the similarity of two curves, which may be used to automatically terminate the 

MCM when a convergence criteria has been reached. The FSV method is also used to com- 

pare the results of the different Error and Uncertainty Analysis methods with benchmark 

results. These comparisons are used to test the accuracy of the different methods. 

In some cases, in this thesis, it will be necessary to align curves to determine the extent 
to which the errors and uncertainty in the outputs of CEM simulations are amplitude and 
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frequency errors and uncertainties. Without curve alignment it is impossible to tell whether 

or not the errors and uncertainties are due to frequency shifts. 

A number of curve alignment techniques have been introduced in this chapter. From 

the analysis in this chapter it may be concluded that the DTW method aligns curves the 

best, but large frequency shifts make its use for subsequent Error and Uncertainty Analyses 

questionable. The PM method has been shown to effectively align curves without exces- 

sively distorting them, and is also the computationally fastest method considered here. It 

is therefore the method that is used in the majority of cases to align the output curves. The 

quality of the alignment will be tested using the AAAD. If the AAAD is larger after align- 

ment then the alignment is concluded to be poor, and the original curves are used in any 

analyses that follow. 

This chapter has introduced a number of numerical techniques for analysing curves. 
The next chapter discusses the application of these techniques to different Error and Uncer- 

tainty Analyses. 
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4.1 Introduction 

Different methods of determining the error and uncertainty in the output of CEM sim- 

ulations will be outlined in this chapter. In Chapter 2a number of sources of error that exist 

in FDTD simulations were described. Many of these errors have been found to decrease 

in size when the cell size used in the FDTD simulations reduces. This observation is used 

in the error estimation methods of this chapter. The difference between more accurate and 

less accurate FDTD simulations provides an estimation of the error in the less accurate sim- 

ulations. The more accurate simulations are performed with smaller cell sizes and higher 

order FDTD methods. This chapter begins with a description of how to determine errors 

analytically in certain special cases. Following this, more general approaches for estimating 

the error in the output of FDTD simulations are given. 

The sources of parametric uncertainty were also discussed in Chapter 2. An example 

of a parametric uncertainty is the uncertainty in the material parameters, or the geomet- 

ric positions, of a structure being modelled. The uncertainty in the input will propagate 

through the simulation to produce an uncertainty in the output. The MCM, MoM and PCM 

are used in this thesis to determine such output uncertainties. These UA methods are intro- 

duced in this chapter and their application to the FDTD method is discussed. The imple- 

mentation of the PCM into FDTD is entirely novel. Since the uncertainty in the output is a 

curve (usually in the frequency domain), the numerical analyses described in Chapter 3 are 

used when developing the UA methods in this chapter. 

This chapter also provides novel derivations of the relationships between aligned and 

unaligned errors and uncertainties. Using these relationships it is shown that the unaligned 

errors can be reconstructed from the aligned errors. Similarly, it is shown that unaligned 

uncertainties can be reconstructed from the aligned uncertainties. The aligned errors and 

uncertainties provide the user with insight into what proportion of the output errors and 

uncertainties are due to differences in amplitude, and what proportion are due to frequency 

differences. Since it is possible to reconstruct the unaligned errors and uncertainties from 

the aligned errors and uncertainties, it may be concluded that no information is lost by 
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analysing aligned errors and uncertainties. 

4.2 Error Quantification Methods for Finite Difference Time Do- 

main Simulations 

This section introduces some possible methods of determining the error in the out- 

put of FDTD simulations. The most accurate determination of the error in a simulation is 

formed by taking the difference between the results of the simulation and the analytical so- 

lution of the same scenario [73]. Unfortunately analytic solutions can only be formed for 

relatively simple problems. The examples in Chapters 5 and 6 have analytic solutions that 

are used to form the exact error in the results of FDTD simulations. These exact errors are 

then compared to error estimates formed from other Error Analysis methods to determine 

the accuracy of these methods. The two approximate Error Analysis methods used are dis- 

cussed in the next two sections. 

4.2.1 Determining Errors by Using Refined Meshes 

As described in Section 2.4 the truncation, discretisation, dispersion and staircasing 

errors of (2,2) FDTD simulations decrease as the size of the cells in the FDTD mesh decrease. 

Taking the difference between the results of FDTD simulations performed on coarse and fine 

meshes provides a quantitative estimation of how the truncation, discretisation, dispersion 

and staircasing errors introduce errors in the results of the coarse FDTD simulation. The 

finer the mesh used (for the simulation performed on the fine mesh), the more accurate the 

FDTD simulation and therefore the more accurate the estimation of the errors in the coarse 

simulation. 

It may seem pointless to use more accurate simulations to determine the errors in 

less accurate simulations, because the more accurate results may be used instead of the 

less accurate results. However, if many simulations are to be performed (as with a Monte 

Carlo Simulation) the computational expense of using the more accurate methods may be 

too great. It may be more practical to use less accurate simulations, and determine the error 

in one of these simulations using a more accurate simulation. This will provide a useful 

quantitative estimate of the error that will occur in each of the subsequent simulations. 
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4.2.2 Determining Errors by Using Higher Order Finite Difference Time Do- 

main Simulations 

In 1989 Fang [58] published his thesis on higher order FDTD methods. Fang's (4,4) 

FDTD scheme is described in detail in Section 2.3.4. This scheme is based on using higher or- 

der central difference approximations when discretising Maxwell's equations. These higher 

order approximations make the results of higher order FDTD simulations more accurate 

than the results of standard (2,2) FDTD simulations. Thus higher order methods may be 

used to estimate the truncation errors in the results of standard FDTD simulations. In the 

example in Chapter 5, Fang's (4,4) FDTD scheme is used to determine estimates of the error 

in a (2,2) FDTD simulation. Mesh refinements will make the higher order simulations even 

more accurate, and thus provide a better estimation of the errors in the (2,2) simulations. 

Once these error estimates are formed, it is possible to determine how similar they are to 

the exact error, formed using the analytic solution of the example in Chapter 5. The Feature 

Selective Validation method [68] is used to compare the error estimates, with the exact errors 

formed using analytic solutions. 

The Error Analysis methods described in this section and in Section 4.2.1 concentrate 

on quantifying the truncation, discretisation, dispersion and staircasing error. The trunca- 

tion and discretisation errors are two of the main sources of error in FDTD simulations. No 

analyses of the errors due to boundary approximations or numerical precision are made by 

the two Error analysis methods. Errors produced by the Mur boundaries may be estimated 
by comparing the results of simulations using the Mur boundary condition with results 

obtained when the more accurate PML boundary condition is used. Numerical round off 

errors may be estimated by using the results of simulations performed using doubles in- 

stead of floats. The examples in Chapters 5 and 6 will investigate how well the above two 

approximate error estimation methods estimate the full exact errors. 

4.3 Using Curve Alignment when Determining Errors 

The error in a simulated frequency response curve is calculated by taking the differ- 

ence between two curves. These curves should be fairly similar however it is possible that 

they may be shifted in frequency with respect to each other. This implies that the error be- 

tween the curves is a frequency shift error as well as an amplitude error. If the curves are 
aligned so that the features of the curves match up, then the frequency shift required to align 
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the curves will be the error in the frequency domain. Once aligned, the aligned amplitude 
difference may be calculated to obtain the aligned amplitude error. It is useful to analyse the 

aligned amplitude and frequency errors, as well as the unaligned amplitude errors, as they 

provide more information on how the errors manifest themselves in the results. 

4.3.1 The Relationship Between the Error Calculated Using Aligned and Un- 

aligned Curves 

This section will provide a relationship between the unaligned amplitude error, and the 

aligned amplitude and frequency error. To the author's knowledge, the mathematical argu- 

ments set out in this section are entirely novel 

ýL 
I 

Figure 4.1: Two unaligned curves with amplitude difference Da, aligned amplitude difference DA and aligned 
frequency difference Af at fo. 

Let F(f) be the reference curve to which a target curve G(f) is aligned, in the fre- 

quency domain f. Figure 4.1 shows the aligned and unaligned differences between the 

curves G(f) and F(f ), at the frequency fo. The difference in the amplitudes of the unaligned 

curves may be calculated as 

Da(fo) = G(fo) - F(fo). (4.1) 

From Figure 4.1 it can be seen that the difference in the amplitudes of the aligned curves at 
fo may be calculated as 

DA(fo) = G(fo + Of) - F(fo) (4.2) 

where Af is the difference in the frequencies of the matched points on the two curves. 

The differential of the curve G(f), at the frequency fo, can be defined as 

OG(f) I 
__ 

G(fo + 45f) - G(fo) (4.3) of f=fo 1ö if 

fo fo +Af 
Frequency 
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If the frequency difference Af is assumed to be small then we may approximate the deriva- 

tive of G as 
OG(f) I 

,, 
G(fo + of) - G(fo) 

of Af 
(4.4) 

This approximation is inaccurate in the case where the frequency shifts Af are large. Using 

equations (4.1) and (4.2), equation (4.4) may be rewritten as 

äG(f) lN (AA(. fo) + F(fo)) - (oa(fo) + F(fo)) (4.5) 
of f=fo I& Af 

Equation (4.5) may be rearranged to obtain 

Aa(fo) ztý AA(fo) - D. f Oa OG(f) I (4.6) If 
=fo 

Equation (4.6) gives the relationship between the unaligned amplitude error, and the aligned 

amplitude and frequency errors of the two curves. The equation is second order accurate 

in the frequency shifts 0f. The term Da in equation (4.6) is referred to as the reconstructed 

unaligned error. The relationship between the aligned and unaligned errors, given by equa- 

tion (4.6), may be tested by comparing the reconstructed unaligned error with the actual 

unaligned error. 

Figure 4.2 shows a target curve being aligned to a reference curve: these curves 

are taken from Chapter 6. The reference curve is the analytic solution of the electric field 

backscattered from a dielectric sphere. The target curve is the (2,2) FDTD simulation of the 

same scenario. Only small frequency shifts were required to align the curves, which were 
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Figure 4.2: Aligning the target curve to the reference curve. 
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Figure 4.3: Amplitude error calculated using aligned and unaligned curves. 

80 

70 

60 

50 
40 

30 

N 20 

10 

0 

-10 

-20 

-zn 

3000 

vv 0 500 1000 1500 2000 2500 

frequency (MHz) 

Figure 4.4: The frequency response of the frequency error. 
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aligned using the PM method. The aligned and unaligned amplitude error are shown in Fig- 

ure 4.3, and the frequency error is shown in Figure 4.4. The frequency errors are relatively 

small, and the aligned amplitude error is significantly smaller than the unaligned ampli- 

tude error at higher frequencies. To test the relationship between the unaligned and aligned 

errors, the reconstructed unaligned uncertainty is calculated according to equation (4.6). 

Figure 4.5 shows the unaligned amplitude uncertainty and the reconstructed unaligned un- 

certainty, these two curves are very similar. This provides support that the relationship 

between aligned and unaligned errors, given by equation (4.6), is valid. 

Using curve alignments, it is possible to obtain more information on the nature 

of the error in output curves. Often the error in the output of a CEM simulation will be a fre- 

quency shift in the output curve, caused perhaps by dispersion errors. Without alignment it 

is impossible to quantify this frequency error. Curve alignments will be used in Chapters 5-7 

to determine the aligned amplitude and frequency errors (and uncertainties) in the output 

curves formed from (2,2) FDTD simulations. 

4.4 Parameter Uncertainty Analysis Methods 

A significant amount of work has already been carried out on parameter uncertain- 

ties in the output of Computational Fluid Dynamic (CFD) simulations [10-15]. This section 

reviews some of the methods used to analyse parameter uncertainty in CFD models. These 

methods are of two types, probabilistic methods and nonprobabilistic methods [10]. Non- 

probabilistic methods (also called possibilistic methods) include Interval Analysis (IA) and 
Fuzzy Logic applied to Membership Functions [15]. The probabilistic methods are Monte 

Carlo, Moment methods and Polynomial Chaos. These methods are referred to as prob- 

abilistic methods because they make use of the PDFs associated with the uncertain input 

parameters. These PDFs are propagated through the simulation to produce an output PDF, 

from which the mean, uncertainty and 95% Confidence Intervals (CI) may be calculated. 
The three probabilistic methods are described in detail in Sections 4.5-4.7. The next section 
discusses how the analytic output uncertainty may be formed. 

4.4.1 Analytically Calculating the Output Uncertainty 

Let f (pi, ... , p�) be a known function of n uncertain parameters pi, ... , pn. Each un- 
certain input parameter p; follows a specific probability distribution with a corresponding 
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weighting function wt, and is defined over the probability space Si. The mean value µ is 

the expected value E(f (x)), and is obtained by integrating f over the different parameter 

probability spaces as 

p= E(f (x)) =f... 
ff 

(pi,... 
, pn)wl ... wndpi ... dpa. (4.7) 

sl s� 

The variance Q2 is obtained similarly using 

a2 = E((f (x) - p)2) = 
f1 

S ... Jn (f (pl,... 
' N) - µ)2w1... wndpl ... dpa. (4.8) 

S 

The analytic uncertainty in the output is the square root of this variance. In Chapters 5 and 6 

it is possible to calculate the analytic uncertainty because the analytic solution of the output 

is known. This analytic uncertainty is used as a benchmark to test the performance of the 

other Uncertainty Analysis methods. 

In the next two sections, the possibilistic methods IA and Fuzzy Logic are described. 

These two methods are simple to implement into CEM codes, however they do not provide 

as much information on the output uncertainty as the probabilistic methods. 

4.4.2 Interval Analysis 

Interval Analysis involves setting an interval bound for each input, and using interval 

arithmetic [74] to propagate the input intervals through the model, producing an output 
interval. This output interval acts as an uncertainty bound for the output value based on the 

uncertainty bounds of the input values. Rao and Berke [75] give an example of how to use 
IA to analyse uncertain structural systems. IA is very simple to implement, it can however 

give uncertainty bounds that are too conservative, representing the worst case scenario [15]. 

The large output uncertainty bounds are due in part to the dependency problem. The 

dependency problem arises from the fact that different interval variables are assumed to 
be independent in each interval arithmetic evaluation. Ignoring the dependency of these 

variables results in an overestimation of the resultant interval [76, p. 31]. For example, let 

X= [0,1] be an interval variable. Subtracting X from itself using interval arithmetic yields 

[0,1] - [0,1] = [-1,1] (4.9) 

an overestimation of the true interval X-X= [0,0]. Similarly if X= [-1,1] then interval 
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arithmetic asserts that X2 = [-1,1], when in reality X2 = [0,1]. Ignoring the dependency of 
X with itself results in unwanted expansions of the output intervals. 

This dependency problem may result in overestimations of the output intervals of 
FDTD simulations. Suppose one of the material parameters is uncertain, and is therefore 

represented as an interval variable in the FDTD update equations. The FDTD method will 

make multiple calculations using this interval variable, and the interval arithmetic will ig- 

nore the dependency of this variable with itself. Every time the uncertain interval is used, 

the output interval will increase, providing an overestimation of the actual output interval. 

Not much knowledge of the input values is required to use IA, only an expected input 

value is required for each parameter. Using these expected values, intervals that are say ten 

percent above and below the expected values can be created. The resulting output intervals 

do not provide much information on the uncertainty in the output values compared to the 

information obtained from probabilistic methods [15]. Since not as much information is 

gained from IA, and the output intervals produced suffer from the dependency problem, 

this method will not be used to quantify uncertainty in this thesis. 

4.4.3 Fuzzy Logic 

Fuzzy Logic was first introduced by Zadeh [77] in 1965. It is a useful means of dealing 

with sets of variables with vague definitions [78, p. 1J. These sets are called fuzzy sets, an 

example of such a set is the set of all tall people. This set is not a conventional "crisp" set 

as there is a vagueness about who will belong to this set. A "crisp" set is a set with distinct 

members that definitely belong to the set, and definitely do not belong to the complement of 

the set. An example of a crisp set is the set of all people that are taller than 190cm [78, p. 1]. 

If A represents a crisp set of the universal set X, then the characteristic function XA 
for A can be defined as the mapping [78, p. 9] 

XA: X -' [0,1J 

such that 

XA (X) _1 
ifx¬A, 

0 if x A. 

A similar function for fuzzy sets exists called a Membership Function. The Membership 
Function of a fuzzy set B assigns real values, between zero and one to each member of the 
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1-1B 

a 

Figure 4.6: An example Membership Function; the uncertain variables are given a value between zero and one. 
An cx cut is taken at a=0.5, the corresponding interval for this alpha cut is [2,4]. 

universal set X [78, p. 9-13]. This value describes the degree to which the member belongs 

to the set B. If a certain element of the universal set has a zero value for the Membership 

Function of B, then it definitely does not belong to B. Conversely, if the element has a value 

of one for the Membership Function of B, then it definitely belongs to B. If the element has 

a value in between zero and one then it may belong to B, the degree to which it belongs to 

B depends on how close this value is to one. An example of a Membership Function µB is 

shown in Figure 4.6. 

To perform an uncertainty analysis using fuzzy logic, a cuts of the Membership Func- 

tion are taken between zero and one. An a cut is a set of variables x;, from the fuzzy set B, 

for Which µB (x; ) >a [79]. For each value of a, between zero and one, an interval of input 

values is obtained from the corresponding a cut. The output interval values, corresponding 

to the different input interval values, are calculated using interval arithmetic [74]. These 

interval output values are output a cuts, which can be transformed into an output fuzzy set. 
The expected value for the output, and some idea of the uncertainty in this value, can be 

obtained from the output fuzzy set. 

This method is easy to implement and provides more information on the output val- 

ues than IA. The Fuzzy Logic method is not as accurate as probabilistic methods, but it 

is easier to implement and less computationally expensive [15]. Since interval arithmetic 
is used, Fuzzy Logic will also suffer from overestimated intervals due to the dependency 

problem. Thus, Fuzzy Logic will not be investigated further in this thesis. The next three 

sections give detailed descriptions of the three UA methods that are used in this thesis. 

Uncertain variable 
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4.5 The Monte Carlo Method 

The MCM is perhaps the best known UA method described in this thesis. Historically 

the method has been used for hundreds of years, however the name "Monte Carlo" has only 

been used since the 1940s [15]. The name refers to a casino in Monte Carlo, and was given to 

the method because of the use of probability and repetition that is shared by the UA method 

and gambling in casinos. The MCM works by taking a number of sets of random samples 
from the input parameter space, systematically computing the output that is formed from 

each set of inputs, and combining these outputs to form the mean and standard deviation. 

Suppose that the output of a simulation depends on K uncertain inputs. Each of 

the K uncertain inputs will have an associated PDF. The PDFs can be used to calculate 

the probability that each input parameter takes on certain values. In the MCM, the PDFs are 

sampled many times to produce multiple sets of input parameter values. The PDFs are used 

to determine which input values are more probable; the more probable values are sampled 

more often. The individual samples of the input parameters are then combined to form 

sets of input parameter values. There are many ways to form these sets of input parameter 

values. In this thesis Latin Hypercube Sampling is used to form the sets of input values. 
This method is described in more detail in the next section. 

If N outputs EI,... , EN are formed from N FDTD simulations using N sets of sam- 

pled inputs, then the sample mean output it is 

1N 
µ=1yýEi 

and the sample variance v2 is 

(4.10) 

N 

Qz =1 
E(E; 

N-1i=l 

The uncertainty v in the output of the FDTD simulation is the square root of the variance. 

The mean and uncertainty formed from the N simulations will converge as N tends 

towards infinity. It is important that N is large enough so that the results of the Monte Carlo 

simulations have reached an acceptable level of convergence. A novel way of determining 

when an acceptable level of convergence has been reached is discussed in Section 4.5.2. Since 

the MCM has a slow convergence N is generally large; performing a large number of FDTD 
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simulations is computationally expensive. Different sampling methods may be used to help 

improve the rate of convergence and thus decrease the computational expense of the MCM. 

The next section outlines one such method called Latin Hypercube Sampling. 

4.5.1 Latin Hypercube Sampling 

There have been many sampling methods proposed to reduce the expense of the 

MCM [80]-[81]. Latin Hypercube Sampling (LHS) is one such method proposed by McKay 

et al [80]. This technique works by splitting up each input parameter PDF into equal re- 

gions of probability [80]. Suppose there are K uncertain inputs Xi,.. ., XK. The PDF of the 

kth uncertain input Xk is split into N segments of equal probability. One random sample 
is taken from each segment, producing N samples for parameter k that span the whole of 

the PDF. This process is repeated for all K parameters. By then randomly combining the N 

samples from the K parameters, N sets of input parameter values are produced. 

Splitting the PDFs in this way is equivalent to splitting the whole probability set into 

NK cells of equal probability. These cells form a hypercube in the multidimensional proba- 
bility space. From this probability space N cells are selected and one random sample is taken 

from each cell [15]. The cells are selected so that each segment from each parameter PDF is 

selected once and only once [15]. This selection criteria corresponds to a K-dimensional 

extension of Latin Square sampling [80]. Using LHS with the MCM has been shown to in- 

crease the rate of convergence compared to using Random Sampling or Stratified Sampling 

[80]. LHS will be used in this thesis to obtain the sets of input parameters for the MCM. 

4.5.2 Testing for Convergence Using the Feature Selective Validation Method 

The MCM is known to be slow to converge. It is important to determine when the 
MCM has reached an acceptable level of convergence. This section describes the novel use 

of the FSV method, to determine when the MCM has reached convergence. 

The output of interest in CEM is often a curve, such as the frequency response of the 

electric field in dB V/m. The mean and uncertainty of the outputs are also curves. Suppose 

that N simulations have been performed and the mean and uncertainty curves of the N 

outputs are calculated. If more simulations are performed and the mean and uncertainty of 
the outputs formed using these extra simulations are very similar to the respective mean and 

uncertainty curves produced from the N simulations, then convergence has been reached. 
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The FSV method may be used to determine whether the respective curves are similar or not. 

The convergence of the MCM, in this thesis, is determined as follows: 

1. Perform 50n simulations (initially n= 1) and calculate the mean and standard devia- 

tion of the different output curves, on a point-by-point basis. 

2. If n>1 compare the mean and standard deviation curves produced after 50n simula- 

tions with the respective curves produced after 50(n - 1) simulations, using the FSV 

method. 

3. If the FSV comparison determines that one/both of the GDM values, for these com- 

parisons, is/are greater than 1.5 then increase n by one and repeat the process from 

Step 1. 

4. Or else if the GDM values are both less than or equal to 1.5 then the mean and stan- 
dard deviation curves are "excellent" matches to the respective curves formed 50 sim- 

ulations previously, and therefore convergence has been reached. 

This is a novel way of determining the convergence of the MCM when the output of interest 

is a complex curve. The benefits of this method are that the FSV comparisons are consistent, 

quantitative and nonsubjective. A consistent quantitative convergence criteria can therefore 

be set for the similarity of curves produced after certain numbers of simulations. The FSV 

comparisons can be performed automatically and therefore the MCM simulations can be 

stopped automatically when convergence has been reached. This automation ensures that 

enough simulations are performed for convergence, without performing more simulations 
than is necessary. This helps to minimise the computational expense of the MCM. In this 

thesis the convergence criteria (GDM<1.5) is tested after 50 simulations. This number of 

simulations is small enough to prevent unnecessary simulations from being performed, and 
is large enough to ensure that individual variances (from each set of 50 simulations) do not 

affect the output mean and uncertainty. 

Other automised methods that test for convergence involve looking at the least square 
difference between the respective means or standard deviations. These methods are ar- 

guably less reliable for EMC data, which often has narrow resonant features. The FSV 

method is more useful as it provides a metric that can be used to determine when the re- 
spective curves are very similar over all frequencies. 
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4.5.3 Using the Monte Carlo Method to Calculate Confidence Intervals 

The results of the multiple MCM simulations may be used to calculate 95% CI, by first 

forming the cumulative probability distribution function from the results. The 95% CI is the 

interval that begins when the cumulative probability distribution function is at 2.5% and 

ends when the distribution function equals 97.5%. 

In this thesis the cumulative distribution function is approximated using the Kaplan- 

Meier empirical cumulative density function [82]. This function does not follow any par- 

ticular distribution, it therefore represents the results more accurately. Kaplan and Meier's 

original work focused on estimating the probability that a member from a population (of 

human patients) has a lifetime exceeding time t given a sample of lifetimes from the popu- 

lation [82]. Let P(t) denote this probability and let the N observed lifetimes, sampled from 

the population, be 

tl 5 t2 < t3 < 
... 

< tN. (4.12) 

If d is the number of deaths at time t then the probability P(t) may be approximated by the 

Kaplan-Meier estimator P(t), which takes the form [82] 

d 
(4.13) 

f-1N-r+1' 

Since P(t) is the estimate of the probability that a member of the population has a lifetime 

that exceeds t, the cumulative distribution function for the lifetime is 

F(t) = 1- P(t). (4.14) 

This cumulative distribution function is known as an Empirical Cumulative Distribution 

Function (ECDF), because it is formed out of the evidence from the population. 

To obtain the ECDF for the N simulations, the outputs Ei must first be sorted in nu- 

merical order to give 

Ei <E2<... <EN. (4.15) 

If d is the number of output values that are less than or equal to E, then the ECDF is 

d 

F(E)=1-ý 
N-r (4.16) 

r=1N-r+l' 
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For the examples given later in this thesis, the ECDF is calculated for the output curves at 

each frequency. The 95% Cl is then calculated as [El,,,,, Ehigh] where the ECDF is 0.025 (2.5%) 

at Eta,,, and 0.975 (97.5%) at Ehigh. These 95% CIs are based on the empirical evidence formed 

from the MCM simulations; there is no assumption that the output follows a particular 

distribution. 

4.5.4 The Relationship Between the Uncertainty Calculated Using Aligned and 

Unaligned Curves via the Monte Carlo Method 

This section will provide a relationship between the uncertainties calculated when the 

curves are not aligned, and the uncertainties calculated after the curves have been aligned. 

Using curve alignment provides more information as to what is the dominant source of 

the uncertainty: amplitude differences in the curves or frequency differences. It will be 

shown that once the aligned uncertainties have been found, the unaligned uncertainties 

may be reconstructed using these aligned uncertainties. To the author's knowledge, the 

mathematical arguments set out in this section are entirely novel. 

cu 

I 

Figure 4.7: Two unaligned curves with amplitude difference Aa;, aligned amplitude difference DA; and aligned 
frequency difference A f; at fo. 

Suppose that N simulations have been performed and the N outputs are used to cal- 

culate the uncertainty via the MCM. If these simulations are performed in the frequency 

domain f then the N outputs may be frequency response curves. The N output curves, 
denoted as GI (1),. .., GN W. - may be aligned to some reference curve F(f ). The reference 

curve could, for example, be the curve produced by performing a simulation using the mean 
input values. Figure 4.7 shows the aligned and unaligned differences between the curves 
G; (f) and F(f), at the frequency fo. The difference in the amplitudes of the unaligned 

curves may be calculated as 
Aai(fo) = Gs(fo) - F(fo). (4.17) 

fo fo + Ofi 
Frequency 
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From Figure 4.7 it can be seen that the difference in the amplitudes of the aligned curves at 

fo may be calculated as 
DA; (fo) = G2(fo +Af: ) - F(fo) (4.18) 

where A f; is the difference in the frequencies of the matched points on the two curves, at 
fo. In equation (4.6) of Section 4.3.1 the unaligned amplitude difference between two curves 

was related to the aligned amplitude and frequency differences. A similar equation may be 

derived for the curves in Figure 4.7, that is 

Da=(fo) = AA=(fo) - Afi 
OGi(f) 

(4.19) 
of 1f=f0 

This equation is inaccurate if the frequency shifts 0 fi are large. 

The uncertainty Qua, calculated using the unaligned curves Gi (f ), is the standard de- 

viation in the amplitude of the unaligned curves, which at a frequency fo is defined as 

2 

aü4(fo) = N(N -1) 
0,2 Gi(fo) (4.20) 

s=o : =o 

Using equation (4.17), equation (4.20) may be rewritten as 

NN1 
0a(. fo) = N(N -1 )N (ai(fo) + F(. fo))2 - 

((zai&o)+F(fo)))2]. 
(4.21) 

i=0 i=0 

This equation may be expanded as 

NN2 

O, Z =1 

[N(iaý2aiF+F2)_ 
Daf, - 2NF 1: 

1 
Aaj - N2F2 . 

i=o i=0 i=o 
(4.22) 

In the above equation all functions are evaluated at fo, to aid notation the fo have been 

removed. Equation (4.22) reduces to 

0,2 
1N NNl N 

- 

(ai)2]. 
(4.23) 

"a-N(N-1) ` 
: =O =O 

Using equation (4.19), equation (4.23) may be rewritten as 

N \2 N/2 

a"" N(N - 1) 
Ný( Ai -D fi 

f, `) -f1 AAi -A fi 
a_ (4.24) 

i=0 / i=0 \ 
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which may be expanded to obtain 

0,2 
1 

N(N - 
Ný 

(47 
- 2/AiLfi 

¬+I 
Af; 

3 f`)2 

s=o \ 
N 

ýDAi)2 +2ýN 
N aG- (N 

DAtýafja -7 - 'Afi 
G' 

2 
(4.25) 

=o i=O j=o 
f 

: =o 
f 

The standard deviation in the amplitude QA obtained using the aligned curves is de- 

fined as 

_1N(N 
)21 

O'`4 N(N-1) 
lNFGi(fo+Afi)- Eci(fo+Afi) 

i=0 i=0 

NNZ 

N(N - 1) 
N>(zAi(fo) + F(fo))2 - 

(>A(f0) 
+ F(fo)) (4.26) 

i=o i=0 

where equation (4.18) has been used. Expanding the terms in equation (4.26) gives 

NN2 

47 A N(N -1) 

IN F(DAi)z 
-E DA; (4.27) 

s=o : =O 

The standard deviation QA f in the amplitude due to the frequency shifts 0 f; is 

N 
E (afg, )2 

a`ý NN (4.28) 
of f 

i=o i=o 

The covariance C, of the aligned amplitudes Gi(fo +0f; ) and the amplitude change due to 

shifts in the frequency Aft, can be shown to be 

NN 

N(N- 1) 

[NAIf, f` 
- (EA); Df1 

(9f 
(4.29) 

i=o=o 3=o 

Using equations (4.27)-(4.29), equation (4.25) may be rewritten as 

Qua = QÄ + QÄ f- 2C. (4.30) 

Thus the uncertainty in the amplitude of the unaligned curves is related to: the uncertainty 
in the amplitude of the aligned curves; the uncertainty in the amplitude due to frequency 

shifts between the curves; and the covariance of the amplitudes of the aligned curves and 
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the amplitude differences caused by the frequency shifts. More information about the un- 

certainty in the output is obtained using curve alignment. After alignment it is possible 

to determine what proportion of the uncertainty is due to amplitude differences and what 

proportion is due to frequency shifts between the different curves. Equation (4.30) is second 

order accurate in the frequency shifts 0 fi. 

It is possible to test the relationship between the aligned and unaligned uncertainties 

given by equation (4.30). The unaligned uncertainty in equation (4.30) may be referred to 

as the reconstructed unaligned uncertainty. Figures 4.8 and 4.9 show the unaligned and 

aligned uncertainties calculated using the MCM with 800 simulations. These uncertainties 

are the uncertainties in the output electric field backscattered from a PEC sphere, with an 

uncertain radius, from Chapter 6. 
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Figure 4.8: Aligned and unaligned 
amplitude uncertainty. 
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Figure 4.9: Uncertainty in the frequency. 
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Figure 4.10: Unaligned amplitude uncertainty and reconstructed unaligned amplitude uncertainty 

Figure 4.8 shows that the aligned amplitude uncertainty is smaller than the unaligned 

amplitude uncertainty. This is because the overestimations in the amplitude uncertainty, 

due to frequency differences between the curves, have been removed. The uncertainty in 
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the frequency shown in Figure 4.9 increases with the frequency. This means that larger fre- 

quency shifts were required to align the curves at the higher frequencies. The relationship 
between the aligned and unaligned uncertainties is based on the assumption that the fre- 

quency shifts between the curves are small. The relationship given by equation (4.30) will 
therefore be less accurate at the higher frequencies in this case. 

Figure 4.10 shows the uncertainty calculated using the unaligned curves, and the un- 

aligned uncertainty reconstructed using equation (4.30). The curves in this figure are in 

good agreement at the lower frequencies, providing support for equation (4.30). At higher 

frequencies the reconstructed unaligned uncertainty agrees less well with the unaligned un- 

certainty. As discussed earlier, at the higher frequencies larger frequency shifts are required 

to align the curves. The relationship between the unaligned and aligned uncertainties will 

therefore be less accurate at higher frequencies. 

To form the relationship between the aligned and unaligned uncertainties, using equa- 

tion (4.30), the derivatives 0Gi/cif need to be calculated for all N curves. It is possible 

to obtain a similar relation between the aligned and unaligned uncertainties that uses the 

derivative of the reference curve F(f), and the uncertainty in the frequency obtained after 

alignment, the uncertainty in the amplitudes obtained after alignment and the covariance of 

the frequencies and amplitudes after alignment. 

Equation (4.17) may be evaluated at a frequency fo + Of; to obtain 

Aai(fo + Lfi) = Gi(fo + oft) - F(fo + Lff). (4.31) 

As before, if the frequency shifts A f; are assumed to be small, then the derivative of the 

reference curve with respect to the frequency may be approximated as 

öF(f) I 
P" 

F(fo + D. f) - F(fo) (4.32) 
of f=so Afj 

Using equation (4.31) and equation (4.18), this derivative may be rewritten as 

8F(f) I_ (G: (fo + Lfs) - Lai(fo +O fi)) - (G2(fo +0 fi) - DA=(fo)) (4.33) 
of f=f, of: 

which may be rearranged to obtain 

da; (fo + Afi) = AAi(fo)) - Of, 
OF(f) (f= 

(4.34) 
of fo 
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Since Q ft is assumed to be small, Da; (fo) may be approximated by 

La(f0) ~ oai(fo + Afi) = oat(fo)) - of= aF(f) I (4.35) Of f-1o 

Using equations (4.23) and (4.35), the uncertainty in the unaligned curves at a frequency fo 

may be approximated by 

N/N2 

ý, 
2 
a- N(N -1) 

NI DAS - Lý f; 
of )2_ 

DA; -D ff f (4.36) 

L =o \ i-o 

Expanding the squared terms in this equation yields 

2_ IN2 öF aF2 
a"a N(N - 1) 

N> A(A i- 2AAi A f= of + (f)) 
s=o 

N2NN aF, N aF, 
2 

- EAAti +2 EAAi EAf1af 
- 

EAf; (4.37) 
i=o i=o 

(3=0 

s=o 

Equation (4.27) defines the standard deviation in the amplitude of the aligned curves aA. 
Similarly the standard deviation of, in the frequency f, (fo) = fo +0f; (fo), after alignment 

may be defined as 
NN 

NOf -2 Qf =1i &fi (4.38) 
N(N -1) i=O i=o 

The covariance CA f of the amplitudes and frequencies of the aligned curves is 

NNN 
CAf = Ný(QAjAfi)2 - QAi Oft (4.39) 

N(N -1) i=o i=o j=o 

Substituting equations (427), (4.38) and (4.39) into equation (4.37) yields 

üa ý ýA 2+ c72 
ö2 äFCA (4.40) al -57f _ of t 

The unaligned uncertainty has been successfully related to: the uncertainty in the ampli- 
tude of the aligned curves; the uncertainty in the frequency of the aligned curves; and the 

covariance of the amplitudes and frequencies of the aligned curves. Equation (4.40) is first 

order accurate in the frequency shifts d fi. Figure 4.11 shows the unaligned uncertainty, 

and the uncertainty predicted using equation (4.40) for the field backscattered from a PEC 

sphere with an uncertain radius. Once again there is good agreement between the unaligned 
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uncertainty and the unaligned uncertainty reconstructed using equation (4.40) at the lower 

frequencies. However at the higher frequencies, where the assumption that A fZ is small 

is worse, the agreement between the unaligned uncertainty and reconstructed unaligned 

uncertainty is also worse. The mathematical arguments described here, along with the com- 

parisons made by Figures 4.10 and 4.11, show that there is a relationship between the uncer- 

tainty calculated using unaligned curves, and the uncertainties calculated after the curves 

are aligned. These mathematical relationships show that aligning the curves provides more 

information on whether the uncertainty is due to amplitude or frequency differences. Curve 

alignments will therefore be used in this thesis to quantify the amplitude and frequency un- 

certainties in the output curves. 
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Figure 4.11: Unaligned amplitude uncertainty and reconstructed unaligned amplitude uncertainty 

This section has described the MCM, the sampling method that is used with the MCM, 

the way in which the convergence of the MCM is tested in this thesis, and the relationship 

between aligned and unaligned uncertainties calculated using the MCM. The next section 

introduces the second probabilistic method of estimating the uncertainty in the output of 

CEM simulations called the Method of Moments (MoM). The MoM is computationally much 

faster than the MCM, however its estimates of the output uncertainty are less accurate than 

those provided by the MCM. 
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4.6 Method of Moments 

The MoM is an approximate method for estimating the mean and uncertainty in some 

output quantity. The first order method uses the mean and variance to analyse the output 

uncertainty [83]. The MoM is the internationally accepted method outlined in GUM [16] for 

the propagation of uncertainties through a model. A similar method is outlined in UKAS 

[2] for the estimation of the uncertainty in practical EMC measurements. The MoM has 

previously been applied to a 2D-TLM method [84], and was shown to be accurate for small 

parameter variations, whilst being computationally more efficient than the MCM. In this 

section a brief overview of the method will be given. The method will then be analysed 

empirically using a set of analytically solvable examples. These examples will be used to 

show situations where the MoM underestimates and overestimates the uncertainty. 

Moment methods provide approximations to the mean and variance, of a specified 

output value, by constructing truncated Taylor series expansions about the expected value 

of the input parameters [10]. Let y be a function of only one variable denoted by x. The 

function y may be expanded about the mean input value x to give 

d2y 
Y(X) = y(am) + 

dYl 
(x - ý) + d21 

(X _2 x)2 +.... (4.41) 
x=i x=s 

Taking the expected value of both sides of equation (4.41) yields 

E(y) = y(. t) +1 
d2yl 

- 
02 + ... 

(4.42) 
2 dx2 s 

L2 

where ox is the uncertainty in x. The first order estimate of the mean Past is given by 

µ18t = Y(. i)" (4.43) 

This first order estimate is obtained by truncating the initial Taylor series to first order. In 

doing this it is assumed that y depends linearly on x. This assumption will only be valid for 

values of x dose to the mean value. The second order estimate of the mean 112, ßd is obtained 
by truncating the Taylor series to second order, to give 

d2y 

x_y 
Ua2 P2nd = y(i) +1 z dX2 

1 
(4.44) 

This second order estimate of the mean is more accurate than the first order estimate. It will 
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however only be accurate if the higher order moments of x are small. Forming the second 

order estimate of the mean is more computationally expensive, than forming the first order 

estimate, because more simulations are required to estimate the second order derivative in 

equation (4.44). 

The variance in y may be obtained by first finding the expected value of y2 [85]. Re- 

placing y with y2 in equation (4.44) yields 

2 

21 
E(y2) -y2(ß) +2 

d(am) ýx (4.45) 

x=-* 

= y2 (. t) + 
(dx) 2+ dý d2 

U2' (4.46) 

x=z 

The first order estimate of the uncertainty in y, denoted by v18t(y), is calculated using the 

standard definition of the variance: 

a18t(Y)2 = E(y2) - E(y)2 

[()2 
_d =y2( )+ 

d2 
+v() dx 

or2 
(dx )2 

(4.47) 

2 

a2- 
(�+1 aya2(4.48) 

2 dx Ix= x x=x 

(4.49) 

where terms involving v2 are ignored. The second order estimate of the variance is obtained 

similarly [10] as 

/ 
rd 21 d2 2 

(4.50) Q2nd(TJ)2 = ýx (dy) +2 
(dx 

max) 

The uncertainties are the square roots of these variances. These estimates of the uncertainty 

are formed using truncated Taylor series expansions, they will therefore only be accurate if 

the input uncertainty Qy is small [85]. 

