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Abstract 

Cancer of the prostate is the most common male malignancy. Despite continual 

refinement, the treatment of localised prostate cancer remains unsatisfactory. Patients 

are often faced with the choice between invasive radical surgery and the risk of 

impotence, or radiological techniques with associated off-target toxicity and incomplete 

tumour ablation. Low temperature plasma (LTP) may present a completely new 

approach for the focal treatment of localised prostate cancer. LTPs create a rich source 

of reactive oxygen and nitrogen species, plus energetic photons, charged particles, and 

localised electric fields. Long-established radio- and chemo-therapies are known to 

exploit the ability of reactive species to induce cytopathic effects. 

The effects of LTP were first investigated in two commonly used prostate cell lines: 

BPH-1 and PC-3 cells. It was found that LTP treatment induced high levels of DNA 

damage, reduced cell viability and clonogenicity, and both apoptotic and necrotic cell 

death. The study then moved on to evaluate the effects of LTP in clinically relevant 

prostate models through the treatment of normal and cancer primary prostate cells 

derived directly from patient tissues. Whilst the immediate effects of LTP mirrored 

those found in cell lines, it was found that primary prostate cells do not undergo 

apoptosis; dying entirely via necrotic mechanisms. Evidence of an autophagic response 

was also observed following LTP treatment, and it was found that LTP showed no 

selectivity between normal and tumour cells. The treatment of three-dimensional 

aggregate and spheroid models was also evaluated, where it was found that the 

cytopathic effect of LTP occurred at the surface of treated spheres. Finally, the study 

concludes by speculating how LTP may compare with and overcome some of the issues 

encountered with current prostate cancer therapies, and outlines how focal LTP could be 

applied to patients in the clinic. 
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1. The Prostate and Treatment of Prostate Cancer 

1.1 Morphology of the Prostate Gland 

The normal human prostate gland is a small, walnut-sized organ, which is sited at the 

base of the bladder and surrounds the urethra. According to the widely adopted 

classification devised by McNeal [1], the prostate is composed of four separate regions, 

or ‘zones’, as depicted in Figure 1. The majority of the prostate glandular volume is 

made up by the peripheral zone (~70%), which surrounds the urethra. Over two-thirds 

of all carcinomas are believed to arise within this region [2]. The central zone surrounds 

the ejaculatory ducts and comprises ~25% of the total organ volume. Around ~5% is 

attributed to the transition zone, which is located in the centre of the prostate, grows 

throughout life and from which benign prostatic hyperplasia is believed to arise [3]. 

Finally, the anterior zone is a thick layer of fibrous and muscular tissue that possesses 

no glandular structure or function.  
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Figure 1: Morphology of the human prostate gland.  

Sited at the base of the bladder, the prostate envelops the urethra. The gland comprises 

four main zones; the transition zone (TZ), peripheral zone (PZ), central zone (CZ) and 

anterior fibromuscular stroma (AFS). Reprinted with permission from Wadhera
α
 [4]. 

α
Reprinted from Nature Reviews Urology (10), Wadhera P., An introduction to acinar pressures in BPH 

and prostate cancer, Pages 358-366, Copyright 2013, with permission from Nature Publishing Group. 
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1.2 Cellular Organisation of the Prostate Epithelium 

The normal prostate consists of a double-layered epithelium, which comprises three 

phenotypically different cell types: secretory luminal cells, basal cells and 

neuroendocrine cells. Luminal cells constitute the inner layer of the epithelium, are 

terminally differentiated, and secrete products such as prostate specific antigen (PSA) 

and prostatic acid phosphatase (PAP) [5]. They have a high rate of apoptosis [6], are 

reliant on androgens for their survival and hence express high levels of androgen 

receptor (AR) [7].  
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Figure 2: Organisation of the prostate epithelium.  

A cross-section of a single duct within the prostate is shown in A, which is expanded in 

B to indicate the organization of luminal and basal cell layers and their proximity to 

stromal tissue. Reprinted with permission from Collins and Maitland
β
 [8], and Oldridge 

et al
γ
 [9]. β Reprinted from Eur J Cancer 42(9), Collins A. T. and Maitland N. J., Prostate cancer stem 

cells, Pages 1213-1218, Copyright 2006, with permission from Elsevier. 
γ
Reprinted from Mol Cell 

Endocrinol. 360(1-2), Oldridge E. E. et al., Prostate cancer stem cells: are they androgen responsive?, 

Pages 14-24, Copyright 2012, with permission from Elsevier. 
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Basal cells form the outer layer of the epithelium and express p63, CD 44 and low 

levels of AR [10, 11]. They are strongly anchored to the basement membrane, which 

forms a dividing boundary between epithelial structures within the prostate and 

surrounding stromal tissue. Unlike luminal cells, basal cells have low secretory activity. 

They are also relatively undifferentiated compared to their luminal counterparts.  Basal 

and luminal cells can be further distinguished by their expression of unique cytokeratin 

(CK) pairs [12]. Basal cells have been shown to express CK 5 and CK 14, whereas 

luminal cells express CK 8 and CK 18 [13]. A rare population of neuroendocrine cells 

are found scattered within the basal layer of the epithelium, which are terminally 

differentiated and AR-independent [14]. They secrete a number of bioactive products 

including chromogranin and serotonin [15], and are thought to play a regulatory role in 

the growth and maintenance of the prostate epithelium [16]. Stromal cells, which lie 

beneath the basement membrane, also secrete products which are essential for epithelial 

cell maintenance and differentiation, namely epidermal growth factor (EGF) and 

fibroblast growth factor (FGF) [17, 18]. The cells in the basal layer can be further 

subdivided based on their differentiation state, into stem cells (SC), transit amplifying 

(TA) cells and committed basal (CB) cells. Largely quiescent SCs give rise to rapidly 

dividing TA cells, which differentiate to form CB cells. These cells then differentiate 

further to form the terminally differentiated secretory luminal layer [9]. The stages of 

the differentiation process are illustrated in Figure 3. 
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Figure 3: Cellular hierarchy within the prostate epithelium.  

Quiescent stem cells give rise to a rapidly proliferating population of transit amplifying 

cells. These differentiate to form committed basal cells and ultimately the secretory 

cells of the luminal layer. Reprinted with permission from Oldridge et al
δ 

[9].
 δ

Reprinted 

from Mol Cell Endocrinol. 360(1-2), Oldridge E. E. et al., Prostate cancer stem cells: are they androgen 

responsive?, Pages 14-24, Copyright 2012, with permission from Elsevier. 
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1.3 Diseases and disorders of the Prostate 

1.3.1 Prostatitis 

The term prostatitis can be used to describe a number of conditions of the prostate, 

namely: acute and chronic bacterial infections, pelvic pain, and inflammatory disorders 

[19]. It typically originates in the central zone and is the most common prostate 

disorder, with an incidence rate of 2-10% [20] and can occur in men of all ages. The 

condition can be treated successfully with antibiotic and anti-inflammatory drugs [21], 

however repeated or persistent inflammation of the prostate is thought to increase the 

risk of the development of benign prostatic hyperplasia (BPH) in later life [22, 23].  

 

1.3.2. Benign Prostatic Hyperplasia 

Benign enlargement of the prostate gland is a condition that is associated with aging 

men. It is estimated that over half of men over the age of 50 will have benign prostatic 

hyperplasia (BPH) [24], rising to ~75% in men aged 70 or older [25, 26]. BPH 

originates only in the transition zone, and arises from discrete regions of hyperplasia, 

which ultimately leads to considerable enlargement of the gland. As such, patients often 

experience the urge to urinate frequently due to increased pressure on the bladder, yet 

struggle to initiate and maintain a urine flow because of constriction of the urethra. 

First-line treatments include smooth muscle and steroid 5α-reductase inhibitors to 

improve urine flow and reduce prostate volume respectively [27]. BPH is ultimately 

alleviated using a procedure known as transurethral resection of the prostate (TURP), 

where tissue is surgically removed in order to clear the obstruction to the urethra, and 

reduce the volume of the gland; relieving pressure and discomfort. 
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1.3.3. Prostatic Intraepithelial Neoplasia  

Prostatic intraepithelial neoplasia (PIN) usually occurs in the peripheral zone of the 

prostate, and denotes abnormal cellular proliferation that results in pre-invasive 

neoplasms in the bilayer of the epithelium [28]. Despite the potential for invasion and 

proliferation of secretory cells into the glandular lumen, the basal layer remains at least 

partially intact, and the basement membrane is not breached (see Figure 5). Considered 

as a precursor to carcinoma, studies suggest the majority of men with high-grade PIN 

will develop prostate cancer (PCa) within a decade [29].  

 

1.3.4. Prostate Cancer 

Cancer of the prostate is recognised as the most common non-cutaneous malignancy 

in men, accounting for around a quarter of all cases and over 10% of cancer related 

deaths [30]. In the UK, recent statistics indicate there are over 40,000 newly diagnosed 

cases and more than 10,000 deaths annually as a result of the disease [31]. The 

likelihood of diagnosis has risen in recent years, particularly in developed countries 

[32]. Prostate cancer (PCa) is often described as a disease of old age, with risk of 

development peaking in men aged 60 years or older. These values are represented in 

Figure 4. However, high incidence rates are also found in younger men [33], which may 

be influenced by hereditary factors such as inherited genetic defects, leading to elevated 

risk of aggressive cancer [34]. It has been suggested that as high as 42% of the risk of 

developing PCa may be attributed to heritable factors [35]. 
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Figure 4: Epidemiology of prostate cancer.  

Incidence rates show that prostate cancer accounts for a quarter of all diagnoses in men 

(A), and over 10% of deaths (B). Risk of diagnosis significantly increases over the age 

of 60 (C). Values obtained from freely available data from Cancer Research UK 2012 statistics: 

http://www.cancerresearchuk.org/content/cancer-statistics-for-the-uk, accessed January 2016. 
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Cancer of the prostate is typically a slowly progressing disease which is believed to 

originate mostly in the peripheral zone. As the disease develops from PIN to 

adenocarcinoma, the organised glandular structure of the prostate is lost as cells begin to 

invade the glandular lumen, as seen in Figure 5. Reduced numbers of basal cells are 

noted in PIN, and prostate carcinogenesis is generally defined by the absence of basal 

cells, and thus is accepted to be of a predominantly luminal phenotype [36]. However, it 

is believed that cells within the basal population are the origin of carcinogenesis, and 

that there is a small population of basal cells within a tumour [37]. Differentiated, 

mutated luminal cells become highly proliferative [38], and as disease progression 

advances towards metastasis, the basement membrane is breached and mutated cells 

invade outwards into the surrounding stroma. 

 

1.3.5. Metastatic Prostate Cancer 

Prostate cancer typically metastasises into the lymph nodes and pelvic bones. For 

patients whose cancer has spread beyond the prostate gland, androgen deprivation 

therapy (ADT) is usually prescribed. As prostate tumours are largely dependent on 

androgens for growth, ADT removes circulating androgens and blocks their binding to 

the AR. This arrests cell proliferation, leading to apoptosis. Most patients initially 

respond well to ADT, showing tumour shrinkage and a reduction in their PSA levels 

[39]. However, invariably ADT eventually fails, leading to castrate-resistant prostate 

cancer (CRPC).  At this stage, the treatment of the disease is palliative. Whilst the 

development of novel drugs such as abiraterone have shown modest overall survival 

improvements of a few months relative to placebo [40], life-expectancy following 

diagnosis of metastatic CRPC remains at around 18-24 months [39].    
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1.4 Diagnosis of Prostate Cancer 

The PSA test is the most common means of screening, detecting, and monitoring 

PCa. PSA concentrations of higher than 4 ng/ml in patient blood samples are cause for 

concern and usually accompanied by digital rectal examination (DRE) for prostate 

abnormalities. As the PSA test has become more widespread, unsurprisingly higher 

numbers of men have been diagnosed with PCa [41], however the test can produce both 

false positives and negatives. For example, ~ 20% of test results could be false positives 

[42]. A healthy man without PCa can have elevated PSA levels, which may be 

indicative of other prostate conditions including BPH or prostatitis [43].  

A more definitive means of diagnosis involves the use of trans-rectal ultrasound 

(TRUS) or magnetic resonance imaging (MRI). This allows direct visualisation of the 

prostate gland, zonal anatomy and areas of malignancy [44]. The enhanced resolution of 

MRI permits greater detection accuracy and the ability to stage the disease locally [45],  

i.e. whether the disease is confined to the prostate, uni- or multi-focal, or has 

metastasised. However, it lacks the portability of ultrasound detection and is 

considerably more expensive.  Needle-core tissue biopsies are taken under TRUS 

guidance for subsequent analysis. A minimum of 10 cores is recommended to represent 

the overall morphology of the whole gland, although more cores may be taken from 

enlarged prostates [46]. These tissue sections are analysed by histopathology, and the 

disease is graded based on the tissue morphology and architecture, as shown in Figure 

6. Removal of tissue affects the general morphology of the gland, and despite multiple 

cores being taken, it is still possible to miss areas of malignancy.   
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Figure 6: The Gleason grading system of prostate cancer.  

The presently accepted system for defining the severity of prostate malignancy was 

devised by Gleason in 1966 [47] (A), and later updated by Epstein
ε
 in 2010 [48] (B). A 

value is assigned from between 1 to 5 based on the morphological appearance of 

prostate tissue. εReprinted and modified from The Journal of Urology, 183, Epstein J. I., An update of 

the Gleason Grading System, Pages 433-440, Copyright 2010, with permission from Elsevier.  
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The disease scoring system adopted for PCa was developed in 1966 by Gleason [47] 

based on the architecture of benign tissue samples, and was updated by Epstein in 2010 

[48].  The grading system indicates the progression from uniform glands representative 

of normal tissue (grade 1), to a decrease in cellular organisation and potentially invasive 

margins (grade 3), and ultimately to abstract morphological features devoid of glandular 

structure, indicative of aggressive disease (grade 5). The approach is routinely used by 

pathologists to describe the morphology of prostate tissue sections, who combine two 

separate graded scores to give an overall indication of disease stage and risk. One score 

is assigned for the most common pattern, and one for the second most common pattern 

as shown by Figure 6. When combined these values provide an overall grade out of ten, 

with Gleason grade 6-7 representing low risk disease (in the updated system, Gleason 

grade 6 is not considered cancer), and Gleason grade 8-10 indicative of high risk, 

potentially invasive PCa.  

 

1.5 Models for Studying Prostate Cancer 

Several models exist for the study of PCa in the laboratory. These are outlined below 

and illustrated in Figure 7. 

 

1.5.1 Prostate Epithelial Cell Lines 

The most commonly used method to studying PCa in vitro are cell lines. They are 

widely available, generally proliferate rapidly and can be cultured indefinitely [49]. 

Several commonly used prostate cell lines exist, such as those listed in Figure 7. 

However, extended culturing of cell lines over many years in the presence of serum has 

been shown to induce chromosomal changes [50]. Despite being the most frequently 
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used model system, prostate cell lines are not representative of the heterogeneity of 

tumours.  

 

1.5.2 Primary Prostate Epithelial Cells 

Derived directly from human prostate tumours, benign and healthy tissues, primary 

prostate epithelial cells serve as a far more accurate model of prostate disease, as they 

reflect the original properties of the tissue [49]. Needle core biopsies from the normal 

and tumour tissue of the same patient allow for direct comparison of the effect of 

treatments on normal and cancer cells. However, they are limited by a short lifespan in 

culture conditions and are not readily available. In addition, tumour samples may 

contain a proportion of normal prostate cells. 

 

1.5.3 Three Dimensional Models of Prostate Cancer 

Prostate cell lines and primary epithelial cells can be cultured to form three-

dimensional structures known as aggregates and spheroids. These more accurately 

represent the morphology of tumours than cells cultured in monolayers. They are, 

however, labour intensive to produce, and large numbers are required to perform even 

simple assays. 

 

1.5.4 In Vivo Mouse Models 

Cell lines and primary cells cultured as mouse xenografts enable the study of 

tumours in a more realistic niche, whereby the cells interact with stroma and a blood 

supply. Nonetheless, compared to other models, they are expensive to maintain. 
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Immunocompromised mice do not accurately represent the functional immune system 

of a patient, and the infiltration and interaction of mouse cells with the human tumour is 

an issue.  
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Figure 7: Models to study prostate cancer.  

Several experimental models exist to study prostate cancer in the laboratory, ranging 

from cell lines grown as monolayers to mouse xenografts. Reprinted with permission 

from Frame et al
ζ
 [51]. ζReprinted and modified from Human Cell Transformation, Chapter 9, Frame 

F. M. and Maitland N. J., Cancer Stem Cells, Models of Study and Implications of Therapy Resistance 

Mechanisms, Pages 105-118, Copyright 2011, with permission from Springer.  
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1.6 Treatment of Organ Confined Prostate Cancer 

When diagnosed with organ confined, or localised PCa, both the patient and clinician 

face a choice between a multitude of different treatment options, each with their own set 

of advantages and drawbacks. These range from monitoring of the disease, to radical 

surgery, and are outlined below. 

 

1.6.1 Watchful Waiting 

A 50 year old male has a lifetime risk of 42% of developing PCa, yet his risk of 

developing clinically significant disease is around 10%, and the risk of death as a direct 

result of PCa is only around 3% [52]. Watchful waiting, or active surveillance has 

become an increasingly accepted approach to the management of early-onset PCa, 

where PSA serum levels are typically monitored every 3-6 months. The rationale for 

watchful waiting is to only commence patient treatment when the disease shows 

evidence of clinical progression. This can be a particularly suitable option for elderly 

patients with shorter life-expectancies, to avoid invasive and risk-laden procedures. 

Clinical studies recorded over several decades have recorded rates of >80% disease 

specific survival 10-15 years after initial diagnosis [53, 54]. However, for many 

patients, the prospect of not taking direct intervention for their disease is an 

uncomfortable and uncertain option. 
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1.6.2 Radiotherapy 

It has long been known that exposure to ionising radiation (IR) can lead to adverse 

effects on cells. DNA damage, cell cycle arrest, and ultimately cell death can be 

achieved through radiotherapy (RT) [55]. This is due to reactive oxygen species (ROS) 

formed from interactions with free radicals, produced as a result of multiple ionisations 

via the Compton effect [56]. Radical formation is believed to take place in discrete 

regions [55], with so-called ‘clustered’ DNA damage necessary in order to produce a 

lethal cellular effect [57, 58]. However, it has been shown that cancer stem cells 

(CSCs), which are thought to instigate cancerous growth [59], can be resistant to 

radiological techniques, as well as promoting cancer recurrence following treatment [60, 

61]. Prostate stem-like cells in epithelial cultures derived from patient samples are more 

radio-resistant than more differentiated cells, due to increased levels of heterochromatin 

conferring a protective effect [62].  

The dose of IR is measured in Grays (Gy), which are defined as the absorption of 

energy per unit mass (J/kg). Some studies have suggested that at least 74 Gy, and indeed 

upwards of 80 Gy [63], should be applied in the case of localised prostate cancer, as 

patients treated with less than 72 Gy have shown higher cancer recurrence rates [64]. 

The total dose is usually delivered in multiple smaller fractions of, for example, 2 Gy 

per day over 60 days, with weekend breaks [65]. Following treatment, patients may 

often experience side effects including, but not limited to, urinary incontinence, 

diarrhoea and rectal discomfort. Urinary problems can persist or present at longer time 

periods following initial treatment, as well as erectile dysfunction [66, 67]. In addition, 

and most worryingly, a third of patients experience radio-recurrent disease [68]. 
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Another recent development, which seeks to improve localization of RT, is 

hypofractionated stereotactic body radiation therapy (SBRT) via the Cyberknife linear 

accelerator machine. During Cyberknife SBRT, movement of the prostate is detected 

and automatically corrected for during the procedure by the robotics [69], enabling 

delivery of the radiation to within 2 mm of the target area [70]. This enables the 

Cyberknife to deliver a hypofractionated radiation dose more accurately and non-

invasively to the tumour [69] than conventional radiotherapy. Another major advantage 

is that treatments are usually delivered over a few days rather than weeks, rendering 

post-procedure hospitalization unnecessary [69]. However, rectal and urinary 

complications are still reported, in addition to erectile dysfunction [71], In addition, the 

cost of Cyberknife technology is more expensive than other radiological techniques, at 

least in terms of initial outlay [72], although this is yet to be thoroughly investigated. 

Only a handful of centres within the UK have access to a Cyberknife system. 

 

1.6.3 Brachytherapy 

An increasingly common approach for treating prostate cancer internally is 

brachytherapy, which uses radioisotopes such as 
125

I, 
103

Pd and 
131

Cs, and is typically 

applied in order to ablate the whole prostate gland [73]. The radioisotopes, with half-

lives ranging from ~10-60 days [73], are delivered to the prostate as seeds through a 

matrix of narrow diameter needles, inserted transperineally. Brachytherapy can either be 

used as a stand-alone treatment, in conjunction with radiotherapy or prior to radical 

prostatectomy, or as a salvage treatment following radiotherapy [74].  
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1.6.4 Radical Prostatectomy 

One of the most common treatment approaches for localised PCa is radical 

prostatectomy (RP). The rationale behind the procedure is simple: if the disease remains 

confined to the prostate, then removal of the whole gland should ensure a disease-free 

outcome for the patient. However, RP is an invasive surgical procedure that can lead to 

multiple side effects and complications post-treatment, including urinary incontinence 

and severely reduced sexual function [75]. Disease-control outcomes appear to be 

similar to radiotherapy [76]. Although modern robotic RP procedures and nerve-sparing 

techniques have reduced the length of hospital stay and improved post-treatment 

function [77], the approach is still perceived as a gross overtreatment of a large 

proportion of cases [78]. The majority of PCa cases are not immediately life-

threatening, with 5 year survival rates >90% [79], however it is problematic to identify 

those that are at an early stage. As a result, more targeted, non-invasive techniques are 

required that provide satisfactory disease control. 

 

1.7 Focal Therapy 

The rationale for focal therapy is targeted destruction of the tumour site whilst 

sparing the surrounding healthy prostate tissue, resulting in preserved function and 

reduced side effects when compared to approaches that are more radical. For patients to 

be considered as candidates for focal therapy, their prostate cancer must be present in 

only one lobe, typically unifocal and contained within the prostate capsule [80]. It has 

been proposed that treatment directed to the index lesion only could still provide 

satisfactory disease control in multi-focal disease [81]. However, no absolute ideal 

patient selection criteria exist for focal prostate treatment [82]. In the following 
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subsections, some treatment approaches for localised prostate cancer are introduced, 

with their respective advantages and pitfalls outlined for comparison.  

 

1.7.1 Photodynamic Therapy 

Photodynamic therapy (PDT) damages tissues in a highly localised fashion by 

exciting photosensitizing drugs with light. The drugs are administered either orally or 

intravenously, absorb energy from light of a specific wavelength, and transfer it to 

molecular oxygen residing in the surrounding tissues in order to produce ROS [83]. It is 

believed that an activated form of molecular oxygen, known as singlet delta oxygen 

(SDO) is the predominant species produced following the excitation of the sensitizing 

agent by the light source [84]. SDO is highly toxic to cells, and can interfere with cell 

signalling as well as inducing cellular stress [85-87]. Theoretically, PDT has the 

advantage of greater selectivity relative to other cancer therapies, as only simultaneous 

exposure to the photosensitizing drug, light and oxygen will result in a cytotoxic effect 

on the treated cells [84]. It is necessary to protect the skin and eyes of the patient, even 

following treatment. Such protection may be required for a few hours up to several 

weeks, depending on the photosensitizer used [88], as the time each drug remains in the 

patient’s bloodstream varies vastly. Transperineal application of the light source allows 

treatment of anterior prostate tumours [89], giving advantages over other treatment 

approaches such as HIFU. Disease-positive biopsies have been identified during 

treatment follow-up however [90]. PDT can also be applied as a salvage therapy 

following the failure of other techniques such as radiotherapy [91].  
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1.7.2 Cryotherapy 

Rapid freezing and thawing cycles are employed by cryotherapy techniques in order 

to cause localised cellular destruction due to either: the extremely low temperature 

alone, the rapid rate of cooling, or the period of time for which the tissue stays frozen 

[92].  Either liquid nitrogen or argon gas is administered to the prostate transperineally 

via cryo-probes under TRUS guidance. Argon gas probes are now favoured over liquid 

nitrogen based approaches due their thinner diameters, permitting the insertion of 

additional probes (in a brachytherapy-like manner) to improve the efficacy of treatment 

[93]. Two cycles, reaching at least -40ºC are required for complete cell death, with cell 

shrinkage and protein denaturation occurring as the tissue temperature decreases beyond 

0ºC [92]. A urethral warming catheter and multiple thermosensors are typically used to 

prevent freezing of unwanted regions [94, 95]. 

Cryotherapy can be applied as a salvage therapy, for example after the failure of, or 

recurrence following, radio- and brachytherapy [96, 97]. Common side effects 

following cryotherapy include rectal or perineal discomfort [98] and urinary infections 

[99]. Major complications can include recto-urethral fistula, although this is rare [94]. 

 

1.7.3 High-Intensity Focused Ultrasound 

The concept of high-intensity focused ultrasound (HIFU) was first applied in the 

1980s to BPH [100], with the first recorded application to localised PCa in 1995 [101]. 

