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Abstract 

We provide some evidence of Empirical Likelihood's (EL) practical value in econo- 

metrics. We present EL as an alternative to GMM estimation and assess the 

finite-sample properties of their overidentification tests (size and power) through 

Monte Carlo simulations. We address the issue of the importance of the results 

to applied workers and use as laboratories to our experiments two settings with 

potential empirical applications: the Mean-Variance and Three-Moment CAPM 

and a dynamic panel model with individual effects. In cases in which we found 

important size distortions we introduced efficient bootstrap critical values. Prior 

research applied this bootstrapping technique to the GMM (GMM-bootstrap) 

and we present results for the EL (EL-bootstrap). We also include an empirical 

example on a United States panel cash-flow model. Even if our findings do not 

uniformly support the conclusion that one estimator dominates the other, we 

found evidence that EL and EL-bootstrap are good alternatives to GMM and 

GMM-bootstrap in some econometric applications. 
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Introduction 

Econometricians seem to share a general desire to avoid making strong distributional as- 

sumptions about the stochastic characteristics of probability models when a priori knowl- 

edge is insufficient to support such assumptions. When there is insufficient information to 

specify the functional form of a parametric likelihood function, an Empirical Likelihood 

(EL) function is still available under appropriate sample conditions. This is based on a 

multinomial probability distribution function supported on the sample of data. The re- 

suiting EL estimator of model parameters has first-order asymptotic properties that are in 

many ways analogous to parametric methods. Furthermore, the EL function behaves much 

the same as an ordinary likelihood function in terms of the usual likelihood ratio statistics 

that can be used for inference purposes. 

In this dissertation we shall focus on studying Owen's (1991,1990,1988) EL as an alternative 

to the General Method of Moments (GMM). Both methods share important characteristics; 

for example, the Empirical Likelihood Ratio (ELR) possesses an asymptotic variance that 

is the same as that for the efficient GMM, thus it is asymptotically efficient. Both tests are 

distribution-free and their general setting are moment-condition models. The EL overiden- 
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tification test is similar to that of the GMM; they are asymptotically first-order equivalent 

and have the same interpretation. 

The size (level), power and other properties of hypothesis tests, as well as the confidence 

level and other properties of confidence sets based on asymptotic theory are all approximate, 

for they are only valid asymptotically. A logical question to consider is "How accurate are 

the approximations? ", the answer to which is directly related to how accurate the hypoth- 

esis tests and confidence region procedures are that are derived from the approximations. 

One might also ask, "How large does the sample size have to be to obtain an accurate 

approximation? ". The preceding questions are of the utmost importance if one wishes to 

utilize asymptotic theory as a guide to finite-sample behaviour. Through Monte Carlo ex- 

periments we shall provide an indication of how useful asymptotic approximations are for 

a range of different problems. We will mostly focus on the finite-sample properties of tests 

of overidentifying restrictions based on EL and different versions of GMM. 

Why study the EL as an alternative to GMM? It has been extensively documented that the 

asymptotic approximation for GMM confidence intervals and tests can be poor (see, among 

others, the 1996 special issue of the Journal of Business and Economic Statistics on GMM). 

For example, the asymptotic properties of the GMM test of overidentifying restrictions can 

be a poor guide to finite-sample behaviour in small data sets often encountered in empirical 

analyses. Therefore, it is important either to explore new procedures or to improve on the 

existing ones. 
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Several problems were encountered while writing this dissertation. The first problem is 

that solutions to EL problems cannot be written in closed form and must be numerically 

computed. This is necessarily computationally intensive and can lead to cumbersome cal- 

culations. Having to design new computer programs was only the beginning of a series of 

complications. Another problem that is worth noting here is that there are both advan- 

tages and disadvantages to using Monte Carlo experimentations as an approach to studying 

finite-sample behaviour when it is compared with a mathematical analysis of the statistic 

in question. In respect to the drawbacks of this approach, the results of simulations are 

imprecise and specific (to an unknown extent) to the particular parameter values being 

investigated and the distributional assumptions made. Therefore, to reduce imprecision a 

high number of replications for the particular question being addressed had to be carried 

out. To deal with specificity each experiment was repeated several times using a range of 

values for the sample size, number of time periods (in a panel data context) and parameter 

values. The latter was extremely time consuming and a long processing time was required 

for each model. 

Prior research has investigated the performance of the EL overidentification test. This is 

valuable in the sense that contributions, similarities and limitations of the existing literature 

were identified and used as a baseline in the design of our research. The following facts are 

noteworthy: 

1. Most studies are invariably based on Qin and Lawless (1994), Hall and Horowitz 

(1996) and chi-squared moments models. These studies make the same distributional 
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assumptions. 

2. Most studies assess the finite-sample size properties of overidentification tests but not 

its power. 

3. There is no simulation evidence for overidentification tests where EL is combined with 

other methods, e. g. the bootstraps. 

4. There are relatively few empirical applications, as compared to the GMM, for the EL. 

The dissertation is laid out as follows: Chapter 1 is devoted to the necessary background to 

follow most of the results provided in this work. Chapter 2 analyses some numerical proper- 

ties of EL. First, we examine the computational aspects of EL. Then, we assess the adequacy 

of the asymptotic approximations of its estimators and test statistics. The laboratory set- 

tings of our experiments are the invariably exploited models of Qin and Lawless (1994), Hall 

and Horowitz (1996) and a chi-squared moments model. However, extensions (alternative 

distributions, parameter values and sample sizes) and contributions (a non-uniform boot- 

strap procedure based on EL probabilities and applied to EL) to existing literature are also 

discussed. Chapter 3 then examines the question of size and power of overidentification tests 

based on a financial framework: the Capital Asset Pricing Model (CAPM). Two versions of 

the CAPM are studied: Mean-Variance and Three-Moment CAPM. As far as we are aware 

this is the first time that the Three-Moment version is used as a laboratory setting to assess 

the finite-sample properties of overidentification tests. Chapter 4 extends EL to a dynamic 

'Namba (2004) combines EL and the bootstrap to obtain critical values from the ELR for the case of 
estimating a population mean. 
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panel data context. First, simulation evidence is provided. Then, an empirical applica- 

tion on an AR(1) univariate panel data model with individual effects is carried out using a 

cash-flow series for 174 firms in the United States from 1981-1985. Finally, conclusions and 

appendices on the entire analysis are provided at the end of the dissertation. 
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Chapter 1 

Background 

1.1 Introduction 

The aim of this Chapter is to introduce the EL estimation procedure and to provide the 

background material that is most useful for the topics covered in this thesis. The general 

concept of EL is given in Section 1.2. We present EL as discussed by Owen (1991,1990,1988) 

in Section 1.3. Section 1.4 introduces estimating equations into the analysis as in Qin and 

Lawless (1994). Section 1.5 presents the Maximum Empirical Likelihood (MEL) estimator 

and its first-order asymptotic properties. Section 1.6 reviews some relevant hypothesis 

tests and special emphasis is given to the overidentification test. ' Section 1.7 defines the 

Cressie-Read statistics, identifies the EL and Kullback Leibler Information Criterion (KLIC) 

as members of this family and concentrates on the KLIC overidentifying restrictions test. 

Section 1.8 analyses two other overidentification tests. These are based on the two-step 

'The terms overidentification test/statistic, J-test, moment restrictions test, and overidentifying restric- 
tions test/statistic are used interchangeably. 
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and the continuously updated GMM estimators. An efficient bootstrapping technique is 

described in Section 1.9. This procedure is used to obtain bootstrapped critical values for 

the overidentification test statistics, both for the GMM and the EL. Monte Carlo simulation 

is introduced in Section 4.5. Finally, a software section is included. 

1.2 Concept of Empirical Likelihood 

According to Owen (1988), who originally developed the EL approach, the name "Empirical 

Likelihood" was adopted because the empirical distribution of the data plays a central role. 

It was not called nonparametric likelihood, so as not to assume that it would be the only 

way to extend nonparametric maximum likelihood to likelihood ratio functions. 

The EL is a nonparametric method of statistical inference based on a data-driven likelihood 

ratio function. The EL approach yields an estimator, the MEL estimator, that has sam- 

pling properties similar to resampling methods such as the bootstrap and an inference basis 

analogous to that used with parametric methods (Owen, 2001). However, instead of the 

resampling process underlying the bootstrap, the EL method works by profiling a multino- 

mial likelihood supported on the sample data. In situations involving independent and 

identically distributed (i. i. d. ) random variables, EL has the advantage over some paramet- 

ric methods in that it only makes mild assumptions about the existence of certain moments 

or estimating equations of the random variables. 
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1.3 Empirical Likelihood and the Mean Problem 

Owen (1991,1990,1988) proposed EL for the mean and some other statistics, using results 

of Stein (1956) and extending earlier work of Thomas and Grunkemeier (1975). 2 

Let X1, X2, ..., x,,, be i. i. d. observations from a d-variate distribution F with mean µ and 

nonsingular covariance matrix. In order to recover an estimate of the probability distribu- 

tion function from the observed sample xi, x2, ..., xn.; Stein (1956) approximates it with a 

multinomial distribution. Owen (1990) applies Stein's estimate and defines a nonparametric 

(multinomial type) likelihood function, the EL function 

nn 
L (F) = fldF (xi) = Ilpi, (1.1) 

i=l i=l 

where pi = dF (xi) = Pr (X = xi) . 
Only distributions with an atom of probability on each 

xi have nonzero likelihood, and (1.1) is maximized by the Empirical Distribution Function 

(EDF) 

F'n (x) = rt 1 EI (xi < x), (1.2) 
i=1 

I 1ifxi<x 
where I (xi < x) _ 

0 otherwise 

Now, we define the ELR function 

n 
R (F) =L (F) /L (Fn) = [Jnpj. (1.3) 

t=1 

R (F) can be used to construct nonparametric confidence regions and tests for the mean 

µ of F. We define the profile ELR function (this is a likelihood function that has been 

2Thomas and Grunkemeier (1975) are the first to use an ELR function to set confidence intervals. 
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partially maximized with respect to a subset of its parameters conditional on given values 

of the remaining parameters) 

nnn 

RE (A) = sup flnpi I pi >_ 0, Di = 1, Epixi = 14 (1.4) 
i-1 i=1 i=1 

Owen (1990,1988) noted that a unique value for the right hand side of RE (µ) exists -the 

maximum of the ELR is unique- provided that µ is inside the convex hull of the points 

xi, ..., xn. 

An explicit expression for RE (µ) can be derived by a Lagrange multiplier argument. The 

nnn 

maximum of npz subject to the constraints pi > 0, Epi = 1, Epixi =µ is attained 

when 

pi =pi (µ, t)=n-1{1+tT(xi-µ)}-1, (1.5) 

where the multiplier t=t (µ) is the dx1 vector solution to 

{1-4- tT (xi - µ)}-1 (xi _ µ) 
i=1 

n 

and t' is the transpose of t. Since fl pi is maximized unconditionally by Fn, it follows that 

RE (µ) is maximized with respect to µ at µ=x, and that 

RE (µ) _ {1 + tT (xi - µ)}ý1 " 
(1.7) 

i=1 

The empirical log-likelihood ratio statistic is 

WE (µ) = -2 log RE (µ) (1.8) 

Under mild conditions -which include finite variance covariance matrix of full rank d and 

finite second and third moments- Owen (1990,1988) proves that if p= µo, then WE (µo) 
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converges in distribution to Xýd) as n --+ oo; i. e. 

EW (�O) 7l'2 ( 0. 
(1.9) 

The asymptotic result in (1.9) is very useful since it enables us to obtain confidence regions 

and to carry out hypothesis tests. Approximate a- level confidence regions for it may 

therefore be obtained as the set of points µ such that WE (µ) < ca, where ca is defined such 

that Pr (4) < ca) = a. Hypothesis tests are reviewed in Section 1.6. 

1.4 Empirical Likelihood and Estimating Equations 

Qin and Lawless (1994) extend Owen's (1991,1990,1988) formulation by combining the 

concept of unbiased estimating functions and EL. They assume that xl, x2...., xn are i. i. d. 

random variables from an unknown distribution function F, that there is a q-dimensional 

parameter 0 associated with F and that information about 0 and F is available in the form 

of r>q functionally independent unbiased estimating functions. The functions are written 

as 

9j 

such that 

EF{gi (x, 0)}=0. 

The notation EF is used to emphasize that expectations are being taken with respect to F. 

In vector form we have 

(91(x, 9) 
, ..., 9'. 



20 

EF {g (x, 8)} - 0. 

Note that when r=q, estimators of the parameters can be obtained as roots of the corre- 

sponding estimating equations. 

To apply EL to this framework we maximize the logarithm of (1.1) subject to: pi > 0, 

Epi =1 and Epig (x2,0) =0 via Lagrange multipliers. Let 
ti i 

(p, %, t) in (pi) +%1- Epi 
- ntTEi9 (xi, e) 

, 
iii 

where A and t= (ti, t2, ..., tr)T are Lagrange multipliers. 

The first order conditions (FOC) for p;,, Jº and t are 

1=X+ 
ntT 9 (xi, 0) 

, 
(1.10) 

pi 

Ei 
i 

i9 (x1,8) = 0.1.12) 
i 

Multiplying (1.10) by pi, summing over i and using (1.11) and (1.12) yields 

A=n, 

pi = pi (O, t) = n-1 {1 + t'g (x2, O)}-1 
, 

(1.13 

with the restriction from (1.12) that 

Dig (xi, 0) = En-1 {1 + tT g (xi, 0)}-1g (xis 0) = 0. (1.14) 
ii 

Qin and Lawless (1994) show that a solution for t can be determined in terms of 0 from 

(1.14) if: 
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(i) 0< pi < 1, which implies that t and 0 must satisfy 1+ tT g (xi, 0) > 1/n for each i, 

(ii) 0 is inside the convex hull of the g (xi, 0)' s. 

By substituting the optimal Lagrange multiplier, t (0), into the expression for the optimal 

p weights, pi (0, t) in (1.13) 
, the empirical probabilities can be represented in terms of 0 as 

p (0, t (e)) = n-1 {1 +t (e)' g (xi, e)}-' . (1.15) 

It follows that the (profile) EL function for 0 takes the form 

_11 16 LE EB) = 1Z 

{ (1n) 

1+t7' (0) 9 (xi, 0) 

}) 

ti_1 

Since pi = n"1 in the absence of constraints, the empirical log-likelihood ratio is 

lE (0) _E In (1 + tT (9) g (xi, 6)] 
. 

(1.17) 
i=1 

1.5 Maximum Empirical Likelihood Estimator 

The form of °EL, the MEL estimator for 0, is the solution to the minimization of (1.17). 3 

Substituting °EL into (1.15) we find 

COCO)=n1 {1 
+t 

(eEL)T 
9 

(xi, eEL) }_1 
1 

(1.18) 

and an estimator for the distribution function F is 

F'nEC. (x) = PiELI (xi < x). (1.19) 
i 

3When r>q computational issues arise as the best way to obtain L. We will discuss computational 
procedures in more detail in the following Section and in Chapter 2. 
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1.5.1 Asymptotic Properties 

Qin and Lawless (1994) derive asymptotic properties for the MEL estimator. These are 

summarized in the following Theorems and Corollaries. For outlines of proofs refer to Qin 

and Lawless (1994). 

Lemma 1 Assume that E [g (x, 80) gT (x, 90)) is positive definite, ag (x, B)/äB is continuous 

in a neighbourhood of the true value 80, I10g (x, 0) /0011 and ! jg (x, 0) 113 are bounded by some 

integrable function G(x) in its neighbourhood, and the rank of E tOg (x, 0) /80] is q. Then, 

as n--º oo, with probability one lE (0) attains its minimum value at some point 9EL in the 

interior of the ball 110 - Soll <n 1/3, and 8EL and TEL =t 
(EL) 

satisfy: 

Qln (ELEL) 
_ 0, Q2n (ELEL) 

= 0; (1.20) 

where 

1 Qln(6, t) =1 ßi'1+ iT9(xise)g(xisB), 
(1.21) 

Q2n (0, t) =nE1 +tT9 (x=, 8) \ 08 
e))Tt. 

(1.22) 
1 

Note that in the EL procedure, the focus is on a vector of empirical estimating equations. 

The r dimensional vector of moment equations, g (x, Oo) , coupled with the adding up re- 

striction Ep; =I are sufficient to determine only (r + 1) of the (n + q) unknowns, 0 and 
i 

p, leaving [n +q- (r + 1)] of the unknowns undetermined. The undetermined nature of 

the system of moment equations is resolved by the introduction of an estimation objec- 

tive function, E In pi, which optimized subject to the moment conditions determines the 
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(n + q) unknowns. More specifically, from (1.21) an expression for each estimating equation 

is obtained, yielding r equations. From (1.22) an expression for each parameter is attained, 

yielding q equations. So there are q+r equations, which is identical to the number of para- 

meters to be estimated: q original ones and r Lagrange multipliers which were imposed for 

each estimating equation. We will refer to (1.20) as the FOC of the empirical log-likelihood 

function. Note that a closed-form exists for neither °EL nor tEL. So we must either solve 

the FOC numerically or optimize the empirical log-likelihood function directly. We analyse 

two numerical optimization methods based on simultaneous and sequential algorithms in 

Chapter 2.4 

The conditions stated in Lemma 1 are relatively mild assumptions. In order to define the 

limiting distribution of the MEL estimator, some conditions must be added. These are 

provided in Theorem 1, which formally presents the first-order asymptotic properties of the 

statistics. 

Theorem 1 In addition to the conditions of Lemma (1), we assume that 0 29 ee is con- 

tinuous in 0 in a neighbourhood of the true value 00. If 11 ýBaee 11 
can be bounded by some 

integrable function G(x) in the neighbourhood, then: 

(EL 
- 00) ---> N (0, V) , (1.23) 

V 
fn (tEL 

- 0) 
-+ N (0, U), (1.24) 

V (. Pni;, (x) -F (x)) -º N (0, W (x)), (1.25) 

"In Chapter 12 of Owen (2001), several optimization methods and algorithms are discussed. Qin and 
Lawless (1994) also present computational issues through various examples. 
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'�n (PiEL - pi) I (x2 < x) -º N (0,772 ); (1.26 

where 

FnEL (x) = 
>ZEL 1 (xi < x), (1.27) 

i 

C1) 
1 

EL = 
/I 

(1.28) 
n1+ tTg (x, 

EL) 

V= 
[E ()T 

(1.29) (EggT)-' E 
()]' 

W (x) =F (x) (1 -F (x)) -B (x) UBT (x), (1.30) 

B (x) =E {g (xi, Oo) I (xi < x)}, (1.31) 

( 
U= tE (99T )I -l jI-E 

(ä9) 
VE 

(ö9)T[E 
(99T )]-l 

}, 
(1.32) 

712 = [E (99T )] l- BT UB, (1.33) 

and °EL and TEL are asymptotically uncorrelated. 

The asymptotic variance, V, is consistently estimated by 

a9 (xi, BEL) IT 
Dý 

(xi, BEL 

iEt aeiEt9 
(xi, eEL) 9T 

(Xi, 
eEL) 

-1 

iEt 

09 

Ö8 
iii 

We give some additional asymptotic properties of MEL estimators and statistics in the 

following corollaries to Theorem 1 (these corollaries are due to Qin and Lawless, 1994). 

The MEL estimator is equivalent in asymptotic distribution to the most efficient estimator 

in the class of estimators defined through the solution to estimating equations formed by 

linear combinations of the unbiased estimating functions (see McCullagh and Neider, 1989). 
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When the number of moment constraints, r, exceeds the number of unknown parameters, 

q, the EL approach defines the optimal combination of the moment equations, i. e. the 

asymptotic efficiency of the most efficient estimating equations estimator is duplicated. 

This result is formalized below. 

Corollary 1 9EL based on gi (x, 0) 
, ..., g,. (x, 0) is fully efficient in the sense that it has 

the same asymptotic variance as the optimal estimator obtained from the class of (q x 1) 

estimating equations that are linear combinations of gl (x, 0) 
, ..., g,. (x, 0) 

. 

The following Corollary gives an important asymptotic property of the MEL estimator. 

Corollary 2 If the conditions given in Lemma 1 and Theorem 1 are fulfilled then when 

r>q, the asymptotic variance V=V, of 
(EL 

- a) cannot decrease if an estimating 

equation is dropped. 

1.6 Hypothesis Tests 

In the EL context the usual likelihood ratio, Wald and Lagrange multiplier tests can be 

constructed. It is the ELR on which we focus in the current investigation (for details related 

to the Wald and Lagrange Multiplier tests refer to Owen, 2001). 

1.6.1 Empirical Likelihood Ratio 

The following Theorem, which was proved by Qin and Lawless (1994), allows us to use the 

ELR statistic for testing and/or obtaining confidence limits for parameters. 
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Theorem 2 Under the assumptions of Theorem 1, the ELR statistic for testing Ho :8= 80 

is 

WE (Go) = 21E (0o) 
- 21E 

(EL) 
1 (1.34) 

WE (Os) -' x(a) 

as n-º oo when Ho is true. lE is the empirical log-likelihood function as given in (1.17). 

An asymptotic a- level test of Ho is 

reject Ho :0=0 if WE (60) > ca, (1.35) 

where ca is defined such that Pr (X2q) < ca) =1-a. An asymptotic 100 (1 - a) % confi- 

dence region for 0 can be obtained in the usual way applying the duality principle to the 

test procedure given in (1.35), resulting in the set of 6o values not rejected by the test. 

1.6.2 Overidentification Test 

Anderson and Rubin (1949) derived the likelihood ratio statistic for testing the overidenti- 

fiability conditions on a structural equation in a simultaneous equation system. The null 

hypothesis of Anderson and Rubin (1949) is that the estimated equation is correctly speci- 

fled. Sargan (1958) noted that this test should have some power against false orthogonality 

conditions and proposed a misspecification test, the so-called Sargan test, which can also 

be interpreted as a test of overidentifying restrictions. The overidentifying restrictions test 

of Hansen (1982) tests the restrictions implied by the econometric model for the GMM. His 

test is an extension of the specification test proposed by Sargan (1958). 
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Overidentified models, in moments-based settings, imply that there need not be a parame- 

ter value 0 such that the moment condition E [g (r, 0)] =0 holds. Thus the model, the 

overidentifying restrictions, are testable. 

In practice, however, it is not clear which of the orthogonality conditions identify and which 

overidentify the model. Rejection of the null does not specify which of the restrictions 

are false (see Magdalinos and Symeonides, 1996). Note that two circumstances that lead 

to the null hypothesis being rejected is either because of an exclusion restriction or false 

orthogonality conditions. 

The ELR's test for overidentifying moment conditions requires two values for the probabil- 

ities. One in which the overidentifying restrictions holds, piEL in (1.18), and one in which 

these are removed from the optimization problem, pi = -1. After substituting p;, EL and 

pi =n in the EL functions, a test of the r restrictions can be conducted based on the ELR 

statistic. Corollary 3 formalizes the test and provides the asymptotic distribution of the 

statistic (this Corollary corresponds to Corollary 4 in Qin and Lawless, 1994). 

Corollary 3 Under the conditions of Theorem 1, the statistic given by Wj is asymptotically 

X(, r_q) 
if the estimating equations arge unbiased, i. e. 

Wj = 2E log [i 
+ tEL 9 

(Xi, BEL)] -+ x(*-9)' 
iL 

An asymptotic a- level test of the validity of the moment restrictions is then conducted 
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as: 

reject Ho :E [g (x, B)] =0 if Wj > ca, (1.36) 

where ca is defined such that Pr (X2 
_Q) 

< ca) =1-a. An asymptotic 100 (1 - a) % 
r 

confidence region can be obtained in the usual way applying the duality. principle to the 

test procedure given in (1.36). 

1.7 Cressie-Read Statistics 

Maximizing the EL function and producing the MEL estimator is but one way to define 

an EL estimator that has good first-order asymptotic properties. Well known alternatives 

include 

n 
KLIC = Di In (npi), (1.37) 

i=l 

and the Hellinger distance 

H. ýIpi12-n-1/2I 

\ 
iJ 

EL, KLIC and H belong to the Cressie-Read family, which we analyse in some detail. The 

Cressie-Read power divergence statistic for a multinomial with Oi observations where Es 

observations were expected takes the form 

k1 
X1.38) CR (ýP) =2 ýCti ftY' 

- 11, 

where --oo < cp < oo (for a description of power divergence discrepancies refer to Cressie 

and Read, 1984). The cases cp E {-1,01 are handled by taking limits. To derive the EL and 

KLIC as members of this family consider that their setups have n distinct values observed 
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once each. Thus k=n and O= =1 and we write Ei = npi. Then, 

2 
CR (w) = TP (ýP + 1) 

E [(npi)-ý° -1] . 

After taking the required limits 

CR(O) = -2E log (npi), 
i 

CR (-1) = -2Enpi log (npj) 
. 

The quantity CR (0) is minus twice the empirical log-likelihood ratio, and CR (-1) is equal 

to 2n x KLIC. Note that different values of cp give rise to new members of the Cressie-Read 

family. The value cp = -2 corresponds to the Euclidean log-likelihood. The value cp =1 

yields the Pearson's X2 and the Freeman-Tukey statistic follows with cp = -1/2. 

All members of the Cressie-Read family originate empirical divergence analogues of the EL. 

1.7.1 Kullback Leibler Information Criterion 

The KLIC is often singled out because of its interpretation as a measure of entropy. We 

can obtain optimal probability weights, piKLJC, in an analogous way to the MEL context. 

The corresponding problem for the KLIC is to maximize 

-i log (npj) subject to pi > 0, Epti =1 and pig (x1,0) = 0. (1.39) 

Upon close examination it is evident that, except for the estimation objective function, the 

form of the problem and the basis for a solution closely mirror that of the MEL. We will 

refer to the maximum KLIC estimator as 6KLIC. Imbens (1997) demonstrates that under 
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regularity conditions analogous to those assumed in the MEL context, 9KLIC and 9EL have 

the same limiting distribution. Due to the fact that OKLIC is consistent and asymptotically 

normally distributed, asymptotic tests and confidence regions can be based on asymptotic 

normality of the estimator analogous to the MEL estimator case. 

Overidentification Test 

An asymptotic chi-square overidentification test can be based on a suitably scaled version 

of the KLIC. The test statistic is given by 

JKLIC =2n iKLIC In (n PiKLIC) 

i 

If the null hypothesis is true, Ho =E [g (x, 0)] = 0, then 

JKLIC X r-9) 

(for a proof that all members of the Cressie-Read family have a X2 calibration see Baggerly, 

1998). An asymptotic a- level test of the validity of the moment restrictions is then 

conducted as: 

reject Ho :E (g (x, 0)] =0 if JKLIC ý Ca7 (1.40) 

where ca is defined such that Pr 
(Xr_q) 

< c,,, = 1- a. 

