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Abstract 

         Mutations in the N-terminal region of MCPH1/BRIT1 cause premature 

chromosome condensation (PCC), whereby cells enter mitosis before completing 

DNA replication. 792 chemical compounds (CC) were selected based on the crystal 

structure of the N-terminus of MCPH1/BRIT1 and assayed using high throughput-

high content imaging to identify CC that induced PCC. Hit validation revealed 4 

potential CC, 2 of which induced high PCC at low concentrations.  

         A screen using a human protein kinase (hPK) siRNA sub-library was 

performed to identify genes that induced PCC. Four hits were selected for 

validation, however PCC induction was not confirmed. A complementary hPK 

siRNA screen combined with MCPH1/BRIT1 siRNA knockdown was performed. 

The cell number outputs from both hPK siRNA screens were analysed to identify 

synthetic lethal (SL) genes in MCPH1/BRIT1-deficient cells. CDK1/CDC2, STK39, 

VRK1 and TTK/MPS1 were subsequently validated as potential MCPH1/BRIT1 SL 

genes.  

         The expression of MCPH1/BRIT1 was examined by immunostaining in breast 

cancer (BC) tissue pre and post neoadjuvant chemotherapy (NACT) to determine 

its effect on response and survival. MCPH1/BRIT1 expression increased in 

response to NACT with high expression in 51.4% (36/70) of cases pre-NACT 

compared to 81.4% (57/70) post-NACT (p = 0.0002). Reduced MCPH1/BRIT1 

expression correlated with longer overall survival (OS) pre- but not post-NACT (p = 

0.017). Change in MCPH1/BRIT1 expression (from low-high) post-NACT was 

significantly correlated with better OS (p = 0.010). MCPH1/BRIT1 has previously 

been found to regulate p53 stability in BC cell lines. Notably, in this study a 

significant increase in MCPH1/BRIT1 staining was accompanied by a decrease in 

p53 staining in post-NACT samples (p < 0.0001).  

         In conclusion, these data support the idea that CC inhibitors targeting 

MCPH1/BRIT1 may sensitize BC cells to chemotherapy. Additionally, genes whose 

inhibition could promote cell death in MCPH1/BRIT1–deficient cells have been 

identified as potential therapeutic targets in tumours where MCPH1/BRIT1 

expression or function has been compromised.  
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Chapter 1 General introduction  

1.1 MCPH1/BRIT1 

Autozygosity mapping was Initially utilised to identify the first locus involved in 

primary microcephaly. This was MCPH1/BRIT1, which is positioned on 

chromosome 8p23 (Jackson et al., 1998). Three years later, Jackson et al. (2002) 

reported that MCPH1/BRIT1 was a causative inherited gene of primary 

microcephaly, encoding a protein called Microcephalin, which is involved in 

developing the cerebral cortex of human fetal brain.   

 

1.1.1 Autosomal recessive primary microcephaly (MCPH) 

         Human MCPH is a neurodevelopmental disorder, clinically characterised by a 

remarkable reduction in brain size particularly affecting the cerebral cortex, which is 

at least 2 standard deviations below the mean for age and sex, and is associated 

with a mild to moderate mental retardation (Kaindl et al., 2010) (Figure 1.1A). 

Twelve MCPH genes for microcephaly have been identified (Table 1.1). 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Phenotypic characterisation of primary microcephaly patients.  
Image (A) shows the normal head size compared to reduced head size in microcephaly 
patient which is smaller than 2 SD below the mean. Image (B) shows two siblings at age 7 
and 5 years old affected with premature chromosome condensation (PCC) syndrome, 
Source: Image A is adapted from http://www.nlm.nih.gov and Image B from (Neitzel et al., 
2002). 

Normal head size Microcephaly 

A 
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Table 1.1. Genetic heterogeneity causes (Loci, genes and protein) for autosomal recessive primary microcephaly disorder.  

Source:  adapted from (Kaindl, 2014; Barbelanne and Tsang, 2014; Faheem et al., 2015).

Locus Chromosomal 
location 

Gene Protein Reference 

MCPH1 8p23.1 MCPH1/BRIT1 Microcephalin (Jackson et al., 1998; Jackson et al., 
2002) 

MCPH2 19q13.12 WDR62 WD repeat containing protein 62 (Roberts et al., 1999) 
MCPH3 9q33.2 CDK5RAP2 Cyclin dependent kinase 5 regulatory associated protein 2 (Moynihan et al., 2000) 
MCPH4 15q15.1 CASC5 Cancer susceptibility candidate 5 (Jamieson et al., 1999) 
MCPH5 1q31.3 ASPM Abnormal spindle–like, microcephaly associated protein (Pattison et al., 2000) 
MCPH6 13q12.12 CENPJ Centromere protein J (Bond et al., 2005) 
MCPH7 1p33 STIL SCL/TAL1 interrupting locus (Kumar et al., 2009) 
MCPH8 4q12 CEP135 Centrosomal protein 135 (Hussain et al., 2012) 
MCPH9 15q21.1 CEP152 Centrosomal protein 152 (Guernsey et al., 2010) 
MCPH10 20q13.12 ZNF335 Zinc finger protein 335 (Yang et al., 2012) 
MCPH11 12p13.31 PHC1 Polyhomeotic-like protein 1 (Awad et al., 2013) 
MCPH12 7q21.11 CDK6 Cyclin-dependent kinase 6 (Hussain et al., 2013) 
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Figure 1.2. The morphology feature of premature chromosome condensation.  
(Image 1) Peripheral blood lymphocyte samples from MCPH1/BRIT1 primary microcephaly 
patients (1a) and PCC syndrome patients (1b) display prophase like cells with premature 
condensed chromosomes (PCC) in G2 phase.  (Image 2) MCPH1/BRIT1 mutated cells 
derived from these patients present a binucleated cells with a delay in chromosome 
decondensation in G1 phase as shown in (2a) compared to the control in (2b) showing the 
binucleated lymphoblastoid cell with decondensed chromosomes. (Image 3) PCC induced 
in a mouse embryonic fibroblast cells (MEFs) with Mcph1/Brit1 knockout (Mcph1/BRIT1-/-.) 
(3a) An example of DAPI staining of MEFs cells with the WT Mcph1/Brit1+/+ (Top) presenting 
normal prophase condensed DNA, with clusters of bright dots of heterochromatin regions 
whereas the Mcph1/BRIT1-/- (Bottom) shows the PCC cells with a intense DAPI staining of 
abnormal dotted condensed chromosomes and unstained spaces in the nucleus. (3b) 
Shows the metaphase chromosome spreads in MEFs cells displaying the normal, long and 
thin chromosomal morphology in WT Mcph1/Brit1+/+  (Top) compared to the short, thick 
(dumpy) chromatids in Mcph1/Brit1-/- (Bottom). Source: images 1 and 2 are adapted from 
(Trimborn et al., 2004), image 3 is adapted from (Wood et al., 2008).  
 
         The phenotypic features of MCPH1/BRIT1 patients are thought to be related 

to uncontrolled cell division and high levels of apoptotic cells. Thus, a reduction in 

brain size may be a result of an abnormal cell cycle division and apoptosis. 

Mutation in MCPH1/BRIT1 has also been found in patients with premature 

chromosome condensation (PCC) syndrome, which is characterized by 

microcephaly, short stature and premature chromosome condensation (Trimborn et 

al., 2004) (Figure 1.1B). This finding demonstrates that both MCPH1/BRIT1 and 

PCC syndromes are allelic diseases. Cells derived from theses patients exhibited 

prophase like cells with misregulated chromosome condensation in G2 phase and 

delayed decondensation in G1 phase (Figure 1.2 /images 1a and 1b and 

1. 

2. 

3. �� �!
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respectively), suggesting MCPH1/BRIT1 is involved in the regulation of 

chromosome condensation. The difference between the normal and/or abnormal 

chromosome condensations has been investigated by Wood et al. (2008) using a 

Mcph1/Brit1 knockout mouse embryonic fibroblast (MEFs) model (Figure 1.2 

images 3a and 3b). 

            Microcephalin plays an essential role to sustain cerebral cortex size via 

regulation of the division mode of neurogenic cells (Gruber et al., 2011). 

Mcph1/Brit1 knockout mice model revealed that MCPH11/BRIT1 deficiency 

abolishes the centrosome localization of CHK1, causing early activation of 

CDK1/CDC2 and premature entry into mitosis and apoptosis (Tibelius et al., 2009). 

As a result, the abnormal orientation of mitotic spindles leads to a switch from 

neuroprogenitor (symmetrical) division mode, where division results in the 

production of two daughter neural progenitor cells (NPCs) to asymmetrical division 

where one NPC and one post mitotic neuron are created. This would lead to a 

decrease in the number of neurones. Experimentally, using U2OS cells, genetically 

silenced for CDC25B mediates the activation of CHK1 and CDK1/CDC2 to repress 

their uncontrolled functions and couple the centrosomal cycle with mitotic 

progression (Löffler et al., 2006). Overall, MCPH1/BRIT1 has a critical role in 

mitotic spindle orientation and regulates neuroprogenitor proliferation through the 

CHK1- CDC25- CDK1/CDC2 pathway that leads to couple the mitosis with 

centrosome cycle and brain developmental.  

 

1.1.2 MCPH1/BRIT1 gene structure 

The human MCPH1/BRIT1 gene contains 14 exons (90, 92, 119, 88, 115, 144, 90, 

1155, 110, 38, 163, 78, 238 and 512bp in size) (Jackson et al., 2002) (Figure 1.2a). 

It has genome size of 241,905 base pairs (bp) and an 8,032 bp open reading frame 

(Jackson et al., 2002; Kaindl et al., 2010). Four different transcripts of human 

MCPH1/BRIT1 have been identified in 562T fibroblast cells (Gavvovidis et al., 

2012). These transcripts include the full length (FL) and the alternative isoforms Δe 

9–14, Δe 1–3, and Δe 8 (Gavvovidis et al., 2012). 

 

1.1.3 MCPH1/BRIT1 protein domain structure 

        The human MCPH1/BRIT1 gene encodes an 835 amino acid (aa) protein of 

110 KDa molecular weight, called Microcephalin. Microcephalin consists of three 

BRCA1 carboxyl-terminal (BRCT) domains (Figure 1.3b).  
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Figure 1.3. Gene coding and protein domain structure of human MCPH1/BRIT1.  
(a) This represents the coding region (intron-exon structure) of MCPH1/BRIT1 gene, which 
includes 14 exons displayed as bold black rectangles. (b) This shows the protein domain 
structures, containing three BRCT domains highlighted in green. Interactor proteins with the 
BRCT domains of MCPH1/BRIT1 are indicated below each domain. The middle IMPDH 
domain, including residues 381–435 (highlighted in grey), also interacts with condensin II. 
Also at the middle domain site, as shown, is essential for ATR phosphorylation of Ser322 
(S322P) of MCPH1/BRIT1 for recruitment of topoisomerase (DNA) II binding protein 1 
(TopBP1). Source: Image (a and b) is adapted from (Pulvers et al., 2015). 
 

         The N-terminus BRCT1 domain extends from aa 7 to 83, the C-terminus 

BRCT 2 from aa 642 to 720 and the C-terminus BRCT 3 from aa 753 to 823 

Jackson et al. (2002). BRCT domains, are phospho-peptide-binding amino acid 

tandem repeats found in BRCA proteins, such as BRCA1 and BRCA2, that are 

involved in cell cycle checkpoints and repair DNA damages (Huyton et al., 2000; 

Gerloff et al., 2012).  

         Microcephalin N-terminus domain is required for centrosomal localization in 

irradiated cells (Jeffers et al., 2008).  In addition, the N-terminal BRCT1 domain 

fragment (residues 1-195) has been found to interact with Condensin II to regulate 

DNA condensation (Figure 1.3b) (Yamashita et al., 2011). Another fragment 

(residues 1-48) is essential for the recruitment of BAF170, a component of the ATP-

dependent chromatin remodeling complex (switch/sucrose nonfermentable) 

(SWI/SNF). This promotes chromatin relaxation in DNA double strand breaks 

(DSBs) in an as yet poorly understood mechanism (Figure 1.3b) (Peng and Lin, 

2009c; Peng et al., 2009). The other two BRCT domains (BRCT 2 and 3) are 

localised at the C-terminal domain of Microcephalin protein (Figure 1.3b). The C-

terminal BRCT 2/3 domains bind to several phosphorylated proteins, such as 

breast cancer susceptibility gene 1 (BRCA1) and the mediator of DNA damage 

checkpoint protein 1 (MDC1) (Bork et al., 1997), mediating the interaction between 

MCPH1/BRIT1 and the γH2AX to induce foci formation in response to DNA 

damages (Wood et al., 2007; Wood et al., 2008; Jeffers et al., 2008; Singh et al., 

a. Human MCPH1/BRIT1 gene coding structure   

b. Human MCPH1/BRIT1 protein domain structures   
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2012a). The BRCT 2/3 domains of MCPH1/BRIT1 bind at the promoter of the 

transcription factor E2F1 to activate the transcription of BRCA1 and CHK1 (Yang et 

al., 2008). Additionally, the interaction between the C-BRCT terminus domains of 

MCPH1/BRIT1 with the N-terminus of BRCA1 protein facilitates the localization of 

Rad51 at damage sites without influencing the formation of a BRCA2-Rad51 

complex. However, this interaction activates the BRCA2-Rad51-dependent 

homologous recombination (HR) repair of DNA damage (Wu et al., 2009). 

Moreover, the C-BRCT tandem domains interact with the cell division cycle protein 

27 (Cdc27), a subunit of the anaphase- promoting complex (Singh et al., 2012e). 

Individual downregulation of the endogenous MCPH1/BRIT1 FL and the transcript 

variant that lacks the two BCRT domains (Δe 9–14), using specific siRNA for each 

transcript, has no effect of chromosome condensation. Only the simultaneous 

depletion of these two transcripts has been found to induce PCC in HeLa cells, 

indicating their redundancy in preventing PCC (Gavvovidis et al., 2012).  

         Microcephalin protein has one nuclear localization signal (NLS) motif and 

possesses a large middle IMPDH domain (Liang et al., 2010g). A deletion in the 

NLS domain (residues 301-400 aa) of MCPH1/BRIT1 in human embryonic kidney 

293T cells (HEK293T) caused accumulation of MCPH1/BRIT1 in the cytoplasm and 

affected the localisation of the C-terminal domain to the nucleus, which prevents 

foci formation in response to DNA damage (Wood et al., 2007). This is a canonical 
NLS sequence (RKRVSHGSH- SPPKEKCKRKR) spanning the region of the NLS 

domain from aa 355 to 375 which is thought to function as a regulator for 

MCPH1/BRIT1 localisation in the nucleus (Wood et al., 2007).    

         Although the function of the IMPDH middle domain is not yet clarified, a 

fragment of the middle domain (aa 376–485) in exon 8 binds with condensin II 

(CAP-G2 subunit) as apart of the HR repair mechanism (Figure 1.3b) (Wood et al., 

2008; Yamashita et al., 2011). The shape of metaphase chromosomes are thought 

to be regulated by binding of the N-terminal and middle domains of MCPH1/BRIT1 

to CAP-D3 and CAP-G2 of condensin II, respectively (Yamashita et al., 2011). Also 

ATR mediates the phosphorylation of Ser322 (S322P) in the middle domain of 

MCPH1/BRIT1 (Figure 1.3b) which is essential for recruitment of topoisomerase 

(DNA) II binding protein 1 (TopBP1) to maintain ATR signaling for DNA repair 

(Zhang et al., 2014). 
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1.1.4 MCPH1/BRIT1 expression and cellular localisation  

         MCPH1/BRIT1 is mainly localised in the nucleus and is expressed at an 

elevated level in different human tissues such as the brain, liver, testes and 

pancreas (Liang et al., 2010g; Lin et al., 2010). MCPH1/BRIT1 transcripts are also 

expressed at high levels in fetal brain and kidney and at low levels in fetal heart and 

lungs (Jackson et al., 2002).   

         A human breast cancer study in Dr. Sandra Bell’s lab using 

immunohistochemistry (IHC) reported that detection of a high level of 

MCPH1/BRIT1 protein expression in placental tissue samples that were used as 

the control in a tissue microarray (TMA) slide. In the same lab, in normal breast 

tissue samples, MCPH1/BRIT1 expression was detected in the nucleus and nuclear 

foci and cytoplasm (Richardson et al., 2011). Similarly, in primary cultures of normal 

ovarian samples, the localisation of MCPH1/BRIT1 expression has been detected 

in the nucleus and nuclear foci and in the cytoplasm (Bruning-Richardson et al., 

2011).  

         In their comparison of MCPH1/BRIT1 expression in human tissues, 

Venkatesh and Suresh (2014) summarised the localisation of MCPH1/BRIT1 in 

different cells lines. They reported for instance, that MCPH1/BRIT1 localises at the 

centrosomes in U2OS cell line (osteosarcoma) (Zhong et al., 2006) and 

accumulates at DNA repair foci in U2OS cells (Rai et al., 2006), HeLa cells (Wood 

et al., 2007) and cells derived from MCPH1/BRIT1 patients (Gavvovidis et al., 

2010).  

 

1.1.5 PCC is a hallmark of MCPH1/BRIT1 mutation 

1.1.5.1 PCC overview    

        Johnson and Rao (1970) were the first to describe the phenotype of PCC. 

Using ultra violet (UV) inactivated Sendai virus, they found that PCC occurs when 

two cells in different phases of the cell cycle fuse, when one of them was in mitosis. 

The morphology features of PCC during the cell cycle phases (G1, S, G2, and M) 

(Johnson and Rao, 1970) reveal the rate or level of chromosome condensation of 

PCC. For instance, the presence of early G1 phase increases chromatid 

condensation whilst all the late G1 cells show the significant extent of G1 PCC 

(Hittelman and Rao, 1978).  
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         Hittelman et al. (1980) demonstrated that PCC is a useful tool for investigating 

cell division and chromosome structure in normal and cancerous cells during all 

phases of the cell cycle. In early G1 phase, the PCC chromosomes are long and 

single stranded. At G2, after DNA replication (S phase), they duplicate and become 

two identical chromatids that maintain their length when compared to prophase 

chromosomes. Experimentally, PCC phenotype is observed in the bone marrow 

cells (Hittelman and Rao, 1978).  

         Additionally, PCC has been identified in many types of human cancer such as 

breast and ovarian carcinoma (1.5-8.9% PCC) (Miles and Wolinska, 1973); 

leukemia (3.6% PCC) (Williams et al., 1976); carcinoma of the bladder (Atkin, 

1979); large bowel and colon cancer (6.6% - 6.9%) (Reichmann et al., 1981; 

Reichmann and Levin, 1981). Human cervical carcinoma cells present PCC ranging 

from 1.5-8.9% and exhibit hyperdiploidy that may due to the induction of polyploidy. 

Thus, further analysis of patients with different stages of cancer with PCC may 

provide a clinical correlation with cytogenetic data (Sreekantaiah et al., 1987).  

         PCC can be induced by the phosphatase inhibitors Okadaic Acid (OA) or 

Calyculin A (Cal A) (Kanda et al., 1999; Alsbeih and Raaphorst, 1998), which can 

phosphorylate histone H3 at Ser10 in human leukemia-60 (HL-60) cells and in 

A599 cells (pulmonary carcinoma A). All these modifications are potentially related 

to the induction of the PCC phenotype. 

  

1.1.5.2 Molecular feature of PCC during the cell cycle 

        Commencement of chromosome condensation relies on the completion of 

DNA replication and faithful repair of all genetic material errors that are produced 

during the S phase (Rybaczek and Kowalewicz-Kulbat, 2013). Thus, the normal cell 

cycle transition from S phase to G2 phase is controlled by the central kinases ATM 

(Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3 related); 

these phosphorylate proteins to block cell progression in the event of an abnormal 

genetic structure or synthesis during or after DNA replication. They also maintain 

the activity of the M phase promoting factor (MPF), which is mainly based on the 

inactive state of the cycle dependent kinase (CDK1/CDC2) that is a principal factor 

in the mitotic initiation process.  

         In the normal cell cycle in the G2 phase, the active state of CDK1/CDC2 is 

induced by the phosphatase CDC25, which is necessary for commencement of 

chromosome condensation. The active state of CHK1 leads to phosphorylation of 
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the phosphatase CDC25 and subsequently its degradation, which is mediated by 

ubiquitin-dependent proteolysis, simplifying its removal from the nucleus. In 

addition, ATM and ATR can activate the WEE1 kinase, which is essential for 

preventing cell progression to G2 phase to facilitate DNA damage repair, 

suggesting the implication of WEE1 in the activation of CHK1 and CHK2. 

Therefore, the transition of incomplete DNA replication cells with aberration in the S 

phase checkpoint to G2 phase and with unrepaired post-replication errors could 

allow early initiation of mitosis, accompanied by a defect in the chromosome 

condensation process, leading to the generation of PCC cells. Thus, PCC cell 

chromosomes could be anticipated to show genetic aberrations and an abnormal 

morphology emerging in the form of deletions or breaks.   

         The response of cells to DNA damage leads to the activation of the ATR and 

ATM kinases by phosphorylation to CHK1 for single-stranded DNA (SSDB) and 

CHK2 for DNA double-strand breaks (DSBs), respectively. However, blocking the 

activity of ATR or/and ATM would diminish the ability of checkpoint kinases in both 

S and G2/M phases allowing premature mitosis. Indeed, treating cells with caffeine 

(CF) proved effective in inducing PCC. CF inactivates the ATR or/and ATM, 

preventing phosphorylation of their kinases’ substrates (CHK1 and CHK2 

respectively). As previously mentioned, this, in turn, causes a hyper-activation of 

phosphatase CDC25, triggering phosphorylation of CDK1/CDC2 to form a complex 

with Cyclin B and entering earlier into mitosis.  

        Progression into mitosis is required as a mechanism of chromosomal 

assembly and segregation which consists of precise chromosome condensation 

and the subsequent process of sister chromatids resolution. This allows for 

production of identical daughter cells with the same genetic materials (Nasmyth, 

2002; Swedlow and Hirano, 2003). The principal molecules in these processes are 

Cohesion and condensin I and II proteins, Hirano et al. (2005) hypothesised that 

CDK1/CDC2-Cyclin A phosphorylates condensin II to initiate chromosome 

condensation within the prophase nucleus while CDK1/CDC2-Cyclin B activates 

condensin I, allowing its access into chromosomes after nuclear envelope breaks 

down. Phosphorylation of condensin II by CDK1/CDC2 is mediated by polo-like 

kinase 1 (PLK1) to initiate the DNA condensation and mitotic entry (Abe et al., 

2011). The processes of chromosome assembly and segregation can be 

summarised as follows (Shintomi and Hirano, 2010; Nasmyth, 2002; Swedlow and 

Hirano, 2003): The replicated chromatids are linked together by Cohesion at the 

beginning of mitosis (prophase), Cohesion is released from the chromosome arms, 

allowing chromosome axis formation and the loading of the condensin into the 
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chromosome arms to induce condensation. This requires chromatin compaction to 

reduce the volume of DNA length by 10,000 - to 20,000-fold before chromosome 

segregation allows for the production of metaphase chromosomes. This 

mechanism is known as chromatin resolution. Finally, at the end of mitosis (early 

anaphase), the residual Cohesion that is already linked to the chromosome arms, is 

cleaved and removed, which allows for the separation of chromatids and 

subsequent chromosome segregation.  

        Phosphorylated histone H3 (pHH3) is another factor that is implicated in 

regulating chromosome condensation during mitosis (Hendzel et al., 1997; Sauvé 

et al., 1999). In mammalian cells, pHH3 at serine 10 (Ser10) is mediated by Aurora-

B kinase and initiates at G2 phase in the pericentromeric heterochromatin regions; 

it then greatly increases and labels the entire length of the metaphase chromosome 

which then reduces in late anaphase and early telophase (Hendzel et al., 1997). 

When interphase mammalian cells are fused with mitotic cells, PCC is induced and 

followed by an elevated level of pHH3 (Johnson and Rao, 1970; Hanks et al., 

1983). Van Hooser et al. (1998) found that pHH3 is essential for the initiation of 

chromosome condensation and for entry into mitosis, but may not be required for 

maintaining chromosome condensation. They reported that OA-induced PCC 

during S phase is associated with pHH3 but the metaphase chromosome 

morphology did not develop. This may mean that the protein kinase that 

phosphorylates histone H3 is required for regulation of chromatin structure 

modification throughout cell cycle progression but may not be required for the 

condensation (Van Hooser et al., 1998). 

 

1.1.5.3 MCPH1/BRIT1 plays a vital role in chromosome condensation 

regulation    

         As mentioned previously (Section 1.1.1) MCPH1/BRIT1 and PCC patients 

exhibit some identical clinical symptoms alongside their distinctive cellular 

phenotype known as PCC (Jackson et al., 1998; Jackson et al., 2002; Neitzel et al., 

2002). Thus, this evidence suggests that MCPH1/BRIT1 mutations lead to the 

disruption of the functioning of the Microcephalin protein and hence PCC could be a 

surrogate marker for MCPH1/BRIT1 aberrations (Trimborn et al., 2004). 

        The unique feature of MCPH1/BRIT1 deficient cells is that they exhibit a large 

number of prophase-like PCC cells (10-20%) compared to <1% in controls using 

peripheral blood cells of patients’ samples during the routine cytogenetic 
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preparation (Neitzel et al., 2002; Trimborn et al., 2004). This is also the case for cell 

lines such as SV40-transformed fibroblast (LN9SV) and HeLa cells when 

transfected with siRNA against MCPH1/BRIT1 (Trimborn et al., 2004; Trimborn et 

al., 2006). PCC is a consequence of early mitotic entry when cells begin mitosis 

before completing DNA replication (Trimborn et al., 2004). When Trimborn et al. 

(2004) used a siRNA-mediated depletion of MCPH1/BRIT1 to reproduce the PCC 

phenotype that also showed delayed decondensation in early G1 phase (post-

mitosis) using cytochalasin-B block. This study provided strong support for the 

argument that MCPH1/BRIT1 plays an essential role in both neurodevelopment and 

chromosome condensation regulation.   

         Chromosome condensation is a fundamental step that ensures proper mitotic 

entry. MCPH1/BRIT1 is an essential protein that prevents PCC (Richards et al., 

2010). Depletion of condensin II, but not condensin I, using siRNA has been shown 

to reverse the abnormal PCC phenotype in MCPH1/BRIT1 primary microcephaly 

patient cells (Trimborn et al., 2006). Indeed, the MCPH1/BRIT1 N-terminus domain 

was found to be a key factor in inhibiting premature loading of condensin II onto the 

chromosome, preventing early entry into mitosis and confirming the principle role of 

condensin II in PCC induction in MCPH1/BRIT1 deficient cells (Trimborn et al., 

2006; Yamashita et al., 2011).  

         The N-terminal BRCT domain of MCPH1/BRIT1 has a hydrophobic pocket 

that is structurally in a position equivalent to the phosphate peptide binding sites in 

BRCT proteins that play a vital role in protein-protein interactions. This may mean 

that this pocket is required for protein interactions, which are necessary for 

regulating normal chromosome condensation (Richards et al., 2010). The same 

authors experimentally demonstrated that MEFs cells with Mcph1/Brit1 knockout 

showed caused 30-40% PCC. This percentage was greatly reduced when full-

length MCPH1/BRIT1 was expressed, but not in conditions with the mutant lacking 

the N-terminus domain, confirming the substantial role which this domain plays in 

rescuing normal chromosome condensation.  

         Mutations in the N-terminal pocket had no effect on the MCPH1/BRIT1 C-

terminal BRCT domain’s function in localization at γ-H2AX foci after IR, indicating 

that the N-terminal BRCT domain may not be involved in DNA repair (Wood et al., 

2007; Wood et al., 2008; Leung et al., 2011). However, the N-terminal BRCT 

domain may interact with undefined proteins to regulate chromosome 

condensation. As previously mentioned, there is an association between PCC 

induction and the misregulated function of condensin II in MCPH1/BRIT1 patients 
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(Trimborn et al., 2006). This observation has led to investigations of the association 

between MCPH1/BRIT1 and condensin II. Interestingly, the middle IMPDH region 

of MCPH1/BRIT1 that mediates the interaction with condensin II (CAP-D3 sub-unit) 

has been found not to regulate chromosome condensation or prevent PCC, but this 

interaction is required to regulate the HR repair efficiency although there is no 

obvious impact of condensin II on G2/M checkpoint control (Wood et al., 2008).   

         However, Leung et al. (2011) have demonstrated that the SET oncogene 

protein binds directly to the N-terminal BRCT domain of MCPH1/BRIT1. Both 

MCPH1/BRIT1 and SET play a vital role as negative regulators of condensin II and 

in regulating chromosome condensation. Thus, a high percentage of abnormal 

metaphase chromosome condensation is observed with SET siRNA knockdown in 

human H1299 (human non-small cell lung carcinoma) cells. PCC phenotype in 

H1299 cells is partially alleviated when the sub-unit of condensin II, CAP-D3, was 

depleted by siRNA. A similar result is obtained in MCPH1/BRIT1 deficient MEFs 

cells.  

         Interestingly, MCPH1/BRIT1 patients with a marked PCC phenotype, exhibit a 

normal G2/M checkpoint after IR, normal chromosomal breakage and sufficient 

localization of all DNA repair proteins induced foci formation that normally interact 

with MCPH1/BRIT1, preventing any progression of damaged cells into mitosis 

(Neitzel et al., 2002; Gavvovidis et al., 2010). This means that cells with 

MCPH1/BRIT1 gene mutations differ significantly in their response to DNA damage 

compared to the response of cells with MCPH/BRIT1 siRNA or mice Mcph1/Brit1 

depleted cells. These results are potentially related to the degree of chromatin 

condensation associated with different MCPH1/BRIT1 mutations. Therefore, the 

type and location of mutation in MCPH1/BRIT1 may reflect their sensitivity to DNA 

damage agents. The DNA damage response in MCPH1/BRIT1 patients is not 

highly impaired, potentially explaining the absence of cancer development in these 

patients (Gavvovidis et al., 2010). For example, it has been confirmed that a 

mutation in the N-terminal domain at Ser 25 (S25X) (Alderton et al., 2006) has an 

alternative translation start site for MCPH1/BRIT1 transcript in MCPH1/BRIT1 S25 

X patient cells which allows the truncated MCPH1/BRIT1 protein to be made, 

despite the partial deletion of the N-terminal domain. It has been suggested that the 

truncated protein within this mutation functions in the DNA damage response 

(Leung et al., 2011).  
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1.1.6 MCPH1/BRIT1 functions 

Since the MCPH1/BRIT1 protein containing conserved BRCT domains has been 

found to be implicated in the regulation of different cellular processes such as 

chromatin condensation, cell cycle checkpoints, DNA damage response, DNA 

repair and apoptosis (Figure 1.4). Here, all these functions will be described briefly.  

 

Figure 1.4. MCPH1/BRIT1 functions.  
MCPH1/BRIT1 is involved in multiple cellular pathways (A) MCPH1/BRIT1 is involved in 
apoptosis by interacting with E2F1 leading to up-regulate activity of pro-apoptotic related 
genes. (B) MCPH1/BRIT1 plays a role in DNA damage response by interacting with H2AX 
to localise other DNA repair genes at damage sites to induce foci formation. (C) 
MCPH1/BRIT1 interacts with the SWI/SNF complex to facilitate chromatin relaxation and 
increasing the accessibility of DNA repair proteins. (D) It controls cell cycle checkpoints at 
G1/S and G2/M by regulating the expression of BRCA1 and CHK1 and stability of p53 
expression.  

 

1.1.6.1 MCPH1/BRIT1 and cell cycle checkpoint control 

        DNA damage requires sufficient time to repair, therefore the cell cycle 

checkpoints control systems delay cell cycle progression (Zhou and Elledge, 2000). 

MCPH1/BRIT1 plays a novel role in regulating the ATM/ATR signalling pathways 

and activating BRCA1 expression (Lin et al., 2005; Xu et al., 2004), leading to 

regulation of the intra-S phase checkpoint (Chaplet et al., 2006).  
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         Additionally, MCPH1/BRIT1 plays a vital and distinct role in controlling the 

G2/M checkpoint (mitotic entry), via the activation of ATM or ATR pathways and 

regulation of the expression of BRCA1 and CHK1 (Zhou and Elledge, 2000; 

Alderton et al., 2006). Phosphorylation of BRCA1 via ATM is essential for mediating 

S phase checkpoint arrest after IR (Cortez et al., 1999). Moreover, It has been 

found that the absence of MCPH1/BRIT1 leads to a reduced level of BRCA1 and 

CHK1 as well as little NBS1 (Nijmegen Breakage Syndrome 1 (Nibrin)) 

phosphorylation. As a result, defective checkpoint arrest of both intra S-phase and 

G2/M phase occurs (Lin et al., 2005; Xu et al., 2004). A high percentage of U2OS 

cells with MCPH1/BRIT1 siRNA knockdown achieve mitotic entry after IR; these 

cells were not sensitive to ionizing radiation (IR) and preserve their DNA synthesis 

increasing the level of pHH3 Ser10, confirming a defective G2/M arrest (Lin et al., 

2005; Xu et al., 2004). In addition, the cells derived from patients with chronic 

myeloid leukaemia (CML) display a defective G2/M arrest when exposed to 

hydroxyurea (HU) (Giallongo et al., 2010). ATR is required to function in regulating 

CHK1 during G1/S phase undergoing DNA damage in U2OS cells; thus loss of p53 

leads to ATR dysfunction and subsequent induction of PCC (Nghiem et al., 2001). 

Therefore, MCPH1/BRIT1 functions downstream of CHK1 in the ATR pathway, 

controlling Cdc25A stabilization and regulation of the G2/M phase after DNA 

damage (Alderton et al., 2006). 

          MCPH1/BRIT1 functions independently to activate phosphorylation of 

CDK1/CDC2-Cyclin B that is required for mitotic entry (Alderton et al., 2006). Thus, 

the clinical characterisations of MCPH patients harbouring MCPH1/BRIT1 gene 

mutation have not been linked to the deficiency in the transcription of CHK1 and 

BRCA1 that are regulated by MCPH1/BRIT1 since lymphoblastoid cells derived 

from these patients displayed intact ATR signalling and normal CHK1 activity. 

However, Alderton et al. (2006) have demonstrated that MCPH1/BRIT1 mutant 

cells exhibit a low level of phosphorylated tyrosine 15 (Tyr15) of CDK1/CDC2 

phosphorylation in S and G2 phases, leading to premature entry into mitosis and 

PCC. Experimentally, MCPH1/BRIT1-deficient primary microcephaly patient cells 

showed unchangeable levels of CDC25A companied with undiminished levels of 

chromatin-bound CDC45, (a protein which has a role in initiating DNA replication 

and is regulated by the activity of CDC25A in S phase), decreased levels of 

CDK1/CDC2–Cyclin B complex, leading to PCC (Donzelli and Draetta, 2003; 

Costanzo et al., 2000; Bell and Dutta, 2002; Tercero et al., 2000; Alderton et al., 

2006). Continual DNA synthesis was demonstrated in the absence of 

MCPH1/BRIT1 after cellular exposure to IR, confirming deficient intra-S checkpoint 
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control (Chaplet et al., 2006). When cells are exposed to IR, ATM responds and 

triggers CHK2, resulting in DNA synthesis arrest. CHK2 phosphorylates CDC25A, 

leading to its proteasome-mediate degradation. Degradation of CDC25A prevents 

CDK11/CDC2-Cyclin B complex activity, leading to discontinued DNA synthesis 

throughout DNA repair (Abraham, 2001; Margolis and Kornbluth, 2004).  

         Overall, MCPH1/BRIT1 overlaps either dependently with the ATR-signalling 

pathway to control CDC25A, or it has an ATR–independent role to regulate the 

activity of the CDK1/CDC2-Cyclin B complex (Alderton et al., 2006). Both CDC25A 

and CDK1/CDC2 contribute to the regulation of mitotic entry and the control of 

BRCA1 and CHK1 expression (Lin et al., 2010). Finally, MCPH1/BRIT1 has a vital 

role in controlling the G2/M checkpoint (Alderton et al., 2006); however, its function 

in mitotic entry is distinct from the down regulation of CHK1 and BRCA1 protein 

expression as their expression was not affected by MCPH1/BRIT1 mutation in 

MCPH1 patients’ cells (Xu et al., 2004; Lin et al., 2005). Potentially, MCPH1/BRIT1 

may function in the regulation of the gene expression of CHK1 and BRCA1 similarly 

to regulation the expression of genes implicated in cell checkpoints or DNA repair 

such as BRCA1 and MDC1 (mediator of DNA damage checkpoint protein 1). Thus, 

as previously mentioned (Section 1.1.3), in the response to DNA damage, the C-

terminal of MCPH1/BRIT1 interacts with γH2AX for recruitment of BRCA1 and 

MDC1 at the DNA damage site, suggesting that MCPH1/BRIT1 is involved in the 

DDR mechanism (Xu et al., 2004; Lin et al., 2005; Wood et al., 2007), which will be 

explained in more detail below (Section 1.1.6.3). 

  

1.1.6.2 MCPH1/BRIT1 and centrosome stability 

         MCPH1/BRIT1 localises at the centrosome in interphase then co-localises 

with γ-tubulin during metaphase (from prophase to telophase) in U2OS and HeLa 

cells, suggesting the existence of MCPH1/BRIT1 centrosomal function (Zhong et 

al., 2006). The N-terminal BRCT domain of MCPH1/BRIT1 accumulates at the 

centrosome.  

        Combining the two components MCPH1/BRIT1 and MDC1 and their 

localisation with γ-tubulin has been found to form integral components of 

centrosomes, which are required for regulation of centrosomal duplication during 

mitosis (Rai et al., 2008); thus, defects in any one of these components can lead to 

centrosome aberrations. MCPH1/BRIT1 depleted U2OS cells present the mis-

orientation of mitotic spindles leading to mitotic failure with lagging chromosomes. 

As a result, MCPH1/BRIT1 deficient cells exhibit defective cytokinesis and 
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production of a single polyploidy cell (Rai et al., 2008). Depletion of MCD1 leads to 

centrosome amplification, aneuploidy, multipolar mitotic spindles, chromosome mis-

segregation and generation of aneuploid cells (Rai et al., 2008). Additionally, 

MCPH1/BRIT1 and pericentrin (PCNT) are required to prevent premature entry into 

mitosis by regulating the localisation of CHK1 at the centrosome for subsequent 

regulation of CDK1/CDC2-Cyclin B activity (Tibelius et al., 2009). Thus, the 

centrosomal activity of CDK1/CDC2-Cyclin B complex is vital for timely regulation 

and for subsequent and proper controlling of cytoplasmic and nuclear mitotic events 

(Venkatesh and Suresh, 2014; Tibelius et al., 2009). The absence of centrosome-

associated CHK1 in MCPH1/BRIT1 patient cells leads to the failure to promote 

proteasomal degradation of CDC25B phosphatase. Inhibitory of CDC25B 

phosphatase causes early activation of CDK1/CDC2-Cyclin B complex and 

prevents inhibitory phosphorylation of Tyr15 on CDK1/CDC2 triggering PCC 

(Alderton et al., 2006). Therefore, MCPH1/BRIT1 mutant cells induced PCC cells, 

which display a low level of p-Tyr15-CDK1-CDC2 (Alderton et al., 2006).  

         Overall, MCPH1/BRIT1 has a vital role to play in organizing centrosome 

integrity, spindle assembly, via its function in the CHK1-CDC25-CDK1/CDC2 

pathway, which regulates proper mitotic entry with normal spindle formation and 

segregation (Alderton et al., 2006; Tibelius et al., 2009; Gruber et al., 2011). The 

centrosomal function of MCPH1/BRIT1 also has been found to promote genomic 

stability and suppress malignant transformation (Rai et al., 2008). 

 

1.1.6.3 Role of MCPH1/BRIT1 in DNA repair in response to DNA 

damage 

         Various studies have reported that MCPH1/BRIT1 is a key regulator in the 

DDR pathways at multiple levels. MCPH1/BRIT1 has been considered to be an 

important factor in response to DNA damage by regulating the two kinases ATM 

and ATR (Rai et al., 2006)..  

        Localization of MCPH1/BRIT1 at DNA damaged sites is dependent upon the 

C-terminal BRCT domains (Wood et al., 2007), which when interacting with the 

BRCT domains of phosphorylated (γH2AX), (but not TP53BP1 or MDC1), forms 

nuclear foci at sites of DNA DSBs (Wood et al., 2007; Jeffers et al., 2008). 

Experimentally, Wood et al. (2007) have used MEFs that lacked a variety of DNA 

damage checkpoint proteins such as ATM, NBS1, 53PB1, MDC1, and H2AX. The 

study observed that phosphorylated H2AX plays an important role in the formation 
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of MCPH1/BRIT1 foci following IR (Lin et al., 2005; Rai et al., 2006; Wood et al., 

2007; Wood et al., 2008). Tyrosine 142 (Tyr142) and serine 139 (Ser 139) of the C-

terminal H2AX are phosphorylated by the transcription factor WSTF (Williams–

Beuren syndrome transcription factor) and the kinases ATM and ATR, respectively 

in response to DSBs (Singh et al., 2012a). Interestingly, MCPH1/BRIT1, an early 

DDR protein, has emerged as a versatile sensor that mediates these signal 

modifications of H2AX phosphorylation (Singh et al., 2012a; Shao et al., 2012). 

MCPH1/BRIT1 has been found to form ionizing radiation induced foci (IRIF) in 

chicken cells deficient in ATM, BRCA1, but not in H2AX deficient cells, confirming 

the essential interaction between the C-terminal BRCT domain of MCPH1/BRIT1 

and γH2AX in cellular response to DNA damage (Jeffers et al., 2008).  

         This interaction is essential for co-localisation of MCPH1/BRIT1 with other 

DNA damage proteins, such as MDC1, TP53BP1, NBS1, p-ATM, ATR, p-RAD17 

(RAD17 homolog (S. pombe)) and RPA34 (DNA-directed RNA polymerase I sub-

unit RPA34) (Rai et al., 2006). All of these regulate cell cycle checkpoints (CHK1 

and CHK2) (Wood et al., 2007) and DNA repair (Seviour and Lin, 2010) by 

recruiting repair proteins to sites of damaged DNA to induce foci formation in U2OS 

cells. Thus, MCPH1/BRIT1 deficiency prevents IR induced phosphorylation of 

TP53BP1, MDC1, and NBS1. In addition, it abolishes the ATR phosphorylation of 

RPA34 and decreases the level of RAD17 phosphorylation (Rai et al., 2006).  

         MCPH1/BRIT1 is involved in modulating chromatin structure during DNA 

repair. Chromatin structure limits the access of some specific enzymes during DNA 

development (Morrison et al., 2004; Falbo and Shen, 2006). Thus, chromatin 

modification plays an essential role in regulating various processes during DNA 

repair, controlling the activation or inhibition of genes (Morrison et al., 2004; Falbo 

and Shen, 2006). MCPH1/BRIT1 plays a fundamental role in regulating the ATP-

dependent chromatin remoulding complex SWI/SNF (switch/sucrose non-

fermentable) during DNA repair (Peng et al., 2009; Peng and Lin, 2009a; Peng and 

Lin, 2009c). After DNA damage, high-level interactions occur between 

MCPH1/BRIT1 and the BAF170 and BAF155 sub-units of the SWI/ SNF complex, 

which are mediated via ATM/ATR dependent phosphorylation of BAF170 (Peng et 

al., 2009). MCPH1/BRIT1 therefore functions as a tie that facilitates the recruitment 

of SWI/SNF to DNA DSB sites to regulate chromatin relaxation, allowing access of 

other essential proteins, such as RAD51, NBS1, MDC1, 53BP1, ATM, ATR, and 

RPA, to DNA damage sites during DNA repair (Peng et al., 2009; Lin et al., 2010). 

All the previous studies confirm the essential role of MCPH1/BRIT1 in maintaining 

genomic integrity by its interaction with γH2AX and subsequent recruitment to 
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DSBs, which is essential for chromatin relaxation during the DNA repair process. 

Experimentally, the mechanism of recruitment of MCPH1/BRIT1 at DNA damage 

sites has been investigated to reveal the involvement of BRUCE (the baculovirus 

inhibitor of apoptosis protein repeat (BIR)-containing ubiquitin-conjugating enzyme) 

and USP8 (ubiquitin-specific peptidase 8), in the regulation of MCPH1/BRIT1-

SWI/SNF DSB–response pathway (Ge et al., 2015). Ge et al. (2015) showed that, 

under un-stimulated conditions, MCPH1/BRIT1 is attached to and ubiquinated with 

K36-linked polyubiquitin chain, which often plays a role in signalling transduction 

(Pickart and Fushman, 2004). Thus, MCPH1/BRIT1 de-ubiquination requires 

BRUCE and USP8 activity that promotes its recruitment to the DNA damage site 

via γH2AX (Ge et al., 2015). 

         Moreover, DNA DSB repair depends on two pathways: HR and NHEJ 

(Bassing and Alt, 2004). As previously mentioned that MCPH1/BRIT1 has been 

identified as functioning via HR, using condensin II (Wood et al., 2008), and NHEJ 

pathways to repair DNA DSBs. MCPH1/BRIT1 plays an essential role in HR at DSB 

sites, regulating the localization of RAD51 to DNA lesion sites (Wu et al., 2009; 

Peng and Lin, 2009a; Liang et al., 2010a). Binding of MCPH1/BRIT1 to RAD51 is 

mainly dependent on the interaction of the C-terminal domain of MCPH1/BRIT1 

with the N-terminal domain of BRCA2, and this interaction mediates the HR DNA 

repair activity of the BRCA2-RAD51 complex (Wu et al., 2009). Peng et al. (2010) 

have generated a mouse Mcph1/Brit1 knockout model which demonstrated that 

depletion of Mcph1/Brit1 results in extreme sensitivity to IR, chromatid breaks and 

decreased RAD51 foci formation which indicated the specific function of 

MCPH1/BRIT1 in HR DNA repair (Liang et al., 2010a). Moreover, productivity of 

NHEJ repair decreases with depletion of MCPH1/BRIT1, confirming the implication 

of MCPH1/BRIT1 in both HR and NHEJ mechanisms (Peng et al., 2009). 

        Overall, the interaction between human MCPH1/BRIT1 and the 

BRCA2/RAD51 complex enables recruitment to DSBs sites (Wu et al., 2009; Lin et 

al., 2010). Mcph1/Brit1 deficient mice have shown a significant reduction in the 

recruitment of RAD51 and BRCA2 at damaged DNA sites while their protein levels 

remain unaltered (Liang et al., 2010a). Consequently, MCPH1/BRIT1 regulates the 

presence of the RAD51/BRCA2 complex at DNA damage sites (Wu et al., 2009; 

Liang et al., 2010a), indicating the fundamental role of MCPH1/BRIT1 in 

maintaining genomic stability.  
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1.1.6.4 The role of MCPH1/BRIT1 in cancer progression 

         Since MCPH1/BRIT1 plays a fundamental role in DNA repair and cell cycle 

checkpoints, any cellular errors in one of these mechanisms may lead to genomic 

instability and cancer development (Rai et al., 2006; Liang et al., 2010a). The 

presence of MCPH1/BRIT1 mutation in various types of human cancers suggests 

the involvement of MCPH1/BRIT1 deficiency in tumorigenesis. Indeed, 

MCPH1/BRIT1 is located at chromosome 8p32.1, a region which is frequently 

deleted in breast, ovarian, prostate (Rai et al., 2006), liver (Lu et al., 2007), head 

and neck cancers (Bockmühl et al., 2001) and coreloctal carcinoma (Fujiwara et al., 

1993).  

         Centrosome amplification and aberrant mitotic spindles are associated with 

genomic instability and tumour progression in breast and ovarian cancer (D'Assoro 

et al., 2002; Hsu et al., 2005). MCPH1/BRIT1 protein level was significantly 

decreased in 7/10 (70%) BC samples compared to normal breast tissue (Rai et al., 

2008). Rai et al. (2008) also reported that reduced MCPH1/BRIT1 in 12% of cells in 

BC samples was correlated with overexpression of PLK1 at the midbody in the 

absence of MCPH1/BRIT1 staining. MCPH1/BRIT1 has been found to be a 

negative regulator of Aurora A and PLK1, leading to the overriding of the activated 

spindle assembly checkpoint and therefore permitting mitotic entry (Rai et al., 

2008). This finding confirms the association between centrosome aberration, 

cancer progression and genomic instability (Lingle et al., 2002; Nigg, 2002; 

Salisbury et al., 2004; Fukasawa, 2005). BC samples with low level of 

MCPH1/BRIT1 protein develop metastases in a shorter time compared to those 

with normal or high MCPH1/BRIT1 expression (Rai et al., 2006; Rai et al., 2008). 

Collectively Rai et al. (2008) experimentally proved the link between 

centrosome/cytokinesis abnormalities and cancer progression and how 

MCPH1/BRIT1 expression is essential for restricting the development of cancer.  

         Recurrent heterozygous MCPH1/BRIT1 mutation was significantly associated 

with increased BC susceptibility in familial (5/145; p = 0.003) and unselected 

(16/1150; p = 0.016) cases (Mantere et al., 2016). Additionally, another study has 

been conducted, to evaluate the expression of DNA response proteins and 

investigate their contributions in familial and sporadic BC predisposition (Partipilo et 

al., 2016). MCPH1/BRIT has been found in 125 sporadic cases (50 cases with 

negative and 75 cases with positive MCPH1/BRIT1 expression) and 72 familial (47 

cases with negative and 25 cases with positive MCPH1/BRIT1 expression) BC. 

This suggests that PARP inhibitors may be preferable for tumours with 



- 20 - 
 

 

MCPH1/BRIT deficiency. However, Mantere et al. (2016) have demonstrated that 

MCPH1/BRIT1 depleted MCF7 BC and normal breast MCF10A cell lines showed a 

modest sensitivity to a PARP inhibitor, suggesting that the function of 

MCPH1/BRIT1 in DNA damage response may slightly different from those directly 

implicated in DSB repair via HR mechanism. Thus, addition of PARP inhibitors to 

the systemic chemotherapy regimen to sensitise sporadic or familial BC with 

defective function of MCPH1/BRIT1 may not significantly improve patient survival. 

         Additionally, utilising high-density array comparative genomic hybridization 

(CGH) reveals that a reduction in MCPH1/BRIT1 DNA copy number has been 

detected in 37/52 breast cancer cell lines (72%) and 35/87 of advanced epithelia 

ovarian cancer cases (40%) (Rai et al., 2006). The BC cell lines show a decrease in 

the mRNA and protein levels compared to normal breast epithelial cells such as 

human mammary epithelial cells (HMECs), MCF10A and MCF10F. Sequence 

analysis of the MCPH1/BRIT1 coding region in 10 BC cases reveals a deletion in 

exon 10 in one patient. This resulted in a premature stop codon and consequently 

affects DDR as this mutation positions on the C-terminal domain of MCPH1/BRIT1 

(Jeffers et al., 2008; Venkatesh and Suresh, 2014; di Masi et al., 2011).   

         Abnormalities in cell proliferation and uncontrolled DDR are common 

characteristics in cancer development (Chaplet et al., 2006). Normal somatic cell 

division is controlled by the very low activity of the catalytic sub-unit of the human 

telomerase reverse transcriptase gene (hTERT). MCPH1/BRIT1 is also known as 

BRCT-repeat inhibitor of TERT expression, which has been found to negatively 

regulate hTERT in somatic cells (Lin and Elledge, 2003). Shi et al. (2012) have 

identified the mechanism of MCPH1/BRIT1 repression of hTERT activity as directly 

binding to the hTERT proximal promoter, causing decreased expression levels of 

hTERT and telomerase activity in U2OS cells.   

         MCPH1/BRIT1 defects can be a useful pathological candidate for identifying 

the stages of cancer development. MCPH1 expression levels decreased in 19/30 

(63%) of ovarian cancer cases. Conversely, an elevated expression level of 

MCPH1/BRIT1 in the nucleus is associated with low-grade tumours and was linked 

with better patient survival (Richardson et al., 2011). 

         Reduced MCPH1/BRIT1 (mRNA/protein) expression and overall alteration 

(deletion/methylation) have been detected in 121/126 BC cases (96%) 

(Bhattacharya et al., 2013). Alteration of MCPH1/BRIT1 was correlated with 

negative ER status (p = 0.004) and a similar result was observed in patients with 

MCPH1/BRIT1 methylation (p = 0.01). The co-alteration of MCPH1/BRIT1 with 



- 21 - 
 

 

ATM was significantly correlated with high tumour grade (p = 0.003-0.0.05). 

Patients with either alteration of MCPH1/BRIT1 alone or with co-alteration of 

MCPH1/BRIT1-ATM did not respond effectively to DNA-interacting drugs and/or 

radiation, showing a poor survival outcome (p = 0.01-0.05) (Bhattacharya et al., 

2013). 

         A study performed using oral squamous cell carcinoma (OSCC) showed that 

loss of heterozygosity (LOH) was observed in 14/71 (19.72%) cases (Venkatesh et 

al., 2013). Additionally, a low level of MCPH1/BRIT1 promoter methylation was 

detected in 4/40 OSCC samples (10%). Studies performed on OSCC and renal 

cancer samples reveal that the three prime untranslated region (3’-UTR) of 

MCPH1/BRIT1 accommodates two non-overlapping functional seeded regions for 

micro RNA (miRNA -27a), which is found to negatively regulate MCPH1/BRIT1 

protein level (Venkatesh et al., 2013; Wang et al., 2014a). Overexpression of 

MCPH1/BRIT in human cervical cancer cell line (SiHa) inhibits the tumour cellular 

growth by activating the S phase arrest and stimulating different cell cycle-related 

proteins such as CDK2/CDC1-Cyclin A complex, CDK1/CDC2-Cyclin B and 

p53/p21(Mai et al., 2014). Furthermore, the mitochondrial apoptosis pathway 

including proteins such as p53, Bcl-2, cytochrome c, and PARP-1, were activated in 

response to MCPH1/BRIT1 up regulation (Mai et al., 2014). Activating these cellular 

pathways by MCPH1/BRIT1 leads to inhibited cell invasion and migration.  

        Overall, MCPH1/BRIT1 deficiency is related with tumorigenesis and genomic 

instability; thus its expression may be essential for improving the response to anti-

cancer therapy and subsequently, the increase in the rate of patient survival.  

 

1.2 Breast cancer (BC) 

1.2.1 Female breast (mammary glands) anatomy 

        The healthy female breast (known in medicine as the mammary glands) 

consists of three fundamental parts, namely the adipose tissue (fat cells), the lobes, 

lobules and milk ducts (the areas where the BC usually starts to grow) (Figure 1.5). 

The third part is the lymph system (which is a part of the immune system and 

consists of a network of lymph vessels and nodes. The lymph vessels transport 

fluids and disease and/or fighting infection and protecting cells. Lymph nodes are 

located in areas throughout the lymph system, clustering principally in the armpits 

(axilla), neck and groin areas. They function as filters removing abnormal cells from 
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healthy tissue) (Figure 1.5). Detecting cancer cells in neighbouring lymph nodes is 

an indicator that cancer has spread outside the breast. 

(http://www.nationalbreastcancer.org/breast-anatomy) (Osborne, 1996; Jatoi and 

Kaufmann, 2010; Gabriel and Long, 2011).  

 

 

 

 

 

 

 

 

 

Figure 1.5. Anatomy of female breast (mammary glands).  

Source: Image cited from: (http://www.cancer.gov/types/breast/patient/breast-treatment-
pdq).    

 

1.2.2 Prevalence of BC, risk factors and survival rates  

         Globally, BC is the most frequent type of cancer and the leading cause of 

cancer deaths in women (Jemal et al., 2011; Bray et al., 2013; Torre et al., 2015).  

        In England, over 50,800 cases were diagnosed in 2012, with about quarter of 

these in individuals aged ≥75 (http://www.cancerresearchuk.org/health-

professional/breast-cancer-statistics). In addition, more than 41,000 new cases of 

BC are diagnosed annually (http://www.ons.gov.uk/ons/rel/cancer-unit/breast-

cancer-in-england/2010/sum-1.html) (Gathani et al., 2014). There was an 

improvement in the five year estimate for BC survival from 54% between 1971 and 

1975 (Coleman et al., 1999) to approximately 84% between 2006 and 2011 (Office 

for National Statistics: http://www.ons.gov.uk/ons/rel/cancer-unit/cancer-

survival/2006---2010--followed-up-to-2011/stb-cancer-survival.html) (Coleman et 

al., 1999). This improvement reflects developments in the early detection of BC and 

Its treatment. However, in comparison to other types of cancer, the survival rate for 

BC is better in older patients in the age group 40–69 (89–90%) than in younger 

patients aged 15–39 (84%) (Office for National Statistics: 

http://www.ons.gov.uk/ons/rel/cancer-unit/cancer-survival/2006---2010--followed-

up-to-2011/stb-cancer-survival.html). This association of lower survival rates for BC 
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with younger individuals may be attributed to their diagnosis with the most 

aggressiveness BC molecular subtype, known as triple negative (Dent et al., 2007; 

Tischkowitz et al., 2007). For patients diagnosed with this molecular subtype, the 

risk of recurrence within three years of diagnosis is increased while mortality rates 

show an increase some five years after diagnosis (Boyle, 2012). 

          Although the risk of BC may be modified by lifestyle and environmental 

factors, their exact correlation with BC risk has not been yet elucidated (Chen, 

2013). However, some factors are associated with an increased or decreased risk 

of BC. Those factors that reduce the risk of BC include age at menarche (Chen, 

2013; Gathani et al., 2014), increased duration of breastfeeding (Gathani et al., 

2014), shorter stature (Green et al., 2011) and lower body mass index (Reeves et 

al., 2007). While the factors that increase the risk of BC such as alcohol 

consumption (Mukamal, 2010), menopausal hormone therapy and a family history 

of the disease (Weiderpass et al., 2011). 

 

1.2.3 Histological taxonomy of BC 

         When the cancer is detected in the breast, it can sometimes appear 

noticeably solid, thus a woman may feel it when carrying out her normal breast 

check. But if the cancer is not visible, mammographic screening can detect it. Next, 

a pathologist performs a microscopic examination of a core biopsy of the suspected 

tumour sample. In the laboratory, a histopathologist can identify any changes in the 

breast sample including the structural morphology of epithelial cell. In normal breast 

tissue, stromal cells gather around the large duct and terminal duct lobular units. In 

contrast, in BC, the epithelial cells of duct lobular units expand across of cell 

membrane, and cells appear with a condensed nuclei located in the centre of the 

cell. Therefore, BC has been histologically classified based on the morphological 

features and growth patterns of tumour tissues. Some cancer cells are histologically 

classified as non-invasive meaning that their growth has not spread out into the 

milk ducts. This type is known as ductal carcinoma in situ (DCIS). The National 

Comprehensive Cancer Network has only accepted the use of the status of the 

molecular pathology ER (estrogen receptor) but not other molecular markers PR 

(progesterone receptor), HER2 (human epidermal growth factor receptor 2) and 

p53, during the diagnostic examination of DCIS (Malhotra et al., 2014). When 

cancer growth does not extend out into the lobules thus it referred to as lobular 

carcinoma in situ (LCIS).  
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         Cancer that possesses invasive characteristics and grows outside the cell 

membrane of the ducts or lobules is classified as invasive ductal carcinoma (IDC) 

or invasive lobular carcinoma (ILC), respectively. The histological types of BC have 

been combined with the Nottingham Prognostic Index and the online adjuvant 

programme for determining the most effective chemotherapy (Mook et al., 2009).  

         The commonest types of invasive BC are IDC which accounts for 50%-80% of 

invasive BC whereas ILC accounts for 5%-15% (Li et al., 2005). In comparison to 

DCIS, the utility of molecular pathological markers (ER, PR and HER2) in the 

diagnosis of IDC is well accepted (Harris et al., 2007).  

         Utilising these molecular markers in diagnosing invasive BC has not only 

helped in making effective clinical decisions but also in predicting the response to 

targeted therapies such as Trastuzumab or Lapatinib for patients with 

overexpression of HER2 or Tamoxifen or Aromatase inhibitors for patients with 

ER/PR receptors positive BC (Maughan et al., 2010; Rakha et al., 2010). A study 

by the International Breast Cancer Group was conducted on a large cohort of 9374 

BC patients diagnosed with IDC or ILC and registered in 15 clinical trials with a 

median follow-up of 13 years. Tumours in the ILC cohort were correlated with older 

age, better differentiation and positive ER status. In addition, the ILC cohort showed 

remarkable early progress after six years compared to IDC with late progress after 

10 years in disease-free survival and overall survival. However, ILC was correlated 

with increased occurrence of bone metastasis and a diminished incidence of lung 

metastases (Viale, 2012). 

  

1.2.4 Molecular pathology classification of BC  

BCs are classified based on the basis of their gene expression profile into 

molecular subtypes (Table 1.2). This mainly depends on the expression status of 

hormone receptors, namely ER or PR receptors in the cell nucleus and the gene 

amplification and/or the protein overexpression of HER2 receptor on the cell 

surface. 