These mean and uncertainty estimates are easily generalised for functions that depend 

on multiple input parameters. Let y depend on n uncertain input parameters p= Pi, ... , p,,, 

with mean values p= and associated uncertainties (standard deviations) u= 

ul, ... , u, . The first order estimates of the mean ylet and uncertainty olst(y) are 

yiat = Y(P) (4.51) 

p 
cov(piPj (4.52) and alt (Y) _ 

(api y 
ui 

2+ 
Ls 

ýp 
i#j 7 
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where all the sensitivity derivatives are evaluated at the mean parameter values p. In prac- 

tical EMC measurements, input parameters that have a nonzero covariance are grouped 

together so that the term involving the covariance of different parameters in (4.52) can be 

ignored [2]. Throughout this thesis, the uncertain input parameters are independent, and 

therefore their covariance is zero. This reduces equation (4.52) to 

n (AyUi 2 
Qlst(TJ) _ý (4.53) 

api 

It is possible that in some scenarios the input parameters will not be independent. For 

example if a parallel plate capacitor, filled with a dielectric, is being modelled then moving 

the position of one of the capacitor plates will also move the boundary of the dielectric. The 

position of the capacitor plates and the dielectric are therefore dependent with a nonzero 

covariance. 

It is important to remember that the uncertainty estimates formed in this section rely 

on truncated Taylor series expansions. The first order truncated Taylor series is used to 

obtain the first order estimates of the mean and uncertainty. Thus the output y is assumed to 

depend linearly on the input parameters. If the output depends on the input in a nonlinear 

manner, then the first order MoM estimate of uncertainty will only be accurate for small 

input uncertainties [85]. EMC data is often highly nonlinear at certain frequencies. At these 

frequencies the output of interest may also depend on the inputs in a highly nonlinear way. 

The MoM will provide poor estimates of the mean and uncertainty in these cases. 

4.6.1 The Method of Moments in Computational Electromagnetic Simulations 

The MoM can be easily applied to all areas of Computational Electromagnetism. A 

brief description of the application of the method to FDTD simulations is given here. Sup- 

pose the output E of an FDTD simulation depends on the frequency f and n uncertain input 

parameters pl, .... pn. The output may then be written as a function of the frequency and 

the uncertain parameters: 

E= E(f, pi,... , Pn) " 
(4.54) 

To calculate the variance in the output due to the variance in the input parameters, 

the sensitivity derivative of the output with respect to each individual input parameter must 

first be found. The sensitivity of the output to parameter pi is approximated using a forward 
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difference approximation to give 

8E 
_ 

E(f, 15j, . 'i5 +lSig... ' 
) -E(f, plr..., pi,..., i) 

(455) api 
..., r+ý) Si . 

For a FDTD simulation this amounts to performing one simulation with the input parame- 

ters taking on their mean values to obtain E(f, j51 i ... , p;, ... , j5 ), and one simulation with 

the ith parameter value perturbed by a small value Y. To obtain all n sensitivity derivatives, 

which are required to calculate the variance in E, n+1 simulations must be performed. For 

simulations with many different input parameters, this could equate to a large amount of 

computer runtime. The computational runtime should however be significantly less than 

that required for the MCM. 

The appropriate size of the perturbation öi has been suggested to be of a similar size to 

the input uncertainty a(pi) [2]. It is well known that the forward difference approximation 
is more accurate when smaller perturbations are used. However, the mathematical accuracy 

of the sensitivity derivative is not always the prime concern when performing the UA. The 

MoM uses the sensitivity derivative to convert the uncertainty in the input to an uncertainty 

in the output [2]. Using a larger perturbation of b, = a(pi) will account for how the output 

varies for larger (possible) changes in the input parameter. 

This thesis includes examples that use FDTD simulations to model EMC scenarios 

involving uncertain geometric input parameters. The perturbations in these geometric pa- 

rameters must coincide with the FDTD mesh, this results in perturbations that may differ in 

size from the size of the input uncertainty. For the examples in this thesis, the perturbation 

does not always take on a value that is exactly the same as the input uncertainty. The chosen 

perturbations are of a similar size to that of the input uncertainties, but are often slightly 

smaller to maintain the numerical accuracy of the sensitivity derivative. 

In the previous section it was noted that the MoM is only valid if the uncertainties in 

the input parameters take on small values. In the next section a number of examples will be 

used to show how the MoM performs for different nonlinear functions, with different sized 

uncertainties in the input parameters. 

4.6.2 Empirical Analysis of the Method of Moments 

The MoM is known to be valid for small input parameter uncertainties [84], [85]. The 

first order MoM is based on the assumption that the output depends linearly on the input 



4.6. Method of Moments 117 

parameters. In this section an analysis of the performance of the MoM for nonlinear func- 

tions will be given. In all of these examples the functions will depend on one variable only. 

A Small Input Uncertainty 

Consider a function y that depends on an uncertain input parameter x as 

y= 2x2. (4.56) 

If x is uniformly distributed over the interval [0-3,0.41, then it has a mean value x=0.35 

and an uncertainty 
1(0.4-0.3)2 

Qx = 12 = 0.02887. (4.57) 

This uncertainty is relatively small; only 0.8% of the mean. Since the uncertainty is small 

and the values of x are confined to a relatively small interval, the MoM should estimate the 

mean and uncertainty in y fairly well. 

The mean may be calculated analytically using 

04 1.3 
y(x)f (x)dx. (4.58) 

The function f (x) in the above equation represents the PDF of x, in this case f (x) = 10 over 

the interval x= [0.3,0.4]. The mean value of y is therefore 

10* 4 20x310.4 
y= 20x Zdx =1J=0.2467. (4.59) 

.330.3 

In a similar way the variance Qy in y is analytically calculated using 

oj= 
ý04 

x--xdX (4.60) 
0.3 

0.4 
10(2x2 - 9)2dx (4.61) 

0.3 

[4x 
=25-3 x3y + 5y2 

0.4 
xJ = 1.636 x 10-3. (4.62) 

0.3 

Thus the uncertainty in y calculated analytically is ay = 0.04044. The mean and uncertainty 

calculated above may be used to test the performance of the MoM for this example. 
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The mean estimated by the MoM to first order is 

y18t = y(x) = 0.245. (4.63) 

This estimated mean is very close to the actual value of 0.2467 calculated above. The first 

order estimate of the uncertainty is 

d 
aýe t= aX 

I 
aX. (4.64) 

x2 

A forward difference approximation is used in practical applications of the MoM. It is im- 

portant to use small perturbations in calculating this finite difference approximation to keep 

the accuracy of the derivative approximation as high as possible. The first order estimate of 
the uncertainty calculated using the actual derivative is 

Q18t = (4 )2Qi = 0.04042. (4.65) 

This value is very close to the uncertainty calculated analytically. Therefore the MoM gives 

a very good prediction of the mean and uncertainty when the input uncertainty is small 

and the derivative used in the prediction of the uncertainty is accurate. Using a forward 

difference approximation for the derivative with a small perturbation (Ox = 0.001) yields 

vl8t 02(0.351)2 - 2(0.35)2 \Z 
=J ax = 0.04048. (4.66) 

0.001 

This estimate of the uncertainty is still very close to the uncertainty calculated analytically. 
If a larger perturbation (Ax = o) is used in the forward difference approximation then the 

uncertainty predicted is 

/(20.3788720.5 
- 2(0.35)2) 2 

aiat =)a., 2 = 0.04208. (4.67) 

This uncertainty estimate is less accurate, but is still fairly close to the analytically calculated 

uncertainty. In this example the uncertainty in the input is fairly small, in the next example a 
larger input uncertainty is considered. Through the next example it is shown that the MoM 

can both underestimate and overestimate the output uncertainty. 
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Figure 4.12: The function y= sin(x), and the MoM approximation of y at : r. = it/2. 

A Larger Input Uncertainty 

This example is used to show situations in which the MoM underestimates the output 

uncertainty, and situations in which the MoM overestimates the output uncertainty. These 

inaccurate estimations arise from the assumptions used to form the MoM. 

Let y be a function that depends on an uncertain variable x as 

y= sin(x). (4.68) 

The uncertain variable x is Normally distributed with a mean 1= 7r/2 and an uncertainty 

(r� = 7r/4. This point is at a maxima: the first derivative at this point is zero and the second 

derivative takes on its largest absolute value. Figure 4.12 shows the values of y for a range 

of x values, and the first order MoM approximation of y about the point 1: _ : e. It is clear 

from this figure that for values of x that are further from. r, the MoM approximation is poor. 

The mean value of y is 

xp - 
x-n/2 

"oo e 
ý---ý 

sin(x) 
2(7r14ý- da; = 0.7346. (4.69) 

00 4 27f 
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Similarly the variance Qy is 

0o exp 
(- 

cy _ (sin(x) - 9)2 
2"4 dx = 0.1060. (4.70) 

o0 4 -vf2-7r 

The uncertainty is the square root of this variance: Qy = 0.3255. 

The first order MoM estimate of the mean is 

91st = Y(x) =1 

and first order estimate of the uncertainty is 

(4.71) 

2 
Qlat = dx 

I 

y_y 
Qx = 0. (4.72) 

The estimated uncertainty is an underestimation of the actual uncertainty. This is because 

in the first order estimate, the sine wave is assumed to be linear at the point x=x. At the 

mean value of x the function has a zero gradient. It is therefore assumed that around this 

point the value of the function does not change, and therefore the uncertainty in the output 

is zero. However, at this point the second derivative takes on its largest value. For a large 

input uncertainty it is possible for the output to vary significantly. The output uncertainty is 

therefore nonzero and the first order MoM estimate of the uncertainty is less than the actual 

value. 

The second order MoM estimates of the mean and uncertainty are 0.6916 and 0.4362 

respectively. These also differ from the actual mean and uncertainty, however they are better 

estimates than the first order estimates. The first order estimates of uncertainty are under- 

estimations of the actual uncertainty at points where the first derivative (of the function 

with respect to the uncertain input variable) is low, the size of the second derivatives are 

relatively large, and the input uncertainty is also relatively large. 

Using a forward difference approximation to the sensitivity derivative, with a pertur- 
bation equal to the input uncertainty yields 

/sin 3ir/2 - sin 7r/4\ 22- 
Q18t =( 

ý/4 J (ýr/4) - 0.2929. (4.73) 

This is much closer to the actual uncertainty since some of the variation of the output due 

to the uncertain input has been taken into account. The predicted uncertainty still underes- 
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Figure 4.13: The function y= sin(x), and the MoM approximation of y at x=0. 

timates the actual uncertainty. 

In the next example the uncertain variable x has a mean value : r. =0 and an uncer- 

tainty of 7r/4. At this point the first derivative takes on its largest value. Figure 4.13 shows 

the values of y for a range of x values about the point x=1;. This figure also shows the 

first order MoM approximation of y about the same point. It is clear from this figure that for 

values of x that are further from : r, the MoM approximation is poor. 

The mean value of y is 

(x-o)2 
0o exp - 2(ir/4)7 

y=I sin(x) 2ir 
dx =0 (4.74) 

the variance o, y 
is 

- 
J-I) 2 

22 
exp 2(T/-4-)7 

r pry (tiici(X) - ý) 
i 

dx = 0.3544 (4.75) 
// (X, 27r 

and the uncertainty is therefore ay = 0.5953. 

The first order MoM estimate of the mean is 

yigt = y(I) = 0. (4.76) 
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The estimated mean is exactly the same as the actual mean. This is due to the antisymmetry 

of the sine function at the mean input point. The first order estimate of the uncertainty is 

Fxdy 2 
vest = Qx = 0.7854. (4.77) 

y_± 

Using a forward difference approximation to the sensitivity derivative, with a perturbation 

equal to the the input uncertainty, yields 

Ol18t 
Csin 7r/4 - sin 0\ 2 

= (7. /4)2 = 0.7071. (4.78) 
a/4 

Notice that the estimated uncertainty is considerably larger than the actual uncertainty. This 

is because at this mean input point the first derivative of y takes on its largest value. The 

MoM assumes that y depends linearly on x, therefore at this point it is assumed that the 

output is sensitive to changes in the input, and the output uncertainty is predicted to be 

large. The sine function is however nonlinear, and the output points around this point of 

largest gradient do not vary by as much as if the function was linear. The actual uncertainty 

is therefore considerably less than the uncertainty predicted by the MoM. 

These empirical analyses have shown that when the output of interest depends on the 

uncertain inputs in a nonlinear manner, and when the input uncertainties are not small, the 

MoM can underestimate and overestimate the uncertainty in the output. In the examples 

in Chapters 5-7 the output is shown to be related to the uncertain inputs in a highly non- 
linear manner, at certain frequencies. The MoM provides large peak overestimations of the 

uncertainty at these frequencies. 

4.6.3 Using the Method of Moments to Calculate Confidence intervals 

The mean and uncertainty calculated using the MoM can be used to calculate 95% 

CI. To do this it is assumed that the output probability distribution is, or is very similar 

to, a Normal distribution. This assumption is based on the Central Limit Theorem, which 

states that the linear sum of a large set of independent identically distributed variables is 

approximately Normally distributed [16]. If p is the mean output and a is the uncertainty in 

this value calculated at a frequency f, then the upper and lower 95% CI values (represented 
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as CIu er and Cltm�e7. respectively) may be calculated as [161 

CIu ,= P(f) + 1.96(7(f) (4.79) 

C1 owe,. = µ(f) -1.96Q(f). (4.80) 

These CI are less accurate, in general, than those calculated for the MCM. This is because 

here the probability distribution of the output is assumed to be a Normal distribution, but 

the output is not always Normally distributed. No such assumption is made when forming 

the CI using data obtained from the MCM. 

4.7 Polynomial Chaos 

The concept of Homogeneous Chaos was first introduced by Wiener [86] in 1938 [87]. 

Ghanom and Spanos [88] pioneered Polynomial Chaos and applied it to problems in me- 

chanics [12]. In the generalised method the output of interest is approximated as a function 

of certain orthogonal basis polynomials. The choice of the basis polynomials is dependent 

on the probability distributions of the uncertain input parameters [121. It is possible to solve 

stochastic differential equations, involving the approximate function, by using the orthog- 

onality of the polynomial basis set. The orthogonality of the basis polynomials reduces the 

stochastic differential equations to a set of deterministic differential equations, which can be 

solved numerically. Xiu and Karniadakis [12] found this approach to be computationally 

cheaper than the Monte Carlo Method. They found the mean and variance for a specific 

problem 500 times faster than the Monte Carlo Method, for the same accuracy [15]. They 

noted however that the methods efficiency is problem specific [151. 

The following sections outline the theory behind Polynomial Chaos and how it is 

used to quantify uncertainty. The Homogeneous Chaos expansion is introduced in the next 

section. This expansion is then generalised to the Wiener-Askey Chaos expansion. General 

Polynomial Chaos uses the Wiener-Askey Chaos expansion to solve stochastic differential 

equations, and to quantify the uncertainty in this solution. 

4.7.1 Homogeneous Chaos 

Wiener [861 proposed the use of a Homogeneous Chaos expansion to represent a pro- 

cess, which depends on Normally distributed uncertain input parameters, in terms of Her- 
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mite polynomials. Cameron and Martin [891 proved that the expansion can be used to ap- 

proximate any second order linear function. This means that the Homogeneous expansion 

can be used to expand second order random processes in terms of Hermite polynomials 
[12]. Second order random processes are processes with finite variance, which encompasses 

most physical processes [121. 

If 0 is a Normally distributed random event and X (O) is a general second order ran- 

dom process, then the Homogeneous Chaotic expansion of X (O) is [12] 

X(O) =a0Ho 
00 

+ aj1Hl(4i, (B)) 
il=1 

00 il 

+ ail i2 
H2(SZI(0) 

24i2(e)) 

i1=1 i2=1 

0o il i2 

+E aili2 
L a=1i2i3 H3 (Si1(0), 4i2(0)1 

Si318» 

i1=1 i2=1 i3=1 

+.... (4.81) 

In the above expansion H,, (ýt1(0),. .., fit� 
(B)) is the nth Hermite polynomial, written in terms 

of the n standard Normally distributed variables (ti, (0), ... , ti. (0)), which have zero mean 

and unit variance [12]. Using the notation t_ (t=1(0), ... , ý1n (0)), the Hermite polynomials 

are defined as 

e-FTE (4.82) Hn(t) = eýýT - (-1)" 
on 

The a's in equation (4.81) are constant coefficients of the expansion. Equation (4.81) can be 

rewritten in a more convenient form as 

00 
X (O) _E ai 0iW (4.83) 

j=o 

where there is a one-to-one correspondence between H,, and fib, and the äj represent the 

constant coefficients of the expansion [12]. The polynomial basis is orthogonal, which means 

that 

<ýbj>_<0i >oh (4.84) 
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where 8j, ß is the Kronecker delta [121. The inner product < .,. > is defined as 

< .f 
()9(t) >= 

If (t)9(c)w(C)d (4.85) 

where the function w(C) is a weighting function corresponding to the chosen polynomial 
basis set. For the Hermite polynomial basis set, the weighting function is 

WW = (1 e2fTý (4.86) 
27r)n 

Ghanom and Spanos [88] applied this theory to problems in mechanics that involved 
Normally distributed random variables. A more general expansion is required to accurately 

represent stochastic processes that depend on random variables, which are not necessarily 
Normally distributed. Xiu and Karniadakis [12] proposed the Wiener-Askey Chaos expan- 

sion, which is based on polynomial bases from the Askey-scheme. 

4.7.2 Wiener-Askey Chaos 

Any second order random process X depending on some random event 0, can be 

represented as 
00 

x (o) =E cj 2 (C(e)) (4.87) 
j=0 

where cj are constant coefficients and S(8) = (CI (0), (2(0), ... ) represents a vector containing 

an infinite number of independent random variables [121. This summation is known as 
the Wiener-Askey Chaos expansion (or sometimes the Polynomial Chaos expansion). The 

polynomial basis set {b; }, corresponding to the random variables S(B), are chosen from the 
Askey-scheme as shown in Table 4.1. 

The polynomial basis sets are all orthogonal, which implies that 

<. ': 1; >=< z)? > Sj (4.88) 

where once again d=? is the Kronecker delta and the inner product < .,. > is defined as [12] 

< f(C)9(S) >= 
ff(C)g(C)w(C)dC. (4.89) 

Here the weighting function w(C) will correspond to the choice of the polynomial basis {O2}. 
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Random Variable S Polynomial Basis Set ij Support 
Continuous Normal Hermite (-00,00) 

Gamma Laguerre (0, co) 
Beta Jacobi [a, b] 

Uniform Legendre [a, b] 
Discrete Poisson Charlier {0,1,2,... } 

Binomial Krawtchouk {0,1, 
... , N} 

Negative Binomial Meixner 10,1,2 
.... 

} 
Hypergeometric Hahn {0,1, 

... , N} 

Table 4.1: The polynomial basis sets corresponding to the different types of random variables. The support is 
the domain over which the variables are defined, the symbols a and b are real constants and N is a positive finite 
integer. 

4.7.3 General Polynomial Chaos 

The Polynomial Chaos expansion can be used to solve stochastic differential equations 
[121. Let u(x, t, 0) be a solution of the stochastic differential equation 

£(x, t, 9)u(x, t, 0) =f (x, t, 0) (4.90) 

where x, t and 0 represent position, time and some random event respectively. The symbol 

G represents some differential operator and f is a source term [12]. The solution u may be 

regarded as a random process and expanded as [12] 

u(x, t, 0) =Zu; (x, t), P; (C(B)). (4.91) 

i=o 

Notice here that the infinite sum has been truncated at P. If d is the order of the highest 

order polynomial used in the expansion, and n is the dimension of the random variable 

then [12] 

P+1= 
(n+d)! 

(4.92) 
n! d! 

Substituting the expansion of u into equation (4.90) yields 

P 

£(x, t, 0) E ui (x, t) i (C(9)) =f (x, t, 0). (4.93) 
: =o 

The inner product of both sides of this equation can be formed with k to give 

P 

£(X, t, 0) E uj (x, t)bt (S(e)), Ibk =< f (X, t, 0), ' bk >. (4.94) 
: =o 
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The orthogonality of the polynomials from the basis set causes this equation to be reduced 

to a set of (P + 1) differential equations, one for each ui [12]. These equations no longer con- 

tain any random components and are therefore deterministic [121. The set of deterministic 

differential equations can be numerically solved to find each ui. Once each u% is found the 

mean and variance of u(x, t, 0) can be calculated. The mean it is calculated as [18] 

P 

µ=<u(x, t, 0), 1 >=tui <'t&i, 1> 

i=0 
PP 

_ Ui < O� 00 >= Y ui 5io = u0 (4.95) 

using the fact that for all the distributions the lowest order polynomial bo = 1. The variance 

Qz can be obtained in a similar way by first calculating 

PP 

< u(x, t, 0), u(x, t, e) >= EEuiuj < oi, 'oj > 

i=0 j=0 
PPP 

- 
1: 1: 

uiujtsij <0 >= 
Eui < 9) >. (4.96) 

i=0 j=0 i=0 

The variance Q2 of u(x, t, 0) is [18] 

a2 =< ii(x, t, 0), u(x, t, 0) >-< u(x, t, 0), 1 >2 
PP 

EU? <0> -u2 _ u; < V; >" (4.97) 

i=0 i=1 

The uncertainty in u(x, t, 0) is defined as the standard deviation of u(x, t, 0), which is simply 

the square root of the above variance. 

4.7.4 Generalised Polynomial Chaos in One Dimensional Finite Difference Time 

Domain 

Generalised Polynomial Chaos has already been successfully applied to CFD [13], [14], 

and to specific areas of CEM [18]. Generalised Polynomial Chaos has yet to be applied to 

the FDTD method. A new application of Generalised Polynomial Chaos to the 1D FDTD 

method is given here, these arguments can easily be generalised to 3D. 
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Maxwell's equations can be written in 1D as 

OHz 1 aEy 
at _-µ ax 

(4.98) 

Ey 
= -1 

(aHz + QEyý . (4.99) 
at f ax 

As usual HZ (x, t) represents the magnetic field oriented in the z direction, at a position x and 

time t, similarly EE represents the electric field. The symbols p, e and a represent the per- 

meability, permittivity and conductivity of the medium in which the electromagnetic fields 

propagate. CEM models seek to solve the coupled equations (4.98) and (4.99) to find approx- 

imations for H, H (x, t) and Ey (x, t). If there are uncertain input parameters then the solutions 

will depend on a random event B. Thus, the output field solutions can be represented as 

Hz (x, t, B) and E,, (x, t, 0). Maxwell's equations may be solved approximately using the 1D 

FDTD scheme, first proposed by Yee in 1966 [46]. The FDTD scheme is described in detail 

in Section 2.3, it is summarised again here. 

In Yee's scheme central difference approximations are used for the partial derivatives 

of space and time. The problem space is discretised into cells of length Ax, and time is split 
into discrete intervals At. This yields two update equations, which form the basis of the 1D 

FDTD solution. The update equations formed are 

Hz+' 
(+. 

o) = Hz 2 
(+. 

o) - 7[E (i + 1,0) - E(j, B)] (4.100) 

and 

En+1(x, 0) = QE (j, 0) +i 
{H: (- 

2' 
0)/ - In +2 

`2 
+ 2' 

e/ 
1. 

(4.101) 

The shorthand notation Hz (j, 0) = H2(j&x, nit, 0), is used in the above equations, where 

j and n are positive integers. The material properties of the medium in which the fields 

propagate are represented by 

a= «(x, 0) =1- 
Q(x, 0)Ot/2e(x, 0) (4.102) 

1+ Q(x, 0)zt/2E(x, 0) 

Q= ß(x, B) _ (4.103) 
Axe(x, 0)(1 +Qx, 0)At/2e(x, 0) 

At 
7= Y(x, e) _ Axµ(x, 6) 

(4.104) 

The material properties p, c and a all depend on the uncertain parameter 0. This dependence 
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is defined by the PDFs of the input parameters. 

The 1D FDTD update equations defined above are used to obtain solutions for the 

electric and magnetic field, subject to some input excitation. The field solutions can be ex- 

panded in terms of the appropriate orthogonal polynomials {dis}, to separate the depen- 

dence of the field on the random parameter 0 from the dependence on time and position. 
Using the Wiener-Askey Chaos expansion, the field solutions become 

E(7,0) =Z eý'(j)Oi(C(e)) (4.105) 
i=o 
P 

Hz (. 7,0) =E V(i) Oi(C(B)) (4.106) 
s=o 

where ei' (j) and hi (j) are coefficients that need to be found. These expanded expressions 

can be substituted into equations (4.100) and (4.101) to obtain 

E hi +1(7 + 1/2)ii(((O)) E [hi 
'l(j + 1/2)'Ot(C(O)) (4.107) 

-7 
(e(j + 1) - es (9)) oi(C(O))] 

and 

PP 
Eeý *1(j) i(S(e)) =Z 

1aei(j)Oi(C(0» (4.108) 

i-o i=o 

+Q 
(hi }Z (j -1/2) - hi +i (7 + 1/2)) i(C(B))] . 

At this point an electric field source E. may be added into equation (4.108). If this field 

source has some associated uncertainty then it may be expanded as 

`(j, 0) _ ei 8ý7) ýýCýe))" (4.109) 

=o 

Adding this source term into equation (4.108) yields 

PP 
E ei+(j)V)i =, 

[ael'(j), Oi 
;+ eie(7) (4.110) 

i=0 i=0 

ýiý . +a 
(- 

1/2) - hi + (j + 1/2)) 
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Taking the inner product of both sides of equations (4.107) and (4.110) with some test poly- 

nomial'k (C(B)), where 0<k<P, reduces the expressions to 

hk+2 + 1/2) =h, 
k ' (j + 1/2) (4.111) 

l 
<2ýý 

[(ei (j + 1) - n(j)) < 'yoilkk >] 

i=0 

and 

1p 
e. +l (7) =ek 81(1) 2 

[ei ý 7) < az/)i? Iik > (4.112) 

i=0 

ý' 
(hu 

-1/2) - hi +' (j + 1/2)) <ßb &k >] . 

The above two equations make use of the orthogonality relation 

< ii k>= Sik <>. (4.113) 

The material properties a,, 8 and -y enter the inner products in equations (4.111) and (4.112) 

due to their dependence on B. 

Equations (4.111) and (4.112) can be used to calculate e; (j) and hs +1/2(j + 1/2) for all 

n and j, and for i=0, ... , P. In order to do this the inner products < ai/i; ok >, <ß iipk > 

and < ry bb> must first be calculated for all i, k=0, ... , P. These can be calculated as 

a preprocess, the update equations can then be used in a similar manner to the leapfrog 

scheme used in conventional FDTD. The source term must also be calculated at each time 

step as 

><e; 
(7ý B)V)k(c(e)) >" (4.114) ek, 8(7) _< 

'Pk 

Lastly, update equations are required at the boundary. Here we shall consider using 

the 1st order Mur ABC [51]. If the lower boundary is at j=0, then the usual update equation 

is 

En +1(0) = Eºº(1) 
Q(1)Y(1) -1 

ýP(lh(') 

+ 
(+'i ) Eyn(O)). . (4.115) 

1 
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Introducing uncertainty into this equation via dependence on 0 yields 

n+I (0,0) =, Eyn (1,0) E 
y 

+ Q(1,8)7(1, B) -1 oe)(En+1(i, B) - E) . , 0) 7(J, B) +1 

As before, the field terms can be expanded using the chaotic expansion and an inner product 

of both sides of the resulting equation can be taken with some polynomial 1k from the basis 

set. Carrying out these two steps produces 

1P 
ek+l(0) _ ek(1) +k> (e1(1)_e(O)) < Z(" 0) bj k> (4.116) 

i=O 

where ý is defined as 

e(i, 0) = 
ß(1,1)'Y(1,8) -1 (4.117) 
ß(1,6)'y(1,9) +1 

Usually at the boundaries the properties of the medium are that of free space and therefore 

there is usually no uncertainty in these parameter values. Thus C will have no 9 dependence 

and <ask >= C< Ok2 >. This simplifies the update equation for the electric field at the 

lower boundary to 

(4.118) ek+I (0) = ek(1) +" (1) (cr'(i) 
- ek(0) 

) 

for k=0, ... , P. Using a similar argument the electric field update equation at the upper 
boundary (j = N) is found to be 

ek+l(N) = ek(N- 1) +ý'(N -1) 
(ek+i(N 

-1) - ek(N)). (4.119) 

This completes the set of equations required to calculate e' (j) at each time step n, each 

spatial position j and for k=0, 
... , P. Similar equations to (4.95)-(4.97) may be formed to 

calculate the mean value u of Ej(j, S(9)) as 

A= eö (i) 

and the variance Q2 as 

(4.120) 

P 
E(ei(. 7))2< i >. (4.121) 
i=1 

This mean and uncertainty can be used to calculate 95% CI, in the same manner as for the 
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MoM (see Section 4.6.3). 

Polynomial chaos is easily applied to the FDTD method because the update equa- 

tions follow a very similar form to those in the ordinary FDTD method. The only extra 

step comes in calculating the integrals that correspond to the inner products defined in the 

update equations (4.111) and (4.112). The PCM is computationally cheaper than the MCM, 

requiring fewer calculations overall to provide an estimate of the uncertainty. The PCM will 
however require more computational memory than the MoM and the MCM. This is because 

the PCM calculates the numerous chaotic field coefficients using one large simulation, stor- 

ing a factor P+1 more field values and (P + 1)2 more material parameter values (via the 

inner products) than the MCM and the MoM. 

One problem with the PCM arises when trying to form the mean and uncertainty of 

some related quantity, which does not depend linearly on EE (j, 0). For example the output 

of interest may be the absolute value of Ey (j, 0). The mean it of this output is formed as 

µ =< (EE (j, 0)1,1 >_ eý (ý) i(C(B)) 1k&o . 
(4.122) 

i=0 

The absolute value within the inner product prevents the orthogonality of the basis polyno- 

mials from being used to form a simple relationship for the mean. The mean will have to be 

calculated using a numerical integration over the uncertain parameter space 0. This presents 

a problem with the PCM; the calculation of the mean of the output of interest quantity is not 

always trivial. Some of the mathematical simplicity of the PCM has been lost by trying to 

form the mean of the quantity jE (j, B)1. The mean must be calculated using a numerical 
integration at each frequency point, this requires extra computational time. This extra com- 

putational expense is however small compared to the PCM simulation runtime. Once this 

mean has been calculated the variance Q2 may be calculated using the standard definition 

ý2ýý ýýB)ý)=<([EI", (j, 0)I-iß)2>. (4.123) 

Further numerical integrations are required to obtain this variance. The uncertainty in 

jEE (j, B) 1 is the square root of this variance. 
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4.8 Discussion 

This chapter has introduced the different Error and Uncertainty Analysis methods 
that are used to quantify the error and uncertainty in the output of CEM simulations in 

Chapters 5-7. In cases where the analytical solution of the simulated scenario is known, 

the analytical error and uncertainty can be calculated. These can be used as benchmarks by 

which the performance of the other Error and Uncertainty Analysis methods can be com- 

pared. 

An estimation of some of the errors may be obtained by calculating more accurate 
FDTD results using higher order techniques and mesh refinements. The difference between 

the results of the FDTD simulations and the more accurate FDTD simulations should pro- 

vide an estimate of the error in the output of the less accurate FDTD simulations. This error 

will be an estimate of the unaligned amplitude error. Using curve alignments it is possible 

to calculate the aligned amplitude and frequency errors. In this chapter a relationship be- 

tween the aligned and unaligned errors has been derived and shown to be valid for small 

frequency errors. The aligned errors provide more information on whether the error in an 

output curve is an amplitude or frequency error. 

The probabilistic uncertainty analysis methods that are used in this thesis are the 

MCM, the MoM and the PCM. LHS is used alongside the MCM, since it has been shown 

to be more efficient than other sampling methods 180]. The MCM requires a large number 

of simulations to reach convergence, and is therefore computationally expensive. The con- 

vergence of the MCM is determined in a novel way using the FSV method. The results of 

the MCM simulations are used to form the sample mean, uncertainty and 95% CI. These CI 

are formed empirically using the Kaplan-Meier ECDF [82]. 

Using curve alignment it is possible to obtain the aligned amplitude and frequency 

uncertainty. These aligned uncertainties provide more information on the way in which the 

uncertainty in the output manifests itself: uncertainty in the frequency or uncertainty in the 

amplitude. In this chapter relationships between the aligned and unaligned uncertainties 
(formed using the MCM) have been derived. These relationships were shown to be valid so 
long as the uncertainty in the frequency is not too large. 

The MoM is computationally much faster than the MCM. The first order MoM uses 

a linear approximation to represent the dependence of the output on the individual input 

parameters. This linear approximation is inaccurate in cases where the output depends non- 
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linearly on the input parameters and the uncertainty in the input parameters is large. These 

inaccuracies have been investigated in this chapter using a number of examples. Through 

these examples it has been shown that the MoM can both overestimate and underestimate 

the actual uncertainty. The MoM may also be used to calculate the 95% CI about the mean 

value. These Cl are calculated using the assumption that the output PDF is a Normal distri- 

bution: this will not always be the case. The 95% CI calculated using the PCM are formed in 

a similar way as for the MoM. 

The novel implementation of the PCM into the FDTD method was presented in this 

chapter. The implementation results in similar update equations to those used in the conven- 

tional FDTD method. Extra numerical integrations are required to obtain the inner products 

of the uncertain input parameters, which appear in the modified FDTD update equations. 

If the mean and uncertainty of the absolute value of the electric field is the quantity of in- 

terest, then more numerical integrations are required. These numerical integrations add to 

the computational expense of this method. The PCM can be used to calculate the mean and 

uncertainty more efficiently than the MCM. The method will however require extra compu- 

tational memory. 

In the next three chapters, the Error and Uncertainty Analysis methods are applied to 

a number of CEM simulations. The performance of these methods will be tested in terms of 

their accuracy at predicting the errors and uncertainties, and in terms of their computational 

expense. 
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5.1 Introduction 

Error and Uncertainty Analyses are applied to an analytically solvable example in this 

chapter. The chosen example considers the scattering of a Gaussian pulse from a dielectric 

slab, in one dimension. The output electric field is recorded at some distance from the slab 

in the time domain. This electric field is transformed into the frequency domain, and the 

error and uncertainty in this frequency response are calculated using the methods outlined 
in Chapter 4. 

The analytical solution of this example is used to calculate the exact error in the output 

of FDTD simulations. Comparing this exact error to the results of other error prediction 

methods helps determine the accuracy of the methods. The results of these methods are 

compared to the exact error using the FSV method. The methods are also compared in 

terms of their computational expense. 

The FSV method is also used to compare the results of progressively refined FDTD 

simulations to determine when convergence has been reached. Using the FSV method in 

this novel way provides a consistent, automatic and nonsubjective way of determining the 

convergence of the refined FDTD simulations. To start with a relatively coarse FDTD mesh 

is considered, the simulation performed on this mesh is referred to as the coarse simulation 

in this chapter. This coarse mesh is refined by factors of two, four, eight and sixteen (halving 

the cell size each time). The FSV method determines that the simulations performed on 

meshes refined by factors of eight and sixteen are "excellent" matches. The FDTD simulation 

performed on the mesh that was refined by a factor sixteen represents the converged FDTD 

simulation. This simulation is performed on a relatively fine mesh and is therefore referred 

to as the fine simulation in this chapter. The Error Analyses, in this chapter, are applied to 

both the coarse and fine FDTD simulations. 

The analytic solution, of the example in this chapter, is used to form the analytic mean 

and uncertainty. The three uncertainty analyses (the MCM, the MoM and the PCM) are 

all applied to the analytic solution, and their predictions of the mean and uncertainty are 

compared to the analytic mean and uncertainty. The FSV method is again used to obtain a 

nonsubjective comparison of these means and uncertainties. These comparisons are used to 

determine which UA method most accurately predicts the analytic uncertainty for this ex- 

ample. It is found that the MCM provides the best estimates of the uncertainty in the analytic 

solution for this example. The MCM is therefore used as a benchmark for the uncertainty 
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predictions obtained for the FDTD simulations of the same example. 

The three UAs are applied to the coarse and fine FDTD simulations. The uncertainties 

predicted by the MoM and the PCM are compared to those calculated using the bench- 

mark MCM, to determine their respective ability to accurately predict the uncertainty in the 

output. The FSV method is used to compare the output curves produced by the three UA 

methods. All three UAs are also compared in terms of their computational expense. 

The uncertainties predicted by the MCM for the analytic solution and the coarse and 
fine FDTD simulations are also compared. This helps determine whether there is a relation- 

ship between the errors and uncertainties in these FDTD simulations. If the uncertainties in 

the output of a simulation do not depend on the accuracy with which that simulation was 

performed, then computationally cheaper, less accurate solutions may be used to determine 

the uncertainty in more accurate simulations. This will reduce the computational expense 

of the UAs. For the example in this chapter, the overall size of the output uncertainty has 

only a small dependence on the accuracy of the simulation. 

Finally, curve alignment is used to obtain the aligned uncertainties via the MCM and 

the MoM. This helps determine how the uncertainties in the output manifest themselves. 

For this example the uncertainty in the output is a combination of the uncertainty in the am- 

plitude and the frequencies of the curves. Without curve alignment it is impossible to differ- 

entiate between the uncertainties in the amplitude and the uncertainties in the frequencies. 

Once again the uncertainties in the coarse, fine and analytical solutions are compared to 

determine whether there is a relationship between the error and the aligned uncertainties. 

Following this conclusions are drawn on the main findings of this work. 

5.2 A Dielectric Slab in One Dimension 

In this example, a Gaussian pulse is introduced to a one dimensional problem space. 
The problem space contains a dielectric slab, which has an uncertain length and permittivity. 
The left hand end of the slab is assumed to be fixed at x=0.1m, while the right hand 

end follows a Normal distribution with mean position -tend = 0.2m and standard deviation 

Q(xend) = 0.005m. The relative permittivity of the slab also follows a Normal distribution 

with a mean 4=4 and a standard deviation Q(e,. ) = 0.5. Notice that the uncertainty in 

the permittivity of the slab is relatively large, it is 12.5% of the mean value. This large input 

uncertainty may cause the first order MoM estimations of the output mean and uncertainty 
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Figure 5.1: A one dimensional problem space containing a dielectric slab. A Gaussian pulse is excited at Q and 
the resulting fields are observed at x. 

to be less accurate, as discussed in Section 4.6.2. Figure 5.1 represents the geometry of this 

example. In this figure the average length of b is b=0.1m and the average length of a is 

a=0.3rn. 

The output electric field is recorded at the centre of the problem space. For this ex- 

ample, the quantity of interest is the absolute value of the frequency response of the output 

electric field component E2, relative to a1 V/m input excitation. This quantity is referred 

to as the normalised electric field throughout this discussion. The analytical solution of this 

example is obtained in the next section. 

5.2.1 The Analytic Solution 

For this example, a Gaussian pulse is propagated from the point x=0.7m in a 1D 

problem space. The input excitation takes the form 

Ez (x = 0.7, t) = Eo exp 
Ito - t)2 

I 2ß2 I (5.1) 

where Eo is the maximum amplitude of the pulse, to is the onset time delay of the pulse in 

seconds, t is the time in seconds and ,6 represents the width of the pulse at half its maximum 
height, in seconds. For this simulation Eo =1 (V/m), to = 40At and the duration ß= 

5v/2-At, where At = 16.67ps. This excitation is a broad Gaussian pulse, which is chosen so 

that the electric field can be calculated over a broad frequency range. The time response of 

the electric field is recorded at x=0.5m for times from zero to 83.3ns. 

