
Surface Interaction:
Separating Direct Manipulation Interfaces

from their Applications

Roger Kenton Took

Submitted for the degree of Doctor of Philosophy

University of York

Department of Computer Science

July 1990

Table of Contents

Acknowledgements
... 1

Declaration
... 2

Abstract .. 3

1. Introduction
........... 4

I. I. The Needs of the User
4

1.1.1. Performance
... ..

5
1.2. The Needs of the Interface Designer

.................. ..
6

1.2.1. Power
... ..

7
1.2.2. Freedom

7
1.3. Separation

... ..
8

1.3.1. Abstraction
... ..

8
1.3.2. Binding

...
10

1.4. Existing User Interface Systems
........................ ..

12
1.5. Premises and Issues

13
1.5.1. Presentation

..
14

1.5.2. Terms: Object and Application
............... ...

16
1.5.3. Formal Design

... ...
16

1.6. Overview of the Thesis
....................................... ...

17
1.6.1. The Thesis

17
1.6.2. Structure of the Thesis

............................ ...
19

2. Architectures for Separation 20
.................................

2.1. Separation ... 20
2.1.1. Motivation for Separation

..
21

2.1.2. Flow of Control .. 25
2.2. Input Frameworks .. 27

2.2.1. Input Types and Modes ..
27

2.2.2. Input Routing ... 28
2.3. Interaction and Semantics

.. 35
2.3.1. Feedback .. 35

-i-

2.3.2. Directness ... 37
2.3.3. Semantic Perspectives 38

2.4. Linguistic Architectures
...

38
2.4.1. Dialogue Abstraction

...
39

2.4.2. Transition Networks ... 39
2.4.3. Grammars ... 41
2.4.4. Problems of Dialogue Abstraction ... 43

2.5. Agent Architectures .. 48
2.6. Refinements of the Agent Architecture ..

51
2.6.1. User Interface Toolkits ..

51
2.6.2. Device Abstraction ...

52
2.6.3. Homogeneity ..

52
2.6.4. Logical Devices ...

53
2.6.5. Object-Orientation ...

55
2.6.6. The Model-View Paradigm ..

59
2.6.7. Problems of Model-View Separation ...

66
2.6.8. Separation Problems in Agent Architectures

67
2.7. Conclu sions ..

68

3. A Formal Perspective on Dialogue Separation
70

3.1. Interaction ..
70

3.1.1. State 71
3.1.2. Functionality

72
3.1.3. Object 74
3.1.4. Range

74
3.1.5. Behaviour

75
3.1.6. Dialogue

76
3.2. Relation between Functionality and Behaviour

78
3.3. Taking account of the user

79

3.3.1. Implementing Trace Constraints Separately
82

3.4. Limitations on Separation
..

83
3.4.1. Classes of Dialogue Separation

84
3.5. Input and Output

85
3.5.1. Communication

90

3.6. Conclusions
93

4. Surface Interaction ...
96

4.1. Abstract Models of Interaction
97

4.2. The Medium
99

4.2.1. Model
100

4.2.2. Presentation ..
100

4.2.3. Abstracting the Medium ..
101

4.2.4. Separating the Medium
..

103
4.2.5. Directness in the Medium ..

105
4.2.6. Consistency ..

106
4.2.7. The Medium: Summary

...
107

4.3. Surface Interaction
...

107
4.3.1. Premise ...

107

4.3.2. The Surface ..
108

4.3.3. Refinements ...
109

4.4. The UMA Architecture ..
111

-ü-

4.4.1. The Medium ...
113

4.4.2. The User Agent ..
114

4.4.3. The Application
...

117
4.4.4. The Surface ..

118
4.4.5. An Observation of Surface Interaction ..

119
4.5. A Simple Surface ...

121
4.5.1. The Concrete Medium ...

122
4.5.2. The Concrete Application ..

123
4.5.3. The Concrete User Agent ...

124
4.5.4. The Communication Structure ...

127

4.6. Implementation Issues ..
128

4.6.1. Performance ...
128

4.6.2. Timing ..
129

4.6.3. Binding User Agent and Medium ..
131

4.6.4. Multiple Applications ..
131

4.6.5. Fairness ..
132

4.6.6. Object Structures ..
132

4.6.7. Picking ...
133

4.6.8. Stylistic Binding ..
133

4.6.9. Buffering ..
135

4.6.10. Channels ...
136

4.6.11. Synchronisation ...
137

4.6.12. Echoing ..
138

4.6.13. Pruning State ..
139

4.6.14. Error Handling ...
140

4.6.15. Logical Events ...
141

4.7. Conclusions
..

141

5. Surface Models
..

143

5.0.1. Procedural and Declarative Models
143

5.0.2. Marks and Media
...

144

5.1. Windo .. w Management
145

5.1.1. The Model
147

5.1.2. Features: Icons and Menus
152

5.1.3. .. The Window Interface
153

5.1.4. Window System Architecture
154

5.2. Graphi cs
158

5.2.1. .. Imaging
158

5.2.2. Modelling
164

5.2.3. Procedural Modelling
16

5.2.4. Declarative Modelling
166

5.2.5. Structure
..

171

5.2.6. Viewing
177

5.3. Text
182

5.3.1. Content 182
5.3.2. Logical Structure

183

5.3.3. Properties
184

5.3.4. Editing 184
5.4. Documents 186

5.4.1. Formatting ..
187

5.4.2. Layout ..
188

- Ül -

5.4.3. Integrating Format and Layout
............................... 190

5.5. Conclusions .. 194

6. A Formal Model for the Surface Medium 196
6.1. Introduction .. 196
6.2. The Presenter Model 199

6.2.1. The Specification 199
6.3. Objects, Structures, and Properties 200

6.3.1. Fundamental Objects: REGIONs 200
6.3.2. Fundamental Representation

200
6.3.3. Fundamental Structure: Ordered Tree

201
6.3.4. Basic Relations

204
6.3.5. Fundamental Properties

204
6.3.6. Content 206
6.3.7. Geometric Properties

208
6.3.8. Visualisation

211
6.3.9. Behaviour 213
6.3.10. The Core Model 214

6.4. Surface Presentation 214
6.4.1. Projecting the Tree

..
214

6.4.2. Imaging
216

6.4.3. Geometric Transformations
216

6.4.4. Clipping
219

6.4.5. Combining Transformation and Clipping
.....................

221
6.4.6. Propagation of Attributes

222
6.4.7. Visualisation Attributes

225
6.4.8. Presentation

225
6.5. Manipulating the Model

228
......... .

6.5.1. Initialisation
228

6.5.2. Operations on the Medium
228

6.5.3. Picking and Selecting
...

241
6.5.4. The User Agent 245

6.6. Conclusions
249

7. Presenter 250
7.1.

...................................... Brief Outline
...................................

251
7.2. Differences

..................................
252

7.2.1. Clipping
252

7.2.2. Application Confirmation of Input
254

7.3. Additions
254

7.3.1. Editing
254

7.3.2. Linking
257

7.3.3. Persistence
...

260
7.3.4. Hardcopy

...
261

7.4. Refinements 261
7.4.1. Presentation 261
7.4.2. Selection 262
7.4.3. Highlighting

264
7.4.4. Grouping and Scaling

...
264

7.5. Deficiencies
265

7.5.1. Text and Graphics
265

-
iv -

7.5.2. Input Masks
.. 265

7.5.3. The User Agent 266
7.5.4. Client-Server Working ... 266
7.5.5. SunView Dependence

.. 266
7.5.6. Memory Limitations 267
7.5.7. Manipulation Efficiency .. 268
7.5.8. Constraints 269
7.5.9. Higher Constructs

.......... .. 269
7.6. Issues 270

7.6.1. Empty Leaves
270

7.6.2. Access to Text
271

7.6.3. Rectangularity
271

7.6.4. Dimensionality
272

7.7. Conclu sions
273

..
8. Future Work: An Alternative Model for the Surface 274

8.1. An Informal Description of the Model ...
276

8.1.1. Framing
..

279
8.1.2. Embedding ...

280
8.1.3. Multiple Inheritance ...

281
8.1.4. Constraints ...

284
8.1.5. Tables

...
285

8.2. Conclusions
287

..................................
9. Conclusions

..
289

9.1. The Thesis of Surface Interaction ..
289

9.1.1. Surface Models ..
291

9.2. Contributions of the Thesis ..
291

9.3. Limits of Surface Interaction ..
293

9.4. Postlude
..

294

Appendix I: Presenter Applications
..

296

Appendix II: Generic Functions ..
302

Appendix III: Glossary ...
303

References ..
310

-v-

Acknowledgements

My sincerest thanks must go to the many people who have supported and
helped this work. In particular, I owe a debt of gratitude to Anthony Hall, whose

enthusiasm provided the initial impetus. My thanks are also due to Professor

Michael Harrison for his patience and optimism; to my supervisor, Dr. Ian Benest,

for keeping me on a long lead; to Sylvia Holmes, for her many suggestions which

were incorporated in Presenter; and to Greg Abowd, for many fruitful discussions,

comments, and corrections on the more mathematical side of this work (although of

course any errors that remain are mine).

My final and warmest thanks must go to Kate and Douglas, my wife and son,

who have put up with my absences and abstractions over this Thesis for as long as

they have both known me. They have given me nothing but love and encouragement.
I hope I can make it up to them.

-1-

Declaration

Minor parts of this Thesis, in a very modified form, have already appeared in
[Took9Oa] and [Took9Ob].

Presenter was originally specified and written within the Aspect project - the

code therefore belongs to System Designers PLC. The formal specification of Presen-

ter which appears in [ASPECT87] is very different from that given here, which is an
idealisation based on several iterations of implementation and use. The notion of
Surface Interaction, and the UMA architecture, were developed later as a result of

research on this Thesis. Indeed Presenter does not conform to the UMA architecture

since it has no separable user agent.

#define he he or she
#define him him or her
#define his his or hers

-2-

Abstract

To promote both quality and economy in the production of applications and their
interactive interfaces, it is desirable to delay their mutual binding. The later the bin-

ding, the more separable the interface from its application. An ideally separated
interface can factor tasks from a range of applications, can provide a level of indepen-

dence from hardware I/O devices, and can be responsive to end-user requirements.

Current interface systems base their separation on two different abstractions.
In linguistic architectures, for example User Interface Management Systems in the
Seeheim model, the dialogue or syntax of interaction is abstracted in a separate

notation. In agent architectures like Toolkits, interactive devices, at various levels of

complexity, are abstracted into a class or call hierarchy.

This Thesis identifies an essential feature of the popular notion of direct manip-

ulation: directness requires that the same object be used both for output and input.

In practice this compromises the separation of both dialogue and devices. In addi-

tion, dialogue cannot usefully be abstracted from its application functionality, while
device abstraction reduces the designer's expressive control by binding presentation

style to application semantics.

This Thesis proposes an alternative separation, based on the abstraction of

the medium of interaction, together with a dedicated user agent which allows direct

manipulation of the medium. This interactive medium is called the surface. The The-

sis proposes two new models for the surface, the first of which has been

implemented as Presenter, the second of which is an ideal design permitting docu-

ment quality interfaces.

The major contribution of the Thesis is a precise specification of an architecture

(UMA), whereby a separated surface can preserve directness without binding in

application semantics, and at the same time an application can express its seman-

tics on the surface without needing to manage all the details of interaction. Thus

UMA partitions interaction into Surface Interaction, and deep interaction. Surface

Interaction factors a large portion of the task of maintaining a highly manipulable
interface, and brings the roles of user and application designer closer.

-3-

Chapter 1

Introduction

The medium is the message - Marshall McLuhan

The context of this Thesis is both the making and using of interactive computer

applications. The purpose of the Thesis is to advance a new architecture for the

structuring of applications and their user interfaces which reduces the cost of making
direct manipulation interfaces while providing for ease of use. This architecture is

based on the separation of a generic presentation model from applications. The

essence of the Thesis is that by giving this presentation model (the surface) its own

state, operations, and agent, it can be manipulated either by applications, or directly

by the end user. The surface can thus abstract common manipulative tasks from

applications, and also act as a medium of communication [Draper86] between appli-

cations and end users.

We explore the context of this architecture by examining first the needs of the

user and the needs of the interface designer.

1.1. The Needs of the User

The user is concerned primarily with the quality of the interface. This may

involve stylistic issues like `look and feel', or the interface's ability to prevent or

undo errors. At base, however, the quality of the interface must be judged on how

well it enables the user to perceive the current state of an application, and how well

it allows him to manipulate that state in order to attain some user-defined goal.

The interface is thus necessarily, in the general case, a two-way medium

between applications and users. However, an important criterion is the degree to

-4-

which the interface allows the same object to be used for both input and output. We

can call this criterion directness.

A glass teletype, for example, has low directness. Interaction is textual, and

references to previous output are symbolic rather than direct. The user might ask for

a directory listing, and then, if he wishes to delete a file in the list, must retype the

file name as a parameter to the appropriate command. In the worst case, when out-

put scrolls off the screen, the user must maintain the relevant state in his memory,

and make references from that.

A graphical mouse-driven interface, by contrast, has potentially high direct-

ness, since graphical objects persist and can be referenced geometrically by the

mouse. It is conventionally agreed that `direct manipulation' [Shneiderman83, Shnei-

derman82, Hutchins86] enables higher quality interfaces. However, graphical

displays and pointing devices are a prerequisite, but not a guarantee of directness.

Directness itself does not ensure consistency between the state of the inter-

face and the state of the underlying application. The interface operations need to

form some `complementary algebra' [Harrison9O] to the operations possible on the

application state. It is precisely mismatches between operations in the interface, and

their denotation in the semantics of the application, which leads to poor interface

usability. It is an open question whether these algebras (i. e. the interface operations

and their semantic counterparts) can be specified independently. This Thesis

attempts to define precisely the bounds on interface independence, and the conse-

quent communication requirements between application and interface.

1.1.1. Performance

Human users may also have constraints on their performance which are not

taken into account in the functionality provided by the application. They may be

naive, colour-blind or otherwise disabled. They may have a limited short term memo-

ry, and go away for cups of tea. The hope is often voiced that these `human factors'

issues of aesthetics, ergonomics or cognitive psychology can be represented in the

interface. The problem of determining and formulating these human constraints is the

concern of research initiatives like user modelling [Young89, Kass88]. Accommodat-

ing such constraints has been a traditional goal for User Interface Management

Systems (UIMS) [Bennett87].

-5-

As well as disabilities, human users may also have skills which equally may

not be exploited by the application. They may be able to assimilate graphical infor-

mation rapidly. They may have good hand-eye coordination, and be used to handling

and manipulating physical objects. An interface system should present application

functionality in a way which maximises the use of these common human skills. Bai-

ley et al [Bailey88], for example, quote a user productivity gain of 77% through re-

engineering of the user interface alone.

1.2. The Needs of the Interface Designer

In 1972, Meads [Meads721 criticised graphics software for being either too

complex for the occasional user or too inflexible for the sophisticated programmer.

Recently, Myers [Myers88b p. 17) was still able to list ten problems with existing

user interface design tools, including the difficulty of coming to grips with new inter-

action languages or libraries consisting of hundreds of tools, and limitations in

functionality.

The interface designer may well consider a successful interface to be `saleable,

fabricable, and cost-effective' [CohenB86]. That is, he may be concerned primarily

with the economy of the interface system. From the point of view of cost, the high

proportion of user interface code typically found in interactive graphical applications

(over 50% [Szekely88b]; 80% [Myers88b]) makes it a target for rationalisation.

Such a cost would not be tolerated, for example, in interfaces to hardware peripher-

als like disks.

Economy and quality in interface systems may conflict. The high cost of writing

interactive graphical software often results in interfaces restricted to `cheap' static

panels of `clickable' objects (buttons, menus, icons) which simply invoke application

functions. There may thus be as many levels of indirection between actions and

effects in a mouse-driven interface as there are in a command-line interface: there is

a loss of `engagement' [Hutchins86) between the user and the objects he may be

directly interested in manipulating.

In this context, we consider the interface designer (who may of course also be

the application writer) to have two basic needs: power and freedom.

-6-

1.2.1. Power

Interface systems vary in their constructive power. An under powered system
only provides low level primitives, such as RasterOps [Newman79] or BitBLT

[Goldberg83 p. 333, Ingalls8l]. Higher types of object must be constructed and main-

tained by the interface designer. At the extreme, an interface system which only

provided a

setpixel (position, colour)

operation on its medium could display any image, but at the expense of much itera-

tive coding on the part of the designer.

On the other hand, we may consider an interface system over powered if the

complexity of the functionality it provides is as much a barrier to effective use as a
lack of functionality. The following diagram appears to represent a system that is

over-powered in this sense [Encarnacao79 p. 89]:

stores.
t ub* d. , i..

1.2.2. Freedom

S5
lein Droeeeslnq device

. Ginty coordiMte"

As well as considering the ease with which the interface designer can con-

struct the interface he wishes, we can also consider the possibility of realising his

-7-

Concept for a device independent graphics system

design. That is, the medium may limit the scope of interface design, either by con-

straints in the presentation types (Cedar windows [Beach85], for example, cannot
be overlapped), or by withholding control over its generation (at the extreme, an
interface may be generated automatically from an abstract interaction specification
[Olsen83b, Scott88], or even, in theory, from a description of the task model

[Green87, Singh89].)

Such design constraints can be called style [Newman88]. Viewed positively,

style can impose a pleasing consistency. As Kasik [Kasik89 p. 60] says, "attractive

interfaces matter". However, it is an open question whether consistency is worth

the loss of design freedom. Applications and user groups may wish to customise

their user interface to some house style [Marcus84], and HCI researchers may wish

to explore alternative styles. Since an interface medium which gives design freedom

may be constrained to produce a consistent style, but not vice versa, it is clear that

imposing consistency in the interface system is a less fruitful approach. It can also

be argued that the ergonomics and aesthetics of interface design have not yet been

so thoroughly researched that they can be standardised in a fixed `look and feel'.

[Took90b] explores these issues in more detail.

We go on to examine a basic mechanism for catering for the needs of both the

user and the interface designer: separation.

1.3. Separation

The provision of interface services for applications is conventionally justified in

terms of application/interface separation. This is a notoriously vague term (see

Chapter 2). We define it more precisely here in terms of abstraction and binding.

1.3.1. Abstraction

The conflict of economy and quality in user interface construction can best be

addressed (as in most fields) by abstracting common features and implementing

these separately. At a very idealistic level we can view the interface itself as an

abstract, which is applied to application functionality to produce a usable system:

interface (application) = system

-8-

This formulation suggests that it should be possible to apply the same inter-
face to a number of different applications, or apply a number of different interfaces to
the same application. We might even be able to make the interface generic over a
range of styles (or users) [Wiecha89]:

interface [style] (application) = system

A major concern of this Thesis is to examine the limitations of performing this

abstraction. Abstraction has two main benefits: factoring and independence.

Factoring

If a number of applications duplicate the same operations, it makes sense to

abstract these into a single separate resource. We can thus factor the work done,

and reduce any unnecessary effort. As a rough illustration:

clients

11'
11

111
'ý

II

II

1'
II '1

I
11 1',

1
hj

11111

II

II

'1,

11
'I

"
resource

The cost of factoring is the difficulty of designing the data types and operations
in the factored resource. On the one hand there is no point in factoring functionality

that is rarely used. On the other hand it is equally pointless to factor functionality

that is so frequently used that the bandwidth of the communication medium becomes

a bottleneck. In general, as Stroustrup notes [Stroustrup88], finding `commonality'

in a set of objects and designing appropriate operations is far from trivial.

Independence

Not everything has been standardised. There exist many different types of
input and output devices, communication protocols, text and graphics libraries, lan-

guages, and so on. If an application is not to be completely rewritten for each
different software or hardware environment, then there must exist a representation

at some level between the hardware and the application code which is common over

-9-

a range of environments. This representation is then a resource which provides a
level of independence. This hides the diversity of the underlying implementations,

and anything written to the representation is easily ported between these (so long

as appropriate back ends already exist). Standard graphics languages such as GKS
[IS085, Enderle84] or PRIGS [ISO87b, Brown85] are predicated upon such inde-

pendence. As a rough illustration:

" resource

llll

II ,
''ý

I'I
I 1'

111

'I 111

11
((1

11
ýýý

11

 0

implementations

The user interface is an ideal site for a level of independence. That is, the inter-

face can provide a common representation over a range of input and output devices

and software. This commonality might be realised on a set of normalised devices, or

at higher levels, for example on logical devices, interactive techniques, or even dia-

logue.

At the highest level, it is even possible to conceive of the user as requiring
independence from applications (applications are simply implementations of the

user's tasks). In this view, the interface should allow the user to impose his own

concerns on the representations of the applications. For example, he should be able

to cut and paste representations from one application to another.

1.3.2. Binding

Once identifiers declared in one component are bound to values (constants,

variables, operations, functions, procedures) defined and implemented in another,

then communication can take place. Whereas independence allows a conceptual dis-

tinction between abstractions and their implementations, binding allows a temporal

distinction between communication mechanisms. Early or static binding permits com-

munication via a shared environment. Late or dynamic binding permits

- 10 -

communication via a distributable protocol. We can thus use binding in a relative

sense, to compare the separations achievable between two components. If we delay

the binding of the interface abstraction to the application, we gain in separation.

We can distinguish four common classes of separation, in order of increasing

lateness of binding. In each case we can say what tasks can be factored over the

binding:

" Application and interface are designed separately, but coded as one process.

In this case only the design can be factored.

" Application-specific and interface-specific code are held in separate classes

or libraries and bound together at compile time. This in addition factors the pro-

gramming cost of the interface. Toolkits typically have this class of separation.

" The formalisms (languages or primitives) for interfaces and applications are

distinct. The interface language is interpreted at run time, but cannot be

changed. If the communication between application and interface is by mes-

sages rather than subroutine calls, then the interface and application may run

on separate devices. The interface, for example, may run locally on the work-

station for optimal performance. This in addition factors the running cost of the

interface. UIMS ideally have this class of separation.

" The interface to an application can be changed while it is running, without the

application being aware. This is the principle behind Coutaz' Dialogue Socket

[Coutaz86]. This (in theory) factors the user's control over the style of interac-

tion, and makes the application and the interface mutually independent.

As the last point illustrates, incorporating user concerns dynamically into the

interface ideally requires maximum separation. In interactive systems, user input is

necessarily bound late to application functionality. Otherwise the application would

not be responsive and would need to be run in batch mode. However, in order to pro-

vide dynamically adaptive interfaces [Kantorowitz89, Alty84,1ienyonö41, it is

necessary to delay the binding of (the stylistic component of) the interface to the

application at least until run time. On the other hand, this reduces the designer's

expressive control [Bos83 p. 89] over the interface.

Representations which are maximally late bound may in addition be persistent,

in that their lifetimes are not tied to the lifetime of the objects which create or use

-11-

them. Interface objects which are persistent may be created prior to the applications

which use them, and may be saved and recreated between application sessions, and

even passed as messages between different applications.

Separation thus necessarily involves abstraction (if one component were not

an abstraction of some functionality in another, there would be no need, or basis, for

communication). In addition, abstractions may be more or less separated from their

use, depending on their binding time.

1.4. Existing User Interface Systems

Existing interface services can be categorised in terms of abstraction and bin-

ding

" Graphics languages abstract the production of output. Typically the primitive

operations are bound early to the client application, but their implementation

may be delayed so that equivalent images can be produced on a range of work-

stations.

" Input frameworks abstract the routing and first level parsing of user input.

Applications are usually written on a particular framework, and so are bound

early to this. The implementation of input frameworks, for example in the X

Intrinsics layer [MIT88], may be late bound and therefore compatible with a

range of workstations.

" UIMSs abstract the interactive dialogue from applications, that is, the

sequencing of input and output events. Ideally the dialogue is bound late to the

application functionality, so that the application can be isolated from interface

issues. The UIMS itself can be seen as the implementation of the dialogue,

and ideally this is bound at run time (the ULMS interprets the dialogue) so that

the dialogue can be presented in a variety of styles on a variety of machines,

and possibly to a variety of users. This ideal, as we show, is very limited in

practice.

" Agents in general abstract components of application functionality into

devices. They are necessarily bound early to the application task, since they

encapsulate it.

- 12 -

" logical device agents abstract sub-dialogues from applications, typically to

provide input functions such as option choice, strings, or location. These may

be bound early to the application, but their implementation in terms of particu-
lar styles or hard devices may be bound late.

" Toollcit agents typically provide logical devices, except that these are often

bound early to a particular stylistic `look and feel'.

1.5. Premises and Issues

We should only want to abstract some component of human-computer interac-

tion into a separated interface if we can thereby serve a wide range of potential

users and applications. Thus in this Thesis we are concerned not with the perfor-

mance of particular interfaces to particular applications, but with providing generic

interface support. Such a system should be free both of user and application bias but

capable of incorporating both.

The major premise for the Thesis is that, in order to promote both quality and

economy, the interface system should be maximally separate, that is, maximally

abstracted and late bound. This is in contrast to library and toolkit paradigms, which

concentrate on just abstraction of functionality. We make the assumption that quali-

ty is best promoted through economy, since it is thus cheaper to iterate interface

design.

Whereas user interface services have typically concentrated on separating

either the form of interaction (i. e. dialogue) or the devices of interaction, this Thesis

concentrates instead on separating the medium (i. e. content) of interaction.

The medium itself could be any domain which can be directly addressed by the

user. It could, for example, be a domain of sounds or speech, or text, or limited graph-

ics such as windows, or a more general graphical domain. This Thesis, however, is

concerned with visual, as opposed to audio, tactile, or other media. This includes

text and graphics. Interactive visual devices are considered at a certain level of

abstraction, but in implementation a bitmapped screen for output and a mouse and

keyboard for input is assumed.

The Thesis is not concerned with judging visual interfaces against human fac-

tors criteria. We simply aim to provide the basic constructs whereby user interfaces

- 13 -

can be built by the designer and modified by the user. The implicit standpoint
throughout the work is that usability is best promoted by flexibility at the designer

level rather than by a fixed stylistic `look and feel'.

A core problem is to provide constructs for the medium which have objectivity

but not style. It is considered that the best way to design or discover these is to

examine the basic features of the medium itself, rather than any use to which it might
be put. Text, for example, is considered independently of its use as a medium for

applications like mail systems, databases, or document processors.

1.5.1. Presentation

The visual domain subsumes what is commonly called presentation, that is,

the display of screen objects. This is obviously an essential part of any visual user

interface. Many designs for user interface systems, however, simply assume the

existence of a presentation layer [Alexander87 p. 22, Olsen86 p. 3221. Green

[Green86] and Hudson [Hudson87 p. 120] point out that the main emphasis of UIMS

research has been on the dialogue rather than the presentation component. Olsen

claims that presentation has been `sorely neglected' [Olsen87a p. 1351, and that

all ...
UIMS that we are aware of ... [do] not account for the pre-

sentation of application data. This most important aspect of a
user-interface implementation has not been adequately
addressed by current research. [Olsen86 p. 322]

He himself addresses these problems in the GRINS UIMS [Olsen85b].

However, there is no clear agreement as to what the presentation level should

comprise. Green [Green85b p. 13] sees it as a fairly static layer concerned with out-

put types (he extends this to sound and the control of mechanical movement) and

input types (again extended to include video, voice, and gestural input). Olsen

[Olsen85a p. 126] and Dance et al [Dance87 p. 99], on the other hand, impute more

`input/output linkage' [Olsen85b] to the presentation level, in the form of `logical

devices' or `interaction techniques'. That is, a certain amount of the echoing

between input and output devices is allowed to migrate from the dialogue level to

the presentation level. Still another interpretation is given by Szekely [Szekely87,

Szekely88b] and Moreland [Moreland87] who view presentation as output only. In

Szekely's view, presentation is a display mapping from underlying application

- 14 -

objects, whilst input is a separate mapping from physical devices to application oper-

ations.

The issues are thus whether input is to be included in the presentation domain,

and if it is, the amount of control autonomy that is to be given to the presentation
level in order to `link' input and output prior to application involvement.

Presentation Constructs

Constructs for presentation have traditionally been addressed by standard

graphics packages, like GKS [ISO85J and PHIGS [ISO87b]. Rosenthal

[Rosenthal83 p. 38] calls this `mainstream' graphics. However, presentation on

bitmapped workstations has essentially pursued a separate development path. To a

large extent this is due to the unsuitability of the traditional vector-oriented

paradigm to the mechanics and capabilities of raster displays, and the poor input

facilities of the standard graphics packages. It may also have something to do with

the task domains: standard graphics has typically been used in an industrial environ-

ment where a model of a complex object like an automotive part or an oil refinery is

constructed in virtual space, and then is viewed from a variety of angles. This may

be called scenic modelling. The parts of the object have no denotation other than

their visual qualities (they stand for no other information or functionality). Opera-

tions (pan, zoom, rotate) are global to the space, rather than being targeted on

particular parts of the object.

Bitmapped workstations, on the other hand, have their main application in

office environments [Newman83, Newman87] as a medium for what may be called

schematic modelling. In a schematic model the information content of the interface is

paramount, while accuracy of geometry or rendition are secondary issues. Such sys-

tems include software engineering environments [Benest85, Took86b], database

systems, spreadsheets, and document processing applications. In these applications

displayed entities denote information or functionality, rather than represent real

world objects. These reasons may account for the lack, in bitmapped environments,

of a global graphical model for all objects of visual interaction. In these environ-

ments, only low-level operations like RasterOp, and various windowing protocols,

such as X [Scheifler86], have reached even the status of de facto standards.

A similar situation is developing in the domain of textual presentation. Emerg-

ing international document standards like ODA [ISO87a] and SGML [ISO86b]

-15-

address issues of device independence and document structuring and transmission,
but take little account of the suitability of their constructs for interactive document

preparation. Independently of, and in contrast with, this standardisation effort, the

workstation community is experimenting with hypertext [Conklin87], and active
[Zellweger88, Allen 81 p. 74], interactive [Arnon88], multimedia [Crowley87,

Ange1187] and hypermedia [Meyrowitz86] documents.

The models proposed in this Thesis attempt an integration of document and

application concerns by tightly coupling textual and graphical presentation. At the

same time they address issues currently underdeveloped in bitmapped environ-

ments: structuring in text and modelling in graphics. Finally, they attempt to provide

a broader covering of the domain of presentation than that possible with the custom-

ary opaque, rectangular windows. Considerations include transparency, hierarchical

structuring, tabular layout, and persistent graphical links.

1.5.2. Terms: Object and Application

A central concept in this Thesis is the notion of an Object. By Object we mean

an abstract data type [Guttag78] which encapsulates not only operations but also

state. The identity of an Object persists, but its state may be modified by its opera-

tions. We do not assume class inheritance or any other feature of object-oriented

programming in this definition, although clearly these may create Objects. Since the

word object is common and useful, when we mean it specifically in the sense above,

we use the capitalised form.

Throughout the Thesis we use the term application to refer simply to some

domain-specific functionality, and do not imply thereby any particular computational

model like procedural, declarative or object-oriented, unless otherwise stated. How-

ever, we do assume that an application may have control, that is, we do not

necessarily think of an application as simply a collection of semantic functions to be

called by the interface.

1.5.3. Formal Design

A final premise of the Thesis is that a well-powered interface system can best

be achieved via a formal design. The hope is that such a design elucidates the a pri-

ori features of the objects of interest themselves, uninfluenced by implementation

strategies. If unavoidable conflicts occur (the screen resolution might not be quite up

- 16 -

to displaying mathematical points, for example!) then a formal design at least forms

a basis upon which sensible trade-off decisions can be made. The model is

expressed here in the formal notation Z [Spivey89], developed at the Programming
Research Group in Oxford, and its communication architecture in CSP [Hoare85].

1.6. Overview of the Thesis

1.6.1. The Thesis

The Thesis is that by separating the medium of human-computer communica-

tion we can provide for both economy and quality in user interface design. The

abstraction is supported by a model (i. e. state and operations) by which the seman-

tics of the medium is defined. The late binding of the medium and applications is

supported by an architecture (UMA) which defines how the user, the medium, and
the application communicate.

The medium's model

" has encapsulated state and operations on the state. Applications can invoke

the operations and address objects in the state, which have persistent identity.

" has a presentation function by which the objects in the state can be presented

on a display. The presentation function can be inverted to allow users to pick

surface objects by addressing the display directly with a pointing device.

The UMA architecture incorporates a user agent, dedicated to the medium,

which translates all user input either to operations on the medium, or to messages

to the application. Together, the medium and the user agent form an interactive

medium, here called the surface. The term surface is used deliberately to suggest a

more specialised domain than interface in general.

The major benefit of a surface in the UMA architecture is that, because it is

abstract and late-bound, its operations may also be invoked independently of the

application. Thus application objects can be manipulated both by the application, and
directly by the user. This allows the surface to factor manipulations which are irrele-

vant to application semantics, but which may be significant for the user.

-17-

In practice this economises on the cost of creating application interfaces, as

well as allowing the user greater power over the appearance of the surface. It also

allows surface objects to be interactively constructed prior to being bound to applica-

tion semantics. Thus the roles of user and interface designer are closer. This

application-independent manipulation is here called Surface Interaction. Surface

Interaction allows surface objects to have behaviour without functionality. This is

the core of the Thesis.

Very schematically, we think in this Thesis in terms of the following separation:

human user

Display ---ý Surface

surface
Interaction

separation
Deep

rIIý Interaction

application

Thus the surface has some depth, that is, it has its own semantics. However,

this is separated from application semantics. At the boundary between the surface

and the human user there is some display, which we usually think of as a screen (we

also assume appropriate input devices). Surface Interaction takes place simply

between the user and the surface, while deep interaction takes place between the

user and the application.

- 18 -

1.6.2. Structure of the Thesis

The Thesis is in two broad parts, the first of which (Chapters 2-4) presents
Surface Interaction and its UMA architecture, and the second of which (Chapters 5-

8) presents two alternative models for the surface.

Chapter 2 categorises existing architectures which provide separation of appli-

cation and interface, in particular into what it calls linguistic architectures and agent

architectures. Linguistic architectures abstract the syntax of interaction, while agent

architectures fragment application functionality into devices.

Chapter 3 examines critically and formally the premises for dialogue abstrac-

tion, and accounts for the lack of success of systems which employ this as the basis

for separation.

Chapter 4 is the main formulation of the Thesis. It establishes the existence of

the surface and the possibility of Surface Interaction, and defines formally, in CSP, a

minimal architecture (UMA) by which Surface Interaction can occur. It also examines
implementation issues arising from the architecture.

Chapter 5 describes existing models for the surface and its medium, in particu-
lar window and graphics systems.

Chapter 6 gives a formal model, in Z, of the surface which has been implement-

ed as Presenter.

Chapter 7 gives an account of the implementation of Presenter, and how this

differs from the formal model. Lessons are drawn from its difficulties and deficiencies.

Chapter 8 describes informally an alternative, more ambitious architecture

which forms the basis of future work.

Chapter 9 concludes.

- 19 -

Chapter 2

Architectures for Separation

2.1. Separation

The extreme positions on the separation of interface from application are repre-
sented by Coutaz and Sibert respectively. Coutaz `accepts the principle of

separation' [Coutaz85 p. 21]. Separation brings the following benefits (see

[Szekely87 p. 235]):

" User interface and applications can evolve independently. It may be possible
to program, analyse or prototype each in isolation from the other, and using dif-

ferent formalisms.

" One interface can be made common to a range of applications, and thus inter-

face consistency can be enforced, and code and development effort shared.
Generic commands, for example to invoke abort, undo, or help operations, and

status or error reporting, can be provided [Lieberman85 p. 1821. As well as

such run-time support, a common interface could offer support for design, anal-

ysis, or evaluation of interfaces [Dance87 p. 97]. Myers [Myers88b p. 4] gives

a more detailed list of such facilities.

"A range of interfaces can be applied to the same application, so that user pref-

erence or designer experimentation can be catered for. In this way various
levels of independence can be built into the interface, from device independence

to style and dialogue independence.

Barth, for example, claims to `maintain a strong separation' [Barth86 p. 147]

between interface and application in GROW.

-20-

At the other extreme is Sibert [Sibert86 p. 261]:

We are convinced that it is not possible to build systems
which handle semantic errors and feedback intelligently if we
maintain a strict separation between the lexical/syntactic
domain in the UIMS on the one hand, and the semantic
domain of the application on the other.

See also [Sibert85 p. 183]. This is supported by Green, who argues that if the

application can directly influence the user interface, then `the notion of a separate

user interface module breaks down' [Green86 p. 257]. Recent experience
[Manheimer89 p. 1311 underlines this.

Clearly there is no consensus on the possibility of separation. Even papers

that deal centrally with the topic [Hartson89] come to no firm conclusion. This chap-

ter examines different architectures for separation and their success, in particular

what we here call linguistic architectures and agent architectures. Some of the mate-

rial in this Chapter has also appeared in [Abowd89].

2.1.1. Motivation for Separation

Architectures providing separation originate in response to the problems of

coding an interactive system as a single process in a standard procedural language.

We illustrate these problems, and their various proposed solutions, with an example

due to Newman [Newman68]:

What is required is a draughting system which minimally allows the user to

draw arbitrary lines on the screen. The functionality is as follows: upon the first

-21 -

mouse click (or push on the light pen [Benest79 p. 99] in Newman's paper) the sys-
tem goes into line drawing mode (in Newman's paper it is only at this point that

cursor echoing begins). Once in line drawing mode the user can move the mouse cur-

sor around the screen until he decides on the starting point for the line, which he

signals with another mouse click. He can then continue to move the mouse, but now

a rubber line starting at the first point stretches to the cursor. Upon a third mouse

click this line is fixed in place, and the system goes back to its uncommitted state.

A procedural coding of this system is as follows (we assume an input event of

type button I point, where point is a pair of coordinates, and also primitives to draw

a line between two points and to clear the screen):

var start: point;
repeat

repeat
read (event);

until event = button;

repeat
read (event);
if event ;t button then start event;

until event = button;

repeat
read (event);
if event * button then
begin

clearscreen;
drawline (start, event);

end;
until event = button;

until false;

This approach is recommended by Jones [JonesDW88) as `the best way' to

code a finite state machine, which indeed the draughting system is. Notice, however,

a number of deficiencies of this code from the point of view of abstracting its interac-

tive behaviour:

" The states of the system are only implicit in the organisation of the program.

A more complex FSM might result in a more deeply nested program structure

in which the states would be even less obvious.

" This is a concise representation only for FSMs in which the control flow is

well-structured. If arbitrary jumps are permitted in the FSM, for example to

-22-

reach abort states, then much redundant code might result. This is because the
aborting code would have to be replicated in each block of the program in which
an abort could occur.

" Input consumption (read (event)) is scattered through the program. A change
to the event types might require many modifications to the code.

" Reads occur in places where only particular events are expected. If there

were two concurrent FSMs, such that their input could be arbitrarily inter-

leaved (for example, if there were a second mouse button which drew circles)
it would be impossible to code both FSMs together using this technique with-

out much redundant code. This is because, in general, the state space of two

concurrent FSMs is the product of the number of states in each, since for each

state in one machine there may occur an event moving the other machine into

any of its states.

"A simple modification to the FSM, for example the addition of a transition,

may require a radical restructuring of the code.

An alternative approach ('the wrong way', according to Jones) is to make the

states of the FSM explicit in the program:

state := initial;
while true do
begin

read (event);
case state of

initial:

startlive

endline

end case;
end while;

if event = button then state startline;
if event = button then state endline;

else start := event;
if event = button then state = initial;

else begin
clearscreen;
drawline (start, event);

end;

Jones' main criticism of this style of control structure is that it is in effect a

series of goto statements. Indeed the assignments to state could simply be replaced

by gotos to the appropriate section of code. However, systems may well be driven

by relatively unstructured FSMs which it is difficult to code any other way. For

-23-

example, although a system may have nested states, it may also, as noted above,

provide unstructured jumps to common facilities like help systems and abortion.
[Bohm66] demonstrates formally that while any program can be expressed without

conditional jumps, unstructured programs will require either explicit state variables

or repetitive coding.

This second style of control structure in fact resolves many of the problems of

the first:

" Its states are explicit.

" Its complexity is independent of the structuredness of the FSM.

" Input consumption takes place at one location.

" So long as there is some method of despatching input to the appropriate case

statement, a concurrent FSM could be added such that the total number of

states would be simply the sum of the states of the two FSMs.

" Modifications to the FSM are easily incorporated in the code.

Nevertheless, this coding is not ideal. There are two remaining problems:

" All acceptable sequences of input are explicitly coded. If it is not important in

what order some inputs occur, so long as they all do occur, then nevertheless

each possible sequence would have to be coded. Thus, paradoxically, giving

the user more freedom to choose his style of interaction involves extra work for

the programmer.

" The programmer must construct the input despatching framework, in this

example the while or repeat loops and the read primitive. This is clearly a

generic structure which could be provided as a service.

These problems form the fundamental motivation for all user interface manage-

ment systems and services. They illustrate how the primary concern with

abstracting interactive dialogue from application functionality has arisen.

We first examine various mechanisms for separation.

-24-

2.1.2. Flow of Control

Separation of interface and application can be characterised simplistically by

their flow of control. Historically, the proposals for user interface systems have dif-

fered clearly in this respect. The programming language model above, in which the

user interface is coded as part of the application program, can be illustrated:

APPLICATION INTERFACE

This has been called the `internal control' model [Thomas83 p. 171 or
`embedded control' [Kamran83 p. 59], or the `prompting' model [Young88 p. 371]. In

this model the interface modules are typically bound in at compile time from a library,

and it is difficult to separate interface services at run time. For example it is not pos-

sible to separate dialogue, simply because control resides in the application. In this

model also the application must have knowledge of, and thus be dependent upon, the

interface, since it calls on its functions. Lantz claims that most applications have

internal control [Lantz87a p. 40].

The 1982 Seattle workshop which laid the foundations for UIMS development

proposed an alternative model in which control resides in the interface rather than

the application. This is called `external control' [Thomas83 p. 171, or the

`despatching' model [Young88 p. 371]. This can be illustrated:

APPLICATION CII INTERFACE

This configuration makes dialogue separation possible, since the dialogue

interpreter can reside in the interface. Many early DIMS and window systems have

external control. This is true of Sun and Tajo [Teitelman86 p. 40], AIH [Kamran83

p. 59], Tiger and Oasis [Kasik89 p. 56], SODDI [Gangopadhyay82], and MINICORN

[Strubbe83 p. 1041]. Dialogue separation in the linguistic architecture requires at

least an external control model, since it is the dialogue control module in the inter-

face which determines the invocation of application functionality. '`

-25-

In the external control model, application functionality is thus typically frag-

mented into `action' routines [Swick88 p. 224] or `callback' routines [Rao87 p. 120].

User input must be multiplexed and despatched to these semantic routines with ref-

erence both to the type of the input event, and to the object upon which the event

occurred. Depending upon the order in which this selection is performed, routines

may conceptually be attached

" to the particular interface agent (as is the case with widgets in the X Toolkit

[Roberts88 p. 272] and in GROW [Barth86 p. 155], PAC [Coutaz87 p. 434], the

Box [Coutaz84b p. 4], Descartes' `interactive extensions' [Shaw83 p. 105],

and Minicorn [Strubbe83 p. 1039]).

" to particular events (as happens in Cardelli's Toolkit [Cardelli87 p. 22]).

A common characteristic of both internal and external control models is that
there is a single thread of control. This makes it difficult to cater for asynchronous

events which occur at the level in which control does not reside. In the internal con-

trol model, for example, spontaneous user input cannot be accepted. On the other

hand, under external control, internal events (such as signals to the application from

other processes) are difficult to handle. Continual operations, also, are difficult to

achieve at the level in which control does not reside. It is therefore difficult to ani-

mate views or monitor state using the external control model.

These problems are noted in the 1984 Seeheim workshop on UIMSs [Pfaff85],

and by the time of the 1986 Seattle workshop a third model emerges in which the

interface and application components are truly concurrent [HilI87b, Tanner87,

Lantz87b]:

APPLICATION INTERFACE

In this model the components can each retain control and thus monitor input or

generate output asynchronously. Communication is by messages or events, and not

by handing over control. If required, either the internal or external control models can

be simulated by the concurrent model, simply by using blocking sends or reads. In

addition, the components need not be monolithic: the granularity of communicating

-26-

components can be increased (in theory) arbitrarily, as for example in actor systems
[Agha86]. The concurrent model also allows interface and application to run on sepa-

rate processors. The concurrent model therefore seems by far preferable. The UMA

architecture in Chapter 4 allows concurrency between application and interface.

We go on to examine specific classes of architecture that provide some level of

separation between applications and generic user interface tasks. These architec-

tures are input frameworks, linguistic architectures, and agent architectures.

2.2. Input Frameworks

As we saw in the programming illustration above, reading and acting upon user

input is likely to be a common task in interactive applications. Input frameworks hide

implementation details such as device polling loops, and allow the application to deal

with more abstract events.

2.2.1. Input Types and Modes

At the most abstract level, user input simply delivers values of some type. In

mainstream graphics this is known as the `measure' of the input device. Measure is

some function of the state of the device, for example producing a character or a loca-

tion. In graphical user interfaces the mouse is so pervasive that a useful first

composition of input is into a value, a time, and a location (a what, a when, and a

where). These are construed as happening simultaneously.

Orthogonally, physical input devices may be divided into two classes: discrete

and continuous. Discrete devices are generally two-state (like buttons) which gen-

erate events upon transitions between these states. Continuous devices, on the

other hand, (like a mouse or a potentiometer) must be sampled upon some trigger in

order to generate a measure.

The conventional interpretation is that discrete devices generate events (for

example, a keypress), whereas continuous devices are sampled (for example, to get

the position of a dragged mouse). In the general case, however, all devices have

state, and the measure of that state may be triggered arbitrarily. Thus discrete

devices can be made to deliver continuous input (such as the time interval between

-27-

press and release of a button), and conversely continuous devices can be made to
deliver discrete input (such as an event generated when the mouse starts moving).

In practice, GKS for example allows these permutations, but CORE (GKS'

failed standardisation competitor, but still in use [Kasik89 p. 56]) binds the input

classes with particular modes: valuator is sample-only input, pick event-only
[Rosenthal80 p. 364]. Similarly, in VGTS [Lantz84 p. 33] the mouse can be used in

sample or event mode, but pick operates only in request mode and the keyboard only
in event mode. Further, the construction of a logical input token may involve the

reading of a number of physical input devices simultaneously. In mainstream graph-
ics, there may for example be both measure and trigger processes and associated
devices [Rosenthal82 p. 34]. Mainstream graphics also adds a request input mode,

which in effect implements an infinite wait for an event of a particular type. These

mismatches in interpretation and synchronisation between logical and physical

devices are major problems in the management of input.

User interface frameworks essentially perform two functions on raw user input:

" they route input to the appropriate processes. An appropriate process might

be one which is expecting input, or one to which the user has directed input.

" they interpret input with respect to some context. A keypress event, for

example, may be interpreted as a character input in the context of a table map-

ping keys to characters.

We examine these two functions in detail.

2.2.2. Input Routing

Routing is the passing of raw input tokens from the physical devices to pro-

cesses which are interested in them, or at which the user has directed the input.

Without an input framework this could only be achieved by requiring all processes

needing input to poll all input devices to ascertain if their state had changed since

the last poll. Application polling makes the synchronisation of different devices diffi-

cult, and may result in an application consuming an event not directed at it.

These disadvantages to device polling have meant that frameworks typically

provide event rather than sample input. In cases where the event is not immediately

generated by the user (by activating a discrete device like a button), a trigger pro-

-28-

cess is usually stationed in the server to emit events on some criterion, for example
when the mouse starts moving or has moved a certain distance. An input framework

which provides events essentially hides input device polling from clients.

Events provide a mechanism for asynchronous input processing. In this way, in

theory, input can be handled immediately, independently of the state of the underly-
ing computation. This is guaranteed if events are signalled to the process by a hard-

ware interrupt. In practice, however, while immediate handling of input might be

useful in dealing with catastrophic occurrences such as `abort', in many cases the

sequencing of user input carries significance. A fast typist, for example, would not be

happy to find that many characters failed to be registered because they were con-

stantly being either interrupted by the next character typed, or, depending on the

prioritising scheme, locked out while the previous character completed its process-
ing. If the interrupt routines were stacked, the typist might even find the characters

coming out in reverse order! For this reason a general interrupt mechanism is not

normally used at a high level, although CSI proposes one possibly using UNIX* sig-

nals [Williams87 p. 61.

A more effective solution is the provision of an input queue. Events are there-
fore not lost if they are not consumed before the next event. A main issue here is the

queue mapping between devices and processes. Typically there is a single queue per

process (see [Lantz87b p. 90, Lantz87a p. 41, Lantz84 p. 33]) upon which all its input

events are interleaved. However, CSI clients can set up multiple queues
[Williams87 p. 27], and Pike makes a proposal for a window system that has sepa-

rate mouse and keyboard channels [Pike89].

The major routing problems are event synchronisation and event despatch.

Event Synchronisation

A single queue abstracts the task of event synchronisation from the applica-

tion, since events from different devices which occur together appear together on the

queue. The cost of queuing in comparison with interrupt-driven input processing is a

loss of immediacy. The input event must wait on the queue until its process is ready

to deal with it. Similarly, the typical process action is to WAIT (see Foley

[Foley84a p. 571) until there are events ready on the queue.

*UNIX is a registered trademark of AT&T.

-29-

However, the problems of event synchronisation must still be dealt with in the
framework. These are particularly severe in a networked environment, where net-
work latency (round-trip response) may be unpredictable. A typical problem is
`mousing-ahead': a user requests a pop-up menu, for example, by pressing a mouse
button, and then drags the mouse and releases the button on the menu item he

wants. However, an expert user may know where the menu item is going to be, and
is capable of releasing the button before the screen manager has had time to draw

the menu (or, in NeWS, the menu process has had time to express an interest in

input [NeWS87b p. 50]). The danger is that the button release event will be wrongly
despatched to the application under the menu, rather than to the menu process. A

simple but effective mechanism to handle this is for the menu process to freeze input

processing until it is sure the menu has been drawn. Both X ('synchronous mode'
[MIT88(l) p. 124]) and NeWS ('blockinputqueue' [NeWS87a p. 21]) provide a

mechanism to block input in this way. It is important to note that input events are

not lost by blocking, just delayed in their despatch.

There is a converse problem, however. As Myers notes [Myers86a p. 651 a

novice user may be confused by network latency into thinking that the system sim-

ply has not responded (for example, to a mouse button push) and repeat the action.
Contrary to what he expects, his input is queued, and he finds he has made multiple
invocations of, say, some menu command. A simplistic solution is to flush the buffer

(resulting effectively in a single-event record rather than a queue) or to allow events

some limited lifetime [Tanner86 p. 247]. Essentially, however, there is a conflict here

between the needs of the novice and the expert user. Whereas the expert user

needs to be guaranteed that his input is despatched to what he predicts is its target

(a soon-to-pop-up menu, for example), the novice user needs to be guaranteed that

events are despatched to what he sees is their target (for example, a plain back-

ground against which he has no means of knowing that a menu is about to pop up).

This is not easily resolved, and seems to be a matter of case by case tactics rather

than an overall strategy.

A more general event synchronisation problem is the ability to synchronise

multiple devices in the interpretation of logical input events [Hill87b, Tanner87, Bux-

ton86]. Tanner [Tanner86 p. 246] distinguishes between `simultaneous input'

(multiple devices, multiple tasks) and `user's choice input' (multiple devices, single

task). These categories, however, assume only one device per task at any one time.

Clearly, as in other physical input systems like cars, several devices may share one

-30-

task simultaneously. For example, a configuration may enable the user to draw a
line using the mouse in one hand, whilst at the same time controlling the width of the

line using a touch tablet with his other hand [Hi1186 p. 195]. The capability of han-

dling input from multiple devices is also highly relevant to Supervisory and Control

systems, in which input may arrive not only from a human user, but also from sen-

sors in the system being controlled [Alty87 p. 1008]. Tanner [Tanner86 p. 247],

conversely, discusses the sharing of a single device by multiple processes. Salmon

and Slater [Salmon87 p. 263] give an example of this: a mouse button press might

generate three events -a CHOICE that segment rotation is required, a PICK identi-

fying the segment to be rotated, and a LOCATOR to specify the centre of rotation.

Although a basic configuration like a mouse and a keyboard in itself represents a

multiple device configuration, in the general case there is thus a need to connect arbi-

trary devices dynamically. There is also an increased need for synchronisation the

more closely devices are associated with a common task.

A number of different schemes have been adopted to handle such device syn-

chronisation. The mainstream graphics proposals of CORE and GKS addressed

multiple devices in their full generality. In both these proposals all device events are

placed on the input queue marked with the trigger process which occasioned them. In

CORE, simultaneously occurring events (i. e. those with the same trigger) were

packaged together as a single compound event [Rosenthal82 p. 37], whereas in GKS

the application is allowed to `INQUIRE MORE SIMULTANEOUS EVENTS'.

Salmon and Slater [Salmon87 p. 262] point out, however, that most implementations

of GKS do not implement the full level c input (sample and event modes). In con-

trast, recent workstation-based systems have, perhaps unwisely, exploited their

limited range of input devices by including the total device state, along with a times-

tamp, in each event. CSI [Williams87 p. 6] and NeWS [NeWS87a p. 110] do this, for

example. X and VGTS [Lantz84] have less general schemes. X divides events into

a number of different classes (e. g. `KeyPress', `MotionNotify'), only some of which

(but including the standard device events) have timestamps. At the same time, the

X server maintains a number of global time values for recent events, for example last

keyboard or last pointer grab. All X mouse and keyboard events include the mouse

location, but not all appear to give the total key state. VGTS distinguishes key-

board, mouse, and pick events [Lantz84 p. 32]. It is thus not clear how easy it is to

perform arbitrary device synchronisation in X or VGTS, for example to register key

chord events. NeWS's event mechanism is cleaner, at the risk of including more

redundant information in each event.

-31 -

Event Despatching

Input routing also requires events to be despatched to the processes at which

the user has directed them. In window systems screen objects are usually used to

multiplex input. That is, events occurring in a window are sent to the process owning

the window. However, it is not necessarily evident which window is receiving input.

There are primarily two options: spatial and state-based (Schiefler and Gettys

[Scheifler86 p. 101] call these real estate and listener). Using a spatial criterion, key-

board input, for example, is directed to the queue associated with the window

currently containing the mouse cursor. In the state-based approach, on the other
hand, a particular window is designated current, (or active or in focus) and all key-

board input is directed to it until its state changes. At the user interface this

obviously requires some echoing of the state of `currentness' - often this is by high-

lighting the window borders or title bar. Tanner's Switchboard [Tanner86 p. 245], for

example, displays a keyboard icon in the current window. `Currentness' also

requires a method by which the user can assign this state - for example by clicking

the mouse in the window he wishes to make current.

However, in a hierarchical window environment several windows may be lay-

ered underneath the cursor. This is particularly a problem in object-oriented or

object-based (iconic) systems where the screen object/process granularity is high,

such that on the normal spatial criterion there may be several candidate processes
for a particular mouse event. Where the management system cannot decide on

behalf of processes (perhaps on the basis of some expressed `interest' [Lantz87b

p. 90]) if they are to receive the event or not, this contention can be resolved in three

ways:

"A process (say the one owning the window `in front') can be allowed to look

at the input first and then pass it on to the window `behind' if it is not interest-

ed (as in NeWS). In a hierarchical system this is usually a parent window.

Rosenthal [Rosenthal83 p. 44] calls this `passing the buck' up the hierarchy.

This only works if there is a strict geometric nesting of child windows in their

parent.

" An input event can be distributed to all candidate processes at once (as in X,

TheWA [Lantz87b p. 90], or the Local Event Broadcast Method of the Sas-

safras UIMS [Hi1186 p. 187]), on the expectation that only the interested

process will take action.

-32-

" An input event can go first to the root of the visual hierarchy, and then be
passed down to ever smaller objects until one accepts the event. Rosenthal
[Rosenthal83 p. 44] calls this the `I'll handle it' method. The Andrew Toolkit

uses this, and calls it the `parental authority' concept. The justification is that
it is often `wider' objects which need to arbitrate the behaviour of component
objects.

A process may also need to divert input to itself which would not normally be
directed to it. There are three main reasons for allowing this preferential access:

"A process may wish to `lie in wait' for a particular input event (a function but-

ton or mouse button press, for example).

" Processes with urgent business may wish to force the user to pay attention
(for example to a `modal' dialogue box) by blocking input to any other process.

"A process may wish to implement a manipulation mode in which all mouse
input is directed to it while (and irrespective of where) the mouse is dragged.

Popping a menu is an example of a manipulation mode. A pop-up menu may
need to appear when a mouse button is pushed, and disappear when (and wherever)
it is released. The release event must therefore be despatched to the menu process,
even if the mouse is currently over some other object. This input access contention
between processes can be solved by imposing a priority.

There are a variety of prioritising schemes. In X and CSI, any process is

allowed to `grab' all mouse or keyboard input. X also calls this an `active' grab, and
in addition allows a `passive' grab, where only a specific set of keys is grabbed. X

can thus also allow a process to lie in wait for a particular input event. X 11 in fact

imposes a mouse button grab automatically during mouse drag events (i. e. between

press and release of a mouse button) (MIT88]. This is needed in order to implement

a manipulation mode. Since the grabbing process preempts all others until it explicit-

ly drops the grab, these servers have only a two-level priority for input despatching.

NeWS, on the other hand, has a more complex prioritising scheme. Each canvas has

a prioritised list of processes interested in input events occurring within it, while in

addition there exists a `global interest list' containing processes interested in the

whole screen. A process can only express one interest at a time. In order to grab
input, therefore, a process can either put itself on the global interest list, or draw an

-33-

`overlay canvas' in front of all other windows. In the second case, it may be preempt-
ed by another process which overdraws it with yet another overlay canvas.

Input to a process may come not only from the user, but also from another pro-
cess. This may be via an operating system signal, or by a change in an active value
[Szekely88a p. 37] or other message in an object-oriented system. In general, again,
the event is the most useful mode. In systems with a high process granularity, like
Smalltalk and its MVC paradigm [Burbeck87], the Sassafras UIMS [Hi1186],
Beach's `anthropomorphic' paint program on the Thoth operating system [Beach82],
Tanner's Switchboard system on Thoth's successor Harmony [Tanner86], or Lantz

et al's proposals for a Workstation Agent [Lantz87b p. 91], an important function of
this input will be for process synchronisation. All these systems use a simple FIFO

queuing mechanism to resolve contention between parallel events. That is, input

events to a process converge on a single queue, and are thus automatically sorted
by time of arrival.

As Borning points out [Borning86 p. 365], however, this is a coarse mecha-
nism, since processes generating the events have little control over when they may
be received. He gives as an example the problem of interleaving the update of two
different views of a model. In MVC this would not be possible, since there is no way
that the sending process (the model) can synchronise the behaviour of two separate
view processes. It is also useful to be able to generate what Lantz calls `out-of-
band' events [Lantz87b p. 91] in order, for example, to abort some previously
entered sequence of inputs. If this is not to be handled by process interrupts, there

must be some mechanism whereby such an event can jump to the head of the queue.

Both Borning's Animus system [Borning861, and NeWS, allow processes gen-

erating events to specify their timestamp, rather than leaving it to the system. The

input queues are then ordered by this timestamp (and will thus not necessarily be

FIFO). All events are guaranteed not to be despatched before their marked times-

tamp. Borning regards this mechanism as a temporal constraint. Processes have

thus finer control over the despatch of their events, and there may be arbitrary inter-

leaving and (pseudo) concurrency among events (many events can be given the

same timestamp). Processes can even send themselves future-dated events, thus

emulating system-generated timer events. NeWS in addition can emulate both syn-

chronous (directed) and asynchronous (broadcast) message sending, simply by

specifying (or not) the receiving canvas.

-34-

2.3. Interaction and Semantics

Interaction essentially consists of alternations of input and output between the

user and the computer. As an introduction to architectures which subsume both input

and output, we consider in general the ways in which input and output can be linked.

While many writers see input and output as separate languages (see

[Rosenthal80 p. 361, Foley74 p. 465, Green86 p. 251]), it is clear there must be some
link [Olsen85b] between the two in order for transactions to take place between the

computer and the user. In general, users impute semantics to precisely the transfor-

mations that occur between input and output.

2.3.1. Feedback

Feedback is the most fundamental linkage between input and output. All inter-

action can be seen in terms of feedback. Feedback, however, can occur at a number

of levels. It can thus be used to `short-circuit' [Lantz84 p. 29) input and output
before application involvement. We can categorise these levels linguistically into

lexical, syntactic, and semantic feedback.

Lexical Feedback

Lexical feedback consists of low-level echoing of input events for the purpose

of informing the user that input has registered. It has a high granularity, for example
individual keystrokes or mouse movements. Ideally it should also be highly respon-

sive.

Lexical feedback is typically incremental. That is, it occurs in a context which

does not change. The echoing . of characters to the screen, for example, is not simply

a function from keypresses (K) to screens (S):

K --* S

(except in the most simple calculators), but a function from sequences of keypresses

to screens:

segK-4 S

This is because we expect keypresses to be echoed by characters that are

appended to the text, or, in the case of delete characters, that remove the previous

-35-

character [Shaw83 p. 102]. Thus in order to generate this feedback either the history

of characters entered, or (equivalently) the screen state, must be retained.

Syntactic Feedback

Syntactic feedback reinforces the current state of the interactive dialogue. That

is, it enables the user to predict the effect of his next action. A caret in text, for

example, indicates (or should indicate) where the next keyed character will be

inserted. Similarly, with the mouse button pressed over it, a menu item may be high-

lighted as a potential selection if the button were to be released.

Syntactic feedback may also be used to report syntactic errors, or to give the

user an opportunity to amend, withdraw or cancel inputs at an intermediate stage of

the dialogue. A spelling error may be corrected in a command line before pushing

return, for example, or an icon moved away from the trashcan before releasing the

mouse button, or the ̀ quit' button pushed in a dialogue box.

Semantic Feedback

The most problematic form of feedback in this consideration of architectures for

separation is semantic feedback, that is, feedback from the deepest level of function-

ality. Here we may be satisfied with a single response, for example a document

emerging from the printer. This is the result of the computation. However, in order to

achieve this result we may need to go through a number of interactions in order to

query or update computer objects.

Therefore there is a need to present to the user not only the application func-

tions available to him, but also an appropriate visualisation of the state of his data,

and how this affects the availability and progress of the functions. In this way, the

user's actions can have immediate, incremental consequences [Shneiderman&3]

with no `gulf of evaluation' [Hutchins86] which the user must bridge himself by ref-

erence to a complex conceptual model.

For example, functions might be presented as menus, while data might be visu-

alised by text, or any of a wide domain of graphical representations. Unavailability of

functions (because the data is in an inappropriate state, or there are type mismatch-

es) could be signalled by shadowing the menu items (as on the Mac), or by more

elaborate mechanisms, for example having buttons `fall through' inappropriate

objects (as in ARK [Smith87 p. 621). Progress of functions can either be represented

-36-

by continual incremental updates of the data representation (for example, the `slow'

global replace operation in the text editor spy [Jones-Ng86]), or by `percent-done'

indicators.

The consequence of these two requirements is that the operations available to
the user (for example through the mouse) should provide not only lexical and syntac-

tic feedback, but should also be incrementally sensitive to underlying application

state. Myers [Myers87a p. 132] gives examples of such semantic feedback in direct

manipulation, from rubber lines `snapping' to gravity points on an application-deter-

mined grid, to chess pieces which are directly manipulable only along their legal

moves, or even only along their possible moves in the current state of the game.

Young recognises that `immediate semantic feedback' [Young88 p. 368] must not be

sacrificed in an interactive system. Hudson feels that providing semantic feedback at

the lexical level is one of the major challenges UIMSs must face in order to support

direct manipulation [Hudson87 p. 122, Hudson901. Lantz [Lantz87a p. 41] and Myers

[Myers88b p. 2] echo this. Dance et al [Dance87 p. 97] feel that separation has not

worked in practice because of the problem of semantic feedback.

2.3.2. Directness

In addition to giving semantic feedback, interactive graphical systems should
ideally also give the user the impression of manipulating his data objects directly,

rather than manipulating syntactic agents (commands, icons, or menus) which do the

job on his behalf. That is, the same object should be used for both input and output.