 

1.2.5 BC grades  

         The grade is the score that provides information about the microscopic 

morphology and growth pattern of BC biopsy cells compared to the normal breast 

cells or how rapidly the breast tissue sample is dividing. Grade has been correlated 
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with microarray-based genomic or transcriptomic signatures of BC (Weigelt et al., 

2010; Sotiriou et al., 2006; Sotiriou and Pusztai, 2009). Identifying the cancer grade 

is one of the factors that assists patient prognosis, predicting whether cancer has 

spread to other parts of the body and informing clinicians if patients need additional 

treatment after surgery. The pathologist usually classifies the histological grade of 

BC on a scale from 1 to 3 as follows;   

Grade 1 or low grade (known also as well differentiated): Grade 1 displays cancer 

cells, which slightly look different from normal cells, have a slow growth and well-

organized patterns. Few cancer cells are dividing to produce new cancer cells. 

Grade 2 or intermediate/moderate grade (moderately differentiated): Grade 2 

displays cancer cells which are different to normal cells, cancer cells are growing 

and dividing a slightly faster than normal. 

Grade 3 or high grade (poorly differentiated): Grade 3 displays cancer cells which 

appear extremely different from normal cells, growth is rapid and cells are dividing 

quickly in irregular and disorganized pattern. 

(http://www.breastcancer.org/symptoms/diagnosis/cell_grade).  

 

1.2.6 BC stages  

         The stage of the BC is usually defined by the tumour size and the pattern of 

cancer spread whether non-invasive cancer (with growth remaining within the 

breast) or invasive cancer (usually spreading outside the breast through the lymph 

node system to other parts of the body). Doctors can refer to BC stage as “local” 

meaning the tumour is limited to within the breast, “regional” in which the tumour is 

found in lymph nodes and “distant” in which the tumour has spread and is found in 

different parts of the body. The cancer stage helps to understand the prognosis and 

outcome of the disease and make decisions about treatment. Researchers usually 

use the TNM (Tumour size, lymph Node involvement, Metastasis) staging system 

to characterise the cancer behaviour (Table 1.3). 

(https://cancerstaging.org/references-tools/Pages/What-Cancer-Staging.aspx and 

http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-staging).



- 26 - 
 

 

Table 1.2. Breast cancer molecular subtypes. Table contents are adapted from (Allison, 2012; Cornejo et al., 2014).  

Molecular 
subtype 

Receptor 
status 

Surrogate IHC 
marker 

Molecular 
pathways 

Histological 
grade 

Response 
to therapy 

Targeted 
therapy 

Reference 

Luminal-A ER+, 
PR+, 
HER2- 

CK8+, CK18+, 
GATA3+, low 
Ki67 

ER-responsive 
genes 

Low Low Endocrine 
therapies 

(Andre and Pusztai, 2006; Reis-Filho et 
al., 2006; Parker et al., 2009) 

Luminal-B ER+, 
PR+/-, 
HER2+/- 

CK8+, CK18+, 
GATA3+, high 
Ki67 

ER-responsive 
genes, TP53 
mutations 

Intermediate Intermediate Endocrine 
therapies 

(Perou et al., 2000; Sørlie et al., 2003; 
Geyer et al., 2009; Weigelt et al., 2010) 

 

HER2 ER-, PR-, 
HER2+ 

 HER2 genes, 
TP53 
mutations 

High High Trastuzumab (Rouzier et al., 2005; Weigelt and Reis-
Filho, 2009) 

 

Basel like 
breast cancer 

ER-, PR-, 
HER2- 

CK5+, CK14+, 
CK17+, 
EGFR+, c- 
KIT+, CD44+, 
nestin+, 
caveolin1 +, 
caveolin2+, P-
cadherin+ 

TP53 
mutations, 
BRCA1 
pathway 

High High Under 
investigation 

(Gusterson et al., 2005; Turner et al., 
2007; Cheang et al., 2008; Rakha et al., 
2008; Reis-Filho and Tutt, 2008; Turnbull 
and Rahman, 2008; Klingbeil et al., 
2010; Nielsen et al., 2004) 

Breast-like ER+/-, 
PR+/-, 
HER2- 

  Low   (Correa and Johnson, 1978; Peppercorn 
et al., 2008)  
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Table 1.3. Description of TNM staging system for characterisation of breast cancer behaviour. 

Table contents are adapted from: American Joint Committee on Cancer (https://cancerstaging.org/references-tools/Pages/What-is-Cancer-Staging.aspx). 

TNM stages of BC  Category  Description 
T stages (tumour size): 
This describes the primary tumour. The numbers from T0 to T4 refer 
to the tumour size and its growth extension into nearby breast 
tissue. A higher T number reflects a larger tumour size and/or may 
indicate that the tumour may have extended to the breast tissue or 
outside the breast 
  
  
  

TX Primary tumour is absent and can not be measured or 
evaluated 

T0 No evidence of the primary tumour 

Tis Cancer is in situ (non-invasive) and has not invaded into the 
healthy breast tissue.   

T1 to T3 The extent the of tumour size  

T4 Growth of the primary tumour has spreads to the chest wall or 
outside the breast 

N stages (lymph node involvement): 
This describes whether the tumour is found nearby the lymph 
nodes. The numbers from N0 to N3 refer to the number of lymph 
nodes involved and the amount of cancer is found in them. The 
higher the N number the greater the extent of lymph node 
involvement 
  
  
  
  

NX Cancer cells can not be found nearby the lymph nodes  
N0 Absence of cancer cells in the axillary lymph nodes 
N1 Cancer is involved in 1 to 3 axillary lymph nodes 
N2 Cancer is involved in 4 to 9 axillary lymph nodes 

N3 Cancer is involved in ≥10 axillary lymph nodes and has 
extended to the ipsilateral supraclavicular lymph nodes 

M stages (Metastases):  
This describes whether the cancer has spread beyond the breast to 
other organs of the body  
  

MX Absence of metastases 
M0 No distant metastases 

M1 Distant metastases are present  
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1.2.7 Genetic causes of BC  

          BC is genetically, biologically and clinically a heterogonous disease. 

Mutations in human genes, such as BRCA1 and BRAC2, are significant in 

maintaining genomic integrity and loss of their functions increases susceptibility to 

breast and/or ovarian cancer. Inherited BRCA1 and BRAC2 mutations may not only 

be responsible for a predisposition to BC, but other rare genetic mutations have 

also been found in new genes including TP53, PTEN, STK11, CHEK2, ATM, 

PALB2 and BRIP1 (Apostolou and Fostira, 2013) 

(http://www.breastcancer.org/risk/factors/genetics and Cancer Research UK: 

http://www.cancerresearchuk.org/about-cancer/type/breast-

cancer/about/risks/breast-cancer-genes) 

 

1.2.7.1 BRCA1 and BRCA2 

         Mutations in BC genes are associated with about 40% of sporadic BC and 

over 80% of inherited breast and ovarian cancer cases (Green and Lin, 2012). 

BRCA1 and BRCA2 mutations are responsible for about 20%-25% of hereditary 

(familial) BC cases (Easton, 1999) and 5%-10% of all BC cases (Campeau et al., 

2008). The estimated percentage of women who have inherited a BRCA1 mutation 

is 55-65% whereas 45% of women inherit a BRCA2 mutation; and it is predicted 

that BRCA1 and BRCA2 mutations confer high risk of BC to carriers at the age of 

70 (Antoniou et al., 2003; Chen and Parmigiani, 2007).  

        BRAC1 and BRCA2 genes are located in chromosomes 17q and 13q, 

respectively (Hall et al., 1990; Miki et al., 1994; Wooster et al., 1994; Wooster et al., 

1995). Both BRCA1 and BRCA2 genes have been considered to act as tumour 

suppressor genes (TSG) due to the loss of the WT allele that has been detected in 

heterogeneous carries of tumours with BRAC1 or BRCA2 mutations (Banin Hirata 

et al., 2014; Scully and Livingston, 2000). However, somatic mutations in BRCA1 

and BRCA2 are rarely detected in sporadic BC cases (Venkitaraman, 2002; 

Bertwistle and Ashworth, 1998) as the inactivation of BRAC1 or BRCA2 requires 

mutation or complete deletion of both copies of the gene (Kenemans et al., 2004). 

Thus, suppressing the function of these genes, which lead to sporadic BC, can 

occur as a consequence of hyper-methylation of the BRCA1 promoter (Catteau et 

al., 1999; Esteller et al., 2000) or binding of BRCA2 by EMSY (Hughes-Davies et 

al., 2003).  
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          They are responsible for fundamental cellular functions including the control 

of cell cycle checkpoints, the regulation of HR and the DNA repair process, 

transcriptional regulation, cellular growth and differentiation (Welcsh et al., 2000; 

Venkitaraman, 2002). 

         Loss of the cellular function of BRCA1 or BRCA2 leads to deficiency in the 

HR DNA repair mechanism (Green and Lin, 2012). Thus, when the abnormal cells 

with BRCA1 or BRCA2 mutations are unable to repair DNA damage by HR, cells 

may activate the NHEJ repair mechanism. Therefore, inhibition of PARP, that is 

involved in DNA repair mechanism and repairing single and double strand DNA 

breaks, may simplify the activation of the HR process to repair DNA damage in 

normal cells and terminate HR repair of DNA damage in cells with mutated BRCA1 

or BRCA2 leading to subsequent cell death (Green and Lin, 2012). Thus, using a 

PARP inhibitor such as Olaparib, may be an effective treatment for increasing 

sensitivity to chemotherapy or radiation in breast and ovarian tumours harbouring 

inherited BRCA1 or BRCA2 mutations, patients with triple negative BCs 

(Annunziata and Bates, 2010), sporadic cancers with aberrations in BRCA genes 

(Turner et al., 2004) and in the HR pathway (Farmer et al., 2005).  

 

1.2.7.2 p53  

p53 (encoded by the TP53 gene) has been widely studied in comparison to other 

genes or proteins for over 30 years ago and since its discovery it has remained the 

most popular gene or protein to study (Levine and Oren, 2009). Alteration of p53 

function is detected in approximately 50% of cancers (Vogelstein et al., 2000). 

 

1.2.7.2.1 p53 protein structure  

         p53 protein was first described In 1979 (Lane and Crawford, 1979; Linzer and 

Levine, 1979; Kress et al., 1979; Smith et al., 1979; DeLeo et al., 1979).  

Figure 1.6. The protein structure of human p53.  
Source: image is adapted from (Varna et al., 2011). 
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          As previously mentioned, p53 protein is encoded by the TP53 gene, which is 

located in chromosome 17p31.1. p53 protein is composed of 393 amino acids (aa) 

including the N-terminal region (aa 1-42), which is rich in proline residues (aa 63-

97) and, which serve to induce apoptosis (Hetts, 1998). This domain has also been 

found to be responsible for slowing-down the migration of the protein in SDS-

polyacrylamide gel, causing it to present an overestimated molecular mass of p53 

protein at 53kD although its actual size is 43.7kD as stated by Levin and Oren 

(2009). p53 protein also consists of a large middle domain, a tetramerisation 

domain (aa 323-356) and a C-terminal region (aa 363-393). The large middle 

domain (aa 102-292) which is important for DNA binding thus the majority of 

mutations detected in various types of human cancers have been detected in this 

domain (Soussi, 2000). The C-terminal domain of p53 binds to the N-terminal 

domain of MDM2 (Poyurovsky et al., 2010). Fragments at the end of the N- and C-

terminals, known as nuclear export signals (NES), are used for exporting to the 

cytoplasm whilst the fragment at the end of the C-terminal, known as the nuclear 

localisation signal (NLS), is for subcellular localisation of p53 (Lohrum et al., 2001) 

(Figure 1.6). 

 

1.2.7.2.2 p53 protein functions 

             

 

 

 

 

 

 

 

Figure 1.7. p53 response and activation in tumour cells.  
In response to different stress signals (blue arrows), p53 is activated to regulate various 
cellular responses (black arrows) that may repress tumour progression. Source: Image is 
adapted from (Bieging and Attardi, 2012; Russo et al., 2013).  

 

         Levine and Oren (2009) have summrised the intensive investigations and 

findings related to p53 during three decades of research. During the first decade of 
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studying p53, research, found that the simian virus 40 large T-antigen, a tumour 

virus that is responsible for inactivation of p53 in transformed cells (Lane and 

Crawford, 1979; Linzer and Levine, 1979; Kress et al., 1979; Smith et al., 1979). 

          Also, p53 DNA was successfully cloned in the 1980s (Chumakov et al., 1981; 

Matlashewski et al., 1984; Harlow et al., 1985) and was determined that p53 is a 

TSG, which is the most frequently mutated gene in human cancers (Baker et al., 

1989; Baker et al., 1990). Subsequent studies were performed to establish the role 

of p53 as a TSG. For example, over expression of the WT p53 in the murine tumour 

derived mutant p53 cells suppressed culture cell transformation by the oncogenic 

components MYC and H-RAS (Eliyahu et al., 1989; Finlay et al., 1989). Loss of the 

WT alleles of TP53, by mutation or deletion or a combination of both was identified 

in human colorectal cancer specimens (Baker et al., 1989). Moreover, the TP53 

knockout mice model displayed cancer progression (Donehower et al., 1992). All 

these observations led to the TP53 gene being classified as a TSG.   

         In the second decade of p53 research, many findings described p53 as being 

negatively regulated by murine double minute 2 (MDM2) (Momand et al., 1992). 

The negative feedback of p53 and MDM2 occurs when p53 stimulates the 

transcriptional activities of MDM2 and the latter inhibits p53 cellular activities by its 

ubiquitination and proteasomal degradation (Barak et al., 1993; Wu et al., 1993). 

The ubiquitination activity of MDM2 has been found to be essential for nuclear 

export and subcellular localisation of p53 to the cytoplasm (Toledo and Wahl, 

2006). 

         Additionally, during this decade it was also discovered that the WT p53 plays 

putative roles in regulating multiple cellular events in response to different stress 

signals (Figure 1.7). Consequently, p53 activates diverse cellular processes 

including cell cycle arrest at G1 phase, which allows time to repair damaged DNA 

(Fan et al., 1995). Thus, cells harbouring the mutant version of p53 may not be 

arrested in G1 phase and instead are accumulated in G2 (Green and Lin, 2012). If 

the DNA damage cannot be repaired, p53 can also induce apoptosis. It can directly 

initiate cell death by its localisation to the mitochondria activating mitochondria 

outer membrane permeabilisation mechanism that requires the formation of a 

complex with pro-apoptotic apoptosis regulator proteins such as BCL2 and BCL-XL 

by releasing cytochrome C (Mihara et al., 2003; Rodier et al., 2007).  

         In the third decade of research, p53 was shown to be required for other 

functions including inducing senescence (Serrano et al., 1997). P53 seems to have 

a crucial role in regulating and maintaining cellular senescence that prevents the 
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cancer immortalisation phenotype, which could contribute to tumour suppression. 

Other proteins such as ATM/ATR and CHK1/CHK2 are activated to regulate p53 

activity by phosphorylation during the activation of senescence in response to 

cellular stress (Wahl and Carr, 2001). Other cellular functions of p53 which were 

investigated, in the third decade, included the regulation of the metabolism (Jones 

et al., 2005), angiogenesis (Faviana et al., 2002) and mitotic catastrophe 

(Vakifahmetoglu et al., 2008).   

 

1.2.7.2.3 p53 accumulation and detection  

         Using immunohistochemistry (IHC) as a method for detecting nuclear p53 in 

cancer cells can be classified as an indirect way to demonstrate the potential 

existence of mutations in TP53 (Elledge et al., 1994). However, WT p53 can also 

be activated and stabilised in response to cellular stress (Blattner et al., 1999; Tao 

and Levine, 1999). In addition, some tumour samples that carry specific TP53 

mutations (such as nonsense mutations or deletion/splices) could present negative 

p53 immunostaining despite the presence of the mutation (Geisler et al., 2001). 

Thus, p53 positive immunostaining may not necessary be an accurate indicator of 

TP53 mutation (Schmitt et al., 1998). Therefore, along with detection of p53 by IHC, 

the status of p53 can be examined using different techniques such as functional 

analysis of separated alleles in yeast (FASAY), a method which is used for 

detecting mutations (germline and somatic) in the TP53 gene in tumour samples 

(Flaman et al., 1995). 

         The FASAY method is based on extracting human p53 mRNA from normal 

and tumorous tissues followed by performing RT-PCR. The amplified PCR product 

(cDNA of the p53) is then transformed into yeast with a plasmid vector carrying the 

5’ and 3’ ends of human p53 open reading frame. The yeast, in turn, contains an 

open reading frame (ORF) for adenine that is regulated by a promoter under the 

regulation of p53. The yeasts are plated in a specific medium that lacks leucine and 

contains adenine. Thus, if the WT p53 is present in the sample, adenine is 

completely metaboised and consequently expressed then colonies of transfected 

yeast cells are displayed in white. If the p53 is mutated, however, adenine is not 

wholly metabolised or expressed and thus yeast colonies appear to be red coloured 

(Flaman et al., 1995). Other studies confirmed the status of the p53 gene in tumour 

samples by using direct sequencing of the DNA coding sequence (Varna et al., 

2011). 
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1.2.7.2.4 TP53 mutations in BC  

         The inactivation of p53 is associated with different mechanisms including 

mutations, which occur in the DNA binding domain or in the deletion of the C-

terminal domain of the p53 protein (Soussi and Wiman, 2007). Most TP53 

mutations consist of missense mutations, which are positioned in the central region 

of the DNA binding domain in some 80%-90% of cancer cases (Soussi et al., 2006; 

Petitjean et al., 2007). The TP53 mutation is responsible for about 25-30% of BC 

(Olivier et al., 2006), a percentage which increases to 80% in basal-like BC and 

decreases to 15% or less in the luminal-A subtypes (Sørlie et al., 2001). 

Additionally, the lack of p53 function is also associated with amplification of MDM2 

gene or deletion of the p14ARF gene in breast or lung cancers (Vogelstein et al., 

2000). 

  

1.2.8 BC treatment  

         Oncologists usually decide the type of treatment in agreement with the patient 

and this is based on multiple elements relating to a woman’s age, menopausal 

status and the tumour status (histological type, grade, size, status of hormone 

receptors [Her2+, ER and PR], lymph node involvement and distant metastasis). 

The majority of patients’ with tumours undergo loco regional therapies, which 

involves two forms: surgery and/or radiation therapy (RT). This type of treatment is 

usually combined with additional therapy for effective management of the cancer. 

This is known as systemic therapy and is usually provided to patients as a 

combination of two or three drugs either after surgery as adjuvant setting treatment 

or before surgery as neoadjuvant chemotherapy (NACT). Patients expose to 

adjuvant or NACT treatment may also be supplied with hormonal (endocrine) 

therapy depending on the positivity of their ER or PR receptors. A brief description 

of the types of BC treatments follows below.  

 

1.2.8.1 Loco-regional therapy 

Loco-regional treatments for BC can be divided into two types including surgical 

resection of the tumour mass and radiation therapy.  

1.2.8.1.1 Surgery  

         Surgery is the main treatment used to remove BC in which the local tumour 

recurrence can be diminished. The majority of early operable BC is removed by 
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surgery. However, a number of factors are considered by surgeons before starting 

the procedure including the location and size of the tumour, the stage of the BC and 

the size of the breast. The majority of cases undergo either breast-conserving 

surgery or mastectomy. Breast surgery is sometimes combined with other 

procedures in the axilla such as an axillary node clearance or sentinel node biopsy 

dissection for patients with invasive BC. These additional procedures assess the 

pathological staging of the tumour and guide the post-operative treatment 

decisions. 

1.2.8.1.2  Radiation therapy  

Radiation therapy usually involves high-energy X-rays and is recommended for 

patients after breast-conserving surgery to eliminate any residual tumour cells in 

the breast, axilla and chest wall.  

1.2.8.1.3 Chemotherapy 

         Chemotherapy drugs mainly aim to inhibit the cancer’s ability to grow leading 

to a subsequent induction of apoptosis with a minimal effect on normal cells. 

Chemotherapy is recommended for patients whose tumour is expected to be 

metastasised (meaning that the tumour spreads to the axillary lymph node) or in 

cases of advanced and invasive BC (tumour size is increased and has expanded to 

distant areas of the body outside the breast) and for patients who are diagnosed 

with triple negative BC. Chemotherapy can be provided to patients by intravenous 

injection or orally so that it travels through the bloodstream to influence cancer 

growth in affected areas of the body. Chemotherapy treatment is usually given at 

specific period in the cycle. Patients usually have a recovery period after each 

period of chemotherapy treatment.  

         Medical oncologists recommend that post-operative patients obtain further 

adjuvant therapy since surgery alone may not be enough to eliminate any residual 

cancers, which have spread to other areas of the body and may not have been 

obvious during the BC surgery. NACT treatment has been used widely for 

treatment of larger primary, locally advancer BC patients and inflammatory disease. 

It offers an effective advantage by down-staging or shrinking the tumour growth 

allowing reduction the extent of BC surgery, increasing breast conserving therapy 

and identifying biomarkers as indicators for efficient response to NACT treatment 

(Thompson and Moulder-Thompson, 2012).  
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         For both modes of chemotherapy treatment (adjuvant and NACT), in order to 

eliminate the majority of the BC, a combination of more than one drug can result in 

a better outcome. BC chemotherapy treatment can be classified as anthracyclines 

(for example: Adriamycine/Doxorubicine and Epirubicin) and the Taxanes (for 

example: Docetaxel/Taxotere and Paclitaxel/Taxol). These may be used in 

combination with certain other drugs, such as Cyclophosphamide (Cytoxan®) 

Fluorouracil (5-FU), Carboplatin or Cisplatin. The most common combination 

chemotherapy drugs (regimens) used for the management of BC is as follows;  

! FEC: Fluorouracil, Epirubicin, Cyclophosphamide  

! ECF: Epirubicin, Cisplatin, Fluorouracil 

! EC - P (or EC - D): Epirubicine, Cyclophosphamide, which is combined by 

either Daclitaxane or Docetaxane  

! TC: Docetaxane, Cyclophosphamide  

1.2.8.1.4 Endocrine therapy 

         Endocrine therapy is a type of therapy that is provided for hormone receptor 

positive BC breast cancer patients. Patients receive endocrine therapy in an 

adjuvant or neoadjuvant setting to help reduce the risk of cancer recurrence after 

surgery. In women, ovaries are the main source of the hormone estrogen until the 

menopause. After menopause, a smaller amount of estrogen is still made in the 

fatty tissue of the female body by the adrenal gland Thus, endocrine therapy is 

used to lower the level of hormone receptors in female patients including ER or/and 

PR and block their activities of enhancing tumour growth and survival. It is suitable 

only for cancer cells with positive hormone receptors including ER-positive or/and 

PR positive tumours. BC patients who are pre-menopausal receive Tamoxifen to 

bind to ER receptor and blocks its transcriptional activations and those who are 

post-menopausal receive Aromatase inhibitor, which greatly diminishes ER 

concentration.  

          HER2 receptor is a member of the epidermal growth factor receptor family. 

Amplification or overexpression of HER2 is common in about 15–30% of BCs and 

acts as a prognostic and predictive biomarker in BC (Burstein, 2005). HER2 

positive BC receive the targeted drugs including Trastuzumab (Herceptin) which is 

often supplemented with one of the Taxane agents such as Paclitaxel/Taxol or 

Docetaxel/Taxotere. HER2 positive cancers can also receive Pertuzumab (Perjeta), 

which is a monoclonal antibody targets HER2 positive cancers, and can be 

combined with Trastuzumab and Docetaxel.   
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1.3 Integrating high throughput siRNA and small molecule 
screens to enhance cancer drug discovery 

1.3.1 Cell based high throughput screens  

Cell-based high throughput screens (HTS) utilise a cell culturing system and can be 

employed for the large-scale examination of potential biological or genetic effectors 

directed against defined target of biological or cellular phenotype events 

(ARMSTRONG, 1999). A cell-based HTS relies on screening a particular RNAi 

library or screening a set of small molecules in which both are targeted to identify 

biological modulators of particular cellular event. For instance, siRNA screenings 

have been used widely for identifying of genes which stimulate the effect of PARP 

inhibitor on cell survival (Stec et al., 2012), induce or modify premature 

chromosome condensation (Adams et al., 2014), genes which are associated with 

survival and growth of pancreatic cancer cells (Henderson et al., 2011), modulators 

of Cisplatin in ovarian cancer cells (Arora et al., 2010) and genes that increase 

sensitivity to Paclitaxel/Taxol in BC cells (Bauer et al., 2010). 

 

1.3.2 RNAi screen 

Rapid developments have been made in studying gene activity since the discovery 

of RNAi. Gene knockdown using the RNAi approach is a fundamental tool enabling 

genome scale screening to be performed on cultured Drosophila melanogaster and 

mammalian cells and paved the way for the identification of potential therapeutic 

targets (Kiger et al., 2003; Nicke et al., 2005). 

 

1.3.2.1 Biology and mechanism of RNAi interference 

         There are different forms of RNAi silencing reagents which include synthetic 

small interfering RNA (siRNA), short hairpin RNA (shRNA) and double stranded 

RNA (dsRNA) (Iorns et al., 2007). The two forms most frequently used 

experimentally for RNAi screenings are siRNA and shRNA. Long dsRNA consisting 

of a few hundred base pairs (bp) has been used experimentally to induce siRNA for 

gene expression silencing of various organisms such as plants, Drosophila 

melanogaster and Caenorhabditis elegans (Iorns et al., 2007; Echeverri and 

Perrimon, 2006). However, the use of long dsRNA can induce an interferon 

response that causes non-specific silencing of the target mRNA transcript resulting 
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in global inhibition in protein synthesis (Iorns et al., 2007). To remedy this problem, 

siRNA duplex with a length of 21-25 nucleotides and two nucleotides 3’ overhangs 

can be used to inhibit gene expression without inducing interferon response (Tuschl 

et al., 1999) 

 

 

 

 

 

 

 

 

 

Figure 1.8. Mechanism of gene silencing by RNA interference (RNAi).  
When the plasmid expressing short-hairpin RNAs (shRNAs) are introduced into the cells, 
the Dicer enzyme processes into small-interfering RNA (siRNA). Also, synthetic siRNAs can 
be synthesized chemically and directly transfected into the cell using transfection reagents. 
Then, siRNAs are integrated with the RNA-induced silencing complex (RISC). 
Consequently, duplex siRNA is unwounded allowing the binding of its antisense strand to its 
complementary mRNA sequence. The targeted mRNA is degraded by RISC, resulting in an 
inhibition of gene expression and a reduction on protein synthesis. Source: Image is 
adapted from (Iorns et al., 2007; Mohr et al., 2014). 

 

          The mechanism of siRNA can be summarised in the following steps (Figure 

1.8). First, siRNA is induced endogenously in the cell, either by transfection reagent 

using synthetic siRNA or ectopically using plasmid-expressed shRNA. The shRNA 

is processed by the RNase III-like enzyme (Dicer) into siRNA, (Tuschl et al., 1999). 

The siRNA is then loaded into the RNA-induced silencing complex (RISC). Helicase 

within the RISC unwinds the siRNA duplex, allowing the guide strand (antisense 

strand) to bind to the complementary mRNA transcript of the target. The bound 

mRNA is then cleaved by the RNase within the RISC, resulting in mRNA 

degradation, gene expression silencing and a reduction in protein synthesis 

(Meister and Tuschl, 2004).  
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1.3.2.2 RNAi library formats and screening strategies 

         In both academic and commercial laboratories, researchers have developed a 

number of RNAi libraries using mammalian cells. These libraries are divided into 

two formats, namely synthetic siRNA libraries and vector-based shRNA libraries.  

         siRNA can be chemically designed to mimic the endogenous pattern of 

duplex siRNA, that is 21-25 nucleotides in length with 2-base overhangs at both 

3'ends (Elbashir et al., 2001). The synthetic siRNA library only provides short-term 

gene silencing since the duplex siRNA does not replicate; thus its delivery to cells is 

gradually decreased as the cells divide. However, synthetic siRNA offers highly 

efficient gene silencing which can potentially minimise off-target effects (Iorns et al., 

2007; Kittler et al., 2007b). shRNA libraries can be also be subdivided into different 

types based on the vector used in the designed library; for example non-viral 

(plasmid), adenoviral, retroviral and lentiviral (Root et al., 2006; Iorns et al., 2007; 

Hu and Luo, 2012; Cowley et al., 2014). Vector-based shRNA libraries, in turn, can 

be used for long-term and stable gene silencing since the vector generates multiple 

copies during its integration into the host genomic DNA.  

         In order to conduct a wide-scale RNAi screen, a specific screen paradigm or 

strategy has to be chosen. There are two main approaches used in RNAi libraries, 

namely, arrayed and pooled library screens (Iorns et al., 2007; Boettcher and 

Hoheisel, 2010; Campeau and Gobeil, 2011; Hu and Luo, 2012).     

        The arrayed format of RNAi library screen, known also as systemic screen, 

can be performed using synthetic siRNA or vector-based shRNA libraries. This 

arrayed screen strategy offers the possibility to work either on a selected RNAi sub-

library or on the whole genome. This strategy usually relies on targeting each gene 

individually, thus enabling the measurement of the resulting phenotype of interest. 

The transfected cells in multi-well plates (96 or 384 wells) are assayed using an 

appropriate instrument ranging from the simple readout assay, such as luminescent 

cell viability, to more a complex readout, using fluorescent microscopy and imaging 

software Operetta (PerkinElmer) for high content screening (MacKeigan et al., 

2005; Iorns et al., 2007; Mohr et al., 2010; Campeau and Gobeil, 2011).  

         Moreover, RNAi cell microarray is another format, which can be used for 

arrayed, or systemic RNAi screening. This type of assay is based on using siRNA, 

shRNA expressing plasmid mixed with the transfection reagents, or shRNA 

expressing lentiviral supernatants. Any of these can be plated on the cell spot 

microarray slides, enabling transfection of multiple cell types on the arrayed spots 

followed by a fast, multi-parametric analysis and readout of high-content imaging 
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screening (Silva et al., 2004; Bailey et al., 2006; Neumann et al., 2006; Rantala et 

al., 2013). 

The second screening strategy employs a pooled RNAi library utilising 

shRNA to target many genes simultaneously (Iorns et al., 2007; Mullenders and 

Bernards, 2009; Boettcher and Hoheisel, 2010; Campeau and Gobeil, 2011; Hu 

and Luo, 2012). This strategy makes use of pools of shRNA expressing plasmid or 

expressing viruses, which are transfected or infected into the cells, respectively. 

Then, cells are treated with selective agents such as small molecule inhibitor to 

measure the resulting phenotype. Cells which are resistant to the small molecule 

inhibitor, that carried the shRNA expressing vector, are identified by performing 

PCR amplification and subsequent DNA sequencing. The alternative method that 

can be used to identify target hits involves barcoded pooled shRNA vector 

screening. Each shRNA vector encodes a single shRNA sequence, which also 

contains a unique DNA barcoding sequence. The cells are transfected with this 

barcoded shRNA vector and then divided into two populations; one is exposed to 

small molecule inhibitor whilst the other is used as a control population. The cells 

from both populations containing this unique barcode are amplified using PCR, and 

are then labelled with different fluorescence and hybridised for microarray analysis. 

The alternations in the colour ratios are used to determine if the potential shRNA 

vector has encoded the gene responsible for altering the phenotype of interest. 

 

1.3.2.3 Type of siRNA screens  

1.3.2.3.1 Loss of function (LOF) siRNA screens  

          LOF is one of the applications used to conduct siRNA screening and involves 

the use of siRNA to knockdown genes of interest. This approach is based on single 

gene knockdown that allows for the characterisation of cellular and morphological 

phenotypic changes and the identification of the gene’s function. A LOF siRNA 

screen can also be used to identify whether genes increase their phenotypic 

changes in comparison to untreated cells or the positive control. For example, PCC 

is an abnormal cellular phenotype, mainly induced by LOF of MCPH1/BRIT1 gene. 

Thus, in order to identify other genes which induce PCC and their correlation with 

MCPH1/BRIT1 in regulating DNA condensation, a large-scale human druggable 

genome LOF siRNA screens was conducted by the BioScreening technology group 

(BSTG) at the University of Leeds (Adams et al., 2014).  
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         LOF siRNA screen simplifies the knockdown of many types of genes that are 

difficult to inhibit in cells such as genes functioning as receptors in the cell surface, 

transaction factor and enzymes (Echeverri and Perrimon, 2006). However, it is 

important to note that knockdown by siRNA may not be an effective method for 

detecting LOF phenotype, particularly in the case of genes harbouring specific 

features such as highly active, long-protein half-life and high-endogenous 

expression genes (Echeverri and Perrimon, 2006). Thus, an alternative format or 

strategy of RNAi approach must be applied such as plasmid- or vector-based 

shRNAs (Root et al., 2006). 

1.3.2.3.2 Synthetic lethal siRNA screen  

         Effectively, this process involves identifying a therapeutic target which 

tolerates selective destructive of cancer cells without affecting normal ones. This 

can be achieved by conducting a synthetic lethal (SL) RNAi screen. This serves to 

determine the essential genetic interactions between two genes whereby mutation 

in one gene has no effect on cell viability but the presence of mutation in both 

genes leads to cell death. Thus, identifying one of these mutations in cancer cells 

but not normal cells can simplify killing cancer cells by inhibiting the effect of the 

secondary gene mutation using targeted drugs (Chan and Giaccia, 2011). The most 

useful application of SL siRNA screen lies in identifying SL targets in cancer cells 

harbouring specific genetic lesions such as LOF mutations in TSG (Iorns et al., 

2007). SL RNAi screens can be performed using a cell culturing system by initially 

enhancing the genetic mutations that are related to cancer initiation or progression. 

This allows the required RNAi-modified phenotype, namely, cell death to be 

identified (Echeverri and Perrimon, 2006). Identification of the correlation between 

the SL gene and TSG would prove more effective for the selective killing of tumour 

cells containing mutations in TSG (Iorns et al., 2007). PARP inhibitor has been 

shown to be a useful SL target, killing cancer cells with specific defects in BRCA1 

and BRCA2 without having any significant effect on normal cells (Farmer et al., 

2005). Since the SL siRNA screen is based on the knockdown of two genes, it, 

however, needs to be conducted in a highly proficient and efficient manner in order 

to ensure adequate cell death.  

1.3.2.3.3 Modifier RNAi screen 

         The modifier RNAi screen provides powerful data that allow for identifying 

both the function of genes and their involvement in the cellular pathways. In the 

modifier screens, the silencing of RNAi results in inducing or repressing a given 

phenotype of interest. This phenotype can be initially generated by targeting 
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phenotypic-related gene through gene overexpressing or gene silencing. Then, the 

phenotypic effect will be the consequence of initial drug (chemical compound) 

treatment or siRNA treatment, alone or in combination with the drug (Echeverri and 

Perrimon, 2006). 

         Combining the drug with siRNA provides a comprehensive explanation of the 

mechanism of the drug and the drug-targeted molecular pathway. In addition, this 

screen can determine the cellular pathways related to the function of the gene in 

which its suppression or silencing is associated with distinctive abnormal cellular 

phenotype. In addition, these methods are not only useful for identifying a novel 

therapeutic target but also for identifying genes that when depleted enhance 

sensitivity to the anti-cancer drug (MacKeigan et al., 2005; Bauer et al., 2010). 

These methods, particularly the suppression of the RNAi to the drug’s action, would 

recognise novel prediction biomarkers that show low-response to the compound or 

even confer resistance to a specific chemotherapy. This will help to improve the 

optimisation process and model design of clinical trials for subsequent novel drug 

validation. Some examples of siRNA screens will be detailed below in (Section 

1.3.4) to illustrate the powerful of such screens for identifying new modifier targets 

that either increase drug sensitivity or confer resistance to specific chemotherapy.  

 

1.3.2.4 Essential concepts for RNAi screens 

1.3.2.4.1 Screening strategy and approach 

         There is no standard protocol for performing the chosen RNAi screen. 

However, since RNAi screening is complex and costly, there are some essential 

Infrastructural procedures that must be considered when performing any RNAi 

screen, as described by Iorns et al. (2007) and Sittampalam et al. (2013). 

         The most important step in performing a RNAi screen is to choose the most 

robust and reproducible assay system. The phenotype of interest which is to be 

examined and measured must present both biologically and clinically the specific 

events that characterise the disease in question. A large range of RNAi screens are 

available which target the genome of different species in the vertebrate kingdom 

including human, mice and rats. However, the majority of scientific and industrial 

laboratories use human cell lines due to the cost-effective RNAi transfection 

reagents for human cell base RNAi screens. As adherent cell lines with a 

monolayer growth pattern, HeLa (Echeverri and Perrimon, 2006) and U2OS (Martin 

et al., 2014; Adams et al., 2014) both provide easy, robust and efficient RNAi 
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transfection. However, adhesion problems have been experienced by some 

researchers using HeLa cells for high through screening experiments. Highly 

adherent monolayer cell lines are the most appropriate for high content microscopic 

imaging systems, offering the required readouts efficiently.  

         The other key consideration that must be taken into account is the RNAi 

strategy if the pooling system relies on the vector-based library since this is 

expensive, time consuming and requires a stable knockdown system that warrants 

long-term gene silencing. The non-vector siRNA library format is widely preferred 

since it offers a sufficient transfection with gene silencing that can be extended for 

seven days. Conducting a genome-wide RNAi screen is less cost-effective 

compared to choosing a subset of the genome that is based on identifying a 

pharmacologically specific target such as screening a protein kinase sub-library 

(Iorns et al., 2007).  

         Moreover, an appropriate screening technique should be used particularly 

with pooling RNAi libraries, for example, the recommended specific format 96-well 

or 384-well plates combined with an automated reagent-handling system that 

maintains a high level of accuracy such as BRAVO from PerkinElmer. In addition, it 

is worth considering an automated microscopy system such as the Operetta, that 

offers multi-parametric readouts and fluorescent channel imaging for measuring 

different phenotypic features. Image analysis also requires suitable software such 

as Columbus or cellHTS2 package that can rapidly and accurately analyse the 

previously generated images and store a large set of data (Boutros et al., 2004; 

Pelz et al., 2010). Other analysis packages have now emerged, such as CellProfiler 

and Cellenger, but they require more computing power and a highly skilled 

specialist to achieve output that is sufficiently precise for high throughput 

screenings (Echeverri and Perrimon, 2006). 

1.3.2.4.2 Selection of positive and negative controls  

         It is essential to choose the correct positive and negative controls, particularly 

in replicated RNAi screening, to show the anticipated changes in an assay and to 

improve the quality of screening data. The most commonly used negative control in 

RNAi screening is non-targeting siRNA (NT-siRNA). However, it needs to be borne 

in mind that although most commercial NT-siRNA has no effect on the phenotype 

being investigated, some can induce a high level of cell death, which then 

maximises the off-target effect. Thus, in order to ascertain the suitability of negative 

controls, it is advisable to compare between the effect of NT-siRNA and that of 

mock transfected cell on the phenotype of interest (Iorns et al., 2007). Similarly, in 
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order for a positive control to offer a biological readout threshold for identifying hits 

from an RNAi screen, it must be verified as reliable to observe the required 

biological effect, which can then confirm that the screen is generating a valid 

biological data (Iorns et al., 2007). 

         Thus, comparison between the negative and positive controls is warranted 

using some form of statistical analysis such as strictly standardised mean 

difference (SSMD) (Birmingham et al., 2009; Goktug et al., 2013) that can describe 

the quality of screening performance and controls, respectively (Figure 1.9). 

Checking statistically to improve the screening system and its quality is important 

as it helps to minimise false positives and negatives. 

1.3.2.4.3 Statistical analysis for hits identification 

         Birmingham et al. (2009) described several statistical methods, which can be 

used for hits identification in siRNA screening, the most suitable being Z score and 

Robust Z score.  

 

 

 

 

 
Figure 1.9. Statistical methods for analysis of high throughput RNAi screening data. 
(A) The strictly standardised mean difference (SSMD) is used to evaluate the quality of 
positive and negative controls in the RNAi screen; Terms C = control; pos = positive control; 
neg = negative control. (B and C) Z score and Robust Z score are used for hits 
identification. The Z score relies on mean and standard deviation (std), which are replaced 
in Robust Z score with median and median absolute deviation (MAD), respectively; Terms 
Si = each value of the data set; mean or median Sall = mean or median of all values in the 
data set; std or MAD Sall = the standard deviation or the median absolute deviation of all 
values in the data set. Source: Equations are adapted from (Goktug et al., 2013).  

         The Z score can be used to evaluate the difference in the value of siRNA 

compared to the mean and standard deviation (SD) of the selected control.  But, 

because the Z score is sensitive to outliers, a variation know as the Robust Z score 

is considered to be preferable for analysing RNAi screens since this substitutes the 

outlier-insensitive median and median absolute deviation (MAD) for mean and SD 

in the selected control (Goktug et al., 2013) (Figure 1.9). 

 

 

 

A 
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1.3.3 Small molecules screen (SMS) 

         The main difference between RNAi and small molecule inhibitors is their 

biological action, which involves the inhibition of protein expression by siRNA and 

the inhibition of protein activity by small molecules. Small molecule inhibitors are 

useful for inhibiting protein function meaning that the subsequent biological 

changes can be studied and a potential novel therapy can be developed. (Weiss et 

al., 2007) provided some recommendations that have to be considered during 

performing SMS, some of which will be detailed below.  

         In order to eliminate the off-target effect for small molecule screens, an 

appropriate functional readout control at the lowest concentration is sought (Weiss 

et al., 2007). This should allow for inhibition of the target either in vitro or in 

systematic cell culturing which avoids non-specific protein binding. For instance, 

kinase inhibitors to block adenosine triphosphate (ATP) binding may potentially 

show an off-target effect in binding with proteins that have the same conformation. 

In this case, the off-target effect may exist among protein kinases compared to 

other classes of proteins. 

         In addition, another control is suggested for the alignment of functional 

screening readout, such as small molecule inhibitors that are structurally different 

but functionally block the same target, (Knight and Shokat, 2005). It is also 

recommended to use a concentration below 10µM, particularly when testing novel 

small molecules, in order to preserve the specificity of the compound’s binding 

(Weiss et al., 2007).  

         Moving to the validation stage of small molecule, RNAi can serve as a useful 

tool for confirming and validating the small molecule inhibitor results. Weiss et al. 

(2007) stated that when either a small molecule inhibitor or RNAi is used against 

the same target, the resulting phenotype, which is observed, should be consistent, 

increasing its potency and selectivity, both biologically and therapeutically. 

Currently, the use of siRNA in most cases to verify the results from the small 

molecule inhibitors under investigation shows an alignment between the phenotype 

observed in the inhibitor and the siRNA. However, Weiss et al. (2007) mentioned 

that other reviewers’ opinion stated that the loss of alignment in the resulting 

phenotype could be attributed to the lack of specificity for small molecule inhibitors. 

Weiss et al. (2007) explained that the lack of congruency in the results reflects the 

biological differences between the small molecule inhibiters and siRNA. More 

specifically, these differences can be attributed to protein-protein interactions. Small 

molecules usually inhibit the target protein, but this protein may still be active, 
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functioning physically as a scaffold, which is biologically important for protein-to-

protein interactions. Nevertheless, these interactions would be totally inhibited by 

using siRNA. However, utilising Aurora kinases as a case study for clarifying the 

lack of phenotypic alignment between RNAi and small molecule inhibition 

contributed to hypothesise that the dissimilarity in phenotypic results between 

Aurora B siRNA or using a small molecule inhibitor of Aurora B (ZM447439) in 

Nocodazole-treated cells can be attributed to the use of different experimental 

methods for blocking the activity of Aurora B (Keen and Taylor, 2004; Ditchfield et 

al., 2003). For example, Aurora B contributes structurally with other molecules to 

the formation of chromosome passenger complex (CPC) at the centrosomes and 

substrate phosphorylation (Ruchaud et al., 2007). Exposing the cells to the inhibitor 

ZM447439 leads to inhibition of Aurora B activity and prevents the substrate 

phosphorylation without affecting the structure or localisation of CPC.  

         These results show how the small molecule inhibitor can inactivate the 

enzymatic activity of the target without influencing its stoichiometry, which can be a 

useful means of investigating biological and physiological functions. Weiss et al. 

(2007) concluded that in the case of Aurora kinases, there is a biological difference 

between the functions of small molecule inhibitor and RNAi; thus the phenotypic 

results from both approaches would be correct and acceptable as long as the 

appropriate functional read out for both small molecule or RNAi systems is present 

to minimise the off-target effect. Thus, there is no standard scientific reason to 

assume that the phenotypes, which resulted from the two approaches, should 

always be aligned. (Eggert, 2013) stated that performing parallel siRNA and known 

small molecules screens of target the same pathway prevents the confounding 

variables and the phenotypic results from siRNA knockdown and small molecules 

inhibitors are not necessarily aligned since the inhibitor only blocks the enzyme 

activity while the siRNA inhibits the enzyme and its scaffold interactions (Weiss et 

al., 2007).  

         Thus, identifying the specific targets of the small molecule inhibitors is the 

most difficult technical problem to be faced when using phenotypic screening in 

drug discovery. However, the availability of systematic RNAi sources offers the 

chance for conducting a parallel RNAi and small molecule inhibitor screening 

together with high-content automated image analysis. This can be used to identify 

and characterise the active small molecules, and the similarities and differences in 

the resulting phenotypes of these molecules with RNAi data set. For example, 

Eggert et al. (2004) managed to conduct parallel small molecule inhibitor and RNAi 

screens in Drosophila Kc cells in order to identify cytokinesis inhibitors. They 
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identified an inhibitor known as Binucleine 2 and a new protein in the Aurora B 

pathway (Borr) (borealin-related). This suggests that Binucleine 2 targets protein 

functions in the Aurora B pathway. Thus, comparison between parallel screens 

would help to identify the pathway in which small molecules function. It would also 

help clarify the biological mechanism of the resulting phenotype of interest and 

identify all the components involved in the pathway. Subsequently, this could lead 

to identifying a novel therapeutic target for cancer. 

 

1.3.4 Synergies between siRNA screens and small molecules for 
subsequent drug discovery 

         Iorns et al. (2007) described the streamline process of drug discovery, 

dividing this into five stages as follows: (1) target identification; (2) target validation; 

(3) high throughput small molecule screening; (4) lead optimisation and (5) clinical 

trial. (Figure 1.10). 

         The most challenging of these stages in drug development is the first. 

Previously, target identification was based on recognising changes in protein or 

gene expression, or genetic variations in specific human diseases. However, the 

data from these approaches may not correlate precisely enough to determine the 

main causative factors of the disease. Since the main aim of target identification is 

to identify new targets that are the most likely to be responsible for tumour growth 

and survival but are not usually required in normal cell, thus when these targets are 

inhibited this leads to reversal of tumour progression. Thus, conducting high 

throughput RNAi screening could reveal multiple targets related to reverse cancer 

progression, enhanced drug sensitivity and identification of targets that confer 

resistance to chemotherapy.  

         For example, the combination of siRNA screening was coupled with 

automated microscopy, using wound-healing assay as a control measurement for 

cell migration in ovarian cancer cell line SKOV-3, which harbours the most complex 

characteristics of cancer. This screen identified that depletion of the kinase 

MAP4K4 (mitogen-activated protein kinase 4) can inhibit migration and invasion. 

The activity of MAP4K4 in cancer cells is mediated by the kinase JNK (c-Jun N-

terminal kinase) thus the small molecule inhibitor of JNK proved to be effective at 

preventing cell migration and metastases (Collins et al., 2006). This case study 

provides a good example of conducting an RNAi screen for target identification and 

a small molecule inhibitor screen for target validation. 
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Figure 1.10. Summary of drug discovery process.  
A number of stages are implemented in drug discovery. (A) Target identification: Novel 
targets can be identified utilising high-throughput RNAi screens. (B) Target validation stage 
can be performed using RNAi in in vitro (cell lines) and in vivo (mouse) models. (C) 
Selective identification of promising small molecule candidates by using in vitro small 
molecule screens that are designed based on specific cellular phenotypes that are 
associated with RNAi knockdown of a target molecule. This is followed by a secondary cell-
based RNAi screen which is aimed at a selective identification of the target compound to 
determine which of the small molecule hits identified in the in vitro primary screens are the 
most potent candidates for development. (D and E) Lead optimization can be improved by 
comparing gene-expression database and cellular phenotypes that are produced by target 
RNAi screens to those produced by lead compounds and also by comparison to expression 
profiles within the Connectivity Map. The drug discovery stages used are represented by 
solid arrows and suggested applications are represented by broken line arrows. Source: 
image is adapted from (Iorns et al., 2007).  
 

         RNAi screening is also very useful at identifying targets, because when they 

are inhibited in anti-cancer drug treated cells; they either enhance chemosensitivity 

or confer resistance. This may lead to the discovery of new mechanisms of drug 

sensitivity or resistance. In addition, these genes can be used as targets for 

combination chemotherapy (Kuiken and Beijersbergen, 2010). Several RNAi 

chemosensitiser screens were performed using different anti-cancer drugs such as 

Paclitaxel (Swanton et al., 2007) and Cisplatin (Bartz et al., 2006). In addition, 

conducting siRNA screening combined with a therapeutic target such as PARP 

inhibitor is another example of utilising a siRNA approach to identify other potential 
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chemosensitiser targets (Turner et al., 2008). A kinase such as CDK5 is identified 

as a target because its depletion enhanced tumour sensitivity not only to PARP 

inhibitor but also to Camptothecin and Cisplatin, although the actual molecular 

mechanism of the correlation between the depletion of CDK5 and the increase in 

drug sensitivity remains to be explained (Kuiken and Beijersbergen, 2010).   

          In contrast, using RNAi screening simplifies the process of identifying targets 

that cause resistance to specific chemotherapy due to their depletion, clarifies the 

molecular mechanism behind the activation of resistance and predicts biomarkers 

for resistance to specific types of chemotherapy. This is clinically significance for 

patients’ survival since it allows oncologists to decide on alternative anti-cancer 

treatments (Berns et al., 2007). For example, a LOF RNAi screen has been 

conducted using a protein kinase sub-library to identify modulators of Tamoxifen 

sensitivity in the MCF7 breast cancer cell line that accommodate oestrogen 

receptor (ER) positive (Iorns et al., 2008). They demonstrated that CDK10 depletion 

promotes the expression of c-RAF, which consequently activates the p42/p44 

MAPK pathway that was previously found to be correlated with increasing 

expression of Cyclin D1 and inducing resistance to Tamoxifen.  

         The next stage of drug discovery is target validation, which addresses the 

clinical correlation between targets and their related cancer diseases. The selected 

targets should be present in an elevated number of cancer cells and function in a 

very critical pathway for cancer progression. Target validation can proceed using an 

RNAi strategy in animal models or a cell-culturing system (Neve et al., 2006). In 

addition, comparing the phenotypic results of target knockdown by RNAi to those 

observed either from gene expression microarray or proteomic analysis could 

confirm if the targets are functional. Identification of any alterations in gene or 

protein expression as a consequence of target knockdown can be considered as a 

biomarker during the analysis of patient samples.  

 The third stage in processing drug discovery is small molecule screening for 

identifying compounds that would meet all the chemical and physical criteria of a 

drug-like compound. However, the challenge in such screening is to determine the 

authentic target for each active compound hit. Thus, performing parallel screens of 

small molecule inhibitor and RNAi aiming for the same phenotype would serve as 

means of selective and specific identification of the target compound that is 

determined in high throughput RNAi screening as previously mentioned (Section 

1.3.3). Although the compound inhibitor screen conducted by Eggert et al. (2004) 

identified some compounds for cytokinesis inhibitors, the actual targets of these 
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compounds hits are underdetermined. In contrast, as the previous example in 

(Section 1.3.3) showed combining RNAi and compound inhibitor screens for the 

same phenotype revealed an inhibitor called Binucleine 2 that blocks Aurora B 

activity and affects cytokinesis, indicating the sufficient effect of RNAi screen in 

strength the target and compound identification. Thus, Iorns et al. (2007) suggested 

that the cellular phenotype associated with knockdown of a specific target can be 

used to perform a secondary cell-based screen for identification, specifically the 

most significant inhibitor hits that were recognised in the primary small molecule 

screen so the compound can be transferred to the last two stages of drug 

discovery, lead optimisation followed by transferring of the validated small molecule 

for clinical trial, which will be detailed below. 

 Identification of the most efficient and specific small molecules directed 

against the relevant target can be improved by comparing the phenotypes observed 

from the gene expression profile of the RNAi system to those observed by 

promising (or lead) small molecules, then comparing the gene expression 

microarray profile with the RNAi screen. This could lead to the identification of 

specific microarray signatures generated in combination with RNAi screen hits. 

These signatures can be compared with the reference signature in the Connectivity 

Map (Lamb et al., 2006). The aim of this project is to create a comparison map 

using gene set enrichment analysis to identify the correlation between genes, 

chemical compounds (drugs) and diseases. It is based on determining the 

molecular or reference signatures for the resulting phenotype (produced by RNAi or 

a compound). These signatures are ranked in order according to the extent, which 

their expressions are different in comparison to the control (some are gene up- or 

gene down-regulated). Then, this expression profile is examined and compared to 

other references in the stored database. After the connectivity score is calculated to 

evaluate positive or negative matches, the positive match (targets) should show 

similar molecular signature to those observed in gene target knockdown. This 

method can successfully identify the compound intended to target similar pathways 

to the RNAi screen hits, which allows transfer the small molecule for clinical trial 

process and subsequent drug discovery. 
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1.4 Project aims 

1. The main aim of this project is to use new technologies such as high 

throughput screening and small molecule and human partial genome siRNA 

libraries to identify molecules that cause premature chromosome 

condensation (PCC). 

a) Perform a small molecule screen of compounds selected by computer analysis 

to cause PCC. 

b) Analysis of human protein kinase (hPK) and ubiquitin (hUbq) siRNA sub-libraries 

for genes involved in the regulation of chromosome condensation.  

c) Combine the cell number data from two complementary hPK siRNA screens with 

and with out MCPH1/BRIT1 siRNA knockdown to identify synthetically lethal 

siRNAs in MCPH1/BRIT1 deficient cells.  

 

2. Investigate the role of MCPH1/BRIT1 in chemosensitivity by 

a) IHC for MCPH1/BRIT1 and p53 in advanced BC samples of patients who had 

undergone treatment with NACT therapy.  

i) Investigate the expression of MCPH1/BRIT1 and p53 pre- and post-NACT and 

their correlation to chemotherapy treatment data and patients survival.  

ii) Investigate the correlation between MCPH1/BRIT1 and p53 expression pre- and 

post-NACT.  

b) Chemotherapy drug assays on ovarian cancer cell lines treated with 

MCPH1/BRIT1 siRNA or MCPH1/BRIT1 overexpression using a transfected 

HEK293 cell line with inducible stably overexpression of MCPH1/BRIT1. 
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Chapter 2 Materials and methods 

2.1 Cell Culture 

The experimental reagents used in this thesis were purchased from Invitrogen, 

Dharmacon, Abcam, Bio-rad and Sigma-Aldrich unless otherwise specified. All 

suppliers’ addresses are listed in (Appendix 1). The cell culture was performed in a 

NuAire Labgard 437 ES Class II Biosafety Cabinet applying all required cell culture 

laboratory safety practices. Cells were incubated in a Sanyo MCO 20AIC incubator 

at 37°C with 5% CO2. 

 

2.1.1 Cell lines 

Cell Lines used in this thesis are detailed in Table 2.1 below.  

Table 2.1. Cell Lines utilized this PhD project including culture media and cell line 
suppliers. 

 

Cell line Cell histology 
type 

Culture media Source 

1847 Human ovarian 
serous papillary 
adenocarcinoma 

RPMI1640 + Glutamax™ 
10% Fetal Calf Serum 
(FCS) and 1% PenStrep 
(P/S) 

Cancer 
Research 
UK (CRUK) 

SKOV-3 Human epithelial 
adenocarcinoma. 
ascites from a 64yr 
old Caucasian 
female. 

McCoys 5a (Promocell) 
15% FCS and 1% P/S 

American 
Type Culture 
Collection 
(ATCC) 

U2OS Human bone 
osteosarcoma 
epithelial cells 

DMEM + 4.5g/L D-glucose, 
10% FCS and 1% P/S 

 ATCC 

IND HEK293 
(with 
MCPH1/BRIT1 
construct)  

Inducible stable cell 
line for 
MCPH1/BRIT1 
over expression in 
human embryonic 
kidney 293 cells 

DMEM + 4.5g/L D-glucose, 
10% FCS, 1% P/S, 1:1000 
of 100mg/ ml Hygromycin 
B (InvivoGen) and 1:2000 
of 10mg/ml Blasticidin 
(InvivoGen) 

Dualsystems 
Biotech AG 

Inducible Flp-In 
T-REx system 
HEK293 cells 
(with wild type 
Parkin 
construct) 

Inducible stable cell 
line for wild type 
Parkin over 
expression in 
human embryonic 
kidney 293 cells 

DMEM + 4.5g/L D-glucose, 
10% FCS, 1% P/S, 1:1000 
of 100mg/ ml Hygromycin 
B (InvivoGen) and 1:2000 
of 10mg/ml Blasticidin 
(InvivoGen) 

Dualsystems 
Biotech AG 
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2.1.2 Cell sub-culture  

All the cell types used in this thesis were adherent mammalian cells. Cells were 

grown in culture flasks (25cm2 and 75cm2) containing the specific growth medium 

and incubated at 37°C in 5% CO2 atmosphere. When the cells reached 80% 

confluence, they were sub-cultured.  The media was discarded and cells washed 

with 3-5ml Dulbecco’s phosphate buffered saline (DPBS) (PAA). Cells were 

detached from the flask with 0.5/2ml (for 25cm2/75cm2 flasks) of 1:10 trypsin–EDTA 

(0.5g trypsin and 0.2g EDTA/L) in DPBS. The flask was incubated for 5mins at 

37°C and then checked under a microscope (Olympus CKX41) to ensure all cells 

were fully detached and had formed a single cell suspension. The cell suspension 

was resuspended into 5ml specific growth medium depending on the cell type 

(Table 2.1), transferred to 15 ml falcon tube and cells pelleted by centrifugation at 

200g for 5min (Eppendorf, 5810R). The cell pellet was resuspended in 10ml growth 

medium and the cell suspension was split into culture flasks containing media to a 

final volume of 5ml/15ml (for 25cm2/75cm2 flasks) or counted to proceed to further 

experiments as detailed below. 

 

2.1.3 Cell counting 

An Invitrogen countess automated cell counter was used to obtain accurate cell 

counts. Ten microlitres of cell suspension were mixed with 10µl trypan blue in a 

sterile Eppendorf tube. Half of this mixture was loaded onto an Invitrogen 

Countess™ chamber slide. The slide was inserted into the slide port for imaging 

and analysis.   

 

2.1.4 Cell freezing, storage and recovery 

For cell stock preparation, the cell pellet was resuspended in 90% FCS and 10% 

Dimethyl sulfoxide (DMSO) and stored in 1ml aliquots in cryovials. The cryovials 

were slowly frozen overnight to -80°C in Nalgene® CryoBox™ containing 

isopropanol in a -80°C freezer (Innova U725 ultra low temperature freezer, New 

Brunswick Scientific). The cryovials were transferred for storage in liquid nitrogen. 

For cell recovery, cryovials containing frozen cells were removed from liquid 

nitrogen storage, defrosted in a water bath at 37°C. Then, a 15ml tube was 

prepared to add 9.5ml of growth medium (supplement with 10%FBS and P/S) with 

1ml of defrosted stock cells. The tube was spun down for 5min at 200 RCF (relative 
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centrifugal force) to remove the freezing media. Then, cells was resuspended in 

2ml of specific fresh growth medium depending on the cell type as detailed in 

(Table 2.1) and (Section 2.1.2). Cell suspension was added to culture flasks 25cm2 

containing 5ml culture growth medium and incubated overnight at 37°C in 5% CO2 

atmosphere. The culture growth medium was changed using the same flask and 

returned to incubator. When the cell culture were confluent 70-80%, a cell sub-

culture was performed as previously described in (Section 2.1.2). 

2.2 Small molecule screens to induce PCC 

          In the ovarian cancer cell 1847 a small molecule screen (SMS) was 

performed to identify inhibitors of MCPH1/BRIT1, which thus induce PCC. From a 

33,000 small molecule library of chemical compounds (CC), 792 were selected as 

potential modifiers of MCPH1/BRIT1 based on the three dimensional structure (3D) 

of the N-terminus of Microcephalin identified and prepared by Dr. Richard Foster 

(Medicinal Chemistry Chemical Biology Technology Group, University of Leeds) 

(Richards et al., 2010).  