The analytical solution to this problem, for the electric field at the specified observa- 
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tion point, is 

Ez(x = 0.5, t) = Eo 
[exp (_(x011to - t)2) 

+ R12exp 
(-(xo/co + 2ß2 + to - t)2) 

00 
+ 

[Ti2ir-'r2i 
x 

(-((xo+2a)/co+2mb/cd+to -t)2\1 ) 
\ 2ß2 )J5.2 

M=l 

The first term in equation (5.2) arises from the pulse propagating from the excitation point 

straight to the observation point. The second term represents the pulse travelling from the 

excitation point and reflecting off the right hand side of the dielectric slab and then travel- 

ling to the observation point. Finally the last summation term represents the pulse passing 
through the right hand side of the dielectric slab, making 2m -1 reflections inside the slab 
(where m is a positive integer) and then passing out to the observation point. In this ana- 
lytic solution, T12 and R12 represent the transmission and reflection coefficients for a wave 

passing from free space to the dielectric slab. Similarly T21 and R21 represent the transmis- 

sion and reflection coefficients for a wave passing from the dielectric slab to free space. The 

speed of the electromagnetic wave in the dielectric is represented by cd. The last term con- 
tains an infinite sum, which is approximated by taking the sum to m= 30. Truncating this 

series at m= 30 means that the accuracy of the final solution is of the order of 61 in R21. 

The coefficient R21 is less than one, and therefore the error in the truncated series solution is 

extremely small. 

The analytic time response may be transformed into the frequency domain via a 
Continuous Fourier Transform. To do this the following standard Fourier Transforms are 

needed: 

e t'/T2 --> T 27re rawa/2 

`''T x(t - T) --a 
X(w)e-3 

(5.3) 

(5.4) 

where t represents time, w is the angular frequency, r is a constant with units of time, and 
X(w) is the Fourier transform of x(t). Using these transforms, the analytic solution (repre- 

sented by equation (5.2)) may be transformed to the frequency domain to obtain 

30 
E(t) -+ E(w) = 2Eoß e-Q2, 

' 
e-jwA + R12e-jwB +E T12R2i`-17ä1e-i(Cm (5.5) 

m=1 
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where 

A= xolco + to (5.6) 

B= xo/co + 2a/co + to (5.7) 

and Cm = (xo + 2a)/co + 2mb/cd + to. (5.8) 

This electric field is transformed to the normalised electric field by taking the absolute value 

of this field relative to the absolute value of the incident pulse. The incident pulse, given in 

equation (5.1), is easily transformed into the frequency domain. The resulting normalised 

electric field k(w) is 

30 

E(w) = e-i"4 + R12e-jwB +E T12R2i" iT21 �" ýcA (5.9) 

M= I 

where 

A= xo/co (5.10) 

B= xo/c0 + 2a, /co (5.11) 

and C,, .. _ ('o + 2a)/co + 2mb/c(J. (5.12) 
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Figure 5.2: Frequency response of the analytic solution formed via an FFT and a Continuous Fourier Transform. 
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Figure 5.2 shows the analytic solution of the normalised electric field. The an- 
alytic solution (equation (5.9)) is simply a sum of complex exponentials, this results in the 

periodicity of the solution as shown in the figure. Figure 5.2 also displays the normalised 

electric field formed from the FFT of the time domain solution sampled at time intervals 

At = 16.67 ps. This time step corresponds to the time step used in an FDTD simulation with 

a cell size of Ax = 0.01m. The analytic solution formed from the Continuous Fourier Trans- 

form and the FFT, in Figure 5.2, are in excellent agreement (the two curves are coincident). 

No aliasing or sampling problems arise from using the specified time step for the FFT. This 

means that there will be no sampling or aliasing problems formed from the FFT of the FDTD 

simulation results if the same (or a smaller) time step is used for the FDTD simulations. 

5.2.2 Frequency Response of the Normalised Electric Field 

In the discussion that follows reference is made to certain refinement factors. These 
factors represent the extent to which a mesh is refined with respect to the coarse FDTD mesh 

size of Ox = 0.01m. Thus, a mesh refinement factor of two refers to a refined mesh of size 

Ox = O. Olm/2 = 0.005m, and a sampling time of At = 16.67ps/2 = 8.335ps. The FDTD 

simulation performed on a mesh with a refinement factor of one is referred to as the coarse 

simulation in the following discussion. 

The frequency response of the electric field was calculated for the analytic solution, 

three (2,2) FDTD simulations with mesh refinement factors of one, two and four, and three 

(4,4) FDTD simulations also with mesh refinement factors of one, two and four. The compu- 
tational time taken for each of the simulations can be found in Table 5.1. This table shows 
that the (4,4) simulations take longer to run than corresponding (2,2) simulations. With each 
factor two mesh refinement, twice as many field positions are being evaluated and for twice 

as many times; the runtime of the refined simulations should therefore increase by a factor 

Method time (s) 

analytic 0.12 
(2,2) refine=1 0.06 
(4,4) refine=1 0.15 
(2,2) refine=2 0.13 
(4,4) refine=2 0.55 
(2,2) refine=4 0.33 
(4,4) refine=4 2.11 

Table 5.1: Time taken to perform the respective simulations. 
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Figure 5.3: Frequency response of the normalised electric field, calculated analytically, using a (2,2) FDTD simu- 
lation with a refinement factor of one (refine=1) and a (4,4) simulation with a refinement factor of four (refine=4). 

four. This is the case for the (4,4) simulations (as can be seen from Table 5.1), however for 

the (2,2) simulations the runtimes are so small that other processes dominate (such as the 

time taken to write output data to files). 

In Section 2.4.1 it was shown that FDTD simulations are usually accepted as being 

accurate for wavelengths above A= 100x. The coarse (2,2) FDTD simulation used a cell 

size of Ax = 0.01m, therefore the FDTD simulations should be valid for frequencies up to 

3GHz. Figure 5.3 shows the frequency response of the electric field for the analytic solution, 

the coarse (2,2) FDTD simulated data and the more accurate (4,4) FDTD simulation using 

a mesh refinement factor of four. It is clear from the figure that the more accurate (4,4) 

simulation gives results much closer to the analytic result. The (2,2) simulated results are 

acceptable at lower frequencies but contain larger errors at the higher frequencies. 

5.3 Error Analysis of the FDTD Simulation 

The exact errors in the coarse (2,2) simulation may be found by taking the differ- 

ence between the frequency response, formed from the simulation, and the analytical result. 

Other error predictions may be calculated by taking the difference between the frequency 

response of the coarse (2,2) simulation and the responses formed from more accurate sim- 
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Figure 5.4: Error in the normalised electric field calculated analytically and using refined FDTD simulations. 

ulations. Figure 5.4 displays the exact errors, in the coarse FDTD simulation, and the two 

most accurate error predictions. The curve labelled as "(2,2) refine=4", in Figure 5.4, refers 

to the error in the coarse FDTD simulation formed by taking the difference between the re- 

sults of the coarse simulation and the results of a more accurate (2,2) simulation performed 

on a mesh with a refinement factor of four. Figure 5.4 shows that the errors increase as the 

frequency increases. The error predictions in Figure 5.4 are very similar to the exact errors. 

The errors predicted by the more complex (4,4) simulation are of a similar accuracy to the 

errors predicted using the (2,2) simulation, when a refinement factor of four is used for both. 

The predicted errors may be compared to the exact errors using the FSV method: Table 

5.2 displays the results of these comparisons. This table shows that the error predictions are 

better when the simulations used to form them are performed on more refined meshes. It 

may be concluded that there is a marginal benefit from using the (4,4) FDTD method as 

opposed to the (2,2) FDTD method, to predict errors. This benefit is very small though, and 

Prediction Method ADM FDM GDM GDM (1-6) Qualitative 
(4,4) refine=1 1.2074 0.5549 1.4481 5.8114 Poor 
(2,2) refine=2 0.6795 0.3025 0.7971 4.9953 Fair 
(4,4) refine=2 0.5002 0.2287 0.5949 4.4899 Fair 
(2,2) refine=4 0.2616 0.1241 0.3105 3.5577 Good 
(4,4) refine=4 0.2218 0.1091 0.2658 3.3340 Good 

Table 5.2: FSV comparisons of the predicted errors with the exact error. 
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Refinements compared ADM FDM GDM GDM (1-6) Qualitative 
1 and 2 0.2681 0.3368 0.4747 4.1892 Fair 
2 and 4 0.1133 0.1571 0.2176 3.0932 Good 
4 and 8 0.0558 0.0767 0.0.1059 2.0693 Very Good 
8 and 16 0.0223 0.0287 0.0407 1.4066 Excellent 

Table 5.3: FSV comparisons of simulated results calculated with different mesh refinements. 

the (4,4) method is more complex to implement and more computationally expensive. It 

may therefore be concluded that using a (2,2) simulation with a mesh refinement factor of 
four or higher is the preferred error prediction method, in this example. 

Figure 5.3 displays the large differences between the frequency response of the coarse 
(2,2) simulation and the analytic result. These differences are large because the coarse (2,2) 

FDTD simulation is not the converged simulation. This lack of convergence presents a need 
for further work to determine the accuracy of the Error Analysis methods when applied 
to converged simulations. The next section describes how to determine when a converged 

solution has been reached, and analyses the accuracy of the error prediction methods when 

applied to converged simulations. 

5.3.1 Converged Simulations 

It is possible to compare the results of a simulation with the results of the same simu- 
lation performed on a refined mesh using the FSV method. If the output curves are shown 

to be in good agreement (i. e. the curves are very good or excellent matches) then it can be 

concluded that convergence has been reached. This is a novel way of determining when con- 

vergence has been reached in FDTD simulations. Its advantage lies in that it does not rely 

on the subjective opinion of the experimenter and thus provides a more consistent method 

of obtaining the convergence of the FDTD simulations. 

Table 5.3 shows the FSV comparisons of the simulated results formed from progres- 

sive mesh refinements. The results of the simulations performed on meshes with refinement 

factors of 8 and 16 are in excellent agreement; a mesh refinement of 16 therefore provides a 

solution that has sufficiently converged. An error analysis was performed on the results of 

this converged simulation. The exact error was calculated by taking the difference between 

the analytic solution and the output formed from the FDTD simulation. Previously, in this 

section, it was found that an accurate error prediction was formed by using FDTD simula- 

tions which were refined by a factor four. Thus, simulations using a mesh refinement of 64 
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Figure 5.5: Frequency response of the normalised electric field calculated analytically and using (2,2) and (4,4) 
FDTD simulations with different mesh refinement factors. 

were used to estimate the errors in the converged simulation. These error predictions were 

performed using both the (2,2) and (4,4) FDTD methods. The frequency responses formed 

from these simulations and the analytic solution are presented in Figure 5.5. The different 

curves in this figure are all very similar. 
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Figure 5.6: Error in the normalised electric field formed from the (2,2) FDTD simulation with a mesh with a 
refinement factor of 16. 
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Prediction Method ADM FDM GDM GDM (1-6) Qualitative 
(2,2) refine=64 
(4,4) refine=64 

0.3373 
0.3264 

0.2226 
0.2172 

0.4351 
0.4219 

4.0901 
4.0572 

Fair 
Fair 

Table 5.4: FSV comparisons of the predicted errors with the exact error. 

Figure 5.6 shows the error in the converged FDTD simulation. This error is a factor of 

10 smaller in magnitude than the error in the (2,2) simulation (shown in Figure 5.4), which 

was performed on a mesh with a refinement factor of one. This is as expected since the con- 

verged simulation is more accurate. The errors predicted by the (4,4) and (2,2) simulations 

are very similar. The FSV method was used to determine how similar the error predictions 

are to the exact error, the results of these comparisons may be found in Table 5.4. The FSV 

comparisons show that the two error prediction methods give a "fair" estimate of the exact 

error. However the GDM values obtained from these comparisons are close to four, thus the 

error predictions are much closer to being "good" estimates than "poor" estimates. Figure 

5.6 shows that the features of the error predictions agree with the features of the exact er- 

ror, however overall the error prediction methods underestimate the actual error. The (4,4) 

method does marginally better than the (2,2) method, having a slightly lower GDM value. 
The (4,4) method took 523 seconds to calculate the error, whilst the (2,2) method took only 
40 seconds. Since both error prediction methods give fairly similar results and the (2,2) 

method is computationally quicker, it is the preferred method to use in this example. The 

error prediction method that uses the (2,2) refined FDTD simulations is applied to 3D FDTD 

simulations in the next chapter. 

In the next section Uncertainty Analyses are applied to this example. The uncertainty 
is calculated for the analytic case, the coarse FDTD simulation and the converged (fine) 

FDTD simulation. Comparing the uncertainties calculated for these different cases will de- 

termine whether the uncertainty is related to the accuracy of the results, and thus whether 

there is a relationship between error and uncertainty. 

5.4 Uncertainty Analyses Applied to the One Dimensional Exam- 

pie 

The uncertainty in the output frequency response is determined in this section. Firstly 

the application of each of the UA methods to this specific example is described, the meth- 

ods are then compared in terms of their accuracy and their computational expense. The 
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uncertainties for the coarse, fine and analytic solutions are compared to determine whether 
there is a relationship between the errors and uncertainties in these FDTD simulations. The 

results of the UAs are then used to construct the 95% Confidence Intervals (CI). 

5.4.1 The Analytic Uncertainty 

The mean E(f) and uncertainty a(E(f) ), of the normalised electric field E(f), may 
be calculated analytically as 

00 00 exp 1 2a 

2end 2J 

exp 
- Er-Er 

E(f) 
\ ,. d 2ý E. J1 

dx dEr (5.13) 
00 -oo o'(xend) 2i' v(Er) 2ir 

_2= 

, l- 

00 00 2P 
(::: 2) 

exp 
( 

2ý(e* r2) 
dx de, 

. 
(5.14) Q(E(f )) 

oo 00 
(E(f) - Eý f )) 

Q(ýend) 2ý Q(Er) 2r 

These two integrations are fairly complex and are therefore calculated approximately using 

numerical integrations. A numerical integration is performed at each frequency point f, 

this is quite costly and so the midpoint rule is used to approximate the integration. The 

midpoint rule is chosen to perform the integration because it is simple and computationally 

efficient. It must also be noted that the integrations are not defined over the whole domain. 

Using the whole domain would result in possible values for the end of the slab and the 

relative permittivity at positive and negative infinity (albeit with infinitesimal probabilities), 

which is unphysical. It is reasonable to truncate the domains of integration at more plausible 

values since the standard deviations are not too large. This also aids the computational 

efficiency of the numerical integrations. These numerical integrations have been verified 

against integrations performed using MAPLE. 

5.4.2 The Monte Carlo Method 

The LHS method was used to create 500 samples of the input parameters, based on 

their associated PDFs. These input parameter samples were used in the analytical solu- 

tion and the 1D FDTD simulations to create numerous output frequency responses of the 

normalised electric field. The mean and standard deviation (uncertainty) of these outputs 

were then calculated. The FSV method was used to determine when the MCM has reached 

convergence, as described in Sections 3.2.3 and 4.5.2. For this example it was found that 

convergence was reached after 300 simulations for the analytic solution and both the coarse 

and fine (2,2) FDTD simulations. The MCM is the most rigorous method, it is also the most 
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computationally expensive method. However for this simple example the computational 

expense is not too large. The results of the 300 Monte Carlo simulations were also used to to 
form the Kaplan-Meier empirical cumulative distribution function [82], from which the 95% 

CI were calculated. 

5.4.3 The Method of Moments 

The MoM may be used in the manner described below to obtain the mean and uncer- 
tainty in the analytic solution and the FDTD simulations. For the purposes of the discussion 

below, "simulation" refers to both the calculation of the analytic result and an FDTD simu- 

lation, depending on which one the MoM is being applied to. 

Three simulations are required to calculate the uncertainty using the MoM. One simu- 
lation was performed with the input parameters taking on their mean values, this is referred 

to as the reference simulation. The output of this reference simulation represents the mean 

of the normalised electric field. The second simulation was performed with the relative 

permittivity perturbed by De,. = 0.1. The final simulation was performed with the end po- 

sition of the slab being perturbed from its mean value by one cell position Ox = 0.01m. In 

accordance with the calculation of uncertainty in practical EMC experiments [21, these per- 

turbations are of a similar order of magnitude to the corresponding parameter uncertainties. 
Notice that the perturbation in the end position of the slab is confined to the FDTD mesh. 

The frequency responses obtained from these three simulations are used to calculate 

the sensitivity derivatives of the output with respect to individual perturbations in the input 

parameters. The sensitivity derivatives are combined with the input uncertainties to calcu- 
late the uncertainty in the output, according to equations (4.51) and (4.53). Since only three 

simulations are required here, this method is computationally much cheaper than the MCM. 

The 95% Cl are calculated using the mean and uncertainty as outlined in Section 4.6.3. 

To calculate the Cl the probability distribution of the output is assumed to be a Normal 

distribution, this will not always be the case. These CI may therefore be less accurate than 

those calculated for the MCM. 

5.4.4 The Polynomial Chaos Method 

This section describes the steps required to calculate the uncertainty using the PCM. 

Firstly the application of the PCM to the FDTD simulations is described. Following this the 



5.4. Uncertainty Analyses Applied to the One Dimensional Example 149 

details of the application of the PCM to the analytic solution are given. 

Application to the Finite Difference Time Domain Simulations 

The PCM requires the input uncertainties to be related to the material parameters in 

the FDTD chaotic update equations (4.111) and (4.112). In order to do this inner products 

must be formed, the values of which are calculated using numerical integrations. The nu- 

merical integrations can be quite costly, adding to the overall computational cost of this 

method. 

Firstly the uncertainty in the permittivity of the slab must be related to 01, which 
follows a Normal distribution with mean equal to zero and standard deviation equal to one. 
The following relation fits this purpose 

Er = Er +Q(Er)0i = 4+0.501. (5.15) 

The uncertainty in the end point of the slab must be related to 02, another standard Normal. 

The following relation fits this purpose 

Xend = -tend 
+ Q(Xend)02 = 200x + 0.00502. (5.16) 

This uncertainty in the end position of the slab must now be related to the uncertainty in the 

permittivity at positions around the end of the slab. If a point in the problem space is inside 

the slab then e,. =4+0.581 otherwise e,. = 1. Consider a point x= izx, which is near the 

end point of the slab, this point is in the slab if 

-ihx < Xend = 200x + 0.00502. (5.17) 

Thus x is in the slab if 

02 
(i - 20)ß, x (5.18) 

0.005 

The relative permittivity at position x= iAx is represented by er(ißx, 01,02) (the depen- 

dence on 0 and 02 represents the dependence on the two uncertain input parameters), and 

can be defined as 

4+0.501 for 02 > i-2O) z 
E,. (i0X, 61i 02) _ (5.19) 

1 otherwise. 
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Thus, the material parameter , ß(iAX, 01; 02), used in the FDTD Polynomial Chaos update 

equations (4.111) and (4.112), is defined as 

4+0.581 Oxco 
for 02 ?i0 005 

x 
ß= Q(i0x, 61,62) _ (5.20) 

At 
otherwise. 

In the above equation, the symbol co represents the permittivity of free space. 

The input uncertainties follow Normal distributions, thus Hermite Polynomials must 

be used in the chaotic expansion of the electric fields. If the uncertainty is sought to first 

order, then the chaotic expansion is terminated at P=2 for this example. Thus the Hermite 

polynomials required are 

Ho=1 (5.21) 

Hi (01) = 91 (5.22) 

and Hl(02) = 02. (5.23) 

The inner product of these polynomials is 

< Hi(Bk)Hi(01) >= 5ij5kl(z)!. (5.24) 

The electric and magnetic fields are calculated using the update equations (4.111) and (4.112). 

Before these equations can be used the inner products, of the material parameters a, 6 and 

ry with the Hermite polynomials, need to be calculated. Since a and ry have no 61 or B2 

dependence, their inner products reduce to 

< aHz(Ok)H, (9t) >=a<H; (Ok)Hj(61) >= a8ijSki(z)! (5.25) 

and < 7Hi(Ok)H, (ei) > : --Y < H1(Ok)H3(OL) >='YSijSkl(i)!. (5.26) 

For ease of notation we may represent the polynomials in the chaotic expansion as Mio = Ho, 
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V51 = Hi(01) and 02 - Hi (02). The inner products required for ß are 
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The orthogonal polynomials Bi have the following properties 
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The above improper integrals are calculated using the extended midpoint rule [90, p. 141- 

1471. The accuracy of the integration is increased by iteratively adding (2/3) x 3s-1 interior 

points at iteration step n [90, p. 142]. The infinite limits, of the improper integrals, are trans- 
formed to finite limits using a change of variables [90, p. 144]. The results of a number of 
integrations calculated using these numerical techniques were validated against results ob- 
tained using the software package MAPLE. 

The values of all these integrals are substituted into the update equations (4.111) and 
(4.112), which are used to find the mean and uncertainty in the electric field at the output 

point. In this example the output quantity of interest is the absolute value of the electric field 

in the frequency domain relative to a1 V/m input excitation. More numerical integrations 

are required to calculate the mean and uncertainty in this output, which adds to the overall 

computational cost of this method. The 95% CI are obtained using the mean and uncertainty, 
in the same way as for the MoM. 
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Application of the Polynomial Chaos Method to the Analytic Solution 

The normalised output electric field E(f) is expanded in terms of the uncertain input 

parameters Bl and 02 as 

E(f, 01902) = eo(f) + ei(f)Oi + e2(f)02. (5.42) 

The uncertain parameters Bl and 02 are related to the uncertain parameters c. and xend in 

the same manner as described by equations (5.15) and (5.16). The coefficients eo, el and e2 

are calculated using the inner products 
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27r 27r 
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(5.45) 

These are calculated by numerically integrating the analytical solution over the specified 

domain. A numerical integration must be performed for each frequency point, thus the mid- 

point rule is used due to its computational efficiency and simplicity. Once the coefficients co, 

el and e2 are found, the mean normalised electric field E(f) and uncertainty v(E(f )) may 

be calculated as 

E(f) = Co (5.46) 

and a(E(f )) = el + e2. (5.47) 

Notice that the definition of the mean here is exactly the same as the definition of the analytic 

mean given by equation (5.13). This is not the case when the PCM is applied to the FDTD 

simulations. 

5.4.5 Comparing the Results of the Uncertainty Analysis Methods 

This section provides the results of the UAs, beginning with the uncertainty in the 

analytic solution. 
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The Uncertainty in the Analytic Solution 

Figures 5.7 and 5.8 display the mean and uncertainty in the analytic solution of the 

normalised electric field, as predicted by the different UA methods. The mean predicted by 

the PCM is exactly the same as the analytic solution of the mean. This is as expected since 
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Figure 5.7: Mean normalised electric field calculated using the different UA methods, for the analytic solution. 
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Figure 5.8: Uncertainty in the normalised electric field calculated using the different UA methods, for the ana- 
lytic solution. 
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Comparing the Predictions of the Means 
Method ADM FDM GDM GDM (1-6) Qualitative 
MCM 0.1457 0.1793 0.2526 3.2682 Good 
MoM 0.1114 0.2660 0.3039 3.5245 Good 
PCM 0 0 0 1 Excellent 

Comparin g the Predictions of the Uncertainty 
MCM 0.2074 0.1770 0.3015 3.5127 Good 
MoM 0.5257 0.6567 0.9220 5.1538 Poor 
PCM 0.3980 0.3127 0.5453 4.3658 Fair 

Table 5.5: FSV comparisons of the analytic solution of the mean and uncertainty in the normalised electric field, 
with the means and uncertainties predicted by the three UA methods. 

the analytic solution of the mean (5.13) and the equation representing the PCM prediction 

of the mean (5.46) are equivalent. It is difficult to tell, from Figure 5.7, which of the means 

predicted by the MCM and the MoM are closer to the analytic mean. To overcome this 

problem the FSV method was used to compare the various predictions with the analytic 

solution: Table 5.5 gives the results of these comparisons. Using this table it is clear that the 
PCM provides the best prediction of the mean. The MCM and MoM both provide "good" 

predictions of the mean when compared to the analytic mean. The MCM provides a slightly 

more accurate prediction of the mean, than the MoM, having a slightly lower GDM. In 

terms of the predictions of the uncertainty, Table 5.5 shows that the MCM provides the best 

estimation of the analytic uncertainty followed by the PCM. The MoM provides a "poor" 

estimation of the uncertainty having a fairly large GDM of 5.1538 on the visual scale. These 

comparisons agree with the visual comparisons of the uncertainties in Figure 5.8. From this 

figure it can be seen that the MCM uncertainty is dosest to the analytic uncertainty, followed 

by the PCM. 

Since the MCM provides the best estimations of the uncertainty for the analytic solu- 
tions it is chosen as the benchmark method by which the performance of the other two UA 

methods are compared, when all three UA methods are applied to the FDTD simulations. It 

is important to note that the PCM may not give as good predictions of the mean and uncer- 

tainty when applied to the FDTD simulations. This is because the application of the PCM to 

the analytic solution is quite different from its application to FDTD simulations. 

Figure 5.8 shows that the MoM both underestimates and overestimates the analytic 

uncertainty at the higher frequencies. At these higher frequencies, perturbations in the un- 

certain input parameters cause the output curves to be shifted slightly in frequency. The 

more the input parameter is perturbed the larger the frequency shifts. At a certain frequency 

the output value will increase and decrease in a non linear way as it moves up and down the 
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Figure 5.9: Dependence of the normalised field 

on the relative permittivity, at 2.91GHz. 
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Figure 5.10: Dependence of the normalised field 

on the relative permittivity, at 2.53GHz. 

shifted curves. Thus the output will depend nonlinearly on the input parameters. Figure 

5.9 illustrates the dependence of the output normalised electric field on the relative permit- 

tivity of the slab, at the frequency 2.91GHz. This frequency corresponds to the final peak 

overestimation of the uncertainty for the MoM. It is clear from Figure 5.9 that the output 

depends nonlinearly on the relative permittivity. This figure also shows the MoM approx- 

imation of the relationship between the output and the relative permittivity. At the mean 

permittivity E,. = 4, the MoM assumes that the output depends linearly on the input. At 

this point it is clear that the first derivative is larger than surrounding values. It has already 

been noted that the size of the uncertainty in the relative permittivity is not small (but may 

be realistic). As discussed in Section 4.6.2 the large input uncertainty, the nonlinear relation- 

ship between the output and the input parameter, and the larger sensitivity derivative at the 

mean input parameter value, all cause the first order MoM prediction of the uncertainty to 

be an overestimation of the actual value. Figure 5.8 confirms that this overestimation has 

occurred. 

From Figure 5.8 it is clear that the MoM also underestimates the uncertainty at certain 

frequencies, such as at 2.53GHz. In Section 4.6.2 it was explained that if the input uncer- 

tainties are large, then the MoM underestimates the actual uncertainty at points where the 

sensitivity of the output with respect to the input parameters is small compared to the sensi- 

tivity at nearby points. Figure 5.10 illustrates the dependence of the normalised electric field 

on the relative permittivity at 2.53GHz, and the linear approximation made by the MoM. It is 

clear from this figure that the sensitivity derivative at the mean relative permittivity value is 

smaller than at surrounding permittivity values. The uncertainty in the relative permittivity 

is also quite large. This causes the MoM to underestimate the uncertainty at this frequency. 
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Figure 5.11: Dependence of the electric field on the length and the relative permittivity of the slab, at 2.914GHz. 

The MoM disregards the nonlinear dependence of the electric field on the simultane- 

ous change of the length and relative permittivity of the slab. Figure 5.11 shows the nonlin- 

ear relationship between the electric field and the input parameters at 2.91GHz. The MoM 

approximates this surface as a linear plane, which is inaccurate for larger input uncertain- 

ties. The MCM allows for the simultaneous change of both input parameter values, and is 

therefore more accurate than the MoM. For this example, the PCM also assumes that the 

output electric field depends linearly on the inputs. The PCM does however allow for the 

simultaneous change of the input parameters when obtaining the coefficients of the linear 

relationship. Equation (5.20) shows how both uncertain input parameters are combined 

to form one uncertain parameter that is propagated through the FDTD simulation. This 

prevents the effect of changing the input parameters on the output uncertainty from being 

simply the additive effect of changing the input parameters separately as in the MoM. 

By applying the UA methods to the analytic solution it has been shown that the MCM 

provides the best prediction of the uncertainty in the output of this example. Some of the 

errors that arise from the MoM have also been discussed. The performance of the UAs when 

applied to the FDTD simulations is discussed in the next section. 
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The Uncertainty in the Finite Difference Time Domain Simulations 

Figures 5.12 and 5.13 show the means predicted by the three UA methods when ap- 

plied to the coarse and fine FDTD simulations. It is clear from these figures that the PCM 

predicts means, for both the fine and coarse simulation, that are close to the benchmark set 

by the MCM. The MoM predicts means that are farther from the benchmark result than the 

PCM. These results are confirmed by the FSV comparisons set out in Table 5.6. These FSV 

comparisons compare the means predicted by the MCM with those predicted by the other 

two UA methods. Table 5.6 shows that the PCM gives "very good" predictions of the mean 

when compared to the benchmark MCM, and the MoM gives a "fair" prediction for the 

coarse case and a "good" prediction for the fine case. It may be concluded that the PCM is 

better at predicting the means of the FDTD simulations, for this example, than the MoM. 

Figures 5.14 and 5.15 show the uncertainty predicted by the three methods for the 
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Figure 5.12: Mean normalised electric field 

for the coarse FDTD simulation. 
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Figure 5.14: Uncertainty in the normalised 
electric field for the coarse FDTD simulation. 
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Figure 5.13: Mean normalised electric field 

for the fine FDTD simulation. 
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Figure 5.15: Uncertainty in the normalised 

electric field for the fine FDTD simulation. 
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Comparing the Predict ions of the Mean 
Method Applied To ADM FDM GDM GDM (1-6) Qualitative 
MoM (2,2) Coarse 0.1979 0.3822 0.4637 4.1662 Fair 
PCM (2,2) Coarse 0.0720 0.1525 0.1831 2.8409 Very Good 
MoM (2,2) Fine 0.1676 0.2568 0.3332 3.6708 Good 
PCM (2,2) Fine 0.0960 0.1549 0.1973 2.9829 Very Good 

Comparing the Predictions of the Uncertainty 
MoM (2,2) Coarse 0.6322 0.8532 1.1414 5.4280 Poor 
PCM (2,2) Coarse 0.3265 0.5535 0.6922 4.7329 Fair 
MoM (2,2) Fine 0.5885 0.8247 1.1130 5.3925 Poor 
PCM (2,2) Fine 0.2961 0.5138 0.6498 4.6270 Fair 

Table 5.6: FSV comparisons of the means and uncertainties predicted by the benchmark MCM and the other two 
UA methods. 

coarse and fine FDTD simulations. The uncertainties predicted by all three methods tend to 

increase as the frequency increases. This suggests that there is a greater uncertainty in the 

results of the simulations at higher frequencies. 

Figures 5.14 and 5.15 show that the PCM predicts uncertainties that are a lot closer 
to those predicted by the benchmark MCM, than the uncertainties predicted by the MoM. 

This implies that the PCM is better at predicting the uncertainties here than the MoM. Table 

5.6 shows the FSV comparisons of the benchmark MCM predictions of the uncertainty with 
the same predictions made by the MoM and the PCM. The uncertainties predicted by the 

MoM are "poor", whereas the PCM provides "fair" predictions of the uncertainties. It is 

evident from Figures 5.14 and 5.15 that the MoM is again providing overestimations and 

underestimations of the uncertainty. As discussed previously these overestimations and 

underestimations arise because the MoM is less accurate for larger input uncertainties. 

Analysing the Relationship Between Accuracy and Uncertainty 

The uncertainty in the analytic solution, and the coarse and fine FDTD simulations 

may be compared to see if there is a relationship between the error and uncertainty in the 

results of a simulation. The analytic solution has no errors, and the fine FDTD simulation 
has a small amount of error compared to the coarse FDTD simulation. The three curves in 

Figure 5.16 represent the uncertainties predicted by the MCM for the analytic solution and 

the coarse and fine FDTD simulations. The uncertainty in the fine model is closer to the ana- 
lytic uncertainty, than the uncertainty in the coarse model. As the FDTD simulations become 

more accurate, the uncertainty calculated for those simulations converges to the uncertainty 
in the analytic case. Therefore there is some relationship between the uncertainty in a model 
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Figure 5.16: The uncertainty as predicted by the MCM for different implementations of the model. 

and the accuracy with which that model is implemented. The features in the frequency 

response of the uncertainty in the coarse model, shown in Figure 5.16, differ from the fea- 

tures in the other two uncertainty curves. Overall however the sizes of the three uncertainty 

curves are similar. This suggests that there is only a small relationship between the size of 

the uncertainty in the model and the accuracy with which that model was implemented. 

The uncertainty in the output depends on the uncertainty in the inputs, and the way in 

which that uncertainty is propagated through the simulation. The accuracy with which the 

model is implemented will affect how the uncertainty is propagated through the simulation. 

Accurate models will propagate uncertainties through the simulation in a similar manner 

to the analytic solution. Less accurate simulations will propagate the uncertainty through 

slightly differently. This is what causes the features of uncertainty curves, formed with a 

different level of accuracy, to differ. However, the overall size of the output uncertainty 
does not appear to differ significantly for simulations performed with different accuracies. 

In the next section the mean and uncertainty, formed using the different UA methods, 

are used to estimate the 95% Cl. 
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Confidence Intervals 

The upper 95% Cl calculated using different UA methods for the analytic solution and 

the two FDTD simulations, are shown in Figures 5.17-5.19. In each case the Cl predicted 

by the MoM and the PCM agree well with those calculated by the more accurate MCM 

at lower frequencies. The MoM predictions seem to be fairly good when compared to the 

MCM, however it seems that the PCM provides slightly better predictions. The Cl predicted 

by the MoM and the PCM were compared to the MCM predictions using the FSV method, 

the results of these comparisons are shown in Table 5.7. According to these comparisons 

both the MoM and the PCM give better predictions of the 95% Cl (when compared to those 

predicted by the MCM) than their corresponding predictions of the uncertainty. This is 

because the differences between the confidence interval curves relative to the sizes of the 

curves themselves are smaller than the differences between the uncertainty curves relative 

to the sizes of the uncertainty curves. The FSV method normalises the difference measures, 

for the curves, to the sizes of the curves. This means that the smaller proportional differences 

in the confidence interval predictions result in the FSV method giving better comparisons. 

It is clear once again that the PCM is giving better predictions of the Cl than the MoM, when 

compared to the MCM. 
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Figure 5.17: Upper 95% confidence interval for the normalised electric field calculated using the different UA 
methods, for the analytic solution. 
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Figure 5.18: Upper 95% confidence interval for the normalised electric field calculated using the different UA 
methods, for the (2,2) FDTD simulation performed on a coarse mesh. 
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Figure 5.19: Upper 95% confidence interval for the normalised electric field calculated using the different UA 
methods, for the (2,2) FDTD simulation performed on a fine mesh. 
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Comparing the Upper 95% Confidence Intervals 
Method Applied To ADM FDM GDM GDM (1-6) Qualitative 

MoM (2,2) Coarse 0.2680 0.5416 0.6454 4.6160 Fair 
PCM (2,2) Coarse 0.1310 0.3579 0.3986 3.9986 Good 
MoM (2,2) Fine 0.2787 0.5684 0.6690 4.6749 Fair 
PCM (2,2) Fine 0.1264 0.3125 0.3561 3.7855 Good 
MoM Analytic 0.2787 0.5411 0.6480 4.6225 Fair 

Comparing the Lower 95% Confidence Intervals 
MoM (2,2) Coarse 0.4584 0.7063 0.9059 5.1337 Poor 
PCM (2,2) Coarse 0.1476 0.3468 0.4053 4.0158 Fair 
MoM (2,2) Fine 0.3154 0.5662 0.6981 4.7477 Fair 
PCM (2,2) Fine 0.1384 0.3051 0.3584 3.7972 Good 
MoM Analytic 0.3167 0.5362 0.6683 4.6733 Fair 

Table 5.7: FSV comparisons of the 95% Cl predicted by the benchmark MCM and other UA methods. 
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Figure 5.20: The mean electric field with 95% Cl as predicted by the MCM. 

The mean electric field with 95% Cl, produced by the MCM for the coarse FDTD simu- 

lation, is shown in Figure 5.20. When analysing the results of computational measurements 

for EMC, figures like this should be provided. Such figures are extremely useful because 

they provide the quantitative level of confidence that can be held in the mean output value. 

For this example the experimenter can be confident that the electric field takes on a value 

close to the mean value for the lower frequencies. However at the higher frequencies there 

is less confidence to be held in the value of the electric field. This is because the 95% Cl are 

larger at the higher frequencies. 
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5.4.6 The Computational Expense of The Uncertainty Analysis Methods 

Thus far the relative performance of the UA methods have been compared in terms 

of their ability to predict the means, uncertainties and 95% CI in the output of the FDTD 

simulations. The three UA methods may also be compared in terms of their computational 

expense, when applied to the fine and coarse FDTD simulations. For this simple example 

none of the methods are computationally expensive, however investigating their relative 

computational expense provides an insight into the computational performance of the three 

methods for more complex examples. All of the analyses were performed on a Core2Duo 

processor working at 3. QGHz. 

Method Applied To No. Simulations Time Taken (s) Memory (kB) 
MCM (2,2) Coarse 300 16.52 2.42 
MoM (2,2) Coarse 3 0.17 2.42 
PCM (2,2) Coarse 1 2.39 13.50 
MCM (2,2) Fine 300 687.40 38.42 
MoM (2,2) Fine 3 6.84 38.42 
PCM (2,2) Fine 1 62.30 216.00 

Table 5.8: Computational performance of the UA methods. 

It is clear from Table 5.8 that the MoM is by far the computationally cheapest method. 
The more rigorous MCM requires the largest amount of computational runtime. The PCM 

needs a lot less runtime that the MCM but it requires about six times more memory here. 

The MoM is one order of magnitude faster than the PCM, and requires about six times less 

memory. 

In the next section curve alignment is used to evaluate the aligned amplitude and 
frequency uncertainties that are predicted by the MoM and the MCM. Currently there is no 

way of forming the aligned uncertainties for the PCM. 

5.5 Evaluating the Uncertainties After Alignment 

The three frequency response curves formed from the coarse FDTD simulations and 

used to obtain the prediction of the uncertainty, via the MoM, are shown in Figure 5.21. The 

curve produced by the reference simulation, where all input parameters take on their mean 

values, is very similar to the curve produced by the simulation with a perturbed permittivity. 



5.5. Evaluating the Uncertainties After Alignment Original in colour 166 

1.8 

1.6 

1.4 
E 
> 

1.2 

U 

m1 
L 
N 
m 

0.8 

0.6 

0.4 

n9 

reference 
perturbed end position 

perturbed permittivity 

n 1.1. l 

ý`0 
frequency (MHz) 

Figure 5.21: Frequency response of the electric field produced from the reference simulation and the simulations 
with perturbed input parameters. 
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Figure 5.22: Frequency response of the electric fields produced by the simulations with perturbed input param- 
eters, after alignment (via PM) to the response produced by the reference simulation. 
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These curves are however shifted slightly in the frequency domain. Aligning these curves 

enables an estimate of the aligned amplitude uncertainty and the frequency uncertainty to 

be obtained. The frequency shifts required to align the curves are very small in this case, 

therefore the frequency uncertainty should be small. The small uncertainty in frequency 

may still distort the unaligned amplitude uncertainty. 

In this case the two curves formed from the perturbed simulations were aligned to 

the curve formed from the reference simulation. Both PM and IC were used to align the 

curves. Using the FSV before and after alignment, for both alignment techniques, it was 
found that the curves were more similar afterwards when aligned via PM. Thus PM was 

used to align the curves. The results of this alignment are shown in Figure 5.22, visually 

it appears that the curves are better aligned now. The FSV method calculated GDM values 

(on the visual scale), for the curves produced by the reference simulation and the simulation 

with a perturbed end position, of 4.1594 before alignment and 4.1426 afterwards. The GDM 

for the curves produced by the reference simulation and the simulation with a perturbed 

permittivity, were calculated as 2.2664 before alignment and 1.8327 afterwards. The curves 

are more similar after alignment, it may therefore be concluded that PM aligns the curves 

well. To be consistent, the PM method was used to align the curves used to form the mean 

and uncertainty via the MCM as well. 
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Figure 5.23: Frequency response of the mean electric field predicted by the MCM and the MoM after alignment 
via PM. 