Mallgren notes [Mallgren83 p. 27] that whereas in batch systems input may

depend only on previous input, in interactive systems input may also depend on pre-

vious output. Even at the level of a framework, as we have seen, input may be

interpreted in the context of some output configuration of the screen, for example to

despatch input depending on which window the mouse cursor is currently in.

Directness thus has two fundamental requirements:

" The display medium must have state which persists over a number of cycles

of input and output.

" The user must be able to dereference this state by addressing the displayed

objects using a pointer like a mouse. This is conventionally called `picking'.

Picking is further examined in Chapters 4 and 5.

-37-

Without directness the user is reduced to making symbolic references to appli-
cation state, such as typing command names on a glass teletype.

2.3.3. Semantic Perspectives

As a preparation for the more formal parts of this Thesis, we note that there
are two fundamental perspectives we can take of the semantics of an application.

" Extensional: we can define the behaviour of an application in terms of the
sequences of operations which it accepts.

" Intensional: we can define the result of an application in terms of changes to
its state produced by its operations.

Chapter 3 will show formally that these two definition methods are equivalent.
There are however subtle differences of emphasis between the two. The first stress-
es input, and suggests that semantics is best expressed in terms of syntactic
constraints on sequences of input. The second stresses output, and suggests that
semantics is best expressed by defining the result of the operations.

We go on to consider two classes of architecture which match these two per-
spectives: linguistic architectures which exploit dialogue abstraction, and agent
architectures which exploit device abstraction. In particular we examine how both

architectures cope with directness.

2.4. Linguistic Architectures

Linguistic architectures see interaction as layered, comprising at least lexical,

syntactic, and semantic levels. Separation based on such linguistic divisions is

closely associated with Foley [Foley80b, Foley80a, Foley84a p. 220]. Moran's CLG

[Moran8l] and a protocol proposed by Nielsen [Nielsen86] have a similar linguistic

structure. In addition to these layers there may be a `conceptual' (Foley) or `task'

(Moran) layer at a more abstract level, while at a more concrete level there may be

some consideration of what Buxton calls `pragmatics' [Buxton83] - issues of device

ergonomics that underlie the lexical layer. At the core of all these models, however,

is the lexical/syntactic/semantic layering.

-38-

User Interface Management Systems

The UIMS model, particularly in its Seeheim formulation [Olsen85a,
Green85b] of presentation, dialogue, and application linkage components, is the

clearest example of a linguistic architecture. The most concise characterisation of a
UIMS is that it implements a user interface [Shaw83 p. 101, Cockton88b p. 510], that
is, a UIMS provides a formalism for user interface syntax that can be interpreted sep-

arately from application semantics.

Even as early as 1972, George's Meta system [George72] proposes a linguis-

tically layered, prototypical UIMS which has a separable control language. However,

it is at the 1982 Seattle workshop and the 1984 Seeheim workshop that the concept

of a UIMS receives its fullest definition. While the term UIMS is sometimes used in

a wider sense, we here use it in the precise sense of an interface system which sep-

arates and gives central importance to the syntactic, or dialogue, component
[Pfaff85]. Typically, the linguistic architecture in its UIMS form is monolithic
[Lantz87a p. 39] - there is a single dialogue component.

2.4.1. Dialogue Abstraction

Chapter 3 will demonstrate formally the fundamental issues of dialogue separa-

tion, that is, the binding time of dialogue and functionality. In this section we

examine the prior problem of dialogue abstraction.

Dialogue consists of sequences of both input and output events, and thus rep-

resents the observable interaction between user and computer. Two main

formalisms are used to express allowable dialogue sequences: transition networks

and grammars.

2.4.2. Transition Networks

Transition networks express allowable sequences of events by associating

events with transitions between system states. In its simplest form a transition net-

work is a finite state automaton and expresses a regular grammar, although in

practice the formalism is often extended to give greater power. Transition networks

are usually coded as a table of tuples of the general form:

State x input -a Newstate x Output

-39-

Dialogue separation based on transition networks was first used by Newman

in his early Reaction Handler [Newman68], examined by Foley and Wallace

[Foley74], and taken up by Boullier et al in Metavisu [Boullier72 p. 248], and by

Wasserman in USE [Wasserman85].

Newman (op. cit. p. 47) gives the following example of a transition network rep-

resentation for the draughting task introduced above:

I

button /\ button

button
Z3 display

store -' line

starting point
(Dj

pen movement pen movement

From an initial state, the user first presses the button to initiate the operation.

In the second state the user can move the light pen around the screen until he

decides on a starting point for the line. He then pushes the button again and changes

to a state in which pen movements are continuously echoed by a rubber line whose

endpoint is the pen position. On the final button push the line is fixed and the system

returns to the initial state. Even this simple example illustrates the moded

[Tesler8l] nature of transition networks: in any state only a fixed number of transi-

tions out are specified. The system response to user input that does not match these

allowed transitions is undefined.

The transition network notation has been extended in three main ways.

" Large networks may be modularised by allowing labels on arcs to refer to

separate networks: the labelled arc may be traversed only if there is a path

through the associated subsidiary network. The label can thus be viewed as a

non-terminal symbol in a grammar. If recursive labelling is allowed, then the

network has the power of a context-free grammar [Jacob86b p. 213].

-40-

" Transitions may be made to depend not simply on the current input token and

state, but also on a global data structure. Transitions may enquire and update

this structure. Woods [Woods70] calls these networks Augmented Transition

Networks (ATN's). In general, an ATN has the power of a Turing machine
(since any computable function can be applied to the data structure by a transi-

tion), and this has been exploited to enable the dialogue to encapsulate all

application computation, as for example in Kamran's `Abstract Interaction

Handler' [Kamran83]. A more restricted form of ATN, the pushdown automa-

ton, in which the data structure is limited to a stack, can implement recursion

and therefore parse context-free grammars. Olsen in SYNGRAPH [Olsen84]

and GRINS [Olsen85b] uses a form of these called `interactive pushdown

automata'.

" Local, independent transition networks may be embedded in a wider environ-

ment scheduled non-deterministically by input events. Jacob is most closely

associated with this extension [Jacob86c, Jacob86a], but Coutaz in her PAC

model [Coutaz87 p. 434], Images [Simoes87], and Myers' Garnet [Myers89]

have similar schemes.

2.4.3. Grammars

Dialogue parsing on the basis of a grammar allows a task abstraction. That is,

each of the symbols in the grammar can be associated with a task. Terminal symbols

specify basic input tasks such as keystrokes, while non-terminal symbols express

higher, logical tasks. The grammar determines the sequences of basic input symbols

necessary in order to achieve a task.

The grammar is conventionally specified in a variant of BNF productions (as,

for example, in SYNGRAPH [Olsen83a], or Reisner's ROBART languages

[Reisner81]). Here is Newman's line drawing task expressed in Reisner's version

of BNF (I is alternation, + is sequential concatenation. Terminal symbols are in

upper case):

draw line :: = initiate line + choose line + complete line

initiate line BUTTON PRESS + move cursor
choose line BUTTON PRESS + move cursor

complete line:: = BUTTON PRESS

move cursor:: = POSITION CURSOR I POSITION CURSOR + move cursor

-41-

This grammar thus expresses a hierarchical breakdown of the task, from the
top-level `draw line' to the terminal lexemes like `BUTTON PRESS'. A parse tree
for a particular sequence of user actions which results in the drawing of a line could
therefore be (using BP and PC for BUTTON PRESS and POSITION CURSOR

respectively):

draw line

initiate line choose line complete line

BP move BP move

PC move PC move

PC move PC
I

PC

Thus this parse represents the sequence of actions:

<BP, PC, PC, PC, BP, PC, PC, BP>

BP

This shows the sequence of actions: a button press to indicate the intention to draw

a line, a drag of the cursor to the start point of the line, indicated by a second button

press, a drag of the cursor (followed by a rubber line) to the end point of the line, ter-

minated by a third button press.

Since this grammar is equivalent to the state transition machine given above, it

is regular - that is, its productions expand from one end only (in this case the right).
A higher grammar, however, for example a context-free grammar in which the pro-
ductions expand from the centre outwards, can easily model nested sequences of

actions.

Note, however, that this grammar generates only sequences of input actions.
In order to specify output, output echoing can be incorporated in the productions. For

example, POSITION CURSOR could be expanded to consist of an input of the

-42-

mouse position, followed by an output of the cursor at that position. However, the

semantics of output rapidly reaches a complexity which a context-free grammar is

not capable of expressing, especially if picking is required. In spite of the loaded

symbol names in this example, there is no semantics here - this could just as well

result in a circle being drawn as a line.

In order to express more general semantics, the grammar must essentially be

`attributed'. In SYNGRAPH, for example, Pascal procedures are inserted into the

productions of the grammar to perform the semantic operations [Olsen83a p. 501 like

drawing a line between the start point and the current position of the cursor. Liere

and Hagen [Liere87] also note the need for an attributed, and therefore at least con-

text-sensitive, grammar in order to incorporate the semantics of the task.

2.4.4. Problems of Dialogue Abstraction

Semantic Feedback

Under the impact of the direct manipulation style, a number of fundamental

problems with dialogue formalisms have come to light. Transition networks suffer

from a quadratic growth in the number of possible transitions as the number of

states increases. This is a severe problem in graphical interfaces, where significant

state distinctions may depend on incremental graphical changes such as moving an

icon to a new location. This is compounded by the fact that the number of screen

objects may vary dynamically (see Sibert et al [Sibert85 p. 186]). In a typical direct

manipulation interface, therefore, the overall state space may be enormous. It is gen-

erally agreed that a higher than regular grammar is required to abstract and

modularise the dialogue in such interfaces.

The basic state transition approach is also incapable of handling call/return

sequences (i. e. nested states): as outlined above, a labelling mechanism or push-

down state is at least required for this. As Newman points out [Newman68 p. 48],

this deficiency means that common semantic functions cannot be abstracted (for

example as a sub-network) and invoked by any of a number of actions. Such a capa-

bility is needed to define globally-accessible user actions such as abort, help and

undo. Kasik also notes the difficulty of doing this [Kasik89 p. 57].

Various extensions have been proposed to handle these actions. Olsen's

SYNGP, APH has the notion of distinguished ̀escape' and `reenter' states for each

-43-

nonterminal, which he calls `pervasive' states [Olsen84 p. 182]. For example, a task
is aborted via the escape state, while help might be invoked at any time via an

escape and then a reenter state. Help is, of course, in addition context-sensitive.
Equivalently, but more generally, Cockton [Cockton88b] proposes `Generative Tran-

sition Networks' by which transitions can be defined over sets of states, rather than

state-by-state as in the standard notation. Thus an abort or help transition can easi-
ly be defined for all states.

Abort, undo, and general syntactic error recovery present special problems

related to the parsing algorithm used. A top-down parsing algorithm commits the

dialogue to a task as soon as the first possible input symbol for that task is

received. The only solution for a subsequent abort, undo, or illegal input may be to

cancel the parse. This may be difficult if output from the task such as prompting has

already taken place. On the other hand, a bottom-up parsing algorithm may be easi-

er to backtrack, but provides poor intermediate feedback, since the task may not be

invoked until the whole input sequence is complete.

A bottom-up algorithm may be acceptable in a textual interface, where no

action might be expected until the entire command string is typed and despatched

(by pushing `return'). A direct manipulation interface, on the other hand, requires a

top-down algorithm, both because users expect incremental feedback of their actions
[Shneiderman83], and because a graphical screen retains no unambiguous trace of

user actions (such as a command line does), over which a parser could backtrack.

Green [Green86 p. 2521 Bos [Bos80 p. 1671 and Kamran [Kamran85 p. 46] all exam-

ine this problem. It is also interesting to note that as early as the Seillac II

conference, Alan Kay was able to report [Guedj80 p. 22] that experience with the

well-used (textual) learning system PLATO had shown that error handling and

back-tracking took up most of the interaction, and that finite-state grammars were

unable to cope with this dialogue.

Finally, as Reisner points out [Reisner81 p. 237], not all syntactically correct

dialogues allowed by a grammar-driven parser may be legal in terms of the underly-

ing task. That is, there may be semantic (contextual) errors not trapped by the

dialogue parser. There are two approaches that may be taken in this case. In one,

errors may simply be allowed to pass through to the application task, which may

then need to instigate a special dialogue with the user in order to correct them. This

strategy is adopted by GWUIMS [Sibert86 p. 262]. An alternative approach is to

allow the dialogue knowledge of or communication with the application task. For

-44-

example, parameter types may be declared in advance against which the dialogue

can check input, or enquiry operations may be allowed on the task state, as in MIKE

[Olsen86].

This is a particular instance of the general problem of incremental semantic

feedback. Directness, in the definition of this Thesis, also requires that the output of

semantic feedback be reusable as dialogue input. This is difficult if the dialogue is

separated from the application semantics.

Multi-Threading

The ability to interrupt a task, get help or other information, and then return to

the task at the point where it was interrupted is simply a particular case of the gen-

eral need to run multiple tasks concurrently. This need is especially high in systems

with interactive graphical, and particularly window-managed, interfaces. The prob-

lem from the point of view of a monolithic dialogue parsing system like a standard

UIMS is that input destined for the various tasks arrives arbitrarily interleaved: the

user may type a few characters in one window, move an icon against the back-

ground, then draw a line in another window. To handle this in a single parse a

grammar must be evolved whose states (or symbols) is the Cartesian product of the

states of each of the tasks.

Some systems handle this interleaving complexity by disallowing it. For exam-

ple, SYNGRAPH, like GKS REQUEST input, is highly moded: physical and virtual

input devices are dynamically `acquired', `enabled', and prioritised so that inputs are

delivered only in the expected contexts. A single thread of control is therefore forced

on the user. The need to cater for arbitrarily multi-threaded dialogues, and the inade-

quacy of formal grammars for this, was recognised early by Alan Shaw [Shaw80

p. 3781 and Anson [Anson80 p. 123] (their comments even predate the flourishing of

the UIMS model). Mary Shaw [Shaw83 p. 107] uses the phrase `data-driven' to con-

vey similarly the notion of the user's freedom to update any visible data, as opposed

to a `control-driven' model where the order of updates is determined by the program.

More recently, there has been a revival of interest in the handling of multi-threaded

dialogues. The fundamental perception is of the user as a realtime system - asyn-

chronous and unpredictable [Tanner86 p. 248] - and that therefore interaction should

be treated as a problem in parallel computation [Mallgren83 p. 185].

-45-

Determinism

Syntactic dialogue parsing suffers two further fundamental objections. Firstly,

whereas some use of formal grammars in parsing is for descriptive and analytical
purposes [Reisner8l, Payne84, Moran8l], current use in UIMS is prescriptive. That

is, the grammar determines the acceptable input and output sequences. We can dis-

tinguish between this problem and the problem of multi-threading: in the latter a

grammar restricts the number of alternative concurrent dialogues, in the former a

grammar restricts the number of alternative sequences in the same dialogue. Kam-

ran [Kamran85 p. 47], for example, admits that the Interaction Language of his AIH

permits only a rigid sequencing of actions, and that more flexibility is required. This

problem is more severe the higher the grammar, since as grammars become more

context-sensitive the tasks they model become more moded.

Chapter 3 argues that there are two cases where dialogue determination is

necessary or useful:

" when there is a necessary sequencing in the operations provided by the func-

tionality, for example non-commutative operations like pushing and then

popping an empty stack, or logging in and then opening a file.

" when one of the participants in the dialogue cannot be expected to be respon-

sible for its actions, for example a novice user who does not know that exiting

from an editor does not automatically save his edited file, or a nuclear reactor

that does not `know' that raising its damping rods and voiding its coolant

would result in a melt-down. In these cases it is useful to impose temporal or

logical constraints on the possible traces of the functionality for the good of the

user. However, it is not clear that a grammar is the best formalism for doing

this.

Chapter 3 also shows that there are cases where dialogue determination is

unnecessary, for example in the ordering of parameters to an operation. A just bal-

ancing of these factors should result in what Thimbleby [Thimbleby8O] calls a well-

determined dialogue.

Practical Experience

Parsing human-computer dialogue according to a grammar, therefore, has a

number of theoretical drawbacks. In practice, also, experience of using grammars has

-46-

not been positive. Two complaints are voiced. Firstly, specifying the dialogue in a
separate language or formalism from the application functionality is often difficult
[Myers88b p. 17, Myers87a p. 130, Olsen86 p. 320]. SYNGRAPH was not widely
used for this reason [Olsen87a p. 135]. The only real solution is to generate the dia-
logue automatically. Green [Green87 p. 114] proposes this, but there are few

prototypes [Myers88b p. 15]. Secondly, parsing user input according to the grammar
often presents problems. Hekmatpour and Woodman complain of this
[Hekmatpour87 p. 7].

In recent papers, Olsen, Hudson, and Hill have strongly criticised the syntactic
approach to dialogue. Olsen [Olsen87a p. 135] thinks that ease of use is often more

critical to the success of a UIMS than syntactic capability. Having used syntactic
dialogue parsing in the SYNGRAPH and GRINS, Olsen's recent system, MIKE

[Olsen86 p. 320], abandons the syntactic component. Coutaz similarly abandons the

single dialogue component in her PAC model [Coutaz87]. Hudson [Hudson87 p. 1211

views syntactic input as reducing `engagement' in a direct manipulation system,
since the user is communicating with the system rather than with the objects of
interest, and concludes that syntax should be minimised. Hill [Hi1187b p. 118]

regards the parser-based approach as "clumsy and awkward", and argues for a user
interface specification language with programming power. This requires that the user
interface system run the interface specification, as in the Blit [Pike84, Pike85],

NeWS [NeWS87a], and CLAM [Ca1187]. Downloading user interface programs in

this way, however, factors execution but not programming costs.

We conclude that syntactic dialogue specification fulfills neither the require-

ments for separation, nor the original goals of UIMSs. Nevertheless, there may be

some more restricted domain in which syntactic specification is useful. Chapter 3

isolates this domain precisely.

In 1982 the perceived benefits of a UIMS were device exploitation for human

factors optimisation, cost savings, reliability, interface consistency, rapid specialist

prototyping, adaptability, extensibility, portability, and ease of debugging

[Thomas83 p. 7]. Unfortunately, by the time of the 1986 Seattle workshop it was pos-

sible to say (in the chairman's introduction) that: "it was not clear that the UIMS

concept or structure was still valid after four years" [Olsen87b p. 711. There appear

to be two main reasons for this lack of success: the impact of the direct manipulation

style (in particular the problems of semantic feedback and multi-threaded dia-

-47-

logues), and the difficulty of using the UIMS's formalisms. Most commercial UIMS
have in fact been textual, at least in input [Kasik89 p. 56, Prime90].

2.5. Agent Architectures

If a separate dialogue parser, as in a UIMS, is not used, then it is up to the

application to interpret the sequence of input events. A more recent approach to the

problem of coding large complex dialogues within the application is to fragment the

application into specialised agents each of which manages a relatively simple dia-

logue. The agents communicate and cooperate to achieve the application task.

Dialogue control is thus distributed [Coutaz89a p. 11] among the agents, and as a

result is minimally determined. That is, dialogue with a number of different agents

can be interleaved by the user arbitrarily.

Agents are a very general architectural paradigm, and do not in themselves

represent a solution to the problems of separation. Thus there are a number of differ-

ent models that have been supported on top. Indeed, the syntactic UIMS itself can
be seen as a monolithic agent. However, the tendency is to regard agents as medi-

um or small scale objects which coexist in teams.

In general, agents encapsulate any functionality, including possibly input and

output handling. They do this by maintaining their own state, and so are formally

equivalent to Objects. We adopt Sugaya's diagram [Sugaya84] as a canonical model:

? ent

events events

Hurley and Sibert give a slightly more detailed model (CREASE) [Hurley89].

Agents are scheduled by events. Events can be construed as input tokens, or

as messages from other agents. We simply assume the agent `fires' when events

-48-

are available which match its input rule. The temporal behaviour of an agent can thus
be modelled by a process in CSP [Hoare85]. The input rule may require the tokens

or messages making up the event to be single or multiple, ordered or not, depending

on the agent.

A basic formalism for events and agents is a set of <input, action> pairs
[Shaw83 p. 107] (Chapter 3 gives a more precise formulation of this in terms of a
behaviour function which maps input to state transitions). Agents can thus be

viewed as event-handlers. Green [Green86] shows that this is greater in expres-

sive power than either state-transition networks or context-free grammars (in fact,

it has Turing power). This is because the event handlers are allowed programming

constructs over state. There is thus little or no notion of a syntax over the events

themselves other than what might be imposed by individual event handlers - events

are simply despatched as they arrive to matching handlers. This is what gives the

model its flexibility and frees it from the restrictions of syntactic parsing.

In this form, an agent can be expressed as a production system [Hopgood80].

In contrast to a formal grammar, symbols on the left hand side of productions used in

agents are typically input tokens rather than task abstractions. Hopgood and Duce,

for example, give a production system for Newman's line drawing task (although

they suppose three buttons rather than one) (op. cit. p. 250):

BI -+ <enable tracking device>
X -+ <display cursor>
B2 -ý <store start point> S
SX -* <display rubber band line> S
B3 -* <store end point>

In this system, productions (held in Long Term Memory (LTM)) are invoked

on each time interval if the events to the left of the arrow are present in Short Term

Memory (STM). The events are not ordered. X is the position of the cursor, which is

generated on each time interval. B1, B2, and B3 are button events (presumably gen-

erated by different buttons). The S event after the action specification is generated

by the rule and written back to STM. Events are consumed on each time interval, but

may match more than one rule. This formalism is thus more expressive than either

the transition network or BNF grammar given above. For example, if S and X are in

STM then both the second and the fourth rules are satisfied. The formalism is also

less moded, in that it does not determine the order of some sets of events. For

-49-

example, the end point could be given before the start point (by pressing B3 before
B2). A refinement of the production system does impose an ordering on the produc-
tion rules in LTM, which reduces the ambiguity but increases the modedness.

The power of the notation is mainly exhibited in the ease with which systems
can be combined. For example, if a similar production system were defined for anoth-
er set of buttons (say, B4, B5, B6), then the two sets of productions could simply be
combined to implement a system which allowed the user arbitrarily to interleave the
drawing of two lines. To give the same power using a state-transition network
would require many extra states for all the permutations of interleaving.

Green in the University of Alberta UIMS [Green85a], Cardelli and Pike (with
Squeak) [Cardelli85], Tanner [Tanner87], Hill [Hill87a], Olsen [Olsen9O], and
Lantz [Lantz87b, Lantz87c] have all produced systems or formalisms for handling
interaction using events and agents, usually in the form of a production system.
These, however, may be bound early to their functionality. Squeak, for example, is

precompiled into C.

There are also some hybrids in which agents use state machines or grammars
to maintain their individual input syntax independently of other agents. As noted
above, Jacob [Jacob86c] expresses task syntax using state-transition networks, but
his top-level input is event-driven. When an individual task is suspended (because

the current input does not match any of its possible transitions) it maintains its

state until control returns. The tasks thus behave as coroutines in which there is a
single thread of control. Similarly Garnet [Myers89] has `interactors' each of which
runs a predefined state machine. On the other hand, Scott and Yap [Scott88]

express task syntax as a context-free grammar, but allow parallel invocations of
tasks.

A useful benefit of an agent architecture, exploited by Hill, is that it easily han-

dles concurrent multi-device input. This is because events from a number of input

devices can be interleaved and synchronised by monitoring agents. Green's more

general agent model also allows event handlers to generate events, which brings it

close to the communication model of NeWS processes and the object-oriented

paradigm.

-50-

2.6. Refinements of the Agent Architecture

We consider ways in which the basic agent model has been exploited to pro-
duce architectures for separated user interfaces. We first introduce Toolkits, which

are the most specific instantiation of an agent architecture, and then examine the

abstractions upon which Toolkits have been based.

2.6.1. User Interface Toolkits

It is useful to distinguish user interface Toolkits from UIMSs, as do Lantz

[Lantz87a p. 39] and Myers [Myers88 p. 1]. Toolkits aim to provide a pre-packaged

set of useful tools (agents) to the interface designer. Toolkits are generally designed

to take advantage of some underlying window system, and may extend or hide the

facilities provided there. The NeWS Lite Toolkit [NeWS87a p. 43], and the X

[Swick88, Rao871 and Andrew [Palay88] Toolkits, for example, are designed to run

on their respective window systems (although the Andrew Toolkit has now been

ported to X). Recent window systems, in fact, are not intended to be immediately

used by the interface designer, but to be a `platform' or substrate for Toolkits

[Williams87 p. 2]. Rosenthal gives a good example of how difficult it may in fact be to

write directly to the window manager without using a Toolkit [Rosenthal87].

A Toolkit may provide its own input framework (such as the X Intrinsics layer

[Rao87 p. 121]). The Andrew Toolkit framework [Palay88 p. 13] and the InterViews

framework [Linton87 p. 261], for example, completely hide the underlying X Intrinsics

framework.

Most Toolkits profess to be object-oriented, and so also allow some degree of

customisation and composition of tools, although the ease with which this can be

accomplished varies. Some Toolkits are concerned mainly with the mechanisms for

creating and maintaining tools, but others concentrate on providing a set of pre-

defined tools which may have their appearance bound in to their functionality

[Swick88 p. 227]. The X Toolkit, for example, distinguishes this as a set of

`widgets'. The X and Andrew Toolkits, Interviews [Linton87], MacApp

[Schmucker86], Cardelli's Toolkit [Cardelli87], and Coral [Szekely88a], for exam-

ple, all provide basic button, scrollbar, and menu tools. However, these and other

basic tools will vary, across the different Toolkits, in their functionality, structure,

composability, and conceptual integrity (see the comments in [Roberts88 p. 279]).

-51 -

2.6.2. Device Abstraction

Underlying Toolkits, and a major use of agent architectures, is device abstrac-

tion. In contrast to dialogue abstraction, the fundamental formalism for device

abstraction is not syntax, but type. Physical devices, under some measure, deliver

values of a type. However, it is possible to abstract from physical devices to logical

devices, whose type may be more complex, for example even documents or databas-

es. The measure in these cases may be a complex function dependent on a complex

state, rather than a simple transducing function. Similarly, the triggering of logical

devices may be the result of complex event synchronisations. Nevertheless, any log-

ical device can be expressed using the basic agent model above.

An important refinement of the agent architecture in supporting such logical

devices is that agents be recursively composable. That is, complex agents can be

built out of simpler ones, to any level, such that at the top level the application itself

is an agent (see [Bos83 p. 91]). In implementation this simply requires that the out-

put of one agent can form the input of another. This is minimally satisfied if the I/O

protocols are the same, as for example with UNIX filters.

There is thus a correspondence between the grammar formalism, in which sym-
bols expressed tasks, and devices, which represent the result of tasks. Just as the

productions of a grammar express orderings of lower symbols, device values may

consist of some structuring of values from lower devices. The correspondence is

closer if the structure is given some temporal interpretation. Hagen's 'dialogue

cells' merge the grammar and device formalisms in just this way [Hagen85].

2.6.3. Homogeneity

Systems based on an agent architecture can be homogeneous [Dance87 p. 98],

in which there is fundamentally only one sort of agent which may vary in its function-

al content and type. Other agent-based systems can be heterogeneous, in which

there may be a variety of agents specialised for particular tasks.

Both object-oriented and actor [Agha85, Agha86] systems are basically homo-

geneous agent architectures, in that they do not in themselves determine the

semantics of the objects. However, systems which attempt to separate user inter-

face concerns by providing a set of predefined interface objects, like Toolkits, are

heterogeneous. In heterogeneous agent-based systems there is often a linguistic

-52-

alignment, with at least a logical partition of agents into lexical, syntactic, and
semantic classes.

For example, GWUIMS [Sibert86 p. 259], Smalltalk's MVC [Burbeck87],

Voodoo [Scofield85 p. 56], EZWin [Lieberman85], Nephew [Szekely88b], Garnet

[Myers89 p. 3201, and the Sassafras UIMS [Hi1186 p. 187] are all heterogeneous,

distinguishing different types of object which can be classified linguistically.

GWUIMS, for example, has `graphic', `technique', and `representation objects'
(lexical/syntactic), `interaction objects' (syntactic/semantic), and `application

objects' (semantic); correspondingly, MVC has view, control, and model objects;
Voodoo has images, editors, and objects; EZWin has presentation, EZWin objects,

and commands; Nephew has presenters, commands/recognisers, and models; Gar-

net has object-oriented `views', interactors and Lisp code, and the Sassafras UIMS

has modules which are specialised for 1/0, dialogue control and application routines.

In Coutaz' PAC system [Coutaz87 p. 431] the linguistic levels are made explicit

within each agent.

2.6.4. Logical Devices

We make a distinction (as does Rosenthal [Rosenthal82 p. 34], but not Tanner

[Tanner86 p. 247]) between virtual and logical devices. A virtual device does not
define any output, but simply composes input into some logical token. Examples

might be the `double click' event which Roberts et al [Roberts88] complain that X

does not provide, or Squeak's E and L events (entering or leaving a rectangle)

[Cardelli85 p. 200]. A logical device, on the other hand, we take to include the pro-

duction of output. This may be for prompts, echoing, and other feedback. In GKS, for

example, devices in REQUEST mode can provide prompting output [Enderle84

p. 275], although this is highly implementation dependent. The logical device is thus

the more complete device abstraction.

Logical devices underlie the input classes of mainstream graphics: string, valu-

ator, locator, pick, stroke and choice. Formulated first by Foley and Wallace

[Foley74] and Wallace [Wallace76], and critically examined by Rosenthal

[Rosenthal82, Rosentha183 p. 19] and Maligren [Mallgren83 p. 28], they form the

basis for the input models of CORE, GKS, and PRIGS. They have in common the

characteristic that they abstract a single value from a possibly complex set of user

actions, and generate echoing and possibly prompting. However, in the standards

-53-

they are not composable or extensible (other than through the programming lan-

guage in which they are embedded), but form a single layer of input primitives. For

this reason, the abstractions they express should ideally be complete and orthogonal
over the domain of interactive input. The differences between CORE, GKS, and
PHIGS (and between these and other logical device layers - see [Kamran83 p. 60]

and [Kasik82 p. 103]) suggest that this is not yet so. According to Rosenthal, the
input devices mainstream graphics appear "either inadequate or inelegant when
applied to interactive as opposed to passive graphics applications" [Rosenthal80

p. 361]. This is echoed by Myers [Myers87a p. 132], who claims that the input model

of the graphics standards is inappropriate for direct manipulation interfaces. More

recently, Duce et al [Duce90] have proposed a generalisation of the standard model

which allows device composition.

A forerunner of the logical device is Newman's `Reaction Handler'

[Newman68). In this system, reactions can be programmed to issue an immediate

`response' to user action, for example the prompt string "point at line to delete"

when the user hits the `delete' button. In addition to this, the reactions contain a

procedure which typically handles feedback, such as redrawing a line. However,

Newman's reactions are scheduled as transitions in a network. In addition, they are

not composable: the group of reactions in the network only conceptually comprises
the behaviour associated with a logical device, for example to maintain a rubber line.

A very similar system is Metavisu [Boullier72] which again has `reaction' state-

ments scheduled in a network.

Classical logical device models which do allow composition are Anson's

Device Model [Anson80, Anson82], and Bos' Input Tool [Bos80, Bos78] (or his lat-

er variant IOT [Bos83]). Other systems and architectures which can be thought of

as being within the logical device model are Hopgood's adaptive productions

[Hopgood80], Hill's event-response paradigm (with its extension, `outgoing

events') [Hi1187a], Sugaya's Logical Device Modules [Sugaya84], Hagen's Dia-

logue Cells [Hagen85], and `interaction techniques' [Foley84b, Dance87 p. 99,

Kamran83 p. 58] (although Kamran's are expressed as part of an interpreted

`Interaction Language').

-54-

2.6.5. Object-Orientation

Object-orientation [Stroustrup88] extends the basic notion of a logical device

which delivers a value of some type to include abstractions which declare instances

of these (for example, classes in Smalltalk [Goldberg83]). In combination with inher-
itance, this allows abstract objects to be partially specified, and instances to be

created which inherit some operations and variables but supply others more specific
to their task. In terms of type, the classes represent supertypes, and the instances

subtypes. Their relationship is such that a value of a subtype can be used wherever
a value of the supertype can, since all the operations of the supertype should be

inherited in the subtype.

There are a growing number of interface systems that are built on top of

objects [Szekely88a, Coutaz87, Borning86, Linton87, Ca1187, Szekely87, Schmuck-

er86, Crampton87, Barth86, Simoes87, Palay88, Sibert86, Lieberman85]. However,

it is worth repeating Olsen's caveat [Olsen87a p. 134] (echoed by Cockton

[Cockton88a p. 18]) that object-orientation, like agents, is a very general model, and
in itself sheds no light on the particular problems of interface separation.

Object Customisation

The argument for the suitability of object-orientation for the construction of

user interfaces rests on its inherent strategy of design by modification rather than

creation [Nanard87 p. 83, Scofield85 p. 156]. In user interfaces, it is argued, there can
be a basic set of interactive classes (menus, scroll bars etc.) which need simply to
be customised for a particular application.

However, with the trend towards visual programming [Cook88, Ingalls88,

Myers86b, Reiser88, Myers88a, Chang86] and the interactive design of user inter-

faces [Myers87b, Cardelli871 there is a need to visualise such classes. A

representative or default instance must therefore be created on the screen. The stan-

dard object-oriented model, however, does not support (in Stroustrup's sense

[Stroustrup87 p. 162]) instance specialisation, that is, the ability to use an instance

(with default values) as a prototype [Borning86 p. 359] for a class of objects.

[Took90b] also argues that finding the optimum set of basic classes is a criti-

cal design problem in an object-oriented system, involving finding `commonality'

[Stroustrup87 p. 165] in objects over the whole domain. Where this fails, the result
is often an arbitrary collection of loosely distinguished classes. Toolkits often fall

-55-

into this category. On the other hand, where a true taxonomy has been achieved, as
in GROW [Barth86], object instances may not be much use on their own. GROW,

for example, can provide class paths such as Vector: Open: RightAngles or Vec-

tor: Closed: Box. Coral [Szekely88a p. 39] has a simpler taxonomy: Graphical-

Object: Line-GO or Graphical-Object: Rectangle-GO, for example. In order to construct

useful interactive objects, it is necessary to build these primitive instances into com-

pound objects [Swick88 p. 227]. Consider the compound visual object:

There are two strategies whereby such an object might be constructed from

simpler objects such as squares and lines. We call these strategies object combina-

tion and object composition.

Object Combination

In single inheritance systems (where an instance can inherit from only one

class), objects which have a number of distinct properties are awkward to imple-

ment. For example, a rectangle filled with text may have some properties relating to

polygonality, and others relating to text handling. However, not all text need be dis-

played in a polygon, nor all polygons filled with text. These classes are therefore

orthogonal. In a single inheritance system this can lead to code duplication, since

either a text instance must be extended with a rectangular border, or a polygon

instance extended with filled text, and either of these extensions might need to be

performed on instances of different classes.

Within the object-oriented paradigm, therefore, construction of objects is more

natural through multiple inheritance [Linton87 p. 262] from a number of classes. The

-56-

compound object above, for example, could be constructed (with the square class
inherited twice with different labels):

DND

Object-oriented systems capable of multiple inheritance are becoming important in

user interface implementations for this reason [Barth86, Szekely88a, Borning p375
81, Borning861.

Object combination through multiple inheritance has a number of problems,
however. At a very fundamental level there are the possibilities of name clashes (if

two inherited classes use the same name in different contexts) and aliasing (if two
inherited classes themselves each inherit from the same class). More specifically,
the combined object is a single object, rather than a structure. Thus, dynamic

restructuring, for example to exchange a circle for a square, is impossible. Also, any
inherited modularity breaks down. In the example, the implementations of the square
and the line would each be visible from the other. Most importantly from the perspec-
tive of this Thesis, user interface issues like presentation are bound in to the

semantics of the objects.

Object Composition

True multiple inheritance, however, is rarely supported (again in Stroustrup's

sense). InterViews [Linton87 p. 262], and the Andrew [Palay88 p. 14] and X

[Swick88 p. 227] Toolkits, are all based on taxonomic (single inheritance) systems,

for example.

-57-

An alternative mechanism for building compound objects on single inheritance

systems is object composition. This is essentially the creation of a data structure of
component objects. Thus the compound object above could be created:

/I\
ono The structure is maintained by a super-object which holds pointers to, or slots

for, the component objects. Objects can thus be dynamically created or deleted. The

most common structure is a part-whole hierarchy, or tree structure, which can model

a compound object which does not have cyclic dependencies. Nearly all visualisable

objects fall into this category.

Object composition is supported in GROW [Barth86 p. 1511 and ThingLab

[Boming8l]. Similarly Coral [Szekely88a] provides `aggregates', and the X Toolkit

provides `forms' [Swick88 p. 225].

Object Dependencies

Composite objects in user interfaces typically have geometric or textual depen-

dencies between their states. For example, the appearance of a sub-object should
bear a constant geometric relationship to its parent object. A scroll bar, for example,

would be expected to remain at the side of a window when the window is moved.

Thus primitive objects in Coral [Szekely88a] have a geometric specification

(endpoints in class Line-GO, for example) which allows them to be positioned with

respect to any composite object of which they are a part. Similarly, objects in Inter-

Views [Linton87 p. 256] can be composed geometrically using Knuth's more flexible

`box' and `glue' model (see Section 5.4.2). In the same way, textual dependencies

might govern the placement of sub-text, for example paragraphs or sections, within

a wider document.

Geometric or textual dependency is a simple case of a constraint since the rela-

tionship between dependent interface objects is often constant over their lifetime.

-58-

(Note, however, that not all constraint-based systems are object-oriented, for

example Sketchpad [Sutherland63]). In general, however, as Borning notes
[Borning8l p. 356] there is a tension between the object-oriented (and agent) policy

of encapsulation, and the need to apply state constraints between otherwise unrelat-

ed objects. In the linked box example above, the endpoints of the link are

constrained to lie on corners of the boxes. While this constraint may be constant

with respect to components like the boxes and the linking line, it will not necessarily
be constant with respect to the parent space, since the boxes may move indepen-

dently.

One strategy for resolving this tension, as represented by ThingLab and Ani-

mus, is to exploit part-whole composition to capture the dependencies. That is,

inter-dependent objects can be incorporated as parts in a wider object, which itself

holds the constraints on them (and the methods for solving them). The sub-objects

are not accessed directly, but via a pathname starting with the enclosing object. This

object can therefore monitor all access to its component objects, and apply the con-

straints. The strategy is analogous to the Andrew Toolkit's `parental authority'

(see Section 2.2.2). A restriction of this is the technique of `merging' [Sutherland63

p. 337] [Borning8l p. 380], by which objects or parts of objects are constrained to be

the same (for example, the endpoints of two lines), and thereafter referred to by the

same pathname.

2.6.6. The Model-View Paradigm

A disadvantage of this approach is that logically important objects (like the

boxes and their content) may be bound in, and subordinate, to presentation objects

(like the composite object representing the linked pair). A further refinement of the

agent architecture seeks to separate logical objects from presentation objects. The

most common terminology is model objects and view objects, respectively. In the

model-view paradigm some agents represent the model, or application state, while

others generate views on the model. The view agents may be parameterisable by

style or format definitions, so that different visualisations can be applied to the same

-59-

state, simply by applying different views to the same model. The number three, for

example, may be viewed as the face of a dice, a numeral, or a value on a sliding bar:

30 views
NO

model 3

These views may in addition be presented concurrently, for example if the model

support views distributed over a number of workstations.

It is also conceivable that a single view have aspects which are controlled by a

number of models. For example, the colour, size, and shape of a single view may
depend on distinct models:

view

/f\
models

0 6O O

The values in these models may be determined by separate physical devices.

Sassafras [Hi1186], for example, allows the size and colour of a drawing stylus to be

controlled concurrently by different devices.

Szekely's `models' and `presenters' [Szekely88b], Young's `artists', which

contain `models' and `views' [Young88], Linton's `subjects' and `views' [Linton87

p. 256], the Andrew Toolkit's `data objects' and `views' [Palay88 p. 11], Scofield's

objects and images [Scofield85], and Ciccarelli's presentation and application

databases [Ciccarelli85] typify the model-view paradigm. In theory, if the agents

communicate by messages, then the model and the view can be late bound and

therefore separable.

-60-

Coutaz exploits the two possible mappings between models and views above
by proposing an intermediate component by which the models and the views can be
mutually independent:

EJ
O dialogue

socket ýý Q

o fý ýQ

models views

As originally proposed [Coutaz84a, Coutaz85, Coutaz861, the Dialogue Socket

was a syntax-based interpreter in the manner of a UIMS. A more recent formulation
[Coutaz90, Coutaz89aj plays down the syntactic component.

There are clearly state dependencies between model and view agents. It is

usually the case that changes to the model cause changes to the view. There are
two basic ways in which this can be implemented:

" The model can maintain the view. When the state of the model changes, it

updates the view. This is called variously `presentation' [Ciccarelli85],
`announcement' [Szekely87 p. 2391, or a `procedural API' [Coutaz90].

" The view can monitor the model. When the view is aware that the state of
the model has changed, the view updates itself accordingly. This is variously
called `recognition' [Szekely87 p. 239, Ciccarelli85], or a `declarative API'

[Coutaz90].

Maintenance is the traditional method by which applications update their inter-

faces, and is an example of the internal control model (see Section 2.1.2). The

disadvantage is that the interface objects are thereby bound in to the application,

and different views cannot be applied dynamically. Monitoring, on the other hand, is

an example of the external control model. It has the theoretical disadvantage that it

is costly to expect the view explicitly to poll the model in the expectation of a change

of state.

-61 -

Access-Orientation

A mechanism by which model monitoring is provided as a service to views is

access-orientation [Stefik86]. Here, variables can be `annotated' with procedures or

properties. They thus become active values [Stefik86, Myers87b p. 55], in that when

they are accessed or updated the associated procedures are called or properties re-

evaluated automatically.

Myers refines this slightly so that active values keep lists of dependent

objects rather than themselves encapsulating methods or procedures. Smalltalk's

Model-View-Controller architecture [Burbeck87] similarly uses an explicit

`changed' message to inform the view(s) that the model has been updated. The

MVC model must keep note of all dependent view objects (in a global dictionary) to

which the `changed' message must be sent. These views can then recalculate any

applicable constraints. Active values are used in this way in Incense [Myers83], in

Coral [Szekely88a p. 37], in GWUIMS [Sibert86 p. 262] (where they are called

`active containers'), in Nephew [Szekely88b p. 50] (where they are called `changes

communication concepts'), and in Descartes [Shaw83 p. 106] (where they are not

named).

Active values have wide applicability in model-view architectures. They can be

used to monitor program state for debugging purposes (`program visualisation
[Myers86b, Myers88a]), or to provide process monitoring interfaces, as in Stefik's

gauges and control panels [Stefik86 p. 14]. However, at a lower level they can also

provide input transducing in a way closely analogous to logical devices. Here the

model is the hardware-generated value of the input device, while the view that is

activated is a measure of this. Myers notes this use [Myers87b p. 55]. Turner

[Turner84] similarly makes an early proposal for `graphics variables' for languages

like GKS and PHIGS, which extends the notion of logical device to something very

close to active values.

If models and views can be composed hierarchically, such that a view at one

level becomes a model for a higher view, then hierarchical control schemes, analo-

gous to `passing the buck' (see Section 2.2.2), can be constructed. These can be

used to build agents which simply wait for their parameters to accumulate, as in

MIKE [Olsen86], EZWin [Lieberman85], and Szekely's `input gathering' mode

[Szekely88b p. 56], and in forms-based systems such as Cousin [Hayes84], and the

Karlsruhe system [Bass85].

-62-

As in general constraint-based architectures, it is thus theoretically possible
for model-view dependencies based on active values to be cyclic. In practice, howev-

er, this is rarely allowed. Stefik, for example, explicitly disallows the procedures
annotated to active values from having interfering side effects [Stefik86 p. 11]. Chi-

ron [Young88 p. 372] allows only hierarchical dependencies, in which complex agents

receive events only from their component agents. The dependencies in GROW are

similarly hierarchical and uni-directional [Barth86 p. 152]. Coral's dependencies are

uni-directional, but in contrast allow cycles [Szekely88a p. 37]. However, constraint

satisfaction here is not allowed to iterate around these cycles (op. cit. p. 44).

Using models and views hierarchically in this way, however, results in a con-

struct very similar to a logical device in which the model forms the input processor,

and the view the output processor. This makes separating models from views diffi-

cult. This is unfortunate, since the modellview distinction is a clear candidate for

separation. For example, views can have part-whole dependencies which may be

orthogonal to the logical dependencies of their associated models (c. f. the linked box-

es above). This Thesis is predicated on the notion that views may even have

behaviour which is orthogonal to their model.

A number of systems make a distinction between model and view structures,
for example Smalltalk, Chiron, Incense (where views are `artists'), Coral, Animus,

Voodoo [Scofield85 p. 115], Nephew [Szekely88b p. 47], MIKE [Olsen86 p. 327], and

the Andrew Toolkit [Palay88 p. 13]. At the top level, the view structure may simply
be mapped directly to a window hierarchy, as in Xtk [Rao87 p. 1181.

An alternative mechanism to provide access-orientation is daemons. Daemons

are attached to model operations, rather than to model values. When the operation

is invoked, associated procedures are triggered to update the relevant view.

Young's `artists' [Young88 p. 369] use a daemon-like mechanism to update the

view as a side effect of each operation.

Directness in Model-View Architectures

The pure model-view architecture is uni-directional. Changes to the model are

reflected in the view, but there is no inverse mapping (the model cannot be affected

by the view). Such a system cannot be direct, in the sense defined in Chapter 1.

incense, for example, has this restriction [Myers83 p. 123]. This is fine for program

visualisation [Myers88a], process monitoring [Stefik86], animation [Borning86,

-63-

BrownMH88), and database presentation [Mackinlay86, Herot80], but not for inter-

active direct manipulation systems, where the user expects to control the model
directly through the view (he may even believe the view is the model!). Directness

would enable the user, for example, to change the model number in the illustration

above by clicking on the dots on the dice, or dragging the bar. Lack of directness is a

major limitation of access-orientation.

Directness therefore requires minimally that the model-view dependencies be

bi-directional. Borning and Duisberg [Borning86 p. 3701 suggest a construct called a
`filter' which is a bi-directional constraint between a model and a view. Wills

[Wills87b pp. 10,14] has a notion of `transformer' along similar lines. A transformer
is not only a `projection' function between model and view, but also a mapping
between operations on the view, and operations on the model. That is, manipulating

the view invokes the corresponding operations on the model. More formally, Harri-

son [Harrison90] expresses the viewing function as having a `complementary

algebra': in the same way as Will's transformers, operations on the view, via some

parsing function, have corresponding operations on the model. These examples, how-

ever, are as yet paper models.

Mapping operations on the view to operations on the model assumes that, just

as the model can have state, so can the view. In a multi-agent environment changes

to view state are likely to be incremental. This suggests editing as a general

paradigm for model-view interaction. Scofield's is the classic thesis in this respect
[Scofield85]. In terms of text, the editing paradigm allows a model-view transforma-

tion (fonts, formatting, pagination etc.) as well as a view-model transformation

(insert, delete etc.). Olsen claims that 85% of interaction is editing or browsing

through some underlying data model [Olsen87a p. 136]. Clearly other domains, such

as graphics or databases, can, in a general sense, be edited [Wills87a p. 34, Fras-

er80]. It simply requires that the operations of an abstract type be conceived as

`editing' operations. Thus one `edits' a stack, for example, through the operations

pop and push.

The problem of bi-directional views has also been addressed in the database

domain [Claybrook85, Wiederhold86]. Views with state can similarly be used as a

database for the application [Olsen87a p. 135, Green87 p. 1151. Some representative

examples are EZWin, in which EZWin objects hold application state [Lieberman85

p. 182], Ciccarelli's presentation database [Ciccarelli85], Hudson's shared objects

[Hudson87 p. 1231, GWUIMS 'A-objects' [Sibert86 p. 262], frames in Zog and KMS

-64-

[Akscyn88], Cousin [Hayes83), and Higgens and DOMAIN/Dialogue [Dance87

p. 99]. The danger here is a loss of data freedom: applications are constrained to a

common object representation. Young criticises this approach, and gives the further

example of structure editors like Mentor which impose this restriction

[Young88p. 368]. Alternatively, there is a risk of unnecessary duplication of data

between model and view [Lantz84 p. 29]. Presenter (Chapter 7) has been utilised for

database presentation [Brown90].

Directness requires not only bi-directional model-view dependencies, but also

some mechanism whereby raw user input can be mapped to operations on the view

or on the model (for example, operations to position dots on the face of dice, or oper-

ations to increment or decrement a number). Where this mapping is performed is

critical to the separation of interface and application agents. If input is routed raw by

a framework, then the semantic interpretation of input is performed in either the mod-

el or the view. Some systems, however, distinguish a separate component, often

called a controller, as in Smalltalk's MVC paradigm [Burbeck87]. To the extent

which the controller performs this mapping, it is bound to the model or to the view.

Three routing variants can be distinguished:

In the first, input is passed by the controller to the model. The model then

updates the view (in which case the view is simply a projection and requires no

state) or it sends a `changed' message to the view to ask it to update itself, as in

Smalltalk's MVC. In either case, in order to provide directness the model must be

aware of, and thoroughly determine, the view, so that it can interpret the input in the

view context (for example, as a click on the face of a dice). The view is thus bound

early to the model, and so is difficult to separate. UIMSs, in which the dialogue com-

ponent can be identified with the controller, typically use this variant.

In the second variant, it is the view which interprets user input. If the view

updates itself on this basis then, in order to provide directness it must also be aware

of model semantics, and thus be bound early to this. Toolkit objects (views) typical-

-65-

ly use this control variant. If the view does not update itself, but relies on the model
to do this, then this variant degrades to the first.

In the last variant, the controller passes input both to the view and to the mod-

el. If in addition the controller interprets input as operations on the view and the

model, then clearly the controller must know both about the view and about the mod-

el, and these two are bound early here. However, separation is possible if the view

and the model interpret raw input independently. The UMA architecture presented in

Chapter 4 is a refinement of this third variant which provides both for directness and

separation as a consequence of Surface Interaction.

2.6.7. Problems of Model-View Separation

In any non-trivial application the model state may be large and structured. It is

likely to be optimised for its logical content, rather than for any concrete view. For

example, a network may be represented by storage structures interconnected using

pointers. Possible screen views may vary enormously in appearance and layout -
they may be tabular as well as graphical. Therefore there is not likely to be a clear

mapping between components of the model state and the view. As Szekely

[Szekely87 p. 240] points out, this is a major failing of access-orientation as a mech-

anism for prompting view updates: in a complex model data structure there may be

no single variable which can be isolated as containing the `value' which is to be

viewed. The view might be a complex function of the model, and updating the model

and updating the view may each require a number of incremental changes which bear

little relation to each other.

Secondly, as Young [Young88 p. 370] points out, the view may contain ele-

ments not derivable from the model and of relevance only to the view. The graphical

representation of a network, for example, may be laid out in various ways indepen-

dently of its connectivity. The user may even wish to manipulate the view after the

lifetime of the model which generated it, for example to include this in a document.

This is not possible in Andrew, for example, since its views are not persistent

[Palay88 p. 11]. One might also wish to have generic views which could be applied to

a variety of models (scroll bars, for example). These facilities would be impossible if

the view were simply a projection of the model.

It is thus necessary to give views their own model, separate from the

`semantic' model, for example the face of a dice as a separate entity from the number

-66-

three. But even that view could have a separate model, for example a high level
graphical description, which itself could have several views, and so on. That is, there
is a need for a nesting of models. The PAC architecture [Coutaz87] is in theory
recursive in this way. This problem has also been recognised in the Andrew Toolkit
[Palay88 p. 12] where the trick is to use ̀ auxiliary' data objects.

Similarly, but separately, it is possible to envisage a nesting of views. That is,

stylistic and other parameters of a view could be controlled through a separate view,
and so on. Interviews, for example, has a concept of `metaviews' [Linton87 p. 2561,

which are views not of the semantic model, but of the view model. Stylistic details of
the view can thus be manipulated through the metaview. Szekeley makes the same
point with what he calls presentations [Szekely87 p. 238]. As an illustration, the
Framer system [Fischer89 p. 48] allows the user interactively to change the visual

substructure of a window through a special view representation of this.

2.6.8. Separation Problems in Agent Architectures

Agent architectures in general face two major problems in providing a basis for

the separation of interface and application: media sharing and semantic seepage.

Media Sharing

In multi-tasking graphical environments, input media like the mouse and key-
board and output media like the screen are resources necessarily shared between

agents. Agents cannot therefore encapsulate all aspects of either their input or out-
put. For example, view agents cannot simply project themselves onto the screen

without consideration for the presentations of other objects, which may have visual

priority.

Agents therefore have to comply with the synchronisation and prioritisation

requirements of a resource manager like an input framework or a window manager.
In poorly modularised systems, this can lead to low-level screen `damage/repair'

[Gosling86] being bound into agents in the form of a mandatory `repaint' procedure

which the agent must supply.

-67-

Semantic Seepage

Semantic seepage refers to the early binding of application semantics and inter-

face presentation. That is, there is a tendency for application functions to move into

the interface, and thus make it more domain specific.

This can occur in logical devices, in which presentation in the form of prompts,

echoing or feedback is written into the device. It can also occur in specialised inter-

face objects, such as Toolkit components like menus or scroll bars, where inherited

presentation features are extended with application semantics. In the limit, it is pos-

sible to import all of the application semantics into the interface in this way.

Even in model-view systems which allow the composition of views into visual

structures, there may be complex dependencies between the application (model)

objects and the structure of the interface (view) objects, leading to semantic seep-

age. In the example of the linked boxes, the logical connectedness of the boxes must

also be bound in to the interface object which maintains the link in the view.

Thus while it is possible to abstract interface concerns in agent (particularly

model-view) architectures, for example into classes of tools or other presentation

objects, delaying binding, and thus full interface separation, is more difficult.

2.7. Conclusions

This Chapter has examined a number of architectures whose motivation has

been to provide a service to application writers by separating interface and applica-

Lion concerns.

Input frameworks simply provide an input routing service whereby applications

receive input directed at them, without having to poll devices. However, the frame-

work may be more or less bound in to some `desktop' model (for example, a window

manager, or more specialised environment), and thus by determining output neces-

sarily involve some semantic seepage.

The Chapter then examined two major classes of full architectures (i. e. those

that support both input and output, and therefore semantics). These two classes dif-

fer fundamentally in their granularity, and in the perspective they allow of application

semantics.

-68-

Linguistic architectures, particularly in UIMS, are monolithic, and attempt to

separate dialogue. This separation is compromised by the need for incremental

semantic feedback and directness, and the need to cope with multi-threaded dia-

logues.

The difficulty of even abstracting multiple dialogues has led to the flourishing of

agent architectures, which by contrast are manifold, and attempt to separate the

devices of interaction. However, the independence of agents is compromised by the

need to share input and output resources. In addition, particular refinements of the

agent architecture, such as logical devices and the model-view paradigm, may suffer

semantic seepage into their interface agents. It may therefore be difficult to supply a

generic interface system within an agent architecture.

We can draw the following overall conclusions from this chapter:

" In order for separation to be concrete enough to run application and interface

on different machines, there needs to be an initial clear boundary between the

two. That is, the architecture should allow an integrated interface component.

" In order to provide directness, either the interface must be aware of applica-

tion semantics, or the application must be aware of the interface presentation.

In particular, the notion of a dialogue socket by which application and interface

can be mutually independent is not compatible with directness.

There appears to be a fundamental conflict between the need for directness and

the need for separation, since directness suggests that interface presentation is

bound early to application semantics, whereas separation seeks to delay that bin-

ding. However, this Thesis exploits the fact that some aspects of the interface can

be determined purely by the user, while other aspects are necessarily determined by

the application. Separation can be achieved between these two aspects of interac-

tion (later called surface and deep), while directness can be supported by each

independently.

-69-

Chapter 3

A Formal Perspective on
Dialogue Separation

The purpose of this chapter is to show formally that while dialogue manage-

ment can be abstracted, it cannot usefully be separated from the functionality it

drives, as these terms are defined in Chapter 1. This strongly limits the degree to

which

" dialogue management can be used to incorporate user-level concerns in the

interface, independently of the application.

" the execution of dialogue management can be distributed from its functionali-

ty.

These are the two major motivations for linguistic architectures like UIMS.

This Chapter is thus a complement to the previous Chapter, in that it seeks to make

precise the limitations on dialogue separation recognised in practice. The overall

motive is to support the Thesis that Surface Interaction provides a better architec-

ture for user interface separation than the linguistic architecture.

3.1. Interaction

We consider three major components of interactive computation:

" State - the type of values which the computation can take on. The state is

likely to be a complex structure itself containing different types. A distin-

guished subset of the set of states forms the start states for the computation.

-70-

" Functionality - the operations possible on the state, which result in changes

to the state (state transitions).

These two components constitute the semantics of the computation, since the

functionality defines the set of states, or values, derivable from the start states.

" Dialogue - the set of possible sequences of operations that can take place in

a computation. Dialogue is an abstraction of control. For example, common con-

trol abstractions provided in programming languages are sequence, iteration,

and selection. When used as communication (i. e. when one process invokes an

operation in another process), the operations can be called events. Events sub-

sume both input and output, since one event can be the output of one process

and the input of another.

We can easily model the human user as a process which communicates with

the computer. Dialogue can be thought of as the syntax of this interaction.

As we shall see, dialogue is determined by the semantics. These points can be

illustrated by a simple example which will also serve as a tutorial for the formal

notations of Z and CSP used in the Thesis.

3.1.1. State

Imagine a nuclear reactor, which (as far as I understand it) consists essential-

ly of a core of radioactive material, some damping rods to control the chain reaction,

and some coolant to take away the heat generated. At the formal level we can

abstract away from all engineering detail such as specific materials or dimensions,

and also from any components of the system that remain unchanged throughout its

operation, such as the radioactive core itself. The critical information we wish to

know or control in the nuclear reactor, therefore, is simply the position of the damp-

ing rods and the level of the coolant.

We can define such a system in the schema language of Z:

REACTOR

rods: up I down

coolant: in I out

-71 -

The schema REACTOR defines a state space consisting of the variables rods,
which can take the values up or down, and coolant, which can take the values in or

out. In Z, the state space can be defined explicitly as the set

{REACTOR " 9REACTOR}

that is, all the possible bindings between values and component variables which con-
form to the constraints in the schema REACTOR (the prefix 0 indicates a binding of

the schema -a particular set of values for its variables). In this case there are no

constraints (these would be expressed in a separate predicate within the schema),

and so REACTOR represents the set of all possible combinations of values for rods

and coolant.

3.1.2. Functionality

The functionality of the reactor consists of the operations we can perform to

modify this state. A state-based specification like Z allows us to define operations
by specifying how the state changes as a result of the operation. That is, we specify

pre- and post-conditions on the state. Typically, the post-condition expresses a

relationship between values of the variables prior to the operation and their values

after the operation, possibly as a function of input parameters.

For example, the REACTOR clearly needs an operation to set the rod position:

SET RODS

A REACTOR

rodpos?: up I down

rods' = rodpos?
coolant' = coolant

This schema illustrates a number of features of the Z schema language. The

top box is the signature which declares terms and their types, while the lower box is

a predicate consisting of a conjunction of clauses (the logical operator A is under-

stood between lines). One schema can be included in another simply by referring to

its name in the signature. All of the declarations and predicates of the referenced

schema are then understood to be included in the referencing schema.

-72-

In the case of SET RODS, the schema reference REACTOR is prefixed with 0,

which has the effect of including, as well as the original signature and predicate, a

mirror version in which all the variables are decorated with prime ('). Thus

SET RODS includes the variables rods, coolant, rods', and coolant' (REACTOR has

no predicate). By convention, the unprimed variables refer to state before an opera-

tion, while the primed variables refer to state after an operation. Also by convention,

variables suffixed with ? or ! are input or output variables respectively.

OREACTOR thus indicates that an operation is being defined on the REAC-

TOR state, to which an input parameter rodpos? is provided. The schema establishes

that after the operation SET RODS, the variable rods has been set to the value of

the input rodpos?, while the value of coolant remains the same as it was before.

In exactly the same way we can define an operation to set the coolant level:

SET COOLANT

A REACTOR

coolantlevel?: in I out

coolant' = coolantlevel?
rods' = rods

To complete the specification, we need to define an initial state for the REAC-

TOR. We do this by providing an operation (prefixed conventionally by Init) which

ignores the prior state of the variables, and sets their primed state to appropriate

values:

Init REACTOR

A REACTOR

rods' = down
coolant' = in

The operations SET RODS, SET COOLANT and Init REACTOR in effect

define sets of possible state transitions in the system. The type of each operation

therefore is

-73-

REACTOR -*REACTOR

That is, each defines a function between reactor states. For example, if REACTOR is

in a state defined by the tuple

(rods 4 down, coolant 4 out)

(using 4 to indicate a binding of a value with a variable name), then the operation
SET COOLANT with parameter in will convert this state to

(rods 4 down, coolant 4 in)

In the general case with an arbitrary state S, as Sufrin and He point out

[Sufrin90 p. 154], it is necessary to weaken the state transitions to a relation SHS,

since the predicate of an operation may not fully determine the resultant state.

3.1.3. Object

For convenience, we can combine the description of state and functionality into

a single tuple of type OBJECT:

OBJECT == Sx0x Init

where S is a state, 0a set of operations defined as state transitions (relations) on S,

and Init is an initialisation operation on S. In mathematical terminology, an OBJECT

defines an algebra, if we regard the Init operation as producing constants of the type.

Thus we can convert the REACTOR system defined above into an OBJECT:

Reactor =
(REACTOR, {SET RODS, SET COOLANT], Init REACTOR)

3.1.4. Range

The states of REACTOR which it is possible to reach using the operations

SET_RODS, SET_COOLANT, and starting with the state resulting from

Init_REACTOR, are in fact all the states in REACTOR. In general, this is not the

case. For example, using an operation (+2) on natural numbers, and starting with 0,

it is only possible to reach all the even numbers. The set of reachable states is

therefore a useful measure. We call this the range of a system.

-74-

Range can be defined generically over any object:

V 0: OBJECT 10= (state, ops, Init) "

range 0= (U ops)* 4 ran Init)

That is, the range of an OBJECT is the image of the initialised states through the clo-

sure of the union of all the operations. More simply, range is the set of all states that

can be reached from any initial state, using any combination or iteration of opera-

tions. Fairly clearly,

V 0: OBJECT 10= (state, ops, Init) " range 0c state

That is, the range of an OBJECT can only ever be a subset of, or equal to, the state

on which it is defined. This is a simple consequence of the state-based definitions of

the operations.

3.1.5. Behaviour

Following Sufrin and He (op. cit.), it is possible to think of the system, or

object, as a process, and its operations as an alphabet of events (E) in which the pro-

cess can engage. It is therefore possible to derive a single behaviour function

(outside the Z specification) which maps such events to the state transitions they

produce:

(3: E-(SHS)

This is the formal equivalent of the event-action pair notation for agents outlined in

the previous Chapter.

For example, if the reactor consisted just of the Init REACTOR operation, then

ß. {Init REACTOR H

{Init REACTOR " 6REACTOR H BREACTOR'}}

That is, the behaviour function would consist of the single mapping which takes the

event Init REACTOR (bold type is used to distinguish the event name from the

operation name) to the relation defined as the set of pairs of bindings of REACTOR

and REACTOR' which satisfy the predicate of Init REACTOR.

-75-

However, we also need to take into account parameters to operations. Given a
particular operation, its state transition relation is in fact a function of its parameters
(since the state transitions will differ depending on the parameters). For simplicity

we can think of the parameters (which may be arbitrary in number) as a single tuple
P of the actual parameters. In the general case, therefore, we need to upgrade the

behaviour function:

A,. - EI -4 P -a (S H S)

For example, if the reactor consisted of just the SET RODS operation, then

I31 = {SET RODS I-4 X rodpos?: up I down "
{SET RODS " OREACTOR F-i OREACTOR'}}

It is convenient, however, to expand the set of events to incorporate all the possible

parameters, so that we can revert to the simpler behaviour function P. In these

terms the alphabet of the reactor, for example, can be defined as the union:

E:: = SET RODS «up I down»

SET_COOLANT «in out>>

I Init REACTOR

(so that one event might be SET COOLANT in).