        Initially, the SMS was optimized for cell density, CC concentrations and 

incubation period to define the optimal conditions in which the CC would efficiently 

induce PCC (Section 3.2.1.1). Eleven master “96–well” plates were supplied which 

contained  2µl of each of the 72 CC at a stock concentration of 10mM in 100% 

DMSO. The CC were plated in rows B-G and 100% DMSO vehicle control was 

plated in rows A and H. The preparation of the assay plates was as follows; 

screens were performed in duplicate in View Plates (PerkinElmer). Each assay 

plate contained 72 CC at a stock concentration 20µM in 0.2% DMSO, plated in 

rows B-G. Rows A and H contained the assay controls, which included 

negative/vehicle controls (0.2% DMSO), the positive control MCPH1/BRIT1 siRNA 

and its corresponding NT-siRNA control, Doxorubicin was used as a positive 

control for the identification of CC hits which induced cell death) (stock 10mg/ml; 

Sigma) at a final concentration of 0.4µg/ml (Appendix 2.1) and Nocodozole was 

used as a positive control for induction of the mitotic cell phenotype /pHH3 

Ser10/mitotic cells marker (stock 6.64mM; Sigma) at a final concentration of 1µM 

(Appendix 2.2). Doxorubicin and Nocodozole were only included in 4 plates in the 

first replicate and in all the 11 plates in the second replicate. The addition of 

controls or CC to the assay plates will be detailed below. 
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Figure 2.1. An example of the 96 well plate layout for the small molecule screen. 

 

2.2.1 SMS assay set up and MCPH1/BRIT1 siRNA reverse 
transfection  

         The PCC positive control MCPH1/BRIT1 siRNA reverse transfection, was 

previously optimized by Dr. Rawiah Alsiary in the ovarian cancer 1847 cell line at a 

final concentration of 75nM siRNA treatment for 48hr. All siRNAs used for the CC 

screen were purchased from Dharmacon or Invitrogen and siRNA sequences are 

recorded in (Appendix 3.1). Master mixes were prepared for control siRNAs, where, 

per well, 0.18µl MCPH1/BRIT1 siRNA (stock 40µM) (Thermo Scientific™ 

Dharmacon) was diluted with 16.3µl Opti-MEM-1 (1×) low-serum media (Invitrogen) 

and 0.375µl of the Non-Targeting (NT)-siRNA control (stock 20µM) (Invitrogen) was 

diluted with 16.125µl Opti-MEM-1 (1×) in separate tubes. After preparing the two-

transfection reagents, they were incubated at room temperature (RT) for 5mins. 

Then, 0.2µl Lipofectamine RNAiMAX/well (Invitrogen) was diluted with 3.3µl Opti-

MEM-1 (1×) low-serum media/well and added to both tubes and mixed. The 20µl 

volume of MCPH1/BRIT1-siRNA-RNAiMAX and NT-siRNA-RNAiMAX was added 

individually to the test plate as denoted in (Figure 2.1) and incubated at RT for 

20min. 

         The ovarian cancer 1847 cells were harvested and resuspended to a density 

of 7x104 cells/ml in (i) RPMI 1640 medium without antibiotics and containing 10% 

FCS for wells containing siRNA controls and (ii) RPMI 1640 media supplemented 

with 10% FCS and antibiotics (P/S) for the wells containing the CC. An 80µl volume 

of cell suspension was plated into each well and the plates incubated for 24hr at 

37°C before the addition of the CC as described below (Section 2.2.2). 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12

A 0.2% 
DMSO 

0.2% 
DMSO 

0.2% 
DMSO 

0.2% 
DMSO 

MCPH1 
siRNA

MCPH1 
siRNA

NT-
siRNA 

NT-
siRNA 

1µM 
Nocodozole

1µM 
Nocodozole 0.4µg/ml 

Doxorubicin
0.4µg/ml 

Doxorubicin
B CC CC CC CC CC CC CC CC CC CC CC CC
C CC CC CC CC CC CC CC CC CC CC CC CC
D CC CC CC CC CC CC CC CC CC CC CC CC
E CC CC CC CC CC CC CC CC CC CC CC CC
F CC CC CC CC CC CC CC CC CC CC CC CC
G CC CC CC CC CC CC CC CC CC CC CC CC

H 0.2% 
DMSO 

0.2% 
DMSO 

0.2% 
DMSO 

0.2% 
DMSO 

MCPH1 
siRNA

MCPH1 
siRNA

NT-
siRNA 

NT-
siRNA 

1µM 
Nocodozole

1µM 
Nocodozole 0.4µg/ml 

Doxorubicin
0.4µg/ml 

Doxorubicin
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2.2.2 Chemical compound (CC) library preparation and addition 
of CC to assay plate  

After optimisation of cell density, CC concentration and incubation time, the CC 

master plates were prepared as follows:  Each plate contained 72 CC at a 

concentration of 10mM in 100% DMSO. 2µl of each of the 72 CC or 100% DMSO 

vehicle control was plated out and freshly diluted to 1:100 with 198µl RPMI 1640 + 

Glutamax™ media containing 10% FCS. 20µl (containing 0.2% DMSO) of this 

working stock of 100µM CC was added to the 80µl cell suspension already plated 

out into the SMS screen plate in rows B-G. This resulted in a final CC concentration 

of 20µM in 0.2% DMSO. Doxorubicin and Nocodazole controls were added to the 

desired wells in Rows A and H as shown in Figure 2.1. Transfer of cell suspension, 

CC dilution and CC transfer were carried out using a Bravo SRT G5409A 

automated liquid handling platform (PerkinElmer). One plate was then incubated for 

24hr and the second for 48hr at 37°C. SMSs were performed in duplicate. Plates 

were fixed and immunofluorescently stained before evaluation by high-content 

imaging.  

 

2.2.3 Cell fixation and Immunofluorescence (IF) optimization 

         The cell culture media was removed from each well of the CC plates after 

24hr and 48hr respectively. Per well, the cells were washed 3 times with 100µl 

PBS, waiting 3-4 mins between each wash. The cells were fixed with 100µl of ice-

cold methanol (Sigma-Aldrich), incubated at -20°C for exactly 5 mins. The cells 

were washed twice with 100µl PBS and blocked in 1% (w/v) non fat-milk/ PBS 

(usually 0.50g/50ml, spin for 10 min) for 15-30mins  

         Next, 60µl of the primary antibody pHH3 (Ser10) (Table 2.2) and initially 

active caspase-3 (Table 2.2) were both added to cells at a 1:6000 dilution in 1% 

non fat-milk in PBS to detect mitotic and apoptotic cells respectively and the plates 

incubated at RT for 1hr. The plates were washed 3x with PBS. A 1:1000 dilution of 

DAPI or secondary antibodies (Table 2.2) in 1% milk in PBS was prepared, and 

60µl was added to each well using a FluidX cell dispenser (XRD-384). Plates were 

wrapped in foil, and incubated for 1hr at RT, then washed with PBS three times. 

The plates were imaged using the Operetta high content imaging system and 

analysed with the associated Columbus software  (PerkinElmer).  
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Table 2.2. Antibodies ultlised for immunofluorescence assay.  
Type, final concentration and company supplier of antibodies used to stain cells during 
Immunofluorescence processing.  

 

2.2.4 High-content high-throughput imaging and software 
analysis systems 

         The phenotypic effects of these small molecule inhibitors were analysed using 

the Operetta high-throughput high content imaging system (PerkinElmer) as 

described below in Sections 2.2.4, 2.2.5 and 2.2.6. SMS assay set up and 

MCPH1/BRIT1 siRNA reverse transfection  

          Plates were scanned and DAPI stained PCC and pHH3 Ser10/mitotic cells 

images were captured using the Operetta high content imaging system 

(PerkinElmer) and analysed using Columbus Data Manager Acapella software. 

Each plate was labelled with specific information barcodes and inserted into the 

workstation of a PerkinElmer Plate Handler II robotic arm, equipped with 

Plateworks software, which enables the barcoded plates to be scanned before 

insertion into the Operetta. Wells were imaged at 20x magnification with 15 fields of 

view for each well (510 X 675µm). The Acapella software (PerkinElmer) was used 

for image analysis as detailed below.  

 

  Antibody Type Final 
concentration 

Company supplier 

Mouse ab to phospho-
histone H3 (Ser10) 1mg/ml 

Primary 
antibody 

1:6000 Abcam, ab14955 

Lot: GR115353-1 

Rabbit ab to active caspase- 
3 0.9mg/ml 

Primary 
antibody 

1:6000 Abcam, ab13847 

Lot: GR29703-1 

Alex Fluor® 488 green goat 
anti mouse IgG (H+L) 
2mg/ml highly cross 
adsorbed  

Secondary 
antibody 

1:1000 Life technologies 

A11029  

Lot: 1306597 

Alex Fluor® 594 red goat anti 
mouse IgG (H+L) 2mg/ml 
highly cross adsorbed 

Secondary 
antibody 

1:1000 Life technologies 

A11032 

Lot: 51657A 

DAPI (4',6-Diamidino-2-
Phenylindole, 
Dihydrochloride) 10mg/ml  

Secondary 
antibody 

1:1000 

 

Biotium  

Cat: 40011 



- 57 - 
 

 

2.2.5 PCC and pHH3 Ser10/mitotic cells detection by Columbus 
software 

         In order to detect PCC cells, my colleague Dr. Victoria Cookson generated an 

image analysis algorithm (Adams et al., 2014) using Acapella. Nuclei identification 

was based on whole nuclei stained with blue DAPI. Border objects were excluded 

to avoid analysing incomplete nuclei. A distinction between the phenotype of PCC 

cells (cells with compacted chromosomes) and normal nuclear morphology was 

identified. Acapella was instructed to identify the compacted chromosomes as spots 

in the nucleus and nuclei containing 14 or more spots were identified as PCC cells. 

The two main parameters used to generate data from the screen were the number 

of whole nuclei and percentage of nuclei with PCC.  

         In addition, an image analysis algorithm was designed using Acapella 

software to detect mitotic cells in cells stained with pHH3 Ser10 thus the latter was 

used as a surrogate marker for mitotic cells. A method for identifying mitotic cells, 

those cells with intensive nuclear pHH3 Ser10 intensity, was recommended by the 

screening’s expert Dr. Heather Martian from BioScreening Technology Group 

(BSTG) at the University of Leeds (Martin et al., 2014). A nuclear pHH3 Ser10 

staining intensity cut–off unit for cells treated with 20µM of CC or 0.2% DMSO 

negative control was initially examined and optimised using a range of different 

pHH3 Ser10 intensity cut-offs units (For example; 600, 900, 1000 and 1200 units). 

The optimal cut-off staining intensity unit of pHH3 Ser10 in the nucleus was 

selected based upon the nuclear pHH3 Ser10 intensity for 0.2% DMSO negative 

controls cells, which was between 600-900 units. An increase in the number of 

pHH3 Ser10 expressing cells in the CC wells compared to the DMSO negative 

control wells constituted a CC hit for increasing mitotic cells.  

         SMSs were performed in duplicate. Plates in the first repeat were stained with 

the secondary antibody Alex Fluor® 549 Red and mitotic cells were identified with 

pHH3 Ser10 with an intensity cut-off of greater than 600 units. However, an 

intensity cut-off of pHH3 Ser10 at 900 units was used to analyse the second repeat 

plates that were stained with Alex Fluor® 488 Green. The percentage of pHH3 

Ser10 was the key parameter used to define whether CC could induce a high-level 

of mitotic cells or increase cell proliferation.  
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2.2.6 Statistical analysis 

         The statistical analysis was executed for each plate individually using Z score 

and robust Z score calculation methods (Zhang, 2011; Goktug et al., 2013). The Z 

score is the number of standard deviations (SD) away from the mean of negative 

control (DMSO). The robust Z score was used as an alternative hit identification 

method and this method statistically supported selected CC hits previously revealed 

using the Z score method. The Z score and robust Z score formulas are similar, 

only the mean and standard deviation (SD) in Z score are replaced with median 

and median absolute deviation (MAD) in robust Z score.  

 

The formula of Z score = (%PCC (CC)– mean %PCC (DMSO)) 

                                                   (SD) %PCC (DMSO) 

The formula of Robust Z score = (%PCC (CC)– median %PCC (DMSO)) 

                                                              MAD %PCC (DMSO) 

         The Z score or Robust Z score cut-off value for hits identification was as 

follows; ≥ 2 for CC that increased %PCC or increased %mitotic cells (pHH3 Ser10) 

whereas ≤ -2 for CC hits decreased cell number. 

 

2.3 High- throughput partial genome siRNA screen for 
genes inducing PCC  

         The high-throughput human partial genome siRNA screen for genes that 

induced PCC in U2OS osteosarcoma cells, was developed and performed by 

BSTG, University of Leeds for the Microcephaly and Cancer Group. The siRNA 

screen contained 4 different human sub-libraries, Protein Kinase (hPK) (9 plates), 

Ubiquitin (hUbq) (9 plates), Protease (6 plates) and Drug Targets (60 plates)). Each 

siRNA library, consisted of Dharmacon siGenome SMARTpool siRNAs (4 siRNAs 

targeting a single gene per well), and was performed in duplicate in 96-well plate 

format.  

 

 

 



- 59 - 
 

 

siRNA resuspension 

         The hPK and hUbq siRNA sub-libraries were ultlised in this PhD study. 

According to BSTG’s siRNA screen development protocol, theses two siRNA sub-

libraries were individually performed as follows (Adams et al., 2014); A Dharmacon 

siGenome SMARTpool siRNAs (Thermo Fisher Scientific, Pittsburgh, PA) were 

provided as a lyophilized pellet in a 96-well plate format. The plates were 

centrifuged for 1min to collect the pellet at the bottom of each well. The pellets were 

resuspended in 50µl 1x siRNA buffer (Thermo Fisher Scientific) to give a final 

working concentration of 2µM, then the siRNA solution was mixed on a plate shaker 

for 90mins at RT.  

         The siGenome pooled NT-siRNA controls and pooled PLK1 siRNA (a positive 

transfection control which induces cell death) (Dharmacon) (Appendix 4) were 

reconstituted with 1x siRNA buffer to a final stock concentration 20µM according to 

Dharmacon™ recommended basic siRNA’s protocol and then diluted to a 2µM 

working concentration. Human MCPH1/BRIT1 siRNA (stock 40µM) was diluted to a 

working concentration of 2µM using 1x siRNA buffer and was used as a positive 

control for evaluating the level of PCC. The resuspended siRNA plates and controls 

were stored at -20 oC. 

 

siRNA reverse transfection 

         Each negative or positive control was added to columns 1 and 12 and siRNA 

sub-libraries into Columns 2-11 in 96-well plates (View Plates; PerkinElmer) (plate 

map; Appendix 4). The reverse transfection of siRNA sub-libraries and controls was 

performed at a final concentration of 50nM.       

         Then, Fluid-X XRD-384 dispenser (at 300 rpm) was used to add the 

transfection reagent mixture containing 17.5µl Opti-MEM-1 (1x) low serum media 

(Invitrogen) that was mixed with 0.1µl Lipofectamine RNAiMAX (Invitrogen) per 

well. Plates were covered and transferred to the laboratory rotary shaker allowing 

the transfection solution to be mixed with siRNA at RT for 20min. Next, 80µl U2OS 

cell suspension at a density of 7.5x104 cells /ml in DMEM growth medium 

supplemented with10% FCS, that was maintained under constant magnetic stirring, 

was aliquoted into each well, using a Fluid-X XRD-384 dispenser at 300 rpm. To 

reduce the edge effects the plates were incubated at RT for 1hr in a laminar flow 

cell culture hood then transferred to a 37°C in 5% CO2 incubator for 72hr. Post 

incubation, the cells were fixed with methanol, blocked with 1% non-fat milk and 
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stained with DAPI to detect the nuclei or pHH3 Ser10 as a marker of mitotic cell as 

previously described in (Section 2.2.3). The plate was scanned and imaged using 

Operetta and analysed using Columbus software as previously described in 

(Sections 2.2.4 and 2.2.5). 

 

2.3.1 Image analysis siRNA screen controls 

Images of the positive and negative controls in each plate were manually visualised 

and the previously described Acapella software PCC analysis protocol (Sections 

2.2.4 and 2.2.5) used to assess the efficiency of MCPH1/BRIT1 siRNA knockdown 

to induce a clear PCC phenotype. Plates were cleaned prior to imaging to ensure 

artefact effects from dust did not interfere with image acquisition or analysis. Fifteen 

fields of view per well were imaged and analysed.  

 

2.3.2 Statistical analysis of PCC inducer hPK and hUbq siRNAs 
libraries for genes which induced PCC   

       The Z score calculation, with a cut off value of ≥ 2, was used on each plate of 

PCC inducer hPK or Ubq siRNA sub-libraries to identify potential genes which 

induced PCC. The flowchart (Figure 2.2), below, briefly describes the statistical 

methodology that was used to analysis the hPK siRNA library. As described in 

Section 2.3 and based on Adams et al., (2013), each siRNA library screen was 

performed in duplicate (hPK siRNA library contains 9 plates). The positive control 

(MCPH1/BRIT1 siRNA) for each plate for both duplicates was visually inspected for 

the PCC phenotype cells using the Columbus software analysis system as 

previously described in (Sections 2.2.4 and 2.2.5).  

         Initially, the negative control (NT-siRNA) was used as a reference for 

calculating the Z score (%PCC) or (cell number) in duplicate plates. Hits were 

scored if a Z score (%PCC) of ≥ 2 was achieved in both replicates plates. The Z 

score (cell number) of ≤ -2 was used as cut-off for identifying of siRNAs that 

reduced cell number. For each siRNA hit, the average (Standard deviation (SD)) for 

Z score of %PCC from both replicates was calculated. Also, average (SD)) for Z 

score of cell number from both replicates was calculated so this could minimize the 

variations of Z score values between the two replicates. A large numbers of 

potential inducer hPK siRNAs hits were generated. 
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         PCC phenotype is a distinguish marker of downregulation of the cellular 

function of MCPH1/BRIT1 (Trimborn et al., 2004). In addition, the main aim of the 

existing siRNAs screens was to identify genes which induced PCC. To minimise 

identification of the false negative hits as a consequence of using negative controls 

for Z score analysis, we attempted to use more stringent control, which was the 

positive MCPH1/BRIT1 siRNA control, for Z score analysis (%PCC) of each plate 

individually in the hPK siRNA screen in both replicates. Consequently, the Z score 

analysis unexpectedly revealed one potential siRNA hit.  

         Considerable plate-to-plate variation was observed for the %PCC and/or cell 

number in the positive control (MCPH1/BRIT1 siRNA) on some replica plates. 

Therefore, calculation of the Z score based on the total average of %PCC of 

MCPH1/BRIT1 siRNA in each batch of plates (known as Z score batch analysis) 

was performed. The following calculations for positive control were first executed to 

achieve the Z score batch analysis. For each individual batch of plates, where each 

plate contained two positive controls MCPH1/BRIT1 siRNA, the average %PCC 

and cell number of positive controls per plate was calculated. Then, the total 

average of these individual values (average %PCC/ or cell number) in each plate 

were also calculated resulting in one value for batch 1 and another for batch 2. The 

batch analysis Z score using an average %PCC of the positive control 

MCPH1/BRIT1 siRNA of each batch individually was used to identify hPK siRNAs 

hits that induced PCC. Again, the analysis identified a similar siRNA hits that was 

previously observed during the Z score analysis of hPK siRNA screen using 

positive control in each plate individually. 

         Next, the siRNA hit list, that was initially generated by using the Z score 

analysis (negative NT-siRNA control) method, to select the top siRNA hits that 

showed a significant Z score and higher %PCC for hits validation (Chapter 4; 

Section 4.2.1.4; Table 4.1). The PCC induced siRNAs hits generated from the hPK 

library based on Z score analysis (%PCC of negative control NT-siRNA), were 

evaluated using Columbus software analysis as described in the flowchart above 

(Figure 2.2; point 6). Further experimental siRNA hit validation was carried out as 

detailed below in (Section 2.3.3).  

         Similarly, the PCC inducer human Ubiquitin (Ubq) siRNA library was analysed 

for both %PCC and cell number using Z score based on the %PCC and cell 

number of the negative control NT-siRNA. A list of potential PCC inducer hUbq 

siRNAs hits was generated (Chapter 5; Section 5.2.1.3; Table 5.1). 
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Figure 2.2. Flowchart describing the process of statistical analysis used to analyse the PCC inducer hPK siRNAs library for hits which induced PCC. 
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2.3.3 siRNA hits validation using four individual ON-TARGET 
plus siRNAs 

         The validation of the selected potential PCC inducer hPK siRNAs or hUbq 

siRNA hits was performed using Dharmacon ON-TARGET plus siRNAs (Appendix 

3.1 and 3.2).  

 

2.3.3.1 Dharmacon ON-TARGET plus siRNA resuspension 

         For small scale reverse transfection of candidate siRNAs, a Dharmacon ON-

TARGET plus siRNA set comprising of a set of four individual siRNAs to target an 

individual gene, was provided as a lyophilized pellet in a 96-well plate format and 

was resuspended with 1x siRNA buffer to a working concentration of 2µM as 

previously described above in Section 2.3. Control siRNAs including Dharmacon 

ON-TARGET plus single NT-siRNA siGenome SMARTpool PLK1, MCPH1/BRIT1 

siRNA (stock 40µM) were reconstituted with 1x siRNA buffer to a concentration of 

2µM as previously described above in Section 2.3. 

         The reverse transfection of hPK or Ubq siRNA hits and controls was 

performed at a final concentration of 50nM as previously described in Section 2.3; 

or 100nM, which will be explained below.  

 

2.3.3.2 The reverse siRNA transfection procedures for siRNA hits 
validation 

The four ON-TARGET plus siRNAs or controls (5µl) targeting each selected hit 

alongside the NT-siRNA controls were individually aliquoted into the desired well. 

Then, for each well, the transfection reagent mixture containing15µl Opti-MEM-1 

(1x) low serum media (Invitrogen) was mixed with 0.1µl Lipofectamine RNAiMAX 

(Invitrogen), incubated at RT for 5min and the transfection reagent mix was added 

to the desired well. Next, the plate was covered and transferred to the laboratory 

rotary shaker allowing the transfection solution to be mixed with siRNA for 20min at 

RT. Then, 80µl U2OS cells, at a density of 7.5x104 cells /ml in DMEM growth 

medium supplemented with only 10% FCS, was aliquoted into each well. The plate 

was incubated at RT for 1hr in a laminar flow cell culture hood then transferred to a 

37°C in 5% CO2 incubator for 72hr.Then, cells fixation and DAPI or pHH3 Ser10 

staining and imaging analysis were previously described in Sections 2.2.3, 2.2.4 

and 2.2.5. 
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2.3.4 Conformation of hit siRNA and control siRNA knockdown 
by western blotting (WB) 

         For large scale reverse transfection of candidate siRNAs, the four ON-

TARGET plus siRNA (5 nmol) (Dharmacon) and ON-TARGET plus™ control NT-

siRNA (5 nmol) (Dharmacon) were diluted to the recommended final concentration 

of 20µM using 1X siRNA buffer following the Dharmacon™ recommended basic 

siRNA Resuspension’s protocol. The reverse transfection candidate hit or control 

siRNA knockdown was performed in a 6 wells plate at a final concentration of 50nM 

siRNA. Each individual hit siRNA/or control siRNA (7.5µl) was aliquoted in triplicate. 

A transfection mixture of 3µl Lipofectamine RNAIMAX and 525µl Opti-MEM-1 (1x) 

low serum media was mixed and incubated at RT for 5 min. The transfection 

solution was then added to candidate hit siRNA or control siRNA and incubated at 

RT for 20 min. Then, 2.4ml U2OS cells, at a density of 7.5x104 cells /ml in DMEM 

growth medium supplemented with 10% FCS, were seeded into each well. The 

plates were incubated at RT for 1hr in a cell culture hood then transferred to a 37°C 

in 5% CO2 incubator for 72hrs.  

         After the 72hr incubation, a set of 15ml falcon tubes were labelled based on 

the hit siRNA or control siRNA used in the experiment then they were placed in ice 

in preparation for cell lysate collection. The growth medium was removed from 

wells, and cells washed twice with 3ml fresh ice cold PBS, the first wash removed 

any residual growth medium while the attached cells were scraped off the well 

using a sterile cell-scraper into the second PBS solution which was then transferred 

to the corresponding flacon tube. The tubes were centrifuged at 450g for 10min at 

4oC. The supernatant was removed and the flacon tubes within cell pellet were 

either stored in -80 oC freezers to be used later or were kept in ice prior to protein or 

RNA extraction.  

 

2.3.4.1 Protein quantification by western blotting  

         Protein extraction reagents such as the Radio Immunoprecipitation Assay 

buffer (RIPA) (Appendix 6.1), Phenylmethanesulfonyl fluoride (PMSF/ 1mg/ml stock 

in isoproponal) and sodium orthanovanadate (1:100 of 100mM stock) were 

prepared by Dr. Victoria Cookson or Dr. Sandra Bell. 1ml of RIPA buffer was mixed 

with 10µl (100mM stock) sodium orthanovanadate,1:50 (20µl) protease inhibitors 

cocktail tablets (Roche Diagnostics GmbH) and 100µl PMSF.  The cell pellet was 

resuspended in 50µl to 100µl RIPA lysis buffer and left on ice for 30min. Next, the 
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cell lysate samples were transferred to Eppendorf tubes and were centrifuged at 

15000g for 10min at 4oC to pellet the cell debris. The supernatant was transferred 

to a new Eppendorf tube and the sample tubes were stored at -20oC and an aliquot 

removed for determination of protein quantification by a Bradford protein assay.  

2.3.4.1.1 Bradford protein assay 

         To measure the protein concentration in the samples, a Bradford protein 

assay (DC™ protein assay, Bio-Rad) was performed. The extracted protein 

samples were diluted 1:10 in ddH2O water. A standard BSA protein curve was 

prepared as follows. Firstly, 300ml RIPA buffer was diluted to a 10% concentration 

in 3ml ddH2O. Secondly, 20mg/ml bovine serum albumin (BSA) buffer was 

prepared by dissolving 0.2 g BSA (SIGMA) in 1ml ddH2O, then, the BSA solution 

was diluted at 1:10 in 10% RIPA buffer to final concentration 2mg/ml. Thirdly, a 

standard dilution series was prepared (0, 0.1, 0.25, 0.5, 0.8, 1, 1.5 to 2µg/µl) from 

the 2mg/ml BSA and 10% RIPA buffer solutions (Appendix 6.2).  

         In a 96 well plate, controls, BSA standards and protein sample were set up in 

triplicate. 5µl each of the 10% RIPA buffer blank control, each BSA standard curve 

dilution and extracted protein sample was added to the plate.   

         Next, 20µl Bio-Rad DC™ Protein assay Reagent S (Bio-Rad laboratories) was 

mixed with Bio-Rad Dc Protein assay Reagent A and 25µl of mixture was added 

onto each well. A, 200µl Bio-Rad DC™ Protein assay Reagent B was added per 

well. The plate was then mixed on the laboratory rotary shaker at RT for 15min and 

loaded into the microplate reader Titertek® (Thermo ELECTRON COPERATION/ 

ORGINAL Multiskan EX/ Scientific Laboratory Supplier). The Ascent software was 

used to read the absorbance at 690nm.  

         Microsoft Excel was used to determine the total concentration of protein in 

each sample. Readings from the triplicate BSA standards for each protein 

concentration were averaged and a scatter chart plotted (concentration versus 

corresponding absorbance reading). Then, the trendline equation result (y=mx+c) 

was displayed on a chart. The triplicate absorbance readings of each sample were 

averaged and the total protein concentration (µg/µl) was calculated from the 

standard BSA curve and multiplied by 10 (as the protein sample dilution was 1:10). 

         Total Protein concentration (µg/µl)  = Average reading of sample absorbance 

÷ the resulting equation y value of BSA standard ×10.  

 

 



- 66 - 
 

 

2.3.4.1.2 Gel electrophoresis 

         Gel Electrophoresis and protein transfer were performed in an Invitrogen 

Surelock gel tank and associated blotting module. For sample preparation the 

selected protein sample concentration (typically 10-100µg) was diluted to a final 

volume of 37µl in ddH2O and combined with 1.8µl 50mM DTT (1:20 from 1M stock) 

(Sigma) and 9µl NuPAGE® LDS sample buffer (4x) (Novex by Life Technologies). 

The sample was placed in a hot block at 95oC for 10mins to denature protein 

complexes and was centrifuged for 10 sec to collect the sample. The NuPAGE 4-

12% Bis-Tris gel (Novex by Life Technologies) was placed in the gel tank after 

removing white tape at the bottom of the cassette. Then, 25ml of NuPAGE® MES 

running buffer (20x stock) (Novex by Life Technologies) (suitable to aid the 

separation of 3.5 to 160 KDa proteins in conjunction with the 4-12% gel) was 

diluted to a final volume of 500ml in dH2O and was transferred to fill up the top of 

the middle compartment of the gel tank. The combs were gently removed from the 

gel and the wells washed with running buffer using 1ml pipette to ensure removal of 

residual gel at the top of the well and to simplify movement of the sample into the 

well. The samples were loaded into the well alongside each other with one protein 

molecular weight marker lane containing 7µl of Biorad precision Plus Protein™ 

Dual Colour standard. The gel was electrophoresised at 150 volts (V) at RT for 

90min until the dye front moved toward the bottom of the gel. 

         For protein transfer onto PVDF membrane the Surelock Transfer module was 

set up as per manufacturers recommendation. 25ml (20x stock) of NuPAGE® 

transfer buffer  (Invitrogen) containing 10% methanol (v/v) was made up to 500ml in 

dH2O. Six sponges were washed with cold tap water to remove any bubbles then 

were soaked in the 1x transfer buffer. For membrane activation, the two PVDF 

membranes (Novex by Life Technologies) were first placed in methanol for 30sec 

then rinsed in dH2O for 5min using a rotary rocker and finally soaked in 1x transfer 

buffer until ready to use.  The two blotting papers (Novex by Life Technologies) 

were retained in the transfer buffer for later use when the gel is ready for 

assembling the blotting sandwich step. 

         The running buffer in the gel tank was poured away and the tank was rinsed 

with tap water. The gel was removed gently from the gel cassette placing the gel 

knife around the edge of the cassette allowing separation of both halves. Then, any 

excess and unwanted gel at the top and the bottom were removed. The gel was 

then placed into transfer buffer.   
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         To assemble the blotting sandwich three wet sponges were placed into the 

cathode core. Then, the first blotting paper was added followed by the first PVDF 

membrane. The gel was gently placed on top of the blotting membrane. Next, the 

second PVDF membrane and the second blotting paper were respectively placed 

on top of the gel. The rest of the sponges were added. At each stage of the 

assembly, air bubbles were removed using a wet roller the sandwich to remove any 

air bubbles.  The anode lid was carefully aligned onto the top of the sandwich and 

the blotting sandwich compressed together into the cathode core box and 

transferred to the gel tank. The blot module was filled with transfer buffer and iced 

water added to the gel tank surrounding the blotter to prevent overheating and 

hence protein degradation during the transfer process. The proteins transfer was 

performed for 1.5-2hrs at 30V.  

         The blotting sandwich was disassembled and complete transfer of the marker 

was checked as a reference for proper transfer. The membrane was blocked for 

30min in 50ml of 10% (w/v) non-fat milk solution in TBST (Tris buffer saline 

(TBS/10x stock) (Alfa Aesar) in 0.1% (v/v) Tween-20 (G-Bioscience)). Then, the 

blotting membrane was incubated overnight at 4oC with primary antibody (Table 

2.3) diluted in 5ml of 5% non-fat milk.  

 

Table 2.3. Type, final concentration and company supplier of antibodies utilised to 
detect the target protein during western blot. 

 

Antibody Type Final 
concentration 

Company 
supplier 

Anti -FBXO5/EMI1 purified 
rabbit antibody Immunogen 
affinity 0.6mg/ml Primary   1:200 

Novus Biologicals,  
NBP-84850, Lot: 
A89841 

Monoclonal Anti-β-Actin, 
mouse antibody (clone AC-15 
ascites fluid)  

Primary  1:5000 SIGMA Life 
Science, A5441  

Anti-MCPH1/BRIT1 rabbit 
Polyclonal antibody 100mg, 
0.8mg/ml,  

Primary  1:1000 Abcam, ab2612 

The Parkin (Prk8); mouse 
monoclonal ab Primary  1:1000 Cell Signalling 

Technology, 4211 

Polyclonal Goat Anti-Rabbit 
immunoglobulins/HRP 0.30g/L Secondary 1:5000 DAKO Cytomation 

Polyclonal Rabbit Anti-mouse 
immunoglobulins/HRP 1.3g/L 

Secondary 1:5000 DAKO 
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         The blotting membrane was washed 3 times with TBST/Tween 20 each for 

15mins. Next, the membrane was incubated for 1hr at RT in 1:5000 horseradish 

peroxidase HRP conjugated secondary antibody (DAKO, Glostrup, Denmark), 

diluted in 5% (w/v) non-fat milk in TBST/Tween 20 (Table 2.2). Again, the blotting 

membrane was rinsed into TBST 3 times each for 15mins. The SuperSignal® West 

Pico/Femto Chemiluminescent Substrate (Thermo Scientific) was then equally 

distributed across the membrane enabling protein detection and visualization on 

Chemiluminescence analyser (Biorad) using Quantity One® software (Bio-Rad). 

 

2.3.4.2 mRNA determination using quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) 

To perform RNA extraction or the complementary DNA (cDNA) synthesis, all the 

laboratory equipments used during qRT-PCR was sprayed with 70% (v/v) ethanol 

to reduce RNase contamination and chemical reagents were RNase free to prevent 

RNA degradation. 

 

2.3.4.2.1 RNA extraction and quantification 

         After the large scale siRNA reverse transfection was performed (Section 

2.3.4), cells were trypsinised and collected by centrifugation. Total RNA extraction 

from the cell pellets was perform using the RNeasy® Plus Mini Kit (QIAGEN, 

Valencia, CA) following the manufacturer’s instructions.  

         The extracted RNA was quantified using a Nanodrop spectrophotometer 

instrument (Labtech International) to determine the RNA concentration per sample 

in ng/µl. The pure absorbance RNA was assessed using a ratio of absorbance 

260/280 nm and ratio of about 2 was generally used as a reference for pure RNA.  

 

2.3.4.2.2 cDNA synthesis 

         The hot block and water bath were heated to 65oC and 50oC, respectively. 9µl 

of the following mixture was prepared for each sample: 1µl random hexamers 

(50µM, 5nmole stock) (Roche Applied Biosystem); 1µl of 10mM stock 

deoxyribonucleotides (dNTPs), which were a set of 4 dNTPs, where 10µl of 100mM 

stock per nucleotide dC, dG, dA, dT (Smart Molecular Solutions, BIORON GmbH) 
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was mixed with 60µl molecular biology grade water (Mol.Bio.H2O)); 7µl 

Mol.Bio.H2O.  

         Then, 500ng-1µg RNA in 5µl of (Mol.Bio.H2O) was prepared and added to the 

mixture. The sample was heated at 65oC for 5mins, and then placed on ice for 

2mins and quickly centrifuged using bench top centrifuge for 30sec. The hot block 

temperature was increased to 70oC as a preparation step for later use. Next, 6µl of 

the following mixture was added to each sample: 4µl of 1st stand buffer (5x stock) 

(Invitrogen by Life Technologies); 1µl of dithiothreitol DTT (0.1M stock) (Invitrogen 

by Life Technologies); 1µl superscript® III Revise Transcriptase (200U/µl) 

(Invitrogen by Life Technologies). Then, the sample was incubated at RT for 5mins, 

heated first in the water bath for 50mins, then transferred to the hot block at 70oC 

for 15mins and placed on ice for 2mins and finally centrifuged for 30sec before the 

cDNA sample was stored at -20 oC until further use. 

 

2.3.4.2.3 Primer optimization for qRT-PCR performance of four on target plus 
siRNAs  

         All the reverse and forward primers used in this project are listed in Table 2.4, 

were designed by Dr. Victoria Cookson and purchased from SIGMA. They were 

individually diluted with Mol.Bio.H2O to a 100µM final stock concentration and the 

diluted forward and reverse primers combined and diluted to 10µM as a working 

concentration by adding 10µl of each primer to 80µl Mol.Bio.H2O, giving a final 

volume of 100µl.  

Table 2.4. Showing the qRT-PCR primers sequences used in this project for 
assessment of siRNA hit knockdown.  

 

         Next, to evaluate the mRNA level of target gene, 10µM- working 

concentration of primer mixture was used to optimise the primer concentration for 

RT-PCR using a range of concentrations (50/50nM, 100/100nM and 300/300nM), 

which will be detailed below. The qRT-PCR workstation was prepared with all real 

time PCR requirements consumables (96-well plat, e-Eppendorf tubes, plate seal 

Primer name Sequence 

FBOX5/Emi1 Forward 5′- ACCAAGTTATCCAATCAAGGTGATC 

FBOX5/Emi1 Reverse 5′-TTGAGGCTTTCGTTCTTTTTCAAT 

36B4 Forward 5′-ACATGCTCAACATCTCCC 

36B4 Reverse 5′-TTCAAGGTTAGCTGGGG 
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and nuclease free water (QIAGEN) that which were decontaminated under 

UltraViolet light (UV) for 15mins.  

         In order to evaluate the mRNA level of the target gene, forward/reverse 

primer concentration for qRT-PCR were optimised using a range of concentrations 

(50/50nM, 100/100nM and 300/300nM). The volume of qRT-PCR components for 

each primer concentration are described in (Table 2.5). For each concentration of 

primer, 23µl of the PCR/primer mix was added to four wells. The cDNA from 

untreated cells was diluted to 1:10 in Mol.Bio.H2O and 2µl cDNA was added to two 

wells while the rest remained without cDNA.  

 

Table 2.5. Optimisation of a primer of target gene for RT-PCR.  
Description for the composition of the qRT-PCR reaction per well including the SYBR Green 
PCR master mix with different primer concentrations. 

 

          Meanwhile, to identify the amplification efficiency of target gene target primers 

and to determine the difference in gene expression level, a standard curve for each 

target gene primer or primer control (36B4) at concentration of 100/100nM was 

prepared using the following serial dilution of cDNA from untreated cells ranging 

from neat, 1:5, 1:10, 1:20 to 1:40. Then, 23µl (100/100nM) of each individual 

master mix primer was added into a 96-well plate in duplicate and mixed with 2µl 

cDNA of each dilution separately. Two replica wells per primer containing 2µl 

nuclease free water were used as a no template control (NTC).  

         The plate was carefully sealed especially around the edge to prevent 

evaporation and centrifuged at 2000rpm for 1min, then it was loaded into a 7500-

real time machine. 7500HT software was used to select the detector (primers) and 

the task (sample dilution (input value/ or unknown)) per well in the plate map. Using 

the instrument tab (Reps), the cycle number was increased to 50, the sample 

volume to 25µl, the tick on 9600 emulation box was removed, dissociation curve 

was added and finally the machine was run after the plate document was saved. 

Primer concentration/ 
master mix reagents 

SYBR Green PCR  

Master Mix 

Primers Mol.Bio.H2O 

50/50nM (per well) 12.5µl 0.25µl 10.25µl 

100/100nM 12.5µl 0.5µl 10µl 

300/300nM 12.5µl 1.5µl 9µl 

100/100 Housekeeping 
gene primer 36B4 

(control) 

12.5µl 0.5µl 10µl 
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The cycle threshold (Ct) value of each sample was identified using the 7500HT 

software (Applied Biosystems®). All primer concentrations presented a precise Ct 

value (about 23-25) and 100/100nm was the optimal primer concentration that was 

selected for future experiments.  

         qRT-PCRs were performed in duplicate. To determine the transfection 

efficiency of individual ON-TARGET plus siRNAs targeting an individual gene, 

compared to the NT-siRNA or untransfected cells controls, qRT-PCRs were 

performed using the SYBR® Green Master Mix (Applied Biosystem by life 

Technologies) containing a 100/100nM primer concentration and 1:10 cDNA 

dilution. cDNA from each individual siRNA or control sample was added to four 

wells, two of which contained the reagents including the target gene primer while 

the other two contained the control primer HK 36B4. The standard curve dilution 

was performed, as previously specified (Section 2.3.4.2.3) to assess the 

amplification efficacy of the primers. The fold change level of the gene among 4 

siRNAs/controls was calculated. The analysis results were exported into Microsoft 

excel where the relative quantitation of a target gene expression in each sample 

(siRNAs/controls) were normalized versus the control HK 36B4 gene.  

 

2.4 Combining two (hPK) siRNAs screens –a PCC inducer 
and PCC modifier screen- to identify synthetically lethal 
siRNAs  

         Two complementary human Protein Kinase library siRNA screens (PCC 

inducer and modifier) provided a powerful data set that allows identification of 

Synthetically Lethal (SL) siRNAs that cause cell death in combination with 

MCPH1/BRIT1 knockdown.  The MCPH1/BRIT1 PCC inducer and PCC modifier 

siRNA screens were performed by BSTG for the Microcephaly and Cancer Group. 

The PCC inducer hPK siRNA screen is described in (Section 2.3). The PCC 

modifier hPK siRNA screen was performed as a double siRNA knockdown to 

identify genes that kill or modify the number of PCC cells in MCPH1/BRIT1 deficient 

cell populations. For this screen, the reverse transfection (RT) of 50nM hPK library 

siRNAs was followed 24hr later by a forward transfection (FT) of 100nm 

MCPH1/BRIT1 siRNA. The plate was then incubated for a further 48hr at 37oC, 5% 

CO2 (plate map; Appendix 5). 
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         Combining the two different versions of hPK siRNA screens to enhance our 

understanding of the function of MCPH1/BRIT1 either in its presence (in this case 

PCC inducer screen) or in its absence (PCC modifier screen) would enrich our 

analysis and facilitate the determination of genes involved in the regulation of 

chromosome condensation, or that reduce PCC levels or inhibit apoptosis in 

MCPH1/BRIT1 deficient cells. 

 

2.4.1 Control selection in modifier and inducer PCC screens for 
identification of SL siRNA hits 

         The hPK siRNA modifier and inducer PCC screens were utilized to identify 

the molecular components that could interact with MCPH1/BRIT1 to regulate 

different cellular phenotypes, such as chromosome condensation, mitotic entry and 

apoptosis.  

         The statistical analysis performed on PCC inducer and modifier hPK siRNAs 

screens was aimed at identifying the effect of each SMARTpool siRNA from hPK 

sub-library on the whole cell number. An SL siRNA hit has to show a reliable 

reduction on cell viability in the absence of MCPH1/BRIT1 in the PCC modifier hPK 

screen and has no lethal effect in the presence of functional MCPH1/BRIT1 in the 

PCC inducer hPK screen.  

        To identify SL siRNA hits in the absence of MCPH1/BRIT1, a negative control 

double transfection of NT-siRNA (RT) and MCPH1/BRIT1 siRNA (FT) was used as 

a reference to measure the effect of hPKs siRNA in combination with 

MCPH1/BRIT1 siRNA on cell viability.  The control was prepared as follows: the RT 

of NT-siRNA (50nM) was followed 24hr later by a FT of MCPH1/BRIT1 siRNA 

(100nM). Whereas the single knockdown for NT-siRNA (RT of 50nM) was used as 

a negative control to identify the effect of hPKs siRNA in the presence of functional 

MCPH1/BRIT1 on cell viability.  
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2.4.1.1 Statistical analysis of modifier and inducer PCC in hPK siRNA for SL siRNA hits  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.3. The flowchart presenting the statistical method utilized to analyse the two hPK siRNA screens (PCC inducer and PCC modifier) for 
identifying synthetic lethality genes in MCPH1/BRIT1 deficient cells. 
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         Figure 2.3 describes the statistical methodology used to identify SL siRNA 

hits. Briefly, analysing PCC siRNAs inducer and modifier screens were dependent 

on the effect of each SMARTpool siRNA on the whole cell number. As previously 

described each hPK siRNA screen (PCC inducer/ or PCC modifier) was performed 

in replica and was analysed individually. For both replicates, the influence of each 

individual siRNA on cell viability was calculated as follows, the mean of two replica 

wells transfected with siRNA was divided by the mean of eight replica wells 

transfected with the control, either NT-siRNA+MCPH1/BRIT1 siRNA (FT) that was 

used as a negative control in PCC modifier screens or NT-siRNA that was used as 

a negative control in PCC inducer screen. Then, the cell viability values of both 

replicates produced from this calculation were averaged and expressed as a 

percentage (Turner et al., 2008). Next, the difference of % cell viability of each 

siRNA in PCC inducer and modifier screens was calculated by subtracting the % 

average cell viability of each siRNA in PCC modifier screen with the average % of 

cell viability of the identical siRNA in PCC inducer screen (Figure 2.3). The cut off 

percentage (approximately ≤ 61% was chosen as the significant effect of siRNA 

from PCC modifier screen on cell viability compared to the matched siRNA in PCC 

inducer screen. A list of SL siRNA hits was generated and 5 siRNA hits were 

validated as described below.  

 

2.4.1.2 SL hPK siRNA hit validation using ON-TARGET plus four 

individual siRNAs 

Briefly, the analysis of the hPK screen for SL was designed to assess the impact of 

each siRNA on cell number, compared to the double transfection with the MCPH1/ 

BRIT1 siRNA (RT siRNA hit followed by a FT of MCPH1/BRIT1 siRNA) or with NT-

siRNA (RT siRNA hit followed by a FT of NT-siRNA). To identify the SL siRNAs in 

which single RT siRNA has no significant effect on cell number, however, in 

combination with MCPH1/BRIT1 siRNA (forward double transfection) induces a 

high level of apoptosis compared to forward transfection with NT-siRNA that 

showed no effect on cell number. 

 

2.4.1.2.1 A brief description of principle components for validation of SL 

siRNA hits  

         First, the following controls were plated individually at two different final 

concentrations 25nM and 50nM into a 96-well plate. The RT transfection of hPLK1 
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siRNA was plated in duplicate and used as a positive control for siRNA transfection 

efficacy based on reduction in cell number.  

         The RT of negative control NT-siRNA was individually aliquoted into six wells 

for each concentration (25nM or 50nM). Two of which were selected for single 

knockdown (RT 25nM or 50nM) and used to identify the effect of hPKs siRNA in the 

presence of functional MCPH1/BRIT1 on cell viability. The other wells containing 

NT-siRNA (RT/ 25nM or 50nM) was followed 24hr later by a FT of MCPH1/BRIT1 

siRNA (100nM) (n = 2 wells) or a FT of NT-siRNA (25nM or 50nM) (n = 2 wells). 

The double siRNA transfection of the negative controls NT- MCPH1/BRIT1 siRNA 

was used as a reference to measure the effect of hPKs siRNA on cell viability in 

MCPH1/BRIT1 deficient cells. The PCC induced by the controls NT- MCPH1/BRIT1 

siRNA was used as readout of MCPH1/BRIT1 siRNA transfection efficiency. Thus, 

the double siRNA transfection of the negative controls NT- NT siRNA was used to 

evaluate the transfection efficiency of the controls NT- MCPH1/BRIT1 siRNA on cell 

viability and induction of PCC. Also, RT of MCPH1/BRIT1 siRNA (100nM) was used 

as a positive control to induce PCC (Figure 2.4).  

         Second, each selected SL siRNA hits were validated using four individual ON-

TARGET plus siRNA using two final different concentrations 25nM and 50nM. The 

RT of SL siRNA hits or controls were performed in duplicate in a 96-well plate and 

the effect on cell number evaluated (Figure 2.4). Each SL siRNA hit (the four 

individual ON-TARGET plus siRNA) was plated in triplicate. Thus, a single RT for 

each SL siRNA hit (at 25nM or 50nM) was performed in three replicates. Then, 

after 24hr incubation, the first replicate of each SL siRNA hit (the four individual 

ON-TARGET plus siRNA) contained only the single RT (at 25nM or 50nM). The 

other two replicates containing a single RT (at 25nM or 50nM) followed by a double 

knockdown with either a FT of MCPH1/BRIT1 siRNA (100nM) or ON-TARGET plus 

NT siRNA control (at 25nM or 50nM) (Figure 2.4). 
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Figure 2.4. Flowchart describing the principal components for validation of SL siRNA hits.  
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2.4.1.2.2 Dharmacon ON-TARGET plus siRNA resuspension 

The procedures used to resuspend the Dharmacon ON-TARGET plus either the set 

of four individual siRNA for targeting one gene (0.1nmol) or NT-siRNA controls 

(5nmol) at a final working concentration of 2µM, which were previously described in 

(Section 2.3.3.1). 

 

2.4.1.2.3 RT and FT siRNA transfection procedures for validation of SL 
siRNA hits  

         The single RT for each SL siRNA hit (the four individual ON-TARGET plus 

siRNA) or NT-siRNA control was performed at two different final concentrations 

25nM or 50nM. A, 1.25µl or 2.5µl of SL siRNA hit or NT-control siRNA was 

aliquoted into relative wells, respectively. Alongside this the transfection mixture, 

(0.1µl Lipofectamine RNAIMAX transfection reagent mixed with 18.75µl or 17.5µl 

Opti-MEM-1 (1x) low –serum media, was added to each well containing 25nM or 

50nM SL siRNA hit or NT-siRNA control. Meaning that each well contains a total 

volume of 20µl siRNA solution complex including siRNA (SL siRNA hit or NT-siRNA 

control) and transfection mixture regent (Opti-MEM-1). The plate was incubated in 

the cell culture hood for 20min.  

         At the same time, RT of PLK1 siRNA was performed at 25nM and 50nM each 

in duplicate. Also, RT of MCPH1/BRIT1 siRNA solution was prepared to a final 

concentration of (100nM) using a previously described method in (Section 2.3.3.2) 

and 20µl was added in only 4 wells. Next, U2OS cells were resuspended at a 

density of 7.5x104 cells/ml in DMEM media supplemented with only 10%FCS then 

80µl cells were seeded into each well. The plate was placed in a 37 oC 5%CO2 

incubator. 

         After 24hr of incubation, the double knockdown was performed using FT of 

MCPH1/BRIT1 siRNA at 100nM final concentration or FT of ON-TARGET plus NT-

siRNA control at two different final concentrations of 25nM or 50nM.  

         First, for FT of MCPH1/BRIT1 siRNA, two separate mixtures were prepared; 

whereby, per well, the siRNA mix consisting of 0.25µl MCPH1/BRIT1 siRNA (40µM 

stock) mixed with 16.25µl Opti-MEM-1. The transfection reagent mix per well 

consisting of, 0.2µl Lipofectamine RNAIMAX transfection reagent mixed with 3.3µl 

Opti-MEM-1 and incubated for 5min at RT. Then, the siRNA solution was combined 

with a transfection reagent mix and incubated for 20min at RT. Then 20µl of the 

MCPH1/BRIT1 siRNA/ Lipofectamine transfection mixture was added to the desired 
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wells (to the replicate 2 of the four individual ON-TARGET plus siRNA at 25nM or 

50nM respectively) as described above in (Section 2.4.1.2.1).  

         Second, for FT of ON-TARGET plus NT-siRNA single control was prepared at 

a final concentration of 25nm and 50nm using 1.25µl or. 2.50µl siRNA in a final total 

volume of 18.75µl or 17.5µl Opti-MEM-1 respectively. The transfection reagent 

mixture was prepared per well: 0.1µl Lipofectamine RNAIMAX transfection reagent 

mixed with 18.75µl Opti-MEM-1 and incubated for 5min at RT. Then, Lipofectamine 

transfection complex was mixed with NT-siRNA incubated for 20mins at RT. Then 

added to the selected wells (to replicate 3 of the four individual ON-TARGET plus 

siRNA at 25nm and 50nm respectively) as described above in Section 2.4.1.2.1.  

         Finally, the plate was returned to 37oC 5% CO2 incubator for a 48hr 

incubation. The cells were fixed as previously described in (Section 2.2.3) with 

methanol, blocked with 10% non-fat milk and stained with DAPI using a Fluid-X 

XRD-384 dispenser. Then, the plate was scanned and analysed utilising Operetta 

and Columbus software, respectively as detailed in (Sections 2.2.4 and 2.2.5). 

Microsoft Excel was used to distinguish the potential SL hPK siRNA hit induced 

significant reduction in cell number only in combination with MCPH1/BRIT1 siRNA 

while the single siRNA transfection or siRNA transfection with NT-siRNA had no 

significant effect on cell number.   

 

2.5 Evaluation of the role of MCPH1/BRIT1 expression in 
breast cancer chemosensitivity 

2.5.1 Breast cancer patients’ selection and ethical approval   

 A cohort of primary and invasive breast carcinoma (BC) patients including 

inflammatory and locally advanced breast tumour sufferers who had been treated 

with neoadjuvant chemotherapy (NACT) at Leeds Teaching Hospital NHS Trust 

were selected using the NHS trust databases. All the NACT BC treated patients 

underwent a clinical follow up for tumour response evaluation. Selection criteria 

involved patients with invasive breast carcinoma treated with NACT from 2004-

2012 followed by breast surgery. Exclusion criteria were BC patients without NACT 

treatment and NACT treated BC patients without breast surgery operation or MRI 

follow up.  
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2.5.2 Chemotherapy regimens, clinical and pathological data 

         Invasive BC patients were treated with a variety of chemotherapies. FEC 

chemotherapy is a combination of Fluorouracil (5FU), Epirubicin and 

Cyclophosphamide, EC chemotherapy comprises of Epirubicin and 

Cyclophosphamide. EC or FEC combined with Taxotere (Docetaxel). ECF regimen 

consists of Epirubicin+Cisplatin+5-Fluorouracil. Combination of Taxotere 

(Docetaxel) and Carboplatin chemotherapies. The Neo-tAnGo trial has been given 

to patients as a combination of Epirubicin and Cyclophosphamide (EC) with 

Taxotere  

         All the clinical data including chemotherapy type and surgery type were 

available. The pathological data of matching pairs samples (pre- and post-

chemotherapy) provided included age; tumour size; tumour grade; tumour type; 

lymph node status; Nottingham Prognostic Index, ER, PR and HER2 status for pre-

chemotherapy treatment core biopsy; pathological response categorised as 

complete response CR), partial response (PR) and no response (NR).  

        Tumour cores from one hundred and thirty five pre and post chemotherapy BC 

cases were obtained from Dr. Abeer Shaaban (UK consultant specialist breast 

pathologist) at Leeds Teaching Hospital NHS Trust for immunohistochemical 

staining. After excluding unmatched pairs, core loss and un-scoreable cores, the 

MCPH1/BRIT1 cohort consisted of 96 cases, and the p53 study consisted of 92 

cases. BC pre-chemotherapy treatment tissue was sectioned as core biopsy. While 

the corresponding residual invasive carcinoma matched pair (post-chemotherapy 

treatment/ pathological partial response) were constructed into tissue microarrays 

(TMA). Ethical approval for this part of the project was obtained from the Local 

Research Ethics Committee at the Leeds Teaching Hospital (06/Q1206/180 and 

amendment 4) (Appendix 7). 

 

2.5.3 Optimization of anti-MCPH1/BRIT1 and anti-p53 antibodies 

Immunohistochemical staining protocols of MCPH1/BRIT1 and p53 antibodies were 

optimized in collaboration with Dr. Filomena Esteves (Leeds Institute of Cancer 

and Clinical Pathology, University of Leeds). Different dilutions of primary antibody, 

incubation times and antigen-retrieval methods were used for each antibody. For 

batch–batch variation, a control TMA BC slide was routinely included in each 

MCPH1/ BRIT1 or p53 IHC staining batch. 
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2.5.4 Immunohistochemistry (IHC) staining  

         For MCPH1/BRIT1 IHC staining, the slides were deparaffinised in Xylene, 

then transferred through graded ethanol to water. To block endogenous peroxidase 

activity, slides were placed in 0.3% (v/v) Hydrogen peroxide (H2O2) in methanol for 

20min. Antigen retrieval 10mM citric acid buffer (pH 6.0) (Appendix 6.3) was freshly 

prepared for each IHC run and heated in the microwave for 4min on high power. 

Slides were placed in this preheated solution and heated again in the microwave for 

5min on high power then washed with tap water. 100μl of a 1:10 mixture 10x 

Casein solution (Vector Labs) in dH2O was used to block non-specific staining. Both 

pre- and post -treatment BC slides and TMAs were incubated in three washes with 

100ml TBS (10x stock) in 0.01% (v/v) Tween 20 each for 5min and incubated in 

antibody diluent solution (Invitrogen) with 1:100 MCPH1/BRIT1 primary antibody 

(100mg, 0.8mg/ml, ab2612) (Abcam) overnight at 4°C. Slides were washed three 

times with TBS. Two drops of secondary antibody labelled polymer HRP anti-Rabbit 

(Dako) were added and slides incubated for 30min at RT. Slides were washed with 

TBS. 100μl of DAKO detection buffer mixture (1ml DAKO RealTM substrate buffer 

mixed with 1 drop DAKO RealTM DAB+ Chromgen) was added to the slides and the 

slides placed in a dark humidifying chamber for 10min. Slides were washed with tap 

water, counterstained with copper sulphate for 1min, rinsed in water for 1min, 

stained in Haematoxylin for 30sec, incubated in Scott’s tap water for 1min and 

running water for 1min. Sections were dehydrated in graded ethanol, then 

transferred to Xylene and mounted in DPX. The anti-MCPH1/BRIT1 antibody 

specificity had been validated previously for IHC and western blotting in different 

cancer tissues and cell lines (Xu et al., 2004; Alsiary et al., 2014). Our group, the 

Microcephaly and Cancer Group at the University of Leeds, confirmed the antibody 

specificity by MCPH1/BRIT1 siRNA western blotting in ovarian cancer cell lines 

(Adams et al., 2014). 

         For p53 IHC staining, pre-chemotherapy biopsy cores and post-chemotherapy 

TMAs of residual tumour were stained in collaboration with Mrs. Shivani Shukla at 

the University of Leeds. The procedures of dewaxing and rehydrating paraffin slides 

of p53 were performed as previously described above with MCPH1/ BRIT1 IHC 

staining. The following stages were altered. The H2O2 was diluted at 1:10 in dH2O. 

p53 antigens were retrieved in a routinely prepared antigen retrieval solution, 10mM 

citric acid buffer (pH 6.0), by microwave heat at 900W for 20min. The heated 

antigen retrieval solution containing slides was transferred into ice for 20min. The 

10x Casein solution was diluted 1:10 in antibody diluent solution. The primary 
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antibody p53 monoclonal mouse anti-human clone DO-7 (3.4g/L) (Leica Biosystem 

/ Novocastra™) was used as recommended previously (Varna et al., 2011; Axelrod 

et al., 2012), for both pre- and post -treatment BC slides and TMAs, at 1:50 dilution 

and overnight incubation. The slides were incubated in post primary (Leica 

Biosystem / Novocastra™) and secondary antibody mouse Novolink™ polymer 

HRP for 30mins and 1hr, respectively.  

 

2.5.5 IHC Scoring 

The breast cancer section images captured using an Olympus BX41 microscope at 

40X magnification and scored using CellP software (Olympus). TMAs slides were 

scanned using APERIO AT2 (Leica) and images were visualized using 

slides.virtualpathology.leeds.ac.uk (web or image scope) and scored at 20X 

magnification. MCPH1/BRIT1 IHC of pre and post treatment slides were scored by 

two observers (Dr. Sandra Bell (SMB)) and (Aeshah Awaji (AAW)). p53 IHC 

staining of pre-treatment cores were scored by SMB and (Shivani Shukla (SS)) 

while the post-treatment TMAs slides were scored by SS and AAW and the scoring 

results were reviewed by SMB. Nuclear staining was scored as a percentage of the 

positive cells in relation to the total number of tumour cells present. A number of 

slides showed a remarkable cytoplasmic background staining thus cytoplasm-

scoring results were not included in this study. The scoring of representative 

samples was reviewed by Dr. Abeer Shaaban. 

 

2.5.6 Statistical analysis  

Continuous and categorical analyses were used to evaluate the status of 

MCPH1/BRIT1 expression in this cohort as previously described (Richardson et al., 

2011). To dichotomise MCPH1/BRIT1 IHC staining into high and low expression 

based on the percentage of nuclear MCPH1/BRIT1 staining, four different cut-off 

values (10%, 15%, 30% and 35%) were tested individually in relation to breast 

cancer overall survival (BCOS) using Kaplan-Meier analysis. The cut-off of 35% 

showed a significant result within the group of patients. All statistical analyses were 

performed using SPSS version 21.0 (IBM Corp. Armonk, NY: IBM Corp). The 

correlation between changes in expression and overall survival (OS) were 

evaluated by Pearson paired parametric t-test and Kaplan-Meier analysis, 

respectively. The continuous analysis (Pearson) was performed to identify the 

correlation between percentage of MCPH1/BRIT1 staining for both pre and post- 
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chemotherapy treatment and pathological variables. The Chi- square test or 

Spearman (non-parametric) was used for comparison among categorical variables 

of both pre and post- chemotherapy treatment. All statistical tests and comparisons 

were two sided and a p value of ≤ 0.05 was considered significant.  