If an ultrasonic beam is sufficiently focused and the intensity increased, high levels of 

energy can be delivered to very localised regions [90]. Energy delivered by the 

ultrasonic beam is absorbed by the treated area, leading to rapid heating effects, which 

can raise the temperature of the treated tissue to 80ºC in a few seconds [102]. This 
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instant heating leads to coagulative necrosis through protein denaturation [103, 104]. A 

recent study considered the treated area to have been successfully ablated once a 

minimum temperature of 65ºC had been reached [105]. 

The typical devices used for HIFU treatment of the prostate are applied transrectally 

and thus possess the advantage over other focal therapies in that an invasive surgical 

approach is not required. Treatment intensities of up to 2000 Wcm
-2

 are achievable at 

focal lengths as short as 3 cm [106]. As a result, there is a need for accurate monitoring 

of the energy delivery to, and resulting temperature of, the target tissue. In recent years, 

the capability of real-time MRI has improved, allowing precise monitoring of the HIFU 

procedure [105, 107]. 

The difficulty with treating enlarged prostates with HIFU lies mainly in limitations 

on the focal length of the ultrasound probe [108, 109]. A TURP procedure is 

recommended prior to treatment to reduce organ volume, as post-HIFU swelling of the 

prostate is common [110, 111]. The effective treatment of anterior prostate tumours is 

also problematic using HIFU, as anterior perirectal fat tissue can prevent intended 

penetration depth of the ultrasound beam [112]. This occurs due to reflection of the 

signal, and is a particular problem if the patient is overweight [113].  
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Treatment Approach Summary of Pros Summary of Cons 

Watchful Waiting 

- Majority of prostate 

cancers not immediately 

life-threatening. Avoids 

invasive procedures until 

necessary 

- Uncomfortable and 

uncertain treatment option 

for many patients 

Radiotherapy 

- Minimally invasive 

approach as radiation is 

usually applied externally 

- Cyberknife technology 

give hope of improved 

targeting with fewer side 

effects 

- Many side effects as a 

result of radiation at 

unintended sites, causing 

urinary incontinence, rectal 

pain and erectile dysfunction 

- A third of patients 

experience radio-recurrent 

disease 

Brachytherapy 

- Image guided seed 

placement allows effective 

treatment of localised areas 

- Needle array application is 

a highly invasive process 

Radical Prostatectomy 

- Removal of entire gland 

should ensure disease-free 

survival from organ-

confined tumours 

- Highly invasive procedure, 

leading to many potential 

side-effects including 

infections and reduced 

sexual function 

Photo-Dynamic Therapy 

- More selective than other 

focal therapies due to 

conditions needed for SDO 

production 

- Can be applied at the same 

treatment site multiple times 

- Photosensitizing agent 

remains in patient’s 

bloodstream following 

treatment, requiring 

protection of the eyes and 

skin for potentially weeks 

after the procedure 

Cryotherapy 

- Double freeze-thaw cycle 

effectively destroys cells in 

targeted region 

- Can be applied as a 

salvage following 

radiotherapy techniques 

- Urinary infections and 

perineal discomfort post-

treatment are common 

- Relatively invasive 

treatment, with added need 

for thermal protection of 

urethra, bladder and rectum 

High-Intensity Focused 

Ultrasound 

- Transrectal application 

negates the need for surgical 

approach 

- Improvements in MRI 

technology allow real-time 

procedure monitoring and 

improved targeting 

- Difficulty treating enlarged 

prostates, especially in 

overweight patients 

- Effective treatment of 

anterior tumours is not 

achievable 

Table 1. A summary of treatments for localised prostate cancer. 
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1.8 Low Temperature Plasma: a Novel Focal Therapy for Prostate Cancer? 

Despite improvements to existing techniques such as radio- and brachy-therapy, 

which have enabled enhanced targeting of tumours, side-effects and complications are 

still common. Emerging focal therapies have shown real promise for the treatment and 

control of prostatic disease, yet each comes with its own set of drawbacks [114].  

This thesis represents an inter-disciplinary effort, between departments in physics 

and biology, to investigate a new treatment for localised prostate cancer, in the form of 

low temperature plasma. 
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2. Fundamentals of Plasmas and Their Use in Biomedicine 

2.1 Plasma Fundamentals 

Plasmas are ionised gases and often referred to as the fourth state of matter. In the 

energetic progression of solids, liquids and gases, if sufficient energy is applied to a 

region of gas it will break down into the plasma state. A frequently cited definition of 

plasma by Chen is given as “a quasi-neutral gas of charged and neutral particles which 

exhibits collective behaviour” [115]. 

In an atmospheric pressure neutral gas, only collisions between particles within the 

gas will give rise to their motion. However, due to the presence of charged particles 

within a plasma, electromagnetic forces contribute strongly to the overall dynamics. 

This indicates that the movement of particles within a plasma can occur due to both 

collisions between particles on a local scale, and due to the interaction of long-range 

electromagnetic forces with charged species. This implies that each particle interacts 

with many other particles in its vicinity and not solely with the nearest one to it, leading 

to the concept of collective behaviour. 

The interaction of charged species leads to another phenomenon exhibited by 

plasmas: their ability to shield out applied external charges. This screening effect 

essentially eliminates any large applied field. The length scale over which free charges 

are shielded within a plasma is defined by the Debye length (λD), and is given as: 

𝜆𝐷 = (
𝜀0𝑘𝐵𝑇𝑒

𝑛𝑒2
)

1
2 

In this equation, ε0 is the permittivity of free space, kB the Boltzmann constant, Te the 

electron temperature, n the plasma density and e the electronic charge.  
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Provided that the dimensions of the plasma, L, are much larger than the Debye 

length, then on a macroscopic scale, the shielding effect leads the plasma to be free of 

electrostatic potentials and is considered electrically neutral. This implies that the 

number density of positively and negatively charged particles roughly balance, i.e. ni ~ 

ne ~ n, where ni is the ion number density, ne the electron density, and n the plasma 

density as outlined above. However, strong electric fields can still exist locally between 

neighbouring particles, leading to the system as a whole being referred to as quasi-

neutral.  

A final condition often imposed for an ionised gas to be defined as a plasma relates 

to the electrostatic oscillation frequency of electrons and ions in response to a small 

charge separation. The frequency of collisions between charged species and neutral gas 

atoms must be less than the plasma frequency, such that electrostatic interactions 

dominate over kinetic collisions.  

𝜔𝑝 = (
𝑛𝑒𝑒2

𝑚𝑒𝜀0
)

1
2

 

This is referred to as the plasma frequency, where ne is the electron number density, me 

is the electron mass, and ε0 is the permittivity of free space. An equivalent relationship 

exists for ions, however, as the relatively energetic electrons mostly govern the plasma 

dynamics, ωp is often termed the electron plasma frequency, ωp,e. Energetic electron 

dynamics are of particular importance in low temperature plasmas, as outlined in a later 

section. 
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2.2 Gas Breakdown and Plasma Formation 

One of the most common means of electrically igniting a plasma is to apply a voltage 

across one or more electrodes which are separated by a region of gas. The resulting 

electric field accelerates free electrons present in the background gas (e.g. from cosmic 

radiation). Provided that the mean free path of the electrons is adequately long, they can 

acquire sufficient energies to cause ionisation of atoms and molecules in the gas through 

electron impact ionisation. As a simple approximation, each ionisation event leads to 

the production of one new electron-ion pair. These secondary electrons are subsequently 

accelerated into other atoms and molecules by the applied field. This leads to an 

exponential increase in the number of free electrons, and the formation of an electron 

avalanche. This is often referred to as a Townsend discharge after its founder, who 

discovered the phenomenon in the late 1800s. The point at which this occurs for a given 

gas is referred to as the breakdown voltage (VB), as coined by Paschen in 1889 [116], 

and varies with the product of pressure (p) and the electrode separation (d).  At low 

values of pd, the electrons can attain high energies due to a lack of collisions. However, 

at high pd, the opposite is true, resulting in the requirement of higher voltages to cause 

gas breakdown at atmospheric pressure. 

 

  



42 
 

2.3 Low Temperature Atmospheric Pressure Plasmas 

The defining characteristic of low temperature, or non-thermal, plasmas is that the 

ions and electrons within the plasma are not in thermal equilibrium with one another. 

Heavy ions cannot respond to rapidly varying applied electric fields with the same 

capacity as lower inertia electrons. This results in electrons being accelerated to 

temperatures of several eV, which drive the plasma chemistry through various 

collisional processes such as ionisation, excitation, dissociation, as depicted in Figure 8. 

The ions remain near ambient temperature at around ~ 300 K. Despite the increased 

collisionality present at atmospheric pressure, the global temperature of the gas does not 

increase due to the inefficient energy transfer between light electrons and heavy ions or 

molecules. In addition, only a very small proportion of the gas exists in an ionised state. 

This can be defined by the degree of ionisation α, where ne is the electron number 

density, and nn the number density of background neutral gas species. 

𝛼 =
𝑛𝑒

𝑛𝑒 + 𝑛𝑛
 

In thermal plasmas, such as those proposed for high temperature fusion technology, the 

degree of ionisation, α ≈ 1. However, in low temperature plasmas, α << 1. 
 
This results 

in the majority of the environment consisting of background neutral gas molecules. This 

allows LTPs to create an otherwise impossible rich and complex chemistry without 

causing thermal defects to a sample. Until recently, atmospheric pressure plasmas have 

been unstable and low temperature plasmas have conventionally been operated under 

lower gas pressure conditions. While this approach has proven extremely beneficial, for 

example in the multi-billion dollar semiconductor industry, it is limiting with regards to 

broader exploitation of non-vacuum compatible materials. Through the use of gas flow 

it is now possible to sustain stable, controllable plasmas at atmospheric pressure. This 
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has led to their proposed usage in a wide-range of applications, including the treatment 

of surfaces to cause preferential modification of surface properties, such as wettability 

in the textiles industry [117, 118], or as etching technologies in the fabrication of 

semiconductor devices [119, 120]. The particle collisions that govern the physical and 

chemical processes involved in these applications are detailed in the following section.
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. 

 

 

 

Figure 8: An illustrative sketch of a typical electron energy distribution function. 

The associated energies are outlined for plasma processes including ionisation, 

excitation and dissociation. 
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2.4 Plasma Collisions 

Collisions within a plasma can be either elastic or inelastic. During elastic collisions, 

the total kinetic energy of the particles is conserved, but the momentum (and direction) 

of the particles may change. For the case of inelastic collisions, energy may be 

transferred between particles, and the number of particles may change as a result. The 

probability of a collision event is proportional to the collision cross-section (σ), i.e. the 

target area that a particular species presents to an incoming particle. The mean free path 

(λ) gives the distance travelled through a gas of density ng by an incident particle 

between collisions: 

𝜆 =  
1

𝑛𝑔𝜎
 

The average time between collisions (τ) and associated collision frequency (ν) are given 

by: 

𝜏 =  
𝜆

𝜐
 

𝜈 =  
1

𝜏
= 𝑛𝑔𝜎𝜐  

Where υ is the velocity of the incident particle. Finally, the rate constant (K), defined as 

the rate of interaction per atom of the background gas can be written as: 

𝐾 = 𝜎𝜐 

The rate constants for various multi-body reactions have been determined 

experimentally [121]. Elastic collisions between charged particles in a plasma are 

governed by electrostatic Coulomb scattering. However, in weakly ionised plasmas, 

which form the subject of this thesis, the majority of collisions are between electrons 
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and background neutral gas species. These collisional processes result in inelastic 

interactions including ionisation, excitation and dissociation, which are central to the 

rich and complex chemistry created by plasmas. 

The transfer of energy through collisions can excite the electrons within atoms to 

higher energy states, which are usually extremely short-lived (i.e. ~ µs – ns). As an 

electron relaxes to the ground state, an energetic photon is emitted, which is specific to 

the transition between energy levels for a specific species. These photons can be 

detected by optical spectroscopic techniques to provide an understanding of the 

composition of species within the plasma [122, 123]. Electrons are very efficient at 

dissociating molecules in the background gas by overcoming the bond energy between 

atoms. They can undergo two- and three-body collisions with sufficient energy to ionise 

species by liberating electrons from their host atoms.  

Another special case of collisional process is Penning ionisation, which governs 

collisions between metastable atoms in the plasma with other particles. These 

metastable species possess significantly longer lifetimes when compared to other 

excited species, as their decay to the ground state is optically forbidden by selection 

rules. Examples of atomic and molecular Penning ionisation reactions involving a 

metastable helium atom (He*) and a colliding partner such as oxygen (O) are given 

below.  

𝐻𝑒∗ + 𝑂 → 𝐻𝑒 + 𝑂+ + 𝑒 

𝐻𝑒∗ + 𝑂2 → 𝐻𝑒 + 𝑂2
+ + 𝑒 

As these equations clearly show, Penning ionisation processes lead to the release of free 

electrons into the plasma, which was outlined earlier as a fundamental requirement for 

the sustainment of a discharge. One of the simplest metastable atoms is the lowest 
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triplet state of helium (He 2
3
S), which possesses an ionisation energy of ~ 20 eV, and a 

radiative lifetime of ~ 8000 s [124]. Penning ionisation plays a key role in driving the 

chemistry in low temperature atmospheric plasmas. The behaviour of colliding particles 

in two different low temperature plasma configurations are discussed in the following 

sections. 
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2.5 Capacitively Coupled Plasmas 

Capacitively coupled plasmas (CCPs) are usually ignited between two parallel plate 

electrodes, one powered and one grounded. CCPs are often driven using radiofrequency 

(RF) sinusoidal voltages, namely 13.56 MHz and its higher harmonics. These 

frequencies are used as they are efficient at heating electrons, and these specific 

frequencies are permitted by international telecommunication laws. As the plasma 

ignites, the active electrode will initially absorb higher numbers of electrons than ions. 

This is owing to the comparatively higher mobility of the electrons, resulting in a higher 

electron flux. This leads to a region of positive space charge forming between the 

plasma and electrode. This region breaks the condition of quasi-neutrality locally and is 

known as the plasma sheath, which is illustrated in Figure 9. The sheath acts to 

accelerate ions towards the surface, and repel electrons back into the plasma bulk, 

satisfying the condition of zero-net charge flux at the electrode. This acceleration of 

high energy electrons in the sheath strongly influences the ionisation dynamics of the 

discharge, acting as a sustainment mechanism. 
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Figure 9: Illustration of the plasma sheath.  

The formation of a positive space charge region is indicated between the bulk plasma 

and the boundary, with associated profiles for the ion and electron number densities. 

  



50 
 

2.6 Dielectric Barrier Discharges 

Dielectric barrier discharges (DBDs) consist of a high breakdown-strength dielectric 

material inserted into a discharge gap between two electrodes, which are typically 

driven at kHz frequencies with continuous or pulsed AC. This limits the discharge 

current between the two electrodes, preventing sparking. It was found that Townsend’s 

theory failed to satisfactorily describe gas breakdown at atmospheric pressure and larger 

gap widths, and thus the streamer mechanism was introduced [125, 126]. Unlike the 

relatively homogenous plasma production observed in CCPs, DBD plasma jets often 

ignite as a series of filaments. These take the form of a series of plasma channels, which 

ionise the gas immediately in front of the charged head (Figure 10), allowing the 

streamer to self-propagate. As the streamer forms and travels towards the cathode, the 

emission of photons from positive ions leads to the production of new free electrons 

through photoionisation events. These electrons are attracted back towards the 

positively charged plasma head, which leads to the neutralisation of ions, leaving 

behind a new positively charged ionisation front [127]. Photons are emitted from the 

new front and the process is perpetually repeated, driving the evolution of multiple 

fronts and the propagation of the plasma streamer, as shown by Figure 10. The areas of 

charge separation between successive ionisation fronts leads to instantaneous electric 

fields forming at the tip of the streamer (Figure 10). These strong, localised fields may 

have profound implications for biomedical applications, which is discussed later. 

During the course of this study, two different plasma sources were used based on 

those illustrated in Figure 11. The first was a CCP plasma, ignited at RF, which was 

used to study reactive species formation in plasma-treated cell culture media (the results 

of this study are provided as an appendix). The second, which forms the main part of 

this thesis, was a DBD plasma jet, which was used to directly treat prostate cancer cells 
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and study their response, with a view to developing a novel cancer therapeutic. As the 

DBD jet directly contacts the cell culture media surface, it creates electrons at the 

treatment site, thereby enhancing the radical chemistry in the local cellular environment. 

This feature, combined with the potential for formation of strong electric fields, led to 

the selection of the DBD jet for the main body of this work.  
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Figure 10: Illustration of streamer propagation. 

The motion of an election electron avalanche through an electric field is depicted, with 

associated instantaneous electric field at the streamer head identified (A). This is 

expanded further in B: Positively charged ions emit photons (i), which leads to the 

production of electrons through photo-ionisation events and creates a strong electric 

field (ii). Newly produced photoelectrons are attracted towards the plasma head leading 

to neutralization of ions (iii-iv). This leads to the formation of a new ionisation front, 

which emits photons (v) and the process is repeated leading to the propagation of the 

plasma (vi).Elements of this figure are modified from Algwari, 2011 [128] and Walsh et 

al. 2010 [129]. 
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2.7 Atmospheric Pressure Plasmas for Biomedical Applications 

Low temperature plasmas are emerging as an exciting development for biomedical 

therapeutics. The unique properties of cold non-equilibrium plasmas have enormous 

potential in disease therapeutics and plasma pharmacology as drug alternatives. 

Applications of these plasmas range from surface sterilization and bacterial 

decontamination [130-135], biofilm inactivation [136-138], antimicrobial treatment in 

food preservation [139-141], wound healing [142, 143], to cancer treatment [144-147]. 

This rapidly growing field of plasma medicine has emerged over the last decade and 

offers great potential, bringing together multi-disciplinary branches of science and 

engineering. 

Despite LTPs being earmarked as a technology for future healthcare, plasmas have 

been used for a range of surgical applications in the field of electrosurgery since as long 

ago as 1991 [148, 149]. Though not technically an LTP, the argon plasma coagulator 

has been employed in various surgical disciplines for the purposes of tissue removal and 

wound cauterization [148], and is perceived as an improvement on existing laser-based 

techniques [150]. Recently, plasma vaporization has been applied to benign prostatic 

hyperplasia (BPH), with the hope of reducing the common side effects of conventional 

transurethral resection of the prostate (TURP) procedures [151]. Early results show that 

the concept of plasma vaporization could prove to be a significant improvement over 

current TURP techniques for BPH [152]. Reduced bleeding and thermal lesions in 

surrounding tissues, a greater level of reduction of glandular volume, and shortened 

procedure times have all been recorded following plasma vaporization when compared 

to conventional TURP techniques [153].  
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2.7.1 Common Low Temperature Plasma Designs for Biomedical Applications 

Various devices are available for the formation and delivery of plasma [154-158] 

which rely on broadly the same principles. Three such examples of commonly used 

designs are illustrated in Figure 11. DBD plasmas can either be ignited between two 

electrodes covered with dielectric material (Figure 11a), or between one active electrode 

and a grounded surface (Figure 11b). The resulting plasma plume self-propagates 

outwards, and as the dynamic high electric field is parallel to the direction of 

propagation, the effluent contains reactive neutrals, charged particles, electric fields and 

UV radiation. A variation of the DBD schematic is the floating electrode dielectric 

barrier discharge (FE-DBD) plasma (Figure 11b), which operates by using the surface 

to which it is applied as a floating counter electrode. A third example of a plasma source 

arrangement is the radio-frequency (RF), or cross-field, plasma source (Figure 11c) 

which uses an RF signal as a means of gas excitation. This device utilizes plane-parallel 

electrodes, with a gas flow passing through the core plasma volume. This particular 

source possesses a charge-free effluent since the applied electric field is perpendicular 

to the direction of gas-travel, thus confining charged species to the core plasma region. 

Due to the high collision frequency at atmospheric pressure, the effluent is devoid of 

charge carriers and its characteristics are dominated by energy carrying reactive 

neutrals. The RF plasma jet is the most comprehensively studied LTP set-up with 

respect to diagnostics and modelling [159-171]. Furthermore, a European reference RF 

jet is being developed and characterised, the designs of which will become freely 

available, in the hope that laboratories gain the capacity to make direct data 

comparisons [172].  In general, LTPs are ignited using a main feed gas of helium or 

argon, supplemented with small admixtures (< 1%) of molecular gases such as oxygen 
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or nitrogen. As shown earlier in Figure 8, plasmas are very efficient at dissociating 

molecular species, aiding the formation of a rich, chemically reactive environment.  
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Figure 11: Examples of different plasma devices for medical applications.  

Linear-field plasma jets: A) Dielectric barrier discharge (DBD), B) Floating-electrode 

DBD (FE-DBD), and cross-field plasma jets: C) Capacitively coupled at radio-

frequency (RF). Reprinted from Hirst et al [114], under a Creative Commons 3.0 

License (http://creativecommons.org/licenses/by/3.0/). 
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2.8 Low Temperature Plasmas for Cancer Treatment 

Over the last decade, many research groups have studied the application of LTPs to 

different cancer models. It is becoming widely acknowledged within the field of plasma 

medicine that the principle mode of cellular interaction from LTPs is their ability to 

create large concentrations of various reactive oxygen species (ROS). The involvement 

of ROS in cancer initiation and progression [173], and their therapeutic potential [174] 

is now well documented. The cellular threat from low levels of ROS is well tolerated 

and neutralised through the action of enzymes including super oxide dismutase and 

catalase [175]. The inherent elevated metabolic activity in malignant cells (Warburg 

effect) may present a therapeutic window, as they are essentially already at their ROS-

tolerance threshold or ‘red-line’ when compared with neighbouring normal cells [176, 

177]. The creation of high levels of ROS is the mechanism by which long-established 

anti-tumour strategies, such as radio- [178] and some chemo-therapies [179, 180] 

operate to induce oxidative stress leading to cytopathic cellular responses. Given that 

LTPs can create and deliver a multitude of reactive oxygen and nitrogen species 

(RONS) simultaneously [154], they are an obvious candidate for cancer therapy. The 

role of these plasma components, even individually, is to date not fully known and is a 

topic of current research. It can be anticipated that, similar to low pressure plasma 

processes, in for example, plasma etching or plasma deposition, synergistic mechanisms 

govern the plasma surface interface rather than the individual species themselves. 

Mounting evidence in the literature suggests that LTPs rely strongly on the formation 

of reactive species to facilitate cellular responses. Processes such as ionisation, 

dissociation, excitation and recombination of atoms and molecules within the plasma 

lead to a chemically rich environment of reactive oxygen species (ROS) including 

atomic oxygen (O) [121, 165], hydroxyl (OH) [181], superoxide (O2
-
)[82], singlet-delta 
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oxygen (
1
O2) [182], and hydrogen peroxide (H2O2)[183]. In addition, depending upon 

the gas composition and plasma geometry, reactive nitrogen species (RNS) may include 

atomic nitrogen (N) [160], nitric oxide (NO) [184], peryoxynitrite (ONOO
-
) [185], and 

other members of the NOx family. The sheer multitude of RONS generated by LTPs 

could provide advantages over other cancer therapies, e.g. radiotherapy and 

photodynamic therapy, which generally produce only ROS. Indeed, high concentrations 

of NO has been shown to induce apoptosis in tumours, implying the action of 

nitrosative stress could also prove crucial to successful cancer therapy, [186]. 

The application of LTP to cells or tissues is a multi-phase process, which begins with 

an initial ignition and steady-state core plasma, followed by an afterglow plasma phase, 

leading to a diffusive interface with a liquid-like layer or environment. The liquid 

environment may relate to treatment of cell culture media in laboratory experiments, or 

the fluid within and surrounding a tumour in a clinical plasma application. This plasma-

modified liquid environment then influences the cells and tissues around it. An 

illustrative overview of this process is depicted in Figure 12, along with approximate 

time-scales for various phenomena in the plasma and liquid phases and subsequent 

biological interaction. This different phases within this environment, and the interfaces 

between them, is extremely complex and only recently starting to be unravelled. Current 

research has suggested that H2O2 is created almost exclusively from species in the main 

plasma phase, whereas species such as OH and O2
-
 originate in the region between the 

plasma and the liquid environment [187]. OH and O2
-
 may also arise indirectly from 

H2O2, through Haber-Weiss or Fenton reactions [181]. 
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Figure 12:  An illustrative representation of the multi-phase transfer of plasma 

species towards a biological sample.  

The main components of the plasma phase, including ions, photons and neutral species 

are shown, leading to the creation of various RONS across the plasma-liquid interface 

and their propagation towards and diffusion through an arbitrary tissue layer. In 

addition, approximate timescales governing various phenomena across the plasma-

liquid phases and biological interaction are outlined. Reprinted from Hirst et al [188], 

under a Creative Commons 4.0 License (http://creativecommons.org/licenses/by/4.0/). 
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The dynamics of the chemistry within the plasma core are extremely complex. To 

date, simulation studies have comprised in excess of 60 different species, involved in 

~1000 different reactions [159]. Translation to the liquid environment and ultimately 

precise understanding of the specific extra- and intra-cellular RONS involved in both 

cellular effect and response, and their concentrations is vastly more so. Promising 

numerical models have attempted to resolve and understand this complexity, including 

both the variation in chemistry between gas-liquid-tissue phases [189], the fluxes of 

different reactive species at the tissue surface [190], and the influence of different 

molecular gas admixtures [191]. The mechanistic effects of LTPs on cells are presented 

in the following section. 