3.1.6. Dialogue

In the general case, since the state resulting from an event may or may not sat-

isfy the pre-conditions for a potential subsequent event, it is possible to determine

which sequences of events the process can theoretically engage in. These are known

as traces of the process. In user interface terms, the traces record the dialogue with

the user. With an arbitrary behaviour function 0, the set of traces (traceset) can be

defined:

traceset = (t: seq E1$/ (t $ ß) * {})

That is, traceset consists of any sequence of events the composition ($) of

whose state transitions also defines a state transition. In yet other words, a

sequence of events is a trace if the state transitions each event defines form a con-

-76-

nected sequence of states such that the whole can be thought of as a single state
transition between the initial state of the first event and the final state of the last

event.

A necessary feature of the traceset is that it is prefix-closed. That is, if a pro-

cess can engage in a sequence of events t, then it clearly can also engage in any
initial subsequence of t (since it already has). These must therefore also be possible

traces.

Since there are no preconditions for the Init event, this can occur at any point in

a trace, and has the effect of returning the process to the initial state. In fact in aZ

specification there is an implicit constraint on the traceset such that the first event in

all traces must be an Init:

Ztraceset = {t: traceset I head t= Init]

(Equivalently, the traces could be constrained by designating certain states as

start states. This technique is used in defining state machines, for example.)

Ztraceset therefore must at least contain the trace <Init>, because the Init

event is always possible. Since Ztraceset is thus non-empty as well as prefix-

closed, there must be a CSP-defined process which corresponds to it. For example

we can define the Reactor process (R) by:

R= Init REACTOR -4 µY. (x: E -ý X)

That is, R is the process which engages first in the initialising event, and then in any

sequence of events from its alphabet E.

Since there must be a process which corresponds to the observable traces of

an OBJECT, and since the traceset can be derived deterministically from the defini-

tion of an OBJECT as we have seen, there must also be a function which can convert

an OBJECT into a process:

observe: OBJECT -9 Process

(where Process is the set of CSP-defined processes). We can define observe simply:

V Q. OBJECT " traces (observe 0) = Ztraceset

-77-

(traces is the CSP operator. We assume Ztraceset is quantified over all OBJECTs).
Also, if (3 is the behaviour function of the OBJECT 0, then

dom 0=a (observe 0)

That is, the alphabet of the process observable from 0 corresponds to the operations
for which state changes are defined in the behaviour function. Thus we can convert
the Reactor OBJECT into the process R:

R= observe Reactor

This equivalence between OBJECTs and Processes holds whether the process-

es are deterministic or not. In fact the possibility of failure in a non-deterministic
process [Hoare85 p. 129] corresponds to looseness [Spivey89 p. 135] in the specifica-
tion of a state transition (which is the reason for specifying the state transitions as a

relation rather than a function in (3). At this level, also, we abstract away from any
distinction between input and output.

3.2. Relation between Functionality and Behaviour

What is the relationship between a state-based description of functionality,

and an event-based description of behaviour? It is theoretically possible to recover
the semantics of a trace (i. e. the particular state transition it effects) from the trace

alone. But in order to do this we would need to pack more information into the name

of the event by `uncurrying' the behaviour function:

02: (ExSxS) -*(SxS)
In effect we enumerate all state transitions, and expand the name of the event with

the unique transition to which it maps. A typical event in such an alphabet might be:

SET RODS down when rods is up and coolant is in

resulting in coolant in and rods down.

It is always possible to recover state effects from such a description of

behaviour since clearly the state transitions are made explicit in the event name (or

some simple interpretation of it). In the abstract, therefore, traces can describe any

functionality. In practice, of course, this would result in an impossibly large number

of events.

-78-

On the other hand, not all sets of traces can be described purely by a state-
based definition of functionality. The most obvious counter-example is Ztraceset,

which can in general only be constructed by an explicit constraint on traceset. It

might be imagined that the same effect could be achieved by including a flag in the

state which is set by Init and is a precondition of every operation. But then we are

assuming either that Init is the first operation, or that there is some prior initialisa-

tion of the flag.

In practice, therefore, both a state-based description of functionality, and an

event-based description of behaviour, seem necessary. The need for this `hybrid'

approach has been recognised in a number of places [Sufrin90, Josephs88, Lam-

port89, Abowd90]. Without a description of functionality we would be reduced to
implementing behaviour as a state machine in which each state is explicitly enumer-

ated. In this case, the number of states, or the number of events/transitions, rapidly
becomes unmanageable.

For example, since the parameters for the operations in REACTOR are essen-

tially Boolean, it is easy to enumerate its alphabet of events and its states. But if

we had allowed the level of the rods or coolant to be specified by a number, then in

theory the states and hence the alphabet would be infinite. Conversely, without a
description of behaviour there may be some orderings of the operations which we

could not exclude. In the general case, one constraint may best be expressed over

the traces, another over the state. We give an example of this below.

3.3. Taking account of the user

Excluding certain traces from those possible under the functionality is useful

when we need to incorporate external concerns. For example, the Reactor allows

any sequence of the operations SET RODS and SET COOLANT and their parame-

ters, and this would presumably also be true of the hardware. However, it will be in

the interests of the user of the reactor to exclude those traces which generate a

state in which rods is up and coolant is out. In this state the reactor will suffer a

meltdown or worse.

In order to prevent a meltdown we need to place the following constraint P on

the traces:

-79-

P (t: seq E) =Vu: seq EI-, <SET RODS down> in u"

--, <SET
_RODS

up> ^u^ <SET COOLANT out> in t

AVv: seq EI-, <SET COOLANT in> in v9

<SET COOLANT out> ^v^ <SET RODS up> in t

(in is the contiguous subsequence operator). A safe reactor will then have the

following traces:

Safetraces = {t: Ztraceset I P(t)}

The constraining predicate P is clumsy. What we are in fact avoiding is a par-
ticular state of the reactor. It may be easier to incorporate the constraint in the state-
based description, and in this case it is possible to do this:

SAFE REACTOR
REACTOR

-, (rods = up A coolant = out)

That is, the particular state in which the rods are up and the coolant is out is

not allowed in SAFE REACTOR:

SAFE REACTOR = REACTOR - ((rods 4 up, coolant 4 out)}

However, we ought also to ensure that no operation can put the safe reactor
into this state. The original Init operation clearly does not, but we need to restrict

the other operations:

SAFE SET RODS
SET_RODS
SAFE REACTOR'

-80-

That is, SAFE SET RODS is the same as SET_RODS, except that the
SAFE REACTOR constraint must apply after the operation (i. e. on the primed vari-
ables). Similarly:

SAFE SET COOLANT

SET COOLANT
SAFE REACTOR'

We do not prove it here, but such a functionality, along with the initialising con-
straint, generates the traces Safetraces.

This is a clear example in which the restrictions placed on the system are in

the interests of all users. There is therefore an argument here for incorporating these

constraints within the functionality in this way. However, there are many cases
where different users may require differing access to the operations of the functional-
ity. For example, the access of ordinary users to an operating or database system is
likely to differ from that of the system manager. There may also be cases in which
the need for constraints arises because of some interference between a number of
processes, for instance when two processes access the same resource. In all these
cases we need ideally to make the user constraints on the traces independent of the
functionality.

For example, we might wish a trainee user of the reactor never to push the

same button twice in succession (assuming there is a button for each event). A suit-
able constraint might therefore be:

Q (t: seq E) = de: E"-, <e, e> in t

and his traces would be:

Traineetraces = {t: Safetraces IQ (t)}

This constraint is not dependent on the functionality, in the sense that (so long as

the alphabet E is generic) it could be applied to any set of operations.

Representing user concerns by placing constraints on the traces of a functional-

ity is a fundamental concept in User Interface Management Systems. The

practicalities and limitations of this approach were examined in Chapter 2. Research

has also been carried at York [Dix85, Dix86, Dix87a, Dix87b, Dix88b, Harrison90]

-81-

and Oxford [Sufrin90] into devising and formulating user-oriented properties of inter-

active systems as predicates over traces.

3.3.1. Implementing Trace Constraints Separately

User constraints expressed within the functionality, that is, as pre- or postcon-

ditions of the state transitions caused by the operations, would naturally be

implemented as part of the functionality. This would be the case, for example, with

an implementation of SAFE REACTOR above. Constraints expressed over traces,

on the other hand, are possible to implement separately.

We can model such constraints with a separate user interface process (U),

which communicates with the functionality. For example, if we wished to prevent a

trainee from pushing the same button twice, then we could implement U such that

U sat (`de: (xU "<e, e> in traces (U))

Let us assume (by observation) that there is a process S whose traces are exactly
those of the operations on SAFE REACTOR, and that U has the same alphabet as S.

If we run U in parallel with S:

UII S

then we have a process whose traces, by the definition of the CSP II operator, con-

sisted of only those traces which were possible under both U and S. That is,

traces (U II S) = Traineetraces

This prevents the trainee from pushing the same button twice, which is exactly what

was required. By creating a special interface process in this way we can implement

such user-oriented interface constraints separately from the application.

In general, for any application process A and interface process U, the only

restriction we need to apply is

aUr cth* ()

That is, that their alphabets should have some events in common. If this were not

the case, then they would not be able to communicate. On the other hand, we need

to allow the possibility that the interface process engage in some events with the

end user which the application does not see (such as building up a command from

-82-

keystrokes or mouse clicks), and conversely that the application engage in some
events (such as reading from disk), which the end-user does not see.

3.4. Limitations on Separation

In the abstract, then, this argument supports the case that it is possible to
implement a UIMS which represents user concerns as constraints on dialogue

traces, separately from application functionality. However, there are two major limi-

tations to this separation.

Firstly, the interface process must know some or all of the application events.
This clearly limits the genericity of the interface process. There are two strategies.

" The interface process may be deliberately specialised to some application

domain, for example database or process control.

" The interface events may be quantified over sets of application events. The

constraint in U above, for example, that no event should happen twice in suc-

cession, applies to any application event. It is still an active issue, however,

whether effective `user engineering principles' [Thimbleby84, Thimbleby851

can be expressed independently of application semantics in this way.

Secondly, the interface process must know some or all of the application state.
This is a much more severe limitation. For example, consider if we wished to imple-

ment the SAFE REACTOR process (S) by running the Reactor process (R) in

parallel with an interface process (U) which maintained the safety constraints:

S=RUU

We would need a process U such that

U sat P Or)

That is, the traces of U should satisfy the safety predicate P defined above.

However, in order to decide P, the least information that U must maintain is

the state of the rods and the state of the coolant. That is, U must know that a

SET RODS up event cannot be accepted if the coolant is out, and that a
SET COOLANT out event cannot be accepted if the rods are up. This information is

-83-

in fact the whole of the Reactor state. The interface process U thus needs to dupli-

cate the application state in order to predict these errors.

These limitations suggest that it is in fact impossible to separate (late bind),

or even abstract, the interface from the application process, if the interface is to
incorporate any user-level constraints on the application behaviour other than those

which are completely generic (like Q in Traineetraces).

One might imagine that it would be possible to express meta-constraints in

the interface that make no specific reference to application state but yet impose use-
ful properties, for example a Safe constraint that could be applied to any class of

application. Upon examination, however, some communication protocol must be

agreed between application and interface such that either the application itself speci-
fies what is safe (which misses the point of separate user constraints), or the
interface is specialised to that class of application by referencing its functionality.

3.4.1. Classes of Dialogue Separation

This necessary binding of interface control to application functionality can be

classified by examining the level of dialogue constraints required in the interface. As

has been noted, the constraint Q in Traineetraces is generic over any functionality,

whereas a Safe constraint necessarily depends upon some semantic interpretation of

what is safe in the application domain.

In general we can view the traces that the interface process should accept as a

formal language. We therefore have an automatic classification of interface systems

in terms of the Chomsky hierarchy of languages, and can be precise about the

semantic requirements of each. Both Traineetraces and Safetraces are regular lan-

guages (Chomsky type 3), since they can be recognised by a finite state machine.

State-transition systems are a common implementation mechanism for parsing user

input in a UIMS.

Any user interaction that has a nested structure (for example, opening a win-

dow and then invoking an application within the window) is part of at least a

context-free language (Chomsky type 2), and requires at least a state machine with

a pushdown stack to implement its grammar. The stack keeps track of the level of

nesting.

-84-

If the interface is required to manage error-handling, aborting or undoing, then
it must recognise at least a context-sensitive (Chomsky type 1) or even a Turing-

power (Chomsky type 0) language. This is because at the very least it needs to
jump about in the stack - that is, it needs a random access memory. Thus, in this

case we need to program the interface as well as the application, and it is debatable

to what extent we have abstracted the dialogue, rather than simply fragmented the
functionality.

It is therefore inescapable that the more powerful the dialogue control we wish

to build into the user interface, the more application semantics it has to know about.
This leads to three alternative pathological situations in UIMS based on the separa-

tion of dialogue and functionality:

" Application state, as in the example of the SAFE REACTOR process above,
is duplicated in the interface. In the limit, all application state might need to be

duplicated.

" The interface repeatedly enquires about application state. In the limit, the

interface can take no action without first checking the application state, and the

communication link between them is heavily used.

" The application and interface are fragmented into numbers of objects (as in

the agent architecture (Chapter 2)) each of which handles some application
functionality and some interface control and presentation. In the limit this

results in a `homogeneous object space' [Dance87 p. 98] in which it is impossi-

ble to separate application objects from interface objects.

Collectively we can call these situations semantic seepage from the application

into the interface, because they all arise from the need to know about the application.

They are pathological to the extent that they compromise the separation (that is, the

late binding) of the interface and application components.

3.5. Input and Output

We can make the domain of application-independent dialogue constraints

clearer by refining the earlier notion of simple communication events into separate

input and output events.

-85-

Up to now we have considered the result of an operation to be simply a change
in the state of the system. In the case of the REACTOR this clearly is the most
important effect. Even here, however, we may wish to specify some component of
the state, or some function of this, as an explicit output. For example, we may wish
an indicator light on a panel to flash, showing that the rods are up.

Z allows us to specify output using, by convention, a `! ' suffix. Thus we can
refine the SET RODS operation:

SET RODS]
SET RODS
rodindicator!: off I on

rods' = up = rodindicator! = on
rods' = down = rodindicator! = off

We assume that there is a similar indicator for the coolant, and that the indicators

are initialised correctly.

We can abstract away from the distinction between input and output because a
Z operation is conceived to be atomic, and therefore at one level we can take output
as part of the invoking event, just as we have done with input. A typical event there-
fore might be

SET RODS up and rodindicator on

At this level, the behaviour function 0 does not change with the introduction of out-

put parameters.

In practice, however, the operation may take some time, and we may wish to

direct output to a specific receiving process along some channel. It is also the case

that, in considering interface design, we might well want to differentiate different

classes of input events. For example, we might want to treat the specification of an

operation (for example, by clicking an icon) as a separate event from the specifica-

tion of its operands.

It is fairly easy to decompose the invocation of an operation into separate input

and output events. The alphabet of the process is in this case extended to be the

-86-

union of the operation names, and input or output parameters and their values. For
example, at this level the alphabet of REACTOR could be:

E:: = SET RODS
I SET-COOLANT
I Init REACTOR
I rodpos? «up I down»
I coolantlevel? «in I out»
I rodindicator! <<off I on>>
I coolant indicator! <<off I on>>

(We use emboldened parameter names as constructors).

This maps easily to CSP, by treating the parameter names as channels (i. e. we
put ? or ! between the constructor and the value). An invocation of an operation now
consists of the set of events containing an operation name, and input and output
parameter values. For example,

{SET RODS, rodpos? down, rodindicator! off]

Let us call such sets of lower level events invocations. Correspondingly, the
behaviour function ß has simply to be modified so that invocations, instead of just

events, map to state transitions:

ßl: PE--ý(SHS)

We generate the traces of the behaviour at this lower granularity in two
stages. Firstly, we modify the original trace generation so that it produces
sequences of invocations, rather than sequences of events:

invocation_traceset = {t: seq PE1$l (t

Secondly, in order to collapse the sequences of invocations into sequences of

events, but still preserve a deterministic mapping between sequences of events and

sequences of operations on the state, we need only place two constraints on the

sequencing of events from the invocations:

" the input events from any one invocation occur before any output events from

the same invocation.

-87-

" an operation fires only when all its input events have occurred, and the next
events are its output.

In order to express these constraints we need predicates to determine if an

event is input or output. We define these simply by saying that input(e) and out-

put(e) are true if e is an input or an output event respectively. We can then expand

any invocation i into a set of possible (injective) sequences of events:

expand (i) = {t: iseq EI ran t=iA

V el, e2: iI input(el) A output(e2) " t- el < t- e2)

For example,

expand ((SET-RODS, rodpos? down, rodindicator! off}) _
{<SET RODS, rodpos? down, rodindicator! off>,
<rodpos? down, SET RODS, rodindicator! off>}

That is, in order to invoke the SET RODS operation to set the rods down, we can

either specify the operation name SET RODS followed by the parameter value rod-

pos? down, or vice versa, but in either case the output event rodindicator! off must

occur last.

The possible traces of input and output events from any behaviour (i. e. any

sequence of invocations it) can thus be defined:

iotraceset = (it: seq P E; i: 1.. #it; t: seq seq E

I #t=#itAtiE expand (iti)" "/t)

For example, an iotrace of a SET_RODS operation, followed by a

SET COOLANT operation on Reactor, might be:

<SET RODS, rodpos? down, rodindicator! off,
SET COOLANT, coolantlevel? in, coolantindicator! on>

But it could also be:

<rodpos? down, SET RODS, rodindicator! off,
coolantlevel? in, SET_COOLANT, coolantindicator! on>

In the second the parameter is accepted before the operation name. This is a com-

mon ordering in iconic environments because it gives the user freedom to amend the

-88-

parameters before invoking the operation. We could even unambiguously allow
these modes to be mixed:

<SET RODS, rodpos? down, rodindicator! off,
coolantlevel? in, SET_COOLANT, coolantindicator! on>

It is clear that any one trace from invocation
_traceset,

i. e. a sequence of invo-

cations, allows a number of possible sequences of input and output events in
iotraceset. This is because we are not strict about the ordering of input events or
output events to a particular operation. This is just as it should be, since we thereby

allow, within the semantic constraints, a range of dialogue syntaxes. It is appropri-
ate that any further constraints on the dialogue be imposed by an interface process,
for example one that ensures interface consistency by imposing a syntax in which

operator precedes operand (e. g. typing a command followed by its arguments) or

vice versa (e. g. selecting some text and then clicking on the delete icon).

However, the predicate in iotraceset, as defined, is too strong given the origi-

nal constraints. That is, it excludes some semantically possible traces of input and
output events. In particular, it excludes traces in which input events to one operation
start before the completion of a previous operation. One such trace might be:

<SET RODS, SET COOLANT, coolantlevel? in,
rodpos? down, rodindicator! off, coolantindicator! on>

This trace is still unambiguous in terms of the invocation of operations and

their parameters. That is, it is a valid invocation of the semantic behaviour, since the

operations still fire in the same sequence, even though some of their inputs may
have occurred early and may be interleaved. These extra traces match an interactive

syntax in which operations may be specified by filling slots in forms or dialogue box-

es, so that a number of operations may be partially specified at the same time.

The mathematics to express this is cumbersome (and so is not given), since it

is necessary to identify to which invocation an input event belongs. Otherwise, if

operands had the same types, there would be no way of knowing if an input event

completed an operation invocation that had already started, or was destined for a

subsequent operation. Thus each event in the traces must be tagged with the opera-

tion to which it belongs. In a graphical interface this tagging is performed by

location - we know that an input is destined for one operation rather than another
because, for example, it is typed by the user into a particular named dialogue box.

-89-

By definition, the constraints on the interleaving of events within input and out-

put sets, and between different invocations, have been designed to preserve the

mapping between sequences of events in iotraceset and the possible sequences of

operations on the underlying functionality. That is, we can assume there exists an

interpretation function I which is total but not necessarily bijective:

I: iotraceset -4 traceset

That is, when we refine events into input and output, there may be a number of

acceptable dialogue sequences for the same sequence of application operations.

Which particular dialogue sequences are allowed, then, is entirely independent of the

application, and can rightly be made an interface design issue.

3.5.1. Communication

It remains to demonstrate how two processes defined in this way might actual-

ly communicate along the channels. For example, we could define a display panel

consisting of two lights:

DISPLAY ý [rodslight, coolantlight: on I off]

(this is a horizontal schema definition in Z). Operations on the panel switch the

appropriate lights on or off (we assume correct initialisation of the lights):

RODS LIGHT

A DISPLAY

switch?: on I off

rodslight' = switch?
coolantlight' = coolantlight

COOLANT LIGHT

A DISPLAY
switch?: on I off

coolantlight' = switch?
rodslight' = rodslight

-90-

We can construct a process D from the DISPLAY panel by observation (we

assume an initialisation operation):

D=

observe (DISPLAY, {RODS LIGHT, COOLANT LIGHT}, Init)

D thus is defined over events which switch the appropriate lights on or off. We

could also output the light state to some other processes which represented lights,

and so on, but clearly at some point we must be satisfied simply with effecting a

change of state in a process. We would hope for the correct communication to occur if

we ran the two processes in parallel:

RIID

Unfortunately, however, the alphabets of the processes are disjoint. For exam-

ple, the output event

rodsindicator!. on

from R does not coincide with the input event

switch?. on

to D, as we might hope. If we use one common channel called switch, then it would

not be clear which of the operations RODS_LIGHT or COOLANT LIGHT were to

be invoked when on or off appears on the channel. On the other hand, if we assign
different channels, for example rodsindicator and coolantindicator, to each operation

in Reactor, there would remain the problem that the behaviour ((ii) of D is defined

over events consisting of operation name and parameter value, not just of the param-

eter value.

This illustrates the essential binding that must occur between communicating

processes. That is, either the sending process R must specify the operations to be

invoked in the receiving process D by outputting composite events consisting of an

operation name and its parameters, or each operation in the receiving process must

have a distinct channel, and the binding between the channel and the operation name

must be made in or before the receiving process.

We can represent such dynamic or delayed binding by another process:

- 91 -

B=

rodsindicator? on -ý RODS-LIGHT -4 switch! on -4 BI
rodsindicator? off --ý RODS_LIGHT -* switch! off -- BI

coolantindicator? on -+ COOLANT LIGHT -4 switch! on -* BI

coolantindicator? off -* COOLANT LIGHT -* switch! off -ý B

B simply takes the output from R and converts it into input suitable for D. The

communication we want - that is, the indicators lighting correctly on the display pan-

el - takes place if the three processes are run in parallel:

BIIRIID

This communication can be illustrated:

rodsindicator

switch

coolantindicator

Delaying binding in this way has the advantage that, without changing R, we

could implement an alternative display simply by changing B:

D) DI

switch

B

rodsindicator coolantindicator

R

-92-

Making R call directly on D by incorporating the operation names in the output
does away with B, but binds R to D. Note, however, two important points:

" It is not possible to plug in arbitrary applications R or displays D, in the man-
ner suggested by Coutaz Dialogue Socket [Coutaz85]. This is simply because

the alphabets of new Rs or Ds may be disjoint from B, and thus they would not
be able to communicate. In the general case, the alphabet of B will have to be

extended for each new application or display.

" This architecture is uni-directional. Thus it does not cope with directness,

whereby some external change to D can be communicated back to R. As was
noted in Section 2.7, directness requires either that D is bound early to R, or R
is bound early to D.

These are fundamental design issues in providing separated interfaces.

3.6. Conclusions

There are two major motivations for separating dialogue from functionality:

" if dialogue can be abstracted, then it should be possible to express this in a
notation particularly suited to user interaction.

" if dialogue can in addition be bound late to its functionality, then it should be

possible to run this as a separate process, and possibly to incorporate some

user-level constraints at run time.

Separate dialogue management is the essential architecture of the classical
UIMS. As we have seen, there may be a wide range of possible interleavings of dis-

crete input and output events which are unambiguous in interpretation (via I) into

application operations. The justification for dialogue management is that, for cogni-

tive or other reasons, not all of these possible ways of invoking functionality may be

unambiguous or at least easy to use for the user.

The design goals for dialogue management in UIMS are thus often to restrict

the number of ways in which a user may invoke some underlying functionality, by

imposing an interactive style such as forms, dialogue boxes, or icon-based syntax-

es. Clearly, if the underlying functionality is inadequate or poorly designed, we
cannot expect dialogue to be able to extend its possible traces in any useful way.

-93-

By contrast, the motivation for work on abstract models of interaction at York

and Oxford is to guarantee certain properties of the traces of the functionality visible

through the interface. For example, the principle of reachability [Dix88a] ensures

that any state of the application can be reached from any other state. These abstract

principles thus act as checks on over-constrained dialogues, but also are principles

for the design of functionality. They are therefore bound very early, and we cannot

expect them to be executable.

Many of the principles of these abstract models require access to application

state, at least to effect an equality operation. The principle of reachability, for exam-

ple, is expressed [Dix88a p. 501 by using the equality of the effects of two programs

on system state.

However, in separating (i. e. late binding) dialogue and functionality we cannot

even assume that it is possible to determine whether two application states are the

same. In contrast to the PIE model [Dix88a p. 371, therefore, we have defined the

interpretation function I not from programs (P) to effects (E), but simply from dia-

logue sequences to sequences of operations.

This chapter has attempted to clarify the scope of constraints on such a sepa-

rated dialogue. If the dialogue management process is to be generic and effectively

separable (fundamental premises in a UIMS), then semantic seepage, that is, the

binding of the interface to application semantics, must be avoided. This limits user-

oriented dialogue management to two classes of constraint:

" constraints which impose a command-invocation syntax, for example, opera-

tor-operand or the reverse.

" constraints which are expressed over sequences of commands, but which

require no access to application state, that is, which do not require any inter-

pretation of the effects of the commands. A constraint like this, for example,

might simply limit the number of command invocations per session.

Even the second type of constraint might be undesirable in practice. Imagine

the scenario where the human operator of a Reactor, following union pressure, was

assigned only a certain number of operation invocations per shift, and that this was

enforced by a separate dialogue manager. Now the Reactor springs a leak and the

coolant level drops. It would be a pity if the Reactor suffered a meltdown simply

-94-

because the operator had run out of his allotted operations and could not raise the
rods out of danger.

It therefore can be argued that no constraints imposable by the dialogue man-
ager should limit the possible traces of the functionality, because without knowing

the application domain completely it is impossible to predict the effect of such a limi-

tation. On the other hand, as we argue above, if there are useful constraints which
do depend on the application state, then the proper place to implement these is in

the application itself, not in a separate dialogue manager.

The domain of separable dialogue constraints (or equivalently, principles or

predicates on dialogue) is thus effectively limited to syntactic variations on the style

of command invocation, that is, to the first type of constraint above. This can be

expressed formally. If D is an acceptable dialogue constraint under this principle,

then when D is used to constrain the iotraceset (the input and output events of the
dialogue), then it is still possible to generate any sequence of application operations
(traceset) by applying the interpretation function I to this reduced set of iotraces:

DE separable_dialogue_constraints =
14 [iot: iotraceset ID (iot)) 9= traceset

This allows the implementation of separated UIMSs in which some aspects of

the dialogue (i. e. those controlled by the separable
-

dialogue-constraints) can be

modified at run time. However, it ignores how the dialogue is to be abstracted and

expressed (Chapter 2 examined various notations for this). It also ignores important

issues of pragmatics and aesthetics in the use of the resultant interfaces (for exam-

ple whether it is useful to switch arbitrarily from a menu/mouse interface to a

command line interface). Consideration of these issues can only bind the interface

more tightly to the application functionality.

It is possible to conclude therefore that, both in practice and in principle, dia-

logue management is not suited to implementation in a separate interface. Chapter 4

presents an alternative class of models which it is possible to separate, and defines

an architecture by which this separation can be implemented.

-95-

Chapter 4

Surface Interaction

This chapter contains the central formulation of the Thesis of Surface Interac-

tion. Its context is what has gone before: that both dialogue within the linguistic

architecture, the basis of UIMSs, and devices within the agent architecture, the
basis of Toolkits, are difficult to separate from application semantics, and therefore

provide little opportunity for factoring and user independence.

If there is a creative core to this Thesis then it is the decision to abstract the

medium of interaction, rather than the form (dialogue) or the devices of interaction,

as a basis for separation.

The medium of interaction, at its most abstract, is the set of values in which
the user is interested, and which the application can generate. This might be, for

example, the result of some calculation, or a formatted document. At any more con-

crete level, the medium is some presentation of these values which the user can
directly perceive, and which represents, under some preferably determined mapping,

the application values. Thus in practice the medium may consist of symbols or graph-
ics on a screen or a piece of paper.

This Chapter argues that, so long as the medium's model is sufficiently gener-

ic, the implementation of its manipulation and presentation can be factored out from a

range of applications. In addition, we expect objects in the medium to interact (or

interfere) visually, for example by overlapping, since the display is a resource shared

by a number of application processes. The medium and its presentation must there-

fore be integrated and common to these applications in order to adjudicate these

conflicts. It must therefore also have a separate thread of control. This is in contrast

-96-

to both to binding the medium in at compile time as a library of primitive tools, and to
object-oriented tools which encapsulate their own presentation.

However, the Chapter argues further that there may be some changes to the
layout or appearance of medium objects which are irrelevant to the application
semantics. For example, the application effect of a dialogue box is usually indepen-
dent of its position, and so moving the dialogue box to a new position has no
relevance to the application. If such changes can be made directly by the user, and
independently of the application, then even more can be factored out from applica-
tions, to the benefit of both the user and the application writer. This requires,
minimally, a separate user agent which communicates with the medium and the appli-
cation on behalf of the user. The Thesis calls the composition of the user agent and
the medium an active medium, or surface. The user interactions which the surface
abstracts from applications the Thesis calls Surface Interaction.

Prior to specifying particular models (i. e. semantics) for the medium (which we
do in Chapters 6 and 8), we need to show in general how a separated surface can
factor application concerns as well as provide some measure of independence for the

user from particular application domains. To do this we need to establish an architec-
ture whereby the user and the application can communicate via the medium. The

architecture must express the communication structure, and preserve the semantics,
of the participating components.

This Chapter has six sections. The first section gives the abstract model of
interaction which underlies the Thesis. The second section defines the medium. The

third section gives the premises and principles for Surface Interaction. The fourth

section gives a minimal architectural framework for Surface Interaction, using three

processes: the user agent, the medium, and the application (UMA). The fifth section

gives a concrete example of Surface Interaction, using this architecture and notation
from Chapter 3. Finally the sixth section examines implementation issues that nec-

essarily arise in refinement of this architecture.

4.1. Abstract Models of Interaction

The PIE model [Dix88a] models an interactive process as an interpretation

function (I) between sequences of input (P - programs) and their effects (E) on the

computer state. The type of the PIE interpretation function can be expressed:

-97-

I: P --> E

I is thus closely equivalent to the behaviour function ß (Chapter 3), since, for
any program p,

1(P)E 93 /(P %0) ß) 4SO)

That is, the effect of a PIE interpretation of a program (I(p)) is one of the possible
states reached if the same program is allowed to produce a composed sequence of

state changes according to ß, applied to some starting state (assuming that the PIE

programs consist of events in the domain of (3). If the range of ß were tightened to a
function, then the equivalence would be exact.

As long as we take a global view of interaction, the PIE model is sufficient,

since necessarily all that we can ever say about interaction is captured by

sequences of input and their output effects. However, PIE is a very bland model of
interaction. While it makes it easy to express properties over input in terms of
effects, such as predictability, observability and reachability, it does not reflect some
unavoidable constraints that emerge with refinement.

This Thesis therefore uses a slightly richer (i. e. more refined) fundamental

model for an interactive process. This takes account of two important features high-
lighted in the Chapters so far:

" An interactive process may run in an environment where there are a number
of separate processes, each of which shares the interactive medium.

" An interactive process must allow directness. That is, it must allow input to
be interpreted in the context of previous output to the medium.

The consequence of these is that we cannot define application interpretation to

take place simply over sequences of input (Input), as in PIE, since for directness the

matching sequences of states of the medium (Medium) must also be taken into

account in deciding what the input means. A mouse click, for example, can only be

interpreted (as, say, the selection of an icon) in the context of the current state of

the display. However, the medium is not fully determined by the input sequences of

any one application, since we allow multiple applications to effect changes to the

medium. If we modelled each application as a PIE, then the individual PIES, using

-98-

input consisting only of mouse clicks and positions, could not determine the interpre-

tation of input without external reference to the state of the medium.

We therefore need to refine the PIE model of interaction to make explicit this

querying of the medium state. Similarly, we cannot model output from a single appli-

cation simply as a sequence of medium states, since the medium is a shared

resource. Output is therefore modelled in terms of commands (Command) to the

medium. The commands invoke medium operations, which have the effect of chang-

ing the medium state. Our general interactive application (GA) is thus of type:

GA: seq (Input x Medium) -4 seq Command

This is sufficient to model an application since any internal state changes which it

may undergo are only observable through the effects of its commands on the medium.

The behaviour of the medium itself (M) must therefore be modelled separately

by a function converting sequences of Commands (interleaved from possibly a num-

ber of applications) into medium changes:

M: seq Command -* seq Medium

However, although we assume here that the Medium states which are paired

with the Input in GA are actually those generated by M, this formulation says noth-

ing about how this synchronisation and communication is achieved. It is the purpose

of this Chapter to make this connection more precise.

4.2. The Medium

We wish to think as generally as possible about the connections between an

underlying application state, and a presentation of this in a form the human user can

assimilate. For this purpose we define the display Display as the set of possible

states directly communicable to the user. Thus representations in terms of sound or

other media are not excluded, although we think of the display primarily in visual

terms.

-99-

4.2.1. Model

Clearly there may be a number of nested representations between the applica-

tion state and its display (the application itself might consist of views, for example

of a database). Each of these levels may introduce some non-determinism in the

mapping from state to display. That is, given a particular underlying application

state, there may be a large number of possible displays that can be generated.

It is useful, however, to isolate a particular intermediate representation whose

mapping to the display we can assume is determined. In graphics terminology, we

can call this representation a model for the display. The model may, for example, be

expressed in a graphics language like GKS or PostScript, or the graphics package of

a window manager or a Toolkit.

4.2.2. Presentation

We define Model to be the set of all possible model states. We can therefore

assert the existence of a function:

present: Model -* Display

present takes a particular model description, and projects this onto the display.

If there are any further device dependencies such as pixel resolution which might

lead to non-determinism in presentation, then we can hide these in Display - that is,

if need be we can think of Display as some normalised display, rather than a physi-

cal display.

An important property of present is that it should be total. That is, we expect

all models to be displayable. However, we cannot expect present to be a bijection

(although it may be). For example, assuming a definition (in Postscript) of square as

follows:

/square
{newpath

200 200 moveto
0 72 rlineto
72 0 rlineto
0 -72 rlineto

closepath
fill
} def

- 100 -

Here are two distinct models:

square

and:

square
square

both of which produce the same display:

This of course is because in the second model the same image is simply drawn

twice in the same spot. However, this is sufficient to show that there is not neces-
sarily a bijection between the model and the display. These mappings can be
illustrated:

ml

present d

m2

4.2.3. Abstracting the Medium

Terminals and bitmapped workstations commonly provide only a set of low-

level text or graphics primitives with which to modify the display. On a terminal

there may be operations to insert or delete characters or lines, while on a worksta-

tion there may be RasterOps [Newman79] to move arbitrary areas of the screen to

and from memory, and possibly some graphics primitives like lines or circles (see

Chapter 5).

These primitives, however, have no identity, and do not persist. For example,

the operation to draw a line returns no handle to that line, and there is conventional-

ly no corresponding delete or move operation which can thereby be applied to the

-101-

same line. Similarly, there are no facilities provided to allow the user to pick lines,

simply because the lines do not exist other than as marks on the screen.

In the implementation of applications on these devices, therefore, it is usually

necessary for the application to maintain its own display model by reference to the

underlying application state, and to manage all the display updates itself from this

model:

State - Model Display

application interface

In order to provide a direct manipulation style of interaction, for example, the

application has to monitor directly all the input devices, and effect the display

updates in terms of low-level primitives. If the application wishes to implement a

model that allows overlapping and arbitrary geometric movement on the screen, then

the present function between the model and the display may be very complex. In

addition it is usually necessary, for reasons of efficiency, to implement present incre-

mentally, so that only those areas of the screen that have changed are actually

updated. This compounds the complexity and accounts for a large part of the difficulty

of writing highly manipulable user interfaces [Myers88b p. 21, particularly in multi-

tasking environments.

Since the present mapping from Model to Display is determined, it is clearly

possible and advantageous to abstract the model, and to represent this in the inter-

face rather than in the application. This is particularly useful if the model is generic

over a range of applications. We think of a medium as such an interface:

State -= Model Display

--------------------------------=

application medium

In this configuration, the medium incorporates both the model, and the presen-

tation of the model onto the display. The medium thus has its own state, and can act

as a presentation database [Garrett82] (or proxy [Scofield85 p. 66]) for the applica-

tion. The model can be thought to consist of possibly dynamic numbers of

-102-

components (for example windows or icons). We refer to these components
(without being specific as to their appearance) as medium objects.

This definition of a medium corresponds to graphics systems like GKS [IS085]

and PHIGS [ISO87b], in that these provide abstracted models whose presentation
implementation is hidden. Perhaps surprisingly, there are fewer current text media, if

any. The standard schemes of ODA [ISO87a] and SGML [ISO86b] (see Chapter 5)

are intended more for document transmission than efficient document presentation.

Note, however, that in the above architecture there is a relation between the

application and the medium, whereas in the previous architecture there was a func-

tion between the application and the interface. Thus for any one application state,

there may exist a set of possible medium states. Thus conceptually we free the

medium from complete dependence on the application.

In order to exploit this potential independence we need some other mechanism

whereby the medium can be manipulated separately from the application. In this way

we can allow a number of applications, or the user, to access the medium concurrent-
ly.

4.2.4. Separating the Medium

In order to allow the application to effect changes to the medium's model, it

would be possible to give it direct access to this. This would be analogous to an old-

er display processor like the DEC VT-11 [Eckhouse79], in which the model is a

display program. The central and display processors share the memory in which the

display program is held. The central processor updates the display program, which at

the same time is repeatedly executed by the display processor in order to present

the screen image.

This clearly entails problems of synchronising access to the display program.

For example, the display processor must not display a line after the update of one

endpoint, but before the update of the second. This synchronisation problem is com-

pounded if a number of concurrent application processes are each trying to update

the display program. A number of window systems also give access to their repre-

sentation structures in this way, and thus require mutual exclusion around such

critical updates.

-103-

In order to protect the medium we need to do more than simply abstract the

model into some independent representation like a display program. For true data

abstraction we must modularise the medium by providing operations which generate

values of the model, without revealing details of their representation.

If we wish in addition to separate the medium, we need to delay the binding

between the application and the model. This can be accomplished by making the

medium an Object, that is, by encapsulating model states within the medium. A gen-

eral type for the medium can therefore be given:

MEDIUM =
(Model u Display u present, Command [Model], Mit [Model))

That is, a medium is an OBJECT whose state consists of a model, a display,

and a presentation mapping between them, and whose operations Command and ini-

tialising operation Init are defined on the model, but not on the display. The point of

this definition is that since the display can be generated deterministically from the

model by present, then it is only necessary to define the effects of the operations on

the model.

As the original Z derivation of an OBJECT suggests (see Chapter 3), there is

no access either to the model or to the display other than through the operations

Command u (Init). This excludes window managers and other display systems

which allow direct access either to their model representation, or to their display

screen, from being media in this definition.

Such a separation of the medium has a number of benefits:

" The application handles identities of medium objects, rather than their inter-

nal representations. These identities persist over changes to their properties.

Their lifetime is not even tied to the lifetime of the application.

" Simply by knowing the identity of a medium object, a number of agents can

access and modify its properties concurrently. Thus the medium, as its name

suggests, can form a channel of communication between these agents.

" So long as the operations are atomic, the medium can effectively manage the

presentation synchronisation, and can handle interleaved updates from a num-

ber of agents.

-104-

There is yet a further requirement we wish to make of the medium.

4.2.5. Directness in the Medium

If the medium is to act as a channel of communication, then all parties need

access to its objects in order to be able to send messages by creating or modifying

objects, or to receive messages by determining the properties of objects. From the

point of view of applications, the sending and receiving of messages takes place via

symbolic references to object identities in the programming interface to the medium.

The human user, however, receives messages via the present function. That is,

his only access to the state of the medium, and thus to the state of the application, is

via the display. In order to send messages back, the user must be able to address

the display using a pointing device. This is a basic precondition for directness.

Our main requirement is that there should exist a pick function which enables

the user to address objects (Ob) of the model through locations on the display.

These locations will form a component of input, for example input generated using a

mouse:

pick: (Display x Input) -4i Ob

Thus given a particular input on a particular display, pick will return the object

which is the target of that input. pick may be partial, since not all locations may dis-

play objects. It is not likely to be injective, since a large object may be displayed at a

number of locations simultaneously. It is also not likely to be surjective, since some

objects may not be displayed at all because they are obscured or clipped.

pick cannot be defined in isolation, since clearly it requires reference to the

state of the medium's model. We therefore expect pick to be one of the Commands

that the medium offers:

pick E Command

In practice, the Display argument to pick can be supplied internally by the medium,

so that externally the pick operation need only be parameterised by the Input. That

is, we need only ask the medium what object is at the location specified by Input in

its current Display.

-105-

The important feature of this definition is that the pick mapping is determined,

that is, that the display is not ambiguous to the user with respect to the objects in

the model. We do not address here the issues of constructing a surjective mapping,

through composition of pick with viewing functions like scrolling or popping, thereby

allowing the user to select any component of the model. Formulating abstract mod-

els of interfaces which include such viewing operations is an active research area
[Harrison90] that is outside the scope of this Thesis.

We also do not address here the relation between the medium state and the

application state, as important as this is to the overall interface. This is because at

this level all we are concerned with is simply to give the application freedom to con-

struct any medium state by issuing Commands to the medium.

4.2.6. Consistency

We need finally to be assured that the displays caused by the medium opera-

tions are consistent. In the general case, it is certainly possible to generate corrupt

screens. The following screen, for example, was generated simply by mouse opera-

tions within SunView:

ion. These are mbers>
dente which a mbers>

te

, pong this prin mbers>
ose

mality. The lin mbers>
n between s umbers>
lotion systems mbers> Res1ze

problems problems p as th
h

umbers>
umbers> ter you

l
ject can en ä

ut -

to
ndins

mbers>
ünibers) -ddle button near the side or co

t 1°
i the In prec FS ton. [wry-. d the button down while dragg i n,

tandlin dass g
umbersi

location you want; then releas
tanager, tom press the right button now. uröers> urface interac
but usually slo umbers>

ýý.. j

mbers>
poses an alt umbers),
upling of user umber s>
chitecture is

mbere>
and between

mbers>
plications req mbers> O

_ Hhich are am

Given an appropriately low-level operation, it should be possible to generate

all displays, even those which are simply random configurations of pixels. However,

we expect that the displays generated by present from any of the medium models are

in fact a subset of the possible displays (range is defined in Chapter 3):

(m: range MEDIUM " present m) c Display

-106-

We mean by consistency that no matter how a particular state of the medium
model has been generated, its presentation is the same. This follows simply from

the fact that present is defined on model states, rather than on sequences of model

operations. However, we restate this here to make it clear that in implementation

the presentation of the model should be independent of how the model was created.

This also explicitly excludes giving any application direct access to the display,

as often happens in window managers. If there is direct access to the display, then

the presentation cannot be predicted from the medium model. A major benefit of this

restriction, however, is that any application using the medium does not have to be

involved in the complexities of presentation, but simply with the objects of the model.

4.2.7. The Medium: Summary

We can summarise our requirements of a medium as follows. A medium con-

sists of.

" an encapsulated model or state

"a set of operations or commands on the model, one of which is a pick.

"a total function present between the model and the display

Clearly we also imply that the model have some displayable content. However

we wish to say nothing specific about this here (Chapters 6 and 8 give detailed mod-

els for the medium). Note that we also say nothing at this point about how input is

gathered.

4.3. Surface Interaction

4.3.1. Premise

The fundamental premise of Surface Interaction is that there may exist some

sequences si of input and changed medium states which have no application interpre-

tation (using the application interpretation function GA from Section 4.1):

3 p, si: seq (Input x Medium) " GA (p) = GA (p " si)

-107-

The effects of such sequences si can take place on the display without involving the
application. Such interactions we call Surface Interaction.

All that is needed to validate this is one example:

We take the case of a standard scroll bar box in which users can change the

position and height of the scroll bar. The application monitoring this object makes

some interpretation of the height and position of the scroll bar with respect to its

box, and uses this to control, for example, the view of a document. This interpreta-

tion is entirely independent of the position or size of scroll bar box itself on the

screen. Thus input and medium changes pertaining to modifying the size or position

of the scroll bar box have no interpretation within the application semantics. The

scroll bar box can thus be moved about the screen through Surface Interaction only.

4.3.2. The Surface

There are two fundamental principles which are necessary to allow Surface

Interaction:

" There must exist a medium which provides the operations to effect Surface

Interaction. The medium abstracts the presentation of its model from applica-

tions.

" There must exist a separate process which reads user input and sends com-

mands directly to the medium in order to invoke Surface Interaction

independently of (any number of) applications. We call this process the user

agent.

The surface we consider to be the composition of the user agent and the medi-

um. The surface is common to a range of applications, and there is typically one

-108-

surface per workstation or display. The surface is separable, since it is dynamically
bound to its applications. The surface model (i. e. the medium model in the surface)

can thereby be manipulated as much by the user, via the user agent, as by the appli-

cation. Directness can thus be supported both through Surface Interaction, and

through semantic feedback from the application.

4.3.3. Refinements

The formulation of the application semantics GA given in Section 4.1 requires

the application to dereference input in the context of the paired medium state. In

order to do this it would need to make use of the pick function which is one of the
Commands of the medium. pick is clearly generic, since the medium is part of the sur-
face. It should therefore be possible to factor picking also into the surface. The

application semantics can thus be refined to accept sequences of input paired not

with whole medium states, but simply with picked objects:

A: seq (Input x Ob) -3 seq Command

Ob is the set of surface objects (i. e. components of medium state). Any particular

picked object (o) is determined within the surface from the current input (i) and

state of the medium's model (m) using the pick function:

pick (present (m), i) =o

The invocation of the picking operation can thus be taken over by the user

agent, which then passes the result to the application. In fact, we can make the user

agent a general dispatcher which sees all user input and passes this, as (input,

picked object) pairs, to the appropriate application of type A.

Two further refinements are evident. If some sequences of Surface Interaction

have no meaning to the application, then there is no point in informing the application

of these. There must therefore be some mechanism to filter input sequences before

they arrive at the application. The surface is the ideal site in which to do this, and

the user agent the ideal mechanism.

However, we do not wish to be prescriptive about this filtering, since in this

way we would reduce the power of the application to impose its semantics on the

surface. The solution adopted in this Thesis is to allow the application to determine

in advance, on a per-object basis, what filtering will be performed.

-109-

Secondly, if the surface is to act as a medium of communication between the

user and the application, then the application must have some means of obtaining
information from the surface about its medium state. We thus assume that some of

the medium Commands are enquiries, and some of the input which the application is

prepared to accept consists of replies from the surface to these enquiries.

Formally specifying these refinements, however, requires much more seman-

tics (and therefore design decisions) than is appropriate at this level of abstraction.
However, a major omission remains the precise connection between the medium

objects generated on the surface, and the objects against which input is interpreted

by the application. Clearly we want these to be the same, but this formulation in no

way defines this.

The UMA architecture presented in the next section is a further refinement of

the fundamental principles for Surface Interaction which accounts for how the surface

communicates with the application. The UMA architecture also shows precisely how

the surface can accept both application commands and direct input from the user by

allowing both user/user agent and application/medium communication. In this way

the user can impose his own semantics directly on an application's surface objects.

For example, he may manipulate a graphical representation of a database schema

into a configuration that is meaningful for him (see the example in Section 7.3.2).

The principles of Surface Interaction also presuppose no particular semantics

for the surface. That is, there may be any number of surface models and sets of oper-

ations on these. Chapters 6-8 for example give a variety of models for the surface.

Even a UIMS within the linguistic architecture fulfills the conditions so far, in that it

may provide operations for display changes (for example, packaging of command

strings, or dialogues to correct input parameter type errors) which occur indepen-

dently of the application. To this extent such a UIMS has, or has need of, a surface.

The critical difference between a standard UIMS and a surface, however, as we

have shown in Chapter 3, is that a UIMS requires knowledge of the operations or

state of its client application. We wish a surface, on the other hand, to be ignorant of

everything about applications except their existence and identity.

-110-

4.4. The UMA Architecture

The restriction that the surface should have no knowledge of application

semantics (i. e. their state or operations) is supported by showing how application

semantics can nevertheless be expressed on the surface. The problem of attaching

semantics to surface or presentation level objects is well recognised [Lantz87b

p. 95].

We do not wish to decide a priori which user actions will result in Surface

Interaction, or which will be reported to the application. We therefore assume that

all user actions result in Surface Interaction (that is, changes in the state of the sur-

face medium), but that we report these actions to the application before their surface

effects. In addition, we give the application the power to permit, cancel or subvert

these input reports, and to interleave surface operations of its own. The applica-

tion's involvement we call by analogy, deep interaction.

The application can always elect not to be informed of certain events on certain

objects. In these cases Surface Interaction can take place truly independently of

applications. In general, Surface Interaction can be used to manage manipulations

that either have no meaning to the application (like moving a dialogue box), or that

have meaning but which the application has delegated (like changing the size of the

scroll bar in a scroll bar box).

We show how the surface can be affected both directly by the user, and concur-

rently by applications, by establishing a communication infrastructure between the

surface, the user, and applications. By observing these communications in abstrac-

tion from particular semantics for any of the processes, we can demonstrate how

user and application events can be interleaved on the surface, and how synchronisa-

tion problems can be resolved.

We use the process notation of CSP [Hoare85] to observe these communica-

tion events. Minimally, three processes are involved, which we will call U (user

- 111 -

agent), M (Medium), and A (Application). The communication infrastructure
between these processes can be represented diagrammatically:

human user input display

present
--------------------------------------- -----

SURFACE
UM

user

-------------------------------------- - ----------
report app

A

SURFACE
INTERACTION

DEEP
INTERACTION

The solid arrows here are channels, and show the directions from which the
communication is initiated. For reasons given later, even though each request is
immediately followed by a reply in the opposite direction, we do not need to specify
explicitly a channel for replies.

The diagram thus shows that the medium M is passive, responding only to

commands from the user agent or from the application. It is therefore not dependent

on either of these, in the sense that it needs no access to any of their operations.

The actual semantics of the system, that is, what values it generates in

response to these actions, will be determined by the particular models of the pro-

cesses and the operations they allow. Our purpose here is to show that this

communication architecture can accommodate any semantics, either for the surface

or for the application. This in fact is implied by our use of CSP, which ignores the

semantics of its processes, and by the fact that we place no upper restrictions on the

alphabets of the processes involved. This UMA architecture is a complement to and

an essential justification of the principle of Surface Interaction, in that it provides a

concrete and practical mechanism for its instantiation.

- 112 -

We now examine the communication requirements on the three processes in
the UMA architecture in order to provide for the separation of surface and deep inter-

action. We look first at the medium, then at the user agent, and finally at the

application.

4.4.1. The Medium

As we have seen, we think of the medium as a set of commands or operations

on an encapsulated state, from which there is a presentation projection to some out-

put display. For the purpose of this description of communication, we simply assume

that the presentation projection is hidden within the medium process.

The only assumption we make about the semantics of the medium is that it

consist of a number of objects Ob, about which we do not want to be specific, except

that they are likely to have textual or graphical qualities. The medium will accept a

set of commands (called COM in order to distinguish these events from the Com-

mands of the static description), each of which will be parameterised possibly by an

object and some other values. A typical COMmand might be:

MOVEX object distance

That is, move object object distance distance horizontally.

In the general case, we expect each command to return a reply, which minimal-
ly may simply be confirmation of receipt or completion, but which more usefully may

return information on the state of the medium. We can define, without being more

specific, a set of replies: REPLY.

In process terms, we wish the medium simply to be ready to accept any

sequence of commands, irrespective of the origins of the request. An observation of

the medium process M is therefore simply defined:

M= user? c: COM - r: REPLY -ý M

app? c: COM -4 r: REPLY --> M

That is, its traces consist of any sequence of commands, each immediately fol-

lowed by an appropriate reply (the precise value of which is determined by the

medium semantics, which here we do not consider). The commands may originate

either from the user (along the channel user) or from the application (along the chan-

nel app), and may be interleaved arbitrarily. Having accepted a COMmand, however,

- 113 -

the medium cannot be interrupted or preempted, but must return a REPLY before
being able to accept another COMmand.

4.4.2. The User Agent

While we want to allow both the human user and the application to COMmand

the medium, it is clear that their respective means of communicating with the medi-
um are quite different. Given that we think of the medium as an OBJECT consisting
of state and operations, its most appropriate implementation is as a software pro-
cess with a separate thread of control. Applications may therefore communicate with
the medium using some internal mechanism like messages.

The human user, on the other hand, can only communicate using physical
devices such as a mouse and keyboard. Minimally, therefore, it is necessary to
translate device input into medium commands of type COM. For this reason a user
agent, which we can model as the separate process U, is necessary to perform this
translation. In principle this interpretation should be as direct as possible, to min-
imise any domain or style bindings at this level. However, some device binding, for

example a dependence on a certain number of mouse buttons, may be difficult to

avoid. The Presenter system, which is described in Chapter 7, for example has a sur-
face model which maps the three mouse buttons of the Sun workstation to the

operations of selecting, moving and sizing medium objects.

The user agent, in order to interpret user actions with respect to the medium

objects, must first send a pick request to the medium to determine which object, if

any, is under the current cursor position. While here we are clearly thinking in terms

of a mouse and a screen, this approach does not exclude at this level of description

any other output medium which contains discrete identifiable objects and a means of
indicating or addressing them.

The user agent, in order secondly to allow the application to impose its own

deep semantics on the interaction, must allow the application to cancel or subvert

user input. To do this, the user agent next reports the user's input and the picked

object to the application, and waits for confirmation to continue. This confirmation is

granted by the application's returning an input value and object, which may or may

not be the same as those which were reported. We thus assume that input/object

pairs (i, o) are part of the alphabet of the application, as is suggested by the static

- 114 -

specification A above. The user agent then interprets this returned pair, and sends
an appropriate command to the medium.

Clearly, if the input/object pair (i', o') returned by the application is the same

as that generated by the user, then the user's input, as interpreted by the user

agent, is allowed to go ahead. However, the application may substitute another

input and/or object, and thus change the user agent's interpretation of the user's
input. The application may also substitute a null object, in which case the user agent

gives no COMmand to the medium, and the user's input is effectively cancelled.

The effect of this is to give the application the opportunity to modify user input

before it is interpreted by the user agent as a COMmand to the medium. This is

important since there may well be cases where for semantic reasons user input

should not be allowed to have its usual effect. For example, when a user attempts to

move one object, such as the background of a diagram, the application may instead

require the diagram itself to move. Similarly, an application may have stylistic or

ergonomic reasons for switching the user agent's default interpretation of the effect

of the mouse buttons.

There is one refinement of this user agent scheme which is critical to the suc-

cess of Surface Interaction as a principle of interface separation: in some cases user

input is not reported to the application, and its surface effects (as invoked by the

user agent on the medium) therefore occur autonomously. In this way Surface Inter-

action, seen in effect as the composition of the processes U and M, allows surface

objects to have behaviour independently of the application which may have created

them. The application can determine in advance, by setting suitable attributes on the

surface objects, which events, on which objects, are to be reported. This per-object

event mask is interpreted by the user agent. A typical case might be not to report

drag events to the application, so that the user agent, as the user moves the mouse,

makes repeated move commands to the medium without reporting these to the appli-

cation. The effect is that an object moves autonomously on the display under direct

user control.

From a semantic point of view therefore, we can define a general type for U:

U. " seq Input -4 seq (deep «Input x Ob» I surface <<Command>>)

Thus the user agent U takes a sequence of user input, and generates a sequence of

either deep (i, o) reports to the application, or surface Commands to the medium.

-115-

From the process point of view, the user agent process U, which incorporates

these features, can be defined by observing its communications. In order to do this,

we assume a set I of user-generated input events. To be most general, we can think

of each of these events as consisting of a value, a location, and a time (a what, a

where, and a when). In conventional terms, the value may be the keystate, and the

location the cursor position in screen coordinates. In addition, we need to specify one

command subset pick «I» from the set of medium commands COM. We assume

that a pick command along the user channel, parameterised by the user's input,

returns a target object o (which may be null) as a REPLY from the medium:

U=i: ! -p user! pick (i) -4 o: REPLY -4
(user! c: COM --> r: REPLY -- Un

report! (i, o) -* (i', o') -4 user! c: COM --j r: REPLY -4 U)

Thus the user agent U is the process which always first accepts a user input

event i, then asks the medium to pick the object o which is the target of the input

(based on the location component of i). Having received this REPLY from the medi-

um, there is then a choice of two possible courses of action, determined internally by

the attributes of the object o returned from the medium. The courses of action are:

" the picked object o's attributes allow the default Surface Interaction to occur

without informing the application, so the appropriate COMmand is sent immedi-

ately to the medium.

" the picked object o's attributes determine that deep interaction should occur

on this event. It is therefore reported to the application. Once the input/object

pair (i', o') is returned from the application, an appropriate COMmand is sent

to the medium.

For brevity, this description of the user agent's behaviour omits two obvious

refinements:

" if a standard drag interpretation is made of mouse buttons, then it is not nec-

essary repeatedly to send a pick request to the medium during the drag

operation - the user expects the same object to be moved on the screen

throughout the drag. In effect the user agent gets the pick information for each

move action from its own simple memory of which object was picked when the

mouse button was depressed. Indeed, in some situations, for example when

moving an object like a scroll bar which can only move in one direction, it is

- 116 -

possible for the mouse cursor to slip off the object. In this case a repeated pick
request would lose the object, yet normally the required interaction is for the
user to continue to move the originally selected object within a manipulation
mode (see Section 2.2.2).

" if the returned input/object pair (i', o') is null (i. e. the application has can-
celled the input), then no COMmand need be given to the medium.

4.4.3. The Application

To show how Surface Interaction allows application semantics to be imposed

on the surface, we define the behaviour of a generic application without reference to
any particular application domain. Since also we want the architecture to be general,
we must support not only the possibility of Surface Interaction, but also its absence.
That is, we must cater for applications which need to make an interpretation of all
user input, as well as those which can afford to let the user agent handle some part
of the interaction.

The application is thus able to determine its involvement in interaction by the

settings it gives to the event masks of its objects. In the extreme, all objects could
report all events. With this understanding, we go on to describe the communications
of the application.

The application receives a reported input event and picked object pair (i, o)
from the user agent, and is then able to send an unlimited number of commands to
the medium (for example to pop up menus, or make other surface changes), before

confirming, altering, or cancelling the report as the pair (i', o'). Of course, in the

meantime the application is also able to perform its own domain-specific computa-

tion, but this is hidden here.

In a standard callback or action routine situation where main control is external

to the application, which is structured as a set of event handlers to be called by the

input level (like Sun's Notifier [Sun86]), this behaviour would be all that is required.

However, we wish the application to have full concurrent operation, possibly to mon-

itor other processes, and to be able to initiate medium operations spontaneously, for

example to manage animation or to report to the user important events in the envi-

ronment. This may be interleaved with receiving reported user events (i, o). This

capability is an essential requirement in the construction of process monitoring and

-117-

control applications. The general behaviour of the application process A is thus
defined:

A= report? (i, o) -4
µX. (app! c: COM -) r: REPLY -i Xn (i', o') -4 A)

I app! c: COM --4 r: REPLY -4 A

That is, the application A is the process which cycles over two possible subse-
quences:

" it accepts an input report (i, o) on the report channel, sends a number of com-

mands to the medium along the app channel, and then, at some point
determined internally, returns confirmation to the user agent in the form of an
input/object pair (i', o').

" it spontaneously sends a command to the medium.

If a user input report is available, then we wish A to deal with this as a matter
of priority. However, we cannot express this requirement in this notation.

The application has thus four ways of imposing its semantics on the surface

medium:

" It can set the attributes of medium objects which determine which events will
be reported to the application (this is not expressed in this notation).

" It can modify these reported events and thus alter the actions of the user

agent.

" It can cancel the actions of the user agent (by returning a null (i', o')), and

instead itself send COMmands directly to the medium in response to the user's

input.

" It can spontaneously send COMmands the medium in response to some inter-

nal events.

4.4.4. The Surface

The surface consists simply of the user agent and the medium running in paral-
lel. Their internal communications along the user channel can be hidden from both the

user and the application:

-118-

SURFACE = (U 11 M) \ (user. v Ive auser)

4.4.5. An Observation of Surface Interaction

Surface Interaction occurs when the user agent, the medium, and the applica-
tion are run in parallel:

UIIMIIA

Essentially, changes to the medium may originate either from the user, or from

the application. The medium is ignorant either of the user agent or of the application,
and simply accepts COMmands and returns REPLYs repeatedly. Application com-
mands to the medium are dealt with directly. User input, however, is read by the

user agent, which first reports it (and the picked object) to the application which
returns it modified or unchanged. The user agent then interprets this modified input

as a command to the medium. The benefits of Surface interaction as a principle of
application and interface separation arise from the fact that in some cases the user
agent may act independently, and send COMmands to the medium as a result of user
input without reporting to the application.

Control ultimately lies with the application, as it should. It can determine in

advance, by setting attributes on the surface objects, which subsequences of the
interaction it can leave to the user agent, that is, to Surface Interaction. An applica-
tion maintaining a dialogue box, for example, may decide that the location of the box

on the screen is immaterial to its semantics, and allow the user to move this around

through Surface Interaction, without being informed of these events.

An important feature of this behavioural structure is that the application can
impose its semantics dynamically either by modifying user input, or by interpolating

its own commands to the medium. That is, we allow the application access both to

the low-level input events in I sent to it by the user agent, and to the set of medium

commands COM. In practice, most applications may be content with being informed

of only a small subset of the user's input (for example, mouse button clicks), and

concentrating their output semantics in COMmands to the medium. Others, in partic-

ular applications which control the look and feel of the surface environment, may

wish to take a hand in user input at a finer granularity (drag events, button releas-

es), and even to supplant the user agent's default interpretation of user input.

-119-

There is no danger that any of these communications should go awry, for exam-

ple that the application should accept a REPLY from the medium that was actually in

response to a COMmand from the user agent. This is because all processes here

observe a strict alternation of input and output events [Hoare85 p. 198]. For exam-

ple, once the application A has had a command accepted by the medium M, then the

next event can only be a REPLY by M, and only A will be ready to receive this. Simi-

larly, the application cannot accept two reports from the user agent in a row, without
first returning confirmation to the first.

The medium is prevented by the same mechanism from handling more than one
COMmand at once, without REPLYng first to the first. Thus multiple access to the

medium model is automatically synchronised, and the surface actions of the applica-

tion and the user agent cannot interfere with one another. This also allows the

medium to be implemented as a single thread of control, which is a convenient mech-

anism for implementing this synchronisation [Scheifler86 p. 84, Gentleman8l p. 445].

Without this, there would have to be some complex locking of screen updates from

competing applications [Lantz87b p. 94]. This synchronisation is made more power-

ful by the fact that the medium, because it is accessed directly by the user, is

designed to provide user-level objects and operations rather than bitmaps (see

Chapters 6 and 8). Whereas in a conventional window manager a complex screen

operation might have to be accomplished by a sequence of bitmap operations, in the

surface this can be atomic.

Thus the medium can never be blocked, since it does not initiate any communi-

cations, and its REPLYs are always awaited. The application can only be blocked

waiting for a REPLY from the medium. The only real restriction on the traces of Sur-

face Interaction is that the user agent may be blocked from accepting user input

either while waiting for a REPLY from the medium, or while waiting for confirmation

from the application of an input report.