5.5. Evaluating the Uncertainties After Alignment Original in colour 168 

The mean calculated by the MoM is a lot closer to the mean predicted by the MCM af- 

ter alignment. Figure 5.23 shows the means predicted by these two methods after alignment. 

Using the FSV method on the two curves from this figure determines that the similarity of 

the two curves is "good". Before alignment the means predicted by the two methods were 
determined to be a "fair" comparison. Thus, the means predicted by the MoM and the MCM 

are more similar after alignment has taken place. 

The aligned amplitude uncertainties predicted by the MoM and the MCM for the 

coarse simulation are shown in Figure 5.24. By comparing Figure 5.24 with Figure 5.14 it 

is clear that the amplitude uncertainties predicted by the MoM are more similar to those 

predicted by the MCM after alignment. In the unaligned case the MoM overestimates and 

underestimates the actual uncertainty. Now that the curves have been aligned some of the 

nonlinear dependence of the output on the input parameters has been reduced. This means 

that the MoM, which assumes a linear dependence, will provide better estimates of the 

uncertainty after alignment. The overall sizes of the uncertainties predicted by the MoM 

and the MCM agree fairly well, however the curves are not very similar here. The FSV 

method agrees with this by returning a "poor" result for the comparison of the curves in the 

figure. This implies that the MoM gives a poor estimation of the uncertainty predicted by 

the more rigorous MCM. The detailed structure of the curves are not similar but the overall 
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Figure 5.24: Frequency response of the uncertainty in the amplitude of the electric field predicted by the MCM 
and the MoM after alignment via PM. 
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Figure 5.25: Uncertainty in the frequency predicted by the MCM and the MoM after alignment via PM. 

sizes of the uncertainty are comparable. Since the MoM is much more computationally 

efficient than the MCM it is still useful for providing a prediction of the size of the output 

uncertainty in this example. 

The aligned frequency uncertainties predicted by the two UA methods are shown in 

Figure 5.25. The two curves in this figure are obviously very different. The MCM uses many 

different simulations to obtain the uncertainty in the frequency and so the curve shows a 

smooth increase in the uncertainty with increased frequency. The MoM uses only three sim- 

ulations to obtain this uncertainty and so the uncertainty in frequency is less continuous. 

The uncertainty in frequency predicted by the MoM also increases with frequency and over- 

all is about the same size as the uncertainty in frequency predicted by the MCM. Therefore, 

although the MoM fails to exactly replicate the aligned uncertainty in frequency formed by 

the MCM, it provides a good indication of the size of this uncertainty. 

The uncertainties in the frequencies are small with respect to the frequencies at which 

they are occurring. For example, at 3GHz the uncertainty in the frequency, predicted by the 

MCM (and using PM), is 57.5MHz. This is less than two percent of the frequency at which it 

occurs (i. e. of the 3GHz). These small frequency uncertainties caused the output to depend 

nonlinearly on the uncertain inputs in the unaligned case. This nonlinear relationship is 

reduced by aligning the curves, which explains why the MoM provides a better estimate of 

the amplitude uncertainty after alignment. 
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The aligned uncertainties were used to predict aligned 95% Cl for the frequency re- 

sponse of the normalised electric field. The FSV method was then used to compare the Cl 

predicted by the MoM and the MCM after alignment. In this case the similarity of 95% Cl 

predicted by the MoM and the MCM is "fair", with GDM values of 4.3843 and 4.8484 for 

the upper and lower Cl respectively. Thus it may be concluded that the relatively efficient 

MoM gives a fair estimate of the 95% Cl for the electric field. Figures 5.26 and 5.27 show 

the aligned amplitude means and 95% Cl calculated using the MCM and the MoM respec- 

tively. These curves are useful as they visually represent the confidence that can be held 

in the mean measured values. For example, using Figure 5.26 an experimenter can be 95% 

confident that at 500MHz the mean value lies in the interval [0.58,0.731 V/m. Using these 

two figures it may be concluded that overall the aligned means and 95% Cl produced by the 

MoM are fairly similar to the respective curves produced by the MCM. The MoM underesti- 

mates and overestimates the aligned Cl at particular frequencies, however overall the sizes 

of the means and 95% Cl are similar to those produced by the MCM. 
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Figure 5.26: Mean amplitude and 95% Cl calculated 

using the MCM after alignment via PM. 
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Figure 5.27: Mean amplitude and 95% Cl calculated 

using the MoM after alignment via PM. 

Now that curve alignment has been used it is possible to predict the 95% Cl for the 

frequencies as well. The FSV method determines that MoM and MCM predict lower Cl 

for the frequencies that are in "very good" agreement, with a GDM of 2.4729. The upper 

frequency Cl, formed using the MoM and the MCM, are a "good" match with a GDM value 

of 3.0874. Thus the MoM gives a good prediction of the 95% Cl for the frequencies, in 

this example. Figures 5.28 and 5.29 show the aligned mean and 95% Cl of the frequencies 

calculated using the MCM and the MoM respectively. Although the specific detail of the Cl 

predicted by the MoM and the MCM differ, both methods predict relatively small Cl that 

increase with the frequency. 
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Figure 5.28: Mean frequency and 95% Cl calculated 

using the MCM after alignment via PM. 
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Figure 5.29: Mean frequency and 95% Cl calculated 

using the MoM after alignment via PM. 

Figures 5.30 and 5.31 show the aligned uncertainties predicted by the MCM for the 

analytic solution and both the coarse and fine FDTD simulations. The overall sizes of these 

uncertainties are similar, this implies that the uncertainties are only weakly dependent on 

the accuracy of the model used. Thus there is only a small relationship between the sizes of 

the errors in a simulation and the sizes of the uncertainty in the output of the simulation. 

The uncertainty in the output of a simulation is dependent on the sizes of the uncertainties 

in the input parameters and the way in which these uncertainties are propagated through 

the simulation. Performing the simulations on different meshes, or using an analytic so- 
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Figure 5.30: Aligned amplitude uncertainty predicted by the MCM for the analytic solution, and for the coarse 
and fine FDTD simulations. 
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Figure 5.31: Aligned frequency uncertainty predicted by the MCM for the analytic solution, and for the coarse 
and fine FDTD simulations. 

lution will affect how the uncertainty is propagated through. This results in the different 

detailed structure of the output uncertainty curves, as shown in Figures 5.30 and 5.31. How- 

ever, these figures show that the size of the output uncertainty has little dependence on the 

accuracy of the simulation. This may mean that the uncertainty in computationally cheaper, 

less accurate CEM simulations may be used to efficiently estimate the size of the uncertainty 

in more accurate CEM simulations that require greater computational expense. 

5.6 Conclusions 

This chapter introduced an analytically solvable 1D example involving the reflection 

of a Gaussian pulse off a dielectric slab. After deriving the analytic solution of the output 

electric field, the solution was used to determine the analytic error in the FDTD simulations 

that were used to solve the same example. This analytic error was used as a benchmark 

by which the results of other Error Analyses were compared. It may be concluded that 

in this case the error in a (2,2) FDTD simulation is predicted fairly well by using a (2,2) 

FDTD simulation performed on a mesh that is refined by a factor four. The Error Analysis 

method that used a (4,4) FDTD simulation was more computationally expensive than the 

Error Analysis method that used (2,2) simulations, and provided only a marginally better 

estimation of the error. The (4,4) Error Analysis method will therefore not be used in the 
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remaining analyses in this thesis. 

Two of the input parameters, required to form the analytic solution and to perform 

FDTD simulations, were assumed to be uncertain. The uncertainty in these inputs produced 

an uncertainty in the output normalised electric field. Since an analytic solution existed it 

was possible to form the analytic mean and uncertainty in the output. This was used as a 

benchmark by which the mean and uncertainty predictions of the three UA methods were 

compared. As expected the MCM gave the best predictions of the uncertainty in the analytic 

solution. The MCM was therefore used as the benchmark by which the results of the other 

two less accurate UA methods were compared, when all three methods were used to find 

the uncertainty in the FDTD simulations. 

It may be concluded that the MoM gives fairly good predictions of the mean electric 
field and the 95% CI surrounding this mean, in both the aligned and unaligned cases. The 

MoM is about 100 times computationally faster than the MCM, for this example. However 

the method was shown to overestimate and underestimate the uncertainty in the normalised 

electric field at certain frequencies. It may be argued that despite these overestimations of 
the output uncertainty, the computational efficiency of the MoM means that it is still useful 

as an efficient method for approximately estimating the uncertainty. 

The PCM is unable to use curve alignment to predict the aligned uncertainties. In the 

unaligned case the PCM was better at predicting the output uncertainties than the MoM, 

when compared to the uncertainties predicted by the benchmark MCM. The PCM is more 

computationally expensive than the MoM requiring more computational time and mem- 

cry. The PCM requires less computational runtime than the MCM, but it does require more 

computational memory. In more complex simulations, with many uncertain inputs, the ex- 

tra computational memory required may make this method unsuitable. In later chapters, 

certain examples are used to show that the PCM is not applicable in all scenarios. 

For this example, the simulations for both the coarse and fine simulations require little 

computational runtime, it is therefore better to use the MCM to predict the uncertainties. 
The MCM does not require too much computational runtime here and it gives predictions of 
the uncertainty that were shown to be closest to the analytic uncertainty. For more complex 

simulations the MCM will be too computationally expensive. This thesis aims to determine 

whether the computationally efficient MoM and PCM can provide reliable estimates of the 

mean, uncertainty and 95% CI in these cases. 

Using curve alignment it is possible to show that not all of the uncertainty in the nor- 
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malised electric field is due to amplitude differences, a proportion of the uncertainty is due 

to the frequency shifts between unaligned curves. For this example the uncertainty in the 

aligned frequency increases with frequency, this is as a result of poorer alignment of the 

output curves at the higher frequencies. Previously this brought about larger uncertainties 
in the unaligned amplitude of the electric field at the higher frequencies. Using alignment, 
it was shown that the uncertainties at the higher frequencies are also due to uncertainties in 

the frequency. The amplitude uncertainties predicted by the MoM reduced after the align- 

ment process. The alignment process helped to reduce the nonlinearity in the relationship 

between the output and the input, thus making the MoM predictions more accurate. 

In both the aligned and unaligned cases the relationship between the size of the output 

uncertainty and the size of the errors in a simulation is small. The uncertainty in the output 

of a simulation depends on both the sizes of the uncertainties associated with the input 

parameters and the way in which these uncertainties are propagated through the simulation. 

Performing the simulations on different meshes, or using an analytic solution will affect 

how the uncertainty is propagated through. Thus, different simulations that have different 

amounts of error will produce different output uncertainties. However, it has been shown 

that the uncertainty in the output of simulations that are performed with a different level 

of accuracy are similar in size for this example. Thus, the size of the output uncertainty has 

little dependence on the accuracy of the simulation, and is more dependent on the size of 

the uncertainties in the input parameters. If this is the case in general then computationally 

faster, less accurate CEM simulations may be used to efficiently estimate the uncertainty in 

more accurate, computationally expensive CEM simulations. 

In this chapter the Error and Uncertainty Analyses were applied to a simple 1D an- 

alytic solvable example. In the next chapter these analyses will become more complex and 

computationally expensive as they are applied to a 3D analytically solvable example. 
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6.1 Introduction 

In this chapter the different Error and Uncertainty Analysis methods are applied to 

3D FDTD simulations., In the first example the backscattering of the electric field from a 
dielectric sphere is considered. This example has an analytic solution often known as the 

Mie series, a detailed description of which is given by Stratton in [91, p. 563-5671. The sphere, 

in this example, is assumed to have an uncertain radius, permittivity and permeability. 

As in the previous chapter, the analytic (exact) error in the output of a FDTD sim- 

ulation is calculated by taking the difference between the FDTD simulated result and the 

analytic solution. An estimation of the error is obtained by using a (2,2) FDTD simulation 

performed on a refined mesh: this was shown to give good estimates of the error in the 

previous chapter. This estimate of the error is compared to the analytical error to determine 

the performance of the approximate Error Analysis method. 

The analytic solution of the backscattered electric field is also used to obtain the mean 

and uncertainty analytically. These analytic results are compared to the means and un- 

certainties predicted by the three UA methods, when applied to the analytic solution of the 

backscattered field. These comparisons show that the MCM provides the best estimate of the 

uncertainty in the analytic solution. The MCM is therefore used as the benchmark method 

for the analysis of the uncertainty in the FDTD simulations. The MoM and the PCM are 

compared to the benchmark MCM in terms of their ability to accurately predict the mean, 

uncertainty and 95% CI in the output of the FDTD simulation. The three methods are also 

compared in terms of their computational expense. 

A second example is introduced in Section 6.7, which considers the electric field backscat- 

tered from a PEC sphere with an uncertain radius. The PCM fails to provide a reliable esti- 

mate of the uncertainty in the output of the FDTD simulation, for this example. 



6.2. Electric Field Scattering Off a Dielectric Sphere in Three Dimensions 177 

6.2 Electric Field Scattering Off a Dielectric Sphere in Three Di- 

mensions 

In this 3D example a uniform plane wave electric field excitation is backscattered off 

a dielectric sphere in free space. The sphere has an uncertain radius, which is Normally 

distributed with a mean a=O. Im and an uncertainty Qa = 0.005m. The sphere also has 

an uncertain permittivity, which is Uniformly distributed in the interval e,. = [3.7,4.3], and 

an uncertain permeability, which is Uniformly distributed in the interval µr = [0.95,1.05]. 

The incident plane wave P 
.,, propagates in the positive z direction, and is oriented in the x 

direction with a magnitude Eo = 1V/m. The x-component of the backscattered field E. " is 

measured at a distance of 0.2m from the centre of the sphere. The setup of this example is 

shown in Figure 6.1. The absolute value of the backscattered field is transformed into the fre- 

quency domain, and normalised to the absolute value of the incident field in the frequency 

domain. The analytic Mie series solutions [921 may be used to calculate this normalised 
electric field analytically: these solutions are introduced in the next section. 

The frequency response of the normalised electric field may also be calculated using 

z 

x 

- -X 

Figure 6.1: A three dimensional problem space containing a dielectric sphere. A plane wave is reflected off the 
sphere and observed at x. 
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a FDTD simulation, with a broad Gaussian incident plane wave. A Huygen's surface [93] is 

used to simulate the incident electric field. The Huygen's surface is implemented so that it 

surrounds the sphere, but not the output point. This means that the total field recorded at 
the output point is only the reflected field E. I. (and of course the error in this output). It is 

the reflected field that is used to calculate the normalised backscattered electric field. 

6.2.1 The Analytic Solution 

Consider a sphere, centred at the origin, with a radius a and propagation constant kl 

surrounded by a homogeneous material with a propagation constant k2. The propagation 

constant ki is related to the free space frequency f of the travelling wave, the permittivity el 

and permeability µl of the sphere as kl = 21rf e1µ1. The permittivity and permeability are 
in turn related to the relative permittivity Er and relative permeability µ, as el = eoer and 

µl = µoµ,., where eo and po are the permittivity and permeability of free space respectively. 
The propagation constant k2 is formed similarly using the material properties of the media 

surrounding the sphere. 

A plane wave that is incident upon this sphere, travelling along the positive z-axis and 

oriented in the positive x-direction, may be represented in terms of spherical wave functions 

as [91, p. 564} 

Es = ýEýeI (k2z-mot) 
= Eoe'1wt 

n==1 

` ýº 
2n +1 (m(n -In( L_. n(n + 1) 

(6.1) 
eln 

where I=, E. is the amplitude, w is the angular frequency, z and t are the spatial and 

temporal coordinates, x is a unit vector in the x-direction and 

11 m01n =sin(6) Jn(k2R)Pn (tos(e)) cos(ý)e - Jn(k2R) Pn 
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In the above equations R, 0 and 0 are the spherical coordinates of the output point, R, B and 
ý are the corresponding unit vectors, and the prime denotes differentiation with respect to 

k2 R. The terms P, 1,, and J,, are the associated Legendre polynomials and spherical Bessel 

functions respectively. 
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The reflected electric field at a position (R > a, 0,0) may be written as [91, p. 564] 

Ey. i = Eoe rwt 
E 

In 2n +1 (Anmoln - IBnneln) (6.4) 
n(n+ 1) 

n=1 

where möin and nein are obtained by replacing the spherical Bessel functions J�(k2R) by the 

spherical Hankel functions Hý. I» (k2 R) in equations (6.2) and (6.3). Similar equations to (6.1) 

and (6.4) maybe obtained for the electric field transmitted to the interior of the sphere (ie. for 

R< a) and for the incident, reflected and transmitted magnetic fields. The coefficients An 

and B. in equation (6.4) are obtained by asserting that the incident and reflected electric and 

magnetic fields are equal to the transmitted fields, at the boundary R=a. This produces 

two equations in the coefficients An and Bn, which may be solved to obtain [91, p. 5651 

K z1Jn(NP)[PJn(P)]'- µ2Jn(P)[NPJn(NP)]' (6.5) 
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where N= kl/k2 and p= k2a. 

The expression for the reflected electric field is greatly reduced by considering the 

backscattered field on the z-axis, where (9, q) _ (ir, ir). At these angles sin(O) =0 and [94, 

p. 656] 

P1(cos (B))I©=� =0 
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Thus the backscattered electric field becomes 

00 
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The magnitude of this scattered wave in the frequency domain is simply 

JE, rl = Eo E 
00 
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(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

The normalised output electric field is formed by taking the ratio of JEJ' to the 1V/m inci- 
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Refinements compared ADM FDM GDM GDM (1-6) Qualitative 
0.5 and 1 0.2051 0.3153 0.4100 4.0274 Fair 
1 and 2 0.0591 0.1143 0.1405 2.4149 Very Good 
2 and 4 0.0162 0.0330 0.0407 1.4073 Excellent 

Table 6.1: FSV comparisons of simulated results calculated with different mesh refinements. 

dent electric field excitation. The magnitude of this incident field is one for all frequencies 

and therefore the normalised electric field equals I. E, 'I. 

This analytic solution was implemented into Matlab, making use of the spherical 
Bessel and Hankel functions that are programmed into the software. The infinite sum is im- 

possible to calculate, the solution was therefore truncated after the first ten resonant modes. 
The frequency response of this normalised electric field is shown in the next section. Trun- 

cating the series causes the solution to be an approximation of the analytic solution, thus 

the truncated solution contains errors. The percentage difference between the solution pro- 
duced with ten terms and the solution produced with 20 terms gave a maximum error of 
0.0024% (over frequencies from OGHz to 3GHz). Using ten terms in the series solution is 

therefore sufficient to produce an accurate approximation of the analytic solution. The ap- 

proximate analytic solution (formed with ten terms) is regarded as the exact analytic solu- 

tion in the discussion that follows. The uncertainty in this solution enters via the uncertainty 

in the radius a and the uncertainty in the propagation constant k1, which is related to the 

uncertain permittivity el and the uncertain permeability µl. 

6.2.2 Frequency response of the Backscattered Electric Field 

It is possible to form a simulated solution for this example using the FDTD method. 

As in the previous chapter, multiple mesh refinements may be performed to determine 

when the simulated solution has reached convergence. This convergence is tested by us- 

ing the FSV method to compare how similar the output normalised electric field curves are 

after each progressive mesh refinement. Table 6.1 shows the FSV comparisons of the output 

formed from simulations with different mesh refinements. The mesh refinement factor of 

one refers to a mesh with a cell size Al = 0.005m, 100 x 100 x 100 cells, and 10,000 time 

steps. It is clear from this table that the output converges for progressively finer meshes, as 

the curves become more similar. 

The simulations were all performed on a Core2Duo processor at 3.0GHz. The time 

and memory required for the FDTD simulation with a refinement factor of one were 11 min- 
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utes and 31MB respectively. From Table 6.1 it may be concluded that the simulations are 

converging around a refinement factor of one, but full convergence is not reached until the 

refinement factor is two or four. Unfortunately each refinement causes the simulation to 

require eight times more memory (as there are eight times more cells), and 16 times more 

computational runtime (a factor eight times more cells to calculate for, and twice the num- 

ber of time steps). The simulations therefore become very computationally expensive for 

refinement factors of two and above. Performing uncertainty analyses with these higher re- 

finement factors would prove too costly. For example, a Monte Carlo simulation using 500 

simulations with a refinement factor of two would take around 60 days. The FSV compar- 

ison has determined that the output formed from the simulations using refinement factors 

of one and two are very close. The simulation with a refinement factor of one is close to 

convergence and is computationally less expensive than the simulations using finer meshes. 

This simulation is therefore chosen for the subsequent Error and Uncertainty Analyses. 

The frequency response of the analytic solution, and the FDTD simulated solutions 

are shown in Figure 6.2: these curves are all very similar. The output from the simulation 

performed with a refinement factor of four will be used to estimate the error in the sim- 

ulation performed with a refinement factor of one, in the next section. From now on the 

simulation performed with a refinement factor of one will be referred to as the reference 

FDTD simulation. Similarly the simulation performed with a refinement factor of four will 

be referred to as the refined FDTD simulation. 
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Figure 6.2: Frequency response of the normalised electric field 
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6.3 Error Analysis of the Finite Difference Time Domain Simula- 

tion 

The analytic error is formed by taking the difference between the output of the ref- 

erence FDTD simulation and the analytic solution. This provides the quantification of all 

the errors in the reference FDTD simulation. An approximate quantification of the errors 

may be formed by taking the difference between the output of the reference and refined 

FDTD simulations. The refined FDTD simulation contains fewer errors than the reference 

simulation, and so should highlight some of the errors in the reference simulation. 

Figure 6.3 shows the analytical error and the approximate error formed using the re- 
fined FDTD simulation. It seems that the approximate Error Analysis method performs 

well at the higher frequencies but not so well at the lower frequencies, when compared to 

the analytic error. The errors in the refined FDTD simulation prevent the approximate Error 

Analysis method from identifying some of the errors in the reference FDTD simulation at 

the lower frequencies. This is confirmed by FSV comparisons of the analytic and approx- 

imate error predictions, which form GDM values on the visual scale of 6 (Very Poor) for 

frequencies below 2GHz, and 4.3105 (Fair) for frequencies between 2GHz and 3GHz. These 

comparisons may however be too harsh, visually the two curves seem to be similar. At the 

higher frequencies the two curves seem to be very similar. Removing the offset difference 

measure from the FSV method (as in the original implementation [681) provides a GDM of 

2.5663 (Very Good) for the comparison of the two curves at the higher frequencies. Small 

frequency shifts between the two curves, at the higher frequencies, produce large amplitude 
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Figure 6.3: Frequency response of the error in the reference FDTD simulation, calculated analytically and using 
a FDTD simulation with a refinement factor of four 
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offsets. These amplitude offsets cause the FSV method to determine that the two curves are 

only fairly similar, when in fact it seems the curves are very similar at the higher frequencies. 

Using a curve alignment before the comparison would prevent these harsh comparisons 
from being produced, as described in Section 3.2.2. 

Both Error Analysis methods agree that the errors in the reference FDTD simulation 

are relatively small at the lower frequencies. At the higher frequencies the errors become 

fairly large; the largest absolute error is 0.73V/m at 2.99GHz, which is 45.8% of the nor- 

malised electric field, calculated analytically at this frequency. From Figure 6.2 it appears 

that there is a small frequency shift between the reference FDTD simulated output and the 

other curves, at the higher frequencies. In the next section curve alignment is used to calcu- 

late the aligned amplitude and frequency errors in the reference FDTD simulation. 

6.4 Evaluating the Errors After Alignment 

Figures 6.4 and 6.5 show the normalised electric field, calculated using the reference 
FDTD simulation, before and after alignment to the analytic solution, and to the refined 
FDTD simulated solution. The PM method was used to align the curves in both cases. FSV 

comparisons of the output formed from the reference FDTD simulation and the analytic so- 

lution, provide GDM values on the visual scale of 3.1167 before and 2.7206 after alignment. 

The curves are more similar after alignment, this provides evidence that the alignment pro- 

cess has worked well. Similarly the comparison of the two FDTD simulated outputs before 

and after alignment are 2.6821 and 1.8990 respectively. Thus in both cases the PM has per- 
formed well, providing a good alignment of the curves. Visual comparisons of the curves 

in Figures 6.4 and 6.5 concur that the curves are better aligned after using the PM method, 

especially at the higher frequencies. The frequency shifts required to align the curves are 

only small, but they have a large affect on the sizes of the amplitude errors. 

The amplitude errors calculated after alignment are shown in Figure 6.6. These am- 

plitude errors are smaller than those calculated before alignment, especially at the higher 

frequencies where many of the peak errors have been reduced. For example, before align- 

ment there was a peak error at 2.7GHz of 0.6V/m, this peak amplitude error decreases to 

0.07V/m after alignment. Before alignment some of the amplitude errors were due to small 
frequency shifts between the curves that created large amplitude offsets. The amplitude 

errors are smaller after alignment because these small frequency shifts are removed. 



6.4. Evaluating the Errors After Alignment Original in colour 184 

1.6 

1.4 
E 

1.2 

w1 
U 

0.8 
w 

U 

H 0.6 
m 
ö 0.4 

0.2 

0 

1.6 

1.4 

ý _ý 
-ý Iý 

0 500 1000 1500 2000 2500 
frequency (MHz) 

Figure 6.4: Analytic solution and reference FDTD solution before and after alignment. 
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Figure 6.5: Refined and reference FDTD solutions before and after alignment. 

The frequency errors calculated after alignment are shown in Figure 6.7. The largest 

frequency errors occur at the lowest and highest frequencies. These frequency shift errors 

are generally relatively small, however before alignment these frequency errors caused large 

amplitude differences between the curves. Now that the curves have been aligned it is 

possible to conclude that the errors in the FDTD reference simulation manifest themselves 

as moderately sized amplitude errors, and small frequency errors. It is difficult to acquire 

this knowledge, on the form of the output errors, without alignment. 
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Figure 6.6: Frequency response of the amplitude error calculated after alignment. 
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Figure 6.7: Frequency response of the frequency error calculated after alignment. 

6.5 Uncertainty Analysis of the Backscattered Electric Field 

In this section different UA methods are used to quantify the uncertainty in the output 

electric field. Firstly the application of each of the UA methods to this specific example is 

described. The methods are then compared in terms of their performance and their compu- 

tational expense. The uncertainties in the analytic and reference FDTD simulated solutions 

are compared to determine whether there is a relationship between the errors and uncertain- 

ties in the FDTD simulations. The results of the UAs are then used to construct the 95%0 Cl. 

Finally curve alignment is used to determine the uncertainty due to amplitude differences 

in the output, and the uncertainty due to frequency differences in the output. 
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6.5.1 The Analytic Uncertainty 

The mean and uncertainty (denoted as Eý (f)and Q(Ey (f )) in this section) of the nor- 

malised electric field t. 1 (f ), may be calculated analytically as 

R. (f) =< km 

0o 3 05 jj PCP 
(12) 

.2) 
- L00L 

f.. '9'5 Er(f) 
0.1-0.6 vn 2 ir 

dpr de, da (6.12) 

Cr(Ez(r))2 =< (E (f) _Bx(f))2 
00 4.3 1.05 exp 

( 
2oa 

) 

- 
oo 

I. 

7 J0.95 
( (f) - ý'x (fýý 

0.10.6 o, « 2ý 
dµ,. de, da. (6.13) 

The terms 1/0.1 and 1/0.6 appearing in the above integrations are the weighting factors as- 

sociated with the PDFs of the Uniformly distributed relative permeability and permittivity 

respectively. These two integrations are fairly complex, they are therefore calculated approx- 
imately using numerical integrations. As in the previous chapter a numerical integration is 

performed at each frequency point f using the midpoint rule. The integration over the ra- 
dius a is not performed over the whole domain. Using the whole domain would result in 

possible values for the radius of the sphere at positive and negative infinity: this is unphys- 
ical. It is reasonable to truncate the domain of integration at more plausible values because 

there is only a small probability that the sphere radius differs significantly from its mean 

value. 

6.5.2 The Monte Carlo Method 

The LHS method was used to create 1,000 samples of the input parameters, based 

on the PDFs associated with the input parameters. These input parameter samples were 

used in the analytical solution and the FDTD reference simulation to create numerous out- 
put frequency responses of the normalised electric field. The mean and standard deviation 

(uncertainty) of these outputs were then calculated. The results of the Monte Carlo simu- 

lations were also used to calculate 95% Cr, using the Kaplan-Meier empirical cumulative 

distribution function as discussed in Section 4.5.3. 

The FSV method was used to determine when the MCM had reached convergence, 

as described in Sections 3.2.3 and 4.5.2. For this example it was found that convergence 

was reached after 850 simulations for the analytic solution and 700 for the reference FDTD 
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simulation. The MCM is the most rigorous method, it is also the most computationally 

expensive method: the 700 FDTD simulations took a total of 5.3 days. 

6.5.3 The Method of Moments 

The MoM was used as outlined below to obtain the mean and uncertainty in the ana- 

lytic solution and the FDTD simulation. For the purposes of the discussion below, "simula- 

tion" refers to both the calculation of the analytic result and the FDTD simulation, depend- 

ing on which one the MoM is being applied to. 

The MoM required four simulations to calculate the output uncertainty for this ex- 

ample. One simulation was performed with the input parameters taking on their mean 

values, this represents the mean output of the normalised electric field. The second and 

third simulations were performed with the relative permittivity and permeability perturbed 

by A. = 0.12 and Aut. = 0.03 respectively, from their mean values. The final simula- 

tion was performed with the radius of the sphere being perturbed from its mean value by 

Lia = 0.003m. These perturbations were chosen since they are of a similar size to the un- 

certainty in each respective input parameter. This is in accordance with the calculation of 

the output uncertainty in practical EMC experiments [2]. The three sensitivity derivatives 

calculated from these four simulations were combined with the input uncertainties to cal- 

culate the uncertainty in the output, according to equations (4.51) and (4.53). The 95% CI 

are calculated using the mean and uncertainty as outlined in Section 4.6.3. Since only four 

simulations are required here to obtain the mean, uncertainty and 95% CI, this method is 

computationally much cheaper than the MCM. 

6.5.4 The Polynomial Chaos Method 

This section describes the steps required to calculate the uncertainty in the backscat- 

tered field using the PCM. Firstly the application of the PCM to the FDTD simulations is 

described. This is then followed by a description of how the PCM is applied to the analytic 

solution. 

Application to the Finite Difference Time Domain Simulations 

To perform an UA using the PCM, the uncertain input parameters need to be related 

to the material parameters in the FDTD chaotic update equations (4.111) and (4.112). The 
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terms in the update equations involving the material parameters are inner products, which 

are calculated as a preprocess using numerical integrations. The numerical integrations can 
be quite costly and add to the overall computational cost of this method. 

Firstly the uncertainty in the relative permeability of the sphere must be related to 01, 

which follows a standard Uniform distribution over the interval [-1,11. Since the relative 

permeability is Uniformly distributed over the interval [0.95,1.05], the relative permeability 
is related to 01 as 

1.05-0-95 
µr = µr +2 01 =1+0.0501. (6.14) 

Similarly the uncertainty in the relative permittivity of the sphere must be related to 02, 

which also follows a standard Uniform distribution. The following relation fits this purpose 

4.323.7 
+ 82=4+0.302. (6.15) Er - Er 

The uncertainty in the radius of the sphere must be related to 03, which follows a standard 
Normal distribution. The following relation fits this purpose 

a=ä-hQa83=0.1+0.00503. (6.16) 

The uncertainty in the radius of the sphere must now be related to the uncertainty in the 

permittivity and permeability at positions around the mean radius of the sphere. If a point, 

in the problem space, is inside the sphere then IL,. =1+0.0501 and c, =4+0.302, otherwise 

/1r =1 and er = 1. Consider a point (x, y, z) = (itl, jLl, kAl), which is a distance d from 

the centre of the sphere. This point is in the sphere if 

Thus (x, y, z) is in the sphere if 

d<a=0.1 + 0.00503. (6.17) 

03> 
d-0.1 (6.18) 
0.0 55 

The relative permeability at this point, represented by µ,. (d, 01,03), is dependent upon two 

uncertain input parameters. The relative permittivity at the same point is also dependent 

on two uncertain parameters and is denoted by Er(d, 02i 03). These two material parameters 
become 

1+0.0581 fora > d-0. i 
pr (d, 01,03) 

3-0.005 
(6.19) 

1 otherwise 
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and 
4+0-302 for 03 > 0.005 Er(dy 021 e3) _ (6.20) 
1 otherwise. 

Thus, the material parameters ry(d, Oi, 03) and ß(d, 62,03), used in the FDTD Polynomial 

Chaos update equations (4.111) and (4.112), are 

At d-0.1 
(d, 01 

j 
03) (1+0.0501)&17; j for 03 > 0.005 

otherwise 

and 
4+0.302 Ak of 

or B3 > 
0d-oa . 005 3(d, ez; es) = (6.22) 

at otherwise. Alto 

The input uncertainties follow Uniform and Normal distributions, therefore Legendre 

and Hermite polynomials must be used in the chaotic expansion of the electric and magnetic 

fields. If the uncertainty is sought to first order, then the chaotic expansion is terminated at 

P=4. The first order polynomials required are 

'00 =1 (6.23) 

01 = L1(01) = Bi (6.24) 

2= L1(02) = 02 (6.25) 

and 3= H1(03) = 03. (6.26) 

The orthogonality of the polynomials leads to the relations 

<L, (Bk)Li(01)>=bijbkt2i+1 (6.27) 

and 

< xs(Ok)Ilj(01) >= ai; bkz(i)!. (6.28) 
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Thus the inner products of the different polynomials are given by 

< iip, >=0 for i (6.29) 

< '0,00 > (6.30) 

< '01,0 >=3 (6.31) 

< 0202 >=3 (6.32) 

and < tt303 >=1. (6.33) 

The electric and magnetic fields are calculated using the update equations (4.111) and (4.112). 

Before these equations can be used, the inner products of the material parameters a, ,Q and 

-y with the polynomials used in the chaotic expansion need to be calculated. The material 

parameter a=1 with zero uncertainty. The inner product of a with the polynomials V)t and 

, Oj is therefore 

< aikiOj >= a< 'tb 1j> (6.34) 

where i, j=0, ... , 3. The inner products required for -y and 8 are calculated using the 

integrals 

00 1f1 
(< Yjf d02) ýXp () dO3 

_ 
B2 

_L 
00 (f(do1o3)1do1) 

y(d, 01, O"p(2ý2) d83 (6.35) 
00 

QýGij and <> 
f"o 

\2 
fI (if' 

i 
Q(d, ea, B3)ýGiO; d61 dO2ý V2-7r 

) 
dO3 

=1 
00 

\111 
A(d Bz, 8s) i Ojdo2) e"P(2 dO3. (6.36) 

00 2 ýfr 

These integrations may be simplified using the properties of the material parameters and the 

orthogonal polynomials, this simplification has been left out here for brevity. The resulting 

improper integrals are calculated numerically using the extended midpoint rule, as in the 

previous chapter. 

The inner products calculated using the above integrations are substituted into the 

update equations (4.111) and (4.112), which are then used to find the mean and uncertainty 

in the electric field at the output point. In this example the output quantity of interest is 

the absolute value of the electric field in the frequency domain relative to a1 V/m input 

excitation. More numerical integrations are required to calculate the mean and uncertainty 
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in this output, which adds to the overall computational cost of this method. The 95% CI are 

calculated using the mean and standard deviation, in the same manner as for the MoM. 

Application of the Polynomial Chaos Method to the Analytic Solution 

The normalised output electric fieldEy (f) is expanded in terms of the uncertain input 

parameters 01,02 and 03 as 

E'(f, 81,02) =eo(f)+el(! )01+'e2(f)e2'+"e3(f)03 (6.37) 

where co, ... , e3 are constant coefficients. The uncertain parameters 01,02 and 03, in equation 

(6.37), are related to the uncertain parameters µ,., e,. and a in the same manner as described 

by equations (6.14)-(6.16). The coefficient e= is calculated using the inner product 

ei(f) =<E; 
(. f, 91282), z/ýi > 
<0s> 

ga 
loo 

< O? >f1 J-1 
k (. f, e1, Ba), Pi 22 

eXP(- ) 
d81 d92 d03 (6.38) 

where i=0, ..., 3. These inner products are calculated numerically, at each frequency f, 

using the midpoint rule. The numerical integration in 03 may be performed over a smaller 

domain of physically acceptable values. 

Once the coefficients eo, ... , e3 are found, the mean normalised electric field E(f) and 

uncertainty cr(&. (f)) may be calculated as 

E(f) = eo (6.39) 

3 

and a(E(f )) _E ei < , Oi >. (6.40) 
i=1 

Notice that the definition of the mean here is exactly the same as the definition of the analytic 

mean given by equation (6.12). 

6.5.5 Comparing the Results of the Uncertainty Analysis Methods 

The results obtained using the different UA methods are presented in this section, 
beginning with the mean and uncertainty in the analytic solution. Following this the mean 

and uncertainty in the output of the FDTD simulations are presented. 
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The Uncertainty in the Analytic Solutions 

Figures 6.8 and 6.9 show the mean and uncertainty in the normalised electric field 

formed using the different UA methods, for the analytic solution. The analytic solution of 

the mean is exactly the same as the mean predicted by the PCM. This is as expected since the 

analytic solution of the mean (6.12) and the equation representing the PCM prediction of the 

mean (6.39) are equivalent. For this example it is clear that the MCM gives a better prediction 

of the analytic mean, than the MoM. The FSV method was used to compare the means and 

uncertainties predicted by the approximate UA methods with the analytic solutions. The 

results of these comparisons are given in Table 6.2. 

Using Table 6.2 it is clear that the PCM provides the best prediction of the mean 
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Figure 6.8: Mean normalised electric field calculated using the different UA methods, for the analytic solution. 
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Comparing the Predictions of the Means 
Method ADM FDM GDM GDM (1-6) Qualitative 
MCM 0.0193 0.0835 0.0888 1.8884 Excellent 
MoM 0.3753 0.9864 1.1243 5.4067 Poor 
PCM 0 0 0 1 Excellent 

Comparing the Predictions of the Uncertainty 
MCM 0.0335 0.2222 0.2327 3.1687 Good 
MoM 3.5202 1.3983 3.9182 6 Very Poor 
PCM 0.6208 0.4247 0.8142 5.0190 Poor 

Table 6.2: FSV comparisons of the analytic solution of the mean and uncertainty in the normalised electric field, 
with the means and uncertainties predicted by the three UA methods. 

formed analytically. The application of the PCM to the FDTD method is different however 

from the application to the analytic solution. The mean predicted by the PCM for the FDTD 

method may therefore be less accurate. The MCM also provides an excellent prediction of 

the mean formed analytically. The resonant features of the individual frequency response 

curves are averaged out when forming the mean analytically and via the MCM. Frequency 

shifts, between the individual frequency response curves, cause the resonant peaks of these 

curves to become unaligned. These unaligned peaks are then averaged out when the mean 
is formed. In Section 6.6 curve alignment is used to form the aligned amplitude and fre- 

quency uncertainties for this example. Aligning the individual frequency response curves 

prevents the resonant features from being averaged out when forming the mean amplitude 

via the MCM. The resulting mean aligned amplitude curve therefore displays the resonant 

nature of the output frequency response curves. 

The MoM uses only one output curve to form the mean: the output formed by using 

the mean input parameter values in the analytic solution. Since only one curve is used the 

resonant features of the curve are still present in the mean. The mean predicted by the MoM 

has large feature and amplitude differences when compared to the mean formed analytically 

and is therefore a poor prediction of this analytically formed mean. The MoM does however 

give a good prediction of the overall sizes of the mean values. The mean produced by the 

MoM also displays the resonant nature of the output frequency response curves. In Section 

6.6 it is shown that the mean amplitude produced by the MoM and the MCM are in better 

agreement after alignment, since the mean produced by the MCM is more resonant after 

alignment. 