1.8 General Method of Moments 

GMM estimators are based on the moment restrictions E (g (X, Bo)] = 0. As for the EL, 

these moment restrictions are a partial implication of some model, although they may also 
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embody all the available information. 

For our purposes a GMM estimator will be obtained as the solution to 

min [Qw (0)], 

where 
T 

Qw (0) =1 z9 (xe, 0) w-1 
1 Eg (x2,0) 

for some positive definite matrix W (for the asymptotic theory and a detailed description 

of the GMM see Newey and McFadden, 1994; Hansen, 1982). 

1.8.1 Overidentification Test 

Two-Step Estimator 

An efficient estimator can be based on minimizing Qw (0) for W= Wo =E [g (x, 00) g (x, Oo)T ] 

A feasible version of this efficient procedure is based on an initial consistent estimator 0 of 

00 obtained by minimizing Qw (0) for an arbitrary choice of W such as the dim (g) dimen- 

sional identity matrix. The inverse of the optimal weight matrix, Wo, is then estimated 

as 
n 

W=1 >g (xi, ö) g (xi, 
1=1 

An efficient two-step GMM estimator, B2GMM, is obtained by minimizing Qy, (0). Under 

general regularity conditions including that the model is correctly specified, and that there 
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is indeed a unique value Oo such that E [g (x, Bo)] = 05, then 

('Ö2GMM - eo) 
--º N (o, 

where 

A=E [s (x, Oo) 9 (X, Oo)T), 

r=E(er(x, Oo)). 

The statistic for testing restrictions in this context is the J-test. Under the hypothesis of 

correct specification 

J2GMM =nx Qý, l B2GMM) -º X(, "_4) 

It is important to stress that unless otherwise stated we set W as the identity matrix in the 

first-step of the GMM procedure. 

Continuously Updated Estimator 

The continuously updated GMM overidentification test is based on the continuously updated 

GMM estimator, OCuGMM" Instead of taking the weighted average as given in each step of 

the GMM's estimation, the covariance matrix is continuously altered as 9 is changed in the 

minimization. The statistic for testing the moment conditions is 

JCuGMM =nx RW(oCuCMM) (CUGMM) 

Under the null of correct specification 

2 JCIGMM - X(r_q)" 

5The complete set of regularity conditions under which GMM estimators have good asymptotic properties 
is given in Theorem 2.6 and 3.4 of Newey and McFadden (1994). 
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1.9 Efficient Bootstrap 

For the theory of the bootstrap upon which some of the procedures described below draw 

see, for example: Horowitz (1997), Shao and Tung (1995), Efron and Tibshirani (1993), 

Hall (1992), Beran and Ducharme (1991). 

Brown and Newey (2001) define efficient bootstrap as the bootstrap based on resampling 

from the EL distribution, that imposes the moment conditions, rather than the empirical 

distribution. 

It is fairly well known that in general the moment restrictions are not satisfied for the 

empirical distribution. One situation in which this happens is GMM estimation of an 

overidentified parameter when the EDF is considered (see Horowitz, 2000). To explain why 

assume that dim (g) > dim (0) and that the distribution of x does not belong to a known 

parametric family so that the EDF of x is considered. The sample analog of E [g (x, 0)] is 

EF [g (x, 90)] =n Eg (xi, 0) and that of 00 is 02GMM. In general, EF [g (x, 
2cMM)] =A 0 

in an overidentified model, so bootstrap estimation based on the EDF of x implements a 

moment condition that does not hold in the population the bootstrap resamples. As a result, 

the bootstrap estimator of the distribution of the statistic for testing the overidentifying 

restrictions is inconsistent, because its limiting distribution has a discontinuity where the 

estimated moment conditions depart from zero (see Brown and Newey, 2001). Hall and 

Horowitz (1996) show that recentering the moment conditions yields asymptotic refinements 

for the rejection probabilities of tests of overidentifying restrictions. 
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Efficient bootstrap does not require recentering the moment conditions since the estimated 

moment conditions based on the EL distribution are already equal to zero. Brown and 

Newey (2001) show that the efficient bootstrap yields a larger sample improvement relative 

to Hall and Horowitz (1996) recentering technique. 

The efficient bootstrap can be described in some simple steps: 

1. Draw n observations xl,..., xri; each satisfying the moment condition 

E [9 (X, Oo)] = 0. 

2. Calculate piEL"6 

3. Draw n i. i. d. observations xi, ..., xn with replacement from the distribution with 

Pr (x = xi) = AEL- 

Efficient bootstrap differs from standard approaches in the use of piEL in step 2 rather than 

1/n for the probability of the ith observation. Figure 1.1 illustrates this fact. The MEL 

sample weights with which efficient bootstrap resamples are non-uniform. This can be seen 

from the curvature of the mass function, which reflects the impact of the moment equations.? 

It seems appealing to weight the bootstrap sampling procedure using the best estimate of 

these probabilities, p1EL, rather than an inefficient estimate of these probabilities, 1/n, since 

the former incorporate all available information. 
BAs defined in (1.18). 
7Here, we considered the first and second moments of a random variable, as in Qin and Lawless (1994). 

The observations in the sample were ordered and the mass assigned to each element is indicated by the 
height of the associated bar. 
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Note that a flat mass function is inherent to uniform probabilities, these are the unrestricted 

probabilities with which standard bootstrap procedures resample. 

MEL Sample Weights 

ö 
ö 

0 
ö 
0 

>. ö 
+o 
-0 

-0 (0 
CD ä 

-0 (3 

0 

a 
a 
a 
ýý 111 1111 iiiIIirIhillMill III III 
0 
0 -2 -1 0123 

Observations 

Figure 1.1: Efficient Bootstrap 

Brown and Newey (2001) applied efficient bootstrap for the GMM. We apply it for the EL. 

We define the former as GMM-bootstrap and the latter as EL-bootstrap. 

To compute the GMM-bootstrap and the EL-bootstrap overidentification tests the following 

steps are added to steps 1 to 3. 

1.9.1 Overidentification Tests 

GMM-bootstrap 

4. Calculate the overidentification test statistic 



36 

J2GMM 
(x, 

"'. Xn, e2GMM) = J2GMM' 

5. Repeat steps 3 to 4B times, where B is an integer, to obtain J2GMM' "" "' 'J2GMM - 

6. Let the estimator of the distribution of J2GMM (x1, 
..., xn) be the discrete distribution 

with Pr (. J2GMM x17 """e xn, B0) = J2GMM) = 1/B. 

7. Let q« be the (1 - a) quantile of the empirical distribution from step 6. 

8. A test that rejects if J2cMM (xl,..., x,, ) >q is a GMM-bootstrap overidentification 

test. 

EL-bootstrap 

4. Calculate the overidentification test statistic 

Wi 
(x, 

..., x, BEL) = Wj 

5. Repeat steps 3 to 4B times, where B is an integer, to obtain WWB , ..., . 

6. Let the estimator of the distribution of W3 (xl,..., x�) be the discrete distribution with 

Pr (Wi (X, 
..., xn, eo) = Wb) = 1/B. 

7. Let qa be the (1 - a) quantile of the empirical distribution from step 6. 

8. A test that rejects if W3 (xl, 
..., x,, ) > qa is an EL-bootstrap overidentification test. 
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1.10 Monte Carlo Experimentation 

There are two disadvantages of Monte Carlo experimentation as an approach to studying 

finite-sample behaviour: (i) results can be imprecise and, (ii) results may be specific to the 

particular parameter values being investigated and the distributional assumptions made. 

We discuss (i) and (ii) below. 

(i) As far as precision is concerned, we have performed what we consider to be a relatively 

high number of replications, m= 5000, to achieve the desired level of precision for the 

Monte Carlo estimators8. 

We often wish to estimate the probability for a given Data Generating Process (DGP) of the 

test rejecting at some critical value c*. That is, we want to estimate q=P (S > c*) , where 

the finite-sample distribution of S is unknown. The rejection frequency (RF), or proportion 

of the simulated test statistics that exceed c*, is the maximum likelihood estimator of q. 

This can be seen by considering each replication as the outcome of independent Bernoulli 

trials with `success' parameter q so that the number of rejections is Binomial (m, q) and RF 

has mean q and variance q(1- q)/m (see Bowsher, 2000a). 

To derive a 95% confidence interval on the estimate of q, denote Xi as the ith realisation of 
M 

the Bernoulli random variables so that RF=m-1 EXt. Then by the Lindeberg-Levy Central 

Limit Theorem, RF converges in distribution to a Normal random variable with mean q 

and variance q (1 - q) /m. Using this asymptotic result, the length of the 95% confidence 
sMost of the literature that we reviewed used values of the order m=1000 and m=5000. 
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interval when RF =q is given by 

e (q) = 3.92 q (1- q) 1/2 
(1.41) 

m 

which is a function of the unknown value q. 

The values of (1.41) for m= 5000 are respectively . 0166, . 0120 and . 0055 for q= . 10, . 05, 

01. 

(ii) As for specificity, we have investigated several DGPs by assuming different distributions 

and sample sizes for each one of the models that we investigate. 

Despite these limitations, Monte Carlo experimentation provides a valuable approach to 

investigate the finite-sample properties of statistics since many problems are analytically 

intractable. We illustrate with a detailed example how to implement Monte Carlo simula- 

tions. The aim of the following experiment is to give further insights into the asymptotic 

normality property of the MEL, given in Theorem 1. Consider the two moment problem 

presented by Qin and Lawless (1994); i. e.: 

E (x -0) =O (1.42) 

E (x2 - 202 - 1) = 0. (1.43) 

For three sample sizes, n={30,100,200}, GAUSS generates pseudo-random samples which 

satisfy (1.42) and (1.43). Assume N (0,02 + 1) and let 0=0, namely N- (0,1) 
. To 

estimate the unobserved parameter 0, we can form the EL function based on moments 
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(1.42) and (1.43) by noting that 

x-9 
9 (x, B) _ (1.44) 

x2-202-1 

Our optimization problem can be written in terms of the Lagrange multiplier as 

p- (p, X, t) =E In (pi) +A 1- EPi 
- ntl>pi (xi - 8) - nt2>pi (x? - 202 - 1). 

iiii 

The FOC of this problem, given in (1.20), are: 

1 xti-0 
_ ) O' (1.45) 

n1+ ti (Xi - 0) + t2 (xi - 202 -1 

1 x? -202_1 0, (1.46) = 
-202-1) 1+ti(xi-0) +t2 (x%? 

1 --tl - 4t20 

-202-1) 
-0. (1.47) 

n 1+tl(xi-0)+t2(x2 i 

There are three equations and three parameters -0, t1, t2- to be estimated. We use the 

GAUSS procedure EqSolve9 to compute the values of 0 and t that satisfy: 

(i) (1.45), (1.46) and (1.47), 

(ii) 0< p1 < 1, which implies that t and 0 must satisfy 1+ tTg (xi, 0) > 1/n for each i, 

(iii) 0 is inside the convex hull of the g (xi, 0)'s. 
°EgSolve, a simultaneous algorithm, is analysed in Section 2.3. 
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These values are: 9EL and t 19EL) 

GAUSS uses the MEL weights, piEL, to generate bootstrap samples with replacement. '° 

The number of bootstrap samples is 1000.11 We must note that in the bootstrap context, 

the "true" value of parameters equals the parameter value estimated in the original solution 

to the estimation problem. While the larger the data sample, the more probable is that 

these original parameter estimates will be in a small neighbourhood of the true parameter 

value (due to the consistency of the estimation procedure). Because of random sampling 

variation, the result from a bootstrap distribution may have a central tendency that may 

not coincide with the actual-true values of the parameters (see Horowitz, 2000). Figures 1.2, 

1.3 and 1.4 give the plots of the EDF of the bootstrap samples and the normal cumulative 

distribution function. The two vertical lines correspond to the true parameter value, 00 = 0, 

and to the MEL estimator, 9EL. We would expect that the EDF of the bootstrap samples 

approach the normal CDF as the sample size, n, increases. 

10This is the efficient bootstrap technique descibed in Section 1.9. 
"Authors in the bootstrap literature often recommend 1000 bootstrap samples for most applications. We 

noted that the results based on 100 bootstrap samples were very similar to those based on 1000 bootstrap 

samples for the models of Qin and Lawless (1994) and Hall and Horowitz (1996). 
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Sample size = 30 
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Figure 1.2: Asymptotic normality n=30 
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Figure 1.3: Asymptotic normality n=100 
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Sample size = 200 
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Figure 1.4: Asymptotic normality n=200 

Note that the EDF should be roughly centered on the yellow line, which is the MEL estimate 

of 0 from the original sample. The red line is the true value of 0. 

We now outline simple steps on how to calculate the Monte Carlo sizes, estimates of Type 

I error probabilities, of the ELR overidentification statistic defined in Corollary 3.12 

1. Draw n observations from a DGP that satisfies the moment equations of the model. 

2. Calculate the test statistic. 

3. Repeat steps 1 to 2m times. 

"Throughout the dissertation we use the terms Monte Carlo sizes, rejection probabilities/frequencies, and 
empirical sizes/levels interchangeably. 
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4. Report the proportion of the simulated statistics that exceeds the asymptotic critical 

value. 

1.11 Software 

We made use of the statistical software GAUSS to carry out our experiments. We used a 

GAUSS light version, provided on the CD of Mittelhammer et al (2000), to obtain Figures 

1.1,1.2,1.3,1.4 and the results reported in Table 2.1. The rest of the experiments, except 

those corresponding to Table 4.4, Table 4.5 and the empirical application in Chapter 4, were 

carried out with version 3.5. The already defined exceptions were calculated using GAUSS 

version 6. 

Numerical analysts have devised several algorithms to simulate pseudo-random outcomes 

from the U(0,1) distribution. We focus on a particular algorithm known as the linear 

congruential generator. 

The linear congruential rule generates a set of n values yl, y2i ..., yn in the (0,1) interval 

by forming the ratio of two integers It/w and reporting the fractional remainder yt for 

t=1, ..., n. The integer in the denominator, w, is known as the modulus. To form a 

sequence of pseudo-random numbers, It is changed for each number in the sequence. The 

numerator sequence begins from a starting value Io, i. e. the seed. Subsequent integers are 

generated by the linear progression It =a+ Olt_, for t=1, ..., n and fixed integers a and 

Q" 

Owing to the finite numbers of integers that may be represented on a modern 32-bit com- 
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puter, the linear congruential algorithm will eventually repeat the sequence for adequately 

large n. The period of an algorithm is an integer d such that Yt = Yt+d for each t. 

The GAUSS procedure rndu() generates pseudo-random outcomes for the U (0,1) distribu- 

tion. The seed is automatically reset when the GAUSS program is started and is updated 

each time the rndu() procedure is called. Under the default options, GAUSS uses the largest 

possible modulus for 32-bit computers (w = 231 -1=2,147,483,647), and the period d 

equals the modulus w (see Mittelhammer et at, 2000). 

GAUSS provides commands and procedures that generate pseudo-random draws from many 

common parametric families. Most of the procedures are based on the probability integral 

transformation (see Mittelhammer, 1996). On the basis of Theorem 6.22 in Mittelham- 

mer (1996), if X is a continuous random variable with distribution function F (x) 
, then 

Y=F (X) is aU (0,1) random variable. By the converse to the theorem (Mittelhammer, 

1996, Theorem 6.23), the random variable X. = F-1 (Y) for Y-U (0,1) has distribution 

function F (x) if F-1 (y) exists. Thus, given the inverse CDF, we can transform U (0,1) 

outcomes to represent outcomes from distribution F. If the inverse CDF does not exist, then 

x, = minx {x :F (x) > y} for U (0,1) outcome y represents an outcome from random vari- 

able X. with distribution function F. 13 Additionally to rndu(), GAUSS provides the inverse 

standard normal CDF in the cdfni() procedure, the inverse Chi-square CDF in the cdfchii() 

procedure and the cditci() procedure. The latter returns the inverse of the complement to 

the distribution function G (x) =1-F (x) for the Student's (central) t-distribution. 
13For further details see Mittelhammer et al (2000). 
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We use two algorithms throughout this thesis: a simultaneous and a sequential one. We 

adopt the algorithm which seems better suited to the application of interest. An algorithm 

could fail too frequently through non-convergence when applied to the particular problem 

or simply exceed a sensible time benchmark without yielding an output. "EqSolve", the 

simultaneous algorithm, is applied within the setting proposed by Qin and Lawless (1994), 

the Chi-Squared Moments Model and the Mean-Variance CAPM. The sequential algorithm, 

"constrained optimization", is used in the rest of the experiments. However, changes and 

additions were made to tailor the code to the particular task in hand. To deal with those 

estimation procedures that are new in the literature, EL-bootstrap as defined in Section 

1.9.1, we constructed our own GAUSS programs. To generate chi-squared random variables 

whose higher moments were similar to their theoretical counterparts, within the Three- 

Moment CAPM, we used an acceptance-rejection algorithm. 14 

The general design of computer procedures follow closely those of Bruce Hansen15 and the 

software of Mittelhammer et at (2000). 

"We found that the third sample moments of a chi-squared random variable could differ from their 
theoretical counterparts by 70%. The differences between sample and theoretical fourth moments could be 
as large as 150%. These percentages correspond to a sample size n=100. 

'5Available from his webpage: www. ssc. wisc. edu/`bhansen/progs/progs_gmm. html. 
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Chapter 2 

Numerical Properties 

2.1 Introduction 

The aim of this chapter is to analyse the computational aspects of EL and the adequacy of 

the asymptotic approximations of its estimators and test statistics. 

As was discussed in Chapter 1, the solution for the MEL estimate of 0 -9EL- is generally 

not obtainable in closed form. This is because the Lagrange multiplier -t (0) - of the 

EL function -LE (0) - is not a closed-form function of 0.1 Thus numerical optimization 

techniques are most often required to obtain outcomes of 6EL. Computer programs obtain 

MEL estimates of 0 and the Lagrange multipliers, by simultaneous or sequential methods. 

Under the simultaneous solution method, t CO 
EL) and 6EL are simultaneously selected to 

minimize the first-order necessary conditions of the empirical log-likelihood function (see 

1.20). MEL estimates may also be computed sequentially. That is, we fix a value of 0 

'LE (0) was defined in (1.16). 
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and then find the optimal t under the MEL criterion. Then, the optimal value of 0 can 

be determined conditional on the preceding value of t, and the sequential process continues 

until convergence is achieved. 

To demonstrate the feasibility of both procedures we carry out a Monte Carlo simulation 

experiment and report the MEL solution values as well as the number of iterations and the 

estimation time required until convergence occurs. 

A logical question to consider is: "How sensitive are our estimations to the initial values 

that we set in each algorithm? " One might also ask: "How large does the sample size, n, 

have to be to obtain an accurate approximation? " A practitioner may also want to know: 

"How long does it take to compute EL estimates? " 

Even if there are no general answers to these questions, we provide some simulation evidence 

that addresses these issues. 

We study sequential and simultaneous algorithms, the sensitivity of estimators to starting 

values and the estimation time within a model which incorporates information relating the 

first and second moments of a chi-squared random variable. 

To evaluate the adequacy of the asymptotic approximations of EL estimators and test 

statistics: 

(i) We examine the average confidence interval length (AVL) and the empirical coverage 

probability (ECV) of three methods of obtaining confidence intervals for 0.2 
2We define AVL and ECV in Section 2.5.1. 
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(ii) We assess the finite-sample size properties of overidentification tests. 

The first two methods of obtaining confidence intervals for 0 are based on the EL. One 

obtains confidence intervals from the ELR statistic3 and the X(9) approximation of Theorem 

2. The other is based on the limiting distribution for 9EL, given in Theorem 1, and the 

variance estimator following Theorem 1. The third method of obtaining confidence intervals 

(4) as the approximating for 0 is based on the parametric likelihood ratio statistic with a X2 

distribution. Our aim is to compare the AVL and ECV for each type of interval. 

Qin and Lawless (1994) also report the AVL and ECV of the three already defined con- 

fidence intervals. They generate 1000 pseudo-random samples of sizes n= {30,60} from 

N (0,02+1) for 0= 10,1}, and nominal (asymptotic) 90% and 95% confidence intervals. 

They find that the two empirical methods agree closely and that for smaller samples their 

coverage probability is less than the nominal 90% and 95%. The parametric approach based 

on the correct parametric likelihood yields intervals close to the nominal coverage probabil- 

ity. The AVL of the EL confidence intervals are always shorter than that of the parametric 

intervals. 

Our experiments extend Qin and Lawless (1994) simulation evidence using a different frame- 

work. We use a setting that incorporates information relating the first and second moments 

of a X2 (O) random variable, where 0 is the degrees of freedom. 

We assess further properties of EL by investigating the behaviour of its overidentification 

test (refer to Section 1.6.2). We study the finite-sample size properties of this test statistic 
3Refer to 1.34. 
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and compare them to those obtained through overidentification tests based on the GMM and 

the KLIC (refer to Sections 1.8.1 and 1.7.1; respectively). This comparison arises naturally 

because these tests have a X(r_9) asymptotic distribution under the null hypothesis, i. e. the 

overidentifying restrictions are valid. We adopt the models proposed by Qin and Lawless 

(1994) and Hall and Horowitz (1996). 

Qin and Lawless (1994) do not assess the finite-sample size properties of the ELR overi- 

dentification test. Bravo (2000) complements their work and gives simulation evidence to 

assess the finite-sample sizes of this statistic. He draws observations from a random variable 

distributed as N (1,2) and reports that the ELR overidentification test is slightly oversized 

for n= 50 and that the rejection probabilities of the nominal values improve for n= 100. 

Here, we extend Bravo's (2000) work by considering other distributions than the normal to 

assess if the asymptotic result is a reasonable approximation to the finite-sample distrib- 

ution of this test statistic. Studying a broader class of distributions is important because 

in practice there are well known examples of variables that are not normally distributed. 

For example, the non-normality of high frequency financial variables has been widely doc- 

umented in financial literature (Mandelbrot, 1963; Harvey and Zhoe, 1993; Dacorogna et 

al, 1995). Because the density underlying most financial data is more peaked and heavy 

tailed than the normal distribution, many authors believe that other specifications like the 

Student's t, gamma, chi-square and mixtures of normal distributions may be more suit- 

able for financial variables (see among others, Blattberg and Gonedes, 1974; Hamilton 1991 

and McDonald and Xu, 1995). In response to this literature, our simulation experiments 
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consider the following distributions: normal, chi-square, gamma and Student's t. We also 

examine the effects of varying the sample size. We use two sample sizes that are typically 

encountered in empirical wrork: n= 50 and n= 100. 

The second model that we use to assess the finite-sample size properties of the ELR J-test 

is that proposed by Hall and Horowitz (1996). Hall and Horowitz examine the bootstrap 

within a simplified version of an asset pricing model. They generate two moment condi- 

tions by incorporating a utility function with constant relative risk aversion into a typical 

consumption problem. The result is an Euler equation which in combination with restric- 

tions on the distribution of the gross growth rate of consumption yields the orthogonality 

conditions that characterize our Monte Carlo experiments. Bravo (2000) and Imbens et 

at (1998) use this model to assess the finite-sample behaviour of several overidentification 

tests, including that based on the ELR (Hall and Horowitz, 1996; do not study the ELR. 

overidentification test). Bravo (2000), Imbens et al (1998) and Hall and Horowitz (1996) 

generate pseudo-random samples from a bivariate normal distribution. It is well known 

that the asymptotic properties of the ELR. overidentifying statistic within this setting and 

under the DCP investigated by Hall and Horowitz (1996) are a poor guide to finite-sample 

behaviour (see Table 3 of Bravo, 2000; Table 2 of Imbens et at, 1998). 

First, we replicate the Monte Carlo experiments of Bravo (2000) and Imbens et al (1998). 

Then, we complement their studies by investigating the extent to which the poor perfor- 

mance of the ELR overidentification test is extended to non-normal distributions. We draw 

pseudo-random samples from a bivariate chi-square distribution and a bivariate gamma 
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distribution. 

Finally, in response to Bravo's (2000) and Imbens' et al (1998) simulation experiments (and 

our findings, see Tables 2.7 and 2.9) -i. e. oversized tests- we use efficient bootstrap4 critical 

values as an alternative to asymptotic ones. We present results for the overidentification 

tests based on the EL-bootstrap and the GNIM-bootstrap (both tests are defined in Section 

1.9.1). As far as we are aware, this is the first study that provides simulation evidence for 

the EL-bootstrap overidentification test. Moreover, for the first time we apply Brown and 

Newey's (2001) method of bootstrapping -efficient bootstrap- for the EL. 5 

The rest of the Chapter is structured as follows: 

Section 2.2 lays out the moment equations, E [g (x, 0)] = 0, that characterize the three 

models that we use as laboratories in our simulation experiments. 

Computational aspects of EL are studied in Sections 2.3 and 2.4. We discuss and illustrate 

simultaneous and sequential algorithms in Section 2.3. Section 2.4 examines whether our 

estimations are sensitive to starting values, as well as the computation speed of our esti- 

mates. The adequacy of the asymptotic approximations of EL estimators and test statistics 

is assessed in Sections 2.5 and 2.6. We examine the ECV and AVL of confidence inter- 

vals based on empirical and parametric likelihoods in Section 2.5. Section 2.6 analyses the 

finite-sample properties of several overidcntification tests. Finally, the size properties of the 

4Eficient bootstrap resamptes from the EL distribution, that imposes the moment restrictions, rather 
than the empirical distribution (refer to Section 1.9). 

513rown and Newey (2001) apply this bootstrapping technique for the GMM. 
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EL -bootstrap and GMM-bootstrap statistics are examined in Section 2.7. Conclusions are 

given in Section 2.8. 

2.2 The Models 

The following models have been widely examined in previous research. This is valuable in 

the sense that we are able to compare the results of our simulations to those well established 

in literature. Thus, these models represent a natural starting point to assess the validity of 

our computer programs. 

2.2.1 The Chi-Squared Moments Model 

The first two moments of x1, x2, ... x� I X2 (O) can be written as 

E[x-9] =O, (2.1) 

E[x2-20-02] =0. (2.2) 

Equations (2.1) and (2.2) can be incorporated into our optimization procedures by noting 

that, 

x- © 
(2.3) 

x2-20-©2 

2.2.2 The Qin and Lawless Model 

Qin and Lawless (1994) consider a setting with first and second moments satisfying 

E (x - 4) =O, (2.4) 
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E(x2-202-1) =0. (2.5) 

Here, 

x-8 
g (x, 0) _ (2.6) 

x2-202-1 

2.2.3 The Hall and Horowitz Model 

The model used in Hall and Horowitz (1996) is defined by the following moment conditions: 

E[exp{µ-0(x+y)+3y}-1J =0, (2.7) 

E{y[exp{p-0(x+y)+3y}-11}=0; (2.8) 

where 0 is the parameter to be estimated, p is a known normalization constant, and x and 

y are random variables. 