We have given the bare bones of a communication scheme, in the form of the

UMA architecture, detailed enough to show how Surface Interaction works in prac-

tice, and general enough to be able to incorporate any application or surface

semantics.

-120-

4.5. A Simple Surface

The effectiveness of the UMA architecture in promoting the separation of sur-
face and deep interaction can be illustrated by a simple example which could easily
be scaled up into a useful system. We take a medium consisting of a single icon:

The only input device is a one-button mouse. The overall behaviour that we

want is for the user to be able to move the icon around the screen by clicking on it

and then dragging. However, as he releases the mouse button after a drag, an action
is taken which depends on the position of the icon. The precise action is not impor-

tant - it might be to change the angle of a video camera, or to set the selling price of

shares.

The principle of Surface Interaction exploits the clear conceptual distinction

here between the operations to pick and move the icon on the display (Surface Inter-

action), and the `semantic' operation to initiate some domain action (deep

interaction). In this way, we can separate these two concerns. On the other hand, in

a conventional implementation within a window manager, the application would man-

age both the domain action and the movement of the icon around the screen.

This example will show how the communication requirements for Surface Inter-

action established above are satisfied in practice with particular semantics for the U,

M, and A processes.

- 121 -

4.5.1. The Concrete Medium

A state-based description of the surface semantics can be given in Z. The
basic medium state is simply the icon position, defined by a pair of coordinates:

ICON
iconpos: Nx IN

In order to dereference the mouse position, there is a pick operation:

PICK

ICON

pos?: NxN
hit!: true I false

hit! _ (pos? = iconpos)

The bt, prefix indicates that while PICK is an operation (i. e. it has pre- and

post-states), it does not change the state of ICON. That is,

iconpos' = iconpos

We also assume for simplicity here that the granularity of iconpos and pos? is suffi-

ciently coarse to allow a hit simply when they are equal.

In order to move the icon, however, we need an operation that does change the

ICON state:

MOVE

A ICON
to?: NxN

iconpos' = to?

MOVE does not have any explicit output, because we assume that the medium

contains a presentation mapping that displays the icon at the appropriate position.

-122-

The ICON state and operations can be thought of as an OBJECT (see Chapter

3):

ICON = (ICON, (PICK, MOVE), Init)

We assume an initialising operation Init that puts the icon in some starting state,
for example in the centre of the screen.

The ICON OBJECT can be observed to produce a process, and the alphabet of

this process is obvious from the specification of the operations:

a(observe ICON) = PICK « IT x II x (true I false)» I

MOVE«Nx N»

In order to fit this process into the communication architecture for Surface Inter-

action presented above, we have to make a number of simple refinements:

" We put the output component of PICK into a separate event hit, using the

notion of an invocation from Chapter 3.

" We assume MOVE returns an event ok E REPLY upon completion.

" We assign the operations to the channels user, app, and report.

The event ok, and the values true and false which hit can take on, are the medi-

um's REPLYs. Thus we can define the traces of a concrete medium process CM

whose functionality is that of ICON, and which conforms with the architectural

requirements of Surface Interaction:

CM = user? (PICK p) --) hit: (true I false) - CM I

user? (MOVE p) -* ok -+ CM

Thus CM accepts either a PICK or a MOVE from the user agent, and returns

an appropriate REPLY. CM conforms with the canonical medium process M in the

sense that its traces are a subset of the traces of M. The major simplification is that

CM does not accept any COMmands from the application.

4.5.2. The Concrete Application

In exactly the same way we can define a concrete application with the required

functionality, and fit this into the architectural framework.

-123-

We do not want to be explicit about the application state or operations, other
than to assume there is some domain action DO which takes a pair of coordinates as

a parameter. The traces of this concrete application CA are therefore:

CA =report? p-DO p-3 p -4 CA

Thus CA cycles around a fixed sequence of events which starts with a report
from the user agent containing a location p (in the canonical form, the user agent

reports both an input event and a picked object, but in this case there is only one

object, and the only component of relevance is its location). The application then per-
forms its domain action DO using p as a parameter, and then returns p to the user

agent as confirmation of receipt (in this example there in fact would be nothing to

stop the application returning p immediately, and then performing the DO).

Again, the traces of CA are a subset of the traces of A in the architectural mod-

el, and so CA conforms with this. The major simplification is that CA does not send

any COMmands to the medium, and does not act spontaneously.

4.5.3. The Concrete User Agent

We want to be explicit about the semantics of the user agent, just as we have

been about the medium. We also want to show how its communications conform

with those of the architectural model U. However, the communication traces of the

user agent are more complex than those of the medium or the application, both

because they involve three channels rather than two, and because they are depen-

dent on values passed from the other processes. A strict CSP definition of the user

agent cannot capture all that we want. We therefore use an alternative method of

specifying the traces of the user agent that incorporates its semantics.

The concrete user agent CU must perform a number of simple, but necessary,

functions:

" It must determine the target of the user's selection by sending a PICK

request to the medium.

" It must implement some interpretation of raw input as medium operations, for

example to MOVE the ICON when drag events occur.

" It must report some subset of user input to the application.

-124-

First of all we define a simple tuple type to carry raw input events from the

user:

RAW INPUT

location: t'T xN
mode: down I up I drag

Thus the input events that come in from the mouse have two components: a
mouse location in screen coordinates, and a mode which indicates whether the
mouse button has been pressed (down), released (up), or that the event has been

generated because the mouse has been moved some set distance (drag).

We define the communications of CU by specifying a function trace which con-

verts the sequence of RAW INPUTS that come from the mouse into sets of

sequences of communication events from the alphabet of CU:

trace: moving I notmoving -4 seq RAW-INPUT -4 seq aCU

trace m <> = <>
trace notmoving (i: si) = trace nonmoving si
if i. mode = down

trace m (i: si) =P" trace moving si if hit = true

= P'' trace notmoving si otherwise
if i. mode = drag

trace moving (i: si) =M^ trace moving si
if i. mode = up

trace moving (i: si) =R^ trace notmoving si

Where
P= <user? PICK i. location, hit>
M= <user? MOVE i. location, ok>
R= <report? i. location, p>

Here we use a recursive definition in which we assume m is a variable with

values moving or notmoving, and (i: si) is a sequence of RA W INPUTs with i as its

head. Even this simple functionality illustrates how the user agent needs to make an

-125-

interpretation over sequences of input events, rather than over single input events.
This is because the interpretation of a drag event is dependent on whether or not the

mouse button has been previously pressed and not yet released. Only in these cas-

es can we make a MOVE request to the medium.

This could have been expressed simply as constraints over sequences. How-

ever, trace makes more explicit that in implementation the user agent would have to
keep some state flag (m) to indicate whether or not it was in MOVE mode. If there

were more objects than just ICON, then the user agent would also have to retain a

memory of which object was current during a drag.

In addition, the traces generated are influenced by the value returned from the

PICK request. If there is a hit, then CU can go into moving mode, whatever the mode
before (thus we do not depend on a strict alternation of button down and up). If hit is

false, then CU goes into notmoving mode. Finally, upon button release (up), and so
long as CU is in moving mode, then a report can be sent to the application, and the

CU returns to notrnoving mode.

Because the value of hit is determined externally, and not within this definition,

trace is strictly a relation rather that a function. That is, we specify alternative traces
following the hit event. Thus an application of trace to an input sequence actually

generates a set of sequences. We use the notation loosely at this point, but the
intention is clear.

Given that we place no restrictions on the sequence of RAW INPUTS, we can

define CU from trace:

traces (CU) = U(i: seq RAW INPUT " trace notmoving i)

That is, the traces of CU are the union of all the sets of traces generated from partic-

ular input sequences, starting with the CU in notmoving mode.

Using the abbreviations P, M, and R from the definition of trace, the traces of

CU are essentially the language

(p+M*R)*

That is, some number of missed PICKs, followed at least by a PICK which hits, fol-

lowed by some number of MOVEs, terminated by a button release and application

report. One such expanded trace might be:

-126-

<P, M, M, M, M, M, M, R>

Surface Interaction

Such traces clearly show Surface Interaction taking place as the ICON is

MOVEd. During this time, the application is not involved. In order to achieve this,

we have built the decision on which events to report to the application into the

semantics of CU. In a more complex example, we would allow the surface objects

themselves (and thus ultimately the application which creates them) to determine

what events on them were to be reported.

4.5.4. The Communication Structure

The communication structure implied by the definitions of CM, CA and CU can

be illustrated:

RAW INPUT

present

---- -- -------------------------------------- -----

user CU CM

report

CA

This clearly conforms with the architecture for Surface Interaction. The only dif-

ference is that the app channel from the application directly to the medium is unused.

A simple extension to the example would have CA not only controlling some exter-

nal state, but also monitoring external state which could be reflected in the position

of the ICON. For example, the application might read some sensors which measured

the height of fluid in a tank, and the ICON would represent this level. In this case CA

would spontaneously send a MOVE request to CM along the app channel. The medi-

um, as represented by CM, would then more clearly be acting as the channel of

-127-

communication both from the user to the application, and from the application to the
user.

By contrast, the communication structure of a standard window-based applica-
tion is closer to:

RAW INPUT

,

0..

That is, the application A must see all input, and manage all interaction, while
the display D is a simple projection, and holds no state that can be accessed by A.

4.6. Implementation Issues

In refinement and implementation of Surface Interaction a number of issues

must be considered which we have deliberately ignored in the abstract view above.

4.6.1. Performance

Efficient performance is critical to the acceptance of a user interface, both by

end users and by application programmers. The restriction that every surface com-

mand should have a reply is not in fact a performance liability, as is claimed for

instance by the X implementors. Most requests to the X server do not expect replies

for this reason.

Surface interaction maintains performance in direct manipulation because it is

precisely the mechanics of surface manipulation that applications can typically afford

to ignore, for example the multiple move commands that make up a smooth object

drag across the screen. The major difference between the surface as defined here

and window manager servers like X is that the surface retains and maintains (in the

- 128 -

medium's model) all state relevant to the display. For this reason the surface can
manage direct manipulation on its own. There is also therefore a much higher likeli-

hood that the surface will be queried about its state, and therefore be required to

give replies, than with servers that retain little other than the position of windows.

The reporting of user input first to the application is similarly offset in perfor-

mance by the fact that not all input is so reported. In fact, this is a performance
improvement on normal input handling mechanisms, in which the application

receives all user input occurring in its window.

There may however be more extreme performance problems. Deadlock may of

course occur simply because the human user is not prepared to engage in any of the

events offered by the system. We cannot also exclude deadlock from occurring with-
in a badly designed application. But it is impossible for deadlock to occur within the

medium because the medium is a single process and depends on no external

resources. Similarly there are no cycles of dependencies that involve the user agent.

Livelock, however, cannot be so easily avoided. If the application goes into a
loop when it is reported user input, then the user agent can accept no further input,

and Surface Interaction stops. For the same reason, an application which delays con-
firming reported input will hold up Surface Interaction. There is no way round this

possibility without compromising the alternation of process input and output upon

which the reliability of the communication is built. However, it is not an onerous

regime to require applications to respond promptly to input - if necessary, they can

delegate agents to do this for them.

4.6.2. Timing

The CSP notation does not allow the expression of any timing constraints on

communication. That is, communication is considered to take place instantaneously.

Clearly, if the surface and applications are distributed around a network, this may

not be the case in practice. However, timing is much less critical in general user

interface systems than it is in process control applications, for example, because

human users are more tolerant of delays or variations in timing than machines.

Indeed, delays are often deliberately introduced into interface responses to give the

user the impression that the computer is pondering deeply.

-129-

One area in which explicit timing constraints do enter into the implementation
of Surface Interaction is in the practice of multiple clicking of mouse buttons. In effect
this is simply a way of extending the number of discrete commands that can be
issued through the mouse -a less common alternative is to `chord' the mouse but-
tons with keyboard keys. A multiple click is determined to have occurred if a click
happens within a certain time limit of a previous click.

If multiple clicking is to be used at the surface, then it is preferable that this be
implemented in the user agent rather in than the application, simply because of the
unreliability of timing (in UNIX at least) over inter-process communication. The
issue is whether the user agent should report all click events to the application, or
delay in case a subsequent click follows within the time limit.

In terms of interface semantics, there would be little point in providing an
object which only responded to a double click, since in this case we might as well

recognise just a single click. Thus double or multiple clicking is necessarily used in

cases where the object will also respond to single clicks.

The design trade-off is thus: if the user agent waits to see if there is a second
click, then if the user only wishes to issue the single click command, he must wait
until the double click time limit expires before any action occurs. On the other hand, if

the user agent reports the first click to the application immediately, and then waits
to see if there is a second click, then the object will respond to the first click (unless

the application also implements a multiple click semantics), and then may immedi-

ately after have to respond to a double click.

In practice it has turned out preferable to report clicks immediately, and then

possibly also signal multiple clicks. This is because in many cases the semantics of

a single click are trivial (for example, the object is highlighted), and are easily can-

celled or extended if a double click is deemed to have occurred.

In fact in the implementation of Presenter multiple clicking is used to climb the

object tree (see below), but only single clicks are ever reported to the application.

That is, in this system the user agent uses multiple clicking to access the medium,

but does not create separate multiple click events to be reported to the application.

However, the application can still attempt to impose its own timing interpretation on

the clicks.

- 130 -

In design it would seem useful to create multiple click events, since these can
always be interpreted by the application as single clicks if it does not wish to place
any special importance on a multiple click. A further useful refinement would be to

specify the clicking policy object by object, rather than globally, but this has not been

implemented.

4.6.3. Binding User Agent and Medium

Although the user agent is defined as a separate process from the medium, in

practice, because of the large amount of traffic between the two, it is convenient to
bind them together into a single surface process. This is the case, for example, in the
implemented system Presenter. It is possible to bind the two because we expect

there to be only one user agent per medium.

The disadvantages of implementing this binding are discussed in the sections
below.

4.6.4. Multiple Applications

The UMA architecture envisages only one application. This is a sufficient mod-

el if we only want to provide surface facilities on a per-application basis, and use

windows provided by a conventional window manager as the displays for the sur-

faces of each application. This is the case, for example, in Presenter. However, by

design and logically, the surface can provide a display environment for multiple appli-

cations. That is, the same surface constructs can support both inter- and intra-

application displays - the global interface usually provided by a window manager,

and the particular interfaces of individual applications, can both the accommodated

on the surface. The advantage of this is interface consistency, and, provided the sur-

face medium has a powerful enough model, we can avoid some of the geometric

limitations of conventional window managers as outlined in Chapter 5.

Conceptually there is no problem in extending the abstract architecture to han-

dle multiple applications, so long as we refine the model to include a notion of object

ownership. That is, every object is owned by one application:

owner: Ob --4 APP

- 131 -

(where APP is a set of applications). On the basis of this object ownership function,

surface events can be reported by the user agent to the appropriate application.

The ownership function does not exclude multiple applications from knowing

about a single surface object (i. e. it is not injective). In this way we can implement

surfaces in which objects are acted on by a number of applications concurrently, for

example to simulate the effects of different forces, like gravity and propulsion, on a

physical object, or to allow `groupware' [Elwart-Keys90, Lauwers90] in which a

number of users cooperate on a task.

4.6.5. Fairness

Once multiple applications are allowed, the direct communication between

them and the surface becomes more problematic, since an application may hog the

surface by continually sending it commands. There clearly may require to be some

scheduling of application requests, in order to preserve fairness between applica-

tions. Communication between the user agent and multiple applications is not a

problem, other than that of livelock mentioned above, since this communication is

effectively scheduled by the user.

Applications too, must be fair about processing user input promptly. This does

not prevent applications from involving lengthy computation. It simply requires that

an acknowledgment of a user input report should be returned quickly to the user

agent. However, we make no assumptions about whether applications wait for user

input reports, or on the other hand use some interrupt or polling mechanism to allow

domain computation to proceed.

4.6.6. Object Structures

The formal model of Surface Interaction presented above only assumes that the

surface medium consists of a set of objects. In practice, however, it is evident that

surface objects are often perceived as grouped into part-whole hierarchies (e. g. char-

acter - word - sentence - text), or inheritance hierarchies, or even arbitrarily

networked as in hypertext and hypermedia. It is a design issue as to which structur-

ing is provided at the surface, or which is considered domain dependent and

therefore properly to be maintained in the application. For example the implemented

system Presenter has tree structuring of objects (see Chapter 6), whereas the for-

mal surface model given in Chapter 8 incorporates inheritance hierarchies.

-132-

If the surface has structures, then clearly these too may be owned by particular

applications. It is an unresolved design issue whether objects should be owned inde-

pendently of the structures, that is, whether an object can be owned by a different

application from that which owns the structure of which it is a part. This is of rele-

vance if we allow objects to be cut and pasted between multiple applications. The

issue is whether an object cut from one application's structure and pasted into that

of a different application should necessarily change ownership.

4.6.7. Picking

Whereas the abstract model allows the medium to return a single object as the

target of a pick, many systems allow the user to extend the selection of surface

objects. In text this may be by dragging the cursor over a number of characters,

while in graphics a common mechanism is to use a rubber selection box which

selects all objects inside. A more realistic template therefore might be to return a

set or list of picked objects.

In addition, the surface model may allow a single surface object to be replicated

in a number of displayed images, for example to provide running headers in a docu-

ment or to share a graphics primitive between a number of different locations on the

display. This is possible using the model of Chapter 8. It would also be possible if

the surface model were expressed in a procedural graphics language like PHIGS or

PostScript in which a number of different calls can be made to the same drawing rou-

tine in the context of different transformations.

In these cases the mapping between the selection and the pick is more com-

plex, and will involve user interface design decisions. For example, a user who

selects an icon whose image is shared by other icons may intend either to select just

that icon, or conversely all icons with the same image (in order, for example, to per-

form a global edit). The design decision is whether to allow the user direct access to

objects in the surface model, or just access to their displayed instances.

4.6.8. Stylistic Binding

A full surface environment for handling multiple applications must include some

frontline user interface, otherwise there would be no way for the user to get access

to the system (see Section 5.1.3). The basic functions of such a user interface are

-133-

typified by an operating system command interface - the essential requirement is

the ability to invoke and possibly kill applications.

Current user interface development has greatly enhanced the functionality and

usability of this basic task. Within desktop or other overall metaphors, there exist
interactive mechanisms like menus, scroll bars, and dialogue boxes with increasingly

sophisticated `look and feel', and a wide range of fingertip services like editors,

spelling checkers, and calculators. However, at base the functionality is simply that

of allowing human users to invoke applications.

The fundamental trade-off in providing sophisticated user interfaces is that

between consistency and flexibility. That is, at some point the interface is bound to

the environment such that it cannot be modified either by the user or by the applica-

tion. It can then have the benefit of standardisation, but on the other hand it blocks

the development of new interactive styles.

We wish the general model for Surface Interaction to be as free from stylistic
bias as possible. Stylistic bias can enter into a refinement of the model at two points

" the medium model could be biased. For example, its constructs could consist

of windows, icons and menus.

" the user agent could be extended to provide the frontline interface. For exam-

ple, the user agent could request the medium to construct interactive

techniques like menus etc., and interpret user input in these terms.

While the abstract specification does not exclude these possibilities, in inten-

tion, and in practice in Presenter, we wish to minimise the stylistic binding within

both the medium and the user agent. In the medium this is a matter of providing a

model with simple, generic constructs. Two such models are given in Chapters 6 and

8. Within the user agent it is a matter of confining the stylistic binding to simple one-

to-one mappings of input events to medium commands. Some stylistic binding nec-

essarily remains, however, for example the mapping of mouse buttons to classes of

command. Without this, we would have to return to the situation in which the appli-

cation interprets all input events. In fact, as we have shown, the communication

architecture does allow an application this level of involvement, but with the loss of

the benefits of Surface Interaction.

-134-

In design, we therefore expect a specialised application to exist which would
generate and manage the frontline interface, for example in terms of windows or oth-
er interactive techniques, but we do not want to prescribe what these should be.
This application may have to have special priority over other applications, but this an

operating system issue.

The interface application will principally be active on three occasions:

" when the system starts up, it will have to initialise an appropriate surface

configuration, for example an empty desktop.

" when the user indicates he wishes to start an application (by typing a com-

mand or clicking an icon provided by the interface application) it will have to
invoke the process and set up the appropriate communication channels.

" when a client application is killed or dies abnormally, it will have to decide

what to do with that application's surface remains, based possibly on what X

calls the application's shutdown mode. Typically the dispossessed surface

objects of a dead application would be deleted.

The benefits of separating the mechanism of interaction from the policy or style

of interaction in this way has been recognised by a number of recent interface man-

agement systems, including X. Although these systems often distinguish between

the windowing interface and the toolkit or widget set, from the point of view of the

surface both of these are simply applications which provide a stylistic binding to the

basic task of application invocation.

4.6.9. Buffering

The CSP notation assumes that no event can take place unless all processes

which have that event in their alphabet are ready to accept it. Human users, howev-

er, are not normally bound by this restriction. That is, they may generate many input

events (by, for example, waving the mouse, or holding down a repeating key) before

the underlying application is ready to process them. As has been shown above, the

user agent is blocked while it waits for an application to return confirmation from an

input report. It is therefore between the input devices and the user agent that the

potential backlog of input events can build up. In practice the user agent can deal

with this possibility in three ways:

-135-

" it can block the user by turning off all input echoing until the application is
ready to receive the next event.

" it can echo input, but lose it until the application is ready.

" it can buffer input events, and echo it either as it enters or leaves the buffer.

The first option is the least acceptable, because the user is not able, in a multi-
tasking environment, to switch to a more efficient application while waiting for the
input processing to complete. The second is a possible option where not all input

events are critical to the interaction, and the user expects to repeat input events,
like mouse clicks, that do not have an effect. The third option allows type-ahead, and
thus is more suited to an expert user. This option would also be required for applica-
tions which need to know all input events, for example the sequence of mouse
locations making up a freehand line in a draughting tool.

Communications between applications and the medium should also be buffered,

if applications are not to be blocked while they wait for access. However, the model

assumes that applications wait for replies from the medium. On the other hand, com-

munications between the user agent and applications need not be buffered, since the

specification requires the user agent to be blocked while it both waits for the atten-
tion of the application, and waits for its confirmation to continue. However, we

expect the application to process reports from the user agent as a matter of priority.

4.6.10. Channels

The precise configuration of channels is to some extent orthogonal to the com-

munications that occur between processes. This is because, at the extreme, we

could establish a separate channel for each event in the common alphabet of two pro-

cesses. At the other extreme, as we have seen in the case of REPLYs, we can do

without explicit channels in some cases in the formal model because the definitions

of the processes force certain communications to occur unambiguously. The report

channel in the UMA architecture is in fact strictly necessary only when there are

multiple applications.

Channels are required in cases where two or more processes communicate to a

third using a common alphabet. Without channels, the CSP notation would only

allow a communication to occur if all three processes were ready to engage in it.

However, in the case for example of the user agent or applications communicating

-136-

with the medium, we clearly want these processes to communicate independently of
the others.

The counterpart of this in implementation terms is whether we allow input

events for example to be despatched to a particular owning application along its own

channel or to be broadcast on a common channel to all applications on the expecta-

tion that only the owning application will accept the event. These issues are usually
dealt with at the framework level, for example the X Intrinsics level. In the case of
broadcasting we would formally take the view that events destined for different

applications were in themselves different events. The problem in implementation is

that each application would have to verify each event, and an application might erro-

neously accept an event not directed at it.

In practice we want to minimise the number of inter-process communication

channels. UNIX pipes, for example, use file descriptors, of which there are only a lim-

ited number available. It is even possible to constrain all communication to occur

along one channel (or two, if two directions are required). However, in this case the

cost of multiplexing and demultiplexing the messages by tagging them with their
destination increases. In implementation there is therefore a trade-off to be consid-

ered between the number of channels and the complexity of the messages.

These issues arise if the user agent and the medium are bound together, as

suggested above. In this case it is possible to combine the report and app channels,

and their replies (so that replies to the reports go along the app channel and vice

versa). However these events must be clearly distinguishable. In the context of Pre-

senter these issues are examined in detail in Pollard's BSc project report

[Pollard89].

4.6.11. Synchronisation

We have already mentioned the benefits of a strict alternation of input and out-

put in synchronising access to the surface medium. That is, the medium will not

process a command until it has completed the previous command. However, this lev-

el of synchronisation may not be sufficient for some applications. For example, an

application, upon being informed of a mouse selection, may need to construct a com-

plex object on the medium, like a menu or a set of `handles' around a selected object,

which may require more than one instruction to the medium. Alternatively, an appli-

-137-

cation may wish to make a number of queries of the medium, for example about the

positions of other objects.

We have shown how user input can be blocked by the application, simply by

delaying its confirmation to the user agent. In fact this is an essential capability,

since in that period the application is able to perform any number of medium com-

mands, and be sure that the user cannot intervene. However, it is a design issue

whether user input should be buffered during this period, and so allow type-ahead,
for example so that a user could select a menu item before it actually appeared on

the surface.

On the other hand, the application cannot be guaranteed protection by this

mechanism from interference by other applications. That is, while an application is

preparing to ask the medium to draw handles on an object, another application may

move that object. For this reason it may be necessary to provide acquire and release

operations [Hoare85 p. 200] on the medium so that an application which has critical

sets of medium commands can perform these without interference.

Some window managers allow applications to grab all input, whether or not it

is targetted on that application's objects or not. This capability is necessary to

implement modal dialogue boxes, for example. Leaving aside the question of

whether strong modality like this is a good thing, it is certainly required by some

applications. It is equivalent to providing acquire and release operations on the input

resources. In the implementation of Surface Interaction these would have to be sup-

plied as operations on the user agent.

If the user agent and the medium are bound together in implementation, then

these synchronisations become more difficult to manage, simply because the com-

bined process must handle input from two or more sources: the user, and the

applications. While we may want user input to be blocked while an application con-

siders its response, we do not necessarily want access to the medium to be blocked

at the same time, especially from the application which is dealing with the input.

4.6.12. Echoing

Echoing is problematic only in that many workstations offer hardware echoing

of the mouse position, but rely on software to echo keyboard characters. Thus when

we speak of delaying the echoing of user input until confirmation is received from the

- 138 -

application, this does not usually apply to mouse cursor echoing. However, Surface
Interaction extends the possibilities in two ways:

" In design, the mouse cursor can be seen as an object on the surface like any
other. It would be constrained to lie in the foreground, and would be owned by

the user agent, but this would not preclude applications from being able to mod-
ify its contents or `warp' its position. However, it is probably the case that

most users would not want the mouse cursor to block while the user agent

waited for application confirmation, so that a better scheme might be for the

cursor to be owned by a special process which communicated with the user

agent. The advantage of implementing the cursor within the surface rather than

on top of it would be freedom from the standard 16 x 16 bitmap of the video cur-

sor (unless the medium consisted only of 16 x 16 bit objects!).

" Character echoing can be undertaken at a variety of levels. In some cases, for

example typing in a password, no echoing should take place. Applications may

therefore need to be informed of keypresses each time they occur (for example
in an editing application), or only after carriage return has been pressed (for

example in a command processor), or perhaps not until the end of an interac-

tive session (if the application is a document processing system which uses a

separate editor). The vtlOO terminal will automatically echo character presses

unless `raw' mode is set, in which case each character is first sent to the host.

This is analogous to the behaviour of the user agent in Surface Interaction. The

vtlOO thus exhibits Surface Interaction to the extent that some echoing of user

actions can occur without involving an application. Similarly this can be

changed dynamically. The major difference is that in Surface Interaction this

behaviour is determined by the state of the medium object, rather than by some

global state in the user agent. That is, one text object may require input to be

echoed automatically, another that keypresses are first reported to its owning

application.

4.6.13. Pruning State

Textual output generated by applications or operating systems can be volumi-

nous. This is no real problem on glass teletypes, since the text simply scrolls off the

top of the screen and is lost. However, if the medium maintains state, then all such

output would be saved.

- 139 -

The advantage of this is that all output can then be reviewed by scrolling, and a
complete history of the interaction is always saved. The disadvantage is clearly that

memory is soon filled with output text.

There therefore needs to be some mechanism whereby output state is pruned.
This can either occur automatically (for example, based on age) or electively, by

allowing the user an operation to flush tty windows. Alternatively, tty emulation can
be strict, so that no (scrolled) text is saved.

In the long term, it might be hoped that tty-style interaction would be entirely

superseded by a more direct form of textual communication.

4.6.14. Error Handling

Because the surface medium has state, two sorts of error can arise:

" An application may issue a command incompatible with the current state. For

example it may ask for an object to be moved which does not exist. Clearly the

medium should protect itself against this possibility, and issue an error mes-

sage if it occurs, rather than crashing. This is relatively easy to implement,

since the REPLY set can contain error messages as well as standard replies.

Normally the error would be reported only to the offending application, which

can then take appropriate steps. However, there is a case to be made for ease

of program debugging that the error should also be displayed on the surface.

An error may also be introduced if the application returns a reported user input

to the user agent with an invalid object. Now it is the user agent which will

make the erroneous call on the medium. In this case there has to be some addi-

tional way of informing the application of the error. We assume that the user

agent itself is free from these errors, and that therefore the user cannot directly

make an error on the medium.

" The medium may be put into a state which is self-consistent, but which is

incompatible with the semantics of an application. For example the user may

delete some important text. The easy way out of this problem is to require that

wherever there is the possibility of this error, then the application should save

all relevant state so that it can implement an undo operation, or alternatively

that it should monitor all user actions by asking for all user input to be reported

to it. However, this goes against the principle of Surface Interaction, which

- 140 -

guarantees that there are some user manipulations which the application need
not be concerned about. There are therefore grounds for requiring the medium
to maintain some history of its states, so that it can perform an undo
autonomously. This however has not been implemented.

4.6.15. Logical Events

By logical event we mean an event that occurs within the surface itself, rather
than in the peripheral input hardware. Thus logical events are distinguished from
direct physically generated events. Logical events can originate in two sources:

" As an indirect result of user input. For example, as the user moves an object

across the screen, it may come into (visual) contact with other objects. The

medium could therefore generate collision events on these occasions. The

range of logical events is clearly a design decision, and is dependent on the

medium model. It is even possible to regard surface errors (the first type

above) as sorts of logical event.

" As a result of commands from applications other than that which owns the

object. Clearly if an application modifies one of its own objects, then it knows

when the command to do this occurs and its effect. However, if another applica-
tion modifies the object, then it is likely to be useful for the owning application
to be informed. This is analogous to the situation when the user agent modifies
a medium object, except in this case the user agent informs the application in

advance.

Because logical events occur within the surface, they necessitate an extra com-

munication mechanism from the surface to applications. The provision of logical

events is therefore an extension of the basic architecture for Surface Interaction.

They have not been implemented and their practicalities are unclear.

4.7. Conclusions

This Chapter has presented the fundamental Thesis: a separation can be

achieved between interface and application if the interface encapsulates a generic

presentation model (the medium), and also a user agent which can act independently

of applications. Such an interface we call a surface. This architecture provides direct-

-141-

ness, since both the user and the application can access the surface objects. The

architecture also factors a significant portion of the task of constructing a direct

manipulation interface. This factoring occurs both in the encapsulated presentation

mapping from the surface objects to the display, and also during Surface Interaction,

when the user can manipulate surface objects without involving the application. On

the other hand, the architecture allows the application, if it needs, to achieve fine-

grain control over the surface, simply by specifying the input events which it wants

reported.

This concludes the first part of this Thesis, which has dealt with the motivation

and architecture for Surface Interaction. This part has presupposed no semantics for

the surface. That is, we have given no model for the structure of the surface medium.

This, however, is of critical importance to the success of Surface Interaction as a

principle for separation, and we address this in the second part of the Thesis.

-142-

Chapter 5

Surface Models

This Chapter begins the second and last part of the Thesis. Having established
Surface Interaction as a principle and UMA as an architecture for direct, separated
interaction, in this part we specify two new models for the surface.

As a preparation for the new surface models described in Chapters 6 and 8,

this Chapter examines current models for the surface. The first Section looks at win-
dow management and its models. The second Section examines imaging and
modelling in graphics. The third Section looks at text models. The last Section cov-
ers models for documents, that is, models which incorporate both text and graphics.
First of all we clarify some terms used in this Chapter.

5.0.1. Procedural and Declarative Models

In graphics terminology, a model is the structure of graphical or textual ele-
ments. In the abstract, a model can thus be represented by some connectivity

relation. In practice, models can be expressed in different ways which affect the sepa-

rability of the model.

We distinguish between procedural and declarative models of both text and

graphics. A procedural model is a program which needs to be interpreted or compiled

to generate output. Thus a description of a page in PostScript [Adobe87] or a piece

of text marked up with LaTex [Lamport86] commands are both models in this sense
for the final version of the page. In a procedural model the model structure is repre-

sented by the syntactic call structure of the program. A procedural model is thus

bound early to its primary representation.

-143-

On the other hand, a declarative model presupposes some independently main-
tained state which is accessed by a set of operations. The model here is thus an
Object, in the sense defined in Chapter 1. It is declarative in the following senses:

" structural and other relational constraints may be declared over components

of the model, which persist and are identifiable.

" the effect of the operations is largely independent of their order of invocation.

" the implementation of the constraints is maintained by the Object, and thus

hidden from the external operations. Presentation can also be seen as a con-

straint between the model and a display medium.

Window managers generally have a declarative model. That is, they provide

operations to create and structure windows with respect to each other, while the

implementation of display management is hidden from the users.

A declarative model is more separable, since both its representation and its

implementation may be bound late. It is thus suited to interactive use, since the com-

ponents may be created and deleted dynamically, and modified randomly. A

procedural model, on the other hand, can only be used interactively by allowing the

user to edit the program, and then re-executing this. This cannot be direct, in the

sense defined in Chapter 1, since the program representation will necessarily be dif-

ferent from the output that it generates.

5.0.2. Marks and Media

We instantiate the notion of binding in a graphics context. Thus we distinguish

between the output medium (for example a piece of paper, or a display screen, or a

window), and the marks that may be made on that medium using primitive elements

or drawing tools. We wish to think of marks as unstructured and permanent (except

by overwriting), while media are structured and manipulable. Marks are thus analo-

gous to graphics or text primitives, while media can form the components of an

Object state. However, the distinction between marks and media is simply one of

binding. Marks are bound to the medium, whereas media are unbound.

This results in a hierarchy of marks and media, such that media may be marks

in a higher binding. Thus basic surface primitives can be seen as media with very

simple marks (a solid fill, for example). These media may be structured into the rep-

-144-

resentation of a textual character, and thus be seen as marks making up the shape of
the character, which is a medium at a higher level. The character media themselves
may be structured as marks on a page or window of text. These page media may be

structured as marks in a document or interactive interface, and so on. This notion of
marks and media thus generalises the conventional graphics distinction between
imaging and modelling.

The distinction between media and marks is important to this Thesis, since
media, because they are late bound, are more useful than marks in interactive inter-
faces. It is easier to write a directly manipulable application, for example, using a
Toolkit that provides many media presented as buttons, scroll bars and menus, than
it is to write directly to a window simply using primitive marks like lines and text.
The first section in this Chapter criticises the window manager model on the grounds
that it provides only coarse media. The models presented in Chapters 6 and 8 of this
Thesis on the other hand attempt to maximise the granularity and flexibility of the

media, such that marks need only be used for static imaging.

Since window management provides the basic graphical and textual model for

the majority of applications written to bitmapped workstations, we examine the win-
dow management model first and in some detail.

5.1. Window Management

Window management is a model for Surface Interaction. The standard window

environment provides persistent objects (windows and icons), and operations on

them (open, close, etc.), and a control abstraction whereby window management

operations can be interleaved with application operations. We examine the suitabili-

ty of the standard window model for Surface Interaction.

Window management is truly a bitmapped, rather than a vector, phenomenon.

A few window systems have been built on vector hardware [Rosenthal8l, Little-

field841, but these postdate the original conception. Window management has

similarly been largely ignored by the mainstream graphics community. The proposed

CORE standard, for example, had a `synthetic camera' analogy [Rosenthal83 p. 39]

which allowed only a single view of the object being modelled, as opposed to the

multiple views inherent in window management. In GKS, even though multiple

world/device coordinate transformations are permitted, they are not framed: seg-

-145-

ments may be interleaved arbitrarily [Rosenthal83 p. 38]. Only recently, and
probably as a result of the adoption of raster hardware, has belated provision been

made for window management within mainstream graphics [Voorhies88]. This, how-

ever, is at the hardware level. Other proposals opt for running GKS or CGI within a

window [PCTE88, Hopgood86a] (there are also similar moves to provide PHIGS

within X). The ANSI X3H3 group is examining a model for window management that
is more closely bound to the graphics standards [Butler85b].

The seed-bed for the concept of windows and its early implementations was
the Alto bitmapped workstation, built at Xerox PARC in 1973 [Thacker82]. This

formed the vehicle for a number of seminal systems, notably William Newman's

Officetalk, Teitelman's DLisp [Sprou11791 and the interface Dan Ingalls contributed

to Kay's Smalltalk-76 [Ingalls8l] (Ingalls is generally credited with the invention of

windows [Teitelman86 p. 35]). These in turn formed the inspiration for the Star

[Smith82a, Smith82b] and Lisa [Williams83] systems, and, through Warren Teitel-

man, the window systems for Interlisp-D, Tajo, and Cedar [Teitelman86].

All these systems, however, can be characterised as monolithic, having a sin-

gle language and possibly a single address space, closely tied to the hardware, and
designed for exploratory work or limited task domains. For these reasons it is often
difficult to abstract the window system itself from the overall semantics of these

environments. Both Star and Lisa, for example, have a large number of built-in

objects like folders, files, in and out baskets, and calculators whose functionality and

appearance are integral to the environment and its desktop or office metaphor. Later

efforts in window management attempt to decouple the presentation and manage-

ment of windows from the objects they are used to represent. Typically, these later

systems have been developed to interface to an established operating system like

UNIX: the Blit [Pike84], the Whitechapel MG-1's window manager [Newman85,

Sweetman86], the Perq PNX's window manager [Perq84], SunView [Sun86], and

Andrew's window manager [Morris86].

Most recently, window management systems have addressed three issues.

Firstly, attempts have been made to abstract an underlying screen management

capability from the particular windowing interface. The same `base', `platform', or

`substrate' window manager may thus present itself in a variety of user interface

guises. X [Scheifler86 p. 81], NeWS, and CSI [Williams87] are all conceived as base

window systems in this sense. Secondly, distribution has been given priority. X and

NeWS are designed to be network transparent - an application may display itself

-146-

through a window maintained on another machine. Lastly, the big stakes are now for

standardisation. The authority of the ANSI X3H3 windowing proposals [Butler85a,

Butler85b] has to a large extent been undermined by the success of X in the public
domain. The latest version 11 of X is a deliberate attempt to preempt the lumbering

machinery of standardisation [Laursen87).

However, it is not the intention here to present a comprehensive survey of win-

dow systems - this has been adequately undertaken by Myers [Myers88c]. Rather

we wish to characterise the features and limitations of window systems as generally

implemented.

5.1.1. The Model

The first step in moving away from a simple glass teletype presentation is the

erection of fixed boundaries in the display space within which different streams of

text can be scrolled or edited. The UNIX vi editor, for example, has a text area and

separate command line implemented in this way. The fundamental model for true

window management, however, sees these display partitions as discrete areas geo-

metrically independent of each other in a 2.5D space. These areas act as `windows'

onto separate spaces under the control of different application tasks. Underlying

these windows there is conventionally a `background', usually shaded.

Most systems allow any number of windows to be open (subject to upper

memory bounds), but some limit this. Star, for example, allows only up to 6 windows

at once [Smith82a p. 523], while Perq PNX allows 31 [Perq84] (windows in PNX are

implemented as open UNIX files, upon which there is a limit imposed by the operat-

ing system).

It is interesting to note that, in spite of the vaunted `naturalness' of direct

manipulation, there is no simple physical analogue for this model of potentially over-

lapping windows onto larger spaces (perhaps it could be set up using mirrors).

Geometry

In the majority of systems these screen areas are rectangular. NeWS

[NeWS87b p. 46], however, through its PostScript imaging model, can also maintain

non-rectangular areas. In Star [Lipkie82 p. 119], and all other window managers that

the author is aware of, the screen areas maintained are opaque. That is, it is not pos-

-147-

Bible to see through them to areas notionally underneath - their RasterOp mode is a
simple overwriting of the screen, rather than some combination of source window

with the existing screen contents. Although documentation for both X and NeWS

uses the term `transparent', in practice their `transparent' window or area is either a

clipping rectangle onto an existing opaque window, by means of which drawing on

that window is limited to the area of the rectangle, or it is an invisible `input-only'

window [Scheifler86 p. 104, NeWS87a p. 14, NeWS87b p. 46]. NeWS in addition

allows the creation of transient images (like rubber boxes for echoing movement) on

a transparent overlay canvas [NeWS87b p. 48]. As the name suggests, however,

the overlay canvas is restricted to the foreground of the screen, since it is intended

to be implemented by a hardware overlay plane or by the easily-reversible XOR

RasterOp mode. A major contribution of the models presented in this Thesis is an

integration and implementation of transparency as an attribute of any screen object,

and using any image combination mode.

Restrictions may also be imposed on the position and size of windows. Sun-

View windows, for example, cannot be moved so that any part of them is offscreen.
On the other hand, Perq PNX [Perg84], Macintosh, and X windows can be moved

offscreen. Most window managers allow windows to be changed in size, but Blit

windows, for example, cannot change size [Hopgood86b p. 134].

A major classifying division in window managers is between those that allow

overlapping windows (i. e. that place no relative constraints on window size and

position), and those that do not. The majority of systems that do not allow overlap-

ping in addition tile their windows so that borders are contiguous. Star is the

exception here: it does not allow overlapping windows [Smith82a p. 523], but does

not either appear to tile its windows. Bly and Rosenburg compare tiled and overlap-

ping systems [B1y86] from the human factors point of view. Tiled systems optimise

screen use, but in order to do this are relatively dictatorial about window placement.

The user or the application may only be able to give `hints' in order to specify the

size or position of a window [Gosling86 p. 117, Morris86 p. 197]. The tiling algorithm

may be more or less complex [Cohen86].

Early versions of Andrew, for example, tiled the whole screen area and

realigned all windows upon a single change to one of them. This was found to be

slow and confusing to the user [Morris86], and was changed so that windows exist-

ed in two columns with some background space visible at the bottom of each.

Window geometry changes were therefore more localised. This scheme emulated

- 148 -

the fixed-format tiling algorithm of the other major tiling window manager, Cedar

Viewers [Teitelman86 p. 41, Teitelman84, Swinehart85] [Beach85 p. 5].

It may seem strange to build tiling into the fundamental layer of a window man-

ager, when an overlapping model is more general and may subsequently be

constrained to tile, if needed. It is considerably easier, however, to implement win-

dow update and hit detection if tiling is assumed from the start. Offscreen storage for

obscured windows is also not necessary. A recent system [Tanner86 p. 242] tiles

windows for just these reasons.

Structure

The overlapping model immediately assumes a linear ordering of the windows

to determine which obscures which. Generally, a new window is created at the

`front' of the screen. Systems vary as to methods of manipulating this linear struc-

ture. In SunView, windows can arbitrarily be `exposed' or `hidden' (pushed to the

back) - the display order of the windows can therefore be changed. On the Perq,

however, windows can be cycled, but not changed in order.

A number of recent window systems maintain a tree structure of windows. In

all cases this is a geometric hierarchy: the size and position of a child depends on

the size and position of its parent. Tree-structured systems include Whitechapel

MG-1 [Newman85 p. 421], X [Scheifler86 p. 89], and NeWS [NeWS87b p. 46] In all

these systems all nodes in the hierarchy are notionally of the same type (panels in

MG-1; windows in X; `canvasses' in NeWS). Some earlier systems have a kind of

geometric hierarchy, but this is maintained through a hierarchy of types (viewers and

subviewers in Cedar [Swinehart84]; canvasses, windows, frames, subwindows,

panels in SunView [Sun86]). Of course, even the simplest window model which

allows some specification of window contents can be thought of as at least a two-

level geometric hierarchy.

A characteristic of most of these hierarchical models is that all nodes in the

tree contain potentially displayable images. The display ordering must therefore be

some deterministic traversal of the tree structure, usually preorder [Scheifler86

p. 89], so that children obscure parents, and all descendents of a node obscure all

-149-

descendents of a prior sibling node. Sub-hierarchies can therefore never visually
interleave:

logical view user view

All these systems, however, fail to exhibit geometric generality in three main

ways:

" The presence of displayable images at interior nodes means that such images

cannot be manipulated independently of their descendents: if a parent image

(representing, say, a background or border) is moved, then all its children nec-

essarily move with it. While it may often be the case that this is what is

required, it is nevertheless a restriction on the geometric manipulability of the

screen objects.

" All hierarchical window managers that the author is aware of clip the display

of child areas to the extent of the parent (this can be turned off in Sun View, but

it simply corrupts the screen). Such a strict containment scheme is obviously

easier to implement, since updates are restricted to the `refresh tree'

[Rosenthal83 p. 39], and hit detection can be performed recursively

[Szekely88a p. 40, Strubbe83 p. 1035], starting with the extent of an ancestor

(usually a window) and testing each level of descendants in turn against the

position of the cursor. This graphical containment policy, however, is again a

restriction on manipulability.

" In almost all hierarchical window systems the `windows' form a distin-

guished level at the top of the hierarchy (i. e. immediately beneath the root),

while lower nodes ('subwindows', `panes', `viewports' are common labels)

-150-

are subject to the above two restrictions. There are thus in practice at least
two different display types, and it is impossible to create full windows as chil-
dren of other windows, or to group already existing windows [Williams86

p. 28]. (Although the model defined for PCTE+ does group windows [PCTE88

p. 27], the window group is a separate type from the window, and has its own

set of operations).

The models presented in this Thesis avoids all these restrictions. Regions in

Presenter have displayable content only at the leaves of the hierarchy, so that the

above user view would be generated by a logical tree such as the following:

Restricting displayable images to the leaves of the geometric hierarchy in this

way is paradoxically the more general scheme, since it makes the syntactic grouping

structure of the visible objects (represented by the hierarchy) orthogonal to their

geometric locations. This is reinforced in Presenter by allowing a child region to be at

any position or size with respect to its parent. This image-at-leaf model cannot be

emulated by current hierarchical window systems (for instance simply by not dis-

playing images at interior nodes), since all impose the restriction that a window that

is hidden ('unmapped', in the terminology of X and NeWS) also hides all its descen-

dents. Lastly, regions in Presenter are entirely independent of their position in the

hierarchy: they can be cut, pasted and grouped aribitrarily. One set of operations suf-

fices for all regions (leaf or interior).

-151-

5.1.2. Features: Icons and Menus

The notion of an icon has evolved subtly. At its conception in Smalltalk and
Star, an icon was simply a compact representation for a closed window. While some
later window systems do not provide icons (like Perq PNX's), most have taken up

the metaphor, sometimes extending it by providing icons that are miniature copies of

the associated window, or that give some visual signal when events occur within it

(such as a raised flag when mail arrives). The important characteristic of icons in

this conventional sense is that they are a distinguished type within the window envi-

ronment, and that the relationship between windows and icons has a built-in

semantics. This is reinforced by the sometimes baroque visual mechanisms that win-

dow systems indulge in to present the transition from icon to window: collapsing,

exploding, or whirling rubberware, for example. The fixed relationship between win-
dows and icons is implicit in the popular designation WIMP for the class of direct

manipulation interfaces.

Recently, however, icons have been promoted to a more fundamental role in

interface systems. In such `iconic' interfaces [Glinert87, Gittins86] the term `icon' is

used to denote a screen object of more general applicability. Clarisse and Chang see

an icon as `a predefined flat pictorial symbol representing an "object" - physical or

abstract' [Clarisse86 p. 153]. That is, an icon in this sense is visually atomic - it has

no constituent structure - and serves as a lexeme in the interaction. Kor nage and

Korfhage [Korfhage86 p. 210] emphasise the symbolic nature of such icons. In their

definition, an icon is associated with a concept via some primarily pictorial image.

Designing an interface is thus a matter of designing an iconography. This view of

icons as visual tokens is thus closely associated with recent aspirations towards

iconic or visual languages [Korfhage86, Haeberli88, Powe1183, Chang86, Selker87,

McDonald82, Myers88a, Myers86b, Cook88, Waite88, Hare188].

It is clear from this wealth of literature that an icon can be a more powerful

entity than simply a `gone for lunch' sign for a window. It may be that the term `icon'

is better reserved for the traditional use, and perhaps `visual object' or `atomic win-

dow' is preferable for this more general case. Certainly some of the bulk of recent

literature on icons would disappear if this translation were made: Korfage's specula-

tion about icon hierarchies, subicons, zoomable icons, and document icons

[Korfhage86 p. 224], for example, seems perfectly isomorphic to facilities offered by

recent object/window systems.

-152-

Whatever the terminology, however, it does seem inappropriate, in view of the
obvious potential of icons to form a wide class of visual interfaces, to bind the old
icon/window semantics into the base level screen manager, as is the case in X
[Scheifler86 p. 102] and PCTE [PCTE88 p. 27]. If anything, this shows the strangle-
hold that the window management model has on interface design.

Conventional menu facilities present a similar case. Menus are often provided
at a low level in window systems. In Perq PNX, SunView, and PCTE, for example,
they are available at the same level as the window itself. Even though, in display
terms, their requirements are identical to windows (opaque, rectangular areas of
screen), they are given a separate semantics. The appearance and behaviour of
icons and menus are thus bound in to the environment.

The clarifying assumption of the model offered in this Thesis, on the other
hand, is that at the base visual level there should be no semantics other than those

associated with fundamental geometric or textual manipulation. At root the charac-
teristic feature of icons adopted by the visual language community is their visual
atomicity. This is amply carried by Presenter's notion of a region and its image, and
is in contrast to (and perhaps in reaction to) the conventional idea of `window'. Simi-
larly, at this level, a menu can simply be represented as a set of selectable text
regions, leaving the semantics of selection (command invocation or option choice) to
be interpreted in deep interaction.

5.1.3. The Window Interface

A clear distinction should thus be made between the base window system,

which presents the screen objects and manages their manipulation, and the window
interface, which determines the appearance of the windows and interacts with the

user on the basis of some semantics (such as the association between icons and

windows mentioned above, or the association between windows and processes).

It is obvious that the underlying functionality represented by the particular win-
dow abstract data type could be instantiated in a variety of styles, and using a

variety of input mechanisms. Window managers vary in lexical style, for example the

width of borders, presence and style of title bars, scroll bars etc.. Similarly, window

operations may be invoked by direct manipulation (pushing a close button, as in the
Macintosh) or via a menu (as in SunView). It is also obvious that there must exist

some root process by which the whole system is bootstrapped, which allows subse-

-153-

quent application processes to be invoked and which relays system messages to the
user.

It is convenient to combine this stylistic management and supra-process man-
agement in a single, (at least logically) separable window interface process. This

distinction is made, for example, by Coutaz in her Box (base) and Mediator

(interface) components [Coutaz85, Coutaz86], by Whitechapel's `panel manager'
(base) and window manager (interface) [Sweetman86 p. 77], and at least implicitly

by X, NeWS and CSI, all of which see themselves as relatively low level protocols

upon which an interface should be constructed (although X and NeWS also supply a
default interface).

The style of the window interface is often determined and made consistent via

a metaphor [Carrol85]. The window itself is, of course, a powerful metaphor. It con-

veys the notion of viewing a wider space through a frame. More prosaic interfaces,

like SunView's, at least have this unifying principle. Icons [Scheifler86 p. 1021, too,

possibly convey some notion of symbolic designation of a large (conceptual or physi-

cal) space in a small token. More specific metaphors, like the desktop, rooms
[Henderson86, Card87] (which emphasises the logical connectivity of windows),

and cards in Hypercard [Hypercard89], give conceptual leverage, but possibly

restrict the design space. That is, there may be a tension, as Smith points out
[Smith87], between the literal and symbolic ('magical') meanings of the metaphor.
The physical-world metaphor of the Alternate Reality Kit [Smith86], for example, is

an attempt to maximise the literal, as opposed to the symbolic, interpretation of the

metaphor so that the novice user can predict the system's functionality rather than

having to be taught it. Complex metaphors (like ARK) may also require a more pow-

erful display environment.

5.1.4. Window System Architecture

There are typically three locations for a window manager: in the client (using

calls to library routines), in the kernel (using system calls), and in a server (using

inter-process messaging) [Teitelman86 p. 45, Gosling86 p. 102]. These correspond

to the internal, external, and concurrent control models outlined in section 2.1.2. Just

as in those models, the server architecture seems preferable. Servers provide distri-

bution for free [Hopgood86b p. 133, Lantz84 p. 24] and enable factoring and

encapsulation of screen handling. Examples of server-based window systems are

-154-

NeWS [NeWS87a], X [Scheifler86 p. 84], the Blit [Pike84], Andrew [Morris86],
VGTS [Lantz84 p. 27] and its successor TheWA [Lantz87b p. 91]. Some window

systems are hybrid. In the Whitechapel [Sweetman86 p. 77], for example, the win-
dow manager is a server, while the panel manager resides in the kernel.

One major decision for server-based window systems is the problem of what
Lantz calls retention [Lantz87b p. 91], that is, the degree to which the server retains
(and can therefore autonomously redisplay) application images. If the server retains

the image, then image construction and window management functions can be decou-

pled. A simplistic solution is for server and client to share image memory

[Hopgood86b p. 133]. However, this compromises distribution, and may only be pos-

sible on single address space, or kernel-based, systems. A related issue is the

nature of image encoding - whether as a bitmap, a segmented or structured display

list (as in GKS or PRIGS [Salmon87 p. 305, Langridge87, Langridge88]), or a dis-

play program (as in PostScript). A useful capability, at least in overlapping window

systems, is for the server to be able to retain at least bitmap images. The original X

system, for example, did not guarantee this [Scheifler86 p. 105]. This is also the

scheme adopted by the Whitechapel MG-1 manager [Sweetman86 p. 78, Newman85

p. 421], Rutherford's CSI [Williams87 p. 25] and (in its bitmap mode) Presenter.

If the server retains nothing of the image, then the application has to be aware

of uncovering and resizing events, and must redraw its own window [Williams86

p. 27, Myers86a p. 67]. This redrawing is likely to be highly redundant (portions of

the window will be redrawn unnecessarily). Optimal redrawing, on the other hand,

involves access to detailed information on window positions and movement, and is

an unacceptable burden on the application programmer. Redrawing by the application

saves on server memory space, but at the expense of increased image traffic

between application and server. X, however, claims only a small performance loss in

doing this [Scheifler86 p. 80].

Applications may even be allowed direct access to the screen, as in SunView

and X [Scheifler86 p. 96]. This may be subject to heavy-handed synchronisation by

blocking output when window management functions (like moving a window or pop-

ping up a menu) are invoked [Gosling86 p. 101], but in other cases may simply rely

on the cooperation of the application to overwrite only those areas of the screen

where it is visible, or on the toleration of the user if things go wrong. In safety-criti-

cal displays this is simply not acceptable.

-155-

Issues of retention and control again place constraints on interface design
using standard window systems. Further constraints on design may come from cer-
tain common implementation limitations. Cursors, for example, are invariably of fixed
size. Pop-up menus are often implemented so that not only need the input queue be
blocked during drawing (see section 2.2.2), but also so that all other screen update
is blocked while they are on screen (because the implementation saves what they
obscure) [Salmon87 p. 343, Scheifler86 p. 98]. In this case the application cannot pre-
sent menus which the user can optionally fix on screen, as with Open Look's

pushpin [Hoeber88 p. 73].

Windows as Graphic Environments

A limitation of standard window systems is the use of windows to mark the
boundaries of graphic environments. Windows are `virtual terminals' [Strubbe83

p. 1035, Coutaz86 p. 337], `logical display surfaces' [Cahn83 p. 169], `logical screens'
[Kamran83 p. 581, `tiles' for information [Ange1187 p. 134], or `viewports' for `virtual

graphics terminals' [Lantz84 p. 32]. Often, in addition, a window has a one-to-one
association with an application. This is the case in Strubbe's and Cahn's systems.
The use of virtual terminals to link input and output is strongly criticised by Lantz
[Lantz87b p. 90]. It is notable that the CGI also uses virtual terminals (which it, con-
fusingly, calls `virtual devices' [ISO86a]) as its basic output medium.

This first-level boundary between extra- and intra-window content is the

cause of many of the fundamental discontinuities in window system display and
interaction. Many window systems simply assume that window content is purely in

the domain of the application. There is no guaranteed consistency, therefore,
between the interaction style within the window and with the window manager.
While the application might deal with the window manager in terms of relatively
high-level constructs like window identifiers, within its own window space it is like-

ly to have only low level operations such as RasterOp or minimal line and text
drawing. Even in window systems which provide a richer graphics environment such

as structured display files [Lantz84 p. 30, Cahn83 p. 168], or display trees

[Strubbe83 p. 1035, Coutaz86 p. 337], or even display languages [NeWS87a], these

environments do not subsume the windows, but are subsumed by the windows. In

all these systems, therefore, the window is always at the root of the display hierar-

chy as a distinguished type consisting of an opaque drawing surface. In the

-156-

terminology of the introduction, windows are the only media, while all other con-

structs are marks.

Windows as Interface Media

Additional criticisms may be levelled against the window as an interface medi-

um.

" As Henderson and Card [Henderson86 p. 214] point out, overlapping win-

dows can lead to a cluttered screen. The clutter is visually confusing and can

cause ̀ thrashing' [Card87 p. 59].

" In window interfaces which indulge in relatively wide window borders filled

with functionality like scroll bars and buttons (as on the Mac) the cluttering is

exacerbated, since this functionality is duplicated for each window.

" Not all objects are rectangular or opaque. In layouts of networked objects, for

example, there may be opaque background around and between the objects

such that some underlying objects may be obscured unnecessarily. Compare,

for example the following two (artificial) screens, the first displaying a network

on a standard window manager:

-157-

and the second the same network on a Presenter-generated screen:

" Unless there are special geometric constraints, it is possible to reduce the

size of windows or move them out of sight (either off screen or under other

windows) so that important control surfaces may become inaccessible.

A contention of this Thesis is that window managers have developed ad hoc,

without a sound formal basis. They have been driven more by a virtual terminal

requirement and the desktop metaphor than by a theory of screen objects.

5.2. Graphics

It is only worthwhile to make drawings on the computer if you get
something more out of the drawing than just a drawing.

[Sutherland63 p. 344]

In order to arrive at a more sound and general model for the surface than that

provided by the windowing metaphor, we explore mainstream graphics in more

detail. We examine graphics under two major categories: imaging and modelling.

5.2.1. Imaging

By image we mean an atomic picture. Although some structure may be used in

the generation of an image, the image itself retains nothing of this structure. In

Joloboff's definition [Joloboff86 p. 1081, an image is a `final form representation'. The

output of MacPaint [Chen88 p. 17], for example, is an image (a bitmap, in this case).

- 158 -

Images thus consist of marks on some medium, for instance a screen or a piece of
paper. Within the resolution of the display medium, an image may be arbitrarily com-
plex.

Images may be specified completely using a simple mapping from some domain

of points to a range of colours. The size of the domain will determine the resolution
of the image, while the size of the range will determine the colour characteristics of
the image. A monochrome image can be modelled either as a partial mapping onto a

range of one colour, or as a total mapping onto a range of two colours (such as black

and white). In a fully polychrome image the colours can also be assumed to have

intensity, such that a colour in one intensity is different from the same colour in

another intensity. Formally, a convenient representation is a mapping from an infi-

nite set of points in the real plane to a set of colours in this sense (see [Mallgren83

p. 8], or [Nelson85 p. 237]). This is the definition used in the formal specification in

chapter 6:

POINT == IR x IR
IMAGE == POINT -a COLOUR

An image in this definition is thus two-dimensional. Although it is easy to con-

ceive of a three-dimensional image specification (three coordinates instead of two),
it is clear that in practice this would invariably be projected into two dimensions

(unless we had holographic display media). Even in two dimensions, the number of

possible images under this definition is infinite. If we introduce a pixel resolution

(i. e. restrict POINT to some finite set) the information space is still enormous. The

number of possible IMAGEs will in general be

#POINT #COLOUR

that is, the number of pixels raised to the power of the number of colours (although

clearly not every IMAGE will be visually distinguishable or meaningful).

The point is thus the most fundamental image primitive (the point is Juno's

only graphical data type, for example [Nelson85]). Composing images explicitly from

points, however, would be extremely tedious. That is, while in theory a

setpixelcolour (pixel, colour)

- 159 -

operation is capable of generating all images, in practice we need some higher image

primitives in order to reduce the number of discrete operations we need to make.

Image Primitives

Ideally we would like a set of predefined higher primitives, such as lines with

thickness and style or characters in particular fonts, that would still be capable of

generating all possible images. Unfortunately this is impossible, since two images

may differ from one another just in the colour of one point. We must accept therefore

that any set of imaging primitives is an arbitrary but hopefully useful selection from

the infinite set of possible marks.

There are fundamentally two approaches to making marks on the display medi-

um using image primitives:

" The inkblock approach. The primitives are composed into an image by succes-

sive application onto the imaging medium, like an inkblock repeatedly stamped

at different positions on a piece of paper. To be visible, therefore, such marks

must have some thickness. The inkblock approach is used by vector-oriented

graphics systems like GKS [IS085], PHIGS [IS087b], PIC [Kernighan8l],

IDEAL [Wyk82], and Juno [Nelson85].

" The stencil approach. Here there are two stages. Firstly, a path is created by

repeated application of the primitives. Secondly, a colour or pattern is projected

through the path onto the display medium. By analogy, the path cuts a stencil

in some masking material, which is then inked through onto the paper. In this

case, the path itself has no thickness. The stencil approach is used in

PostScript's path/paint imaging model [Gosling86 p. 50], Warnock's sten-

cil/source model [Warnock82 p. 314], Gargoyle's outlines and fills [Pier88

p. 227], and in `planar maps' [Baudelaire89].

The stencil approach is more general, in that it allows arbitrary sets of contigu-

ous points to be coloured. Thus even a character in text can be imaged by specifying

the path of its outline and a fill colour (see Pratt's work on conic splines [Pratt85]).

The two approaches converge, however, in two areas:

" It is almost as tedious to specify a character or a symbol by giving a mathe-

matical description of its outline, as it is to specify the points of which it is

-160-

composed. Stencil-based systems therefore usually include a set of primitive
paths such as character fonts or lines and circles with thickness.

" Many images require areas filled with colour. Inkblock-based systems there-
fore usually include an area fill operation.

There is no standard set of image primitives. Typically this consists of lines,

curves and compositions of these into polygonal shapes. But GKS, for example, does

not have spline curves [Pratt85]. Primitive shapes may notionally be transparent, as
in PIC [Kernighan8l] or opaque, as in PostScript [Adobe87], or allow a choice
between these modes, as in IDEAL [Wyk82 p. 173]. Some systems do not allow
area fills, except by shading using lines or other primitives. This is true of PIC and
IDEAL. GKS cannot fill curves or holed areas.

Later imaging languages like PostScript and systems like Gargoyle (which is

based on Interpress [Bhushan86]) provide a richer set of style attributes than main-
stream graphics. While GKS has types like `dotted' and `dashed', and colours and
widths, PostScript and Gargoyle can in addition specify line joins (mitred, rounded,
or bevelled) and line caps (squared, rounded, or butted). Here, for example, are a
selection of triangles with different line joins drawn in PostScript:

bALL
Image Transformations

In general, given the above formal definition of an image, there are three types

of transformation that can be applied:

" Images may be transformed by restricting their domain of points to some sub-

set of points (e. g. MASK: IP POINT):

MASK < IMAGE

It is conceivable that this restriction apply to arbitrary points, as in bitmap masking,
but more commonly it is applied to contiguous points, as in clipping to a path.

-161-

" Images may be transformed by modifying their domain of points. That is, the
colour at a particular point may be moved to another point. This can be

achieved by composing the image with a geometric transformation function

(e. g. GEOMTRANS: POINT - POINT):

GEOMTRANS 93 IMAGE

The class of affine geometric transformations such as translation and scaling are
special cases of the general geometric function (see Martin [Martin82], or Bier

[Bier86 p. 235]), in which the function is a bijection (that is, it is invertible). There

are also cases where other mappings are useful, for example in raster conversion, or
3D to 2D projections [Mallgren83 p. 17].