In terms of the predictions of the uncertainty, Table 6.2 shows that the MCM provides 

the best estimation of the uncertainty formed analytically followed by the PCM; the MoM 

provides a "very poor" estimation of the uncertainty for this example. These comparisons 
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Figure 6.12: Normalised electric field for Figure 6.13: Frequency response of the normalised 
spheres with different relative permittivities. electric field for two spheres with different radii. 

agree with the visual comparisons that can be made from Figure 6.9. The PCM prediction 

of the analytic uncertainty is "poor", however the GDM on the visual scale shows that the 

prediction is closer to being a "fair" estimate than a "very poor" estimate. As with the mean 

produced by the MCM, in Section 6.6 it is shown that the amplitude uncertainty formed 

after alignment via the MCM is more resonant. 

Since the MCM provides by far the best estimations of the uncertainty for the analytic 

solutions it is chosen as the benchmark method. The MCM is used to test the performance 

of the other two approximate UA methods, when all three UA methods are applied to the 

FDTD simulation of this example. Once again it is important to remember that the PCM 

may not give as good predictions of the mean and uncertainty in the FDTD simulations, as 
it gave here for the analytic solutions. This is because the PCM is implemented differently 

in the FDTD simulations and the analytic solution. 

The uncertainty predicted by the MoM, shown in Figure 6.9, clearly overestimates 

the output uncertainty at the higher frequencies. Similar overestimations were found in the 
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example in Chapter 5. These overestimations were caused by the nonlinear relationship be- 

tween the output of interest and the uncertain inputs. The MoM assumes that the output 
depends linearly on the inputs. If this is not the case then it has been shown in Section 

4.6.2 that the MoM can both overestimate and underestimate the output uncertainty. Fig- 

ures 6.10-6.12 show that in this example the output electric field depends nonlinearly on the 

input parameters at 2.71GHz, which corresponds to the largest peak overestimation of the 

uncertainty in Figure 6.9. These highly nonlinear relationships result in the peak overesti- 

mations of the uncertainty. 

Figure 6.13 shows the normalised electric field produced from a FDTD simulation 

using the mean input parameter values and a simulation with the sphere radius perturbed 
by 3mm. The two curves in this figure have similar resonant features but are shifted slightly 
in the frequency domain. At 1GHz the frequency response curve is less resonant in nature. 
Changing the radius of the sphere causes a frequency shift which in turn changes the value 

of the normalised electric field in a quasi-linear fashion, at this frequency. Changing the 

radius of the sphere at a more resonant frequency (e. g. 2.71GHz) results in a frequency shift 

which causes a large nonlinear change in the normalised electric field. Figure 6.10 shows the 

relationship between the normalised electric field and the radius of the sphere at 1GHz and 

2.71GHz. At 1GHz the normalised electric field depends on the radius in a relatively linear 

fashion, whereas at 2.71GHz the normalised electric field depends on the radius in a highly 

nonlinear manner. Similar nonlinear relationships between the output electric field and the 

other uncertain inputs arise at frequencies where there is a high modal density, as shown 

in Figures 6.11 and 6.12. These nonlinear relationships cause the MoM to overestimate the 

uncertainty at particular frequencies. 

The above discussion identifies that the nonlinear relationship between the outputs 

and the uncertain inputs is partly caused by the frequency shifts (in the frequency response 

of the normalised electric field) formed by perturbing the uncertain input parameters. In 

Section 6.6 curve alignments are used to determine the extent to which the output uncer- 

tainty is an amplitude uncertainty and a frequency uncertainty. Using curve alignment re- 

moves the frequency shifts between the aligned output amplitude curves. The relationship 

between the aligned output amplitude and the uncertain input parameters should therefore 

be more linear. Thus the MoM should not overestimate the aligned amplitude uncertainties 

by as much. 

Forward difference approximations of the sensitivity derivatives, formed using the 
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curves in Figures 6.10-6.12, are highly dependent on the size of the perturbation used. The 

output uncertainty formed via the MoM is therefore dependent on the size of the chosen 

perturbation. For practical applications, with no analytic solution, it is impossible to de- 

termine the size of the perturbation that will give the most accurate estimate of the output 

uncertainty. It has been previously suggested that it is appropriate to choose a perturbation 

of around the same size as the input parameter uncertainty [2]. 

By applying the UA methods to the analytic solution it has been shown that the MCM 

provides the best prediction of the uncertainty in the output of this example. Some of the 

errors that arise from using the MoM have also been examined. The next section considers 

the performance of the UAs, when applied to the reference FDTD simulation. 

The Uncertainty in the Finite Difference Time Domain Simulations 

Figure 6.14 shows the means predicted by the three UA methods when applied to the 

reference FDTD simulations. As for the analytic case, the frequency response of the mean 

predicted by the MCM is less resonant due to the averaging of unaligned resonant peaks. 

It is not clear, from Figure 6.14, whether the MoM or the PCM is better at predicting the 

mean formed by the benchmark MCM result. The FSV comparisons of the means predicted 

by the MoM and the PCM, with the mean predicted by the MCM, are shown in Table 6.3. 

From this table it may be concluded that both methods provide "poor" estimates of the 

mean formed using the benchmark MCM. The biggest differences between the curves are 

the feature differences. Both the PCM and MoM predict mean curves with large peaks, the 

mean produced by the MCM does not have these resonances. The resonances have been 
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Figure 6.14: Mean normalised electric field calculated using the different UA methods for the FDTD simulation. 
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Comparing the Predictions of the Mean 
Method ADM FDM GDM GDM (1-6) Qualitative 
MoM 
PCM 

0.3682 
0.4268 

0.9556 
0.7839 

1.0923 
0.9701 

5.3666 
5.2139 

Poor 
Poor 

Comparin g the Predictions of the Uncertainty 
MoM 
PCM 

1.5678 
0.8751 

1.3430 
0.8543 

2.1646 
1.3210 

6 
5.6525 

Very Poor 
Poor 

Table 6.3: FSV comparisons of the means and uncertainties predicted by the benchmark MCM and other two 
UA methods. 
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Figure 6.15: Uncertainty in the normalised electric field relative to the mean value, formed using the MCM. 

averaged out by forming the mean using multiple simulated outputs that are shifted in 

frequency. 

The frequency response of the uncertainty in the normalised electric field relative to 

the frequency response of the mean is shown in Figure 6.15. This figure shows that the un- 

certainty is always less than -5dBV/m of the mean value, and over the majority of the fre- 

quency range the uncertainty is less than -1OdBV/m of the mean value. Figure 6.16 shows 

the uncertainty in the output of the FDTD simulation, as predicted by the three UA methods. 

The MoM and PCM both overestimate the uncertainty at the higher frequencies, compared 

to that predicted by the benchmark MCM. Both of these approximate methods assume that 

the output depends linearly on the uncertain input parameters. As explained in Section 

4.6.2, this assumption can cause overestimations of the output when the input uncertainties 

are relatively large, and the output depends nonlinearly on the input. The input uncertain- 

ties for the radius, relative permittivity and relative permeability are (7,, = 0.005, a, = 0.173 

and a,,, = 0.0289 respectively. As a percentage of the mean input parameter values these un- 

certainties are 5% for the radius, 4.33% for the relative permittivity, and 2.899% for the relative 
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Figure 6.16: Uncertainty in the normalised electric field calculated using the different UA methods for the FDTD 

simulation. 

permeability. The uncertainties in the material parameters are realistic however the geomet- 

ric uncertainty may be less than 5% of its mean value in reality. These input uncertainties 

are large enough to cause the MoM and the PCM to overestimate the output uncertainty at 

the higher frequencies. 

The above discussion points out that overestimations of the uncertainty, predicted 

by both the MoM and the PCM, are more prominent at the higher frequencies. Figure 

6.16 shows that both the MoM and the PCM give better predictions of the uncertainty at 

the lower frequencies. This is confirmed by FSV comparisons of the uncertainty predicted 

by the MoM and the PCM, with the uncertainty predicted by the benchmark MCM, at the 

lower frequencies. The MoM uncertainty curve gives a "fair" comparison with the MCM 

uncertainty curve up to 1.21GHz. The PCM does slightly worse, giving a "fair" predic- 

tion of the uncertainty up to only 1.02GHz. The MoM gives an even better comparison for 

lower frequencies, up to 480MHz the similarity between the MoM uncertainty curve and 

the benchmark MCM uncertainty curve is "very good". In this same region the PCM only 

gives a "fair" prediction of the uncertainty. It may be concluded that the MoM, in particu- 

lar, is good at predicting the uncertainty at lower frequencies, for this example. Figure 6.13 

shows that the normalised electric field is less resonant at the lower frequencies and that the 

frequency shifts, caused by changes in the input parameters, are smaller. This implies that 

the output depends on the input in a more linear way, at the lower frequencies, and hence 

the MoM and the PCM provide better predictions of the uncertainty. In general in EMC the 

normalised electric field is less resonant in nature at the lower frequencies. The MoM and 

the PCM may therefore be useful for efficiently predicting the uncertainty in the output of 
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Figure 6.17: Uncertainty in the analytic solution and in the FDTD simulated solution calculated using the MCM. 

CEM simulations of EMC problems at the lower frequencies, where the frequency response 

is less resonant. These UA methods may however provide poor estimates of the uncertainty 

in more resonant EMC data. 

Analysing the Relationship Between Accuracy and Uncertainty 

Thus far in this chapter, the uncertainty in the analytic solution and the reference 

FDTD simulated solution have been quantified. The analytic solution effectively has zero 

error whereas the FDTD simulated solution suffers from truncation and discretisation er- 

rors, as well as other sources of error. Comparing the uncertainty in these two solutions, as 

predicted by the MCM, provides some insight into the relationship between the errors and 

uncertainties. 

The uncertainties in the analytic solution and the FDTD simulated solution are shown 

in Figure 6.17. The uncertainty curves in this figure are very similar, despite the FDTD sim- 

ulation containing some errors. If the FDTD simulation had no errors then the two curves 

would be identical. There is therefore a small relationship between the errors and uncer- 

tainty. The uncertainty in the output is however more dependent on the sizes of the input 

uncertainties and the sensitivity of the output to changes in the different input parameters. 

The uncertainty will be more dependent on the errors as the size of the errors increase. When 

CEM simulations are used to perform an EMC analysis great effort is made to minimise the 

errors in CEM simulations. The uncertainties in accurate CEM simulations are thus likely to 

have only a small dependence on the errors in the simulations. 
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Figure 6.18: Upper 95% confidence interval for the normalised electric field calculated using the different UA 
methods, for the analytic solution. 
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Figure 6.19: Upper 95% confidence interval for the normalised electric field calculated using the different UA 

methods, for the FDTD simulated solution. 

Confidence Intervals 

The upper 95% confidence intervals, calculated using different UA methods for the 

analytic solution and the FDTD simulation, are shown in Figures 6.18 and 6.19. The poor es- 

timates of the uncertainty, by both the MoM and the PCM, lead to poor estimates of the 95%0 

Cl. The CI produced by the different UA methods were compared using the FSV method; 

these comparisons are shown in Table 6.4. The lower confidence intervals predicted by both 

the MoM and the PCM are "very poor" when compared to the lower Cl calculated using the 

MCM. At lower frequencies, however, both the MoM and the PCM give better predictions 

of the 95% CI. FSV comparisons with the benchmark MCM show that the MoM gives "fair" 

predictions of the upper 95% CI up to 1.55GHz, and the PCM gives "fair" predictions up to 
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Comparing the Upper 95% Confidence Intervals 
Method ADM FDM GDM GDM (1-6) Qualitative 
MoM 
PCM 

0.7643 
0.3359 

1.1691 
0.7381 

1.4891 
0.8732 

5.8626 
5.0927 

Poor 
Poor 

Comparing the Lower 95% Confidence Intervals 
MoM 
PCM 

1.2325 
1.5927 

1.4163 
1.0031 

2.0449 
2.0289 

6 
6 

Very Poor 
Very Poor 

Table 6.4: FSV comparisons of the 95% Cl predicted by the benchmark MCM and other UA methods. 
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Figure 6.20: The mean normalised electric field with 95% confidence intervals as predicted by the MCM for the 
FDTD reference simulation. 

2.12GHz. 

The mean normalised electric field and the 95% CIs surrounding this mean, calculated 

using the MCM for the FDTD simulations, are shown in Figure 6.20. As discussed in the 

previous chapter, Figures such as this are extremely useful as they provide the quantitative 

level of confidence that can be held in the result of a CEM simulation. For this example 

the confidence that can be held in the mean value is lower at the higher frequencies. At 

the lower frequencies the confidence intervals are close to the mean value, however as the 

frequency increases so does the size of the overall confidence interval. The interval seems to 

converge towards the higher end of the frequency region. 

6.5.6 The Computational Expense of the Uncertainty Analysis Methods 

The UAs were all performed on a Core2Duo processor working at 3. OGHz. Table 6.5 

displays the computational requirements of each UA method. From this table it can be de- 

duced that the MoM is by far the computationally cheapest method. The more rigorous 

MCM requires the largest amount of computational time. The PCM needs a lot less time 
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Method No. Simulations Time Taken (hours) Memory (MB) 
MCM 700 126 31 
MoM 4 0.72 31 
PCM 1 8.9 680 

Table 6.5: Computational requirements of the UA methods. 

than the MCM but it requires significantly more memory. The MoM is one order of mag- 

nitude faster and requires about 20 times less memory than the PCM. It is therefore the 

computationally cheapest method in this case. 

In this example the PCM requires a very large amount of memory, this is because 

the PCM requires different inner products to be stored at each point in the mesh. These 

inner products are related to the uncertain material parameters. The uncertain material pa- 

rameter values depend on the distance d from the centre of the sphere, therefore different 

inner products are stored at each point in this large mesh. For this example, inner products 

need to be stored for the material parameters ß and i, for the three different uncertain pa- 

rameters: this amounts to a large amount of computational memory. In the regular FDTD 

method the material values are not stored at each point, instead a reference to the material 

parameter at the point in the mesh is stored. This reduces the memory requirements of the 

FDTD simulation for small numbers of material types. It is difficult to minimise the mem- 

ory requirements of the Polynomial Chaos FDTD simulation, for this example, because the 

material parameters are variable throughout the mesh. Since there are different parameters 

values at the different mesh points, many more parameter values need to be stored. The 

PCM therefore requires much more computational memory, in this case, than the other two 

methods. For more complex examples, the memory required to perform the Polynomial 

Chaos FDTD simulation may be too large. 

In the next section curve alignment is used to determine the aligned amplitude and 

frequency uncertainties that are predicted by the MoM and the MCM. Currently there is no 

way of forming the aligned uncertainties for the PCM. 

6.6 Evaluating the Uncertainties After Alignment 

The four output curves used to calculate the uncertainty in the FDTD simulation, via 
the MoM, are shown in Figure 6.21. The reference curve refers to the simulation performed 

with all the input parameters taking on their mean values. The perturbed curves refer to the 

simulations performed with the aforementioned parameter perturbed from its mean value. 
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Figure 6.21: Frequency response of the normalised electric field produced from the reference simulation and the 
simulations with perturbed input parameters. 
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Figure 6.22: Frequency response of the normalised electric field produced by the simulations with perturbed 
input parameters, after alignment (via PM) to the response produced by the reference simulation. 

These curves are very similar, but they are all shifted slightly in frequency. The uncertainty 

in the amplitude and frequency of the FDTD simulation can be calculated by aligning the 

output curves in 6.21. This provides more information as to how the uncertainty in the 

output manifests itself. 

The three curves formed from the perturbed simulations were aligned to the curve 

formed from the reference simulation. The PM method is particularly suited to align such 

curves, as there are many well defined peaks that may be identified, matched and used to 

subsequently align the curves. The PM method was therefore used to align the curves in this 

example. The aligned curves are shown in Figure 6.22, it is clear from this figure that the 

PM method aligned the curves very well. These aligned curves were used to calculate the 
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Figure 6.23: Frequency response of the mean normalised electric field predicted by the MCM and the MoM after 
alignment via PM. 
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Figure 6.24: Frequency response of the uncertainty in the amplitude of the normalised electric field predicted 
by the MCM and the MoM after alignment via PM. 

aligned uncertainty in the frequency and amplitude using the MoM. To be consistent, the PM 

method was also used when forming the aligned amplitude and frequency uncertainties via 

the MCM method. The MCM required only 400 simulations to form converged mean and 

uncertainty estimates. More simulations were required to form the mean and uncertainty 

without alignment (700 simulations). The individual frequency response curves are more 

similar after alignment, the means and uncertainties therefore change less when more MCM 

simulations are performed and thus convergence is reached more quickly in the aligned 

case. 

The aligned amplitude mean predicted by the MoM is a lot closer to the mean pre- 

dicted by the MCM. Figure 6.23 shows the means predicted by these two methods after 
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alignment. Using the FSV method on the two curves in this figure determines that the simi- 

larity of the two curves is "fair". Before alignment the means predicted by the two methods 

were determined to be a "poor" comparison. Thus, the means predicted by the MoM and 

the MCM are more similar after alignment has taken place. The resonant peaks on the mean 

output curve predicted by the MCM are no longer averaged out. This is because the curve 

alignment lines up the peaks of the different output curves. Now that the MCM produces 

a mean with more resonances, the mean is more similar to that predicted by the MoM. The 

mean amplitude formed by the MCM after alignment is more representative of the resonant 

frequency response of the normalised electric field. 

The aligned amplitude uncertainties predicted by the MoM and the MCM for the 

FDTD simulation are shown in Figure 6.24. The amplitude uncertainties formed by the 

MoM and the MCM using curve alignment are more similar than the amplitude uncertain- 

ties formed without using curve alignment. Figure 6.24 shows that the MoM still overesti- 

mates and underestimates the uncertainty at the higher frequencies when curve alignment 

is used. However these overestimations are smaller than in the unaligned case, this is high- 

lighted by the factor three reduction in scale from Figure 6.16 (unaligned case) to Figure 6.24 

(aligned case). Using curve alignment reduces the nonlinearity between the output ampli- 

tude and the input parameters, thus reducing the overestimations formed by the MoM. The 

FSV comparison of the aligned amplitude uncertainty predicted by the MoM and the MCM 

is "poor". In the unaligned case the amplitude uncertainties were a "very poor" compari- 

son. From Figure 6.24 it can be seen that the amplitude uncertainty increases with frequency 

for both methods; some of the features of the two uncertainty curves agree, but overall the 

curves are not very similar. At the lower frequencies, however, the two aligned amplitude 

uncertainties are in much better agreement. The FSV comparison of the amplitude uncer- 

tainties after alignment is again "very good" up to 480MHz, and is "fair" up to 1.69GHz. 

Before alignment the MoM was only able to give a "fair" estimate of the uncertainty up 

to 1.21GHz. Therefore, using curve alignment the MoM is able to give "fair" predictions 

of the amplitude uncertainty over a larger frequency range. The computational efficiency 

of the MoM means that it is useful for providing an approximate prediction of the aligned 

amplitude output uncertainty, for this example, especially up to 1.69GHz. 

The uncertainties in the frequency formed using curve alignment (denoted as the 

aligned frequency uncertainties) via the MCM and the MoM are shown in Figure 6.25. These 

frequency uncertainty curves provide more insight into the form of the output uncertainty. 
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The frequency uncertainty increases with frequency for both UA methods. The larger fre- 

quency uncertainties at the higher frequencies manifest themselves as large amplitude un- 

certainties when curve alignment is not used. As discussed in Section 6.5.5, these large 

frequency shifts produced nonlinear relationships between the output electric field and the 

input parameters. This caused the MoM to overestimate the output uncertainty near the 

resonant peaks of the backscattered field, when curve alignment was not used. These over- 

estimations are reduced by using curve alignment. Figure 6.25 shows that the MoM predicts 
larger frequency uncertainties than the more accurate MCM, at the higher frequencies. Thus 

the MoM still overestimates the aligned amplitude and frequency uncertainties at the higher 

frequencies. These overestimations are still present because the MoM is still an approxi- 

mate method relying on the assumption that the output depends linearly on the uncertain 

inputs. The FSV comparison of the aligned frequency uncertainty produced by the bench- 

mark MCM and the MoM is "fair" up to 2.70GHz. The MoM is therefore fairly accurate at 

predicting the aligned frequency uncertainties over the majority of the frequency range. 

The aligned uncertainties are used to predict the aligned 95% Cl for the mean fre- 

quency response of the electric field. Figures 6.26 and 6.27 show that the MoM gives an 

excellent prediction of the upper 95% Cl for the aligned frequencies, when compared to the 

MCM, but a poorer prediction of the upper aligned amplitude 95% Cl at the higher fre- 

quencies. The MoM predictions of the amplitude 95% Cl are better at the lower frequencies. 

Using the FSV method, the MoM is determined to give "good" predictions of the aligned 

amplitude upper 95% Cl up to 2.09GHz, when compared to the more accurate MCM. The 

FSV method was also used to compare the 95% Cl of the aligned frequencies predicted by 
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Figure 6.25: Frequency response of the uncertainty in the frequency predicted by the MCM and the MoM after 
alignment via PM. 
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both methods and determined that their similarity is "excellent". The MoM therefore gives 

an excellent prediction of the upper 95% confidence intervals for the frequencies, in this 

case. 
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Figure 6.26: The upper aligned 95% Cl 
for the amplitude. 
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Figure 6.27: The upper aligned 95% Cl 

for the frequency. 

For the examples introduced in this chapter and in the previous chapter, it has been 

shown that the uncertainty in the electric field is due to both amplitude and frequency uncer- 

tainties. The aligned frequency increases with frequency, for both examples; this is as a result 

of poorer alignment of the output curves at the higher frequencies. These frequency shifts 

produce larger uncertainties in the unaligned amplitude of the electric field at the higher 

frequencies. Using alignment it is clear that the uncertainties at the higher frequencies are 

also due to uncertainties in the frequency. The overestimated amplitude uncertainties pre- 

dicted by the MoM are reduced after the alignment process. The alignment process helps to 

reduce the nonlinearity in the relationships between the output and the inputs, thus making 

the MoM predictions more accurate. The MoM still gives poor predictions of the amplitude 

uncertainty when compared to the MCM, after alignment, however these predictions are 

better than for the unaligned case. The MoM has also been shown to predict the 959% Cl 

of the aligned frequencies very well. The MoM is computationally much cheaper than the 

MCM, it is therefore still useful for efficiently predicting an approximate quantification of 

the output uncertainty. 

The present example in this chapter has considered the uncertainty in the electric 

field backscattered from a dielectric sphere. The MCM has been shown to most accurately 

determine the mean and uncertainty in the output electric field. The other two approximate 

UA methods are computationally much cheaper than the MCM, however these methods 

provide poor estimates of the output uncertainty at higher frequencies. In the next section 
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it is shown that there are cases where the PCM does not work as an UA method. 

6.7 A Perfectly Electrically Conducting Sphere 

This section briefly discusses one example where the PCM is not applicable, other 

such examples are introduced in Chapter 7. The main problem with the PCM is with the way 
it relates geometric input uncertainties to material parameters. In the example in this section 

the geometric uncertainty causes a boundary to be distributed over a number of discrete 

points. Different material parameters values are assigned to the points near to the boundary, 

this creates unwanted reflections of the Polynomial Chaos field coefficients (e; and hs) in 

the Polynomial Chaos FDTD simulation. The purpose of this section is to demonstrate a 
limitation with the PCM, the MoM and MCM are therefore not considered in this section. 

Consider a PEC sphere, with an uncertain radius, illuminated by a uniform plane 

wave excitation. The sphere is in free space, and the permittivity and permeability of the 

sphere take on the free space values. Suppose the radius of this sphere is Normally dis- 

tributed with a mean a=0.1m and a standard deviation as = 0.005m. The output of in- 

terest is the normalised electric field in the frequency domain, backscattered at a distance of 

0.2m from the centre of the sphere. This field may be calculated analytically using the series 

solution given by Balanis [94, p. 650-658], and using a FDTD simulation, with 100 x 100 x 100 

cells, a cell size Al = 0.005m and 10,000 time steps. Figure 6.28 shows the analytic solution 

and the FDTD solution of this example. The two curves in Figure 6.28 are fairly similar, 

however it is clear that there are errors in the result of the FDTD simulation. The details on 

how the PCM is implemented into the FDTD simulation, for this example, are given next. 

6.7.1 Implementing the Polynomial Chaos Method into the Finite Difference 

Time Domain Simulation 

To perform an UA using the PCM the uncertain radius needs to be related to the 

material parameters in the FDTD chaotic update equations (4.111) and (4.112). Since the 

permittivity and permeability are constant throughout the problem space, the uncertain ra- 

dius relates only to the uncertainty in the conductivity of points near to the mean radius of 

the sphere. Firstly the uncertainty in the radius a of the sphere must be related to 0, which 
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Figure 6.28: Frequency response of the normalised electric field backscattered from a PEC sphere. 

follows a standard Normal distribution. The following relation fits this purpose 

a= +a, O=0.1+0.0050. (6.41) 

This uncertainty in the radius of the sphere must now be related to the uncertainty in the 

conductivity S at positions around the mean radius of the sphere. The term ar is the standard 

notation for the conductivity and the standard deviation (uncertainty); the conductivity has 

been denoted as S here to avoid any confusion with the notation. If a point in the problem 

space is inside the sphere then S= oo, otherwise S=0. Thus the material parameters are 

a= -1 and /i =0 if the point is inside the sphere and a=1 and /1 = At/Olio if the point 

is outside the sphere. Consider a point (x, y, z) = (i/l, jO1, kai), which is a distance d from 

the centre of the sphere. This point is in the sphere if 

d<a=0.1 + 0.0050. (6.42) 

Thus (x, y, z) is in the sphere if 

>d-0.1 (6.43) 
0.005 
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The material parameters a(d, 0) and ß(d, 0), used in the FDTD Polynomial Chaos update 

equations (4.111) and (4.112), are therefore 

-1 for 0>d: '°"1 
a=a d, B = 0. ö% ()1 

otherwise 
(6.44) 

and 

dB0 
for 6> d-0.1 

6.45 fl(0.005 

Ot/Aleo otherwise. 
1 

The uncertain radius follows a Normal distribution, thus Hermite polynomials are 

used in the chaotic expansion of the electric and magnetic fields. If the uncertainty is sought 
to first order, then the chaotic expansion is terminated at P=2. The first order polynomials 

required are 

Mio =1 (6.46) 

and Tii=H1(0)=8. (6.47) 

The orthogonality of the polynomials leads to 

< lPi(ek) j(C1) >- l5ij6kl(i)!. (6.48) 

The electric and magnetic fields are calculated using the update equations (4.111) and (4.112). 

Before these equations can be used, the inner products of the material parameters a, ,O and 

y with the polynomials used in the chaotic expansion need to be calculated. The material 

parameter y= At/0lµ0 with zero uncertainty, since the permeability is that of free space 
throughout the problem space. Thus the inner product of y with the polynomials V; and Oj 

is 

7JijJk1(i)! (6.49) 

where i, j=0,1. The inner products formed with a and Q, at each point a distance d from 
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the sphere centre, are calculated using the integrals 

< abibij >=J a(d, e), OiSÜjexP(- 2a)dO 00 

00 2r 
d-0.1 02 /'00 g2 JTib? Jc"ýý"ý) exp(- 2 `)dg+ (d 

o1(-1)zýiojexp 
E)dO (6.50) 72 

7r 0.005 

00 
an d< ß'+b bb >=f ß(d, 0)i/, ,, 

exp( 2 )dB 

00 27r 
ö-01 At ex)(- 22) 

dB. = 
ýý 

Oleos: j 2ir 
(6.51) 

These improper integrals are calculated using numerical techniques [90, p. 141-1471. The 

inner products calculated using the above integrations are substituted into the update equa- 

tions (4.111) and (4.112), which are then used to find the mean and uncertainty in the electric 

field at the output point. 

The above inner products represent the conductivity of the material through which 

the electromagnetic fields propagate. The uncertainty in the radius of the sphere results in 

different values for the inner products at the points surrounding the radius of the sphere. 

Figures 6.29 and 6.30 show how the inner products change with the cell position. In these 

figures, the cell positions are in the z-direction, with x and y both equal to 5011, and the 

sphere centred at (50AI, 50Al, 50A1), with a radius of 20 cells. Notice that the inner product 

values take on different values at neighbouring cell positions. This corresponds to neigh- 

bouring cell positions having different conductivities, and hence different reflection coeffi- 

cients. The Polynomial Chaos field coefficients es and h; (used in the Wiener-Askey Chaos 

expansion of the electromagnetic fields) will therefore reflect between these neighbouring 

cells. These reflections occur over very small distances producing a large field gradient be- 

tween neighbouring cells. These large field gradients couple in the Polynomial Chaos FDTD 

update equations resulting in a large rate of change of other Polynomial Chaos field coeffi- 

cients. The amplitude of the coupled field coefficients increase as the time of the simulation 

increases, ultimately tending to infinity. 

Figures 6.31-6.33 show three plots that represent how the amplitude of the Polynomial 

Chaos simulated solution increases to unphysical values. These plots represent the spatial 

variation of the Polynomial Chaos field coefficient eö in the plane x= 50AI (the central 

plane). Figure 6.31 shows the field coefficient for time step 150. At this time step the plane 

wave has reached the sphere, the wave moves round the sphere and is backscattered from 
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36 

it. At points near the front of the sphere, where the wave was first incident, the electric 

field coefficient reflects between neighbouring cell positions and builds up. By time step 200 

(Figure 6.32) these large fields propagate around the uncertain radius and begin to spread 

away from the sphere. Figure 6.33 shows how the field has increased to extremely large 

values that fill the whole problem space, ultimately rendering a nonsensical solution. Thus 

for this example the PCM cannot be used to obtain the uncertainty in the output of the FDTD 

simulation. In the next chapter a number of other examples will be introduced where the 

PCM cannot be used. These examples all have uncertain geometric input parameters. 

Field coef 
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Figure 6.31: Planar response of co at time step 150 for the central . r-plane. 
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Figure 6.33: Planar response of co at time step 300 for the central : r-plane. 

6.8 Conclusions 

This chapter has investigated the performance of the different Error and Uncertainty 

Analysis methods, when applied to more complex 3D examples. In the first example the 

electric field backscattered off a dielectric sphere was considered. This example was chosen 
because it is analytically solvable. 

The analytic solution was used to form the error, mean and uncertainty in the results 

of the FDTD simulation analytically. The error formed analytically was compared to the 
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error formed approximately using another FDTD simulation, performed on a refined mesh. 
The FSV method was used to perform this comparison, and determined that the two errors 

are fairly similar at the higher frequencies. Overall the error estimation, formed using the 

refined FDTD simulation, seemed to be a very good estimation of the actual error. The FSV 

comparison may have suffered from small frequency shifts creating large offsets between 

the curves. Ignoring the offset difference, the curves were determined to be very similar. 
The error estimation, formed from the refined FDTD simulation, did however underesti- 

mate the errors at the lower frequencies. These underestimations arise because the refined 

simulations are less accurate at the lower frequencies, and thus fail to highlight the errors in 

the coarse FDTD simulations. 

At higher frequencies the error in the coarse FDTD simulation took on large peak val- 

ues. It was shown that these large amplitude errors were partly due to frequency shifts, at 

the higher frequencies, that caused an unalignment of the characteristic resonant peaks. Us- 

ing curve alignment it was shown that the aligned amplitude error was significantly lower 

at the higher frequencies and that there were errors due to frequency differences between 

the curves. Thus the error in the output of the FDTD simulation manifests itself as an am- 

plitude and a frequency error. This information, on the form of the output uncertainty, is 

difficult to obtain without aligning the curves. 

Uncertainty Analyses were applied to the analytic solution of the field backscattered 

from the dielectric sphere. The mean and uncertainty predicted by the MCM, the MoM 

and the PCM were compared to the mean and uncertainty obtained analytically. Through 

these comparisons it was shown that, of the three UA methods investigated in this thesis, 

the MCM most accurately predicts the uncertainty in the solution. The MCM was therefore 

used as the benchmark method, by which the performance of the other two methods were 

compared when all three UAs were applied to the FDTD simulated solution. The MoM was 

shown to give very poor predictions of the uncertainty at higher frequencies. It was argued 

that the nonlinear relationship between the output field and the frequency, along with the 

frequency shifts caused by the parameter perturbations, caused the output to depend on 

the input in a highly nonlinear way. This nonlinear relationship is most prominent around 

the frequencies at which the electric field is at a resonant peak. The MoM assumes that 

the output depends linearly on the input, this is therefore a poor assumption to make at 

the peak frequencies. Subsequently, at the resonant frequencies, the MoM prediction of the 

uncertainty is poor. 
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The means predicted by the MoM and the PCM were shown to be poor when com- 

pared to the mean predicted by the MCM for the FDTD simulation. The overall mean am- 

plitudes, predicted by the three methods, were similar but the features predicted by the 
MoM and the PCM were different from those predicted by the MCM. Resonant features of 
the electric field are averaged out in the prediction formed by the MCM. There is no such 

averaging of the resonant features in the mean curves predicted by the other two methods. 
This results in the means predicted by the MoM and the PCM being poor estimations when 

compared to the means predicted by the MCM. The means produced by the MoM and the 
PCM do however represent the resonant nature of the frequency response of the normalised 

electric field. 

In terms of the uncertainty predictions for the output of the FDTD simulations, the 

MoM produced a very poor prediction of the uncertainty and the PCM gave a poor predic- 

tion at the higher frequencies, when compared to the prediction formed using the bench- 

mark MCM. Both the MoM and the PCM assume that the output depends linearly on the 

uncertain inputs; at higher frequencies the relationship was highly nonlinear. This caused 

the PCM and the MoM to overestimate the output uncertainty at the higher frequencies. 

Both the MoM and the PCM performed better at lower frequencies. The MoM and PCM 

were shown to give fair predictions of the uncertainty up to 1.21GHz and 1.02GHz respec- 

tively. 

By comparing the uncertainty predicted by the MCM for the analytic and FDTD sim- 

ulated solutions, it was shown that the uncertainty in the output of a simulated solution has 

only a small dependence on the accuracy with which that simulation is implemented. The 

larger the errors in the output of a simulation, the more the output differs from the output 
formed with zero error, and therefore the more the output uncertainty will also differ. For 

fairly accurate simulations, however, the uncertainty is more dependent on the size of the 

input uncertainties, and the sensitivity of the output to changes in those input uncertainties. 

Confidence intervals were formed using the means and uncertainties predicted by the 
different UA methods. The confidence intervals provide the quantitative level of confidence 
that may be held in the mean output. For the dielectric sphere example it was shown that 

at lower frequencies a high level of confidence can be held in the mean output, whereas 

at higher frequencies the confidence in the value of the output mean reduces. The means 

and uncertainties predicted by the MoM and the PCM were poor, at the higher frequencies, 

which caused the predictions of the 95% CI to be poor as well. Both methods performed 
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better at the lower frequencies, giving fair predictions of the upper 95% CI up to 1.55GHz 

for the MoM and 2.12GHz for the PCM. 

The three UA methods were also compared in terms of their computational expense. 

As with the example in the previous chapter, the MCM requires the most amount of compu- 

tational time, the PCM requires significantly more memory than the other methods, and the 

MoM is by far the computationally cheapest method. For this example the MoM requires 

175 times less computational time than the MCM, and about a factor 20 times less mem- 
ory than the PCM. The MoM has been shown to give good predictions of the uncertainty 

over certain frequencies, it is also by far the computationally cheapest method. The MoM 

is therefore useful in obtaining an efficient estimate of the uncertainty in the output of CEM 

simulations, especially when the output depends on the inputs in a more linear fashion. 

Curve alignment was used to determine the form of the output uncertainty. Cur- 

rently it is not possible to determine the aligned uncertainty using the PCM. Using the PM 

method it was shown that the uncertainty in the output is due to both frequency and ampli- 
tude uncertainties. The amplitude uncertainties before alignment were larger at the higher 

frequencies. This is because small frequency shifts at the higher frequencies created large 

amplitude offsets between the curves. Using curve alignment reduces the aligned ampli- 

tude uncertainty, and provides an estimation of the frequency uncertainty. Both the aligned 

amplitude and frequency uncertainties were shown to increase with frequency. 

The overestimations of the uncertainty predicted by the MoM were reduced slightly 
by using curve alignment. This is because the frequency shifts of the resonant frequency 

response curves were reduced, which meant that the output depended on the inputs in a 

more linear fashion. Thus the MoM assumption that the output depends linearly on the in- 

puts was a better assumption. The aligned amplitude and frequency uncertainties estimated 
by the MoM were still poor at the higher frequencies. At the lower frequencies, however, 

the MoM performed better predicting fair aligned amplitude and frequency uncertainties 

up to 1.69GHz and 2.70GHz respectively. The MoM gave an excellent prediction of the 

aligned frequency upper 95% CI over the whole frequency range, and a good prediction of 
the aligned amplitude upper 95% CI up to 2.09GHz: this is much better than before align- 

ment. It may be concluded that, for this example, the MoM provides better approximations 

of the uncertainty and the 95% CI at lower frequencies and when curve alignment is used. 

The aligned mean calculated using the MoM was determined to be a fairly good es- 
timate of the aligned mean calculated by the MCM. The alignment process lines up the 
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resonant features in the curves produced by the MCM simulations. Thus, the resonant fea- 

tures are no longer averaged out in the mean obtained from the MCM. This causes the two 

means to be more similar than before alignment. For this example it can be concluded that 

the MoM gives a fairly good prediction of the aligned mean, when compared to the aligned 

mean produced by the MCM. 

Section 6.7 introduced a similar 3D example where the PCM did not work. The ex- 

ample involved the scattering of an electric field plane wave off a PEC sphere with an un- 

certain geometry. The PCM deals with this uncertainty by distributing the conductivity 

values of the sphere over a small number of discrete points. Different conductivity values 

at neighbouring points caused the Polynomial Chaos field coefficients to reflect over small 
distances. This induced a large rate of change of the field coefficients, which were coupled 
by the Polynomial Chaos FDTD update equations. The high rate of change of one field 

coefficient induced the high rate of change of other field coefficients. This resulted in the 

amplitude of the field coefficients increasing rapidly in size. Unrealistic field coefficients 

resulted, which could not be used to form a sensible mean or uncertainty for the output of 

the FDTD simulation. 

In the next chapter the UA methods will be applied to CEM simulations of more real- 

istic EMC examples. These examples do not have analytic solutions and it is therefore not 

possible to determine the performance of the approximate error and uncertainty analyses by 

comparisons with analytic results. The approximate error analysis will be used to estimate 

the error in the output of the FDTD simulations, this method has been shown to work quite 

well in the previous analytic examples. The MCM has been shown to be the best predictor 

of the uncertainty in the output of the analytic solution. This method will therefore be used 

as the benchmark method by which the results of the other two approximate methods are 

compared. 
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7.1 Introduction 

The examples used in this chapter represent more realistic EMC scenarios that have 

no analytic solution and are subsequently solved using CEM simulations. The MCM, MoM 

and PCM are applied to these CEM simulations to quantify the mean, uncertainty and 95% 

CI associated with the output of the simulations. As in the previous chapter the MCM is 

used as the benchmark method by which the performance of the other two UA methods are 

compared. The approximate error analysis method is also used to provide an estimate of 
the errors in the FDTD simulations. 

In the first example an electromagnetic wave is radiated from a dipole antenna and 
is incident upon a personal computer. There is an aperture in the front face of this com- 

puter, where the compact disc drive would be placed. This forms the usual EMC setup of 

a shielded box with an aperture. The shielded box contains an output point and a Printed 

Circuit Board (PCB), which has a number of electrical components situated upon it. These 

components absorb a small amount of the field that penetrates the box and therefore the 
board and its components may be modelled as a thin material block with a certain reflec- 
tion coefficient. There is however an uncertainty in the reflection coefficient of the board, 

which results in an uncertainty in the normalised electric field recorded at the output point. 
The three UA methods are used to quantify this uncertainty and produce the 95% CI that 

surround the mean output. This example is modelled using the FDTD method. 