The cut off value of the percentage p53 IHC staining was 10%, allowing its 

dichotomisation into positive and negative among patients groups (Vojtěšek et al., 

1992; Bartley and Ross, 2002; Rohan et al., 2006; Lara et al., 2011; Yang et al., 

2013; Milicevic et al., 2014). Similar statistical analyses were performed to evaluate 

nuclear p53 staining in this cohort unless otherwise stated in the result section. To 

identify the correlation between nuclear MCPH1/BRIT1 and p53 IHC staining pre 

and post chemotherapy treatment, the Chi-squared Fisher exact test was 

performed among categorical groups of patients. 

 

2.6 Cell cytotoxicity assays 

2.6.1 Anti-cancer chemotherapy drugs 

Two anti-cancer drugs were utilised in this project to identify the effect of 

MCPH1/BRIT1 siRNA knockdown or overexpression in chemosensitivity (Table 2.6). 

   

Table 2.6. Anti-cancer chemotherapy drugs agents used in cell cytotoxicity assays. 

 

Chemotherapy 
drug 

Stock 
concentration 

Company 
supplier 

Mechanism of action 

Carboplatin 10mg/ml Sun 
Pharmaceu
tical 
Industries 
Europe BV 

Interacts with the DNA to form 
intrastrand crosslinks and DNA 
adducts, interfering DNA 
replication and repair. Carboplatin 
is considered as a slow DNA 
binding activity causing less 
cytotoxicity profile and long 
lasting effects (Di Pasqua et al., 
2012) 

Paclitaxel/Taxol 6mg/ml Mayne 
Pharma Plc 

A microtubule-stabilizing 
molecule activating the mitotic 
arrest in the cells preventing 
chromosome segregation and 
initiating apoptosis (Horwitz, 
1993; Weaver, 2014) 
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2.6.2 MTS cell viability assay  

         An MTS assay was used to evaluate cell viability post drug treatment. 

Knockdown of MCPH1/BRIT1 using siRNA with the corresponding NT-siRNA 

control was performed at a final concentration of 75nM for the induction of PCC. 

The MCPH1/BRIT1 siRNA reverse transfection in 1847 or SKOV-3 cell lines (5x104 

cells per well) was prepared at a final concentration of 75nM as previously 

described in (Section 2.2.1) and was plated on the same day as the cells were 

plated using a flat-bottomed 96- well cell culture plate (from column 1 to12).  

         After 24hr incubation; 1mM stock solution of chemotherapeutic drugs, 

Carboplatin or Paclitaxel/Taxol was prepared. To prepare 1mM of stock of 

(600mg/60mg (10mg/ml)) Carboplatin; 1ml of drug was diluted with 9mls of cell 

culture growth medium with 10% FCS and without addition of P/S solution 

individually for each cell line. To prepare 1mM of (6mg/ml) Paclitaxel/Taxol; 440µl 

of drug was diluted with 9.5ml of cell culture growth medium supplemented 

with15% FCS and without P/S solution individually for each cell line Then, 50µl of 

different drug concentrations, 0-600µM Carboplatin, or 0-10nM Paclitaxel was 

prepared and added to the cells in duplicate and the plate incubated for 72hr.  

         100µl of phenazine methosulfate (PMS) (0.92mg/ml stock) was diluted to 1:20 

with (2mg/ml stock) of MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium). 10µl of PMS/MTS 

solution was added to drug treated cells, the plate was wrapped in foil to prevent 

light exposure, and was incubated at 37°C for 90 mins.  

         The absorbance was read at 490nm using a plate reader (Dynex 

technologies). Absorbance readings were analysed and the mean and standard 

deviation calculated using Microsoft Office Excel software. IC50 concentrations were 

identified using a programme designed by Sally Jackson (Laboratory of Children 

Cancer Research) as detailed below in (Section 2.6.5). 

 

2.6.3 DAPI whole cell number assay 

         In order to validate the MCPH1/BRIT1 knockdown the experiment was 

duplicated in a 96 well imaging plate (PerkinElmer) and analysed for cell number by 

DAPI counting nuclei. PCC, the hallmark of reduced MCPH1, and whole nuclei 

number were identified by DAPI staining using the Operetta for image capture and 

a Columbus analysis programme as previously described (Sections 2.2.4 and 

2.2.5).  
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         To evaluate the whole cell number after the combination of MCPH1/BRIT1 

siRNA and chemotherapy treatment, the mean and standard deviation were 

calculated using Microsoft Office Excel software. IC50 concentrations were identified 

using a programme designed by Sally Jackson (Laboratory of Children Cancer 

Research) as detailed below (Section 2.6.5). 

 

2.6.4 Vi-CELL trypan blue dye cell viability assay 

         Inducible HEK293 for MCPH1/BRIT1 overexpression (IND HEK293) cell line 

and Inducible Flp-In T-REx system HEK293 for WT Parkin overexpression (used as 

a control) cell line were cultured in DMEM media as shown in Table 2.1 and 

incubated at 37°C, 5%CO2 to reach 80% confluence. To determine the optimal cell 

density for accurate cell viability results, three different cell densities were tested 

(2.5x105, 1x105 and 5x104 cells /ml). After optimization, the cell density of 5x104 

cells/ml was selected for the Vi-CELL assay. Then, 400µl of each cell suspension 

was seeded separately in replicates using 24- wells plate. The four plates were 

incubated overnight at 37°C, 5%CO2.   

          After a 24hr incubation, the growth medium was removed from all plates. A 

stock of tetracycline in ethanol at 2mg/ml was prepared by Dr. Katherine Roper 

(University of Leeds), which was diluted in a selected growth medium at 1:2000 

(1µg/ml). Half of the 24 well plate for each cell line was treated with 200µl of the 

1µg/ml tetracycline (to induce expression of MCPH1/BRIT1 or WT Parkin) followed 

by 200µl of selected growth medium while the rest of the wells were refreshed with 

400µl standard growth medium without tetracycline addition. The plates were 

incubated again for 24hr at 37°C, 5%CO2. 

         Post incubation the growth medium was removed from the plates. Half the 

wells were refreshed with a 200µl of fresh double concentrated tetracycline (2:2000 

/ 2µg/ml in a selected growth medium) while the second half of the plate was 

treated with 200µl of fresh standard growth medium without the addition of 

tetracycline. Simultaneously, 200µl of different drug concentrations ranging from 0-

600µM Carboplatin or 0-10nM of Paclitaxel were added to plates in duplicate for 

each individual cell line (cells treated with/without tetracycline). The plates were 

incubated at 37°C, 5%CO2 for 72hrs.  

          A group of 15ml falcon tubes were prepared based on the number of plates 

used in the experiment and labelled as follows (with/without tetracycline, drug type 

and drug concentration). Then, for each individual well in each plate, the media was 
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transferred to the corresponding 15 ml falcon tubes. Each well was washed twice 

with 1ml PBS and the mixture was transferred to the corresponding falcon tube. 

Then, 400µl of trypsin-EDTA was added to each well and plates were incubated for 

5mins. The selected growth medium (400µl) was added to each well and the cell 

suspension was transferred to the matching falcon tube. The falcon tubes were 

centrifuged at 200g for 5mins. The supernatant was discarded and the pellets 

resuspended in 500µl of selected growth medium and transferred to Vi-CELL 

specific tubes. The Vi-CELL tubes were placed on the Vi-CELL machine (Beckman 

Coulter) for cell viability and counting analysis.  

 

2.6.5 Statistical calculation of inhibitory cellular proliferation by 
50% (IC50)  

All the data generated using the previously described cell viability assays (MTS, 

DAPI and Vi-CELL) allowed the plotting of the dose response curve using Microsoft 

Excel software to identify IC50 values, which is the selection of the effective drug 

concentration that kills 50% of cancer cells. The ‘calculating 50% inhibition 

concentrations’ method, produced by Sally Jackson (Children’s Cancer Research 

Laboratory), was used. The relative viable cell number results in each drug 

concentration were normalized to untreated cell number. Then, the normalized 

values for each drug concentration were multiplied by 100. The data was 

transferred to Microsoft Excel using an IC50 calculation specific template. The log 

data transformation and regression analysis were performed and IC50 was 

calculated using the following formula IC50 = Exp (- interep/ X variable) (For more 

details see Appendix 8).  
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Chapter 3 Induction of PCC by small molecule inhibitors in 
the ovarian cancer 1847 cell line  

3.1 Introduction 

         The completion of DNA replication during S phase is necessary to allow the 

commencement of chromosome condensation. Mitotic chromosome assembly 

involves two elements. One of these is compaction of the chromatin of interphase 

cells into metaphase chromosomes, which is mainly regulated by condensin protein 

complexes (Swedlow and Hirano, 2003). The other prerequisite element is sister 

chromatid resolution that requires Cohesion release from chromatin at prophase; 

(Swedlow and Hirano, 2003; Losada et al., 2002). Thus, chromosome condensation 

as a cellular process is crucial for proper entry into mitosis and subsequent correct 

chromosome segregation. Some additional molecules related to the regulation of 

chromosome condensation, such as topoisomerase II and histone H3, have been 

investigated (Hirano, 2000; Wei et al., 1999; Prigent and Dimitrov, 2003), however, 

a comprehensive insight into their mechanism of action has yet to be gained.  

         A very distinctive cellular phenotype occurs when interphase cells initiate 

mitosis before completion of DNA replication, referred to as premature 

chromosome condensation (PCC) (Johnson and Rao, 1970). PCC has been 

demonstrated to be a useful tool in biological and cytogenetic analysis for studying 

chromosome condensation during interphase and metaphase (Schor et al., 1975). 

Virus-mediated PCC was the first method employed to recognise PCC (Kato and 

Sandberg, 1967). This method used Sendai virus to cause the fusion of interphase 

cells with mitotic cells. However, this method was beset by technical problems. 

Thereafter, CC such as protein phosphatase inhibitors were used to induce PCC. 

Okadaic acid and Calyculin A, both of which are naturally occurring toxins isolated 

from different species of marine sponge, were used to induce PCC in somatic cells 

during all phases of the cell cycle (Gotoh et al., 1995). The presence of double 

minutes (DMs) on interphase PCC, in addition, was used as a functional readout for 

gene amplification in cytogenetic studies using various human metastatic 

carcinoma tissues (Brüderlein et al., 1986).  

         Peripheral lymphocyte cells derived from either primary microcephaly or PCC 

syndrome patients, with mutations in the MCPH1/BRIT1 gene, display 15-20% 

prophase–like cells among metaphase cells (Trimborn et al., 2004; Neitzel et al., 

2002). Also, the PCC phenotype has been detected previously in many types of 
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human carcinoma cells such as leukaemia, ovarian and colon cancers (Augustus et 

al., 1985; Reichmann and Levin, 1981; Kovacs, 1985; Hittelman et al., 1980). 

         Studies on PCC in relation specifically to MCPH1/BRIT1 have greatly 

increased, confirming its auxiliary implication in regulating chromosome 

condensation. The X-ray crystal structure of human N-terminal BRCT domain of 

MCPH1/BRIT1 has been determined and this pocket of N-terminal domain is 

required to prevent PCC (Richards et al., 2010). Studies showed the essential role 

of N-terminal domain of MCPH1/BRIT1 in combination with SET in regulating 

chromosome condensation and shaping metaphase chromosomes by inhibiting the 

activity of the condensin II complex and allowing proper entry into mitosis (Leung et 

al., 2011; Yamashita et al., 2011).   

         To date, no study has investigated the potential implication of a defective N-

terminal domain of MCPH1/BRIT1 in cancer. Thus, we hypothesised that identifying 

the small molecule inhibitors which target the N-terminal domain and induce PCC 

by preventing normal MCPH1/BRIT1 protein interactions would be a useful 

laboratory tool for studying the biology of cancer cells and could assist in verifying 

the function of MCPH1/BRIT1 in different cellular pathways. To this end, a small 

molecule inhibitors of a library of 792 CC selected from a library of 33,000 

compounds, based on their predicted ability to fit into the 3D structure of the N-

terminal of MCPH/BRIT1. The aim of this study was to utilise a high-throughput 

high-content imaging system (Operetta) and analysis software (Columbus Acapella) 

to perform a small molecule screen (SMS) to identify molecules that induce PCC in 

the ovarian cancer (OVCA) cell line 1847.  

 

3.2 Results 

3.2.1 Development of small molecule screen assay 

In order to conduct large-scale assays using an SMS for CC that induce PCC, it 

was necessary to determine the optimal diluent type for the CC, cell density, 

incubation period, CC concentration, and positive (MCPH1/BRIT1 siRNA) and 

negative controls (DMSO, vehicle control). 
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3.2.1.1 Selection of the optimal diluent type for CC dilution  

         A library of 792 CC was supplied as 2µl solutions at a10mM concentration in 

100% DMSO, in a 96-well plate format. Previous exploration of the percentage of 

DMSO tolerated by the 1847 cell line had identified that a concentration of 0.2% 

DMSO was optimal (Data not shown). A two-step dilution protocol was decided 

upon where the CC would initially be diluted to a working stock of 100µM (1% final 

concentration of DMSO) prior to a 1:5 dilution in the cell suspension (0.2% final 

concentration of DMSO, 20µM CC concentration).  

         To identify the best working stock diluent which would ensure CC stability was 

maintained, both during storage and their use for SMS to avoid presenting high 

cytotoxicity,, two different diluents were tested, (i) RPMI media containing 10% FCS 

and 1% P/S (the recommended culture media for culturing the cell line 1847, 

(Chapter 2; Table 2.1)) and (ii) PBS. A 96-well test plate containing 2µl of 100% 

DMSO was supplied and one half of the plate diluted into 198µl PBS buffer per well 

and the other half of the plate diluted with RPMI 1640 complete growth media. The 

ovarian cancer 1847 cell line was plated into two 96 well plates where one plate 

contained 80µl cell suspension in RPMI 1640 culture medium at a low cell density 

of 1000 cells/well and the second plate contained 80µl cell suspension at a higher 

density of 6000 cells/well. Cell suspension transfer was performed using a 

multichannel pipette. Then, half of each cell plate was treated with 20µl of 0.2% 

diluted DMSO with PBS while the other half was treated with 0.2% diluted DMSO 

with RPMI 1640 medium to examine the effect of each diluent. All reagent transfers 

were performed with a multi channel pipette. The low cell density plate was 

incubated at 37oC 5% CO2 for a week to test any potential contamination whereas 

the high cell density plate was incubated for just 24hr to test the effect of each 

diluent on cell number. After 24hr, the plate was fixed with ice-cold methanol and 

stained with DAPI and anti-active casepase-3 antibody (Chapter 2; Section 2.2.3; 

Table 2.2) for assessment of cell number and the percentage of apoptotic cells, 

respectively. The plate was imaged using the high throughput Operetta microscope 

and then analysed with Columbus software, as detailed below.  

 

3.2.1.1.1  Image analysis to evaluate the cell number  

         The Columbus analysis software automatically turns all the captured images 

generated by Operetta into quantitative data. Image analysis protocols constructed 

by Dr. Victoria Cookson enabled Columbus to detect a nucleus stained with DAPI 
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or active caspase-3 which automatically assessed the number of nuclei or apoptotic 

cells respectively in each image generating a value for cell number and percentage 

of apoptotic cells (Chapter 2; Section 2.2.4) (Adams et al., 2014).  

         Analysis of the test plate containing the cells treated with the 2 diluents 

showed a significant variation in cell number between each well of the plate (Data 

not shown). However average cell number per well when treated with 0.2% 

DMSO/RPMI media was 7500 cells, however upon treatment with 0.2% 

DMSO/PBS an average cell number of 5500 cells was registered. It was 

determined that the variation in cell number may have resulted from the use of a 

multichannel pipette, therefore for future experiments cell plating was performed 

using an automated FluidX reagent dispenser to improve assay reproducibility. The 

cells treated with 0.2% DMSO/PBS did not show a significant increase in the 

percentage of active caspase-3 positive cells (0.2% apoptotic cells) compared to 

those treated with 0.2% DMSO/RPMI media (0.1% apoptotic cells) (Data not 

shown). It is possible that dead cells may have become detached from the well and 

been washed away during the PBS washing and fixation stages, or that cells grew 

slower in the PBS/DMSO mixture. A low value for apoptotic cell number may also 

have been due to the high background staining caused by the anti-active caspase-3 

antibody, as preventing the accurate identification of active caspase-3 positive cells 

by the Columbus analysis system. Thus, the analysis of whole cell number was 

used surrogate read out for nuclei number. Since evaluation of nuclei number in 

each image using Columbus protocol analysis that was previously optimised by 

BSTG during other high through put siRNA assays (Adams et al., 2014), it was 

concluded that whole cell number would be the best parameter for determining the 

suitability of the diluent to minimize cell cytotoxicity (Figure 3.1). 

Figure 3.1. Evaluation of cell number using Columbus analysis software.  
Ovarian cancer 1847 cell line treated with 0.2% DMSO diluted with RPMI media was 
stained with (A) DAPI (blue) and imaged using Operetta fluorescent microscope. (B) 
Columbus software determines the whole cell number by excluding the border objects (red) 
from the whole cells (green). 
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          After incubation for one week the low cell density plate was examined under 

the high content Operetta microscope. Results revealed a contamination of 60% 

(58/96) of the wells across the plate and particularly on the side of the plate treated 

with 0.2% DMSO/PBS. Thus, potentially treating the cells with 0.2% DMSO/PBS 

buffer increased their sensitivity to bacterial infection and reduced their survival rate 

at either a long or short incubation time. It can be concluded that RPMI 1640, the 

selected growth medium of ovarian 1847 cancer line containing the antibiotic P/S, is 

a suitable diluent for the CC. In addition, increasing the cell density may minimise 

the variations in cell number that were observed. 

  

3.2.1.2 Mitotic cells/pHH3 Ser10 immunofluorescence staining 
optimisation and analysis  

         Columbus software has the power to simultaneously analyse different 

channels where each channel shows a different antibody or stain. Initially the 

stronger green channel was used to detect active caspase-3 apoptotic cells using 

Alexa fluor 488 and the weaker red channel to detect mitotic cells expressing pHH3 

Ser10 using Alexa fluor 594. Due to the high background staining caused by anti-

active caspase-3 primary antibody it was not possible to accurately detect the 

apoptotic cells using Columbus. Columbus software was used to analyse whole cell 

number and % apoptosis visually estimated. This rendered the green channel 

available to detect mitotic cells/pHH3 Ser10. 

         A Columbus image analysis protocol that measured the staining intensity of 

pHH3 Ser10 positive cells and therefore identified the percentage of mitotic cells 

was created as previously detailed in (Chapter 2; Section 2.2.5). Initially 

optimisation of immunofluorescence staining for pHH3 Ser10 was performed using 

the ovarian cancer 1847 cell line treated with DMSO (0.2%) to detect mitotic cells 

utilizing either Alexa Fluor 594 (Red) (Figure 3.2 A and B) or Alexa Fluor 488 

(Green) (Figure 3.2 C and D) secondary antibodies. However, Alexa fluor 594 

(Red) was replaced by Alexa fluor 488 (Green) due to the increased intensity 

detected by the Operetta. 

         The detection of mitotic cells using pHH3 Ser10 positive cells was another 

parameter that could be useful for identifying any further cellular effects caused by 

CC on cells, such as reducing or increasing the number of cells in mitosis.  
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Figure 3.2. Optimisation of the immunofluorescence (IF) staining of phospho-Histone 
H3 (Ser10) to detect mitotic cells. 
Representative Operetta images of the ovarian cancer cell line 1847 treated with 0.2% 
DMSO were acquired after staining with either (Alexa Fluor 594/red or 488/green) 
secondary antibodies to identify phospho-histone H3 positive cells. Image showing the 
pHH3 Ser10 positive cells/mitotic cell in red (A) and in green (B).  Merged images; (C) DAPI 
stained cells (blue) and pHH3 Ser10/red or (D) DAPI and pHH3 Ser10/green. 

 

3.2.1.3 Optimisation of cell density, CC concentration and incubation 
time 

         Given that the previous results showed a striking variation in cell number 

when a cell density of 6000 cells/well was used, the cell density was increased to 

8000 cells/well. This time MCPH1/BRIT1 siRNA (75nM) was used as a positive 

control for PCC induction, NT-siRNA and untreated cells as negative controls and 

DMSO (0.2%) as vehicle control. All controls were introduced to the plate by 

manual pipetting.        

         Simultaneously, an initial trial plate containing a 2µl sample of 72 CC (10mM 

stock concentration) (master plate (MP)) code: 59-241) was diluted with 198µl 

RPMI medium (working concentration 100µM). The trial plate was run to test the 

optimization of the small molecule screen assay that was principally aimed at 

inducing and detecting PCC. The cells were treated with diluted CC at a final 
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concentration of 20µM containing 0.2% DMSO. After 24hr incubation, the plate was 

stained with DAPI and pHH3 to detect PCC and mitotic cells, respectively. 

         In order to identify the percentage of PCC, the Operetta system was once 

again utilised to take images from the trial plate and the Columbus image analysis 

protocol specifically devised for PCC detection was used to enable to automatically 

count the number of spots in each DAPI-stained nuclei, which was indicative of a 

prophase like cell (Figure 3.3A) PCC cells highlighted automatically by Columbus in 

red circle). Based on this analysis, the positive control MCPH1/BRIT1 siRNA 

induced PCC in 14.47% of the cell population (n = 4 wells) which was significant to 

the siRNA NT control (75nM) 1.32% (n = 2 wells) or cells treated with the DMSO 

negative control 2.55% (n = 14 wells) or untransfected cells 2.14% (n = 2 wells) (p < 

0.0001; Unpaired t-test) (Figure 3.3B). The mean cell number of the positive control 

reduced significantly to 3819 cells compared to DMSO negative controls (8522 

cells) or untransfected cells (9492 cells) (p < 0.0001) (Figure 3.3C). However, cells 

treated with NT-siRNA unexpectedly revealed a reduction in cell number (3839 

cells), which was similar to those observed within the positive control (Figure 3.3C). 

This may due to an error in the manual pipetting that was used to seed the cells 

into the wells. Also, the NT-siRNA (Invitrogen) occasionally presents low cell 

number in some cell lines and the same observation was seen previously by BSTG 

in other siRNA screens.  

         The trial plate showed an unanticipated high hit rate of PCC (3-4% of CC) 

after 24hr exposure to 72 CC compared to the estimated overall hit rate of small 

molecule screens (0.5-1%) (Figure 3.3D) (Personal communication Dr. Richard 

Foster). Visual examination of the plate revealed this was due to Columbus having 

identified clumps of two or three cells as single PCC cells (Figure 3.3E), causing an 

increase in % PCC and a low level false positive hit rate. Optimisation of the 

Columbus analysis protocol to reduce the permitted cell size (thus removing 

multiple cell clumps from the analysis) and to increase the number of spots 

detected (chromosomes) and reanalysis of the plate demonstrated no positive hit 

CC were identified that induced PCC after 24hr within this test plate.  

         In order to determine whether the failure to detect a high rate of PCC 

induction in the initial trial plate was a result of limiting levels of CC due to the use 

of a high cell density (8000 cells/well), we tried to improve the rate of PCC induction 

in cells and their detection by reducing cell density back to 6000 cells/well. The CC 

concentration, in addition, was increased to 50µM instead of 20µM; the DMSO 

concentration in the CC treated wells was therefore increased from 0.2% to 0.5%. 
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Furthermore, the incubation time was lengthened from 24hr to 48hr. However, 

considerable variation in cell number was still observed in the DMSO negative 

control at both 24hr and 48hr and the cell number in the PCC positive control 

decreased significantly (Data not shown). 

Figure 3.3. Optimization of small molecule screens using a trial plate containing 72 
chemical compounds (CC) (master plate (MP) code:59-241).  
A) The images were taken from Columbus demonstrating the detection of PCC in the 
ovarian cancer 1847 cell line transfected with the positive control MCPH1/BRIT1 siRNA for 
48hr. In each DAPI stained cell (blue), Columbus software protocol identifies PCC cells 
using an algorithm called ‘find spot’ (highlighted by coloured outlines). Cells with > 14 spots 
were designated as PCC (circled in red by Columbus), overlapping cells (indicated by an 
arrow) were occasionally detected as PCC cells. (B) Graph showing MCPH1/BRIT1 siRNA 
induced an elevated level of %PCC compared with untransfected cells, negative/vehicle 
control DMSO (0.2%) treated cells or with NT-siRNA (p < 0.0001). (C) Graph showing the 
positive control reduced the cell number significantly to 42% compared with untransfected 
cells or negative control (p < 0.0001), but not significantly with cells transfected with NT-
siRNA. (D) The scatter plot graph showing the %PCC from initial screening of the trail 
(MP:59-241) after 24hr exposure. Each blue solid square represents the %PCC induced 
either by CC or controls/siRNA. The four squares representing %PCC > 12% were the 
positive control MCPH1/BRIT1 siRNA. The majority of CC showed unexpectedly high 
%PCC ranging from 3-4%. (E) Visual examination revealed that Columbus incorrectly 
identified the overlapping cells (highlighted in purple) as PCC cells. 
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          To resolve these problems, an automated liquid dispenser was used to plate 

the cells at a density of 7000 cells/well. In addition, PCC detection was evaluated 

by treating the cells with a reverse transfection of MCPH1/BRIT1 siRNA (75nM), 

which was exposed after 24hr to a three concentrations of DMSO (0.1%, 0.2%, and 

0.5%). It was determined that of these 3 concentrations, 0.5% DMSO caused the 

highest cell death and lowest PCC induction (5.5%; n = 2 wells) whereas 0.1% 

DMSO induced (8.5%; n = 2 wells) PCC. The cells treated with 0.2% DMSO 

produced a high % PCC (14.2%; n = 2 wells) with a reasonable number of surviving 

cells (Data not shown). This finding indicated that at this specific cell density (7000 

cells/well), 0.2% DMSO was not toxic. Thus, 20µM of a CC (containing 0.2% 

DMSO) could potentially induce PCC without the CC diluent DMSO non-specifically 

increasing cell death. 

         Therefore, for the SMS, a CC concentration of 20µM was used with a seeding 

density of 7000 cells/well and positive (MCPH1/BRIT1 siRNA (75nM)) and negative 

controls (0.2% DMSO) added to each assay plate. The use of a dispenser gave 

more reproducible results compared to manual pipetting. Two incubation times for 

the CC were utilised, 24hr and 48hr, to identify and analyse the diverse and 

unknown biological and cellular effects of the CC’s. 

 

3.2.1.4 Screening of 792 CC  

The biological activities of the CC used in this project have not been previously 

examined. Therefore, although these SMS were developed chiefly for the purpose 

of evaluating the phenotypic endpoint of %PCC cells, other assay endpoints were 

also investigated. These included changes in whole cell number and percentage of 

mitotic cells /pHH3 Ser10. 

         

3.2.1.4.1 Assessment of screenings controls for induction of PCC, 
alterations in cell number and effects on mitosis 

         The stock concentration (10mM) of library of 792 CC was provided in 11 

plates (96-well format), each of which included 24 wells (rows A and H) containing 

100% DMSO and 72 CC (dispensed in row B to G). The screenings of these CC 

were performed in duplicate using a final CC concentration of 20µM in 0.2% DMSO 

and two incubation times: 24hr and 48hr. Each plate contained the negative control 

DMSO (0.2%), which was used as the main reference in assaying the alteration of 

the three phenotypic endpoints (%PCC, cell number and % mitotic cells) caused by 
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CC in these screens. The positive control MCPH1/BRIT1 siRNA was used to 

assess PCC. The additional secondary controls included Doxorubicin (0.4µg/ml) for 

assessment of cytotoxic effects and Nocodazole (1µM) for assessment of pHH3 

Ser10 positive cells/mitotic cells. 

         The controls in each plate for both replicates were assessed prior to the 

Operetta scanning stage by visual examination using a microscope and also after 

image capture using Columbus. The duplicate plates were run as two separate 

batches of the 11 CC plates and the results of the controls pooled for each batch of 

11 plates.  

         The overall %PCC (mean ± SD) for the DMSO negative vehicle controls in 11 

plates for the first batch was 0.75% ± 0.11 at 24hr and 1.09% ± 0.26 at 48hr time 

points respectively (total n = 128 wells), whereas for the MCPH1/BRIT1 siRNA 

positive controls values of 8.84% ± 1.14 at 24hr and 19.30% ± 2.21 at 48hr (total n 

= 44 wells) (Figure 3.4A). This clearly demonstrated the significant difference in 

%PCC induced by positive and negative controls for the first batch at 24hr and 48hr 

(p < 0.0001; Unpaired t-test).  

 

Figure 3.4. Assessment of % PCC observed in controls of small molecule screens 

(SMSs) negative control (0.2% DMSO) or positive control (MCPH1/BRIT1 siRNA) at 

24hr and 48hr for batches 1 and 2.  

Plots showing mean %PCC of the screening controls; the negative control reduced the 
%PCC in batches 1 and 2 to 0.75% and 1.24% at 24hr and 1.09% and 0.84% at 48hr 
respectively. The positive control MCPH1/BRIT1 siRNA increased the %PCC in batches 1 
and 2 to 8.84% and 13.5% at 24hr and to 19.3% and 15.14% at 48hr, respectively. The NT-
siRNA controls did not influence the %PCC in batches 1 and 2 giving 0.55% and 0.76% at 
24hr and 1.17% and 0.70% at 48hr, respectively.  
  

         The second batch showed a similarly low frequency %PCC (mean ± SD) for 

DMSO negative controls in 11 plates giving 1.11% ± 1.24 at 24hr and 0.84% ± 
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0.12% at 48hr (total n = 88 wells) compared to the high frequency  %PCC (mean ± 

SD) induced by the positive controls which was 13.5% ± 1.2% at 24hr and 15.14% 

±1.4 at 48hr (total n = 44 wells) (Figure 3.4B). Again, a significant difference in the 

mean %PCC was identified between negative and positive controls in the second 

batch at 24hr and 48hr (p < 0.0001; Unpaired t-test). 

 

 

 

 

 

 

 

Figure 3.5. Evaluation of cell number of controls used in SMSs for batches 1 and 2 at 
24hr and 48hr.  
Plots showing mean cell number of the screening controls; the negative control (DMSO-
0.2%) had no significant effect on cell number in batches 1 and 2 at 24hr (2065 cells and 
1876 cells) compared to the significant reduction in cell number observed with the positive 
control MCPH1/BRIT1 siRNA (468 and 576 cells respectively). After 48hr incubation, the 
mean cell number for the negative control increased in batches 1 and 2 to 3658 and 3253 
cells, respectively. The positive control did not show any significant increase in mean cell 
number in either batch 1 or 2 after 48hr transfection (601 and 961 cells). The NT-siRNA 
controls showed a reduction on the mean cell number in batches 1 and 2  (629 and 666 at 
24hr and 941 and 961 at 48hr, respectively). 
 
          The number of whole nuclei was used as a principal parameter to evaluate 

cell number using the modified Columbus software PCC analysis as previously 

described in this chapter (Section 3.2.1.1.1). In the SMS screen first batch at 24hr, 

the mean cell number for the DMSO negative control of 11 plates did not alter 

significantly (2065 cells) compared to the large reduction in cell number for the 

MCPH1/BRIT1 siRNA positive control of 468 cells (p < 0.0001; Unpaired t-test) 

(Figure 3.5A). Likewise, after 48hr a comparison of the mean cell number for the 

DMSO negative control (3658 cells) with the MCPH1/BRIT1 siRNA positive control 

showed that the cell number had significantly reduced by over 50% (601) (p< 

0.0001; Unpaired t-test) (Figure 3.5A). Similar significant results were obtained in 

the second batch where the mean cell number for the DMSO negative and positive 

controls was 1876 and 579 at 24hr, respectively (p < 0.0001; Unpaired t-test) and 

3253 and 961 at 48hr (p < 0.0001; Unpaired t-test) (Figure 3.5B).  
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         As shown in (Figure 3.4 A and B) the NT-siRNA controls at 24hr and 48hr for 

both batches did not affect on %PCC compared to the positive controls 

MCPH1/BRIT1 siRNA. The overall %PCC for the NT- siRNA controls in 11 plates 

for the first batch was 0.55% ± 0.12 at 24hr and 1.1% ± 0.28 at 48hr time points 

respectively (total n = 44 wells) (Figure 3.4A). The second batch showed a similarly 

low frequency %PCC giving 0.76% ± 0.12 at 24hr and 0.70% ± 0.22% at 48hr (total 

n = 44 wells) (Figure 3.4B). However, NT-siRNA controls at 24hr or 48hr displayed 

low mean cell number in both batches. This potentially may be due to the control 

siRNA and the procedure being slightly cytotoxic to the 1847 cell type (Figure 3.5). 

Another potential reason for the variation in cell number between each control well 

may be the way that the cells were dispensed- in some plates a FluidX cell 

dispenser (XRD-384) was used while in other plates the multichannel pipette was 

used instead. This was due to the unexpected technical problems with the machine. 

Therefore this may account for the reduced accuracy in cell number. The mean cell 

number for the NT-siRNA controls in the first batch was 629 at 24hr compared to 

941 at 48hr (Figure 3.5A). Likewise, the second batch showed a low mean cell 

number of 666 at 24hr and 961 at 48hr (Figure 3.5B).  

         It is essential to point out that the visual assessment of the controls using 

Columbus showed comparative variations in %PCC and a significant reduction in 

cell number across the 11 replica plates at both 24hr and 48hr caused by the 

positive control MCPH1/BRIT1 siRNA. Consequently, it was agreed that the more 

consistent negative control (DMSO/0.2%) would be used as the main reference for 

performing any statistical analysis instead of the positive control.  

 

         The percentage of mitotic cells /pHH3 Ser10 was evaluated by Columbus 

protocol analysis as previously described in this chapter (Section 3.2.1.2). In the 

first batch the overall mean ± SD of the %mitotic cells/ pHH3 Ser10 for the DMSO 

negative controls at both incubation times (9.4% ± 3.1 at 24hr and 6.2% ± 1.6 at 

48hr) did not differ significantly from those of the positive controls (7.03%  ± 2.1 at 

24hr and 2.7% ± 0.6 at 48hr). The %mitotic cells/ pHH3 Ser10 for the NT-siRNA 

controls at both incubation times was (5.5% ± 1.6 at 24hr and 3.1% ± 0.7 at 48hr) 

(Figure 3.6A). However, the second batch showed a significant difference in the 

overall mean ± SD of the mitotic cells /pHH3 Ser10 between the DMSO negative 

and the positive controls at 24hr (13.82% ± 1.9 as opposed to 30.08% ± 3.77) (p < 

0.0010; Unpaired t- test) while at 48hr the overall mean ± SD of the %mitotic cells 
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/pHH3 Ser10 was 4.03% ± 0.3 for negative controls and 9.3% ± 1.4 for positive 

controls (p < 0.0016; Unpaired t-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.6. Evaluation of %mitotic cells observed by controls used in small molecule 
screens for batches 1 and 2 at 24hr and 48hr.  
Plots showing mean %mitotic cells for the negative control (DMSO-0.2%) in batches 1 and 2 
at 24hr (9.4% and 13.82%) whilst at 48hr it was 6.2% and 4.3%, respectively. The positive 
control MCPH1/BRIT1 siRNA presented a mean %mitotic cell of 7.03% and 30% after 24hr 
whilst this was 2.7% and 9.3% after 48hr in batches 1 and 2, respectively. The NT-siRNA 
controls showed a mean %mitotic cell in batches 1 and 2 (5.57% and 14.79% at 24hr and 
3.12% and 4.38% at 48hr, respectively). 

         The %mitotic cells/ pHH3 Ser10 for the NT-siRNA controls at both incubation 

times was (14.7% ± 2.5 at 24hr and 4.3% ± 0.4 at 48hr) (Figure 3.6B). This may 

indicate that the use of the Alexa Fluor® 594 conjugated secondary antibody to 

detect pHH3 Ser10 was not compatible with the filter set used on the Operetta and 

therefore resulted in non-specific measurement of %pHH3 Ser10 for both controls 

and exposure times (24hr and 48hr). The Alexa Fluor® 488 secondary gave a 
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strong signal when was used to detect active caspase-3 positive cells in the first 

batch. It was decided that the anti-pHH3 Ser10 antibody with a Alexa Fluor® 488 

secondary antibody should be substituted for the anti active caspase-3 staining in 

the second screen batch to give a clearer and more consistent pHH3 Sert10 

staining pattern.  

 

3.2.1.4.2 Assessment of the reproducibility of small molecules screens  

         To analyse the overall screening reproducibility of %PCC between the two 

sets of replicates and at the two time points (24hr and 48hr), a Pearson’s 

correlation was performed, showing a weak positive correlation between the two 

replicates of r = 0.3017; p < 0.0001; n = 792 CC at 24hr (Figure 3.7A). This may 

due to the difference in %PCC caused by some CCs in the first and second 

replicate at 24hr which may to decline the linear relationship between the 

replicates. However, this correlation increased significantly at 48hr to r = 0.7654; p 

< 0.0001; n = 792 (Figure 3.7B), suggesting a very strong relationship between the 

replicate 1 and 2 to identify CC inducing PCC. 

 

 

 

 

 

 

 

Figure 3.7. Comparison of small molecule screening reproducibility after 24hr and 
48hr.  
Graphs for 24 or 48hr showing the comparison of the %PCC induced by 792 CC between 
replicates 1 and 2. Pearson’s correlation test demonstrated a weak positive correlation 
between the two replicates at 24hr (A) (r = 0.3017; p < 0.0001) and strong positive 
correlation at 48hr (B) (r = 0.7654; p < 0.0001).  
 

3.2.1.4.3 Statistical analysis for hits identification 

Statistical analysis was performed per plate for both replicates using Z score and 

Robust Z score as recommended for normalization and calculation methods, 

employing the plate negative DMSO controls versus samples (Birmingham et al., 

2009; Zhang, 2011; Goktug et al., 2013). As expected, DMSO-treated wells 
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generated reliable results which constantly produced low %PCC without any 

significant effect on cell number, demonstrating its suitability and efficiency as the 

main reference for performing statistical analysis of CC-induced PCC, reduced cell 

number or increased percentage of mitotic cells (expressing pHH3 Ser10) at 24hr 

and 48hr. Candidate hits were identified for the induction of PCC (Z score or 

Robust Z score ≥ 2 for %PCC), increase in mitotic cell/pHH3 Ser10 (Z score or 

Robust Z score ≥ 2 for %mitotic cells) or an increase in apoptosis/decrease in cell 

division (Z score or Robust Z score of ≤ -2 for cell number.  The overall screen of 

792 CC were depicted as scatter plots representing the average Z score and 

Robust Z score for the average of both replicates for 3 phenotypic endpoints: 

%PCC cell number and %mitotic cells at both 24hr and 48hr exposure times. The 

initial statistical analyses for identifying CC that potentially induce PCC revealed 17 

CC hits at 24hr and a further 27 CC hits at 48hr that showed statistically significant 

Z score or Robust Z score of ≥ +2 (Figure 3.8 A and B). Additional statistical 

analyses were performed to identify potential CC hits for cellular 

cytotoxicity/reduction in proliferation and irrelevant of PCC induction. These 

analyses displayed 150 CC hits at 24hr and 119 CC hits at 48hr that showed 

statistically significant Z score or Robust Z score of ≤ -2. (Figure 3.8 C and D) 

(Appendix 9 A and B). Further statistical analyses were conducted to identify 

potential CC hits inducing an increased number of mitotic cells/expressing pHH3 

Ser10 and irrelevant of PCC induction. Consequently, 16 CC hits and another 4 CC 

hits were identified and showed statistically significant Z score or Robust Z score of 

≥ +2 at 24hr and 48hr, respectively (Figure 3.8 E and F) (Appendix 10 A and B). 

The potential CC that induced PCC underwent further primary and secondary 

validation, which will be described in Sections 3.2.1.8 and 3.2.1.9. Further statistical 

hit filtration was carried out to identify the most potent CC hits, that initially showed 

cytotoxicity phenotype or increased mitotic index, using the positive controls 

Doxorubicin or Nocodazole, which will be described in Section 3.2.1.6 and 3.2.1.7, 

respectively.  
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                     A                                             B    

 

 

              C                                                D 

 

 

 E                                                 F 
 

 

Figure 3.8. Screening of 792 CC for assessment of three phenotypic endpoints: 
%PCC, cell number and % mitotic cells.  
The Z score or Robust Z score were calculated based on negative control DMSO (0.2%). (A 
and B) Scatter plots represent %PCC induced after 24hr (pink circles) or 48hr (solid grey 
squares) exposure to 792 CC. The CC displaying a Z score (A) or robust Z score (B) value 
with a cut-off of ≥ 2 was designated as candidate hits. (C and D) Scatter plots showing the 
effect of these CC on cell number after exposure of 24hr or 48hr. The dotted lines at ≤ -2 
represent the cut-off points for Z score (C) or Robust Z score (D) selection hits with reduced 
cell number. (E and F) Scatter plots presenting the %mitotic cells induced after exposure of 
24hr or 48hr to these CC. The Z score (E) or Robust Z score (F) cut-off point at ≥ 2 was 
used to identify hits, which altered %mitotic index. 
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3.2.1.5 Identification of CC hits inducing PCC, using Z score and 
Robust Z score   

         Based on statistical analysis using %PCC Z scores or %PCC Robust Z 

scores, replicate screens revealed 17 CC inducing PCC in both replicate screens at 

24hr out of the original 792 (2.1% hit rate) (Table 3.1A) and an additional 27 CC 

candidate duplicate hits (3.4%) at 48hr (Table 3.1B). A visual examination of cell 

images related to these candidate hits was carried out to identify any technical or 

systemic errors that might have occurred within the replica plates during the 

processing of the screens. 

         The hit list at 24hr demonstrated that two CC, MP59-241/well F5 and MP64-

65/well B2 had induced a %PCC ≥ 5% in both replicates in comparison to the 

remaining CC hits within the list (Table 3.1A). Interestingly, the list of CC hits 

generated after 48hr incubation showed an increase in %PCC induced by these 

two CC hits. The CC MP59-241/ well F5 induced an average %PCC of 7.8% at 

24hr and 22.5% at 48hr while the CC MP64-65/well B2 caused 11.3% at 24hr and 

28.3% at 48hr (Tables 3.1A (24hr CC hit list) and 3.1B (48hr CC hit list)).  

         Furthermore, the list of CC hits at 48hr showed a further 3 potential CC hits 

that had also caused a greatly elevated level of %PCC in comparison to the other 

CC hits, namely MP59-241/well C8, MP64-65/well F7, and MP66-67/well C1 (Table 

3.1B). In contrast, the CC B11 and G11 in MP74-75 at 48hr showed a %PCC < 5% 

but their Z and Robust Z scores were highly significant (Table 3.1B).  
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Table 3.1. Identification of potential CC hits which induced the PCC phenotype.  
Representative tables showing the plate code and well number of CC hits that were 
screened using a 96-well plate. (A and B) Tables presenting the statistical data for 17 and 
other 27 potential CC hits identified after 24hr and 48hr, respectively with a significant Z 
score or Robust Z score (%PCC) of ≥ 2. The blue highlighted wells indicate CC that induced 
≥ 5% PCC at both replicates with a significant Z score or Robust Z score at either 24hr or 
48hr. The average %PCC for the negative control (DMSO) in batches 1 and 2 was 0.75% 
and 1.24% at 24hr and 1.09% and 0.84% at 48hr, respectively. 

 

 

 

 

A. Master plate 
name (24hr) W

el
l 

na
m

e % PCC 
Replicate 1

% PCC 
Replicate 2

Z score 
(%PCC) 

Replicate 1

Z score 
(%PCC) 

Replicate 2

Robust Z 
score (%PCC) 

Replicate 1

Robust Z 
score (%PCC) 

Replicate 2

F5 6.19 9.46 11.14 12.22 12.61 17.24
G3 1.74 3.7 2.07 2.81 2.37 4.05

MP60-MP61 E1 1.42 5.04 4.52 4.03 9.27 8.36
MP62-MP63 F1 1.1 2.49 2.34 2.21 5.21 4.11

B2 10.92 11.69 15.8 25.57 32.52 35.02
F7 5.88 3.22 7.68 5.49 16.01 7.78

MP66-MP67 G1 6.83 1.97 3.57 2.54 19.33 3.72
E1 2.78 3.45 3.53 1.85 3.23 2.54
G7 3.38 4.04 4.88 2.41 4.52 3.26

MP70-MP71 E1 1.59 2.02 1.51 0.69 2.32 2.14
MP72-MP73 F6 0.33 2.2 0.58 8.33 2.08 7.79

E1 2.44 2.92 3.46 2.14 5.86 2.48
G8 1.5 2.87 1.38 2.06 2.4 2.39
E3 1.3 1.88 2.42 3.54 5.35 7.92
G3 0.91 1.34 1.3 1.8 3.04 3.55
G1 0.88 1.35 2.88 1.85 4.62 3.66
E7 0.82 1.61 1.04 -1.12 2.51 2.67

MP59-MP241

MP64-MP65

MP68-MP69

MP74-MP75

MP76-MP77

B. Master 
plate name 

(48hr)

W
el

l 
na

m
e % PCC 

Replicate 1
% PCC 

Replicate 2

Z score 
(%PCC) 

Replicate 1

Z score 
(%PCC) 

Replicate 2

Robust Z score 
(%PCC) 

Replicate 1

Robust Z score 
(%PCC) 

Replicate 2
C8 9.43 2.63 14.54 2.76 17.79 8.59
F5 30.77 14.49 51.59 22.7 63.04 65.07
F7 2.23 3.1 2.06 3.55 2.53 10.83
E1 2.59 4.31 5.35 7.11 5.86 7.99
D1 1.46 2.72 2.34 3.3 2.5 3.69
C1 1.91 1.68 2.81 2.11 7.58 4.87
D1 1.54 2.52 1.81 3.79 4.48 8.17
E1 1.33 4 1.25 6.79 2.76 14.03
E3 1.53 1.2 1.78 1.13 4.4 2.95
G1 1.42 1.32 1.48 1.38 3.48 3.43
F7 52.94 27.21 35.29 73.07 95.38 101.49
B2 34.85 21.81 22.39 57.73 61 80.25

MP66-MP67 C1 7.4 6.27 11.85 8.3 23.46 16.5
MP68-MP69 G7 1.8 1.8 3.35 2.06 4.48 6.51

G5 1.93 0.48 3.85 0.89 6.57 2.01
G3 1.19 1.02 1.83 4.76 3.26 11.02

MP72-MP73 D1 0.26 1.33 0.4 1.43 4 3.99
G1 3.81 1.04 13.34 3.11 24.76 6.42
B11 3.37 4.93 11.6 23.25 21.59 48.23
G11 1.05 2.84 2.41 12.41 4.94 25.72
F1 0.78 0.66 1.35 1.14 3.03 2.33
E3 2.79 2.18 4.92 1.82 7.98 2.65
G3 5.02 3.9 10.02 4.44 15.87 6.31
G2 2 2.7 3.12 2.61 5.2 3.76
B2 1.14 2.21 1.16 1.86 2.17 2.71
D1 4.08 0.87 2.45 1.67 5.43 9.46
G1 3.31 0.57 1.69 0.74 3.87 5.28

MP76-MP77

MP78-MP79

MP59-MP241

MP60-MP61

MP62-MP63

MP64-MP65

MP70-MP71

MP74-MP75
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3.2.1.5.1 Correlation of PCC hits with cell number reduction (cytotoxicity) 

         The biological activities of CC used in this project are as yet unknown. Thus, 

we sought to investigate any further cellular effects (phenotypic endpoints) that 

correlated with the induction of the PCC phenotype, such as cytotoxicity. This can 

be described as CC causes cells to either undergo, necrosis, slowdown mitosis, 

mitotic arrest with a subsequent cell death or induction of apoptosis.  

         The CC induced PCC hits that were initially identified at the two different time 

points (24hr and 48hr, Tables 3.1 A and B) also displayed additional phenotypes, 

including reduced cell number/cytotoxicity. For example, the cell number was 

reduced in MP59-241/well F5 (117 cells at 24hr and 141 at 48hr), MP64-65/well B2 

(472 cells at 24hr and 184 at 48hr) and in MP 64-65/well F7 (385 cells at 24hr and 

138 cells at 48hr) (Tables 3.2 A and B). Furthermore, CC hits on the SMS 24hr 

incubation candidate hit list such as MP72-73/F6 and MP 74-75/G8 showed a Z 

score or Robust Z score ≤ -2 indicating a reduction in cell number (Table 3.2A) 

although a low %PCC had been identified. 

         Similarly, the CC in well C8 (MP59-241) and well C1 (MP66-67) slightly 

increased the %PCC to an average of 6.03 and 6.83, respectively and reduced cell 

number to an average of 421 (C8) and 1469 (C1) respectively but only after 48hr 

exposure time (Table 3.2B). Other CC hits which produced reduction in cell number 

after 48hr incubation only induced a slight increase in %PCC (≤ 5%) such as in 

plates MP59-241/well F7, MP60-61/well E1, MP68-MP69/well G7, MP70-MP71/well 

G5 and MP74-75/wells B11 and G11 (Table 3.2B). 

         In contrast, few CC hits showed a Z score or Robust Z score (%PCC) ≥ 2 

(Table 3.1 A and B) combined with an increase in cell number in both replicates. 

These CC at 24hr were distributed in the following plates:  MP62-63 (well F1) and 

MP74-75 (well E1) (Table 3.2A). The CC F1 at 24hr displayed a weak %PCC with a 

mean Z score of 2.27 or a Robust Z score of 4.66 (Table 3.1A), which was 

combined with no massive variation on cell number at both replicates (1486 cells in 

batch 1 and 1751 cells in batch 2) (Table 3.2A). Similar lower %PCC results were 

emerged with the CC E1 at 24hr with a mean Z score of 2.8 or a Robust Z score 

(%PCC) of 4.17 (Table 3.1A) although the cell number was higher compared to CC 

F1. The CC in MP74-75 (well E1) displayed a cell number of 2926 in batch 1 and 

2027 in batch 2 (Table 3.2A). 

          Additionally, the CC with increased cell number at 48hr were located in the 

following plates: MP60-61 (well D1), MP62-63 (wells E1 and E3) and MP74-75 (well 

F1) (Table 3.2B). These CC showed a weak to moderate %PCC (Table 3.1B). For 
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instance, the mean Z or Robust scores (%PCC) for the CC D1 was 2.82 or 3.09 

and the cell number for batch 1 was 4034 and 3334 for batch 2 (Table 3.2B). Also, 

the CC E1 showed a moderate mean Z score or Robust Z score (%PCC) (4.02 or 

8.39 respectively) (Table 3.1B) while the cell number for batch 1 was 3150 and 

3070 for batch 2 (Table 3.2B). The CC E3 presented a weak Z score or slightly 

significant Robust Z score (%PCC) (1.45 or 3.67 respectively) (Table 3.1B) while 

the cell number for batch 1 was 3622 and 3335 for batch 2 (Table 3.2B). The F1 

showed no significant mean Z score and slightly significant Robust Z score (%PCC) 

(1.24 or 2.68 respectively) (Table 3.1B) while the cell number for batch1 was 4476 

and 3694 for batch2 (Table 3.2B).  

        Overall, the cellular effects of the CC hits varied. Thus, some of the CC hits 

that potentially induced PCC were found to have toxic effects, inducing cell death 

whereas the CC that induced weak %PCC showed no effect on cell number.  
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Table 3.2. Correlation between the potential CC hits which induced the PCC 
phenotype with reduction of cell number after 24hr and 48hr.  
(Tables A and B) show the significant alteration of whole cell number (Z score or Robust Z 
score) observed within 17 and other 27 potential PCC CC hits for both replicates after 24hr 
and 48hr, respectively. The pink highlighted wells show the CC hits with a Z score or Robust 
Z score ≤ -2, indicating the significant reduction in cell number caused by these specific CC. 
Some of these highlighted CCs identified as hits that greatly induced PCC. For example, in 
(Table A) at 24hr MP59-41/ well F5, MP64-65/ wells B2 and F7 induced PCC (≥ 5%) while 
in (Table B) at 48hr MP59-41/ wells C8 and F5, MP64-65/ wells B2 and F7 and MPMP66-
67/ well C1 induced ≥ 5% PCC. The average cell number for the negative control (DMSO) in 
batches 1 and 2 was 2065 cells and 1876 cells at 24hr and to 3658 and 3253 cells at 48hr, 
respectively.  

 

 

A. Master plate 
name (24hr) W

el
l 

na
m

e Cell number 
Replicate 1

Cell number  
Replicate 2 

Z score 
Replicate 1

Z score 
Replicate 2

Robust Z score 
Replicate 1

Robust Z score 
Replicate 2

F5 119 116 -5.65 -10.95 -9.13 -13.57
G3 1109 1243 -2.11 -2.32 -3.55 -2.79

MP60-MP61 E1 886 1170 -6.58 -1.58 -6.86 -4.01
MP62-MP63 F1 1486 1751 -0.31 1.52 -0.81 1.7

B2 473 471 -5.43 -9.28 -10.19 -15.54
F7 171 600 -9.49 -1.67 -9.89 -4.22

MP66-MP67 G1 592 2841 -0.77 1.71 -0.75 4.01
E1 3463 1566 1.08 0.67 1.33 1.67
G7 1202 1021 -11.5 -0.39 -12.46 -0.41

MP70-MP71 E1 1849 2322 -4.93 0.79 -7.53 0.7
MP72-MP73 F6 1322 1163 -4.89 -7.03 -14.75 -8.25

E1 2926 2027 0.16 0.55 0.19 0.9
G8 1728 1027 -6.43 -3.49 -9.77 -5.05
E3 1831 1388 -0.3 -1.53 -13.99 -2.19
G3 1364 1503 -0.81 -1.22 -24.14 -1.75
G1 2687 2764 0.65 2.14 4.62 3.05
E7 2329 1541 0.25 -1.12 -3.16 -1.61

MP59-MP241

MP64-MP65

MP68-MP69

MP74-MP75

MP76-MP77

B. Master 
plate name 

(48hr)

W
el

l 
na

m
e Cell number 

Replicate 1
Cell number  
Replicate 2

Z score 
Replicate 1

Z score 
Replicate 2

Robust Z score 
Replicate 1

Robust Z score 
Replicate 2

C8 563 280 -23.87 -18.33 -31.34 -30.99
F5 186 96 -26.44 -19.51 -34.76 -33
F7 226 501 -26.17 -16.92 -34.39 -28.57
E1 1236 955 -2.11 -9.29 -9.5 -21.71
D1 4034 3334 0.8 2.52 1.2 5.95
C1 2306 3065 -4.07 0.69 -4.77 0.82
D1 3501 2783 0.88 -0.02 0.95 -0.01
E1 3150 3070 -0.58 0.7 -0.73 0.83
E3 3622 3335 1.38 1.36 1.53 1.61
G1 3371 2408 0.34 -0.96 0.33 -1.11
F7 60 216 -22.75 -28.99 -58.86 -33.85
B2 78 290 -22.62 -28.49 -58.54 -33.26

MP66-MP67 C1 1091 1848 -23.01 -10.01 -42.11 -15.02
MP68-MP69 G7 1486 1605 -6.7 -5.35 -8.63 -13.55

G5 1520 2625 -3.25 -2.09 -9.7 -4.02
G3 4179 2488 0.51 -2.55 0.34 -4.82

MP72-MP73 D1 4578 2046 -0.07 -1.2 -1.53 -1.69
G1 3219 2839 -10.61 -8.52 -11.76 -12.43
B11 121 260 -13.61 -37.75 -15.08 -55.42
G11 305 148 -13 -39.01 -14.4 -57.28
F1 4476 3694 0.9 0.32 0.93 0.57
E3 2307 1955 -5.76 -0.21 -7.68 -0.35
G3 2339 644 -5.66 -1.4 -7.54 -1.65
G2 3523 561 -1.79 -1.47 -2.57 -1.74
B2 3172 986 -2.93 -1.09 -4.04 -1.32
D1 2228.5 2489 0.1 -1.52 0.5 -2.09
G1 2081 4084 -0.05 1.33 -0.12 1.51

MP76-MP77

MP78-MP79

MP59-MP241

MP60-MP61

MP62-MP63

MP64-MP65

MP70-MP71

MP74-MP75
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3.2.1.5.2 Correlation of PCC hits with increased mitotic index (increased 
pHH3 Ser10 expression) 

         The use of the molecular probe pHH3 Ser10 combined with a high-content 

imaging and analysis system provided additional information on cellular phenotypic 

changes caused by the CC alongside PCC induction. As described previously 

(Section 3.2.1.2) the % of mitotic cells/expressing pHH3 Ser10 was identified by a 

Columbus Acapella image analysis protocol in which the immunostaining intensity 

of pHH3 Ser10/ mitotic cells was measured. Thus, the assessment of additional 

phenotypic endpoints such as %mitotic cells/pHH3 Ser10 was performed. Cells 

stained with Alex Fluor® 594 Red in the first batch and with Alex Fluor® 488 Green in 

the second batch. Thus, cells displayed pHH3 Ser10 at intensity cut-off of greater 

than 600 units in the first batch or 900 units in the second batch were classed as 

mitotic cells (See Chapter 2; Section 2.2.5).  

         The two lists of CC hits at 24hr and 48hr that had previously been identified 

as inducing PCC in (Table 3.1 A and B) were supported by additional statistical 

data for %mitotic cells (Table 3.3 A and B). The results indicated that the CC hits in 

wells B2 and F7 (MP64-65) that had previously been identified statistically as 

inducers of PCC and cell death also significantly increased %mitotic cells by an 

average of 42% and 37% respectively at 24hr (Table 3.3A). However, the %mitotic 

cells for these two CC decreased by an average of 4% and 7% respectively at 48hr 

(Table 3.3B). This suggests that the rapid increase in the pHH3 Ser10 caused by 

the two CC may correlate to an increase in abnormal chromosome condensation 

after 24hr as previously shown in (Table 3.1A). The remaining CC hits did not 

present a significant Z score or Robust Z score for % mitotic cells (≥ 2), which may 

be due to the variations in %mitotic cells between the two replicates. This variation 

might be due to the use of the weaker red channel (Alexa Fluor® 594 secondary 

antibody) in the Operetta to detect mitotic cells expressing pHH3 Ser10 which was 

not suitable for the purposes of measuring the pHH3 Ser10 staining intensity 

accurately in the first batch compared to the strong green channel (Alexa Fluor® 

488) which gave a better reliability and more consistent staining pattern in the 

second batch.  

         In comparison, the CC in well F5 (MP59-241) that initially correlated with the 

induction of PCC and cell death was associated with an increase in %mitotic cells. 

Interestingly, this CC did not present a marked reduction in the level of mitotic cells 

after 48hr, showing an average increase of 15% at 24hr exposure and 14% at 48hr. 

This CC caused different cellular phenotypic changes (potential induction of PCC, 
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reduction in cell number and increase in mitotic index) meaning it was considered 

to be a strong hit.  

         Furthermore, the other two CC in MP74-MP75/wells B11 and G11, gave a 

significant Z score or Robust Z score for %mitotic cells after 48hr (Table 3.3B). 

Although these CC hits initially did not induce high %PCC (< 5%) at 48hr, their Z 

score and Robust Z score values for % PCC were significant (Table 3.1B) and 

correlated significantly with a reduction in cell number (Table 3.2B).  

         In summary, the results of the SMS identified 17 CC hits at 24hr and 27 CC 

hits at 48hr that were found predominantly to induce PCC. Other cellular effects 

(phenotypic endpoints) caused by these CC hits were characterized as induction of 

cell death and mitotic cells expressing pHH3 Ser10. Some of the CC hits that 

potentially induced PCC caused mitotic arrest and/or cell death while the others did 

not, indicating that the CC caused various types of cellular alterations, which may 

be related to the chemical structures of these CC. The CC in MP59-241/ well F5 

was considered to be a potentially strong hit, presenting a significant effect in all 3 

cellular phenotypic endpoints: % PCC, reduction in cell number and increase in 

%mitotic cells. 
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Table 3.3. Correlation between the potential CC hits which induced the PCC 
phenotype with increased %mitotic cells after 24hr and 48hr.  
(Tables and B) shows the %mitotic cells (Z score or Robust Z score) observed in 17 and 
other 27 potential CC PCC hits for both screen replicates after 24hr and 48hr, respectively. 
The green highlighted wells in both tables at 24hr or 48hr show the CC hits, which showed 
an increase in %mitotic cells with Z score or Robust Z score of ≥ 2. Three highlighted CC 
hits correlated with a significant increase in %PCC at both exposure times, 24hr or 48hr. For 
instance, in (Tables A and B) (MP59-241/ well F5) and (MP64-65/ wells B2 and F7). The 
CC in (MP74-75/ wells B11 and G11) at 48hr showed a lower %PCC (< 5%) with a 
significant Z or Robust Z scores of ≥ 2 for %PCC and significantly correlated with an 
increase in %mitotic cells. The %mitotic cells for the negative control (DMSO) in batches 1 
and 2 at 24hr was 9.4% and 13.82% whilst at 48hr it was 6.2% and 4.3%. 