" Images may be transformed by modifying their range of colours. That is, the

colours of arbitrary points may be changed arbitrarily. This can be achieved by

composing the image (in the opposite order to above) with a colour transforma-

tion function (e. g. COLTRANS: COLOUR - COLOUR):

IMAGE $ COLTRANS

This function can be used simply like a colour lookup table, or it could be used to

threshold or filter images. More general image processing requires a function which
takes account of the position of a colour, and so can perform, for example, local aver-

aging of colours. Even in interactive graphics, colour functions like this might be

required for patterning or dithering colour images on monochrome screens, or

antialiasing lines during raster conversion.

Mallgren [Mallgren83 p. 12] gives formal definitions for most of these transfor-

mations.

Images may also be combined. This involves specifying alignment (which

points should be combined with which), and a colour combination. Basic RasterOp or

BitBit has sixteen different combination modes, which are a permutation of the four

modes AND, OR, XOR, and overwrite, between source and destination bitmaps and

their negations. The effect of these modes is shown in the following illustration.

Black is equated with true, and white with false, such that black AND white, for

example, is white. In each mode, the source is illustrated as overlaid on the destina-

tion:

-162-

Some combinations are equivalent, for example

(NOT source) XOR destination

and

source XOR (NOT destination)

(the overlapping portions of the second and third images on the bottom row are iden-

tical). Also, some combinations may not be particularly useful in practice. RasterOp,

however, is strictly applicable only to single bit depth images. Mallgren [Mallgren83

p. 25] addresses the problems of combining gray-scale and colour images, and

[Porter84], [Acquah82], and [Paeth86] make some practical suggestions for combin-

ing and compositing more deeply coloured images.

Presenter, in keeping with its declarative rather than procedural nature, associ-

ates the combination mode with a region, rather than requiring the specification of

source and destination regions and mode in a procedure call. Thus the destination

-163-

region changes dynamically as the (source) region is moved around the screen. One

region can combine with a number of other regions in an entirely intuitive way.

Presenter also allows transparent regions to be overlaid arbitrarily. One fea-

ture of the RasterOp combination modes that has important consequences for the
implementation of this is that they are not associative. For example, it is the case

that

(1 XOR 0) AND 0#1 XOR (0 AND 0)

Therefore, layered transparent regions must be redrawn in display order, which

closes out some short cuts possible if only, say, XOR mode were permitted. A use-
ful benefit of Presenter's strict redrawing is that any colour combination mode could
be substituted for the basic raster operations.

Within mainstream graphics, some effort has been made to accommodate the

newer raster technology. The GKS `cellular array' construct makes a token acknowl-

edgment of bitmaps. Acquah et al [Acquah82] make an early attempt to integrate

raster operations with a vector-based graphics language. This has been taken up by

the proposals for the Computer Graphics Interface (CGI) [ISO86a, Salmon87 p. 3571

which includes a variant of RasterOp in a protocol which follows closely the form of a
GKS-derived segmented display file.

The raster community, however, have not reciprocated this approach. Baude-

laire and Stone [Baudelaire80], for example, attempt to provide an abstract

geometric representation for raster images without reference to the emerging vector

standards. Nevertheless, they still preserve the distinction between a high-level

geometric representation and an encoded display file. Warnock and Wyatt's impor-

tant paper [Warnock82] goes further in removing the intermediate display file

altogether and relying completely on a readable, interpretable representation for

object geometry. Warnock and Wyatt's work leads directly to the language

PostScript [Adobe87], which is becoming a de facto standard for the description of

raster-mappable images.

5.2.2. Modelling

Images may be generated by displaying any arbitrary segment of memory (i. e.

any mapping of pixels to colours) on the imaging medium. Such a segment may for

example contain a digitised photograph. Commonly, however, we wish to construct

-164-

the image out of parts either drawn directly by ourselves, or created algorithmically
by the computer. We may then need to selectively modify these parts. To do this we

need to create a model of the image.

In modelling we are concerned with the construction of complex images from

primitive images. A model is thus a composite image whose structure is preserved.
In mainstream graphics the notion of a model carries three connotations:

"A model is structured. That is, it is constructed of discrete parts which have a

topology, such as a hierarchy. The model thus might correspond to some com-

posite real world object like a plane or a chemical plant [Langridge88 p. 25].

"A model has properties associated with its constituent parts. The principle

properties in graphical modelling are geometric relationships between parts,

but properties may also determine the display of the constituent primitives in

different colours, thicknesses, textures or styles.

"A model can be viewed. That is, it is seen from some geometrically definable

viewpoint, and through some frame, and this view is projected onto the display

medium.

Construction

In general, models can be constructed procedurally or declaratively. In a proce-

dural method the sequence of commands and its call structure is itself the model, and

its primitives directly mark the medium. On the other hand, a declarative method

relies on an intermediate state whose components can be accessed randomly, and

for which there exists a presentation mapping to the display medium.

5.2.3. Procedural Modelling

Procedural representations for modelling images may be

" full languages, like PostScript [Adobe87], Euler-G [Newman7l], Dum

[Asente87], or Metavisu's [Boullier72 p. 253], Kulsrud's [Kulsrud68] or

Williams' [Williams72] graphical languages;

" graphics-specific languages like PIC [Kernighan8l];

-165-

" embedded as library calls in other languages. Window managers often pro-
vide a set of low-level graphics primitives in this way.

5.2.4. Declarative Modelling

We examine five types of declarative modelling: standard, direct, constraint-
based, syntactic, and synthetic.

Standard Modelling

By standard modelling we refer to the mechanisms provided by the standard
graphics languages like GKS and PRIGS. These are declarative to the extent that a
model state is created by their operations, and the presentation mapping of this is
hidden in the implementation of the package. Thus GKS allows the creation of seg-

ments, and PHIGS of structures.

However, both GKS and PHIGS have procedural qualities. GKS imposes some
order dependencies. For example, the contents of a segment cannot be modified once
it is closed. On the other hand, PHIGS' model structure is closely analogous to a call
structure, and PHIGS' structures are strongly sequential, in that the interpretation of
structure elements may depend on previously set attributes such as a local transfor-
mation. Modifying PHIGS structures is also in effect an edit of the PHIGS program.

Direct Modelling

Images can be generated directly by interactively manipulating a drawing

device. The image is built up by leaving marks on the imaging medium using soft
devices (a brush or a stylus, for example) driven by the physical drawing device (a

mouse or a puck). Marks can also be left on the medium by positioning and dropping

some discrete image primitive (such as a circle or an ellipse), by analogy with an ink

block.

A model is constructed to the extent that these primitives persist and retain

their discreteness, so that, for example, we can return to a square or a line already

drawn, select it, and then move it or delete it without affecting the rest of the image.

However, it is often the case in direct modelling that while at one time we wish

to manipulate a primitive (a line, say) on its own, at another we may want to manip-

ulate the same primitive only as part of a larger composite object (a box, say). For

-166-

this reason, direct modelling systems (for example Framemaker [Frame87J) provide
some means for the user to indicate a group of objects, for example by sweeping out
a zone using the mouse. In general, this requires a tree-structured model which can
be arbitrarily rearranged.

A number of systems are intended for interactive image generation: Juno

[Nelson85], Tweedle [Asente87], Gargoyle [Pier88], and MacPaint and MacDraw

[MacDraw88]. These, however, may vary in their directness.

Modelling an image directly is analogous to modelling procedurally through a

machine language, in that a sequence of operations must be performed on the avail-

able image primitives. This analogy is particularly strong if the language has a notion

of a current point, so that the program can generate a path by successive move calls.
This is true of Euler-G [Newman7l p. 653] and Postscript, for example, but not of

GKS or Kulsrud's language [Kulsrud68]. As Chen [Chen88 p. 18] and Asente

[Asente87 p. 2] point out, however, direct generation may not be ideal where accura-

cy, regularity, or recursion are required. It would be difficult to generate this

PostScript image freehand, for example:

A procedural representation may also be more compact than a transcript of a

user's direct actions: a large number of similar objects may be drawn at different

locations, sizes, or orientations, simply by a loop which varies an attribute or a

parameter to a single primitive call [Newman7l p. 651]. The above diagram, for

example, is generated by the PostScript line:

36(60 0 45 0 360 arc stroke 10 rotate) repeat

-167-

Constraint-based Modelling

Constraints are expressed declaratively. Constraint-based and procedural rep-
resentations are necessarily equivalent in power, since we can equate the set of
data types provided in the first with the set of primitives provided in the second, and
can refine constraint satisfaction by procedural methods. As Borning points out, any

sort of relation can be expressed as a constraint, if a procedural test exists and
some algorithm can be specified for satisfying the relation" [Borning8l p. 380].

Graphical constraint-based systems can be classified according to whether the
images produced are static or dynamic. Constraint-based systems like IDEAL

[Wyk82], Juno [Nelson85], and Gargoyle [Pier88] produce static images (text or

graphics) for inclusion into documents. On the other hand, systems like Sketchpad

[Sutherland63], Thinglab [Borning8l], Animus [Borning86], Cohen et al's system
for windows [Cohen86], Coral [Szekely88a], and parts of the X Toolkit [Swick88

p. 225] produce images which maintain their constraints under direct manipulation.
As O'Callaghan says, "the need has moved from static description of pictures to

maintaining integrity and invariants (constraints) under manipulation"
[O'Callaghan72 p. 124].

Orthogonally, graphical constraint-based systems can be classified according
to whether the images are produced textually or by direct manipulation. In Metafont,

IDEAL and Juno, and in more general language like Bertrand [Leler88], images are

produced by interpreting a constraint program. This is even true in direct manipula-

tion systems like Coral, and the X Toolkit. On the other hand, Sketchpad, ThingLab,

Animus, and Gargoyle allow either the image itself, or the constraints on it, to be

defined graphically. In ThingLab, for example, merges can be specified by physically

moving together the points to be merged. Similarly, Gargoyle's technique of 'snap-

dragging' [Bier86] allows constraints to be specified directly by the user through a

ruler and compass metaphor.

Whatever the specification mechanism for the constraints, or final purpose for the

images generated, in a graphical constraint system the programmer (or user),

instead of giving explicit values (for example, coordinates), essentially specifies cer-

tain relations between objects. Minimally, he may constrain a variable to a particular

constant value (what Borning [Borning8l p. 364, Borning86 p. 361] calls `anchored'

constraints). More usefully, constraints may be expressed between variables, such

that the value of one depends on the values of others. The constraints expressible in

-168-

this way thus range from simple linear equations, like identifying the endpoints of
two lines, to complex non-linear equations, like Barzel et al's mechanical system
[Barzel88]. Knuth's Metafont, for example, is linear [Nelson85 p. 235], whereas
more general systems such as Juno, IDEAL, ThingLab, and Bertrand, can handle

non-linear equations. Juno, for example, has the basic constraints of congruence and
parallelism, which are capable of generating the whole of Euclidean geometry
[Nelson85 p. 238]. These require quadratic equations for their resolution [Nelson85

p. 235]. In general, the mathematical power required to resolve constraints may or
may not be provided, so that in some systems constraints may be expressible but

not resolvable.

Typically, sets of constraints are specified in a predicate [Nelson85 p. 237], all

of which must be satisfied. The predicate can be regarded as a system of simultane-

ous equations. These may be solved by one-pass or iterative methods (for example
`relaxation' [Sutherland63 p. 340, Leler86 p. 26, Borning86 p. 364]), depending on

whether there are circular dependencies. Sutherland claims [Sutherland63 p. 341]

that the one-pass method is in fact successful and efficient in many problems involv-
ing geometric dependencies, but is affected critically by the order of evaluation.
There are a variety of methods for determining dependency ordering, involving either
local propagation of known states or degrees of freedom. In general, the number of

constraints and their dependencies is limited only by efficiency considerations.
Sutherland gives the example of a cantilevered bridge built of a large number of con-

strained beams [Sutherland63 p. 343].

When using declarative constraints the relation between states may or may

not be fully determined. A criticism of (textual) constraint-based systems is precise-
ly the difficulty of ensuring that the given constraints are in fact deterministic [Bier86

p. 236]. A set of constraints defining a square, for example, may request a four-sided

polygon whose opposite sides are parallel and of equal length [Leler88 p. 37]. The

trouble is that these constraints are satisfiable by a zero-size square, which may

not be what the user intended. Nelson [Nelson85 p. 238] gives a similar example of

non-determinism in constraint satisfaction. In general, as Borning points out

[Borning8l], a set of constraints may be incomplete, circular, contradictory, or con-

tain redundancies. If the constraints are contradictory, then it is likely that the solver

will not converge [Nelson85 p. 242]. Bier argues that debugging a textual constraint

set may be as difficult as debugging a program. Juno [Nelson85 p. 238] allows the

programmer to give the constraint solver `hints' to aid in convergence. Bier [Bier86]

-169-

and Myers [Myers87b] suggest that direct manipulation is an effective means of
monitoring and giving hints to the constraint satisfaction mechanism.

Finally, constraint-based modelling may be difficult to extend [Asente87 p. 5],

since the fundamental data types may be fixed. To some extent this is avoided in

systems like IDEAL which allow data abstraction ('boxes'). However, as Leler

points out [Leler88 p. 87], as constraint languages become more sophisticated, they
become more domain specific.

Syntactic Modelling

It is possible to generate or analyse pictures using a grammar [Stanton72,

Clowes72]. Grammars generate sequences of primitive elements whose parse struc-
ture can be thought of as the model. Grammars can be multi-dimensional as well as
linear. There are two important classes:

" Grammars which express topological connectivity, for example in tree or more

general web structures. A general grammar for such structures is called a plex

grammar [Gonzalez78 p. 82].

" Grammars which express a picture in terms of constituent shapes. Such

grammars are called shape grammars [Gonzalez78 p. 91].

However, image analysis via a grammar foundered on the need but difficulty of

maintaining and applying real-world knowledge to supplement the interpretation. On

the other hand, image generation is complicated by the non-determinism of plex or

shape grammars. In order to specify an image precisely, it is necessary to give some

coordinate information along with the grammatical productions [Milgram72]. In this

sense a picture grammar can be seen as a type of constraint system. The GREEN

system [Golin90] combines a picture grammar with simple layout constraints like

`over' and 'left-of'. MicroCOSM [Barford89] allows more precise constraints

expressed as attributes of the picture grammar.

More recently, grammars have been used to specify more restricted classes of

images, for example software engineering diagrams [Szwillus87, Woodman87], or

forms [Sugihara86]. All these recent systems in addition allow syntax-directed edit-

ing of the diagrams, for example by the use of templates. Woodman (p. 114) points

out that this entails precisely the same problems of incremental update as with tex-

tual syntax editors.

-170-

Synthetic Modelling

Synthetic modelling simply assumes an image-generating transform from some
underlying, non-graphical data. The major uses here are in database viewing
[Friede1184, Mackinlay86, Herot80, Larson86, Garrett82] and scientific visualisation
[Brown84, BrooksFP88]. We will not explore this area further.

5.2.5. Structure

Both procedural and declarative modelling result in a structured image. As
Foley and Van Dam [Foley84a p. 328] note, there is a close analogy between a pro-
cedural call hierarchy, and a declarative object hierarchy. In either, we can say that a

node on the hierarchy `consists' of its subroutines/subobjects, and we could repre-
sent either by an acyclic directed graph structure.

We can apply two fundamental criteria to the resulting structures:

" their degree of generality

" their degree of persistence

Generality

In a procedural hierarchy it is strictly the leaves which may have displayable

content (primitives), since interior nodes are by definition simply calls. In contrast,

as we have seen in hierarchical window systems, there is nothing to stop a declara-

tive object hierarchy having content at an interior node.

So-called hierarchical window systems are in fact usually limited to tree struc-

tures, that is, hierarchies in which children have only one parent. Thus windows are

unique - they are not replicated by being shared ('called') by more than one parent.

The depth of the modelling hierarchy may also be limited. In GKS, for example,

the hierarchy is limited to two levels, segments and primitives. This is clearly a

restriction, and PRIGS has removed this by using a fully hierarchical structure in

which segments ('structures') may include other segments. Similarly hierarchical

systems are NGS [Cahn83], VGTS [Lantz84], and PostScript.

In addition, the only way to replicate a segment in GKS is to copy it. This

means that in order to provide multiple views of the same object each view must be

-171-

copied and separately updated by the programmer [Little87]. In PHIGS, on the other
hand, a structure may be executed repeatedly under different transformations, so

that an update to the structure is automatically reflected in all the instances.

Other differences may only be virtual. Foley and Van Dam [Foley84a p. 327],

for example, represent instance transformations as multiple arcs between a compos-

ite object and the instances that make it up:

room

IT1 I IT2 I IT3

chair

Thus a room (here) consists of three chairs at different locations determined by

their instance transformations. This representation, however, actually requires two

different types of entity, one of which contains the other. Thus, in this example, room

implicitly contains three calls on chair with different transformations. In PHIGS ter-

minology, room is a structure which contains elements:

room

-172-

structure element

The generality of PHIGS arises from the fact that elements can either call prim-
itives, or other structures. However, this generality can be achieved more simply, as
in the models presented in this Thesis, by having only a single type of entity:

mum

chair

The room node simply represents the group of chair nodes. We can thus identi-
fy the transformations with the intermediate nodes: we think of a node as being of
some size, position, and rotation with respect to its parent. The chair itself has the

same transformation with respect to each of the intermediate nodes. The composi-
tions of the transformations Tl and Tc, however, are all different.

As well as geometrically, a composite object may also be structured topologi-
cally (i. e. in terms of its connectivity), or by its attribute inheritance paths.
[Strubbe83 p. 1036] notes these three structures, but claims that in most cases they

coincide and that one structure will do. The second model presented in this Thesis
does not make this assumption. That is, it allows the possibility that topologically

related objects may not be geometrically related, and that attributes may be inherit-

ed down separate structures that are neither geometric nor topological.

Persistence

In order to selectively modify the model, its structure must persist. It is impos-

sible to manipulate primitive elements like lines or circles in a bitmap, for example,

once the structure has been lost. At what level of representation the model persists

will affect the efficiency of

" incremental update of the structure

" incremental redisplay of the image

-173-

A purely procedural representation, like PostScript, persists only at the level of
its text, which can only be accessed serially. In order to update such a representa-
tion, its script or program must be textually edited and then re-executed. Clearly,
this may result in unnecessary redisplay of some parts of the image. This, however,
is not a concern for languages that are designed for document imaging, like the
recent class of Page Description Languages (PDLs), such as PostScript and Inter-

press [Bhushan86]. These are more concerned with the efficient transmission of
images than with interaction (see Chen [Chen88 p. 21], Harris [Harris86], and Reid
[Reid86]).

In order to optimise the redisplay of a procedural representation for interactive

purposes, however, the redisplay must ideally be localised to just those areas of the

screen which have changed. The problem here is that making a change at one loca-

tion in the script may affect many areas of the screen, or one location on the screen

may have images generated from many different places in the script. Newman points

out these difficulties [Newman7l p. 659]. In addition, in a direct manipulation sys-
tem, screen objects may obscure, or be obscured by, other objects, such that in the

worst case a minor redisplay may affect all other images [Slater88 p. 7].

Procedural representations either force this low level `damage repair' into the
application, or must generate a persistent, structured representation (sometimes

referred to as a graphical database [Lantz84 p. 30]) which can be optimised for dis-

play. GKS, CGI and PRIGS for example generate intermediate segmented display

lists.

A major feature of such a database is that its objects must be identifiable

[Kulsrud68 p. 2481, so that they can be accessed randomly rather than serially. GKS

allows the identification of segments, which can subsequently be deleted, or changed

in priority or visibility, etc. However, primitives in GKS cannot be individually identi-

fied for modification, and segments cannot be updated once they are closed
[Enderle84 p. 38]. The granularity of modification in GKS is thus in practice the seg-

ment, and this may be too coarse for direct manipulation graphics [Olsen85b p. 194,

Harke87 p. 1001. PHIGS allows the identification of structures, but it also allows

labels to be inserted at arbitrary points inside structures, and the elements between

two labels may be deleted.

However, as Foley [Foley79] illustrates, not all systems allow an identifiable

object to be modified. In GKS, for example, the PICK identifier on primitives is used

-174-

only for hit detection, while in PHIGS naming of elements is used only to filter cer-
tain input events [Brown85 p. 44]. Asente, in his Tweedle system, addresses the

problems of interactively editing a procedural representation for images [Asente87].

A declarative representation, on the other hand, more naturally persists at the
level of the displayable objects which it creates. Ideally, these can be identified and

accessed randomly, and their properties are localised. Objects can also cache inter-

mediate display results so redrawing is efficient. For these reasons a declarative

representation is more amenable to direct manipulation as well as textual modifica-

tion [Pereira86, Helm86, McCabe87].

Properties

In general, image primitives consist of some essential shape, which is given:

" Geometric properties, such as size, position, and rotation

" Rendering properties, such as colour, thickness, and style

It is a philosophical question as to which properties may be thought to inhere

in an object. For example, does a line have thickness? Generally speaking, however,

the more properties that can be abstracted the better. An abstracted property can be

inherited by a number of objects, thus improving modularity and reuse.

Some graphics languages exploit the abstraction of properties by preserving a

set of global attributes which determine the properties of subsequent primitives.

Since the current state of the attributes is thus important, these representations are

commonly called state-based, or state-driven. In PHIGS, for example, one may SET

POLYLINE COLOUR INDEX to some colour, after which all executions of the POLY-

LINE primitive inherit this colour, until it is changed. Thus one can draw a circuit

consisting of a number of resistors, in different positions but the same colour (the

syntax is used loosely):

OPEN STRUCTURE ̀CIRCUIT'
SET POLYLINE COLOUR INDEX 2
SET LOCAL TRANSFORMATION TI
EXECUTE STRUCTURE `RESISTOR'
SET LOCAL TRANSFORMATION 72
EXECUTE STRUCTURE `RESISTOR'

CLOSE STRUCTURE

-175-

(Structure RESISTOR contains, we assume, some POLYLINE calls). GKS, PHIGS,
CGI, Juno [Nelson85 p. 237] and PostScript are all state-driven. Similarly, X has
graphics contexts (although Scheifler [Scheifler86 p. 106] claims the X protocol is

stateless).

An alternative approach is to pass properties at the point of call. If only primi-
tives are being called, then properties can be passed as parameters. However, if
there is a more general hierarchical call structure, then the inheritance of properties
passed as parameters would rely on the programmer passing them on into the sub-
calls. A more automatic scheme uses special calling mechanisms. Newman's
Display Procedures [Newman7l], for example, pass geometric properties using
explicit keywords at the point of call:

resistor at [50,501 scale 1.5;

resistor at [100,1001 rot pi/2;
resistor at [0,701 scale S rot -0.5;
resistor at [20,301 trans m;

These properties hold for all subcalls. The advantage of this approach is that
the properties are localised to the call, and previous settings can be restored upon
return from a substructure. In PHIGS, attribute state is also maintained on a stack in

this way. PostScript similarly maintains a stack for the graphics state, but it is nec-
essary for the programmer to save and restore this state explicitly.

Localisation of properties also facilitates incremental editing. In a state-based

system, on the other hand, the current attribute settings are implicit. It may not be

possible to determine the precise effect of a primitive by examining the script syntac-
tically or even statically - the current attribute state may depend on a complex

execution trace. PostScript is especially difficult in this respect, since it has a large

graphics state including not only line style and width, but also current path and cur-

rent transformation matrix. Young also makes the point that state is not compatible

with interleaved update from several cooperating processes [Young88 p. 3731, which
in any case standard graphics does not support [Lantz84 p. 46].

A fixed set of attributes, either global or local to the call, may introduce restric-

tions. In PHIGS, the attributes provide the only medium by which information may
be passed to substructures. There thus exists what has been called the `barber's

pole' problem [Hewitt88]: since there is only one POLYLINE COLOUR INDEX, for

-176-

example, it is impossible to parameterise both colours in a substructure which draws

a barber's pole. It would not be possible, therefore, to draw multiple instances of a
barber's pole (or any other multicoloured structure) in which both the colours were
different. PostScript is more powerful in this respect, since it can pass arbitrary num-
bers of parameters to subordinate procedures. In this case, however, as noted

above, the inheritance mechanisms must be explicitly supported by the programmer.

Finally, there may be differences in the binding time of attributes. In GKS, for

example, primitives are bound to the attributes current at definition time. In PHIGS,

on the other hand, attribute binding occurs at execution time. Thus in PHIGS the

inherited properties of objects can be changed dynamically.

A declarative and fully persistent model, such as the one presented in this

Thesis, is not necessarily state-based, since it may not possess global attributes.

5.2.6. Viewing

Although a model may be used simply as an application database, its primary

purpose is to be seen by the end user. The user's view of the model is necessarily
limited by the display space available, the projection of the model onto the display

surface, and the configuration of the model itself. The view is particularly critical in

three-dimensional scenic graphics, where the projection may be parallel or perspec-

tive, oblique or orthographic [Carlbom78]. Illumination may also need to be taken

into account. Even in two-dimensional schematic graphics, however, the view may

be panned or zoomed inside the frame of the display surface, and components of the

model may obscure other components.

Fundamentally, then, a view imposes

"a transformation

"a clipping

- 177 -

The window-viewport-workstation transformations of standard graphics subsumes
both transformation and clipping:

nalisation
ý. /0rtnation

window

viewpor

workstatio
transformc

That is, both the normalisation transformation and the workstation transformation

are defined not by matrices, but by rectangles in WC and NDC, and in NDC and DC

respectively. These rectangles may also clip the primitives. One rectangle (the win-
dow) defines what is to be displayed, the other (the viewport) where it is to be

displayed.

Salmon and Slater [Salmon87] make some cogent criticisms of these distin-

guished coordinate spaces and transformations. They note (p. 555) that there is no

reason why the chain of window/viewport pairs could not go on indefinitely. This

would simply result in a sequence of transformations ending in a display surface

transformation. Rosenthal sees Normalised Device coordinates as `superfluous'

[Rosenthal83 p. 42]; VGTS, for example, does without these [Lantz84 p. 32]. HI-

VISUAL [Monden86] implements hierarchical viewing in the context of an iconic

window system. Similarly [Salmon87 p. 290], the notion of world coordinates as a

definitive scale for objects breaks down when one considers many common real

world scenes. A room, for example, may have a picture hanging on its wall which

shows another scene of a room, and so on. Is the picture in world coordinates?

-178-

World
Coordinates

Normalised Device
Coordinates

Device
Coordinates

The hard distinction often made in mainstream graphics between the modelling

system and the viewing system (e. g. [Guedj79 p. 201]) is an implementation issue:

if a model is clipped in a particular view, then it is more efficient to regenerate the

display from an intermediate, clipped and transformed representation than it is to

repeatedly clip and transform the model. Conceptually, however, there is no real

need to make this distinction between modelling and viewing. Even in 3D graphics

the notion that viewing transformations can be separated from modelling transforma-

tions ([Guedj79 p. 193]) is invalidated by the example of a picture hanging on a wall:

the relation between the scene in the picture and the picture surface is a viewing, not

a modelling transformation. PHIGS does not escape this criticism: it associates the

viewing transformation with a workstation [Brown85 p. 99], and therefore cannot

apply viewing at arbitrary levels of the model. PHIGS in fact preserves the simple

three coordinate systems of GKS - the modelling transformations are composed into

the WC space, and only then are viewed.

In two dimensions it is easier to avoid this issue. Here the view transforma-

tion requires no more information than the modelling transformation. PostScript, for

example, makes no distinction between viewing and modelling [Salmon87 p. 2991.

This is also true of the model presented in this Thesis. In Presenter, the size of the

root of the hierarchy is simply taken to be with respect to the display surface avail-

able.

Clipping

In both GKS and PHIGS clipping is treated as an integral part of viewing. How-

ever, it is equally possible to conceive of clipping as part of the model rather than the

view. This is particularly the case in schematic graphics where there may be a num-

ber of nested or overlapping `windows' onto discrete information spaces, as for

instance in a standard window manager. (This is analogous to the `picture on a wall'

requirement in 3D).

A more useful approach, therefore, is to allow clipping at all levels of the model

[Foley84a p. 3821. Defining clipping separately from the viewing transformation also

means that arbitrary clipping paths can be set up, rather than just rectangular ones.

The models presented in this Thesis generalises this by allowing arbitrary masks to

be associated with any region in the hierarchy.

- 179 -

The question remains of when, during the modelling transformations, the clip-
ping should take place. This is not just an implementation issue, since different

strategies will affect the image differently. [Foley84a p. 384], for example, suggests
that clipping should be applied immediately, and then transformed by any further

modelling transformations. In this illustration, T is a transformation involving rota-

tion, and Id is the identity transformation:

model

In the model presented in this Thesis, however, the clipping is in effect delayed

until the modelling transformations have been completed. This means that the

boundary of a clip coincides for all descendants of a region with which it is associat-

ed. Using this strategy the model above would be viewed:

view

- 180 -

This is clearly of more use in windowing. However, the first view can also be

achieved using this strategy simply by resiting the clipping rectangle:

That is, the clipping rectangle is affected by any modelling transformation above it on

the hierarchy. It is therefore fully part of the model.

Dereferencing the View

Just as the objects of the model can be accessed internally by means of labels

or some other persistent representation, in an interactive system the user also

needs to be able to access model objects through the view. That is, there must be

some inverse view function whereby objects can be identified from their surface rep-

resentation by a process of hit detection or picking.

Dereferencing the view is problematic

" if the model and the view are separated by an intermediate, display optimised

representation like a display list, since part of its optimisation is typically to

lose some, if not all, of the model structure.

" if the display representation is purely procedural, since details of screen

objects may not be retained, other than on the screen, after its execution. Also,

as we have seen, localising exactly what constitutes an object in a procedural

script may be difficult.

" if the model is hierarchical, since a model object may have a number of instan-

tiations in the view. For example, a symbolic key on a map may have many

instances [Visvalingam87]. In hierarchical systems it is thus the path of model

objects down the hierarchy that is significant. Upon a hit, PHIGS for example

- 181 -

returns the entire pick path to the application [Brown85 p. 88]. In implementa-

tion this requires rerunning the script and tracing the execution stack to
determine which structure call generated the object the user is attempting to

select [Toby Howard, private communication].

For these reasons the application may be forced to maintain its own database

of object extents and positions in order to dereference user selections of the view. In

any case, view dereferencing may be lengthy, leading to synchronisation problems
between input and output [Newman7l p. 659]. A declarative representation, by mod-

ularising object references, can make view dereferencing more efficient.

5.3. Text

A surface model for text is closely analogous to that for graphics. Text has con-

tent and structure, and can be composed and viewed. In addition, the requirements
for content replication, attribute inheritance, multiple views and persistence are as

present in text as in graphics [Took86a].

However, displayed text has a different geometry from graphics, if by geometry

we mean a set of basic operations and their surface effects. Thus the basic opera-

tions of text are not translation, scaling, or rotation, but insertion and deletion. Even

the subtle variations in character spacing required by high-quality formatting must
be modelled by special inserts like kerns and fills [Knuth86 p. 78]. To put it another

way, the precise positions of characters in displayed text are a function of the charac-

ter sequence and its attributes, rather than of any higher text structure. Deleting a

graphical object, for example, does not normally affect the positions of other graphi-

cal objects, whereas this is the case with text. This view must be qualified by

excluding questions of page layout, which is discussed in Section 5.4. It must also be

acknowledged that the formatting of mathematical text is a special case which it may

be better to model within a Cartesian, rather than a textual, geometry [Allen8l p. 80,

Nanard87 pp. 75,77, Arnon88 p. 9].

5.3.1. Content

Just as the basic constituent of graphics is a primitive image, so displayed

(roman) text consists of discrete character images. While these will have a logical

representation (for example, the ASCII code), their surface presentation will be in

-182-

the form of ideographs in some font, face, and style. The design of character fonts is

an arcane art [Bigelow86], but, as Knuth's box model [Knuth86 p. 63] shows, for the

purpose of formatting it is easy to abstract away from the aesthetics of font design

to simple rectangular areas.

However, in addition to characters, text may contain other types of image. The

Office Document Architecture standard (ODA) defines three types of textual con-

tent: characters, geometric graphics, and raster graphics [Appelt88 p. 95, ISO87a].

Other divisions of content are possible. [Kimura86 p. 417], for example, has text,

tables, equations, and figures as fundamental classes.

5.3.2. Logical Structure

The fundamental perception of text is as a sequence of elements [Wills87a p.

25] (although Kimura [Kimura86 p. 418] also includes unordered compositions (sets)

of objects). Orthogonal to this sequence, however, there is inevitably a further logi-

cal structure. This will at least consist of the lexical and syntactic structure of the

text, that is, the grouping of characters into words and words into sentences. But it

may also be extended into a structural hierarchy of nodes such as paragraphs, sec-

tions, chapters and volumes.

Simple line or screen editors may retain nothing of the logical structure of text

other than is embedded in the character sequence, for example as carriage return

tokens. Systems that do support structure can use this either prescriptively or

descriptively. Structure-driven editors [Morris81, Medina-Mora821, for example,

prescribe the structure using a grammar, and are designed to keep the user within

the syntactic limits of a particular programming language. Other structure-oriented

systems, such as Grif [Quint86], Pleiade [Nanard87], Quill [Chamberlin88 p. 123],

and IDE [Kaplan88 pp. 194,199] are designed to support more general documenta-

tion, and are descriptive in their use of structure.

Considered in the abstract, textual and graphical models have similar require-

ments. There will minimally be a need to group terminal elements. This results in a

tree structure. A number of systems support tree structured text: Tajo [Teitelman86

p. 42], Tioga [Beach83 p. 131], Diamond [Crowley87 p. 3], Grif [Quint86 p. 202], PEN

[Allen8l p. 75], Etude [Hammer8l p. 140], LateX [Lamport86], and Hamlet's pro-

posed system [Hamlet86]. However, the tree structure may be restricted.

Analogously to GKS, Framemaker [Frame87, Wilcox88 p. 531, on which this Thesis

-183-

has been written, supports only a two-level tree structure of paragraphs and charac-
ters.

Just as in graphics, it may also be useful to share some terminal elements at a
number of locations. Running headers or footers, for example, could be modelled effi-
ciently in this way. This requires a full hierarchy in which a node may have more than

one parent. Few systems, however, support such replication. Kimura's model
[Kimura86 pp. 418,420], and IDE [Kaplan88 p. 198] are exceptions.

Finally, if the nodes of the logical structure are as persistent as the text, then
it is possible to support an arbitrary structure over them. This can be exploited to
form a networked database by which connections can be made between otherwise

unrelated pieces of text. ODA, for example, allows cross references [Horak85 p. 51]

while Kimura has `links' [Kimura86 p. 420]. This capability is also called hypertext

[Nelson80, Yankelovich88 p. 92, Conklin87, Brown87, Feiner82, JonesWP88,

BrownP88 p. 184, Ritchie891.

5.3.3. Properties

Just as in graphics, properties attached to the logical structure affect the ren-
dering of the text primitives in terms of stylistic qualities such as font, face, and

pointsize [Johnson88, Beach83, Chamberlin88, Joloboff86 p. 1211. Again by analogy

with standard graphics, text properties may be classified or `bundled' into `style

rules' [Johnson88 p. 34] which may be inherited down the paths of the structure, as
in Kimura's model [Kimura86), or in ODA [Brown89 p. 506].

5.3.4. Editing

The manipulation of text and text structures is conventionally termed editing.

We can make exactly the same distinction between procedural and declarative mod-

els in text as we can in graphics. A procedural model is a program which generates

some final text, while a declarative model allows random modification of the state of

an Object from which there is a presentation mapping (these are elsewhere [Chen88

p. 15] called source-language and direct-manipulation approaches respectively). Edit-

ing thus requires a declarative model, since it modifies the state of a text.

Procedural models usually consist of a text program which is constructed by

embedding special tokens or keywords in a representation of the raw text. This is

-184-

known as markup [Joloboff86]. This program is then either interpreted by a format-

ting process on a workstation to produce a screen view, or compiled into a page

description language (PDL) [Marovac87] and then run on a laser printer to generate

a hardcopied view.

Markup itself may have either a procedural or a declarative bias [Joloboff86

p. 110, Chamberlin8l p. 83, Furuta82 p. 460, Dam82 p. 46, Chen88 p. 22]. Procedural

markup such as provided by troff [Lesk86] or TeX [Knuth86], gives the editor fine

control over the appearance of the final text format with commands that set style,

spacing, and justification. Declarative markup, on the other hand, such as in Scribe

[Reid80], LaTeX [Lamport86], GML [Goldfarb8l] and SGML [Chamberlin87,

Stutely87, Beaujardiere88 p. 86, Joloboff86 p. 110], allows the editor to describe sim-

ply the structural class of components of the text, for example `title' or `section'. The

precise formatting of these classes is left up to a separate property specification.

The binding of the text to its final form is thus delayed, and may indeed be specified

by someone other than the original writer. In this way device and other dependen-

cies can be minimised [Chamberlin88 p. 128], and the document may be viewed in a

number of ways simply by transforming its structure [Furuta88] or its properties

[Beach83]. For this reason, Joloboff calls these models `revisable formats'

[Joloboff86 p. 107].

The editing of a procedural text model like these markup models is thus a sepa-

rate process from its final formatting [Huu87]. The editing and formatting of

procedural models, however, may vary in their concurrency. Standard markup lan-

guages are often used in a `batched' pipeline [Furuta89] where output is generated

only after editing is complete. The Tioga editor, for example, has a batch-oriented

typesetter [Beach83 p. 130]. However, a number of systems allow editing and for-

matting to run concurrently, so that the final format is displayed alongside the text

program and incrementally updated after each edit of it [Chamberlin88 p. 129]. The

program and the final format necessarily remain distinct, so that these are often

called `two-view' editors. Examples of such two-view editors are Lilac

[BrooksKP88], Janus [Chamberlin82 p. 82], and its later version ICEF2 (both of

which use SGML) [Chamberlin88 p. 123], IDE [Kaplan88 p. 194], VorTeX (which

uses TeX) [Chen88 p. 26], and the Andrew text editor [Morris86 p. 198]. There are

also similar two-view editors whose output is largely graphical, such as Juno

[Nelson85 p. 235], and Tweedle [Asente87].

-185-

These two-view editors can also be classified according to whether they allow
the user to perform edits via either view, or just via the program view. Janus, for

example, only allows edits to the program view, but VorTeX and Tweedle allow
edits to both views.

Declarative models, on the other hand, hide the text structure, except insofar

as this is visible in the presentation. The user directly edits the final form of the text.
The text structure is implicitly accessible by cutting and pasting the displayed text.
In addition, stylistic properties [Johnson88] attached to the structure may be acces-

sible through special views such as Star's property sheets [Smith82a], Quill's

`looks' [Chamberlin88 p. 123], or FrameMaker's paragraph dialogue box [Frame87].

Editors such as these are termed single-view, or WYSIWYG (What You See

Is What You Get) [Chen88 p. 20, Johnson88 p. 33, Walker88 p. 58]. They are direct in

the definition of this Thesis because the user accesses the model through the final

form view. Some editors, however, display only an approximation of the final format-

ted view [Furuta86]. Pleiade, for example, displays a `nearly-exact' version of the
document [Nanard87 p. 77]. Concordia displays a `semblance' of the final form

[Walker88 p. 51]. Chen and Harrison call these `galley-oriented' editors [Chen88

p. 19].

An early example of a direct editor was the Bravo editor on the Alto

[Chamberlin82 p. 83, Wi11s87a, BrooksKP88 p. 146]. More recent examples are
Andra [Gutknecht84], Lara [Gutknecht85], Quill (using SGML as its Object state)

[Chamberlin88], Pleiade [Nanard87 p. 74], Diamond [Crowley87], the Chelgraph

SGML editor [Cadogan87], and Grif [Quint86].

5.4. Documents

The compositing of documents, in the general case, involves integrating both

graphical and textual elements [Southa1188]. The general issue is whether a Carte-

sian or a textual geometry applies to any particular object in a document. To be

completely general, we should allow both text to be positioned using Cartesian coor-

dinates (for example, to place a paragraph on a page), and also graphics to be

positioned using textual coordinates (for example, to embed a diagram in a para-

graph). This implies a fully recursive structure in which text and graphics may be

arbitrarily nested, and for which the top level geometry may be either textual or

-186-

Cartesian. This section examines existing model specifications and editors against
this general capability.

Conventionally, textual geometry is implemented by formatting, while Carte-

sian geometry, in the context of documents, is implemented by pagination [Wills 87a

p. 24, Clarke87], layout or pasteup (by analogy with manual document production)
[Chamberlin8l p. 82]. It is a contribution of the second surface model presented in

Chapter 8 to make no distinction between document layout models, and more gener-

al graphical models.

5.4.1. Formatting

Formatting is essentially a function which takes a sequence of characters and

a bounding box, and returns a description of the position of each character within the

bounding box. In order to do this the function must have access to properties of the

characters such as font, face and pointsize. These properties may be associated

either with the characters themselves, or with the bounding box, or may be fixed

globally in the function.

In addition, there may be properties of sections of the text, for example con-

straints on paragraphs such as spacing and justification. Thus the formatting function

may also have to take note of the logical structure of the text. This can however be

embedded in the character sequence as Carriage Returns (to indicate paragraph
boundaries). More detailed structure can be embedded as markup. Alternatively, if a

declarative model is used then the formatting function will reference any associated

structure in the Object state.

In the general case, it is not possible for formatting to occur independently of

the values of the characters. This is largely because proper formatting needs at least

to break lines on word boundaries, and so must be aware of white space in the char-

acter sequence. Also, features such as hyphenation [Nanard87 p. 79, Clarke87

p. 208] require much more sophisticated mappings between character sequences and

format. Similarly, different languages may have different formatting requirements, for

example vertical rather than horizontal lines. In formatting music, the last line must

always be full [Hegazy88 p. 157].

The scope of the formatting algorithm may vary. In order to reduce response

time, most interactive systems format line by line [Achugbue8l p. 1 19]. However,

-187-

TeX is capable of optimising the spacing of words paragraph by paragraph
[Knuth8l]. If format occurs over a number of bounding boxes, as in pagination, then
paragraph breaks and spacing may also need to be taken into account, in order to
avoid `widows' and `orphans' (single lines at the top or bottom of the page)
[Nanard87 p. 79].

Embedding graphics in text is accomplished simply by treating the graphics as

a character. The size of the bounding box of the graphics is substituted as the char-

acter size. More sophisticated formatters, such as TeX, can in addition flow text

around an irregularly shaped graphic.

5.4.2. Layout

An influential model for the layout of document structures has been Knuth's

box [Knuth86]. A box is a rectangle with the following characteristics:

reference point

0 width -

height

depth

Boxes can represent characters, lines, paragraphs, diagrams or any discrete

element of a document. Boxes are themselves structured into a tree structure with

the constraint that child boxes are strictly nested inside parent boxes. To this extent

they are similar to hierarchical window models. Boxes are also further constrained in

that siblings do not overlap, and are composed either vertically or horizontally within

their parent.

The box model gains much of its power from the notion of `glue' [Knuth86 p. 691

which may be inserted between sibling boxes. This glue controls the amount by

which spaces between adjacent boxes, and between the end boxes and the enclos-

ing parent box, can stretch or shrink. While in TeX the intention is to produce very

-188-

subtle variations in text spacing under modifications to the text or the bounding box,
in fact this model is a generally applicable constraint system for the layout of two-
dimensional rectangular areas.

This has been exploited by a number of systems. The following dialogue box,
for example, can be constructed in Interviews [Linton89 p. 13] using the box and glue

model:

----------------------- -----------------
vglue

s
hglue

; 171 hbox
H

vbox

The constituent boxes of this dialogue box have the following tree structure:

vbox

vglue hbox vglue hbox vglue
zI\/I '*"ýý

hglue message hglue hglue button hglue

The various pieces of horizontal and vertical glue can be given different stretch-

ing and shrinking capabilities, as well as a natural space, so that a great deal of

variation can be produced in how the dialogue box behaves under changes to the

size of its bounding box. Interviews also extends TeX's glue model by allowing diag-

onal glue between corners of boxes, and by allowing boxes to overlap.

Other systems which use variants of Knuth's box and glue model are Genie-M

(Angell87 p. 131] (where the boxes are called tiles), PEN [Allen8l j, Etude

[Hammer8l p. 140], Janus [Chamberlin82 p. 87], Quill [Luniewski88] (where the

boxes are called blocks), Grif [Quint87], and ODA's frames and blocks [Brown89

-189-

p. 505]. In all these systems the boxes are strictly nested within their parent. Some

of these systems, however, for example Grif, use a more explicit positioning of the
boxes than glue-based spacing.

The hierarchical structuring of boxes has also been exploited by systems which
express layout using a grammar [O'Callaghan72, Sugihara86 p. 112, Coutaz86,
Woodman87 p. 1131 (see also Section 5.2.4). It is a feature of these systems that
positioning is often expressed relatively and loosely, using constructs such as
`above' or `to the right of.

One important layout which it is difficult to express using a tree structure, and
which is rarely supported, is tables (tables are not supported in ODA, for example
[Behrmann-Poitiers88 p. 81], whereas Intermedia requires tables as a basic type

alongside text and graphics [Yankelovich88 p. 92]). Cells in a table belong to two

structures, a row and a column. For this reason Kimura [Kimura86 p. 4201 believes

that a cell should be shared between a row parent and a column parent, and thus

that tables require to be structured as full hierarchies. However, if the hierarchy is

treated as a layout structure, then the cells are essentially replicated between the
columns and the rows. What seems to be needed is an orthogonal structure which
maintains the table matrix, while the layout of the table can be expressed as a con-
strained tree structure. These constraints are detailed in Chapter 8. Issues of
tabular layout are also discussed in [Kaplan88 p. 200, Gutknecht84 p. 98, Murre187,
Beach86].

5.4.3. Integrating Format and Layout

One of the most difficult problems of compositing is resolving the various for-

mat and layout constraints to produce an integrated document. This is because there

may be subtle dependencies between the text and the graphical layout. For example,

a footnote should be placed at the bottom of the page on which its callout occurs
[Luniewski88 p. 214]. However, if the callout is near the bottom of the page, insert-

ing the footnote may push the callout onto the next page. Similarly, there may be

`computed format' [Chamberlin88], for example references to page numbers that are

expanded in line by the formatter. In the worst case the insertion of a reference may

cause the referent to move to another page. These problems may require elaborate

constraints (see [Luniewski88 p. 214]) or multiple-pass formatting, which can

reduce interactive response.

-190-

There are two approaches to integrating format and layout: format-driven and
layout-driven. These correspond to using a textual or Cartesian geometry respec-
tively at the top of the modelling hierarchy. A format-driven approach allows the
layout to be specified from within the format, for example by allowing markup, as in
troff, to determine columns, spacing or page breaks. The limitation of this approach is

that the layout produced is dependent on the textual content: if the pointsize
changes, the resultant layout may be quite different. Joloboff notes that markup is

unsuited to layout [Joloboff86 p. 1 15], and indeed SGML does not provide support for
layout [Brown89 p. 505].

Alternatively, a layout-driven approach [Chen88 p. 19] allows layout to be

specified independently of textual content. This might well be required, for example
to maintain a similar layout over a number of pages. The layout-driven approach has

three consequences:

" Layout can be specified interactively, by moving and sizing rubber boxes.

" Some mechanism must be determined whereby text is distributed into laid

out boxes. A common mechanism is the `pouring' process of Interscript
[Joloboff 86 p. 115, Nanard87 p. 75]. This also requires a record of the text flow

(that is, a sequence of boxes), such that as text overflows from the bottom of
one box it begins to pour into the next.

" Multiple text streams can be incorporated into one document, since different

streams can be associated with different sequences of boxes [Hammer8l

p. 140, Chamberlin82 p. 86, Cowan86 p. 141].

A layout-driven approach therefore seems necessary also for multimedia docu-

ments [Crowley87]. The issues here are the extent to which editors for the different

media (for example, text, mathematical expressions, graphics, sound, video) are

integrated [Chen88 p. 16]. There may also be a separate editor for the model struc-

ture [Hammer81 p. 142].

Separate editors may be highly specialised, but it may be difficult for the user

to switch contexts between them. It may also be difficult to manage cuts and pastes

between different sections of the document. In order to edit a maths expression in a
Tioga document, for example, the expression must be extracted into the CaminoReal

tool, edited, and then reinserted into Tioga [Arnon88 p. 10]. Diamond [Crowley87

p. 3] and IDE [Kaplan88 p. 195] opt for a strongly integrated editing environment,

- 191 -

whereas Quill consists of a number of specialised editors [Chamberlin88 p. 124,
Luniewski88 p. 206].

Format-driven compositing essentially delays the binding of the layout, where-

as layout-driven compositing and the pouring process delays the binding of the
format. It seems necessary to give one priority over the other in order to resolve the

possible conflicts between layout and format noted above.

In keeping with its status as an international standard, the Office Document

Architecture (ODA) allows both the logical and layout structures of documents to be

described [ISO87a, Horak85, Beaujardiere88, Brown89, Joloboff86]. It is, however,

layout-driven, since the format is finally determined only at the run time of the ODA

processor. This results in the following dual structuring of the document content

(adapted from [Joloboff86 p. 120]):

section
logical
structure

paragrc

content portions

blocks

layout
structure

pages

The final format is instantiated in the breakdown of the content portions. In this

example, a logical paragraph is broken over two pages.

The power of the ODA lies in its provision not only of specific logical and lay-

out structures as above, but also in the ability to specify generic logical and layout

structures. The generic logical structure corresponds to the class hierarchy which

-192-

can be described for example by elements in SGML's meta language [Brown89

p. 510]. Both SGML and ODA provide a simple grammar to determine the permitted

sequences of terminal nodes in this hierarchy. The grammar can determine, for exam-

ple, whether terminals are alternatives of each other, strictly ordered, or repeatable.

The generic layout structure is ODA's major contribution to document specifi-

cation, and allows layout to be specified in terms of `page sets' which might consist,
for example, of a special title page layout, followed by an arbitrary number of similar
`continuation pages'. The precise number of pages needed is determined during lay-

out by reference to the content portions.

This results in the following conceptual scheme for an ODA specification
(simplified from [ISO87a p. 20]):

..................... ---------- . ---------------------- . -------- .. _-"-_"-"-"_""--"_""_---"_-"-_-". --...

document description document profile

----------------------"--

s ----------------------------""---------- ----------"- ----------------------- ii generic logical structure generic layout structure

logical classes layout classes

content portions content portions
=--------------------------------------"

--- document style

.: s layout style presentation style
---"

--------------- -----------------------------------
specific logical structure ----------------------------

logical content layout
objects portions objects

specific layout structure;

------------------ :. "---------------------------------"---'"--... ----------

It is clear from this diagram that it is the content portions which may be subject

to overlapping constraints from both the logical and the layout structures. Interest-

ingly, this is the one area that Appelt et al. do not formally specify [Appelt88 p. 102].

-193-

ODA suffers from the problems of many standards: its details become baroque,

and in practice its implementations are arbitrary subsets of the full specification.
Harke, for example, describes an ODA-like graphics editor [Harke87]. Joloboff voic-
es some other criticisms [Joloboff86 p. 122], including fears of implementation

restrictions on the transmission of ODA documents. In addition, we can note that
ODA does not appear to allow arbitrary sharing of content portions, except possibly

via class descriptions. Nor does it appear to allow arbitrary nesting of text and

graphics.

Both of these needs are addressed by the model presented in Chapter 8. This

also has a more generic geometric model for the layout of text or graphics than
Knuth's strictly nested box model.

5.5. Conclusions

An ideal surface model should incorporate nested text and graphics in the most

domain-independent way. Thus we should expect the surface to cope with present-
ing complex documents, desktops, or any of an open range of applications, without
imposing a visual or interactive style.

We conclude that the model for doing this provided by most window managers
is inadequate in its geometric limitations and its graphical, as opposed to textual,

bias. The standard graphical models of GKS and PHIGS, while being geometrically

more general, have a similar graphical bias. In common with Page Description Lan-

guages like PostScript, these models are not suited to direct interactive

manipulation, due mainly to the performance limitations imposed by their program-

mer interface (and, in the case of standard graphics, to an over-powered set of

logical input devices). Textual and document models like SGML and ODA are more

geared to document transmission than direct manipulation.

The various document or desktop publishing processors, in particular those

with a WYSIWYG, i. e. direct, style, come closer to fulfilling the needs of an ideal

surface model. However, in almost all cases these processors are designed simply

for document production, and do not allow the imposition of application semantics.

That is, they cannot be used as interface systems.

-194-

In attempting to design an ideal surface model, therefore, some preferences

remain:

"A declarative model is to be preferred to a procedural model, since it hides

the representation of the model and its presentation mapping. A declarative

model can be persistent, and can be constructed by direct manipulation.

" The model should be domain- and style-independent. In particular, its struc-
ture should be orthogonal to its content.

" The structure of the model should allow for object composition (textual or

graphical), for object replication by sharing, and for object classing by inheri-

tance.

" The operations provided by the model on its state should be closed, and any

state (i. e. any surface configuration) should be reachable just using the opera-

tions. In other words, applications should not need to access the display

directly, and the operations should have no domain bias.

-195-

Chapter 6

A Formal Model for the Surface
Medium

6.1. Introduction

The principle of Surface Interaction, and its UMA architecture, presupposes no
particular semantics for the surface (that is, the user agent and the medium). The

medium's model could consist of any set of values and operations on these, and the
user agent could encapsulate any interpretation of user input.. This chapter concen-
trates on the design and specification of a formal model for the surface medium which
provides semantics for M in the UMA architecture.

There are three major requirements in designing a model for a separate surface
medium useful to a wide range of applications:

" The medium should be encapsulated. That is, it should prevent access to its

internal representations by providing a well-defined set of operations to

update them. Also its implementation, in particular its display mechanisms,

should remain hidden. Such a medium is predictable and easily distributed from

the application.

" The medium model should provide constructs that are style and domain inde-

pendent, and yet common to many applications.

" The medium model should factor a substantial portion of the application task

of constructing and maintaining the interface surface. Otherwise, there would
be little point in separating this.

-196-

For example, part of the commonality which the medium constructs may pos-

sess is a structure - many applications may need to display objects composed of

multiple sub-parts. In order to support directness (see Section 4.2.5), both the con-

tent and the structure of the objects must persist. Simply providing a set of primitive
imaging procedures in the medium forces the application to maintain this structure

and itself implement directness. Compositional part-whole structures, however, are

very generic - they may be expressed as directed acyclic graphs like trees or hierar-

chies. The structure of the objects is therefore ideally maintained in the medium.

Similarly the state of the display objects, such as their images and extents, can

be maintained in the medium. This has the benefit that incremental updates to the

objects can be displayed without asking applications to redraw `damaged' objects.

Perhaps more importantly, it allows the application designer to construct interfaces

in terms of discrete user-level objects, rather than by means of RasterOps and other

device-level operations. This construction can also take place interactively, given a

suitable editing agent. This gives the application designer and the user equal, or at

least analogous, control over the surface, and reinforces the role of the medium as a

channel of communication between user and application, or between users, or even

between applications.

It is also not necessary that the medium, or even the surface, be pro-

grammable, as in NeWS [NeWS87a]. This power is properly in the domain of the

application. Migrating it to the surface results only in the sort of gains in interactive

response that come in any case using Surface Interaction. A programmable interface

still needs the same software support as a monolithic application (toolkit libraries or

classes, for example), with the extra burden that the application programmer must

partition his code, possibly into different languages, such as PostScript and C in

NeWS.

The requirements abov are partly met by window managers and toolkits. Both

provide user-level objects (windows and menus etc.) that are (ideally) application

independent and common. However, the previous Chapter has examined the limita-

tions of these in practice.

Given the premise of a visual environment, and the two-dimensional limita-

tions of current display technology, the requirements above determine some features

of the design of the medium model. Clearly we are limited to text and graphics (and

possibly sound and video, although we do not consider these specifically). At the

- 197 -

same time the requirements pose a problem: is it possible to define a construct that
is both objective and unbound to any semantics?

The approach therefore taken here is to provide both a set of primitive objects
that are little more than coordinate spaces, and a structuring mechanism by which
they can be composed. Both the objects and the structure are persistent: their identi-

ty does not change although components of their state, like size and position, might.
The projection of the structured objects onto the display is managed entirely within
the medium, so that the application's access to them is via an identifier rather than

to their internal representation, and corresponds closely to the user's visual access.

In this way, complex objects can be composed and given textual and graphical

content. Because of the orthogonal structuring mechanism, the primitive objects are

not subsumed into the complex object, but remain accessible and can be changed
dynamically. In a strong sense, therefore, the objects that can be built on the surface
in this design remain unbound.

This design has borrowed much from standard graphics, in particular in the

hierarchical structuring of primitive objects. What it has added are the notions of per-

sistence and encapsulation. This is in addition to the advantages of surface
interaction, which plays no part in standard graphics.

Specific Requirements

We wish the medium to capture as much general textual and graphical capabili-

ty as possible without becoming prescriptive in style or functionality. In the last

analysis, there is no clear set of generic capabilities for either text or graphics. In

text, for example, the surface could provide simple text appends or backtracks (as in

a UNIX Shell command line), in-line editing, screen editing with copy and move com-

mands, or even a full-blown document processing capability with embedded

graphics, spellings checkers and hardcopy facilities. It is not clear at which point

have we moved away from a generic interface capability into a specific application

domain.

However, in the context of a medium consisting of discrete, structured objects

in accordance with the broad requirements above, we can establish some more spe-

cific requirements:

- 198 -

" The objects should be able to represent both text and graphics at any level of

granularity.

" There should be no geometric restrictions on their visual configuration. For

example, objects should not be constrained or clipped to the area of objects

higher in the structure, as happens in X windows.

" All properties of the objects and their structure should be modifiable dynami-

cally, both by the user and the application, with consistent results.

" The user should potentially be able to access, by using the mouse, exactly

the same set of objects as the application can by using an internal identifier.

The model given in this Chapter is an idealisation of a previous formal specifi-

cation for an implemented system Presenter, which is described in Chapter 7.

6.2. The Presenter Model

This formal description in Z specifies the model for Presenter, an implementa-

tion of a surface. Presenter is described in Chapter 7. This specification is an

idealisation of a cycle of previous formal specifications and implementations. In some
details, the specification here differs from the implemented system, and these are

outlined in Chapter 7. Also, for reasons of space, certain details of the implementa-

tion, for example its text handling capabilities, are specified only cursorily.

The specification seeks to express clearly and precisely the underlying struc-

tures and principles of the model, and, given the requirements, to distinguish

between those features of the model in which design decisions have been necessary,

and those that are unavoidably determined.

6.2.1. The Specification

The Z specification of the model is in three main parts:

" the first part specifies the fundamental objects, structures and properties of

the model.

" the second part specifies the derivation of a surface presentation from the

primitive objects and structures.

-199-

" the third part specifies the operations available to manipulate the model.

Note that we do not need to specify directly how the operations affect the pre-

sentation, since this is implicit in the mappings defined in the second and third parts.

6.3. Objects, Structures, and Properties

6.3.1. Fundamental Objects: REGIONs

Minimally, the fundamental objects of the model can be represented simply as

atomic nodes. Without making any assumptions about what properties these nodes

have, or how they are structured or visualised, we declare a fundamental type:

[REGION]

We simply assume that an unbounded number of REGIONs are available.

6.3.2. Fundamental Representation

We need to define the ultimate representation for REGIONS on the surface.

Since we assume in this thesis a visual domain, we think of the surface here as a

display area such as a screen or a sheet of paper. In order to model presentation on

such a surface, we declare a set of colours (without being specific as to what the

colours are):

[COLOUR]

and define a set of points on the real plane:

POINT == IR xR

The number of POINTs so defined is infinite, both in extent and resolution. At this

level it is thus possible to abstract away from questions of display resolution.

We can then model any image on this surface as a mapping between POINTs

and COLOURs:

IMAGE == POINT +> COLOUR

-200-

Clearly, each POINT will have only one COLOUR, so IMAGE is a function. However,

not all POINTs may have a COLOUR, so IMAGE is partial, and there may also be a

number of POINTs which have the same COLOUR, and so IMAGE is not injective.

6.3.3. Fundamental Structure: Ordered Tree

We begin by defining a fundamental structure for REGIONs in the model. This

is an ordered tree:

ORDERED TREE

tree: REGION -H iseq REGION

parent E REGION -+a REGION
id [REGION] n parent +=0

U(s: ran tree " ran s} c dom tree

where

parent = {p, c: REGION Ice ran (tree p) "cH p}

The function tree is partial, and so represents one possible ordered tree out of

an unbounded set of ordered trees of all sizes. ORDERED TREE itself represents

this set. The base of this schema is open since we wish to continue this definition

into the next schema (this is a non-standard use of Z). However, the function tree,

as defined by the predicate here, is all we need to specify the structure.

The function tree defines an ordered tree by mapping (parent) REGIONs to

injective sequences of (child) REGIONs. Clearly, the child REGIONs may them-

selves point to further child sequences, so that unbounded structures can be built up.

For example, 0C is a tree:

a=(aH <b, c>, bH <d, e>, cH <>, dH <>, eH <>)

-201-

and Ot can be represented (using --ý to indicate parenthood, and left-right ordering to
indicate the sequence of children):

a 0

b/
\0c

dý e

Since the child REGIONs are ordered by their sequence, any connected struc-
tures are also ordered (or oriented, in graph terminology). No child may recur in its

sequence, since these are injective (iseq). Minimally, this excludes structures in

which there is more than one path between the same two REGIONs:

ý, ý
which would be represented (if it were allowed):

{a H <b, b>)

The integrity of the tree structure is ensured by two conditions which are

expressed in the schema predicate:

" Child REGIONs have only one parent (the mapping between children and par-

ents is a function)

" There are no cycles in the structures (a REGION cannot be its own ancestor,

i. e. the identity mapping between REGIONs is not represented in parent+ -
the closure of the parent function)

In addition, we make the restriction that all REGIONs in the sequences in the

range of tree are also represented in its domain. In other words, the domain of tree

contains all the REGIONs in the structure. This means that our representation for

leaf REGIONS (i. e. REGIONs which have no children) is a mapping that points to an

-202-

empty sequence, rather than one where leaves are simply not represented in the
domain of tree. So the representation for the small structure:

"a

"b

is:

{a H , bH <>}

rather than simply:

{a I-, }

This is necessary, since minimally we wish to be able to represent a tree con-

sisting of a single REGION:

0a

for which the function tree would be:

(a H <>}

Thus all REGIONs in a particular tree have a sequence of children, although

this sequence (in the case of leaf REGIONs) may be empty. All leaf REGIONs have

the same empty child sequence, and so tree is not injective. Note also that an
ORDERED_TREE may contain a number of disjoint trees.

In any ORDERED_TREE, we wish to distinguish a root REGION:

root: REGION

root E dom tree

root e U(s: ran tree " ran s)

The root is always on the tree, but is never part of the sequences of child

REGIONs in the range of tree.

-203-

6.3.4. Basic Relations

We conclude the definition of an ORDERED_TREE with two useful mappings
derivable from a tree:

parent: REGION -+> REGION
family: REGION H REGION

V r: REGION 9

q= parent rgr r= ran (tree q)
qe family Q (r) 0grE parent* ((q} Iv q= r

parent is a function which maps REGIONs to their parent. It is repeated here

from the first part of the schema (with a different definition) to emphasise that it is

simply derived from the tree function.

family is a relation mapping REGIONs to every member of their sub-tree,
including themselves. A REGION q is in the family of a REGION r if r is an ancestor
(the closure of parent) of q or (in order to include isolated REGIONs, which cannot
be represented in parent) if q is the same as r.

Using the tree a, applications of these mappings can be illustrated:

a
"

d" ýe

parent e=b

6.3.5. Fundamental Properties

family 4 {b})= {b, d, e}

In order to exploit the REGION tree structure, we load the REGIONs with

properties by providing mappings between them and other types. These types

express four fundamental properties of REGIONs as medium objects: textual and

graphical content, geometry, visualisation, and behaviour.