The second example considers the uncertainty in the shielding effectiveness of an en- 

closure with uncertain aperture coordinates. The third example also considers the uncer- 
tainty in the shielding effectiveness of a box, but this time with ten geometric uncertain 

parameters. This third example is used to test the performance of the UA methods when 
there is a larger number of uncertain parameters. These last two examples are modelled 

using the FDTD method and the ILCM method. A comparison of the uncertainty in the 

output of these different methods is provided. The PCM cannot be used in these last two 
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Figure 7.1: Shielded box containing a PCB, illuminated by an electromagnetic pulse from a dipole. 

examples; the PCM would implement the uncertain geometries as different inner product 

field coefficients of varying conductivity, over a small number of points. This would result 

in a nonsensical solution as in the example in Section 6.7. 

7.2 A Printed Circuit Board in a Shielded Enclosure 

Figure 7.1 shows the setup of the first EMC example. An electric field is excited from 

a dipole (oriented in the z-direction) and scattered off a shielded enclosure, which has an 

aperture in the front face. This shielded enclosure represents the shielding exterior of a 

personal computer. A PCB is situated inside the computer, absorbing some of the electric 

field that penetrates the enclosure and is incident upon the board. The PCB maybe modelled 

as a thin dielectric block with a certain reflection coefficient 1951. The absolute value of the 

reflection coefficient is not exactly known, but it is assumed to take a value from the interval 

F= [0.91,0.971. (7.1) 

Notice that the reflection coefficient described by equation (7.1) is uncertain, it follows a Uni- 

form distribution. The uncertainty in this input will cause there to be an uncertainty in the 

frequency response of the normalised electric field recorded at the centre of the enclosure. 

This normalised electric field Ez is the absolute value of the ---component of the electric field 

observed at the centre of the box relative to a1 V/m input excitation. 

To describe the coordinates of this example the origin is assigned to the bottom right 

hand corner of the front face of the enclosure, which itself is in the y-z plane. The width of 
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the box is y= 38cm, the depth is x= 40cm and the height is z= 15cm. For the purposes of 

the following discussion, the points in this coordinate system have units of cm, referenced 
from the origin. The bottom right hand corner of the aperture is at the point (0,19,5) and 

extends by a width ay = 15cm and a height a, z = 4cm. Using this coordinate system, the 

PCB is oriented in the x-z plane, extending from the point (5,14,2) a distance xb = 30cm in 

the positive x-direction and a distance 10cm in the positive z-direction. The centre of the 

dipole is at (-20,26,7), this is 20cm away (in the x-direction) from the centre of the aperture. 

The arms of the dipole are each 7cm in length, with a radius of 1mm. The voltage source at 

the centre of the dipole has an amplitude of VO = 2V over a load of 501. The input excitation 
is a Gaussian of the form 

V_Vop 
41n2(t--to)2 

(7.2) 
fwhh2 

) 

where to = 6.67 x 10-10s is the onset time and fwhh = 2.78 x 10-10s is the full width of the 

Gaussian pulse at half the height of the maximum amplitude. 

The reflection coefficient of the PCB is set by assigning certain material parameters to 

the PCB. In this example the frequency dependent reflection coefficient is set for a frequency 

of 1.8GHz: this is one of the main frequencies at which mobile phones operate in the United 

Kingdom. An analytic expression exists that relates the reflection coefficient of a uniform 

plane wave incident upon a lossy dielectric slab in free space, to the material parameters 

and thickness of that slab [94, p. 235-236]. In the FDTD simulation of this example, the PCB is 

modelled as a thin boundary with an associated conductivity, permittivity and permeability. 

The thickness of the PCB is not well defined and therefore the analytic expression cannot 

be used to obtain the material parameters that are associated with the required reflection 

coefficient. 

To obtain the correct material parameters of the PCB, the relationship between the re- 

flection coefficient and the conductivity of the board was formed through a number of FDTD 

simulations. The board was assumed to have a relative permittivity of four and a relative 

permeability of one. The conductivity required to obtain the correct reflection coefficient 

was determined by using efficient one dimensional FDTD simulations. These simulations 

involved propagating a Gaussian pulse down the x-axis towards a thin boundary represent- 

ing the PCB. By recording the electric field reflected back from the board, transforming this 

field into the frequency domain and taking the ratio of the resultant field to the incident ex- 

citation, it is possible to determine the reflection coefficient of the board at 1.8GHz. Varying 

the conductivity of the board allowed a relationship between the reflection coefficient and 
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Figure 7.2: Relationship between the reflection coefficient and the conductivity. 

the conductivity to be formed. 

Figure 7.2 shows the reflection coefficient values associated with the different conduc- 

tivities of the PCB. A quartic function was interpolated using these data points: this quartic 

is also shown in Figure 7.2. Visually the interpolant fits the data points extremely well. The 

observed raw data points and the expected points, evaluated from the quartic interpolant, 

produce a Chi-square value of X2 = 1.1039-'. This Chi-square value is extremely small and 

it may therefore be concluded that the quartic interpolant fits the data very well in this case. 

The quartic interpolant relates the reflection coefficient r to the conductivity S as 

S= 106 (0.2696966X'4 
- 0.99480063[''; + 1.376 5588x2 - 0.846849801' + 0.19541786) . 

(7.3) 

It is important to maintain the numerical accuracy of these coefficients, using less significant 

figures results in a poor fit to the raw data points. This quartic interpolant is used later to 

relate the uncertain reflection coefficient of the board to the uncertain conductivity of the 

board. 

The frequency response of the normalised electric field at the centre of the enclosure 

was obtained using a FDTD simulation. This simulation was set up with a problem space 

containing 100 x 100 x 100 points, with a cell size of 1cm and 10,000 time steps. The dipole 

and enclosure were modelled at the centre of this problem space. For the purposes of the 

discussion that follows this FDTD simulation is referred to as the reference simulation. 

Figure 7.3 displays the frequency response of the normalised electric field as per- 

formed on the reference FDTD mesh and two meshes refined by factors of two and four. 
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Figure 7.3: The normalised electric field formed from FDTD simulations performed on progressively refined 
meshes. 

The curves in this figure have a similar modal structure but differ in their amplitude. Con- 

vergence of the output of the progressively refined FDTD simulations has not been reached: 

the FSV comparison of the electric field produced with refinement factors of two and four is 

only "fair". Despite this absence of a converged solution, the reference simulation is used in 

the UAs that follow. The refined simulations are too computationally expensive to be used 

in the UAs. The reference FDTD simulation took around 11 minutes, which resulted in a 

MCM simulation that took around 18 hours. Refining the mesh by a factor two would have 

caused this MCM simulation to take about 12 days. One of the problems with the MCM is 

its computational expense when applied to real, computationally expensive CEM simula- 

tions. This highlights the need for computationally efficient UA methods that can be used 

to estimate the uncertainty in real CEM simulations. 

For this example the different UAs were applied to the results of the reference simu- 

lation. An estimation of the error in the output of this reference simulation is determined in 

the next section. 

7.2.1 Error Analysis of the Finite Difference Time Domain Simulation 

In the previous two chapters an approximate Error Analysis method was shown to 

give a fairly accurate estimate of the error in the FDTD simulation. This error prediction 

method uses a FDTD simulation performed on a mesh that is refined by a factor four, with 

respect to the reference FDTD mesh. Taking the difference between the output of the refer- 

ence simulation and the refined simulation gives an estimate of the error in the output of 
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Figure 7.4: Estimate of the error in the normalised electric field. 

the reference simulation. These output errors are mainly due to the discretisation errors and 

dispersion errors that are formed from the approximations used to create the FDTD method. 

Figure 7.4 shows the absolute error predicted in the reference simulation. At certain 

frequencies there are relatively large peak errors. At our frequency of interest (1.8GHz) 

the error is 41% of the normalised field formed from the FDTD simulation with a refinement 

factor of four. This large percentage error is due to the fact that the output FDTD simulations, 

performed on progressively refined meshes, have not yet converged. Figure 7.3 shows that 

the differences between the output of the reference and refined FDTD simulations are mainly 

due to amplitude differences. There will be a small frequency error, however the majority of 

the error is due to the differences in the amplitudes. Curve alignment is therefore not used 

in this example to quantify the aligned amplitude and frequency errors. 

This section has determined that the estimated error in the reference FDTD simula- 

tion is fairly large. In the next section the uncertainty in the output of the reference FDTD 

simulation is quantified. 

7.2.2 Uncertainty Analysis of the Normalised Electric Field 

In this section the three different UA methods are used to quantify the uncertainty in 

the output electric field. Firstly the application of each of the UA methods to this specific 

example are described. The methods are then compared in terms of their ability to accurately 

estimate the output uncertainty and in terms of their computational expense. 

Since no analytic solution exists for this example there is no way of forming the mean 
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and uncertainty analytically. The MCM is chosen to be the benchmark method by which the 

performance of the other two methods are compared. The MCM is chosen because it has 

been shown to accurately predict the analytic mean and uncertainty in the examples in the 

previous chapters. The application of the MCM to this example is described next. 

The Monte Carlo Method 

The Latin Hypercube Sampling method was used to create 500 samples of the reflec- 

tion coefficient, based on the PDF associated with the uncertain reflection coefficient. The 

different reflection coefficients from this sample were substituted into equation (7.3) to ob- 

tain the corresponding sample of conductivities for the PCB. This set of conductivities forms 

the input parameter sample for the FDTD simulations. 

The input parameter sample was used in the FDTD reference simulation to create 

numerous output frequency responses of the normalised electric field. The FSV method was 

used to determine when the MCM had reached convergence, as described in Sections 3.2.3 

and 4.5.2. For this example it was found that convergence was reached after only 100 FDTD 

simulations. The MCM is still the most computationally expensive method, however fewer 

simulations were required here compared to in previous examples. This example contains 

only one uncertain input with a relatively small associated uncertainty. The outputs formed 

from the different MCM simulations are therefore fairly similar, which causes the means and 

uncertainties to converge quickly. 

The Method of Moments 

The MoM required only two simulations to calculate the output uncertainty for this 

example. One simulation was performed with the reflection coefficient taking on its mean 

value r' = 0.940, to three significant figures. The conductivity corresponding to this value 

was found using the same one dimensional FDTD simulations that were used to find the 

relationship between the conductivity and the reflection coefficient. The second simulation 

was performed with the reflection coefficient taking on a perturbed value r=0.951, to 

three significant figures. Once again the conductivity corresponding to this reflection co- 

efficient was found using the 1D FDTD simulations. This perturbation is a similar size to 

the uncertainty in the reflection coefficient. It has been previously suggested that using a 

perturbation of a similar size to the uncertainty in the input parameter is appropriate when 
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using the MoM. 

The sensitivity derivative calculated from the results of the two FDTD simulations 

was combined with the input uncertainty to calculate the mean and uncertainty in the out- 

put, according to equations (4.51) and (4.53). Since only two simulations are required here, 

this method is computationally much cheaper than the MCM. 

The Polynomial Chaos Method 

To perform an UA using the PCM the uncertain input parameter needs to be related 

to the material parameters in the FDTD chaotic update equations (4.111) and (4.112). The 

uncertainty in the reflection coefficient of the PCB is related to 0, which follows a standard 
Uniform distribution over the interval (-1,11. Since the reflection coefficient is Uniformly 

distributed over the interval [0.91,0.971, it is related to 0 as 

r_r+0.9720.910_0.94+0.030. (7.4) 

Using equation (7.3) the uncertain reflection coefficient is related to the uncertain conduc- 

tivity of the PCB as 

S(6) = 106(0.26969667(0.94 + 0.038)4 - 0.99480063(0.94 + 0.038)3 

+1.3765588(0.94 + 0.030)2 - 0.84684980(0.94 + 0.030) + 0.19541786) . (7.5) 

The material parameters a and Q, both have some dependence on the conductivity. The 

material parameters a and ß may therefore be written as 

_ 
1- S(O)At/2e (7 6) ' 1- S(O)At/2E 

It 
and 0= 

Ai«(i + S(O)At/2e) 
(7.7) 

where S(9) is given in equation (7.5) and e= 4eo. 

The reflection coefficient follows a Uniform distribution, Legendre polynomials must 

therefore be used in the chaotic expansion of the electric and magnetic fields. If the uncer- 

tainty is sought to first order, then the chaotic expansion is terminated at P=2. The first 
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order polynomials required are 

7ia=1 (7.8) 

and 01 = Li (0) = B. (7.9) 

The orthogonality of the polynomials leads to the relations 

< L, (Ok)L3(01) >= aiiökl2i + i' (7.10) 

The electric and magnetic fields are calculated using the update equations (4.111) and 
(4.112). Before these equations can be used the inner products, of the material parameters 
(a,, 6 and -y) with the polynomials (io an, ii), need to be calculated. The material parameter 

ry = Ot/poLl with zero uncertainty. The inner product of y with the polynomials ? it and Oj 
is therefore 

<'V:? P2 >= 7 i(ek)lPj(01) > (7.11) 
where i, j=0,1. The inner products required for a and ß are calculated using the integrals 

1 

<cio`oj >=2 
f 

1ck(O)OiOjd© 
ri 

and < Qhj? i >=2Jl , 6(0)oiibjdO (7.12) 

where a(O) and , Q(9) are given in equations (7.6) and (7.7). These integrals were calculated 

numerically using MAPLE. The material inner product values are only required at the mesh 

points of the PCB, this means that only six numerical integrations are required here. For the 

sphere examples, in the previous chapter, many different integrations were required at the 

different points in the problem space. This led to a greater computational expense for the 

PCM. 

The inner products calculated using the above integrations are substituted into the 

update equations (4.111) and (4.112), which are then used to find the mean and uncertainty 
in the electric field at the output point. In this example the output quantity of interest is 

the absolute value of the electric field in the frequency domain relative to a1 V/rn input 

excitation. More numerical integrations are required to calculate the mean and uncertainty 
in this output, which adds to the overall computational cost of this method. 
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7.2.3 Results of the Uncertainty Analyses Applied to the Finite Difference Time 

Domain Simulations 

The mean and uncertainty in the output electric field are shown in Figures 7.5 and 7.6 

respectively. At 1.8GHz the uncertainty is very small (7.93 x 10-:; V/m) compared to the 

mean value (4.29 x 10-1 V/m) at this frequency. This means that the normalised electric 
field takes on a value that is close to its mean value. Performing the UAs provides us with 

the level of confidence that may be held in the mean output. 
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Figure 7.5: Mean normalised electric field 

as predicted by the three UA methods 
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The means and uncertainties predicted by the three methods are in excellent agree- 

ment: the curves in Figures 7.5 and 7.6 are so similar that they overlay each other. The 

FSV method was used to compare the curves in these figures. Both the MoM and the ['CM 

formed means that were "excellent" matches to the mean curve produced by the MCM. 

The uncertainties formed using the MoM and the PCM were also "excellent" matches to the 
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Figure 7.8: Output formed by the 

reference and perturbed simulations 
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Table 7.1: Computational requirements of the three methods. 

Method No. Simulations Time Memory 
PCM 1 1.8 hours 62 MB 
MoM 2 22 minutes 31 MB 
MCM 100 18 hours 31 MB 

uncertainty calculated by the benchmark MCM. 

Figure 7.7 shows the upper 95% Cl predicted by the three UA methods. The three UA 

methods produce CI that are in very good agreement. Comparing the upper 95% Cl pro- 
duced by the MoM and the MCM, using the FSV method, provides a GDM value of 1.7828, 

corresponding to an "excellent" comparison. The PCM also produces an "excellent" predic- 
tion of the upper 95% CI, when compared to the MCM, with a GDM value of 1.1805. All 

three UA methods therefore produce means, uncertainties and 95% CI that are in excellent 

agreement. 

Figure 7.8 shows the reference and perturbed simulations used to produce the un- 

certainty via the MoM. The two curves in this figure are already aligned very well, curve 

alignment is therefore not needed in this example. The perturbation of the input parameter 
does not produce a frequency shift between the resonant curves. The resonant peaks on 

the two curves in Figure 7.8 are aligned and therefore the output does not depend on the 

input in a nonlinear manner, as was observed in previous examples. The linear relationship 
between the output and the input parameter enabled the MoM and the PCM to provide 

accurate predictions of the mean, uncertainty and 95% CI. The input uncertainty is also rela- 

tively small, contributing to the accuracy of the linear approximation used by the MoM and 

the PCM. 

Table 7.1 shows the computational performance of the three methods. As expected, 

the MCM takes by far the largest amount of computational runtime. The PCM requires a 
factor 5 times more computational runtime than the MoM and a factor 2 times more memory. 
Therefore, for this example the MoM is the preferred method: the method gives excellent 

predictions of the mean and uncertainty and it is the most computationally efficient method. 

Figure 7.9 shows the mean output electric field with 95% CI, as predicted by the MCM. 

These CI provide the quantitative level of confidence that may be held in the results of the 

simulation. At 1.8GHz the 95% Cl are very small: the output field is in the region E. = 
[0.418,0.444] V/m with 95% confidence. An experimenter may be very confident that at this 
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Figure 7.9: Mean output electric field with 95%, Cl. 

frequency the output electric field is very close to its mean value Ez = 0.429 V/m. The 

estimated error at this frequency, however, was around 40% of the value obtained from the 

refined FDTD simulation. Thus, the experimenter may be confident that the normalised 

electric field lies close to its mean value, but must be aware that there is a relatively large 

error in this mean value. 

This example has shown that the computationally efficient UA methods (the MoM 

and the PCM) can provide excellent predictions of the uncertainty in CEM simulations of 

EMC scenarios. This example was however fairly simple with only one uncertain input pa- 

rameter with a relatively small associated uncertainty. The next section introduces another 

EMC example with more uncertain input parameters. 

7.3 A Shielded Enclosure With an Uncertain Aperture Geometry 

Another well studied EMC example involves calculating the SE of a metallic box with 

a rectangular aperture. The shielding enclosure is illuminated by an electromagnetic wave 

and some of the energy of this wave penetrates through the aperture of the enclosure. The 

SE of the enclosure is measured by taking the ratio of the electric field present at a point 

inside the enclosure, to the field present at the same point when the enclosure is not present. 

In this example a shielded enclosure is considered with an uncertain aperture geometry. 

This uncertainty in the aperture causes an uncertainty in the output SE of the enclosure. 

Uncertainty Analyses are used to quantify the uncertainty in this output. 

A similar coordinate system to that used in the last example, is used here to explain 
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Figure 7.10: A shielded enclosure with an aperture in one face. 

the geometries of the shielding enclosure. The front face of the box, which contains the rect- 

angular aperture, is situated in the y-z plane with the bottom right hand coordinate situated 

at the origin. The width of the box is y= 38cm, the depth is x= 40cm and the height is 

z= 16cm. For the purposes of the following discussion, the points in this coordinate system 
have units of cm, referenced from the origin. In this example the aperture has uncertain 

coordinates. The coordinates of the sides of the aperture have average values of 91 = 4cm 

for the lower y-coordinate, gu = 21cm for the upper y-coordinate, zl = 5cm for the lower z- 

coordinate and 2, = 11cm for the upper z-coordinate. These uncertain aperture coordinates 

all follow Normal distributions with standard deviations (uncertainties) of 1cm. Figure 7.10 

shows the setup of this example. 

The shielded box is illuminated with a plane wave excitation, which is modelled in 

the FDTD simulation using a Huygen's surface. The Huygen's surface minimises the source 
fields propagating towards the boundary, allowing the external boundary of the problem 

space to be situated closer to the shielded box. Reducing the size of the problem space in- 

creases the efficiency of the FDTD simulations. The Huygen's surface is situated at five cells 
in from the boundary of the problem space and creates a plane wave Gaussian excitation of 
the form 

E= Eo exp 
41n 2(t - to)a (7.13) 

f whh2 

where Eo = 1V/m, to = 6.67 x 10`10s is the onset time and fwhh = 2.78 x 10-10s is the full 

width of the Gaussian pulse at half the height of the maximum amplitude. 

The output of interest, for this example, is the SE of the electric field observed at the 

centre of the box: the point (20,19,8) in the above coordinate system. The time response of 

y YU TJl 
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Figure 7.11: Frequency response of the SE obtained using FDTD simulations on meshes with different refinement 
factors. 

the z-coordinate of the electric field was recorded at this output point. This electric field time 

response was then transformed into the frequency domain via an FFT to form EE,,,,, (f ). The 

frequency response of the electric field in the absence of the box E f,. ý.,, (f) was then obtained 

for the same output point. The SE of the box, at the output point, is defined as 

SE(f) = -20loglo 
I Ebx(f )I 

(7.14) 
Efree, (f ) I)' 

The FDTD simulation was set up with a problem space containing 60 x 60 x 60 points, 

with a cell size of 1cm and 10,000 time steps. The enclosure was modelled at the centre of 

this problem space, surrounded by the Huygen's surface. For the purposes of the discussion 

that follows this FDTD simulation is referred to as the reference simulation, performed on a 

mesh with a refinement factor of one. Figure 7.11 shows the output of the FDTD simulations 

performed on progressively refined meshes. The frequency response of the SE formed by 

the reference simulation was determined to be a "good" match (with a GDM of 3.3862) to 

the frequency response produced by a simulation using a refinement factor of two. It may 

therefore be concluded that the reference simulation has converged sufficiently. The error in 

this FDTD simulation was found approximately by using the FDTD simulation performed 

on a mesh with a refinement factor of four. 

The SE was also formed using the ILCM method, which is described in Section 2.2.3. 

Quantifying the uncertainty in the output of these two different methods provides infor- 

mation on whether the output uncertainty is dependent on the method used. Figure 7.12 

displays the frequency response of the SE of the box, calculated using the reference FDTD 
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Figure 7.12: Frequency response of the SE obtained via the reference FDTD simulation and the ILCM method. 

simulations and using the ILCM method. The overall form of these curves is similar how- 

ever some of the features differ. The FSV comparison agrees with this providing a GDM of 

4.9795, for the two curves in Figure 7.12, corresponding to a "fair" comparison. The error in 

the output of the reference FDTD simulation is quantified in the next section. 

7.3.1 Quantifying the Error in the Output of the Finite Difference Time Domain 

Simulation 

The absolute value of the error in the reference FDTD simulation was obtained ap- 

proximately by taking the absolute difference between the output of the reference FDTD 

simulation and the simulation performed with a refinement factor of four. The results of 

this approximate error analysis are shown in Figure 7.13. The estimated error takes on large 

peak values at particular frequencies and is significantly lower at surrounding frequencies. 

The curves used to form the output error curve are shown in Figure 7.11. At certain frequen- 

cies, on these curves, one curve is at a resonant peak value and the other curve is not. Taking 

the difference between the two curves at these frequencies results in a large peak error value 

being formed. The highly resonant nature of the frequency response of the SE results in 

an error curve with peak values at particular frequencies. The error in the reference FDTD 

simulation, shown in Figure 7.13, is therefore small at most of the frequencies but takes on 

large peak values at some of the frequencies. 

At the higher frequencies, the frequency responses of the SE in Figure 7.11 suffer from 

a small amount of misalignment. The SE obtained using the reference and refined FDTD 

simulations were aligned using the PM method. The results of this alignment are shown 
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Figure 7.13: Frequency response of the estimated error in the output of the reference FDTD simulation. 

40 

30 

20 

m 10 

w 
0) 0 

-10 

-20 

-30 
0 500 1000 1500 2000 2500 3000 

frequency (MHz) 

Figure 7.14: Frequency response of the SE, formed from the reference FDTD simulation, before and after align- 
ment to the SE formed from the refined FDTD simulation. 

in Figure 7.14, it is clear from this figure that the curves are aligned better after alignment 

via the PM method. The FSV method was used to test the similarity of the two curves 

before and after alignment. The GDM obtained for the two curves reduced from 3.5552 

before alignment to 3.2333 after alignment. It may therefore be concluded that the curves 

are more similar after alignment, and therefore that the PM method has aligned the curves 

well. The subsequent aligned absolute amplitude and frequency errors are shown in Figures 

7.15 and 7.16 respectively. A number of the peak amplitude errors, occurring at the higher 

frequencies (such as the peak error at 2.98GHz), are reduced after alignment. At certain 

frequencies the peak amplitude errors have not been reduced after alignment, this is because 

the curves were already aligned fairly well at these frequencies. The aligned frequency 

errors are all very small, these errors increase slightly with the frequency. The majority of 

Error 
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the output error therefore takes the form of peak amplitude errors (occurring at particular 

frequencies), and a small frequency error. This information on the form of the output error 

can only be obtained after the curves have been aligned. 
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output of the reference FDTD simulation 
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Figure 7.16: Aligned frequency error in the 

output of the reference FDTD simulation 

This section has approximately quantified the errors in the output of the reference 

FDTD simulation. The next section outlines how the uncertainties in the output of the FDTD 

and ILCM simulations are formed. 

7.3.2 Uncertainty Analysis of the Shielding Effectiveness of the Shielded Enclo- 

sure 

The uncertainty in the SE of the shielded enclosure will be quantified in this section. 

The PCM is not used to quantify the uncertainty as it has been previously shown (in Sec- 

tion 6.7) to be unable to estimate the output uncertainty due to uncertain geometric inputs 

involving conducting bodies. The MCM is once again used as the benchmark method as 

it has been shown to most accurately determine the output uncertainty, in previous exam- 

ples. The MCM will be used to test the performance of the more computationally efficient 

MoM. This section begins by detailing the implementation of the MCM and the MoM into 

the FDTD and ILCM simulations. Following this the uncertainties in the output of the H )'l'I ) 

and ILCM simulations are obtained. 

The Monte Carlo Method 

The LHS method was used to create 5,000 samples of the uncertain input parameters. 

A Python script automatically created 5,000 input files, for the two CEM methods, using 
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these samples. The different input files were used to perform the different FDTD and 1LCM 

simulations. These simulations created numerous output frequency responses for the SE of 

the shielded enclosure. The FSV method was used to determine when the MCM simulations 
had reached convergence, as described in Sections 3.2.3 and 4.5.2. For this example it was 
found that convergence was reached after 300 simulations for the FDTD method and 400 

simulations for the ILCM method. 

The Method of Moments 

The MoM required five FDTD and ILCM simulations to calculate the output uncer- 

tainty for this example. One simulation was performed with the aperture parameters taking 

on their mean values. The other four FDTD and ILCM simulations were performed with 

each of the aperture parameters (y,, y,,,, zj and zu) perturbed from their mean values by 1cm 

(one FDTD cell) in the positive coordinate direction. This perturbation is the same as the 

uncertainty in the input parameters. 

and ILCM method, were combined with the input uncertainties to calculate the mean and 

uncertainty in the output according to equations (4.51) and (4.53). Since only five simula- 

tions were required to obtain these uncertainties, the MoM is computationally much cheaper 

than the MCM. 

The sensitivity derivatives calculated from the five simulations, formed via the FDTD 

7.3.3 Results of the Uncertainty Analyses applied to the FDTD and ILCM method 
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Figure 7.17: Mean SE formed 
from the FDTD simulations. 
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Figure 7.18: Uncertainty in the SF 

obtained from the FDTD simulations. 

Figures 7.17 and 7.18 show the means and uncertainties predicted by the MCM 
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Figure 7.19: Mean SE formed Figure 7.20: Uncertainty in the SE 
from the ILCM simulations. obtained from the ILCM simulations. 

and the MoM for the results of the FDTD simulations. It is clear that the means predicted by 

the MoM and the MCM are in good agreement. This is confirmed by the FSV comparisons 

of the means predicted by the MoM and the MCM, which returns a GDM value of 3.1620. 

The FSV comparison of the uncertainty predicted by the MoM and the MCM returns a GDM 

of 5.8475, which corresponds to a "poor" comparison. The MoM underestimates and over- 

estimates the uncertainty predicted by the more accurate MCM. As described in previous 

chapters, these underestimations and overestimations arise from the linear approximation 

used by the MoM. The mean and uncertainty in the output of the ILCM simulations are 

shown in Figures 7.19 and 7.20. As for the FDTD simulations, the MoM and the MCM pre- 

dict means that are in "good" agreement, with a GDM of 3.1824. The uncertainties predicted 

by the MoM and the MCM, for the ILCM simulations, are in fairly good agreement apart 

from at certain frequencies, where the MoM overestimates the output uncertainty. These 

overestimations result in the overall FSV comparison of the uncertainties, predicted by the 

MoM and the MCM, being "poor" for the ILCM simulations. 

The uncertainty in the output of the FDTD and ILCM simulations, predicted by the 

MCM, are shown in Figure 7.21. The overall sizes of the two uncertainty curves are similar, 

however the features in the two curves differ. The FDTD and ILCM methods are different 

and result in slightly different outputs being formed, as can be seen in Figure 7.12. The two 

methods therefore produce slightly different output uncertainty curves. The different meth- 

ods do however produce outputs that are of the same order of magnitude, which results 

in the output uncertainties (produced by the two methods) also being of the same order of 

magnitude. It is interesting that for this example the ILCM simulations have a greater uncer- 

tainty at the higher frequencies than the FDTD simulations, whereas below about 500MHz 

D 500 1000 1500 2000 2500 3000 
frequency (MHz) 
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Figure 7.21: Uncertainty in the SE for the FDTD and ILCM simulations, formed using the MCM. 

60 

50 

40 

30 

20 

10 

0 

-10 

-20 

-30 

Reference 
Lower y perturbation 
Upper y perturbation 
Lower z perturbation 
Upper z perturbation 

0 500 1000 1500 2000 2500 3000 
frequency (MHz) 

Figure 7.22: The frequency response curves that are used to form the uncertainty in the output of the FDTD 
simulations via the MoM. 

the FDTD simulations are more uncertain than the ILCM simulations. 

Figure 7.22 shows the different curves, formed using the FDTD method, that are used 

by the MoM to quantify the output uncertainty. It is evident that these curves are already 

aligned extremely well. It is very difficult to provide a better alignment of these curves. 

Performing an alignment would show that the frequency uncertainty is extremely small and 

that the aligned amplitude uncertainty is only slightly smaller than the unaligned amplitude 

uncertainty. For these reasons, curve alignment is not used in this example to obtain the 

aligned amplitude and frequency uncertainties. 

The upper 95% CI predicted by both the MoM and the MCM, for the FDTD and ILCM 

simulations, are shown in Figures 7.23 and 7.24 respectively. The MoM and MCM predic- 

tions of the upper 95% CI are in fairly good agreement in both cases. This is confirmed by 
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Figure 7.23: Upper 95% Cl 
for the FDTD simulations. 
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Figure 7.24: Upper 95% Cl 
for the ILCM simulations. 

the FSV method, which was used to compare the upper 95% Cl predicted by both UA meth- 

ods. These comparisons produced GDM values on the visual scale of 4.2778 for the FDTD 

simulations, and 4.3460 for the ILCM simulations: qualitatively these are both "fair" com- 

parisons. The computationally efficient MoM therefore predicts 950% Cl for both the FDTD 

and ILCM simulation that are fairly similar to the CI formed using the benchmark MCM. 

Figures 7.25 and 7.26 show the mean and 95% Cl predicted by the MCM for the FDTD 

and ILCM simulations respectively. There appears to be a trend for the Cl to be larger at 

lower frequencies for the FDTD simulations (below 500MHz) than the ILCM simulations. 
At the higher frequencies (above 2.5GHz) the Cl seem to be larger for the ILCM simulations 

than for the FDTD simulations. Over the majority of the frequencies however the detailed 

structure and amplitude of the mean and 95% Cl are similar for both the FDTD and ILCM 

simulations. In general the 95% Cl are fairly close to the mean values and therefore the SE 

will take on a value fairly close to the mean value. The CI in Figure 7.25 and 7.26 allow the 

experimenter to determine how confident they can be in the results of the SE at particular 
frequencies. For example, at 850MHz the SE is above 20dB for both the FDTD and ILCM 

simulations with at least 95% confidence. 

The MoM requires only five simulations to perform the UAs in this example. This 

takes 14 minutes for the FDTD simulations and only 4 seconds for the ILCM simulations. 
The MCM takes longer to perform the UA for the FDTD simulations, requiring 13.8 hours. 

The MoM is therefore the preferred UA method for quantifying the uncertainty in output of 

the FDTD simulations in this example. The MoM is computationally faster than the MCM 

and provides estimates of the mean, uncertainty and 95% Cl that are fairly similar to those 

produced by the MCM, in this example. The MoM does however underestimate and over- 
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Figure 7.25: Mean and 95% Cl for the FDTD simulations. 

estimate the uncertainty formed using the benchmark MCM, at certain frequencies. 

The MCM required only 6 minutes to determine the uncertainty in the ILCM simula- 

tions. This is because the ILCM simulations are computationally fast. It was shown that the 

ILCM and FDTD simulations predicted similar means, uncertainties and 95`%, CI. There were 

some differences but overall the mean, uncertainty and 951% Cl formed using the benchmark 

MCM were of a similar order of magnitude for both the ILCM and FDTD simulations. This 

suggests that it may be possible to use the accurate MCM with the computationally effi- 

cient ILCM method to determine an estimate of the mean, uncertainty and 95% CI in the 

FDTD simulations. This uncertainty estimate will not contain the same underestimations 

and overestimations that are formed via the MoM. 

This example considered the uncertainty in the SE of a shielded enclosure, caused by 

80 

60 
M 
a 
V 40 

u) 
20 

w 
0, 
c0 

-20 

-An 

mean 
95% Cl 

q' ýr 

0 500 1000 1500 2000 
frequency (MHz) 

Figure 7.26: Mean and 95% Cl for the ILCM simulations 

2500 3000 



7.4. A Shielded Enclosure With More Uncertain Geometric Coordinates 241 

uncertain aperture coordinates. The next example considers the uncertainty in the SE of a 

shielded box due to a greater number of uncertain input parameters. 

7.4 A Shielded Enclosure With More Uncertain Geometric Coordi- 

nates 

The final EMC example considers the SE of a metallic box with a rectangular aperture. 
As in the last example, the shielding enclosure is illuminated by an electromagnetic wave. 
The SE of the enclosure is measured by taking the ratio of the electric field present at a point 
inside the enclosure to the field present at the same point when the enclosure is not present. 
This example considers a metallic box with an uncertain geometry. There are ten uncertain 
input parameters including four coordinates describing the location of the aperture and six 

coordinates describing the size of the enclosure. The uncertainty in the geometry of the 

structure produces an uncertainty in the output SE of the enclosure. 

The same coordinate system, as that used in the last example, is used here to explain 

the geometries of the shielding enclosure. The front face of the box, which contains the rect- 

angular aperture, is situated in the y-z plane with the bottom right hand coordinate situated 

at the origin. The mean lower x, y and z coordinates of the metallic box are it = 0cm, 

gi = 0cm and x`j = 0cm: respectively. The mean upper x, y and z coordinates of the metallic 

box are x, = 40cm, YYu = 38cm and z,, = 16cm respectively. The average coordinates of the 

sides of the aperture are ga = 4cm and ya.,, = 19cm for the lower and upper y-coordinates 

respectively, and zal = 6cm and Ea = 10cm for the lower and upper z-coordinates respec- 

tively. These uncertain coordinates follow Normal distributions with standard deviations 

(uncertainties) of 1cm. Figure 7.27 shows the setup of this example. 

As in the last example the shielded enclosure is illuminated by a plane wave excita- 

tion, which in the FDTD simulations is modelled using a Huygen's surface. The output of 

interest in this example is the SE of the electric field observed at the centre of the box: the 

point (20,19,8) in the above coordinate system. 

The FDTD simulation, of this example, was set up with a problem space containing 

60 x 60 x 60 points, a cell size of 1cm and 10,000 time steps. The enclosure was modelled at 

the centre of this problem space. The Huygen's surface was implemented five cells within 

the exterior of the problem space. For the purposes of the discussion that follows this FDTD 

simulation is referred to as the reference simulation, performed on a mesh with a refinement 
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Figure 7.27: A shielded enclosure with an aperture in one face. 

factor of one. Figure 7.28 shows the output of the FDTD simulations performed on progres- 

sively refined meshes. These curves are all fairly similar: the FSV comparison of the curves 

produced with a refinement factor of one and two returns a GDM of 3.4265 corresponding to 

a "good" comparison. It may therefore be concluded that the reference simulation has con- 

verged sufficiently. The error in this FDTD simulation was found approximately by using 

the FDTD simulation performed on a mesh with a refinement factor of four. 

The frequency response of the SE was also formed using the ILCM method. Figure 

7.29 displays the frequency response of the SE of the box, calculated using the reference 

FDTD simulation and the LLCM simulation. Overall the detailed structure of these two 

curves is similar and both curves have similar amplitudes. These two curves differ sig- 

nificantly for frequencies below 500MHz. When compared using the FSV method, the two 
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Figure 7.28: Frequency response of the SE obtained using FDTD simulations on meshes with different refinement 
factors. 
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Figure 7.29: Frequency response of the SE obtained via the reference FDTD simulation and the ILCM method. 

curves are determined to be a "poor" comparison with a GDM of 5.2704. Above 500MHz the 

curves are fairly similar with a GDM of 4.7438. The differences in the two output frequency 

responses are due to the errors associated with each method. The ILCM method is known to 

be less accurate when used to model enclosures with apertures that are fairly square. In this 

example, the aperture is not square but the height of the aperture is still about one quarter 

of the size of the aperture width. The FDTD simulation also suffers from errors including 

boundary, discretisation and dispersion errors. The slight differences in the output of the 

FDTD and ILCM simulations will result in slightly different associated output uncertainties 

being formed for the two methods. An estimation of the error in the output of the reference 

FDTD simulation is quantified in the next section. 

7.4.1 Quantifying the Error in the Output of the Finite Difference Time Domain 

Simulation 

The absolute value of the error in the reference FDTD simulation was obtained ap- 

proximately by taking the absolute difference between the output of the reference FDTD 

simulation and the simulation performed with a refinement factor of four. The results of 

this approximate error analysis are shown in Figure 7.30. As in the previous example the 

estimated error takes on relatively large peak values at particular frequencies, compared to 

the error at the surrounding frequencies. The two output curves (shown in Figure 7.28), 

used to form the frequency response of the error, both have resonant features. Taking the 

difference between the two curves results in relatively large errors at certain frequencies. 

The frequency response of the error has fewer peaks at the lower frequencies, this is because 
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Figure 7.30: Frequency response of the estimated error in the output of the reference FDTD simulation. 
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Figure 7.31: Frequency response of the SE formed from the reference FDTD simulation, before and after align- 
ment to the SE formed from the refined FDTD simulation. 

the two curves used to form the error curve are less resonant at the lower frequencies. It can 

be seen from Figure 7.30 that the baseline error in the reference FDTD simulation is fairly 

small but the error takes on large peak values at some of the frequencies. 

It may be argued that at the higher frequencies the frequency responses of the SE in 

Figure 7.28 suffer from a small amount of misalignment. Aligning these peaks via the PM 

method may help to reduce the size of some of the peak errors at the higher frequencies. 

The SE obtained using the reference and refined FDTD simulations were aligned using the 

PM method. The results of this alignment are shown in Figure 7.31. The improvement in 

alignment is small: comparisons between the response formed with the reference FDTD 

simulation and with a refinement factor of four results in a GDM of 3.7121 before alignment 

and 3.6460 after alignment. This small improvement in alignment is however sufficient to 
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reduce the size of some of the peak amplitude errors, especially at the higher frequencies. 