 

2.9 Mechanisms of LTP Treatment 

LTPs create and transfer numerous RONS to the cellular environment, as discussed 

earlier. Current evidence implies that the production of RONS is primarily responsible 

for cytopathic effects of the plasma, however other facets of LTPs may contribute to 

ultimate cell fate and treatment outcome, which are outlined below. 

LTPs have been applied to a range of different malignant cell lines in culture with 

extremely promising results. A selection of these are presented in Table 2, along with a 

respective method of treatment. A range of common cellular responses have been 

documented including DNA damage [192, 193], decreased cell viability and 

clonogenicity [194, 195], reduced proliferation [196] and cell cycle arrest [197, 198]. 

From the growing literature, it would appear the cell death mechanism following LTP 

treatment varies with both the cell type and plasma source used (Table 2). Broadly 

speaking, after treatment with LTP cell death is likely to occur through apoptosis or 
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necrosis. Apoptosis is a tightly regulated chain of events involving specific proteins, 

resulting in cell shrinkage and fragmentation. Excessive oxidative stress triggers 

cytochrome c release from the mitochondria, leading to the activation of initiator and 

executioner caspases, and ultimately cell death. As the cell disintegrates, apoptotic 

bodies are formed which are engulfed and cleared by nearby phagocytic cells [199]. 

Necrotic cells are characterised by swelling, rounding up and sudden rupture of the cell 

membrane [200]. This has been likened to a balloon bursting, and leads to the spillage 

of the cell contents into the surrounding medium [201]. The vast majority of LTP 

studies report apoptosis [184, 196, 202-204], however senescence (loss of replicative 

capacity) [205] and non-apoptotic cell death [195] have also been presented.  

Elevated RONS levels are continually cited as the likely perpetrators of plasma-

induced effects, leading to the activation of apoptotic pathways including TNF-ASK1 

[206], ATM/p53 [184] and MAPK [82]. Furthermore, LTP effects are (at least partially) 

alleviated by the use of various RONS scavengers [184, 207], further confirming the 

central role of reactive species produced by LTPs.  

Although much of the focus of plasma oncology studies centre around elevated 

RONS levels and their effects, the formation of strong localised electric fields by LTPs 

can also occur (as highlighted earlier in Figure 10). These may interact directly with cell 

membranes and thus cause similar effects to those of emerging electroporative cancer 

therapies. Electroporation treatments utilise strong electric fields to irreversibly 

compromise cell membranes to provoke a cytocidal response. An example of this is 

Nanoknife technology, which has been proposed for focal treatment of pancreatic [208], 

prostate [209], and renal cancers [210]. Numerical modelling has suggested that LTPs 

may create electric fields in the hundreds of kV/cm range [211], capable of penetrating 

a few cell layers, and generating sufficiently high fields within individual cells for 
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electroporative effects [212]. Novel methods and diagnostic techniques have quantified 

average field strengths of around 10-20 kV/cm within LTPs, but locally these may rise 

towards 100 kV/cm [213, 214]. Electroporative effects have indeed been demonstrated 

biologically following plasma treatment [215], which may irreversibly damage cell 

membranes and aid the transfer of RONS into the cell, as well as permitting leakage of 

intra-cellular components.  

LTP has also been applied in vivo to treat mice with tumours derived from glioma 

cell lines, where a preliminary study showed a reduction in tumour volume of over 50% 

at six days following initial plasma treatment [216]. Survival rates of plasma-treated 

mice increased by over half, compared with the control group who received no 

treatment [216]. In a follow-up study, ROS produced by the plasma were earmarked as 

the main anti-tumour agents, with evidence for cell cycle targeting [217] and apoptosis 

also presented [218-220]. LTP has also been recently applied to ablate tumours in mice 

subcutaneously injected with neuroblastoma cells, with a reduction in the rate of tumour 

growth observed versus control. In addition, survival time post-treatment almost 

doubled [221].  
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Cancer Type 
Method of 

Treatment 

Treatment 

Duration 

Cell Death 

Mechanism 
Reference 

Prostate cancer 

cell lines: 

PC-3 and LNCaP 

In suspension,  

500 µl volume 

10 s Apoptosis Weiss et al. 

[196] 

Glioma cell lines: 

U87, U373, A172 

Adherent cells,  

96 well plates, 

~40% confluence 

Up to 180 s Apoptosis/ 

Necrosis 

Siu et al. 

[202] 

Lymphoma cell 

line: 

U937 

Adherent cells,  

10 cm plates, 5 ml 

volume 

Up to 480 s Apoptosis Kaushik et 

al. [204] 

Malignant cell 

lines from various 

sites 

Adherent cells,  

35 mm plates 

30-60 s, up to  

10 repeated 

exposures 

Apoptosis Ma et al. 

[184] 

Colorectal cancer 

cell lines: 

Caco2, HCT116, 

SW480 and HT29 

Adherent cells in 

various multi-well 

culture plates 

Up to 30 s Apoptosis Ishaq et al. 

[203] 

Glioma and 

colorectal cancer 

cell lines: 

U87MG-Luc2 and 

HCT-116-Luc2. 

Glioma 

xenografts: 

U87MG-Luc2 

 

Adherent cells,  

24-well plates,  

500 µl volume 

 

 

Subcutaneous 

tumours 

Up to 30 s 

 

 

 

 

6 mins daily for 

5 consecutive 

days 

Apoptosis 

 

 

 

 

Apoptosis 

Vandamme 

et al. [218] 

Head and neck 

cancer cell lines: 

FaDu, SNU1041, 

SNU899 and HN9 

FaDu xenografts 

In suspension, 6 

cm plates, 

3 ml volume 

 

Subcutaneous 

tumours 

1 s at either 

2 or 4 kV 

 

 

20 s daily for  

20 days 

Apoptosis 

 

 

 

Apoptosis 

Kang et al. 

[82] 

Various 

melanoma cell 

lines 

Adherent cells, 

assorted culture 

plates, without 

culture medium 

Up to 120 s Senescence Arndt et al. 

[205] 

Table 2. LTP treatment induces different paths to cell death.  

Summary of assorted cell treatment methods and associated death mechanisms for a 

range of malignancy models. 
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2.10 Aims of Research  

Despite continual improvement and refinement, long-term treatment for prostate 

cancer remains inadequate. Interventions such as radical prostatectomy, which is a 

highly invasive procedure with many side effects, and radiotherapy, to which around a 

third of patients are resistant, are still commonplace. In the case of early onset, organ 

confined tumours, patients may be given the option of treatment from a range of 

emerging focal therapies. However, each of these treatments harbours its own set of 

drawbacks or inefficiencies. This thesis aims to determine the potential of low 

temperature plasma to become a novel approach to treat localised PCa.  

The first part of this thesis contains preliminary data on the influence of different 

variables in the plasma-treatment of cells. Different models to study the effect of LTP 

on PCa are outlined, and the effect of treated cell number density on cellular response 

was explored. In addition, the contribution of the cell culture media components, 

including foetal calf serum, in the observed response was investigated.  

The main part of this thesis presents the direct application of LTP to PCa cells from 

the perspective of a future therapeutic technique. Here, an initial study was first 

performed in order to validate the ability of LTP to induce cytopathic effects in two 

commonly utilised prostate cell lines, derived from benign and metastatic disease. 

Following this, experiments were repeated in primary cells cultured directly from tissue 

biopsies to ascertain if LTP treatment was cytotoxic to human cells. The effects of 

patient-to-patient variability were analysed through the treatment of three matched 

paired normal and cancer samples. This work represents the first study of its kind both 

on the application of LTP to PCa, and importantly, on the application of LTP to cells 

derived from human tissues.  
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3. Materials and Methods 

3.1 Low Temperature Plasma Design and Operating Conditions 

Treatment of prostate cells was performed using a dielectric barrier discharge (DBD) 

plasma jet configuration similar to the one illustrated in Figure 11A, The DBD jet was 

powered (AC) in the kV/kHz regime. The details of the experimental setup are 

described in the following sub-sections. 

 

3.1.1 Dielectric Barrier Discharge Plasma Jet 

The DBD plasma jet consisted of a quartz glass tube of inner/outer diameter 4/6 mm, 

with two copper tape electrodes positioned 20 mm apart, as shown in Figure 13. Helium 

was used as a carrier gas at 2 SLM, fed with 0.3% molecular oxygen admixture (6 

SCCM). Gas flow was mixed using two calibrated mass flow controllers (Analyt 

GFC17) and fed into the top of the quartz tube. The plasma was ignited using a 

PVM/DDR Plasma Driver power supply (Information Unlimited). One electrode was 

powered at ~ 6 kV (amplitude, sinusoidal) at a frequency of ~ 20 kHz measured using a 

high voltage probe (LeCroy PMK-14KVAC) connected directly across the electrodes, 

and an oscilloscope (LeCroy WaveJet 354A). The bottom electrode was grounded. 

These voltage and frequency parameters were found to produce the brightest plasma, 

without causing arcing between the copper tape electrodes. 
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Figure 13: Schematic of the DBD plasma jet.  

Illustration of the DBD plasma jet, with powered and grounded copper tape electrodes, 

and gas flow indicated. The physical dimensions of the tube and casing are given in 

mm. In the accompanying photograph, the core plasma is visible between the 

electrodes, with the plume propagating downwards from the nozzle. 
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3.2 Plasma Diagnostics 

3.2.1 Optical Emission Spectroscopy 

Optical emission spectra were measured using an Ocean Optics HR4000CG-UV-NIR 

spectrometer (200 – 1100 nm range), and accompanying Spectra Suite analysis 

software. Integration time and scans-to-average were set at 6 s and 50 respectively. A 

background dark spectrum was first obtained and then subtracted from subsequent 

spectra. The optical fibre was aligned directly with the core plasma region and fixed at 

~2 cm from the quartz tube.   

 

3.3 Mammalian Cell Culture 

3.3.1 Culture and Maintenance of Prostate Cell Lines 

Three prostate cell lines were used during the course of this study: BPH-1, P4E6 and 

PC-3 cells. BPH-1 cells were derived from benign prostatic hyperplasia (BPH) and 

immortalised with SV40 large T antigen [222]. P4E6 cells were derived in our own 

laboratory from a localised and well-differentiated prostate tumour, and immortalised 

with retrovirus HPV E6 gene [223]. PC-3 cells were established from a prostatic 

adenocarcinoma that had metastatised to bone [224]. BPH-1 cells were cultured in 

Roswell Park Memorial Institute-1640 (RPMI) medium (Invitrogen) supplemented with 

5% foetal calf serum (FCS) (PAA) and 2 mM L-glutamine (Invitrogen), referred to as 

R5. P4E6 cells were cultured in keratinocyte serum-free media (KSFM), supplemented 

with 50 µg/ml bovine pituitary extract (BPE, Invitrogen), 5 ng/ml epidermal grown 

factor (EGF, Invitrogen), 2% FCS and 2 mM L-Glutamine, referred to as K2. Finally, 

PC-3 cells were cultured in Ham’s F12 medium (Lonza), supplemented with 7% FCS 

and 2 mM L-glutamine, referred to as H7. No antibiotics or antimycotics were added to 

the cell culture medium. Cells were incubated at 37°C with 5% CO2, and routinely 
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cultured in T-75 flasks (Corning). Cell lines were subcultured at a ratio of ~1:3-1:10 

every 3-4 days depending on their growth characteristics, when they had achieved 

~80% confluence. 

 

3.3.2 Culture of Primary Prostate Epithelial Cells 

Primary prostate tissue was obtained from patients undergoing transurethral resection 

of the prostate (TURP), or targeted biopsies from radical prostatectomy, with full 

ethical permission and patient consent. Needle core biopsies (14 g) were verified as 

normal or Gleason grade 7 cancer by subsequent pathology, with matched pairs (normal 

and cancer) obtained from the same patient immediately following radical 

prostatectomy. The site of each biopsy was determined by previous pathology, TRUS 

and MRI imaging, and palpation. Tissues were transported in RPMI-1640 with 5% FCS 

and 100 U/ml antibiotic/antimycotic solution (containing 100 IU/ml penicillin, 100 

µg/ml streptomycin and 0.25 µg/ml fungizone (ABM, Invitrogen)) at 4°C, and 

processed within 6 hours as described previously [225]. Tissues were first dissected into 

~ 1 mm
2
 sections, before overnight collagenase digestion (Worthington Biochemical 

Corporation) to release epithelial structures from the bulk tissue. Repeated 

centrifugation steps were used to separate out the stromal fraction. Epithelial structures 

were then further disaggregated through a 30 minute incubation in trypsin-EDTA 

(Invitrogen) at 37°C under agitation to form a single cell suspension. Primary cells were 

cultured in stem cell media (SCM), based on KSFM supplemented with 2 mM L-

glutamine, 50 µg/ml bovine pituitary extract (BPE), 5 ng/ml epidermal growth factor 

(EGF), 2 ng/ml stem cell factor (SCF, Sigma,), 1 ng/ml granulocyte macrophage colony 

stimulating factor (GM-CSF, First Link UK Limited), 100 ng/ml cholera toxin (Sigma), 
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and 2 ng/ml leukaemia inhibitory factor (LIF, Millipore UK Limited)  [225]. Cells were 

cultured on collagen-I coated 10 cm dishes (BD Biosciences) in the presence of 

irradiated STO feeder cells, and incubated at 37°C with 5% CO2. No antibiotic or 

antimycotics were added to the cell culture medium. Primary cells were subcultured at a 

ratio of 1:2-1:4 once they had achieved 80-100% confluence. Information on the three 

patient samples used in this study is provided in Appendix A. 

 

3.3.3 Preparation of Feeder Cells by Irradiation 

Irradiated murine embryonic fibroblast feeder cells (STOs) were added to primary 

cultures and to primary clonogenic assays (due to very low seeding density). An 

RS2000 X-Ray biological irradiator containing a Comet MXR-165 X-Ray source (Rad-

Source Technologies Inc.) was used to irradiate STO cells at 60 Gy in KSFM to 

inactivate replicative capacity. STOs were added to each culture dish such that a 

confluent layer was formed, through which epithelial cultures grew. 

 

3.3.4 Determination of Live Cell Number  

In order to ascertain the number of viable cells for use in different experiments, the 

number of live cells in a given culture was determined using a haemocytometer 

(Neubauer). Trypan Blue stain (0.4%, Sigma) was mixed equally with cells in culture 

media, 10 µl of which was added to a haemocytometer and visualised by microscopy. 

Non-viable, blue-stained cells were discounted.  
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3.3.5 Three-Dimensional Cell Culture 

BPH-1 and PC-3 cell aggregates were formed by plating 10,000 cells in a volume of 

100 µl into round-bottomed, non-adherent 96-well plates (Nalge Nunc International 

U96 #145399).  Cell culture media was refreshed on alternate days, by the removal of 

50 µl spent media and the addition of 50 µl fresh media. Aggregates were cultured for ~ 

seven days and were then treated with LTP. 

To culture P4E6 spheroids, an equal mixture of matrigel (BD Biosciences #356231) 

and K2 media was added to each well of a 24 well plate (Corning) to form a 250 µl 

matrigel plug, which was allowed to set for 30 minutes at 37°C. Onto this, 6000 cells 

were added to each well in an equal matrigel/media mixture, and allowed to set at 37°C 

for a further 30 minutes. Cells and matrigel were supplemented with 2 ml of growth 

media, which was refreshed every other day by removal of 1 ml spent media and the 

addition of 1 ml fresh media. Cells formed spheroids after ~ seven days and were then 

treated with LTP. 

 

3.4 Plasma-Treatment of Culture Media, Cells and Tissues 

Cells in suspension were exposed to the DBD LTP jet at a distance of 15 mm from 

the end of the powered electrode for a range of treatment times from 0 to 600 s in 

micro-centrifuge tubes in a volume of 1.5 ml media. The distance between the end of 

the nozzle and the media surface was ~ 2 mm. Following measurements with a 

thermocouple (Hanna Instruments Ltd), treatment times of up to 600 s did not raise the 

surface temperature of culture media directly under the plasma jet above 36.5°C. The 

bulk of the media volume remained at room temperature, suggesting only localised 

heating effects occurred. It was found that ~300 µl of media evaporation occurred 
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following the longest plasma exposure of 600 s. The final volume in each tube was re-

adjusted to 1.5 ml with fresh media in order to ensure cell number density for 

subsequent experiments was consistent. The level of evaporation from 180 s plasma 

exposure was found to be negligible. 

For cells and spheroids cultured in multi-well plates (Corning), the distance between 

the DBD jet and the media surface was maintained at ~ 2 mm, in accordance with 

treatment of cells in suspension. Pieces of benign patient tissue were treated with the 

DBD plasma jet in 96-well plates (Corning) in 100 µl of culture media, at a distance of 

~ 2 mm, such that the plasma effluent was in direct contact with the tissue surface. 

 

3.4.1 Positive Cytotoxic Controls 

Hydrogen peroxide (H2O2, Fisher Scientific, UK) was used throughout as a positive 

ROS control at a concentration of 1 mM [226]. Staurosporine (Cell Signalling 

Technology, #9953) was used as a positive control for apoptosis in cell death assays at a 

concentration of 1 µM. Staurosporine is an alkalyating agent, and has been shown to 

induce apoptosis in a range of cell lines [227-229] through protein kinase C inhibition.   

 

3.5 Cytotoxicity Assays 

3.5.1 Alkaline Comet Assay 

LTP-induced DNA damage was quantified using the alkaline comet assay (adapted 

from Sturmey et al. [230]). Cells were treated with LTP in 1.5 ml centrifuge tubes at a 

density of 20,000 cells in 1.5 ml media suspension. Immediately after treatment, cells 

were resuspended in 30 µL PBS and mixed with 225 µl low melting point agarose 

(Sigma). This was then pipetted onto microscope slides pre-coated with high melting 
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point agarose (Invitrogen), allowed to set and placed into lysis buffer (2.5 M NaCl, 10 

mM Tris, 1 mM EDTA, 10% v/v DMSO,  1% v/v Triton X-100), overnight at 4°C . The 

following day, cells were placed in alkaline buffer (0.3 M NaOH, 1mM EDTA, pH 13) 

on ice for 40 minutes, before being electrophoresed at 23-25 V, 300 mA in alkaline 

buffer for a further 40 minutes on ice. Slides were then placed into neutralising buffer 

(0.4 M Tris, pH 7.5) for two 10 minute periods, before DNA was stained using 

SYBRgold (1:10,000 in TE buffer: 10 mM Tris, 1mM EDTA, pH 7.5). Images were 

acquired by fluorescence microscopy (Nikon Eclipse TE300 microscope, 10x objective 

lens) using Volocity software (Volocity 6.3, PerkinElmer Inc, US). Autocomet software 

(Tritek Corp, US) was used to analyse cell images, with the median percentage DNA-

in-tail values used to record DNA damage in a minimum of 100 cells per treatment 

group.  

 

3.5.2 Cell Viability Assay 

Cell viability was determined by use of the alamarBlue® assay. Cells were treated 

with LTP then plated into black-walled 96-well plates in triplicate at a density of 5000 

cells per well in 100 µl of media. At 24, 48, 72 and 96 hours after treatment, 10 μl of 

alamarBlue® reagent (DAL1025, Invitrogen) was added to each well and incubated for 

2 hours at 37°C. In the presence of actively proliferating cells, the weakly fluorescent 

blue resazurin solution is reduced to resorufin, which is pink-coloured and highly 

fluorescent. Fluorescence intensity was recorded at excitation/emission values of 

544/590 nm using a microplate reader (Polarstar Optima, BMG Labtech, UK), with cell 

viability recorded against normalised untreated samples. 
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3.5.3 CellTox™ Necrosis Assay 

LTP-induced necrosis was quantified using the CellTox™ green cytotoxicity assay 

(Cat. #G8741, Promega). Cells were treated with LTP and plated into black-walled 96-

well plates at a density of 10,000 cells in 50 µl of media per well. In the case of primary 

cells, collagen coated plates were used. Contaminating STO cells were first removed 

from primary culture plates before plating by brief trypsinisation, to reduce the risk of 

overestimating cell death values. In addition to H2O2 (1 mM) and staurosporine (1 µM), 

2 µl of lysis solution (supplied with assay) was added to necrotic positive control wells. 

Immediately after treatment with LTP, 50 µl of assay solution was added to all culture 

wells. The solution contains a cyanine dye which binds to the DNA released from cells 

with impaired membrane integrity, forming a proportional relationship between 

fluorescence activity and cytotoxicity. Fluorescence intensity was recorded using a plate 

reader (Polarstar Optima, BMG Labtech, UK), at excitation/emission wavelengths of 

485/520 nm at 2, 4, 8, 12 and 24 hours after treatment. Fluorescence intensity values 

were normalised to untreated wells. Complementary fluorescence-brightfield merged 

microscopy images were also taken (Nikon Eclipse TE300 microscope, 10x objective 

lens) at the same post-treatment time intervals. 

 

3.6 Detection of Reactive Oxygen Species 

Intracellular reactive oxygen species (ROS) were detecting using the Cell Meter™ 

fluorimetric total ROS assay (Cat. #22900, AAT Bioquest). Cells were plated into 

black-walled 96-well plates at a density of 10,000 cells in 100 µl of media and allowed 

to adhere overnight. The following day, Amplite™ ROS green working stain solution 

was prepared and 100 µl added to each well prior to treatment. Amplite™ ROS green 

stain is cell permeable, and upon reaction with intracellular ROS fluoresces green. Cells 
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were then treated with LTP in darkness, and incubated for 30 minutes at 37°C. 

Fluorescence intensities were recorded using a microplate reader (Polarstar Optima, 

BMG Labtech, UK). Fluorescence images were also taken immediately after obtaining 

the plate read-out (Nikon Eclipse TE300 microscope, 10x objective lens). 

Extracellular H2O2 formed in the culture media as a result of LTP treatment or H2O2 

control was detected and quantified using the ROS-Glo™ H2O2 assay (Cat. #G8820, 

Promega). Cells were treated with LTP, before being plated into black-walled 96-well 

plates at a density of 10,000 cells in 80 µl of culture media. To this, 20 µl of H2O2 

substrate solution was added, which produces a luciferin precursor upon reaction with 

H2O2. After incubation for 1 hour at 37°C, 100 µl of detection solution was added to all 

wells and incubated for a further 20 minutes at room temperature. This detection 

solution contains D-cysteine, which converts the luciferin precursor to luciferin, which 

then reacts with recombinant luciferase in the detection solution to produce a 

luminescence signal proportional to the level of H2O2 present in the treated media. 

Luminescence intensity was quantified using a microplate reader (Polarstar Optima, 

BMG Labtech, UK), and normalised to untreated wells. 

 

3.7 Clonogenic Recovery Assay 

Clonogenic recovery assays were used to measure cellular recovery post-treatment.  

Cells were treated in suspension and replated in 6-well plates in triplicate at a density of 

200 disaggregated cells per well. Cells were supplemented with 2 ml of growth media, 

which was changed every other day. In the case of primary epithelial cell cultures, 200 

µl of STO feeder cells were also added to each well on day one of the assay. At 12 days 

after treatment,  cells were stained with crystal violet (PBS, 1% crystal violet, 10% 
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Ethanol). Only colonies of greater than 50 cells (equating to more than 5 population 

doublings) were counted. Colonies of this size have been proposed to be self-sustaining 

[231].  

 

3.8 Protein Expression Analysis 

3.8.1 Caspase-Glo® 3/7 Assay  

The activity of apoptotic proteins caspase-3 and -7 was analysed using the Caspase-

glo® 3/7 assay (Cat. #G8090, Promega). Cells were treated with LTP and plated into 

collagen-coated 96-well plates at a density of 20,000 cells per well in 100 µl. A further 

100 µl of caspase-glo® 3/7 detection reagent was immediately added to each well. Cells 

were incubated at 37°C, with luminescence intensity (Polarstar Optima, BMG Labtech, 

UK) recorded at 24 hours after treatment. 

 

3.8.2 SDS-PAGE and Western Blotting 

3.8.2.1 Preparation of Whole Cell Lysates 

Following treatment, adherent cells were trypsinised at 2, 4, 8, 12 and 24 hours after 

treatment, rinsed in PBS and stored as cell pellets at -80°C. If needed, cell scrapers were 

used to ensure complete cell collection. When required, cell pellets were thawed on ice 

and thoroughly resuspended in 50 µl of Cytobuster protein extraction reagent (71009, 

EMD Millipore, Germany) and 2 µl of 25x protease inhibitor (cOmplete, EDTA-free 

Protease Inhibitor Cocktail Tablets, Roche Applied Science, UK) per sample, and left 

on ice for 10 minutes. Samples were then centrifuged at 13,000 rpm for 2 minutes, and 

the supernatent transferred to fresh tubes and stored at -80°C. 
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3.8.2.2 BCA Assay 

The protein concentration of whole cell lysates was determined using the 

bicinchoninic acid (BCA) assay (ThermoFisher Scientific, #23225). Bovine serum 

albumin (BSA) protein standards were prepared according to the manufacturer’s 

protocol, 10 µl of which was pipetted in triplicate into a 96-well plate. 10 µl of treated 

sample was added to the plate, and 200 µl of working reagent was added to each well. 