-204-

We model properties as tuples of named attribute values, and define particular
tuples using schemas:

Tuple -
attributel: values,

attribute2: values2

attribute,,: values,,

Tuple thus stands for the set of all possible combinations of values for its

attributes. We adopt the ll notation we used in Chapter 3 for binding particular val-
ues to the named attributes in tuples:

t= (attribute, J v1, attribute2 J v2, ... attribute, 4 vn)

Individual attributes can thus be accessed using Z's dot notation:

t. attributel = vl

We also assume that any attribute may be undefined, and so have the special value
1 (bottom) in addition to its declared values. This will allow us to deal generically

with the propagation of attribute values. We thus use 1 as if it had meaning, which
is not strict. In implementation of course we would use some special null value

which is well defined. We use 1 in preference to 0 or false because of the connota-
tions of these values.

It is thus possible to model properties by functions from REGIONS to tuples T

of any size:

PROPERTIES DTI == REGION -4 T

We use tuples for three reasons:

" Some attribute values may conflict. For example, a REGION cannot be both

transparent and opaque. Clearly, an attribute in a schema can take on only one

value at a time, so we can define attributes to have values with disjoint mean-
ings, and be sure that no conflict will arise.

-205-

" Some attributes may be orthogonal and so may be set together. For example,
a REGION may both be transparent and inverted. Orthogonal values like this
can be ascribed to different attributes.

" There may be many disjoint sets of attribute values. Using tuples of
attributes is a convenient packaging, just as records are in programming. The

only alternative is separate mappings from REGIONs to values for each prop-

erty.

6.3.6. Content

Graphical Content

We are not concerned here to specify a rich set of imaging primitives, such as

may be provided by a graphics language like PostScript. The intention in this design

is to give REGIONs the flexibility to be used as primitive constructs in themselves,

rather than (as in a window manager) simply as canvasses or drawables for other

primitives.

Nevertheless, in practice there is a need for some minimal set of primitives. In

fact, the implemented system Presenter gets by with only a single line-drawing

primitive, and that is all we shall define here. A line is defined by two end points:

LINE == POINT x POINT

Graphical content will consist of a sequence of LINEs.

Textual Content

Although the domain of text presentation and manipulation is rich, at base the

text contained in a REGION can be modelled as a sequence of characters. We use a
basic type

[CHAR]

without further elaboration, but with obvious intention.

-206-

Text or Graphics

A REGION can contain either text or graphics but not both. This is logical,

since the operations on the two types are quite distinct. The composition of text and

graphics is achieved at a higher level, by the structure of the tree itself.

CONTENT

graphics: seq LINE
text: seq CHAR

-i (graphics :oI. A text # 1)

CONTENT thus describes the state space in which either the component graph-

ics is defined, or the component text is defined, but not both. We use I for undefined

or unused. CONTENT can thus be used as a union type, and its components

accessed by the conventional dot notation. This formulation allows us to query the

values to find out if they are graphics or text.

Leaves Only

Only leaf REGiONs can have displayable CONTENT. This is an important fea-

ture of the model, and distinguishes it from standard hierarchical window systems, in

which interior nodes may also be visible windows. However, it is similar to procedu-

ral graphics systems, in which the call structure forms a hierarchy with primitives at

the leaves.

Contents
ORDERED TREE

content: REGION 4 CONTENT

Vr: dom content " tree r=

content is a partial mapping (+>), as not all REGIONs have CONTENT.

Restricting content to the leaves of the tree makes content orthogonal to the

REGION structure. We can thereby maintain the property that any CONTENT

REGION can be manipulated independently of the others.

-207-

6.3.7. Geometric Properties

The tree structure says nothing about the eventual representation of REGIONs

and their CONTENTs as IMAGES on the surface.

Area

In order to delimit the graphical space of a REGION, we give it a particular
area: a set of POINTs on a unit square with one corner at the origin:

AREA ==[0,11x[0,1]
In this way we think of REGIONs as being rectangular coordinate spaces of

side 1. The orientation of REGIONs on the physical screen is entirely a matter of
design choice: Presenter implements REGIONs with their origin at the top left:

(0.0,0.0)
y

(1.0,1.0)

Size

The AREA of a REGION has meaning only with respect to some coordinate

space. By default, we consider the AREA of the root REGION to be the same size

as the display surface. However, in order not to introduce any device dependencies,

the size of child REGIONs is specified as a real proportion of their parent in both

dimensions, rather than in terms of absolute coordinate lengths. Thus a REGION of

-208-

X

size (1.0,1.0) is the same size as its parent. This relative sizing can be illustrated

graphically:

parent

size: (1.0,1.0)

Position

E- I
size: (1.5,0.5) size: (0.5,0.5)

The position of a REGION is similarly specified with respect to its parent. In

order to fix the position of a REGION, two things are needed:

"a reference point within the child (its pivot).

"a position in the parent at which the pivot of the child will be sited.

Both of these are considered properties of the child, and all REGIONs have a

pivot and a position. The position and pivot of a REGION are real number pairs. piv-

ot expresses the distance of the pivot point from the origin of the REGION,

proportional to its width or height. Thus a pivot of (0.5,0.5) is in the centre of the

REGION. position expresses the distance of the pivot point from the origin of the

REGION's parent, proportional to the width or height of the parent. Thus a REGION

with position (1.0,1.0) has its pivot point at the lower right corner of its parent. The

-209-

position of root is taken to coincide with the display surface available. This relative
positioning can be illustrated graphically:

pivot: (1.0,1.0)
position: (0.5,0.5)

X

parent

X
pivot: (-0.5,0.5)
position: (-1.5,1.5)

Rotation

pivot: (0.5,0.5)
position: (2.5,0.5)

For completeness, we allow REGIONs to be rotated about their pivot
(although this is not implemented in Presenter). The angle of rotation can be

expressed in some appropriate units, for example degrees.

Geometry

The total geometry of REGIONs can be expressed as a tuple:

GEOMETRY

size, pivot, position: IR x IR

rotation: lR

In practice we will never allow any of these properties to be undefined. That is,

REGIONs will always have a size, position etc. At the very least, therefore, we will

need a default geometry to assign to REGIONs on creation:

DEFGEOM == (size 11(1.0,1.0),

pivot 4(0.5,0.5),

position 11(0.5,0.5),

rotation U. 0)

-210-

All REGIONs have a geometry:

Geometry
ORDERED_TREE

geometry: REGION -3 GEOMETRY

The informal diagrammatic interpretations of geometry above are specified for-

mally when we derive the surface presentation of the medium in Section 6.4. Chapter

5 also compares this geometric scheme with those of PostScript, GKS, and PHIGS.

6.3.8. Visualisation

The surface presentation of the CONTENT of REGIONs is clearly dependent

on the sizes and positions of the containing REGIONs. We also allow other aspects

of the visualisation of REGIONs, for example transparency, to be determined by

means of a set of attributes. They are expressed as a tuple:

VISUALISATION -
trans: transand I transxor I transor
invert, highlit: (true)

The definition of this tuple will be completed below. The only defined value for

invert and highlit is true: we assume they may also be undefined (1), which will be

interpreted as the opposite in each case. Similarly, a REGION whose trans attribute
is undefined is taken to be opaque.

Clipping

There are two aspects to clipping.

" We may wish to restrict the IMAGE of a REGION to some non-rectangular

shape, for example a box with rounded corners.

" We may wish to restrict the IMAGEs of a set of REGIONs to the area

defined by some shape, for example to provide the effect of windowing onto a

larger space containing REGIONs.

-211-

We can provide a very general solution to these requirements by giving each
REGION a mask. If the REGION is a leaf, then its mask clips its IMAGE. On the

other hand, if the REGION is not a leaf, then its mask clips the IMAGEs of all its
descendant leaves. It is an important feature of the model that we do not allow the

mask to be affected by the geometric transformations of its children. This is

explained in Section 5.2.6. The precise functionality is specified in Section 6.4.4.

The mask is modelled simply as a subset of POINT. For example:

If the mask equals POINT, i. e. the whole plane, then no clipping takes place.

On the other hand, if the mask is empty, then the /MAGEs are effectively hidden.

We leave out of consideration here how such masks are generated, whether by a

filled path of line segments or by some other means.

The VISUALISATION tuple is thus completed with an attribute for the mask:

mask: IP POINT

Visualisation Properties

Visualisation attributes determine how the final contents of REGIONs are pre-

sented as IMAGEs on the surface. By definition we assume that all the attributes

are mutually orthogonal, so that an inverted IMAGE may be transparent or not. We

also need a default VISUALISATION:

DEFVIS == (trans J. 1, invert JL 1, highlit X11, mask 4 POINT)

By default, therefore, REGIONs will be opaque, uninverted, unhighlit, and their

masks will be the whole plane and therefore clip nothing.

- 212 -

All REGIONs possess a VISUALISATION:

Visualisation
ORDERED_TREE

visualise: REGION -* VISUALISATION

6.3.9. Behaviour

The surface performance of REGIONs under operations like changing size and
position may be constrained by a set of attributes. Thus a REGION may be con-
strained to move only horizontally or only vertically. Since these attributes affect the
dynamics of REGION manipulation, we collectively call them behaviour. The
behaviour of a REGION also includes how it responds to changes in its geometric

environment, to user input, and how it reports user input to its owning application.
The tuple of behaviour attributes can be defined:

BEHAVIOUR

movable, sizable: horizontal I vertical I both
scale, group, permeable, selectable: (true)
reportup, reportdown, reportdrag, reportCH, reportCR: (true)

By default, REGIONs have the following BEHAVIOUR:

DEFBEHAVE == (movable 11 both, sizable U both,

scale U true, group U true,
permeable U 1, selectable U true,
reportup u true, reportdown u true, reportdrag 41,

reportCH u 1, reportCR u true)

The precise interpretation of these attributes will be defined later in Section

6.5. All REGIONs have a BEHAVIOUR:

Behaviour
ORDERED TREE

behave: REGION --) BEHAVIOUR

- 213 -

6.3.10. The Core Model

The model of the medium can be brought together into a single schema:

MEDIUM
ORDERED_TREE
Contents
Geometry
Visualisation
Behaviour

MEDIUM specifies the core medium model completely, and includes all the
information that is needed to derive a surface presentation and constrain its

behaviour. To complete the picture of the model, however, two further specifications

are required: a definition of precisely how a surface presentation is generated from

each state of this core model; and a definition of the operations available to change

the state.

6.4. Surface Presentation

It is not sufficient simply to outline the structure and properties of the model.
To be convincing, we must also specify precisely how the information contained in

MEDIUM is presented on a surface. In this section we describe how the primitive

structures and their properties determine this surface presentation.

Since we are not concerned here to build up a more complex state space for the

model, but simply to define some functions over MEDIUM, we open this model up

globally by including it in an axiomatic schema [Spivey89 p. 1431:

f
MEDIUM

We can then define the presentation functions globally in the same way.

6.4.1. Projecting the Tree

As specified, the geometry of a REGION is interpreted with respect to its par-

ent REGION. Similarly, the effect of the visualisation attributes of REGIONs will be

- 214 -

propagated from parents to children. Clearly the paths of REGIONs from the root to
the leaves are important in determining the presentation of the IMAGEs.

Since the tree is ordered, and by design we wish to exploit this order as dis-

play layering, the sequence of paths will also be significant.

We therefore define a function pathseq to produce a sequence of paths from

some sequence of projection roots. (In this and later recursive definitions, we

employ a pattern matching style for concision):

pathseq: seq REGION -f iseq (iseq REGION)

pathseq = pseq <>

pseq = ;. p, (r: sr): seq REGION "
psegp<>=<>

pseq p (r: sr) = <p ^ <r» ^ pseq p sr if tree r= <>

pseq p (r: sr) = (pseq p^ <r> (tree r)) " pseq p sr otherwise

The pathseq is defined by first defining a function pseq, which accumulates the

paths (in p), given a sequence of projection roots (in (r: sr) where r is the head of the

sequence, and sr the tail). The function shows three cases:

" The sequence of projection roots is empty (r: sr = <>), else

" The head r of the sequence is a leaf REGION (tree r= <>), else

" The head r of the sequence has children (tree r* <>).

pathseq is generated by partially applying pseq to an initially empty path.

Using the ORDERED_TREE a above as an example:

pathseq <a> = «a, b, d>, <a, b, e>, <a, c»

Note that each of the paths produced are injective, since ORDERED_TREEs

exclude cycles. The sequence of paths is also injective, that is, no path recurs. This

is a consequence of the fact that the child sequences in ORDERED_TREEs are

injective: no arc can be duplicated, and so no path can be duplicated. This is a useful

-215-

property since as a result it will be possible to identify a surface selection uniquely
by identifying its path, as well as by its numerical position in the sequence of paths.

Although pathseq is defined as applying to sequences of REGIONs, in practice

we will only need to apply it to single REGIONs which form the root of subtrees. For

example, we can define a sequence of paths for the whole tree, by projecting from

root:

paths: iseq (iseq REGION)

paths = pathseq <root>

The paths produced have the root REGION at their head, and a leaf REGION

as their last element. In addition, the ordering of the tree allows us to order all the

projection paths. In the model this order is interpreted as screen layering.

6.4.2. Imaging

The fundamental property of REGION trees which allows them to have a sur-

face presentation is that the graphical or textual CONTENT of leaf REGIONs may

generate an IMAGE which is coextensive with the AREA of the REGION. We

assume, without defining it further, a function image:

image: REGION +> IMAGE

Vr: dom image " tree r= <>
`di: ran image " dom i= AREA

We therefore abstract away from the mechanics of imaging, either in graphics

or text. This is not because they are trivial, but because they are too complex and

implementation-oriented for this level of description.

6.4.3. Geometric Transformations

We define the way in which IMAGEs are transformed by the geometric proper-

ties of the REGION tree. We first define operations to generate matrix

- 216 -

representations for the basic transformations of translation (T), scaling (S), and
rotation (R):

T, S: (fR x IR) -3 MATRIX
R: IR --4 MATRIX

Vx, y, O: B.

100
T (x, y) =010

xy1

1x 00
S (x,

. Y) = t0 y0
001

cos9 sin8 0
R (9) =

-sinO cos9 0
001

We here assume a type MATRIX, of 3 by 3 matrices, and its associated arith-

metic. MATRIX is an (injective) mapping POINT >---) POINT (that is, we assume

we can invert it). We will also require an identity MATRIX:

100
IDMAT ==010

001

Next we define a function (M) to compose a matrix which expresses the size,

position, and orientation of a REGION in the coordinate space of its parent,

expressed as a transformation of the parent space:

M. " REGION ---) MATRIX

M=? r: REGION "
T (- G. pivot) "R (G. rotate) "S (G. size) "T (G. position)

where
G= geometry r

-217-

(We assume here that (-) negates both elements of the pair). For example, if
REGION r has position (1.0,1.0), size (1.0,0.5), pivot (0.5,0.5), and rotate 45, then
its shape with respect to its parent (M r) can be illustrated:

parent

---------------------- ---------------

In order to ascertain the shape of a leaf REGION against the root REGION

(that is, on the display surface), all matrices in the path of the leaf REGION must be

composed in sequence. We define a function C to do this. C takes a path of

REGIONs and returns the composed MATRIX:

C: seq REGION -4 MATRIX

C <> = IDMAT

C(r: sr)=(Csr)"Mr

This can be illustrated for a short path of REGIONs:

root
--r-- ----, -----------;

r

---------- ------------------

leaf '

- 218 -

The transformation between the root and leaf REGIONs on this path can thus
be expressed:

C <root, r, leaf> = IDMAT "M leaf "Mr"M root

Note that the matrix representation allows quite arbitrary transformation
between parent and child: there are no restrictions on the size, position or orienta-

tion of the child with respect to the parent. We wish to preserve this geometric
freedom throughout the model.

Finally, we must show how POINTs and IMAGEs, are transformed by the

composed matrices. We define two operations: Ow', which converts a MATRIX into a

mapping between sets of POINTs, and W-, which converts a MATRIX into a map-

ping between IMAGEs:

MATRIX -* F POINT -4 lP POINT
MATRIX -ý IMAGE - IMAGE

V m: MATRIX; ps: f POINT; i: IMAGE "

mIps={p. ps"p"m}

m* i=(p: domi"p"m H ip)

(We overload the matrix operator (") here slightly by assuming that it converts

POINTs to homogeneous coordinates of the form Ix y 1]). w' transforms the domain

of the IMAGE, whilst leaving the COLOURs unchanged. We use POINT, rather than

its restriction AREA, because child REGIONs, and hence their IMAGEs, may be

larger than root.

6.4.4. Clipping

In the model, every REGION may have a mask. Clearly, the masks will only

affect the presentation of the IMAGEs of leaf REGIONs. To determine the final clip-

-219-

ping mask for a leaf REGION, therefore, we take the intersection of all the masks on

the path of the REGION:

'<: seq REGION -* P POINT

= -- IDMAT

ý- _X CTM: MATRIX; (r: sr): seq REGION "
ý- CTM <> = POINT
'- CTM (r: sr) = (T " mask r) n ('- T sr)

where
T=CTM -Mr

Again, is defined by defining an auxiliary function $-, and partially evaluat-

ing this with the identity matrix IDMAT. We can illustrate some clipping masks, and

their intersection using <:

root

ýý

It is important to note in this definition that the mask is transformed () only

by the MATRIX formed from REGIONs above it on the path (7). Once this has been

done, the mask is not transformed further. That is, notionally, the mask has its own

-220-

orientation which is not affected by the orientation of the children of its REGION.

This capability can be used, for example, to provide clipping windows:

b

LTEXT

T

Here, b is the same size and at the same position as r, and

mask r= AREA

and so r clips all descendant REGIONs to its area. The position or size of the clip-

ping mask is unaffected by intermediate REGIONs, such as a, so that the clipping of

each leaf REGION coincides.

6.4.5. Combining Transformation and Clipping

We next need to combine IMAGE transformation with clipping. getim trans-

forms the image of a leaf REGION by the composed matrix (C) of its path, and clips

this against the combined clipping mask (lC) of the path:

getim: seq REGION -4 IMAGE

getim =X path: seq REGION "
(21< path) < (C path W' image (last path))

-221-

last path is clearly the leaf REGION which has an IMAGE. The clipping is per-
formed by restricting the domain (<) of the IMAGE to just the POINTs in the mask.
Graphically:

image (last path)

9. c

C path w'

c

6.4.6. Propagation of Attributes

etim pi

The various REGION properties of content, geometry, visualisation and

behaviour are determined by tuples of attributes. With all properties except content,

we allow any REGION to possess attributes. By design, we do not allow properties

to be inherited, in the sense that a REGION is not thought to possess some union of

the attributes of its ancestors. However, we want the effects of attributes to be prop-

agated down the tree, such that the IMAGEs of descendant leaf REGIONs of a

transparent REGION, for example, will be presented as transparent. In this way, the

presentation of groups of REGIONS can be modified by changing the properties of a

common ancestor.

- 222 -

The design question that arises is, how are attributes propagated, such that
they affect the presentation of the leaf REGIONs? For example, in the following tree,
which IMAGEs should be transor?:

a
trans = transor

b
trans = transand

Li cQ

ýj
TEXT

If an IMAGE cannot be both transand and transor, then some scheme for

resolving this conflict is necessary. The most general information we have available
is the ordering of REGIONs on the paths, and it makes sense to use this, rather than
impose some external priorities (for example, that transor always takes precedence

over transand).

In addition, we need to decide just how the path is exploited to prioritise con-
flicting attributes. We could decide that attributes higher on the path have priority

over lower attributes. However, this would mean that lower settings would always
be completely obscured by the higher settings. Using the above example, this strate-

gy would result in all the IMAGES being transor. We therefore make the obvious
design decision that attributes lower on the path have priority over those higher on

the path.

- 223 -

In order to define this generically, we assume a syntactic function components
which given a particular tuple returns the set of its component attribute names. The
fundamental mechanism of propagation we can therefore define for any tuple T:

[71

_M _:
(T x T) -* T

d t], t2: T; c: components T T.

t2. c=1=(tl t2). c=tl. c
t2. c ýI (tl t2). c = t2. c

Thus the function takes two tuples, and returns a new tuple of the same

type which, for each component attribute, inherits the value in the second tuple if it is
defined there, and inherits the value of the component in the first tuple if it is unde-
fined in the second tuple. The function is generic over any tuple (that is, the tuple can

consist of any group of attributes).

Propagation can therefore be defined on paths of REGIONs, so long as a
default tuple and a PROPERTIES mapping between REGIONs and tuples (the

attribute settings for each REGION) are supplied:

[T]

propagate: T -a PROPERTIES [T] --4 seq REGION -* T

propagate = A. default: T; prop: PROPERTIES [T]; (sr: r): seq REGION "
propagate default prop <> = default

propagate default prop (sr: r) = (propagate default prop sr) prop r

Thus propagate folds the function along a sequence of tuples of attributes,

starting with a default tuple of attributes. The sequence of tuples is generated when

the PROPERTIES mapping prop is applied to each REGION in a path.

For example, taking the tree above, the PROPERTIES mapping may be:

prop = (a H (trans i1 transor), bH (trans u transand), cH (trans t 1))

and

- 224 -

default = (trans ll 1)

(ignoring any other attributes). The presentation of the TEXT IMAGE is then
determined by propagation along its path <a, b, c>:

propagate default prop <a, b, c>
_ ((default 0 prop a) prop b) prop c
_ (((trans 1L1) (trans i transor)) (trans ll transand)) (trans 1.1)

_ (trans u transand)

Thus the IMAGE would be transparent in AND mode.

6.4.7. Visualisation Attributes

VISUALISATION attributes, which affect the presentation of the IMAGEs, are

propagated down the projection path in the same way. We can therefore partially

instantiate propagate to specialise it for VISUALISATION attributes:

getvis: seq REGION - VISUALISATION

gervis = propagate DEFVIS visualise

6.4.8. Presentation

The overall presentation of the REGION tree as a single IMAGE on the dis-

play surface is accomplished, conceptually, in two steps:

"A sequence of transformed, clipped IMAGEs, paired with their propagated

VISUALISATION attributes, is generated from the pathseq using getim and

getvis. Such a sequence can be illustrated:

his is a text ý`

EGION with some 'ý' r�
ext displayed in
t. Together with
he title bar and
he scroll bar, the TITLE BAR
EGION could
apresent a window.

Y: 're

OPAQUE XOR

- 225 -

The IMAGEs at the front of this sequence all have their trans VISUALISATION
attribute undefined (i. e. they are opaque). The last is transparent in XOR mode.

" Secondly, the sequence of IMAGEs is combined into a single IMAGE using
compositing operators determined by the VISUALISATION of each IMAGE.

By design we instantiate the ordering of the sequence of IMAGEs as surface
layering, that is, we mean IMAGEs later in the sequence to overlay overlapping
IMAGEs earlier in the sequence. In order to present this, we need to define the

ways in which IMAGEs with different VISUALISATION attributes combine.

In the case of opaque IMAGEs, or transparent monochrome IMAGEs, the com-
bination operator is well defined and will correspond to a RasterOp mode such as

simple overwrite or 'AND'ing. However, in the case of transparent colour /MAGEs,

the combination is more contentious (see Section 5.2.1). For simplicity, we simply

assume an appropriate colour combination operator, determined by the value of the

transparent component of the VISUALISATION tuple, and give it the symbol 0. We

assume also that 0 inverts or otherwise highlights the IMAGE appropriately if the

invert or highlit attributes are true.

We define a function present which generates a single IMAGE from a

sequence of paths, when provided with an appropriate background IMAGE:

present: IMAGE -* iseq (iseq REGION) --3 IMAGE

presents <> =s
presents (p: sp) =

present (s ® i) sp if v. trans =1

present (s ® {n: dom i9n I-* (s n) 0 (i n)}) sp otherwise

where
i= getimp
v= getvis p

present accumulates the IMAGE in s. As each path p is taken from the head of

the sequence of paths (p: sp), its IMAGE i and VISUALISATION v are generated by

getim and getvis respectively. If i is opaque (i. e. v. trans is undefined) then the

IMAGE generated so far (s) is simply overwritten at the appropriate POINTs with i

- 226 -

(O - the standard Z function override). On the other hand, if i is transparent, then

an appropriate combination operator (0) is applied between the COLOURs in s and
i, at those POINTs where they coincide.

Note that what we are doing here is to associate the combination operator

with the IMAGE, rather than between IMAGEs, since if an IMAGE is transparent,

it appears to be transparent over any underlying IMAGEs (which have already been

combined in s). It is conceivable that one could adopt an alternative scheme whereby

the combination operator is specified between IMAGEs, such that the same IMAGE

could appear transparent over one IMAGE, but opaque over another. However, this

would require extra mappings to record the combination operator associated with

each pair of REGIONs. More importantly, in a highly manipulable environment this

scheme would lack visual integrity.

In order to generate the display we need to define a suitable background, for

example one that is all grey (we assume grey is a COLOUR):

BACKGROUND == {p: AREA "pI. -* grey}

A presentation of the surface display is therefore simply defined:

display: IMAGE

display = present BACKGROUND paths

The IMAGE sequence illustrated above would for example result in a display

as in the illustration. Note that the last IMAGE in the sequence (here, furthest to

the right) appears XOR transparent over all the underlying IMAGEs:

-227-

6.5. Manipulating the Model

As introduced in Chapter 3, the symbol Ain Z indicates a change of state pro-

duced by some operation. Implicitly, including a schema with this prefix includes two

copies of its components, one copy representing the state before the operation, and

the other copy (with each component primed (')) representing the state after the

operation. Thus the operation can be defined by specifying its preconditions in the

unprimed state, and its postconditions as relationships between the two states.

Input and output parameters are suffixed by ? and ! respectively.

In a large system like this, in which the state to be changed may have many

components, the A representation of a model-based specification such as Z is per-

haps more readable than functions which map between complex state spaces.

6.5.1. Initialisation

To specify the initial state of the MEDIUM, we define an operation with no

preconditions, only postconditions:

Init MEDIUM

A MEDIUM

tree' = (root H <>)

geometry' = (root I-* DEFGEOM)

behave' = (root I- DEFBEHAVE)

visualise' = (root H DEFVIS)

content' =0

In the initial state, then, the tree consists simply of the root REGION. The root

has a default set of attributes. We can assert that such an initial state is possible:

I- 3 MEDIUM " Init_MEDIUM

6.5.2. Operations on the Medium

Operations affect the state of MEDIUM by directly accessing the REGION

structures and their properties.

- 228 -

Creating REGIONs

The following creation and copying operations affect not only the REGION tree
itself, but also the mappings between REGIONs and their properties.

The basic need is to create new REGIONs. This is performed by CREATE. The

only restriction is that the new REGION should not already exist on the tree:

CREATE

L MEDIUM

newreg!: REGION

newreg! 0 dom tree
tree' = tree u fnewreg! 1-4 <>)

geometry' = geometry u (newreg! H DEFGEOM)
behave' = behave u (root I- DEFBEHAVE)

visualise' = visualise u (newreg! I-4 DEFVIS)

content' = content

The new REGION has a default set of attributes, but no content. It is added to
the tree simply as an isolated node. Its identity is returned in the output parameter

newreg.

When we COPY a REGION and its descendants, we wish to copy not only the
REGION structure, but also any properties the REGIONs may have, so that the

copy projects a similar IMAGE to the master.

We define the COPY operation by asserting that there must exist an injective

(one to one) mapping f between the REGIONs in the family of master and the

REGIONs in the copy. In this way we can ensure that matching REGIONs in the

- 229 -

master and the copy have the same properties. None of the REGIONs in the copy
(the range off) are already on the tree:

COPY

A MEDIUM
master?, copy!: REGION

master? e dom tree
3 f. " REGION >4+ REGION

dom f= family) (master?))A ran fn dom tree =0"
tree' = tree u {r: dom f" frHfo tree r}

geometry' = geometry u {r: dom f"frH geometry r}
behave' = behave v {r: dom f"frH behave r}
visualise' = visualise u (r: dom f"frH visualise r)
content' = content u {r. " dom f"frH content r}
copy! =f master?

Since in all respects the copy is like the original, we can assert:

I -- b COPY"
present BACKGROUND pathseq <master? >
present BACKGROUND pathseq <copy! >

Constructing the REGION Tree

The second major group of operations allows REGION trees to be constructed

and modified using REGIONs that have been CREATEd or COPied. In this way the

medium IMAGEs can be grouped in different ways, and their layering on the surface

changed arbitrarily. These PASTE and CUT operations affect only the REGION tree -
the mappings between REGIONs and their properties remain unchanged. The

schemas are therefore restricted to specifying only the effect on tree by the Z

schema projection operator
f.
. We assume the other components are unaffected.

It is useful in defining these operations to assume a special null value (1)

which represents lack of a REGION. However, 1 is not a member of the REGION

type.

- 230 -

Any existing root REGION (i. e. one that does not have a parent) may be
PASTEd anywhere on the tree, except into a leaf REGION which has content (since
this then would cease to be a leaf, and only leaves can have content):

PASTE

A MEDIUM ý
(tree)

newparent?, newchild?: REGION

after?: REGION v (1)

(newparent?, newchild?) c dom tree
newchild? ct dom parent

newparent? s dom content
after? * 1= after? E ran (tree newparent?)

tree' = tree ® (newparent? I-a insert newchild? (tree newparent?) after?]

The insert function is defined in Appendix II. The PASTE operation can be illus-

trated:

" newparent

after

newchild

The PASTE is determined by specifying the newchild to be PASTEd, the new-

parent into which it is PASTEd, and a REGION in the children of newparent after

which the newchild is to be PASTEd. If after is 1, then the newchild is PASTEd at

the beginning of the sequence of children. It is this one case that makes it necessary

to specify newparent as well as after - in all other cases where after is a REGION

we could derive newparent from it.

Note that there is nothing to stop the newchild having descendants. However,

we expect the restriction against cycles expressed in ORDERED_TREE to hold

implicitly on the state after the PASTE. Therefore a REGION cannot be PASTEd into

itself or one of its own descendants.

-231-

The arc between a REGION and its parent (i. e. any arc) may be CUT:

CUT

A MEDIUM
ý

(tree)

child?: REGION

oldchild? E dom parent
tree' = tree ® (parent child? H remove (tree (parent child?)) child?)

The REGION to be cut, child, must have a parent. The CUT is performed by

simply removing child from the children of its parent. remove is defined in Appendix

II. Note that this operation does not affect any children that child might itself have.

Deleting REGIONs

Deleting REGIONs clearly has an effect both on the structure of the tree, and

on the sets of REGION properties (since deleted REGIONs no longer have proper-

ties). If we DELETE a REGION, we must destroy all reference to it on the tree and
in the property mappings. If the REGION has a parent, then the arc to this must be

cut first:

DELETE

A MEDIUM

old?: REGION

old? e dom tree - (root)

tree' = gone 6(tree 0 (parent old? I--* remove (tree (parent old?)) old?))

geometry' = gone 6 geometry
behave' = gone 6 behave

visualise' = gone 6 visualise

content' = gone 6 content

Where
gone = family 4 (old?)

- 232 -

DELETE destroys the old REGION and all its descendants, and removes all
references to these destroyed REGIONs from MEDIUM (using domain subtraction

(E)). However, the root REGION cannot be deleted.

Inquiries on the Trees

We wish to allow applications to traverse the trees, without, however, reveal-
ing any details of the implementation structures. We therefore define tree traversal

operations which deal solely in terms of the abstract construct REGION. In all these
inquiry operations the state of the MEDIUM is not affected. This is specified by the

E schema reference prefix 6-,, which implicitly includes primed and unprimed copies of

all the components, like A, but in addition states that they are all equal,

GETFIRSTCHILD returns the first child of parent:

GETFIRSTCHILD

6.1 MEDIUM
parent?, child!: REGION

child! = head (tree parent?)

Fairly clearly, GETFIRSTCHILD is undefined (1) if parent is a leaf REGION,

or is not on the tree. Children other than the first can be found using GETNEXTSIB-

LING:

GETNEXTSIBLING

ý. MEDIUM
sibling?, next!: REGION

3 u, v: seq REGION* u" <sibling? > ̂ <next! > "ve ran tree

The next sibling is defined so long as there exists a sequence of REGIONs in

the range of tree in which next follows the input sibling.

- 233 -

Traversing upward on the tree is simply a matter of getting the parent of a
REGION:

GETPARENT

MEDIUM

child?, parent!: REGION

parent! = parent child?

The parent is undefined if child is a root, or does not exist on the tree.

Updating MEDIUM Contents

MEDIUM has only two types of content: text and graphics. Graphical content
is updated simply by updating the content mapping:

DRAW

A MEDIUM ý (content)
reg?: REGION
newgraph?: seq LINE

tree reg? _ <>

content' = content ® {reg? H (graphics 4 newgraph?, text 111)}

Textual content is similarly updated:

WRITE

A MEDIUM
I'

(content)

reg?: REGION

newtext?: seq CHAR

tree reg? = <>

content' = content ® {reg? H (graphics 4 1, text 4 newtext?)}

In both cases the restriction that only a leaf REGION can have content is main-

tained. Similarly, a leaf REGION cannot both contain text and graphics. This is

- 234 -

maintained brutally simply by dropping the opposing content if it exists. Clearly in
practice an error report would be less destructive.

These formulations also ignore a number of important issues which are likely

to be significant in an implementation:

" In the case of new leaf REGIONs (either because they have been newly CRE-

ATEd, or because their children have been CUT) there will not exist a content
mapping. In these cases one will have to be created, whereas in other cases an
existing mapping will simply have to be updated. It is a design issue whether

there should be a separate CREATE CONTENT operation to set up the map-

ping, or whether the mapping should be automatically created when a WRITE

or DRAW is requested, if it does not exist.

" Whereas the addition or deletion of a single character in text or line in graph-
ics can be expressed simply as a substitution of whole text or graphics

sequences for other sequences (in which only a small change has been made),

clearly in practice these changes need to be made incrementally. That is, some

editing mechanism must be provided.

" In order to indicate which changes are to be made, the user or the application

needs to have some way of selecting characters or lines or insert points. This

raises issues of the persistence and identity of the representation, either on

the display surface, or as internal machine objects.

These issues are abstracted away from here in the interest of conciseness and

clarity.

Removing Content

We may wish to remove content from a leaf REGION in order to paste a sub-

tree into it. We simply specify this as removing the REGION from the content

mapping:

STRIP

A MEDIUM
t

(content)

reg?: REGION

content' = reg? d content

- 235 -

Updating and Enquiring Properties

Tuples expressing properties other than content are defined to be persistent.
That is, a REGION will always have a GEOMETRY, a VISUALISATION, and a
BEHAVIOUR. Since we will often wish to perform a selective update or enquiry on
some attribute component of these tuples, we define generic update and enquire
operations. We assume the sets ATTRIBUTE and VALUE of attribute names and
their values respectively.

update produces a new tuple which is the same as the old, except that the
specified ATTRIBUTE is updated to the specified VALUE:

[71

update: (T x ATTRIBUTE x VALUE) -*T

b' t: T; a, c: components T; wa"

c a=> (update tav). cv

cýa (update ta v). c = t. c

Again we assume a syntactic function components which extracts the set of

attribute names in a tuple. The specified ATTRIBUTE a must be a component of the

tuple, and the specified value v must be of the type of a.

enquire returns the current VALUE of the specified ATTRIBUTE:

[71

enquire: (T x ATTRIBUTE) -4 VALUE

V t: T; a: components T" enquire ta=t. a

- 236 -

Without detailing each one, we assume a set of specific operations prefixed
with SET- and GET- which set or enquire the value of any attribute of any REGION
in the state. For example, in order to set the behaviour of a REGION:

SETBEHAVIO UR

A MEDIUM t
(behave)

reg?: REGION

attribute?: A7TRIBUTE
value?: VALUE

behave' = behave ® {reg? H update (behave reg?, attribute?, value?)}

and to enquire the current behaviour of a REGION in a particular attribute:

GETBEHAVIO UR

MEDIUM

reg?: REGION

anribute?: ATTRIBUTE

value!: VALUE

value! = enquire (behave reg?, attribute?)

Note that the enquiry operations do not change the state of the MEDIUM (s).

Manipulating the MEDIUM

The MEDIUM is manipulated by updating its GEOMETRY. In this case the

effects of an update cannot simply be defined as above, because there are also con-

straints that are applied by the BEHAVIOUR. For example, a REGION that is

movable only horizontally will only allow a position update in that dimension. We

use the operation SETPOSITION as an example of this class of geometric update.

-237-

The basic operation to move an object is to set its position to some location in
its parent. We assume as an implicit precondition for this SETPOSITION operation
that the target REGION reg already exists on the tree:

SETPOSITION

A MEDIUM r (geometry)
reg?: REGION
newpos?: (IR x IR)

geometry' = geometry ED (reg? f- update (old, position, pos))

Where

(behave reg?). movable = both =
pos = newpos?

(behave reg?). movable =I
pos = old. position

(behave reg?). movable = horizontal

pos = (first newpos?, second old. position)
(behave reg?). movable = vertical

pos = (first old. position, second newpos?)
old = geometry reg?

This is performed simply by updating the position attribute of reg's geometry.
However, setting the new value for the position is complicated by the need to take
into account the behavioural constraints that might be set on reg. Thus if reg's mov-

able attribute is both, then it is simply moved to the requested position. However, if

it is undefined, then its new position remains the same as its old position. If the mov-

able attribute is either horizontal or vertical, then one component of the new position

coordinate remains the same as its old value.

This is, however, not the whole story, since we must also account for the group
behaviour in the descendants of reg. The intention of group is that, for any REGION

on which it is true, that REGION should move if its parent moves. This is the default

case, since all that is required is for the REGION to maintain its same position in its

parent. If, however, group is undefined on a REGION, then that REGION should

maintain its absolute position on the surface, irrespective of changes to the position

of its parent. In order to achieve this, the REGION must effectively be moved by the

same distance as the parent, but in the opposite direction. This is further complicat-

- 238 -

ed by the fact that the move may in fact have originated not in the REGION's
immediate parent, but in a higher ancestor. Since this may not be the same size as
the REGION's parent, the distance moved in the ancestor must be transformed into

the parent's space in order to achieve the effect of leaving the non-grouping
REGION unmoved.

We continue the SETPOSITION schema from above:

g (tree reg?) (M reg?)

where
g<>m=true

g (r: sr) m=g sr dAg (tree r) (m (M r)) if (behave r). group = true

g sr dA shift otherwise

shift = (geometry' = geometry ® [r H update (geometry r, position,

(geometry r). position - (m- pos - m" " old. position)))

g is a recursive predicate (i. e. a boolean function) which determines that if a

REGION does not have group behaviour, then its position is shifted with respect to

its parent to cancel out the movement of its ancestor. g passes the transformation

matrix m down the tree, which determines how the REGION r is currently trans-

formed with respect to the parent of reg, until it reaches a REGION on which group is

undefined. The inverse of m is then applied to the original points between which reg

was moved, and REGION r is moved this distance in the opposite direction. The

recursion does not continue to the children of r, since if r stays at the same absolute

position then so will they.

- 239 -

The combined effect can be illustrated:

r',

b

B

movable =
horizontal

group =1

3
äi

C

medium state surface presentation

Suppose that REGION a is at position (0.5,0S) in its parent. Now suppose

that the operation

SETPOSITION (a, (1.0,1.0))

is invoked. Since a is movable only horizontally, it will in fact be moved to position
(1.0,0.5), following the constraint in the first part of the schema. In the normal case,
this would cause both CONTENT REGIONs b and c to move on the surface, since

they would then stay in the same position with respect to their parent a. However,

in this example REGION c is set not to group, and so it must remain at the same

absolute position on the surface, even though the rest of its group moves. To achieve

this, REGION c must actually move in the opposite direction with respect to a. Now

a moves a distance of 0.5 of the width of its parent to the right. Let us say a is in fact

only half the width of its parent. In this case, to achieve the surface effect of staying

in the same place, REGION c must move 2x0.5 of the width of a, to the left.

This effect is powerful, for example, in the following situation. Imagine that we

wish to make c into a window onto b. This could be achieved by making a the same
size as c, and giving aa mask of size AREA. a would then clip all its descendants to
its own size. On the surface the effect would be that only the area of c would be visi-

- 240 -

ble. In order also to view that portion of b through c, it would be necessary to make c
transparent:

Now if b were movable, then it would be possible to move it around underneath
c, still viewing only that portion that was clipped by a to the extent of c. However, it
is equally likely that the interface designer might require c to be moved about like a
frame over b. This can simply be achieved by setting b rather than c to be non-group-
ing, and then moving a about. The effect is that c moves with a, so that their clipping
boundaries continue to coincide, yet b remains in the same surface position.

The operation SETSIZE has a very similar definition, but we do not give this

for reasons of space. The attributes sizable and scale have an analogous effect on

the behaviour of REGIONs under sizing. That is, the effect of a size can be turned

off, or restricted to only the horizontal or vertical component, depending on the value

of sizable. Similarly, setting scale undefined on a REGION has the effect that the

REGION remains the same absolute size on the MEDIUM irrespective of changes

to the size of its parent. This is effective in providing fixed-size components of a sur-
face object, for example title bars or Mac-like selection handles:

-- ------------- ----------

Note that making a REGION non-scaling does not imply that its position will

remain unchanged under a scale of its parent.

6.5.3. Picking and Selecting

REGIONs in the MEDIUM will have been CREATEd only by the deep pro-
cesses. Thus we can expect these processes to know about, and be able to access,

-241-

MEDIUM objects by means of REGION identifiers. The user, on the other hand, will
often only have some pointing device on the surface, such as a mouse. It is therefore

necessary to reference the MEDIUM state in terms of the coordinates of this
device. This process is called picking.

In order to abstract away from device resolution, we assume the mouse coordi-
nates will be some POINT in the set AREA. We first define a function to perform a
pick. This takes a sequence of paths, and a mouse coordinate, and returns a picked

path:

pick: iseq (iseq REGION) - AREA 4i iseq REGION

pick <> m=I

pick (sp. p) m=p if mE dom (getim p) A
(propagate DEFBEHA VE behave p). permeable =I

= pick sp m otherwise

Note that we intend the function to recurse backwards along the sequence of

paths - that is, from the foreground of the display to the background. The first path

that is found whose IMAGE contains the mouse POINT, and which is not perme-

able, is the path picked. This function effectively defines the semantics of the

permeable attribute: the IMAGE of a path that is permeable allows mouse picks to

drop through onto IMAGEs of REGIONs underneath. The property of permeability

can be propagated from ancestors.

- 242 -

The effect of picking and permeability can be illustrated using the example from
above:

b permeable
= true

a

LB
C

medium state surface presentation

If pick is applied to the POINT of the cursor in this surface presentation, then

the path <a, b> is returned. That is, REGION b is effectively picked, since c is per-

meable. This is useful, for example, if, as in the first example above, c were a

clipping frame onto b, and it was necessary to move b through c.

Both mappings in pick are partial because in the first, not all path sequences

may be pickable (all leaves may be permeable, or off screen). In the second, not all

mouse coordinates will be above non-permeable REGIONs.

Selection

This is not the whole story, however, since picking returns a path, rather than

a single REGION. There needs also to be some method of discriminating between

REGIONs on the path. This is the purpose of the selectable attribute in a REGION's

BEHAVIOUR. Only a selectable REGION can be the target of a selection. However,

in contrast to permeability, a non-selectable REGION passes the pick up the path,

- 243 -

rather than along the sequence of paths. A function select can be defined which takes
a path, and returns the first selectable REGION up the path:

select. - iseq REGION -4 REGION

select <>=1
select (sr: r) =r

= select sr
if (behave r). selectable = true
otherwise

These two functions pick and select can be combined in a MEDIUM PICK

operation:

PICK

MEDIUM
mouse?: AREA
picked!: REGION

picked! = select pick paths mouse?

The paths are the (already defined) sequence of paths projected by the root.
The operation takes a mouse position, and returns a REGION. It does not change

the state of the MEDIUM.

This combined effect can again be illustrated using the example above:

selectable a= true

b selectable
ýj =1

3e

B Ld]
medium state surface presentation

- 244 -

Here the PICK operation with mouse position as in the surface presentation
returns REGION a, since the picked REGION c is not selectable. The effect on the
display might be that both children b and c of a are highlit, or can be moved together
(if a is movable). Thus manipulable composite objects can be constructed on the sur-
face which the user can access as a single object.

6.5.4. The User Agent

As outlined in theory in Chapter 4, the user agent implements some mapping
between sequences of raw input, and either (input, REGION) reports to the applica-

tions, or operation commands to the MEDIUM. The sencond case enables the user

to access the MEDIUM objects `directly' (in the sense of `without involving the

application'). To support the thesis that such direct access is possible, we wish this

mapping to be as simple as possible. That is, we wish to reduce to a minimum the

possibility of semantic seepage from deep into surface interaction. This might arise,

for example, if the user agent were programmable or interpreted some dialogue spec-

ification.

We presuppose in this model (but not in the principle of Surface Interaction)

that the user agent has a direct manipulation style. This excludes moded use of the

keyboard for generating command strings or tokens. Thus, in the user agent map-

ping, keyboard input is considered simply to be text entry, and is not interpreted as

commands. This leaves the mouse as the primary device for manipulating the MEDI-

UM through the surface. There is consequently a hard limit to the number of

operations that can be directly invoked, simply because (normally) the mouse has

three or fewer buttons.

This limitation can be avoided by incorporating soft buttons in some iconic envi-

ronment managed by the user agent on the medium. This is in effect what happens in

desktop environments such as the Mac. Such an environment may well be needed in

a production system. However, in this case style and often operating system seman-

tics are bound into the surface. In contrast, we are concerned here with providing a

level of functionality which is independent of these.

The choice of which MEDIUM operations should be available directly to the

user via the user agent, as opposed to which can only be made available via the

mediation of an application, is a design issue. However, the operations which move

- 245 -

and size REGIONs exploit the geometric characteristics of the mouse better than
those which create or delete REGIONS.

For this reason the implementation of the user agent makes the following
default assignment of mouse buttons to medium operations (assuming a three-but-

ton mouse, and including the implemented text operations):

" left: selection in either graphics or text.

" middle: moving in graphics; cutting (button press) and pasting (button

release) in text.

" right: sizing in graphics; copying (button press) and pasting (button release)

in text.

Pasting into a non-editable text or a non-text area deletes the cut or copy.

We do not give here a full formal specification of the user agent's mapping

between raw user input and medium operations, because, even when the mapping is

simple, such a specification rapidly approaches the complexity of an implementation.

In the simple example in Chapter 4, the user agent was complex enough to require a

memory of whether it was in dragging mode or not. In the present case, the user

agent needs also to remember which object it is dragging or sizing, and to calculate,

from changes in the mouse position, by how much it needs to change the position or

size of the object in the space of its parent. In addition, it must determine what user

input should be reported to the application, on the basis of the BEHAVIOUR of the

selected REGION. We give just a flavour of the mousing issues here.

Mouse Actions

When the movement or sizing button is pressed over an object, we notionally

fix the cursor to that point in the object. A moving operation will simply drag the

- 246 -

object so that at the end of the movement the cursor is still at the same position in

the object:

The object is a projection of a path of REGIONs. Depending on which level of

the tree has been selected (see section 6.5.3), we will actually be moving one of the

REGIONs on this path. If we call this REGION r, and assume that r is initially at (x,

y) (the position of is pivot in the parent of r on the path), and that the mouse moves
from (mxl, myl) to (mx2, my2) in the space of the parent, then the actual medium

operation which the user agent performs will be:

SETPOSITION (r, (newx, newy))

where

newx = first ((geometry r). position) + (mx2 - na 1)

newy = second ((geometry r). position) + (my2 - my])

Sizing objects with the mouse is very similar. We assume the cursor is fixed to

a point in the space of the object, and that the pivot of the object (i. e. of the selected

REGION on the path) is fixed in the space of its parent. The object will therefore

alter its size (and shape) around this pivot:

tiuc. n

Given the conditions above, an actual invocation might be:

-247-

SETSIZE (r, (newwidth, newheight))

where

newwidth = first ((geometry r). size) * (mx2 - px) / (mxl - px)
newheight = second ((geometry r). size) * (my2 - py) / (my] - py)
px =first ((geometry r). pivot)
py = second ((geometry r). pivot)

This calculation reveals a number of design problems. The mouse cursor must
not start or finish at either the horizontal or vertical axes of the pivot, or else the

object will be sized to infinity or to zero respectively. Also, if the mouse track cross-

es the pivot axes, then the object will be inverted in that direction. What happens to
REGIONs containing text in this case?

In practice these are not insuperable problems. It is easy to check if the numer-

ator or denominator evaluates to zero, and substitute some minimal value. It is also

easy to rule that text REGIONs do not invert. Slightly more difficult is the problem

that sizing an object near the (invisible) pivot point results in gross size changes on

the surface. Although users seem to get used to this quickly, it is also relatively

easy to implement the behaviour of Mac-like `handles' by dynamically moving the

pivot point away from the mouse cursor:

user selects here

pivot moves here

The implementation also allows the application to decide (by setting an

attribute here unspecified) if objects on the surface move smoothly under surface

interaction. In this case a SETPOSITION or SETSIZE operation is invoked by the

user agent upon every drag event. The alternative is to invoke these only at the end

of a drag, i. e. when the relevant button is released. The object then jumps (relatively

speaking) to its new position or size. This is complicated by the need to provide

- 248 -

some feedback during the drag - in the implementation, the user agent asks the

medium to create and manipulate a rubber box, of the object's size, during the drag.

Thus, the basic functionality of the user agent is clear: it manipulates the medi-

um on behalf of the user, and reports some input to the application. In practice,
however, design and implementation issues soon arise, which it is not appropriate to

deal with here.

6.6. Conclusions

This Chapter has presented in some detail a formal model for the surface medi-

um. This has specified the three essential features in providing an encapsulated

medium: its state, its operations, and its presentation mapping from the state to the

display. When used as the semantics of M in the UMA architecture presented in the

first part of the Thesis, this medium model underpins Surface Interaction. A particu-

lar implementation of this, Presenter, is described in the next Chapter.

- 249 -

Chapter 7

Presenter

This Chapter outlines and discusses a particular implementation of a surface,
Presenter. This discussion, in contrast to the previous Chapter, is informal and
implementation-oriented. The justification for this perspective is that constraints can

arise at this level which compromise the abstract design [Took90bj.

Presenter was written originally as part of the Aspect IPSE project [Ha1185].

Presenter is written in C and runs within the SunView environment [Sun86],

although, for portability, it uses only the lowest level imaging primitives from this.
While it might be nice to be able to suggest that the principle of Surface Interaction

came first and that Presenter is an instantiation of this, in fact it was the other way

around. The whole burden of this thesis has in fact been to formulate and justify pre-

cisely in what way (if any) Presenter differs from other user interface managers.
Hence the notions of surface and Surface Interaction.

Although Presenter was formally specified (in Z) before it was coded (and

respecified after coding), the specification given in Chapter 6 is in fact an ideal ratio-

nal reconstruction of a design based on Presenter's tree structure (Chapter 8

outlines an alternative design based on a hierarchical structure). The present Chap-

ter therefore concentrates on those areas in which the implementation differs from

and refines this ideal design. It uses Surface Interaction and its UMA architecture to

clarify these design and implementation issues. [Took90b] examines more generally

the problems of refining a formal design.

We regard a practical implementation not just as a validation of the formal

model, but as the model's raison d'etre. The model, therefore, as well as being a
convenient conceptual structure, should also be expressible as an effective imple-

- 250 -

mentation structure. A computationally intractable model is of no use. (It is easy to
specify such models. For example:

FERMAT
n: integer

3 a, b, c: integer " an = bn + cn

An implementation may also contribute significantly to the success of a design
by an efficient use of temporal and spatial computer resources. However elegant the
formal model, a slow or memory-prodigal implementation will compromise usability.
While a great deal of effort was (successfully) put into designing the algorithms for

the efficient update of the display from the model in Presenter, detailing these is

unfortunately outside the scope of this Thesis.

7.1. Brief Outline

[Took9Oa] gives an informal description of Presenter and Surface Interaction.
There also exists a (unpublished) user/programmer manual for Presenter, which

gives in full detail its functionality and C interface.

In many respects, Presenter is a faithful instantiation of the model specified in Chap-

ter 6. It has a single construct, region. (In the C interface, the only new type that is

used is *region). Regions are created and built into tree structures using operations
that are almost exact counterparts of the formal operations. There is a distinguished

root region per workstation, from which the display is projected. Content consists of

text and graphics. Only leaf regions may have content, and a region can contain

either text or graphics, but not both.

The implementation imposes no limits on the size or position of regions with

respect to each other (except that regions which are more than twice the screen area

temporarily lose their visual content). There is no interference between the
behaviour and visualisation properties of regions. For example an editable text

region can be overlapped, clipped, cut and pasted on the tree structure, made trans-

parent, moved and sized, and remain editable in any condition (so long as it is

visible). As an illustration of this orthogonality, here is an editable text region which

-251-

is OR-transparent, floating (see below), and clips regions underneath. As the user
enters text, the region expands, and more of the underlying region becomes visible:

These capabilities can all be modified dynamically, again with no restrictions.
Thus if this text region were made permeable, then immediately, and with no visual

change, the underlying object could be moved or sized (or edited, if it were itself an

editable region) through the text region above it.

Surface Interaction is provided during drag events. That is, the user may

change the size or position of (sizable or movable) regions by direct manipulation.

The application is only informed at the beginning and end of the mouse drag (i. e. on

button press and release). In addition, textual and graphical editing can be performed

directly by the user as Surface Interaction. The application can elect to be informed of

Carriage Return events on particular text regions. This is useful for constructing dia-

logue fields which the user can edit independently of the application, and then report

to the application by pressing RETURN.

7.2. Differences

7.2.1. Clipping

The major difference between the current implementation of Presenter and the

formal specification in Chapter 6 is in clipping. Clipping in Presenter has almost

equivalent power to that in the formal specification, but setting it up is more awk-

ward. The semantics of the clip attribute in Presenter are that it can only be set on

-252-

leaf regions, and that a region with clip set clips prior siblings on the tree. This can
be illustrated:

logical view surface view

Thus the region with clip set clips the stick figure and the text region. It does

not clip the grey background since this is not a sibling, and it does not clip the

striped region since this is not prior in the ordering of the tree.

This was a design mistake. It is non-intuitive for the programmer and was

extremely difficult to maintain in implementation (although it works). The motivation

for this scheme was to allow clipping regions to act as windows on other regions

such that

" either the window itself could be moved around over the clipped regions,

" or, if the window were also set permeable, underlying regions could be moved

in and out of the clipping boundary.

Originally it was thought that the more intuitive scheme of simply setting clip-

ping on arbitrary regions, and allowing a non-leaf region to clip its descendants,

would not permit the first option above. That is, moving a non-leaf clipping region

would also move its descendants, which is the opposite of the intention. It was not

realised at that time that the (already existing) nogroup attribute, if set on regions

which needed to stay in place, would allow the clipping ancestor to move in exactly

the way required. A visible frame coincident with the clipping boundary could also be

added as a leaf child of the clipping region, which could move with the clip. This

therefore is the way clipping is defined in Chapter 6 (see Section 6.5.2).

- 253 -

IN Text ýQ
Region IM

The clipping scheme in the implementation is less general than that specified
also in that clipping is restricted to the region boundary. Thus there is no implemen-

tation of the arbitrary mask of the specification. Hiding of regions, for example to

create pop-up menus, is effected using a hide attribute. This simply removes the

visual representation of a region from the screen, but does not affect any other prop-

erty of the region. Clearing the hide attribute redisplays the region.

Presenter also provides two other attributes with the same tree scope as its

clip: contain and exclude. A leaf region with either of these set will force prior sib-
lings not to move either inside, or outside, its boundaries.

7.2.2. Application Confirmation of Input

In the UMA architecture an application confirms or modifies user input by

returning the reported input back to the user agent either unchanged or changed.

This is a convenient use of the event notation in CSP. An earlier version of Presen-

ter did exactly this. However, it was found that as in the majority of instances the

input (the selected region) was passed back unchanged, this seemed an unneces-

sary burden on the programmer, and sometimes led to errors of omission.

The latest version instead provides explicit operations by which the currently

selected region or the currently moving or sizing regions can be altered or cancelled.

Thus by default Surface Interaction goes ahead as the user planned, but can be

changed by the application by explicitly changing the targets as a separate operation.

7.3. Additions

Presenter implements also some additions to the formal specification as given,

simply because there was not room to define all its capabilities formally.

7.3.1. Editing

Any leaf region with content can have an editable attribute set. The editing

operations provided by Presenter are bound to the mouse buttons. There are two

overall principles:

- 254 -

" All editing operations should be performed simply using the mouse or key-
board. That is, no menus, icons or other visual prompting is built in (other than
text highlighting). The intention is to minimise any predetermined style bin-
dings at the interface. However, in this design there is nothing to stop an
application interposing some more graphical representation (for example a
scroll bar), and then calling on the Presenter operation itself on behalf of the

user.

" The denotation of the mouse buttons should be (roughly) analogous in the
domains of graphics and text. Thus the first mouse button selects, the second

moves (in text, cuts and pastes), and the third sizes (in text, copies and

pastes).

Text

If the region contains text, then the user will be able to scroll this text (using a

chord of control and a mouse button), select sections of text, enter and delete text to

the left of the selection, and cut or copy and paste text both within that region and to

and from any other editable text region. Text is cut or copied and pasted simply by

clicking the second or third mouse button over a selection, moving to a new location,

and releasing the button. If the button is released over any screen area that is not

editable text, then the cut or copy is deleted. No undo operations are provided.

Text can be in any (fixed width) font available on the system (new fonts can be

loaded by the programmer). Font is determined initially by the region (different

regions can have different basic fonts), but text cut from one region and pasted into

another region retains its original font. Thus regions support mixed fonts. Text

entered dynamically by the user takes its font from the character to its right. In the

current implementation operations are not provided to change the font of a piece of

text once it is set.

If a region is changed in size, either by the user or the application, then the text

it contains is reformatted dynamically. By default, text regions word-wrap (lines are

broken at word boundaries), although there is also an attribute which forces charac-

ter wrapping. If the region becomes too small for its text, then the text runs off at the

base of the region, and can be recovered by scrolling. There are no limitations on the

size of text regions. They can be used to implement full size windows, but also can

- 255 -

be used in single line fields for dialogue boxes and the like. If the region is narrower
or shorter than the font size, then the text disappears.

Finally, another attribute float is provided, which when set on a text region

constrains the region to a size which just contains its text. If the region is in addition

editable, then the region changes size as the user (or the application) inserts or
deletes text. float can be specialised to work either horizontally or vertically, such

that a region might have a fixed width but grow vertically as text is entered, or

conversely a fixed height and grow horizontally.

Graphics

If the region contains graphics, i. e. line segments, then with the editable

attribute set the user can dynamically draw straight lines in the region (using the

first mouse button), and can subsequently pick these lines up and move them (using

the second mouse button). As with text, if the line is moved out of the region, then it

is deleted. In fact it is possible to shave bits off a line by partially moving it out of a

region. However, the orientation of a line cannot be changed once drawn. Applica-

tions also can draw lines in regions, but have no access to these once drawn.

Once lines are drawn in regions then they scale proportionally as regions are

changed in size. If a flip attribute is set, then it is possible to flip the image over

either horizontally or vertically during sizing by dragging a point in the region across

its pivot (flip can be specialised to either of these dimensions).

Bitmaps

As a practical convenience, a leaf region may also contain a bitmap. This may

be loaded in from any source, for example a digitiser or an icon editor. There is no

restriction on the size of the bitmap, but it must be in SUN pixrect format. The region

is automatically scaled to the size of the bitmap upon loading. If the size of the

region is subsequently changed, then the image will either be clipped (if the region is

smaller), or replicated (if the region is larger).

In addition, any leaf region, either text or graphics, can dynamically be convert-

ed to a bitmap, simply by setting a bitmap attribute. A text region, for example, will

then simply be clipped or replicated, rather than reformatted, when its size changes.

A bitmap region can of course be set transparent or permeable.

- 256 -

If a bitmap region is also set editable, then the user may draw pixel-wide free-
hand lines on the region with the first mouse button, and erase narrow or wide bands

of the image with the second or third mouse buttons respectively.

7.3.2. Linking

A powerful capability, which was not in the original design but was included

under user pressure, is linking. On top of the region structure it is possible for the

application to arbitrarily link regions by calling a link primitive, specifying the two

regions to be linked (leaf or non-leaf), and pin points in the space of each region.
Presenter then dynamically creates an empty leaf region whose size and position it

maintains such that its opposing corners are always at the pin points in the two

specified regions. An extra parameter also allows the application to specify whether

the link should be created BELOW, BETWEEN, or ABOVE the two regions in the

tree ordering. For example, a call of

link (A, 0.5,0.8, B, 0.5,0.5, BETWEEN)

on regions A and B, would result in the creation of (invisible) region L:

A

(0.5,0.8)

L -------------- -
(0.5,0.5)

medium state surface presentation

-257-

The application can then insert either more regions, or content, into region L.

For example, it could add a right angled line with the following visual result (L is by

default transparent):

oýo
medium state surface presentation

or to produce a diagonal line with a label the application could paste two new

regions, with appropriate content, into L:

FBý

r7l A
label

medium state surface presentation

- 258 -

There is no limit to the number of links between regions. This stick man, for

example, is constructed with linking regions. Note that since linking regions are in

other respects normal regions, they themselves can be linked to:

Whatever size or position changes are made to the linked regions, the linking

regions and their content or subtrees are maintained by Presenter such that on the

surface the logical connectivity continues to be represented. There is thus no limit to

the manipulability of links:

ýý

Links can model a wide range of connected diagrams, and have proved useful in

software engineering diagrammatic notations, and in graphical presentations of

- 259 -

databases (see Appendix I). Here for example is a database schema from the
Aspect project:

and the same schema rearranged by the user through Surface Interaction:

Once created, the linking structure persists with the region tree. The applica-

tion may even use it as a small networked database, since operations are provided

to query and traverse the links.

7.3.3. Persistence

Since the surface is not dependent on applications, its objects may persist for

longer than the applications which create them. Surface objects may also be created

prior to their use in an application, for example by Presenter's interactive editor Dou-

bleView [Holmes89] (see also Appendix I).

In order to commit surface objects to longer term storage, Presenter provides

operations save and load, which write a tree structure (from any region root) out to

file, and read it back. All aspects of the tree, that is, structure, content, and proper-

-260-

ties, are saved, so that upon loading back the tree and its behaviour are indistin-
guishable from when it was saved.

Of course, when surface objects are save and reloaded, then their internal

addresses, as represented in C *region pointers, will have changed. It is therefore
necessary to associate persistently some name with regions in order to re-identify
them. An operation, namereg(), is provided to name regions with an arbitrary length

character string. Only regions of interest to the application, for example those that
will expect input events, need be named. After loading the tree, the application can
recover the current internal identifier from the name, using an operation getreg().

7.3.4. Hardcopy

Presenter allows any region tree or subtree to be converted into a PostScript

file for printing on a laser printer. The PostScript is generated within Presenter from

its internal representation of the sizes, positions, and content of the regions. Bitmap

regions are converted into PostScript image format, but otherwise regions are drawn

explicitly using the PostScript primitives. A loose mapping is made between the
SUN fonts in Presenter, and the fonts available within PostScript. This can some-
time leads to visible differences between the face or format of text on the screen and

on the hardcopy. Only transparent bitmap regions and some highlighting cannot be
hardcopied successfully, due to PostScript's restrictive opaque paint model.

7.4. Refinements

This section examines details of the implementation that are present in the for-

mal specification, but which have had to be modified or extended for practical or
design reasons.

7.4.1. Presentation

The specification simply defines a presentation function present, which maps

region trees to the display. In practice, considerations of efficiency mean that only

the minimum amount of redrawing should be performed on the screen. Thus when

one region out of many moves, the screen should only be redrawn at that region's

old and new positions.

-261-

In addition, it may be that an application wishes to construct a complex object,
consisting of a number of nested and overlapping regions. If each region were drawn

on the screen as it was created, the result would be unacceptable flicker.

For these reasons, Presenter provides an operation present(), which redraws a

region and its subtree, if any. Thus a programmer should always choose to present

the minimum subtree which covers the changes he has made to the regions, and

should use it after all the current changes he wished to make have been completed.
Presenter always adopts this strategy when managing Surface Interaction.

This very slight consideration is offset by the convenience of present. In order

to move an object around the screen, the application programmer need only change

the position of its region, and then call present on the region. All redrawing, both in

order to remove the object from its old position and create it at the new position, at

whatever visual depth or location on the screen, is handled automatically within Pre-

senter. There are no exceptions to this. Thus the programmer never has to be aware

of the sometimes very complex redrawing procedures, for example for regions that

might be transparent and overlapped by other transparent and clipping regions.