 

 

A. Master 
plate name 

(24hr) W
el

l 
na

m
e % Mitotic cells 

Replicate 1
% Mitotic cells 

Replicate 2
Z score 

Replicate 1 
Z score 

Replicate 2 

Robust Z 
score 

Replicate 1

Robust Z 
score 

Replicate 2
F5 6.57 24.12 0.7 1.79 2.14 2.7
G3 1.49 62.95 -1.18 8.04 -2.6 11.21

MP60-MP61 E1 12.43 6.5 5.93 -0.46 8.74 -0.35
MP62-MP63 F1 3.18 11.57 -0.52 0.31 -0.33 0.25

B2 42.18 42.18 6.23 6.23 10.78 10.78
F7 37.22 37.22 4.87 4.87 8.35 8.35

MP66-MP67 G1 56.95 15.14 0.81 1.3 1.1 1.46
E1 2.32 3.51 0.04 0.38 0.29 0.9
G7 8.07 7.55 17.26 4.88 22.87 11.31

MP70-MP71 E1 18.02 21.08 3.01 0.5 2.85 1.09
MP72-MP73 F6 11.94 16.58 0.5 -1.88 1.15 -1.9

E1 10.31 5.68 -0.99 0 -2.21 0.45
G8 8.53 2.87 -1.66 0.69 -4.1 1.76
E3 0.69 21.61 -1.47 0.73 -4.03 1.57
G3 4.17 18.45 4.11 -0.75 10.53 -1.18
G1 2.33 19.88 1.17 -0.08 2.85 0.07
E7 1.87 15.89 0.42 -1.94 0.91 -3.42

MP59-MP241

MP64-MP65

MP86-MP69

MP74-MP75

MP76-MP77

B. Master plate 
name (48hr) W

el
l 

na
m

e % Mitotic cells 
Replicate 1

% Mitotic cells 
Replicate 2

Z score 
Replicate 1

Z score 
Replicate 2 

Robust Z score 
Replicate 1 

Robust Z score 
Replicate 2 

C8 8.45 5.85 -1.39 3.56 -1.62 4.26
F5 15.38 14.49 1.71 35.57 2.68 42.81
F7 1.63 10.21 -4.43 13.42 -5.86 16.14
E1 7.6 5.04 -1.8 1.03 -2.27 2.12
D1 10.61 4.12 -0.08 -0.03 -0.31 0.01
C1 10.78 5.24 -2.03 0.31 -4.31 0.91
D1 11.17 3.74 -1.71 -1.25 -3.55 -1.4
E1 11.16 4.22 -1.72 -0.75 -3.57 -0.65
E3 10.64 4.63 -2.14 -0.33 -4.59 -0.04
G1 11.09 5.24 -1.77 0.31 -3.71 0.91
F7 4.2 10.53 1.81 7.42 4.03 11.65
B2 2.18 6.96 -1.25 3.25 -2.46 5.16

MP66-MP67 C1 4.43 4 0.92 -0.39 2.38 -0.65
MP68-MP69 G7 1.32 2.02 -2.33 0.81 -4.03 0.98

G5 22.12 3.57 1.77 0.11 5.5 0.14
G3 10.81 5.41 -0.66 4.66 -2.07 5.81

MP72-MP73 D1 2.88 4.37 1.99 -0.57 84.73 -1.02
G1 3.19 5.29 1.65 5.01 2.52 7.3
B11 6.17 10.14 7.34 13.5 11.55 19.19
G11 1.5 15.89 -1.58 23.56 -2.61 33.28
F1 2.28 6 -0.09 6.25 -0.24 9.04
E3 2.79 5.91 -1.57 0.67 -2.52 1.09
G3 1.29 7.63 -1.19 1.61 -1.92 2.4
G2 2.12 8.54 0.17 2.11 0.23 3.1
B2 1.76 7.2 -0.42 1.38 -0.7 2.07
D1 3.94 1.72 0.05 0.03 0.83 0.15
G1 2.78 1.18 -1.88 -1.65 -3.54 -2.45

MP76-MP77

MP78-MP79

MP59-MP241

MP60-MP61

MP62-MP63

MP64-MP65

MP70-MP71

MP74-MP75
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3.2.1.6 Identification of CC hits that reduce cell number  

         Visual assessment suggested that CC caused different cellular changes and, 

in particular, a reduction in cell number may indicate the potential involvement of 

these CC in cytotoxicity or decreasing cell proliferation, which may indicate useful 

CC to follow up for cancer treatment. The aim was to identify CC hits that reduce 

cell number. 

         As previously described in Section 3.2.1.2, cell number was evaluated using a 

Columbus Acapella imaging protocol analysis. The initial statistical analyses (Z 

score and Robust Z scores) for cell number were performed based on the 0.2% 

DMSO negative controls. Then, the cell number Z score or Robust Z score values 

for each of the 792 CC were ranked in ascending order for both replicates and also 

individually for the 2 different exposures: 24hr and 48hr. CC showing Z score or 

Robust Z scores of ≤ -2 were considered to be potential hits for cellular 

cytotoxicity/reduction in proliferation. To reduce variations between the replicates, 

the averages for cell number Z score and Robust Z score values for the duplicate 

screens were calculated. These analyses, as previously described (Section 

3.2.1.4.3; Scatter plots C and D in Figure 3.8) displayed 150 CC hits at 24hr and 

119 CC hits at 48hr that showed statistically significant Z score or Robust Z score 

of ≤ -2 (Appendix 9 A and B) 

         Next, to identify the most potent CC hits that reduce cell number, further 

statistical hit filtration was performed using Doxorubicin (0.4µg/ml), which was 

included on the screen plates as a positive control for inducing cell death. The 

average cell number for this secondary reference was 1059 cells at 24hr and 894 at 

48hr (n = 16 wells) for the first batch (Figure 3.9A) and 844 cells at 24hr and 562 at 

48hr (n = 44 wells) for the second batch (Figure 3.9B), compared to the average 

cell number in the negative 0.2% DMSO vehicle control, which showed 2065 cells 

at 24hr and 3658 at 48hr for the first batch and 1876 cells at 24hr and 3253 at 48hr 

for the second batch (Section 3.2.1.4.1; Figure 3.5). Additionally, the Z score and 

Robust Z score for the cell number in the positive control Doxorubicin were 

calculated based on the negative 0.2% DMSO vehicle control. Consequently, the 

average Z scores of -5 and -13 and the average Robust Z scores of -7 and -24 

were identified at 24hr and 48hr, respectively, indicating that the assay can 

correctly identify a chemical inducing cell death. As the Robust Z score is a strong 

statistical method compared to Z score, the cut-off values used for identifying the 

final cytotoxic CC hits list were based on the average Robust Z scores for cell 

number of the positive control Doxorubicin at 24hr and 48hr.  
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Figure 3.9. The whole cell number for the secondary control Doxorubicin in 

comparison to the negative control DMSO (0.2%). 

Doxorubicin was included in the screening plates used for final assessment and 
identification of potential cytotoxic CC hits. The mean cell number for batches 1 (A) and 2 
(B) at 24hr was 1059 and 894 cells whilst at 48hr numbers reduced to 844 and 562 cells, 
respectively. The average cell number for the negative control in batches 1 and 2 was 2065 
cells and 1876 cells at 24hr and to 3658 and 3253 cells at 48hr, respectively.  
 

         A list of CC hits that were potentially linked to cell number reduction, irrelevant 

of PCC induction, was identified, consisting of 49/792 CC (6%) at 24hr and a further 

12/792 (1.5%) at 48hr (Table 3.4 A and B). 

         Interestingly, the 24hr hit list included 3 CC that had initially been identified as 

potential CC hits which induced PCC, and were located in MP59-241/well F5 and 

MP64-65/wells F7 and B2 (Table 3.4). Furthermore, after 48hr, 7 CC that were 

designated as promising hits for decreasing cell number had previously been 

associated with PCC phenotype induction. These CC were located as follows: 

MP59-241/wells C8, F5 and F7; MP64-65/wells B2 and F7, and MP74-75/wells B11 

and G11 (Table 3.4).  

         Although the CC were evaluated for cytotoxic activity, assessment of the 

effect on cell number was not the principal aim of this study nor was it used as an 

independent parameter in test screening. It was chiefly carried out to provide further 

biological characterisation of compounds identified as potential hits for inducing 

PCC. However, it did show that of this targeted library, cytotoxicity was not always 

accompanied by PCC induction. It also provided useful data about the CC used in 

this screen to the library supplier.  
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Table 3.4. Identification of CC hits that reduce cell number (cytotoxicity).  
The Z score or Robust Z score for the cell number were initially calculated for 792 CC based 
on the negative 0.2% DMSO vehicle control. Doxorubicin was used in the screen plates as 
positive control for inducing cell death. The average Robust Z scores of -7 at 24hr and -24 
at 48hr for the cells number in Doxorubicin controls were identified and used as cut-off 
values to identify statistically the most potent CC hits that reduce cell number. (A) A list of 
49/792 CC (6%) hits at 24hr and (B) a further 12/792 (1.5%) at 48hr were identified. The 
highlighted pink rows included the validation of CC hits associated with PCC induction and 
cytotoxicity at (A) 24hr and (B) 48hr. 

 

 A. Cytotoxic CC 
hits (24hr)

Master Plate Name Well 
Name

Whole 
Cells 

Number  
Z score Robust 

z score 

Whole 
Cells 

Number  
Z score Robust 

Z score 

  Whole 
Cells 

Number  
 Z score Robust 

Z score

MP72-MP73 D11 42 -10.20 -30.08 56 -14.69 -17.48 49 -12.44 -23.78
MP72-MP73 D4 89 -10.00 -29.51 7 -15.03 -17.88 48 -12.52 -23.70
MP74-MP75 B11 220 -17.71 -26.81 243 -6.65 -9.72 232 -12.18 -18.26
MP76-MP77 E8 1136 -1.06 -29.10 1155 -2.15 -3.08 1146 -1.60 -16.09
MP64-MP65 F7 171 -7.02 -13.21 600 -8.72 -14.55 386 -7.87 -13.88
MP64-MP65 B2 473 -5.43 -10.19 471 -9.28 -15.54 472 -7.35 -12.87
MP72-MP73 F6 1322 -4.89 -14.75 1163 -7.03 -8.25 1243 -5.96 -11.50

MP59-MP241 F5 119 -5.65 -9.13 116 -10.95 -13.57 118 -8.30 -11.35
MP74-MP75 G11 1269 -9.86 -14.95 649 -5.01 -7.30 959 -7.44 -11.13
MP62-MP63 D11 514 -8.46 -15.54 828 -5.61 -6.70 671 -7.03 -11.12
MP70-MP71 F6 982 -11.71 -17.73 301 -2.10 -4.21 642 -6.90 -10.97
MP59-MP241 C8 403 -4.64 -7.53 145 -10.73 -13.30 274 -7.68 -10.41
MP74-MP75 C5 1119 -10.99 -16.65 1183 -2.86 -4.13 1151 -6.92 -10.39
MP76-MP77 G7 1913 -0.21 -12.21 4 -5.22 -7.46 959 -2.71 -9.83
MP72-MP73 G8 1664 -3.47 -10.65 1105 -7.43 -8.73 1385 -5.45 -9.69
MP72-MP73 D8 1768 -3.04 -9.41 967 -8.39 -9.88 1368 -5.71 -9.65
MP72-MP73 G6 1717 -3.25 -10.02 1071 -7.67 -9.02 1394 -5.46 -9.52
MP72-MP73 D6 1825 -2.80 -8.72 954 -8.48 -9.99 1390 -5.64 -9.36
MP72-MP73 B7 1709 -3.29 -10.11 1128 -7.27 -8.54 1419 -5.28 -9.33
MP59-MP241 F7 296 -5.02 -8.13 435 -8.51 -10.52 366 -6.76 -9.33
MP72-MP73 F8 1720 -3.24 -9.98 1127 -7.28 -8.55 1424 -5.26 -9.27
MP72-MP73 F7 1643 -3.56 -10.90 1248 -6.44 -7.54 1446 -5.00 -9.22
MP74-MP75 D5 1376 -9.06 -13.75 1138 -3.04 -4.39 1257 -6.05 -9.07
MP76-MP77 F6 1765 -0.37 -15.42 1378 -1.55 -2.23 1572 -0.96 -8.83
MP72-MP73 C6 1840 -2.74 -8.54 1090 -7.54 -8.86 1465 -5.14 -8.70
MP76-MP77 G5 1883 -0.24 -12.86 796 -3.10 -4.45 1340 -1.67 -8.65
MP72-MP73 E7 1877 -2.59 -8.10 1060 -7.75 -9.11 1469 -5.17 -8.61
MP72-MP73 G7 1924 -2.39 -7.54 998 -8.17 -9.63 1461 -5.28 -8.58
MP72-MP73 D7 1924 -2.39 -7.54 1008 -8.11 -9.54 1466 -5.25 -8.54
MP72-MP73 E8 1915 -2.43 -7.65 1106 -7.43 -8.73 1511 -4.93 -8.19
MP74-MP75 G7 1678 -6.80 -10.33 883 -4.07 -5.91 1281 -5.44 -8.12
MP76-MP77 E3 1831 -0.30 -13.99 1388 -1.53 -2.19 1610 -0.91 -8.09
MP74-MP75 D8 1688 -6.73 -10.22 948 -3.81 -5.52 1318 -5.27 -7.87
MP74-MP75 C7 1668 -6.88 -10.45 988 -3.65 -5.29 1328 -5.26 -7.87
MP70-MP71 E7 1410 -8.36 -12.69 910 -1.23 -2.73 1160 -4.80 -7.71
MP74-MP75 B7 1717 -6.51 -9.89 1009 -3.56 -5.16 1363 -5.04 -7.53
MP72-MP73 D5 1947 -2.30 -7.26 1227 -6.59 -7.72 1587 -4.44 -7.49
MP72-MP73 C7 1951 -2.28 -7.22 1223 -6.62 -7.75 1587 -4.45 -7.48
MP74-MP75 D6 1671 -6.85 -10.41 1126 -3.09 -4.46 1399 -4.97 -7.44
MP74-MP75 G8 1728 -6.43 -9.77 1027 -3.49 -5.05 1378 -4.96 -7.41
MP74-MP75 E6 1649 -7.02 -10.66 1196 -2.81 -4.05 1423 -4.91 -7.35
MP78-MP79 C10 907.5 -5.60 -8.71 761 -4.34 -5.94 834 -4.97 -7.32
MP74-MP75 B5 1685 -6.75 -10.25 1143 -3.02 -4.36 1414 -4.88 -7.31
MP72-MP73 B6 1967 -2.22 -7.02 1302 -6.07 -7.09 1635 -4.14 -7.06
MP60-MP61 F7 502 -9.49 -9.89 1150 -1.67 -4.22 826 -5.58 -7.05
MP70-MP71 G6 1678 -6.26 -9.54 254 -2.17 -4.33 966 -4.22 -7
MP74-MP75 F5 1735 -6.38 -9.69 1182 -2.86 -4.13 1459 -4.62 -7
MP74-MP75 E8 1808 -5.83 -8.86 1090 -3.23 -4.68 1449 -4.53 -7
MP70-MP71 B6 1708 -6.03 -9.19 367 -2.01 -4.05 1038 -4.02 -7

Batch 1 Batch 2 Average 
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Continued Table 3.4. 

 

3.2.1.7 Identification of CC hits inducing increased numbers of mitotic 
cells 

         The ability of the 792 CC screened here to increase the number of mitotic 

cells was investigated. As DMSO (0.2%) was used as a negative control in replicate 

plates, the initial statistical analyses (Z score and Robust Z scores) for %mitotic 

cells were performed based on DMSO negative controls. Then, the %mitotic cells Z 

score or Robust Z score values for each of the 792 CC were ranked in descending 

order for both replicates and also individually for the 2 different exposures: 24hr and 

48hr. CC showing scores ≥ 2 Z score or Robust Z score for both replicates were 

considered to be potential hits for increase in %mitotic cells. To reduce variations 

between the replicates, the averages for %mitotic cells Z score and Robust Z score 

values for the duplicate screens were calculated. These analyses, as previously 

described (Section 3.2.1.4.3; Scatter plots E and F in Figure 3.8) displayed 16 CC 

hits at 24hr and 4 CC hits at 48hr that showed statistically significant Z score or 

Robust Z score of ≥ +2 (Appendix 10 A and B). 

         Next, to identify the most potent CC hits that increase %mitotic cell, further 

statistical hit filtration was performed using Nocodazole (1µM) as a positive visual 

assay control for induction of the mitotic cell phenotype. The average %mitotic cell 

number for this secondary reference was 7.12% at 24hr and 6.7% at 48hr (n = 32 

wells) for the first batch (Figure 3.10A) and 17.08% at 24hr and 7.8% at 48hr (n = 

44 wells) for the second batch (Figure 3.10B) compared to the average %mitotic 

cell in the negative 0.2% DMSO vehicle control, which showed 9.4% at 24hr and 

6.2% at 48hr for the first batch and 13.82% at 24hr and 4.3% at 48hr for the second 

batch (See Section 3.2.1.4.1; Figure 3.6). 

B. Cytotoxic CC 
hits (48hr)

Master Plate Name Well 
Name

Whole 
Cells 

Number 
Z score Robust Z 

score 

Whole 
Cells 

Number  
Z score Robust 

Z score 

 Whole 
Cells 

Number  
Z score Robust 

Z score 

MP64-MP65 F7 60 -22.75 -58.86 216 -28.99 -33.85 138 -25.87 -46.35
MP64-MP65 B2 78 -22.62 -58.54 290 -28.49 -33.26 184 -25.56 -45.90
MP66-MP67 F6 7 -34.19 -62.95 6 -17.21 -25.79 7 -25.70 -44.37
MP74-MP75 G11 305 -13.00 -14.40 148 -39.01 -57.28 227 -26.01 -35.84
MP74-MP75 B11 121 -13.61 -15.08 260 -37.75 -55.42 191 -25.68 -35.25

MP59-MP241 F5 186 -26.44 -34.76 96 -19.51 -33.00 141 -22.98 -33.88
MP59-MP241 F7 226 -26.17 -34.39 501 -16.92 -28.57 364 -21.54 -31.48
MP59-MP241 C8 563 -23.87 -31.34 280 -18.33 -30.99 422 -21.10 -31.17
MP66-MP67 C1 1091 -23.01 -42.11 1848 -10.01 -15.02 1470 -16.51 -28.56
MP64-MP65 B6 1949 -9.58 -25.13 458 -27.35 -31.92 1204 -18.46 -28.52
MP74-MP75 F11 432 -12.58 -13.94 1407 -24.75 -36.30 920 -18.66 -25.12
MP66-MP67 E8 961 -24.35 -44.61 3590 -3.19 -4.83 2276 -13.77 -24.72

Batch 1  Batch 2 Average 
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Figure 3.10. The %mitotic cells in batches 1 and 2 after exposure to Nocodazole in 

comparison to the negative control DMSO (0.2%). 

Nocodazole was included in the screening plates and used for final evaluation and 
identification of potential CC hits which induced increased %mitotic cells. The mean 
%mitotic cells for batches 1 (A) and 2 (B) at 24hr was 7.12% and 17.08% while %mitotic 
cells at 48hr reduced to 6.7% and 7.8%, respectively. The %mitotic cells for the negative 
control in batches 1 and 2 at 24hr was 9.4% and 13.82% whilst at 48hr it was 6.2% and 
4.3%. 
 

          Additionally, the Z score and Robust Z score for the %mitotic cell in the 

positive control Nocodazole were calculated based on the negative 0.2% DMSO 

vehicle control. Consequently, the average Z scores of 1.03 and 4 and the average 

Robust Z scores of 3.2 and 7.2 were identified at 24hr and 48hr, respectively, 

indicating that the assay can identify a chemical inducing increased number of 

mitotic cells. Since the Robust Z score values for %mitotic cells in the positive 

control Nocodazole at both 24hr and 48hr were ≥ 2 compared to those values 

observed with Z scores, theses values were used as cut-off for final identification of 

the potential CC hits inducing increased in mitotic cell number at 24hr and 48hr. 

Consequently, a list of CC hits, that were potentially associated with inducing 

increased mitotic cells number, irrelevant of PCC induction, was identified, 

consisting of 11/792 CC (1.1%) at 24hr and a further 3/792 (0.4%) at 48hr. 

         Interestingly, the hit lists containing CC inducing increased mitotic cells at 

24hr and 48hr included some of the potential CC that had initially been identified as 

hits induced PCC in Section 3.2.1.5; Table 3.1 A and B. Two CC hits, MP64-

65/wells B2 and F7 (Table 3.5A), which were found to increase %mitotic cell 

number at 24hr were also initially included in the list of CC hits inducing PCC 

alongside reduced cell number, suggesting that these specific CC had the possible 

propensity to increase %mitotic cells and early mitotic entry (PCC) that is 

associated with cytotoxicity. A further 3 CC which induced increased %mitotic cells 

at 48hr possibly correlated with PCC induction and were associated with decreased 

cell number which were distributed as follows: in MP59-241/well F5, MP64-65/well 

F7 and MP74-75/well B11 (Table 3.5B). 
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         Although the assessment of the increase of the mitotic cells/ expressing pHH3 

Ser10 induced by CC was an additional rather than a principal parameter, some of 

the CC hits that were identified for inducing PCC predominantly also increased 

%mitotic cells, indicating a possible correlation between induction of PCC and 

increased %mitotic cells. 

 

Table 3.5. Identification of CC hits increase mitotic cell number.  
The Z score or Robust Z score for %mitotic cells were initially calculated for 792 CC based 
on the negative 0.2% DMSO vehicle control. Nocodozole was used in the screen plates as 
positive control for a chemical inducing increased number of mitotic cells. The average 
Robust Z scores of 3.2 at 24hr and 7.2 at 48hr for the cells number in Nocodozole controls 
were identified and used as cut-off values to identify statistically the most potent CC hits that 
increase mitotic cell number. (A) A list of 11/792 CC (1.1%) hits at 24hr and (B) a further 
3/792 (0.4%) at 48hr were identified. The highlighted green rows included the validation of 
CC hits associated with PCC induction and increased mitotic cell number at (A) 24hr and 
(B) at 48hr.  

 

 

3.2.1.8 Primary validation of CC hits that induce PCC at 24hr and 48hr  

        All CC hits validations were re- evaluated using a dose-response curve of 0, 

2.5, 5,10, 20 and 40µM to minimize off-target effects. The ovarian cancer cell line 

1847 was used for CC hit validation. The top and bottom rows of a 96-well plate 

comprised the negative controls DMSO (0.2%) (n = 8 wells), positive controls 

MCPH1/BRIT1 siRNA (n = 4), and secondary controls Doxorubicin (n = 4) and 

Nocodazole (n = 4). 

         It was planned to re-test all CC hits which induced PCC, a total of 17 hits at 

24hr and 27 hits at 48hr. However, in the first phase of primary validation, an 

B. CC hits increase 
%mitotic cells 

(48hr)

Master Plate Name Well 
Name

Whole 
Cells 

Number  

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number  

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number  

 %mitotic 
cells  Z score Robust 

Z score

MP59-MP241 F5 186 15.38 1.71 2.68 96 20.00 35.57 42.81 141 17.69 18.64 22.75
MP74-MP75 B11 121 6.17 7.34 11.55 260 10.14 13.50 19.19 191 8.15 10.42 15.37
MP64-MP65 F7 60 4.20 1.81 4.03 216 10.53 7.42 11.65 138 7.36 4.61 7.84

 Batch 1 Batch 2 Average 

CC hits increase 
%mitotic cells 

(24hr)

Master Plate Name Well 
Name

Whole 
Cells 

Number  

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number  

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number  

 %mitotic 
cells  Z score Robust 

Z score

MP74-MP75 B11 220 38.84 9.78 27.98 243 32.50 22.60 43.46 232 35.67 16.19 35.72
MP64-MP65 B2 473 42.18 6.23 10.78 471 42.18 6.23 10.78 472 42.18 6.23 10.78
MP76-MP77 C3 2536 2.38 1.24 3.03 961 37.52 8.18 15.48 1749 19.95 4.71 9.26
MP64-MP65 F7 171 37.22 4.87 8.35 600 37.22 4.87 8.35 386 37.22 4.87 8.35
MP72-MP73 D8 1768 28.04 4.62 8.61 967 23.43 1.84 2.33 1368 25.74 3.23 5.47
MP74-MP75 G2 2667 15.02 0.79 2.77 1597 10.19 3.80 7.68 2132 12.60 2.29 5.23
MP74-MP75 B6 1927 15.58 1.00 3.37 1284 9.54 3.26 6.65 1606 12.56 2.13 5.01
MP72-MP73 D2 2562 25.63 2.94 5.28 2191 23.50 1.88 2.37 2377 24.56 2.41 3.82
MP78-MP79 C10 6.5 8.25 5.19 5.49 761 21.18 0.82 1.01 384 14.72 3.01 3.25
MP64-MP65 E7 1319 25.81 1.74 2.78 2337 25.81 1.74 2.78 1828 25.81 1.74 3
MP64-MP65 E8 1114 25.33 1.61 2.54 2017 25.33 1.61 2.54 1566 25.33 1.61 3

 Batch 1 Batch 2 Average 
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attempt was made to select CC hits that had shown a significant Z score or Robust 

Z score (%PCC) at both 24hr and 48hr, which can be examined for validation 

purposes using the dose response curve method. Consequently, 7 CC which 

potentially induced PCC at both 24hr and 48hr, were selected, which were as 

follows; MP59-241/well F5, MP60-61/well E1, MP64-65/well B2 and F7, MP68-

69/well G7 and MP76-77/well E3 and G3 (Table 3.1 A and B). The results indicated 

that only two of these CC were validated showing a dose-related response for 

increased %PCC. These CC which were, MP64-65/well B2, that induced %PCC at 

both 24hr and 48hr whereas for MP59-241/well F5 increased PCC was only 

induced at 48hr. The remaining CC hits did not present an effective response curve 

pattern at either 24hr or 48hr (Data not shown).  

         Obviously, validation findings of the CC hits after 24hr showed only one CC 

which potential induced PCC. However, based on the fact that MCPH1/BRIT1 

siRNA induces elevated level of PCC after 48hr thus it may be more logical 

validation the CC that potentially induce PCC after 48hr. Thus, the second phase of 

primary validation focused on validating all the CC hits identified after 48hr CC 

exposure including the CC that were tested in the first phase, meaning the potential 

27 CC hits. Consequently, the second phase primary validation results revealed 

that 10 of the total 27 CC hits displayed a dose dependent response after 48hr 

exposure (Figure 3.11A). These CC were MP59-241/wells C8, F5 and F7; MP64-

65/wells B2 and F7; MP66-67/well C1; MP74-75/wells B11 and G11; and MP76-77 

wells E3 and G3 (Figure 3.11A). Interestingly, the majority of these 10 potential CC 

hits that had shown a gradual increase in %PCC had also shown cell number 

reduction (Figure 3.11B). The image from Columbus representing the cells treated 

with a variety of concentrations of the selected CC hits (MP74-75/wells B11) 

showed that induction of the PCC phenotype (highlighted in red by Columbus) 

correlated with 2 other phenotypic endpoints, namely, pHH3 positive staining 

(mitotic cell) and reduction in cell number (Figure 3.12). 

         The validation results were reported to the library supplier (Dr. Richard 

Foster) to determine the structural characteristics of the10 selected CC before 

performing the secondary validation. Consequently, 2 CC were excluded, as their 

structures indicated poor solubility. These were the CC in MP59/241/well C8 and 

MP64-65/well B2.  
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Figure 3.11. Validation of SMS hits which induced PCC after 48hr.  
The validation results revealed 10 of the 27 CC that potentially induced PCC after 48hr were 
validated. The graphs of 10 potential CC hits presenting dose responses for both (A) 
increased %PCC and (B) reduction in cell number are shown. The top 8 CC were validated 
for increase in %PCC and cytotoxicity parameters. The remaining 2 CC, that are located at 
the end of this figure, were excluded as their structures indicated poor solubility.  
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Figure 3.12. Cellular effects induced by the CC MP74-75/well B11 after 48hr.  
Representative images from Columbus software (Acapella) of the ovarian cell line 1847 
treated with a range of concentrations of the compound B11. The compound induced 
phenotypic changes in a dose responsive manner for the 3 phenotypic endpoints: induction 
of PCC (detected by Columbus and outlined in red), reduction of cell number (DAPI-stained 
cells in blue) and Increase in mitotic cell number (pHH3 Ser10-stained cells in green).  
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3.2.1.9 Secondary validation of PCC hits using individual dose 
response curve for each compound  

         The 8 remaining CC were supplied as a powder and diluted in 100% DMSO 

to a final stock concentration of 10mM. Additional validations for these 8 potential 

CC hits were executed using dose-responses with similar concentrations to those 

previously described at the first paragraph in the previous Section 3.2.1.8. However 

initial results showed that the previous dilution response curves for these CC was 

not effective enough to define or confirm the possibility of CC hits for increasing 

PCC. Therefore, to improve the effectiveness of the experiment, the specific range 

of concentrations for each individual CC hit was optimized before performing the 

secondary validation (Data not shown). 

         Next, the secondary validation for the remaining 8 CC was performed in 

duplicate using the optimal range of concentrations for each individual CC. The 

results indicated that 4 CC hits were confirmed, two of which clearly induced the 

highest %PCC. These were B11 (MP74-75; Leeds University code: LDS-016186) 

(20.64%) and F5 (MP59-241; Leeds University code: LDS-015654) (12.14%) at 

5µM and 2.5µM, respectively (Figure 3.13 A and B). Two other CC, F7 (MP59-241; 

Leeds University code: LDS-015656) and G11 (MP74-75; Leeds University code: 

LDS-016246), induced a lower increase in %PCC (7.70%) and (3.63%) at 40µM 

and 10µM, respectively, and were considered to be weaker hits (Figure 3.13 C and 

D).  
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Figure 3.13. Secondary validating of the CC hits which induced PCC after 48hr.  
Four of the 8 potential hits were confirmed by secondary validation for response of induction PCC and reduction in cell number. Two CCs, (A) B11 and (B) F5, 
induced elevated %PCC (20.64% and 12.14% at 5µM and 2.5µM, respectively) and were considered strong hits. Another 2 CCs, (C) F7 and (D) G11, induced 
lower increase in %PCC rate (7.70% and 3.63% at 40µM and 10µM, respectively) and were thus considered to be weaker hits. 
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3.3 Discussion  

         MCPH1/BRIT1 plays a vital role in regulating chromosome condensation. 

Specifically the N-terminal domain of hMCPH1/BRIT1 has been found to inhibit the 

action of condensin II by competing for its chromosomal binding sites in vitro 

(Yamashita et al., 2011). However, MCPH1/BRIT1 deficiency, particularly in the 

pocket of the N-terminal BRCT domain, has been correlated with induction of the 

PCC phenotype, suggesting that this domain may be an essential part of protein-

protein interaction, which regulates chromosome condensation (Richards et al., 

2010).  

         The aim of this study was the identification of CC that potentially target, or 

bind to the N -terminal pocket of MCPH1/BRIT1 and subsequently inhibit N-terminal 

activity thus inducing PCC. These would be ideal molecular tools for further cellular 

investigations of biological implications of MCPH1/BRIT1 in regulation of 

chromosome condensation in normal and cancerous cells. Also, the CC can be 

used as an inhibitor for confirming any novel cellular interactions with 

MCPH1/BRIT1. Thus, a library of 792 CC were selected from an original library of 

33,000 compounds which, based on the 3D crystal structure of the N-terminal of 

MCPH1/BRIT1, were predicted to fit within the N-terminal pocket of MCPH1/BRIT1. 

The aim of this study was to test the selected 792 CC by performing SMS to identify 

CC inducing PCC using an automated high-content microscopy imaging system, 

Operetta, provides multi-channel imaging tools for imaging and measuring the 

desired phenotypic changes that could have been caused by the CC whilst the 

software Columbus offers a sophisticated phenotypic images and visualization of 

the whole 96 well-plate which simplifies the exclusion of plates with artefacts and 

analyses the images to convert them into quantitative data.  

         Indeed, using the Operetta system helped to assess three different 

parameters: detecting PCC, counting cell viability (cytotoxicity) and counting mitotic 

cells using the known mitotic marker pHH3 Ser10. However, the further evaluations 

of the 792 CC for the cytotoxic activity and increased mitotic cell number were not 

the principal aims of this study nor were they used as independent parameters in 

test screening. They were performed to provide further biological characterisation of 

compounds identified as potential hits for inducing PCC. Also, they also provided 

useful data about the cellular effects of these CC used in this screen to the library 

supplier. 
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         The SMS was developed using an OVCA cell line 1847. This adherent cell 

line, which grows as a monolayer, has demonstrated from previous studies in our 

lab an efficient siRNA transfection at 75nM for targeting of MCPH1/BRIT1 to induce 

the PCC phenotype, which was easily detected during image processing using the 

Operetta. A CC concentration of 20µM (containing 0.2% DMSO) was judged to be 

the appropriate strength for use in the primary small molecule inhibitor screen to 

induce PCC with low cell cytotoxicity in the selected OVCA 1847 cell line. Similar 

concentration 20µM (containing 0.2% DMSO) has been used in a HTS performed 

using U2OS cell line for identification of cytotoxic compounds (Martin et al., 2014). 

Additionally, the CC incubation period was set at 24hr and 48hr since the cellular 

and biological effects of these new CC were unknown and this allowed for a 

comprehensive characterisation of all changes to phenotypes for each of the CC 

being tested at two different time points. Additionally, incubating the CC at 48hr was 

essential since MCPH1/BRIT1 siRNA experimentally needs 24 to 48 hours to 

trigger (10%-20%) PCC in 1847 or U2OS cell lines. 

         In contrast, other studies have used drug-inducing PCC phenotypes such as 

Okadaic acid (OA) and Calyculin A (Cal A) inhibitors (Gotoh et al., 1995). Cal A, in 

particular, at 50nM concentration and 3hr incubation in somatic cells are required to 

induce 20% PCC. In addition, PCC can be induced by 0.5µM of OA in less than 3hr 

using myeloid leukaemia cell lines HL-60 and U937 (Ishida et al., 1992). However, 

the CC in the present study are structurally different since they were selected for 

their predicted ability to fit into the N-terminal pocket of MCPH1/BRIT1 (which is 

required for normal chromosome condensation) and therefore 20µM of CC 

concentration and 24hr to 48hr incubation would be appropriate and sufficient to 

induce PCC.  

         The reliability of the positive control MCPH1/BRIT1 siRNA for inducing PCC 

compared to NT-siRNA was previously confirmed in HeLa and U2OS cell lines 

(Trimborn et al., 2004; Trimborn et al., 2006; Adams et al., 2014). Although the 

positive control significantly induced an elevated level of PCC (from 8%-15%) 

compared to DMSO (≤ 1%) for both replicates and at the two exposure times, it 

significantly decreased the cell number to between 400-961 cells, in comparison to 

DMSO (between 1800-3650 cells) for both time points. This reduction in cell 

number can be explained as MCPH1/BRIT1 functions in cell apoptosis by 

interaction with E2F1. This interaction is responsible for activation genes involved in 

DNA damage response and apoptosis including BRCA1, CHK1, p73, TP53, 

caspases 3 and 7. Inhibition of MCPH1/BRIT1 has showed to reduce the activity of 

p73 in DNA repair or E2F1-dependent apoptosis (Yang et al., 2008; Venkatesh et 
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al., 2013). This might contribute in decreasing genomic integrity thus other pro-

apoptotic regulator proteins, such as BAX or BAK, may be activated which lead to 

reduce cell viability.  

         Since the positive control wells reflected variation in %PCC and cell number 

across all tested plates at both batches and different time points, this would 

significantly impact on identification of the most efficient on-target effect and 

maximise off-target effect. Thus, in this study the negative control 0.2% DMSO was 

used as a reference for Z or Robust Z scores to statistically evaluate the diverse 

cellular effects of CC. Since this screen used a reasonably low concentration of 

CCs (20µM) it is acceptable to use the cut-off scores of +2 for identifying CC hits 

that increase PCC /or mitotic index/pHH3 Ser10 expression and ≤ -2 for CC hits 

that reduce cell number (cytotoxicity) as these cut-off scores produced statistically 

significant p values at 0.0455 (Martin et al., 2014).  

          The Z or Robust Z scores calculations for CC inducing PCC revealed there 

were potentially 17 and 27 hits after 24 and 48hrs, respectively. It was noted that 

the effect of the CC potentially inducing PCC differed for the two time points (Table 

3.1 A and B). Interesting induction of PCC by some CC was correlated with 

reduced cell number (Table 3.2 A and B) or increased %mitotic cells/pHH3 Ser10 

expression (Table 3.3 A and B), indicating that the CC were inducing similar cellular 

effects to those seen with the positive control MCPH1/BRIT1 siRNA. Other CC hits, 

included in the hit lists at 24hr and 48hr, and identified to potentially induce PCC, 

did not show significant effect on cell number or mitotic index. This suggested that 

the diversity in the structure of these CC hits, which might influence their cellular 

and biological reactions. The reduction in cell number or increased mitotic cells 

expressing pHH3 Ser10, which accompanied PCC induction by some CC might be 

similar to the effects of the known PCC inducer compounds such as Cal A or OA in 

fibroblast and tumour cell lines. (Kanda et al., 1999; Ishida et al., 1992; Alsbeih and 

Raaphorst, 1998; Huang et al., 2006). Expression of pHH3 Ser10 is considered to 

be a significant marker for chromatin condensation in mitosis and may be a 

causative factor for PCC induction (Huang et al., 2006; Hendzel et al., 1997; Sauvé 

et al., 1999).  

         The primary validation for CC inducing PCC was conducted using the dose 

response curve method as previously mentioned in sections 3.2.1.8 and 3.2.1.9. 

Consequently, 8 CC were validated at 48hr including MP59-241/wells F5 and F7; 

MP64-65/well F7; MP66-67/well C1; MP74-75/wells B11 and G11; and MP76-77 

wells E3 and G3 (Figure 3.11). Thus, this finding, in turn, may possibly confirm the 
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alignment in inducing PCC phenotype after approximately 48hr between the CC 

hits that were validated after 48hr and MCPH1/BRIT1 siRNA. 

         The differences in the cellular morphology of PCC phenotype between the 

MCPH1/BRIT1 siRNA positive control and the potential CC hits were expected. 

However, in this study, it was not possible to perform additional analysis to 

investigate these differences. Therefore, the visual inspection was carried out using 

Columbus with the support from Dr. Sandra Bell to ensure PCC cells that were 

detected by Columbus are real. The phenotypic differences of siRNA and CC may 

occur due the fact that small molecule inhibitor targets protein that may be 

continuously active as a scaffold, however, the siRNA would disrupt this whole 

protein-protein interaction. For instance, if the physical enzymatic activity of the 

scaffold is important for the biological function of the target protein, then siRNA can 

inhibit both functions while the small molecule inhibitor inhibits only the target 

protein (Weiss et al., 2007). Moreover, since the primary screen was set with robust 

negative and positive controls for the compound or for siRNA in which the off-target 

effect can be assessed, the resulting biological phenotypes of both siRNA and the 

small molecule inhibitor are independently acceptable and they are not due to off-

target effect (Weiss et al., 2007).          

         In the secondary validation four CC hits displayed PCC at 48hr. The two 

strongest CC that induced the highest %PCC at lower concentrations are F5 

(12.14%) (MP59-MP241) and B11 (20.64%) (MP74-MP75).  Whereas G11 (MP74-

MP75) and F7 (MP59-MP241) induced lower levels of PCC at very high 

concentration, leading these hits to be considered as weak CC hits. Obviously, the 

validated four CC hits induced higher or lower levels of PCC at different 

concentrations, which indicated that their chemical structures are not similar thus 

their biological reactions in inducing PCC were expected to be dissimilar.  

         Overall, a high throughput assay was developed and performed in duplicate 

to identify small molecules which induce PCC using the 1847 cell line. A secondary 

validation screen using dose response curves has revealed four potential CCs. 

Further experiments are warranted to confirm the fit of these validated CC hits in 

the N-terminal pocket of MCPH1/BRIT1. Additional analyses are required to confirm 

the cytotoxicity effect of these CC which could eventually allow for development of 

small molecule sensitizer that could promote the effect of existence chemotherapy 

for breast and ovarian cancer patients with deficiency in MCPH1/BRIT1 function. 
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Chapter 4 Analysis of human protein kinase and ubiquitin 
siRNA sub-libraries for genes inducing PCC 

4.1 Introduction 

         Research has investigated the function of MCPH1/BRIT1 in different cellular 

pathways (See Chapter 1: Section 1.1.6). Depletion of MCPH1/BRIT1 using siRNA 

leads to the production of cells with a phenotype called premature chromosome 

condensation (PCC) in G2 phase, which is a consequence of premature entry into 

mitosis before completing DNA replication. However, the mechanism underlining 

MCPH1/BRIT1 function in regulating chromosome condensation during the cell 

cycle has yet to be fully elucidated. Thus, we hypothesised that since 

MCPH1/BRIT1 depletion is associated with the cellular phenotype PCC this can be 

utilised in a high throughput imaging system combined with siRNA library 

knockdown to identify genes that exhibit a similar phenotype to PCC. The 

BioScreening Technology Group (BSTG) at the University of Leeds performed a 

Dharmacon siGENOME SMARTpool siRNA screens that targets the human protein 

kinase (hPK) and ubiquitin (Ubq) sub-libraries using induction of PCC as a 

phenotypic read out, using a high throughput/high content imaging system 

(Operetta and Columbus software analysis system). 

         Utilising the siRNA libraries that target subsets of genes is a powerful 

application, providing a direct and clearer understanding of the gene expression 

function for subsequent drug discoveries and novel target validation, especially in 

cancer. The involvement of MCPH1/BRIT1 deficiency in cancer progression 

indicates there is an urgent need to clearly identify the role of MCPH1/BRIT1 in 

different cellular pathways. Therefore, given the natural function of RNAi in 

suppressing gene expression and inhibiting protein synthesis, this is an effective 

tool for identifying the molecular and cellular changes involved in cancer initiation 

and progression may pave the way to developing more effective targeted cancer 

therapies that interfere with these molecular targets, killing cancer cells effectively 

and sparing normal cells. 

         This PhD thesis aimed to analyse the hPK and hUbq siRNA sub-libraries 

using visual and Z score statistical analysis to identify genes that induce PCC in 

cells with intact MCPH1/BRIT1 function. Identification of genes where knockdown 

of which causes PCC could facilitate the identification of novel pathways involved in 

the regulation of chromosomal condensation. 
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4.2 Results 

4.2.1 Statistical analysis of hPK and hUbq siRNAs for hits 
inducing PCC 

The hPK and hUbq siRNA sub-libraries were selected to identify any further gene 

regulator of DNA condensation together with MCPH1/BRIT1 in the cell cycle or 

DNA damage pathways.  

 

4.2.1.1 High throughput screening assay development performed by 
the BSTG  

         The hPK or hUbq siRNA screens were individually performed in duplicate by 

the BSTG with the aim of identifying genes that induce PCC in U2OS cells in the 

presence of functional MCPH1/BRIT. In both screens, a U2OS osteosarcoma cell 

line was used due to its monolayer growth with a large cytoplasmic area facilitating 

detection of nuclei at high resolution (Martin et al., 2014; Adams et al., 2014; Ghosh 

et al., 2005). U2OS cells of the appropriate density (6000 cells/well) were incubated 

with 720 siRNA pools, which were distributed in 9 plates (96 wells format), at a final 

concentration of 50nM. Each individual siRNA sub-library (hPK or hUbq) were 

transfected using a single reverse transfection (RT) for 72hr. These cells were then 

fixed with ice-cold methanol followed by DAPI nuclear staining. The images were 

then automatically captured using the PerkinElmer Operetta high-content imaging 

system. The images for the 96 wells were acquired using an appropriate single 

focal plane that was set at a suitable angle for displaying a large area of complete 

nuclei. By using a 20× objective lens, fifteen fields were selected for each well, it 

was expected that detection of about 500-600 complete nuclei per field would be 

sufficient to generate a reproducible PCC inducer assay.  

      BSTG developed an analysis protocol to detect both nuclei number and PCC 

cells and confirmed the transfection efficiency of high through hPK and hUbq siRNA 

screens, which will be detailed below.  

 

4.2.1.1.1 Detection of DAPI stained nuclei 

        Nuclei numbers were identified as separate objects (Figure 4.1A). Cell number 

was calculated using the Columbus software system and a specific analysis 

protocol that automatically recognised the nucleus and counted the number of 
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nuclei in each field for each well in the plate. Thus, any incomplete nuclei located at 

the edge of the image were excluded from the analysis (highlighted in red; Figure 

4.1A). Whole DAPI stained nuclei with a size greater than 100µm2 were selected as 

objects (highlighted in green; Figure.4.1A). Nuclear number analysis protocol also 

included irregular bright DAPI nuclei. For example, cells undergoing mitosis or 

apoptosis (arrowhead; Figure 4.1A) but excluded cell debris.  

         Also, during image analysis, irregular overlapping nuclei were seen and 

detected as one object (examples highlighted with arrows; Figure 4.1A). Though, 

this was only seen in a few cells per field of view and more specifically in wells with 

untransfected cells that had an increased density. Consequently, this low detection 

rate of overlapping nuclei was considered acceptable for a high-throughput screen. 

Overall, the automated nuclear number analysis protocol was used as a surrogate 

for assessment of cell number in hPK and Ubq siRNA screens.  

 

4.2.1.1.2 Determining transfection efficiency of high throughput siRNA 
screen 

         In order to confirm a high level of siRNA transfection in U2OS cells, a number 

of siRNA transfection efficiency controls were silenced in U2OS cells by RT. PLK1 

has an important role in cell proliferation (Elmehdawi et al., 2013) thus, using RT 

siRNA to suppress this significantly and consistently reduces cell number. It was 

therefore considered to be a reliable readout for transfection efficacy. Moreover, the 

BSTG also examined knockdown of inner centromere protein (INCENP) and 

Kinesin family member 11 (KIF11). Silencing these genes showed a similar 

phenotype to that seen with PLK1 siRNA, with a significant decrease in cell number 

observed compared with a non-targeting siRNA (Figure 4.1B).  

         Furthermore, another siRNA control targeting Cyclophilin B was transfected 

into U2OS cells. This control was recommended by Dharmacon for more than 20 

different cell lines (www.thermoscientificbio.com/resource-library). Following 

transfection alongside NT-siRNA, RNA was extracted to perform qRT-PCR. A 94% 

knockdown of cyclophilin B expression was detected compared to NT-siRNA, 

indication the suitability of U2OS cell line for obtaining sufficient siRNA transfection 

(Figure 4.1C).          

         Overall, siRNA knockdown of PLK1, INCENP, KIF11 or Cyclophilin B 

provided a functional and visual assessment of cell number reduction or a 

quantitative assessment of siRNA transfection efficiency in U2OS cell line. 
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Figure 4.1. Detection of nuclei using Columbus and assessment of siRNA 
transfection efficiency.  
(A) U2OS cells stained with DAPI (blue) were imaged using the fluorescence microscopy 
imaging system Operetta. Columbus software selected whole cells, which were highlighted 
in green compared to the border objects (incomplete cells) that were highlighted in red. 
PLK1 siRNA caused a significant reduction in nuclei number compared with non-targeting 
siRNA. Arrow shows overlapping nuclei while arrowheads displays mitotic/apoptotic cells. 
(B) Graph presenting the siRNA RT of PLK1, INCENP and KIF11, which caused a 
significant reduction in cell number, compared with NT-siRNA (p < 0.01). (C) Graph showing 
the reverse siRNA transfection of Cyclophilin B, which caused a 94% reduction in mRNA 
level compared with non-targeting siRNA, demonstrating a quantitative evaluation of 
transfection efficiency. Source: Image is adapted from (Adams et al., 2014).  

 

4.2.1.1.3 Detection of DAPI stained PCC cells  

         MCPH1/BRIT1 siRNA was selected as an appropriate positive control since 

detection of PCC cells has previously been shown to provide a reliable readout of 

defective MCPH1/BRIT1 function in HeLa and U2OS cells (Adams et al., 2014; 
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Trimborn et al., 2004). Additionally, a quantitative analysis protocol had been 

optimized to detect the number of spots per DAPI stained nucleus in the U2OS cell 

line using Columbus software; thus, any nucleus with more than 14 spots was 

designated a PCC cell (Figure 4.2A; PCC cells highlighted in green) compared to 

the normal cell population (Figure 4.2A; highlighted in red).  

Figure 4.2. Detection of PCC and MCPH1/BRIT1 control validation.  
(A) Images were taken from Columbus software. DAPI stained cells (blue): U2OS cells 
treated with MCPH1/BRIT1 siRNA. Spot identification: the number of spots (highlighted by 
coloured outlines), for each DAPI stained cell, was identified by using modified “find spots” 
algorithm. PCC segregation: cells with greater than 14 spots were selected as PCC cells 
(green) compared to the normal cell population (red). (B) Graph to show that using different 
U2OS cell passage number did not reveal any significant difference in inducing  % PCC by 
MCPH1/BRIT1 siRNA (p < 0.001). (C) Confirming transfection efficiency of MCPH1/BRIT1 
siRNA at the mRNA level after 48hr in which MCPH1/BRIT1 gene expression reduced to an 
81% in compared with the non-targeting control. (D) Western blot image showing that 
MCPH1/BRIT1 siRNA-treated U2OS cells reduced the protein expression of MCPH1/BRIT1 
after a 72hr transfection. Source: Image is adapted from (Adams et al., 2014).  
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         Inducing PCC using siRNA knockdown of MCPH1/BRIT1 has been repeated 

on 5 additional passages through a number of weeks examining different batches 

of each reagent. MCPH1/BRIT1 siRNA induced PCC at a level of 15% to 20% of 

the total cell population. NT-siRNA showed a consistent level of PCC < 1%. The 

mean %PCC values of each passage are illustrated in (Figure 4.2B) (p < 0.001, 

Student t-test; n = 5). Different passage numbers did not reveal a significant 

difference in induced levels of PCC. Also, using different batches of reagent had no 

significant effect on induced levels of PCC. Thus, PCC cells were used as a 

functional readout for confirming MCPH1/BRIT1 knockdown in the hPK and hUbq 

siRNA screens. The transfection efficiency of MCPH1/BRIT1 siRNA in U2OS cells 

was validated by the BSTG at both the mRNA and protein levels (Figure 4.2 C and 

D). 

 

4.2.1.2  Image analysis to ensure fidelity of hPK and hUbq siRNA 
screening controls  

         Initially to identify PCC inducers from the hPK or hUbq siRNA screens, the 

reproducibility of the positive control (MCPH1/BRIT1 siRNA) (n = 18 wells), 

negative control (NT-siRNA) (n = 36 wells) and transfection control (PLK1 siRNA) 

(n =18 wells) in both replicates was assessed. An overall visual inspection was 

conducted across the screen replica plates of wells treated with controls or with a 

pool siRNA, to detect any artefact existing in any plate so that potential solutions for 

minimising such effects could be used, such as re-staining the plate with DAPI or 

re-scanning it using the Operetta. The efficiency of Columbus in correctly detecting 

cells with PCC was also evaluated.   

         Thereafter, the mean %PCC and cell number for each individual control were 

statistically assessed in both replicates for both siRNA sub-libraries. Since the 

function of MCPH1/BRIT1 is to regulate cell growth and apoptosis (Yang et al., 

2008; Mai et al., 2014). The analysis conducted on the positive control in both 

replicates revealed that a RT of MCPH1/BRIT1 (50nM) by siRNA caused a 

reasonable increase in %PCC accompanied by an expected reduction in cell 

number compared to the NT-siRNA in both batches as they illustrated in Figures 

4.3 and 4.4 for both siRNA sub-libraries (hPK or Ubq) A and B or C and D, 

respectively. The mean cell number for the transfection control PLK1 siRNA was 

also significantly lower at 92.89 and 114.1 in hPK siRNA screen while for the hUbq 

siRNA screen, it was 29.4 in the first batch and 52 in the second batch compared to 

the cell number for NT-siRNA, confirming successful siRNA transfection for the 
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entire screen in the first and the second batches for both siRNA sub-libraries (p < 

0.0001; Unpaired t test) (Figure 4.4).  

(hPK siRNA screen) A  B 

 

(hUbq siRNA screen) C D 
 
 
 
 
 

Figure 4.3. Evaluation of the %PCC induced by controls used in hPK and hUbq siRNA 
screens in batch 1 and batch 2.  
For the hPK siRNA screen, the %PCC induced by MCPH1/BRIT1 siRNA was significant in 
both batches 1 and 2 (13%) and (15%) (A and B), respectively as opposed to NT-siRNA (p 
< 0.0001; Unpaired t-test). For the hUbq siRNA screen, the positive control was 
MCPH1/BRIT1 siRNA (n = 18 wells), which induced a significant mean %PCC in batch 1 
(C) and batch 2 (D) of (11%) and (14%), respectively, compared to the negative control NT-
siRNA that had no effect on %PCC for either batches (n = 36 wells) (p < 0.0001; Unpaired t-
test).  

 

 
 
 
 
 
 

MCPH1 siRNA NT-siRNA
0

10

20

30

%
PC

C

Batch 2

MCPH1 siRNA NT-siRNA
0

5

10

15

20

25

%
PC

C
 Batch 1 

MCPH1 siRNA NT-siRNA
0

5

10

15

20

%
PC

C

 Batch 1 

MCPH1 siRNA NT-siRNA
0

5

10

15

20

25

%
PC

C
Batch 2



- 134 - 
 

 

 (hPK siRNA screen) A  B 

 
(hUbq siRNA screen) C D 

 
Figure 4.4. Evaluation of the cell number for the controls used in the hPK and hUbq  
siRNA screens in batches 1 and 2.  
The positive control (MCPH1/BRIT1 siRNA), in batches 1 and 2, significantly reduced the 
mean cell number to (459) (A) and (323) (B) compared to the negative control NT-siRNA 
(2241) (A) and (1957) (B), respectively (p < 0.0001). MCPH1/BRIT1 siRNA reduced 
significantly cell number in batches 1 (C) and 2 (D)  (285.9) and (170.8), respectively, 
compared to the NT-siRNA at 1943 (C) and 2252 (D). The transfection control PLK1 siRNA 
in hPK and hUbq siRNA screens also displayed a significant reduction in cell number in 
both batches compared to NT-siRNA (p < 0.0001), confirming the siRNA transfection 
efficiency of the entire screens in both batches.  

 

4.2.1.3 Validation of hPK siRNA screen reproducibility 

As previously described, monitoring cell number by using the positive transfection 

control PLK1 siRNA initially confirmed the high transfection efficiency using the 

screening procedures. However, the objective of the screen was to identify genes 

whose knockdown caused PCC. Thus, in order to assess the reproducibility of 

%PCC induced by hPK or hUbq siRNA screens in both replicates, a linear 

regression analysis was performed to determine if there was a significant positive 
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correlation between replicates 1 and 2 of the hPK or hUbq siRNA screens (r = 

0.8391 (A)) or (r = 0.7986 (B)); p < 0.0001; n = 720) (Figure 4.5 A and B).  

             A (hPK siRNA screen)                          B (hUbq siRNA screen) 
 

Figure 4.5. Linear regression plots representing the comparison of %PCC for the 
respective 720 siRNAs from the replica hPK and hUbq sub-libraries.  
A strong significant correlation was identified between the two replicates of hPK (A) and 
hUbq (B) siRNA sub-libraries. 
 

4.2.1.4 Analysis of hPK and hUbq siRNA screens for PCC hits 
identification 

         Different statistical methods were tested before performing the final analysis 

of the hPK siRNA screen in order to identify the most appropriate statistical protocol 

for identification of hits. Initially, the Z score analysis for hPK siRNA screen was 

performed using a comparison with the negative control NT-siRNA. This resulted in 

extremely high number of potential siRNA hits (104) that showed a Z score of ≥ 2 in 

both replicates. The scatter blots in (Figure 4.5 A and B) representing the Z scores -

%PCC for 720 siRNAs from either the hPK or hUbq screens respectively in both 

replicates. 

         Thus, an attempt was made to use a more stringent control, which was the 

positive MCPH1/BRIT1 siRNA control for Z score analysis of each plate individually 

in the hPK siRNA screen. The use of the positive control to calculate Z score for 

hPK siRNA screen showed only one siRNA hit which was PLK1 and this gene may 

be considered as a false positive hit based on visual examination during imaging 

analysis that showed PLK1 depleted cells with fragmented nuclei, which are 

different to the morphology of PCC cells. Thus, the elevated %PCC observed in 

PLK1 depleted cells might be due to the experimental errors in the detection 

algorithm used which caused the false increased PCC. 
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                                 A (hPK siRNA screen) 

 

 

 

 

 

 

 

 

                        B (hUbq siRNA screen)  

  

 

 

 

 

 

 

Figure 4.6. Scatter plots showing the distribution of Z scores -%PCC for 720 siRNAs 
from the hPK or hUbq screens.  
The Z scores for each siRNA are shown as red circles in replicate 1 and grey squares in 
replicate 2. The Z score was calculated based on the negative controls NT-siRNA (mean 
%PCC) in each plate individually. Thus, siRNAs from both replicates showing an average Z 
score ≥ 2 are designated as hits. 

 

         Next, since the %PCC induced by the positive controls MCPH1/BRIT1 

knockdown revealed variation in %PCC between plates in both batches potentially 

causing an inaccurate Z score analysis, the mean %PCC (SD) produced by the 

positive controls was instead calculated individually for each batch (n = 18 

wells/batch). The mean %PCC (SD) of each batch was then used as a main 

reference when calculating the %PCC Z score to ensure the correct identification of 

siRNA hits. However, the Z score batch analysis using the positive control did not 

demonstrate a significant improvement in the identification of siRNA hits, again only 

identifying one siRNA hit PLK1. 
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 Lastly, a decision was made to select a small number of potential hPK siRNA hits 

for validation by using the hPK siRNA hit list, (CDK1/CDC2; TTK/MPS1; CAMK2N1 

and WEE1), which was generated based on the negative NT-siRNA control 

alongside %PCC values of these potential siRNA hits. Utilising %PCC for hits 

selection was required to distinguish between siRNA hits with lower or higher 

%PCC (See below Table 4.1).  

         Similarly, the Z score statistical analysis for %PCC and cell number of the 

hUbq siRNA screen were performed for each plate individually in batch 1 and batch 

2 using the negative control NT-siRNA.  Consequently, only 33 siRNAs showed a Z 

score %PCC ≥ 2 and these were identified as hits that might potentially induce 

PCC. The siRNA hit FBXO5/EMI1 was selected from hUbq sub-library for further 

validation (See below Table 4.2). 

         In addition, since MCPH1/BRIT1 siRNA greatly decreased the cell number, it 

proved to be of little practical use as a control for calculating the Z score-cell 

number in attempting to identify siRNAs with a significant reduction in cell number 

in hPK or hUbq siRNA screen. Therefore, the mean cell number of wells treated 

with NT-siRNA was used as a control in each plate individually to calculate the Z 

score-cell number, since these had no effect on cell number. Consequently, any 

siRNA hits producing a Z score cut-off ≤ -2 and causing noticeable cell death in 

both replicates were highlighted during the hit analysis procedure. In addition to 

reducing the identification of false negative hits, this method also provides further 

annotation for the phenotypic effect of the potential PCC inducer siRNA hits. For 

instance, an increase in the %PCC for some siRNA hits was accompanied by a 

reduction in cell number, while other siRNAs had no effect on cell number (See 

below Tables 4.1 and 4.2). 