The aligned absolute amplitude and frequency errors are shown in Figures 7.32 and 7.33 

respectively. It is clear that some of the peak amplitude errors occurring at the higher fre- 

quencies are reduced after alignment. Unfortunately the peak error at around 850MHz has 

increased from 12.0dB to 17.0dB, this is because the PM method performed poorly at this fre- 

quency. The poor alignment at around 850MHz can be seen in Figure 7.31. This highlights a 

problem with forming the aligned errors and uncertainties: the results of the aligned errors 

and uncertainties will only be accurate if the alignment method has accurately aligned the 

curves. The aligned frequency errors in Figure 7.33 are all very small, these errors increase 

slightly with the frequency. It may be concluded that the error in the output of the refer- 

ence FDTD simulation is a series of peak amplitude errors, and a small frequency error. It is 

difficult to arrive at this conclusion without performing the alignment process. 

m 
v 
ö 
d 
w 
U, 

30 

25 

20 

15 

10 

5 

25 

20 
I 

15 

10 
N 
v 

5 

Figure 7.33: Aligned frequency error in the 

output of the reference FDTD simulation 

7.4.2 Uncertainty Analysis of the Shielding Effectiveness of the Shielded Enclo- 

sure 

The uncertainty in the SE of the shielded enclosure will be quantified in this section. 
As in the last example, the PCM is not used to quantify the output uncertainty as it has been 

previously shown (in Section 6.7) to be unable to estimate the output due to uncertain geo- 

metric inputs involving conducting bodies. The MCM is once again used as the benchmark 

method to test the performance of the computationally efficient MoM. 
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output of the reference FDTD simulation 
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The Monte Carlo Method 

The implementation of the MCM into the FDTD and ILCM simulations is similar to 

the implementation detailed in Section 7.3.2, for the previous example. The only difference 

is that the 5,000 Latin Hypercube Samples were formed for all ten uncertain geometric pa- 

rameters. That is the four uncertain aperture coordinates and the six uncertain coordinates 

of the sides of the metal box. The FSV method was used to determine when the MCM sim- 

ulations had reached convergence, as described in Sections 3.2.3 and 4.5.2. For this example 

it was found that convergence was reached after 600 simulations for the FDTD method and 

1,000 simulations for the ILCM method. 

The Method of Moments 

The MoM required eleven FDTD and ILCM simulations to calculate the output un- 

certainty, for this example. One simulation was performed with the geometric coordinates 

taking on their mean values. The other ten FDTD and ILCM simulations were performed 

with each of the coordinates (xi,..., zu. and yat, ... , zd�) perturbed from their mean values 
by 1cm (one FDTD cell) in the positive coordinate direction. The chosen perturbation is once 

again the same size as the input uncertainty. 

The sensitivity derivatives calculated from the eleven simulations, formed via the 

FDTD and ILCM method, were combined with the input uncertainties to calculate the mean 

and uncertainty in the output according to equations (4.51) and (4.53). Since only eleven 

simulations were required to obtain these uncertainties, the MoM is computationally much 

cheaper than the MCM. 

7.4.3 Results of the Uncertainty Analyses applied to the FDTD and ILCM meth- 

ods 

Figures 7.34 and 7.35 show the means and uncertainties predicted by the MCM and 

the MoM for the results of the FDTD simulations. The means predicted by the MoM and the 

MCM are of a similar overall size, but the features are very different. The resonant peaks 
have been averaged out in the means predicted by the MCM. No such averaging occurs for 

the mean formed by the MoM, which is produced by one simulation with all parameters 

taking on their mean values. 
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Figure 7.34: Mean SE formed 
from the FDTD simulations. 
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Figure 7.35: Uncertainty in the SE 

obtained from the FDTD simulations. 
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The FSV comparison of the means and uncertainties predicted by the MoM and the 

MCM, for the FDTD and ILCM simulations, are shown in Table 7.2. These FSV comparisons 

show that the uncertainties predicted by the MoM and the MCM, for the FDTD simulations, 

are in "very poor" agreement. As discussed previously, the MoM assumes that the output 

depends linearly on the uncertain inputs. This assumption clearly introduces errors into 

the MoM uncertainty estimation. The MoM may well be an efficient UA method but its 

overestimations of the uncertainty in the FDTD simulations are too large for the method 

to be used in examples such as this more complex EMC example. Previous research has 

Metric ADM FDM GDM GDM (1-6) Qualitative 
FDTD mean 0.3294 0.8255 0.9470 5.1850 Poor 

FDTD uncertainty 1.3500 1.2850 2.0218 6 Very Poor 
ILCM mean 0.2996 0.8836 0.9737 5.2253 Poor 

ILCM uncertainty 1.3687 1.3208 2.0349 6 Very Poor 

Table 7.2: FSV comparisons of the different metrics predicted by the benchmark MC M and the MoM. 
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found that the MoM is only accurate for small parameter uncertainties [841. The geometric 

uncertainties used here are fairly large, in reality the geometric uncertainties may well be 

smaller. The MoM may therefore still be useful for complex EMC examples with smaller 
input uncertainties. 

The uncertainties predicted by the MoM in Figures 7.34 and 7.35 contain large peaks 
that are not present in the uncertainties formed from the MCM. It appears however that 

the baseline uncertainty formed from the MoM is fairly similar to the uncertainty formed 

from the MCM. It may be possible to perform a post process on the uncertainty estimate, 
formed from the MoM, to remove the peak overestimations and therefore provide an effi- 

cient estimate of the uncertainty that is in better agreement with the MCM. One possible 

way of reducing the peak overestimations is to remove the peak uncertainties that have a 

width which is smaller than a certain threshold, for example 10MHz. Processing the data in 

this way may however reduce some of the features of the uncertainty estimate that are not 

overestimations. This work is therefore left for future investigations. 

The same conclusions formed for the FDTD simulations also apply to the LLCM sim- 

ulations. Figure 7.36 shows the mean SE for the ILCM simulations, formed using the MoM 

and the MCM. The mean produced by the MoM has more peaks than the mean formed 

using the MCM. The resonant features of the curves have been averaged out in the mean 

produced by the MCM. This results in a "poor" comparison between the means produced 
by the two UA methods. 

Figure 7.37 shows the uncertainty in the output of the ILCM simulations predicted 
by the MoM and the MCM. As for the FDTD simulations, the MoM overestimates the un- 

certainty in the ILCM simulations. These overestimations are more prominent at the higher 

frequencies. The MoM prediction of the uncertainty in the LLCM simulations is therefore 

"very poor" when compared to the uncertainty formed by the benchmark MCM. There are 

many large peak overestimations formed by the MoM, one such peak occurs at 1.55GHz (see 

Figure 7.37). This overestimation is now investigated further using the ILCM method. 

Figure 7.38 shows the frequency response of the SE, around 1.55GHz, for the refer- 

ence LLCM simulation and a perturbed ILCM simulation. The perturbed simulation was per- 
formed with the lower x-coordinate of the box perturbed 1cm from its mean value. Using 

Figure 7.38 it can be seen that the SE, formed from the reference simulation, is at a resonant 

peak at 1.55GHz. The resonant frequency of the SE, formed from the perturbed simulation, 
is at a slightly higher frequency and a slightly lower amplitude. The small perturbation in 
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the input parameter creates a large difference between the two curves at 1.55GHz. The out- 

put SE is therefore very sensitive to changes in the input parameter at the resonant frequency 

(1.55GHz). The MoM assumes that the output depends linearly on this input parameter. The 

sensitivity derivative, of the SE with respect to the input parameter, is large at the resonant 

frequency and the MoM therefore predicts that the uncertainty (due to this uncertain input 

parameter) at this frequency is also large. 

Figure 7.39 shows how the SE varies with the uncertain input parameter at I. 55GHz. 

The SE has a highly nonlinear dependence on the uncertain input parameter. The linear as- 

sumption used by the MoM is clearly poor when there is such a nonlinear relationship. Sim- 

ilar nonlinear relationships were also observed for the dielectric sphere example in Chapter 

6. Unfortunately EMC data can often exhibit highly resonant features. Approximating the 

relationship between the resonant output and the uncertain inputs linearly will result in 

poor estimations of the output uncertainty. Higher order approximations may improve the 

accuracy, however it will always be difficult to accurately represent nonlinear relationships 

(such as that shown in Figure 7.39) using polynomials. Previously work has found that 

the MoM estimate of the output uncertainty is more accurate if the input uncertainties are 

smaller. This is investigated, for this example, in the next section. 

Smaller Input Uncertainties 

To investigate whether the MoM performs better for small parameter uncertainties, 

the uncertainty in the geometric inputs of this example are reduced to I mm. It is perhaps 

more realistic that the shielded enclosure developed smaller geometric uncertainties of the 

order of imm in the manufacturing process. The MCM and the MoM were applied to the 

1 -0.5 0 0.5 
lower x coordinate (cm) 
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ILCM method in the same manner as for the larger input uncertainties. This time the MoM 

must use smaller perturbations of Imm to obtain estimates of the sensitivity derivatives, 

since this is the size of the uncertainty in the inputs [2]. The MCM converged after 350 

simulations, this is fewer than for the larger input uncertainties. This faster convergence 
is expected since the simulated output changes less for the smaller input uncertainties; the 

mean and uncertainty also change less and thus the MCM reaches convergence faster. 

The standard MCM cannot be implemented into the reference FDTD simulations for 

these smaller input uncertainties. If the uncertainty in a geometric position is small then 

standard sampling methods will select input values that are close to the mean geometric 

position. The FDTD simulations have to be performed with geometric perturbations that 

coincide with the FDTD mesh. Rounding the sampled parameter values to the nearest cell 

position results in all of the geometric input parameters taking on their mean values. It is 

therefore difficult to use the standard MCM to determine the output uncertainty formed 

from the FDTD simulations on the current mesh. For Normally distributed geometric input 

parameters, 95% of the sampled values are with 1.96 standard deviations from the mean. 

An FDTD mesh therefore needs to have cell positions within the 95% interval to obtain a 

prediction of the output uncertainty using the standard MCM. This identifies one problem 

with using the MCM to estimate the output uncertainty of FDTD simulations due to small 

uncertain geometric input parameters. 
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Figure 7.41: Frequency response of the uncertainty 
in the SE formed using the ILCM method. 

The problem outlined above does not occur when using the ILCM method. The ILCM 

method can simulate perturbations of any size, being limited only by the numerical preci- 

sion used in the implementation of the method. The frequency responses of the mean and 

MoM 
MCM 

uncertainty in the output SE, formed using the ILCM method, are shown in Figures 7.40 and 
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7.41 respectively. It is clear that the mean predicted by the MoM and the MCM for smaller 
input uncertainties (Figure 7.40) are in much better agreement than when the input uncer- 
tainties were larger (Figure 7.36). The FSV comparisons agree with this determining that the 

similarity between the mean curves is "good" when the input uncertainties are small. The 

uncertainty curves produced by the MoM and the MCM are in better agreement when the 

input uncertainties are small, however the MoM still produces large peak overestimations 

of the uncertainty. The FSV method determines that the similarity of the two uncertainty 

curves is "poor". Therefore the estimates of the uncertainty, formed via the MoM, still suf- 
fer from the resonant nature of the output EMC data curves despite the input uncertainties 
being smaller. 

The computationally efficient MoM provides better estimations of the uncertainty 

when the input uncertainties are smaller. It is difficult to use the MCM to obtain the uncer- 

tainty in the output of FDTD simulations when there are small geometric input uncertain- 

ties. The MoM is therefore the preferred UA method to use when estimating the uncertainty 

in the output of FDTD simulations due to small geometric input uncertainties. Unfortu- 

nately the results of CEM simulations of EMC scenarios often have resonant features, and 

the input uncertainties are not necessarily small. In these cases the MoM provides a poor 

estimation of the output uncertainty. 

Notice once again that the baseline uncertainty formed by the MoM in Figure 7.41 is 

similar to the uncertainty formed via the benchmark MCM. This suggests that removing the 

peak overestimations formed from the MoM may result in an efficient estimate of the uncer- 

tainty that is in better agreement with the benchmark MCM. Future work could investigate 

different ways of processing the MoM uncertainty estimate to provide a better solution. 

The 95% Confidence Intervals 

The poor uncertainty estimate formed using the MoM for this example (with the 

larger input uncertainties), results in a poor estimation of the 95% CI. The MoM uses the 

uncertainty prediction directly to obtain the 95% CI, thus poor uncertainty estimates result 
in poor estimates of the CI. In the case of the smaller input uncertainties, the agreement 
between the 95% CI produced by the MoM and the MCM is much better. The mean and 

uncertainty estimates produced by the MoM and the MCM are more similar, when the in- 

put uncertainties are small, the resulting 95% CI are therefore also more similar. The FSV 

comparison of the upper 95% CI produced by the MoM and the MCM, for the case when 
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the input uncertainties were smaller, is "fair" with a GDM on the visual scale of 4.3460. 
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Figure 7.42: Mean and 95% CI for FDTD simulations 
with larger input uncertainties, formed via MCM. 
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Figure 7.44: Mean and 95% Cl for ILCM simulations 
with smaller input uncertainties, formed via MoM. 
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Figure 7.43: Mean and 95%, CI for ILCM simulations 
with larger input uncertainties, formed via MCM. 
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Figure 7.45: Mean and 95% Cl for II. CM simulations 

with smaller input uncertainties, formed via MCM. 

Figures 7.42 and 7.43 show the mean and 95%o Cl for the FDTD and ILCM simulations, 

with the larger input uncertainties, formed using the MCM. The Cl are similar for both the 

FDTD and ILCM simulations, but seem to be slightly larger for the II. CM simulations at the 

higher frequencies. Figures 7.42 and 7.43 show that the SE can vary quite considerably from 

its mean value over the majority of the frequency range. With 95'X% confidence it 111.1y be 

concluded that the SE produced by the FDTD simulations is between -20dB and 40dB for 

most of the frequencies. The enclosure may be required to have a SF above Opi B over most of 

the frequencies. Using Figures 7.42 and 7.43 it may be concluded that the shielded enclosure 
does not meet that required standard with 95%% confidence. This demonsatrates how useful 

the UAs are at quantifying the level of confidence that may be held in the results of the CIM 

simulations. 

Figures 7.44 and 7.45 show the mean and 95% Cl for the ILCM simulations with 
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smaller input uncertainties, formed via the MoM and the MCM respectively. It is clear that 

the 95% Cl are much smaller when the input uncertainties are smaller: this is as expected. 

Using Figure 7.45 it may now be concluded with 95% confidence that the shielded enclosure 

has a SE greater than 0dB over many more frequencies. The 95%, Cl formed via the MoM 

for the smaller input uncertainties (in Figure 7.44) are also useful for concluding that the 

shielded enclosure has a SE greater than 0dB over many frequencies. The overestimations 

at particular frequencies do however make it difficult to make more accurate conclusions 

on the size of the SE, especially at the higher frequencies. The large overestimations are 

highlighed by the larger scale required to plot the 95% Cl formed via the MoM. 

Comparing the Uncertainty in the FDTD and ILCM Simulations 

The remaining sections concentrate on the case where the uncertainty in the geomet- 

ric positions of the shielded enclosure are the larger value of 1cm. Figure 7.46 displays the 

uncertainty in the output of the FDTD and ILCM simulations as predicted by the MCM. 

These two curves both have a similar structure and are of a similar order of magnitude. The 

uncertainty in the LLCM simulations seems to be slightly larger at the higher frequencies but 

overall the curves are fairly similar. The ILCM simulations require much less computational 

expense than the FDTD simulations. This results in the MCM analyses taking 28 hours for 

the FDTD simulations but only 13 minutes for the LLCM simulations. In fact the MCM anal- 

ysis of the ILCM simulations is computationally faster than the MoM analysis of the FDTD 

simulations which took around 31 minutes. Using the MCM with the ILCM simulations 

provides an efficient way to estimate the uncertainty in the output of the FDTD simulations 
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Figure 7.46: Uncertainty in the SE formed from the FDTD and ILCM simulations. 
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in this example. This analysis is computationally faster than performing a MoM analysis 

with FDTD simulations, and does not form large peak overestimations of the uncertainty. 

Evaluating the Aligned Uncertainties 

Figure 7.47 shows the results of the FDTD simulations performed with the mean pa- 

rameter values (reference simulation), and with the coordinate y� perturbed by one cell 

position. The IC method was used to align the curves in this example because it was found 

to provide a better alignment than the PM method. The problem with the PM method is 

that it relies on being able to identify peaks that should be matched. In more complicated 
data such as that formed from EMC analysis it is often quite difficult to establish which 

peaks should be matched. The alignment in Figure 7.47 has been successful at many of the 

frequencies, however at other frequencies (for example at 1.37GHz and 1.54GHz) the align- 

ment process has worked less well. It can be very difficult to align real EMC data. The 

aligned curves were therefore tested to see whether there was a greater AAAD between 

the curves before alignment or after alignment. If there was a greater AAAD between the 

curves after alignment then it was concluded that the alignment process did not work. In 

this case the alignment was better before the IC method was used and so the original curve 

(before alignment) was used in any subsequent analyses. Thus the aligned uncertainties 

were formed using a mixture of aligned curves and curves that are already aligned fairly 

well but have not undergone alignment. 

After alignment the means produced by the MoM and the MCM are in better agree- 

ment for both the FDTD and ILCM simulations, as seen in Figures 7.48 and 7.49. The align- 
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Figure 7.47: SE obtained from the reference FDTD simulation and a simulation with y� perturbed. 
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simulations with curve alignment. 
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from FDTD simulations with curve alignment. 
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Figure 7.51: Uncertainty in the SE formed 

from ILCM simulations with curve alignment. 

ment of the output curves, formed by the many MCM simulations, helps to reduce the 

averaging of the resonant peaks. This makes the mean predicted by the MCM more similar 

to the mean predicted by the MoM after alignment. 

Figures 7.50 and 7.51 show the uncertainty in the SE predicted by the MoM and the 

MCM, for the FDTD and ILCM simulations, after alignment. The alignment process helps 

to reduce the sizes of some of the peak overestimations of the uncertainty predicted by the 

MoM at the higher frequencies. However many peak overestimations of the uncertainty 
formed by the MoM still remain after the alignment process. The uncertainties predicted by 

the MoM are therefore still poor estimates of the uncertainties formed using the benchmark 

MCM. 

The aligned frequency uncertainties in the FDTD and ILCM simulations, predicted by 

the MoM and the MCM, are shown in figure 7.52 and 7.53. In both cases the MoM and the 

MCM predict that the uncertainty in the frequency increases with frequency. Using curve 
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alignment enables a conclusion on the form of the output uncertainties to be formed. The 

output of the different simulations have both frequency and amplitude uncertainties. The 

majority of the output uncertainty is due to amplitude uncertainties, however there is also a 

contribution to the total output uncertainty from the frequency uncertainty. It is difficult to 

arrive at this conclusion without using curve alignment. 

7.5 Conclusions 

Once again the examples in this chapter have shown the merits of performing Error 

and Uncertainty Analyses on the output of CEM simulations. In the first example, where 

a PCB was modelled as having an uncertain reflection coefficient, the uncertainty at the 

frequency of interest (1.. 8GHz) was shown to be small. There was a high level of confidence 

that the normalised electric field took on a value close to its mean value. The approximate 

Error Analysis, however, showed that the estimated error in this mean value is fairly large. 

A proper evaluation of the results can only be made after the error and uncertainty in the 

results is quantified. Using the results of the UAs in the third example (with the larger 

input uncertainties) it was concluded that, with 95%, confidence, the SE of the box was not 

greater than 0dB over the majority of the frequency range. This information is essential if an 

experimenter is to use the results with confidence. 

Through the more realistic EMC examples, introduced in this chapter, the perfor- 

mance of the different UA methods were determined. All three UA methods were in very 

good agreement for the first example. The MoM was shown to be the most computational 

efficient method and therefore the preferred method for use in this first example. The PCM 
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was not used in the second and third examples as it had been previously shown (in Chapter 

6) to give unrealistic estimates of the uncertainty when the uncertainty in the input is due to 

the geometric coordinates of bodies with a large reflection coefficient. Thus the PCM is not 

applicable to all EMC scenarios. The PCM also suffers from large memory requirements that 

will be too large in complex CEM simulations containing many uncertain input parameters. 

The MCM was once again used as the benchmark method, to test the performance of 

the MoM in the second and third examples of this chapter. These two examples involved 

the SE of a metallic box with uncertain geometric coordinates. The frequency response of 

the SE was highly resonant in nature. Near to these resonances it was shown that the SE also 
depended on the uncertain input in a highly nonlinear manner. The MoM assumes that the 

output depends linearly on the uncertain inputs. The nonlinear relationships found in these 

examples caused the MoM to predict large peak overestimations of the output uncertainty, 

when compared to the benchmark MCM. 

Previous research has shown that the MoM performs better when the input uncer- 

tainties are small. This was corroborated by the third example in this chapter. However, the 

MoM still produced overestimations of the uncertainties at certain frequencies, even with 

the smaller input uncertainties. Resonant features on the output frequency response curve 

caused the linear approximation used by the MoM to be poor at certain frequencies. This 

resulted in the peak overestimations predicted by the MoM. Despite these overestimations 

of the output uncertainty, the MoM did improve overall when the input uncertainties were 

smaller. In reality the input uncertainties are not always small, and simulations used to 

model different EMC experiments often produce frequency responses that are highly non- 

linear. There is a risk that the MoM will overestimate the uncertainty in the output of these 

simulations at certain frequencies. 

The MCM is applicable to most EMC scenarios, its application is however limited by 

the large computational runtime required to perform the MCM simulations. Complex CEM 

simulations often take days or weeks to run, performing multiple MCM simulations will be 

too computationally expensive in these cases. The MCM is best suited to simple examples 

that require only a small amount of computational runtime. The MCM was also shown to 

be unsuitable when determining the uncertainty in the output of FDTD simulations due to 

geometric inputs that have an associated uncertainty that is small with respect to the size of 

the FDTD mesh. In such cases the MoM may be used to give an approximate estimate of the 

uncertainty, as it has been shown to perform better when the input uncertainties are small. 
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This discussion leads to the conclusion that the MoM may be used in cases where 
the input uncertainties are very small. This method is computationally the most efficient 

method and it has been shown to perform more accurately when the input uncertainties are 

very small. The MoM does still predict large overestimations of the uncertainty at certain 
frequencies, even when the input uncertainty is small. This must be taken into account when 

using the results of the MoM uncertainty analysis. 

A possible way of reducing the uncertainty overestimations formed from the MoM 

is to perform a post process on the MoM uncertainty estimate. The baseline uncertainty 

predicted by the MoM appears to be similar to the uncertainty formed via the MCM. Re- 

moving the peak overestimations from the MoM uncertainty estimate may therefore result 
in a more accurate estimate of the output uncertainty being formed. Different methods that 

may be used to accurately remove the peak overestimations need to be investigated. These 

investigations are left for future work. 

The examples in this chapter have highlighted the extra computational effort that is 

required to obtain the estimates of the uncertainty. The MoM is the computationally cheap- 

est method, the computational runtime required by the MoM scales with the number of 

uncertain input parameters. Further research is required to determine whether it is possible 

to obtain accurate estimates of the uncertainty, in the output of complex CEM simulations, 

using more computationally efficient methods. Some of these ideas are discussed in more 
detail in the final chapter of this thesis. 

In previous chapters it has been shown that the uncertainty in the output of a simula- 

tion has only a small dependence on the accuracy with which the simulation is performed. 
This suggests that a computationally cheaper estimate of the output uncertainty may be ob- 

tained by using computationally cheaper CEM simulations. In the last two examples of this 

chapter the ILCM and FDTD method were used to calculate the SE of the shielded enclo- 

sures. In both examples the uncertainty in the FDTD and ILCM simulations were similar 
in size, although the uncertainty in the ILCM simulations were slightly larger at the higher 

frequencies. The computationally efficient ILCM method may therefore be used to obtain 

an efficient estimate of the uncertainty in the FDTD simulations, for the specific example of 

a shielded enclosure. Since the MCM most accurately estimates the output uncertainty, and 

the ILCM method is extremely computationally efficient, the MCM can be used to obtain 

the estimate of the uncertainty in the output of these simulations. 

Throughout this thesis the use of curve alignment has been considered as a way of de- 



7.5. Conclusions 259 

termining the amplitude and frequency errors and uncertainties in the output. Once again 
in this chapter curve alignment was used to show that the output errors and uncertainties 

are not solely due to amplitude differences. The frequency errors and uncertainties in the 

output of the different simulations in this chapter were small, and in some cases it was 
deemed that curve alignment was not needed. The output curves obtained from the EMC 

examples were often more complicated and resonant in nature, making curve alignments 

more difficult. It was noted that the accuracy of the aligned amplitude and frequency errors 

and uncertainties relies on the accuracy of the method used to align the curves. In some 

cases the curve alignments performed less well and the subsequent aligned errors and un- 

certainties contained some errors. In most cases, however, the curve alignments performed 

well and provided information on the proportions of the output uncertainty that were an 

uncertainty in the amplitude and an uncertainty in the frequency. 

This concludes the results obtained for this thesis. The final chapter will discuss the 

main conclusions of this work and propose some of the future work that is required to make 

the UAs more practical for use with real CEM simulations of EMC experiments. 
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8.1 Discussion and Conclusions 

Uncertainty analyses provide the quantitative level of confidence that may be held in 

the results of a measurement or computational simulation. Without a determination of this 

confidence it is impossible to form valid conclusions based on these results. For example, 
in the last example of the previous chapter a measurement of the SE of a shielded enclosure 
was obtained. An experimenter may have required that the SE was greater than a certain 
level (e. g. 0dB) for frequencies up to 3GHz. By performing an UA and obtaining the 95% CI 
it was concluded that the SE was not above 0dB with 95% confidence. It would have been 
impossible to make such a conclusion without performing an UA. 

This thesis has investigated three different probabilistic UA methods that may be used 
to quantify the uncertainty in the output of CEM simulations. Some of the novel aspects 

260 
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of this work include the application of the PCM to the FDTD method, the use of the FSV 

method to test for convergence in the MCM and the use of curve alignment methods to 
distinguish between the amplitude and frequency errors that are present in the outputs of 
interest. The following sections outline some of the main findings of this work commenting 

on the performance of the different UA methods, the information gathered from using curve 

alignments, and the dependence of the output uncertainty on the CEM model used and the 

errors associated with that model. 

8.1.1 The Performance of the Uncertainty Analysis Methods 

The probabilistic methods that were used in this thesis are the MCM, the MoM and 
the PCM. These methods were applied to a number of FDTD and ILCM simulations, which 

were used to determine the performance of these different methods in terms of their accu- 

racy and computational expense. Analytic solutions existed in the first two examples, these 

solutions were used to form the output uncertainty analytically (denoted as the analytic un- 

certainty here). The MCM was shown to most accurately predict the analytic uncertainty 

and was therefore chosen as the benchmark method by which the performance of the other 
two UA methods were compared for more complex and realistic EMC examples. The MCM 

may well be the most accurate method investigated in this thesis, but it is also the most 

computationally expensive method. The computational expense of the MCM usually pre- 

vents it from being used in more complex EMC scenarios involving many uncertain input 

parameters. 

All three UA methods were shown to be in good agreement for the EMC example in- 

volving a shielded enclosure containing a PCB, which had an uncertain reflection coefficient 
(in Section 7.2). The output mean, uncertainty and 95% CI predicted by the three methods 

were all very similar. The MoM was shown to be by far the computationally most efficient 

method and is therefore the preferred method to use in this example. In more realistic EMC 

examples the MoM was shown to produce large resonant overestimations of the uncertainty 

at certain frequencies. These overestimations arise, in part, because the linear approximation 

used by the MoM is poor at certain frequencies, as discussed below. 

Small perturbations in the input parameters, of some of the CEM examples in this the- 

sis, caused frequency shifts in the frequency response of the output of interest. The shifts in 

the frequency can cause large changes in the resonant output of interest at certain frequen- 

cies. This means that the output of interest can have a highly nonlinear dependence on the 
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input parameters at particular frequencies. These nonlinear relationships usually occur near 
to the resonant frequencies of the output curves. The MoM, used in this thesis, relied on the 

assumption that the output depended on the inputs in a linear mariner. It was shown that 

the nonlinear relationships caused the MoM to overestimate and underestimate the actual 

uncertainty at certain frequencies. 

Previous research has found that the MoM is more accurate for smaller input uncer- 
tainties. This was corroborated by the example in Section 7.4. In this example the output un- 

certainty produced by the MoM was in better agreement with that produced by the bench- 

mark MCM when the input uncertainties were smaller. The MoM did however still produce 

resonant overestimations of the uncertainty at particular frequencies, even when the input 

uncertainties were small. An experimenter using the efficient MoM must therefore be aware 

that it may produce overestimations and underestimations of the output uncertainty at par- 

ticular frequencies. In the last example of this thesis it appeared that the baseline uncertainty 

formed via the MoM was similar to the uncertainty formed by the MCM. It may therefore 

be possible to provide a more accurate estimate of the uncertainty by processing the uncer- 

tainty estimate formed via the MoM to remove the large peak overestimations. 

The PCM has previously been shown to efficiently and accurately quantify the un- 

certainty in the output of CFD simulations [131, [141, and in specific areas of CEM [181. The 

novel implementation of the PCM into the FDTD method was presented in this thesis. In 

the example in Section 7.2, involving a PCB with an uncertain reflection coefficient, the PCM 

provided an efficient and accurate estimate of the output uncertainty. The PCM performed 
less well however in a number of the other examples. In this thesis the PCM linearly ap- 

proximated the relationship between the output of interest and the uncertain inputs. This 

approximation was poor at frequencies with a high modal density, and subsequently the 

PCM produced overestimations of the uncertainty at these frequencies. These uncertainty 

overestimations were, however, less pronounced than the overestimations formed by the 

MoM. The PCM required less computational runtime than the MCM, but significantly more 

computational memory. In more complex examples the memory required by the PCM may 
be too large. Overall the MoM is computationally more efficient than the PCM and was 

shown to provide estimates of the uncertainty that were of a similar level of accuracy. 

The PCM fails to provide a sensible estimate of the uncertainty in the output of FDTD 

simulations involving the uncertain geometric coordinates of a conducting object. In the 

example involving a PEC sphere with an uncertain radius the PCM distributed the con- 
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ductivity of the sphere over a number of points, near to the boundary of the sphere. This 

distribution of conductivities caused the uncertain field coefficients to reflect over short dis- 

tances. The high rate of change of the field coefficients coupled in the update equations to 

cause other field coefficients to increase in amplitude. The amplitude of the field coefficients 

increased to nonsensical values preventing the method from being used to estimate the un- 

certainty in the output. The PCM would have had a similar problem when quantifying the 

uncertainty due to the uncertain geometric positions of the shielded enclosure (Sections 7.3 

and 7.4). This problem with the PCM arises because of the discretisation used in the FDTD 

method. The discrete FDTD mesh forces the PCM to distribute the material parameters, of 
bodies with an uncertain geometry, over a discrete number of points. The neighbouring 

points therefore have different material properties and different reflection coefficients. This 

problem may not arise if the material parameters were distributed continuously, however it 

is rare that a CEM method will allow for continuously distributed parameters. 

The discretisation of the FDTD method can also affect the uncertainty estimates formed 

by the MCM and the MoM. Geometric perturbations used to form the sensitivity derivatives, 

in the MoM, are confined to positions on the FDTD mesh. The size of the perturbation used 

has an effect on the output uncertainty, and it has been previously suggested that the per- 

turbations used should be of a similar size to the uncertainty of the input parameter [2; 16]. 

The size of the FDTD mesh may prevent the perturbation from being of a similar size to 

the input uncertainty and thus the MoM may not provide its best estimate of the output 

uncertainty. The MCM produces a number of input parameter samples to represent the un- 

certainty in a geometric coordinate. Unfortunately these samples must be rounded to the 

nearest cell position on the FDTD mesh, thus preventing the MCM from forming its most 

accurate estimate of the uncertainty. In the example in Sections 7.4 it was shown that the 

MCM could not be used to quantify the uncertainty when the geometric input uncertainties 

were much smaller than the size of the FDTD mesh. It was suggested that the FDTD mesh 

must have multiple cell positions within two standard deviations of the mean cell position 

to enable the MCM to determine the uncertainty in the output. 

In conclusion, the analyses in this thesis show that the MoM is the preferred method 

for efficiently quantifying the uncertainty in the output of CEM simulations. The MCM 

is generally the most accurate method but its computational expense make it impractical 

for use with more complex CEM simulations. The PCM predicts uncertainties with a sim- 

ilar level of accuracy as the MoM, but it is computationally more expensive and cannot be 
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used in certain situations. The MoM is computationally efficient and can provide good es- 
timates of the output uncertainty. It can however predict large resonant overestimations of 
the uncertainty, which must be taken into account when using this method to estimate the 

uncertainty in the resonant output of a CEM simulation. 

One of the most prominent results of this project is the extra computational runtime 

required to perform UAs. The most efficient UA investigated was the MoM, the computa- 

tional runtime required for this method scales linearly with the number of uncertain inputs. 

If a single simulation with N uncertain input parameters takes T amount of time to run, 

then the MoM analysis will require (N + 1)T amount of computational runtime. For com- 

plex simulations, as N and T increase, the computational runtime required may become too 

expensive. 

8.1.2 Using Curve Alignments 

Curve alignment methods have been used in this thesis to determine the form of the 

errors and uncertainties in the output curves. The errors and uncertainties in the output 

take the form of amplitude and frequency errors and uncertainties. Without using curve 

alignment it is difficult to determine the size of the frequency errors and uncertainties. In 

general the errors and uncertainties in the frequencies were shown to be small, but often 
had a significant impact on amplitude uncertainty formed without curve alignment. A novel 

mathematical derivation was presented in this thesis, which provided relationships between 

the errors and uncertainties formed with and without curve alignment. These relations were 

verified using real data, and were shown to be accurate so long as the frequency errors and 

uncertainties were small. It is therefore concluded that no information is lost by analysing 

errors and uncertainties using curve alignment. 

Two curve alignment methods (the PM and IC methods) were developed during this 

project. The PM method was shown to align curves well and with much less computational 

expense than the IC method. The DTW method was also shown to align curves very well, 
but at the expense of severely distorting the curves. The PM method was therefore used to 

align the output curves in the majority of examples in this thesis. Using curve alignment 
it was shown that the errors and uncertainties in the output curves were predominantly 

amplitude errors and uncertainties, and small frequency errors and uncertainties, which 

generally increased with frequency. 
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8.1.3 The Uncertainty in Different Computational Electromagnetic Models 

Estimates of the error in the output of different FDTD simulations have also been 

formed through this thesis. It has been confirmed that a useful way of estimating many of 
the output errors in a FDTD simulation is to take the difference between the results of the 

simulation and the results of a simulation performed on a refined mesh. Error analyses are 

also important when forming conclusions based on the results of CEM simulations. How- 

ever, nowadays CEM simulations are often performed with a high level of accuracy. It may 
therefore be argued that time consuming error analyses will simply conclude that the results 

contain only small errors. 

This project has shown that uncertainties in the output of CEM simulations will be 

present even if the CEM simulations are performed at a high level of accuracy. In a number 

of examples in this thesis, UAs were applied to FDTD simulations performed with a dif- 

ferent level of accuracy and to analytic solutions. These UAs were used to investigate the 

dependence of the uncertainty, in the output of a simulation, on the accuracy with which 
that simulation is implemented. It was found that the simulations performed with different 

levels of accuracy had slightly different output uncertainty curves. The uncertainty curves 
did however follow a similar form and were of a similar size. Thus there is no significant 

relationship between the error in a model and the output uncertainty. 

UAs were also performed on simulations using different CEM methods. Both LLCM 

and FDTD simulations were used in the examples in Sections 7.3 and 7.4. Using these exam- 

ples it was shown that the uncertainty in the LLCM simulations was slightly larger than the 

uncertainty in the FDTD simulations at higher frequencies, although overall the uncertainty 
in the ILCM and FDTD simulations were similar. It is concluded that the CEM technique 

used had some effect on the output uncertainty, however the overall size of the output un- 

certainty was very similar for both methods. 

The uncertainty in the output of a CEM simulation appears to be very similar for 

simulations performed with different levels of accuracy and for different CEM methods. 
This may mean that computationally cheaper, less accurate CEM simulations may be used to 

obtain an estimate of the uncertainty in computationally expensive CEM simulations. This 

presents a promising avenue for future research into accurate and computationally efficient 
UA methods. 

In summary the research conducted in this thesis, along with the results obtained, 
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provide a number of novel contributions to the field of research. The results obtained in 

this thesis show that, of the three uncertainty analysis methods investigated, the MCM is 

the most accurate method providing the best estimates of the uncertainty in various CEM 

simulations. This method is also shown to be the most computationally expensive method, 
as expected. The MoM is the most practical method to use to obtain an estimate of the 

uncertainty due to its computational efficiency. However, at resonant frequencies the MoM 
forms large peak overestimations of the uncertainty. These overestimations are due, in part, 
to the resonant nature inherent in EMC data coupled with small frequency variations in the 

output. The PCM can provide slightly more accurate estimates of the output uncertainty 
than the MoM, but there are situations when this method cannot be used. The PCM is also 
found to be computationally more expensive than the MoM. 

The work in this thesis shows that there is no relationship between the overall size of 
the output uncertainty in a simulation and the underlying model used to form this simula- 
tion, or the accuracy with which the simulation is performed. This suggests that it is possible 
to decrease the computational expense of the UAs by using computationally cheaper less ac- 

curate CEM methods to estimate the uncertainty in the output of a simulation which uses a 

computationally more expensive CEM method. If a fast CEM method is used then the MCM 

is preferred as it will keep the accuracy of the uncertainty estimate as high as possible. One 

of the most consistent findings of this work is that the uncertainty analyses are computation- 

ally expensive when compared to performing a single simulation using only the the mean 
input parameters of the system. Looking for computationally efficient ways of quantifying 
the output uncertainty is one of the key areas for future research. 

The importance of quantifying the frequency errors and uncertainties as well as the 

amplitude errors and uncertainties is also confirmed by the results in this thesis. This is es- 

pecially important in EMC where small frequency variations can cause large amplitude vari- 

ations due to the resonant nature of the output data. The novel curve alignment methods 

proposed in this thesis enable the successful analysis of these frequency errors and uncer- 
tainties. The research conducted in this thesis also suggests that considering the frequency or 

x-domain differences between two curves provides a useful additional measure (the XDM) 

that can be used to improve the FSV method. 
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8.2 Future Work 

This section outlines some of the future investigations that could be carried out on this 

project. These investigations include improvements to the accuracy and efficiency of the UA 

methods used in this thesis, and improvements to the curve alignment and FSV methods. 

8.2.1 Performing Post Processing on the Results Obtained by the MoM 

The baseline uncertainty predicted by the MoM appears to be similar to the uncer- 
tainty formed via the MCM. Removing the peak uncertainty overestimations (often formed 
by the MoM) will therefore result in an efficient and accurate estimate of the output un- 
certainty. It may be possible to reduce the size of these overestimated peaks by applying 

a moving point average over the MoM uncertainty estimate. Alternatively peak overesti- 

mations may be removed by removing peaks that have a width smaller than a threshold 

value, for example 10MHz. Processing the data may however have undesired effects and 
thus more work is needed to determine the best method for processing the data and the 

associated gains and risks involved with performing the post processing. 

8.2.2 More Efficient Uncertainty Analysis Methods 

The current UA methods used in this project may be too expensive to be used for more 

complex CEM problems. Innovative techniques therefore need to be identified that provide 

computationally efficient ways of estimating the uncertainty in the output of complex CEM 

simulations. This project has already shown that different CEM methods and CEM simu- 
lations performed with a different level of accuracy produce similar output uncertainties. 
One possible way of reducing the computational expense of UAs is to apply the chosen UA 

method to less accurate, computationally faster simulations. The uncertainty in the output 

of the less accurate simulations could be used to provide an estimate of the uncertainty in 

more accurate CEM simulations. This will effectively reduce the size of the computational 
runtime T of the CEM simulation, and therefore significantly reduces the computational 

expense of the UA. 

Similar techniques have already been applied in the optimisation of design param- 

eters in electromagnetic based Computer Aided Design [96]. This work performed opti- 
misation on less accurate, more efficient CEM simulations. The optimised parameters were 
then successfully transformed to more accurate CEM simulations using space mapping tech- 
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niques. 