The plate was incubated for 30 minutes at 37°C, and absorbance values recorded at 562 

nm using a plate reader (Polarstar Optima, BMG Labtech, UK). The protein 

concentration of unknown samples was determined using the gradient of a standard 

curve derived from BSA standards. 

 

3.8.2.3 SDS-PAGE 

A total of 20 µg protein lysate was added to a solution of 4 x SDS loading buffer (1% 

w/v SDS, 10% v/v Glycerol, 62.5 mM Tris.HCL pH 6.8, 65 mM DTT, and 

bromophenol blue to colour) plus 10% ß-mercaptoethanol (Sigma), and briefly 

centrifuged to combine the elements. This mixture was then heated at 100°C for 5 

minutes on a heating block, before being briefly centrifuged once more to collect the 

solution. Samples (10 – 30 µl) were loaded onto 12% acrylamide separating gels, which 

were constructed using the miniPROTEAN Tetra cell system (Bio-Rad). 

Precision Plus Protein™ Kaleidoscope (Bio-Rad, 161-0375, 10 µl) and biotinylated 

(Cell Signalling Technology Inc. #7727, 1 µl) protein marker ladders were also loaded 

to a separate lane on each gel as approximate molecular weight references. Gels were 

ran at 100 V for ~1.5-2 hours in SDS running buffer (3.5 mM SDS, 25 mM Tris, 0.19 M 

Glycine). 
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3.8.2.4 Western Blotting 

Wet transfer of proteins was performed immediately following electrophoresis. 

Immobilon-P transfer membranes (Millipore) were pre-soaked in methanol, rehydrated 

in ddH2O and placed into transfer buffer (48 mM Tris, 39 mM Glycine, 10% (v/v) 

Methanol). Assembly of the membrane cassette consisted of: a pre-soaked ScotchBrite 

pad, three sheets of  pre-soaked Western blotting paper, protein gel, membrane, three 

further sheets of Western blotting paper, and a second ScotchBrite pad. The stacked 

layers were gently rolled to remove air-bubbles, the cassette was firmly closed and 

placed into the transfer tank, and submerged in transfer buffer. The transfer was carried 

out 40 V overnight at 4°C. 

After transfer, cassettes were dismantled and membranes placed immediately in TBS 

(50 mM Tris, 150 mM NaCl, pH 7.5) before transfer into blocking solution for 1 hour 

(Marvel powdered milk, 5% solution in TBS). Membranes were incubated in primary 

antibody overnight at 4°C in 1% blocking solution. Membranes were then washed three 

times for 5 minutes in TBS-T (0.1% v/v Tween-20 in TBS), before incubation in 

secondary antibody for 1 hour at room temperature in 1% blocking solution. A list of 

primary and secondary antibodies used for western blotting, and their associated 

concentrations, is given in Table 3. All blocking and antibody incubation steps were 

performed in vacuum sealed plastic pouches under gentle rocking. Membranes were 

washed for a further three times for 5 minutes in TBS-T, followed by chemiluminescent 

detection (BM Chemiluminescent Blotting Substrate (POD) kit, Roche). Blots were 

developed in darkness using Kodak® GBX developer and fixer solutions on ECL 

hyperfilm (GE Healthcare). 
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Antibody 
Primary/ 

Secondary 
Manufacturer 

Catalogue 

No. 
Dilution 

cleaved-PARP 

Asp214, rabbit 

polyclonal 

Primary 
Cell Signalling 

Technology Inc. 
#9541S 1:666 

anti-LC3B 

Rabbit polyclonal 
Primary abcam Ab51520 1:3000 

β-actin 

mouse monoclonal 
Primary Sigma-Aldrich 

A5316 

Clone AC-74 
1:5000 

anti-rabbit IgG 

HRP-linked 
Secondary 

Cell Signalling 

Technology Inc. 
#7074S 1:5000 

anti-mouse IgG 

peroxidase 
Secondary Sigma-Aldrich A5906 1:5000 

Table 3. Primary and secondary antibodies used in Western blotting experiments. 

 

3.8.2.5 Quantitation of Western Blotting Band Intensity  

Band intensity quantitation was performed using ImageJ software (Mount Royal, 

Canada) to gain further insight into autophagic response. The ratio of LC3BII/I band 

intensity was determined, with all bands quantified against β-actin loading control lanes, 

and then normalised to untreated controls. 

 



82 
 

3.8.3 Immunofluorescence Staining 

3.8.3.1 Fixation Techniques 

For the treatment of monolayer cultures, cells were plated into chamber slides 

(Corning) and allowed to adhere overnight before treatment with LTP. At 20 minutes 

after treatment, cells were washed twice in PBS, before being fixed in 

paraformaldehyde (PBS, 4% Paraformaldehyde, 0.2% Triton X-100, pH 8.2) for 20 

minutes. Cells were then rinsed twice in PBS and stained immediately, or stored at 4°C 

sealed in parafilm until use. This fixation approach was also used for spheroids cultured 

in matrigel. 

 

3.8.3.2 Immunofluorescence Staining of Cells in Monolayer for γH2AX Expression 

After fixation cells were washed three times for 5 minutes in PBS before 

permeabilisation for 20 minutes (0.5% NP40 in PBS) at room temperature. Cells were 

washed for a further three times for 5 minutes in PBS before incubation in blocking 

solution for one hour (2% v/v BSA, 1% v/v NGS, PBS). After incubation overnight at 

4°C in primary antibody (diluted in PBS, 3% BSA), cells were washed in PBS (0.5% 

BSA, 0.175% v/v Tween-20) three times for 5 minutes, before incubation in secondary 

antibody for 1 hour (diluted in PBS, 3% BSA) at room temperature. Cells were washed 

three times for 5 minutes (0.5% BSA, 0.175% v/v Tween-20 in PBS), before a final 

wash step in PBS to remove any remaining detergent. Nuclear staining was performed 

using Vectashield with DAPI (Vector Laboratories) and phalloidin (Sigma-Aldrich 

P1951) to stain the cytoskeleton. A coverslip was placed onto the surface of the slide 

and sealed with nail varnish. Cells were visualised under a fluorescence microscope 

(Nikon Eclipse TE300 microscope). 
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3.8.3.3 Immunofluorescence Staining of  P4E6 Spheroids 

Unless otherwise noted, all steps were carried out at room temperature under gentle 

agitation. Cells were incubated in PBS + 0.5% Triton X-100 for 20 minutes before three 

10 minute washes (PBS + 0.3 M Glycine). A 1 hour blocking step was performed in IF 

buffer (0.1% w/v BSA. 0.2% v/v Triton X-100, 0.05% v/v Tween-20 in PBS, pH 7.4) + 

10% normal goat serum (NGS) for 1 hour. The slides were then incubated overnight at 

4°C in primary antibody in IF buffer + 10% NGS. The following day, three wash steps 

for 15 mins were performed in IF buffer, before a 1 hour incubation in secondary 

antibody in IF buffer + 10% NGS. Three final 10 minute rinse steps were performed in 

PBS, before counterstaining in either Hoechst 33342 (Molecular Probes H1399, 1 

µg/ml) or Vectashield with DAPI (Vector Laboratories). A coverslip was placed onto 

the surface of the slide and sealed with nail varnish. 

Propidium Iodide (PI) staining of P4E6 spheroids was conducted 15 minutes after 

treatment with LTP. Cells were incubated for 15 minutes in darkness in double staining 

solution (2 µg/ml PI, 100 µg/ml RNase A, 5 µg/ml Hoechst 33342 in PBS) before 

fluorescence imaging (Nikon Eclipse TE300 microscope). 

 

3.8.3.4 Staining of Fixed Tissue Sections 

Formalin fixed tissue sections were first baked for 20 minutes at 45°C, before being 

subjected to a series of washing steps: twice for 10 minutes in xylene, twice for 1 

minute xylene, thrice for 1 minute 100% ethanol, once for 1 minute 70% ethanol, and 

finally for 5 minutes under running water. Mounted tissue sections were boiled in citrate 

buffer (10 mM trisodium citrate, pH 6.0, 0.05% v/v Tween-20) for three times for 10 
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minutes and allowed to cool, before being rehydrated in PBS for 15 minutes. Slides 

were blocked for 1 hour (10% v/v foetal calf serum in PBS) at room temperature. 

Primary antibody was diluted in the blocking solution and added to slides overnight at 

4°C in the dark under rocking. The following day, slides were rinsed three time for 5 

minutes in PBS, before adding secondary antibody in blocking solution and incubating 

for 1 hour at room temperature in darkness. The slides were then rinsed for a final three 

times for 5 minute washes in PBS, before being mounted using Vectashield with DAPI 

(Vector Laboratories) and sealed with nail varnish. A list of antibodies used for all 

immunofluorescence techniques is provided in Table 4. 
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Antibody 
Primary/ 

Secondary 

Manufacturer 

Catalogue 

No. 

Dilution Usage 

γH2AX 

Ser139 Mouse 

monoclonal 

Primary Millipore 

05636 

Clone 

JBW301 

1:1000 

Cells, 

Tissues 

anti-LC3B 

Rabbit 

polyclonal 

Primary Abcam Ab51520 1:2000 Cells 

Goat-anti 

mouse Alexa 

Fluor 568 

Secondary 

Molecular 

probes 

A11004 1:1000 Cells 

Goat-anti 

rabbit Alexa 

Fluor 568 

Secondary 

Molecular 

probes 

A11036 1:1000 

Cells, 

Tissues 

Table 4. Primary and secondary antibodies used in immunofluorescence staining 

of cells and tissues. 

3.9 Statistical Analyses 

All experiments were performed in triplicate and results expressed as the mean with 

associated standard error (SE), with the exception of comet assay data, which shows the 

median DNA damage value. Plots were constructed and statistical analyses performed 

using Prism 6 (GraphPad software, San Diego, USA). Statistical significance was 

determined using unpaired Mann-Whitney test (DNA damage results only, assumes 

non-Gaussian distribution), or unpaired t-test with Welch’s correction (assumes non-

equal standard deviation), and displayed on figure plots as P<0.05 (*), P<0.01 (**), 

P<0.001 (***), P<0.0001 (****). 
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4. Plasma Device Development and Cell Treatment Strategy 

In the initial stages of this study, several different approaches for the treatment of 

cells with LTP were investigated to determine the most reproducible and practical 

method. This chapter presents basic initial characterisation of the LTP jet, examines the 

effect of LTP on varying cell number densities, and the influence of different types of 

cell culture media on cellular response. 

 

4.1 Optical Emission Spectroscopy of the Core Plasma 

The core plasma of the LTP jet used during the course of this study was characterised 

by optical emission spectroscopy (OES), using the Ocean Optics system described in 

Section 3.2.1., across the 200-1100 nm wavelength range. The core plasma region refers 

to the discharge ignited between the copper ring electrodes, as visualised in Figure 11A 

and Figure 13. The positioning of the optical fibre with respect to the LTP jet is shown 

in Figure 14A. The fibre was aligned with the core plasma through a slot in the 

electrode casing, highlighted by a dashed line. This ensured a reproducible fibre 

position. The distance between the end of the fibre and the quartz tube was maintained 

at 2 cm. Figure 14B shows the emission spectrum acquired following LTP jet operation, 

which is typical of a helium/oxygen plasma jet. This was recorded for 2 SLM helium 

flow with 0.3% molecular oxygen admixture at 20% voltage output; the maximum 

achievable avoiding arcing between the electrodes. Photons emitted as a consequence of 

the relaxation of excited states were detected, with intensity plotted as a function of 

wavelength. Two peaks with high intensity corresponding to atomic oxygen (O) were 

detected at 777 nm and 844 nm, in addition to a peak corresponding to helium at 706 

nm. The noise and small peaks visible between 500 and 650 nm are believed to be due 

to low levels of background light in the laboratory. 
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Figure 14: Optical emission spectroscopy of the core plasma.  

The experimental setup is shown in (A), with the alignment of the optical fibre into the 

core plasma indicated by the blue hashed line. The resulting optical emission spectra is 

given in (B), with emission lines corresponding to key species identified. 
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4.2 Methods of LTP-Cellular Treatment  

Several different approaches for the treatment of cells with LTP were analysed to 

determine the most suitable method to carry forward for the majority of this study. 

Similarly, different prostate cancer models were used to study LTP-effects, ranging 

from the treatment of cells in suspension to small pieces of tissue, and are presented in 

this and the following results chapters. 

 

Figure 15: Cell treatment models.   

Different cell models were used to compare the practicality of LTP treatment, 

comparing LTP effect in 2D (cells in monolayer and cells in suspension), and 3D 

(aggregates, spheroids and tissue pieces).  
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Cell Treatment Model Advantages Disadvantages 

Cells in monolayer 
- Cells are actively growing 

before treatment 

- Different media volumes 

required depending on 

culture vessel size 

- Plasma arcs to vessel 

walls in 48/96 well plates 

Cells in suspension 

- Consistent media volume 

for treatment 

- Allows for re-plating of 

desired cell number density 

following treatment 

- Do all cells receive the 

same plasma ‘dose’? 

- Cells rapidly sediment at 

larger number densities 

Aggregates 
- Time-efficient means of 

creating 3D model 

- Variability in aggregate 

morphology and size 

between different cell lines 

- Problematic to transfer 

aggregates between culture 

plates for treatment 

Spheroids 

- Culture in matrigel 

mimics basement 

membrane environment 

- Provides approximate 

model for tumour 

morphology and 

heterogeneity  

- Not all cell lines form 

spheroids 

- Assaying not 

straightforward 

- Lengthy and expensive 

culture process 

Tissue pieces 

- Treatment of real patient 

tissue provides insight into 

clinical response 

- Problematic to quantify 

penetrative effect of LTP 

- Difficult to determine 

plasma-tissue contact point 

throughout fixation process 

Table 5. Advantages and disadvantages of respective cell models used in this study. 
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The illustrations in Figure 15 highlight the different models investigated in this work, 

including the treatment of cells in monolayer and suspension, and of aggregates, 

spheroids, and prostate tissue pieces. Table 5 serves to highlight some of the 

considerations and issues encountered with each model. Initially, cells were treated with 

LTP when growing in culture as a 2D monolayer. However, a few issues were quickly 

encountered. The cells directly beneath the LTP jet rapidly detached and fragmented 

after treatment, whereas cells at the outer edge of the culture dishes remained 

unaffected. The most problematic finding was that when treating cells in smaller wells, 

such as 48- and 96-well plates, the plasma effluent arced onto the side of the culture 

well and failed to make contact with the media surface. This was likely due to static 

build-up on the plastic, and meant that no cellular damage occurred. Another 2D model 

that was investigated was the treatment of cells in media suspension. This gave the 

advantage of a consistent 1.5 ml media volume for treatment, and allowed the re-plating 

of a desired cell number density following treatment, as required by different assays. 

One concern with this method was whether cells treated at high number densities would 

begin to collect at the bottom of the tube before the end of the treatment. This was 

investigated in section 4.3. in the context of DNA damage. Due to the flexibility it 

provided, the treatment of cells in micro-centrifuge tubes, in a volume of 1.5 ml media 

suspension, was adopted as the main method for LTP treatment over the course of this 

study.  

Different 3D models were also trialled to more accurately represent 3D tumour 

morphology, including cell aggregates, spheroids, and direct treatment of prostate tissue 

pieces. The advantages and pitfalls of these treatments, as outlined in Table 5, are 

discussed in further detail in Chapter 6.   
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4.3 The Effect of Cell Number Density on DNA Damage Sustained 

PC-3 cells were treated with 180 s LTP in 1.5 ml micro-centrifuge tubes at varying 

number densities, and analysed for DNA damage using the alkaline comet assay. For all 

future experiments, cells were treated in a volume of 1.5 ml media suspension, however 

different experiments and assays required varying numbers of cells per treatment. 

Therefore, a number of densities ranging from 10
4
 to 10

7
 cells per tube were treated 

with LTP to assess if the levels of DNA damage resulting from plasma treatment were 

dependent on cell number density. A control sample of untreated cells was also assayed, 

at a concentration of 10
4
 cells per tube. Figure 16 shows the results of the comet assay, 

and shows that treating 10
4
-10

6
 cells per tube produces extremely comparable, high 

levels of DNA damage in PC-3 cells. However, treating 10
7
 cells in a 1.5 ml media 

volume leads to a statistically significant reduction of around 40% in the level of DNA 

damage following 180 s LTP exposure. The damage across the ~100 cells quantified for 

each treatment was uniformly distributed for the 10
7
 sample, compared to other treated 

groups, which were tightly grouped around the median damage value. This result shows 

that treatment of 10
4
-10

6
 cells per tube with LTP produces consistent levels of DNA 

damage, and lead to an upper limit of 10
6
 cells per tube being imposed for future 

experiments.   
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Figure 16: DNA damage as a function of cell number density.  

PC-3 cells, ranging from 10
4
 – 10

7
 cells per tube, were treated with 180 s LTP 

and analysed for DNA damage by the alkaline comet assay. Each dot represents 

a single cell, with a minimum of 100 cells counted for each treatment. Data are 

expressed as the median value, with the 25-75
th

 percentile highlighted by boxes. 

Statistical significance (P<0.0001 = ****) was analysed by Mann-Whitney rank 

test, which assumes a non-Gaussian distribution. 
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4.4 Influence of Cell Culture Media on LTP-Cellular Effect 

BPH-1 cells were exposed to LTP for 180 s or 1 mM H2O2 control to investigate if 

treatment in buffered saline solutions or cell culture media containing serum altered the 

observed cellular response. The reasoning for this was to examine if components in the 

media, such as the presence of serum, might quench reactive species produced by the 

plasma. Figure 18A examines changes in cell viability, 72 hours after treatment using 

the alamarBlue assay. BPH-1 cells were either treated in Hank’s buffered saline solution 

(HBSS), or RPMI media with 5% serum content, with or without phenol red (R5 +/-). 

Phenol red is a colourant which is routinely added to cell culture media to serve as a pH 

indicator. However, it has been suggested that phenol red can become highly fluorescent 

when excited at specific wavelengths [232], and thus may influence plate reader based 

assays, such as alamarBlue. The effect of allowing cells to remain in treated culture 

media, versus pelleting the cells 15 minutes after treatment and re-suspending them in 

fresh culture media, was also investigated. Figure 17A clearly shows that the presence 

or absence of phenol red in the cell culture media has no influence on fluorescent cell 

viability readings. As such, all future experiments were performed using standard cell 

culture media with phenol red. The data from Figure 17A for cell treatments in media 

with phenol red are re-plotted in Figure 17B to simplify analysis between treatment 

groups. Leaving cells in the original LTP-treated media until the point of assay reduced 

the viability by 90%. Treatment of BPH-1 cells in HBSS with 180 s LTP, followed by 

removing the HBSS and adding fresh R5, reduced cell viability values by 50%. 

Removing the treated media following 180 s LTP treatment and adding fresh R5 

appeared to lessen the reduction of cell viability to only 20% when compared to 

untreated control. However, replenishing cultures with fresh R5 media following 

treatment with H2O2 control did not induce significant differences in cell viability 
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readings when compared to leaving cells in treated media. LTP-treatment of cells in 

HBSS reduced cell viability by ~ 40% less than cells which were retained in treated R5 

media. In all future experiments, cells remained in their original treated media. This 

provided a more physiologically realistic model with respect to the ultimate aim of 

treating a patient. 

Given that different types of cell culture media contain different components and 

added serum levels, the levels of reactive species formed as a result of treatment may 

vary and thus contribute to the observed cellular response. The level of H2O2 formed in 

different cell culture media was analysed using the ROS-Glo H2O2 luminescence assay 

immediately after treatment with H2O2 control, and is shown in Figure 17C. Three 

different types of cell culture media were analysed, due to their future experimental use. 

These included: Hams F12 + 7% serum (PC-3 cells, H7), RPMI 1640 + 5% serum 

(BPH-1 cells, R5), and Keratinocyte serum free media (primary cells, KSFM). HBSS 

was used alongside for comparison purposes. Treatment of KSFM with H2O2 produced 

luminescence readings at least 6-fold lower than HBSS, H7 and R5. The highest H2O2 

readings were recorded for both treated and untreated cells cultured in H7 or R5 media; 

however, R5 media produced over twice the intensity of any other media in the absence 

of cells (media blank). The implications of these results were considered when 

performing the ROS-Glo H2O2 luminescence assay in the context of LTP-treated cells. 

Given that the luminescence signals from H7, and particularly R5, were several-fold 

higher than for KSFM, the type of cell culture media could not be disregarded when 

comparing results between cell lines and primary cells. 
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Figure 17: Contribution of different types of cell culture media to changes in cell 

viability and reactive species formation.  

The viability of BPH-1 cells 72 hours after treatment with either 180 s LTP or 1 mM 

H2O2 control were analysed by alamar blue assay (A). Cells were treated in either 

HBSS, or RPMI 1640 + 5% serum (R5) with or without phenol red (R5+/R5-). Cells 

were either pelleted and re-suspended in fresh media, or remained in treated media. The 

readings for HBSS and R5+ were re-plotted to analyse differences between treatment 

groups (B). The levels of H2O2 in different cell culture media was determined by the 

ROS-Glo H2O2 luminescence assay immediately after treatment (C). BPH-1 cells were 

treated in either HBSS or RPMI 1640 media + 5% serum (R5),  PC-3 cells in Hams F12 

media + 7% serum (H7), and primary cells in KSFM. All cell types were treated with 1 

mM H2O2 control. Data are expressed as the mean value ± standard error. Statistical 

analysis was conducted using unpaired t-test with Welch’s correction, with significance 

recorded against untreated samples unless otherwise indicated.   
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5. Study of Plasma-Effects on Prostate Cell Lines 

Following the initial optimisation of the plasma setup and cell treatment methods 

discussed in Chapter 4, this chapter focuses on an initial proof of principle study to 

examine the reproducibility of LTP treatment. This was performed on the metastatic 

prostate cell line PC-3. Further extended analysis was then conducted in both benign 

and malignant prostate cell lines to allow for comparison between different cell types. 

To give a point of reference for the effects of LTP treatment, PC-3 cells were treated 

with 2 Gy ionising radiation (IR), since radiotherapy has been a standard of care 

treatment for prostate cancer patients for many years. A daily dose of 2 Gy IR is also 

typically given to patients undergoing radiotherapy for PCa. PC-3 cells were derived 

from a metastatic tumour to bone marrow that was treated with cryotherapy [224], and 

have been shown to exhibit resistance to a wide range of cytotoxic agents in vitro [233-

236]. In addition, IR and LTP both produce reactive species, and so cell death 

mechanisms may be predicted to overlap. 

 

5.1 Treatment of PC-3 Cells with Ionising Radiation 

The viability of PC-3 cells was analysed following treatment with ionising radiation 

(IR). Increasing doses of IR were applied, ranging from 2 – 75 Gy, with cell response 

quantified by alamarBlue assay at 24-72 hours after treatment. The alamarBlue assay is 

a measure of metabolically active and thus proliferating cells, and is used as an indicator 

of cell viability following treatment compared to untreated cells. Figure 18A shows that 

no clear dose-dependent reduction was observed over the time-frame of the experiment; 

75 Gy IR reduced cell viability by only 8% at 24 hours. By 72 hours after treatment, the 

viability of cells had recovered to that of untreated cells. This suggests that even the 

minimal reduction in viability following 75 Gy IR only resulted in temporary, rather 
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than permanent, arresting of cells. DNA damage immediately following treatment of 

PC-3 cells with either 2 Gy IR or H2O2 control was recorded using the alkaline comet 

assay. A modest, but statistically significant, increase in DNA damage was recorded 

following 2 Gy IR and is shown in Figure 18B. However, the H2O2 control induced 

DNA damage levels of ~ 90%. The clonogenic potential of PC-3 cells was determined 

at 12 days after treatment with either 2 Gy IR or H2O2 control (Figure 18C). Colonies of 

> 50 cells were counted by crystal violet staining, and expressed as surviving fraction 

(SF) relative to normalised untreated control wells. It was observed that 2 Gy IR 

reduced the surviving fraction to around 50%, whereas H2O2 control reduced the 

surviving fraction to around 25%.  
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Figure 18: Analysis of the effect of ionising radiation on PC-3 cells. 