7.4.2. Selection

By design, Presenter maintains a single text selection and a single region

selection orthogonally. That is, the selected text does not have to be in the selected

region. As soon as another region or text is selected, the previous selection is can-

celled. As outlined above, selected text can be cut or copied.

Presenter always searches up the tree from a hit leaf region for the first

selectable region. Selection of non-leaf regions can thus be achieved when leaf

regions are set non-selectable, or by multiple clicking. An editable region always

registers the first click as a selection of its textual or graphical content. A double

click is required to select the editable region itself.

Selectability is also used as a guard on the other operations of Surface Interac-

tion. Thus in order to move a region, it must be both movable and selectable, and a

move request takes effect on the first selectable and movable region up the path from

the hit region, unless a higher region has actually been selected. This scheme allows

- 262 -

composite objects to be moved as a group without first selecting the common ances-
tor region:

movable
selectable

LiD
medium state

I

surface presentation

By acting as a guard on movement or sizing, however, selectability can also

prevent large composite regions, which may need to be moved only exceptionally,
from being moved inadvertently because the user has attempted to move a non-mov-

able component. By placing selectable on lower regions, a move on the higher object
is blocked unless it has first been explicitly selected (by multiple clicking):

movable
selectable

selectable]a selectable

0Qyyun Y. .} o

medium state surface presentation

By making the intermediate regions selectable, but not movable, we block a

move request. That is, we prevent situations where the user attempts to move one

of the smaller objects, but finds he has unintentionally moved the whole environ-

ment. With these attribute settings, the user must explicitly select the higher region

first (by clicking up the tree) before being able to move it.

-263-

7.4.3. Highlighting

A selected region is highlit by default (another attribute turns highlighting off).
A surprising number of application built on top of Presenter have needed to extend

the default highlighting. Doubleview, for example, requires to highlight two objects

at once, one in its view of the medium tree structure, and a corresponding one in its

surface view. Many applications also use highlighting to represent the progress of

an operation. For example, a print option might be chosen from a menu, which is then

highlit. When the operation finishes the highlight is turned off. Presenter therefore

supplies operations by which the region can be highlit or de-highlit by the application.

7.4.4. Grouping and Scaling

Like other attributes mentioned above, the attributes that affect whether a

region changes size or position if an ancestor does have be specialised to have an

effect possibly in one dimension only. In scaling a window composed of a text region

and a separate region for the title bar, for example, we should expect the title bar to

remain the same width as the window as this changes, but to retain its height. Simi-

larly a scroll bar attached to a window conventionally changes height with the

window, but remains a constant width. This can be achieved by setting noscale spe-

cialised to have an effect only horizontally or vertically (in addition, the pivot point of

the noscaling region has to be set on the edge that adjoins the window, to prevent

overlapping or a gap opening as the parent region contracts or expands):

- 264 -

7.5. Deficiencies

This section outlines ways in which Presenter has been found to be deficient,

either because it has not fully or effectively implemented the formal specification, or
because the specification itself is limited.

7.5.1. Text and Graphics

The major deficiency of Presenter as it stands is in its text handling capabili-

ties. While the user can arbitrarily insert, delete, and scroll text, the application

cannot. This means that applications that require to implement some specialised
form of text editor, for example a structure-oriented editor with templates, cannot

easily be catered for.

It is also not possible to embed graphics in text such that the graphics is sub-
ject to formatting constraints, nor is it possible to flow text from one region to

another. Both of these capabilities would be required for document processing.

These issues are taken into account in the alternative design in the next chapter.

The graphics primitives provided in Presenter are deliberately simple. It was

no part of the design goals to provide a full set of linewidths, spline curves etc., but

instead to take these from the available environment. The PostScript primitives for

example would form an adequate set. However, a certain amount of work would be

needed to provide these interactively.

7.5.2. Input Masks

The principle criterion of Surface Interaction, that some input should be handled

autonomously by the user agent within the surface, is only crudely implemented in

Presenter. As mentioned above, Surface Interaction takes place during object drags,

and during most text editing. The only input mask under application control that has

been implemented is in fact the choice to report Carriage Return events. Neverthe-

less, it is easy for applications to ignore input reports which do not concern them,

and very few applications have needed to have drag events reported. One exception

is an application to implement gesture-based diagram editing, and this required a

special version of Presenter (actually a simple update). It is again in the area of text

manipulation that finer control over the reporting of editing events might be beneficial

to specialised applications.

-265-

7.5.3. The User Agent

The critical contribution of the UMA architecture is the user agent, which man-
ages Surface Interaction on behalf of the user. In Presenter, the user agent is bound

into the code which maintains the surface. This is in fact advisable, since there is

only one of each, and the speed of their communication is critical to the usability of
the surface (see Section 4.6.3).

However, Presenter was written before this architecture was clearly formulat-

ed, and although the functionality of the user agent is there, it is not cleanly

modularised. As we have seen, some default stylistic bindings must be built into the

user agent (like mouse button mappings), and so it would be useful to be able to

plug in different user agent modules.

7.5.4. Client-Server Working

In spite of the UMA architecture, Presenter is in fact bound into the application.
Thus only one application is possible at one time, and Presenter strictly exhibits

external, rather than concurrent control (see Section 2.1.2). Nevertheless, the inter-

face between Presenter and the application is simple (the application must provide

one routine, presevent(), to which Presenter passes in an event and the region in

which it occurred), and few applications have found it restrictive.

As a separate project, Presenter has been split off into a separate server pro-

cess [Pollard89]. This caused few, if any, problems. A telling test example was a

stick man who waved his hand under application control. The user was able concur-

rently to pick up and move the hand, and while moving it continued to wave. This

was because commands both from the user agent and the application were being

interleaved in the medium. The satisfying result was that this caused no screen
drawing synchronisation problems, even though no changes were made to the Pre-

senter code (the interprocess communication was implemented by a special

application simply bound in to the standard Presenter).

7.5.5. SunView Dependence

While Presenter runs within a SunView window as a matter of convenience, it

was deliberately implemented to be as independent of this environment as possible.

Thus apart from the initial request for a drawing space from SunView, it only uses

-266-

raster operations, the SunView line drawing primitive, and the SunView fonts. It
does not use any other SunView facilities like text or subwindowing constructs. As

a result, it has recently been fairly successfully ported to the X environment
[Bramley90]. This port necessarily adopted the same strategy as Presenter itself in

SunView. That is, it simply asked X for a drawable and constructed regions out of

raster operations on this. It would not be possible to implement Presenter regions

one-to-one with X windows, simply because of the geometric and visualisation

restrictions of the latter (see Chapter 5).

This port encountered some problems in matching fonts, and in moving bitmap

regions. There was also considerable loss of performance. This was perhaps to be

expected as Presenter provides services at a similar level to X-i. e. `mechanism

rather than policy'.

7.5.6. Memory Limitations

The high manipulation efficiency of Presenter relies on offscreen bitmaps for

each content region. Clearly there will be a limit on these depending on the available

memory. However, even though many applications have been written on Presenter,

some employing hundreds of regions (see Appendix I), memory limitations have not
been a problem (except with applications which themselves use large amounts of

memory).

Presenter implements some memory-saving devices: the bitmaps of regions

which are wholly obscured or wholly outside the screen area are freed, and then

recreated as soon as the regions become visible - there is no noticeable delay in

doing this. Nevertheless, an application domain which might have memory problems

using Presenter is one which uses objects which are very much larger than the

screen, for example large maps or engineering diagrams which the user needs to

window around. It would probably be necessary to break these up into smaller

regions and have the application manage their selective display.

It should be emphasised, however, that this is only an implementation prob-

lem. Logically, regions can be any size and have any content. Nor does the formal

specification of the surface model imply an implementation in terms of persistent

bitmaps. It would equally be possible to regenerate the image from the logical con-

tent each time it needed to be redisplayed. The trade-off is between speed of

manipulation and memory use, and this is a pragmatic issue.

-267-

7.5.7. Manipulation Efficiency

The speed and smoothness with which any Presenter object can be moved

about the screen is often noted. For example, although a rubber box is the default

outline during the moving or sizing of a region, for leaf objects or simple composite

objects it is much more visually effective to move or size the object smoothly by set-

ting the attributes glide or stretch on them. With either mechanism, however,

Presenter interfaces are unusual in that (if the application allows it) any discrete

component can be moved and sized by the user in Surface Interaction. For example,

here is an interactive rearrangement of the default DoubleView surface (compare the

picture in Appendix 1):

FRED

ii

irr

There is, however, a disadvantage to this power in the implementation of Pre-

senter. The designers of some complex objects, for example menus, dialogue boxes,

or windows do not expect their components to be rearranged. The power to do so is

therefore redundant (it can be switched off simply by clearing the movable and siz-

able attributes). Even so, Presenter treats the component regions as separate

objects, and if the whole object needs to be moved or sized, then the default recur-

sive drawing of its tree structure comes into play, such that its components actually

move one at a time. With simple objects this is not noticeable, but in more complex

objects it can be slower and visually diverting.

What is clearly needed is some way to coalesce those groups of regions which

can be thought of as single objects, such that while retaining their logical identity, in

display representation they simply form part of a larger bitmap which contains the

whole composite object. In standard window systems this is in fact the usual

scheme, simply because child objects are constrained to be within the extent of their

- 268 -

parent. These systems therefore lack the manipulability noted above. The problem of
implementing such a scheme here is that the surface is more geometrically general:
child regions may be outside the area of their parent. They therefore, in the general
case, cannot utilise the same bitmap.

7.5.8. Constraints

Very deliberately, Presenter cannot be programmed (see Section 2.4.4). Simi-

larly, the constraints it provides, such as noscale and contain, are specified simply
by using a set of attributes, rather than by declaring explicitly that some relationship
hold. While the existing set of attribute constraints have in fact proved to be surpris-
ingly powerful for generating a wide range of interfaces and diagrammatic notations,
it is always possible to think of a more specific constraint. For example, an applica-

tion may want a region's movement constrained to some diagonal path, rather then

horizontal or vertical.

A possible extension to Presenter, and to the formal specification of the sur-
face, may be to allow the declaration of constraints over the properties of its objects.
However, there are a number of classes of constraint power (see Section 5.2.4), of

varying computability, and the appropriate class to be supplied at the surface is not

obvious. A danger in pursuing this power at the surface is that it becomes over-pow-

ered [Took90b], and it becomes difficult for the programmer to access its simpler
functionality. It seems appropriate to exploit the UMA architecture to allow applica-

tions which wish to impose exotic constraints to do so directly, by taking over

surface management from the user agent.

Nevertheless, some extensions to the constraint set in Presenter seem desir-

able. It would be nice to be able to constrain the aspect ratio of a region to some

constant irrespective of size, and possibly also to impose some maximum and mini-

mum sizes on regions.

7.5.9. Higher Constructs

Higher level constructs, such as windows, menus, scroll bars etc., are not pro-

vided by Presenter (nor in its formal specification), to avoid stylistic or domain

bindings in the surface. However, it is clear that in many cases these are useful, and

relatively general, constructs. An obvious extension to Presenter would be the provi-

- 269 -

sion of a toolkit, along conventional lines, constructed out of regions. Such a toolkit
has in fact been built [Jones89].

However, it is not appropriate for this sort of toolkit to be bound in to the sur-
face, for the reasons above. Nevertheless, there may exist constructs at a higher

level than the region tree which are yet sufficiently general that they could form part

of the surface. These constructs will essentially consist of a structure orthogonal to

the tree, and a set of constraints that are specialised to the structure. Linking is one

example of such a higher level construct (see above). Another, which is not provided
in Presenter, is tables. Tabular arrangements underlie the presentation of many visu-

al structures, for example matrices, dialogue boxes, menus, scroll bars, documents,

and (tiled) windows. The constraints and structures necessary in a tabular construct

are examined informally in Chapter 8.

7.6. Issues

This Chapter concludes with some (slightly) more general issues which arise

out of the design and implementation of Presenter. Issues of wider generality are

examined at the end of Chapter 4 with respect to the UMA architecture.

7.6.1. Empty Leaves

What representation on the surface should empty leaves have? It seems logi-

cal that they should be invisible, on the basis that only content is displayable. Early

versions of Presenter implemented this. However, it is sometimes useful to be able

to select and manipulate a leaf region, even though it has no content. DoubleView,

for example, allows region trees to be constructed top down - the user therefore may

well want to change the size or position of a region before he adds further child

regions or content.

In early versions of DoubleView therefore, it was necessary to create tempo-

rary visible content, manipulate the region, and then delete the content in order to

add further regions. To avoid this, later versions of Presenter made empty leaf

regions visible as empty white (or black) areas, so that they could be selected and

manipulated.

-270-

This is a practical solution, but produces some unwanted side effects. For

example, an application may wish to temporarily remove some subtree of regions
from the screen by cutting the root from its parent. However, if the parent has no oth-
er children, such that after cutting it becomes an (empty) leaf, then the cut regions
will not simply disappear from the screen, but will be replaced by a blank area of the

size of the parent. In most cases this is not wanted.

7.6.2. Access to Text

Providing the application access to text is problematic. An application might

need such access to perform pattern searches through text, followed by subsequent

text replacement. What is required are unique, persistent text identifiers. Simple

character values are clearly not unique, since there is likely to be more than one
instance of a character in a text. Identifying a character by its logical position in a

text sequence is not persistent, since prior characters may be inserted or deleted.

Similarly, identifying a character by physical position in terms of (line number, charac-

ter number) coordinates is not persistent, since the text may be reformatted. Dix

[Dix88a] examines these problems with his notion of `pointer spaces'. The only like-

ly solution is to identify characters by their internal addresses (or some protected

mapping to this from a name space), just as regions are identified.

More problematic is the persistence of format. Should text lines, for example,
be considered objects? This is the case on a vtlOO terminal, which provides opera-

tions to insert and delete lines, and to move the cursor up and down a line. However,

on a surface like Presenter's, in which the user can reformat text arbitrarily simply
by changing the size of its region, and do this independently of the application

through Surface Interaction, lines clearly have little persistence.

7.6.3. Rectangularity

All Presenter regions are rectangular, and aligned with the screen axes. This

restriction is clearly driven by implementation considerations. It would not be insur-

mountable to provide both polygonal regions and rotation (as specified), or even

other types of graphical transformation such as shearing. NeWS, for example, pro-

vides these through its PostScript imaging mechanism. Non-rectangular regions like

boxes with rounded corners can in fact play a large part in giving a distinctive `look

and feel' to interfaces.

-271-

The problems arise in deciding the effects of these transformations on con-
tained text. Should text always be horizontal, or should it rotate with a region?
Should rotated text be editable? This is possible, for example, in MacDraw. If a
region is non-rectangular, should the contained text be formatted to its borders with
the flexibility of, for example, TeX, whilst retaining interactive efficiency? There may

even be some applications, for example advertising graphics, where text should be

subject to the same (possibly non-affine) transformations as the region which con-

tains it. These requirements are more easily stated than implemented!

7.6.4. Dimensionality

The formal model in Chapter 6, and the implementation of Presenter, are two-

dimensional. There is a crude third dimension in the ordering of the tree, which maps

to display layering, such that systems like this are sometimes called 21/2 D. The

objects themselves cannot have depth, and thus one object cannot be interleaved

with another, and groups like the following cannot naturally be represented:

It is a question whether higher dimensionality needs to be provided in systems

which are primarily intended for schematic rather than scenic modelling (see Chapter

1), since one of the motivations for diagrammatic and other schematic representa-

tions is that they abstract away from real world imagery. Nevertheless, the author

has seen a database prototype from the American organisation MCC which provides

three-dimensional schematic database representations through which user can navi-

gate as if he were flying a plane.

Three dimensional objects can also be used simply to provide graphic realism

to essentially two dimensional interfaces. The X toolkit Motif provides pseudo-solid

objects through skillful use of shading, but the author has also seen examples of but-

-272-

ton boxes that rotate in 3D space to reveal further buttons underneath. Obviously

these representations are limited in their interactive efficiency by current hardware,

but it would be unwise to reject the third dimension simply on the basis of these

arguments.

Upgrading the surface to provide three dimensional objects is not simply a mat-

ter of adding another dimension to the specification. Parameters such as viewpoint,

projection plane, lighting, and surface shading have then also to be specified. If the

design of two dimensional interfaces is difficult, then certainly providing a third

dimension will not solve any problems.

7.7. Conclusions

This Chapter has described the implementation of Presenter, a particular model

for Surface Interaction. The description has concentrated on the areas in which Pre-

senter differs from the formal specification. The Chapter attempts to account for

these differences either in terms of faulty design, or implementation constraints. It

highlights those areas where the ideal design is unavoidably compromised by imple-

mentation considerations.

-273-

Chapter 8

Future Work:
An Alternative Model for the Surface

An alternative model for the surface medium has been designed and specified

formally (although not yet implemented). This has been partly in response to per-

ceived deficiencies in the Presenter model (see Chapter 7). However, this new

surface model is not just a fix of Presenter (which has its own domain of use). The

major motivation for this alternative model is to encompass a new paradigm for the

surface and Surface Interaction: the document. The distinguishing feature of the docu-

ment, as here perceived, is to arbitrarily nest graphics and text, such that the top
level structure may be either text or graphics. In a document, that is, both text and

graphics are first class objects. In Presenter, on the other hand, text is a second

class object.

Certainly an application interface in any particular state can be thought of as a
document (it may be hardcopied, for example). A document conversely may be inter-

active: hypertext systems [Conklin87) are beginning to realise this possibility. It

seems highly desirable to be able to present application interfaces with the same

aesthetic considerations that go into the production of (static) documents, as well as

to be able to display documents containing active components which can be directly

manipulated or invoked by the reader.

We here give the basic design requirements for this new model, and describe it

informally. In addition to this fundamental motivation, our design goals attempt to

include a range of capabilities that are both abstract and powerful, and have not been

provided before in user interfaces. Specifically, we wish to capture, in addition to the

fundamental properties of textual and graphical content and geometry:

-274-

" generic ordering. textual objects will occur in some sequence, and (two
dimensional) graphical objects will have some overlapping priority.

" generic composition: composite objects can be constructed out of parts, and

these out of other parts, and so on. A graphical object may be constructed from

smaller subparts which are held together in some geometric relationship, while

a textual object such as a document may be composed of chapters, sections,

and paragraphs. This requires at least a tree structure on objects.

" replication: essentially the same object can be presented in different loca-

tions, such that modifying one instance modifies all instances. This requires a

hierarchical structure on objects.

" inheritance: rendering or visualisation properties may be inherited from other

objects, and these objects may or may not form part of the composite structure.

In this way, inherited properties may be modified independently of the struc-

ture of the objects.

" nesting: text may be framed by graphical areas (as in a window), or graphics

may be embedded in text (as in an illustration). The nesting should be

unbounded, since diagrams in text may contain labels or further text, and so on.

" persistence: we do not wish the structure simply to be an execution trace, as
in graphical languages like PHIGS and PostScript, but to have a permanent

existence as a single linked entity which can be incrementally updated, copied,

or saved. Persistence also means that the same structure may be projected

through a number of different roots simultaneously. Since the nodes are persis-

tently identifiable, further structures, for example a hypertext network, may be

supported on top.

A motivation for the new formal specification is to reduce the model to the mini-

mum number of constructs capable of satisfying the above requirements. The surface

model presented here has a single generic hierarchical structure, which is instantiat-

ed with only two node types, covering text and graphics. It is difficult to see how this

could be reduced further.

-275-

8.1. An Informal Description of the Model.

All surface objects have a geometry. That is, they have a shape, and there

exist operations on them which result in certain spatial transformations. On this
basis, two types of surface geometry can be distinguished:

" Cartesian geometry, which has shapes such as lines and circles, and opera-

tions such as translation and rotation

" textual geometry, which has characters as shapes, and operations such as
insertion and deletion.

It is, however, possible for a character to be manipulated graphically, as well

as for a set of line segments to form a character or a diagram embedded in text and

so be manipulated textually. The distinction is thus between geometries rather than

objects: objects are textual or graphical depending on the geometry applied.

The model therefore consists of two fundamental constructs, REGION and

BLOCK. REGIONs provide a graphical, or Cartesian, coordinate space; BLOCKs pro-

vide a textual coordinate space. The model also contains one common structure, the

hierarchy. A hierarchy is a directed, acyclic graph in which nodes may have more

than one parent. Both REGIONs and BLOCKs can be built up into hierarchies.

REGION hierarchies model graphics, BLOCK hierarchies model text. In order to do

this, these abstract structures are loaded with content and properties, either graphi-

cal or textual. In addition, in order to provide the required nesting, BLOCK

hierarchies may be framed by REGIONs, and REGION hierarchies may be embed-
ded in BLOCKs.

Only leaf nodes in the hierarchies may have visible content. Leaf REGIONs

may contain graphical images, leaf BLOCKs may contain characters. In this way it is

possible to manipulate any object independently of any other, while at the same time

it is possible to manipulate groups of objects by manipulating interior nodes in the

hierarchy.

Graphical properties consist primarily of geometry, that is, the size and posi-

tion of each node with respect to any of its parents, and attributes which affect the

visualisation of the content of the leaf nodes. Visualisation attributes, such as trans-

parency and inversion, are inherited down the hierarchy, with lower settings

-276-

overriding those from above. Textual properties consist of rendering attributes which
are similarly inheritable, and affect the pointsize, font, face etc. of characters.

In order to present these loaded structures on the display surface, the hierar-

chies are projected from some root. In the projections, it is the sequence of paths
from the root to the leaves which are important in generating discrete surface
images. Attributes may be inherited not only down the projection paths, but also
down any intersecting paths from a group of inheritance roots. The net result is a set

of visible surface objects. A typical REGION structure and its projection can be illus-

trated:

projection inheritance
root root

`invert'

structure

and so can a similar BLOCK structure:

projection
root
0 0 `bold'

surface projection

ABB

structure

inheritance
root

-277-

1-41

surface projection

AB

These examples illustrate:

" ordering: the logical sequence of paths maps either to graphical overlapping or

to textual sequencing. Clearly the textual example is trivial, but it is simply a

matter of expanding the structure in width and depth to model a large document

with a complex structure (ignoring implementation limitations).

" composition: the graphical `window' illustrated here is composed of a back-

ground rectangle and two images of a man; similarly, the characters `ABB'

form a group. Modifications to the properties of ancestor nodes affect all

descendant leaf children, which strengthens the user's perception of these as a

group. For example, if a common ancestor is moved, then all surface images

related to that ancestor move as a group.

" replication: the image of the man, and the character `B' are shared between

two different paths. In the case of the graphics, the two replicated men are at

different sizes and positions determined by REGIONs which are not common in

the two paths. In the case of the text, the replicated `B's are distinct simply

through the ordering of the paths. Clearly, if the logical image of the man, or the

logical `B', were changed, then both replications would change on the surface.

" inheritance: the attribute `invert', and the attribute `bold', are inherited into

one of the paths of the replicated graphics or text. In general, by exploiting the

hierarchical structure, attributes can be inherited independently of the projec-

tion structure, so that, for example, a number of structurally dispersed objects
in the projection (for example, all chapter titles in a document) could inherit the

same characteristics, and this could be modified in one operation.

" persistence: the structure can be projected from different nodes simultaneous-

ly. For example, a document can have a global projection, displaying all the

text, but there may also be a `contents page' projection which is simply linked

in to the chapter headings, or to the subtitles of figures. These could then be

projected onto separated pages.

" nesting: the model also allows text BLOCKS to be framed in a sequence of

graphical REGIONs, and REGIONs to be embedded in BLOCKs, to any depth.

However, no cycles must be formed. This is capable of modelling a very wide

-278-

class of document and application interface layouts. We can extend the illustra-

tion to show an example of this mechanism:

projection
root

inheritance
root

`invert'

a
; ý.

ieritance
root

`bold'

ABB

8.1.1. Framing

structure surface projection

The framing of BLOCKs of TEXT in REGIONs is extended by specifying an

order to the framing REGIONs. Using this structure it will be possible to model the

-279-

AB

presentation of a large BLOCK of text over a number of REGIONs, such that as text

overflows from one, it runs on into the next:

This framed
text, as it is for- not correspond to the fram-
matted, over- ing sequence. If the text is
flows from one too long for the framing
REGION to sequence, it will simply over-

the next REGION
in the framing
sequence. Note
that the geometric
arrangement of the
REGIONs need

In this way, pages, and areas of text on pages, can be presented. The framing

order is ideally orthogonal to the ordering of the REGIONs on their hierarchy (as in

the example).

8.1.2. Embedding

The model allows graphics in the form of REGION hierarchies to be embedded

in BLOCKs of text. In this way we indicate that textual rather than Cartesian geome-

-280-

try applies to these graphical objects, so that as the text flows under formatting,

they maintain their position in the text sequence:

This text has a
REGION embedded
in it:

4

This holds the
IMAGE of an illustra-
tion.

8.1.3. Multiple Inheritance

This text has a
REGION embedded
in it. If more text is
inserted above, the
IMAGE of the
REGION will move
down:

This holds the

Presenter provides a form of single inheritance (although we have been careful

to call this propagation in the formal specification). Single inheritance has two major

limitations:

" The scope of the inheritance is tied to the structure of the object. For exam-

ple, if we used a tree structure to model a document, with interior NODEs

representing chapters, sections, paragraphs etc., then it would only be possible

to set rendering attributes on elements of this structure. If we wished to model

the highlighting of arbitrary selections of the document by using attributes (and

-281-

why not?), then in many cases we would have to make multiple attribute set-
tings to get the effect of a single highlight. For example:

The filled squares represent the setting of a highlighting attribute, and show the min-
imum number of settings that could made to highlight this section of text.

" It is not possible to abstract inheritance from the structure. That is, it is not

possible to bring together similar attribute settings scattered through the

structure, in order, for example, to perform global editing on them:

a bit of text

In this example the filled squares represent the setting of a bold attribute. In order to

remove the bold from bit and text, two separate modifications to the structure must

be performed.

- 282 -

a bi -xt

We can exploit the hierarchical structure of the new model to remove both of
these limitations, so long as we allow NODEs to inherit attributes along more than
one path. This enables us to build structures like the following:

In this way, arbitrary sections of the leaf sequence can inherit from a single
attribute setting.

a bit of text

In this way, the scattered emboldening can be modified from a single NODE.

Note that these extra arcs do not have any effect on the projection from the

original root. We call the extra NODEs inheritance roots. In the general case, there

may be many inheritance roots for any one projection root. We call a projection

through a particular group of inheritance roots a presentation of the hierarchy. It is

important to note that there is no difference between projection roots and inheritance

roots, except that, in a particular presentation of the hierarchy, we simply choose to

project via one NODE and inherit extra attributes multiply from the pathseqs of some

- 283 -

a bi -xt

other NODEs. Another presentation of the same hierarchy could just as easily
reverse these interpretations.

Clearly, there may be conflicts if opposing attribute settings are inherited down
different paths into a single projection path. We therefore prioritise the inheritance

paths by sequencing them. That is, a particular presentation of the hierarchy con-

sists of a projection root, and a sequence of inheritance roots. (in the formal

specification we conveniently represent a presentation as a single sequence, in

which the projection root forms the head). Inheritance later in the sequence has pri-

ority.

8.1.4. Constraints

Constraints have proved powerful in Presenter. The new model proposes some

new graphical constraints. The children of a REGION with:

" contain set are all contained within the extent of the REGION.

" tile set are tiled in the extent of the REGION.

" exclude set are excluded from each other.

" align set to row are aligned in a row (along their pivots).

" align set to column are aligned in a column (along their pivots).

- 284 -

These constraints can be illustrated (the dotted square is the extent of the par-
ent REGION):

-1

1

1;

--------------- contain

..................

align = row

Note (semi-formally) that:

------------- ------

F-I
ö

exclude

Cý

align = column

" -, (containment = exclusion) (contained REGIONs may overlap)

" -, (exclusion containment) (excluded REGIONs may extend beyond the

parent)

" tiling (containment A exclusion) (but not the reverse implication)

" alignment exclusion

" -, (alignment containment)

8.1.5. Tables

Chapter 7 noted that Presenter was deficient in higher constructs, with the

exception of its linking facilities. We briefly give a design for a tabling construct in

the new model. Tabling is a graphical construct, although of course tables may con-

tain framed text. As noted in Chapter 7, a higher construct requires both an

orthogonal structure, and a set of constraints on its objects.

tile

-285-

We imagine (there is no implementation) tables to be established by setting a

table attribute on a REGION. The table attribute may take two values: row major

(rowmaj) and column major (colmaj). Tabular presentation of REGIONs necessi-

tates a structure consisting of two-level subhierarchies:

table

= rowmaj

ooooý

colmaj

Depending on the value of the table attribute, such hierarchies are presented

either with the first level subdivided into columns and the second level into rows

(row major), or vice versa (column major). The table structure itself may be any-

where in the hierarchy. That is, the grandchildren may themselves contain further

REGIONs, and may even be tabled themselves.

The major structural constraint is that the numbers of grandchildren must be

equal. Without this, the grandchildren would not be able to possess the dual

row/column membership which is the essence of a table. The geometric constraints

are that, in a row major table, the children of the tabled REGION must be in a column

and each of the sequences of grandchildren must be in a row. In addition, all the ith

grandchildren must be in a column. A column major table has a similar definition.

Note that this definition does not say anything about tiling or containment.

That is, semi-formally

" --, (tabling containment)

", (tabling tiling)

- 286 -

There are equally no constraints on widths in rows or heights in columns.

Tables may therefore look like any of these with respect to their parent
REGION:

ooo

There are clearly opportunities here for constraint conflict, for example if a par-

ent and child are both set to be row major tables, or if a grandchild is part of two

different tables via dual ancestry on the hierarchy:

zj

While tabling appears to be a powerful and useful construct, it is not clear how

many special cases like these might exist, especially under user manipulation in Sur-

face Interaction. This will affect how readily tabling can be incorporated into the

hierarchical structure

8.2. Conclusions

This Chapter has described informally a new, unimplemented model for the sur-

face which uses the notion of a document as the motivating paradigm. Documents

can nest text and graphics. When installed within a UMA architecture, this docu-

ment model for the surface can be used to present a very wide range of interfaces,

from desktop publishing to arcade games.

-287-

table =
rowmaj

table = table =
rowmaj colmaj

Clearly, while the model is capable of modelling a complex interrelated struc-
ture, it is just as possible to use these features sparingly, or not at all, in any
particular document or application. The model may easily be restricted to text or

graphics only, to a tree structure rather than a hierarchy, or to a single level mod-

elling a single sequence of text or graphics. The power of the model is that the more

complex features do not require any extra constructs.

- 288 -

Chapter 9

Conclusions

9.1. The Thesis of Surface Interaction

This Thesis presents an alternative architecture and models for the separation

of interface and application. The motivation has been twofold:

" Separation, in its full sense of both abstraction and late binding, allows

design, programming and computation costs to be factored from applications.

This improves productivity in the construction and running of applications and

their interactive interfaces. Separation also allows some measure of applica-

tion-independent user control over the interface at run time. This may improve

usability. It at least allows interactive design of the interface, and brings the

roles of user and interface designer closer.

" Separation has conventionally concentrated on abstracting either dialogue or
devices from the application. We have tried to show (Chapters 2 and 3) that

dialogue abstraction (in linguistic architectures) has not been as successful as

hoped, because dialogue must be bound early to the functionality it drives. On

the other hand, device abstraction in the newer agent architectures, object-ori-

ented or not, typically binds presentation early to application functionality by

specialising generic interface tools with application semantics, and thus also is

not optimally separable.

The Thesis therefore attempts an alternative separation based on the abstrac-

tion not of the form of interaction (dialogue syntax), nor of the devices of interaction,

but simply of the medium of interaction. We have shown that:

-289-

" It is possible to abstract the medium, since we have given a formal model of

an Object whose encapsulated state expresses generic textual and graphical

structure and content. This is generated entirely by well defined operations

provided externally, while the internal representations and implementation, in

particular the presentation mapping to the display, remain hidden.

" It is possible to separate the medium, since the Object state can be persis-

tent, and a dedicated user agent can be constructed to invoke medium

operations on behalf of the user, independently of the application. This also pre-

serves directness at the surface, since the objects of the medium can be the

targets not only of output application manipulation, but also, via the pick func-

tion, of input user manipulation.

The combination of medium and user agent is called a surface. The UMA archi-

tecture defines, without placing any constraints on style or semantics, the possible

communications between the user and the application via the surface. The UMA

architecture is capable of supporting either fully application-determined objects at

the surface (as is usually the case in window-managed environments) or allowing a

degree of user-determination of surface objects during Surface Interaction.

Surface Interaction is the fullest exploitation of the benefits of such an architec-

ture. In Surface Interaction, not only is the surface medium separated from the

application as a data abstraction, but also surface control, as managed by the user

agent, is separated as a control abstraction. The control abstraction of Surface Inter-

action extends the traces of the raw application functionality. That is, under Surface

Interaction, the user is able to directly manipulate the surface objects without neces-

sarily involving the application. This is conceptually possible since we have shown

(in Chapter 4) that there may exist surface operations whose invocation is entirely

independent of application semantics. In contrast, the control abstraction provided by

dialogue management in UIMSs seeks to restrict the traces of application functional-

ity. We have shown (in Chapter 3) that this is incompatible with full separation.

Surface Interaction is effective as a user interface service because applications

are thereby relieved of much of the fine grain of surface control, without losing

expressive power over the surface. This is because an application can either rely on

Surface Interaction to allow the user to manipulate the surface objects (possibly

under application-specified constraints), or it can capture input events and manage

the (deep) interaction itself by sending commands to the surface.

-290-

Surface Interaction thus factors a significant portion of the task of providing
highly interactive interfaces, as well as allowing the user and the interface designer

a great deal of expressive control over the appearance of the surface. In addition,
Surface Interaction provides the interface designer with user-level objects, rather
than with constructive screen operations like RasterOp. This forces the interface

designer to consider end-user rather than device capabilities.

The implementation of the Surface Interaction system Presenter, and the range
of applications which it has supported (see Appendix I), demonstrate that Surface
Interaction is practically, as well as theoretically, possible.

9.1.1. Surface Models

The degree to which the separation of Surface from deep Interaction is actually

of benefit to application writers and users is critically dependent on the quality of the

surface model. A command-line editor, for example, implements a simple textual sur-
face in this definition, but it clearly provides little support for anything other than
batch-oriented applications (whose interaction is limited to the single invocation of

their command).

At the very least, a general surface model should integrate graphics and text
[Sproull83 p. 146]. The Thesis has examined in detail the surface models provided by

window management, graphics standards, and text standards. It proposes a docu-

ment model as the most powerful and general surface model.

9.2. Contributions of the Thesis

The major contributions of the Thesis are:

" To recognise that separation of interface and application is fundamental to

providing economy with quality in the production of applications, and to recog-

nise the importance of both abstraction and late binding in this separation.

" To recognise the importance of directness in manipulable interfaces, and to

see as the essential feature of directness the use of the same surface object for

both output and input.

-291-

" To categorise existing interface systems in terms of dialogue and device
abstractions, and to show precisely the limitations of these as architectures for

user interface separation.

" To show the possibility of an alternative separation of the interface medium
by modelling this not just as a view projection from application state, but as a
semantic domain in its own right.

" To give the user direct control over the medium through a dedicated user
agent, thus forming a surface.

" To show the limitations of conventional window management as a model for

the surface.

" To propose a new data abstraction (model) for the surface which integrates

document and interface presentation without stylistic bias, and which takes

account of current requirements and standards in text and graphics.

" To propose an architecture (UMA) for separating the surface as an Object

with its own state and operations, and for allowing both the user (via the user
agent) and the application direct access to this surface.

" To recognise the possibility and usefulness of Surface Interaction in not only
enabling directness, but in factoring the management of direct manipulation
interfaces from applications.

Although UMA is a 3-component architecture, it is quite different from the
MVC or Seeheim architectures (see Chapter 2). These, and all other 3-component

architectures that the author is aware of, tend to reduce to a linguistic model of lexi-

cal (presentation), syntactic (dialogue or control), and semantic (application)

components. In contrast, the UMA architecture partitions the semantics of applica-

tions into surface and deep components. That is, aspects of both control and state

are split between the application and the surface. At the same time there is no

explicit dialogue component: the behaviour of the user agent (see Chapter 4) is inde-

pendent of application functionality and does not change.

The UMA architecture also differs from 3-component architectures which are
intended to be used recursively as device abstractions (for example PAC), in that

the surface is integrated into a single component. Since all these architectures are

- 292 -

typically bound in with their applications (via libraries or classes), they cannot pro-
vide the persistence and application independence of Surface Interaction.

The UMA architecture is closer to the models of [Ciccarelli85] and
[Scofield85], in that these propose separate presentation and application databases,

and have no explicit dialogue component. However, in both these architectures there
is a close mapping between the presentation and application structures, which is

maintained by an editing component. This component must therefore know about
both the presentation and application data types, and these are clearly bound early
here. The UMA architecture, on the other hand, assumes nothing about the applica-
tion state or data types, and only communicates with the application using messages,

which are open to any application interpretation.

The UMA architecture also differs from more abstract models of interaction

such as PIE [Dix88a], which see interaction as a function between sequences of
input and semantic effects. These abstract models allow properties such as pre-
dictability or observability to be expressed over dialogue. In contrast, UMA is less

expressive but more pragmatic, taking account of separation between a number of

applications and the interface, and the need for directness.

There are, however, grounds for claiming that the UMA architecture is equally

generally applicable. That is, it can form a reference model against which the archi-
tectures of all interactive systems can be evaluated. This is based on the

observation that interactive systems consist of users, a task semantics, and some

medium of communication. For example, the UMA architecture could support a lin-

guistic division if the user agent were expanded to include a dialogue interpreter, and

the surface were restricted to a presentation or view mapping. We do not explore

this further.

9.3. Limits of Surface Interaction

It is not at all the case that Surface Interaction guarantees good user inter-

faces. It is just as possible to make a bad interface (in terms of usability etc.) with
Surface Interaction as a good one. However, Surface Interaction reduces consider-

ably the turnaround time for iterative design of interactive interfaces, and so reduces

the cost of achieving a good interface.

- 293 -

One of the central problems of interface design is that of indicating to the user
the potential and actual effects of his actions, or, in other words, providing pre-
dictability and feedback. This necessitates a mapping between surface and deep
interaction. Thus not all interface design issues can be encapsulated in the surface.

There is also an unavoidable trade-off between input device independence and
semantic freedom. That is, although we wish to minimise semantic seepage from the

application into the surface by passing (some subsequence of) input events (and

their picked selections) raw to the application, this binds the application to a particu-
lar input device configuration. On the other hand, abstracting a common input

language from the possible range of input devices inevitably involves the use, even

at the low level attempted here, of logical devices which encapsulate their own state

and (possibly) output. This reduces the application designer's expressive freedom.

However, in contrast to the variety of devices addressed by early mainstream graph-
ics, modern workstations are relatively standardised in their input devices. Even

here, though, there are variations which cannot be overlooked, for example in the

number of mouse buttons.

Surface Interaction is strictly an enabling platform upon which interfaces can be

built. It thus sits most nearly at the level of current base window management sys-

tems in that it provides a framework for filtering and routing input and constructs for

output. However, its models for both input and output are more integrated and gener-

al.

Surface Interaction does not presuppose any top-level interface, such as a

desktop. Clearly such interfaces have to be built in order to use Surface Interaction

to front an operating system. In addition, Surface Interaction does not exclude the
interposition of Toolkit or UIMS layers between the surface and the application. In

practice, however, the ease with which the implemented system Presenter has been

used directly by many applications supports the claim that Surface Interaction is in

itself an effective factoring of the application task.

9.4. Postlude

The notion of Surface Interaction has been approached by a few authors. Wills

[Wills87b p. 10] uses the terms surface and deep, but implies a continuum of func-

tionality. Bennett sees the user interface as "a surface through which data and

-294-

control is passed back and forth between computer and user" [Bennett87 p. 102].
Draper notes that input and output is "communication via a shared medium"
[Draper86].

The emphasis in this Thesis is on the surface as a basis for separating inter-
face and applications. Lantz [Lantz84 p. 29] recognises the usefulness of 'high-level

short-circuiting' between input and output (that is, providing a control abstraction at
the surface). He also notes the consequent need for the manager to be supplied with
high-level information about the model to be displayed, rather than just an image of
the model. However, he does not distinguish clearly between surface objects and

model objects.

The conclusions of the 1982 UIMS conference [Thomas83 p. 24] also places
high-level linkage ('image modification with application concurrence') at the head of
its list of UIMS capabilities, but is similarly vague about the characteristics of sur-
face objects. In the 1987 UIMS conference, Lantz et al proposed a model for the
`Workstation Agent' which was free of application semantics [Lantz87b p. 89] and

retained a persistent representation for its objects [Lantz87b p. 91]. However, again

no precise details for the surface objects were given, and the representations sug-

gested were procedural (segmented or structured display files) rather than
declarative.

Perhaps the last word should go to Sutherland, who thought that

one of the largest untapped fields for application of Sketchpad
is as an input program for other computation programs.

[Sutherland63 p. 343]

Sutherland perceived Sketchpad, that is, as a medium for Surface Interaction.

-295-

Appendix I

Presenter Applications

We here give a brief illustration of the range of applications which have already
been written to Presenter, and the range of styles in which they have been imple-

mented. Although Surface Interaction does not preclude UIMS or Toolkit layers

between the surface and the application, in practice Presenter has tended to be used
directly by applications because of the ease with which interfaces can be prototyped

and fine tuned. These applications have covered a broad range of disciplines.

An important application has been Presenter's interactive interface editor Dou-

bleView [Holmes89]. Here is a typical surface during the editing of Fred (a linking

region is highlit):

The left hand view shows the logical region structure, while the right shows

the user's view. The component regions can be accessed through either representa-

tion. The bottom right box gives the attribute state for the selected region, while the

left box invokes Presenter operations. Each of the distinguishable objects here,

- 296 -

including each node on the tree, are separate regions. To illustrate the manipulability
of Presenter interfaces, compare this configuration of the surface with the one in Sec-

tion 7.5.7, which was derived from it simply by direct manipulation of the objects.

The following are a selection of further application interfaces created on Presen-

ter:

" An Ada debugger [Cobbett89]:

"A UNIX file manipulation system [Davies891:

-297-

" An interactive database management system [Da1y89]:

This is a second screen from the same application:

"A software engineering diagramming application:

- 298 -

" Another software engineering diagramming application:

" An Interactive conferencing system 1McCarthy90]:

" An Ada program distribution tool [Hutcheon90I:

-299-

; ':

"A visual Shell [Stoddart90]:

O0a: i[

tb tesq ' [ro I ps it

tat /usr/roper/presdews/de. os

11 ýrrý ýn "! Ixý.
ý

ýýli N7rru
ý1ý"" "ý ý".

tiýý M

M1 wlý ýýýrý .r Yý rý. b ýn Y

" Another visual Shell [Chapman90]:

Fow.

Cr srev_7

Exil

11-7-1 go

no
bp w [e

M

ýnJ

C

S

"A tutorial system [Fisher9O]:

0

Fl

-300-

"A direct manipulation image processing application {Smith90]:

Presenter has also provided interfaces for a Mascot 3 Paintbox [Whiteley88],

and a CORE requirements method workstation [BAe88]. Current projects at York

are using Presenter as the front end for a Prolog graphics database, and for image

processing applications. A project in Hull is using Presenter as the interface to the

Lisp-based object-oriented system Loops, in order to prototype interfaces to photo-

copiers.

-301-

Appendix II

Generic Functions

We define two generic functions used in Chapter 6.

First, insert inserts an element into a sequence of elements, after a specified

element. If after is the special value I, then the new element is prepended to the
sequence:

[xl
insert: seq X -4 X ---) X ---) seq X

V s, s1, s2: segX; after, i: XIs=s1^s2"

after = last sl r* insert is after = sl ^ <i> ^ s2

after = 14* insert is after = <i> ^s

Secondly, remove removes an element from a sequence, and returns the short-

ened sequence. We define this recursively:

Ix]
remove: seq X -ý X --) seq X

remove <> r= <>
remove (x: xs) r= xs if r=x

remove (x: xs) r =x ^ remove xs r otherwise

- 302 -

Appendix III

Glossary

The following is a summary of those operations of the Z mathematical lan-

guage, and others, which are used in this Thesis. The Z schema language is

presented in Chapter 3.

Sets and Types

SuT (S n T) the union (intersection) of the sets S and T.

U (S, TI (() (S, T}) the distributed union (intersection) of the set

of sets IS, Ti, i. e the union (intersection) of

all their elements.

S C- T the set S is a subset of the set T.

ST the set S is a proper subset of the set T,

i. e. some elements of T are not in S.

sESs is an element, or member, of the set S.

PS the powerset of the set S, i. e. the set of all

subsets of S.

#S the cardinality of the set S, i. e. the number of

elements in S.

Ift the set of all real numbers, e. g. it ER

the set of all natural numbers, i. e. 10,1,2, ... J.

- 303 -

N+ the set of all strictly positive natural numbers,
i. e. (1,2,3,

...
}.

m .. n the set of natural numbers between and
including m and n.

0 the empty set.

s: Sa type declaration -s is a variable of type S,

i. e. s can take on any value in the set S.

T:: = cl I ... I cn I tj «Tl» I
...

I tm «Tm»

a free type definition. The cl are constants,

the tj are tags, or constructors, and the T1 are

type expressions. The tags serve to

distinguish different values which may be

constructed from the same Tbs. The type

definition may consist of zero or more

constants and tagged types, with the

restriction that they must all be disjoint.

The Tos may contain T, so that the definition

can be recursive, e. g. binary integer trees:

T:: =leaf «[%b> I branch «Tx T»

(declaration I predicate " term) set comprehension, e. g. {x: N) x<4" X2)
(the set of squares of x where x is a natural

number less than 4). If term is the same as
declaration, then term can be omitted, e. g.

(x: DTI x< 4) (the set of natural numbers
less than 4).

Pairs and Tuples

(s, t) an ordered pair

- 304 -

S I-> ta single mapping (also called maplet)
between s and t.

sHt is exactly the same as (s, t).

SXT the Cartesian (or cross) product of the sets S

and T, i. e. the set of all ordered pairs such

that the first element of the pair is a member

of S and the second is a member of T, i. e.
(s: S; t: T T. (s, W.

Tl x T2x
... x Tn the set of n-tuples whose components have

the types TI, T2,
...

T., in that order.

Relations and Functions

SHT the set of all relations whose source is the

set S and whose target is the set T.

SHT=P(SxT)

sRt the relation R holds between s and t, i. e.

sRtc* (s, t)E R

R4S1 the image of the set S through the relation R.

R 4S)= (t: TI (2s: S"sRt)).

Q9* R the forward composition of the relations

Q and R.

Q$ R=((u, w)I (BvsuQvnvRw)).

R-1 the inverse of the relation R.

sRtatR-'s

id [S] the identity relation on the set S.

id [S] = {s: S0 (s, . r)}

dom R the domain of relation R, i. e. the set of first

components of all the pairs in R.

dom R= ((s, t): R" s)

- 305 -

ran R the range of relation R, i. e the set of second

components of all the pairs in R.

ran R= ((s, t): R" t}

T the set of partial functions from the set S to

the set T.

S -H Tc; S -* T.

S -H T={R. SHTIR -I $ Rý-. idIT/J

S -- *T the set of total functions from the set S to

the set T, i. e. in which the domain of the

function is the same as its source.

S--ýT=(f. 'S4*TIdomf=S)

S }I> T the set of partial injections from the set S to

the set T, i. e. in which each value in the

domain maps to a different value in the range.

S>+* TcS -T

Vf: S>++T" n{s: s"%f(s)}} =0

Af"1 cT >4 S

S <R domain restriction: restrict relation R to

those mappings whose first elements are in

the set S.

s(S'R)tt*sRtnse S

SER domain subtraction: subtract all mappings

from the relation R whose first elements are

in the set S.

s(SER)tt=>sRtAS S

R* transitive closure of relation R.

R*=U{n: ýT"R'}

non-reflexive transitive closure of relation R.

R+=U(n: N'-R1)

-306-

x a function abstraction, e. g. the square

function is Xx " x2

f (a), fa application of function f to argument(s) a.

Brackets are omitted where the sense is

clear, or where a may itself be a function.

f ®g override function f with function g, i. e.

the resultant function has all the mappings in

g, plus any mappings in f whose domain is

not defined in g.

f$g=gu((domg)<. f)

Sequences

seq T the set of all sequences of elements of type T.

Sequences are thought of as functions from

initial segments of the positive natural

numbers to elements, i. e.

seq T= {f. - NI -H T; n: ff' +" dom f=I.. n}

iseq T the set of all injective sequence of type T, i. e.

those whose elements are not repeated.

iseq T= {f. ' N+> 4 T; n: N+ " dom f=I.. n)

e: es a general sequence template for use in

pattern matching, i. e. a sequence is an

element e at the head of a sequence of

elements es.

<> the empty sequence.

S^T sequence S concatentated with sequence T,

e. g. <a, b> ' <c, d> = <a, b, c, d>

head (S) returns the first element in sequence S, i. e.

head (S) = S(1).

head (e: es) = e.

-307-

tail (S) returns sequence S less its head, i. e.

tail (S)=Xn: 1.. #S-1 "S(n+ 1)

tail(e: es) = es

last (S) returns the last element in sequence S, i. e.
last (S) = S(#S)

front (S) returns sequence S less its last element, i. e.

front (S) = {#S} 6S

Sin TS is a contiguous subsequence of T, e. g.

<b, c> in <a, b, c, d>

Processes (CSP)

P=e-QP is a process which engages in event e (the

guard) followed by the events of process Q.

The definition may be recursive, e. g.

P=e -4 P defines a process P which

engages in an infinite sequence of events e.

c! v an output event consisting of a

communication of value v on channel c.

c? v an input event consisting of a communication

of value v on channel c.

(XP the alphabet of process P, i. e. the set of

all events in which it is able to engage.

traces (P) the set of sequences of events in which P can

engage.

P sat S process P satisfies specification S, i. e.

V tr " tr E traces(P) S

P= (e -QIg -+ R) P is a (deterministic) process which engages

either in the event e followed by the events

of Q, or the (different) event g followed by the

events in R. The choice between these two

-308-

courses of action is determined by what

events are offered in P's environment. If both

events e and g are offered simultaneously,

then the choice is arbitrary. P cannot refuse

to engage in any event that is offered and

that it is ready to engage in.

P= (e -* Q) n (g -* R) P is a non-deterministic process which will

engage either in the event e followed by the

events of Q, or the event g followed by the

events in R. The choice between these two

courses of action is determined by the

process itself, that is, it can refuse to engage

in an offered event it is ready to engage in.

µ X: A. F (X) process abstraction: X is a process with

alphabet A, such that X= F(X), where F

returns some guarded process expression
involving X.

P= Q II R process P is defined as process Q in parallel

with process R. P can engage in any events

of Q that are not in the alphabet of R, and in

any events of R that are not in the alphabet

of Q, but events in the alphabets of both Q

and R require the simultaneous participation

of both Q and R. This is the mechanism for

process communication.

Metasymbols

I== C an abbreviation definition, i. e. identifier /

is bound to constant expression C. I is global

(its scope is the rest of the specification

document).

1:: =Ta free type definition, i. e. identifier I is bound

to type T (see above).

- 309 -

References

Abowd89 G. Abowd, J. Bowen, A. Dix, M. Harrison, R. Took, User Interface
Languages: a survey of existing methods, Oxford University Pro-

gramming Research Group, Tech. Rep. No. PRG-TR-5-89, May
1989.

Abowd90 G. Abowd, Agents: Communicating Interactive Processes, in Proc.
Interact `90 - Human-Computer Interaction, August 1990.

Achugbue8l J. O. Achugbue, On the Line Breaking Problem in Text Formatting,
ACM SIGPLAN Notices, 16(6), pp. 117-122, June 1981.

Acquah82 J. Acquah, J. Foley, J. Sibert, P. Wenner, A Conceptual Model of
Raster Graphics Systems, ACM Computer Graphics, 16(3), pp. 321-
328, July 1982.

Adobe87 Adobe Systems Inc., PostScript Language Reference Manual, Addi-

son-Wesley, 1987.

Agha85 G. Agha, C. Hewitt, Concurrent Programming Using Actors:
Exploiting Large-Scale Parallelism, The Artificial Intelligence Labo-

ratory, MIT, A. I. Memo No. 865, October 1985.

Agha86 G. A. Agha, Actors, MIT Press, 1986.

Akscyn88 R. Akscyn, E. Yoder, D. McCracken, The Data Model is the Heart

of Interface Design, in Proc. CHI '88, pp. 115-120, ACM, Washing-

ton, May 1988.
Alexander87 H. Alexander, Formally-Based Tools and Techniques for Human-

Computer Dialogues (PhD Thesis), University of Stirling, 1987.

Allen8l T. Allen, R. Nix, A. Perlis, PEN: A Hierarchical Document Editor,

ACM SIGPLAN Notices, 16(6), pp. 74-81, June 1981.

Alty84 J. L. Alty, Use of Path Algebras in an Interactive Adaptive Dialogue

System, in Proc Interact '84,1, ed. B. Shackel, pp. 321-324, IFIP,
September 1984.

- 310 -

A1ty87 J. L. Alty, J. Mullin, The Role of the Dialogue System in a User
Interface Management System, in Human-Computer Interaction -
INTERACT '87 (Participants' Edition), ed. H. -J. Bullinger, B.
Shackel, pp. 1007-1012, North-Holland, 1987.

Angell87 I. O. Angell, Y. P. Low, A. R. Warman, Genie-M, A Generator for
Multimedia Information Environments, in Workstations and Publica-

tion Systems, ed. R. A. Earnshaw, pp. 129-143, Springer-Verlag,
1987.

Anson80 E. Anson, The Semantics of Graphical input, in Methodology of
Interaction, ed. R. A. Geudj, P. J. W. ten Hagen, F. R. A. Hopgood,
H. A. Tucker, D. A. Duce., pp. 115-126, North-Holland, 1980.

Anson82 E. Anson, The Device Model of Interaction, ACM Computer Graph-
ics, 16(3), pp. 107-114, July 1982.

Appelt88 W. Appelt, R. Carr, G. Richter, The Formal Specification of the Doc-

ument Structures of the ODA Standard, in Document Manipulation

and Typography, ed. J. C. van Vliet, pp. 95-108, Cambridge Univer-

sity Press, 1988.
Arnon88 D. Arnon, R. Beach, K. Mclsaac, C. Waldspurger, Caminoreal: An

Interactive Mathematical Notebook, in Document Manipulation and
Typography, ed. J. C. van Vliet, pp. 1-18, Cambridge University

Press, 1988.

Asente87 P. J. Asente, Editing Graphical Objects Using Procedural Represen-

tations, Digital Western Research Laboratory, Palo Alto, WRL
Research Report 87/6, November 1987.

ASPECT87 ASPECT: Specification of the Public Tool Interface, System Design-

ers PLC, 1987.

BAe88 Assessment Report for the Aspect HCI, British Aerospace PLC,
Preston, Tech. Rep. No. BAe-WSD-R-ASP-SWE-1563, January
1988.

Bailey88 W. A. Bailey, S. T. Knox, E. F. Lynch, Effects of Interface Design
Upon User Productivity, in Proc. CHI '88, ed. E. Solloway, D. Frye,
S. B. Sheppard, pp. 207-212, Addison Wesley, May 1988.

Barford89 L. A. Barford, B. T. V. Zanden, Attribute Grammars in Constraint-

based Graphics Systems, Software - Practice and Experience,

19(4), pp. 309-328, April 1989.

Barth86 P. S. Barth, An Object-Oriented Approach to Graphical Interfaces,

ACM Trans. on Graphics, 5(2), pp. 142-172, April 1986.

Barze188 R. Barzel, A. H. Barr, A Modeling System Based on Dynamic Con-

straints, ACM Computer Graphics, 22(4), pp. 179-188, August 1988.

-311-

Bass85 L. J. Bass, A generalised user interface for applications programs
(II), Comm. ACM, 28(6), pp. 617-627, June 1985.

Baudelaire80 P. Baudelaire, M. Stone, Techniques for Interactive Raster Graph-
ics, ACM Computer Graphics, 14(3), pp. 314-320, June 1980.

Baudelaire89 P. Baudelaire, M. Gangnet, Planar Maps: An Interaction Paradigm
for Graphic Design, in Proc CHJ 89, pp. 313-318, ACM, April 1989.

Beach82 R. J. Beach et al., The Message is the Medium: Multiprocess Struc-
turing of an Interactive Paint Program, ACM Computer Graphics,
16(3), pp. 277-287, June 1982.

Beach83 R. Beach, M. Stone, Graphical Style: Towards High Quality Illustra-
tions, ACM Computer Graphics, 17(3), pp. 127-135,1983.

Beach85 R. J. Beach, Experience with the Cedar Programming environment
for computer graphics research, Xerox, Tech. Rep. No. CSL-84-6,
July 1985.

Beach86 R. J. Beach, Tabular Typography, in Text Processing and Document
Manipulation, ed. J. C. van Vliet, pp. 18-33, Cambridge University
Press, 1986.

Beaujardiere88 J-M. de la Beaujardiere, Well-Established Document Interchange
Formats, in Document Manipulation and Typography, ed. J. C. van
Vliet, pp. 83-94, Cambridge University Press, 1988.

Behrmann-Poiti ers88 J. Behrmann-Poitiers, H. Keil, H. Loebl, Hard Copy Rendition
of ODA Documents, in Document Manipulation and Typography,

ed. J. C. van Vliet, pp. 71-82, Cambridge University Press, 1988.
Ben-Ari82 M. Ben-Ari, Principles of Concurrent Programming, Prentice-Hall,

1982.

Benest79 I. D. Benest, A Review of Computer Graphics Publications, Comput-

ers and Graphics, 4, pp. 95-136, Pergamon Press, 1979.

Benest85 I. D. Benest, R. K. Took, Interactive Techniques in Software Engi-
neering Environments, in IEE Colloqium Digest No. 1985/102, pp.
3/1-3/15,1985.

Bennett87 J. L. Bennett, Collaboration of UIMS Designers and Human Factors
Specialists, ACM Computer Graphics, 21(2), pp. 102-105, April
1987.

Benyon84 D. Benyon, Monitor. A self-adaptive user interface, in Proc. Inter-

act '84,1, pp. 307-313, September 1984.

Bhushan86 A. Bhushan, M. Plass, The Interpress Page and Document Descrip-

tion Language, IEEE Computer, 19(6), pp. 72-77,1986.

Bier86 E. A. Bier, M. C. Stone, Snap-Dragging, ACM Computer Graphics,

20(4), pp. 233-240, August 1986.

-312-

Bigelow86 C. Bigelow, K. Holmes, The Design of Lucinda, an Integrated Fami-
ly of Types for Electronic Literacy, in Text Processing and
Document Manipulation, ed. J. C. Van Vliet, pp. 1-17, Cambridge,
April 1986.

B1y86 S. A. Bly, J. K. Rosenberg, A Comparison of Tiled and Overlapping
Windows, in Proc. CHI '86 Human Factors in Computing Systems,

pp. 101-106, Boston, April 1986.

Bohm66 C. Bohm, G. Jacopini, Flow Diagrams, Turing Machines and Lan-

guages with Only Two Formation Rules, Comm. ACM, 9(5), pp.
366-371, May 1966.

Borning8l A. Borning, The Programming Language Aspects of ThingLab, a
Constraint- Oriented Simulation Laboratory, ACM Trans. Program-

ming Languages and Systems, 3(4), pp. 353-387, October 1981.

Borning86 A. H. Borning, R. A. Duisberg, Constraint-based Tools for Building
User Interfaces, ACM Trans. Graphics, pp. 345-374, October 1986.

Bos78 J. Van den Bos, Definition and Use of Higher-Level Graphics Input
Tools, ACM Computer Graphics, 12(3), pp. 38-42, August 1978.

Bos80 J. van den Bos, High-Level Graphic Input Tools and their Seman-

tics, in Methodology of Interaction, ed. R. A. Geudj, P. J. W. ten
Hagen, F. R. A. Hopgood, H. A. Tucker, D. A. Duce., pp. 159-169,
North-Holland, 1980.

Bos83 J. van der Bos, Whither device independence in interactive graph-
ics?, Intl. J. Man-Machine Studies, 18, pp. 89-99,1983.

Boullier72 P. Boullier, J. Gros, P. Jancene, A. Lemaire, F. Prusker, E. Saltel,
METAVISU: A General Purpose Graphics System., in Graphic Lan-
guages, ed. F. Nake, A. Rosenfield, pp. 244-267, North-Holland,
1972.

Bramley90 A. Bramley, Porting Presenter to X (BSc Project Report), Dept.
Computer Science, University of York, 1990.

BrooksKP88 K. P. Brooks, A Two-View Document Editor with User-definable
Document Structure, Digital Systems Research Centre, Technical
Report 33, November 1988.

BrooksFP88 F. P. Brooks Jnr., Grasping Reality Through Illusion - Interactive
Graphics Serving Science, in Proc. CHI '88, ed. E. Solloway, D.

Frye, S. B. Sheppard, pp. 1-11, Addison Wesley, May 1988.

Brown84 M. H. Brown, R. Sedgewick, A system for Algorithm Animation,

ACM Computer Graphics, 18(3), pp. 177, July 1984.

Brown85 M. D. Brown, Understanding PHIGS, Template, Megatek Corpora-

tion, San Diego, 1985.

- 313 -

Brown87 P. Brown, Presenting Documents on Workstation Screens, in Work-
stations and Publication Systems, ed. R. A. Earnshaw, pp. 122-128,
Springer-Verlag, 1987.

BrownMH88 M. H. Brown, Perspectives on Algorithm Animation, in Proc. CHI
'88, pp. 33-38, ACM, Washington, May 1988.

BrownP88 P. Brown, Hypertext: The Way Forward, in Document Manipula-
tion and Typography, ed. J. C. van Vliet, pp. 183-191, Cambridge
University Press, 1988.

Brown89 H. Brown, Standards for Structured Documents, The Computer Jour-
nal, 32(6), pp. 505-514, December 1989.

Brown90 A. W. Brown, R. K. Took, W. G. Daly, Design and Construction of
Graphical User Interfaces using Surface Interaction, in Proceedings
of the 8th British National Conference on Databases (BNCOD-8),
ed. A. W. Brown, P. Hitchcock, Pitman Publishing Ltd., July 1990.

Burbeck87 S. Burbeck, Applications Programming in Smalltalk-80: How to Use
Model-View-Controller (MVC), Softsmarts Inc., 1987.

Butler85a J. Butler, Proposal for Project to Develop New X3 Standard, OEM
Group, Microsoft, Bellevue, Wa., January 1985.

Butler85b J. Butler, Windows Subgroup Report (presentation to ANSI X3H3
Plenary Session), Palm Bay, Florida, January 1985.

Buxton83 W. Buxton, Lexical and Pragmatic Considerations of Input Struc-

tures, ACM Computer Graphics, 17(1), pp. 31-37, January 1983.

Buxton86 W. Buxton, There's More to Interaction Than Meets the Eye: Some
Issues in Manual Input, in User Centered System Design, ed. D. A.
Norman, S. W. Draper, pp. 319-337, Lawrence Erlbaum, 1986.

Cadogan87 P. H. Cadogan, The Chelgraph SGML Structured Editor, in Worksta-
tions and Publication Systems, ed. R. A. Earnshaw, pp. 190-195,
Springer-Verlag, 1987.

Cahn83 D. U. Cahn, A. C. Yen, A Device-Independent Network Graphics
System, ACM Computer Graphics, 17(3), pp. 167-174, July 1983.

Ca1187 L. S. Call, D. L. Cohrs, B. P. Miller, CLAM - An Open System for
Graphical User Interfaces, in Proc. USENIX C++ Workshop, pp.
305-325, Santa Fe, NM, 1987.

Card87 S. K. Card, A. Henderson Jnr., A Multiple, Virtual-Workspace
Interface to Support User Task Switching, in Proc CHI + GI 1987,

ed. J. M. Carroll, P. P. Tanner, ACM SIGCHI Bulletin, 18(2), pp. 53-

59, April 1987.