Here, 

exp{µ-©(x+y)+3y}-1 

y[exp{µ - 0(x+y) +3y} - 11 

2.3 Simultaneous and Sequential Methods 

The GAUSS' simultaneous procedure EqSolve is used to compute the MEL solution values 

for the Lagrange multiplier, t, and the parameters, 0; i. e. t 
(©EL) 

and °EL. The purpose of 

EgSolve is to solve a system of nonlinear equations .6A starting value must be prespecified 

to initiate the algorithm. Some care is needed because the solution sought is one of many 

saddlepoints of the function h (0, t) _ log (1 + t'g (xi, 0)) and, in particular, must satisfy 

"A GAUSS alternative to EqSolve is NLSYS. 
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1+ trg (xi, 0) ? n-1 for each i. In some cases, simultaneous estimation of the parameters 

may not work well due to the scale or complexity of the estimation problem. As noted by 

Imbens et at (1998), the computation of solutions of constrained optimization problems can 

represent formidable numerical challenges. This can be because the fundamental method 

by which EL resolves the undetermined nature of the empirical moment conditions is to 

choose sample weights that ultimately transform the r moment conditions into a functionally 

dependent, lower rank (q < r) system of equations capable of being solved uniquely for 

the parameters. This could create instability in gradient-based constrained optimization 

algorithms regarding the representation of the feasible spaces and feasible directions for 

such problems. Moreover, attempting to solve the optimization problems in primal form 

is complicated by the dimensionality of the problem. There are as many sample weights 

as there are observations, and requires that explicit constrained optimization methods be 

used to enforce the moment conditions and the convexity properties of the sample weights 

(Mittelhammer et a!, 2003). 

In our GAUSS program, the sequential programming method used is constrained optimiza- 

tion. In this method the parameters are updated in a series of iterations beginning with 

the provided starting values. We first fix a value of 0, the starting value, and then find the 

optimal t under the MEL criterion. The optimal value of 0 can be determined conditional on 

the preceding value of t, and the sequential process continues until convergence is achieved. 

The sequential solution method requires the calculation of a Hessian, various gradients and 

Jacobians. The Hessian may be very expensive to compute at every iteration. We use a 
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quasi-Newton algorithm for updating the Hessian rather than computing it directly at each 

iteration. After several iterations the quasi-Newton algorithm should do nearly as well as 

Newton iteration with much less computation. 

2.3.1 The Model 

The model that we use in our Monte Carlo simulations is that characterized by the first 

and second moments of a chi-squared random variable; Equations (2.1) and (2.2). 

2.3.2 The Data Generating Process 

We generate a pseudorandom sample of size n= 100 from X 11. Hence, moment conditions 

(2.1) and (2.2) are satisfied; i. e. the null hypothesis, E [g (x, 0)] = 0, is true. The starting 

value is set to Q=1. Results for our Monte Carlo experiment are reported in Table 2.1. We 

provide ©EL and the number of iterations until convergence occurs. 

2.3.3 Results 

Due to the simplicity of this NIEL problem, the simultaneous solution algorithm only re- 

quires a few (four) iterations and 11 hundredths of a second until convergence is achieved. 

The sequential algorithm is more computationally expensive in this case, with 1066 itera- 

tions and 115.7 hundredths of a second until convergence occurs. Mittelhammer et at (2000) 

suggest that sequential methods may be better suited to solve MEL problems with highly 

nonlinear constraints or several unknown parameters. 
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MEL estimator 
n=100 

E (x) =0 and E (X2) =20+02 

Simultaneous Sequential 

BEL 1.0184 1.0184 
iterations 4 1066 
time 11 115.7 
°EL is the MEL estimator and n is the sample size 

time is given in hundredths of a second 

Table 2.1: Algorithms 

2.4 Effects of Starting Values and Time 

Numerical searches typically require starting values in order to succeed. We analyse the 

sensitivity of the ELR J-test to different starting values. Since obtaining EL estimators 

may be computationally intensive, we assess if our calculations are fast by computing the 

time involved in cacti estimation for different sample sizes and different starting values. 

2.4.1 The Model 

We use a framework characterized by Equations (2.1) and (2.2). 

2.4.2 The Data Generating Process 

We consider two random variables, namely x-N (0,2 0) and x, X( e), and focus on 0=1. 

In both cases the null hypothesis of the ELR overidentification test, E [g (x, 0)] = 0, holds. 
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2.4.3 Finite-Sample Size Properties of the ELR Overidentification Test 

We report the empirical levels of the ELR J-test. Note that Xý1) is the approximating 

distribution of the statistic. We set 5 different starting values: Q={O, . 5,1,2,5} , and analyse 

3 sample sizes: n=120,100,5001. We are particularly interested in 8=5 because it is a poor 

starting value for both DGPs, whereas 0=0,0=. 5,0=1 and 0=2 are relatively better choices. 

Results for 5000 replications are given in Tables 2.2 and 2.3. The time involved in each 

estimation is reported alongside the empirical levels. Time is given in hundreths of a second. 

2.4.4 Results 

Empirical Levels of ELR J-test 
E (x)=O and E (x2) = 20 + 02 

N(1,2) 

starting value 
Q=0 Q=. 5 Q=1 Q=2 Q=5 

Level n=20 
. 10 . 1526 . 1566 . 1540 . 1542 . 1490 

. 05 . 0986 . 0998 . 1044 . 0962 . 0942 

. 01 . 0424 . 0434 . 0496 . 0428 . 0340 
(time) 815.6 659.4 639.1 671.8 15928.3 

n=100 
. 10 . 0906 . 1112 . 0976 . 1024 . 0916 

. 05 . 0412 . 0578 . 0492 . 0504 . 0492 

. 01 . 007 . 0126 . 0092 . 0112 
. 0086 

(time) 1889 1415.5 1218.7 1521.8 112076.3 
n=500 

. 10 . 0878 . 0972 . 0990 . 0952 . 0908 

. 05 . 0420 . 0494 . 0490 . 0458 . 0428 

. 01 . 0054 . 0098 . 0122 . 0084 . 0086 
(time) 7415.6 5815.6 4336 6045.2 709714.9 
Empirical levels refer to rejection frequencies as estimates of Type I error 

probabilities and n is the sample size. 

Table 2.2: Effects of Starting Values - normal 
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Table 2.2 considers a DGP of the form xNN (1,2) 
. There is no evidence that choosing a 

poor starting value hurts the finite-sample size properties of the ELR overidentification test. 

Nevertheless, if an unfortunate starting value is set into the algorithm, the computation time 

increases dramatically. 

Empirical Levels of ELR J-test 
E (x)=0 and E (x2) = 20 +02 

X( 1) 
starting value 

9=0 9=. 5 6=1 0=2 9=5 
Level 

n=20 

. 10 . 4574 . 4556 . 4584 . 4752 . 5556 

. 05 . 4028 . 4004 . 4034 . 4160 . 4986 

. 01 . 3528 . 3240 . 3204 . 3358 . 4196 
(time) 1920.2 1463.9 1414.1 2173.3 41219.1 

n=100 
. 10 . 2182 . 2320 . 2318 . 2540 . 3282 

. 05 . 1582 . 1672 . 1726 . 1852 . 2456 

. 01 . 0932 . 0914 . 0928 . 1086 . 1360 
(time) 3739.2 2067.3 2015.7 3125.1 570293.9 

n=500 
. 10 . 1270 . 1400 . 1106 . 1344 . 1692 

. 05 . 0750 . 0796 . 0612 . 0824 . 1026 

. 01 . 0252 . 0246 . 0172 . 0290 . 0348 
(time) 15,290.1 7,102.7 5972.3 12377.3 7201413.8 

Empitirni ieveln refer to rejection frequencies as estimat of Type I error 

probabilities and n is the sample size. 

Table 2.3: Effects of Starting Values - chi 

Table 2.3 summarizes the results for a DGP of the form x ti X2 (1). Our findings show that our 

estimations can be sensitive to starting values. For this DGP, the J-test over-rejects more 

often when poor initial values are considered (see Q=5). The latter is true regardless of the 
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sample size. Also note that an unfortunate starting value has the additional consequence 

of increasing the computation time. 

2.5 Confidence Intervals 

In this section we consider the test of the hypothesis Ho :0=0 versus H. :0# 00, and 

compare three methods of obtaining confidence intervals for 0. 

The first two methods are based on the EL and the third one is based on the parametric 

likelihood ratio. The first method obtains confidence intervals from the ELR and the X(q) 

approximation of Theorem 2. We refer to these confidence intervals as CI_ELR. The second 

method for obtaining confidence intervals for 0 is also based on the EL. This considers the 

limiting distribution for OEL given in Theorem 1. We refer to these confidence intervals as 

NCI. The third method of obtaining confidence intervals for 0 is based on the parametric 

likelihood ratio statistic, with a Xýq) as the approximating distribution. We refer to these 

confidence intervals as CI PLR. 

We compare the ECV and AVL for each of the three types of intervals. 

2.5.1 Empirical Coverage and Average Length 

Ideally, a confidence interval should have exactly the coverage (1 - a) for any sample size 

and any sampling distribution. This means a probability (1 - a) to include in its limit the 

true value of the parameter. But non exact nonparametric confidence regions are quite 

common. As a result nonparametric confidence intervals are asymptotic, as indeed are 
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most parametric confidence regions. Under mild regularity conditions, the coverage error 

for EL confidence intervals decreases to zero at a rate 1/n as n approaches infinite (see 

Owen, 2001). This is the same rate that typically holds for confidence intervals based on 

parametric likelihoods but only if the model is true. 

Our aim is to calculate the ECV by counting the percentage of times that 0 is contained 

within each of the confidence intervals. For example, if the experiment is repeated 5000 

times and if 4500 times 0 is found in the interval, this would imply that the ECV equals 

90%. 

AVL refers to the average difference between the upper and lower ends of the confidence 

interval. 

2.5.2 The Model 

To illustrate the ECV and AVL of CI_ELIt, NCI and CI_PLR; we use the model charac- 

tcrizcd by Equations (2.1) and (2.2). 

2.5.3 The Data Generating Process 

We consider four DGPs. 

a) x-N (1,2), 

b) xsN (3,6), 

c) X '' XIS), 
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(1o). d) x^'X2 

It is easy to see that the four DGPs satisfy (2.1) and (2.2). 

2.5.4 Results 

Tables 2.4 and 2.5 report results for n= 50 and n= 100, respectively. We use 5000 

replications for each DGP. Note that the approximating distribution for the ELR and the 

parametric likelihood ratio is X2 1). 

From Table 2.4 we note that for the normal distribution, the parametric likelihood yields 

intervals with ECV close to its nominal counterpart. The two EL methods agree closely 

and for this sample size their coverage probability is less than the nominal 90%, 95% and 

99%. 

and X2 For variables distributed as X{) (10), the three methods of obtaining confidence in- 

tervals yield similar results. For these specifications, the ECV is very close to its nominal 

counterpart! This fact is somewhat surprising because the ELR relies on weaker assump- 

tions than the parametric approach. 
'Smaller sample sizes (n=20 and n=30) led to undercoverages similar to those reported by Qin and 

Lawless (1004) for normal distributed variables. 
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Average Length and Empirical Coverage 

n=50 
E (z)=0 and E (x2) = 20 + 02 

90% 95% 99% 
AVL ECV AVL ECV AVL ECV 

N (1,2) CI_ELR . 4533 . 8688 . 5387 . 9232 . 6824 . 9696 
NCI . 4449 . 8690 . 5299 . 9282 . 6951 . 9778 
CI PLR . 4724 . 8956 . 5649 . 9526 . 7530 . 9884 

N (3,6) CI_ELR . 8424 . 8750 . 9911 . 9204 1.2462 . 9682 
NCI . 8316 . 8750 . 9832 . 9184 1.2921 . 9716 
CI PLR . 8859 . 9062 1.0610 . 9454 1.4143 . 9880 

Xýs) C1_ELR 1.3715 . 9001 1.6422 . 9502 2.1590 . 9901 
NCI 1.3810 . 9078 1.6410 . 9548 2.1588 . 9904 
CI PLR 1.3840 . 8966 1.6441 . 9508 2.1612 . 9900 

Xýlo) CIELR 
NCI 

2.0040 
1.9802 

. 9004 

. 8992 
2.3621 
2.3312 

. 9510 

. 9514 
3.1117 
3.1039 

. 9917 

. 9884 
Cl PLR 2.1180 . 9018 2.3626 . 9504 3.1141 . 9886 

AVL is average length, ECV is empirical coverage. Cl_ELR and NCI are confidence intervals based on EL 

and Cl_PLR is that based on the parametric likelihood ratio. 90%, 95% and 99% are nominal coverages. 

n is the sample size. 

Table 2.4: Confidence Intervals - n=50 

Results for a larger sample size, n= 100, are summarized in Table 2.5. Here, the two 

EL confidence intervals have coverage probabilities close to the nominal 90%, 95% and 

99%. For both distributions, the three methods of obtaining confidence intervals are very 

accurate. Moreover, the AVL is also similar for both the empirical and parametric likelihood 

procedures. 
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Average Length and Empirical Coverage 
n= 100 

E (x)=0 and E (x2) = 20 + 02 

90% 95% 99% 
AVL ECV AVL ECV AVL ECV 

N (1,2) CI_ELR . 3257 . 8962 . 3901 . 9396 . 5013 . 9854 
NCI . 3213 . 8914 . 3823 . 9360 . 5028 . 9890 
CI PLR . 3316 . 9050 . 3959 . 9490 . 5232 . 9934 

N (3,6) CI_ELR . 6124 . 8860 . 7314 . 9424 . 9250 . 9790 
NCI . 6027 . 8820 . 7210 . 9420 . 9416 . 9808 
CI PLR . 6247 . 8992 . 7466 . 9526 . 9872 . 9900 

Xý5) CI_ELR . 9690 . 9071 1.1659 . 9512 1.8328 . 9900 
NCI . 9773 . 9134 1.1648 . 9582 1.8320 . 9934 
CI PLR . 9899 . 9026 1.1662 . 9486 1.8344 . 9914 

X10) CI_ELR 1.4075 . 9016 1.6902 . 9518 2.2213 . 9920 
NCI 1.3970 . 9056 1.6836 . 9488 2.2128 . 9914 
Cl PLR 1.4123 . 9044 1.6911 . 9490 2.2300 . 9922 

AVL in average length, ECV in empirical coverage. C1_ELR and NCI are confidence intervals based on EL 

and CI_PLR it that based on the parametric likelihood ratio. 90%, 95% and 99% are nominal coverages. 

n is the sample size 

Table 2.5: Confidence Intervals - n=100 

2.6 Overidentification Tests 

We assess the size properties of overidentifying restrictions statistics using the Qin and 

Lawless (1994) model, Equations (2.4) and (2.5), and the Hall and Horowitz (1996) model, 

Equations (2.7) and (2.8). 

We consider four overidentification tests in what follows. These are based on: ELR, 

Wj; KLIC, JKGJc; two-step GMM, J2CJfAf; and continuously updated GMM, JcuCMM. 
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These tests have as their null hypothesis that there is a unique value of 0 consistent with 

E [g (x, B)J =0. 

2.6.1 The Model 

We first use the model characterized by Equations (2.4) and (2.5). 

The Data Generating Process 

We examine four DGPs: 

(i). (a) X" X2 

(b) x=O+z 
(/O2+1), 

where z= 
yV-11 

and y ti r (1,1). 

(C) X=O+Z (VIOP T1 
where z=- and yt (5). 

V3 

(d) x^'N(0,1)" 

The four DCPs lead to unbiased estimating equations. This is true for (b) and (c) regardless 

of the value of 0. Assume the simplest case, 0=0. 

Finito-Samplo Size Properties 

We report rejection frequencies, with particular interest being in cases where these proba- 

bilitics are poorly approximated by the nominal size. Under the null hypothesis -validity 
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of the overidentifying restrictions- Wj, JKLIC, J2CMM and JcUGMM have an asymptotic 

Xý1) distribution. Table 2.6 reports the rejection frequencies of the tests at the . 10, . 05 

and . 01 nominal critical values for n= 50 and Table 2.7 those for n= 100. We use 5000 

replications. 

Results 

Empirical Levels of J-tests 
n=50 

E (x) =0 and E (x2) = 202 +1 

Levels JKLIC J2GMM JCuGMM 

. 10 . 2720 . 2904 . 2986 . 3088 

1) . 05 . 1996 . 2392 . 2558 . 2724 

. 01 . 1511 . 1771 . 1930 . 2112 

. 10 . 1934 . 2584 . 2552 . 2726 
r (1,1) 

. 05 . 1318 . 2058 . 2084 . 2332 

. 01 . 0732 . 1401 . 1398 . 1704 

. 10 . 1876 . 2316 . 2362 . 2535 
t (5) 

. 05 . 1218 . 1762 . 1892 . 2088 

. 01 . 0510 . 1060 . 1084 . 1384 

. 10 . 1326 . 1470 . 1548 . 1662 
N (0,1) 

. 05 . 0711 . 0956 . 1016 . 1128 

. 01 . 0230 . 0420 . 0474 . 0546 
Empirical levels refer to rejection frequencies as estimates of Type I error prob. 

Wjv J2GMM, JCuGMM and JKLIC are overidentification tests 

based on ELR, two-step and continuously updated GMM, 

and KLIC; respectively. n is the sample size. 

Table 2.6: Finite-Sample Size Properties - QL n=50 
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First, we analyse the results for Xý1) in Table 2.6. For this DGP, the four tests are oversized. 

In some cases the size distortion8 is very pronounced, especially for the tests based on the 

KLIC and the GMM. 

For the gamma and t distributions, the null distribution of the three tests is not well 

approximated by the asymptotic X2 (1) 1 However, the ELR overidentification test is better 

than those tests based on the GMM and KLIC. 

It is for the normal distribution that the tests have the closest Monte Carlo sizes to their 

nominal counterparts biet the J-tests based on the GMM and KLIC are still quite oversized. 

In general, for n= 50 the ELR overidentification test performs better than the other tests. 

The effects of increasing the sample size are reported in Table 2.7. The adequacy of the 

asymptotic approximation, Xý1), is better for a larger sample size. However, even if the 

rejection frequencies at the three nominal critical values improve; the tests are still oversized. 

Note that W3 has moderate size distortions for r (1,1) and N (0,1). 

8When we refer to distortions or size distortions we mean that the estimated sizes are different to the 
nominal sizes. 
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Empirical Levels of J-tests 
n= 100 

E(x)=0 andE(x2) =202+1 

Levels Wj JKLIC J2GMM JCuGMM 

. 10 . 2210 . 2264 . 2326 . 2372 
X(1) . 05 . 1540 . 1690 . 1906 . 1994 

. 01 . 0910 . 1042 . 1356 . 1412 

. 10 . 1312 . 2130 . 2058 . 2037 
r (1,1) . 05 . 0748 . 1616 . 1540 . 1605 

. 01 . 0326 . 0938 . 1004 . 1046 

. 10 . 1518 . 2044 . 1894 . 1899 
t (5) 

. 05 . 0878 . 1406 . 1386 . 1419 

. 01 . 0272 . 0652 . 0784 . 0794 

. 10 . 1126 . 1418 . 1416 . 1204 
N (0,1) 

. 05 . 0578 . 0846 . 0858 . 0766 

. 01 . 0130 . 0270 . 0328 . 0324 
Empirical levels refer to rejection frequencies as estimates of Type I error prob 

W, ji J2GMM, JCuGMM and JKLIC are overidentification tests 
based on ELR, two-step and continuously updated GMM, 

and KLIC; respectively. n is the sample size. 

Table 2.7: Finite-Sample Size Properties - QL n=100 

2.6.2 The Model 

This Section assesses the finite-sample size properties of W2, JKLIC, J2GMM and JCUGMM 

using the Hall and Horowitz (1996) model, Equations (2.7) and (2.8). Hall and Horowitz 

(1996) consider, among others, the following DGPs: 

0 . 22 0 
N (2.10) 

00 . 22 
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x0 . 42 0 
r%d N (2.11) 

y00 . 42 

(2.10) and (2.11) are nested in (2.7) and (2.8) if a value of µ is obtained from 

L: f_: exp -B (x + y) + 3y] -1) fdxdy = 0, (2.12) 

where f-ý, y is the bivariate normal probability distribution function. 

The corresponding value is 

it =2 [2µy (0 - 3) - QY (0 - 3) +0 2µx -0 0) ]. (2.13) 

Hall and Horowitz (1996) assume 0=3. Substituting 0=3 into (2.13) yields 

x0 . 42 0 
µ=-. 72 for N 

y00 . 42 

x0 . 22 0 
µ=-. 18 for 'N , 

y00 . 22 

The Data Generating Process 

To extend existing simulation evidence based on the Hall and Horowitz (1996) model, we 

consider two additional DGPs to those studied by Bravo (2000), Imbens et al (1998) and 

Hall and Horowitz (1996). 

9 Assume that x and y are independent and that 

x ti r (ax, )3) and yNr (ay, ßy) 
. 

(2.14) 
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The DGPs in (2.14) are nested in (2.7) and (2.8) if a value of µ is obtained from 

00 00 1 
(exp [µ -0 (x + y) + 3y] - 1) ff. ydxdy = 0, (2.15) 

oo 

Loo 

where fý, y is the bivariate gamma probability distribution function. 

This value is 

µ=1n Iß xQvv 
(ßx 

+9 Ian I +8-3) 
C�m ]. 

(2.16) 
I. /\ // 

Let a-- = 1, ß-, = 1, ay = 1, ßy=1 and 0=3. Substituting these specific values into 

(2.16) yields µ =1n (4). 

" Assume that x and y are independent and that 

x ý' X(uz) and y_ X(uv)' (2.17) 

The DGPs in (2.17) are nested in (2.7) and (2.8) if a value of µ is obtained from 

L00 

J 
00 

(exp [µ -0 (x + y) + 3y] - 1) ffydxdy = 0, (2.18) 
- 00 

where f,, y is the bivariate chi-square probability distribution function. 

The corresponding value is 

µ =1n 
[(20 

- 5)"x/2 (20 + 1)u. /2] 
. 

(2.19) 

Let ux = 2, uy =2 and 0=3. Substituting these specific values into (2.19) yields 

µ= 1n(7). 
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Finite-Sample Size Properties 

For 5000 replications we register the proportion of the simulated statistics that exceeds the 

asymptotic critical value. The results in Table 2.8 are for n= 50 and those in Table 2.9 are 

fora=100. 

Results 

Empirical Levels of J-tests 
n=50 

E[exp{µ-0(x+y)+3y}-1] =0 
E[y(exp{µ-0(x+y)+3y} - 1)] =0 

Levels Wi J2GMM JCtGMM 

. 10 . 1654 . 1136 . 1211 

N k. 00 
. 22 

)) 

. 05 
. 1025 . 0626 . 0726 

µ=-. 18 

. 01 
. 0372 

. 0206 . 0259 

. 10 . 2332 . 1750 . 1271 

*42 N(( 0) '(0 . 42 
)) 

. 05 . 1540 . 1240 . 0749 
µ=-. 72 

. 01 . 0650 . 0650 . 0325 

. 10 . 1530 . 1302 . 0922 
X 42ý 

y Xý2ý . 05 . 0911 . 0776 . 0389 
µ= In (7) 

. 01 . 0306 . 0294 . 0089 

. 10 . 1437 . 1066 . 1071 
x-r(1,1) 
y'r (1,1) 

. 05 
. 0841 . 0542 . 0462 

µ=1n(4) 

. 
01 

. 
0256 

. 
0122 

. 
0048 

Empirical levels refer to estimates of Type I error probabilities. 
Wjº J2GMM, JCuGMM are overidentification tests based on ELR, two-step and 

continuously updated GMM. n is the sample size. 

Table 2.8: Finite-Sample Size Properties - HH n=50 
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Examination of Table 2.8 reveals that the ELR overidentification is badly oversized for every 

DGP and for all the nominal critical values that we investigate. The worst size distortions 

occur with the normal distribution. The tests based on the GMM have better size properties. 

This is especially true for JCUGMM, regardless of the DGP. There is an improvement in the 

size properties of all the overidentification tests as the sample size increases (compare Table 

2.8 to Table 2.9). However, the ELR overidentification test remains with pronounced size 

distortions and the normally distributed variables lead to the worst discrepancies between 

empirical and nominal sizes. 

The results reported inside parenthesis, in Table 2.9, are from Imbens et at (1998). Note 

that our results agree in a large extent with theirs, e. g. the size properties of the ELR 

overidentification test are very poor for n= 100. Our simulations show that the size 

distortions for Wj are still large for other DGPs than those involving normality, although 

in a lower extent. 

The usefulness of EL motivated us to look for accurate inference procedures for EL esti- 

mators. Some of our findings indicate that asymptotic approximations can be poor for the 

ELR J-test. It is on the improvement of inference methods for EL that we focus on next. 
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Empirical Levels of J-tests 
n= 100 

E[exp{µ-0(x+y)+3y} - 1] =0 
E[y(exp{p-0(x+y)+3y}-1)] =0 

Levels Wj J2GMM JCuGMM 

. 10 . 1660 . 1102 . 1102 
0 

N(( 0) . 22 
)) 

. 05 . 1012 . 0578 . 0582 

-. 18 

. 01 . 0372 . 0140 . 0168 

. 2037 . 1722 . 1299 
. 10 (. 190) (. 178) (. 136) 

0 ), ( 
N 

(( 
20 

)) 

05 . 1221 . 1170 . 0744 
0 0 .0 . (. 125) (. 129) (. 076) 

-. 72 

. 0536 . 0562 . 0261 
. 01 (. 057) (. 073) (. 026) 

. 10 . 1237 . 1236 . 0972 
X Xý 2 
y '' X(2) . 05 . 0711 . 0698 . 0394 

it = In (7) 

. 01 . 0191 . 0210 . 0053 

. 10 . 1337 . 1054 . 1027 
x'« r(1,1) 

yt (1,1) . 05 . 0661 . 0572 . 0527 
In (4) 

. 01 . 0134 . 0124 . 0089 
Empirical levels refer to rejection frequencies as estimates of Type I error probabilities. Wj, 

. 
12GMM, 

JCuGMM are overidentification tests based on ELR, two-step and continuously updated GMM. 

Values inside parenthesis are Imbens et al (1998). n is the sample size. 