 

4.2.1.5 Validation of selected hPK siRNA hits using four deconvoluted 
ON-TARGET plus siRNAs 

         As previously mentioned that only 4 siRNAs from the hPK sub-library 

(CDK1/CDC2; TTK/MPS1; CAMK2N1 and WEE1) were selected for validation as 

potential PCC inducer hits, based on their %PCC (≥  8%) and Z scores (≥ 2) (Table 

4.1). 
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Table 4.1. A list of 104 siRNA hits generated from hPK siRNA screen in batches 1 and 
2 based on the negative control NT- siRNA.  
Potential siRNA hits showed a Z score of ≥ 2 in both replicates. Average %PCC of potential 
siRNA hits was ranked in descending order. The highlighted siRNA hits were selected for 
validation. 
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PK1 C6 95 31.0 -5.8 28.5 115 39.4 -7.9 43.4 105 -6.9 35.2 35.9 PLK1
PK1 D2 549 16.6 -4.6 14.5 749 13.7 -5.2 13.8 649 -4.9 15.1 14.2 CDC2
PK2 F10 1093 10.3 -1.6 16.3 1429 13.2 -1.7 63.0 1261 -1.6 11.8 39.7 CAMK2N
PK6 G3 1122 8.1 -3.6 18.4 814 14.4 -3.4 25.0 968 -3.5 11.3 21.7 CDK5R1
PK5 G2 766 7.6 -6.8 6.3 702 12.9 -10.4 14.1 734 -8.6 10.2 10.2 PRKY
PK1 A2 1121 9.9 -3.1 8.0 999 9.4 -4.1 8.9 1060 -3.6 9.6 8.4 TTK
PK7 G5 1017 12.3 -2.7 12.6 942 6.2 -6.0 9.5 980 -4.3 9.3 11.0 PFKL
PK6 G4 226 8.5 -5.8 19.3 55 8.9 -5.9 14.7 141 -5.8 8.7 17.0 WEE1
PK8 G5 1292 8.7 -3.6 12.8 838 8.1 -4.2 22.1 1065 -3.9 8.4 17.4 PCTK2
PK1 F6 2007 8.2 -0.7 6.4 1941 8.6 0.0 7.9 1974 -0.4 8.4 7.2 PHKG2
PK1 C2 1708 8.0 -1.5 6.2 1894 7.1 -0.2 6.2 1801 -0.9 7.5 6.2 ALS2CR2
PK7 H8 1062 6.9 -2.5 6.5 1062 6.9 -2.5 6.5 1062 -2.5 6.9 6.5 SRMS
PK6 G2 1596 5.2 -2.4 11.0 1003 8.1 -2.8 13.3 1300 -2.6 6.6 12.1 MAST2
PK8 E2 2113 6.4 -0.8 8.9 1548 6.6 -1.5 17.6 1831 -1.2 6.5 13.2 PTK9L
PK6 H2 1046 5.6 -3.8 12.2 755 7.3 -3.6 11.7 901 -3.7 6.5 12.0 TNK1
PK2 C4 946 4.5 -1.8 6.1 1117 8.2 -2.4 36.7 1032 -2.1 6.4 21.4 PFTK1
PK4 A10 888 2.4 -7.9 2.7 828 9.8 -4.9 12.6 858 -6.4 6.1 7.6 JAK2
PK3 H5 782 5.9 -8.1 5.6 720 6.0 -6.3 8.2 751 -7.2 5.9 6.9 PLK4
PK1 G2 1498 4.8 -2.1 3.2 1602 6.9 -1.5 5.9 1550 -1.8 5.9 4.5 ATM
PK1 E3 1526 5.3 -2.0 3.6 1395 6.4 -2.4 5.4 1461 -2.2 5.8 4.5 GRK5
PK2 D4 558 4.2 -2.5 5.5 520 7.4 -3.8 32.2 539 -3.2 5.8 18.9 MYLK2
PK1 B6 2057 5.8 -0.6 4.1 1244 5.4 -3.0 4.3 1651 -1.8 5.6 4.2 MASTL
PK1 D7 1877 5.9 -1.1 4.2 1705 5.3 -1.0 4.1 1791 -1.1 5.6 4.2 CRIM1
PK1 G8 1093 5.3 -3.2 3.6 1359 5.3 -2.5 4.2 1226 -2.8 5.3 3.9 MIDORI
PK3 G3 1292 5.5 -5.5 5.1 882 5.1 -5.6 6.9 1087 -5.5 5.3 6.0 STK22C
PK2 H5 477 4.0 -2.7 5.1 235 6.5 -4.5 27.9 356 -3.6 5.3 16.5 ADP-GK
PK2 C10 2396 4.2 0.7 5.5 1703 6.3 -1.0 26.4 2050 -0.1 5.2 16.0 AKT1
PK3 E5 2077 5.9 -1.6 5.5 1996 4.5 -0.2 5.9 2037 -0.9 5.2 5.7 FASTK
PK1 A6 930 6.2 -3.6 4.5 592 4.1 -5.9 2.8 761 -4.7 5.2 3.6 COASY
PK3 E11 1081 5.1 -6.6 4.7 669 5.2 -6.6 7.0 875 -6.6 5.1 5.8 PRKCL2
PK1 C9 1905 5.9 -1.0 4.1 2347 4.4 1.7 3.1 2126 0.4 5.1 3.6 MAP3K14
PK1 C7 1337 5.3 -2.5 3.6 1564 4.9 -1.6 3.7 1451 -2.1 5.1 3.6 MINK
PK2 G2 2271 5.4 0.5 7.6 1991 4.6 -0.3 17.6 2131 0.1 5.0 12.6 PRKCL1
PK4 F6 2416 4.8 1.5 6.6 2964 5.0 2.4 5.7 2690 1.9 4.9 6.2 DUSTYP
PK9 E2 1720 4.4 -3.3 12.5 1514 5.0 -3.9 16.8 1617 -3.6 4.7 14.6 AMHR2
PK1 C5 2499 4.0 0.6 2.4 2041 5.1 0.4 3.9 2270 0.5 4.6 3.1 ABL2
PK1 E5 1743 5.6 -1.4 3.9 1675 3.4 -1.2 2.0 1709 -1.3 4.5 2.9 UMPK
PK2 C3 1991 3.7 0.0 4.6 1748 5.3 -0.9 21.3 1870 -0.4 4.5 13.0 RPS6KB2
PK3 F7 1921 5.6 -2.3 5.2 2107 3.3 0.3 4.0 2014 -1.0 4.5 4.6 MKNK1
PK3 E3 1822 5.3 -2.8 4.9 1637 3.5 -2.0 4.4 1730 -2.4 4.4 4.7 PIP5K2A
PK3 C3 1783 3.9 -3.0 3.3 1667 4.7 -1.8 6.2 1725 -2.4 4.3 4.8 RELA
PK2 H2 1391 2.7 -1.0 2.9 1470 5.7 -1.6 23.5 1431 -1.3 4.2 13.2 TRIO
PK7 C7 2365 4.7 0.4 4.1 1766 3.6 -0.7 5.2 2066 -0.1 4.2 4.6 STK38
PK6 D4 2469 3.5 -0.3 6.9 2073 4.5 0.7 6.6 2271 0.2 4.0 6.8 RBKS
PK2 E6 1886 2.8 -0.2 3.1 1659 5.2 -1.1 20.7 1773 -0.6 4.0 11.9 EPHA10
PK3 G2 2065 4.5 -1.6 3.9 1781 3.4 -1.3 4.1 1923 -1.4 3.9 4.0 MAP3K12
PK2 C7 2199 2.9 0.4 3.2 2045 5.0 -0.2 19.7 2122 0.1 3.9 11.4 NEK4
PK3 C2 1049 3.7 -6.8 3.0 733 4.1 -6.3 5.3 891 -6.5 3.9 4.2 CSNK1E
PK3 E7 1756 4.7 -3.2 4.2 1781 2.9 -1.3 3.3 1769 -2.2 3.8 3.8 MPP1
PK9 F2 2217 5.0 -1.1 14.3 1777 2.5 -2.7 7.6 1997 -1.9 3.7 10.9 PASK
PK5 A3 1104 3.9 -5.1 2.7 1289 3.5 -5.7 2.9 1197 -5.4 3.7 2.8 AURKB
PK7 B2 1990 5.13 -0.46 4.56 1900 2.25 0.22 2.86 1945 -0.12 3.69 3.71 CDC2L5
PK3 H4 885 4.24 -7.59 3.68 546 3.06 -7.17 3.6 716 -7.38 3.65 3.64 KIAA0999
PK6 F5 2123 2.5 -1.1 4.33 1760 4.77 -0.33 7.12 1942 -0.72 3.64 5.73 PYCS
PK7 G8 1250 5.35 -2.12 4.79 1721 1.81 -0.94 2.12 1486 -1.53 3.58 3.46 FGFR4
PK9 H5 2429 4.83 -0.08 13.78 1866 2.17 -2.22 6.33 2148 -1.15 3.5 10.06 STK19
PK2 H8 2068 3.01 0.16 3.46 1723 3.93 -0.96 14.23 1896 -0.4 3.47 8.84 IRAK4
PK3 D5 2488 3.1 0.54 2.38 686 3.77 -6.5 4.73 1587 -2.98 3.43 3.56 PNKP
PK2 A6 1066 4.26 -1.62 5.64 1110 2.59 -2.41 7.16 1088 -2.02 3.42 6.4 EEF2K
PK2 D2 1935 4.02 -0.08 5.23 2074 2.75 -0.13 7.98 2005 -0.1 3.38 6.61 KIAA1811
PK3 H8 928 4.22 -7.38 3.66 767 2.48 -6.11 2.68 848 -6.74 3.35 3.17 MAPK3
PK2 B5 2260 2.91 0.5 3.29 1426 3.77 -1.66 13.37 1843 -0.58 3.34 8.33 MLCK
PK6 C4 2801 1.68 0.57 2.27 2064 4.92 0.66 7.39 2433 0.62 3.3 4.83 MAPKAP
PK2 H9 1171 2.5 -1.43 2.57 1000 4.06 -2.67 14.89 1086 -2.05 3.28 8.73 PCTK3
PK3 F2 3055 3.25 3.42 2.55 2694 3.31 3.11 4 2875 3.26 3.28 3.28 RPS6KA3
PK2 H4 1178 2.25 -1.42 2.12 604 4.3 -3.61 16.17 891 -2.51 3.28 9.15 ERK8
PK3 H9 1987 3.48 -2 2.81 1625 3.04 -2.01 3.58 1806 -2 3.26 3.2 YES1

Batch1 Batch2 Average
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Continued Table 4.1.

 

         To reduce the off-target effect of the SMARTpool siRNA used in the primary 

screen targeting CDK1/CDC2, TTK1/MPS, CAMK2N1 and WEE1 individually, four 

deconvoluted duplex siRNAs were used for validating each siRNA hit. As usual, the 

positive control was MCPH1/BRIT1 siRNA, with its corresponding NT-siRNA and 

PLK1 siRNA used as controls. 

         Initially, U2OS cells treated with a RT of 50nM of either a control or the four 

deconvoluted duplex siRNAs targeting each siRNA hit. After 72hr the plate was 

fixed and developed for imaging using Operetta and analysed for visual and 

quantitate evaluation of PCC cell induction using Columbus. In this validation plate 

the positive control showed an average %PCC (SD) of 8.2% (3.5%) (n = 4 wells) 

compared to NT-siRNA 0.42% (0.18%) (n = 4 wells) (Figure 4.7A). The anticipated 

decrease in cell number was seen in cells treated with positive control (174) as 

opposed to the negative control (3045) (Figure 4.7B). 

         Then, the %PCC output of siRNA hits was assessed in comparison with the 

negative and positive controls. CDK1/CDC2, TTK/MPS1, CAMK2N1 and WEE1 did 

not show any increase in the PCC level at 50nM (Figure 4.7A). Thus, in order to 

maximise the %PCC induced by the siRNA hits, the validation was repeated for a 
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PK2 H3 2470 2.72 0.88 2.95 2308 3.78 0.42 13.43 2389 0.65 3.25 8.19 ETNK1
PK9 H7 1055 2.16 -6.38 4.86 1017 4.31 -6.33 14.25 1036 -6.35 3.23 9.56 GALK1
PK3 C6 2344 4.1 -0.19 3.53 1605 2.27 -2.1 2.35 1975 -1.15 3.19 2.94 TNK2
PK2 D3 1668 2.55 -0.55 2.66 1759 3.82 -0.88 13.64 1714 -0.71 3.19 8.15 PDK2
PK7 G7 1376 3.96 -1.84 3.25 1475 1.96 -2.54 2.37 1426 -2.19 2.96 2.81 CDK9
PK4 D9 514 3.01 -10.2 3.72 881 2.74 -4.74 2.55 698 -7.47 2.88 3.14 AURKA
PK9 G7 1384 2.97 -4.87 7.58 1003 2.66 -6.4 8.14 1194 -5.63 2.81 7.86 MYLK
PK6 H8 1409 1.62 -2.87 2.12 1293 3.99 -1.85 5.67 1351 -2.36 2.81 3.9 GCK
PK9 E8 932 3.04 -6.94 7.81 985 2.49 -6.48 7.51 959 -6.71 2.77 7.66 GALK2
PK9 H10 1803 3.69 -2.95 9.98 1771 1.84 -2.68 5.1 1787 -2.82 2.77 7.54 PRKACG
PK6 F3 2733 2 0.41 3.09 2331 3.53 1.53 4.81 2532 0.97 2.77 3.95 PANK2
PK2 F4 2480 2.3 0.89 2.21 2268 3.16 0.33 10.16 2374 0.61 2.73 6.19 CAMK2G
PK2 G4 2037 2.34 0.11 2.29 1505 3.1 -1.48 9.84 1771 -0.69 2.72 6.06 CKMT1B
PK3 F11 1857 3.24 -2.66 2.54 1641 2.11 -1.93 2.09 1749 -2.3 2.67 2.32 DGKQ
PK4 B5 1465 2.88 -4.35 3.51 1390 2.43 -3 2.11 1428 -3.68 2.65 2.81 CIB2
PK2 H7 1154 2.76 -1.46 3.01 967 2.49 -2.75 6.64 1061 -2.11 2.62 4.82 FGFR3
PK6 E5 1760 1.76 -2 2.48 1219 3.42 -2.09 4.61 1490 -2.05 2.59 3.54 STK22B
PK6 F8 2443 3.09 -0.31 5.81 2372 2.08 1.67 2.14 2408 0.68 2.59 3.97 TEC
PK9 G2 1395 3.41 -4.82 9.04 1422 1.72 -4.37 4.67 1409 -4.6 2.57 6.85 EPHA4
PK2 G6 2670 2.2 1.23 2.04 2375 2.86 0.58 8.56 2523 0.91 2.53 5.3 TNNI3K
PK4 F4 2208 2.48 0.22 2.86 2611 2.49 1.16 2.2 2410 0.69 2.49 2.53 LOC91461
PK2 B3 1820 2.44 -0.28 2.45 1913 2.47 -0.51 6.51 1867 -0.4 2.45 4.48 ITPKC
PK6 E11 1744 2.42 -2.04 4.11 1387 2.48 -1.55 2.87 1566 -1.79 2.45 3.49 CDK10
PK6 F4 1657 2.01 -2.25 3.11 1624 2.87 -0.77 3.6 1641 -1.51 2.44 3.35 EPHA3
PK7 A2 1407 3.11 -1.77 2.31 1150 1.76 -4.64 2.03 1279 -3.21 2.43 2.17 RET
PK6 C8 2380 1.89 -0.47 2.79 1723 2.58 -0.45 3.05 2052 -0.46 2.23 2.92 SBK1
PK9 B4 1208 2.97 -5.68 7.57 1415 1.48 -4.4 3.76 1312 -5.04 2.22 5.67 FES
PK6 A3 1995 2.14 -1.42 3.43 2084 2.23 0.73 2.41 2040 -0.35 2.19 2.92 FLJ13052
PK6 A5 1640 1.91 -2.29 2.84 1464 2.32 -1.3 2.57 1552 -1.8 2.11 2.7 TJP2
PK9 D3 1885 2.01 -2.57 4.38 1885 2.01 -2.57 4.38 1885 -2.57 2.01 4.38 EFNB3
PK9 B2 1928 1.44 -2.38 2.45 1497 2.29 -4.01 6.79 1713 -3.19 1.86 4.62 PRKCA
PK9 H3 2830 1.91 1.76 4.04 2256 1.52 -0.34 3.93 2543 0.71 1.72 3.98 PRKWNK1
PK9 H2 1341 1.34 -5.07 2.12 2040 2.04 -1.38 5.84 1691 -3.22 1.69 3.98 NEK7
PK9 H4 1027 1.9 -6.51 4.01 1928 1.1 -1.92 2.36 1478 -4.22 1.5 3.18 TSKS
PK9 D2 1340 1.9 -5.07 4 1622 1.03 -3.4 2.13 1481 -4.24 1.47 3.07 PLK3
PK9 F9 1786 1.36 -3.03 2.21 1339 1.47 -4.77 3.76 1563 -3.9 1.42 2.99 CDK3
PK9 F3 2033 1.42 -1.89 2.4 2245 1.28 -0.39 3.06 2139 -1.14 1.35 2.73 HUS1

Batch1 Batch2 Average
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second time using a higher concentrations of siRNA 100nM (Figure 4.7A). Although 

again induction of an elevated level of PCC by these four selected siRNAs hits was 

not confirmed compared to the NT-siRNA, the positive control, which was used as a 

functional readout for PCC induction work effectively (Figure 4.7A). Similarly PLK1 

siRNA concentrations of both 50nM and 100nM significantly reduced the cell 

number to 25 and 87, respectively, confirming the efficiency of the siRNA 

transfection (Figure 4.7B). 

              A 
 

 

 

 

 

 

 

              B 

         

 

 

 

 

 
Figure 4.7. Validation test for four selected hits as potential PCC inducers from the 
hPK siRNA screen using four deconvoluted siRNAs.  
For validation of siRNA hits, namely CDK1/CDC2; TTK/MPS1, CAMK2N1 and WEE, U2OS 
cells were treated with controls; positive control MCPH1/BRIT1 siRNA; negative control /NT-
siRNA and PLK1 siRNA (siRNA transfection control for reduced cell number). siRNA 
controls at 50nM illustrated with green bar and at 100nM with orange bar. Four 
deconvoluted duplex siRNA was used to target each hit at 50nM (Blue bar) and 100nM 
(Red bar). (A) Graph showing the low level of PCC induced by controls or the four individual 
siRNA for each hit; presenting no significant increase in the level of PCC compared to the 
negative or positive control for both siRNA concentrations and (B) no significant effect on 
cell number was caused by these four siRNA hits compared to the positive or negative 
controls. (B) PLK1 siRNA significantly decreased cell number to 25 at 50nM and 87 at 
100nM, indicating its suitability as indicator of the siRNA transfection efficiency. 
 

          It can be concluded that a single knockdown using low or high concentration 

of siRNAs targeting CDK1/CDC2; TTK1/MPS1, CAMK2N1 and WEE1 siRNA did 

not show an increase in PCC levels in U2OS cells. 
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4.2.1.6 Validation of selected hUbq siRNA hit using ON-TARGET plus 
deconvoluted siRNAs  

         Since FBXO5/EMI1 siRNA was at the top of the hit list from the hUbq siRNA 

screen (Table 4.2), it was selected for validation as a potential PCC inducing gene. 

Table 4.2. A list of 33 siRNA hits generated from Ubq siRNA screen in batches 1 and 2 
based on the negative control NT- siRNA.  

Potential siRNA hits showed a Z score of ≥ 2 in both replicates. Average %PCC of potential 

siRNA hits was ranked in descending order. The highlighted siRNA hit was selected for 

validation. 

  
 

         Based on the data from the hUbq siRNA screen that was originally performed 

by the BSTG, the FBXO5/EMI1 siRNA showed the highest %PCC for all the 

siRNAs on the hit list. As shown in Table 4.2,  %PCC for FBXO5/EMI1 siRNA in the 

first batch was 30.92% with a Z score of 71.34 and 40.21% with a Z score of 62.92 

in the second batch, presenting an average significant Z score of 66.92 for both 

batches.     

         Also, FBXO5/EMI1 siRNA showed a low cell number for both batches, with 

401 in the first and 383 in the second, with an average Z score of -4.06 for both 

batches. 

2-1 F7 401 30.9 -5.2 71.3 383 40.2 -2.9 62.5 392 -4.1 35.6 66.9 FBXO5
3-1 F4 1169 4.7 -3.2 3.3 1371 18.5 -3.8 22.5 1270 -3.5 11.6 12.9 LOC644006
3-2 F10 1220 9.2 -2.3 9.9 1456 10.8 -1.6 15.0 1338 -2.0 10.0 12.5 TRIP
3-4 F3 1469 6.4 -2.5 19.2 1657 13.3 -1.6 28.9 1563 -2.0 9.8 24.1 DTX1
3-1 C8 2099 4.6 -0.3 3.1 2032 13.8 -1.5 16.2 2066 -0.9 9.2 9.7 RSPRY1
3-2 G5 796 7.8 -3.6 8.3 843 10.4 -2.8 14.5 820 -3.2 9.1 11.4 RNF44
3-1 A8 843 5.9 -4.3 4.5 1044 10.9 -4.9 12.4 944 -4.6 8.4 8.4 RNF32
3-2 G2 1132 4.2 -2.6 4.1 1261 11.3 -2.0 15.8 1197 -2.3 7.8 9.9 LMO6
2-2 D2 1706 4.0 -1.1 5.7 2616 10.4 0.2 11.5 2161 -0.4 7.2 8.6 LOC440456
3-1 H7 1869 8.4 -1.0 6.8 2082 5.9 -1.4 5.7 1976 -1.2 7.1 6.3 TRIM3
1-1 B9 989 5.9 -2.3 12.3 995 8.3 -2.0 12.7 992 -2.2 7.1 12.5 UBE2L3
1-1 B8 1752 6.7 -0.5 14.4 1566 6.7 -1.2 9.7 1659 -0.9 6.7 12.0 UBE2Z
1-1 H8 1224 4.8 -1.7 9.6 1453 7.6 -1.4 11.4 1339 -1.6 6.2 10.5 CUL4B
3-2 H4 1509 3.5 -1.5 3.3 1885 8.7 -0.7 11.8 1697 -1.1 6.1 7.5 TRIM55
3-1 C5 2415 4.7 0.7 3.2 3743 7.3 4.2 7.5 3079 2.5 6.0 5.4 PHF20L1
1-1 C3 1980 6.6 0.0 14.1 1970 5.3 -0.6 7.1 1975 -0.3 5.9 10.6 BIRC6
1-1 B2 1685 7.0 -0.7 15.2 1786 4.4 -0.9 5.5 1736 -0.8 5.7 10.3 HERC3
3-3 D9 549 5.8 -3.5 9.2 1052 5.4 -3.7 20.0 801 -3.6 5.6 14.6 RFWD3
1-1 H5 1858 5.5 -0.3 11.3 2030 5.1 -0.5 6.8 1944 -0.4 5.3 9.1 KIAA0317
1-1 H7 924 6.7 -2.4 14.4 1931 3.9 -0.7 4.6 1428 -1.5 5.3 9.5 DCUN1D4
1-1 G3 1422 3.8 -1.3 7.0 1477 5.9 -1.3 8.2 1450 -1.3 4.8 7.6 UBE2E3
2-1 H2 707 4.4 -4.4 8.2 904 5.0 -2.2 6.6 806 -3.3 4.7 7.4 FBXL16
3-4 F7 327 1.8 -6.7 4.5 284 7.4 -4.1 15.5 306 -5.4 4.6 10.0 RNF121
3-3 E2 1619 5.1 -1.1 7.9 1724 3.9 -2.1 13.7 1672 -1.6 4.5 10.8 WDR59
2-1 G3 2002 3.9 -0.8 6.9 2165 5.0 -0.6 6.7 2084 -0.7 4.4 6.8 FBXL20
2-2 G2 2067 2.9 -0.1 3.9 2530 5.4 0.1 4.9 2299 0.0 4.1 4.4 ASB18
1-1 E5 1786 5.2 -0.5 10.6 2322 3.0 -0.1 2.9 2054 -0.3 4.1 6.8 UBE2A
1-2 A8 2389 4.5 1.2 4.1 2479 3.2 -0.2 2.2 2434 0.5 3.8 3.2 WWP2
1-1 H9 1802 4.5 -0.4 8.8 2094 3.1 -0.4 3.2 1948 -0.4 3.8 6.0 UBE2L6
1-1 H4 2410 5.0 1.0 10.0 3245 2.5 1.3 2.1 2828 1.1 3.8 6.1 TIP120A
2-1 B11 1444 5.3 -2.3 10.4 2298 2.1 -0.5 2.1 1871 -1.4 3.7 6.2 CCNF
3-2 F2 1406 2.7 -1.8 2.3 1218 4.8 -2.1 5.8 1312 -1.9 3.7 4.0 LOC399937
2-1 H6 1993 2.4 -0.8 3.3 1800 4.9 -1.1 6.4 1897 -1.0 3.6 4.9 RAB40C
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         To eliminate any off-target effect of the pooled siRNAs that were used in the 

original screen, 4 individual ON-TARGET plus deconvoluted siRNAs targeting 

FBXO5/EMI1 were transfected into U2OS cells. The validation was initially 

performed individually at 2 different concentrations of 50nM and100nM. Similar 

positive and negative controls to those used in the primary hUbq siRNA screens 

were also included in the validation plate. Consequently, the validation experiments 

identified 2 individual FBXO5/EMI1 siRNAs (2 and 4) showing a noticeable increase 

in %PCC compared to the remaining siRNAs and the NT-siRNA. The graphs in 

Figure 4.8 A and B show the %PCC and cell number for all 4 siRNAs targeting 

FBXO5/EMI1 and for the controls in the validation plates at 50nM (Blue bar) and 

100nM (Red bar).  

         For the plate at 50nM, the mean %PCC (SD) for the positive control 

MCPH1/BRIT1 siRNA (50nM) was 8.27% (3.55%) (n = 4 wells) compared to the 

negative control NT-siRNA 0.42% (0.18%) (n = 4 wells). The %PCC induced by 

FBXO5/EMI1 siRNAs 2 and 4 was 35.64% and 53.76%, respectively. In addition, 

these 2 siRNAs showed the lowest cell number values both in comparison with the 

remaining individual siRNAs (whether 1 or 3) and the negative NT-siRNA control. 

The mean cell number for the positive control was 174 compared to 3045 for its 

negative counterpart. The 2 selected FBXO5/EMI1 siRNAs reduced cell number to 

463 for FBXO5/EMI1 siRNA 2 and 372 for FBXO5/EMI1 siRNA 4.  

         For the plate at 100nM, the RT for all controls and the 4 individual duplex 

siRNAs was performed at 100nM. Subsequently, the RT siRNA for the positive 

control showed a reasonable mean %PCC (SD) 8.29% (4.34%) and a mean cell 

number of 2718 compared to %PCC of 0.27 (0.10%) and cell number of 6800 for 

the negative control (n = 4 wells). PLK1 siRNA induced a sufficiently high cell death 

(mean cell number was 87 n = 2 wells), indicating an appropriate level of siRNA 

transfection. Similar to the results reported above for the plate at a siRNA 

concentration of 50nM FBXO5/EMI1 siRNAs 2 and 4 displayed the highest %PCC 

at 100nM in comparison to the remaining siRNAs or controls. The %PCC induced 

by FBXO5/EMI1 siRNAs 2 and 4 was 30.71% and 39.06%, respectively whilst the 

cell number value for FBXO5/EMI1 siRNA 2 was 954 and 722 for FBXO5/EMI1 

siRNA 4. 
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                          B  

 

 

 

 

 
 
 
Figure 4.8. Validation of FBXO5/EMI1 as a potential PCC inducing hit from the hUbq 
siRNA screen using four deconvoluted individual siRNA.  
U2OS cells were treated with four individual FBXO5/EMI1 siRNAs at 50nM (Blur bar) and 
100nM (Red bar). FBXO5/EMI1 siRNAs 2 and 4 displayed high %PCC (A) and reduced cell 
number (B) at both siRNA concentrations compared to the positive control MCPH1/BRIT1 
siRNA. The controls (MCPH1/BRIT1, NT and PLK1 siRNAs) are exemplified at 50nm by a 
green bar and 100nm by an orange bar). 

 

         Image analysis of the two validation plates was performed using Columbus 

software. The analyses revealed that single siRNA knockdown of FBXO5/EMI1 in 

cells with intact function of MCPH1/BRIT1 induced a specific cell phenotype with a 

large nucleus with condensed chromosomes which was slightly different to the one 

induced by MCPH1/BRIT1 siRNA (PCC phenotype) (Figure 4.9). This lead to the 

investigation of whether FBXO5/EMI1 siRNA induced the same large cell 

phenotype or had a different effect in the absence of MCPH1/BRIT1, which will be 

detailed below in Section 4.2.1.7.  
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Figure 4.9. FBXO5/EMI1 siRNA induced a phenotype with large nuclei and condensed 
chromosomes that was slightly different to the MCPH1/BRIT1 knockdown PCC 
phenotype.  
U2OS cells treated with 50nM SMARTpool siRNA targeting FBXO5/EMI1, cells stained with 
DAPI (blue) and phospho-histone H3 cells (green). Cells were imaged using Operetta and 
analysed for PCC selection using Columbus software. 

 

4.2.1.7 The effect of double siRNA knockdown of FBXO5/EMI1 and 
MCPH1/BRIT1 in inducing PCC phenotype 

         Dr Sandra Bell’s group and the BSTG performed another Ubq siRNA screen 

aimed at identifying MCPH1/BRIT1 modifiers, genes that reduce or increase PCC 

in cells treated with MCPH1/BRIT1 siRNA. Data from this PCC modifier Ubq siRNA 

screen was available. FBXO5/EMI1 siRNA in combination with MCPH1/BRIT1 

siRNA showed a noticeable increase in %PCC compared to those observed in 

single knockdown in cells with functional MCPH1/BRIT1 (in the original PCC 

inducer Ubq siRNA screen; Table 4.2). The %PCC induced by double siRNA 



- 145 - 
 

 

knockdown of FBXO5/EMI1 combined with MCPH1/BRIT1 siRNA was similar in the 

first and the second replicate, thus mean of %PCC (SD) was 54.65% (0.35%) 

compared to the controls NT-MCPH1/BRIT1 siRNA 11.5% (0.48) (n = 8 wells) or 

the aforementioned mean %PCC of single siRNA knockdown in (Table 4.2) which 

was 35.5% (6.5%).  

         A visual inspection for the wells containing FBXO5/EMI1 siRNA was 

performed in the two replicates in the original PCC modifier Ubq siRNA screen 

using Columbus. This was to investigate the effect of FBXO5/EMI1 siRNA in 

MCPH1/BRIT1 deficient cells on cell phenotype. In comparison to the cell 

phenotype characterised by cells with large nuclei that was induced by single 

siRNA knockdown of FBXO5/EMI1 (as shown previously in Figure 4.9), double 

siRNA knockdown of FBXO5/EMI1 and MCPH1/BRIT1 induced a similar phenotype 

of large nuclear size with condensed chromosomes  (Figure 4.10).  

 

 

 

 

 

 

 

 

 

 
 
Figure 4.10. FBXO5/EMI1 siRNA in combination with MCPH1/BRIT1 siRNA induced a 
similar phenotype of large nuclei with condensed chromosomes to that observed in 
FBXO5/EMI1 siRNA alone (as shown in Figure 4.9).  
U2OS cells treated with 50nM SMARTpool siRNA targeting FBXO5/EMI1 followed 24hr 
later by reverse transfection of 100nM MCPH1/BRIT1 siRNA for 48hr. Cells were stained 
with DAPI (blue) and imaged using Operetta and analysed for PCC selection using 
Columbus software. Cell highlighted by red circle were the typical phenotype (cells with 
large nuclei) induced by FBXO5/EMI1 in MCPH1/BRIT1 deficient cells whereas arrows 
indicate the known PCC phenotype with condensed chromosomes (white dots) induced by 
MCPH1/BRIT1 siRNA, spread among other large nuclei cells. 

 

         Additionally, the double siRNA knockdown showed a noticeable reduction in 

overall cell number and specifically in the number of PCC cells (with clearly 
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condensed chromosomes) that were observed in cells with MCPH1/BRIT1 siRNA 

alone. The mean cell number for FBXO5/EMI1 in combination with MCPH1/BRIT1 

siRNA was 446.5 (262) (cell number was 635 in the first replicate and 261 in the 

second replicate) compared to mean cell number 2753 (828) for the controls NT-

MCPH1/BRIT1 siRNA (cell number was 3339 (579) in the first replicate and 2168 

(175) in the second replicate (n = 4 wells/replicate). This reduction in cell number 

was similar to that observed in FBXO5/EMI1 siRNA alone in the original screen (as 

shown above in Table 4.2) showing a mean cell number of 392 (12.7).  

 

4.2.1.8 Identification of FBXO5/EMI1 siRNA transfection efficacy  

         In order to assess the effectiveness of the 4 deconvoluted siRNAs targeting 

FBXO5/EMI1 at the mRNA level, qRT-PCR was performed and the results 

suggested that all 4 of the individual siRNAs that had mediated the inactivation of 

FBXO5/EMI1 induced depleted levels of the corresponding mRNA transcript 

compared to NT-siRNA or untransfected U2OS cells (Figure 5.9A). 

         Before we examined the effect of the 4 deconvoluted siRNAs targeting 

FBXO5/EMI1 on its protein level using western blotting (WB), optimization of an 

anti-FBXO5/EMI1 antibody was performed. A sample of untransfected U2OS cells 

was blotted using 2 different quantities of protein (40µg/µl and 80µg/µl) with an 

antibody dilution of 1:100. Bands at about 50kD, the expected size of the 

FBXO5/EMI1 protein, were seen at both protein concentrations. However, a 

stronger signal was observed for sample 1 (80µg/µl) (Figure 4.11B1) in comparison 

to that for sample 2 (40µg/µl) (Figure 4.11B2). As a result the decision was made to 

reduce the FBXO5/EMI1 antibody concentration to a 1:200 dilution in any further 

western blotting experiments. 

         Following this, western blot (Figure 4.11C) was performed to define the extent 

to which the 4 individual siRNA duplexes reduced the protein levels of 

FBXO5/EMI1. As anticipated, the effects of these 4 FBXO5/EMI1 siRNA duplexes 

varied. The initial statistical analysis of the siRNA duplexes targeting FBXO5/EMI1 

showed a potential increase in %PCC and reduced cell number using duplexes 2 

and 4 (See above Figure 4.8A). Here, the FBXO5/EMI1 siRNAs  (2, 3 and 4) were 

found to affect FBXO5/EMI1 protein levels as compared to FBXO5/EMI1 siRNA 1 

or the controls (as illustrated in (Figure 4.11C). However, based on the results of 

the qRT-PCR and western blot data, FBXO5/EMI1 siRNAs 2 and 3 showed the 

most appreciable effect on levels of both mRNA transcript and protein. 
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Figure 4.11. Confirmation of the efficacy of the 4 individual FBXO5/EMI1 siRNAs 
using qRT-PCR and western blot (WB).  
(A) Graph representing the effect of the 4 individual siRNAs on the mRNA level of 
FBXO5/EMI1. (B) WB optimization of the concentration of anti- FBXO5/EMI1 antibody at a 
dilution of 1:100 using untreated U2OS lysate with protein concentrations of 80µg/µl in (B1) 
and 40µg/µl in (B2). (C) WB evaluation of lysates from U2OS cells treated with a 50nM of 4 
different siRNA duplexes targeting FBXO5/EMI1 (samples from 1 to 4 in (C)), using NT-
siRNA as a control  (C5) and untransfected cells (C6). Samples in (C) were probed with the 
anti-FBXO5/EMI1 antibody at a dilution of 1:200. Samples in (B) and (C) were counter-
probed with a with the anti- β-Actin antibody (1:5000) as a loading control. 

 

4.3 Discussion  

         Gene knockdown using siRNA enables functional screens to be conducted for 

the whole or part of the human genome in cultured cells. Defective MCPH1/BRIT1 

is associated with abnormal phenotype known as PCC. The exact molecular and 

cellular mechanisms of MCPH1/BRIT1 function in regulation chromosome 

condensation in normal and cancer cells are poorly understood. Therefore, in this 

FBXO5 

β-Actin 

Marker (KD) 1 2 3 4 5 6 

FBXO5 

β-Actin 

1 2 

Untransfected U2OS lysate  
1. (80 µg/µl);  
2. (40 µg/µl) 

U2OS lysate treated with four individual siRNAs;  
1. FBXO5 siRNA 1  
2. FBXO5 siRNA 2  
3. FBXO5 siRNA 3 
4. FBXO5 siRNA 4 
5. NT-siRNA  
6. Untransfected cells 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

FBXO5 siRNA 1 FBXO5 siRNA 2 FBXO5 siRNA 3 FBXO5 siRNA 4 NT-siRNA Untransfected cells 
 m

R
N

A
 le

ve
l o

f F
B

XO
5 

  



- 148 - 
 

 

study, 2 high throughput phenotypic-based hPK and hUbq siRNA screens were 

performed using Dharmacon siGENOME SMARTpool siRNAs by BSTG in order to 

identify genes inducing PCC; thus these screens are known as “PCC inducer 

screens”. These 2 siRNA sub-libraries were examined and analysed using the 

Operetta fluorescence microscopy imaging system to detect the presence of PCC 

in U2OS cells with functional MCPH1/BRIT1. Columbus software was employed to 

convert the image data into numerical values to enable hit identification and 

subsequently to allow siRNA screen data to be shared between investigators 

working on similar projects.  

         One of the important factors in conducting a high throughput siRNA screen 

(HTS) is the accuracy and precision of the assay design and development (Goktug 

et al., 2013). The BSTG performed the PCC inducer hPK and hUbq siRNA screens 

used in this study in a manner and using strategies that guarantee the production of 

high quality screening data. An evaluation of control quality and screen 

reproducibility merits further discussion.  

         First, the U2OS osteosarcoma cell line has previously been used in various 

siRNA screens (Adams et al., 2014; Adamson et al., 2012; Frankum et al., 2015). 

Cells which grow at a sufficiently fast rate and display a consistent monolayer 

morphology during siRNA transfection are needed for an imaging system to detect 

nuclei at the necessary high resolution (Echeverri and Perrimon, 2006). 

Additionally, U2OS cells were also used to minimise financial costs and effort as 2 

complementary siRNA screens were performed in tandem by the BSTG; the PCC 

inducer screen and a screen to identify genes that modified the PCC phenotype. 

Cell number data from both screens was combined to identify MCPH1/BRIT1 

synthetic lethal genes (see Chapter 5). 

         Second, assessment of the quality of the assay controls, using strictly 

standardized mean difference (SSMD), is another parameter that is essential to 

ensure that a HTS is sufficiently robust, to minimise any batch specific or off-target 

effects and for adequate hit identification (Zhang, 2007; Birmingham et al., 2009; 

Zhang, 2011). The main references in the PCC inducer hPK and hUbq siRNA 

screens were MCPH1/BRIT1 siRNA (PCC positive control) (Leung et al., 2011; 

Yamashita et al., 2011; Frankum et al., 2015; Trimborn et al., 2004; Trimborn et al., 

2006; Adams et al., 2014), which induced an elevated %PCC across the majority of 

plates in both batches compared to the NT-siRNA (PCC negative control) as 

previously illustrated in Section 4.2.1.2. The SSMD of the positive controls for 

%PCC in the first and the second batches was 3.85 4.33 for the hPK siRNA screen 
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and it was 3.6 and 4.9 for hUbq siRNA screen, respectively. These values indicate 

that the induction and increase in %PCC identified by the positive control wells was 

“very strong” compared with that for the negative control NT-siRNA wells, thus 

demonstrating the suitability of MCPH1/BRIT1 siRNA as a positive control for 

increased PCC. Additionally, PLK1 siRNA was used in these screens as a positive 

control for confirming siRNA transfection efficiency in each batch. The SSMD for 

the first and the second batches of PLK1 siRNA was 7.69 and 6.87 for the hPK 

siRNA screen and it was 7.06 and 4.14 for the hUbq siRNA screen, respectively. 

Thus, based on the findings of the study by Zhang et al. (2007 and 2011) the 

SSMD values for PLK1 have been classified as having an “extremely strong effect”, 

meaning that PLK1 siRNA can be considered to be a valid positive control for 

effects on cell number compared to control NT-siRNA.  

         Third, the significant positive correlation of the %PCC values produced by the 

siRNA samples (either from hPK or hUbq siRNA screens) between replicates 1 and 

2, confirmed the assay reproducibility and the robustness of screens procedures 

(Section 4.2.1.3). 

         In this study, as the PCC inducer hPK and hUbq siRNA screens were 

performed in duplicate, the Z score calculation method for data normalisation and 

hit selection was used which mainly relies on using the negative control (NT-siRNA) 

and the cut-off Z score (%PCC) of ≥ 2 (Zhang, 1999; Douglas Zhang et al., 2006; 

Birmingham et al., 2009; Zhang, 2011; Goktug et al., 2013). This method displayed 

(104) and (33) of potential siRNA hits from hPK and hUbq screens, respectively. 

For hPK siRNA screen, the overall false-negative rate was 5.5% (n = 36) and the 

overall false-positive rate was 0% (n = 72). For the hUbq siRNA screen, the overall 

false-negative and/or false-positive rates were 0.00%.  

         Initially 4 potential hPK siRNA hits were selected that displayed a %PCC ≥ 

8% and a statistically significant Z scores (%PCC) of ≥ 2, namely CDK1/CDC2; 

TTK/MPS1, CAMK2N1 and WEE1. We selected CAMK2N1, TTK/MPS1 and 

CDK1/CDC2 siRNAs for validation as they displayed a reasonable average cell 

number of 1261, 968 and 646, respectively in the original screen (Table 4.1). 

CAMK2N1 and TTK/MPS1 were located in the top 10 of the siRNA hit list displaying 

an average %PCC of 11.77% and 9.64%, respectively (Table 4.1). Also, WEE1 

showed an average low cell number of 141 (Table 4.1). The average %PCC 

caused by these siRNA hits was relatively high and possibly similar to the %PCC 

identified in ovarian cancer tissue at about 9% (Sreekantaiah et al., 1987). 

Moreover, this rate of PCC also similar to the %PCC that has been detected in 
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cancer cells treated with MCPH1/BRIT1 siRNA including HeLa or U2OS cells (15-

20%) (Adams et al., 2014; Trimborn et al., 2006). Additionally, CDK1/CDC2 was 

selected as it expected to be a potentially strong hit since MCPH1/BRIT1 

independently regulates and maintains inhibitory phosphorylation of Tyr15-

CDK1/CDC2 for proper mitotic entry (Alderton et al., 2006). In addition, the network 

of cellular regulation between CDK1/CDC2 and WEE1 during cell division 

(McGowan and Russell, 1993; Harvey et al., 2005; Do et al., 2013) may potentially 

suggest the contribution of these siRNAs to PCC induction. 

         However, none of these 4 potential hPK siRNA hits validated during the 

confirmatory siRNA screen stage that was employed using 4 deconvoluted ON-

TARGETplus siRNAs. The failure of the siRNA hit validation in this study may due 

to number of factors. First, only 4 potential siRNA hits were selected from hPK 

siRNA hit list containing 104 siRNAs. Consequently, the initial selection of such a 

small number of siRNA hits may have contributed to the unsuccessful validation. 

Second, inhibition of the hits tested here may only be required for initiating 

depletion of the cellular pathway that regulates chromosome condensation. Thus, 

their effect may not be sufficiently strong to induce PCC in cells with an intact 

function of MCPH1/BRIT1 that regulates cell cycle checkpoints in response to 

abnormal cell cycle activity. Third, these hits may interact with MCPH1/BRIT1 in 

causing PCC but equally they could be in a different or unknown pathway. Thus, 

depletion of these hits may involve activation or/and inhibition of other unknown 

molecules, all of which contribute to PCC induction. Last, MCPH1/BRIT1 may be a 

critical component in regulating DNA condensation during the cell cycle. 

Consequently only a minority of other genes may cause a similar PCC phenotype. 

         Additionally, the sequence-dependent off-target effect (OTE) can hamper the 

validation of RNAi experiments. Sequence-specific siRNA is usually designed to 

target a complete cleavage of the desired complementary mRNA. However, it may 

affect and inhibit other unspecific mRNA transcripts due to partial complementarity 

between the siRNA and the mRNA, causing OTE (Boutros et al., 2006; Birmingham 

et al., 2006; Sledz et al., 2003). OTE can also occur when the siRNA functions as 

micro RNA (miRNA) inducing a partial inhibition of mRNA translation. This is mainly 

due to the exact complementarity between the siRNA seed region (position 2-8 of 

the anti-sense strand) and the 3’-untranslated region (3’-UTR) of the non-targeted 

genes (Jackson et al., 2003). Additionally, sequence-specific motifs induce the 

interferon response pathway (Sledz et al., 2003). Thus, sequence-specific OTEs in 

RNAi experiments can increase the identification of false positive hits and 

complicate the interpretation of siRNA results.  
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         One study developed a bioinformatics method called Genome–wide 

Enrichment of Seed Sequence matches (GESS) to identify novel off-targeted 

transcripts in several RNAi screens using the genome-wide database either of the 

full-length mRNA or of sub-regions such as 3’-UTR, 5’-UTR and coding sequence 

(Sigoillot et al., 2012). Although we did not utilise any method to minimise the 

existence of sequence-dependent OTEs, focusing on the siRNA seed region using 

GESS (http://www.flyrnai.org/gess) (Schmidt et al., 2013; Yilmazel et al., 2014), 

common seed analysis (CSA) (Marine et al., 2012) or Haystack 

(http://rnai.nih.gov/haystack/) (Buehler et al., 2012b) are useful for identifying 

siRNAs sensitive to OTEs, which could subsequently improve the validation of 

siRNA hits.  

          A second siRNA screen was carried out was hUbq sub-library. The Z score 

batch analysis of PCC inducer hUbq siRNA screen revealed FBXO5/EMI1 to be 

one of the top siRNA hits with an elevated level of %PCC and a significant Z score 

≥ 2. The validation experiment revealed that the individual siRNA 2 and 4 targeting 

FBXO5/EMI1 displayed elevated %PCC and reduced cell viability. The efficiency of 

the knockdown of these individual siRNAs was confirmed at the RNA and protein 

level.  

         FBXO5/EMI1 performs a number of functions. It regulates S-phase entry, 

inhibits proliferation, delays M phase progression and prevents cells from 

completing DNA replication that is normally controlled by the geminin protein. 

FBXO5/EMI1 has been implicated in various types of cancer, suggesting a possible 

role as an oncogene (Lee et al., 2006; Lehman et al., 2007; Gütgemann et al., 

2008; Wang et al., 2014e). For instance, overexpression of FBXO5/EMI1 caused 

multi-cellular deficiencies such as hyper-proliferation, tetraploidy and increased 

genomic instability, particularly in p53 deficient cells. In addition, its depletion in 

cancer cells causes polyploidy and large nuclei (Machida and Dutta, 2007; Di Fiore 

and Pines, 2007; Shimizu et al., 2013). The morphological changes resulting from 

FBXO5/EMI1 inhibition suggest that FBXO5/EMI1-depleted cells remain in S 

phase, leading to abnormal re-replication. Therefore, in our study it was decided not 

to pursue at this time the experimental investigation of the potential Ubq siRNA hit 

FBXO5/EMI1 although co-depletion of FBXO5/EMI1 with MCPH1/BRIT1 increased 

%PCC compared to a single siRNA knockdown of FBXO5/EMI1. However, 

FBXO5/EMI1 siRNA in presence or absence of MCPH1/BRIT1 displayed the same 

phenotype of cells with large nuclei and condensed chromosomes, that is different 

to the PCC phenotype with condensed chromosomes induced by MCPH1/BRIT1 

siRNA.  



- 152 - 
 

 

         The loss of FBXO5/EMI1 has been found to encourage DNA damage 

responses and induce apoptosis, particularly when FBXO5/EMI1 siRNA is 

combined with the anti-cancer agent Doxorubicin as this enhances chemosensitivity 

(Verschuren et al., 2007; Shimizu et al., 2013), indicating its potential therapeutic 

interventions for cancer. However, the potential oncogenic role of FBXO5/EMI1 

remains unknown. Indeed, depletion of FBXO5/EMI1, in this study, showed an 

overall reduction in cell number in the presence or absence of MCPH1/BRIT1 and a 

noticeable decrease in typical PCC cells with clear condensed chromosomes that 

are usually induced as consequence of MCPH1/BRIT1 siRNA. Reduction of PCC 

cells may be associated with the loss of function of FBXO5/EMI1 that may 

contribute to killing these cells by the induction of apoptosis.  

         Furthermore, CDC27, a sub-unit of the APC/C, has been found to bind to the 

C-terminal domain of MCPH1/BRIT1 in a phosphorylation-dependent manner and 

depletion of CDC27 showed a similar mitotic defect phenotype to PCC (Singh et al., 

2012e). These authors referred to MitoCheck software which has been used with 

other available human protein complex resources (Hutchins et al., 2010) to assess 

the defective phenotypes associated with the loss of MCPH1/BRIT1 and CDC27. 

MitoCheck analysis revealed that depletion of CDC27 displayed similar mitotic 

aberration phenotypes to those reported with depletion of MCPH1/BRIT1 such as 

the clustering of nuclei, unusual nuclear shape, segregation problems, metaphase 

and pro-metaphase delay and metaphase alignment defects. The PCC phenotype 

was not covered by MitoCheck analysis (Hutchins et al., 2010) or examined by 

CDC27’s investigators (Singh et al., 2012e). Thus, it is still unknown whether 

CDC27 knockdown causes PCC despite the existence of an interaction between 

MCPH1/BRIT1 and CDC27.  

          As previously mentioned that the interaction of MCPH1/BRIT1 with CDC27 

takes place at the C-terminal BRCT domains of MCPH1/BRIT1 that are not 

responsible for regulation of chromosome condensation, which involves the N-

terminal BRCT domain (Richards et al., 2010; Singh et al., 2012e). Therefore, a 

similar scenario may exist with FBXO5/EMI1 and MCPH1/BRIT1 in which a 

potential interaction may occur between the two proteins but it may not necessarily 

be associated with regulation of chromosome condensation. Indeed, depletion of 

FBXO5/EMI1 in the presence or absence of MCPH1/BRIT1 consistently displays a 

cell phenotype with large nuclei; with condensed chromosomes, which is slightly 

different to PCC phenotype induced by MCPH1/BRIT1 siRNA. This suggested that 

FBXO5/EMI1 might function in an independent pathway involved in the regulation 

of DNA condensation. However, the phenotype induced by depletion of 
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FBXO5/EMI1 may not be associated with PCC since other studies have showed 

that FBXO5/EMI1 deficient cells terminate in S phase causing abnormal DNA re-

replication (Machida and Dutta, 2007; Di Fiore and Pines, 2007; Shimizu et al., 

2013). Consequently, cells may be appeared with larger nuclear size, meaning that 

cells may not entre into mitosis and participate in DNA condensation process but 

instead they may undergo cell death. This may explain the noticeable reduction in 

cell number observed in FBXO5/EMI1 depleted cells.  

         Alternatively, FBXO5/EMI1 functions as a regulator of the APC/C complex 

(Peters, 2003; Reimann et al., 2001a; Reimann et al., 2001c). CDC27 is a subunit 

of this complex that has been speculated to mediate the interaction between 

MCPH1/BRIT1 and APC/C, which may be responsible for proteosome-dependent 

degradation of MCPH1/BRIT1 (Singh et al., 2012e). Thus, defective FBXO5/EMI1 

function may cause an unknown ubiquitination mechanism leading to the 

inactivation of MCPH1/BRIT1. Thus, potentially suppression of FBXO5/EMI1 may 

be considered as a therapeutic intervention in PCC cancer cells with defective 

MCPH1/BRIT1 function. Further investigations are warranted to confirm the 

potential involvement of FBXO5/EMI1 in regulation of DNA condensation and in 

inducing lethality in MCPH1/BRIT1 deficient cells. 

         In summary, both hPK and hUbq siRNA screens were analysed for genes, 

whose suppression induced PCC. Hits validation was performed on only 4 genes 

from hPK sub-libraray (CDK1/CDC2; TTK/MPS1, CAMK2N1 and WEE1), none of 

which displayed PCC. Identifying further hPK siRNA hits that potentially induced 

PCC for validation may be required. Similarly PCC inducer hits may be identified in 

other siRNA sub-libraries such as the druggable genome screened for PCC by the 

BSTG. 

         The siRNA hit from hUbq sub-libraray namely FBXO5/EMI1 was selected for 

validation. FBXO5/EMI1 siRNA induced a cell phenotype of enlarged nuclei with 

condensed chromosomes in cells with or without MCPH1/BRIT1 siRNA, which is 

slightly different to the PCC phenotype induced by MCPH1/BRIT1 siRNA. Function 

of FBXO5/EMI1 in the cell cycle may be independent of MCPH1/BRIT1 function 

that is associated in regulation of DNA condensation. Lack of function of 

FBXO5/EMI1 may contribute to a reduction in PCC cells in MCPH1/BRIT1 deficient 

cells. Utilising time-lapse microscopy to profile the data of cell division genes 

(Neumann et al., 2010) would be a useful means of clarifying if there is any 

potential similarity in mitotic phenotypes between FBXO5/EMI1 and MCPH1/BRIT1 

when they are depleted. 
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Chapter 5 A high throughput PK siRNA sub- library synthetic 
lethality screen in MCPH1/BRIT1 deficient cells 

5.1 Introduction 

         High throughput screening using RNAi libraries is a useful means to identify 

molecular targets that induce synthetic lethality (SL). SL genes are two genes in 

which mutation in one gene alone has no effect on cell viability, however, mutation 

in both genes at the same time leads to cell death (Kaelin Jr, 2009; Kaelin, 2005). 

Thus, targeting a SL gene in a cancer with a specific mutation should kill cancer 

cells but not normal cells. SL offers the ability to target cancer cells that are 

harbouring a loss of function mutation, for example, a mutation in a TSG. Since the 

principal role of the majority of chemotherapeutic agents is to inhibit rather than 

activate the protein function thus it is essential to identify a SL target that is 

functionally associated with TSG to ensure subsequent induction of apoptosis in 

cancer cells (Iorns et al., 2007). The SL approach has been utilised to kill BC cells 

with a defect in the BC genes BRCA1 and BRCA2, which both play vital role in 

DNA repair mechanism, without affecting the normal cells, by using poly (ADP 

ribose) polymerase (PARP) inhibitor (Farmer et al., 2005). So, the integration of 

loss of function of BRCA genes with PARP inhibitor presents an excellent example 

of identification of SL targets (Iorns et al., 2007).  

        A number of lines have implicated MCPH1/BRIT1 expression in cancer 

progression (Richardson et al., 2011; Bruning-Richardson et al., 2011; Rai et al., 

2006; Venkatesh et al., 2013). This is described in detail in the main introduction 

(Chapter 1; Section 1.1.6.4). Since MCPH1/BRIT1 is a cancer related gene, 

identifying its synthetic interactors would theoretically target only cancer cells with 

MCPH1/BRIT1 deficiency and preserve the life of normal cells that carry a 

functional copy of the MCPH1/BRIT1 gene. Potentially these MCPH1/BRIT1 SL 

genes could lead to the identification of more effective and less harmful anti cancer 

drugs for patients with MCPH1/BRIT1 deficient cancers. 

         This study used two complementary screens of the hPK siRNA library that 

were performed by the BSTG. In one, a single knockdown using the hPK siRNA 

library was used in U2OS cells expressing MCPH1/BRIT1, its aim being to identify 

genes that induce a PCC phenotype (PCC inducer screen). The other screen was 

performed with a double knockdown whereby a reverse siRNA transfection using 

the hPK library was performed and then followed 24hr later by MCPH1/BRIT1 
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knockdown using a forward siRNA transfection. This screen, known as the PCC 

modifier screen, aimed to identify those genes that reduce or kill cancer cells with a 

PCC phenotype. The BSTG utilised the high throughput Operetta imaging system 

and Columbus analysis software to perform both screens.  

         Thus, in this study, we aimed to combine the cell number data from two 

complementary hPK siRNA screens with and with out MCPH1/BRIT1 siRNA 

knockdown to identify SL siRNAs in MCPH1/BRIT1 deficient cells. Thus, the 

potential SL siRNA is expected to show a significant reduction in cell number in the 

absence of MCPH1/BRIT1 in the PCC modifier hPK siRNA screen but not in the 

presence of MCPH1/BRIT1 in the PCC inducer hPK siRNA screen.  

         Since loss of the function of MCPH1/BRIT1 facilitates cancer progression, 

identifying its SL partners would selectively kill cancer cells and aid breast and 

ovarian cancer sufferers whose tumours express low levels of MCPH1/BRIT1 and 

are resistant to current chemotherapy treatments.  

 

5.2 Results  

The BSTG developed and performed two hPK siRNA screens in order to identify 

genes which either induced PCC or modified PCC caused by MCPH1/BRIT1 

knockdown. Here, both versions of the hPK screens (PCC inducer and modifier 

screens) were utilised, to identify a significant decrease in cell number in the 

MCPH1/BRIT1 deficient hPK PCC modifier screen compared to the complementary 

PCC inducer screen that had functional MCPH1/BRIT1. This approach was 

expected to lead to the identification of MCPH1/BRIT1 SL siRNA hits. 

 

5.2.1 Evaluation of the cell number in PCC inducer hPK siRNA 
screen and MCPH1/BRIT1 modifier hPK siRNA screen 

Before performing SL analyses, appropriate controls were selected for both 

versions of the hPK siRNA screens, PCC inducer and modifier. 
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5.2.1.1 Controls’ assessment in PCC inducer and modifier hPK siRNA 
screens 

         Since experimentally the negative control NT-siRNA had shown no effect on 

the cell number it was selected as a reference for analysing the cell number in PCC 

inducer hPK siRNA screen for identification of SL siRNA hits. 

         The hPK siRNA PCC inducer screen consisted of 9 plates and the screen 

was performed in duplicate. Each plate contained 4 wells treated with a single 

knockdown of a reverse transfection for the negative control NT-siRNA. Analysis of 

the replica PCC inducer hPK siRNA plates showed almost equal values of mean 

cell number in the negative control NT-siRNA across all the 9 plates in the two 

batches (n = 8 wells) (Figure 5.1A). The mean cell number (SD) for the negative 

control NT-siRNA for each replica plate was in plate 1, 2, 3, 4, 5, 7, 8 and 9 as 

follows; 2073 (337), 2104 (294), 2147 (281), 2243 (222), 2010 (141), 2026 (443), 

1948 (381), 2071(375) and 2268 (136), respectively. 

 

                A. Single NT-siRNA conrtols PCC inducer hPK siRNA screen 
 

 

 
 
                
 
 
 
 
                 B. Single NT-siRNA controls PCC modifier hPK siRNA screen 
  
 
 
 
 
 
 
 
 
Figure 5.1. Negative controls assessment in the 9-replica plates in the hPK siRNA 
PCC inducer and modifier screens. Graphs showing the cell numbers for the NT-
MCPH1/BRIT1 siRNA treated in 8 wells in each replica plate in hPK siRNA PCC inducer (A) 
and PCC modifier (B) screens.  
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         In contrast, the PCC modifier hPK siRNA screen involved a double 

transfection, first a reverse siRNA transfection of the hPK sub-library followed by a 

forward siRNA transfection of MCPH1/BRIT1. Thus, it was essential to select a 

control that would mimic the pattern of this screen without showing a significant 

effect on cell number, providing a statistical significance for identifying the SL 

siRNA hits. Consequently, the reverse transfection of NT-siRNA was followed 24hr 

later by a forward transfection of MCPH1/BRIT1 siRNA which was used as a 

negative control to analyse the hPK siRNA PCC modifier screen for the selection of 

SL siRNA hits. Similar to the hPK siRNA PCC inducer screen, there were 4 wells 

were treated with the negative control (double knockdown) NT-MCPH1/BRIT1 

siRNAs for each plate in the hPK siRNA PCC modifier screen. The double siRNA 

transfection for the negative control did not show any side effects on cell number 

caused by the forward transfection MCPH1/BRIT1, indicating the efficiency of NT-

MCPH1/BRIT1 siRNAs for use as a negative control to analyse the PCC modifier 

screen for hits with synthetic lethality effect. The mean cell number (SD) for the 

negative control NT-MCPH1/BRIT1 siRNA for each replica plate (n = 8 wells) was 

in plates 1, 2, 3, 4, 5, 7, 8 and 9 as follows; 3268 (594), 3192 (443), 3188 (653), 

3268 (434), 3309 (664), 2903 (688), 3052 (544), 3276 (532) and 3024 (580), 

respectively (Figure 5.1B). 

 

5.2.1.2 Assessment of the transfection efficiency of PCC inducer and 
modifier hPK siRNA screens using the control PLK1 siRNA 

        The two screens were performed by the BSTG utilising established controls to 

ensure successful transfection of the hPK siRNA sub library and without observing 

high cell death in the PCC modifier screen, which was performed as a double 

knockdown. Thus a RT of PLK1 siRNA was used as a functional readout and a 

marker for the transfection efficiency as it was previously described in (Chapter 4; 

Section 4.2.1.2) Also, it also has been reported that Plk1 siRNA presented a 

notable reduction in cell viability when used as a control in a screen employed a 

mouse IMCD3 cell line (inner medullary collecting duct) to select genes implicate in 

cell proliferation (Elmehdawi et al, 2013; Adams et al, 2014). 

         Similarly, a significant loss in cell viability was also was seen after silencing 

PLK1 siRNA using U2OS cell line compared to the aforementioned NT-

MCPH1/BRIT1 siRNA in PCC modifier hPK1 siRNA screen PLK1 siRNA showed 

an average of cell number (SD) at 89 (67) in the first batch and at 105 (49) in the 

second batch (n = 18 wells/batch) while the average cell number for NT-



- 158 - 
 

 

MCPH1/BRIT1 siRNA was 2708 (323) in the first batch and 3620 (359) in the 

second batch (p < 0.0001; n = 36 wells/ batch) (Figure 5.2 A and B). In addition, 

another control inner centromere protein (INCENP) siRNA was included in the PCC 

modifier screen and used as marker for the impact on cell number. It also displayed 

a significant decrease in cell number opposite to NT-MCPH1/BRIT1 siRNA (p < 

0.0001) (Figure 5.2 A and B). The mean cell number for INCENP siRNA was 637 

(265) in the first batch and 908 (249) in the second batch (n = 18 wells/ batch).  