Cells were treated with IR or with H2O2 control (1 mM). Cell viability was analysed 

following IR doses up to 75 Gy at 24-72 hours after treatment (A). DNA damage levels 

were recorded using the alkaline comet assay (B) immediately following treatment with 

2 Gy IR or H2O2 control. Cell recovery at 12 days following treatment with either 2 Gy 

IR or H2O2 control was determined by clonogenic assay and expressed as surviving 

fraction (C). Data are expressed as the mean value ± standard error (A, C), or the 

median value with associated 25-75
th

 percentiles, represented by boxes (B). Statistical 

analysis was conducted using unpaired t-test with Welch’s correction, with significance 

recorded against untreated samples unless otherwise indicated. Note: Graph A was 

kindly provided by Dr Fiona Frame. 
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5.2 LTP Treatment Induces DNA Damage in PC-3 Cells 

PC-3 cells were treated with LTP for a range of different exposures, or 1 mM H2O2 

control, before being analysed immediately for DNA damage using the alkaline comet 

assay. The general principle of the comet assay is illustrated by Figure 19A, where 

increasing LTP exposure resulted in decreased size of the cell nucleus (comet head), and 

an increased migration of the electrophoresed fragmented DNA (comet tail). Defining 

the position of the cell nucleus can be problematic for heavily damaged cells whose 

nuclei appear either very small or almost non-existent. The alkaline comet assay 

predominantly detects single stranded DNA breaks, with the percentage of DNA in the 

comet tail used as a measure of the level of DNA damage to the cell. Figure 19B, C and 

D are examples of three individual experiments, and show a consistent pattern of 

increased DNA damage levels with extended LTP exposures, demonstrating the 

reproducibility of the plasma treatment. As little as 10 s LTP treatment induced 

statistically significant levels of DNA damage, with 600 s LTP treatment causing 

significantly higher damage than the H2O2 control (Figure 19B and D). Figure 19E 

represents an averaged plot of the three replicate experiments, and suggests that the 

maximum quantifiable level of DNA damage induced by LTP exposure plateaus at 

≥ 180 s treatment duration. This is most likely due to a limit in sensitivity for detecting 

heavily damaged cells with the comet assay, as it would be assumed that the level of 

DNA damage would be proportional to plasma exposure, and presumably resultant ROS 

concentration. 

A further experiment was conducted to determine if DNA damage was sustained or 

repaired following treatment. Cells were either re-plated for 24 hours following 

treatment before analysis using the comet assay, or analysed within 30 minutes as 

before. Figure 20A shows the same DNA damage trends immediately following 
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treatment as observed in Figure 19. However, Figure 20B shows that at 24 hours, DNA 

damage from LTP treatments returned to baseline untreated levels, indicative of DNA 

repair. Similarly, damage levels from H2O2 control fell from ~75% to ~6%. Only 

plasma exposure of 600 s resulted in sustained DNA damage, which was highly 

significant when compared to both 300 s LTP and H2O2 control. To more clearly 

illustrate the changes in DNA damage with time, Figure 20C shows the data obtained 

both immediately and at 24 hours after treatment, normalised to respective untreated 

samples. This shows that the level of DNA damage was reduced by around only 10% 

following 600 s LTP exposure. 
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Figure 19: LTP induces DNA damage in PC-3 cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). DNA damage levels were recorded using the alkaline comet assay and 

represented as % DNA-in-tail. Representative photographs of cells and comet-like 

structures are given in A. Green represents fluorescent DNA in the nucleus and comet 

tail. Replicate experiments are shown in B, C and D, and are averaged in E (mean ± 

standard error). Each dot represents a single cell, with a minimum of 100 cells counted 

for each treatment. Data are expressed as the median value, with the 25-75
th

 percentile 

highlighted by shaded boxes. Statistical significance was analysed by Mann-Whitney 

test, with significance recorded against untreated samples unless otherwise stated. 
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Figure 20: Analysis of LTP-induced DNA damage levels in PC-3 cells at 24 hours 

post-treatment.  

Cells were treated with LTP for a range of treatment times or with H2O2 control 

(1 mM). DNA damage was quantified at either 30 minutes (A) or 24 hours (B) after 

treatment. DNA damage levels were recorded using the alkaline comet assay and 

represented as % DNA-in-tail. Each dot represents a single cell, with a minimum of 100 

cells counted for each treatment. Data are expressed as the median value, with  the 25-

75
th

 percentile highlighted by boxes (A, B). A direct comparison of median DNA 

damage is shown in C. Statistical significance was analysed by Mann-Whitney test. 
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5.3 Effect of LTP Treatment on Clonogenic Potential of PC-3 Cells 

The clonogenic potential of PC-3 cells was analysed following treatment with a 

range of timed LTP exposures or 1 mM H2O2 control to assess cell recovery post-

treatment, and is shown in Figure 21. Defined colonies of > 50 cells were quantified 

through crystal violet staining at 12 days after treatment. Figure 21A, B and C are 

examples of three individual experiments, the mean of which is shown in Figure 21D. 

Colony forming ability is expressed as the surviving fraction (SF) when compared 

against normalised untreated control wells. The three replicate experiments again show 

the consistency of response following LTP treatment. A statistically significant 

reduction in SF was observed following ≥ 180 s LTP treatment, and when comparing 

600 s LTP directly to H2O2 control. Figure 21D shows that LTP exposures of 10 and 30 

s led to a slight increase in SF, and that 60 s LTP produced no change in SF over 

untreated control. At LTP exposures of > 60 s, a dose dependent decrease in SF was 

recorded, with 300 and 600 s LTP treatment reducing SF below H2O2 control. 

To further determine the long term clonogenic capacity of PC-3 cells following LTP 

treatment, a secondary colony forming assay was conducted. Cells were treated with 

either 600 s LTP or 1 mM H2O2 control for 12 days before colonies of > 50 cells were 

counted in the culture plates without staining. Primary colony forming efficiency was 

plotted as a fraction of the 200 single cells that were initially seeded into each culture 

well and is given in Figure 22A. It was found that treatment with 600 s LTP reduced the 

primary colony forming efficiency to < 10%; around half the reduction recorded from 

H2O2 control. Individual colonies were disaggregated and re-plated, and cultured for a 

further 12 days. Images of heterogeneous colony morphology were also recorded, with 

evidence of holoclones (tightly-packed colonies) and paraclones (diffuse, disordered 

colonies) presented in Figure 22B, C and D. Secondary colony forming efficiency was 
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plotted as a fraction of the cells re-seeded from harvested primary colonies. The 

secondary colony forming efficiency resulting from treatment with 600 s LTP was 

~50%, and from H2O2 control ~ 60%. In the untreated control group, the majority (84%) 

of the secondary colonies formed were quantified as holoclones, as shown by Figure 

22B. Only holoclones are thought to be capable of sustained passaging in culture [237]. 

However, in the treated groups, only 54% and 42% of colonies were quantified as 

holoclones following treatment with 600 s LTP or H2O2 control respectively. This 

suggests that LTP treatment reduces the proportion of cells with the capacity to 

repeatedly form colonies. Examples of paraclones formed following treatment are 

shown in Figure 22C for 600 s LTP and 22D for H2O2 control. These are much more 

disorganised, sparsely populated colonies compared to compact and regular holoclones. 

It could be viewed that the cells within the paraclone in Figure 22C appear more 

independent of their neighbours and potentially motile. This could be investigated 

through time-lapse microscopy to determine how far and how rapidly these cells 

migrate. 
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Figure 21: LTP treatment reduces clonogenic recovery in PC-3 cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). Colonies of > 50 cells were identified by crystal violet staining at 12 days 

following treatment, and expressed as surviving fraction against normalised untreated 

control wells. Replicate experiments are shown in A, B and C, and are averaged in D. 

Data are expressed as the mean value ± standard error. Statistical analysis was 

conducted using unpaired t-test with Welch’s correction, with significance recorded 

against untreated samples unless otherwise stated. 
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Figure 22: PC-3 secondary colony formation following LTP treatment.  

Cells were treated with either 600 s LTP or with 1 mM H2O2 control. Colonies of > 50 

cells were identified by crystal violet staining at 12 days following treatment, and 

expressed as colony forming efficiency as a proportion of total re-seeded cells (A). 

Three holoclones from each treatment group were selected and re-plated for a further 12 

days before quantification of secondary colony forming efficiency. The percentage of 

holoclones are identified in A, along with representative images of untreated (B), 600 s 

LTP (C), and H2O2 (D) secondary colonies. Scale bar denotes 400 µm. 
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5.4 LTP-Treatment Induces Intracellular Reactive Oxygen Species  

Intracellular reactive oxygen species (ROS) formation in PC-3 cells was quantified 

using the Cell Meter™ Intracellular Total ROS Activity assay. Cells were treated with 

either 300 s LTP or 1 mM H2O2 control. LTP treatment durations of longer than 300 s 

were not possible due to issues with evaporation of the assay detection reagent. It was 

found that treatment with 300 s LTP induced a > 2-fold increase in intracellular ROS 

formation, and is shown in Figure 23A. Exposure to 1 mM H2O2 control produced a 

very similar level of induction.  Fluorescence microscopy photographs corresponding to 

untreated, 300 s LTP and H2O2 control are presented in Figure 23B, C and D 

respectively, and demonstrate a clear induction of intracellular ROS through the 

presence of fluorescent cells. 
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Figure 23: Intracellular reactive oxygen species formation in PC-3 cells.  

Cells were treated with either 300 s LTP or with 1 mM H2O2 control. Intracellular 

reactive oxygen species formation was analysed by relative fluorescence intensity using 

the Cell Meter™ Intracellular Total ROS Activity assay immediately after treatment 

(A). Representative fluorescence images are shown for untreated (B), 300 s LTP (C) 

and H2O2 control (D). Scale bar denotes 100 µm.   
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5.5 Cytotoxic Effects of LTP in Benign and Malignant Prostate Cell Lines 

Following the consistency of plasma effect in PC-3 cells, the benign cell line BPH-1 

was introduced as a non-malignant comparison. Cells were treated and analysed as 

discussed in section 5.2., with the results shown in Figure 24. Based on the consistency 

and reproducibility of the results obtained from comet and clonogenic assays, a reduced 

set of plasma exposures were used for experiments henceforth. Figure 24B has been 

reproduced from Figure 19B, in order to serve as a comparison between the levels of 

DNA damage recorded in BPH-1 and PC-3 cells. It was found that BPH-1 cells show 

higher levels of DNA damage across the range of LTP exposures when compared to 

PC-3 cells. For example, 30 s LTP treatment of BPH-1 cells led to a > 40% increase in 

average DNA damage compared to PC-3 cells. BPH-1 cells also appear more 

susceptible to the H2O2 control treatment. Furthermore, very few BPH-1 cells remained 

undamaged following 600 s LTP, with the vast majority of treated cells grouped close to 

100% DNA damage. The population of PC-3 cells that fell below the 25
th

 percentile 

were more uniformly distributed, and around one-fifth of the total cell number sustained 

< 50% DNA damage.  
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Figure 24: DNA damage following LTP treatment in BPH-1 and PC-3 cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). DNA damage levels were recorded in BPH-1 (A) and PC-3 (B) cells using the 

alkaline comet assay, and represented as % DNA-in-tail. Each dot represents a single 

cell, with a minimum of 100 cells counted for each treatment. Data are expressed as the 

median value, with the 25-75
th

 percentile highlighted by boxes. Statistical significance 

was analysed by Mann-Whitney test against untreated samples unless otherwise 

indicated. 
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5.5.1 LTP Reduces Cell Viability in Benign and Malignant Prostate Cell Lines 

Following treatment with LTP, changes in cell viability were determined for BPH-1 

and PC-3 cells using the alamarBlue assay and plotted in Figure 25. Cell viability was 

quantified at 24, 48, 72 and 96 hours after treatment against normalised untreated 

samples. In BPH-1 cells, the viability was reduced to around 10% following both 180 

and 600 s LTP, and H2O2 control at 24 hours following treatment. No further 

quantifiable reduction in viability was recorded beyond 24 hours after treatment. 

Conversely in PC-3 cells, a more progressive decline in cell viability was observed in 

the days following treatment. At 96 hours after treatment, 600 s LTP exposure reduced 

PC-3 cell viability by ~90%, whereas 180 s treatment only reduced cell viability by 

~50%. Nonlinear regression analysis was performed on the data, and displayed in 

Figures 25C and D for BPH-1 and PC-3 cells respectively.  This was conducted in order 

to determine IC50 values at 72 hours after treatment for both cell lines, as is 

commonplace in pharmacological drug development. The logarithmic value of the 

inhibitor (LTP treatment) was plotted against normalized cell viability to calculate the 

minimum plasma exposure required to reduce cell viability by 50%. For BPH-1 cells 

this was calculated as 34 s, whereas for PC-3 cells the IC50 was found to 220 s, implying 

the latter are far more resistant to LTP treatment.  
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Figure 25: Cell viability following LTP treatment of BPH-1 and PC-3 cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). Cell viability was analysed using the alamarBlue assay at 24 – 96 hours after 

treatment (A, B). Graphs C and D display non-linear regression analysis of LTP treated 

cells, with representative IC50 values given for readings taken 72 hours following 

treatment. Viability levels are normalised to untreated control samples, and data are 

expressed as mean ± standard error. 
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5.5.2 Cell Line Clonogenic Potential is Reduced Following LTP Treatment  

Treatment with LTP showed a dose dependent inhibition of cell recovery of both 

BPH-1 and PC-3 cells. Figure 26B has been reproduced from Figure 21A, in order to 

serve as a comparison between surviving fraction of both benign and malignant cell 

lines. Figure 26 shows that treatment with 1 mM H2O2 eliminated the colony forming 

ability in BPH-1 cells, whereas in PC-3 cells the surviving fraction was more than 50%. 

A similar trend was found for treatment with 600 s LTP; the surviving fraction was 

reduced to ~10% for BPH-1’s, but to only ~40% for PC-3s. However, treatment with 

either 30 or 180 s LTP produced almost identical survival results for both cell lines.  

LTPs are known to create a plethora of RONS [154]; one of the most stable and 

long-lived of these species is H2O2 [238], which is also a by-product of other ROS-

enzyme reactions [239, 240]. The ROS-Glo H2O2 luminescence assay was performed 

immediately following treatment to detect relative levels of this species in the cell 

culture media. Figure 26 shows a general trend of increased levels of extracellular H2O2 

following increased LTP exposure for both BPH-1 (C) and PC-3 cells (D). In BPH-1 

cells, a 180 s LTP treatment produced a luminescence signal equivalent to H2O2 control, 

whereas 600 s LTP yielded higher readings. The level of H2O2 detected in PC-3 culture 

media following LTP treatment was far lower than that for BPH-1 cells; over three-fold 

less for 180 and 600 s treatments. Conversely, the luminescence signal from H2O2 

treatment was slightly higher for PC-3 cells than BPH-1 cells. All LTP treatments 

produced statistically significant increases in extracellular H2O2 levels over untreated 

samples for both cell lines. 
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Figure 26: Analysis of colony formation and H2O2 formation following LTP 

treatment of BPH-1 and PC-3 cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). Colonies of > 50 cells were identified by crystal violet staining at 12 days 

following treatment, and expressed as surviving fraction against normalised untreated 

control wells in BPH-1 (A) and PC-3 (B) cells. Immediately after treatment, the ROS-

Glo H2O2 luminescence assay was performed to ascertain the levels of extracellular 

H2O2 formed in the cell culture media, with luminescence readings quantified against 

normalised untreated samples for BPH-1 (C) and PC-3 (D) cells. Data are expressed as 

the median value ± standard error. Statistical analysis was conducted using unpaired t-

test with Welch’s correction, with significance recorded against untreated samples 

unless otherwise indicated. 
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5.5.3 Mechanism of Cell Death Following LTP Treatment in Prostate Cell Lines  

The results of initial experiments on prostate cell lines revealed the immediate effects 

of LTP exposure included high levels of DNA damage and significant reductions in cell 

viability. These were predicted to be a pre-cursor for, and associated with, cell death. As 

such, cells were analysed to determine the cell fate following LTP treatment.  

 

5.5.3.1 Analysis of Apoptotic Cell Death in BPH-1 and PC-3 Cells 

Analysis of apoptotic cell death was conducted through western blotting for C-PARP 

protein expression from 2 to 24 hours after treatment. PARP protein is involved in DNA 

repair, and its cleavage usually occurs following extensive cellular DNA damage, thus 

inhibiting repair mechanisms and leading to apoptotic cell death. BPH-1 and PC-3 cells 

were treated with either a range of LTP exposures, 1 mM H2O2, or 1 µM staurosporine. 

Staurosporine was included as a known positive control for apoptosis [227, 229], and ß-

actin was used as a loading control. It can be seen in Figure 27 that apoptosis is induced 

at 8 hours in BPH-1 cells following treatment with H2O2 and staurosporine controls, but 

not until 12 hours following 600 s LTP. Exposures of less than 600 s LTP did not cause 

apoptosis in BPH-1 cells. In PC-3 cells, only the staurosporine control treatment 

induced apoptosis from 8 hours onwards, although the response was considerably less 

than recorded for BPH-1 cells. Both H2O2 control, and all LTP exposures failed to 

induce apoptosis in PC-3 cells. Sample cell morphology photographs, taken at 12 hours 

following treatment, are provided for BPH-1 and PC-3 cells in Figures 28 and 29 

respectively. These photographs were taken immediately before adherent cells were 

harvested for western blotting. This time-point was chosen as the earliest apoptotic 

response following LTP treatment occurred at 12 hours (Figure 30) in BPH-1 cells. It 

can be seen that far fewer adherent BPH-1 cells are present following treatment with 
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either 600 s LTP of H2O2 (Figure 28), when compared to untreated control. Figure 29 

shows that same response for PC-3 cells although this is less pronounced than observed 

for BPH-1 cells. The staurosporine control treatment produces a quite distinctly 

different morphological response when compared to both LTP and H2O2 treatment in 

both BPH-1 and PC-3 cells, with cell membrane blebbing evident. 
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Figure 27: LTP treatment induces apoptosis in BPH-1, but not PC-3, cells. 

Cells were treated with a range of timed LTP exposures, 1 mM H2O2 or 1 µM 

staurosporine, and harvested between 2 and 24 hours after treatment. BPH-1 (A) 

and PC-3 (B) cell lysates were probed for apoptosis (C-PARP) following LTP 

treatment, which was detected following 600 s LTP exposure in BPH-1 cells, but 

not in PC-3 cells. ß-actin was used as a loading control. 
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Figure 28: BPH-1 cell morphology following treatment.  

Photographs of BPH-1 cells were taken at 12 hours following treatment, prior to 

Western blotting. Representative images are shown for cells treated with either 600 s 

LTP, 1 mM H2O2, or 1 µM staurosporine. Images of all treated groups show a high 

reduction in cell density, with cells treated with LTP and H2O2 appearing small and 

rounded (red arrows). A small number of cells treated with LTP share the same 

morphological features as those treated with staurosporine (blue arrows), as verified by 

Western blotting results. Scale bar denotes 400 µm.  
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Figure 29: PC-3 cell morphology following treatment.  

Photographs of PC-3 cells were taken at 12 hours following treatment, prior to Western 

blotting. Representative images are shown for cells treated with either 600 s LTP, 1 mM 

H2O2, or 1 µM staurosporine. Cells treated with LTP and H2O2 appear small and 

rounded, and morphologically distinct from those treated with staurosporine, which is in 

agreement with Western blotting results. Scale bar denotes 400 µm.  
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5.5.3.2 Analysis of Necrotic Cell Death in BPH-1 and PC-3 Cells 

Cell death resulting from LTP-induced necrosis was determined using the CellTox 

Green cytotoxicity assay. Cells were treated with either 0, 30, 180 or 600 s LTP, 1 mM 

H2O2, 1 µM staurosporine, or lysing agent (toxicity control). Immediately following 

treatment, the CellTox dye was added to the cultures, which fluoresces green when 

bound to the DNA of membrane-compromised cells, which are characteristic of 

necrosis. Representative images of treated BPH-1 and PC-3 cells, taken at 4 hours after 

treatment, are shown in Figures 30 and 31. The highest proportion of positive green 

cells are found as a result of 600 s LTP treatment. Both H2O2 and staurosporine controls 

contained very few, if any, necrotic cells at 4 hours after treatment.  

Quantitative fluorescent readings were obtained at 2, 4, 8, 12 and 24 hours following 

treatment and are shown in Figure 32 for BPH-1 (A) and PC-3 cells (B). The toxicity 

control produced consistently high fluorescence readings across all data collection 

points from 2-24 hours suggesting total cell lysis, which was confirmed by fluorescence 

microscopy (data not shown). Dose dependent increases in necrosis were observed 

following LTP treatment of both BPH-1 and PC-3 cells. In general, the levels of 

necrosis induced from all treatments were considerably higher for BPH-1 cells than PC-

3 cells. The fluorescence values steadily increased up to 8 hours after treatment of both 

cell lines. At 12 hours and onwards after treatment of BPH-1 cells, a large increase in 

the fluorescence intensity was recorded from 600 s LTP and H2O2 exposure. However, 

staurosporine control readings remained substantially lower, due to cells undergoing 

apoptosis, and therefore their cell membrane remained intact. At 24 hours after 

treatment, the readings from staurosporine cells increased several-fold in both cell lines, 

suggesting late-stage apoptosis. 
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Figure 30: Evidence of necrotic cells following LTP treatment of BPH-1 cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, or 1 µM staurosporine. 

Merged fluorescence/bright-field images (10x magnification) were captured 4 hours 

after treatment. Green cells possess compromised membrane integrity, indicative of 

necrosis. Scale bar denotes 100 µm. 
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Figure 31: Evidence of necrotic cells following LTP treatment of PC-3 cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, or 1 µM staurosporine. 

Merged fluorescence/bright-field images (10x magnification) were captured 4 hours 

after treatment. Green cells possess compromised membrane integrity, indicative of 

necrosis. Scale bar denotes 100 µm. 
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Figure 32: Quantification of LTP-induced necrosis in BPH-1 and PC-3 cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, 1 µM staurosporine, or 

lysis toxicity control. At 2 – 24 hours after treatment, LTP induced necrosis was 

assessed using the CellTox green assay, with fluorescence values normalised to 

untreated control wells. Data are expressed as mean ± standard error.  
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To summarise this chapter, it was deduced that LTP treatment induced high levels of 

DNA damage in both benign and malignant prostate cell lines, leading to a reduction of 

cell viability and clonogenicity. It was found that LTP exposure was more cytotoxic to 

PC-3 cells than 2 Gy IR treatment; the vast differences in DNA damage and cell 

viability levels between both treatments suggesting they interact with cells through 

different mechanisms. Interestingly, differential cell death modalities were recorded 

following LTP treatment, with benign BPH-1 cells showing evidence of both apoptosis 

and necrosis, whereas malignant PC-3 cells were positive for necrosis only. This 

implies that PC-3 cells may resist the initiation of programmed cell death, and only 

excessive oxidative stress levels may induce cytopathic effects. The next chapter 

introduces the effects of LTP on prostate models with increased clinical relevance.  
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6. Effect of LTP Treatment in Clinically Relevant Prostate Models 

An initial study examining LTP treatment of benign and malignant prostate cell lines 

was presented in the previous chapter. The rapid and indefinite growth of cell lines 

makes them a useful preliminary model to investigate the response of prostate cells to 

LTP. However, they are not wholly representative of the heterogeneity and complexity 

of real prostate tumours. In order to assess the potential for future translation into 

clinical practice, the study was expanded to ascertain the effect of LTP in clinically 

relevant models. These included primary prostate epithelial cells derived directly from 

patient tissue samples, 3D aggregates and spheroids formed from cell lines, and direct 

treatment of pieces of patient tissue.   

 

6.1 LTP Induces DNA Damage in Primary Prostate Epithelial Cells 

Primary cells from three different patients were treated with LTP at a range of 

different exposure times, or 1 mM H2O2 control, before being examined immediately 

for DNA damage using the comet assay. Matched normal and cancer (Gleason grade 7; 

indicative of localised, early-onset disease) paired samples originating from the same 

patient were analysed. This enabled direct comparisons to be made between the normal 

and malignant cells of the same patient, which has not been reported previously in the 

literature. These three patient sample pairs were chosen as the tumours were localised, 

and would have been viable candidates for treatment with focal therapy. Figure 33 

shows the results obtained for the normal and cancer cells of three patients in Figure 

33A, B and C. As little as 30 s LTP treatment induced highly significant levels of DNA 

damage in all samples, with significantly higher damage recorded from H2O2 control 

than from 600 s LTP exposure in the Patient 1 sample (Figure 33A). There was no 

significant difference between 600 s LTP exposure and H2O2 control in Patient 2 and 3 
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samples (Figure 33B, C). Similar to the observations with cell lines in Figure 23, the 

level of DNA damage induced by LTP exposure appeared to plateau at ≥ 180 s 

treatment duration. The spread of the data for Patient 1 and Patient 3 samples appear 

very similar, however the level of DNA damage for Patient 2 is at least 20% (and as 

much as 50%) lower than the other two samples. The damage quantified from 

individual cells also appears to be more evenly distributed for Patient 2 (Figure 33B), 

whereas in the other two samples the data points are more closely distributed around the 

median value. The average DNA damage induced in normal and tumour cells is 

presented in Figure 33D, which showed up to 10% higher levels of damage to the 

tumour cells across all treatments. However, standard error analysis also revealed a high 

degree of patient-patient variability. As the error values of the averaged data overlap, 

the differences in DNA damage between normal and tumour cells are unlikely to be 

clinically significant. 
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Figure 33: LTP induces DNA damage in primary prostate epithelial cells.  

Cells were treated with LTP for a range of treatment times, or with H2O2 control 

(1 mM). DNA damage levels were recorded using the alkaline comet assay and 

represented as % DNA-in-tail. Paired normal and cancer samples from three different 

patients are shown, in addition to an averaged comparison of normal and tumour cells 

across all three patients. Each dot represents a single cell, with a minimum of 100 cells 

counted for each treatment. Data are expressed as the median value, with the 25-75
th

 

percentile highlighted by shaded boxes. Statistical significance was analysed by Mann-

Whitney rank test (which assumes a non-Gaussian distribution), with significance 

recorded against untreated samples unless otherwise indicated. 
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DNA damage was also investigated through immunofluorescence imaging. 