Table 2.9: Finite-Sample Size Properties - HH n=100 

2.7 EL-bootstrap 

Owen (2001) suggests some methods in which EL can be combined with other approaches; 

e. g. EL and bootstrap. Bootstrapping provides one approach to improved inference. Here, 
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we concentrate on a method of bootstrapping for EL based on resampling from the EL dis- 

tribution, that incorporates the moment restrictions, rather than the empirical distribution. 

Below we investigate numerically whether using the EL-bootstrap yields an improvement 

to the usual' asymptotic approximation. 

2.7.1 The Model 

We employ the Qin and Lawless (1994) model, given in Equations (2.4) and (2.5) ; and the 

Hall and Horowitz (1996) model, characterized by Equations (2.7) and (2.8). 

2.7.2 The Data Generating Process 

We concentrate on the specifications in which we found the poorest size properties for the 

ELR overidentification test for n= 100 (refer to Tables 2.7 and 2.9). These are the DGPs 

given in a) and c) in Section 2.6.1 for the Qin and Lawless (1994) model. The DGPs 

specified in (2.10) and (2.11) correspond to the Hall and Horowitz (1996) model . 

EL-bootstrap critical values are based on 1000 replications of the bootstrap sampling. The 

Monte Carlo experiment is replicated 5000 times. The results are shown in Tables 2.10 and 

2.11. Note that for EL-bootstrap and GMM-bootstrap the rejection probabilities denote 

the proportion of the simulated data test statistics that exceeds the efficient bootstrap 

critical values. We refer to the EL-bootstrap overidentification test as W6 and to the 

GMM-bootstrap overidentification test as J2cMM. 
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2.7.3 Results 

For the first distribution in Table 2.10, t (5), there is a size improvement when efficient 

bootstrap critical values are used for W3 (compare columns 3 and 4). This is especially true 

for a= . 10. However, J2GMM remains quite oversized. 

The empirical levels for X(1) also improve for Wj when efficient bootstrap critical values are 

used, whereas the GMM-bootstrap is not relatively better than the GMM. 

Empirical Levels of J-tests 
Bootstrap Critical Values 

n= 100 
E (x) =0 and E (x2) = 202 +1 

Levels Wj WB J2GMM J GMM 

. 10 . 1518 . 1260 . 1894 . 1750 
t (5) . 05 . 0878 . 0770 . 1386 . 1353 

. 01 . 0270 . 0220 . 0784 . 0662 

. 10 . 2210 . 1630 . 2488 . 2521 
41) 

. 05 . 1540 . 1210 . 2002 . 2068 

. 01 . 0910 . 0900 . 1426 . 1482 
Empirical levels refer to rejection frequencies as estimates of Type I 

error prob. Wj, W B, JZGMM, f 
GMM are J. tests based on ELR, 

EL-bootstrap, two-step GMM and GMM-bootstrap. n is the sample size. 

Table 2.10: Bootstrap Critical Values - QL 

Results for the Hall and Horowitz (1996) model are reported in Table 2.11. We analyse the 

first DGP and compare columns 3 and 4. The size properties of the Wjb are better than 

those of W3. Moreover, the size distortions have been almost removed. An improvement is 

also observed for J2GMM, compare columns 5 and 6, but this test is still oversized. 
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Consider the second DGP. Although Wý is slightly undersized, its size properties are better 

than those of W,,. By comparing both columns of the GMM statistic, columns 5 and 6, we 

find that the bootstrap is not relatively better for this specification. Here, the empirical 

levels of the tests have moderate size distortions for both critical values. 

Empirical Levels of J-tests 
Bootstrap Critical Values 

n= 100 
E[exp{µ-9(x+y)+3y}-1] =0 

E[y(exp{µ- 0 (x + y) + 3y} - 1)] =0 

Levels Wi Ei J2GMM J GMM 

. 10 . 2037 . 1028 . 1722 . 1427 
(y) . 42 

-N« 0)(0 42 
)) 

. 05 . 1221 . 0498 . 1170 . 0861 

. 01 . 0436 . 0178 . 0562 . 0230 

. 10 . 1660 . 0910 . 1102 . 1126 
(y) 

-N 
((0 ), ( 

0 . 22 
)) 

. 05 . 1012 . 0418 . 0578 . 0540 

. 01 . 0372 . 0086 . 0140 . 0078 
Empirical levels refer to rejection frequencies as estimates of Type I error prob. Wj, Wý 

, 
J20MM, Ja 

MM 

are overidentification tests based on ELR, EL-bootstrap, two-step GMM and GMM-bootstrap. n is the sample size. 

Table 2.11: Bootstrap Critical Values - HH 

2.8 Conclusions 

This Chapter has examined the computational aspects of EL and the adequacy of the 

asymptotic approximations of its estimators and test statistics. 

We first described and illustrated simultaneous and sequential methods and found that 
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both approaches led to identical estimates. However, the simultaneous solution algorithm 

requires less iterations to converge than those required by the sequential algorithm. 

We have examined the sensitivity of our estimations to different starting values. Our findings 

show that for N (0,1) variables, the finite-sample size properties of Wj are insensitive to 

starting values. Whereas for X(1) variables, an unfortunate initial value can lead to large 

discrepancies between empirical and nominal sizes. Calculations based on poor starting 

values and large sample sizes led to a dramatic increase in the time that our iterations 

required to converge. 

To assess the adequacy of the asymptotic approximation of EL estimators and statistics, 

we first examined the ECV and AVL of three methods of obtaining confidence intervals. 

Our findings show that for a "small" sample size, n= 100, methods based on the EL have 

similar ECV and AVL to those obtained through the parametric likelihood ratio. These 

findings complement existing simulation evidence by exploring a new setting that examines 

the ECV and AVL of confidence intervals based on BEL. 

We also assessed the adequacy of the asymptotic approximation of the ELR overidentifi- 

cation test within the Qin and Lawless (1994) and Hall and Horowitz (1996) models. We 

extended the existing simulation evidence based on these models by using distributions 

that have not been studied in the past. For the Qin and Lawless (1994) model we examined 

four distributions: chi-square, gamma, t and normal. We reported that all the tests were 

oversized for every DGP and for all the critical values. However, the ELR test had better 
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size properties than those tests based on the GMM and KLIC. Increasing the sample size 

led to a reduction in rejection frequencies. For the Hall and Horowitz (1996) model we 

drew observations from random variables which are distributed as normal, chi-square and 

gamma. We found large size distortions for the ELR overidentification test for every DGP 

and for all critical values. 

For the Qin and Lawless (1994) model the asymptotic approximation for Wj was especially 

poor for the t and chi-squared distributed variables. Whereas for the Hall and Horowitz 

(1996) model the normal variables led to the largest size distortions. In response to these 

findings, we introduced the EL-bootstrap and the GMM-bootstrap overidentification tests. 

The size properties of Wj improved by considering efficient bootstrap critical values within 

both models. Moreover, the size distortions were almost removed in the Hall and Horowitz 

setting (1996). 
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Chapter 3 

CAPM and Overidentifying 

Restrictions Tests 

3.1 Introduction 

One of the most interesting areas of finance is that related to asset pricing theory. Asset 

pricing theory aims to explain why some assets pay higher average returns than others. 

Common sense suggests that risky investments such as the stock market will generally yield 

higher returns than investments free of risk. However, it was only with the development of 

asset pricing models that economists were able to quantify risk and the reward for bearing 

it. 

Asset pricing models have sometimes been proved wrong when tested. Nevertheless these 

might only be describing how the world should work and not how it does work. If the 

world does not obey a model's predictions, some skeptics might think that the model needs 
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improvement. However, it can also be argued that the world is "wrong" and that some 

assets are "mispriced". The latter view accounts for much of the popularity and practical 

application of asset pricing models. 

The CAPM, based on the work of Markowitz (1959) and extended by Sharpe (1964) and 

Lintner (1965), was the first and probably most widely used model in asset pricing. The 

Mean-Variance CAPM states that the expected return of an asset is linearly related to the 

covariance of its return with the return of the market portfolio. A voluminous literature 

presenting empirical evidence on the Mean-Variance CAPM has evolved since its develop- 

ment. The early evidence was mostly positive (Black et al, 1972; Fama and MacBeth, 1973; 

Blume and Friend, 1973; reported evidence consistent with the model). In the late 1970s 

less favourable empirical results for the Mean-Variance CAPM came out (see Basu, 1977; 

Banz, 1981; Fama and French, 1992; De Bondt and Thaler, 1985; Jegadeesh and Titman, 

1995). There is still controversy over how these discrepancies must be interpreted. Yet 

despite growing criticism, the CAPM remains widely used in finance. 

Seeking a refinement and/or uniformity in results, some authors proposed extensions of the 

Mean-Variance framework to incorporate higher moments, while others advised alternative 

estimation procedures. 

The inclusion of higher moments allows the expected return of an asset to be related not 

only to the covariance but to the co-skewness and co-kurtosis of its return with the re- 

turn of the market portfolio. Arditti (1967), Jean (1971,1973), Ingersoll (1975), Kraus and 
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Litzenberger (1976), Friend and Westerfield (1980), Sears and Wei (1985,1988), Lim (1989) 

and Homaifar and Graddy (1990) incorporate higher moments into the CAPM. However, 

empirical results on higher order frameworks -Three-Moment CAPM- show that the ev- 

idence is still contradictory, as in the Mean-Variance framework. Two of the most famous 

papers, Friend and Westerfield (1980) and Kraus and Litzenberger (1976), lead to different 

conclusions. The first reports significant coefficients on beta' and co-skewness, while the 

latter does not. 

In respect of the inference procedures, at the beginning these were mainly carried out using 

Ordinary Least Squares (OLS) and Maximum Likelihood (ML). However, when deviations 

from the assumptions that returns are jointly normal and independent through time were 

accounted for, methods which accommodate non-normality, heteroscedasticity and temporal 

dependence of returns are to be preferred. Since the development of the GMM by Hansen 

(1982), this has dominated most of the literature. Within the GMM framework, the dis- 

tribution of returns is not specified. It can be both serially dependent and conditionally 

heteroscedastic, the only assumption necessary being that excess asset returns are station- 

ary and ergodic with finite fourth moments (Campbell et al, 1997). The GMM gained even 

more popularity as several published writings advocated a moment equations view of asset 

pricing theory and the associated empirical procedures. Moreover, when empirical work on 

extensions of the Mean-Variance framework emerged, it was argued that the GMM was the 

only appropriate method to test the validity of the Three-Moment CAPM (Lim, 1989). The 

'Beta is defined as the ratio of the covariance of the return of a risky asset with the return of the market 
portfolio, and the variance of the market portfolio. 
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main argument is centered on the assertion that there is no obvious multivariate distribution 

of returns that also exhibits skewness. Cochrane (2001) discusses several advantages that 

GMM has over the ML approach within the context of CAPM. He argues that the GMM 

can handle nonlinearity, especially including conditioning information in an easier way than 

the ML does. 

The debate in respect of which approach -OLS, ML or GMM- is the appropriate estimating 

method to employ in asset pricing models is practically over. Nowadays, most empirical 

work uses the GMM. 

This chapter focuses on a new debate. It is devoted to an alternative estimation procedure 

to the GMM: EL. The ELR, as defined in (1.34), is a nonparametric analogue of likelihood 

estimation. It possesses an asymptotic variance that is the same as for the efficient GMM, 

thus it is asymptotically efficient. The overidentification test based on the ELR (see Section 

1.6.2) is similar to that based on the GMM (see Section 1.8.1). They are asymptotically 

first-order equivalent and have the same interpretation. Both tests are distribution-free and 

their general setting is moment-condition models. But despite all the appealing properties 

of EL statistics, it has had limited diffusion in the area of asset pricing. 

This chapter investigates the finite-sample properties, size and power, of moment restrictions 

tests based on GMM and EL within the Mean-Variance and Three-Moment CAPM through 

simulation evidence. 

The finite-sample properties of GMM overidentification tests using a Two-Moment frame- 
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work have been widely studied in the past (see, among others: Vorkink, 2003; Dahlquist 

and Soderlind, 1997; Hansen et al, 1996; Neely, 1995; Kocherlakota, 1990; Tauchen, 1986). 

However, the finite-sample size properties of the ELR overidentifying restrictions statistic 

remain practically unexplored in this context and the power properties more generally2. We 

are not aware of any study that uses simulations to assess the finite-sample properties of 

overidentifying restrictions statistics, including those based on the GMM, within a Three- 

Moment setting. Investigating the asymptotic efficiency of moment restrictions tests based 

on the GMM and EL should give further insight into the relative advantages of one approach 

over the other. The comparison arises automatically due to the fact that EL implements 

the same set of orthogonality conditions as the GMM. 

There are several contributions to existing literature arising from this chapter: 

1. The finite-sample properties of the ELR overidentification test are compared to those 

of GMM in a widely used empirical framework. We believe that it is important to 

assess the ability of these tests within useful empirical settings. 

2. We provide simulation evidence to assess the power properties of the ELR J-test. At 

present, little is known about these properties. 
2One of the few studies that compares the asymptotic optimality of EL for testing moment restrictions to 

tests based on two-step, ten-step and continuously updating versions of the GMM is that of Kitamura (2001). 
Kitamura's (2001) experimental design follows Hall and Horowitz's (1996) simulation study (refer to Chapter 
2). Kitamura's (2001) experiments show that every method has moderate size distortions. After computing 
size-corrected critical values, Kitamura (2001) compares the power properties of the overidentification tests 
in 32 different experiments. The distribution under the alternative is altered by varying the parameters 
(mean and variance) in the simulations. His findings show that EL had the greatest power 22 times, two- 
step updating did this 5 times, 10-step updating 7 times and continuous updating never had the greatest 
power. EL's power ranking was best at hypotheses farther from the null. When any of the simulated methods 
achieved power over 80%, EL had the greatest power. 
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3. We use a Three-Moment framework, for the first time, to test the finite-sample prop- 

erties of overidentifying restrictions statistics. 

4. We assess power under the alternative hypothesis that the Mean-Variance CAPM is 

valid. We are not aware of any other study which assesses the power properties of 

tests of overidentifying restrictions using this interpretation. 3 

The rest of the chapter is organized as follows: In Section 3.2 the main theory underlying 

the CAPM is presented. Technical references are provided for further insight into the 

theoretical account. The presentation allows the derivation of the Mean-Variance CAPM 

and the Three-Moment CAPM as particular cases of the general model. 

Section 3.3 focuses on the Mean-Variance CAPM. We examine the finite-sample properties 

of tests of overidentifying restrictions based on the ELR, Wj; two-step GMM, J2CMM; and 

continuously updated GMM, JCuGMM. To study the size properties of these tests, we use 

Monte Carlo techniques to simulate their finite-sample distribution. We consider two DGPs 

that are nested in the Mean-Variance framework: a DGP based on Mexican information 

and a linear market model. We also assess the power properties of overidentification tests. 

After an adjustment to make coverage 95%, the power is compared in simulations that vary 

the means and variances through the null. In total, we carry out 96 experiments. 

Section 3.4 studies the size and power properties of overidentification tests using the Three- 

Moment CAPM. We consider a quadratic market model to simulate data consistent with 
3Refer to Magdalinos and Symeonides (1996) for a discussion of different interpretations of the tests of 

overidentifying restrictions. 
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this setting and report rejection frequencies. We equalize the size of the different tests 

and examine their power using two different experiments. The first experiment varies the 

mean of the error term through the null. The second experiment assesses power under the 

alternative hypothesis that the Mean-Variance CAPM is valid. 

Section 3.5 concludes. Proofs are provided in the Appendices. 

3.2 Theoretical Background 

The aim of this section is to derive the CAPM. This is important because by doing this we 

will get further insight into the assumptions and implications of the model. 

The CAPM is based on theories related to utility, arbitrage, portfolio formation and efficient 

markets. Mean-Variance analysis offers a basis for the derivation of the model. Cochrane 

(2001), Copeland and Weston (1998), Campbell et al (1997) and Ingersoll (1987) give a 

complete background and a detailed description of the Mean-Variance CAPM. Homaifar 

and Graddy (1990), Lim (1989), Sears and Wei (1985), Friend and Westerfield (1980), Kraus 

and Litzenberger (1976), Ingersoll (1975), Jean (1973,1971) and Arditti (1967) concentrate 

on the Three-Moment CAPM. 

In general terms, the main problem of the CAPM can be stated as that of an investor with a 

specified utility function facing an investment environment with a riskless asset and N risky 

assets. Her aim is to maximize her utility by combining the risky assets and the riskless 

one in an optimal way. This maximization leads to the expected return of the risky asset 
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being expressed in terms of its relationship with the market. 

We follow Hwang and Satchell (1999) in the derivation of the CAPM. 

There is a representative investor and all returns are in units of period one consumption. 

There is a riskiess asset whose return is Rf and N risky assets whose ith return is represented 

as R;,. Investment proportions on the riskless asset and N risky assets are xo and xi 

(i = 1, ..., N) , respectively; where: 

xo + Exi = 1. 
i 

For the investor, the initial investment is one and the end of period wealth is represented 

as w. Hence, her end of period wealth is 

w= xo(1+Rf) +Exi(1+Ri). 
i 

Consider a portfolio composed of combinations of the risky assets and the riskless one. The 

return of the portfolio is 

Rp = xoRf +>xjR;. 

It is sensible to argue that the expected return on a security should be positively related to its 

risk. That is, individuals will hold risky securities only if its expected return compensates 

for their risk. According to Sharpe (1964), every investment carries two distinct risks. 

The systematic risk, which cannot be diversified away, and the unsystematic risk, which 

is specific to individual securities. Since the latter can be eliminated through appropriate 

diversification, the expected return hinges not on the asset's variance, skewness and kurtosis 
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-which are common measures of dispersion- but on the covariances, co-skewnesses and co- 

kurtosis of the returns. The systematic risk measures are given by beta, systematic skewness 

and systematic kurtosis4, i. e.: 

QsP -E 
[(R` -E( )) (Rp -E (Rp))] (3.1) 

E [(RP 
-E (Rp))2] 

E [(Ri 
-E (Rj)) (RP -E (RP))2] 

(3.2) 'Yip = 
E [(RP 

-E (RP))31 

vip -E 

[(lii 
-E (Hi)) (RP -E (RP))3, 

(3.3) 
E [(RP 

-E (Rp))4] 

To link the systematic risk measures to the investor, information about the investor's pref- 

erences must be incorporated. The investor's expected utility is a function of the expected 

value of end of period wealth and higher moments: variance, skewness and kurtosis. The 

standard assumption is that preferences induce the favouring of higher means, smaller vari- 

ances, higher skewness and smaller kurtosis. The investor is concerned as to the proportions 

to allocate to the riskless and risky assets and be compensated for bearing risk. Loosely 

put, the investor' will maximize her utility, which depends on her wealth and hence on the 

combination of risky and riskless assets, by obtaining the optimal proportions of assets to 

allocate into her portfolio. 

At this point it is useful to establish the relationship among the moments of the end of 

period wealth -E (w), Q (w)2 
, 'y (w)3 and 0 (w)4 - and the measures of systematic risk 

4The terms co-skewness and systematic skewness as well as co-kurtosis and systematic kurtosis are inter- 

changeably applied. 
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-f3 p, yip and Dip. After some algebraic manipulations (see Appendix 1) we obtain 

(W) _ Exißipc7 (Rp), (3.4) 
i 

Exi-tipi 
(RP), 

(3.5) 
i 

0 (w) _ 
>xit9ipi9 (RP), (3.6) 

i 

where 

Q (z) = 
[E (z -E (z))2 , 

1/2 

31 1/3 
y (z) _ 

[E (z -E (z)) 
9 

tO (z) = 
[E(z-E(z))]1/4 

1 

and z is a random variable. 

We now define a constrained optimization problem 

Max E [U (w)] =f (E (w)' a (w), -j (w)''9 (w)), 

subject to 

xo+Exi=1. 
i 

This optimization may be solved though Lagrange Multipliers. Let 

Q=f (E (w) 
,Q 

(w) 
,7 

(w) 
, ý9 (w)) -, X 

(xo 
+ : ýxs 

-1 (3.7) 

Using the relations stated in (3.4), (3.5) and (3.6); the Lagrange Multiplier problem in (3.7) 

can be rewritten as: 

C=fE (w)' I: xißipc (RP) , 
Exi'y pv 

(RP)' Exii9pi9 (RP) -a xp + I: xi --1 

(3.8) 
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Then using 

OE (w) 
1+E(141), 

19x i 

VQ 
(W) 

= Pi pg 
(Rp), 

Oxi 

a'y (W) 
= -yip7 (Rp) , oxi 

00 (W) 
= i9i pi (RP) ; oxi l1 

we can write the FOC as 

aý OE [U (w)1 
äxo - OE (W) 
ö. C 

_ 
OE [U (w)) 

(1 +E (A-)) + 
OE [U (w)] 

ßipa (Rp) + 
8E [U (w)) 

yip-y (RP) 
äxi OE (w) 00, (w) äry (w) 

+OE [U (w)) 
Oipti (RP) -A=0. 

Rearranging the FOC we obtain 

BEUw BEUw 

E (R2) - Rf =- eE Uw 
8ipa (RP) -L eE Uw 7ip'Y (RP) 

8E w öE w 
8E Uw 

t9 R 
8E Uw jP19 

(P) 

Ew 

(3.9) 

At the maximum, the expected utility is constant and the changes in expected return and 

variance are zero for a given level of skewness and kurtosis, i. e.: 

dE [U (w)] = aEývý dE (w) + aEýuý du (w) = 0, 

dE [U (w)] = aEývý dE (w) + aE rr( dy (w) = 0, 

dE (U (w)] = aEE w dE (w) + aE ýw d0 (w) = 0. 
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Incorporating these results into Equation (3.9) gives: 

E (Ri) - Rf =[ 
ýwý ] 

Qipcr (RP) +[ dd 
E()] 

'Yip-y (RP) (3.10) 

+[ ddE 
(w) 

ig (w) 

] 
19iP (RP) 

It is important to stress that Equation (3.10) is defined in terms of a risky asset and a port- 

folio denoted by the subindex P; thus the pricing results denote an individual equilibrium. 

To move from an individual equilibrium to a market one -to derive the CAPM- it must 

be the case that an investor's choice of a risky investment portfolio is separate from her 

attitude towards risk. This property is often referred to as a portfolio separation principle. 5 

Before we formally introduce this principle, its main assumptions are summarized: 

(i) Each investor chooses a portfolio with the objective of maximizing a derived utility 

function, f (E (w) 
,o (w) 

, ry (w) 
,, 9 (w)) 

, where the utility function is concave and pref- 

erences induce the favouring of higher means, smaller variances, higher skewness and 

smaller kurtosis. 

(ii) All investors have a common time horizon and homogeneous beliefs about E (w) 
, 

a(w), -y (w) and 19(w). 

(iii) Each asset is infinitely divisible. 

(iv) The riskless asset can be bought or sold in unlimited amounts. 

5This principle is also known as portfolio separation theorem or mutual fund theorem. 
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Theorem 3 If assumptions (i) to (iv) hold, the optimal combination of risky assets for an 

investor can be determined without any knowledge of the investor's preferences towards risk 

and return. 

Theorem 3 is the so-called portfolio separation theorem. Under this theorem the investor 

makes two separate decisions: 

1. After estimating the expected returns, variances, covariances, skewnesses, co-skewnesses, 

kurtosis and co-kurtosis of securities; the investor calculates an efficient set of risky 

assets. This is a set formed by the combination of assets that for a given level of 

variance, covariance, kurtosis, co-kurtosis, skewness and co-skewness yield the highest 

return. No personal characteristics, such as degree of risk aversion, are needed in this 

step. Intuitively, no other portfolio could be optimal since all investors working with 

the same inputs, sketch out the same efficient set of risky assets. If all investors choose 

the same portfolio of risky assets it is possible to determine what that portfolio is. 

Common sense points to it being a market valued-weighted portfolio of all existing 

securities: the market portfolio. 

2. The investor must now determine how to combine the portfolio of risky assets with 

the riskless one. This allocation is determined by her tolerance towards risk. 

Theorem 3 is fundamental to understanding the CAPM. It ensures that all individual in- 

vestors maximize their utility with two funds: a riskless asset and the market portfolio. 6 

6For further insight of the Mutual Fund Theorem refer to Bottazzi et at (1995), Nielsen (1993) and 
Ingersoll (1987). 
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Therefore, after evoking the portfolio separation theorem, Equation (3.10) can be rewritten 

in terms of the market portfolio 

dE (w) 
E (IR, ) - Rf =[ dQ (w) 

] 
Bi,, a (1) +I 

dd (w) 

J 'Yý? 7 Y (R) (3.11) 

Note that (3.11) is identical to (3.10) except for Rm., the rate of return of the market 

portfolio, which is substituted for Rp. The main theoretical difference between both is 

that (3.11) is a market equilibrium whereas (3.10) is an individual equilibrium. From this 

point onwards, the subindex m labels the variables and parameters specific to the market 

portfolio. 

Equation (3.11) is an extension of the Kraus and Litzenberger (1976) Three-Moment CAPM 

(henceforth, K-L CAPM). Following their notation, (3.11) can be rewritten as 

E (Ri) - Rt = bißim + b2'Yim + b3i9im, (3.12) 

where 

bi =[ da 
(w), 

a (Rm), (3.13) 

d 
b2 =L dE (w) 

] 
-y (RM) (3.14) 

" (3.15) b3 -[ ddE 19 
i9 (w), 

(R', ) 

Equation (3.12) is the Four-Moment CAPM. 

Note that: 

(a) bi > 0, 
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since 
[,, >0 and a (Rm) > 0. 

(b) b2 >0 if ry (R,,,, ) < 0, 

b2<0if ry(R,,, )>0, 

dEw OEUw w 
since dry w=- öE Uw aE w 

ý' 

(c) b3 > 0, 

since d9w=- 
aE üw äE >0 and z9 (Rm) > 0. 

Multiperiod Framework 

Due to the fact that the CAPM is a single period model, all the previous equations do not 

have a time dimension. For econometric analysis of the CAPM, it is sufficient to assume 

i. i. d. returns to estimate the model over time (Campbell et al, 1997). 