        Therefore, using the two controls PLK1 and INCENP provided a quantitative 

and visual evaluation of the transfection efficiency in the PCC modifier screen. Not 

only this, but also the reduced gene expression of Cyclophilin B (Chapter 4; Section 

4.2.1.1.2; Figure 4.1) supported a high level of transfection efficacy can be obtained 

in the U2OS cell line, demonstrating the logical, practical, and robust procedures 

used to perform the PCC modifier hPK siRNA screen. 

  A  B 

 
Figure 5.2. The controls PLK1 and inner centromere protein (INCENP) siRNAs 
confirms the high transfection efficiency in U2OS cells in PCC modifier hPK siRNA 
screen.  
PLK1 and INCENP siRNA decreased the cell number significantly compared to NT-siRNA in 
batch 1 (A) and batch 2 (B), providing a quantitative evaluation of transfection efficacy (p < 
0.0001).  
 

5.2.1.3 Evaluating the cell number in batches 1 and 2 in hPK siRNA of 
PCC inducer and modifier screens 

         In preparation for SL siRNA analysis, the cell number output from the two 

replicates in hPK siRNA PCC inducer screen was assessed.  

        In hPK siRNA PCC inducer screen, a comparison between the cell number 

output in replicates 1 and 2 was performed. Consequently, Pearson’s correlation 
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analysis revealed a strong positive association between the two replicates (r = 

0.6263; p < 0.0001; n = 720) (Figure 5.3A). In addition, the mean cell number 

output from the siRNA screen of both replicates was calculated to minimize the 

existence of variation in cell number between the replicates.  The scatter plot in 

(Figure 5.3B) illustrates the distribution of average cell number of 720 siRNAs in the 

hPK PCC inducer screen.  

         Similarly, in the hPK siRNA PCC modifier screen, a strong positive correlation 

was identified between the cell number in replicates 1 and 2 of the siRNA screen (r 

= 0.5609; p < 0.0001; n = 720) (Figure 5.3C), demonstrating the robustness of the 

experimental process used during the performance of the two replicates and 

allowing a further sufficient analysis for identifying SL siRNA hits. Moreover, as 

preparation for SL siRNA analysis, the average of cell number produced from the 

hPK siRNA PCC inducer screen was calculated and presented as a scatter plot 

(Figure 5.3D). 

 

5.2.2 Statistical analysis for identification of hPK-synthetic lethal 
siRNA hits based on percentage cell viability  

          The statistical analysis used to identify the SL siRNA was previously 

described in (Chapter 2; Section 2.4.1.1). Briefly, the statistical analysis process 

performed by (Turner et al., 2008) was utilised. For each screen, whether PCC 

inducer or modifier, the method relies on calculating the effect of each individual 

siRNA on cell viability in relation to the control and expressing this effect as a 

percentage. Then, the differences between the screens in % cell viability for each 

individual siRNA were calculated. 

         The top 20 siRNA hits, that showed the largest reduction in cell viability in the 

PCC modifier screen compared to the identical siRNA in the PCC inducer screen, 

were selected. These were considered to be SL siRNA hits (Table 5.1). The % cell 

viability produced from each siRNA hit also allowed cell death rate to be defined by 

subtracting 100 from the value of cell viability of each siRNA in either the PCC 

modifier or inducer screen as shown in (Table 5.1). Thus, the largest decrease in 

cell viability in the PCC modifier screen was caused by the potential SL hit (PLK1 

siRNA) with a cell viability of 4% in the absence of MCPH1/BRIT1 (PCC modifier 

screen/ the pink highlighted column) opposite to the cell viability of 58% in the 

presence of MCPH1/BRIT1 (PCC inducer screen/ the pink highlighted column) this 

hit is shown at the top of (Table 5.1). 
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Figure 5.3. Assessment of the cell number output from the PCC inducer and modifier hPK siRNA screens.  
(A and C) Graphs represent a comparison of cell number output between replicates 1 and replicate 2 in hPK siRNA in PCC inducer (r = 0.6263; p < 0.0001; n = 
720) (A) and in PCC modifier screen (r = 0.5609; p < 0.0001; n = 720) (C). (B and D) scatter plot graphs showing the distribution of average cell number 
produced from 720 hPK siRNAs in PCC inducer screen (B) and PCC modifier screen (D). 
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Table 5.1. Identification of hPK-synthetic lethal (SL) siRNA hits based on % cell viability.  
The columns highlighted in pink show the difference between % cell viability for PCC modifier siRNA (CVI)a  screens and % cell viability for PCC 
siRNA inducer (CVM)b screens. The first five siRNAs were validated, namely PLK1, CDK1/CDC2, STK39, VRK1 and TTK/MPS1. 

Screen 
Name 

Well 
Name 

% Cell 
viability 
(PCC 
modifier 
screen) 

Cell death rate 
(PCC modifier 
screen) 

Average 
%PCC  
(modifier 
screen) 

% Cell 
viability 
(PCC 
inducer 
screen) 

Cell death 
(PCC 
inducer 
screen) 

Average 
%PCC 
(inducer 
screen) 

%CVI a -%CVM b Gene 
symbol 

 (hPK1) C6 4.28 95.72 40.08 58.12 41.88 35.2 53.83 PLK1 
 (hPK1) D2 38.52 61.48 54.45 63.25 36.75 15.1 24.73 CDC2 
 (hPK4) H4 46.18 53.82 18.84 90.35 9.65 1.30 44.18 STK39 
 (hPK8) D5 48.18 51.82 22.62 93.23 6.77 1.19 45.06 VRK1 
 (hPK1) A2 48.31 51.69 18.96 77.07 22.93 9.6 28.76 TTK 
 (hPK6) F7 52.27 47.73 19.03 92.77 7.23 2.33 40.50 BRD4 
 (hPK9) D3 53.11 46.89 19.76 78.06 21.94 2.01 24.95 EFNB3 
 (hPK1) D8 53.19 46.81 19.34 88.12 11.88 2.59 34.92 PIK4CA 
 (hPK4) E3 53.48 46.52 12.86 89.62 10.38 1.35 36.14 CKMT2 
 (hPK1) G3 54.78 45.22 18.37 99.89 0.11 2.73 45.10 PHKA2 
 (hPK4) C9 55.65 44.35 10.51 86.18 13.82 0.65 30.54 FLT4 

 (hPK4) F5 55.97 44.03 12.07 94.90 5.10 0.55 38.93 DKFZP761
P0423 

 (hPK2) B8 57.41 42.59 10.52 91.16 8.84 1.01 33.75 PRKCE 
 (hPK7) C2 59.33 40.67 28.62 103.79 -3.79 2.40 44.47 KCNH2 
 (hPK5) H8 59.50 40.50 20.67 89.04 10.96 0.65 29.54 OSR1 
 (hPK1) B6 60.90 39.10 24.47 102.18 -2.18 5.60 41.27 MASTL 
 (hPK6) A4 61.54 38.46 24.20 100.17 -0.17 0.50 38.63 TLK2 
 (hPK5) F6 61.72 38.28 16.23 111.43 -11.43 1.05 49.71 ROR1 
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5.2.2.1 Selection of hPK-SL siRNA hits for screen validation  

The top five SL siRNA hits were initially selected for validation (PLK1, CDK1/CDC2, 

STK39, VRK1 and TTK/MPS1), which were highlighted in yellow in (Table 5.1). 

 

5.2.3 Validation of hPK-SL siRNA hits using on TARGET plus 

four deconvoluted siRNAs  

To statistically validate SL siRNA hits using a logical and robust strategy, the 

validation experiment was performed in duplicate at two different concentrations 

(25nM and 50nM). 

 

5.2.3.1 Selection of siRNA controls for valdation of SL siRNA hits 

         In order to validate the SL siRNA, each individual hit was knocked down using 

four individual duplex siRNAs under three different conditions as follows;  

1. Single knockdown reverse transfection of the siRNA hit 

2. Double knockdown of the siRNA hit in combination with MCPH1/BRIT1 siRNA  

3. Double knockdown of the siRNA hit in combination with NT-siRNA.  

For more details about siRNA controls used in validation SL siRNA hits see 

(Chapter 2; Section 2.4.1.2.1; Figure 2.4). 

         The single knockdown usually has no effect on cell number. However, it is 

anticipated that the double knockdown of a siRNA hit in combination with 

MCPH1/BRIT1 siRNA would greatly decrease the cell number compared to its 

combination with NT-siRNA that would show no significant effect on cell number.  

        Since identification of the SL siRNA is based on a double knockdown two 

controls were selected. One of these was similar to the one used in the PCC 

modifier screen, NT-siRNA/MCPH1/BRIT1 siRNA, which assessed the reduction in 

cell number caused by the treatment of the siRNA hit with MCPH1/BRIT1 siRNA. 

The other control was NT-siRNA/NT-siRNA which would not significantly decrease 

the cell number in the experiment compared to the one treated with the forward 

transfection MCPH1/BRIT1 siRNA.  

         In addition, several further controls were included in the same plate in order to 

confirm all steps of the experiment were working optimally to help reduce the 

identification of false positives. Thus, single knockdown reverse and forward 
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transfection of MCPH1/BRIT1 were performed and the %PCC determined as a 

functional read out of efficient MCPH1/BRIT1 knockdown. In addition the forward 

transfection of MCPH1/BRIT1 siRNA was also used as a reference for measuring 

the significant increase or decrease in %PCC so that any SL siRNA hits that 

showed a reduction in cell number and an increase or decrease in %PCC would be 

nominated as a potential PCC inducing or siRNA modifying hit. These siRNA hits 

could add substantial knowledge about the importance of MCPH1/BRIT1 function in 

regulating chromosome condensation. Moreover, single NT–siRNA at 25nM and 

50nM was used as a reference to show no effect either on cell number or %PCC. 

The PLK1 siRNA was used as a positive control for siRNA transfection efficiency 

and this was plated at 25nM and 50nM. 

  

5.2.3.2 Assessment of the single and double transfection of siRNA 

controls 

         The validation plate of SL siRNA hits included the single or double siRNA 

knockdown of the controls. The mean values of cell number or %PCC for these 

controls when treated with single siRNA knockdown at 25nM or 50nM were plotted 

and presented as separate figures next to each single siRNA knockdown of SL hits 

and are only explained in Figure 5.4 A1 and B1. The mean values of cell number or 

%PCC for these controls when treated with double siRNA knockdown at 25nM or 

50nM were plotted and presented as separate figures next to each double siRNA 

knockdown of SL hits and are only explained in Figure 5.4 A2 and B2.  

         For the single knockdown controls, the mean cell number (SD) for the FT of 

MCPH1/BRIT1 siRNA (100nM) was 2794 (778) (n = 10 wells) and 1645 (1234) for 

the RT (100nM) (n = 8 wells). MCPH1/BRIT1 siRNA induced a mean %PCC (SD) 

of 16.38% (2.9%) for forward transfection compared to 12.6% (6.8%) for RT. In 

addition, the mean cell number (SD) for the NT-siRNA at 25nM was 5479.08 (3015) 

vs. 4313 (2599) at 50nM (n = 6 wells). Similarly, NT-siRNA did not induce PCC 

either at 25nM or 50nM giving 1.72% (0.7%) and 0.86% (0.4%), respectively. 

Lastly, although the mean cell number for PLK1 siRNA at 25nM was unexpectedly 

high at 2066 (33), this decreased dramatically at 50nM to 294 (198) (n = 2 wells). 

This suggests that the 25nM as a concentration of siRNA was not sufficient to 

knockdown PLK1 compared to the 50nM or 100nM that was used experimentally 

during the performance of the PCC modifier screen by the BSTG or during the 

validation of siRNA hits from the PCC inducer hPK siRNA screen in (Chapter 4; 
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Section 4.2.1.5; Figure 4.7B) of this thesis to show transfection efficiency by 

reduction in cell number.  

        For the controls with double knockdown in both replicates, the mean cell 

number was 3515 for the NT-siRNA (25nM)/MCPH1/BRIT1 siRNA control and 

3874.50 for NT-siRNA (50nM)/MCPH1/BRIT1 siRNA (n = 6 wells). In addition, the 

mean %PCC was 11.4% for NT-siRNA (25nM)/MCPH1/BRIT1 siRNA which 

increased slightly to 13.2% for NT-siRNA (50nM)/MCPH1/BRIT1 siRNA. However, 

the corresponding control with double knockdown of NT-siRNA at 25nM (NT-siRNA 

(50nM)/NT-siRNA (50nM)) did not affect the cell number 5864 cells compared to 

NT-siRNA (50nM)/NT-siRNA (50nM) which reduced cell number to 2877 (n = 4 

wells). At 25nM or 50nM the corresponding double transfections of the NT-siRNA 

control both showed no effect on PCC level (≤ 1%).  

 

5.2.3.3 Validation of SL siRNA hits 

As previously mentioned in (Section 6.2.3.1) that each SL siRNA hit was validated 

using four individual/deconvoluted siRNAs. The individual siRNA underwent three 

different conditions, which were single knockdown (the siRNA hit was without any 

treatment) and, double knockdown (siRNA was treated individually either with 

MCPH1/BRIT1 siRNA or treated with NT-siRNA). The final concentration for siRNA 

single or double knockdown was 25nM and 50nM. 

5.2.3.3.1 STK39 siRNA 

         The validation results for single knockdown of STK39 using the four individual 

siRNAs revealed no effect on cell viability at 25nM or 50nM. The mean cell number 

for the deconvoluted STK39 siRNA 1, 2, 3 and 4 at 25nM was 6161, 6235, 7890 

and 6967, respectively while at 50nM it was 6750, 6616, 7175 and 3552, 

respectively (Figure 5.4 A1 and B1). 

         Furthermore, the analysis method, that was used initially with the two original 

screens (PCC inducer and PCC modifier hPK siRNA screens (Section 6.2.2, 

6.2.2.1 and Table 5.1) to identify the SL siRNA hits was employed to calculate the 

percentage difference in cell viability or/and cell death rate between each individual 

siRNA duplex treated with or without MCPH1/BRIT1 siRNA in relative to the 

controls NT-MCPH1/BRIT1 siRNA or NT-siRNA, respectively. Here, the difference 

in % cell viability caused by the four deconvoluted STK39 siRNA duplexes at 25nM 

and 50nM in cells treated with and without MCPH1/BRIT1 siRNA was calculated 

(Table 5.2 A and B). STK39 siRNA 1 at 25nM in combination with MCPH1/BRIT1 
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siRNA showed no difference in % cell viability (104%) opposite to (112%) for the 

single knockdown of STK39 siRNA 1 (Table 5.2A). 

Table 5.2. Showing % cell viability and cell death rate for the four deconvoluted 
STK39 siRNA in cells treated with/or without MCPH1/BRIT1 siRNA.  
The validation experiment of the SL siRNA hit (STK39) was performed in two 
concentrations 25nM (A) and 50nM (B). (CVI): % cell viability for PCC inducer siRNA screen 
and (CVM): % cell viability for PCC modifier siRNA screen. 

 
 
          A minimal reduction in % cell viability in cells treated with STK39 siRNA 2 

(25nM) in the absence of MCPH1/BRIT1 71.1% compared to the cells in the 

presence of MCPH1/BRIT1 (113.8%) (Table 5.2A). Thus, STK39 siRNA 2 (25nM) 

may potentially consider as a weak individual siRNA. However, knockdown of 

STK39 siRNA 3 or 4 (25nM) demonstrated a noticeable difference in % cell viability 

between cells treated with and without MCPH1/BRIT1 siRNA. The cell viability for 

STK39 siRNA 3 in the combination of MCPH1/BRIT1 siRNA was 47.2% while in the 

presence of MCPH1/BRIT1 it was 144% (Table 5.2A). The cell viability for STK39 

siRNA 4 was 77.9% in the absence of MCPH1/BRIT1 and 127.2% in the presence 

of MCPH1/BRIT1 (Table 5.2A).  

         On the other hand, a small difference in % cell viability was identified for 

STK39 siRNA 1 at (50nM) similarly to those observed at 25nM. The cell viability 

was 81.9% for STK39 siRNA 1 in combination with MCPH1/BRIT1 siRNA 

compared to 156.5% in cells without MCPH1/BRIT1 siRNA treatment (Table 5.2B). 

Deconvoluted 
siRNA (25nM)

Average 
cell 

number 

Cell 
death 
rate 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

STK39 siRNA 1 3657 -4 112.4 -12.5 8.4
STK39 siRNA 2 2504 28.8 113.8 -13.8 42.6
STK39 siRNA 3 1659 52.8 144 -44 96.8
STK39 siRNA 4 2740 22.1 127.2 -27.2 49.2

3516 Mean cell 
number 

Deconvoluted 
siRNA (50nM)

Average 
cell 

number 

Cell 
death 
rate 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

STK39 siRNA 1 3150 18.1 156.5 -56.5 74.6
STK39 siRNA 2 2258 41.3 153.4 -53.4 94.7
STK39 siRNA 3 1758 54.3 166.3 -66.3 120.7
STK39 siRNA 4 377.5 90.2 82.3 17.7 72.5

3848 4313

Control: NT-MCPH1 siRNA Control: NT-siRNA 
Mean cell 
number

Mean cell 
number 

A. SL siRNA hits 

B. SL siRNA hits 

58.7 6616
45.7 7175
9.8 3552

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) Difference in %CV 

%Cell viability Average cell 
number 

81.9 6750

Control: NT-MCPH1 siRNA Control: NT-siRNA 
Mean cell 
number 5479

71.2 6235
47.2 7890
77.9 6967

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) Difference in %CV 

%Cell viability 
(CV)

Average cell 
number 

104 6161
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However, STK39 siRNAs 2, 3 and 4 showed a massive change in % cell viability at 

50nM in cells with reduced MCPH1/BRIT1 level compared to cells with functional 

MCPH1/BRIT1 (Table 5.2B).  The % cell viability for STK39 siRNAs 2, 3 and 4 in 

cells treated with versus without MCPH1/BRIT1 siRNA were as follows; siRNA 2 

58.7% vs. 153.4%, siRNA 3 45.7% vs.166.3% and siRNA 4 9.8% vs. 82.3%.  

                            A.1  A.2 

 B.1                                                        B.2 

 
Figure 5.4. STK39 siRNA was a potential SL hit in MCPH1/BRIT1 deficiency cells.  
The validation plate for SL siRNA hits was composed of controls treated with a single 
siRNA knockdown at 25nM or 50nM in (A1 and B1), these controls are presented as 
separate figures within each individual description of SL siRNA hits and are only 
explained in this figure.  
(A1 and B1) single siRNA knockdown at 25nM and 50nM, respectively for the following 
controls; PLK1 siRNA at 50nM significantly decreased cell number to (294) compared to 
(2055) at 25nM. The mean cell number for the FT of MCPH1/BRIT1 siRNA (100nM) was 
2794 and 1645.5 for RT. NT-siRNA had little effect on cell number at 25nM (5479) and 
50nM (4313). In (A2 and B2) (controls siRNA) the first two columns were treated with 
double siRNA knockdown at 25nM and 50nM representing the cell number in the controls, 
the grey columns showing NT-siRNA (25nM or/and 50nM) followed by MCPH1/BRIT1 
(100nM) siRNA (control) (3515) and (3874), respectively. The orange columns represent the 
cell number in NT-siRNA/NT-siRNA at 25nM or 50nM (5864) and (2877), respectively. (A1 
and B1) showing the single knockdown for STK39 using the four deconvoluted siRNAs at 
25nM and 50nM did not effect on cell number compared to NT-siRNA. (B2) significant 
reduction in cell viability observed that with STK39 siRNA 3 (1758; p = 0.0519) and STK39 
siRNA 4 (377; p = 0.0072) at 50nM in absence of MCPH1/BRIT1 versus the controls (NT-
siRNA/MCPH1/BRIT1 siRNA represented in grey coloured column)  
(3874).  
 

         Additionally, we compared the cell number output of the double knockdown of 

siRNA hit with MCPH1/BRIT1 siRNA in relative to the double knockdown of the 
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siRNA hit with NT-siRNA. This was to confirm that the transfection efficiency of 

MCPH1/BRIT1 siRNA specifically in reducing cell number compared to NT-siRNA 

which has no effect on cell number.  

         The double knockdown for STK39 siRNA 1, 2 and 3 at 25nM showed about a 

50% reduction in cell number in the absence of MCPH1/BRIT1 compared to 

transfection for those three individual siRNAs in combination with NT-siRNA (25nM) 

(Figure 5.4 A2). The unexpected low cell number which resulted from STK39 siRNA 

4 transfection in combination with NT-siRNA could be due to the significant 

variation in cell number between the two replicates. In addition, at 50nM in the 

absence of MCPH1/BRIT1, STK39 siRNAs 2, 3 and 4 but not STK39 siRNA 1 

showed a reduction in cell number compared to cells treated with STK39 siRNA 

followed by NT-siRNA (Figure 5.4B2). There was a significant variation in the cell 

number between the two replicates of STK39 siRNA 1 in combination with NT-

siRNA at 50nM (Figure 5.4B2).  

          Afterwards, the statistical analysis was performed using Unpaired t-test to 

identify those individual STK39 siRNAs that significantly affected the cell number 

compared to the control (NT-siRNA (at 25nM or 50nM)/ MCPH1/BRIT1 siRNA). 

This showed that the reduction in cell number caused by STK39 siRNAs 1, 2 and 3 

at 25nM in the absence of MCPH1/BRIT1 was not statistically significant compared 

to the control. In addition, as expected, STK39 siRNA 4 at 25nM in combination 

with MCPH1/BRIT1 siRNA, due to cell number variability within the replicates, did 

not show significant results (Figure 5.4A2). Nevertheless, STK39 siRNA 1 and 

STK39 siRNA 2 at 50nM in combination with MCPH1/BRIT1 siRNA did not reflect 

statistical significant results vs. the control due to cell number variability that was 

observed between the replicates. Thus, only STK39 siRNAs 3 and 4 at 50nM were 

considered to significantly reduce cell viability in the absence of MCPH1/BRIT1 vs. 

the control. The mean cell number for STK39 siRNA 3/MCPH1/BRIT1 siRNA was 

1758 (p = 0.0519) and for STK39 siRNA 4/ MCPH1/BRIT1 siRNA was 377 (p = 

0.0072) vs. 3848 for the control (Figure 5.4B2).  

        Some variability in the results were identified at the different siRNA 

concentrations. Comparison to PLK1 siRNA control and other validated hits 

suggested better knockdown occurred at 50nM rather than 25nM. Further validation 

confirming the efficiency of the STK39 siRNA knockdown by RT-PCR and/or WB 

would identify at least 2 out of 4 individual siRNAs to validate the significance of 

STK39 as SL in the absence of MCPH1/BRIT1 expression.  
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         During the analysis of the validation plates, it was noticed that some of the SL 

hits induced an elevated level of PCC, particularly when followed by MCPH1/BRIT1 

knockdown. Thus, it was decided to determine if potential SL siRNA hit (STK39) 

also modified the percentage of MCPH1/BRIT1 induced PCC (Figure 5.5). 

                                 A.1                                                A.2 

   B.1                                                   B.2 

Figure 5.5. STK39 siRNA may not be involved in inducing PCC.  
The %PCC output from the controls treated with single siRNA knockdown at 25nM or 
50nM in (A1 and B1) are presented as figures within each individual description of the 
SL siRNA hits and they will be only explained in this figure. The graphs in (A1 and B1) 
showing the %PCC induced by single knockdown siRNA for the controls at 25nM and 
50nM, respectively for the following controls; the %PCC was seen with PLK1 siRNA was 
due to cell death not to the sufficient knockdown of PLK1. The mean %PCC for the FT of 
MCPH1/BRIT1 siRNA (100nM) was 16.38% (n = 10 wells) and 12.6% for the RT (n = 8 
wells).  NT-siRNA has no effect on %PCC at 25nM and 50nM 1.27% and 0.86%, 
respectively (n = 6 wells).  In (A2 and B2) controls siRNA’s columns represent the %PCC in 
the controls treated with double knockdown siRNA at 25nM and 50nM, the grey columns 
showing the %PCC in the positive control NT-siRNA (25nM or/and 50nM) (11.4%) and 
(13.9%), respectively in the case of MCPH1/BRIT1 (100nM) siRNA. The orange columns 
represent the %PCC in NT-siRNA at 25nM or 50nM (≤ 1%) in the case of FT with NT-siRNA 
(25nM or 50nM). (A1 and B1) showing the single knockdown of the four deconvoluted 
STK39 siRNAs at 25nM and 50nM did not induce PCC. (A2) double knockdown of the four 
individual STK39 siRNAs at 25nM with MCPH1/BRIT1 siRNA increased %PCC significantly 
in particular with STK39 siRNA 2 (17.6%; p = 0.0473) and 3 (18.7%; p = 0.0255) compared 
to the positive control (NT-siRNA/MCPH1/BRIT1 siRNA; presented in grey coloured 
column) (11.4%,). (B2) However, this double knockdown of these two siRNAs at 50nM 
reduced %PCC, and subsequently reduced the statistical significance p value, to 13.9% for 
STK39 siRNA 2 and 15% for STK39 siRNA 3. 
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         MCPH1/BRIT1 knockdown increased %PCC, in particular with the individual 

STK39 siRNAs 2 (17.6%) and 3 (18.7%) at 25nM compared to the PCC induced by 

the positive control (11.4%), demonstrating significant p values of 0.0473 and 

0.0255, respectively (Figure 5.5 A2). However, this statistical difference was 

reduced after using 50nM with STK39 siRNAs 2 and 3 and interestingly resulted in 

a reduction in %PCC to 13.9% for STK39 siRNA 2 and 15% for STK39 siRNA 3 

(Figure 5.5 B2). This reduction in %PCC at 50nM may explain that STK39 siRNA 

did not consider to be a PCC inducer since the control NT-siRNA/ MCPH1/BRIT1 

siRNA (double knockdown), the FT and RT MCPH1/BRIT1 siRNA (single 

knockdown), usually shows a %PCC of 12 to 20% and the %PCC caused by this 

double knockdown of the four deconvoluted STK39 siRNAs at 25nM and 50nM may 

simply be the consequence of the FT of MCPH1/BRIT1 knockdown. However, this 

reduction in %PCC after using STK39 siRNA at 50nM may instead reflect its 

potential SL activity, killing the MCPH1/BRIT1 deficient cells that would otherwise 

display a PCC phenotype. 

 

5.2.3.3.2 VRK1 siRNA 

         The single knockdown for the four deconvoluted duplex siRNAs targeting 

VRK1 clearly showed no effect on cell viability at 25nM and 50nM compared to 

either NT-siRNA (25nM or 50nM) or to untransfected cells. The mean cell number 

for VRK1 siRNAs 1, 2, 3 and 4 at 25nM was 4938, 5766, 5489 and 5150 

respectively compared to 5479 for the NT-siRNA. At 50nM, it was 2756, 4960, 5365 

and 3912 respectively compared to 4313 for the NT-siRNA (Figure 5.6 A1 and B1).  

         Additionally, the effect of the four deconvoluted siRNAs targeting VRK1 

(25nM or 50nM) in % cell viability in cells treated with/or without MCPH1/BRIT1 

siRNA was analysed (Table 5.3 A and B). At 25nM, only VRK1 siRNA 1 presented 

a reasonable reduction in % cell viability in the absence of MCPH1/BRIT1 with 

68.9% compared to 90.1% in cells with a single siRNA knockdown of VRK1 (Table 

5.3A). VRK1 siRNA 2, 3 and 4 at 25nM and in the absence of MCPH1/BRIT1 did 

not show a noticeable difference in % cell viability compared to those seen in the 

presence of MCPH1/BRIT1 (Table 5.3A). In contrast, VRK1 siRNA 1 at 50nM 

showed no difference in % cell viability in cells treated with and without 

MCPH1/BRIT1 siRNA (72. 3% and 63.9%, respectively) (Table 5.3B). However, 

VRK1 siRNA 2 and 3 at 50nM demonstrated a reasonable reduction in % cell 

viability in cells in the absence of MCPH1/BRIT1 versus in the presence of 

MCPH1/BRIT1. The % cell viability was 67.4% vs. 115% for VRK1 siRNA 2, 
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whereas it was 89.1% vs.124.4% for VRK1 siRNA 3 (Table 5.3B). However, the 

double knockdown of VRK1 siRNA 4 at 50nM with MCPH1/BRIT1 siRNA did not 

greatly affect % cell viability (76.1%) compared to (90.7%) in cells treated with a 

single knockdown of VRK1 siRNA 4 (Table 5.3B). 

 

Table 5.3. Showing % cell viability and cell death rate for the four deconvoluted VRK1 
siRNA in cells treated with/or without MCPH1/BRIT1 siRNA.  
The validation experiment of the SL siRNA hit (VRK1) was performed in two concentrations 
25nM (A) and 50nM (B). 

 
 

         In addition, all of the double knockdowns of the four deconvoluted VRK1 

siRNAs, at 25n and 50nM, decreased cell number in the absence of MCPH1/BRIT1 

compared to those four deconvoluted siRNAs treated with NT-siRNA (25nM or 

50nM) (Figure 5.6 A2 and B2).   

         To identify the deconvoluted VRK1 siRNAs, at 25nM or 50nM, that were the 

most effective in significantly reducing the cell number compared to the control (NT-

siRNA (25nM or 50nM) /MCPH1/BRIT1 siRNA), the Unpaired t-test statistical 

analysis was performed. Consequently, only VRK1 siRNA 1 at 25nM showed a low 

cell number (2423) in the absence of MCPH1/BRIT1 compared to the control 

(3515); however, this difference in the cell number was not significant (p = 0.3011) 

(Figure 5.6A2). The four deconvoluted VRK1 siRNAs 1, 2, 3 and 4 at 50nM 

presented low cell number values of 2783, 2594, 3430 and 2928 respectively 

A. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (25nM)

Average 
cell 

number 
%Cell viability

Cell 
death 
rate 

Average 
cell 

number 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

VRK1 siRNA 1 2423 68.9 31.1 4938 90.1 9.88 21.2
VRK1 siRNA 2 3707 105.4 *5.4 5766 105.2 *5.23 -0.2
VRK1 siRNA 3 3704 105.3 *5.3 5489 100.2 *0.18 -5.2
VRK1 siRNA 4 4212 119.8 *19.8 5150 94 6.02 -25.8

Mean 
cell 

number
3516

Mean 
cell 

number
5479

B. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (50nM)

Average 
cell 

number 
%Cell viability

Cell 
death 
rate 

Average 
cell 

number 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

VRK1 siRNA 1 2783 72.3 27.7 2756 63.9 36.1 *8.4
VRK1 siRNA 2 2594 67.4 32.6 4960 115 *15 47.6
VRK1 siRNA 3 3430 89.1 10.9 5365 124.4 *24.4 35.2
VRK1 siRNA 4 2928 76.1 23.9 3912 90.7 9.3 14.6

Mean 
cell 

number
3848

Mean 
cell 

number 
4313

Control: NT-MCPH1 siRNA Control: NT-siRNA 

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Control: NT-MCPH1 siRNA Control: NT-siRNA 

Double knockdown (in the absence Single knockdown (in the 
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compared to 3848 for the control (Figure 5.6B2). However, at 50nM in the absence 

of MCPH1/BRIT1, no individual VRK1 siRNA reflected a statistically significant 

difference in cell number vs. the control (Figure 5.6B2). This is potentially due to the 

variation in the cell number observed between the two replicates, specifically at 

50nM.  

         Although VRK1 siRNA 2 and 3 at 50nM showed a reasonable reduction in % 

cell viability in cells in the absence of MCPH1/BRIT1 versus in the presence of 

MCPH1/BRIT1 (Table 5.3B), this reduction was not significant in comparison to the 

cell number of the control, the variation in the cell number between the two 

replicates may have influenced the results.  

A.1                                                 A.2 

                               B.1                                                 B.2 

Figure 5.6. VRK1 siRNA may induce SL in the absence of MCPH1/BRIT1. 
(A1 and B1) single knockdown of the four deconvoluted VRK1 siRNAs, at 25nM and 50nM, 
presented no significant effect on cell viability compared to the NT-siRNA. (A2 and B2) the 
double knockdown of these deconvoluted VRK1 siRNAs, at 25nM (A2) and 50nM (B2), in 
combination with MCPH1/BRIT1 siRNA clearly decreased cell viability compared to those 
deconvoluted VRK1 siRNAs which were followed by FT with NT-siRNA (25nM or 50nM).  
(A2) in comparison to the cell number in the control (NT-siRNA (25nM)/MCPH1/BRIT1 
siRNA presented in the grey coloured column) (3515.9), only VRK1 siRNA 1 at 25nM 
showed low cell number (2423) but this was not significant. (B2) None of the deconvoluted 
VRK1 siRNA 1, 2, 3 and 4 at 50nM followed by FT MCPH1/BRIT1 siRNA showed a 
statistically significant difference in cell number (2783, 2594, 3430 and 2928, respectively) 
compared to 3848 in the control (grey column). 
 
         Thus, VRK1 siRNA may be considered as a weak SL siRNA hit and a further 

repeat of the validation for the VRK1 siRNA may be warranted to confirm its 

potential synthetic lethality role in MCPH1/BRIT1 deficient cells.  
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           VRK1 siRNA was not considered to be a PCC inducer since the level of PCC 

induced by the four deconvoluted VRK1 siRNAs 1, 2, 3, and 4, at 25nM (14%, 17%, 

18% and 14%, respectively) or 50nM (13%, 13%, 15% and 15%) in the absence of 

MCPH1/BRIT1 (Figures 6.7 A2 and B2) did not differ significantly from the standard 

level of PCC induced by a single RT or FT MCPH1/BRIT1 siRNA (between 12%-

20%) (Figures 6.7 A1 and B1) or even from the %PCC shown in the control (NT-

siRNA (25nM)/ MCPH1/BRIT1 siRNA) 11.4% or (NT-siRNA (50nM)/MCPH1/BRIT1 

siRNA) 13.2% (Figures 6.7 A2 and B2). 

  A.1   A.2 

 
                                   B.1 B.2 

Figure 5.7. VRK1 siRNA is not an inducer for PCC phenotype.  
(A1 and B1) Single knockdown with a FT of MCPH1/BRIT1 induced %PCC of 16% and with 
RT 12.6%. (A2 and B2) The %PCC for control (NT-siRNA (25nM)/ MCPH1/BRIT1 siRNA) 
was 11.4% (A2, grey column) or in  (NT-siRNA (50nM)/ MCPH1/BRIT1 siRNA) was 13.2% 
(B2, grey column). (A2 and B2) In the absence of MCPH1/BRIT1 the level of PCC induced 
by the four deconvoluted VRK1 siRNAs 1, 2, 3, and 4, at 25nM (14%, 17%, 18% and 14%, 
respectively) or at 50nM (13%, 13%, 15% and1 5%, respectively) did not differ significantly 
from the standard level of PCC induced by a single RT or FT MCPH1/BRIT1 siRNA 
(between 12%-20%). 
 

5.2.3.3.3 TTK/MPS1 siRNA 

         The single knockdown for TTK/MPS1 using the four deconvoluted siRNAs at 

25nM or 50nM showed no significant effect on cell number compared to NT-siRNA 

(25nM or 50nM) or untransfected cells. The mean cell number for TTK/MPS1 

siRNA 1, 2, 3 and 4 at 25nM was 4143, 4707, 6403 and 5563 respectively 
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compared to 5479 for the NT-siRNA. Whereas, at 50nM it was 5078, 5063, 5491 

and 3589 respectively compared to 4313 for the NT-siRNA (Figure 5.8 A1 and B1). 

         Furthermore, the impact of the four deconvoluted siRNAs targeting 

TTK/MPS1 (25nM or 50nM) in % cell viability in cells treated with/or without 

MCPH1/BRIT1 siRNA was examined (Table 5.4 A and B). At 25nM, TTK/MPS1 

siRNA 1 and 2 showed a reasonable difference in % cell viability compared to 

TTK/MPS1 siRNA 3 and 4 in the absence of MCPH1/BRIT1 (Table 5.4A).  

 

Table 5.4. Showing % cell viability and cell death rate for the four deconvoluted 
TTK/MPS1 siRNA in cells treated with/or without MCPH1/BRIT1 siRNA. 
 The validation experiment of the SL siRNA hit (TTK/MPS1) was performed in two 
concentrations 25nM (A) and 50nM (B). 

 

          The cell viability for TTK/MPS1 siRNA 1 and 2 in the absence versus in the 

presence of MCPH1/BRIT1 was as follows; 53.8% vs. 75.6% and 69.8% vs. 85.9%, 

respectively (Table 5.4A). The % cell viability for TTK/MPS1 siRNA 3 and 4 in the 

absence versus the presence of MCPH1/BRIT1 was as follows; 83.3% vs. 116.9% 

and 87.6% vs. 101.5%, respectively (Table 5.4A). In contrast, at 50nM TTK/MPS1 

siRNA 1, 2 and 4 showed a noticeable reduction in cell viability  (≤ 54%) compared 

to TTK/MPS1 siRNA 3 (76%) in the absence of MCPH1/BRIT1 (Table 5.4B). The % 

cell viability for TTK/MPS1 siRNA 1, 2 and 3 and 4 in the absence versus the 

presence of MCPH1/BRIT1 was as follows; 52% vs.117%, 54 vs. 117%, 76.1% vs. 

127% and 51 vs. 83% respectively.  

 

A. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (25nM)

Average 
cell 

number 
%Cell viability 

Cell 
death 
rate 

Average 
cell 

number 

%Cell 
viability

Cell death 
rate

%CVI-%CVM 

TTK siRNA 1 1891 53.8 46.2 4143 75.6 24.39 21.8
TTK siRNA 2 2455 69.8 30.2 4707 85.9 14.1 16.1
TTK siRNA 3 2929 83.3 16.7 6403 116.9 -16.86 33.6
TTK siRNA 4 3081 87.6 12.4 5563 101.5 -1.52 13.9

Mean cell 
number 3516 Mean cell 

number 5479

B. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (50nM)

Average 
cell 

number 
%Cell viability

Cell 
death 
rate 

Average 
cell 

number 

%Cell 
viability

Cell death 
rate

%CVI-%CVM 

TTK siRNA 1 2032.5 52.8 47.2 5078.5 117.7 -17.7 64.9
TTK siRNA 2 2088 54.3 45.7 5063.5 117.4 -17.4 63.1
TTK siRNA 3 2927.5 76.1 23.9 5491 127.3 -27.3 51.2
TTK siRNA 4 1977 51.4 48.6 3589.5 83.2 16.8 31.8

Mean cell 
number 3848 Mean cell 

number 4313

Control: NT-MCPH1 siRNA Control: NT-siRNA 

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Control: NT-MCPH1 siRNA Control: NT-siRNA 

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 
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         Additionally, the double knockdown of TTK/MPS1 using the four deconvoluted 

siRNAs, at 25nM or 50nM, in combination with MCPH1/BRIT1 siRNA resulted in a 

noticeable reduction in cell number compared to cells with a co-depletion of 

TTK/MPS1 and NT-siRNA (25nM or 50nM) (Figures 6.8 A2 and B2).  

                            A.1                                      A.2 

                              B.1 B.2 

Figure 5.8. TTK/MPS1 siRNA is a potential SL hit in the absence of MCPH1/BRIT1. 
(A1 and B1) the single knockdown for TTK/MPS1 using the four deconvoluted siRNA at 
25nM or 50nM showed no effect on cell number. (A2 and B2) the double knockdown of 
TTK/MPS1 using the four deconvoluted siRNAs, at 25nM or 50nM, in combination with 
MCPH1/BRIT1 siRNA obviously decreased cell viability versus the TTK/MPS1 depleted 
cells that followed with FT NT-siRNA (25nM or 50nM).  (A2) the mean cell number for the 
four individual TTK/MPS1 siRNAs (25nM) MCPH1/BRIT1 versus when those deconvoluted 
siRNAs were followed by NT-siRNA (25nM) was as follows; 1891 vs 2714 for TTK/MPS1 
siRNA1, 2455 vs 3095 for TTK/MPS1 siRNA 2, 2929 vs 4463 for TTK/MPS1 siRNA 3 and 
3081 vs 3844 for TTK/MPS1 siRNA 4. While at 50nM (B2) the mean cell numbers were as 
follows; 2032 vs 4790 for TTK/MPS1 siRNA1, 2088 vs 4598 for TTK/MPS1 siRNA 2, 2927 
vs 4690 for TTK/MPS1 siRNA 3 and 1977 vs 2930 for TTK/MPS1 siRNA 4. (A2 and B2) 
there was no significant statistical difference in the cell number between any of the four 
deconvoluted TTK/MPS1 siRNAs in the absence of MCPH1/BRIT1, either at 25nM (A2) or 
50nM (B2), and the control ((NT-siRNA (at 25nM or 50nM)/MCPH1/BRIT1 siRNA; 
represented in grey column. 
 
         Furthermore, the cell number output from these four deconvoluted TTK/MPS1 

siRNAs, at 25nM or 50nM, in the absence of MCPH1/BRIT1, was lower than the 

output from the control (NT-siRNA (25nM)/MCPH1/BRIT1 siRNA; (3516 cells); 

Figure 5.8A2; control column is grey) or (NT-siRNA (50nM) /MCPH1/BRIT1 siRNA; 

(3848 cells); Figure 5.8B2; control column is grey). However, there was no 

significant statistical difference in the cell number between the TTK/MPS1 siRNA in 

the absence of MCPH1/BRIT1 and the control. This again may potentially be due to 
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the variation in the cell number of the four deconvoluted siRNAs between the two 

replicates, which led to a reduction in the statistical significance of the results.  

         However, TTK/MPS1 may be considered as a SL hit based on the clear 

reduction in cell viability caused by these four individual siRNAs in the absence of 

MCPH1/BRIT1 compared to either the double knockdown of these four individual 

siRNAs with NT-siRNA (Figure 5.8 A2 and B2) or to the single knockdown using 

these four siRNAs (Table 5.4 A and B).  

         The four individual TTK/MPS1 siRNAs at 25nM induced PCC level in the 

absence of MCPH1/BRIT1 (Figure 5.9). 

                      A.1                                                    A.2 

  
                                    B.1                                                                     B.2 

Figure 5.9. TTK/MPS1 siRNA may have a potential effect on increasing PCC. 
(A1 and B1) single knockdown of TTK/MPS1 siRNA using four individual TTK/MPS1 
siRNAs at 25nM and 50nM did not induce PCC. (A2) the double knockdown of the four 
deconvoluted siRNAs at 25nM increased %PCC level in the absence of MCPH1/BRIT1. The 
mean %PCC for TTK/MPS1 siRNAs 1, 2, 3 and 4 when followed by FT MCPH1/BRIT siRNA 
was 15%, 20%, 22%, and 15%, respectively and TTK/MPS1 siRNA 2 (20.3%; p = 0.0105) 
and TTK/MPS1 siRNA 3 (22%; p = 0.0064) showed a significant difference in %PCC in the 
positive control (grey column) (11.4%). (B2) the mean %PCC for the four deconvoluted 
TTK/MPS1 siRNAs at 50nM in the absence of MCPH1/BRIT1 remained high, which was 
19%, 18%, 18% and 15% for TTK/MPS1 siRNAs 1, 2, 3, and 4, respectively, but they were 
not statistically significant compared to the control ((NT-siRNA (50nM)/MCPH1/BRIT1 
siRNA (13.2%), grey column. 
 
         The mean %PCC for TTK/MPS1 siRNAs 1, 2, 3 and 4 when followed by FT 

MCPH1/BRIT siRNA was 15%, 20%, 22%, and 15% respectively. However, only 

TTK/MPS1 siRNA 2 (20.3%) and TTK/MPS1 siRNA 3 (22%) showed a significant 
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difference in %PCC induced by the siRNA and the control (NT-siRNA (at 

25nM)/MCPH1/BRIT1 siRNA) (11.4%), showing a p value of 0.0105 and 0.0064 

respectively (Figure 5.9A2). This statistical significance was reduced after using the 

four deconvoluted siRNAs at 50nM in the absence of MCPH1/BRIT1. The mean 

%PCC for the four deconvoluted TTK/MPS1 siRNAs at 50nM in the absence of 

MCPH1/BRIT1 slightly decreased to 19%, 18%, 18% and 15% for TTK/MPS1 

siRNAs 1, 2, 3, and 4, respectively compared to the control (NT-siRNA (at 

50nM)/MCPH1/BRIT1 siRNA) (13.2%) (Figure 5.9B2).  

         A further repeat for validation TTK/MPS1 siRNA may be needed to confirm its 

potential role in induction of PCC alongside its synthetic lethality effect in killing 

these PCC cells observed in MCPH1/BRIT1 deficient cells. 

 

5.2.3.3.4 CDK1/CDC2 siRNA 

        In order to validate whether CDK1/CDC2 is a potential SL siRNA hit, a reverse 

transfection of four individual siRNAs targeting CDK1/CDC2 at 25nM and 50nM 

was followed individually by a FT of MCPH1/BRIT1 siRNA (100nM). In addition, a 

RT of the four individual CDK1/CDC2 siRNAs followed by a FT of NT-siRNA 

individually at 25nM and 50nM was performed to monitor the effect on cell number 

that might be caused by the double knockdown of the SL siRNA hit in the absence 

of MCPH1/BRIT1.   

         Single knockdown of these four individual CDK1/CDC2 siRNAs did not show 

any noticeable effect on cell number at 25nM and 50nM compared to the cell 

number treated with single knockdown NT-siRNA (Figures 6.10 A1 and B1).  

        Additionally, the percentage difference in cell viability between the double 

knockdown of the four individual CDK1/CDC2 with MCPH1/BRIT1 siRNA and the 

single knockdown of these individual siRNAs was calculated relative to the controls 

NT-MCPH1/BRIT1 siRNA and NT-siRNA respectively (Table 5.5 A and B). 

Unexpectedly the %cell viability for CDK1/CDC2 siRNA 1 at 25nM was similar in 

the absence and presence of MCPH1/BRIT1 at 83.6% and 78.1% respectively 

(Table 5.5A). Double knockdown of CDK1/CDC2 siRNA 2 (25nM) with 

MCPH1/BRIT1 siRNA showed a small difference in % cell viability with the single 

knockdown of CDK1/CDC2 siRNA 2 (71.6% compared to 79.5%; Table 5.5A).  
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         However, a reasonable reduction in % cell viability was caused by knockdown 

of CDK1/CDC2 siRNA 3 (25nM) in combination with MCPH1/BRIT1 siRNA (77.1%) 

compared to the % cell viability in the single siRNA knockdown (112.7%; Table 

5.5A).  

Table 5.5. Showing % cell viability and cell death rate for the four deconvoluted 
CDK1/CDC2 siRNA in cells treated with/or without MCPH1/BRIT1 siRNA.  
The validation experiment of the SL siRNA hit (CDK1/CDC2) was performed in two 
concentrations 25nM (A) and 50nM (B). 

 

         No difference in % cell viability was observed in cells treated with 

CDK1/CDC2 siRNA 4 (25nM) either in the absence or presence of MCPH1/BRIT1 

(99.3% and 122.1% respectively; Table 5.5A). However, the %cell viability in cells 

treated with CDK1/CDC2 siRNA at 50nM was higher than those observed at 25nM 

(Table 5.5B), suggesting that the 50nM siRNA concentration may be more effective 

at inhibiting the gene of interest. In addition, this confirmed our initial finding with 

the transfection efficiency read out control (pooled PLK1 siRNA) that showed a 

massive reduction in cell number at 50nM but not at 25nM. The % cell viability in 

CDK1/CDC2 siRNA 1 (50nM) was 57% in the absence of MCPH1/BRIT1 compared 

to 100% in its presence (Table 5.5B). CDK1/CDC2 siRNA 2 at 50nM, however, 

showed results similar to those seen at 25nM, causing a small reduction in % cell 

viability between cells treated with MCPH1/BRIT1 siRNA and those that were not 

(69% vs. 85.9%; Table 5.5B). CDK1/CDC2 siRNA 3 and 4 at 50nM demonstrated a 

large difference in % cell viability in the absence of MCPH1/BRIT1 vs. in its 

presence (32.5% vs. 79.3%) and (68.7% vs. 112.6), respectively (Table 5.5B). 

A. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (25nM)

Average cell 
number 

%Cell 
viability 

Cell 
death 
rate 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

CDK1 siRNA 1 2941 83.6 16.4 78.1 21.91 -5.6
CDK1 siRNA 2 2519 71.6 28.4 79.5 20.47 7.9
CDK1 siRNA 3 2711 77.1 22.9 112.7 -12.69 35.6
CDK1 siRNA 4 3491 99.3 0.7 122.1 -22.08 22.8

Mean cell 
number 3515 Mean cell 

number 

B. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (50nM)

Average cell 
number 

%Cell 
viability

Cell 
death 
rate 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

CDK1 siRNA 1 2212 57.5 42.5 100.7 -0.7 43.3
CDK1 siRNA 2 2655 69 31 85.9 14.1 16.9
CDK1 siRNA 3 1251 32.5 67.5 79.3 20.7 46.8
CDK1 siRNA 4 2643 68.7 31.3 112.6 -12.6 44

Mean cell 
number 3847.5 Mean cell 

number 

4858
Control: NT-MCPH1 siRNA Control: NT-siRNA 

4313

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Average cell 
number 

4346
3704
3420

6689

Control: NT-MCPH1 siRNA Control: NT-siRNA 

5479

Double knockdown (in the absence 
of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Average cell 
number 

4279
4358
6175
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        Next, a comparison of cell number was performed between cells treated with 

CDK1/MCPH1 siRNAs and cells treated with CDK1/NT siRNAs at both 

concentrations. Notably, all four deconvoluted siRNAs targeting CDK1/CDC2 in 

combination with MCPH/BRIT1 siRNA showed a clear reduction in cell number at 

25nM and 50nM compared to the double transfection of CDK1/CDC2 siRNA with 

NT- siRNA (Figure 5.10 A2 and B2).  

                                    A.1                                                      A.2 

 B.1 B.2 

Figure 5.10. CDK1/CDC2 was a potential synthetic lethal siRNA in the absence of 
MCPH1/BRIT1 function. 
Description for the single knockdown siRNA controls (A1 and B1) at 25 and 50nM was 
detailed in (Figure 5.4). Validation for CDK1/CDC2 using the four deconvoluted siRNAs 
alone at 25nM and 50nM showed no effect on cell number compared to NT-siRNA (A1 and 
B1). These four deconvoluted siRNAs, at 25nM (A2) and 50nM (B2), clearly reduced the 
cell number with MCPH1/BRIT1 siRNA compared to those followed by NT-siRNA. Only 
CDK/CDC siRNA 1 and 3 at 50nM (B2) showed a significant reduction in cell number (2212) 
and (1251) compared to the control (NT-siRNA/MCPH1/BRIT1 siRNA; presented in grey 
coloured column) (3874.50) with a p value of 0.017 and 0.0294, respectively. 

         Afterwards, statistical analysis was performed using an Unpaired t-test to 

identify the statistical significance of the individual duplex siRNA that showed a 

dramatic reduction in cell viability compared to the control with double knockdown 

(NT-siRNA at 25nM or 50nM/ MCPH1/BRIT1 siRNA 100nM). The control at 25nM 

showed a cell number of 3516, which was 3848 at 50nM (Figures 6.10 A2 and B2; 

the control is the grey column). Consequently, at a concentration of 25nM, the four 

deconvoluted CDK1/CDC2 siRNAs, in the absence of MCPH1/BRIT1, showed cell 

number values relatively lower than the control (NT-siRNA (25nM)/ MCPH1/BRIT1 

siRNA). However, none of these four siRNAs at a concentration of 25nM showed a 
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statistically significant reduction in cell number versus the control (Figure 5.10 A2). 

On the other hand, in comparison to the control, the mean cell number for the four 

deconvoluted CDK1/CDC2 siRNAs at 50nM and in combination with MCPH1/BRIT1 

siRNA, was reduced, showing a statistically significant result for siRNA 1 (2212) 

and 3, (1251) with p values of 0.017 and 0.0294, respectively (Figure 5.10 B2).  

         Interestingly, attempts had previously been made to validate CDK1/CDC2 

using single knockdown as a potential hPK siRNA that would induce PCC, but 

without great success (Chapter 4; Section 4.2.1.5; Figure 4.7). Here, similar results 

were obtained since single knockdown of CDK1/CDC2 using the four deconvoluted 

siRNAs at 25nM and 50nM showed no effect on PCC level (Figure 5.11 A1 and 

B1). However, the double knockdown of the four deconvoluted CDK1/CDC2 

siRNAs, at 25nM and 50nM, followed by the FT MCPH1/BRIT1 siRNA efficiently 

increased the level of PCC compared to those four deconvoluted CDK1/CDC2 

siRNAs that were followed by FT of NT-siRNA at 25nM or 50nM (Figure 5.11 A2 

and B2). 

         Then, an unpaired t-test was performed to ascertain the extent to which the 

four individual duplex siRNAs targeting the CDK1/CDC2 at 25nM and 50nM in the 

absence of MCPH1/BRIT1 affected the level of PCC relative to the control (NT-

siRNA (25 or 50nM)/ MCPH1/BRIT1 siRNA (100nM)). Consequently, it was found 

that CDK1/CDC2 siRNA 1 and 3 at both 25nM and 50nM in the absence of 

MCPH1/BRIT1 increased the %PCC significantly compared to the control. The 

mean %PCC for the double knockdown of the control was 11.39% at 25nM and 

13.20% at 50nM (n = 6 wells). The mean %PCC for CDK1/CDC2 siRNA 1 at 25nM 

in the absence of MCPH1/BRIT1 was 29.11% (p = 0.0003; n = 2 wells), which 

increased to 40% (p = 0.0059; n = 2 wells) at 50nM. The mean %PCC for 

CDK1/CDC2 siRNA 3 at 25nM in the absence of MCPH1/BRIT1 was 31.6% (p = 

0.0210; n = 2 wells) and at 50nM it was 23.87% (p = 0.0489; n = 2 wells) (Figure 

5.11 A2 and B2). In addition, in the absence of MCPH1/BRIT1, at 25nM and 50nM, 

the CDK1/CDC2 siRNA 2, showed an increase in %PCC at 31% and 22% 

respectively. However, in comparison to the %PCC induced by the control at 25nM 

(11.39%), CDK1/CDC2 siRNA 2 presented a significant p value of 0.0455 at only 

25nM (Figure 5.11 A2). Moreover, in the absence of MCPH1/BRIT1, CDK1/CDC2 

siRNA 4 at 25nM showed a mean %PCC of 27.7%, which increased slightly to 

32.58% at 50nM, only showing a significant p value of 0.0175 at 50nM (Figure 5.11 

B2). Depletion of CDK1/CDC2 triggered significant synthetic lethality and may have 

the potential effect in inducing PCC in MCPH1/BRIT1 deficient cells. 
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   A.1   A.2 

                                 B.1                                                           B.2 

Figure 5.11. CDK1/CDC2 siRNA elevated the level of PCC in the absence of 
MCPH1/BRIT1 function.  
Description for %PCC induced by the single knockdown siRNA controls (A1 and B1), at 25 
and 50nM was detailed in (Figure 5.5). Single knockdown of CDK1/CDC2 using the four 
deconvoluted siRNAs alone at 25nM and 50nM did not induce PCC in the presence of intact 
MCPH1/BRIT1 in U2OS cells (A1 and B1). These four deconvoluted siRNAs, at 25nM (A2) 
and 50nM (B2), induced a high level of PCC with MCPH1/BRIT1 siRNA compared to those 
followed by NT-siRNA. (A2 and B2) The forward double transfection of control NT-siRNA 
(25nM and 50nM)/MCPH1/BRIT1 siRNA (100nM), represented in grey coloured column, 
showed a % PCC value of (11.4%) at 25nM (A2) and (13.2%) at 50nM (B2). Only 
CDK1/CDC2 siRNA 1 and 3 significantly showed a high %PCC at 25 (A2) and 50nM (A2); 
For siRNA 1 this was 29.11% (p = 0.0003) and 40% (p = 0.0059), respectively and for 
siRNA 3 %PCC this was 31.6% (p = 0.0210) and 23.87% (p = 0.0489), respectively. In the 
case of MCPH1/BRIT1 siRNA, CDK1/CDC2 siRNA 2 at 25nM (A2) and CDK1/CDC2 siRNA 
4 at only 50nM (B2) showed an increase in %PCC of 31% (p = 0.0455) and 32.58% (p = 
0.0175), respectively. 

 

5.2.3.3.5 PLK1 siRNA 

         Single knockdown with PLK1 siRNA at 25nM using the four individual siRNAs 

revealed similar cell number results to those observed with double knockdown. The 

mean cell number for PLK1 knockdown alone at 25nM for siRNA 1, 2 and 3 was 

2969, 390 and 1841 which reduced significantly to 119, 97 and 139 at a 

concentration of 50nM (Figure 5.12 A1 and B1). However, single PLK1 siRNA 4 or 

its double knockdown with MCPH1/BRIT1 siRNA did not decrease cell number 

either at a 25nM or a 50nM concentration. The mean cell number for PLK1 siRNA 4 

(single knockdown) was 6611 at 25nM and 4705 at 50nM (Figure 5.12 A1 or B1) 
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The double knockdown of PLK1 siRNA 4 with MCPH1/BRIT1 siRNA showed a 

mean cell number of 5184 at 25nM and 3775 at 50nM (Figures 6.12 A2 and B2). 

        Additionally, we employed the statistical method to demonstrate the 

percentage difference in cell viability of each individual siRNA targeting PLK1 in the 

presence or absence of MCPH1/BRIT1 to define the most effective individual 

siRNA out of the four that greatly reduces cell viability in the absence of 

MCPH1/BRIT1 compared to its presence (Table 5.6 A and B). The deconvoluted 

PLK1 siRNA 1 at 25nM combined with MCPH1/BRIT1 siRNA (100nM) showed a 

reduction in % cell viability to 26.8% compared to 54% in cells with a knockdown 

using PLK1 siRNA 1 alone.  Unexpectedly, the % cell viability in cells treated with a 

double knockdown including PLK1 siRNA 2 (25nM) and MCPH1/BRIT1 siRNA was 

higher 29.7% than the single siRNA knockdown 7.1%. But, no difference in % cell 

viability for PLK1 siRNA 3 was observed either in the absence or presence of 

MCPH1/BRIT1, demonstrating similar reduction in % cell viability  (36.4% vs. 33.6% 

respectively). The reduction in cell viability was not seen in cells treated with PLK1 

siRNA 4 (25nM) either in the absence or presence of MCPH1/BRIT1 (147.4% vs. 

120.7% respectively (Table 5.6A).   

         Similar analysis was performed in cells treated with the four individual PLK1 

siRNAs at a concentration of 50nM in both conditions (with or without 100nM 

MCPH1/BRIT1 siRNA) (Table 5.6B). A similar reduction in % cell viability was 

observed in cells treated with PLK1 siRNA 1, 2 and 3 in the absence or presence of 

MCPH1/BRIT1, demonstrating a decrease in %cell viability at 1.1%, 1.3% and 3% 

or 2.8%, 2.2% and 3.2%, respectively. The PLK1 siRNA 4 at (50nM) showed a 

similar finding to that observed at 25nM, indicating no reduction in % cell viability in 

cells treated with MCPH1/BRIT1 siRNA (98.1%) compared to those without 

treatment (109.1%) (Table 5.6B). This confirms that the transfection procedures 

used during the implementation of the SL siRNA experiment were effective and 

robust. 
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Table 5.6. Showing % cell viability and cell death rate for the four deconvoluted PLK1 
siRNA in cells with/or without MCPH1/BRIT1 siRNA.  
The validation experiment of the SL siRNA hit (PLK 1) was performed in two concentrations 
25nM (A) and 50nM (B).  

 

         Furthermore, since the validation experiment included a double siRNA 

knockdown using the four individual siRNAs with either MCPH1/BRIT1 siRNA or 

with NT-siRNA, a comparison of cell number was performed between these 

conditions. There was no large difference identified in cell number between cultures 

treated with PLK1/MCPH1/BRIT1 siRNAs and PLK1/NT siRNAs. However, both 

types of double knockdown showed a massive loss of cell number, in particular with 

the individual PLK1 siRNA1, 2 and 3 whereas PLK1 siRNA4 showed no noticeable 

change on cell number when either combined with MCPH1/BRIT1 siRNA or NT-

siRNA (Figures 5.12 A2 and B2).  

         Collectively, all the aforementioned analyses or observations demonstrated 

that PLK1 siRNA was not considered to be a valid SL siRNA hit since there was no 

significant difference in reduction of cell viability between single knockdown of 

PLK1 siRNA 1, 2 and 3 or their double knockdown at 50nM with MCPH1/BRIT1 

siRNA (Figure 5.12 B1 and B2). Also, as shown in (Figure 5.12) A1 and A2 or B1 

and B2, the PLK1 siRNA 4 as a single knockdown (A1 and B1) or double 

knockdown (A2 and B2) was not effective in suppressing expression of its target.  