Immediately following treatment with LTP, cells were fixed and stained for γH2AX 

foci to detect DNA double strand breaks, which are particularly lethal to cells [241]. 

Phosphorylated protein H2AX, (referred to as γH2AX) is a rapid response marker 

following double strand breaks, and is implicated in the recruitment of DNA repair 

proteins [242, 243]. Figure 34 shows representative images of untreated cells (A) and 

cells treated with 300 s LTP (B). The cells treated in this experiment originated from a 

separate Gleason grade 7 patient sample to the three normal and cancer paired samples 

presented throughout this chapter. Both needle cores originating from this patient were 

disease-positive and as such no normal comparison was available for this sample. 

Nuclear staining was performed using DAPI (blue), cell cytoskeleton staining using 

phalloidin (green), and double strand break DNA damage through γH2AX foci (red). 

Figure 34B shows abundant, clearly defined DNA damage foci located in the nucleus of 

cells treated with 300 s LTP, whereas untreated cells (Figure 34A) were devoid of foci. 

Although there was a degree of heterogeneity across treated cells, Figure 34B is 

representative of the treated population. This result implies that LTP treatment induces 

lethal DNA damage in primary prostate cancer cells. 
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Figure 34: LTP induces double strand break DNA damage in primary prostate 

epithelial cells.  

Gleason grade 7 patient cancer cells were either left untreated (A) or treated with LTP 

for 300 s (B). Double strand break DNA damage foci were identified by γH2AX 

straining (red dots). DAPI (blue) and phalloidin (green) were used as nuclear and 

cytoskeleton stains respectively. Scale bar denotes 10 µm.  
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6.2 LTP Reduces Cell Viability in Primary Prostate Epithelial Cells 

Following treatment with LTP or H2O2 control, changes in cell viability were 

determined for three matched patient primary cell samples using the alamarBlue assay 

and plotted in Figure 35. Cell viability was quantified at 24, 48, 72 and 96 hours after 

treatment against normalised untreated samples. The results obtained for all three 

samples show the same trend; increasing LTP exposure progressively reduces cell 

viability in both normal and cancer cells. This reduction also progresses from 24 to 96 

hours following treatment with 30 and 180 s LTP treatment, although little difference 

was found for 600 s LTP and H2O2 control. In general, Patient 1 cancer sample (Figure 

35A) shows no further decrease in viability from post-exposure 24 hours onwards from 

any treatment. In all patient samples, 600 s LTP exposure reduced cell viability to <20% 

at 96 hours after treatment. The normal and cancer cells of Patient 1 appeared more 

sensitive to H2O2 control treatment than those of Patient 3, with the reduction in 

viability comparable between normal and tumour cells (Figure 35A and C). However, 

the viability of cancer cells from Patient 2 was reduced ~ 60% further than normal cells 

(Figure 35B). Plotting the average response across all time-points from 24-96 hours and 

across all patients (Figure 35D) revealed no differences between normal and tumour 

cells following 30 or 600 s LTP treatment. However, normal cells appeared more 

susceptible to 180 s LTP treatment, but less so to H2O2 control, than tumour cells on 

average. Nonlinear regression analysis was performed on the cell viability data and 

displayed in Figure 38.  This was conducted to determine IC50 values at 72 hours after 

treatment for both cell lines, which is the standard time delay used in industry for 

pharmacological drug development. These values serve as an indication of the LTP 

treatment duration required to reduce the cell viability by 50%. For the normal and 

cancer cells of Patients 2 and 3, this was found to be 153 / 76 s and 115 / 94 s 
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respectively (Figure 38B and C), indicating the cancer cells were more susceptible. 

However, in Patient 1 (Figure 38A), the opposite trend was observed, with the IC50 

value calculated for the cancer cells being roughly double that for the normal cells; 163s 

compared to 88 s. 
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Figure 35: Cell viability following LTP treatment of primary prostate epithelial 

cells.  

Three normal and cancer-paired samples were treated with LTP for a range of treatment 

times or with H2O2 control (1 mM). Cell viability was analysed using the alamarBlue 

assay at 24 – 96 hours after treatment. Viability levels are normalised to untreated 

control samples, and data are expressed as mean ± standard error. The averaged data for 

the three patient samples across all time-points is also presented as the mean ± standard 

error between samples. 
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Figure 36: Determination of IC50 values for primary prostate epithelial cells 

following LTP treatment.  

Non-linear regression analysis was applied to the data in Figure 38 for three matched 

normal and cancer patient samples. Representative IC50 values calculated at 72 hours 

following LTP treatment are displayed. Viability levels are normalised to untreated 

control samples, and data are expressed as mean ± standard error. 
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6.3 Primary Cell Clonogenic Potential is Reduced Following LTP Treatment  

The clonogenic potential of primary cells (Patient 1 only due to time-constraints and 

availability of samples) was analysed following treatment with a range of timed LTP 

exposures or 1 mM H2O2 control to assess cell recovery post-treatment. Defined 

colonies of > 50 cells were quantified through crystal violet staining at 10-14 days after 

treatment. Figure 37 shows a dose dependent inhibition of cell recovery of both normal 

(A) and tumour (B) cells from Patient 1. Treatment with 600 s LTP reduced the 

surviving fraction to 20% in both normal and tumour cells, whereas the tumour cells 

appeared approximately twice as resistant as normal cells to 180 s LTP treatment. This 

differential resistance agrees with the IC50 values obtained for the Patient 1 sample in 

Figure 36. The same pattern was recorded for the H2O2 control sample. LTP exposure 

of 600 s produced statistically significant reductions in survival fraction when compared 

to H2O2 control. 

The levels of extracellular H2O2 following treatment with either LTP or H2O2 control 

were quantified using the ROS-Glo H2O2 luminescence assay. Figure 37C and D show 

the results obtained for normal and cancer cells from the Patient 1 sample respectively. 

Treatment with 30, 180 and 600 s LTP led to higher levels of H2O2 in the cell culture 

media of normal cells than the same exposures in cancer cells. The same result was 

found for the H2O2 control. Treatment with 600 s LTP produced statistically higher 

luminescence readings than H2O2 control in both normal and cancer cells. The ROS-Glo 

H2O2 luminescence assay was also performed to study the accumulation of extracellular 

H2O2 levels over time. Figure 38 shows the results of the assay performed either 

immediately, or at a delayed set of time-points of up to 8 hours following treatment with 

either 600 s LTP or H2O2 control. The same pattern was recorded for both normal (A) 

and cancer (B) cells, where initially high luminescence readings taken immediately after 



141 
 

treatment decayed with increasing time. By 4 hours after treatment, the signal recorded 

following H2O2 control had returned to untreated baseline levels in both normal and 

cancer cells, indicative of cells actively quenching H2O2 in the surrounding media. 

However, exposure to 600 s LTP produced sustained levels of H2O2 in the cell culture 

media which remained ≥ 3-fold that of untreated control cells at 8 hours after treatment. 
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Figure 37: Analysis of colony formation and induction of H2O2 following LTP 

treatment of primary prostate epithelial cells.  

Cells from the Patient 1 sample were treated with LTP for a range of treatment times, or 

with H2O2 control (1 mM). Colonies of > 50 cells were identified by crystal violet 

staining at 10-14 days following treatment, and expressed as surviving fraction against 

normalised untreated control wells in normal (A) and tumour cells (B) originating from 

the same patient. Immediately after treatment, the ROS-Glo H2O2 luminescence assay 

was performed to ascertain the levels of extracellular H2O2 formed in the cell culture 

media, with luminescence readings quantified against normalised untreated samples for 

normal (C) and tumour (D) cells. Data are expressed as the mean value ± standard error. 

Statistical analysis was conducted using unpaired t-test with Welch’s correction, with 

significance recorded against untreated samples unless otherwise indicated. 
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Figure 38: Time-dependency of H2O2 levels induced following LTP treatment of 

primary prostate epithelial cells.  

Cells from the Patient 1 sample were treated with either 600 s LTP or H2O2 control 

(1 mM). The ROS-Glo H2O2 luminescence assay was performed at a range of timed 

intervals up to 8 hours after treatment to ascertain the evolution of extracellular H2O2 

levels formed in the cell culture media. Data are expressed as the mean value ± standard 

error.  
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6.4 Cell Death Following LTP Treatment in Primary Prostate Cells  

The results for prostate cell lines presented in Chapter 5 demonstrated that cells may 

undergo apoptosis or necrosis following treatment with LTP. The cell death assays 

conducted on cell lines were repeated for LTP-treated primary prostate epithelial cells. 

In addition, analysis of autophagy was also conducted on primary cells by Western 

blotting.  

 

6.4.1 Analysis of Apoptosis and Autophagy in Primary Prostate Cells 

Analysis of apoptotic and autophagic responses were conducted through Western 

blotting for C-PARP and LC3B protein expression respectively from 2 to 24 hours after 

treatment. Normal and cancer primary cells from the Patient 1 sample were treated with 

either a range of LTP exposures, 1 mM H2O2, or 1 µM staurosporine. Staurosporine was 

again included as a known positive control for apoptosis [227, 229], and ß-actin was 

used as a loading control. Figure 39 shows that expression of C-PARP occurred at 8 – 

24 hours after treatment with staurosporine only. There is no evidence of an apoptotic 

response in either normal or cancer primary cells following 1 mM H2O2 control, or LTP 

treatment of any duration. LC3B expression levels suggested the induction of an 

autophagic response at around 24 hours following treatment with 600 s LTP (Figure 

39). The intensity ratio of LC3BI and II bands was normalised against respective ß-actin 

control lanes, and compared to untreated control samples. In the normal cells, treatment 

with 180 and 600 s LTP induced a 3- and 4-fold increase in LC3B expression over 

untreated cells respectively. In the cancer cells, the same plasma treatments induced an 

~ 2-fold increase in LC3B expression compared to untreated control cells. No clear 

evidence of increased LC3B expression was recorded at less than 24 hours after 

treatment with LTP. H2O2 control treatment induced an ~ 3-fold increase in LC3B 
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expression in both normal and cancer cells at 24 hours after treatment. Treatment with 

staurosporine control induced the largest autophagic response of all treatment groups; 

21- and 14-fold increase in LC3B expression compared to untreated samples in the 

normal and cancer cells respectively.   

Bright-field primary cell images were taken at 72 hours after treatment and are 

presented in Figures 40 and 41 for normal and cancer cells from the Patient 1 sample 

respectively. Morphologically, there are no obvious discernible variations between the 

normal and cancer cells across the different treatment groups. By 72 hours, untreated 

samples had formed a confluent layer of cells, whereas increasing levels of exposure to 

LTP progressively decreased the density of adherent cells. The images of 600 s LTP-

treated and H2O2 control treated cells are morphologically comparable, with both 

rounded cells and cells exhibiting cytoplasmic swelling common. The most obvious 

feature of Figures 40 and 41 are the clear morphological distinction between cells 

treated with staurosporine, and cells treated with either LTP or H2O2, which verifies the 

Western blotting results shown in Figure 39. 
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Figure 39: Western blotting analysis of LTP-treated primary cells.  

Cells were treated with a range of timed LTP exposures, 1 mM H2O2 or 1 µM 

staurosporine, and harvested between 2 and 24 hours after treatment. Normal and 

primary cell lysates from the Patient 1 sample were probed for apoptosis (C-PARP) and 

autophagy (LC3B) following treatment. ß-actin was used as a loading control. 
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Figure 40: Morphology of primary normal cells following treatment.  

Photographs of Patient 1 normal cells were taken 72 hours after treatment with either 

LTP, 1 mM H2O2 or 1 µM staurosporine. Green arrows indicate cells exhibiting 

cytoplasmic swelling indicative of necrosis. Orange arrows indicate cells exhibiting 

vacuolation indicative of autophagy. Scale bar denotes 400 µm.  
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Figure 41: Morphology of primary cancer cells following treatment.  

Photographs of Patient 1 cancer cells were taken 72 hours after treatment with either 

LTP, 1 mM H2O2 or 1 µM staurosporine. Green arrows indicate cells exhibiting 

cytoplasmic swelling indicative of necrosis. Orange arrows indicate cells exhibiting 

vacuolation indicative of autophagy. Scale bar denotes 400 µm.  
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In addition to Western blotting, the induction of apoptosis following treatment was 

also investigated using the Caspase-Glo 3/7 luminescence assay. Normal and cancer 

primary cells from all three patient samples were treated with either 180 or 600 s LTP, 

or 1 µM staurosporine control. At 24 hours after treatment the assay was performed, 

with luminescence values normalised against untreated control samples. Figure 42 

shows that the relative levels of apoptosis induced by 180 and 600 s LTP exposures 

were below those recorded in untreated control cells for all three patient samples. 

Treatment with staurosporine induced higher levels of apoptosis in the normal cells of 

Patients 1 and 3 (A, C), which is in good agreement with the relative band intensities 

recorded from Western blotting of Patient 1 cells (Figure 39). The level of 

staurosporine-induced apoptosis for Patient 2 was roughly equivalent for normal and 

cancer cells (B). The averaged data across all three patient samples is also presented in 

Figure 42D, which showed that treatment with LTP induced almost identical responses 

in normal and tumour cells, and that staurosporine led to ~ 2-fold higher levels of 

apoptosis in normal cells. Combined, the results shown in Figures 39 - 42 show that 

treatment with LTP did not induce apoptosis in any of the three paired primary prostate 

patient samples.   
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Figure 42: Analysis of apoptotic response following LTP treatment in primary 

patient cells.  

Cells were treated with either 180 or 600 s LTP, or 1 µM staurosporine. At 24 hours 

after treatment, the Caspase-Glo 3/7 assay was performed to analyse apoptotic 

responses following treatment in three patient samples. Luminescence values were 

normalised to untreated control samples, with the data expressed as the mean value ± 

standard error.  
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6.4.2 Analysis of Necrotic Cell Death in Primary Prostate Cells 

Cell death resulting from LTP-induced necrosis in patient samples was determined 

using the CellTox Green cytotoxicity assay. Cells were treated with either 0, 30, 180 or 

600 s LTP, 1 mM H2O2, 1 µM staurosporine, or lysing agent (toxicity control). 

Immediately following treatment, the CellTox dye was added to the cultures, which 

fluoresces green when bound to the DNA of membrane-compromised cells, which are 

characteristic of necrosis. Representative images of the treated normal and cancer cells 

originating from the Patient 1 sample (due to time-constraints and availability of 

samples only Patient 1 data are shown) in Figures 43 and 45. These images were taken 

at 4 hours after treatment. The majority of positive green cells are found as the result of 

600 s LTP treatment, where the cells exhibit a rounded appearance and are sparsely 

distributed. Both H2O2 and staurosporine controls showed little evidence of necrosis 

(non-fluorescent) at 4 hours after treatment.  

Quantitative fluorescence readings were obtained at 2, 4, 8 and 24 hours following 

treatment of all three patient samples, and are shown in Figure 44 for normal cells and 

in Figure 46 for cancer cells. The toxicity control produced consistently high 

fluorescence readings across all time points (note: split y-axis scale), indicative of total 

cell lysis, which was confirmed by fluorescence microscopy (images not shown). A 

dose dependent increase in necrosis was observed following LTP treatment of all 

patient samples. The only slight exception to this trend was the cancer cell sample of 

Patient 3 (Figure 46C), where there was little difference between cells treated with 180 

or 600 s LTP. There was no clear distinction between the levels of necrosis recorded for 

normal and cancer cells, however a few subtle differences were observed. For instance, 

higher necrotic readings were noted in the cancer cells of Patient 1, when compared to 

the paired normal cells (Figure 44A and Figure 46A). For patients 2 and 3 the opposite 
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was found, where higher levels of necrotic cell death occurred in the normal cells 

(Figure 44B/C and Figure 46B/C). However, staurosporine control treatments resulted 

in substantially less necrosis, due to cells undergoing apoptosis, and therefore their cell 

membrane remained intact. However, between 8 and 24 hours after treatment, the 

fluorescence readings from staurosporine-treated cells increased up to several-thousand-

fold in all patient samples, often becoming comparable with LTP-treated values. It may 

be difficult to differentiate between late-stage apoptosis and necrosis with this particular 

assay, especially given that Figure 39 verifies that staurosporine treatment induced 

apoptosis at 24 hours, but LTP did not.   
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Figure 43: Evidence of necrotic cells following LTP treatment of primary prostate 

normal cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, 1 µM staurosporine or 

lysing agent (toxicity control). Merged fluorescence/bright-field images (10x 

magnification) were captured 4 hours after treatment. Green cells possess compromised 

membrane integrity, indicative of necrosis. Scale bar denotes 100 µm. 
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Figure 44: Quantification of LTP-induced necrosis in primary prostate normal 

cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, 1 µM staurosporine or 

lysis toxicity control. At 2 – 24 hours after treatment, LTP induced necrosis was 

assessed using the CellTox green assay, with fluorescence values normalised to 

untreated control wells. Data are expressed as mean ± standard error.  
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Figure 45: Evidence of necrotic cells following LTP treatment of primary prostate 

cancer cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, 1 µM staurosporine, or 

lysing agent (toxicity control). Merged fluorescence/bright-field images (10x 

magnification) were captured 4 hours after treatment. Green cells possess compromised 

membrane integrity, indicative of necrosis. Scale bar denotes 100 µm. 
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Figure 46: Quantification of LTP-induced necrosis in primary prostate cancer 

cells.  

Cells were treated with a range of LTP exposures, 1 mM H2O2, 1 µM staurosporine, or 

lysis toxicity control. At 2 – 24 hours after treatment, LTP induced necrosis was 

assessed using the CellTox green assay, with fluorescence values normalised to 

untreated control wells. Data are expressed as mean ± standard error.  
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6.5 Application of LTP to Three-Dimensional Prostate Models 

To extend the scope of this study beyond the treatment of cells in suspension, LTP 

was applied to clinically relevant, three-dimensional prostate models including 

aggregates, spheroids and tissue pieces.  

 

6.5.1 Treatment of BPH-1 Cell Aggregates with LTP 

BPH-1 cells were plated into non-adherent 96-well plates and cultured for 7 days to 

form aggregates of ~ 0.5 mm diameter. These were then carefully transferred to 24-well 

plates for treatment with either 180 or 600 s LTP, or 1 mM H2O2 control. Immediately 

after treatment, cell aggregates were pipetted back into 96-well plates in a 100 µl media 

volume. A minimum of 6 aggregates were recovered for each treatment group. At 72 

hours after treatment, the CellTiter-Glo® 3D viability assay was performed to give an 

indication of metabolic activity. Images showing the morphology of cell aggregates 

following treatment are presented in Figure 47A for each treatment group. Exposure to 

either 600 s LTP or H2O2 control appeared to result in a number of cells sloughing away 

from the aggregate, however the core size of the treated aggregates did not differ from 

untreated controls. Despite this, a significant reduction in cell viability was recorded 

following treatment with LTP or H2O2 control, as shown in Figure 47B. LTP exposure 

of 600 s reduced BPH-1 aggregate cell viability to 20%, and H2O2 control to 10%. 

These results are in good agreement with those obtained for BPH-1 cells treated in 

suspension in Figure 25A. This suggests that although treatment with LTP did not cause 

the aggregates to disintegrate, the proliferative capacity of cells within the aggregate 

was strongly reduced.  
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Figure 47: LTP-treatment of BPH-1 cell aggregates.  

Cell viability of BPH-1 aggregates was recorded at 72 hours following treatment with 

either 180 or 600 s LTP, or 1 mM H2O2. Representative bright-field images were 

captured at 72 hours for each treatment group (A). Scale bars denote 400 µm. Cell 

viability results are plotted in (B), with data expressed as the mean value ± standard 

error. Statistical analysis was conducted using unpaired t-test with Welch’s correction, 

with significance recorded against untreated samples unless otherwise indicated.  
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6.5.2 Treatment of P4E6 Spheroids with LTP 

To further investigate the effects of LTP in 3D models, P4E6 cells were cultured as 

spheroids in matrigel. P4E6 cells were originally derived from a localised Gleason 

grade 7 tumour [223], and thus serve as a realistic model given the envisaged 

application of LTP as a focal treatment. As shown by Figure 48, P4E6 cells form well-

rounded and tightly packed spheroids. Cells were suspended in a media/matrigel 

solution overlaid with media, and cultured for 6 days before treatment with 180 s LTP 

or 1 mM H2O2 control. 

 

 

Figure 48: P4E6 spheroid morphology.  

Representative untreated images of P4E6 spheroid morphology after 6 days in culture in 

matrigel. Scale bar denotes 50 µm. 
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Spheroids were fixed and stained to determine necrosis (propidium iodide, PI), or 

apoptosis (C-PARP) following treatment, with representative fluorescence images 

shown in Figure 49. Live-cell PI staining was performed immediately after treatment, 

whereas spheroids stained with C-PARP were fixed 4 hours after exposure to LTP or 

H2O2 control. P4E6 spheroids treated with 180 s LTP or H2O2 control show evidence of 

PI-positive cells (Figure 49B and C) indicative of necrosis. However, it was evident that 

necrotic cell death is not extensive, with PI-positive cells only accounting for a small 

proportion (<10%) of the total population. In addition, by the virtue of taking a 2D 

image snapshot of a 3D structure, it is difficult to identify the location of the positive 

cells within the spheroid, i.e. whether positively-stained cells are present only at the 

surface, or in the centre of, the spheroid. 

It is clear from Figure 49E that treatment with LTP does not induce apoptosis in 

P4E6 spheroids. This result is in agreement with the findings in primary prostate cells 

(Figures 39 and 42). Treatment with H2O2 control induced apoptosis in a small number 

of cells (Figure 49F); yet as alluded to above in the context of necrosis, the level of 

apoptotic cell death was not extensive. 
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Figure 49: LTP-treatment of P4E6 spheroids.  

Cell death mechanisms in LTP-treated spheroids was investigated through 

immunofluorescence staining. P4E6 Spheroids were either stained for necrosis (PI, A – 

C) or apoptosis (C-PARP, D - F). Staining of spheroids was carried out either 

immediately (A - C), or at 4 hours after treatment (D - F). Scale bars denote 100 µm. 
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6.5.3 Treatment of Prostate Tissue with LTP 

Prostate tumour tissue originating from an excised xenograft was treated with LTP to 

analyse the effects of LTP on solid tissue structures in 3D. Tissue pieces were ≤ 1 cm
2
 

in size, and fixed in formalin immediately following treatment. The distance between 

the end of the nozzle and the tissue was ~ 5 mm, such that the LTP jet was in contact 

with the tissue surface as shown in Figure 50A. This is highlighted in the magnified 

section of the image. A stitch of surgical thread was tied into the tissue piece to provide 

a directional reference point to identify the region of LTP-tissue contact after the tissue 

was sectioned. However, following processing to paraffin-embed the tissue, the stitch 

resulted in tearing of the tissue, and the plasma-tissue interacting surface could not be 

identified. 

In a revised attempt to study the effects of LTP in patient tissue, pieces of benign 

prostate originating from TURP procedures were exposed to LTP. In this instance, the 

tissue was treated in 100 µl of PBS, thus allowing active species to interact with the 

entire surface area of the tissue. Tissue pieces ≤ 0.5 cm
2
 were treated with LTP for 

300 s, fixed immediately and stained for γH2AX foci to identify DNA double strand 

breaks. Figure 50 shows images of untreated (B) and LTP-treated (C) benign tissue 

sections. Extensive DNA damage can be observed in Figure 50C, with the majority of 

cells positive for γH2AX staining. However, due to the treatment of the tissue in a 

liquid volume, it was not possible to determine how the location of the image shown in 

Figure 50C corresponds to the position of the LTP jet. Through the treatment of the 

tissue in a small liquid volume, it is likely that reactive species generated as a result of 

treatment would be able to interact with the tissue surface as a whole, causing cell 

damage uniformly around the tissue. However, the ability of reactive species to 

penetrate through the tissue sections is doubtful due to their inherently short lifetimes, 
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and the resulting high probability of interaction with cells primarily at the tissue surface. 

It is therefore most likely that the damage recorded in Figure 50C is surface-limited to a 

few (≤ 5) cell-layers, which would agree with other findings for plasma-treated multi-

cellular structures in the literature [244]. Nevertheless, this result shows that DNA 

damage caused by LTP treatment does occur in both cells in suspension and solid 

patient tissue. 
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Figure 50: LTP treatment of prostate tissue.  

Pieces of tissue were treated with LTP for 300 s before immediate fixation. The distance 

between the end of the nozzle and the tissue was ~ 5 mm, such that the LTP jet was in 

contact with the tissue surface (A). This is highlighted in the magnified image. 

Immediately after treatment, tissue pieces were fixed and stained for γH2AX foci. 

Immunofluorescence images of untreated tissue (B) and tissue treated with 300 s LTP 

(C) are presented. Scale bar denotes100 µm. 
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7. Development Towards a Clinically Applicable Plasma Device 

In order to progress the study onwards from the LTP source shown in Figure 13 

towards a clinically applicable setup, some preliminary experiments were conducted to 

test the ability of a plasma to propagate down a thin needle. The device used in these 

studies was a DBD plasma ignited in a glass laboratory pasteur pipette, with the same 

electrode spacing shown in Figure 13. The plasma was ignited at the thicker end of the 

pipette in 1 SLM helium flow, and fed into the tapered end of the pipette. The outer and 

inner diameters of the two ends of the pipette were 7/6 mm and 1.5/1 mm respectively. 