Lim (1989) tests the validity of the Three-Moment CAPM through the GMM by defining the 

CAPM in terms of orthogonality conditions. This specification is convenient since the EL 

is also a moments-based model. The extension of Lim's (1989) analysis to a Four-Moment 

framework arises naturally. Following his work, first define the deflated excess returns for 

the ith asset and the market portfolio as: 7 

;, ric = 
(I? _Rft\ 

rmt _ 
(L t-R t) 

; 1c J 

We now define the moment conditions, E [g (rit, rmt, 0)] = 0, for estimating the Four- 

7The rates of return on the riskless asset are not constant through time. Thus, the deflated excess returns 
are used to make moments of the rate of returns intertemporal constants under a changing riskless interest 

rate (Fama, 1970). 
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Moment CAPM g 

3.16) E [rit - (bißim + b2'Yim + b3i9im)] _0i=1, ... 
N, 

E [ritrmt 
-µ (rm) rit - Qim lrmt - it (rm) }2, =0i=1, ..., N, (3.17) 

E [ritrt 
- 2µ (rm) ritrmt +u (rm)2 rit -a (rm)2 rit (3.18) 

iim 
{rmt 

-/ (rm)}3 ]0i=1, 
..., N, 

E [ritrt 
- 3µ (rm) ritrmt + 311 (rm)2 r=trmt -µ (r�ß)3 rat (3.19) 

-^Y (rm)3 rit -19, M {rmt - N, (rm) }4 I=0i=1,.., N, 

E [r*nt -p (rm)] = 0, (3.20) 

E [{rmt 
-µ (rm)}2 -Q (rm)2] = 0, (3.21) 

E [{rmt 
- ft (rm)}3 -'Y (rm) 3] _ 0, (3.22) 

E [{rmt 
-µ (rm)}4 - a9 (rm)4] = 0. (3.23) 

These equations are better analysed by dividing them into two groups. 

The first group, Equations (3.16) - (3.19), specify the relationship between the returns of 

the risky asset and the market. The N moment conditions in (3.16) come from the Four- 

Moment CAPM as defined in (3.12). The following 3N orthogonality conditions, Equations 

(3.17)-(3.19), are N conditions for beta, N conditions for co-skewness and N conditions 

for co-kurtosis. 
8g(., 0) was defined in Chapter 1, Section 1.4. 
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The second group, Equations (3.20) - (3.23), are particular to the market and they denote 

common measures for the mean, variance, skewness and kurtosis; respectively. 

In total, there are 4N+4 equations and 3N+7 parameters to be estimated, 0= (bi, b2, b3, 

N, (r m) ,a 
(Tm) 

,y 
(rm) 

, i9 (rm) 
, 

Qim' 'Yim, '9im)T . 

For simplicity it is convenient in what follows to make the assumption that N=1. We will 

denote ßim, Yim, 'aim, and rit as ß,,,,, ry,,,,, z9�ß,, and rt; respectively. 

3.3 Mean-Variance CAPM 

Markowitz (1959) set down the basis for the CAPM. He formulated the investor's portfolio 

selection problem in terms of expected return and variance of return. He showed that 

investors would optimally hold a portfolio with the highest expected value for a given 

level of variance, i. e. a Mean-Variance efficient portfolio. Sharpe (1964) and Lintner (1965) 

extended the work of Markowitz (1959) to develop a general equilibrium model, the CAPM. 

They showed that if investors have homogeneous expectations and optimally hold Mean- 

Variance efficient portfolios then, in the absence of market frictions, the market portfolio will 

itself be a Mean-Variance portfolio. The Mean-Variance CAPM states that the expected 

return of an asset must be linear in the covariance of its return with the return of the market 

portfolio. 

In this section, a comparison of the EL and GMM, in the context of the Mean-Variance 

CAPM, is carried out. Essentially what we do is to assess the finite-sample properties, size 
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and power, of their moment restrictions tests. 

First, we formally introduce the Mean-Variance CAPM as a particular case of the general 

model, given in Equation (3.12). 

3.3.1 Moment Equations 

The moment equations for estimating the Mean-Variance CAPM are Equations (3.16), 

(3.17) and (3.20) ; where bi =E (rmt) 
, b2 =0 and b3 =0 in (3.16). 

Hence, there are 3 equations and 2 parameters, 0= (µ (r�, ) 
,0.. 

)T, to be estimated. 

3.3.2 Finite-Sample Properties of Overidentification Tests 

The tests of overidentifying restrictions studied in this section have as their null hypothesis 

that there is a value of 0 consistent with E [g (rt, r,,,, t, 0)] = 0. We analyse three tests of 

overidentifying restrictions in what follows: W2, J2GMM and JCUGMM. The three tests 

have an asymptotic Xýl) distribution under the null. 

The Data Generating Process 

We consider two DGPs. 

Hwang and Satchell (1999) examine the CAPM for the case of emerging markets. The 
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following figures are obtained from their survey, specifically for the case of Mexico: 

a (rMEX) = 14.41, 

Q (r�a) = 4.11, 

where 

E (r,,, x) = . 73, 

PTMEX, 
?m= . 

65, 

a (rMEX) and a (rm) are the standard deviations of Mexico and the market, 

(3.24) 

prmEX, rm 
denotes the correlation coefficient between the returns of Mexico and the market. 

The Mean-Variance CAPM predicts 

E (rMEX) = QmE (rmt) 
. (3.25) 

Our aim is to use a DGP consistent with the Mean-Variance CAPM. 9 We consider two 

processes. 

We obtain from substituting (3.24) into (3.25) : 

E (rMEX) _ 
(. 65) (14.41) (4.11) 

(73) 
(4.11)2 

= 1.68. 

Hence, a DGP of the form 

rMEx 
N (3.26) 

rmt 

9Consistent in the sense that there is a value of ß, such that the null hypothesis holds. 
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where 

1.68 + All 
µ= 

. 73+021 

(14.41 + 012)2 (. 65) (14.41 + 012) (4.11 + 022) 
E_! 

(. 65) (14.41 + A12) (4.11 + 022) (4.11 + 022)2 

and Atij for i, i= {1,2} are constants that allow parameters to vary, 

is consistent with the Mean-Variance CAPM if Aal =0Vi, j. In other words, if Ate #0 

then Equations (3.16), (3.17) and (3.20) do not hold. 

The second DGP that we consider, a linear market model, has the following general form 

rt = ai r,,,, t + et, 

where 

(i) E (et) = 0, 

(ii) rn. t and et are uncorrelated. 

(3.27) 

Note that only if (i) and (ii) hold then the linear market model in (3.27) satisfies the 

Mean-Variance CAPM, e. g. al = ßm. 

Size of Overidentification Tests 

This Section focuses on whether the asymptotic (or nominal) size is a good approximation 

to that in finite-samples. The following experiments employ either a DGP of the form 
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given in (3.26) with Ott =0Vi, j or a DGP of the form in (3.27) with E (et) =0 and no 

correlation between r, nt and et so that the Mean-Variance CAPM holds. 

Results We first consider the DGP related to the Mexican figures. We report rejection 

frequencies, with particular interest being in cases where these probabilities are poorly 

approximated by the nominal size. Our experiments use 5000 replications. We consider two 

samples sizes: n= 50 and 100. Results are summarized in Table 3.1. 

Empirical Levels of J-Tests 
Mean-Variance CAPM 

n= 50 n= 100 
Level Wj JCuGMM J2GMM Wj JCuGMM J2GMM 

. 10 . 1109 . 1098 . 1124 . 1070 . 1140 . 0940 

. 05 . 0593 . 0592 . 0561 . 0590 . 0610 . 0520 

. 01 . 0141 . 0144 . 0110 . 0120 . 0110 . 0100 
W j, JCuGMM and J2GMM are J tests based on the ELR, continuously 

updated and two-step GMM estimators; respectively. n is the sample size. 

Table 3.1: Finite-Sample Size Properties - CAPM Mexican data 

Table 3.1 summarizes the rejection frequencies for the tests at the . 10, . 05 and . 01 critical 

values. Our findings show that the nominal size is a reasonable approximation to finite- 

sample sizes for the three tests. 

Our experiments illustrate that for these sample sizes (and a well behaved DGP), the 

nominal critical values of the overidentification tests can be a useful guide to finite-sample 

behaviour. 



99 

Consider the second DGP, Equation (3.27). We generate pseudorandom samples with the 

following characteristics: 

rmt 410 
N, 

Et 001 

and we arbitrarily set al = 1.5 in (3.27), i. e.: 

rt = 1.5 rmt + et. 

The empirical levels for 5000 replications and for two sample sizes: n= {50,100}; are sum- 

marized in Table 3.2. For n=50, the ELR test is more oversized than its GMM counterparts. 

However, differences among the three tests are small. We note the familiar decrease in the 

size distortions as n increases. 

Empirical Levels of J-Tests 
Mean-Variance CAPM 

n= 50 
Level Wj JCUGMM J2GMM 

. 10 . 1250 . 1146 . 1144 

. 05 . 0706 . 0608 . 0622 

. 01 . 0182 . 0120 . 0126 

n= 100 
Wj JCuGMM J2GMM 

. 1180 . 1106 . 1101 

. 0598 . 0560 . 0572 

. 0146 . 0121 . 0116 
W j, JCuGMM and J2GMM are J tests constructed through the ELR, 

continuously updated and two-step GMM estimators; respectively. 

Table 3.2: Finite-Sample Size Properties - CAPM linear market model 

Power of Overidentifcation Tests 

When drawing inferences using a given test statistic it is important to consider its power. 

This is the probability that the null hypothesis will be rejected given that the alternative 
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hypothesis is true. Low power suggests that the test is not useful to discriminate between 

the alternative and the null hypothesis. 

To document the power of a test it is necessary to specify the alternative DGP and the size 

of the test. In what follows we consider a DGP of the form given in (3.26). Under the null 

hypothesis O=ff =0Vi, j. The experiments reported in this section set Otij 00 in so that 

the moment conditions are invalid. We use the rejection frequencies as estimates of one 

minus the probability of Type 11 error. 

Two main experiments are carried out. The first one considers variations in the means of 

the returns by setting Ail #0 for i=1,2. The second experiment deals with fluctuations 

of the variances of the returns by letting Ai2 00 for i=1,2. 

To separate the effect of size distortions we report the rejection frequencies for the cases 

where the critical values are given by the (estimated) 
. 10, . 05 and . 01 critical values of the 

finite-sample null distribution. 

Size Correction To obtain the . 10, . 05 and . 01 finite-sample critical values we perform 

a Monte Carlo experiment with Aaf =0Vi, j. After ordering the simulated values of the 

overidentification tests from the largest to the smallest we find the 500th, 250th and 50th 

values (since 5000 replications were performed). These values are the corrected critical 

values10. Results for n= 100 are summarized in Table 3.3. 
'OHorowitz and Savin (2000) argue that the size-corrected critical values usually obtained in Monte Carlo 

studies of power are both misnamed (what is really computed is the exact Type I critical value for essentially 
arbitrary simple null hypotheses) and irrelevant to empirical research (because the chosen parameter value 
is arbitrary, the critical value has no empirical analog). Horowitz and Savin (2000) propose an alternative 
method based on the bootstrap for obtaining critical values in power studies. 
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Size Correction 
Finite-Sample Critical Values 

Mean-Variance CAPM 

Asymptotic 

critical value 
Corrected Critical Value 

Levels Wj JCuGMM J2GMM 

. 10 2.7055 2.8091 2.9277 2.6695 

. 05 3.8414 4.1485 4.1651 3.9135 

. 01 6.6348 6.8828 6.7997 6.6040 
W j, JCuGMM and J2GMM are J tests constructed through the ELR, 

continuously updated and two-step GMM estimators; respectively. 

Table 3.3: Size Correction Mean-Variance CAPM - Mexican data 

Results Experiment 1: Variations in the Means 

We set Ail 0 in (3.26) for i=1,2. It is easy to see that deviations from the null hypothesis 

are given by 

38.56 A21 
2- 

All. 
(4.11) 

If 021 and All are both positive (negative), it is ambiguous if these increments (decrements) 

lead to departures from the null because both effects might cancel each other. Moreover, 

larger Ails are not necessarily interpreted as larger deviations from the null. Hence, we 

concentrate on the cases in which the means vary in opposite directions: i. e. 011 >0 

(011 < 0) and 021 <0 (021 > 0). Forty eight different cases are studied. The ranges of the 

variations are between -2 and +2: Ail = 1-2,..., +21 for i=1,2. Results for a significance 

level of 5% are shown in Table 3.4. 
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Power of Moment Restrictions Tests 
Nominal Size=. 05 

Mean-Variance CAPM 

"" -2 -1 -. 5 -. 2 0 .2 .5 1 2 
Ali 

Wj 1 . 973 . 818 . 628 . 458 
JCUGM 2 1 . 970 . 806 . 625 . 437 
J2GMM 1 . 972 . 803 . 595 . 415 

Wi . 998 . 852 . 518 . 285 . 159 
JCUGM 1 . 998 . 848 . 511 . 277 . 142 
J2GMM 

. 995 . 833 . 471 . 236 . 146 
Wi . 992 . 708 . 323 . 148 . 086 

JCuGM .5 . 989 . 690 . 310 . 121 . 061 
J2GMM 

. 986 . 673 . 277 . 130 . 054 
Wi . 982 . 634 . 242 . 099 . 070 

JCUGM .2 . 980 . 619 . 213 . 097 . 051 
J2GMM 

. 978 . 610 . 221 . 075 . 047 
Wi . 975 . 538 . 172 . 063 . 084 . 171 . 490 . 934 

JCUGM 0 . 972 . 515 . 163 . 062 . 071 . 150 . 485 . 915 
J2GMM 

. 970 . 524 . 135 . 051 . 067 . 150 . 463 . 916 
W, . 061 . 112 . 218 . 533 . 955 

JCuGM -. 2 . 051 . 093 . 214 . 489 . 936 
J, ). r. MM . 044 . 082 . 207 . 492 . 930 

Wj . 094 . 149 . 320 . 665 . 964 
JCuGM -. 5 . 058 . 140 . 294 . 631 . 964 
J2GMM . 070 . 129 . 283 . 618 . 964 

Wj . 158 . 267 . 472 . 787 . 985 
JCuGM -1 . 148 . 251 . 450 . 783 . 979 
J2GMM . 139 . 241 . 468 . 763 . 978 

Wj . 446 . 604 . 792 . 953 1 
JCuGM -2 . 436 . 572 . 782 . 933 . 997 
J2GMM . 440 . 594 . 761 . 947 . 997 

w j, JCuGMM and J2GMM are J-tests based on the 
ELR, continuously updated and two-step CMM estimators; respectively. 

Table 3.4: Power Properties Mean-Variance CAPM - variations in means 

Each coordinate in Table 3.4 represents (011, X21) 
, where All are changes induced to the 

mean of rMEX and A21 are changes induced to the mean of r, nt. We do not experiment 
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with the coordinate (0,0) since the null holds. 

Our results suggest that the ELR overidentification test is more able to detect deviations 

from the null than tests based on the GMM. Of 48 experiments EL has the greatest power 

in all 48 of the cases and the two-step and continuously updated GMM are as powerful as 

the EL in 2 cases. 

As expected, power increases as the variations in the means increase and it is also noteworthy 

that there are no important differences between positive and negative values of Dirs. 

We carry out a second experiment to assess the power of overidentification tests. 

Experiment 2: Variations in the Variances 

We set 842 00 in (3.26) for i=1,2. The new expected return for the risky asset implied 

by the Mean-Variance CAPM is 

E (rMEX1) = . 65 (14.41 + 012) 
(73) 

(4.11 + 022) 

However, we generate random numbers considering the original expected value 

E (rMEX) _ . 
65 (14.41) 

(. 73) = 1.68. 
(4.11) 

Note that if A12 and A22 are both positive (negative) it is ambiguous if these increases 

(decreases) lead to departures from the null hypothesis. Hence, we concentrate on the 

cases in which the variances vary in opposite directions: 012 >0 (46612 < 0) and 022 <0 

(A22 > 0) 
. 
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Power of Moment Restrictions Tests 
Nominal Size=0. 05 

Mean-Variance CAPM 

022 
-3 -2 -1 01 234 X12 

Wj . 956 . 385 . 145 . 063 
JCUCM 4 . 943 . 382 . 121 . 057 
J2GMM 

. 951 . 382 . 102 . 042 
Wj . 952 . 404 . 126 . 059 

JC, IGM 3 . 945 . 371 . 090 . 055 
J20MM . 936 . 327 . 126 . 044 

Wj . 935 . 350 . 103 . 056 
JCUGM 2 . 918 . 321 . 101 . 050 
J2GMM 

. 926 . 316 . 100 . 055 
Wj . 937 . 311 . 099 . 055 

JCuCM 1 . 915 . 273 . 079 . 047 
J2GMM . 918 . 279 . 094 . 052 

Wj . 931 . 304 . 091 . 051 . 096 . 101 . 127 
JCUGM 0 . 920 . 266 . 061 . 049 . 088 . 093 . 127 
J2GMM 

. 917 . 269 . 072 . 049 . 075 . 089 . 118 
W3 . 062 . 072 . 099 . 125 . 164 

JCuGM -1 . 056 . 064 . 082 . 124 . 144 
J2GMM 

. 046 . 057 . 076 . 117 . 128 
Wj . 054 

. 111 . 116 . 153 187 
JCuGM -2 . 041 . 077 . 113 . 143 . 178 
J20MM . 054 . 071 . 109 . 137 . 156 

Wj . 071 . 123 . 163 . 196 . 219 
JCuGM -3 . 064 . 123 . 157 . 193 . 216 
J2GMM . 063 . 091 . 146 . 170 . 169 

Wj . 100 . 146 . 203 . 232 . 276 
JCUGMIV -4 . 091 . 133 . 200 . 214 . 269 
J2GMM . 089 . 143 . 193 . 204 . 263 

W j, JCuGMM, J2GMM are J-tests based on the 
ELR, continuously updated and two-step GMM estimators; respectively. 

Table 3.5: Power Properties Mean-Variance CAPM - variations in variances 

Forty eight different cases are studied. The ranges of the variations are between -4 and +4: 

Die = 1-4,..., +4} for i=1,2. We omit 022 = -4 because we encountered several problems 
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when generating random numbers given that the variance is close to zero: (4.11 - 4) = . 11. 

Results for a significance level of 5% and n= 100 are shown in Table 3.5. We performed 

5000 replications. 

Our findings shown in Table 3.5 suggest that W3 is more able to detect false moment 

conditions than tests based on the GMM. In the 48 experiments W,, has the greatest power 

in all cases. J20MM is as powerful as W3 in 2 of the cases and JCuGMM is as powerful as 

Wj in 2 of the replications. As would be expected, power increases as Oti2 increases. The 

latter results are consistent with the findings of our first experiment. The GMM tests fail to 

detect the invalidity of the moment conditions in a greater extent than the ELR test does. 

3.4 Three-Moment CAPM 

When contradictory empirical results for the traditional form of the Sharpe-Lintner model 

emerged, authors such as Kraus and Litzenberger (1976) extended the Mean-Variance frame- 

work to incorporate the effect of skewness on valuation. They argue that prior empirical 

findings that were interpreted as inconsistent with the traditional theory can be attributed 

to misspecification of the CAPM by omission of systematic skewness. 

By setting b3 =0 in (3-12), the K-L CAPM follows. 

It is crucial to address the fact that the market price of beta reduction, bl, and the market 

price of gamma, b2, can be expressed in terms of the market's return. To illustrate this 

assertion consider the special case in which all investors have logarithmic utility functions. " 

"The logarithmic function is representative of utility functions displaying decreasing absolute risk aversion 
and constant relative risk aversion. 
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A Taylor approximation of the investor's expected utility of end of period wealth, 

E [U (w)] =f (E (w), a (w) 
' 'Y (w)), yields: 

E [U (w)] = log (E (w)) - 
O'(w)22 +7 

(w)3(3.28) 

2E (w) 3E (W)3 

When we differentiate (3.28) with respect to E (w) 
, o, (w) and ry (w) we obtain 

OE [U (w)] 
_ 

1+Q (w)2 
_y 

(w)3 (3.29) 
OE(w) E(w) E(w)3 E(w)4' 

OE [U (w)] 
__ _ 

0' (w) 
(3.30) 

' äQ (w) E (w)2 

OE [U (w)] 
=7 

(w)2 
(3.31) 

ay (w) E (w)3 

Substitution of (3.29), (3.30) and (3.31) into (3.13) and (3.14) yields 

c (w) 
bi = 

wE 

(w) 
() Y (w)3 0, (rm) , (3.32) 

' 
- 1+ 

E (w)2 E (w)3 

,y (w)2 
2E 

b2 w) 
-y (w)3 

(3.33) 
1+E 

(w)2 - E (w)3 

Since the initial investment is set to one, the moments of end of period wealth are equivalent 

to those of the rate of return on the portfolio, in equilibrium the market portfolio. Therefore, 

we can rewrite bl and b2 as 

a (r�ß)2 

bi =E 
(rmt) 

(3.34) 
+a 

(rm)2 'Y (rm)3 
E (rmt)2 E (rmt)3 

,y (rm)3 

b2 =E 
(rmt)2 

+a 
(rm)2 

_ 
-y (rm)3 

(3.35) 

E (rmt)2 E (rmt)3 
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Note that as soon as information about the investor's preferences is incorporated, bl and b2 

can be expressed in terms of the market. 

Thus, the special case of K-L CAPM, where all investors have logarithmic utility functions, 

1S 
3 

Or 
2 rm 

E (rt) -sE 
r�ýc 

rm 3 
Qm +a 

t2mt) 
rm 3 'fm" (3.36) 

1+ o r,,, --E Li -}- E 

We can alternatively use a variant of the K-L CAPM that provides information about the 

structure of the risk premiums, bl and b2, by using the Euler condition for the investor's 

utility maximization problem as in Seirs and Wei (1985). This is 

CL 0a (rm) 
-r 

'Y (rm) 
rmt, (3.37) E lrt) Oa (r'm) 

- , ý' lrm) 

ßm 
loo, (rm) 

- , yrm) 
7m 

where 0 is the marginal rate of substitution of y for o, (refer to Seirs and Wei, 1985). Note 

that as for the logarithmic utility case, bl and b2 are now expressed in terms of the market 

return. 

3.4.1 Moment Equations 

The orthogonality conditions that characterize the Three-Moment CAPM are given by 

Equations (3.16), (3.17), (3.18), (3.20), (3.21) and (3.22) ; where we set b3 =0 in (3.16). 

3.4.2 Finite-Sample Properties of Overidentification Tests 

The tests of overidentifying restrictions studied in this section have as their null hypothesis 

that there is a value of 0 consistent with E [g (rt, rmt, 0)] = 0; where 0= (bi, b2, /3m, ry, iti 

µ (r�ti) ,a 
(rm, ) 

,y 
(rm))T. We again consider the three tests of overidentifying restrictions 
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studied in the Mean-Variance setting: W1, J2GMM and JCuGMM" These tests have a X2 (r_9) 

distribution under the null, where dim (g) =r and dim (0) = q. 

The Data Generating Process 

Assume the following quadratic market model: 

rt = ahmt + a2(rmt - E(rmt))2 + _t, (3.38) 

where 
(i) ai 0 for i= {1,2} 

1 

(ii) et is independent of rmt and (rmt - E(r, nt))2, (3.39) 
(iii) E (et) =0+0 

and L=O. 

Then applying the definitions of 13m and ry,,,,, to the quadratic market model we obtain: 12 

Qm = al + a21' 
(Tm)3 

2' 
(3.40) 

a (rm) 

Cd (Tm)4 - or (Tm)4) 

'Ym = al + a2 
7 ()3 

(3.41) 
Tm 

It is helpful to seek to express al and a2 in terms of ßm and ry,,,,. Solving (3.40) and (3.41) 

for al and a2 yields 

al = 
ßm'9 (Tm)4 a (Tm)2 + Qmm (Tm)6 +'Y (Tm)6'Ym 

(3.42) 
7 (rm)6 

" 19 (rm )4 0, (rm )2 +O (Tm)6 1 

_ 
or (rm)2ry 

(rm)3 
( 1m +Qm) 

a2 
(rm)6 

- 'ý (rm)4 a (rm)2 +Q (r 
n, 

)6' 
(3.43) 

12The proofs of (3.40) and (3.41) are in Appendix 2. 
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Thus, the DGP in (3.38) can be rewritten as: 

m1 
("m)4 a (rm)2 + ßm0 (rm) + -y (rm)6'Ym 

rmt rt _7 (1'm, )6 
- 1i (r )4 U (r )2 +a (rm)6 

(3.44) 

+a 
(rm)2'Y (rm)3 (-7m + Qm. ) 

r.. t -E r�, t))2 + et. 
19 (rm)4 a (rnm. )2 +Q (rm)6 

Factorizing Q�. and ry�, yields 

rt = Aißm + A2ýYrrz + Ct, (3.45) 

where 

Al -t9 (rm, )4 a (rm )2 +a (rm)6 

'Y (rm)6 - z9 (r n)4 v (rm)2 +v (rm, )6 
rmt 

(3.46) 

+ 
/r 6- 

1i 

`m)4 

Q 

`m)2 

+ar6 
(rmt 

- 'ý(rmt))2 , 
lm) 

(rm) (rm) (m) 

(rm)6 
rmt A2 

(rm)6 -19 (rm)4 0 (r�ß)2 +Q (rm)s 

(3.47) 

_a()2 
rm 

3 

r», 
6- 

1i rm. )4 a (rm. )2 +a (rm)6 
(rmt 

- E(rmt))2 

Note that the proposed quadratic market model, Equation (3.38), has been rewritten as 

(3.45). Here, we have two terms: one which factorizes beta and one which factorizes sys- 

tematic kurtosis. 
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For simplicity, we consider a specification of the K-L CAPM that provides information 

about the structure of the risk premiums13. From this point onwards we focus on the model 

given in (3.37). We introduce a normalization variable to generate data consistent with this 

framework. Let 0 in (3.37) be a normalization variable such that 

1f{(rt_ 
(rm) -(rm) 

} 
ß.. (3.48) 

(7 (rm) 1 
-j q5a (rm) -y (rm) 

1 
lfm1 rmt) frt, rmt drmtdrt = 0, 

where is the joint density function of the risky and market returns. 

Consider a DGP of the form given in (3.38) where the conditions in (3.39) hold. Let 

r,,,,, X2 (k) and et rN (0,1) 
. 

Then: 

E (rmt) = 

Q2 (rm) = 2k, 

73 (rm) = 8k, 

194 (rm) = 12k (k + 4). 

Substitution of these values into (3.40) and (3.41) yields: 

Qm = al + 4a2, 

'Y�. = al + a2 (6 + k). 
13The advantage of expressing bi and bz in terms of the market is that these are no longer parameters to 

be estimated. 
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Hence, we can rewrite (3.48) as: 

J (airmt 
+ a2(rmt - k)2 + ct - 

2k t0 

(2 /2 
, 1/2 

8k 113 
(a, + 4a2) (3.49) 

(8k)"3 
- (2k)'/2 - (8k)"3 

(al + a2 (6 + k)) rmt frmtfet drmt&t = 0, 

where frort is the chi-square marginal density of rmt and f,, is the standard normal marginal 

density function of Et. 