Cardelli85 L. Cardelli, R. Pike, Squeak: A Language for Communicating with
Mice, ACM Computer Graphics, 19(3), pp. 199-204, July 1985.

- 314 -

Cardelli87 L. Cardelli, Building User Interfaces by Direct Manipulation, Digi-
tal - Systems Research Center, Palo Alto, California, Tech. Rep.
No. 22, October 1987.

Carlbom78 I. Carlbom, J. Paciorek, Planar Geometric Projections and Viewing
Transformations, Computing Surveys, 10(4), pp. 465-502, Decem-
ber 1978.

Carro1185 J. M. Carroll, R. L. Mack, Metaphor, Computing Systems, and
Active Learning, Int. J. Man-Machine Studies, 22, pp. 39-57,1985.

Chamberlin8l D. D. Chamberlin et al, JANUS: An Interactive System for Docu-
ment Composition, ACM SIGPLAN Notices, 16(6), pp. 82-91, June
1981.

Chamberlin82 D. D. Chamberlin et al., JANUS: An Interactive Document Format-

ter Based on Declarative Tags, IBM Systems Journal, 21(3), pp.
250-271,1982.

Chamberlin87 D. D. Chamberlin, C. F. Goldfarb, Graphic Applications of the Stan-
dard Generalised Markup Language (SGML), Computers and
Graphics, 11(4), 1987.

Chamberlin88 D. D. Chamberlin, H. F. Hasselmeier, D. P. Paris, Defining Docu-

ment Styles for WYSIWYG Processing, in Document Manipulation

and Typography, ed. J. C. van Vliet, pp. 121-137, Cambridge Univer-

sity Press, 1988.

Chang86 S. K. Chang, Introduction: Visual Languages and Iconic Languages,
in Visual Languages, ed. S. -K. Chang, Tadao Ichikawa, P. A.
Ligomenides, pp. 1-7, Plenum Press, New York, 1986.

Chapman90 S. Chapman, VISH: A Visual Shell (BSc Project Report), Dept.
Computer Science, University of York, 1990.

Chen88 P. Chen, M. A. Harrison, Multiple Representation Document Devel-
opment, IEEE Computer, 21(1), pp. 15-31, January 1988.

Ciccarelli85 E. C. Ciccarelli, Presentation Based User Interfaces (PhD Thesis),
MIT, 1985.

Clarisse86 O. Clarisse, S. -K. Chang, VICON: A Visual Icon Manager, in Visu-

al Languages, ed. S. -K. Chang, Tadao Ichikawa, P. A. Ligomenides,

pp. 151-190, Plenum Press, New York, 1986.

Clarke87 M. Clarke, Back to Basics - Simple But High-Quality Text Pagina-

tion Systems, in Workstations and Publication Systems, ed. R. A.

Earnshaw, pp. 203-211, Springer-Verlag, 1987.

Claybrook85 B. G. Claybrook, A. M. Claybrook, J. Williams, Defining Database
Views as Data Abstractions, IEEE Transactions on Software Engi-

neering, SE-11(l), pp. 3-14, January 1985.

- 315 -

Clowes72 M. B. Clowes, Scene Analysis and Picture Grammars, in Graphic
Languages, ed. F. Nake, A. Rosenfield, pp. 70-82, North-Holland,
1972.

Cobbett89 A. P. Cobbett, I. C. Wand, The Debugging of Large Multi-Task Ada
Programs, in Proc Ada UK Conference, York, September 1989.

Cockton88a G. Cockton, Interaction Ergonomics, Control and Separation: Open
Problems in User Interface, Scottish HCI Centre, Heriot-Watt Uni-
versity, Tech. Rep. No. AMU8811/03H, February 1988.

Cockton88b G. Cockton, Generative Transition Networks: A New Communica-

tion Control Abstraction, in People and Computers IV: Proc. HCI
'88, ed. D. M. Jones, R. Winder, pp. 509-527, Cambridge, Septem-
ber 1988.

Cohen86 E. S. Cohen, E. T. Smith, L. A. Iverson, Constraint-based tiled win-
dows, IEEE Computer Graphics and Applications, 6(5), pp. 35-45,
May 1986.

CohenB86 B. Cohen, W. T. Harwood, M. I. Jackson, The Specification of Com-
plex Systems, Addison-Wesley, 1986.

Conklin87 J. Conklin, Hypertext: An Introduction and Survey, IEEE Computer,
20(9), pp. 17-41, September 1987.

Cook88 S. Cook, S. Masnavi, Visual Programming of User Interfaces, in
Proc. BCS Conf. Graphics Tools for Software Engineering: Visual
Programming and Program Visualisation, ed. A. C. Kilgour, R. A.
Earnshaw, pp. 1-10, BCS, London, March 1988.

Coutaz84a J. Coutaz, A Paradigm for user interface architecture, CMU, Tech.
Rep. No. CMU-CS-84-124, May 1984.

Coutaz84b J. Coutaz, The Box, a layout abstraction for user interface toolkits,
CMU, Tech. Rep. No. CMU-CS-84-167, December 1984.

Coutaz85 J. Coutaz, Abstractions for User Interface Design, IEEE Computer,
18(9), pp. 21-34, September 1985.

Coutaz86 J. Coutaz, Abstractions for User Interface Toolkits, in Foundation
for Human-Computer Communication, ed. K. Hopper, I. A. New-

man, pp. 335-354, North-Holland, Amsterdam, 1986.

Coutaz87 J. Coutaz, PAC, an Object Oriented Model for Dialog Design, in
Human-Computer Interaction - INTERACT '87 (Participants' Edi-

tion), ed. H. -J. Bullinger, B. Shackel, pp. 431-436, North-Holland,
1987.

Coutaz89a J. Coutaz, Architecture Models for Interactive Software, in Proc
ECOOP '89,1989.

- 316 -

Coutaz89b J. Coutaz, UIMS: Promises, Failures and Trends, in People and
Computers V- Proc HCI `89, ed. A. Sutcliffe, L. Macaulay, pp. 71-
84, Cambridge, 1989.

Coutaz90 J. Coutaz, L. Bass, Requirements for UIMSs, in Proc
Esprit/Eurographics Workshop on User Interface Management Sys-
tems and Environments, Lisbon, June 1990.

Cowan86 D. D. Cowan, G. De V. Smit, Combining Interactive Document Edit-
ing with Batch Document Formatting, in Text Processing and
Document Manipulation, ed. J. C. van Vliet, pp. 140-153, Cam-
bridge, April 1986.

Crampton87 C. Crampton, A Portable Object-Oriented Toolkit, Presented at
Eurographics Workshop on Higher Level Tools for Window Man-

agers, Amsterdam, August 1987.

Crowley87 T. Crowley et al, The Diamond Multimedia Editor, in Proc USENIX
Conf., pp. 1-18, June 1987.

Daly89 W. Daly, A Graphical Management System for Semantic, Multime-
dia Databases (PhD Thesis), University of York, 1989.

Dam82 A. Van Dam, N. Meyrowitz, Interactive Editing Systems, in Docu-

ment Preparation Systems, ed. Nievergelt J, Coray G, Nicoud J-D,
Shaw A C, pp. 21, North Holland, 1982.

Dance87 J. R. Dance et al., Report on the Run-Time Structure of UIMS-Sup-

ported Applications, ACM Computer Graphics, 21(2), pp. 97-101,
April 1987.

Davies89 A. Davies, A Report on the Design and Implementation of UniFile,

a Graphically-based File System Manager for the UNIX Operating
System (MSc Project Report), University of York, September 1989.

Dix85 A. J. Dix, C. Runciman, Abstract Models of Interactive Systems, in
British Computer Society Conference Proc., "People and Comput-

ers: Designing the User Interface", ed. P. Johnson, S. Cook, pp. 13-
22, Cambridge University Press, 1985.

Dix86 A. J. Dix, M. D. Harrison, Principles and Interaction Models for
Window Managers, in British Computer Society Conference Proc.,
"People and Computers: Designing for Useability", ed. M. D. Harri-

son, A. Monk, pp. 352-366, Cambridge University Press, 1986.

Dix87a A. J. Dix, M. D. Harrison, C. Runciman, H. Thimbleby, Interaction
Models and the Principled Design of Interactive Systems, in Proc
European Software Engineering Conference, ed. H. Nichols, D. S.

Simpson, pp. 127-135, Springer Lecture Notes, 1987.

-317-

Dix87b A. J. Dix, M. D. Harrison, Formalising Models of Interaction in the
Design of a Display Editor, in Human-Computer Interaction -
INTERACT '87 (Participants' Edition), ed. H. -J. Bullinger, B.
Shackel, pp. 409-414, North-Holland, 1987.

Dix88a A. J. Dix, Formal Methods and Interactive Systems: Principles and
Practice (PhD Thesis), University of York, Dept. of Computer Sci-

ence, 1988.

Dix88b A. Dix, Abstract, Generic Models of Interactive Systems, in People
and Computers IV: Proc. HCI '88, ed. D. M. Jones, R. Winder, pp.
63-77, Cambridge, September 1988.

Draper86 S. W. Draper, Display Managers as the Basis for User-Machine
Communication, in User Centered System Design, ed. D. A. Nor-

man, S. W. Draper, pp. 339-352, Lawrence Erlbaum, 1986.

Duce90 D. A. Duce, R. van Liere, P. J. W. ten Hagen, An Approach to Hier-
archical Input Devices, Computer Graphics Forum, 9, pp. 15-26,
North-Holland, 1990.

Eckhouse79 R. E. Eckhouse, L. R. Morris, Minicomputer Systems, Pren-
tice/Hall, 1979.

Elwart-Keys90 M. Elwart-Keys, D. Halonen, M. Horton, R. Kass, P. Scott, User
Interface Requirements for Face to Face Groupware, in Proc
CHI90, pp. 295-302, Addison Wesley, April 1990.

Encarnacao79 J. Encarnacao, G. Nees, Recommendations on Methodology in Com-

puter Graphics, in Methodology in Computer Graphics, ed. R. A.
Guedj, H. A. Tucker, pp. 87-92, North-Holland, 1979.

Enderle84 G. Enderle, K. Kansy, G. Pfaff, Computer Graphics Programming:
GKS - The Graphics Standard, Springer-Verlag, 1984.

Feiner82 S. Feiner, S. Nagy, A. Van Dam, An Experimental System for Cre-
ating and Presenting Interactive Graphical Documents, ACM Trans.
Graphics, 1(1), pp. 59-77, January 1982.

Fischer89 G. Fischer, Human-Computer Interaction Software: Lessons
Learned, Challenges Ahead, IEEE Software, 6(1), pp. 44-52, Jan-

uary 1989.

Fisher90 A. Fisher, The Computer as an Assistant to Learning (BSc Project
Report), Dept. Computer Science, University of York, 1990.

Foley74 J. D. Foley, V. L. Wallace, The Art of Natural Graphic Man-
Machine Conversation, Proc. IEEE, 62(4), pp. 462-47 1, April 1974.

Foley79 J. D. Foley, Picture Naming and Modification: An Overview, in

Methodology in Computer Graphics, ed. R. A. Guedj, H. A. Tucker,

pp. 105-117, North-Holland, 1979.

- 318 -

Foley80a J. D. Foley, The Structure of Interactive Command Languages, in
Methodology of Interaction, ed. R. A. Geudj, P. J. W. ten Hagen, F.
R. A. Hopgood, H. A. Tucker, D. A. Duce., pp. 227-234, North-Hol-
land, 1980.

Foley8Ob J. D. Foley, Methodology of Interaction, in Methodology of Interac-
tion, ed. R. A. Geudj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A.
Tucker, D. A. Duce, pp. 55-57, North-Holland, 1980.

Foley84a J. D. Foley, A. van Dam, Fundamentals of Interactive Computer

Graphics, Addison-Wesley, 1984.

Foley84b J. D. Foley, V. L. Wallace, P. Chan, The Human Factors of Comput-

er Graphics Interaction Techniques, IEEE Computer Graphics and
Applications, 4(11), pp. 13-48, November 1984.

Frame87 FrameMaker Reference Manual 1.0, Frame Technology Corpora-

tion, 2240 Lundy Avenue, San Jose, Ca 95131,1987.

Fraser80 C. W. Fraser, A Generalised Text Editor, Comm. ACM, 23(3), pp.
154-158,1980.

Friede1184 M. Friedell, Automatic synthesis of graphical object descriptions,

ACM Computer Graphics, 18(3), pp. 53, July 1984.

Fuks84 D. B. Fuks, V. A. Rokhlin, Beginner's course in topology, Springer,

1984.

Furuta82 R. Furuta, J. Scofield, A. Shaw, Document Formatting Systems:
Survey, Concepts and Issues, ACM Computing Surveys, 14(3), pp.
417-472, September 1982.

Furuta86 R. Furuta, An Integrated, but not Exact-Representation, Edi-

tor/Formatter, in Text Processing and Document Manipulation, ed.
J. C. Van Vliet, pp. 246-259, Cambridge, April 1986.

Furuta88 R. Furuta, P. D. Stotts, Specifying Structured Document Transfor-

mations, in Document Manipulation and Typography, ed. J. C. van
Vliet, pp. 109-120, Cambridge University Press, 1988.

Furuta89 R. Furuta, An Object-based Taxonomy for Abstract Structure in
Document Models, The Computer Journal, 32(6), pp. 494-504,

December 1989.

Gangopadhyay 82 D. Gangopadhyay, A Framework for Modelling Graphic Inter-

actions, Software - Practice and Experience, 12, pp. 141-151,1982.

Garrett82 M. T. Garrett, J. D. Foley, Graphics Programming Using a

Database System with Dependency Declarations, ACM Trans.

Graphics, 1(2), pp. 109-128, April 1982.

Gentleman8l W. M. Gentleman, Message Passing Between Sequential Process-

es: the Reply Primitive and the Administrator Concept, Software -
Practice and Experience, 11(5), pp. 435-466, May 1981.

-319-

George72 J. E. George, A Graphical Meta System, in Graphic Languages, ed.
F. Nake, A. Rosenfield, pp. 83-109, North-Holland, 1972.

Gittins86 D. Gittins, Icon-Based Human-Computer Interaction, Int. J. Man
Machine Studies, 24, pp. 519-543,1986.

Glinert87 E. P. Glinert, J. Gonczarowski, A (Formal) Model for (Iconic) Pro-
gramming Environments, in Human-Computer Interaction -
INTERACT '87 (Participants' Edition), ed. H. -J. Bullinger, B.
Shackel, pp. 283-290, North-Holland, 1987.

Goldberg83 A. Goldberg, D. Robson, Smalltalk-80, The Language and its Imple-
mentation, Addison-Wesley, 1983.

Goldfarb8l C. F. Goldfarb, A Generalised Approach to Document Markup,
ACM SIGPLAN Notices, 16(6), pp. 68-73, June 1981.

Golin90 E. J. Golin, S. P. Reiss, The Specification of Visual Language Syn-
tax, Visual Languages and Computing, 1, pp. 141-157, Academic
Press, 1990.

Gonzalez78 R. C. Gonzalez, M. G. Thomason, Syntactic Pattern Recognition,
Addison-Wesley, 1978.

Gosling86 J. Gosling, SunDew -A Distributed and Extensible Window Sys-
tem, in Methodology of Window Management, ed. F. R. A.
Hopgood, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S.
Williams, pp. 47-52, Springer-Verlag, Berlin, 1986.

Gosling86 J. Gosling, Partitioning of Function in Window Systems, in Method-
ology of Window Management, ed. F. R. A. Hopgood, D. A. Duce,
E. V. C. Fielding, K. Robinson, A. S. Williams, pp. 101-106,
Springer-Verlag, Berlin, 1986.

Gosling86 J. Gosling, D. Rosenthal, A Window Manager for Bitmapped Dis-
plays and UNIX, in Methodology of Window Management, ed. F. R.
A. Hopgood, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S.
Williams, pp. 116-128, Springer-Verlag, Berlin, 1986.

Green85a M. Green, The University of Alberta User Interface Management
System, ACM Computer Graphics, 19(3), pp. 205-213, July 1985.

Green85b M. Green, Report on Dialogue Specification Tools, in User Interface
Management Tools, ed. G. E. Pfaff, pp. 9-20, Springer-Verlag,
Berlin, 1985.

Green86 M. Green, A Survey of Three Dialogue Models, ACM Trans. on
Graphics, 5(3), pp. 244-275, July 1986.

Green87 M. Green, Directions for User Interface Management Systems

Research, ACM Computer Graphics, 21(2), pp. 113-116, April 1987.

Guedj79 Methodology in Computer Graphics, ed. R. A. Guedj, H. A. Tucker,
North-Holland, 1979.

-320-

Guedj80 Methodology of Interaction, ed. R. A. Guedj, P. J. W. ten Hagen, F.
R. A. Hopgood, H. A. Tucker, D. A. Duce, North-Holland, 1980.

Gutknecht84 J. Gutknecht, W. Winiger, Andra: The Document Preparation Sys-
tem of the Personal Workstation Lilith, Software - Practice and
Experience, 14, pp. 73-100,1984.

Gutknecht85 J. Gutknecht, Concepts of the Text Editor Lara, Comm. ACM, 28(9),
pp. 942-960, September 1985.

Guttag78 J. V. Guttag, J. J. Horning, The Algebraic Specification of Abstract
Data Types, Acta Informatica, 10, pp. 27-52,1978.

Haeberli88 P. E. Haeberli, ConMan: A Visual Programming Language for Inter-
active Graphics, ACM Computer Graphics, 22(4), pp. 103-111,
August 1988.

Hagen85 P. J. W. ten Hagen, J. Derksen, Parallel Input and Feedback in Dia-
logue Cells, in User Interface Management Systems, ed. G. E. Pfaff,

pp. 109-124, Springer-Verlag, 1985.

Ha1185 J. A. Hall, P. Hitchcock, R. K. Took, An Overview of the ASPECT
Architecture, in Integrated Project Support Environments, ed. J.
McDermid, pp. 86-99, Peter Peregrinus, London, 1985.

Hamlet86 R. Hamlet, A Disciplined Text Environment, in Text Processing and
Document Manipulation, ed. J. C. van Vliet, pp. 78-89, Cambridge,
April 1986.

Hammeröl M. Hammer et al., The Implementation of Etude, An Integrated and
Interactive Document Production System, ACM SIGPLAN Notices,
16(6), pp. 137-146, June 1981.

Hare188 D. Harel, On Visual Formalisms, Comm. ACM, 31(5), pp. 514-530,
May 1988.

Harke87 U. Harke, M. Burger, Dr. Gall, Embedding Graphics into Docu-
ments by using a Graphics Editor, in Workstations and Publication
Systems, ed. R. A. Earnshaw, pp. 87-101, Springer-Verlag, 1987.

Harris86 D. J. Harris, An Approach to the Design of a Page Description Lan-
guage, in Text Processing and Document Manipulation, ed. J. C.
Van Vliet, pp. 58-64, Cambridge, April 1986.

Harrison90 M. Harrison, A. Dix, A State Model of Direct Manipulation in Inter-

active Systems, in Formal Methods in Human-Computer
Interaction, ed. M. Harrison, H. Thimbleby, pp. 129-151, Cam-

bridge, 1990.

Hartson89 R. Hartson, User-Interface Management Control and Communica-

tion, IEEE Software, 6(1), pp. 62-70, January 1989.

-321-

Hayes83 P. J. Hayes, P. A. Szekely, Graceful Interaction through the
COUSIN Command Interface, Int. J. of Man-Machine Studies,
19(3), pp. 285-305, September 1983.

Hayes84 P. J. Hayes, Executable Interface Definitions Using Form-Based
Interface Abstractions, CMU, Tech. Rep. No. CMU-CS-84-110,
March 1984.

Hegazy88 W. A. Hegazy, J. S. Gourlay, Optimal Line Breaking in Music, in
Document Manipulation and Typography, ed. J. C. van Vliet, pp.
157-169, Cambridge University Press, 1988.

Hekmatpour87 S. Hekmatpour, M. Woodman, Formal Specification of Graphical
Notations and Graphical Software Tools, Open University, Milton
Keynes, Tech. Rep. No. 87/7,1987.

Helm86 R. Helm, K. Marriott, Declarative Graphics, in Proc. Third Int. Conf.
on Logic Programming, ed. E. Shapiro, pp. 513-527, Springer Ver-
lag, Berlin, 1986.

Henderson86 D. A. Henderson Jnr., S. K. Card, Rooms: The Use of Multiple Vir-
tual Workspaces to Reduce Space Contention in a Window-Based
Graphical User Interface, ACM Trans on Graphics, 5(3), pp. 211-
243, July 1986.

Herot80 C. F. Herot, Spatial Management of Data, ACM Trans. Database
Sys., 5(4), pp. 493-514,1980.

Hewitt88 W. T. Hewitt, R. Hubbold, T. Howard, D. Finnegan, T. Arnold, M.
Patel, K. Wyrwas, Interactive Computer Graphics - Course Notes,
Computer Graphics Unit, Dept. Computer Science, University of
Manchester, June 1988.

Hi1186 R. D. Hill, Supporting Concurrency, Communication and Synchro-
nization in Human-Computer Interaction - The Sassafras UIMS,
ACM Trans. on Graphics, 5(3), pp. 179-210, July 1986.

Hi1187a R. D. Hill, Event-Response Systems -A Technique for Specifying
Multi-Threaded Dialogues, in Proc. SIGCHI+GI '87: Human Fac-
tors in Computing Systems, pp. 241-248, Toronto, Canada, April
1987.

Hi1187b R. D. Hill, Some Important Features and Issues in User Interface
Management Systems, ACM Computer Graphics, 21(2), pp. 116-
120, April 1987.

Hoare85 C. A. R. Hoare, Communicating Sequential Processes, Prentice-

Hall International, 1985.

Hoeber88 T. Hoeber, Open Look Design Gaols, Sun Technology, pp. 63-75,
Sun Microsystems, September 1988.

- 322 -

Holmes89 S. Holmes, Overview and User Manual For Doubleview, University
of York, Tech. Rep. No. YCS 109,1989.

Hopgood80 F. R. A. Hopgood, D. A. Duce, A Production System Approach to
Interactive Graphic Program Design, in Methodology of Interaction,
ed. R. A. Geudj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A. Tuck-
er, D. A. Duce., pp. 247-263, North-Holland, 1980.

Hopgood86a F. R. A. Hopgood, A Graphics Standards View of Screen Manage-
ment, in Methodology of Window Management, ed. F. R. A.
Hopgood, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S.
Williams, pp. 87-95, Springer-Verlag, Berlin, 1986.

Hopgood86b Methodology of Window Management, ed. F. R. A. Hopgood, D. A.
Duce, E. V. C. Fielding, K. Robinson, A. S. Williams, Springer-Ver-
lag, Berlin, 1986.

Horak85 W. Horak, Office Document Architecture and Office Document
Interchange Formats: Current Status of International Standardisa-

tion, IEEE Computer, 18(10), pp. 50-60,1985.

Hudson87 S. E. Hudson, UIMS Support for Direct Manipulation Interfaces,
ACM Computer Graphics, 21(2), pp. 120-124, April 1987.

Hudson90 S. E. Hudson, Adaptive Semantic Snapping -A Technique for
Semantic Feedback at the Lexical Level, in Proc CHI 90, pp. 65-70,
1990.

Hurley89 W. D. Hurley, J. L. Sibert, Modeling User Interface - Application
Interactions, IEEE Software, 6(1), pp. 71-77, January 1989.

Hutcheon90 A. D. Hutcheon, A. J. Wellings, The York Distributed Ada project,
in Distributed Ada, ed. J. Bishop, pp. 71-108, Cambridge University
Press, 1990.

Hutchins86 E. L. Hutchins, J. D. Hollan, D. A. Norman, Direct Manipulation
Interfaces, in User Centered System Design, ed. D. A. Norman, S.
W. Draper, pp. 87-124, Lawrence Erlbaum Associates, 1986.

Huu87 L. Van Huu, An Environment for SGML Document Preparation, in
Proc USENIX Conf., pp. 43-52, June 1987.

Hypercard89 Macintosh Hypercard - User's Guide, Apple Computer Inc., Cuper-

tino, Ca 95014,1989.

Ingalls8l D. Ingalls, The Smalltalk Graphics Kernel, Byte, 6(8), pp. 168,

August 1981.

Ingalls88 D. Ingalls, W. Wallace, Y. Chow, F. Ludolph, K. Doyle, Fabrik, a
Visual Programming Environment, in Proc OOPSLA 88, September

1988.

- 323 -

IS085 ISO, Information Processing Systems - Computer Graphics -
Graphics Kernel System (GKS) functional description, ISO Central
Secretariat, Geneva, ISO 7942,1985.

ISO86a ISO, Information Processing Systems - Computer Graphics - Inter-
facing Techniques for Dialogues with Graphical Devices (CGI), ISO
Central Secretariat, Geneva, ISO/TC97/SC21/WG2 N356, May
1986.

ISO86b ISO, Standard Generalised Markup Language, ISO DIS 8879,1986.

ISO87a ISO, Information Processing - Text and Office Systems: Office Doc-

ument Architecture (ODA) and Interchange Format, ISO DIS 8613

part 1-8, July 1987.

ISO87b Information Processing - Computer Graphics - Programmers Hier-

archical Interactive Graphics System (PHIGS), ISO DIS 9592-
1: 1987(E), October 1987.

Jacob86a R. J. K. Jacob, A Visual Programming Environment for Designing
User Interfaces, in Visual Languages, ed. S. -K. Chang, Tadao
Ichikawa, P. A. Ligomenides, pp. 87-107, Plenum Press, New York,

1986.

Jacob86b R. J. K. Jacob, Using Formal Specifications in the Design of a
Human-Computer Interface, in Software Specification Techniques,

ed. N. Gehani, A. D. McGettrick, pp. 209-222, Addison-Wesley,
1986.

Jacob86c R. J. K. Jacob, A Specification Language for Direct-Manipulation
User Interfaces, ACM Trans. on Graphics, 5(4), pp. 283-317, Octo-
ber 1986.

Johnson88 J. Johnson, R. J. Beach, Styles in Document Editing Systems, IEEE
Computer, 21(1), pp. 32-43, January 1988.

Joloboff86 V. Joloboff, Trends and Standards in Document Representation, in
Proc. Conf. Text Processsing and Document Manipulation, pp. 107-
124, Nottingham, 1986.

Jones-Ng86 L. Jones-Ng, The Spy Editor, Rutherford Appleton Laboratory,

March 1986.

JonesWP88 W. P. Jones, A. C. Kay, W. Kintsch, R. H. Trigg, A Critical Assess-

ment of Hypertext Systems, in Proc. CHI '88, pp. 223-227, Addison

Wesley, May 1988.

JonesDW88 D. W. Jones, How (Not) to Code a Finite State Machine, SIG-

PLAN Notices, 23(8), pp. 19-22, March 1988.

Jones89 M. Jones, A Presenter Toolkit (MSc Project Report), Dept. Com-

puter Science, University of York, September 1989.

- 324 -

Josephs88 M. B. Josephs, A State-Based Approach to Communicating Pro-
cesses, Distributed Computing, 3, pp. 9-18,1988.

Kamran83 A. Kamran, M. B. Feldman, Graphics Programming Independent of
Interaction Techniques and Styles, ACM Computer Graphics, 17(1),

pp. 58-66, January 1983.

Kamran85 A. Kamran, Issues Pertaining to the Design of a User Interface
Management System, in User Interface Management Systems, ed.
G. E. Pfaff, pp. 43-48, Springer-Verlag, 1985.

Kantorowitz89 E. Kantorowitz, O. Sudarsky, The Adaptable User Interface, Comm
ACM, 32(11), pp. 1352-1358, November 1989.

Kaplan88 M. Kaplan, Abstraction and Integration in IDE, an Editing and For-
matting Environment, in Document Manipulation and Typography,

ed. J. C. van Vliet, pp. 193-204, Cambridge University Press, 1988.

Kasik82 D. J. Kasik, A User Interface Management System, ACM Computer
Graphics, 16(3), pp. 99-106, July 1982.

Kasik89 D. J. Kasik, M. A. Lund, H. W. Ramsey, Reflections on Using a
UIMS for Complex Applications, IEEE Software, 6(1), pp. 54-61,
January 1989.

Kass88 R. Kass, T. Finin, A General User Modelling Facility, in Proc CHI
88, pp. 145-150, ACM, May 1988.

Kernighan8l B. W. Kernighan, PIC -a language for typesetting graphics, ACM
SIGPLAN Notices, 16(6), pp. 92-98, June 1981.

Kimura86 G. D. Kimura, S Structure Editor for Abstract Document Objects,
IEEE Trans. Software Engineering, SE-12(3), pp. 417-435, March
1986.

Knuth8l D. E. Knuth, M. F. Plass, Breaking Paragraphs into Lines, Soft-
ware - Practice and Experience, 11, pp. 1119-1184,1981.

Knuth86 D. E. Knuth, The TeX Book, Addison-Wesley, Reading, Mass.,
1986.

Korfhage86 R. R. Korfhage, M. A. Korfhage, Criteria for Iconic Languages, in
Visual Languages, ed. S. -K. Chang, Tadao Ichikawa, P. A.
Ligomenides, pp. 207-231, Plenum Press, New York, 1986.

Kulsrud68 H. F. Kulsrud, A General Purpose Graphic Language, Comm. ACM,
11(4), pp. 247-254, April 1968.

Lamport86 L. Lamport, LATEX -A Document Preparation System, Addison-

Wesley, September 1986.

Lamport89 L. Lamport, A Simple Approach to Specifying Concurrent Systems,

Comm ACM, 32(1), pp. 32-45, January 1989.

- 325 -

Langridge87 R. Langridge, B. Bryant, PRIGS, A Universal Graphics Standard: Is
It All a Pipedream, in Proc BCS Conf on Future of Graphics Soft-
ware, ed. R. A. Earnshaw, London, October 1987.

Langridge88 R. Langridge, B. Bryant, PHIGS: Is It a Universal Graphics Stan-
dard?, Computing Techniques, 3(5), pp. 25-29, May 1988.

Lantz84 K. A. Lantz, W. I. Nowicki, Structured Graphics for Distributed
Systems, ACM Trans. Graphics, 3(1), pp. 23-51, January 1984.

Lantz87a K. A. Lantz, On User Interface Reference Models, in Proc CHI + GI
1987, ed. J. M. Carroll P. P. Tanner, ACM SIGCHI Bulletin, 18(2),

pp. 36-42, April 1987.

Lantz87b K. A. Lantz et al, Reference Models, Window Systems, and Con-

currency, ACM Computer Graphics, 21(2), pp. 87-97, April 1987.

Lantz87c K. A. Lantz, Multi-Process Structuring of User Interface Software,
ACM Computer Graphics, 21(2), pp. 124-130, April 1987.

Larson86 J. A. Larson, Visual Languages for Database Users, in Visual Lan-

guages, ed. S. -K. Chang, Tadao Ichikawa, P. A. Ligomenides, pp.
127-147, Plenum Press, New York, 1986.

Laursen87 D. Laursen, Why X? A Standard for Window Systems, Tekniques,
10(4), pp. 20-23, Tektronix, Wilsonville, Oregon, 1987.

Lauwers90 J. C. Lauwers, K. A. Lantz, Collaboration Awareness in Support of
Collaboration Transparency: Requirements for the Next Generation

of Shared Window Systems, in Proc CHI90, pp. 303-312, Addison
Wesley, April 1990.

Leler86 W. Leier, Specification and Generation of Constraint Satisfaction
Systems (PhD Thesis), 1986.

Leler88 W. Leier, Constraint Programming Languages - Their Specification

and Generation, Addison-Wesley, Reading, Ma., 1988.

Lesk86 M. E. Lesk, Typing Documents on the UNIX System: Using the -
ms Macros with Troff and Nroff, Bell Laboratories, Murray Hill,
New Jersey 07974, April 1986.

Lieberman85 H. Lieberman, There's More to Menu Systems Than Meets the
Screen, ACM Computer Graphics, 19(3), pp. 181-189, July 1985.

Liere87 R. van Liere, P. J. W. ten Hagen, Resource Management in DICE,

Presented at Eurographics workshop on Higher Level Tools for Win-

dow Management, Amsterdam, August 1987.

Linton87 M. A. Linton, R. R. Calder, The Design and Implementation of Inter-

Views, in Proc. USENIX C++ Workshop, pp. 256-267, Santa Fe,

NM, 1987.
Linton89 M. A. Linton, J. M. Vlissides, P. R. Calder, Composing User Inter-

faces with Interviews, IEEE Computer, pp. 8-22, February 1989.

- 326 -

Lipkie82 D. E. Lipkie, S. R. E. Evans, J. K. Newlin, R. L. Wissman, Star
Graphics: an object oriented implementation, ACM Computer Graph-
ics, 16(3), pp. 115, July 1982.

Little87 C. T. Little, Graphics and GKS at the UK Meteorological Office, in
Proc BCS Conf on Future of Graphics Software, ed. R. A. Earn-
shaw, London, October 1987.

Littlefield84 R. J. Littlefield, Priority Windows: A Device Independent, Vector
Oriented Approach, ACM Computer Graphics, 18(3), pp. 187, July
1984.

Luniewski88 A. W. Luniewski, Intent-Based Page Modelling Using Blocks in
the Quill Document Editor, in Document Manipulation and Typogra-

phy, ed. J. C. van Vliet, pp. 205-221, Cambridge University Press,

1988.

MacDraw88 MacDraw User Manual, Claris Corporation, Mountain View, Ca
94043,1988.

Mackinlay86 J. Mackinlay, Automating the Design of Graphical Presentations of
Relational Information, ACM Trans. Graphics, 5(2), pp. 110-141,
April 1986.

Mallgren83 W. R. Mallgren, Formal Specification of Interactive Graphics Pro-

gramming Languages, MIT Press, 1983.

Manheimer89 J. M. Manheimer, R. C. Burnett, J. A. Wallers, A Case Study of
User Interface Management System Developement and Applica-
tion, in Proc CHI '89, pp. 127-132, Austin, Texas, May 1989.

Marcus84 A. Marcus, Corporate Identity for Iconic Interface Design: The
Graphic Design Perspective, IEEE Computer Graphics and Applica-
tions, 4(12), pp. 24-32, December 1984.

Marovac87 N. Marovac, Page Description Languages, in Workstations and Pub-
lication Systems, ed. R. A. Earnshaw, pp. 14-26, Springer-Verlag,
1987.

Martin82 G. E. Martin, Transformation Geometry, Springer-Verlag, 1982.

McCabe87 F. G. McCabe, Denotational Graphics, Dept of Computing, Imperial

College, London, July 1987.

McCarthy90 J. M. McCarthy, V. C. Miles, Elaborating Communication Channels
In Conferencer, in Proc IFIP WG8.4 Conference on Multi-User

Interfaces and Applications, May 1990.

McDonald82 A. McDonald, Visual Programming, Datamation, 28(11), pp. 132-

140, October 1982.

Meads72 J. A. Meads, A Terminal Control System, in Graphic Languages, ed.
F. Nake, A. Rosenfield, pp. 271-287, North-Holland, 1972.

-327-

Medina-Mora82 R. Medina-Mora, Syntax-directed editing: Towards Integrat-
ed Programming Environments, CMU, March 1982.

Meyrowitz86 N. Meyrowitz, Intermedia: The Architecture and Construction of an
Object-Oriented Hypermedia System and Applications Framework,
ACM SIGPLAN Notices, 21(11), 1986.

Milgram72 D. L. Milgram, A. Rosenfeld, A Note on "Grammars with Coordi-
nates", in Graphic Languages, ed. F. Nake, A. Rosenfield, pp. 187-
191, North-Holland, 1972.

MIT88 MIT X Window System Manual Set Version 11, Release 2, IXI
Ltd., Wellington Court, Cambridge CBI IHZ, 1988.

Monden86 N. Monden, Y. Yoshino, M. Hirakawa, M. Tanake, T. Ichikawa, HI-
VISUAL, A Language Supporting Visual Interaction in Program-

ming, in Visual Languages, ed. S. -K. Chang, Tadao Ichikawa, P. A.
Ligomenides, pp. 233-259, Plenum Press, New York, 1986.

Moran8l T. P. Moran, The command language grammar: a representation for
the user interface of interactive computer systems, Intl. J. Man-
Machine Studies, 15, pp. 3-50,1981.

Moreland87 J. Moreland, Graphics in Presentation Management, in Proc BCS
Conf on Future of Graphics Software, ed. R. A. Earnshaw, London,

October 1987.

Morris8l J. M. Morris, D. S. Mayer, The Design of a Language-Directed Edi-

tor for Block-Structured Languages, ACM SIGPLAN Notices,
16(6), pp. 28-33, June 1981.

Morris86 J. H. Morris et al, Andrew: A Distributed Personal Computing Envi-

ronment, Comm. ACM, 29(3), pp. 184-201, March 1986.

Murre187 S. L. Murrel, D. De Baer, An Interactive WYSIWYG Table Editor,
in Proc USENIX Conf., pp. 19-29, June 1987.

Myers83 B. A. Myers, Incense: a system for displaying data structures,
ACM Computer Graphics, 17(3), pp. 115, July 1983.

Myers86a B. Myers, Issues in Window Management Design and Implementa-
tion, in Methodology of Window Management, ed. F. R. A.

Hopgood, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S.
Williams, pp. 59-69, Springer-Verlag, Berlin, 1986.

Myers86b B. A. Myers, Visual Programming, Programming by Example, and

Program Visualization: A Taxonomy, in Proc ACM SIGCHI '86
Conf., pp. 59-66, ACM, New York, April 1986.

Myers87a B. M. Myers, Gaining General Acceptance for UIMSs, ACM Com-

puter Graphics, 21(2), pp. 130-134, April 1987.

- 328 -

Myers87b B. A. Myers, Creating Interaction Techniques by Demonstration,
IEEE Computer Graphics and Applications, pp. 51-60, September
1987.

Myers88a B. A. Myers, The State of the Art in Visual Programming and Pro-
gram Visualization, CMU, Tech. Rep. No. CMU-CS-88-114,
February 1988.

Myers88b B. A. Myers, Tools for Creating User Interfaces: An Introduction
and Survey, CMU, Tech. Rep. No. CMU-CS-88-107, January 1988.

Myers88c B. A. Myers, Window Interfaces -A Taxonomy of Window Manag-
er User Interfaces, IEEE Computer Graphics and Applications, pp.
65-84, September 1988.

Myers89 B. M. Myers, Encapsulating Interactive Behaviors, in Proc CHI 89,

pp. 319-324, ACM, April 1989.

Nanard87 J. Nanard, M. Nanard, G. Cottin, PLEIADE, A System for Interac-
tive Manipulation of Structured Documents, in Workstations and
Publication Systems, ed. R. A. Earnshaw, pp. 73-86, Springer-Ver-
lag, 1987.

Nelson80 T. H. Nelson, Replacing the Printed Word: A Complete Literary
System, IFIP Proc., pp. 1013-1023, October 1980.

Nelson85 G. Nelson, Juno, A Constraint-based Graphics System, ACM Com-

puter Graphics, 19(3), pp. 235-243, July 1985.

Newman68 W. M. Newman, A system for interactive graphical programming,
AFIPS Confprocs (SJCC), 32, pp. 47-54,1968.

Newman7l W. M. Newman, Display Procedures, Comm. ACM, 14(10), pp. 651,
1971.

Newman79 W. M. Newman, R. F. Sproull, Principles of Interactive Computer
Graphics, Mcgraw-Hill, 1979.

Newman83 W. M. Newman, T. Mott, Officetalk-Zero: An Experimental Inte-

grated Office System, in Integrated Interactive Computer Systems,
ed. P. Delgano, E. Sandewall, pp. 315-331, North-Holland, Amster-
dam, 1983.

Newman85 W. Newman, N. Stephens, D. Sweetman, A window manager with

a modular user interface, Proc HCI '85, pp. 415-426, CUP, Septem-
ber 1985.

Newman87 W. M. Newman, Designing Integrated Systems for the Office Envi-

ronment, McGraw-Hill, 1987.

Newman88 W. M. Newman, The Representation of User Interface Style, in Peo-

ple and Computers IV: Proc. HC1 '88, ed. D. M. Jones, R. Winder,

pp. 123-143, Cambridge, September 1988.

NeWS87a NeWS Manual, Sun Microsystems, 1987.

-329-

NeWS87b NeWS Technical Overview, Sun Microsystems Inc., Tech. Rep. No.
800-1498-05, March 1987.

Nielsen86 J. Nielsen, A Virtual Protocol Model for Computer-Human Interac-

tion, Intl. J. of Man-Machine Studies, 24, pp. 301-312,1986.

O'Callaghan72 J. F. O'Callaghan, Use of a Picture Language to Generate Descrip-
tions of Line Drawings, in Graphic Languages, ed. F. Nake, A.

Rosenfield, pp. 123-141, North-Holland, 1972.

Olsen83a D. R. Olsen, E. P. Dempsey, SYNGRAPH: A Graphic User Inter-
face Generator, ACM Computer Graphics, 17(3), pp. 43-50, July
1983.

Olsen83b D. R. Olsen, Automatic Generation of Interactive Systems, ACM
Computer Graphics, 17(1), pp. 53-57, January 1983.

Olsen84 D. R. Olsen, Pushdown automata for user interface management,
ACM Trans. Graphics, 3(3), pp. 177-203, July 1984.

Olsen85a D. R. Olsen, Presentational, Syntactic and Semantic Components of
Interactive Dialogue Specifications, in User Interface Management
Systems, ed. G. E. Pfaff, pp. 125-133, Springer-Verlag, 1985.

Olsen85b D. R. Olsen Jnr., E. P. Dempsey, R. Rogge, Input/Output Linkage in
a User Interface Management System, ACM Computer Graphics,

19(3), pp. 191-197, July 1985.

O1sen86 D. R. Olsen, MIKE: The Menu Interaction Kontrol Environment,
ACM Trans. Graphics, 5(4), pp. 318-344, October 1986.

Olsen87a D. R. Olsen, Larger Issues in User Interface Management, ACM
Computer Graphics, 21(2), pp. 134-137, April 1987.

Olsen87b D. R. Olsen (Chairman), ACM SIGGRAPH Workshop on Software
Tools for User Interface Management (introduction), ACM Comput-

er Graphics, 21(2), pp. 71-72, April 1987.

Olsen90 D. R. Olsen, Propositional Production Systems for Dialog Descrip-

tion, in Proc CHI 90, pp. 57-63, April 1990.

Paeth86 A. W. Paeth, K, S, Booth, Design and Experience with a General-
ized Raster Toolkit, in Proc Graphics/Vision Interface '86, pp. 91-

97,1986.

Palay88 A. J. Palay et al., The Andrew Toolkit - An Overview, in Proc.

USENIX Conf., pp. 9-21, February 1988.

Payne84 S. J. Payne, Task-Action Grammars, in Human-Computer Interac-

tion, Interact '84, ed. B. Shackel, pp. 527-532, North-Holland, 1984.

PCTE88 PCTE User Interface Specification, Yard Ltd., Tech. Rep. No.

C1211/3, March 1988.

- 330 -

Pereira86 F. C. N. Pereira, Can Drawing Be Liberated From The Von Neu-
mann Style?, in Logic Programming And It's Application, ed. M.
Van Caneghan, D. H. D. Warren, pp. 175-187, Ablex Publishing,
Norwood, New Jersey, 1986.

Perq84 Perq - Guide to PNX, ICL, 1984.
Pfaff85 User Interface Management Systems, ed. G. E. Pfaff, Springer-Ver-

lag, Berlin, 1985.

Pier88 K. Pier, E. Bier, M. Stone, An Introduction to Gargoyle: An Interac-
tive Illustraction Tool, in Document Manipulation and Typography,
ed. J. C. van Vliet, pp. 223-238, Cambridge University Press, 1988.

Pike84 R. Pike, The Blit: a multiplexed graphics terminal, AT&T Bell Labs
technical Journal, 63(8), pp. 1607, October 1984.

Pike85 R. Pike, B. Locanthi, J. Reiser, Hardware/Software Tradeoffs for
Bitmap Graphics on the Blit, Software - Practice and Experience,
15(2), pp. 131-151, February 1985.

Pike89 R. Pike, A Concurrent Window System, Computing Systems, 2(2),

pp. 133-153, January 1989.

Pollard89 W. Pollard, Providing Client-Server Interaction in a Highly Interac-
tive Graphics Environment (BSc Project Report), Dept. Computer
Science, University of York, March 1989.

Porter84 T. Porter, T. Duff, Compositing Digital Images, ACM Computer
Graphics, 18(3), pp. 253-260, July 1984.

Powel183 M. L. Powell, M. A. Linton, Visual Abstraction in an interactive

programming environment, ACM SIGPLAN Notices, 18(6), pp. 14-
21, June 1983.

Pratt85 V. Pratt, Techniques for Conic Splines, ACM SIGGRAPH, 19(3),
pp. 151-160, July 1985.

Prime90 M. Prime, User Interface Management Systems -A Current Prod-
uct Review, Computer Graphics Forum, 9(1), pp. 53-76, March
1990.

Quint86 V. Quint, I. Vatton, Grif: An Interactive System for Structured Doc-

ument Manipulation, in Text Processing and Document
Manipulation, ed. J. C. Van Vliet, pp. 200-213, Cambridge, April

1986.

Quint87 V. Quint, 1. Vatton, An Abstract Model for Interactive Pictures, in

Human-Computer Interaction - INTERACT '87 (Participants' Edi-
tion), ed. H. -J. Bullinger, B. Shackel, pp. 643-647, North-Holland,

1987.

Rao87 R. Rao, S. Wallace, The X Toolkit - The Standard Toolkit for X Ver-

sion 11, in Proc USENIX Conf., pp. 117-129, June 1987.

-331-

Reid80 B. K. Reid, Scribe: A High-Level Approach to Document Format-
ting, Proc 7th Symposium on Principles of Programming Languages,
Las Vegas, January 1980.

Reid86 B. K. Reid, Procedural Page Description Languages, in Text Pro-

cessing and Document Manipulation, ed. J. C. Van Vliet, pp. 214-
223, Cambridge, April 1986.

Reiser88 B. J. Reiser et al., A Graphical Programming Language Interface for
an Intelligent Lisp Tutor, in Proc. CHI 88, Washington, May 1988.

Reisner8l P. Reisner, Formal Grammar and Human Factors Design of an
Interactive Graphics System, IEEE Trans. Software Engineering,
SE-7(2), pp. 229-240, March 1981.

Ritchie89 I. Ritchie, HYPERTEXT - Moving Towards Large Volumes, The
Computer Journal, 32(6), pp. 516-523, December 1989.

Roberts88 W. T. Roberts, A. Davison, K. Drake, C. E. Hyde, M. Slater, P.
Papageorgiou, NeWS and X, Beauty and the Beast?, in Proc.
EUUG, pp. 265-310, Cascais, October 1988.

Rosenthal80 D. S. H. Rosenthal, Models of Interactive Graphics Software, in
Methodology of Interaction, ed. R. A. Geudj, P. J. W. ten Hagen, F.
R. A. Hopgood, H. A. Tucker, D. A. Duce., pp. 361-370, North-Hol-
land, 1980.

Rosenthal8l D. S. H. Rosenthal, 'Methodology in Computer Graphics' Re-exam-
ined, ACM Computer Graphics, 15(2), pp. 152-162, July 1981.

Rosenthal82 D. S. H. Rosenthal, J. C. Michener, G. Pfaff, R. Kessener, M. Sabin,
The Detailed Semantics of Graphics Input Devices, ACM Computer
Graphics, 16(3), pp. 33-38, July 1982.

Rosenthal83 D. S. H. Rosenthal, Managing Graphical Resources, ACM Comput-
er Graphics, 17(1), pp. 38-45, January 1983.

Rosenthal87 D. S. H. Rosenthal, A Simple X11 Client Program, or How hard can
it really be to write "Hello World"?, Sun Microsystems Inc., 1987.

Salmon87 R. Salmon, M. Slater, Computer Graphics - Systems and Concepts,
Addison-Wesley, 1987.

Scheifler86 R. W. Scheifler, J. Gettys, The X Window System, ACM Trans.
Graphics, 5(2), pp. 79-109, April 1986.

Schmucker86 K. J. Schmucker, MacApp: An Application Framework, Byte, pp.
189-193, August 1986.

Scofield85 J. A. Scofield, Editing as a Paradigm for User Interaction (PhD The-

sis), Computer Science Dept., Univ. of Washington, Seattle, Tech.

Rep. No. 85-08-10, August 1985.

- 332 -

Scott88 M. L. Scott, S. -K. Yap, A Grammar-Based Approach to the Auto-
matic Generation of User Interface Dialogues, in Proc. CHI '88, ed.
E. Solloway, D. Frye, S. B. Sheppard, pp. 73-78, Addison Wesley,
May 1988.

Selker87 T. Selker, C. Wolf, L. Koved, A Framework for Comparing Sytems
with Visual Interfaces, in Human-Computer Interaction - INTER-
ACT '87 (Participants' Edition), ed. H. J. Bullinger, B. Shackel, pp.
683-688, North-Holland, 1987.

Shaw80 A. C. Shaw, On the Specification of Graphics Command Languages
and their Processors, in Methodology of Interaction, ed. R. A.
Geudj, P. J. W. ten Hagen, F. R. A. Hopgood, H. A. Tucker, D. A.
Duce., pp. 377-392, North-Holland, 1980.

Shaw83 M. Shaw, E. Borison, M. Horowitz, T. Lane, D. Nichols, R. Pausch,
Descartes: A Programming-Language Approach to Interactive Dis-
play Interfaces, ACM SIGPLAN Notices, 18(6), pp. 100-111, ACM,
1983.

Shneiderman82 B. Shneiderman, The Future of Interactive Systems and the Emer-
gence of Direct Manipulation, Behaviour and Information
Technology, 1(3), pp. 237-256,1982.

Shneiderman83 B. Shneiderman, Direct Manipulation: A Step Beyond Programming
Languages, IEEE Computer, 16(8), pp. 57-69,1983.

Sibert85 J. Sibert, R. Belliardi, A. Kamran, Some Thoughts on the Interface
Between User Interface Management Systems and Application
Software, in User Interface Management Systems, ed. G. E. Pfaff,

pp. 183-192, Springer-Verlag, 1985.

Sibert86 J. L. Sibert, W. D. Hurley, T. W. Bleser, An Object-Oriented User
Interface Management System, ACM Computer Graphics, 20(4), pp.
259-268, August 1986.

Simoes87 L. P. Simoes, J. A. Marques, Images - An Object Oriented UIMS,
in Human-Computer Interaction - Interact '87, ed. H. J. Bullinger,
B. Shackel, pp. 751-756, North-Holland, 1987.

Singh89 G. Singh, M. Green, A High-Level User Interface Management
System, in Proc CHI '89, pp. 133-138, Austin, Texas, May 1989.

Slater88 M. Slater, A. Davison, M. Smith, Liberation from Rectangles: A
Tiling Method for Dynamic Modification of Objects on Raster Dis-

plays, Proc. Eurographics '88,1988.

Smith82a D. C. Smith, C. H. Irby, R. B. Kimball, E. Harslem, The Star User
Interface: An Overview, Proc AFIPS Conf., 51, pp. 515-528, NCC,
1982.

Smith82b D. C. Smith, C. Irby, R. Kimball, B. Verplank, Designing the Star

User Interface, Byte, 7(4), pp. 242-282, April 1982.

- 333 -

Smith86 R. B. Smith, The Alternate Reality Kit - An Animated Environment
for Creating Interactive Simulations, in Proc IEEE Workshop on
Visual Languages, pp. 99-106, Dallas, Texas, June 1986.

Smith87 R. B. Smith, Experiences with the Alternate Reality Kit: An Exam-

ple of the Tension Between Literalism and Magic, IEEE Computer
Graphics and Applications, pp. 42-50, September 1987.

Smith90 S. Smith, Compo: A Prototype for a Direct Manipulation Interface
for Image Processing (MSc Project Report), University of York,
1990.

Southa1188 R. Southall, Visual Structure and the Transmission of Meaning, in
Document Manipulation and Typography, ed. J. C. van Vliet, pp. 35-
45, Cambridge University Press, 1988.

Spivey89 J. M. Spivey, The Z Notation -A Reference Manual, Prentice Hall
International, 1989.

Sprou1179 R. F. Sproull, Raster Graphics for Interactive Programming Environ-

ments, ACM Computer Graphics, 13(2), pp. 83-93, August 1979.

SprouI183 R. F. Sproull, Challenges in Graphical user interfaces, Man-
Machine Interaction, pp. 145-152, University of Newcastle Com-
puting Laboratory, September 1983.

Stanton72 R. B. Stanton, The Interpretation of Graphics and Graphic Lan-

guages, in Graphic Languages, ed. F. Nake, A. Rosenfield, pp. 144-
159, North-Holland, 1972.

Stefik86 M. Stefik, D. G. Bobrow, K. M. Kahn, Integrating Access-Oriented
Programming into a Multi-Paradigm Environment, IEEE Software,
3(1), pp. 10-18, January 1986.

Stoddart90 A. Stoddart, A Report on the Visual Shell Environment Manager
(VSEM) -A Visual Shell for UNIX (BSc Project Report), Dept.
Computer Science, University of York, 1990.

Stroustrup87 B. Stroustrup, What is "Object-Oriented Programming"?, in Proc.
USENIX C++ Workshop, pp. 159-180, Santa Fe, NM, November
1987.

Stroustrup88 B. Stroustrup, What is Object-Oriented Programming?, IEEE Soft-

ware, 5(3), pp. 10-20, May 1988.

Strubbe83 H. J. Strubbe, Kernel for a Responsive and Graphical User Interface,

Software - Practice and Experience, 13(11), pp. 1033-1042,1983.

Stutely87 R. Stutely, The Standard Generalised Markup Language, in Work-

stations and Publication Systems, ed. R. A. Earnshaw, pp. 176-189,

Springer-Verlag, 1987.

- 334 -

Sufrin90 B. Sufrin, J. He, Specification, Analysis and Refinement of Interac-
tive Processes, in Formal Methods in Human-Computer
Interaction, ed. M. Harrison, H. Thimbleby, pp. 153-200, CUP, 1990.

Sugaya84 H. Sugaya, E. S. Biagioni, Input/Output Functions for a Bitmapped
Raster Graphics Terminal, Brown Boveri Forschungszentrum, CH-
5405 Baden-Dattwil, Tech. Rep. No. KLR 84-94 C, June 1984.

Sugihara86 K. Sugihara, J. Miyao, M. Takayama, T. Kikuno, N. Yoshida, A
Visual Language for Forms Definition and Manipulation, in Visual
Languages, ed. S. -K. Chang, Tadao Ichikawa, P. A. Ligomenides,

pp. 109-125, Plenum Press, New York, 1986.

Sun86 SunView Programmer's Guide, Sun Microsystems Inc., 2550 Gar-

cia Avenue, Mountain View, Ca 94043,1986.

Sutherland63 I. E. Sutherland, Sketchpad: A Man-Machine Graphical Communi-

cation System, in Proc SJCC, pp. 329-346,1963.

Sweetman86 D. Sweetman, A Modular Window System for UNIX, in Methodolo-

gy of Window Management, ed. F. R. A. Hopgood, D. A. Duce, E.
V. C. Fielding, K. Robinson, A. S. Williams, pp. 73-78, Springer-
Verlag, Berlin, 1986.

Swick88 R. R. Swick, M. S. Ackerman, The X Toolkit: More Bricks for Build-
ing User-Interfaces or Widgets for Hire, in Proc USENIX Conf., pp.
221-228, February 1988.

Swinehart84 D. C. Swinehart, P. T. Zellweger, R. B. Hagman, The structure of
Cedar, Xerox PARC, 1984.

Swinehart85 D. Swinehart, Cedar User Facilities, in Proc User Interface Design
Methodology Workshop, Cosener's House, Oxford, September 1985.

Szekely87 P. Szekely, Modular Implementation of Presentations, in Proc CHI
+ GI, ed. J. M. Carroll P. P. Tanner, ACM SIGCHI Bulletin, 18(2),
pp. 235-240, April 1987.

Szekely88a P. A. Szekely, B. A. Myers, A User Interface Toolkit Based on
Graphical Objects and Constraints, in Proc OOPSLA '88, pp. 36-45,

ACM, September 1988.

Szekely88b P. Szekely, Separating the User Interface from the Functionality of
Application Programs (PhD Thesis), CMU, Tech. Rep. No. CMU-

CS-88-101, January 1988.

Szwillus87 G. Szwillus, GEGS -A System for Generating Graphical Editors,

in Human-Computer Interaction - INTERACT '87 (Participants'
Edition), ed. H. -J. Bullinger, B. Shackel, pp. 135-141, North-Hol-

land, 1987.

- 335 -

Tanner86 P. P. Tanner, S. A. MacKay, D. A. Stewart, M. Wein, A Multitask-
ing Switchboard Approach to User Interface Management, ACM
Computer Graphics, 20(4), pp. 241-248, August 1986.

Tanner87 P. P. Tanner, Multi-Thread Input, ACM Computer Graphics, 21(2),
pp. 142-145, April 1987.

Teitelman84 W. Teitelman, A Tour Through Cedar, IEEE Software, 1(2), pp. 44-
73,1984.

Teitelman86 W. Teitelman, Ten Years of Window Systems -A Retrospective
View, in Methodology of Window Management, ed. F. R. A. Hop-
good, D. A. Duce, E. V. C. Fielding, K. Robinson, A. S. Williams,
pp. 35-46, Springer-Verlag, Berlin, 1986.

Tesler8l L. Tesler, The Smalltalk environment, Byte, 6(8), pp. 90, August
1981.

Thacker82 C. P. Thacker, E. M. McCreight, B. W. Lanpson, R. F. Sproull, D. R.
Boggs, Alto -A Personal Computer, in Computer Structures: Princi-

ples and Examples, ed. D. P. Siewiorek, C. G. Bell, A. Newell, pp.
549-572, McGraw-Hill, New York, 1982.

Thimbleby80 H. Thimbleby, Dialogue Determination, Intl. J. of Man-Machine
Studies, 13, pp. 295-304,1980.

Thimbleby84 H. W. Thimbleby, Generative user-engineering principles for user
interface design, in Human-Computer Interaction - INTERACT '84,
ed. B. Shackel, pp. 102-107, North-Holland, 1984.

Thimbleby85 H. Thimbleby, User Interface Design: Generative Engineering Prin-
ciples, in Fundamentals of Human-Computer Interaction, ed. A.
Monk, Academic Press, 1985.

Thomas83 J. J. Thomas, G. Hamlin, Graphical Input Interaction Technique
Workshop Summary, ACM Computer Graphics, 17(1), pp. 5-30, Jan-

uary 1983.

Took86a R. K. Took, Text Representation and Manipulation in a Mouse-
Driven Interface, in People and Computers: Designing for Usability,

ed. M. D. Harrison, A. F. Monk, pp. 386-401, Cambridge University

Press, 1986.

Took86b R. K. Took, The Presenter -A Formal Design for an Autonomous
Display Manager, in Software Engineering Environments, ed. Ian

Sommerville, pp. 151-169, Peter Peregrinus, 1986.

Took90a R. K. Took, Surface Interaction: A Paradigm and Model for Separat-

ing Application and Interface, in Proc CHI '90, pp. 35-42, ACM,
April 1990.

- 336 -

Took90b R. K. Took, Putting Design into Practice: Formal Specification and
the User Interface, in Formal Methods in Human-Computer Interac-
tion, ed. M. Harrison, H. Thimbleby, pp. 63-96, Cambridge, 1990.

Turner84 J. U. Turner, A programmer's interface to graphics dynamics, ACM
Computer Graphics, 18(3), pp. 263, July 1984.

Visvalingam87 M. Visvalingam, Problems in the Design and Implementation of a
GKS-Based User Interface for a Graphical Information System, Uni-
versity of Hull, Cartographic Information Systems Research Group,
Discussion paper 2, September 1987.

Voorhies88 D. Voorhies, D. Kirk, O. Lathrop, Virtual Graphics, ACM Computer
Graphics, 22(4), pp. 247-253, August 1988.

Waite88 K. W. Waite, Visualising Abstract Data Types, in Proc. BCS Conf.
Graphics Tools for Software Engineering: Visual Programming and
Program Visualisation, ed. A. C. Kilgour, R. A. Earnshaw, BCS,
London, March 1988.

Walker88 J. A. Walker, Supporting Document Development with Concordia,

IEEE Computer, 21(1), pp. 48-59, January 1988.

Wallace76 V. L. Wallace, The Semantics of Graphic Input Devices, ACM Com-
puter Graphics, 10(1), pp. 61-65, April 1976.

Warnock82 J. Warnock, D. K. Wyatt, A Device Independent Graphics Imaging
Model for Use with Raster Devices, ACM Computer Graphics,
16(3), pp. 313-320,1982.

Wasserman85 A. I. Wasserman, Extending state transition diagrams for the speci-
fication of human-computer interaction, IEEE transactions on
software engineering, SE-11(8), pp. 699-713, August 1985.

Whiteley88 K. Whiteley, M. J. Birch, A. Parker, A Mascot 3 Paintbox for
Aspect, in Proc. Software Engineering 88, Liverpool, July 1988.

Wiecha89 C. Wiecha, W. Bennett, S. Boies, J. Gould, Generating Highly Inter-
active User Interfaces, in Proc CHI 89, pp. 277-282, ACM, May
1989.

Wiederhold86 G. Wiederhold, Views, Objects, and Databases, IEEE Computer,

pp. 37-44, December 1986.

Wilcox88 L. D. Wilcox, A. L. Spitz, Automatic Recognition and Representa-

tion of Documents, in Document Manipulation and Typography, ed.

J. C. van Vliet, pp. 47-57, Cambridge University Press, 1988.

Williams72 R. Williams, A General Purpose Graphical Language, in Graphic

Languages, ed. F. Nake, A. Rosenfield, pp. 334-349, North-Hol-

land, 1972.
Williams83 G. Williams, The Lisa Computer System, Byte, 8(2), pp. 33-50,

February 1983.

- 337 -

Williams86 A. S. Williams, A Comparison of Some Window Managers, in
Methodology of Window Management, ed. F. R. A. Hopgood, D. A.
Duce, E. V. C. Fielding, K. Robinson, A. S. Williams, pp. 16-32,
Springer-Verlag, Berlin, 1986.

Williams87 A. S. Williams, C. M. Crampton, C. A. A. Goswell, Unix Window
Management Systems Client-Server Interface Specification,
Rutherford Appleton Laboratory, Tech. Rep. No. RAL-87-017,
March 1987.

Wills87a A. Wills, Document Processing Review, University of Manchester,
Dept. of Computer Science, Ipse2.5 Report 060/acw00048/1.1,
February 1987.

Wills87b A. Wills, Structure of Interactive Environments, Manchester Uni-

versity Dept. of Computer Science, May 1987.

Woodman87 M. Woodman, D. Ince, J. Preece, G. Davies, A Grammar Formalism

as a Basis for the Syntax-Directed Editing of Graphical Notations,
in Workstations and Publication Systems, ed. R. A. Earnshaw, pp.
102-116, Springer-Verlag, 1987.

Woods70 W. A. Woods, Transition Network Grammars for Natural Language
Analysis, Comm ACM, 13(10), pp. 591-606, October 1970.

Wyk82 C. J. van Wyk, A High-Level Language for Specifying Pictures,
ACM Trans. Graphics, 1(2), pp. 163-182, April 1982.

Yankelovich88 N. Yankelovich, B. J. Haan, N. K. Meyrowitz, S. M. Drucker, Inter-
media: The Concept and the Construction of a Seamless Information
Environment, IEEE Computer, 21(1), pp. 81-96, January 1988.

Young88 M. Young, R. N. Taylor, D. B. Troup, C. D. Kelly, Design Principles
Behind Chiron: A UIMS for Software Environments, in Proc. 10th
Intl. Conf. Software Engineering, pp. 367-376, IEEE, Singapore,
April 1988.

Young89 R. M. Young, T. R. G. Green, T. Simon, Programmable User Models
for Predictive Evaluation of Interface Designs, in Proc CHI 89, pp.
15-19, ACM, May 1989.

Zellweger88 P. T. Zellweger, Active Paths through Multimedia Documents, in
Document Manipulation and Typography, ed. J. C. van Vliet, pp. 19-
34, Cambridge University Press, 1988.

- 338 -