The plasma was driven by a high-voltage pulsed power supply at 20 kV/1 kHz, with a 

pulse width and rise-time of 5 µs and 1 µs respectively. The power supply was designed 

and operated by Dr. Jérôme Bredin.  

Initially, the plasma was ignited into open air, where it clearly propagated to the end 

of the glass tube (Figure 51A). The next step was to determine whether the plasma 

would ignite within a tissue-like substance. As a first attempt to investigate this, a 1% 

agarose gel was used to mimic a solid, but largely aqueous, environment. A spare glass 

pipette was used to forge channels into the gel, in order to prevent the plasma pipette 

becoming obstructed with pieces of gel. The pipette was inserted into a closed channel, 

i.e. the gas flow could not escape straight through the opposite end of the gel, as this is 

physiologically relevant when treating a tumour within a prostate (or in reality, an 

internal tumour). When inserted into the gel, the plasma still ignited (Figure 51B), 

however it no longer propagated to the end of the pipette. 

The effect of only the gas flow into the gel was also investigated. The pipette was 

inserted into a new pre-made channel and the gas flow turned on. Almost instantly, a 

ballooning effect was observed as the gas permeated through the gel. This stabilised 

after a few seconds, forming the structure highlighted by the dashed lines in Figure 
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52A. When the gas flow was switched off, the structure seen in Figure 52A rapidly 

shrank, up to a point at which a permanently deformed region was observed in the gel 

(Figure 52B). The images in this section have clear implications with regard to the 

clinical application of LTP, which are addressed in the following discussion chapter. 

 

 

Figure 51: Propagation of LTP in a thin needle.  

The plasma was ignited between two copper tape electrodes and propagated along a 

glass aspirator pipette. When propagated into open air, the plasma is clearly visible at 

the end of the tube (A). When the needle was inserted into an agarose gel (B), the 

visible plasma no longer reached the end of the tube, which is marked by the white 

hashed line.  
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Figure 52: Effect of gas flow in an agarose gel.  

Without the plasma ignited, gas flow of 1 SLM helium was fed into the glass tube. 

Almost instantaneous balloon-shaped deformation occurred in the gel (A), marked by 

grey dashed lines. After the gas flow was turned off, the size of the deformation 

gradually decreased, until a region of permanent deformation in the gel was visible (B). 

NB: The contrast in this image has been considerably increased to demonstrate the 

effect on the gel.  
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8. Discussion 

 

Despite continual treatment refinements, prostate cancer still accounts for over 10% 

of cancer-related deaths in men. Patients with localised disease are often treated with 

radical surgery, which is highly invasive and can lead to a reduced quality of life [75]. It 

is also deemed a gross-overtreatment in a large number of cases [245]. Another 

common option is radiotherapy, which has been associated with off-target toxicity and 

incomplete tumour eradication [66, 68]. A range of relatively new treatments known as 

focal therapies are being developed, which aim to eliminate the tumour whilst 

minimising damage to normal tissues and side effects to the patient. Whilst promising, 

each of these has its own limitations, as outlined earlier in Table 1. The aim of this 

study was to analyse the potential of using low temperature plasma (LTP) as a novel 

focal therapy for prostate cancer. This was assessed by first conducting an initial study 

in prostate cell lines, before progressing to a more in-depth study in clinically relevant 

models. 

 

8.1 Mechanisms of Plasma-Cell Interaction and Response 

The first study examining the effect of LTPs on cancer cell lines was published in 

2004 by Stoffels et al [246]. Since then, a growing number of papers have been 

published year-on-year investigating the effects of LTP on a wide range of different 

malignant cell lines. Common responses include DNA damage [183, 193, 198], reduced 

cell viability and clonogenicity [194, 195], and cell cycle arrest [196]. A handful of in 

vivo studies on subcutaneous tumours derived from cell lines have also been performed, 

which all concluded a significant reduction in tumour volume following LTP treatment 

[82, 218, 247]. In addition, internal plasma application has already been evaluated as 



177 
 

effective and well-tolerated in a pancreatic in vivo model [247]. Despite the 

documentation of multiple different cellular responses, two clear trends have emerged 

from the literature: LTP treatment appears to exhibit selective cytoxicity towards 

malignant cell lines [195, 202, 248-252], and LTP treatment induces apoptotic cell 

death [144, 184, 196, 198, 203, 204, 206, 253-256].  

Perhaps the simplest explanation for the selective effects recorded elsewhere may be 

the comparison of different cell types, for example normal fibroblasts from one organ 

with the epithelial cancer cells of another, which may possess quite different response 

profiles. For example, Iseki et al. compared the effects of LTP on ovarian carcinoma 

epithelial cells with normal lung fibroblast cell lines, and concluded cancer-selective 

apoptotic effects [257]. In another study, Conway et al. directly compared cervical 

cancer cells with glioblastoma cells [258]. To make legitimate conclusions on the 

proposed selective effect of LTP, the treated cells should ideally originate from the 

same site.  

Despite the rapidly growing literature, no data had yet been published studying the 

effects of LTP on prostate cancer models at the beginning of this project. Due to there 

being no direct point of reference, this study began by examining the effects of LTP in 

prostate cell lines. Crucially, where this study differs from many others is the use of 

malignant and non-malignant cell lines from the same organ. The effects of LTP were 

first investigated on BPH-1 (benign) and PC-3 (malignant) prostate cell lines. In 

contrast to the perceptions in the literature relating to plasma-selectivity, BPH-1 cells 

were more susceptible to LTP than PC-3 cells in all experiments. After treatment, BPH-

1 cells had higher levels of DNA damage, reduced clonogenicity, and an IC50 value ~ 6-

fold lower than PC-3 cells (Chapter 5). It is worth re-iterating that PC-3 cells exhibit 

resistance to a range of cytotoxic agents in vitro [233-236], and thus the fact that they 
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exhibit elevated resistance to LTP compared to BPH-1 cells was not unexpected. 

However, this also highlights that the cytotoxicity recorded from single LTP treatments 

are particularly promising, especially when compared to initial experiments involving 

PC-3 cells treated with ionising radiation (IR). Following the single standard dose of 2 

Gy IR, the viability of PC-3 cells fell by only ~ 10%, and only a modest increase in 

DNA damage was recorded over untreated controls. Conversely, following 600 s LTP 

treatment PC-3 cell viability fell by ~ 90%, and DNA damage values increased by 80% 

(Figures 18 and 25). In addition, LTP treatment of PC-3 cells resulted in very consistent 

and reproducible outcomes, verified through three independent assay repeats for DNA 

damage and clonogenicity. The surviving fraction of PC-3 cells from 2 Gy IR and 600 s 

LTP were found to be 54% and 41% respectively, which are in comparatively closer 

agreement than the findings for cell viability and DNA damage. This implies that IR 

and LTP may induce different cell death mechanisms; treatment with IR was recently 

shown to induce senescence in primary prostate cells [259]. This would explain the 

reduced clonogenicity of PC-3 cells following treatment with IR, yet the cells could 

remain viable despite losing their replicative potential. The results for LTP-treated PC-3 

cells showed quite clearly that non-surviving cells died through necrosis. 

The mechanism of cell death provided further differential responses in BPH-1 and 

PC-3 cells. BPH-1 cells underwent apoptosis, whereas PC-3 cells did not. As mentioned 

earlier, the induction of apoptosis following LTP treatment has been shown by many 

studies. However, both cell lines were found to undergo necrotic cell death as a result of 

exposure to LTP. Although a few studies appear to have identified necrosis following 

LTP treatment, it was referred to as ‘non-apoptotic’ [195] or ‘caspase-independent’ 

[258, 260] cell death. The emphasis on apoptosis suggests that necrosis is perceived as 

an unfavourable cell death modality following LTP treatment when compared to the 



179 
 

tightly regulated and controlled cell execution involved in apoptosis. For example, in a 

review publication, it was directly stated that an advantage of LTP over existing cancer 

treatment modalities is “no necrosis nor inflammation” [261]. In addition, there appears 

to be a bias towards demonstrating apoptosis in the literature based on the assays 

applied to analyse cell death. Many studies cite evidence of apoptosis through C-PARP 

and/or cleaved-caspase-3 protein expression [82, 206, 256, 257, 262, 263]. Apoptotic 

activity is also commonly shown by annexin V and propidium iodide (PI) fluorescence 

activated cell sorting (FACS) [262, 264] . However, in some cases only a very modest 

(< 5%) induction of apoptosis was recorded [254], or there was no quantitation of the 

PI-positive (potentially necrotic) cell population [82, 198, 263]. Another study by 

Panngom et al. showed upregulation of genes specifically related to apoptosis only 

[250]. In the majority of these works, cell death assays were conducted at extended time 

intervals following LTP treatment. Necrosis appears to be a comparatively rapid 

response, as the results both in this study and others have shown [265]. As such, had the 

studies only citing apoptosis performed early cytotoxicity assays similar to those 

applied here, they may have also observed a proportion of cells undergoing necrosis 

following LTP treatment. 

Despite the fact that this study showed no evidence of apoptotic activity in PC-3 

cells, a different approach by Gibson et al. showed that PC-3 cells did undergo 

apoptosis 24 hours following LTP treatment of 600 s [253]. The device used was a 

different geometry to the one used in this study (a CCP similar to that described in 

Appendix B), producing an effluent devoid of charged species which was directed into 

the nozzle of a cell culture flask. The authors recorded elevated levels of nitrate in the 

cell culture media, which may have been formed from reactions between the plasma-

effluent and nitrogen in the ambient air inside the culture flask. It has been proposed 
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that NO could be a key factor in both overcoming resistance and promoting apoptosis in 

tumour cells [266], through secondary reactions to form ONOO
-
 [267, 268], and by 

inhibition of DNA repair mechanisms [269]. In this work however, no nitrogen peaks 

were recorded in the optical spectra, and the distance between the nozzle and the media 

was probably too small to permit the formation of RNS from the ambient air. Induction 

of NO could be achieved by the direct addition of molecular nitrogen into the gas feed, 

either alone or in combination with the oxygen admixture used in this work. It would be 

interesting to determine if the presence of NOx species sensitised PC-3 cells to apoptotic 

cell death. 

To summarise this section, the results presented in this work for LTP-treated prostate 

cell lines appear to contradict the findings of the research field highlighted at the 

beginning of this chapter. Many investigators report that LTP treatment preferentially 

targets tumour cells, whilst leaving non-malignant cells relatively unscathed [195, 251]. 

This is without doubt a highly desirable, ‘gold standard’ outcome, but may relate to the 

comparisons of different cell types outlined before. Nevertheless, there are many 

potential explanations and contributing factors for this concept. One explanation may be 

the rapidly dividing nature of tumour cells (in cell culture), increasing their vulnerability 

to DNA damage in M-phase [270]. Volotskova et al. showed induction of γH2AX in 

both G2/M and S-phases of various keratinocyte cell lines treated with LTP [217]. In 

addition, LTP has also been shown to interfere with other stages of the cell cycle. Chang 

et al. showed that oral squamous cell carcinoma cells underwent G1 arrest, leading to 

apoptosis, following exposure to LTP [198]. However, not all cells within a tumour 

population are actively cycling and undergoing DNA replication. Cancer stem cells are 

often quiescent and as a result may be more protected from sustaining DNA lethal 

damage. This could be crucial in the context of treating primary cells (and thus patient 
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tumours), and could be tested through cell cycle analysis using stem cell markers such 

as CD133. 

Another theory revolves around the different tolerance levels of normal and tumour 

cells to increased RONS levels [176]. The vast majority of studies in the field cite LTP-

induced RONS as the main facilitators of cellular stress and death [82, 181, 184, 187, 

194, 203, 206, 207, 218, 249]. The inherent elevated metabolic activity in malignant 

cells (Warburg effect) may present a therapeutic window, as these cells are essentially 

already at their ROS-tolerance threshold or ‘red-line’ when compared with their 

neighbouring normal counterparts [177]. Any further increase in the RONS 

concentration in the local environment may be sufficient to tip the balance and sentence 

tumour cells to death. This latter theory is most frequently used to explain the 

discrepancies presented in LTP-cancer studies, and may well influence the cytotoxic 

and cytopathic profiles of different cells. However, whilst normal cells may possess an 

extended capacity to withstand elevated RONS levels in the short term, this is unlikely 

to render them invulnerable to cytotoxic agents. Off-target toxicity to normal tissues is a 

concern in both radio- and chemo-therapies [66, 67, 271] (which, like LTP, may 

generate RONS), so it would seem unlikely to expect LTP to be different in this respect, 

especially when considering the apparent potency of the plasma used in this work. Gene 

expression analysis on markers of oxidative stress response could allow further 

quantitative clarification on the role of reactive species and plasma selectivity. 

 

8.2 The Influence of Cell Culture Media on Experimental Assays 

Different types of culture media may play a contributing role in the formation of 

RONS in the cellular environment following LTP treatment. As the growth of different 
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cell lines has been optimised in different types of culture media, it is logical to treat and 

retain them in their standard conditions. However, the reactive species produced by the 

plasma will interact not only with cells, but also with all organic components within the 

culture media. Even in the absence of cells, RPMI-based media is known to yield high 

H2O2 readings by the manufacturer of the ROS-Glo assay [272], which was confirmed 

in this study. In the presence of cells, the level of H2O2 was comparable to other media 

types, indicating that cells actively quench exogenous levels of H2O2 (and other ROS) 

in the culture media. One option to eliminate the influence of treating cells in different 

types of cell culture media would be to treat all cells in buffered saline solutions. A 

counter argument to this would be that this is non-physiological with respect to 

ultimately treating a patient, given that the plasma would react with numerous proteins 

and organic molecules when ignited inside the body.  

Although the constituents of most commonly used base media types may be similar, 

the concentration of added serum may vary from 2-10% of the total volume. 

Hypothetically, the interaction of RONS with the serum may play one of two opposing 

roles. Either the serum could quench RONS produced by the plasma, therefore 

providing a false-negative result with regard to LTP-cytotoxicity, or the serum could be 

degraded and form other secondary RONS, adding to the cumulative toxicity of the 

environment and thus producing false-positive results. This could be tested by 

performing a direct comparison of plasma-treated water with cell culture media 

(containing serum) and analysing the effects on cells, for instance using the ROS-Glo 

H2O2 assay used in this thesis. It was noted that H2O2 levels recorded in KSFM (serum-

free) media were an order of magnitude lower than those for serum-containing media. 

This suggests that serum can amplify the levels of ROS, which does not occur in 
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KSFM. Thus, concerns regarding the contribution of KSFM culture media in later 

studies with patient cells could be allayed.   

The availability, ease-of-use, and relative inexpense of various cell lines make them 

a versatile starting point to model the response of multiple different malignancies to 

cytotoxic agents. However, they are not representative of real tumours. Through many 

years of extended passaging in laboratory culture, in media containing high levels of 

serum, aberrations including the loss or gain of chromosome numbers have been 

documented in many different cell types [50, 273-275]. Primary prostate epithelial cells 

provide a far more accurate representation of both the original disease, and the 

heterogeneous nature of prostate tumours [49]. However, they are expensive to culture 

and maintain, grow slowly, and cannot be indefinitely passaged. These factors, when 

combined with the ethical approval required to acquire and store patient tissues, results 

in their usage being rare. The value of such a resource cannot be underestimated. This 

thesis represents the first study applying LTP to normal and tumour cells derived 

directly from human tissues, and thus marks the main contribution of this work to the 

field of plasma oncology. 

 

8.3 LTP Treatment of Clinically Relevant Prostate Models 

During the course of this study, paired normal and tumour primary cells originating 

from three different patients were treated with LTP. The tumour cells were cultured 

form Gleason grade 7 tumours, with the corresponding normal cells obtained from the 

opposite, normal side of the prostate to the tumour-bearing region. This allowed the first 

truly direct comparisons between normal and cancer cells to be made. In addition, as 

normal and tumour cells were cultured in identical media, the issues alluded to earlier 
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regarding the influence of different media types in cell lines no longer needed to be 

considered. 

The effects of LTP in primary cells were similar to those recorded in prostate cell 

lines; high levels of DNA damage, reduced cell viability and clonogenicity, and 

elevated levels of H2O2 in the culture media of treated cells. Indeed, the results showing 

an increase in extracellular H2O2 formation with LTP treatment almost perfectly overlay 

those showing the progressive reduction in clonogenic survival. However, a degree of 

patient-to-patient variability was observed. For example, the levels of DNA damage 

recorded for the Patient 2 sample were at least 20% lower across all treatment durations 

than for Patients 1 and 3, which were very comparable. When examining cell viability, 

the data for Patient 2 and 3 were in close agreement: the cancer cells appeared more 

susceptible to LTP treatment than their matched normal cells. The cells from the Patient 

1 sample showed the opposite trend, and also seemed more resistant to H2O2 control 

treatment. Averaged data showing the response across all patients revealed no 

differences in the cell viability of normal and tumour cells following 30 or 600 s LTP 

exposure. However, normal cells appeared comparably more susceptible to 180 s LTP 

treatment than tumour cells, but the opposite trend was seen following H2O2 control. 

These data show that the relative levels of DNA damage immediately following 

treatment do not necessarily correlate to the relative reduction in cell viability at 

extended periods after LTP exposure, and that LTP-effect is not solely due to H2O2 

production.   

Interestingly, evidence of an autophagic response was recorded in primary cells 

treated with LTP, which has not been documented before in the literature. Autophagy 

involves the degradation of cytoplasmic contents to provide sustenance during periods 

of cellular stress [276], which may act as either a cell-survival mechanism or as a pre-
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cursor to apoptosis [277]. Quantitation of band intensity in Western blotting 

experiments revealed that induction in the normal cells of Patient 1 was approximately 

double that of the tumour cells. The differential autophagic expression in normal and 

cancer cells may be attributed to their ROS imbalance alluded to earlier [176, 177], 

whereby normal cells possess an additional capacity to tolerate the effects of ROS 

compared to tumour cells. Nevertheless, further investigation of these findings is 

required, through measuring evidence of autophagy and autophagic flux in multiple 

patient samples.  

Despite the subtleties recorded across the three different patient samples, three 

findings were plainly clear; the effects of LTP cannot be solely due to H2O2 production, 

there is no strong selective effect of LTP between normal and tumour cells, and primary 

cells do not undergo apoptosis following LTP treatment. In all three primary samples, 

high levels of necrosis were recorded, yet with variability again recorded in induction 

between patients.  

The results also highlight the differences between cell line and primary cell models. 

An illustration summarising the findings in cell lines and primary cells is shown by 

Figure 53. Prostate cell lines were observed to undergo both apoptosis and necrosis 

(BPH-1 cells, red arrows), whereas primary prostate cells were only found to undergo 

necrosis (thick green arrow). In addition, primary cells were also found to exhibit 

autophagy, which may act as a cell-survival mechanism or as a pre-cursor to apoptosis  

[277] (black arrows with question marks). These factors imply that primary cells 

respond quite differently to LTP treatment than the broadly apoptotic response found in 

various cell lines across the literature. Differences between prostate cell lines and 

primary cell models in the context of response mechanisms to treatment has also been 

previously recorded in our laboratory following exposure to chemotherapeutic agents 
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[236, 278]. The data also show that selective plasma effects may be less pronounced and 

particularly patient-specific if LTP was applied as a treatment. These findings may have 

important implications when progressing LTP therapies towards the clinic, which is 

discussed in a later section. 
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Figure 53. Overview of cellular response mechanisms following low temperature 

plasma treatment.  

As a result of exposure to low temperature plasma, cells were observed to undergo 

either (or a combination of) autophagy, apoptosis or necrosis. The relative proportions 

of, and differences between, cell lines (red arrows) and primary epithelial cells (green 

arrows) that exhibit these phenomena is emphasised. Reprinted from Hirst et al [183] 

under a Creative Commons 4.0 License (http://creativecommons.org/licenses/by/4.0/), 

and originally adapted from Kepp et al. [279]. 
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8.3.1 The Treatment of 3D Structures with LTP 

To further progress the clinical relevance of this work, a number of 3D prostate 

models were treated to evaluate the effectiveness of LTP beyond the responses observed 

from cells in suspension. Cell aggregates were used as an initial model, by plating 

BPH-1 and PC-3 cells into non-adherent, round bottomed well plates, such that the cells 

sink and clump together to form rough spheres. Unfortunately, PC-3 cells did not form 

aggregates; the cells failed to clump together and instead formed a disorganised hollow 

and diffuse mass of cells, well over a millimetre in diameter. Conversely, BPH-1 cells 

formed smaller, rounded and tightly packed structures of ~ 500 µm.  

The viability of LTP-treated BPH-1 aggregates reduced significantly, with the data in 

close agreement with results obtained for BPH-1 cells in suspension analysed by 

alamarBlue assay. The morphology of the treated aggregates appeared overall very 

comparable to untreated controls, albeit with evidence of a halo of cells surrounding the 

aggregate, suggesting these cells had sloughed away. The strongly reduced metabolic 

activity of the cells, combined with the relatively intact appearance of the aggregates 

might imply that the cells had simply growth arrested following treatment. However, 

the assay applied specifically quantifies the level of intracellular ATP, as an indicator of 

actively proliferating cells. As reduced ATP levels are associated with necrosis [280-

283], this again would be in agreement with the response of BPH-1 cells of earlier 2D 

studies. 

To examine further the effect of LTP in 3D models, P4E6 cells were cultured as 

spheroids in matrigel. P4E6 cells form regular, tightly packed spheroids [284]. 

Originally derived from a localised and well-differentiated (Gleason grade 2+2 = 4) 

tumour, they provide a representative model for patients who would be suitable for 
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focal therapy. In addition, matrigel mimics the basement membrane, further replicating 

the tumour environment, and providing a barrier that plasma produced reactive species 

would have to traverse.  

Evidence of necrosis was determined following LTP treatment, but no induction of 

apoptotic activity was recorded. Further evidence that the LTP-effect is not solely based 

on H2O2 production was also found, since treatment with H2O2 led to some C-PARP 

positive cells, whereas LTP did not. From the images generated, it is difficult to 

precisely determine the location of positively stained cells within the spheroid volume. 

This could be achieved in future through the use of confocal microscopy to analyse 

staining within the spheroid layer-by-layer. It would appear that cell death occurred 

mainly in cells on the surface of the spheroid, which would agree with the findings of 

Plewa et al. and Judee et al. [244, 285], who showed that the cytotoxic effect of LTP 

was surface-limited in a cell aggregate model. The results of γH2AX staining of prostate 

tissue would also suggest this. Although the DNA damage appeared widespread 

following LTP treatment, with virtually every cell staining positively, the sections most 

likely originated from the surface of the tissue. For the clinical eradication of tumours, 

LTP treatment would need to induce cytopathic effects to cells in the core of the 

tumour. 

The fact that cell death was recorded in P4E6 spheroids following LTP treatment 

suggested that RONS produced by the plasma were able to pass through a relatively 

large media volume, diffuse into the matrigel, and ultimately deeply into the spheroids. 

This is a promising finding in the context of clinical application, and is reinforced by 

Szili et al., who showed that plasma produced RONS could pass through an agarose gel 

[286]. Nevertheless, the treatment application used here is not representative of how 

LTP might be applied clinically, as the plasma effluent was not in contact with the 
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spheroids themselves. In addition, spheroids are physically too small to be used to 

model clinical plasma application, based on the approach proposed in the next 

subsection.  
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8.4 Future Perspectives 

The models presented in this study have shown the potential of LTP treatment of 

both primary patient cells, and of multi-cellular, tumour-like structures. However, to 

ultimately realise a clinical application, LTP would need to be applied locally into the 

prostate. This chapter concludes the study by outlining how this may be achieved in the 

future, and speculating on how LTP treatment may compare against other currently 

applied technologies. 

 

8.4.1 The Clinical Application of LTP 

Following discussions with Professor Mark Emberton and Mr. Manit Arya, 

urological clinicians at University College Hospital London, it was decided that the 

most efficient means of LTP treatment application would be to follow the approaches of 

cryotherapy and brachytherapy by inserting the plasma transperineally to provide focal 

treatment of organ confined tumours. The preliminary studies in Chapter 7 showed that 

in principle it is possible to propagate a plasma along a thin tube. The images showed 

that the length of the narrow section of the tube was ~ 13 cm, with a diameter of 1.5 

mm. These dimensions are approximately equal to those of freezing needles used in 

cryotherapy procedures. An illustration of such a potential treatment delivery of LTP is 

outlined in Figure 54. The plasma is delivered transperineally down a thin needle or 

tube, and into a localised prostate tumour under TRUS guidance. The high-voltage 

electrodes are encased and distanced from the patient’s body for safety.  