After some simplification we obtain: 

(. 177 a1+1.06a2-. 177k (al+a2)) 
(3.50) = k1/6 (. 516 x 10-1"a2k2 + . 

125a1 + . 501a2 - . 125ka1 -. 25a2k) 

To generate rt as in (3.38) we must specify the degrees of freedom for rmt N Xýk) and set 

values for al and a2. Before doing this we review a key point. In Section 3.2 we define the 

market price of beta, bl, and the systematic skewness, b2, as: 

(1) bi =[ do w]a 
(rm) where bl > 0, 

dE (ii) b2 = d, y w] ry (r7z. ) where b2 <0 if -y (r,,, ) >0 and b2 >0 if ry (r,,,, ) < 0. 

It is easy to see from (3.12) and (3.37) that 

b1 
- 

Tm .Y rm 
, 

rmt and b2 =-La Tm -y Tm 

, 
rmt 

Substituting al = 1.5, a2 = .5 and k=1 into (3.50) yields 0=3.53. Since ry (r7.. ) >0 we 

only need that OQ (r,.. ) -y (r,,,, ) >0 so that (i) and (ii) hold, which is actually true for 

these values. 
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Size of Overidentification Tests 

In this section we examine whether the asymptotic (or nominal) size is a good approximation 

to the size in finite-samples. The following experiment uses the already defined DGP; i. e.: 

rt = 1.5 r, mt + .5 
(r,, 1 - E(rmt))2 + et, 

where T,,,, t " Xý1) and et ,N (0,1) 
. 

Note that for the K-L CAPM specification that we study, (3.37) replaces (3.16) so that the 

moment equations are (3.37), (3.17), (3-18), (3.20), (3.21) and (3.22) with 0=3.53. Thus 

Wj 7 
J2GMM and JCUGMM have an asymptotic X21) distribution under the null. We compute 

5000 replications for two sample sizes: n= 150,100}. The empirical levels of the J-tests 

are reported in Table 3.6. 

Empirical Levels of J-Tests 
Three-Moment CAPM 

n=50 n=100 
Level Wj JCUGMM J2GMM Wj JCuGMM J2GMM 

. 10 . 1160 . 1114 . 1225 . 1020 . 0932 . 1110 

. 05 . 0640 . 0658 . 0705 . 0510 . 0436 . 0620 

. 01 . 0210 . 0238 . 0222 . 0180 . 0096 . 0114 
W i, JCuGMM and J2GMM are J-tests based on the ELR, 

continuously updated and two-step GMM estimators, respectively. 

Table 3.6: Finite-Sample Size Properties - Three-Moment CAPM 

Results Table 3.6 shows that for both sample sizes the rejection probabilities of the three 

tests are close to their nominal levels. As n increases size distortions tend to decrease. 

Given these results, the size properties cannot be used as a criterion for choosing among the 
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overidentification tests that we study. At this point, it is natural to prefer the test whose 

power is closer to unity. We investigate power properties of J-tests in the following section. 

Power of Overidentification Tests 

To make the power (percentage of rejections under the alternative hypothesis) of different 

test procedures comparable we calculate exact 10%, 5% and 1% critical values from the 

experiment conducted in the previous Section. These size corrected critical values are used, 

thus making the power of different test procedures comparable. 

To examine power, we concentrate on the following cases: 

1. Let A00 in (3.39), so that E (et) 0 0. 

2. Let a2 =0 in (3.38) 
, so that the model is overidentified14 

Size Correction To obtain the . 10, . 05 and . 01 finite-sample critical values we use Monte 

Carlo simulations. After ordering the simulated values of the overidentification tests from 

the largest to the smallest we find the 500th, 250th and 50th values (since 5000 replications 

were performed). These values are the corrected critical values. Results for n= 50 and 

n= 100 are summarized in Table 3.7. 

From our results in Table 3.7 we note that for n= 100 the Xý1) is a good approximation to 

the finite-sample distribution of the three test statistics. Hence, using asymptotic critical 

values for this sample size to assess power seems a safe undertaking. 
14 Note that a linear market model is consistent with the Mean-Variance framework whereas a quadratic 

market model is consistent with the Three-Moment CAPM. 
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Size Correction 
Finite-Sample Critical Values 

Three-Moment CAPM 

Asymptotic 

critical value Corrected Critical Value 

Level Wj JCIGMM J2GMM 

n=50 
. 10 2.7055 3.0104 2.9204 3.2271 

. 05 3.8414 4.6525 4.4869 4.9780 

. 01 6.6348 11.2156 13.8448 13.2016 

n=100 

. 10 2.7055 2.7810 2.6025 2.8990 

. 05 3.8414 3.9650 3.6361 4.1502 

. 01 6.6348 6.7202 6.5429 6.6801 
W j, JCuGMM and J2GMM are J-tests based on the ELR, continuously 

updated and two-step GMM; respectively. n is the sample size. 

Table 3.7: Size Correction - Three-Moment CAPM 

Results Experiment 1: Variations in the error term 

We set A00 in (3.39) so that the moment conditions of the Three-Moment CAPM are 

invalid. Eight departures from the null are considered and the ranges of the variations are 

between -land +1: A= +11. 

We calculate the rejection frequencies as estimates of one minus the probability of Type II 

error at the nominal . 10, . 05 and . 01 critical values. 5000 replications were used and two 

sample sizes considered: n= 150,1001 . Results are reported in Table 3.8. 
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Power of Moment Restriction Tests 
Three-Moment CAPM 

Variation in the error term 

W. 3 
Levels 

. 10 . 05 . 01 

JCuGMM 

Levels 

. 10 . 05 . 01 

J2CMM 
Levels 

. 10 . 05 . 01 

n=50 
-1 1 . 878 . 374 . 926 . 779 

-. 5 . 902 . 701 . 231 . 917 . 769 

-. 2 . 444 . 201 . 080 . 170 . 084 

-. 1 . 200 . 073 . 041 . 113 . 052 

.1 . 158 . 088 . 021 . 123 . 067 

.2 . 182 . 111 . 020 . 173 . 108 

.5 . 301 . 300 . 201 . 410 . 317 
1 1 . 706 . 489 . 701 . 636 

. 039 1 . 841 . 222 

. 041 . 863 . 608 . 184 

. 004 . 396 . 233 . 047 

. 005 . 152 . 054 . 021 

. 019 . 110 . 061 . 019 

. 026 . 164 . 140 . 058 

. 083 . 301 . 241 . 117 

. 334 . 694 . 613 . 497 

= 100 

-1 1 1 1 . 965 . 941 . 803 . 990 . 950 . 921 

-. 5 . 926 . 768 . 412 . 779 . 649 . 318 . 879 . 701 . 361 

-. 2 . 575 . 351 . 118 . 288 . 171 . 037 . 442 . 272 . 069 

-. 1 . 183 . 107 . 039 . 151 . 081 . 016 . 166 . 093 . 021 

.1 . 127 . 073 . 027 . 103 . 058 . 020 . 100 . 052 . 018 

.2 . 149 . 121 . 058 . 156 . 111 . 049 . 162 . 131 . 041 

.5 . 311 . 309 . 367 . 433 . 375 . 250 . 301 . 300 . 190 
1 1 1 1 . 780 . 744 . 643 . 711 . 691 . 611 

W i, JCuGMM and J2GMM are J-tests based on the ELR, continuously updated and two-step GMM 

estimators. n is the sample size. 

Table 3.8: Power Properties Three-Moment CAPM - variation in the error term 

In most of the cases power increases as the departures from the null increase. We observe 

that for all the cases that we examine, the ELR test performs better than the GMM tests. 

Intriguingly, power is higher for negative departures from the null hypothesis than for 

positive deviations. 

These results are new in this kind of literature. Kitamura (2001) found that the power of 
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ELR was greater than that of GMM tests when power was already high. Here, we find that 

the power of ELR is uniformly better. 

Experiment 2: Three-Moment CAPM versus Mean-Variance CAPM 

The null and alternative hypothesis that we consider are: 

HQ : The Three - Moment CAPM is valid 

Ha : The Mean - Variance CAPM is valid. 

We have already shown that while linear market characteristic lines are consistent with 

the Mean-Variance CAPM, quadratic market lines characterize the Three-Moment CAPM. 

Hence, if we set a2 =0 in (3.38) then the model characterized by (3.37), (3.17), (3.18), 

(3.20), (3.21) and (3.22) is overidentified. 

We perform 5000 replications and calculate the rejection frequencies as estimates of one 

minus the probability of Type II error at the nominal . 10, . 05 and . 01 critical values for two 

sample sizes: n= 50 and n= 100. Results are reported in Table 3.9. 

Power of Moment Restriction Tests 
Three-Moment CAPM 

n=50 n=100 
Level Level 

. 10 . 05 . 01 . 10 . 05 . 01 
W, . 4912 . 2618 . 1117 . 4900 . 2883 . 1481 

JCuGMM 
. 3416 . 1906 . 0558 . 3522 . 2724 . 1204 

J20MM 
. 3754 . 2086 . 0650 . 4065 . 2700 . 1303 

W j, JCuGMM and J2GMM are J tests based on the ELR, continuously 

updated and two-step GMM; respectively. 

Table 3.9: Power Properties Three-Moment CAPM vs. Mean-Variance CAPM 
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The ranking among tests show that the EL performs better than GMM tests. Throughout 

this experiment design, Wj has the highest power for both sample sizes. For most of the 

cases that we study, JCuGMM has the lowest power. 

3.5 Conclusions 

We compared the finite-sample size properties of overidentification tests based on EL and 

GMM within two variants of the CAPM. While there is a large amount of literature on the 

GMM that uses a Two-Moment framework to examine size and power of its overidentifying 

restrictions tests, there are no studies which use a higher moment setting. The finite-sample 

properties of the J-test based on the EL has not been previously assessed in the asset pricing 

literature. In addition, little is known about its power properties in general. 

Our experiments show that there are no clear advantages in terms of size when the GMM 

overidentification tests are compared to those based on EL within a Two-Moment and Three- 

Moment setting. The three tests have moderate size distortions. However, our findings 

illustrate that the ELR overidentification statistic is more powerful in detecting deviations 

from the null under the alternatives that we analysed. We also found some evidence that 

this statistic has uniformly greater power than tests based on GMM whereas Kitamura 

(2001) shows that the ELR, J-test has better power when this is already high. 

When we compared the power of overidentification tests within the Three-Moment frame- 

work, we tested against the alternative that the Mean-Variance CAPM is valid. We are 
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not aware of any other study which assesses the power properties of tests of overidentifying 

restrictions using this interpretation. 
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Chapter 4 

Dynamic Panel Data Models 

4.1 Introduction 

Dynamic panel econometric models are of interest in a wide range of economic applications, 

including Euler equations for household consumption, adjustment cost models for firms' 

factor demands and models of economic growth. These models enable researchers to analyse 

dynamic relationships from cross section units. Moreover, dynamic panel data models offer 

the possibility of investigating heterogeneity in adjustment dynamics between different types 

of individuals, households or firms. 

In this chapter we analyse autoregressive panel data models with individual effects. The 

basic idea of these models is to introduce a generic individual effect in the random term. 

This term is divided into two parts or components: an individual component and an overall 

remainder'. This specification is widely used in empirical work since individual effects 
'While assuming that all the reaction coefficients are fixed and the same for all individuals. 
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are typically believed to be related to a large number of non-observable random causes. 

The main interest usually lies in the coefficients of the slope parameters and less in the 

individual differences. If the investigator wants to make inference with respect to population 

characteristics and in addition has a large number of cross-section units, each observed for 

a small number of time periods, these models are adequate. The formal description of 

autoregressive models with individual effects is presented in Section 4.2 (for a detailed 

description of these models refer to Chapter 6 in Arellano, 2003; Chapter 7 in Matyäs and 

Sevestre, 1996). 

One of the disadvantages of autoregressive panel data models with individual effects is 

that the usual OLS method does not lead to consistent estimates for the parameters. This 

inconsistency is due to the asymptotic correlation between the lagged endogeneous variables 

and the disturbances because of the presence of the individual effects. To solve this problem, 

one can either rewrite the model in first differences or in orthogonal deviations. Differencing 

removes the primary cause of the inconsistency but induces a moving average type serial 

correlation in the disturbances of the transformed model. Therefore, even then OLS does not 

lead to consistent estimates. Using orthogonal deviations, when panels are small, induces a 

correlation between the lagged dependent variable and the transformed error. Hence, again 

the OLS estimators are not consistent with this latter transforming technique. 

The GMM provides a convenient framework for obtaining asymptotically efficient estima- 

tors in dynamic panel data settings. First-differenced GMM estimators for the AR(1) panel 

data model were developed by Arellano and Bond (1991), Holtz-Eakin et al (1988), Ander- 
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son and Hsiao (1981). We mainly concentrate on Arellano and Bond's (1991) work. They 

difference the AR(1) model and use all the orthogonality conditions that exist between 

lagged values of the endogenous variables and the disturbances, the so-called DIF condi- 

tions. 2 By doing this they obtain optimal linear GMM estimators under relatively weak 

auxiliary assumptions about the heterogeneity and error term processes. These estimators 

are the most efficient in the class of instrumental variables' estimators (Arellano and Bond, 

1991). However, it has been extensively documented that if the series are highly autoregres- 

sive, the GMM estimators based on DIF conditions have large finite-sample bias and poor 

precision in simulation studies (see Alonso-Borrego and Arellano, 1999; Blundell and Bond, 

1998). One response to these limitations has been to consider further moment restrictions. 

Ahn and Schmidt (1995) consider non-linear moment conditions implied by the standard 

error components formulation. Blundell and Bond (1998) propose further restrictions on 

the initial conditions process, the so-called LEV conditions3. Our analysis considers DIF 

and LEV moment conditions. 4 

In this Chapter we compare the finite-sample size properties of two overidentifying restric- 

tions tests: the GMM test, usually referred in this context as the Sargan test, and that 

based on EL and efficient bootstrap critical values, i. e. the EL-bootstrap test. 5 

The finite-sample behaviour of the Sargan test in an AR(1) dynamic panel data setting has 

been the subject of prior study. Among others, the work of Brown and Newey (2001) and 
2We will define DIF moment conditions in Section 4.3. 
3We will define LEV moment conditions in Section 4.4. 
4The system formed by both DIF and LEV conditions is known as SYS moment conditions. 
"These tests were introduced in Chapter 1, Sections 1.9.1 and 1.8.1. 
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Bowsher (2000,2000a) have contributed to this literature. Brown and Newey (2001) also 

examine the GMM-bootstrap overidentification statistic as defined in Chapter 1, Section 

1.9.1. They do not find a significant improvement in accuracy for the Sargan test when 

using efficient bootstrap critical values as an alternative to asymptotic critical values. 6 

Bowsher (2000a) devotes a whole chapter of his PhD thesis to examining tilting parameter 

alternatives to the Sargan statistic.? His findings show that tilting parameter tests of 

overidentifying restrictions have worse finite-sample properties than the Sargan test in the 

context of the AR(1) dynamic panel data model. Although both tests are sensitive to 

the number of T -the time periods- becoming large, tilting parameter tests can be very 

oversized in panels where the Sargan test is well behaved. 

We are not aware of any other study which has assessed the size properties of the EL- 

bootstrap overidentification test within dynamic panel data models. Hence, we concentrate 

on analysing in depth this statistic and compare it to the conventional two-step GMM overi- 

dentification test. The relevance of extending EL to this setting is evident because empirical 

applications which deal with dynamic panel data models are numerous. Moreover, given 

the already defined limitations of GMM estimators (large sample biases if series are highly 

autoregressive and worse size properties of its Sargan test as T increases) it is worthwhile 

to look for estimation alternatives to GMM. 

The rest of the Chapter is organized as follows. Section 4.2 reviews autoregressive models 

with individual effects and lays out the underlying assumptions. We concentrate on an 
6Although the improvement is substantial for the coverage probability of the confidence interval. 
7Tilting parameter tests were introduced by Imbens et al (1998). 
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AR(1) process since the main insights generalize in a straightforward way to higher order 

multivariate cases. Section 4.3 and Section 4.4 present the moment equations, the so- 

called DIF and LEV conditions, implied by the model's assumptions. In Section 4.5, we 

analyze the finite-sample size properties of overidentification statistics through Monte Carlo 

experiments. An empirical application on an AR(1) univariate panel data model with 

individual effects using the cash-flow series of 174 firms in the United States from 1981 to 

1985 is carried out in Section 4.6. Conclusions are then presented. 

4.2 The Model 

We consider a first-order univariate autoregressive panel data model of the form 

Vit = Pyi, t-1 + uit, (4.1) 

uit = 77i + ZJiti (4.2) 

for i=1,2,..., n and t=2,,..., T, 

where yit is an observation on some series for individual i in period t, Th is an unobserved 

individual-specific time-invariant effect which allows for heterogeneity and vit is a distur- 

bance term. 

We assume that n is large, T is fixed, IpI < 1, and r1i and vit are independently distributed 

across i. 

The following standard assumptions are usually made in connection with (4.1) (Ahn and 

Schmidt, 1995): 
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(Al) E (7z) = 0, E (vit) = 0, fort = 2, ..., T and `d i. 

(A2) E (vtitvt$) = 0, `d t0s and `d i. 

(A3} E (vitrra) = 0, fort = 2, ..., T and V i. 

(A4) E (yilvit) = 0, fort = 2,..., T and V i. 

(A2) states that the vita are not serially correlated and (A4) specifies that the initial con- 

ditions yal are predetermined. We will also impose (A5), which is discussed in Section 

4.4. 

Given these assumptions, the OLS estimator of p in the level equation (4.1) is inconsistent. 

The reason is that the explanatory variable, yi, t_1, is positively correlated with the error 

term, uit, due to the presence of the individual effects. Mätyäs and Sevestre (1996) show 

that this correlation does not disappear as the number of individuals in the sample gets 

larger. Standard results for omitted variables biases indicate that the OLS levels estimator 

is biased upwards. 

The so-called Within Groups estimator eliminates this source of inconsistency by trans- 

forming the equation to eliminate r7i. Specifically, the original observations are expressed as 

deviations from the mean values of yit, yi, t-1, i and vit across the T-1 observations for 

each individual i. OLS is then used to estimate p from 

Vit - Pi =P 
(�_1 

-'Vi-, 
)+ 

vit - vii, 

where pi, yi 1i raj and i are the mean values. 
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In panels where the number of time periods available is small, this transformation induces 

a correlation between the transformed lagged dependent variable and the transformed error 

term. Nickell (1981) shows that this correlation is negative. Standard results for omitted 

variables biases indicate that the Within Groups estimator is biased downwards 8 

There are two approaches discussed in literature in which one can proceed to tackle the in- 

consistency of OLS and Within Groups estimators. The first uses a kind of Two-Stage Least 

Squares estimator as proposed by Balestra and Nerlove (1966). The second uses instrumen- 

tal variables as proposed by Arellano and Bond (1991) and Anderson and Hsiao (1982, 

1981). In what follows we focus on Arellano and Bond's (1991) work and on extensions 

provided by Blundell and Bond (1998). 

4.3 DIF Moment Conditions 

Assumptions (Al) - (A4) imply moment conditions that are sufficient to identify and 

estimate p for T>3. 

Applying first differences to (4.1) yields 

Avi, t = POYi, t-1 + Ovit, (4.3) 

where Dyit = yet - yi, t-i and Ovtit = vet - v;,, t-i, 

for i=1, ..., n and t=3, ..., T. 
8Note that the OLS and Within Groups estimators are biased in opposite directions. 
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Equation (4.1) together with assumptions (Al) - (A4) imply the following and = .5 
(T - 1) (T - 2) 

linear moment restrictions 

E (yi, t-sIVit) =0 for t=3,..., T and s>2. (4.4) 

These equations are known as DIF moment conditions because they involve the use of lagged 

levels of yit as instruments for the first differenced equations. They can be expressed more 

compactly as 

E (Za1Avi) = 0, (4.5) 

where Zdz is the (T - 2) x and matrix of instruments given by 

Vif 00... 0 ... 0 

0 yi1 yi2 0"""0 
Zdi (4.6) 

000... yil . ". yiT-2 

and iv= is the (T -- 2) vector 

AN = (AVi3, Ovi. 4) ..., 
AViT)T 

. 
(4.7) 

The subindex d emphasizes the fact that these are instruments for the differenced equations. 

4.4 SYS Moment Conditions 

By (Al) - (A4) and the additional assumption on initial conditions 

(A5) E(i1 y12)=0Vi, 
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lagged differences are valid instruments for equations in levels (Blundell and Bond, 1998). 

Thus, the further ml = (T - 2) moment conditions 

E [uit0yi, t-i] =0 for t=3,..., T and V i, 

are available. These can be expressed as 

E (Z1i u1) = 0, 

where Zti is the (T - 2) x ml matrix of instruments given by 

DYi2 0 ... 0 

0 iyi3 ... ... 0 

Zti =00... ... 

... 0 

00... ... 
DyiT-1 

and ui is the (T - 2) vector (Ui3, Ui4) """, uit)7 

(4.8) 

(4.9) 

(4.10) 

We refer to (4.9) as the LEV moment conditions since they involve the use of lagged differ- 

ences as instruments for equations in levels. Note that the subindex l is used to emphasize 

the fact that these instruments are valid for equations in levels. 

Since Yi2 is specified by our model given yil, (A5) is a restriction on the initial conditions 

process generating ytil. Let y; j = 1771 P+ 
eil, so that eil is the initial deviation from the 

long run mean of the yit process. Then, necessary and sufficient conditions for (A5) are 

given by 

E (eili7i) = 0. (4.11) 
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The initial deviation from the long run mean must be uncorrelated across individuals with 

the level of that long run mean. (4.11) is satisfied if an infinite past is assumed for the 

dynamic process in (4.1) or by any initial deviation from 
1 

77' 
P 

which is randomly distributed 

across individuals. 

The system of moment equations formed by the DIF moment conditions, (4.5), and the LEV 

moment conditions, (4.9), are the so-called SYS conditions. These are the .5 
(T + 1) (T - 2) 

ý- (T - 2) equations 

E (Zr Ovz) = 0, (4.12) 

where Zj* is the instrument matrix given by 

Zdi 00... 0 

0 Dyi2 0 ... 0 

Zi =00 Ayis 
... 0 

Zdi 0 
= (4.13) 

0 Zli 

000 

and 

01Ji = (L V7 Ui3, Ui. 4) ... UiT)T . 
(4.14) 
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4.5 Finite-Sample Size Properties of Overidentification Tests 

In what follows we employ Monte Carlo experiments to study the finite-sample size proper- 

ties of two overidentification tests within a dynamic panel data framework. We analyse the 

EL-bootstrap overidentification test, W6, and two-step GMM test, J2GMM, based on DIF 

and SYS moment conditions. These tests are used to evaluate the null hypothesis that there 

is a value of p consistent with E (ZZi Av; ) =0 for DIF estimation and E (Zz T Avg) =0 for 

SYS estimation. They are therefore model specification tests since our maintained AR(1) 

model implies these moment conditions. Under the null hypothesis the two statistics have a 

Xým-1) distribution asymptotically. Where m= .5 
(T + 1) (T - 2) for DIF estimation and 

m= .5 
(T + 1) (T - 2) + (T - 2) for SYS estimation. 

To revise how the tests are calculated, we introduce the following notation. Let the 

N (T - 2) x1 vector Ov = (Ovi 
..., 

Ov , )T be formed by vertically stacking the Ova for 

i=1, ... N. Similarly, let Ayi = (466N3) 
... ' 

DyjT)T and Ay = (Aye 
..... 

Dyý, )T 
. 

Also define 

AYi, 
-1 = (Dyi2) 

..., ' Yi, T-1)T and its stacked version iy_1. Let Zd = (Zd1..... ZZN)T be the 

N (T - 2) x and matrix formed by vertically stacking the instrument matrices Zd; used for 

GMM-DIF estimation. 

The one-step GMM-DIF estimator, p, is obtained from 

mein (OvT ZdWZZOv) = (Dy' 
lZdWZzOy-1)-' (Dy'_lZdWZ7 

dAY) 

where W is the identity matrix. The two-step GMM-DIF estimator, P2GMM, may be 
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calculated by setting 

W= (a-1 ZdzAv Ov T Zdi) (4.15) 

where Ov = Aye - p'ya, -1. 

The GMM overidentifying statistic based on the DIF moment conditions is denoted by 

J2GMM = 1v Zdi (E 
ZIANAv Zdi) Zdiýv, 

where "IV = Ay- P2GMM' Y-1" 

The procedure for obtaining the Sargan statistic based on SYS conditions is essentially the 

same. We proceed in an analogous way to GMM-DIF estimation but using Zj* in (4.13) and 

Ovi in (4.14) instead of Zdz in (4.6) and Ova in (4.7). 

Wý 1 is obtained as described in Chapter 1, Section 1.9.1. We define 

9 (Yi) P) = ZäiOvi 

for the statistic based on DIF moment conditions and 

9(yj, P) =Zi*OV 7 

for that based on SYS moment conditions. Here, yi = (yil) yi2i ... yiT) T 

4.5.1 The Data Generating Process 

We generate yit as 

yet =P yi, t-i + ? 1: + vet, 
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Yi0 =1 
nt 

p+ 
ei, 

where 0<p<1, t=1,2,..., Tand i=1,... n. 

rya and vit are N (0,1) random variables, et NN (0,1/1- p2) and the vit 's, r72s and eti are 

mutually independent. Note that yit is stationary over time because of the specification of 

the equation describing yio. 

Assumptions (Al) - (A5) are thus satisfied and both the DIF moment conditions, (4.5), 

and the SYS moment conditions, (4.12), are valid for a DGP of this form. In other words, 

the null hypothesis that the true DGP is nested in the model given in equation (4.1) and 

assumptions (Al) - (A5) is true. 

Our aim is to examine the effects of varying the sample size and the dimensions of the panels 

within our estimations. We are also interested in assessing the implications of using weak 

and strong instruments9 and the benefits, if any, of exploiting additional moment conditions 

in our calculations. The importance of each one is discussed below. 

(i) Sample Size 

Within dynamic panel data models, asymptotic theory is based on n -º oo (rather 

than on T). Given this, it is interesting to assess if the asymptotic approximation of 

the overidentifying restrictions tests improves as n increases. 