The uncertainty in the output of ILCM and FDTD simulations were also shown to 

be similar in size. The ILCM simulations are computationally much faster than the FDTD 

simulations, and may therefore be used to efficiently estimate the uncertainty in the output 

of the FDTD simulations. The MCM may be used to estimate this uncertainty as it has 

been shown to be the most accurate UA method used in this thesis. In computationally 

expensive simulations the MCM may require too much computational runtime. The ILCM 

simulations are extremely efficient and thus the overall expense of the MCM simulations 

will be acceptable. The ILCM method may not be applicable to other more complex CEM 

scenarios, in these cases other efficient CEM techniques will be required to estimate the 

output uncertainty. Further work is needed to investigate efficient CEM methods that may 
be used in more general EMC scenarios. 

The computational expense of the MoM may be reduced by reducing the number of 

uncertain parameters N used in the UA. Less accurate simulations may be used to deter- 

mine which input parameters contribute most significantly to the output uncertainty. Once 

these parameters are identified the more accurate simulations may be used to determine the 

output uncertainty due to only these most important parameters. This method reduces the 

size of N and therefore the computational expense of the MoM. Unfortunately the MoM can 

often form large resonant overestimations of the uncertainty. These overestimations may 

make it difficult to accurately determine which parameters are contributing most to the out- 

put uncertainty. It may be possible to use the baseline uncertainty, formed by the MoM, 

to determine the contribution of the individual uncertain parameters to the output uncer- 

tainty. Further work is needed to determine whether this method can be used to increase the 

overall efficiency of the UAs, and whether the resulting uncertainty estimates are accurate. 

A final novel method that may help to increase the efficiency of the MoM uses a 
database to store different sensitivity derivatives formed from previous UAs of CEM simu- 
lations. The database may be used to interpolate sensitivity derivatives for a new MoM UA. 

This technique is an expert update technique: UAs will learn from the results of previous 

analyses, to save computational effort. If it is not possible to interpolate certain sensitiv- 
ity derivatives, then the derivatives may be obtained in the conventional way, these results 

may then be fed back into the database. It is clear that different scenarios may produce very 
different sensitivity derivatives for the input parameters. For example, it may be difficult 

to interpolate the sensitivity derivatives for a wire in an enclosure using previous results 
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where the enclosure may have had a completely different Q factor. Nonlinear relationships 
between the output results and the different input parameters, formed from different sce- 

narios, may also affect the sensitivity derivatives that are obtained using this method. It is 

clear that more work is needed to determine the applicability of these efficient UA methods 
to complex CEM simulations of realistic EMC scenarios. 

8.2.3 Improvements to Curve Alignment Methods 

In some cases, in this thesis, it was difficult to align the output curves. The aligned 

amplitude and frequency errors and uncertainties are only as accurate as the curve align- 

ment methods used to form them. Further work is needed to improve the curve alignment 
techniques. Currently all the curve alignment techniques assume that the first two points on 
the curves, undergoing alignment, are already aligned: this may not always be the case. The 

curve alignment methods may be modified so that the first two points on the output curves 

are free to move, to allow a better alignment. 

The PM method used in the majority of this thesis was shown to align curves well in 

many cases. In some cases however it failed to accurately identify the corresponding peaks 

on the two curves that should be matched. Further work is needed to increase the accuracy 

of the peak matching algorithm. The DTW method was shown to align curves extremely 

well, however it was concluded that this method manipulated the data too severely. The 

DTW method could be modified by constraining the movement of the points when aligning 
the curves. If the DTW method was restricted to moving the points in a smoother fashion 

then it may still provide excellent alignments, without distorting the data too severely. Fur. 

ther work is needed to determine whether these curve alignment methods can be improved. 

8.2.4 Modifications to the Feature Selective Validation Method 

Possible modifications to the FSV method were proposed through the work in this 

project. It was shown that the FSV method determined that curves formed from the sine 

and cosine functions were very poor matches. It is clear that these curves are actually very 

similar and only differ by a constant phase shift. It was proposed that by first aligning the 

curves an additional difference measure could be used to compare the two curves. This 

difference measure (XDM) represents the difference between each curve in their frequency 

domain (or x-domain). The difference measure is formed by analysing how much the curves 
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need to be shifted in their x-domain to align the curves. Using this difference measure it was 
shown that the sine and cosine curves are in fact an excellent match however they are shifted 
slightly in their frequency domain. More work is needed to determine the way in which the 
XDM should be implemented into the current FSV scheme. Further optimisation is required 
to form agreement between the comparisons made by the modified FSV scheme and by the 

engineers in [69]. 

8.2.5 Quantifying Model Form Uncertainty 

The work in this thesis concentrated on quantifying the parametric uncertainties in 

the output of CEM simulations. The model form uncertainty is not considered through this 

work. The model form uncertainty is the uncertainty in the output of a simulation due to 
the uncertainty in how well the model used represents reality. This uncertainty is more 
difficult to quantify. One source of model form uncertainty arises from the uncertainty in 

the orientation of a structure, in a FDTD simulation, which will give the best agreement 

with reality. For regular geometries it is known that certain orientations will reduce the 

amount of staircasing errors introduced and will thus give the best agreement with reality. 
However, for less regular geometries it is more difficult to determine the correct orientation 
to use. This uncertainty could be quantified by obtaining the variance in the output formed 

from different orientations of the geometry in the model. More work could be carried out to 
determine the model form uncertainty in different CEM simulations. 

Of all the proposed work discussed in this section the greatest reward would be ob- 
tained from forming methods that more efficiently estimate the uncertainty in the output 

of complex CEM simulations. This work also comprises the most difficult work proposed 
in this section. There is a relatively high risk that the proposed efficient UA methods may 

provide poorer estimates of the output uncertainty. Currently the most promising tech- 

nique is to use the uncertainty in computationally cheaper CEM simulations to predict the 

uncertainty in computationally more expensive CEM simulations. The analysis in this the- 

sis suggests that the uncertainty in more accurate CEM simulations is very similar to the 

uncertainty in computationally cheaper, less accurate simulations of the same scenario. 
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Uncertainty Analyses in the Finite Difference Time 
Domain Method 
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Abstract-Providing estimates of the uncertainty in results 
obtained by Computational Electromagnetic (CEM) simulations 
is essential when determining the acceptability of the results. 
The Monte Carlo Method (MCM) has previously been used to 
quantify the uncertainty in CEM simulations. Other computa- 
tionally efficient methods have been investigated more recently, 
such as the Polynomial Chaos Method (PCM) and the Method of 
Moments (MoM). This paper introduces a novel Implementation 
of the PCM and the MoM Into the Finite Difference Time 
Domain (FDTD) method. The PCM and the MoM are found to be 
computationally more efficient than the MCM, but can provide 
poorer estimates of the uncertainty in resonant Electromagnetic 
Compatibility (EMC) data. 

Index Terms-Uncertainty Analysis, FDTD, Computational 
Electromagnetism, Monte Carlo, Polynomial Chaos, Method of 
Moments. 

I. INTRODUCTION 

OMPUTATIONAL Electromagnetic (CEM) simulations C 
rely on sets of input parameters, which often have an 

associated uncertainty. These uncertainties may arise from 
a lack of precise knowledge of the material parameters or 
geometries that are being modelled. Uncertainties in these 
input parameters lead to uncertainties in the output of the 
CEM simulations. This type of uncertainty is often known 
as parameter uncertainty. In this paper a determination of the 
parameter uncertainty in the results of Finite Difference Time 
Domain (FDTD) simulations will be made. Quantifying the 
uncertainty in the output of interest amounts to quantifying 
the standard deviation of the output. Uncertainty Analyses 
provide the quantitative level of confidence that may be held in 
the results of CEM simulations. This information is essential 
when determining whether the results are acceptable or useful. 

Previous research has already highlighted the importance of 
quantifying uncertainty in CEM [1]-[4]. This research uses the 
Monte Carlo Method (MCM), which is generally accepted as 
being an accurate UA method, to test the performance of other 
computationally efficient Uncertainty Analysis (UA) methods. 
Chauvidre published work involving the implementation of 
the Polynomial Chaos Method (PCM) into a higher order 
discontinuous Galerkin solution of Maxwell's Equations [1]. 
The PCM was found to accurately quantify the output uncer- 
tainty, whilst being more computationally efficient than the 
MCM. Chauvidre's work, however, only estimated the output 
uncertainty due to one uncertain input parameter. The accuracy 
and computational efficiency of this method with increased 
numbers of uncertain input parameters needs to be analysed. 

More recently Ajayi has discussed the use of a Direct So- 
lution Technique (DST) to quantify uncertainty (2]. This tech- 
nique applies the probabilistic Method of Moments (MOM) (5], 

[6] into different CEM schemes, such as the Transmission Line 
Matrix (TLM) method. Ajayi used the DST to estimate the 
uncertainty in the frequency of the first resonance for simple 
electomagnetic problems (2]. The DST was found to work 
well for small parameter variations, giving results that are in 

agreement with results obtained from the MCM [2]. 
The present paper outlines novel implementations of the 

PCM and the MoM into the FDTD method. These Uncertainty 
Analysis (UA) methods are used to obtain the uncertainty 
in the output electric field viewed in the frequency domain. 
In the first of two examples, the UA methods are used to 
estimate the uncertainty in the electric field that penetrates a 
shielded enclosure containing a Printed Circuit Board (PCB), 

at around 1.8Gl1z. This example is fairly simple having 

only one uncertain input parameter and encompassing only 
a few resonant features. The second electrically large example 
considers three uncertain inputs, encompassing many more 
resonant modes. The PCM and the MoM are compared to 
the MCM in terms of their ability to accurately quantify the 
uncertainty, and in teens of their compuatational expense. 

In this paper, the uncertainty in the output of interest is 

a frequency response curve. The Feature Selective Validation 
(FSV) method [7], [8] is used in the present paper to determine 
the similarity of the uncertainty curves formed from the 
different UA methods. This method is a numerical technique, 
which determines how similar two curves are in terms of their 
amplitude and feature differences. The amplitude and feature 
differences between the curves are combined to give a General 
Difference Measure (GDM). This method currently forms part 
of a draft standard for the verification and validation of CEM 

models [9]. 

11. UNCERTAINTY ANALYSIS (UA) METHODS 

A. Monte Carlo Method (MCM) 

To determine the uncertainty in a FDTD simulation via the 
MCM, the Probability Density Functions (PDFs) associated 
with the uncertain input parameters must first be sampled 
many times. In this paper Latin Ilypercubo Sampling (LIIS) 
(10] is chosen as the preferred sampling method. This has 
been shown to produce a converged solution more quickly 
than other sampling methods [10]. The samples, obtained from 
the PDFs, form sets of input parameter values: one FDTD 

simulation is performed for each seL The outputs formed from 
each simulation are combined to form the output mean and 
standard deviation. The uncertainty in the output is represented 
by the standard deviation. 

It is well know that the MCM has slow convergence and 
as such it is a computationally expensive method. The mean 
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and uncertainty, formed using the MCM, converge for large 
numbers of samples. Once convergence has been reached, 
using more samples does not change the mean and uncertainty 
significantly. In this paper the FSV method is used, in a novel 
way, to determine when the MCM has reached convergence. 
The mean and uncertainty formed in this paper are frequency 
response curves. The FSV method is used to compare the 
respective mean and uncertainty frequency response curves 
after every N simulations. Convergence is reached when the 
mean and uncertainty curves are determined to be "excellent" 
matches to the respective mean and uncertainty curves pro- 
duced N simulations previously. In the examples in this paper 
N= 50 and convergence is reached when the comparisons 
of the respective mean and uncertainty curves produce a 
GDM< 1.5. This novel way of using FSV provides an accu- 
rate, consistent and impartial way of determining convergence, 
when the output of interest is a curve. 

B. Polynomial Chaos Method (PCM) 
The concept of Homogeneous Chaos was first introduced by 

Wiener [11]. Homogeneous Chaos uses Hermite polynomials 
to represent stochastic processes that depend on uncertain 
input parameters, which follow Normal distributions [12]. The 
PCM is a more generalised method for dealing with inputs that 
are not necessarily Normally distributed. In the PCM certain 
orthogonal basis polynomials are selected depending on the 
distributions of the random input variables [12]. A function 
depending on the uncertain random variables can be expanded 
in terms of the selected polynomials. This expansion, which 
is known as the Wiener-Askey chaotic expansion [12], casts 
the uncertainty in the output into the orthogonal polynomials 
alone. The orthogonality of the polynomial basis set can 
reduce stochastic differential equations to a set of deterministic 
differential equations that can be solved numerically [12]. 

Xiu and Kamiadakis [12] found the PCM to be computa- 
tionally cheaper than the MCM. They noted however that the 
method's efficiency is problem specific [13]. 

1) Wiener-Askey Chaos: Any second order random process 
X depending on some random event B, can be represented as 
[12] 

00 
X(O) = 

ECi bj(C(O)) (1) 

is0 

where c; are constant coefficients and 

C(B) _ (C1(0), C2(e),... ) (2) 
represents a vector containing an infinite number of indepen- 
dent random variables [12]. The polynomial basis set {0i}, 
corresponding to the random variables C(B), are chosen from 
the Askey-scheme, which can be found in [12]. 

The polynomial basis sets are all orthogonal, which implies 
that 

< Vj >=< pi >o (3) 

The weighting function w(C) corresponds to the choice of 
polynomial basis {tj'j}. 

2) General Polynomial Chaos: The Weiner-Askey chaotic 
expansion (1) can be used to solve stochastic diffcrcntial 
equations [12]. Let u(x, t, 0) be a solution of the stochastic 
differential equation 

£(x, t, 9)u(x, t, 0) = f(Z, t, 0) (5) 
where x, t and 8 represent position, time and some random 
event respectively. The symbol C represents some differential 
operator and f is a source term [12]. The solution u may be 
regarded as a random process and expanded as [12] 

P 

u(x, t, 0) =Eu, (x, t)+' (C(9)). (6) 
{. 0 

For practical applications the infinite sum in (1) has been 
truncated at P here. If d is the order of the highest order 
polynomial used in the expansion, and n is the dimension of 
the random variable C, then 

P+ 1= 
(" t 

(7) 
nldl 

Substituting the expansion of u into equation (5) yields 
P 

£(x, t, 9) E t*, (x, t)Wi (C(B)) =f(. T, t, 0). (8) 

i-o 
The inner product of both sides of this equation can be formed 
with 10k to give 

P 
G(Xrt, e)Eui(x, t)Oi(C(B)), V'k -< f(x, t, e), {l'k >. 

(9) 

The orthogonality of the basis polynomials reduces equation 
(9) to a set of (P + 1) differential equations: one for each ui 
[12]. These equations are deterministic (12] and can therefore 
be solved numerically. Once each ui is found. the mean and 
variance of u(x, t, 0) can be calculated. The mean is calculated 
as [1] 

P 

ü(x, t, 0) =< u(x, Z tie < ßt,,, 1 > i_0 
PP 

Ew<oil00>-Eu, dio-uo (10) 
i. 0 1+0 

using the fact that r/)o -I for all polynomial bases. The 

variance can be obtained in a similar way by first calculating 
PP 

<u(a)t, B), u(x, t, B)>a 1u, uj <>l'i, tbj > 
+,. o j. o 

PPP 

=EEuitt, u<t<? >aE' <{hý>. (11) 

1.0 J. 0 4.0 

The variance of u(z, t, 0) is therefore 11) 

O2 =< ti(x, t, 0), u(x, t, 9) >-< u(x, t, 0), 1 >s 
where b; f is the Kronecker delta and the inner product < .,. >rp 
is defined as [12] E U, 2 < V,, > -u3 "" E U1 < {b, > (12) 

r 
< f(C)9(C) >= 

f 
f(C)9(C)w(C)dC" (4) 

o ý"t 
The uncertainty in u(x, t, O) Is the standard deviation or. 



Appendix A 274 

3) General Polynomial Chaos in FDTD. " General Polyno- 
mial Chaos has already been successfully applied to Com- 
putational Fluid Dynamics (CFD) [14], [15], and to specific 
areas of Computational Electromagnetics (CEM) [1]. The 
application of General Polynomial Chaos to 1D FDTD is given 
here, these arguments can be easily generalised to 3D. 

Maxwell's Equations for a wave propagating in a linear 
isotropic homogeneous material along the x-axis in 1D are 

OH, I aEl 
(13) Yµöx 

ata -Ea+ aE 14 

As usual H, (x, t) represents the magnetic field oriented in the 
z direction, at a position x and time t. Similarly Ey represents 
the electric field oriented in the y direction. The symbols µ, e 
and a represent the permeability, permittivity and conductivity 
of the medium in which the electromagnetic fields propagate, 
CEM models seek to solve these two coupled equations, to 
find approximations for HZ(x, t) and Ev(x, t). If there are 
uncertain input parameters, then the solutions will depend 
on some random event 0. The uncertain field solutions can 
therefore be represented as Hs (x, t, 6) and Ev (x, t, B). The 
solutions to Maxwell's Equations may be found by using the 
FDTD scheme, first proposed by Yee (161. 

In Yee's scheme the temporal and spatial partial derivatives 
in Maxwell's Equations are approximated using central dif- 
ference approximations. The problem space is discretised into 
cells of length Ox, and time is split into discrete intervals At. 
This yields two update equations, which form the basis of the 
ID FDTD solution, The update equations formed are 

Hs+ý 
(3+! 

8) _Hä(+0) (15) 

-7[[Elnf (7 +11,0) - EE(. 7,0)J 

and 

Ey+I(j, 0)=cE (j, 0) (16) 

+ß{fi' 
(-�o) 

-H: 
C+g/J 

The shorthand notation H, (j, B) =H, (jAx, n ht, 8), is used 
in the above equations, where j and n are positive integers. 
The material properties of the medium in which the fields 
propagate are represented by 

C1 = a(x, 0) =1-o, 
(x, 9)At/20(x, 0) 

(17) 
1+ a(x, B)At/20(x, 0)' 

Q= ß(x, e) = oxa(x, 0) (1 + (x, 0)At/2a(x, 0) 
(18) 

and ry = ry(x, B) = Axu(x, B)' 
(19) 

The material properties µ, e and a, all depend on the uncertain 
parameter 0. This dependence is defined by the PDFs of the 
input parameters. 

The ID FDTD update equations defined above are used to 
obtain solutions for the electric and magnetic field, subject to 
some electric field source. The field solutions can be expanded 

in terms of the appropriate orthogonal polynomials {Vq}, to 
separate the dependence of the field on the random parameter 0 
from the dependence on time and position. The field solutions 
are expanded as 

E; (j, 0) = rei (i)O+iC(4)) (20) 

and 11 (j, B) =ý ýk°%)ý+iCýB))" X21) 
. =o 

The coefficients e' (j) and hi (j) must be found so that the 
mean and uncertainty of the output fields can be formed. 
The following discussion outlines how to obtain the field 
coefficients ei (j) and hi (j). 

Expansions (20) and (21) can be substituted into equations 
(15) and (16) to obtain 

Eh; +i(j+l/2)tß, (C(B)) Ef hi-}(i+1/2)+Y; (C(0)) 
{=o t-0 

-7 
(e. (i + 1) - ei ZT)ý +Gýiý($))ý (22) 

and 

Eei+l(. 7)0s(C(B)) = 
[Ue ý1) 'i(C(0)) (23) 

i=0 i-0 

+ß (hj +') (j -1/2) - hr +i (3 + 1/2)) V'+(C(e))] . 
At this point the electric field source E. may be added 
into equation (23). If this field source has some associated 
uncertainty then it may be expanded as 

(24) 

i=0 

Adding this source term into equation (23) yields 
PP 

Eei+l(7)1ý+ _ 
[a4i(7)'Gt + ei(25) 

t=o t-o 

+ß(hi+i(j-1/2)-hi+f(. f+1/2))t''+]. 

Taking the inner product of both sides of equations (22) and 
(25) with some test polynomial ti', where k is an integer in 
the range 0<k<P, reduces the equations to 

hk+I (j + 1/2) = hk- } (j + 1/2) (26) 

I (( 
- <+, j 1\ei(J + 1) - ei l? )) <i i', ti'k >1 1 

4-0 
and 

P 
ek+1 G7) ekit(1)+_ý"' 

[e (i)<c 'Ila> (27) 
h 4-0 

+ (hi +I (j - 1/2) - hr +8 (J + 1/2)) < Adatt'a >, . 
The above two equations make use of the orthogonality 
relation set out in equation (3). The material properties a. 
ß and y remain in the inner products due to their dependence 
on 0. 
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Equations (26) and (27) can be used to calculate ek(j) and 
hk+1'2(j + 1/2) for all n and j, and k=0,..., P. In order 
to do this the inner products < mo; >/ik >, <ßj? fi > and 
< yip' ok > must fast be calculated for all i, k=0,..., P. 
These can be calculated using numerical integrations as a pre- 
process; the update equations can then be used in a similar 
manner to the leapfrog scheme used in conventional FDTD. 
The source term must also be calculated at each time step as 

and the variance 
P 

ýý ýýýi (1))2 < V,, >. (36) 

ek, sý. 7) =< 
, ýa 
1 

><F; 
`(?, B) pk(C(O)) >. (28) 

To complete the scheme, update equations are required at 
the boundary. The examples in this paper consider the scatter- 
ing of electromagnetic fields in free space and therefore the 
first order Mur absorbing boundary condition [17] is chosen as 
a relevant boundary condition. At the lower boundary (where 
j= 0) the usual Mur update equation is 

El", +1(o) ý E(1) + Q(1)7(1) -1 (E,. +: (1) _"(o)l . p(1)7(1) -F 1l! 
(29) 

Introducing uncertainty into this equation via dependence on 
0 yields 

E"+1(0,0) =E (1,0) (30) 

+ ß(1,0)7(1,0) -1( +' (1,0) - E'(0,0)) . ß(1,9)ry(1,9) +1 

As before, the field terms can be expanded using the chaotic 
expansion, and an inner product of both sides of the resulting 
equation can be taken with Ok. Carrying out these two steps 
gives 

ek}1(0) = ek(1) (31) 

1p 
+ 

ýs >i 
+1(1) 

- ei(0)) < «(1,0), i k> 
i-0 

where t is defined as 

f(1, e) = 
Q(l, e)7(1, B) -1 (32) 
6(1, e)7(1 , 8) +I 

Usually at the boundaries the properties of the medium are 
those of free space; there is no uncertainty in the parameter 
values near the boundary. Thus e has no B dependence and 
< f+pi+'a >= ýd; k < ikk >. The update equation for the 
electric field at the lower boundary reduces to 

ek+i (0) = en(j) + «1) (ek+i(1) 
- eZ(O)) (33) 

for k -_ 0,.. ., P. Using a similar argument the electric field 
update equation at the upper boundary (j = N) is 

ek+i(N)=ek(N-1)tý(N-1)(ek+l(N-1)-ek(N) . 
(4) 

The coefficients ek(j) may now be calculated using equa- 
tions (26), (27), (33), and (34). Similar equations to (10) and 
(12) are formed for the mean value of E; (j, 0) 

The PCM is easily applied to FDTD because the update 
equations follow a very similar form to those in conventional 
FDTD. The only extra step comes in calculating the integrals 
that correspond to the inner products in the update equations 
(26) and (27). The application of the PCM to FDTD given 
here may be easily generalised to 3D. 

One problem with the PCM arises when trying to form the 
mean and uncertainty of some related quantity, which does 
not depend linearly on Ed (j, O). For example the output of 
interest may be the absolute value of Ev (j, 0). The mean 
of this ouput is formed as 

i =< IE(j, 0)I, 1 >= 
((37) 

e absolute value within the inner product prevents the Th 
orthogonality of the basis polynomials from being used to 
form a simple relationship for the mean. The mean will 
have to be calculated using a numerical integration over the 
uncertain parameter space 0. This presents a problem with the 
PCM: the calculation of the mean of the output of interest 
is not always trivial. Some of the mathematical simplicity 
of the PCM has been lost by trying to form the mean of 
the quantity JE(j, 6)1. The mean must be calculated using a 
numerical integration at each frequency point, which requires 
extra computational time. This extra computational expense 
is however small compared to the PCM simulation runtime. 
Once this mean has been calculated the variance a2 may be 
calculated using the standard definition 

a2(IE(j, 8)f)=<(JLy(j, e)I -p)2>. (38) 

Further numerical integrations are required to obtain this 
variance. The uncertainty in 1 Ed (j, O)j is the square root of 
this variance. 

The PCM performs one large simulation, storing a factor 
(P + 1) more field coefficients and (P + 1)' more material 
parameter values (via the inner products) than the MoM and 
the MCM. If there are, for example, three uncertain inputs 
and the Wiencr-Askey chaos expansion is truncated at first 
order then P=3 and the PCM will require around 16 
times more memory than the MoM and the MCM to store 
the material inner products. The PCM should however require 
less computational runtime than the MCM. 

C. Method of Moments (MoAM) 
The MoM is another approximate UA method, which is 

similar to the method outlined in [6J for the determination of 
uncertainty in practical EMC measurements. It is the intema- 
tionally accepted method outlined in (5), for the propagation 
of uncertainties through a model. 

The MoM uses a first order Taylor series expansion of the 
output electric field E� about the mean input parameter values, 

E, = 4(j) (35) EE(Pt,... , P�) - cipi -F ... + cnP%, (39) 
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where the c, represent the sensitivity derivatives of each 
parameter p; evaluated at the mean parameter values p;. For 
the purposes of this discussion there are assumed to be n input 
parameters for the FDTD simulation. 

The mean output electric field E. is calculated by perform- 
ing one simulation with all input parameters taking on their 
mean values [5], [6]. To calculate the sensitivity derivative 
c;, in equation (39), an FDTD simulation must be performed 
with all parameters taking on their mean values, except for the 
parameter p,. In this simulation the parameter pi is perturbed 
slightly from its mean value to give p, = p; f A. This 
simulation will produce a perturbed output electric field E,. 
The sensitivity derivative c; is calculated using the finite 
difference approximation 

E' -E c=Qv. (40) 

If ui is the uncertainty in the parameter pi, determined from 
the PDF of p,, then the uncertainty in the mean output of the 
FDTD simulation is calculated as [5], [6] 

(n)& 
(41) 

The accuracy of the uncertainty estimate relies on the relation- 
ship between the uncertain inputs and the output of interest 
being linear. The method is also dependent on the size of the 
perturbation A that is used. It has been previously suggested 
that using a perturbation A=u; is appropriate [5], [6]. 

The MoM requires the same amount of computational 
memory as the MCM. For a simulation with n uncertain input 
parameters, the MoM requires n+1 FDTD simulations. 

In the next section the UA methods described above are 
used to determine the mean and uncertainty in the output 
of an EMC example. The output of interest in the following 
examples is the frequency response of the normalised electric 
field. 'T'his normalised field is formed by taking the ratio of 
the absolute value of the specified electric field to the input 
excitation, in the frequency domain. The FDTD simulations 
are all performed with 100 x 100 x 100 cells and 10,000 time 
steps. 

I11. EXAMPLE 1: AN EMC EXAMPLE 

Figure I shows the setup of the EMC example. An electric 
field is excited from a dipole (oriented in the z-direction) and 
scattered off a shielded enclosure, with an aperture in the front 
face. To describe the coordinates of the shielded enclosure and 
the aperture the origin is assigned to the bottom right hand 
comer of the front face, which itself is in the y-z plane. The 
width of the box is y= 38cm, the depth is x= 40cm and 
the height is z= 15cm. For the purposes of the following 
discussion, the points in this coordinate system have units of 
cm, referenced from the origin. The bottom right hand corner 
of the aperture is at the point (0,19,5) and extends by a width 
ay = 15cm and a height a, = 4cm. Using this coordinate 
system the centre of the dipole is at (-20,26,7), this is 20cm 
away (in the a-direction) from the centre of the aperture. The 
arms of the dipole are each 7cm in length, with a radius of 

Fig. I. A FDTD simulation of shielded cnclosurc with an apcrture, containing 
a Printed Circuit Board. 

lmm. The voltage source at the centre of the dipole has an 
amplitude of V0 = 2V over a load of 50 1. The input excitation 
is a Gaussian of the form 

=/4 
In 2(1 - I�)' 

V Výexp 1\ jýrhj,. 1 /I 
(42) 

where to = 6.67 x 10 10s is the onset time and f is hh 
2.78 x 10 1°s is the full width of the Gaussian pulse at half 
the height of the maximum amplitude. 

The enclosure represents the shielding exterior of a typical 
electronic system containing a PCB. Using the coordinate 
system outlined above, the PCB is oriented in the . r-, plane, 
extending from the point (5,14,2) a distance rr, : 3lkm in 
the positive . r-direction and a distance 11km in the positive 
z-direction. The components on the PCB will absorb some of 
the electric field that penetrates the enclosure and is incident 

upon the board. The PCB may therefore he modelled as a 
thin dielectric block with a reflection coefficient 1181. For this 
example the reflection coefficient I' is llnif'onnly distributed 
in the interval 

0.91,0,971 (43) 

This reflection coeflicient is optimised for a frequency of 
I. RGIlz by changing the material parameters of the P('lt. The 

reflection coefficient will however be accurate litr a small 
frequency range around I. BOIIi. Notice that the reflection 
coefficient described by equation (43) is uncertain, it Ihllows a 
Uniform distribution. The uncertainty in this input will cause 
there to be an uncertainty in the output. 

The output z-cannponent of the electric field is observed tit 
the centre of the box. A FDTI) simulation was used to obtain 
the normalised electric field at this point using a uni limn cell 
size 01'0-0 1 M. 

Figure 2 shows the nican output electric field with 95% 
CI, as predicted by the M('M. Figures such as this one are 
extremely useful when determining the quantitative level of 
confidence that may be held in the results of a simulation. At 
1.8Gllz the 95% CI are ', ti. l18.0 "I"I 1t Vim. I'hus, 95% 

of the sampled data was within about 13'7, of the mean value. 
The uncertainty in the output electric field is shown in 

Figure 3. The uncertainties predicted by all three methods 
are in very good agreement. The uncertainty curves were 
compared using the FSV method over frequencies up to Rill/. 
The uncertainty predicted by the 11CM is a "very good" 
match to the uncertainty predicted by the M('M, with it (il)M 

of 2.3568. The MoM performs even better, the frequency 
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Fig. 2. Mean normalised electric field at the centre of the shielded enclosure Fig. 5. Uncertainty in the normalised field h. ckscanaed fnttn a dielectric 
and the 95% Cl. sphere. 
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Fig. 3. Uncertainty in the normalised electric field, at the centre of the 
shielded enclosure, formed via the three UA methods. 
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Fig. 4. A three dimensional problem space containing a dielectric sphere. 
A uniform plane wave is reflected off the sphere and observed at x. 

response of the uncertainty formed from the MoM and the 
MCM are an "excellent" match, having a GDM of 1.4755. 
Therefore, for this example, both efficient UA methods provide 
uncertainty estimates that are very close to the uncertainty 
formed using the MCM. 

IV. EXAMPLE 2: A DIELECTRIC SPHERE 

This example considers the reflection of a uniform plane 
wave off a dielectric sphere in free space. The incident 
electric field E propagates in the positive :r direction, and 
is polarised in the ij direction with a magnitude E0 = IV/m. 
The y-component of the backscattered field h, 7, is calculated 
at a distance R=0.2m from the centre of the sphere. 
This backscattered electric field is normalised relative to the 
input excitation to form the normalised electric field. This 
backscattered field may be solved for analytically using the 
Mie series [19]. 

In this example the sphere parameters are uncertain: the 
radius is Normally distributed with a mean u- 0-Im and 
an uncertainty o� = 0.005m, the relative permittivity is 
Uniformly distributed in the interval t,. = [3.7,4.3 and the 
relative permeability is Uniformly distributed in the interval 

µ, = [0.95,1.05[. These uncertain input parameters will 
produce an uncertainty in the output normalised electric field. 
The setup of this example is shown in Figure 4. 

The normalised electric field in the frequency domain was 
calculated using FDTD simulations, with a uniform broad 
Gaussian incident plane wave and a uniform cell size of 
0.005m. Figure 5 shows the uncertainty in the FDTD sim- 
ulations calculated using the three VA methods. At the lower 
frequencies the uncertainties produced by the three methods 
are in good agreement. However, at the higher frequencies the 
PCM and the MoM both overestimate the uncertainty, when 
compared to the uncertainty produced by the MCM. These 

qualitative comparisons are confirmed using the FSV method. 
The PCM gives a "fair" estimate of the M('M uncertainty up 
to I. 02GII 

. and a "poor" estimate of' the uncertainty between 
I. 02GHz and 3GHz. The MoM does slightly better at the 
lower frequencies providing a "fair" estimate of' the MCM 

uncertainty up to 1.21(illz. At the higher frequencies however 

the MoM performs less well, with a "very ptwr" estimate of' 
the uncertainty between 1.21611z and YOU. 

Figure 6 shows the nonnalised electric field pnxltj(, v-xl from 

a FDTD simulation using the mean input parameter values 
and a simulation with the sphere radius perturbed by 5mm. 
The two curves in this figure have similar res naht lcawrrs 
but are shifted slightly in the frequency domain. At I(ill, the 
frequency response curve is less resonant in nature. ('hanging 

the radius of the sphere causes a frequency shift which in turn 
changes the value of the normalised electric field in at quasi- 
linear fashion, at this frequency. ('hanging the radius of the 
sphere at a more resonant frequency (e. g. 2.71(ill, ) results 
in a frequency shift which causes a large nonlinear change in 
the normalised electric field. Figure 7 shows the relationship 
between the normalised electric field and the ntdius of' the 
sphere at IGllz and 2.71(illt (calculated using the Mic Series 

solution). At 16111 the normalised electric field depends on 
the radius in a relatively linear fashion, wheras at 2.71lilli 
the normalised electric field depends on the nulius in at highly 
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Table I shows the computational performance of the three 
methods. All FDTD simulations were perforntcd on a com- 
puter with a Pentium 4 processor running at 1. OKillz. The table 

shows that the MoM requires the least amount of computa- 
tional expense. The MCM requires much more computational 
runtime than the PCM and the MoM, highlighting the need 
for efficient methods of 'quantifying the uncertainty in CUM 

simulations. Table I displays the extra computational memory 
required by the PCM, compared to that required by the 
MCM and the MoM. In the second example significantly 
more memory is required for the PCM. The MUM and the 
MoM use an optimised FDTI) methoxi; the material parameter 
values are not stored at each point in the problem space but 

a reference to the parameter value is stored. Conversely for 

the PCM, material values need to be stored at all points in the 

problem space. The uncertainty in the sphere radius causes the 

material parameter inner product values, used by the P('M, 

to be different at diflerent points in the problem space. This 

means that the full inner product values have to he stored 
at each point in the problem space, requiring significantly 
more memory. In more complex examples the computational 
memory requirements may be too large to allow the P('M to 
be used. 

To obtain the uncertainty of these (and any other) ('EM 

simulations, extra computational runtime is needed. This extra 
runtime will he significant tier complex problems with many 

uncertain input parameters. Uncertainty budgets provide es- 

sential information to help determine whether the results of 
a measurement are acceptable, and should not he discounted 
because of the extra computational expense. 't'his paper har 
investigated two efficient tIA methods (the PC M and the 
MoM), highlighting some of the strengths and limitations of 
these methods. 
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Fig. 7. The normalised electric field backscattered fiom dielectric spheres 
with different radii, at IGHz and 2.71GHz. 

nonlinear manner. Similar nonlinear relationships between the 
output electric field and the other uncertain inputs arise at 
frequencies where there is a high modal density. 

In this example the chaotic expansion used by the PCM is 
truncated at P=3; the output is therefore assumed to depend 
linearly on the uncertain inputs. The MoM also assumes 
a linear relationship between the output and the uncertain 
inputs. At subresonant frequencies (e. g. at IGllz), the linear 
assumption is valid and the subsequent predictions of the 
uncertainty formed via the PCM and the MoM are similar to 
the uncertainty formed via the MCM. The linear assumption 
used by the PCM and the MoM is poorer at frequencies 
where the frequency response of the electric field is more 
nonlinear (e. g. at 2.71GHz). This explains the poor estimations 
of the uncertainty produced by the PCM and the MoM at 
such frequencies. The resonant nature of EMC data may 
prevent efficient (JA methods, such as the PCM and the MoM, 
from being used to accurately quantify the uncertainty in the 
frequency response of the electric field formed from ('1? M 
simulations of EMC examples. The MoM and the PCM may 
still be useful for quantifying the uncertainty at subresonant 
frequencies. 

In Figure 5, it appears that the baseline of the uncertainty 
formed by the MoM is similar to the uncertainty formed by the 
MCM. Removing the peak uncertainty overestimations (e. g. by 
using a moving point average) may result in a more accurate 
estimation of the uncertainty. Processing the data, in this way, 
may however result in the loss of some of the uncertainty 

VI. CIIN(I USI(IN 

Estimates of the uncertainty in the rrsulls of ('I"M suuu- 
lations provide the scientific conmwnit) with the yuantitatu c 
level of'amfidence that may he held in the result. In the first 

example of'this paper it may he concluded that there is a 45% 

chance that the output value tics within 3°. of its mean value. 
It is impossible to determine this level of coimhidcnrr without 
pcrf2mning an VA. 
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This paper introduced three UA methods that were used 
to quantify the uncertainty in FDTD simulations. The novel 
implementation of the PCM required a modification of the 
FDTD algorithm. Of the three methods, the MoM was shown 
to be the computationally cheapest method. The PCM was 
shown to be computationally faster than the MCM, but re- 
quired significantly more computational memory. 

The MCM has previously been used to provide reliable 
estimates of uncertainty. The first example in this paper 
highlighted that the computationally cheaper MoM and PCM 

can give very good estimations of the uncertainty formed via 
the MCM. The efficient MoM and PCM, implemented in this 
paper, both rely on the assumption that the output of interest 
depends linearly on the uncertain inputs. In the second exam- 
ple it was shown that this assumption is valid at subresonant 
frequencies, but poorer at frequencies with a higher density 

of resonant modes. This reflected the uncertainty estimates 
formed by the PCM and the MoM, for this example, which 
were better at subresonant frequencies. In conclusion, the 
MoM and the PCM may only provide moderate estimates of 
the uncertainty in resonant EMC data. However the efficient 
methods have also been shown to work well at subresonant 
frequencies for an example with multiple uncertain inputs. 

The baseline of the uncertainty formed by the MoM, in the 
second example, was similar to the uncertainty formed by the 
MCM. It was therefore suggested that removing the MoM peak 
uncertainty overestimations may result in a better estimation 
of the uncertainty. Investigations into such post processing 
comprises one of the future directions of this work. 
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Glossary 
AAAD -Average Absolute Amplitude Difference 

ABC -Absorbing Boundary Condition 

ADM -Amplitude Difference Measure 

CEM -Computational Electromagnetism 

CFD -Computational Fluid Dynamics 

CI -Confidence Intervals 

DTW -Dynamic Time Warping 

ECDF -Empirical Cumulative Distribution Function 

EFIE -Electric Field Integral Equation 

EMC -Electromagnetic Compatibility 

EMI -Electromagnetic Interference 

FDM -Frequency Difference Measure 

FDTD -Finite Difference Time Domain 

FEM -Finite Element Method 

FFT -Fast Fourier Transform 

FSV -Feature Selective Validation 

GDM -General Difference Measure 

GTD -Geometrical Theory of Diffraction 

HIRF SE -High Intensity Radiated Fields in Synthetic Environments 

IA -Interval Analysis 

IC -Interval Correlation 

IEMoM -Integral Equation Method of Moments 

ILCM -Intermediate Level Circuit Model 

LHS -Latin Hypercube Sampling 
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MCM -Monte Carlo Method 

MFIE -Magnetic Field Integral Equation 

MoM -Method of Moments 

NWP -Numerical Weather Prediction 

ODM -Offset Difference Measure 

PCB -Printed Circuit Board 

PCM -Polynomial Chaos Method 

PDF -Probability Density Function 

PEC -Perfectly Electrically Conducting 

PM -Peak Matching 

PML -Perfectly Matched Layer 

SE -Shielding Effectiveness 

TLM -Transmission Line Matrix 

TWIE -Thin Wire Integral Equation 

UA -Uncertainty Analysis 

XDM -x-domain Difference Measure 
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