It would be logical to anticipate that similar criteria for patients to be considered for 

current focal therapies would be applied for LTP treatment [287]. Patients with low risk 

cancer (Gleason 6) are likely to opt for active surveillance to avoid unnecessary 
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invasive procedures [288]. Patients with metastatic or locally advanced prostate cancer 

(typically Gleason 8-10) are not generally considered for focal therapy. Therefore, the 

final group with intermediate risk prostate cancer would be the most probable 

candidates for LTP therapy. These patients are likely to have a predicted life expectancy 

of more than five years, with no detection of locally advanced disease using imaging 

technologies (clinical stage T2a or lower) [91, 289]. Their cancer is likely to be Gleason 

7 (although some localised cancer could be Gleason grade 8) and their PSA should be 

low (less than 10-20 ng/ml). The other consideration for treatment is whether the 

tumour is unifocal or multifocal. 3D mapping of biopsies should assist in identification 

of the location, number and size of tumour foci [290]. Ultimately, such a focal therapy 

treatment is a good option for patients who do not like the uncertainty of watchful 

waiting but do not want to suffer the side effects of aggressive overtreatment for a low 

risk cancer. If radical prostatectomy was unavoidable, LTP could conceivably also be 

applied to destroy any tumour cells released during surgery, or to treat potentially 

positive surgical margins. 
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Figure 54: Proposed treatment approach for LTP treatment of localised prostate 

cancer.  

The LTP device is administered transperineally to an organ confined prostate tumour. 

Supporting image guidance from a TRUS probe, along with high-voltage (HV) power 

supply and gas flow-rate control are shown. This figure is reproduced from Hirst et al. 

2014 [114], under a Creative Commons 3.0 License 

(http://creativecommons.org/licenses/by/3.0/). 
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Much of the current literature concerns the propagation of the plasma effluent in air 

before contact with a liquid interface; however, the treatment of a tumour within a tissue 

would require the sustainment of an active plasma within a relatively liquid 

environment. Clearly, the degree of relative moisture within the tumour environment 

will play a defining role in the plasma propagation and chemistry, and is likely to vary 

from tumour to tumour. Martini et al. showed that OH radical production varied by up 

to a factor-of-two when water admixtures up to ~ 0.5% were fed directly through a 

DBD plasma [291]. This shows how sensitive the plasma chemistry is even to small 

deviations in the liquid environment. Concentrations of other reactive oxygen species, 

including H2O2 and O2
-
, have been shown to be strongly dependent on the humidity of 

the feed gas [187]. Delivery of the plasma to areas that are potentially difficult to 

access, and penetration inside the tumour are two of the main technical hurdles with the 

proposition of internal LTP treatment; nevertheless evidence within the literature, and 

also this thesis, suggests both could be overcome. As mentioned previously, the 

preliminary findings presented in Chapter 7 demonstrated that DBD plasma could be 

sustained and propagated in a thin glass tube. A biocompatible plastic would ultimately 

need to be used for patient application. It is possible to propagate plasmas along tubes 

which are metres in length [292], thus precise LTP-delivery even to tumours deep 

within the body should be possible in principle. If necessary, LTPs can be propagated in 

narrower tubes than that shown in Figure 54. In shorter tubes, plasmas have been 

sustained in tubes as small as ~ 10 µm in diameter [146].  

Given the length of tubing required for internal treatment of the prostate, the 

inherently short lifetimes of the most reactive (and thus likely most damaging) species 

may curtail their journey from source to target. However, provided an active plasma 

emerges from the end of the tube where electrons are present, as shown in this study, 
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short-lived species will be created locally at the application site. Regardless, a rigorous 

knowledge of the RONS densities emerging from the specific aperture used for 

application is essential. It has recently been suggested that control and selectivity 

towards different reactive species may be achievable by using different feed gases 

[293]. Combinations of molecular oxygen and nitrogen could create a chemistry 

containing ROS and RNS to which tumours may be indefensible. This should provide 

advantages over radiotherapy and PDT, which only induce ROS production [55, 84]. 

Maximal lethality of treatment is likely to be found by tuning combinations of the 

plasma operating conditions including voltage waveform parameters, gas composition, 

and treatment duration [62]. Owing to time-limitations, an optimal parameter range for 

plasma-operation was not identified during this study. 

The most successful method of realising an effective, focal and minimally invasive 

surgical approach is likely to be penetration of the plasma into the tumour core, to 

destroy the cancer radially outwards. This is illustrated in Figure 55, which also 

highlights the potentially multi-faceted action of LTP treatment of a bulk tumour. Short-

lived reactive species (red dots) interact with cells in the centre of the tumour, or may 

recombine to form longer-lived species (blue dots) which diffuse towards the tumour 

periphery. Cells in the immediate vicinity of the plasma effluent are likely to rapidly 

undergo necrosis, and may experience strong electroporative effects due to the strong 

instantaneous fields produced by plasma streamers. Cell death mechanisms may be 

dependent on the plasma composition (related to the different experimental parameters 

outlined in the previous paragraph), in addition to potential synergies with local electric 

fields. 
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Figure 55: Illustration of LTP treatment of a tumour.  

In the proposed approach, the LTP probe is inserted under needle guidance into the core 

of the tumour. The plasma is then ignited, creating short-lived reactive species (red 

dots) that induce DNA damage, necrosis and potentially electroporative effects to cells 

in the immediate vicinity. The diffusion of longer-lived species (blue dots) to the 

periphery tumour is shown, contributing to apoptotic and plasma-induced bystander 

effects. Proposed cellular effects and responses are estimated based on their proximity 

to the plasma source. Gas extraction is also indicated through a co-axial configuration in 

the LTP probe. This figure is re-produced from Hirst et al. 2016 [183] under a Creative 

Commons 4.0 License (http://creativecommons.org/licenses/by/4.0/). 
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Direct insertion of LTP into the core of a tumour may have implications in the 

context of tumour hypoxia, which has been identified as a key factor in radio- and 

chemo-therapeutic resistance and tumour invasiveness [294-296]. Whilst direct DNA 

damage is inflicted by energetic particles, secondary damage following radiotherapy is 

caused by the production of oxygen radicals from the interaction of ionising X-rays and 

molecular O2 in tissues and the local environment. As a result, in oxygen-deficient 

regions of the tumour, lethal DNA damage may not be achieved [297]. The majority of 

LTP-cancer studies feed small admixtures of molecular oxygen (or nitrogen) into the 

main gas flow to aid the production of oxidative (and nitrosative) radicals. As such, 

LTP treatment could provide oxygen radicals directly to the treatment site, 

circumventing the need for endogenous O2 in the tissue (as with radiotherapy), which 

may help to surmount the issue of hypoxic resistance.  

Cancer stem cells (CSCs) have been proposed to be the root of both disease initiation 

[6] and recurrence [298]. They have been widely implicated in both radio- and chemo-

resistance [299-302]. One reason for this may be higher levels of heterochromatin in 

CSCs compared to the bulk population; affording added protection against DNA 

damaging treatments [303]. It is also thought that CSCs have higher levels of ROS-

quenching enzymes in order to alleviate toxicity effects from reactive species formation 

[304] more effectively than their differentiated counterparts. Overloading the CSC 

population with an abundance of RONS generated by LTPs may overcome this 

protective shield. Data showing that LTP-treatment of primary prostate CSCs induces 

high levels of DNA damage is presented in Appendix C. 

Direct and uniform exposure of all cells within a bulk tumour population to LTP 

treatment would be extremely technically challenging. However, it is conceivable that 

cell-to-cell communication will play a role in LTP treatment of a tumour. Radiation-
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induced bystander effects (RIBEs) are well documented following DNA damage events 

and elevation of ROS levels in irradiated cells. These lead to extracellular stress-

signalling through cytokines to neighbouring non-irradiated cells, which can trigger 

increases in ROS production and cell death [305]. Given that LTPs are known to inflict 

comparable initial cytotoxic effects on tumour cells, it would therefore seem logical to 

anticipate a similar plasma-induced bystander effect following LTP treatment [306]. 

Cells located towards the outer edge of a tumour may undergo apoptosis via the 

bystander effect through cell-cell communication mechanisms, as indicated in Figure 

55. Although many tumours are multi-focal, it has been argued that targeted treatment 

to only the index lesion of a localised tumour is sufficient to provide satisfactory disease 

control [81]. This would also limit treatment invasiveness, as only one LTP probe 

would need to be inserted. Assuming the effects of LTP could propagate beyond a few 

cell layers (be it directly or via bystander effects); precisely monitored plasma ablation 

should also enable a satisfactory clearance zone to be achieved. This implies that 

damage to normal cells is not necessarily a negative feature, as a degree of collateral 

damage is a more favourable consequence than incomplete tumour ablation. It is unclear 

at this stage how plasma treatment of a tumour would be precisely monitored, but could 

involve a combination of TRUS and MRI. 

The exact mechanism of plasma-induced cytopathic effects could prove crucial to the 

long-term success of any prospective anti-cancer treatment. Apoptotic cell death is 

potentially immunosuppressive and thus can assist immune system evasion of the 

tumour [307, 308]. However, in several pre-clinical studies addressing the combination 

of radio- and immuno-therapies to improve therapeutic potential [309], it has been 

shown that necrotic cell death can increase tumour immunogenicity through induction 

of heat shock protein expression [310]. As already discussed, necrosis is induced by 
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thermally ablative treatments such as cryotherapy [311] and HIFU [312], and is known 

to cause local inflammation at the treatment site. This study has conclusively 

demonstrated that LTP treatment of primary prostate cells results in high levels of 

necrosis. This speculatively raises the question of immune activation against the tumour 

following plasma application, and the possibility of spontaneous regression of 

metastatic tumours, as has been occasionally recorded following radiotherapy [313], 

radiofrequency ablation [314, 315] and cryotherapy [316]. Direct combination with 

immunotherapy may present further synergistic prospects, as has been shown for 

ionising radiation [317]. As a result, it may be argued that plasma-induced cell death via 

necrosis may provide the most effective long-term treatment outcome. Should this be 

the case, immune checkpoint inhibitors (such as nivolumab, which has very recently 

demonstrated efficacy in the treatment of advanced nonsquamous non-small-cell lung 

cancer and metastatic melanoma [318, 319]) could be combined with LTP treatment. 

These inhibitors restore immune targeting of tumour cells by preventing them from 

binding to and inactivating T-cells. Agents such as these may present an interesting 

prospect for future use in conjunction with LTP to boost tumour immunogenicity.  

Finally, some form of gas flow extraction would almost certainly be necessary during 

treatment with LTP to minimise the risk of embolisms, and could be combined with 

cyclic LTP application. This is highlighted in Figure 55 where the plasma is inserted 

under needle guidance, and the gas extracted through co-axial configuration of the LTP 

probe. If it were possible to accurately monitor the increase in prostate volume during 

treatment, be it through ultrasound or MRI, then it would be plausible to apply LTP 

safely into the tumour. This would allow the clinician to apply LTP for extended time-

periods, until the entire tumour volume had been successfully ablated. 
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8.5 Summary 

This work has provided the first evidence showing the potential of LTPs as a novel 

prostate cancer therapy. High levels of DNA damage were recorded in both benign and 

malignant prostate cell lines, leading to reduced clonogenicity and both apoptotic and 

necrotic cell death. Elevated levels of H2O2 in the cell culture media following exposure 

to LTP was identified as a likely facilitator of cell response, and is also a strong 

indicator that plasma treatment resulted in the production of a range of short-lived 

radical species (for example OH and O2
-
) in the cellular environment. Use of specific 

reactive species scavengers would further cement these findings. 

This study also presented the first data showing the effects of LTP on tumour cells 

derived directly from patient samples. Primary cells have been previously shown in our 

laboratory to display increased resistance to cytotoxic treatments when compared to 

prostate cell lines. However, LTP treatment resulted in highly comparable results in 

terms of DNA damage, cell viability reduction, and inhibition of colony forming 

capacity between cell lines and primary cells. However, unlike cell lines, only necrotic 

cell death was recorded following LTP treatment of primary cells. This highlights the 

importance of studying clinically relevant cell models in order to gain insight into 

potential patient response. It would be crucial to understand how and why a proportion 

of cells survive LTP treatment, and if these cells could be sensitised through pre-

treatment with drugs or inhibitors. In addition, the first evidence of an autophagic 

response following LTP treatment of primary cells was documented, which may act as a 

stress-induced survival mechanism for those cells that do not immediately undergo cell 

death. 

Finally, evidence that LTP induces cytotoxic and cytopathic effects in 3D prostate 

model structures was presented, along with a potential LTP-treatment patient delivery 
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strategy. Further investigation is now required to develop and characterise the clinically 

applicable plasma device presented at the end of this study, and to test its effectiveness 

in 3D cell, tissue and in vivo models. The mechanism of cell death in 3D structures 

needs to be identified, in addition to the radial distance that reactive species produced at 

the plasma source can cause cellular effects. The behaviour of the gas flow within a 

solid mass needs to be understood and controlled or a method for extracting it devised. 

This would truly verify the potential of LTP as a future focal therapy for localised 

prostate cancer.  
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Table 6. Patient information for the primary cell samples used in this study. 

 

Age at 

Diagnosis 

PSA 

(ng/ml) 

Gleason 

Grade 

Cores Positive for 

PCa 

Tumour 

Palpable? 

Patient 1 52 5.0 3 + 4 = 7 

Normal 0/5 

Yes 

PCa 3/5 

Patient 2 68 6.9 4 + 3 = 7 

Normal 0/6 

Yes 

PCa 4/4 

Patient 3 64 8.2 4 + 3 = 7 

Normal 0/5 

Yes 

PCa 4/5 
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B. Preliminary Study to Unravel the Multiphase Action of LTP 

The data included in this appendix chapter form the beginning of a fundamental 

study to unravel and correlate the cellular effects of different reactive species produced 

by a reference plasma jet through indirect treatment of cell culture media. The source 

used was a capacitively coupled plasma (CCP) excited at radiofrequency (RF), and as 

such these results fall outside of the main study presented in this thesis.   

 

B.1. The Radiofrequency Plasma Jet 

The micro-scaled atmospheric pressure plasma jet (µ-APPJ) used in these 

experiments is an iterative development of an earlier design by Schultz von-der Gathen 

et al. [320, 321], for biological applications and diagnostic purposes. This µ-APPJ 

forms part of an EU COST action, which is in progress to produce a standardised 

reference source, such that direct data comparisons are possible across institutions. The 

µ-APPJ consisted of two stainless steel parallel electrodes, separated by a 1 mm
2
 

channel. One electrode was powered at a frequency of 13.56 MHz, and the other 

grounded as shown in Figure 56 [172]. The plasma was ignited using an RF power 

generator and matching unit (Coaxial Power). The outer ends of the two electrodes are 

chamfered to permit easier access to cell culture plates for biological treatments. 

Voltage measurements were obtained using a high voltage probe (LeCroy PMK-

14KVAC) and an oscilloscope (LeCroy Teledyne HDO6054), connected to the output 

socket of the matching unit. Helium was used as a carrier gas at 1 standard litre per 

minute (SLM), fed with an incremental range of molecular oxygen admixtures from 0-

10 standard cubic centimetres per minute (SCCM), i.e. 0-10% of the total gas flow. 
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Using two calibrated mass flow controllers (Analyt GFC17), the gas admixture was fed 

into the top of the discharge channel. 

 

Figure 56: Schematic of the µ-APPJ.  

Illustration of the µ-APPJ including RF generator and matching network. The powered 

and grounded electrodes are indicated, and gas flows from left-to-right. In the 

accompanying photograph, plasma is visible in the discharge channel between the 

electrodes. Elements of this figure are adapted from Golda et al. [172], under a Creative 

Commons 3.0 License (http://creativecommons.org/licenses/by/3.0/).  
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B.2.  Indirect Treatment of Cells Following Treatment of Cell Culture Media 

The µ-APPJ was used to treat cell-free culture media (henceforth referred to as 

plasma treated media, PTM), which was subsequently added to adherent cells. P4E6 

Cells were plated in 96-well plates at a density of 5000 cells in 100 µl of media the day 

before treatment. A 5 ml volume of culture media was added to a 6 cm dish (Corning) 

and treated under the µ-APPJ for 6 minutes under gentle mixing using an orbital mixer. 

The distance between the media surface and the discharge nozzle was maintained at 3 

mm. Evaporation of the media was found to be negligible.  

Figure 57 shows the plate layout used in PTM experiments. Following 6 minutes 

treatment with µ-APPJ, 150 µl of neat PTM was added directly to cells in column 3 of 

the plate, referred to in Figure 60 as PTM 1:0. Into column 4 of the plate, 150 µl of 

PTM was added to the 150 µl of existing cell culture media, resulting in a 1:1 dilution, 

and a total well volume of 300 µl. This was the subsequently serially diluted across the 

plate, until column 10 contained only a 1:32 dilution of PTM. Columns 2 and 11 

contained untreated P4E6 cells, and 250 µM H2O2 was added to column 3 as a positive 

cytotoxic control. The outer wells of the plate contained 150 µl of untreated media as a 

control. At 72 hours after treatment, the cell viability was assessed by alamarBlue assay 

against normalised untreated control wells, and plotted in Figure 58.  
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Figure 57: Layout of 96-well plate for PTM serial dilution.  

Following treatment with µ-APPJ, PTM was added to column 4 of the culture plate and 

serially diluted. Columns 2 and 11 were untreated control wells, and 250 µM H2O2 was 

added to column 3 as a positive control. The outer wells were filled with culture media 

only, as a blank control.   
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Figure 58: Viability of P4E6 cells following PTM treatment.  

Culture media was treated with µ-APPJ for 6 minutes, added to cells and serially 

diluted. H2O2 (250 µM) was used as a positive control.  At 72 hours after treatment, cell 

viability was analysed using the alamarBlue assay. Viability levels are normalised to 

untreated control samples, and data are expressed as mean ± standard error. A and B 

represent two independent experiments. 
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B.3. Reduction in Cell Viability is Dependent upon Oxygen Admixture 

Two independent experiments were performed to assess P4E6 cell viability 

following exposure to PTM, which are shown in Figure 58A and B. This project aims to 

ultimately investigate the role different plasma-produced reactive species play in cell 

response. As such, P4E6 cells were selected for these experiments based on the low 

serum content of their culture media, the significance of which was discussed earlier.  

In both experiments, it became clear that diluting the PTM by more than 1:2 had no 

effect on cell viability, and as such these values are not plotted in Figure 58. It was 

found that a pure helium treatment did not reduce cell viability in either experiment. 

However, adding increasing levels of O2 into the gas flow progressively reduced cell 

viability up to 0.75% O2 admixture. At higher admixtures, the viability increased, with 

0.5% and 1% O2 producing similar reductions in viability. Figure 58B shows an overall 

greater reduction in viability than Figure 58A, and thus a third experiment is required in 

order to produce an averaged result. However, both graphs show an identical trend with 

respect to O2 admixture. The results correlate with laser spectroscopy data by Knake et 

al. [322], who showed a maximum in atomic oxygen density at 0.5 - 0.75% O2 

admixtures for the same plasma source. 

Future work could include narrowing the O2 range to between 0.5 – 1.0%, with 0.1% 

increments, to determine the most effective admixture. The Celltox green and Caspase-

glo 3/7 assays already presented in this thesis could be multiplexed to gain insight into 

the mechanism of cell death following exposure to PTM. Once an optimal O2 admixture 

had been determined, liquid phase chemistry analysis would provide detailed 

information on the concentrations of different reactive species created in the cell culture 

media. Finally, the experimental data could be combined with numerical simulations of 
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the RF plasma core. This would help to correlate the different interfaces illustrated in 

Figure 12; the species created in the core plasma at different O2 admixtures could be 

compared to those that are present in the culture media, and are responsible for 

cytopathic cellular effects. 
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List of Abbreviations 

%  Percentage 

°C  Degrees celcius 

103
Pd  Radioisotope of Palladium

 

125
I  Radioisotope of Iodine 

 

131
Cs  Radioisotope of Caesium

 

1
O2  Singlet delta oxygen 

2D  Two-dimensional 

3D  Three-dimensional 

α  Degree of ionisation 

ε0  Permittivity of free space  

κ  Rate constant 

λ  Mean free path 

λD  Debye length 

µ-APPJ Micro-scaled atmospheric pressure plasma jet 

µg  Micro gram 

µl  Micro litre 

µM  Micro molar 

ν  Collision frequency 

σ  Collision cross section 

τ  Average time between collisions 

ωp  Plasma frequency 
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ABM  Anti-biotic anti-mycotic 

AC  Alternating current 

ADT  Androgen deprivation therapy 

AFS  Anterior fibromuscular stroma 

AR  Androgen receptor 

ASK1  Apoptosis signal-regulating kinase 1 

ATCC  American type culture collection 

ATM  Ataxia telangiectasia mutated 

ATP  Adenosine Triphosphate 

BCA  Bioinchoinic acid 

BM  Basement membrane 

BPE  Bovine pituitary extract 

BPH  Benign prostatic hyperplasia 

BSA  Bovine serum albumin 

CB  Committed basal 

CCP  Capacitively coupled plasma  

CFE  Colony forming efficiency 

CK  Cytokeratin 

C-PARP Cleaved- poly (ADP-ribose) polymerase 

cm  Centimetre 

CO2  Carbon dioxide 

COST  Co-operation in science and technology 

CRPC  Castrate resistant prostate cancer 
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CSC  Cancer stem cell 

CZ  Central zone 

dH2O  Distilled water 

ddH2O Double distilled water 

DAPI  4’,6-diamidino-2-phenylindole 

DBD  Dielectric barrier discharge 

DMEM Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

DRE  Digital rectal exam 

DTT  Dithiothreitol 

e  Electronic charge 

ECL  Enhanced chemiluminescence 

EDTA  Ethylenediaminetetraacetic acid 

EEDF  Electron energy distribution function 

EGF  Epidermal growth factor 

EU  European Union 

eV  Electronvolt 

FE-DBD Floating electrode dielectric barrier discharge 

FGF  Fibroblast growth factor 

GM-CSF Granulocyte macrophage colony stimulating factor 

g  Gram 

Gy  Gray 
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h  Hour 

H2AX  H2A histone family member X 

H2O2  Hydrogen peroxide 

H7  Ham’s F12 medium + 7% FCS + 2 mM L-Glutamine 

HBSS  Hank’s balanced saline solution 

HCl  Hydrogen chloride 

He  Helium 

HIFU  High-intensity focussed ultrasound 

HRP  Horseradish peroxidase 

IC50  Half maximal inhibitory concentration 

ID  Inner diameter 

IF  Immunofluorescence 

IR  Ionising radiation 

IgG  Immunoglobulin G 

IU  International units 

K  Kelvin 

K2  KSFM media + 2% FCS + 2 mM L-Glutamine + BPE + EGF 

kHz  kilohertz 

kV  kilovolt  

KSFM  Keratinocyte serum free medium 

L  System length scale 

LIF  Leukaemia inhibitory factor 

LTP  Low temperature plasma 
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MAPK Mitogen-activated protein kinase 

MHz  Megahertz 

ml  Millilitre 

mm  Millimetre 

mM  Millimolar 

MRI  Magnetic resonance imaging 

N  Atomic nitrogen 

n  Plasma density 

ne  Electron density 

ni  Ion density 

ng  Density of background gas 

NaCl  Sodium chloride 

NaOH  Sodium hydroxide 

NGS  Normal goat serum 

NO  Nitric oxide 

nm  Nanometre 

NP40  nonylphenoxypolyethoxyethanol 

O  Atomic oxygen 

O2
-
  Superoxide 

O3  Ozone 

OD  Outer diameter 

OES  Optical emission spectroscopy 

OH  Hydroxyl 
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ONOO
-
 Peryoxynitrite  

P  P-value 

PAP  Prostatic acid phosphatase 

PARP  Poly (ADP-ribose) polymerase 

PBS  Phosphate-buffered saline 

PCa  Prostate cancer 

pd  Product of pressure (p) and electrode separation distance (d) 

PFA  Paraformaldehyde 

PI  Propidium iodide 

PIN  Prostatic intraepithelial neoplasia 

PDT  Photodynamic therapy 

PTM  Plasma treated media 

PSA  Prostate-specific antigen 

PZ  Peripheral zone 

R5  RPMI + 5% FCS + 2 mM L-Glutamine 

RP  Radical prostatectomy 

RPMI  Roswell Park Memorial Institute medium 

RF  Radio frequency 

RONS  Reactive oxygen and nitrogen species 

ROS  Reactive oxygen species 

RNS  Reactive nitrogen species 

RT  Radiotherapy 

SBRT  Stereotactic body radiation therapy 
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s  Second 

SC  Stem cell 

SCCM  Standard cubic centimetres per minute 

SCF  Stem cell factor 

SCM  Stem cell medium 

SDO  Singlet delta oxygen 

SDS  Sodium dodecyl sulphate 

SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis  

SE  Standard error 

SF  Surviving fraction 

SLM  Standard Litres per minute 

Stauro  Staurosporine 

STO  Continuous line of SIM mouse embryonic fibroblasts 

SV40  Simian vacuolating virus 40 

TA  Transit-amplifying  

TBS  Tris buffered saline 

TBS-T  Tris buffered saline + Tween-20 

TE  Tris-EDTA buffer 

TNF  Tumour necrosis factor 

Tox Cont Toxicity control 

TRUS  Trans-rectal ultrasound 

TURP  Transurethral resection of the prostate 

TZ  Transition zone 
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U  Unit 

Unt  Untreated 

UV  Ultraviolet 

v/v  Volume per volume 

VB  Breakdown voltage 

w/v  Weight per volume 

Wcm
-2  

Watts per square centimetre 
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