(ii) Dimensionality 
9When the lagged levels of the series are only weakly correlated with subsequent first differences, then 

the instruments available for the differenced equations are weak. This may arise when marginal processes 
for y; t are highly persisent or close to random walk processes. 
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The number of available moment conditions increases rapidly as T increases (keeping 

n fixed) due to the dependence on T2 (see Table 4.1). Bowsher (2000a) examines 

the implications of dimensionality on the performance of Sargan tests and a tilting 

parameter overidentification statistic. His findings show that when the number of 

moment conditions increases, the size properties of both tests deteriorate and that 

the tilting parameter test of overidentifying restrictions has worse size properties than 

the Sargan test in the context of the AR(1) dynamic panel data model. We analyse 

whether this dimensionality problem is also found for the EL-bootstrap overidentifying 

statistic. 

(iii) Strong and weak instruments 

As we have previously discussed, Blundell and Bond (1998) illustrate that GMM- 

DIF estimators have pronounced bias in the presence of weak instruments. We are 

interested in examining if the GMM overidentifying statistic is also sensitive to high 

values of the autoregressive coefficient. In addition, we want to see if the size properties 

of the EL-bootstrap overidentification test are worse for weak instruments than for 

strong instruments. 

(iv) SYS versus DIF conditions 

Blundell and Bond (1998) find evidence of large benefits from introducing additional 

restrictions on the initial conditions of the AR(1) process (in terms of bias and/or 

precision) in GMM estimators, in the presence of highly persistent series. For example, 
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they show that estimators based on SYS conditions are better than those based on 

DIF conditions. Specifically, for values of p> .8 they find that the DIF estimator has a 

pronounced downward bias. By adding LEV conditions into GMM estimation, biases 

are significantly reduced. In light of these results we examine whether these gains are 

extended to its overidentification test. In other words, we assess if the finite-sample 

size properties of overidentification tests based on SYS moment conditions are better 

than those based on DIF equations. We distinguish two opposite effects: a positive 

effect of incorporating correct moment equations into our calculations and a negative 

dimensionality effect. Here, we are interested in the overall effect of exploiting extra 

moment equations. 

Number of estimating equations 
Dynamic Panel Data 

DIF SYS 

2(T-1)(T-2) 2(T-1)(T-2)+(T-2) 

T=3 1 2 
T=4 3 5 
T=5 6 9 
T=6 10 14 
T=10 36 44 

T is the time periods. 

Table 4.1: Dynamic Panel Data - Number of Estimating Equations 

All of our results are based on 5000 Monte Carlo replications with 1000 bootstrap trials in 

each experiment. We consider two sample sizes: n= 100 and n= 175; 10 four different values 
lon=175 was chosen to match the sample size of our empirical example, given in Section 4.6. 
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for the autoregressive component: p=1.2,. 5,. 7,. 91; and three time periods: T= {4,5,6} 
. 

By considering these values of p we intend to cover representative stationary cases. It 

would have been more illustrative to have considered longer time periods to study the 

dimensionality effect. However, computational restrictions played a decisive part in this 

respect. 

First, we investigate the implications of varying the sample size within our estimations using 

both DIF and SYS moment conditions. We concentrate on T=6.11 

Empirical Levels of J-tests 
Dynamic Panel Data 
Sample Size effects 

T=6 
DIF Moment Conditions 

w6 J2CMM 

Levels pn= 100 n= 175 n= 100 n= 175 

. 10 . 0772 . 0948 . 0984 . 1098 

. 05 .2 . 0394 . 0482 . 0448 . 0528 

. 01 . 0080 . 0094 . 0086 . 0100 

. 10 . 1160 . 0948 . 1066 . 1126 

. 05 .5 . 0524 . 0474 . 0472 . 0552 

. 01 . 0062 . 0074 . 0076 . 0088 

. 10 . 1158 . 0972 . 1186 . 1166 

. 05 .7 . 0532 . 0398 . 0594 . 0610 

. 01 . 0050 . 0226 . 0084 . 0136 

. 10 . 1282 . 1162 . 1092 . 1188 

. 05 .9 . 0598 . 0668 . 0512 . 0604 

. 01 . 0108 . 0134 . 0070 . 0128 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM; 

respectively. T is the time periods, p the autoregressive coefficient and n is the sample size. 

Table 4.2: Finite-Sample Size Properties - Dynamic Panel Data (Sample Size Effects: DIF) 

"Alternative time periods lead to similar conclusions to those corresponding to T=6. The results for the 
complete set of time periods are provided in Appendix 3. 
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Table 4.2 summarizes the rejection frequencies12 of Wb and J2GMM based on DIF moment 

conditions. Those corresponding to SYS estimation are reported in Table 4.3. Note that 

there is a single parameter to be estimated, p. The reference distributions for this specifi- 

cation are Xý9) and X13) for the DIF and SYS context; respectively (refer to Table 4.1). 

The Tables show that increasing n does not necessarily lead to better size properties of 

both tests. Moreover, there are several cases in which the size distortions of both statistics 

increase as n increases. 

Empirical Levels of J-tests 
Dynamic Panel Data 
Sample Size effects 

T=6 
SYS Moment Conditions 

W6 J2GMM 

Levels pn= 100 n= 175 n= 100 n= 175 

. 10 . 1047 . 1235 . 1028 . 1058 

. 05 .2 . 0541 . 0704 . 0490 . 0564 

. 01 . 0095 . 0190 . 0090 . 0112 

. 10 . 1148 . 1159 . 1144 . 1118 

. 05 .5 . 0534 . 0569 . 0522 . 0552 

. 01 . 0104 . 0100 . 0086 . 0120 

. 10 . 0926 . 0728 . 1218 . 1312 

. 05 .7 . 0362 . 0334 . 0612 . 0694 

. 01 . 0062 . 0034 . 0134 . 0166 

. 10 . 1042 . 1002 . 1256 . 1434 

. 05 .9 . 0452 . 0478 . 0684 . 0746 

. 01 . 0062 . 0078 . 0100 . 0176 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM; 

respectively. T is the time periods, p the autoregressive coefficient and n is the sample size. 

Table 4.3: Finite-Sample Size Properties - Dynamic Panel Data (Sample Size Effects: SYS) 

12 Note that for W the rejection frequencies are the proportion of the simulated data test statistics that 
exceeds the bootstrap critical values. 
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Given these findings, we run an additional experiment for this specification (m = 500, T=6, 

p={. 2, . 5, . 7, . 9} ,m= 5000 and 1000 bootstrap trials). 13 Tables 4.4 and 4.5 summarize the 

rejection frequencies for the analysis based on DIF and SYS moment conditions, respectively. 

Empirical Levels of J-tests 
Dynamic Panel Data 
Sample Size effects 

T=6 
DIF Moment Conditions 

Wb i J2GMM 

Levels pn= 100 n= 500 n= 100 n= 500 

. 10 . 0772 . 0952 . 0984 . 1010 

. 05 .2 . 0394 . 0495 . 0448 . 0520 

. 01 . 0080 . 0012 . 0086 . 0116 

. 10 . 1160 . 1015 . 1066 . 1033 

. 05 .5 . 0524 . 0510 . 0472 . 0510 

. 01 . 0062 . 0089 . 0076 . 0095 

. 10 . 1158 . 1142 
. 1186 . 1090 

. 05 .7 . 0532 . 0570 . 0594 . 0555 

. 01 . 0050 . 0018 . 0084 . 0113 

. 10 . 1282 . 1140 . 1092 . 1290 

. 05 .9 . 0598 . 0530 . 0512 . 0642 

. 01 . 0108 . 0115 . 0070 . 0155 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM; 

respectively. T is the time periods, p the autoregressive coefficient and n is the sample size. 

Table 4.4: Finite-Sample Size Properties - Dynamic Panel Data (Sample Size Effects: DIF 
n=500 

13This is worthwhile because n=175 is not very large relative to n=100. 
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Empirical Levels of J-tests 
Dynamic Panel Data 
Sample Size effects 

T=6 
SYS Moment Conditions 

wb 
w 

J2GMM 

Levels pn= 100 n= 500 n= 100 n= 500 

. 10 . 1047 . 1087 . 1028 . 1002 

. 05 .2 . 0541 . 0540 . 0490 . 0520 

. 01 . 0095 . 0110 . 0090 . 0114 

. 10 . 1148 . 1120 . 1144 . 1130 

. 05 .5 . 0534 . 0513 . 0522 . 0515 

. 01 . 0104 . 0121 . 0086 . 0100 

. 10 . 0926 . 0734 . 1218 . 1210 

. 05 .7 . 0362 . 0335 . 0612 . 0598 

. 01 . 0062 . 0044 . 0134 . 0180 

. 10 . 1042 . 1017 . 1256 . 1510 

. 05 .9 . 0452 . 053 . 0684 . 0920 

. 01 . 0062 . 0091 . 0100 . 0123 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM; 

respectively. T is the time periods, p the autoregressive coefficient and n is the sample size 

Table 4.5: Finite-Sample Size Properties - Dynamic Panel Data (Sample Size Effects: SYS 
n=500 

Table 4.4 shows that some of our results improve -or are very similar to those corresponding 

to n= 100- as the sample size increases from n= 100 to n= 500, except for J2GMM 

and p= . 9. Interestingly, this is also the case for J2GMM when the analysis is based on 

SYS moment conditions (see Table 4.5). In other words, when the instruments are weak 

-p = . 9- the size distortions for the Sargan statistic can increase as n increases. Also note 

that Wý is still undersized for p= .7 and n= 500 (compare Tables 4.3 and 4.5). 
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Now, we examine the effect of increasing the number of time periods, the so-called dimen- 

sionality effect, on the finite-sample size properties of both overidentifying statistics. We 

consider the weak instrument case, p={. 7, . 9}. 14 Results based on DIF moment conditions 

are summarized in Table 4.6. The reference distributions for these tests are respectively 

X(2), X(5), X(9) for T=14,5,61. Results corresponding to SYS conditions are given in Table 

4.7. Here, the reference distributions are respectively Xý4), Xýs), Xý1s) for T=14,5,6}. 15 

For the experiments based on DIF moment conditions there is no evidence of a worsening 

in the size properties of both overidentification tests as T increases. However, when SYS 

conditions are used (see Table 4.7) there are several cases in which the asymptotic X2 ap- 

proximation of the finite-sample distribution deteriorates for J2cmm as T increases. These 

results are consistent with prior simulation evidence (see Table 3.2 of Bowsher, 2000a). The 

results for W show that there are some specifications for which this test becomes undersized 

as T increases. We observe that Wý is not particularly sensitive to variations in T. 

14There is no evidence of a dimensionality effect for p={. 2, . 5}. Refer to Appendix 3. 
15To calculate the degrees of freedom refer to Table 4.1. 



139 

Empirical Levels of J-tests 
Dynamic Panel Data 
Dimensionality Effect 

DIF Moment Conditions 

n=100 
T =4 T =5 T=6 

Levels p WI J20MM Wj J2GMM WJ J2GMM 

. 10 . 1006 . 1270 . 0884 . 1292 . 1158 . 1186 

. 05 .7 . 0492 . 0710 . 0392 . 0656 . 0532 . 0594 

. 01 . 0110 . 0204 . 0048 . 0136 . 0050 . 0084 

. 10 . 1282 . 1018 . 1142 . 1056 . 1282 . 1092 

. 05 .9 . 0682 . 0492 . 0615 . 0464 . 0598 . 0512 

. 01 . 0154 . 0068 . 0071 . 0072 . 0108 . 0070 

n=175 

. 10 . 0946 . 1080 . 1143 . 1326 . 0972 . 1166 

. 05 .7 . 0506 . 0588 . 0603 . 0688 . 0398 . 0610 

. 01 . 0084 . 0152 . 0126 . 0128 . 0226 . 0136 

. 10 . 1010 . 0990 . 1006 . 1148 . 1162 . 1188 

. 05 .9 . 0544 . 0524 . 0520 . 0604 . 0668 . 0604 

. 01 . 0118 . 0096 . 0110 . 0114 . 0134 . 0128 
W° and J2GMM are overidentification tests based on EL-bootstrap and two-step 

GMM. T is the time periods, n is the sample size and p is the autoregressive coefficient. 

Table 4.6: Finite-Sample Size Properties - Dynamic Panel Data (DIF: Dimensionality 
Effect) 
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Empirical Levels of J-Tests 
Dynamic Panel Data 
Dimensionality Effect 

SYS Conditions 

T=4 T=5 T=6 

Wj J2GMM Wj J2GMM Wj J2GMM 

Levels p 
n= 100 

. 10 . 0992 . 1164 . 1024 . 1196 . 0926 . 1218 

. 05 .7 . 0480 . 0578 . 0500 . 0592 . 0362 . 0612 

. 01 . 0074 . 0102 . 0094 . 0106 . 0062 . 0134 

. 10 . 0994 . 1060 . 0954 . 1208 . 1042 . 1256 

. 05 .9 . 0474 . 0540 . 0410 . 0578 . 0452 . 0684 

. 01 . 0086 . 0096 . 0036 . 0100 . 0062 . 0100 

n= 175 

. 10 . 1106 . 1094 . 0910 . 1072 . 0728 . 1312 

. 05 .7 . 0608 . 0614 . 0396 . 0556 . 0334 . 0694 

. 01 . 0114 . 0146 . 0038 . 0114 . 0034 . 0166 

. 10 . 1050 . 1220 . 0924 . 1198 . 1002 . 1434 

. 05 .9 . 0636 . 0636 . 0420 . 0638 . 0478 . 0746 

. 01 . 0136 . 0136 . 0064 
. 0146 . 0078 . 0176 

Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM; 

respectively. T is the time periods, p is the autoregressive coefficient and n is the sample size. 

Table 4.7: Finite-Sample Size Properties - Dynamic Panel Data (SYS: Dimensionality 
Effect) 

The effects of weak and strong instruments are analysed in Table 4.8. Consider the DIF 

moment conditions, n=100 and T=14,5,6116. The reference distributions are Xý2), Xý5) and 

2 17 
X(9). 

160ur main interest is to assess the effects of weak instruments using DIF moment conditions. Refer to 
Appendix 3 for the results corresponding to SYS estimation. 

17To calculate the degrees of freedom refer to Table 4.1. 
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Empirical Levels of J-tests 
Dynamic Panel Data 

Weak and Strong Instruments 

n=100 
T =4 T =5 T =6 

Levels p Wj J2GMM Wj J2GMM Wj J2GMM 

. 10 . 1006 . 1084 . 1044 . 1042 . 0772 . 0984 

. 05 .2 . 0526 . 0532 . 0576 . 0526 . 0394 . 0448 

. 01 . 0124 . 0086 . 0108 . 0084 . 0080 . 0086 

. 10 . 1196 . 1074 . 1040 . 1114 . 1160 . 1066 

. 05 .5 . 0604 . 0564 . 0530 . 0564 . 0524 . 0472 

. 01 . 0134 . 0148 . 0124 . 0126 . 0062 . 0076 

. 10 . 1006 . 1270 . 0884 . 1292 . 1158 . 1186 

. 05 .7 . 0492 . 0710 . 0392 . 0656 . 0532 . 0594 

. 01 . 0110 . 0204 . 0048 . 0136 . 0050 . 0084 

. 10 . 1282 . 1018 . 1142 . 1056 . 1282 . 1092 

. 05 .9 . 0682 . 0492 . 0615 . 0464 . 0598 . 0512 

. 01 . 0154 . 0068 . 0071 . 0072 . 0108 . 0070 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step 

GMM. T is the time periods, n is the sample size and P is the autoregressive coefficient. 

Table 4.8: Finite-Sample Size Properties - Dynamic Panel Data (Weak and Strong Instru- 
ments: DIF n=100) 

The main result is that for n= 100 and p= .7 the asymptotic approximation for J2GMM is 

the worst. In Monte Carlo results reported by Blundell and Bond (1998) GMM estimators 

are biased for highly autoregressive series and these biases are dramatic for p= . 
9. However, 

note that J2cMM has better sizes for p= .9 than for p= . 7. Moreover, the results for p= .2 

do not differ to those corresponding to p= .9 in a large extent. We find that Wý is not 

very sensitive to the problem of weak instruments (although we observe that Wý is more 
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oversized for T=4 and p= . 9). 

The objective of the next set of simulations is to test whether there is an improvement 

in accuracy for the overidentification tests from using additional moment conditions. We 

are particularly interested on assessing whether this is the case for a weak instruments 

specification: p= . 9. For DIF estimation and T={4,5,6}; the reference distributions are 

X(Z) X(5), X(y)" For the analysis based on SYS moment equations and T=14,5,61; these 

are X2 X2B), X213.18 Results for Wý are provided in Table 4.9 and those for J2GMM are 

reported in Table 4.10. 

Empirical Levels of W3 
Dynamic Panel Data 

DIF versus SYS 

T=4 T=5 T=6 
Levels DIF SYS DIF SYS DIF SYS 

n= 100 and p= .9 
. 10 . 1282 . 0994 . 1142 . 0954 . 1282 . 1042 

. 05 . 0582 . 0474 . 0615 . 0410 . 0598 . 0452 

. 01 . 0154 . 0086 . 0071 . 0036 . 0108 . 0062 

n= 175andp=. 9 

. 10 . 1010 . 1050 . 1006 . 0924 . 1162 . 1002 

. 05 . 0544 . 0470 . 0520 . 0420 . 0668 . 0478 

. 01 . 0118 . 0108 . 0110 . 0064 . 0134 . 0078 
Wý is an overidentification tests based on EL-bootstrap. T is the time periods, 

n is the sample size and p is the autoregressive coefficient 

Table 4.9: Finite-Sample Size Properties - EL-bootstrap: Dynamic Panel Data (DIF versus 
SYS) 

Although the size properties of Wý at the . 10 and . 
05 levels are better for SYS than for DIF 

18To calculate the degrees of freedom refer to Table 4.1. 
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moment conditions for n=100, this is not the case for n=175. 

Our results for . J2GMM in Table 4.10 are unexpected. The finite-sample size properties 

of the Sargan tests based on SYS moment conditions are worse than those based on DIF 

conditions. These findings have the implication that as we add moment conditions to 

reduce the sample bias of GMM estimators due to weak instrumentation, as recommended 

by Blundell and Bond (1998), we could negatively be affecting the finite-size properties of 

its Sargan test. 

Empirical Levels of J2GMM 
Dynamic Panel Data 

DIF versus SYS 

T=4 T=5 T=6 
Levels DIF SYS DIF SYS DIF SYS 

n= 100 andp=. 9 

. 10 . 1018 . 1060 . 1056 . 1208 . 1092 . 1256 

. 05 . 0492 . 0540 . 0464 . 0578 . 0512 . 0684 

. 01 . 0068 . 0096 . 0072 . 0100 . 0070 . 0100 

n= 175 and p= .9 
. 10 . 0990 . 1220 . 1148 . 1198 . 1188 . 1434 

. 05 . 0524 . 0636 . 0604 . 0638 . 0604 . 0746 

. 01 . 0096 . 0136 . 0114 . 0146 . 0128 . 0176 
J2GMM is an overidentification tests based on the two-step GMM estimator. 

T is the time periods, n is the sample size and p is the autoregressive coefficient 

Table 4.10: Finite-Sample Size Properties - Two-step GMM: Dynamic Panel Data (DIF 
versus SYS) 
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4.6 Empirical Application 

4.6.1 Data 

The data set we use was kindly provided by Bronwyn Hall. It is a balanced panel of 174 firms 

for the United States for 1978-1989. Hall et al (1998) use this data set to test for causal re- 

lationship among sales and cash-flow, and research and development and investment. These 

174 firms belong to the science-based industries and include Chemicals, Pharmaceuticals, 

Electrical Machinery, Computing Equipment, Electronics, and Scientific Instruments. The 

original data set consists of 863 firms and the variables analysed are sales, research and 

development, investment, cash-flow and employment. Hall et al (1998) apply the following 

"cleaning" rules: 

(i) Only firms with growth rates between -90% and 900% were considered. 

(ii) In order to remove erroneous data values, firms with at least one of the following 

characteristics were eliminated: 

- Sequential employment and/or sales growth rates that were large, e. g. below -50% 

or above 100%, and alternate in sign. 

- Sequential investment and/or cash-flow growth rates that were large, e. g. below 

-80% or above 400%, and alternate in sign. 

- Sequential research and development growth rates that were large, e. g. between 

-67% and 200%, and alternate in sign. 
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(iii) Firms with negative cash-flows and with jumps in observations were removed from the 

data set. 

We choose the years 1981-1985. This reflects the desire to have a short panel, e. g. T=5. 

This leaves us with a total of 870 observations for each series. The series were deflated as 

in Hall et al (1998). Among the 5 different variables we looked for those compatible with 

models where heterogeneity across firms is summarized by an individual effect. Another 

important feature that we explored was the stationarity of the process and the order of 

the autoregressive component. We now present the analysis for the series corresponding to 

cash-flow. 

4.6.2 Cash-flow: Descriptive Statistics 

Empirical First and Second Moments 
real log (cash-flow) 

Mean St Dev Correlation Matrix 
Year 1981 1982 1983 1984 1985 
1981 4.2033 1.9862 1 . 9818 . 9745 . 9645 . 9598 
1982 4.1548 1.9806 . 9818 1 . 9835 . 9754 . 9671 
1983 4.3062 1.9158 . 9745 . 9835 1 . 9877 . 9750 
1984 4.4531 1.8744 . 9645 . 9754 . 9877 1 . 9829 
1985 4.3888 1.8588 . 9598 . 9671 . 9750 . 9829 1 

Table 4.11: Cash-flow Descriptive Statistics 

Table 4.11 shows the means, standard deviations, and autocorrelations for the cash-flow 

series. In general, the means and standard deviations of cash-flow do not change much 

over time. Note that the correlation matrix illustrates the fact that cash-flow is highly 
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Figure 4.1: Autocorrelation Cash-flow 

autocorrelated. 

Figure 1 shows the autocorrelation plots for the cash-flow series. It is clear from this 

plot that the autocorrelation decays very slowly, which suggests either that the time series 

process used to describe these data will have a root close to one, or that the series are 

dominated by permanent differences in the level of the variables across firms. 

4.6.3 Cash-flow: The Model 

The model is 
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K 

c, fit = 
EPkcfit-k + Uit, (4.16) 

k=1 

u=t=r1+vit for i=1,... 174 andt=1,... 5; 

where c fit is the logarithm of real cash-flow of the ith individual at time t. 

Before analyzing the results it is important to review some key points. 

1. First, in micro panels properties such as orders of integration and cointegration are 

crucial for identification of econometric models. Where differencing transformations 

are employed to eliminate unobserved individual effects, identification requires the ex- 

istence of instrumental variables that are correlated with first-differences of the series. 

In the case of a pure random walk, lagged values of the series are uncorrelated with 

first-differences, thus the widely used first-differenced instrumental variables estima- 

tors will provide no information on the parameter of interest. In other words, the 

presence of a unit root will invalidate the commonly used GMM specification. ls 

It is therefore important to assess the time series properties of the series under con- 

sideration. In this regard, our analysis is greatly influenced by the studies of Bond 

et al (2002) and Hall and Mairesse (2002). They investigate the properties of several 

unit roots tests in short panel data. Their findings illustrate that a test based on the 

model estimated under the null of a unit root (that is, where the OLS can be used be- 

191n the presence of a unit root, the identifiability of GMM is preserved if this method is based on quadratic 
moments (gee Alvarez and Arellano (2004)). 
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cause there are no "individual effects") provides a simple robust test with high power. 

We rely on this test, denoted by BNW, and allow for heteroscedasticity by using a 

Seemingly Unrelated Regression (SUR) framework with each year being an equation 

(as in Hall and Mairesse, 2002). 

2. Second, assumption (A2) states that there is no serial correlation in the vits. This is 

the crucial assumption allowing the identification of p in our model. If the assumption 

of no serial correlation is not valid then the null hypothesis, E (ZZiDui) = 0, will be 

false since the moment conditions would not hold. Thus, it is important to report 

tests of serial correlation in the first differenced residuals. If the errors in levels are 

serially independent, those in first-differences will exhibit first-order -but not second- 

serial correlation. Moreover, the first-order serial correlation coefficient must be equal 

to -0.5. An informal but often useful test diagnostic is provided by inspecting the 

autocorrelation matrix of the errors in first differences (see Chapter 6 of Arellano, 

2003). Arellano and Bond (1991) propose formal tests of serial correlation: m2 and 

ml. The former tests for lack of second order serial correlation in the first differenced 

residuals. This will be certainly the case if the errors in the model in levels are not 

serially correlated, but also if the errors in levels follow a random walk process. To 

discriminate between the two situations we calculate an ml statistic to test for lack 

of first-order serial correlation in the differenced residuals (see Arellano and Bond, 

1991). 

Summing up, if the disturbances v=t are not serially correlated there should be evidence 
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of significant negative first order serial correlation in differenced residuals and no 

evidence of second order serial correlation in the differenced residuals. The statistics 

ml and m2 are based on the standardized average residual autocovariance. These 

tests are asymptotically distributed as N (0,1) under the null of no autocorrelation. 

3. Finally, the fact that the OLS and Within Groups estimators are likely to be biased 

in opposite directions is very useful (recall that OLS is biased upwards and Within 

Groups is biased downwards). Thus if the cash-flow series is well represented by an 

autoregressive model with individual effects, the GMM estimator will lie between the 

OLS and Within Groups estimator (or at least not be significantly higher than the 

former or significantly lower than the latter (Bond, 2002)). 

We now analyse in depth an AR(1) model 2° A constant term and time dummies are 

included. Our estimations are solely based on DIF conditions. Most of our calculations are 

performed using DPD98 for GAUSS and our own GAUSS programs. 

For an AR(1) model the DIF moment equations are E (Zdaivi) = 0. Here Zdi is the matrix 

of instruments given by 

cfil 00000100 

Zdii =0 cfil Cfi2 000110 (4.17) 

000Cf il C. fi2 Cfi3 101 

20 We first examined an AR(2) model (a higher order was not studied since we have a short series: T=5, 

and three cross sections are already lost in constructing lags and taking first differences for this specification). 
We discriminated between an AR(1) model and an AR(2) model using conventional procedures. Main results 
for an AR(2) model are given in Appendix 4. 
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and Ov2 is denoted by (Ovi3) Ova4,0vi5)T , 

where 
Avi3 = Cfi3 - Cfi2 -b 11 - Pi (Cfi2 

- Cfil) , 

AN 4= Cfi4 - Cfi3 - (11 - Pi (Cfi3 
- Cfi2) - (21, (4.18) 

AVi5 ü Cfi5 - Cfi4 - (11 - Pi (cfi4 
- Cfi3) - C31. 

C1 is the constant term and C2 and (2 are the coefficients of the time dummies for 1984 

or T=4 and 1985 or T=5; respectively. Note that these coefficients are multiplied by a 

(n x 1) row vector of ones. 

Therefore, we have 9 moment equations and 4 parameters: (11 (2) (3 and pi; to be estimated. 

Results for the levels of the OLS, Within Groups and GMM estimators are reported in Table 

4.12. 

4.6.4 Cash-flow: Results 

Since the GMM estimate lies between the OLS estimate and the Within Groups estimate, 

we have some evidence that the logarithm of cash-flow is well represented by a dynamic 

AR(1) model with individual effects. For example, the OLS is considerably higher than the 

Within Groups estimate and the GMM lies between both. 
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Dynamic Panel Data 
AR(1) Cash-flow 

OLS WITHIN GMM 
LEVELS GROUPS DIF 

Cft-1 . 9677 . 1888 . 6729 
(. 000) (. 006) (. 000) 

-2.299 -3.090 -3.263 Ml (. 021) (. 002) (. 001) 

-. 4859 -. 6345 . 2628 
m2 (. 627) (. 526) (. 793) 

BNW -5.22 
[std. error . 005321 

J2GMM [5 df J 10.01 
(. 075) 

p-values are reported inside parenthesis. df refers to the degrees of freedom. 

ml and m2 test for serial correlation. J2GMM is the Sargan test. BNW is 

a unit root test suggested by Bond et al (2002). 

Table 4.12: AR(1) Cash-flow 

To test for serial correlation we examine informal and formal tests. A serial matrix for 

cash-flow based on GMM residuals is 

1 -. 5501 . 0296 

-. 5501 1 -. 4122 

. 0296 -. 4122 1 

which broadly conforms to the expected pattern. 

Formal tests of serial correlation are provided by the ml and m2 statistics in Table 4.12. ml 
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and m2 are not reliable for the OLS and the Within Groups methods because the estimators 

of p and hence the estimates of the first-differenced residuals are likely to be biased. The 

serial correlation tests based on GMM are consistent with our assumptions: ml is negative 

and significant whilst m2 is insignificant. 

To test for unit roots, Ho :p=1, we follow Bond et al (2002). Our OLS test is based on 

the following model 

yet = PkYit-1 + v~t for i=1, ..., 174 and t=1, ..., 5, 

E [vivi] 
= S2, 

where vi = (vgl, v12) ... V 5) . 

Under the null J3NW has an asymptotic standard normal distribution. The method of 

estimation is SUR with a weighting matrix based on the first stage estimate of Q. According 

to BNW, in Table 4.12, there is no evidence of unit roots. 

The Sargan statistic, J2CMM, is 10.01 with a p-value equal to . 075. It would certainly be 

appealing to have a stronger result (a higher p-value) to assess whether the AR(1) model is 

well specified for cash-flow. Because our simulations showed that the GMM statistic rejects 

too frequently for this particular specification, e. g. n= 175 and p= .7 
(refer to Table 4.6), 

we now consider the EL-bootstrap overidentification test. Although Wý is also oversized, 

this is to a lower extent. Hence, if the validity of the moment equations is not rejected by 
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Wý at any conventional significance level we would have stronger evidence to support the 

hypothesis that the AR(1) model is well defined for the cash-flow series. 

We also note that it is likely that p20MM = . 6729 is biased downwards (see the simula- 

tion evidence given by Blundell and Bond, 1998). Blundell and Bond (1998) show that 

for persistent series GMM-SYS estimators were better than those obtained through DIF 

conditions. Using GMM-SYS estimation for our cash-flow series yields ap estimate close 

to . 90. From Table 4.6 it is the case that although J2GMM and Wjb are both oversized for 

n= 175 and p= . 
9, the latter statistic over-rejects to a lesser extent. Hence, it is still 

worthwhile to report the EL-bootstrap overidentification statistic in this case. 

To calculate the EL-bootstrap overidentification test we use the same set of estimating 

equations that were used for the GMM estimations. 

1000 bootstrap trials are considered and the coefficients given in Table 4.12 are taken as 

the initial values in our algorithms. From our experiments we obtain the following efficient 

bootstrap critical values for 10%, 5% and 1%: {11.12,12.23,16.59}. These values are larger 

than the asymptotic Xý5) values: {9.24,11-07,15.091. 

The EL-bootstrap overidentification test yields a statistic 

Wý = 10.90, 

which is smaller than the efficient bootstrap critical values. Therefore, the validity of the 

moment equations is not rejected at any conventional significance level. 

We can now can conclude that there is evidence that the logarithm of cash-flow is well 



154 

represented by an AR(1) model with individual effects. 

4.7 Conclusions 

The objectives of this chapter were twofold: 

" To extend EL estimation to a widely used framework: dynamic panel data models. 

" To examine EL as an alternative to GMM estimation in the context of autoregressive 

models with individual effects. 

We studied the finite-sample size properties of the overidentification test based on EL and 

bootstrap, which we referred to as EL-bootstrap, and compared them to those of the Sargan 

Statistic. 

Asymptotic theory, in the context that we examine, is based on the sample size rather than 

on the number of time periods. We analysed the effect of increasing the sample size within 

the finite-sample size properties- of both overidentification tests. We found no indication of 

better size properties for both tests based on DIF and SYS conditions as n increases from 

n= 100 to n= 175. We carried out an extra experiment for T6 and assessed the effect 

of increasing the sample size from n= 100 to n= 500. Our simulations do not uniformly 

support the conclusion that increasing the sample size leads to better size properties for 

the overidentification tests. Moreover we found some evidence of worse size properties for 

the J2CMM for highly autoregressive series, p= . 9, within both sets of moment conditions. 

This finding presents an area for future research. 
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According to Bowsher (2000a), tilting parameter tests of overidentifying restrictions have 

worse size properties than the conventional Sargan test in the context of the AR(1) dynamic 

panel data model. The former tests appear to be more sensitive to the problem of T 

becoming large and can be very oversized in panels where the Sargan test is well behaved. 

Therefore, we analysed the extent to which the dimensionality effect was also a problem for 

the EL-bootstrap statistic. For the three periods that we analysed and for the specifications 

of our experiments, there was no evidence of a size distortion effect in the size properties of 

this statistic. 

Several simulation studies have found that for high values of the autoregressive coefficient, 

GMM estimators based on DIF conditions have large finite-sample bias and poor precision. 

It turned out that this might also be true for its Sargan test, for p= . 7, as we found evidence 

of its finite-sample size properties being worse for this specification. However, the Sargan 

statistic has better sizes for p= .9 than for p= . 7. Moreover, the results corresponding to 

p= .2 
do not differ to those corresponding to p= .9 in a large extent. Our findings suggest 

that the finite-sample size properties of the EL-bootstrap statistic based on DIF conditions 

are not sensitive to weak instruments (except for T=4 and p= . 9) 

It has been widely documented that incorporating information relating to initial conditions 

is an effective way of reducing the sample bias and imprecision of GMM estimators in 

the weak instruments case. However, contrary to our initial expectations, our experiments 

show that the size-properties of the Sargan statistic can be worse for estimations based on 
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SYS conditions than for those based on DIF conditions. This means that while trying to 

reduce some of the bias in GMM estimators -due to the presence of persistent series- by 

incorporating additional conditions we could be negatively affecting the size properties of its 

overidentification test (this conclusions holds for p= . 9). Thus, it was interesting to examine 

the extent to which this behaviour was also applicable to the EL-bootstrap statistic. We 

found some evidence of better size properties derived from exploiting additional moment 

conditions for n=100 and p= .9 
(not for n=175). 

Finally, we carried out an empirical application. We considered the cash-flow series of 174 

firms from the United States from 1981-1985. Except for the Sargan statistic, the different 

tests that we studied -both formal and informal- provided strong evidence that pointed 

to cash-flow being well-represented as an AR(1) model with individual effects. The p- 

value of the Sargan statistic was only 7.5%. Our simulations showed that the Sargan test 

over-rejected the null hypothesis for the same sample size and the same number of time 

periods for our empirical example. Whereas even if the EL-bootstrap over-rejected for this 

specification, this was to a lesser extent. Hence, we calculated the EL-bootstrap statistic 

for the cash-flow series. The null hypothesis was not rejected at any conventional statistical 

level. Given these results, we have stronger evidence that supports cash-flow as being well 

represented by an AR(1) panel data model with individual effects. 
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Conclusions 

This thesis outlined the theory of EL, provided numerical illustrations of its performance 

in a number of applications and examined EL as an alternative to GMM estimation. 21 The 

aim of our research was to provide some evidence of EL's practical value in econometrics. 

An important element of EL estimation is the fact that the solutions to problems often 

cannot be written in closed form and must be computed numerically. We explored some 

of the standard computational aspects -such as the sensitivity of our estimations to poor 

starting values, how long our iterations take to achieve convergence and the accuracy of our 

results given different sample sizes- involved in the estimating procedures. 

We presented EL as an alternative to GMM estimation. We compared the finite-sample 

properties, size and power, of their overidentification tests through Monte Carlo simulations. 

As a starting point, we used models in which these properties have already been explored. 

These are: the Qin and Lawless Model (1994), that proposed by Hall and Horowitz (1996) 

and a chi-squared moments model. Then, we looked for alternative frameworks to assess 

2' Although in Chapter 2 we also analysed other approaches such as KLIC and parametric likelihood 
estimation. 
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the finite-sample properties of overidentification tests. We concentrated on those models 

with potential empirical applications. In particular, we focused on the Mean-Variance and 

Three-Moment CAPM and a dynamic panel data model with individual effects. 22 

Finally, to complement and complete our research, we carried out an empirical application 

on an autoregressive cash-flow series with individual effects for 174 firms in the United 

States from 1981 to 1985. 

This thesis extends the work of Bravo (2000), Imbens et al (1998), Hall and Horowitz (1996) 

and Qin and Lawless (1994) in a number of ways: 

1. We exploited an alternative framework to that studied in Qin and Lawless (1994) 

to document the empirical coverage and average length of confidence intervals. Qin 

and Lawless (1994) explored parametric and non-parametric methods to construct 

confidence regions within a model characterized by the first and second moments of a 

random variable. They found that the parametric likelihood confidence intervals have 

empirical coverages closer to their nominal counterparts (assuming that the likelihood 

is correctly specified) than those corresponding to EL. Our experiments differ from 

Qin and Lawless' (1994) by: (i) using a different framework, a chi-squared moments 

model, to assess the empirical coverage and average length of confidence intervals and, 

(ii) examining other sample sizes (they report results for n= 30 and n= 60, whereas 

our samples sizes are n= 50 and n= 100). Our Monte Carlo experiments support Qin 

22Despite the fact that both models have already been used to assess the finite-sample properties of 
overidenitifcation tests before, existing evidence is for the GMM and not for the EL. Our literature search 
suggests that the Three-Moment CAPM has never been used to assess these properties. 
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and Lawless' (1994) simulation evidence and illustrate the fact that for a relatively 

small sample size, n=50, the empirical coverages of tests based on EL are fairly close 

to those based on the parametric likelihood. 

2. We examined the finite-sample size properties of overidentification tests within the 

Qin and Lawless (1994) and the Hall and Horowitz (1996) models using unexplored 

distributions and parameter values. Prior research by Bravo (2000) based on the Qin 

and Lawless (1994) model illustrates that the ELR J-test has small size distortions 

for normally distributed variables. This thesis extended Bravo's (2000) research by 

investigating the extent in which the latter result holds for variables distributed as chi- 

square, t and gamma. Our simulations show that it is only in the case of the normal 

distribution that the empirical sizes of the tests are close to their nominal counterparts. 

Other distributions led to poor sizes. This is especially true for tests based on t(5) 

and Xý1) processes. However, even if the large-sample approximations are not reliable, 

the ELR overidentification test performed better than statistics based on the GMM 

(two-step and continuously updated) and the KLIC. Prior research using the Hall 

and Horowitz (1996) model by Bravo (2000) and Imbens et al (1998) illustrates the 

poor size properties of the ELR overidentification test based on normally distributed 

variables. Our findings show that the latter results also extend to other DGPs. We 

found important size distortions for X(2) and r (1,1) processes, although to a lesser 

extent than for the normal specification. 
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Some of the contributions and findings of this thesis are: 

1. Although we investigated standard computational aspects of EL, prior to this research 

little had been documented about them. We illustrated that despite the fact that se- 

quential algorithms are more computational intensive than simultaneous algorithms, 

both led to identical estimates. Our experiments suggest that the ELR test is sen- 

sitive to starting values -in terms of accuracy and computation time- for variables 

distributed as X( I). However, there is no evidence of accuracy being related to poor 

starting values for N (0,1) variables. 

2. We assessed the size and power properties of overidentification tests using the Mean- 

Variance and the Three-Moment CAPM. Prior research (Vorkink, 2003; Dahlquist and 

Soderlind, 1997; Hansen et al, 1996) entirely focused on the Two-Moment version and 

mainly on GMM tests. As far as we are aware, this is the first study that has assessed 

the finite-sample properties of EL statistics within asset pricing models (both for the 

Mean-Variance and the Three-Moment CAPM). We found that sizes are very similar 

for GMM and ELR overidentification statistics. The asymptotic approximation for 

these tests was good in most of our experiments within both versions of the CAPM. 

However, our findings show that EL estimation has better power. 

3. Prior research (Kitamura, 2001) on the power properties of the ELR overidentification 

test considered the Hall and Horowitz (1996) model. Within this setting, the ELR 

J-test is more powerful than its GMM counterparts. The latter is especially true for 
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alternatives farther from the null. Our experiments to assess power, based on the 

CAPM, support Kitamura's (2001) findings in that the ELR moment restrictions test 

has better power than the GMM tests. However, we found that differences in power 

were larger not only when power was already high, like in Kitamura (2001), but more 

uniformly. 

4. Earlier research assessed the power properties of overidentification tests under the 

alternative of misspecification (Kitamura, 2001; Bowsher, 2000a). DGPs incorporate 

deviations from the null hypothesis either by violating one of the main assumptions 

of the model, within dynamic panel data frameworks, or by varying the parameters 

through the null. The contribution of our Three-Moment CAPM experiments is that 

we assessed power under the alternative that the Mean-Variance CAPM is valid. We 

simulated data consistent with the Mean-Variance CAPM, while considering a set 

of estimating equations consistent with the Three-Moment CAPM. Our simulations 

show that the ELR J-test has better power than GMM tests. 

5. Brown and Newey (2001) developed a novel method of bootstrapping based on the 

MEL weights, which incorporate the information contained in the moment equations, 

rather than on uniform weights (efficient bootstrap). Brown and Newey (2001) applied 

this technique to the GMM (GMM-bootstrap) and found important improvements in 

the coverage properties of GMM estimators and a slight improvement in the finite- 

sample properties of its overidentification test. Our research introduced the use of 

efficient bootstrap critical values for EL (EL-bootstrap) in three different frameworks: 
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Qin and Lawless (1994) model, that proposed by Hall and Horowitz (1996) and a 

dynamic panel data model with individual effects. Our experiments show that within 

the three settings and for our distributional assumptions and parameter values, the 

EL-bootstrap had good size properties. Moreover, under specifications in which we 

had previously found very poor sizes, the EL-bootstrap substantially reduced the size 

distortions and in some cases these were virtually eliminated. The EL-bootstrap led 

to better size-properties than Brown and Newey's GMM-bootstrap (within the models 

and under the assumptions that we examined). 

6. We assessed the finite-sample properties of the EL-bootstrap overidentification test 

within dynamic panel data models. Up to this point, research on dynamic panel 

data models has been dominated by the GMM approach. It has been extensively 

documented that GMM estimators can be biased and imprecise due to weak instru- 

ments. However, the behaviour of its overidentification test in the presence of weak 

instruments has not been thoroughly treated in the literature. Our findings show 

that the Sargan test is less sensitive to weak instruments than GMM estimators. It is 

common-practice to introduce further moment conditions into the analysis to reduce 

sample bias and the imprecision of GMM estimators. However, we found a pattern 

that suggests that incorporating moment conditions could lead to a deterioration in 

the size properties of the Sargan test. Our simulation experiments show that the EL- 

bootstrap overidentification test is not sensitive to weak instruments (except for T=4 

and p= . 9). Moreover, there is not enough evidence to support the conclusion that 
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EL-bootstrap tests based on SYS conditions dominate those based on DIF conditions. 

7. The cash-flow empirical example illustrates how EL can be used in applied work. 

Our Monte Carlo experiments, for the same sample size and number of time periods 

as our empirical application, provided evidence to suspect that the Sargan test was 

over-rejecting the null. According to our simulations, the test based on EL-bootstrap 

was more accurate for this specification. Thus we relied on the latter statistic. Our 

conclusion points to cash-flow being well represented by an AR(1) panel data model 

with individual effects. 

In summary, although our experiments do not uniformly support the conclusion that one 

estimator dominates the other, we found some evidence that EL and EL-bootstrap could 

be good alternatives to GMM in some econometric applications. 
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Appendices 

Appendix 1 

Since the initial investment is set to one, the moments of end of period wealth are equivalent 

to those of the rate of return on the portfolio, i. e.: 

a(w) = Q(pp) 

y (W) = (Rp) , 

e(w) 0 (R) 

Using ExiRj = R1� - xoR j and ExjE(R, ) = E(Rp) - xoRf gives 
i 

Exiaip = ExiE [{R, -E (R, )} {R7, -E (Rp)}] 

i%E 
[{Rp 

-E (Rp)}2] 

E I: xiA- - 
ExsE (Rl) {Rp -E (RP)} 

__ 11 
E[{Rr-E( 

. P)}2] 
= 1. 

Therefore, 

0, cwt = >xApa (Rn) 
. 



165 

Following the same procedure we obtain: 

Exi-yip 
= 1, 

i 

Fxi9ip = 1, 

i 
which leads to 

Y (w) = L, xi-rip-i (R1, ) and 0 (w) = >xiOip0 (I ,) 
ii 

Appendix 2 

We define ßfz as 

Cov (rt, rmt) Q"' 
Var (r�ýt) ' 

Substituting the proposed DGP into , ß,,,, yields 

Am = 
Cov (alrmt + a2 (rmt - E(rmt))2 + 8t , rmt) 

Var (rmt) 

a1Cov (rmt, rmt) 
+ 

a2 [Cov (r2, 
t, rmt) - 2E (rmt) Cov(rmt, rmt)] 

Var (rmt) Var (rmt) 

al+a2 

[E (rmt) 3E (rmt) E (rmt) +2 (E (rmt))3J 
= Var (rmt) 

/r 
= al+a2( m)3 

o (rm)2. 

We define I'm as 

Cov (rt, rmt) - 2E (rmt) Cov (rt, rmt) 7m -/ 
7' (rmt)3 

Substituting the proposed DGP into y yields 
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Coy (airmt + a2 (rmt - E(rmt)2 + Et , rmt) 
'Yin = 

-y ( )3 rmt 

2E (rmt) [a, (E (rmt) -E (rmt)) + a2] (rmt)3 

7 (rmt)3 

al +a2. 
E (r4, 

t) - (E (rm, t))2 - 2E (rmt) [E (rmt) 
- (E (rmt)) E (rmt)] 

'Y (rm)3 

2E (rt) E (r, 3nt) +6 (E (rmt))2 E (rmt) 
-4 (E (rmt))4 

- a2 / ,' (rmt)3 

After rearranging: 

Im = aý + a2E 
`r"'t) - (E (rmt))2 

- 4E (rmt) E (rn, 
t) 

y (rmt)3 

+ a2 
8 (E (rmt))2 E (r2. 

ý, t) -4 (E (r, r, t))4 
7 (rmt)3 

To simplify this expression we note that 

EE (rmt))4, -E 
[(rmt 

-E (rmt))2] 2=E (rmt) - (E (rmt))2 

32- 4E (rmt) E (rmt) +8 (E (rmt))2 E (rmt) -4 (E (rmt))4 
. 

Hence, 
(rmt)4 

-Q 
(rmt)2] 

ry,,,, = al + a2 
, 1' (rmt)3 
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Appendix 3 

Empirical Levels of J-tests 
Dynamic Panel Data 

DIF Moment Conditions 

n=100 
T=4 T=5 T =6 

Levels p Wj J2GMM Wj J2GMM WT J20MM 

. 10 . 1006 . 1084 . 1044 . 1042 . 0772 . 0984 

. 05 .2 . 0526 . 0532 . 0576 . 0526 . 0394 . 0448 

. 01 . 0124 . 0086 . 0108 . 0084 . 0080 . 0086 

. 10 . 1196 . 1074 . 1040 . 1114 . 1160 . 1066 

. 05 .5 . 0604 . 0564 . 0530 . 0564 . 0524 . 0472 

. 01 . 0134 . 0148 . 0124 . 0126 . 0062 . 0076 

. 10 . 1006 . 1270 . 0884 . 1292 . 1158 . 1186 

. 05 .7 . 0492 . 0710 . 0392 . 0656 . 0532 . 0594 

. 01 . 0110 . 0204 . 0048 . 0136 . 0050 . 0084 

. 10 . 1282 . 1018 . 1142 . 1056 . 1282 . 1092 

. 05 .9 . 0682 . 0492 . 0615 . 0464 . 0598 . 0512 

. 01 . 0154 . 0068 . 0071 . 0072 . 0108 . 0070 
Wj and J2GMM are overidentification tests based on EL-bootstrap and two-step 

GMM. T is the time periods, n is the sample size and p is the autoregressive coefficient. 

Table 4.13: Finite-Sample Size Properties - Dynamic Panel Data (DIF conditions n=100) 
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Empirical Levels of J-tests 
Dynamic Panel Data 

DIF Moment Conditions 

n=175 
T=4 T =5 T=6 

Levels p Wj J2GMM Wj J2GMM Wj J2GMM 

. 10 . 1162 . 0968 . 1214 . 0936 . 0948 . 1098 

. 05 .2 . 0596 . 0466 . 0632 . 0506 . 0482 . 0528 

. 01 . 0148 . 0078 . 0118 . 0094 . 0094 . 0100 

. 10 . 0978 . 1004 . 1004 . 1140 . 0948 . 1126 

. 05 .5 . 0450 . 0518 . 0462 . 0562 . 0474 . 0552 

. 01 . 0068 . 0166 . 0100 . 0130 . 0074 . 0088 

. 10 . 0946 . 1080 . 1143 . 1326 . 0972 . 1166 

. 05 .7 . 0506 . 0588 . 0603 . 0688 . 0398 . 061 

. 01 . 0084 . 0152 . 0126 . 0128 . 0226 . 0136 

. 10 . 1010 . 0990 . 1006 . 1148 . 1162 . 1188 

. 05 .9 . 0544 . 0524 . 0520 . 0604 . 0668 . 0604 

. 01 . 0118 . 0096 . 0110 . 0114 . 0134 . 0128 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM 

estimators. T is the time periods, n is the sample size and p is the autoregressive coefficient 

Table 4.14: Finite-Sample Size Properties - Dynamic Panel Data (DIF conditions n=175) 
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Empirical Levels of J-tests 
Dynamic Panel Data 

SYS Moment Conditions 

n=100 
T =4 T =5 T =6 

Levels p Wj J2GMM Wj J2GMM Wj J2GMM 

. 10 . 0894 . 1094 . 1035 . 1118 . 1047 . 1028 

. 05 .2 . 0552 . 0538 . 0544 . 0590 . 0541 . 0490 

. 01 . 0188 . 0096 . 0123 . 0092 . 0095 . 0090 

. 10 . 0994 . 1036 . 1164 . 1148 . 1148 . 1144 

. 05 .5 . 0450 . 0496 . 0558 . 0572 . 0534 . 0522 

. 01 . 0052 . 0098 . 0108 . 0106 . 0104 . 0086 

. 10 . 0992 . 1164 . 1024 . 1196 . 0926 . 1218 

. 05 .7 . 0480 . 0578 . 0500 . 0592 . 0362 . 0612 

. 01 . 0074 . 0102 . 0094 . 0106 . 0062 . 0134 

. 10 . 0994 . 1060 . 0954 . 1208 . 1042 . 1256 

. 05 .9 . 0474 . 0540 . 0410 . 0578 . 0452 . 0684 

. 01 . 0086 . 0096 . 0036 . 0100 . 0062 . 0100 
Wý and J2GMM are overidentification tests based on EL-bootstrap and two-step 

GMM estimators. T is the time periods and p is the autoregressive coefficient. 

Table 4.15: Finite-Sample Size Properties - Dynamic Panel Data (SYS conditions n=100) 
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Empirical Levels of J-Tests 
Dynamic Panel Data 

SYS Moment Conditions 

n=175 
T =4 T =5 T=6 

Level p Wj J20MM Wj J2GMM Wj J2GMM 

. 10 . 1031 . 0938 . 1250 . 1076 . 1235 . 1058 

. 05 .2 . 0510 . 0458 . 0658 . 0500 . 0704 . 0564 

. 01 . 0119 . 0100 . 0138 . 0088 . 0190 . 0112 

. 10 . 1204 . 1034 . 0993 . 1044 . 1159 . 1118 

. 05 .5 . 0652 . 0540 . 0487 . 0548 . 0569 . 0552 

. 01 . 0124 . 0092 . 0096 . 0120 . 0100 . 012 

. 10 . 1106 . 1094 . 0910 . 1072 . 0728 . 1312 

. 05 .7 . 0608 . 0614 . 0396 . 0556 . 0334 . 0694 

. 01 . 0114 . 0146 . 0038 . 0114 . 0034 . 0166 

. 10 . 1050 . 1220 . 0924 . 1198 . 1002 . 1434 

. 05 .9 . 0470 . 0636 . 0420 . 0638 . 0478 . 0746 

. 01 . 0108 . 0136 . 0064 . 0146 . 0078 . 0176 
W and J2GMM are overidentification tests based on EL-bootstrap and two-step GMM 

estimators. T is the time periods, n is the sample size and P is the autoregressive coefficient. 

Table 4.16: Finite-Sample Size Properties - Dynamic Panel Data (SYS conditions n=175) 
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Appendix 4 

Dynamic Panel Data 
AR(2) Cash-flow 

GMM estimation (DIF conditions) 

Coeff. s. e. t-value p-value 
c ft_1 . 4892 . 1798 2.72 . 007 

c ft_2 . 0426 . 0806 . 529 . 597 
Constant . 0749 . 0306 2.44 . 015 
T1985 -. 2176 . 0454 -4.78 . 000 

Wald (joint) 7.910 . 019 
(2 df) 

Wald (dummy) 23.18 . 000 
(2df ) 

Wald (time) 23.18 
. 000 

(2 df) 

J20MM 6.473 
. 091 

(3 df) 

Ml -2.075 . 038 
p-values are reported inside parenthesis. df refers to the degrees of freedom. ml is a 

test for serial correlation. J2GMM is the Sargan test. Note: m2 could not be calculated 
because there are not enough observations (for an AR(2) process we need TJ6). 

Table 4.17: AR(2) Cash-flow 
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