 

 

A. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (25nM)

%Cell 
viability 

Cell 
death 
rate 

Average cell 
number 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

PLK1 siRNA 1 26.8 73.2 2969 54.2 45.8 27.4
PLK1 siRNA 2 29.7 70.3 390 7.1 92.9 -22.6
PLK1 siRNA 3 36.4 63.6 1841 33.6 66.4 -2.8
PLK1 siRNA 4 147.4 -47.4 6611 120.7 -20.7 -26.8

3515 Mean cell 
number 5479

B. SL siRNA hits Difference in %CV 

Deconvoluted 
siRNA (50nM)

%Cell 
viability

Cell 
death 
rate 

Average cell 
number 

%Cell 
viability

Cell 
death 
rate

%CVI-%CVM 

PLK1 siRNA 1 1.1 98.9 119 2.8 97.2 1.7
PLK1 siRNA 2 1.3 98.7 97 2.2 97.8 0.9
PLK1 siRNA 3 3 97 139 3.2 96.8 0.2
PLK1 siRNA 4 98.1 1.9 4705 109.1 -9.1 11

3848 Mean cell 
number 4313

Double knockdown (in the 
absence of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Double knockdown (in the 
absence of MCPH1/BRIT1) 

Single knockdown (in the 
presence of MCPH1/BRIT1) 

Average cell 
number 

942
1044
1280
5184

Control: NT-MCPH1 siRNA Control: NT-siRNA
Mean cell 
number 

Control: NT-siRNA
Mean cell 
number

Average cell 
number 

41
51
115
3775

Control: NT-MCPH1 siRNA
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                                      A.1                                                       A.2 

 B.1 B.2 

Figure 5.12. PLK1 siRNA was not considered to be a valid SL siRNA.  
Graphs showing the validation results for PLK1 siRNA using four deconvoluted siRNA at 

25nM and 50nM. Description of the single knockdown siRNA controls (A1 and B1) at 25nM 

and 50nM was detailed in (Figure 5.4). In (A1 and B1) showing the cell number for single 

knockdown of four deconvoluted PLK1 siRNAs at 25nM and 50nM respectively. Graphs in 

(A2 and B2) show that the first three deconvoluted PLK1 siRNAs unexpectedly reduced the 

cell number by similar amounts when combined with MCPH1/BRIT1 siRNA or the NT-

siRNA. However the individual PLK1 siRNA 4 at 25nM and 50nM showed no effect in cell 

number at either 25nM or 50nM indicating failure to knockdown PLK1 expression. 

 

        Interestingly, single knockdown of PLK1 siRNA at either 25nM or 50nM 

showed PCC from 9% to 13% (Figure 5.13 A1 and B1) and this increased to ≥ 20% 

after knockdown of MCPH1/BRIT1 (Figures 5.13 A2 and B2). However, visual 

inspection of the wells showed that the PCC detected by the Columbus analysis 

software was due to a significant loss in cell viability; thus PLK1 was considered to 

be a false positive hit for inducing PCC in U2OS cells.  

         Collectively, four SL siRNA hits out of five were successfully validated, 

namely STK39, VRK1 and TTK/MPS1, which all induced significant synthetic 

lethality in MCPH1/BRIT1 deficient cells. In addition, CDK1/CDC2 induced 

significant synthetic lethality and may also be involved in increasing the occurrence 

of PCC in MCPH1/BRIT1 deficient cells. 
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                                    A.1                                                 A.2 

 B.1                                                   B.2 

Figure 5.13. PLK1 siRNA was not considered to be PCC inducer hit.  
Description of the single knockdown siRNA controls (A1 and B1) at 25nM and 50nM was 
detailed in (Figure 5.5). Graphs show the %PCC results from PLK1 siRNA using four 
deconvoluted siRNA at 25nM and 50nM. The single knockdown (A1 and B1) or double 
knockdown (A2 and B2) for PLK1 using the deconvoluted siRNAs at 25nM and 50nM 
showed false high %PCC which was due to cell death not the efficient siRNA transfection.  
 
 

5.2.3.4 Evaluating the knockdown of SL siRNA hits  

Due to the time limits imposed on this doctoral research, it was not possible to carry 

out further confirmation experiments of the knockdown efficiency of the four 

validated SL siRNAs by qRT-PCR or WB. 

 

5.3 Discussion 

5.3.1 Advantages of combining the cell viability data from PCC 

modifier and PCC inducer hPK siRNA screens to identify SL 

siRNA hits  

         The Operetta high throughput imaging system and Columbus analysis 

software were used to perform two complementary hPK siRNA screens, which 

were originally performed to identify genes which either induced PCC in the 

presence of functional MCPH1/BRIT1 (a PCC-inducer screen with a single 
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knockdown) or increased/decreased PCC caused by MCPH1/BRIT1 knockdown (a 

PCC-modifier screen with double knockdown). These screens could lead to the 

identification of potential MCPH1/BRIT1 interaction partner genes that may be 

involved in the regulation of chromosome condensation and other cellular 

pathways. In addition, these complementary hPK siRNA screens also provided cell 

viability data with and without MCPH1/BRIT1 knockdown, which were used in this 

study to identify SL siRNA hits. These hits would identify genes whose loss of 

function specifically reduced cell viability in the absence of functional 

MCPH1/BRIT1. 

         Each hPK siRNA screen (PCC inducer and PCC modifier) was performed in 

duplicate. Cell number was compared between the replicate 1 and 2 of each 

individual screen. Both screens presented a strong, positive and significant 

Spearman correlation, indicating the robustness of the assay procedures used to 

perform the hPK siRNA screens. Additionally, the SSMD was calculated for the 

functional readout siRNA controls (PLK1 and INCENP) that were initially used to 

assess siRNA transfection efficacy based on a reduction in cell number in both 

replicates of the PCC modifier screen (Adams et al., 2014). The SSMD for PLK1 

was 9.27 in the first batch and 12.12 in the second whilst for INCENP, for the first 

batch SSMD was 6.38 and for the second 7.41 (Adams et al., 2014). These values 

confirm a strong reduction in cell number caused by these siRNA controls 

compared to the NT-siRNA controls, indicating their suitability as markers for 

monitoring transfection efficiency and the effect on cell number during screening 

and analysis procedures.  

        The integration of cell viability data from the PCC inducer and modifier screens 

does not only identify potential SL siRNA hits, it can also characterise other cellular 

changes resulting from the single or double siRNA knockdown of the kinase hits as 

long as these cellular parameters could be derived from the experimental data 

collected. For example, %PCC was used as an additional readout caused by the 

depletion of SL siRNA hit in MCPH1/BRIT1 deficient cells. This additional data 

could potentially lead to the identification of links between MCPH1/BRIT1 and the 

SL gene product in different cellular pathways, such as cell cycle checkpoints, DNA 

condensation mechanisms and apoptosis. Defining the role of SL hPK genes in 

cancer cells deficient in MCPH1/BRIT1 could lead to the identification of potential 

small molecule therapeutics for those patients with BC (93/319, 29%) and ovarian 

cancer (89/294, 30%) with reduced MCPH1/BRIT1 protein level who are resistant 

to current chemotherapies (Richardson et al., 2011; Alsiary et al., 2014). This 

approach revealed four potential SL hits, three of which exhibited a similar lethality 
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phenotype in the absence of MCPH1/BRIT1; these were STK39, VRK1 and 

TTK/MPS1. CDK1/CDC2 was a SL hit that also potentially increased PCC.  

         PLK1 was excluded as a SL gene in MCPH1/BRIT1 deficient cells and the 

reason for its identification as a false positive was confirmed. In this study, PLK1 

siRNA induced a similar loss in cell viability alone and in cells treated with double 

knockdown of PLK1 and MCPH1/BRIT1. Interestingly, PLK1 induces cell death 

with/without p53 in HeLa, DU145 (prostate carcinoma) and T98G (glioblastoma 

multiforme) cell lines (Liu and Erikson, 2003). The single or co-depletion of PLK1 

with p53 in HeLa cells triggers the DDR, inducing γH2AX foci formation, indicating 

that the DDR in PLK1 depleted cells is independent of p53. Addtionally, it was 

previously reported that inhibition of PLK1 alone in normal cell lines, such as 

MCF10A or hTERT-RPE1, had no effect on cell cycle arrest or cell proliferation (Liu 

et al., 2006; Yim and Erikson, 2009). However, co-depletion PLK1 with p53 affected 

mitotic progression and induced cell death in non-cancerous breast MCF10A cells. 

These displayed multipolar spindles at prophase, misaligned chromosomes during 

M phase and chromosome lagging during anaphase (Liu et al., 2006; Yim and 

Erikson, 2009). Thus, in p53-deficient cells, short-term depletion of PLK1 potentially 

kills tumour cells, allowing normal cells with functional WT-p53 to survive (Guan et 

al., 2005). We might be speculated that similar bio-reaction potentially occurred in 

PLK1-MCPH1/BRIT1 co-depleted U2OS cells since both p53 and MCPH1/BRIT1 

are essential regulators in DNA damage checkpoint and apoptosis. Consequently, 

co-depletion PLK1 siRNA with MCPH1/BRIT1 may cause a crucial lethality and 

affect normal cells instead of targeting only MCPH1/BRIT1 deficient cancer cells. 

Further explanation for the SL genes will be detailed below.  

          An analytical search was conducted using STRING 10 for identifying the 

regulatory pathways and networks that SL hits and MCPH1/BRIT1 may be involved 

in. The relationship of each potential SL siRNA hit with MCPH1/BRIT1 was 

individually identified and is represented in Figures 5.14, 5.15, 5.16 and 5.17. 

 

5.3.2 STK39 siRNA is a potential SL gene in MCPH1/BRIT1 

deficient cells 

         STK39 is a serine /threonine kinase also known as PASK (proline–alanine-

rich Ste20-related kinase) or SPAK (Ste20-related proline-alanine-rich kinase). The 

full length STK39 is expressed in the cytoplasm in transfected cells, while a 

mutation of the C-terminal region of STK39 at the putative caspase cleavage site 
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changes protein localisation to the nucleus, indicating that STK39 may function as a 

stress activated signal in mammals (Johnston et al., 2000). Indeed, STK39 is an 

upstream activator of p38 MAPK pathway and JNK cascades in HEK293 cells 

(Polek et al., 2006a). Furthermore, the tumour necrosis factor (TNF)-related 

apoptosis-inducing ligand (TRAIL) is an important activator of caspase and 

apoptotic factors, and inhibition of STK39 activity facilitates apoptotic induction of 

TRAIL in HeLa cells (Polek et al., 2006e; Polek et al., 2006a). 

         TRAIL enhances cells to apoptosis in two different mechanisms. TRAIL 

stimulates caspase 3-like proteases to cleave STK39 at two distinct sites, which 

removed its substrate-binding domain and by caspase independent downregulation 

of STK39 activity (Polek et al., 2006e; Polek et al., 2006a). A combination of RNAi 

loss of function and cDNA overexpression screens have been utilised to identify 

how kinases impact on the bioactivity of TRAIL-induced apoptosis in colon 

adenocarcinoma cells (So et al., 2015). This identified STK39 as a resistor, a target 

that increased apoptosis when depleted.  

         Interestingly, an elevated mRNA level of STK39 has been detected in BC 

lines such as ZR-75-1, T-47D, SK-BR-3, MAD-MB-468, MAD-MB-231, MAD-MB-

361, MAD-MB-175, MCF7, CAMA-1, BT-474, BT-20 and HBL-100 and prostate 

cancer cell lines such as DU14, PC-3 and LNCaP (Qi et al., 2001). STK39 has 

been also found to promote K-Cl co-transporter 3 (KCC3)-mediated cervical cancer 

aggressiveness (Chiu et al., 2014). 

         Additionally, STK39 was one of the siRNA hits detected in a kinome-wide 

siRNA screen that identified molecular targets that sensitise pancreatic cancer cells 

to Aurora kinase inhibitor (AKI) (Xie et al., 2012). Another shRNA library screen 

targeting kinases, phosphatases and oncogenes was performed to detect SL 

partners of oncogenic KRAS. The screen identified 250 shRNA whose depletion 

impaired the proliferation/viability of KRAS mutant cells and STK39 was also on this 

list (Barbie et al., 2009).  

        Paclitaxel/Taxol has an effective dual function to destroy cancer cells by 

inducing mitotic arrest and apoptosis (Amos and Löwe, 1999; Fang et al., 1998a; 

Rodi et al., 1999). Paclitaxel/Taxol requires an intact mitotic spindle checkpoint 

function for the induction of apoptosis in tumour cells. MCPH1/BRIT1 regulates 

DNA repair and spindle checkpoint activity (Chaplet et al., 2006; Lin et al., 2010; 

Venkatesh and Suresh, 2014). Thus, its expression could effectively influence the 

response of cancer cells to chemotherapy. Time-lapse imaging data from our 

laboratory has revealed that MCPH1/BRIT1 deficient cells display reduced mitotic 
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arrest in response to Paclitaxel/Taxol or Nocodazole, chromosomal aberrations and 

aneuploidy development (Bell et al., 2008).  

Figure 5.14. Representative image of potential regulatory networks of interaction for 
SL siRNA hit STK39 with MCPH1/BRIT1.  
STK39 is circled in black; MCPH1/BRIT1 is circled in red. MAPK1 (circled in orange) may 
act as a potential connector for the interaction of STK39 with MCPH1/BRIT1. 

 

Moreover, drug assay data showed that depletion of MCPH1/BRIT1 by siRNA in 

breast cell lines MCF10A, MCF7 and HCC193 with different MCPH1/BRIT1 

backgrounds increased resistance to Paclitaxel/Taxol (Richardson et al., 2010), 

indicating that loss of MCPH1/BRIT1 function may contribute to the development of 

resistance to BC chemotherapy. This could suggest that since many mammary and 

prostate cancer cell lines show elevated expression of STK39, this may 

substantially prevent the cytotoxic response of MCPH1/BRIT1-deficient cancer cells 

to Paclitaxel/Taxol. Interestingly, previous investigators Ahmed et al. (2011) have 

suggested that knockdown of kinases that functionally stabilize microtubules, such 
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as STK39, could greatly enhance anti-tumour responses to Paclitaxel/Taxol 

treatment with a subsequent induction of apoptosis (Ahmed et al., 2011). 

 

5.3.3 VRK1 siRNA showed a weak SL effect in MCPH1/BRIT1 

deficient cells 

         Vaccinia-related kinase 1 (VRK1), a serine-threonine kinase and early 

response protein for entry into G1 phase (Lazo et al., 2005), is correlated with 

proliferation phenotype and its loss affects cell cycle progression (Vega et al., 2004; 

Valbuena et al., 2008). 

 

 

 

 

 

 

 

 

 
Figure 5.15. Representative image of potential regulatory networks of interaction for 
SL siRNA hit VRK1 with MCPH1/BRIT1.  
VRK1 is circled in black; MCPH1/BRIT1 is circled in red.  

           

          It phosphorylates proteins such as p53 (Lopez-Borges and Lazo, 2000), c-Jun 

(Jun Proto-Oncogene) (Sevilla et al., 2004a), ATF (Activating transcription factor) 

and BAF (Barrier to autointegration factor) (Sevilla et al., 2004b; Nichols et al., 

2006; Gorjánácz et al., 2007). VRK1 specifically phosphorylates Thr18 of p53, 

which regulates its stabilization and transcriptional activation (Lopez-Borges and 

Lazo, 2000; Vega et al., 2004). Thus, accumulation of p53 leads to down-regulation 

of the protein levels of VRK1, forming a novel auto-regulatory loop (Valbuena et al., 

2006; López-Sánchez et al., 2014) that is impaired in lung squamous cell 

carcinomas harbouring p53 mutations (Valbuena et al., 2006; Valbuena et al., 

2007).  

         The overexpression of VRK1 has been considered to be part of a gene 

expression signature in BC that is associated with poor clinical outcome (Fournier 

et al., 2006; Martin et al., 2008; Molitor and Traktman, 2013). The stable 
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overexpression of VRK1 increases the survival ability of highly malignant BC cells 

MDA-MB-231 under low serum conditions while suppression of VRK1 expression 

using shRNA impairs their proliferation. In the murine orthotopic xenograft model of 

BC, VRK1-depleted cells displayed a reduction in tumour size and incidence of lung 

and brain metastases (Molitor and Traktman, 2013).  

         Thus, down-regulation of VRK1 by p53 may be necessary to activate the DNA 

damage response. Indeed, induction of DNA damage by IR or UV stabilizes p53 

and activates DRAM (DNA damage regulated autophagy modulator) expression. 

This promotes VRK1 protein degradation followed by the de-phosphorylation of 

Thr18 of p53 (Valbuena et al., 2006; Valbuena et al., 2008; Valbuena et al., 2011). 

The stability of p53 is required for DDR and MCPH1/BRIT1 is implicated in the 

regulation of p53 stability, preventing its ubiquitination and proteasomal degradation 

by MDM2 (proto-oncogene, E3 ubiquitin protein ligase) (Zhang et al., 2013a). 

Accordingly, MCPH1/BRIT1 expression may contribute to down-regulation of VRK1 

activity, supporting the essential activity of p53 in response to DNA damage in 

cancer cells. Degradation of VRK1 may be associated with activating apoptotic 

mechanisms in a p53-dependent manner or through an autophagy pathway (Tang 

et al., 2015). Thus, it is would be useful to investigate the effect of MCPH1/BRIT1 

depletion on the expression level of VRK1 in cancer cells and to identify the 

contribution of VRK1 to cell death in MCPH1/BRIT1-deficient cells through 

autophagic pathways.  

 

5.3.4 TTK/MPS1 siRNA is a potential SL gene in MCPH1/BRIT1 

deficient cells 

         Monopolar spindle-1 (MPS1) (also known as TTK) is a cell cycle regulator 

protein kinase that has multiple functions in mitosis, specifically at the kinetochore 

which is required for proper chromosomal attachment, and in addition may function 

at centrosomes (Liu and Winey, 2012). After mitosis, TTK/MPS1 is involved in 

cytokinesis (Liu and Winey, 2012).  

         Since the mRNA and protein level of TTK/MPS1 increased in human 

melanoma cell line with B-RafV600E mutant, its overexpression in cancer may be 

associated with this oncogenic signalling pathway (Cui and Guadagno, 2008; 

Borysova et al., 2008). TTK/MPS1 has a mitotic function and, perhaps for this 

reason, its deregulated mRNA transcription level is detected in a range of human 

cancers. 
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Figure 5.16. Representative image of potential regulatory networks of interaction for 
SL siRNA hit TTK/MPS1 with MCPH1/BRIT1.  
TTK/MPS1 is circled in black; MCPH1/BRIT1 is circled in red.  
 

         Elevated TTK/MPS1 mRNA levels are found in several human tumours, 

including BC, thyroid papillary carcinoma, gastric cancer and lung cancer 

(Salvatore et al., 2007; Landi et al., 2008; Mills et al., 1992). An increased level of 

TTK/MPS1 expression serving as a checkpoint protein in human cancers may 

explain the potential role of checkpoint proteins either in cancer initiation or 

aneuploidy development (Daniel et al., 2011; Sotillo et al., 2007). Overexpression of 

TTK/MPS1 in colon cancer cells compromises the spindle assembly checkpoint 

(SAC) and increases aneuploidy (Ling et al., 2014). Thus, depletion of TTK/MPS1 

(Fisk et al., 2003; Daniel et al., 2011), or other checkpoint proteins such as BubRI 

and Mad2 (Fisk et al., 2003; Kops et al., 2004; Michel et al., 2004), has been found 

to influence tumour cell viability.  

         Previously TTK/MPS1 depletion in Hs578T BC cells caused decreased 

tumour growth in xenograft models (Daniel et al., 2011). Potentially suppression of 

the checkpoint protein TTK/MPS1 induces chromosome mis-segregation that would 

result in induction of apoptosis causing a reduction in aneuploidy. Consequently 

lower level of checkpoint proteins may effectively sensitises tumour cells to low 

doses of spindle poisons compared to normal human fibroblasts (Daniel et al., 

2011; Janssen et al., 2009). This has promoted the identification and development 

of small molecule inhibitors targeting TTK1/MPS, for example, MPS-IN-1 and MPS-

IN-2 (Kwiatkowski et al., 2010), Reversine (Santaguida et al., 2010), or NMS-P715 

(Colombo et al., 2010), which may function as sensitisers to anticancer drugs.  
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        Depletion of MCPH1/BRIT1 caused defective mitotic spindles and cytokinesis 

(Rai et al., 2006). A reduced MCPH1/BRIT1 protein expression level in BC samples 

is associated with an elevated level of PLK1 (Rai et al., 2006). In addition, 

MCPH1/BRIT1-deficient U2OS cells displayed less compacted chromosomes, 

spindle misalignment and chromosome congression failure at metaphase, and bi-

nucleated cells with cytokinesis bridges. Thus Rai et al. (2008) speculated that 

MCPH1/BRIT1-depleted cells activate the spindle assembly checkpoint proteins 

BubRI and Mad2, which are essential components in regulating mitotic cell 

transition from metaphase to anaphase (Kadura and Sazer, 2005; Janssen et al., 

2009; Kops et al., 2004; Liu and Winey, 2012). Interestingly, there is a cooperative 

function between PLK1 and TTK/MPS1 to regulate the spindle assembly 

checkpoint in human cell (von Schubert et al., 2015). PLK1 enhances the spindle 

checkpoint activity of TTK/MPS and the recruitment of Mad1, C-Mad2, BubR1 and 

Bub3 to kinetochores. Both TTK/MPS 1 and MCPH1/BRIT1 are phosphorylated by 

PLK1 (von Schubert et al., 2015; Martin, 2011) and their depletion in cancer cells 

causes similar mitotic deficiencies (Rai et al., 2006; Liu and Winey, 2012). Thus, 

this may suggest two possible explanations.  

        The first is that both mitotic proteins, MCPH1/BRIT1 and TTK/MPS1, may 

function simultaneously, with a contribution from PLK1, in regulating a proper SAC 

during mitosis and in chromosome segregation during anaphase. The second is 

that MCPH1/BRIT1 functions as a negative regulator of TTK/MPS1, repressing its 

activity during the DNA damage response. Thus, MCPH1/BRIT1-mitotic deficient 

cells entered anaphase, despite the activated spindle checkpoint BubRI and Mad2 

in U2OS cells (Rai et al., 2006), suggesting the activity of these spindle checkpoint 

components is dependent on TTK/MPS1. Indeed, TTK/MPS1 contributes in 

regulating SAC by the recruitment of Mad1, Mad2, Bub1, BubR1 and Bub 3 to 

kinetochores (Bayliss et al., 2012).  

         Furthermore, while the IMPDH central domain of MCPH1/BRIT1 has a role in 

shaping metaphase chromosomes by physically interacting with condensin II, the 

N-terminal domain regulates the proper loading of condensin II onto chromosomes 

to initiate DNA condensation (Yamashita et al., 2011). Interestingly, TTK/MPS1 has 

recently been found to phosphorylate condensin II, which is required for its 

localisation into chromatin during prophase (Kagami et al., 2014). These authors 

reported that depletion of TTK/MPS1 caused errors in chromosomal condensation 

and affected chromosome segregation. Although Kagami et al. (2014) used siRNA 

against TTK/MPS1 in HeLa cells they did not report PCC induction as a 

consequence of TTK/MPS1 depletion, which is consistent with our observation. 
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However, the co-depletion of TTK/MPS1 with MCPH1/BRIT1 in our results showed 

a significant increase in %PCC caused by knockdown of TTK/MPS1siRNA 2 and 3 

at 25nM. However, PCC was reduced at 50nM. An explanation for this is that more 

efficient depletion of TTK/MPS1 with 50nM siRNA may be sufficient to de-activate 

the spindle checkpoint activity of TTK/MPS1 and thereby induce the death of PCC 

cells that were originally produced by MCPH1/BRIT1 siRNA.  

 

5.3.5 CDK1/CDC2 depletion potentially reduces cell viability in 

MCPH1/BRIT1 deficient cells and increases PCC  

         According to our results, single CDK1/CDC2 siRNA knockdown did not induce 

PCC or cell death. Enhanced PCC and reduction in % cell viability was seen only 

when it was accompanied by MCPH1/BRIT1 siRNA. The mechanism by which 

combined knockdown of MCPH1/BRIT1-CDK1/CDC2 could induce PCC and 

promote apoptosis is still unknown. However, some studies showed the 

involvement of CDK1/CDC2 in regulating chromosome condensation and 

segregation mechanisms whilst others showed the potential utility of CDK1/CDC2 

inhibition in cancer therapy.  Therefore, the potential induction of PCC by co-

depletion of CDK1/CDC2 in MCPH1/BRIT1 deficient cells merits discussion.  

          First, MCPH1/BRIT1 has been found to regulate the activity of CDK1/CDC2 

during the DNA damage response by activating CHK1 at G2, which is in turn, 

inactivates the CDC25 phosphatase. This leads to maintenance of inhibitory 

CDK1/CDC2 phosphorylation preventing early entry into mitosis (Alderton et al., 

2006; Niida et al., 2005; Tibelius et al., 2009; Gruber et al., 2011; Zhong et al., 

2006). Furthermore, MCPH1/BRIT1 is a negative regulator of Condensin II, a 

subunit of structural maintenance of chromosome (SMC) protein complexes, that is 

required for initiating chromosome condensation in prophase (Hirota et al., 2004; 

Ono et al., 2004; Hirano, 2005; Hirano, 2012). Interestingly, CDK1/CDC2 has been 

found to contribute to the regulation of chromosome condensation during prophase 

by phosphorylation of Condensin II enabling proper chromosome assembly in cells 

preparing for entry into mitosis (Abe et al., 2011). Therefore, a defective function of 

MCPH1/BRIT1 allowed for unscheduled loading of Condensin II onto chromosome 

leading to premature mitosis and induction of PCC (Yamashita et al., 2011). 

Presumably, inactivation of CDK1/CDC2 may also cause deregulation of 

Condensin II leading to a substantial induction in PCC. Therefore, depletion of 

CDK1/CDC2 may abnormally activate other chromosomal structure proteins that 
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are indispensable for timely chromosome condensation during mitosis, which needs 

further investigation. 

          Second, the kinase WEE1 is also responsible for phosphorylation and 

inactivation of CDK1/CDC2 at Tyr15 before the onset of mitosis (Poon et al., 1996; 

McGowan and Russell, 1993). However, results from our lab showed that U2OS 

cells display low WEE1 mRNA and protein levels. Reduced WEE1 levels may 

enable residual CDK1/CDC2 to form a complex with Cyclin B that increases the 

ability of PCC cells to prematurely enter mitosis in CDK1/CDC2- MCPH1/BRIT1 co-

depleted cells.  

         Last, it has been proposed that CDK2/CDC1-Cyclin A controls the activity of 

cells during G2 and initiates chromosome condensation during prophase, whilst 

CDK1/CD2-Cyclin B is located in the cytoplasm in an inactive state until the onset 

of mitosis (Takizawa and Morgan, 2000; Neitzel et al., 2002). Microinjection of 

exogenous CDK2/CDC1-Cyclin A into G2 HeLa cells rapidly initiates chromosome 

condensation whereas its inhibition prevents the onset of chromosome 

condensation in early prophase (Furuno et al., 1999). Therefore, the co-depletion of 

MCPH1/BRIT1 with CDK1/CDC2 may lead to premature activation of CDK2/CDC1-

Cyclin A to induce PCC in early G2 phase, suggesting MCPH1/BRIT1 has a dual 

function in regulating activities of CDK2/CDC1 during chromosome condensation in 

prophase and CDK1/CDC2 at mitotic entry.  

 

 

 

 

 

 

 

 

Figure 5.17. Representative image of potential regulatory networks of interaction for 
SL siRNA hit CDK1/CDC2 with MCPH1/BRIT1.  
CDK1/CDC2 is circled in black; MCPH1/BRIT1 is circled in red. 
 

         Inhibition of CDK1/CDC2 may be considered as a potential therapeutic target 

in cancer and therefore it CDK1/CDC2 may consider as a likely SL hit since its 
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overexpression in HeLa cells disrupts the response to DNA damage and instead 

stimulates DNA replication and cell division (Chow et al., 2003). Indeed, exposure 

of HeLa, SW480 and HCT166 cancer cell lines to CDK1/CDC2-Cyclin B inhibitor 

(RO3066) for up to 24hr showed a mitotic arrest at G2/M phase (Vassilev et al., 

2006) whereas removal of the CDK1/CDC2 inhibitor (RO3066) allowed rapid mitotic 

entry (Vassilev et al., 2006). However, initiation of apoptosis has been observed in 

the colon cancer cell lines, HCT116 and SW480, after longer exposure (72hr) to the 

CDK1/CDC2 inhibitor, suggesting Further experiments are required to confirm if 

depletion of CDK1/CDC2 is a PCC and cell death inducer in the absence of 

MCPH1/BRIT1. The potential predicted interaction network of the SL hits 

CDK1/CDC2 with MCPH1/BRIT1, are illustrated in Figure 5.17.  
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Chapter 6 Evaluation of the role of MCPH1/BRIT1 and p53 

expression in response to neoadjuvant chemotherapy 

and subsequent survival in breast cancer patients 

6.1 Introduction 

         Breast cancer (BC) is a heterogeneous disease; the histological diversity of 

cancer within and between the individuals demonstrates the urgent need to find 

specific prognostic and predictive biomarkers to improve patient survival. 

        A number of evidences indicated that deficiency in MCPH1/BRIT1 expression 

increases susceptibility to different types of cancer. Loss of heterozygosity on 

chromosome 8p23.1, where MCPH1/BRIT1 is located, occurs in many types of 

cancers (Lin et al., 2010; Lu et al., 2007; Zhu et al., 2004; Emi et al., 1992; Wu et 

al., 1997; Scholnick et al., 1996; Fujiwara et al., 1993; Muscheck et al., 2000; 

Washburn et al., 2000; Bockmühl et al., 2001; Wright et al., 1998) See Chapter 1: 

Section 1.1.6.4). 

       The biological function of MCPH1/BRIT1 in regulating the protein stability of 

p53 in the absence and presence of DNA damage signalling has been investigated 

in BC (Zhang et al., 2013a). MCPH1/BRIT1 functions as an early responder to DNA 

damage in the presence of DNA damage stimulators (Ultraviolet (UV) or γ 

radiation). Thus, MCPH1/BRIT1 deficiency may subsequently lead to aberration in 

p53 stabilization and reduce its activity in response to DNA damaged cells. 

         The mouse model generated by (Liang et al., 2014) clearly demonstrated the 

association of single knockout Mcph1/Brit1 with tumour initiation at long latency and 

acceleration of lymphomagenesis, but not carcinoma (epithelial tumours), in the 

absence of p53. Mcph1/p53 deficiency increased genomic instability, centrosome 

hyper-amplification and decreased the activity of HR or IR induced foci formation 

during the DNA DSB repair mechanism. This may confirm the vital role of 

MCPH1/p53 in maintaining genomic integrity and preventing tumorigenesis. 

Clinically, the functional status of WT p53 was found to be more sensitive to 

chemotherapy or radiotherapy than tumours with mutant p53 (Vogelstein and 

Kinzler, 2004; Brosh and Rotter, 2009).  Therefore, MCPH1/BRIT1 deficiency may 

not respond well to chemotherapy or radiotherapy in the absence of functional p53 

expression.  
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        For BC treatment, the preoperative therapy known as neoadjuvant  

chemotherapy (NACT) has been mainly used before surgery to downstage the 

locally advanced tumours or lymph node metastasis thus avoiding mastectomy, and 

to increase the survival outcome (Mieog et al., 2007). Analysis of resection tissue 

after surgery is usually one of the methods to measure any residual invasive 

carcinoma and evaluate tumour response to NACT treatment (Kaufmann et al., 

2012). However, there is still variation in the response rate to NACT treatment due 

to the differences in patient cohorts, type of NACT treatment and measurement or 

reporting methods (Marinovich et al., 2012). 

         NACT treatment triggers DNA DSB (Capranico et al., 1989; Capranico et al., 

1990) and initiates apoptosis particularly when HR associated protein is perturbed 

(Sancar et al., 2004). There is still a pressing need to identify surrogate markers, 

which can be used to better assess response of BC to NACT treatment.  

         The influence of the DNA repair protein MCPH1/BRIT1, in response to NACT 

treatment in BC remains unknown. Thus, this study aimed to examine the 

expression of MCPH1/BRIT1 and p53 expression in BC tissue samples pre- and 

post-NACT treatment to determine the predictive value of MCPH1/BRIT1 or p53 in 

response to NACT treatment or survival rates. Also, we investigated the association 

of MCPH1/BRIT and p53 expression with molecular biomarkers such as ER, PR, 

HER2, triple negative BC, CK5 and Ki67. Change in expression of MCPH1/BRIT1 

or p53 after NACT treatment and its association with pathological response or 

survival rates have been studied herein. In addition, the potential correlation 

between MCPH1/BRIT1 and p53 expression was also investigated using these BC 

samples.  

 

6.2 Patients’ characteristics  

         This BC study consisted of a cohort of patients treated with NACT. Samples 

of both core biopsy (pre-NACT) and matched resection tissue of invasive residual 

tumour post-NACT were identified for each patient. The post-NACT tissue samples 

were assembled into a tissue microarray (TMA). The post-NACT sample for 26 

cases was unavailable since their tumours had been diagnosed with a pathological 

complete response (pCR) after NACT, however other clinical data was available for 

the patients. The expression of MCPH1/BRIT1 and p53 were assessed in both the 

pre-NACT (core biopsy) and post-NACT (residual invasive TMA core) tissue 
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samples. After excluding unmatched pairs, core loss and un-scoreable cores, the 

MCPH1/BRIT1 cohort included 96 cases (96 pre-NACT samples and 70 post-NACT 

samples), and the p53 study included 92 cases (92 pre-NACT samples and 66 

post-NACT samples). The patients’ characteristics for both MCPH1/BRIT1 and p53 

pre and post-NACT chemotherapy are summarised in (Table 6.1). In this cohort a 

high frequency of patients were diagnosed with inflammatory breast cancer (IBC) in 

both studies, for MCPH1/BRIT1 23/96 cases (24%) were diagnosed, while for p53 

the number was 23/92 cases (25%). 

         The median follow up overall survival was 45 and 44 months for 

MCPH1/BRIT1 and p53 respectively with a range of (8-96 months) for both studies. 

A similar death rate (22%) was observed in both studies (in MCPH1/BRIT1 this was 

22/96 patients while in p53 it was 21/92 patients. Those patients who died had a 

median survival period of 3 years (range 1-7 years), from date of diagnosis to 

death. Metastatic BC occurred in a similar proportion of patients (26%) in both 

studies: 25/96 cases for MCPH1/BRIT1 and for p53, 23/92 cases. 

Table 6.1. Patients’ characteristics for MCPH1/BRIT1 and p53 studies pre and post 
NACT treatment. 

 

 

Variables
Pre Post Pre Post

Tumour grade
G1 4 (4.5) 7 (12.7) 4 (4.8) 6 (11.7)
G2 36 (41.3) 28 (50.9) 32 (38.5) 27 (52.9)
G3 47 (54) 20 (36.3) 47 (56.6) 18 (35.2)
Unknown 9 (Not available (NA)) 15 (NA) 9 (NA) 15 (NA)
Histological tumour type
Invasive ductal carcinoma (IDC) 86 (91.4) 43 (76.7) 82 (91.1) 39 (91.1)
Other special types 8 (8.5) 13 (23.2) 8 (8.8) 12 (8.8)
Unknown 2 (NA) 14 (NA) 2 (NA) 15 (NA)
Age
Mean 48 NA 49.2 NA
Range 23-77 23-77
Age distribution
< 50 60 (63.1) NA 56 (61.5) NA
> 50 35 (36.8) 35 (38.5)
Unknown 1 (NA) 1 (NA)
Inflammatory
No 71 (75.5) NA 67 (74.5) NA
Yes 23 (24.4) 23 (25.5)
Unknown 2 (NA) 2 (NA)
Whole tumour size (mm)
Mean NA 30.7 NA 31.16
Range 1-120 1-120
Size distribution (mm)
< 30 NA 44 (56.4) NA 43 (59.7)
≥ 30 34 (43.5) 29 (40.2)
Unknown 18 (NA) 20 (NA)
Ductal carcinoma in situ (DCIS)
No NA 32 (41) NA 29 (40.2)
Yes 46 (58.9) 43 (59.7)
Unknown 18 (NA) 20 (NA)
Sterilized axilla
Negative NA 29 (51.7) NA 26 (50)
Positive 27 (48.2) 26 (50)
Unknown 40 (NA) 40 (NA)

MCPH1/BRIT1 n = 96 (%) p53 n = 92 (%)
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Continued Table 6.1. 

 a. ECF: Epirubicin+Cisplatin+Fluorouracil (5-FU). FEC: Fluorouracil (5FU5-
FU)+Epirubicin+Cyclophosphamide. EC: Epirubicin+Cyclophosphamide NA: not available. 
The complete data for 96 or 92 patients pre- and post-NACT in MCPH1/BRIT1 or p53 
studies are not available for all variables and thus they were classified as Unknown. All 
variables post-NACT included data for the 96 or 92 patients including 26 cases who 
achieved pCR. However, the data relating to the tumour grade, histological tumour type, 
NPI and LVI were not available for the pCR (26) cases post-NACT in both MCPH1/BRIT1 
and p53 studies. 
 

Variables
Pre Post Pre Post

Nottingham prognostic index (NPI)
Good NA 8 (15.6) NA 9 (18.7)
Moderate 25 (49) 22 (45.8)
Poor 18 (35.2) 17 (35.4)
Unknown 19 (NA) 18 (NA)
Lymph node status (LNS)
N0 NA 39 (51.3) NA 40 (55.5)
N1 21(27.6) 17 (23.6)
N2 8 (10.52) 8 (11.1)
N3 6 (7.8) 5 (6.9)
Micrometastases 2 (2.6) 2 (2.7)
Unknown 20 (NA) 20 (NA)
Lymphovascular invasion (LVI)
No NA 27 (51.9) NA 26 (54.1)
Yes or extensive 23 (44.2) 20 (41.7)
Probable 2 (3.8) 2 (4.2)
Complete response (CR) cases 26 (NA) 26 (NA)
Unknown 18 (NA) 18 (NA)
Metastases
No NA 71 (73.9) NA 69 (75)
Yes 25 (26) 23 (25)
Neoadjuvant chemotherapy 
(NACT) a

ECF or FEC and EC NA 33 (44) NA 32 (43.2)
EC+Taxotere or 
Neo-TAnGo EC+TG or 
Neo-TAnGo Taxotere+EC
Taxotere/Carboplatin 1 (1.3) 1 (1.4)
Unknown 21 (NA) 21 (NA)
Herceptin (Trastuzumab)
Not given NA 57 (75) NA 55 (76.3)
Given 7 (9.2) 6 (8.3)
Not applicable 12 (15.7) 11 (15.2)
Unknown 20 (NA) 20 (NA)
Endocrine therapy
Not given NA 32 (42.6) NA 31 (43.6)
Given 43 (57.3) 40 (56.3)
Unknown 21 (NA) 21 (NA)
Tumour response (Sarah Pinder)
No response NA 9 (9.9) NA 9 (10.3)
Minimal 1 (1.1) 1 (1.1)
Partial 55 (60.4) 51 (58.6)
CR 26 (28.6) 26 (29.8)
Unknown 5 (NA) 5 (NA)
Deceased
No NA 73 (76.8) NA 70 (76.9)
Yes 22 (23.1) 21 (23)
Unknown 1 (NA) 1 (NA)
Follow up overall survival (FUOS)/ 
months
Mean NA 44 NA 44
Median 45 44
Range 8-96 8-96
Survival duration (from diagnosis 
to death/ years)
Median NA 3 NA 3
Range 1-7 1-7

41 (54.6) 41 (55.4)

MCPH1/BRIT1 n = 96 (%) p53 n = 92 (%)
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6.3 Study of MCPH1/BRIT1 expression pre- and post-NACT 

treatment 

In this study, the expression of MCPH1/BRIT1 was investigated in 96 BC patients 

treated with NACT. 

 

6.3.1 Immuno-histochemical assessment and localisation of 

MCPH1/BRIT1 in BC samples pre- and post-NACT treatment  

         Optimisation of MCPH1/BRIT1 staining in BC tissues was performed 

according to the previous ovarian cancer study performed in our lab using the anti-

MCPH1/BRIT1 (ab2612, Abcam, Cambridge, UK) antibody at a concentration of 1: 

100 (Data not shown) (Alsiary et al., 2014). In the MCPH1/BRIT1 study, the 

majority of core tumour biopsies (pre-NACT) and TMA core residual invasive 

samples (post-NACT) revealed MCPH1/BRIT1 expression in both nucleus and 

cytoplasm, which was similar to the previous observation of MCPH1/BRIT1 in BC 

(Richardson et al., 2011; Jo et al., 2013; Bhattacharya et al., 2013; Partipilo et al., 

2016). The percentage of tumour cells with positive nuclear MCPH1/BRIT1 staining 

was scored in relation to the total number of tumour cells. Figure 6.1 shows 

examples of staining intensities of MCPH1/BRIT1 in pre-NACT tumour samples 

ranging from negative, weak, moderate to strong. Although cytoplasmic expression 

of MCPH1/BRIT1 was detected in tumour samples pre- and post-NACT treatment it 

was not considered in this study due to high levels of background staining caused 

by the anti-MCPH1/BRIT1 antibody, which prevented the accurate scoring of 

cytoplasmic MCPH1/BRIT1 staining.  

         In this study, similar statistical analysis strategies to those used previously in 

BC samples was performed (Richardson et al., 2011). The percentage of tumour 

cells with positive nuclear MCPH1/BRIT1 staining was considered as a continuous 

variable. In addition, the percentage of MCPH1/BRIT1 staining was dichotomised 

into high and low expression using 35% as a cut-off point. This cut-off was selected 

by sequentially testing different cut-off values of percentage of nuclear 

MCPH1/BRIT1 staining (e.g 15%, 30% and 35%) versus FUOS using the Kaplan –

Meier curves. The cut-off value of 35% that presented a significant survival result 

between patient groups was selected for subsequent analyses (Richardson et al., 

2011). 
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         Since 26 pCR cases did not show any residual invasive tumour, the 

expression of MCPH1/BRIT1 pre- and post-NACT could only be evaluated in 70 

cases using the diagnostic biopsy core pre-NACT and the matched residual 

invasive tumour resection sample post-NACT. The percentage scores for 

MCPH1/BRIT1 expression across the cases pre- and post-NACT treatment are 

illustrated in Figure 6.2. 

         There were wide variations in MCPH1/BRIT1 expression in pre-NACT 

samples ranging from negative to 90%. However, in the majority of cases post-

NACT, there was a high level of MCPH1/BRIT1 expression with a low or 

undetected level of expression in only a few cases (Figure 6.3 A and B or C and D). 

Some cases, which had expressed low or high MCPH1/BRIT1 pre-NACT treatment, 

did not show any noticeable alteration in the levels of MCPH1/BRIT1 post-NACT 

(Figure 6.3 G and H or E and F). 

         Initially the % staining of MCPH1/BRIT1 expression pre- and post-NACT 

treatment was determined using only the 70 available matched cases. This was 

mainly to evaluate the overall status of MCPH1/BRIT1 expression specifically in this 

cohort. Continuous analysis of matched pair for 70 cases using percentage staining 

of MCPH1/BRIT1 expression showed an overall mean of 36.30% in pre-NACT 

treatment cases, which increased post-NACT treatment to an overall mean of 

64.90%, indicating a significant increase in MCPH1/BRIT1 expression in response 

to the NACT treatment (p < 0.0001; Paired t-test).  

         Dichotomous data analysis also identified a similar significant difference 

between MCPH1/BRIT1 expression (high –low) in the matched pairs 70 cases pre 

and post NACT treatment (p = 0.0002; Wilcoxon matched-pairs signed- rank test). 

The proportion of patients with high MCPH1/BRIT1 expression was 51.4% (36/70 

cases) pre-NACT, which increased to 81.4% (57/70 cases) post-NACT.  

         The differences in the rate of pCR patients (26 cases) with MCPH1/BRIT1 

expression (high or low) pre-NACT treatment were investigated. A similar 

proportion of cases which expressed MCPH1/BRIT1 at high level (12 /26, 46.2%) 

and low level (14/26, 53.8%) was observed. 
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Figure 6.1. MCPH1/BRIT1 immunohistochemistry.  
Representative images of breast cancer (BC) core biopsy pre-neoadjuvant (NACT) treatment to evaluate the staining intensity of MCPH1/BRIT1: (A) negative, 
(B) weak, (C) moderate, and (D) strong. 40x Magnification. 
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Figure 6.2. Expression levels of nuclear MCPH1/BRIT1 in matched pairs of tumour 
samples pre- and post-NACT treatment.  
The level (% nuclear staining) in each individual is symbolised in lines linking the matched 
samples. The graph includes also the 26 samples whose tumours are attained the 
pathological complete response thus they are symbolised as dots without lines linking them 
with their matched pairs. 
 

6.3.2 Correlation of MCPH1/BRIT1 with clinicopathological 
parameters  

         The correlation between the level of MCPH1/BRIT1 expression and 

clinicopathological tumour characteristics was tested (Tables 6.2 and 6.3). There 

was an increase in the cases with low grade tumours (grades 1 and 2) from (45%) 

pre-NACT to (63%) post-NACT, indicating the expected reduction in cases with 

high grade tumours from 54% pre-NACT to 36% post-NACT treatment (Table 6.1). 

         The continuous analysis of MCPH1/BRIT1 expression showed no significant 

correlation with tumour grade either pre- or post-NACT treatment, however, the 

dichotomous analysis of MCPH1/BRIT1 expression pre-NACT treatment identified 

a significant correlation between high MCPH1/BRIT1 expression with high tumour 

grade (grade 3) and low expression of MCPH1/BRIT1 with low tumour grade (grade 

2) (p = 0.012; Spearman correlation test). This significant correlation might reflect 

the fact that the greatest proportion of patients’ tumours in this cohort were 

characterised pre-NACT treatment as grade 3 (47/87 cases (54%)) compared with 

(36/87 cases (41%)) with grade 2 tumours (Table 6.1). 
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Figure 6.3. Representative staining of MCPH1/ BRIT1 in matched tumour samples pre-
NACT treatment (core biopsy) and post-NACT treatment (surgical resection). 
The expression scores for each matched sample were evaluated pre- and post-NACT using 
the nuclear percentage staining system and the results were as follows: (A and B) were 
10% pre and 80% post. (C and D) were 40% pre and 5% post. (E and F) were 25% pre and 
30% post. (G and H) were 60% pre and 95% post. Magnification was x 40 in pre-NACT 
tissues and x 10 in TMA core post-NACT. 
 

Pre-NACT Post-NACT 
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Table 6.2. Correlation of MCPH1/BRIT1 nuclear expression with clinico-pathological 
features pre- and post-NACT treatment. 

a. Other special types include invasive lobular carcinoma (ILC) and mixed (IDC and ILC). 

 

Table 6.3. Correlation of MCPH1/BRIT1 nuclear expression with other clinico-
pathological features post-NACT treatment.  

          

         In addition, this dichotomous analysis of pre-NACT treatment indicated that 

for grade 3 tumours, the number of cases with high MCPH1/BRIT1 expression (n = 

31/46 cases) was higher than the cases with a low level of MCPH1/BRIT1 

expression (n= 16/41 cases). This trend was reversed for grade 2 tumours, with low 

MCPH1/BRIT1 expression being observed in a larger proportion of cases (n = 

23/41 cases) than high MCPH1/BRIT1 expression (n = 13/46 cases) (Table 6.2). 

However, the significant correlation of MCPH1/BRIT1 expression with tumour grade 

was reduced post-NACT treatment (p = 0.08; Spearman correlation test).   

Parameters

Mean (%) P value Mean (%) P value High n (%) Low n (%) P valueHigh n (%) Low n (%) P value
Pre Post Pre Post

Tumour grade
G1 41.25 G1 vs. G2 0.444 63.57 G1 vs. G2 0.801 2 (4.3) 2 (4.8) 0.012 6 (13) 1 (10) 0.8
G2 29.69 G1 vs. G3 0.945 60.23 G1 vs. G3 0.516 13 (28.2) 23 (56) 22 (49) 6 (60)
G3 40.35 G2 vs. G3 0.080 72.75 G2 vs. G3 0.178 31 (67.3) 16 (39) 17 (38) 3 (30)
Histological tumour type
IDC 35.19 0.966 62.07 0.244 45 (93.7) 41 (89.1) 0.428 33 (71.7) 10 (100) 0.056
Other special types a 35.62 73.65 3 (6.2) 5 (10.8) 13 (28.2) 0 (0)
Age
<50 36.3 0.265 64.7 0.881 29 (61.7) 31 (64.5) 0.774 37 (66) 8 (61.5) 0.761
>50 29.81 65.9 18 (38.2) 17 (35.4) 19 (33.9) 5 (38.4)
Inflammatory
No 33.91 0.92 66.24 0.549 33 (71.7) 38 (79.1) 0.408 42 (76.3) 9 (69.2) 0.6
Yes 33.26 60.88 13 (28.2) 10 (20.8) 13 (23.6) 4 (30.7)

                                   MCPH1/BRIT1 expression
Continuous Dichotomised  

Parameters

Mean (%) P value High n (%) Low n (%) P value 

Tumour size (mm)
< 30 63.47 0.446 16 (36.4) 3 (37.5) 0.952
≥ 30 69.79 28 (63.6) 5 (62.5)
Nottingham prognostic index
Good 64.69 G vs. M 0.920 7 (16.3) 1 (12.5) 0.706
Moderate 66 G vs. P 0.484 20 (46.5) 5 (62.5)
Poor 72.31 M vs. P 0.522 16 (37.2) 2 (25)
Lymph node status
N0 70 N0 vs. N1 0.336 16 (36.4) 1 (12.5) 0.529
N1 59.53 N0 vs. N2 0.338 14 (31.8) 5 (62.5)
N2 79.88 N0 vs. N3 0.489 7 (15.9) 1 (12.5)
N3 77.75 N1 vs. N2 0.169 6 (13.6) 0 (0)
Micrometastases 41.25 N1 vs. N3 0.273 1 (2.3) 1 (12.5)

N2 vs. N3 0.854
Lymphovascular invasion
No 70.37 N vs. Y 0.557 25 (56.8) 2 (25) 0.071
Yes or extensive 65.5 N vs. P 0,333 18 (40.9) 5 (62.5)
Probable 51.25 Y vs. P 0.592 1 (2.3) 1 (12.5)
Metastases
No 64.89 0.996 41 (71.9) 8 (61.5) 0.468
Positive 64.93 16 (28.1) 5 (38.5)

 MCPH1/BRIT1 expression 
Dichotomised  

Post Post

 Continuous 
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         Furthermore, the majority of cases in this cohort were diagnosed with the 

histological BC type of invasive ductal carcinoma (IDC) on pre-NACT core biopsy 

(86/94 cases (91%)) while in post-NACT samples residual invasive carcinoma was 

(43/56 cases (76%)) (Table 6.1). However, no significant correlation was found 

between MCPH1/BRIT1 expression and IDC type pre- or post-NACT treatment in 

both continuous and dichotomous analysis (Table 6.2). 

         Moreover, the continuous and dichotomous analysis revealed no statistically 

significant correlation between MCPH1/BRIT1 expression and other clinico-

pathological parameters as shown in (Tables 6.2 and 6.3). 

 

6.3.3 Correlation of MCPH1/BRIT1 with molecular biomarkers 

The continuous and dichotomous analyses did not identify any statistically 

significant correlation between MCPH1/BRIT1 expression and BC molecular 

prognostic biomarkers (ER, PR, HER2) or other markers such as Ki67 and CK5 in 

either pre- or post-NACT treatment (Table 6.4).  

 

Table 6.4. Correlation of MCPH1/BRIT1 nuclear expression with molecular biomarkers 
pre- and post-NACT chemotherapy. 

 
 

6.3.4 Correlation of MCPH1/BRIT1 expression pre- and post-
NACT treatment with overall survival (OS) 

         To determine the significance of MCPH1/BRIT1 expression in BC survival, the 

correlation of MCPH1/BRIT1 expression at both pre- and post-NACT treatment with 

Dichotomised

Mean (%) P value Mean (%) P value High n (%) Low n (%) P value High n (%) Low n (%) P value 

Pre
ER
Negative 31.36 0.31 68.09 0.991 22 (45.8) 22 (45.8) 1 18 (36.7) 5 (50) 0.442
Positive 37.144 68.18 26 (54.1) 26 (54.1) 31 (63.2) 5 (50)
PR
Negative 31.16 0.173 66.89 0.743 28 (58.3) 27 (56.2) 0.839 24 (48.9) 7 (70) 0.232
Positive 38.96 69.54 20 (41.6) 21 (43.7) 25 (51) 3 (30)
Her2
Negative 36.33 0.269 70.64 0.298 39 (81.2) 34 (72.3) 0.308 40 (81.6) 7 (70) 0.414
Positive 28.81 60.38 9 (18.7) 13 (27.6) 9 (18.3) 3 (30)
Triple 
negative
Negative 33.39 0.594 68.52 0.554 29 (60.4) 34 (70.8) 0.288 37 (74) 6 (54.5) 0.207
Positive 36.59 63.28 19 (39.5) 14 (29.1) 13 (26) 5 (45.4)
Ki67
Negative 44.28 0.5 66.57 0.132 5 (11.9) 2 (5.5) 0.334 17 (39.5) 4 (66.6) 0.217
Positive 36.88 77.71 37 (88) 34 (94.4) 26 (60.4) 2 (33.3)
CK5
Negative 36.1 0.397 75.3 0.405 29 (72.5) 29 (85.2) 0.188 28 (66.6) 4 (66.6) 1
Positive 42.81 68.5 11 (27.5) 5 (14.7) 14 (33.3) 2 (33.3)

Post

Continuous

Pre Post

Parameters MCPH1/BRIT1 expression
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OS was examined. The dichotomous analysis of MCPH1/BRIT1 expression in 95 

biopsy core cases revealed a significant association between reduced 

MCPH1/BRIT1 expression and longer survival pre-NACT treatment (Kaplan-Meier 

test; p = 0.017). The estimated mean OS for patients with low MCPH1/BRIT1 

expression was of 83.6 months (95% confidence interval (CI): 74-92) in comparison 

to 64.8 months (95% CI: 55-74) for patients with high MCPH1/BRIT1 expression 

(Figure 6.4A). On the other hand, the mean OS post-NACT treatment for patients 

with low or high MCPH1/BRIT1 expression  (63.3 months/(95% CI: 49-75)) and (75 

months/(95% CI: 66-84)) did not suggest any statistically significant correlation 

between MCPH1/BRIT1 expression and OS (Kaplan-Meier test; p = 0.390) (Figure 

6.4B).  

         The death rate in pCR cases was assessed to identify whether 

MCPH1/BRIT1 expression pre-NACT correlated with their survival outcome. The 

mean follow up overall survival (FUOS) in pCR cases was 39.58 months, ranging 

between 14 and 72 months. Of the 26 cases, 4 (15.3%) had died and 22 (84.6%) 

were still living. The mean survival rate for pCR cases was 3.2 years (with a range 

of 2 to 5 years). In pCR cases with high MCPH1/BRIT1 pre-NACT treatment, 3/12 

(25%) of patients died. However, of the 14 pCR cases who expressed low 

MCPH1/BRIT1 pre-NACT only one patient died (7.1%). Overall, in pCR cases, no 

significant correlation was identified between either MCPH1/BRIT1 expression and 

OS post-NACT treatment or MCPH1/BRIT expression and death rate pre-NACT 

treatment, which may be due to the small size of this group. However, low pre-

NACT MCPH1/BRIT1 expression may potentially be associated with improved 

response to NACT treatment and increased survival rate. 
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                                 A. Pre-NACT                                                                             B. Post-NACT 

  

 

 

 

 

 

 

 

 
 
 
Figure 6.4. Low MCPH1/BRIT1 expression pre-NACT predicts longer overall survival (OS) than high MCPH1/BRIT1 expression.  
Kaplan Meier curves showing BC OS in patients with low or high expression levels of MCPH1/BRIT1 pre- NACT (A) and in patients with low or high expression 
levels of MCPH1/BRIT1 or pathological complete response (pCR) cases post-NACT (B). A cut-off percentage of 35% was used to dichotomise MCPH1/BRIT1 
expression into low and high.  
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6.3.5 Correlation of NACT treatment and pathological tumour 
response  

         The influence of NACT treatment on MCPH1/BRIT1 tumour response was 

also investigated. Pathological response classification data were available for 91 

patients in the MCPH1/BRIT1 cohort. Patient response to the NACT treatment was 

variable and identified as non responders (NR) 9/91 (9.9%), minimal responders 

(MR) 1/91 (1.1%), partial responders (PR) 55/91 (60%) and complete responders 

(CR) 26/91 (28%) (Table 6.1).  

         NACT regimens were administered to 75 patients in this cohort. According to 

NACT treatments, patients were split into three groups and categorised according 

to the type of combination drug used for NACT treatment (Table 7.5). Group 1 

treatment was Epirubicin + Cyclophosphamide (EC); 5 Fluorouracil + 

Epirubicin+Cyclophosphamide (FEC) and finally, Epirubicin + Cisplatin+5-

Fluorouracil (ECF). Group 2 treatments was EC + Taxotere or FEC +Taxotere and 

Neo-tAnGo (phase III trial) +EC + Taxotere whilst Group 3 treatment consisted of 

Taxotere + Carboplatin.  

  

Table 6.5. Categorisation of breast cancer patients based on the type of combination 
therapy used for NACT treatment in the MCPH1/BRIT cohort. 

           

         No significant correlation was observed (p = 0.401; Spearman correlation test) 

when cross-tabulation was used to identify the correlation between the three 

different NACT treatment groups with pathological tumour response classification. 

For Group 1, the distribution of cases was NR 2/33 cases (6%), MR 19/33 (57.5%) 

NACT 
group 

NACT regimens Patient No.  in 
MCPH1/BRIT1 study  
n = 75 (%) 

Group 
1 

Epirubicin + Cyclophosphamide (EC) 33 (44%) 

5-Fluorouracil + Epirubicin + Cyclophosphamide 
(FEC) 

Epirubicin + Cisplatin + 5-Fluorouracil (ECF) 

Group 
2 

EC + Taxotere 41 (54.6%) 

FEC + Taxotere 

Neo-tAnGo (phase III trial) + EC + Taxotere 

Group 
3 

Taxotere + Carboplatin 1 (1.3%) 
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and CR 12/33 (36.3%). In Group 2, the proportion of cases was NR 5/41 (12.1%), 

MR 1 (2.4%), PR 24 (58.5%) and CR 11 (26.8%). In addition, in Group 3, only one 

case was treated with Taxotere + Carboplatin and it achieved CR.  

         Then, the effect of each NACT regimen on the change in expression of 

MCPH1/BRIT1 was investigated using the available matched section samples (70 

patients with only residual invasive carcinoma). First, the change in MCPH1/BRIT1 

expression (percentage) after NACT treatment was divided into four groups as 

follows: from low to high n = 27 cases (38.5%), from high to low n = 5 (7.1%), no 

change low n = 7 (10%) and no change high n = 31 (44.2%).  Then, cross-

tabulation was employed to identify the association between the NACT regimen 

and change in expression of MCPH1/BRIT1. There was no significant effect of the 

first or second NACT regimens on change MCPH1/BRIT1 expression (p = 0.548, 

Spearman correlation test) (Table 6.6A). For instance, change in expression of 

MCPH1/BRIT1 from low to high was identified in 7/21 cases (33.3%) of those 

treated with the first NACT regimen compared to 12/30 cases (40%) for the second. 

Moreover, the first and second group of NACT regimens showed a similar 

proportion of cases with unchanged status of MCPH1/BRIT1 expression high or low 

as presented in (Table 6.6A).  

         Finally, whether the change/or no change in expression of MCPH1/BRIT1 

after NACT treatment improved the degree of pathological tumour response to 

chemotherapy was investigated. Cross-tabulation analysis between change/or no 

change in expression of MCPH1/BRIT1 and pathological tumour response (NR, MR 

and PR) revealed that the majority of patients presented a PR (55/65 cases) to 

NACT treatment particularly in patients whose MCPH1/BRIT expression had 

changed from low to high 19/55 cases (34.5%) or in patients who had showed no 

change in expression of MCPH1/BRIT (high) 25/55 (45.4%) (Table 6.6B). However, 

no significant correlation was observed between change or no change in 

expression of MCPH1/BRIT1 and pathological tumour response (p = 0.540, 

Spearman correlation test).  
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Table 6.6. Cross-tabulation (Groups 1 and 2) with change/ or no change in 
MCPH1/BRIT1 expression post-NACT versus type of NACT regimes (A) and tumour 
response (B).  

 
Group 3 of NACT regimens contains only one patient as shown in Table 6.5 thus it was not 
included in this analysis. 
 

6.3.6 Correlation between change in expression of MCPH1/BRIT1 
post-NACT treatment and OS 

         Thereafter, whether the change in MCPH1/BRIT1 expression in response to 

NACT regimen was correlated with OS was investigated. The Kaplan-Meier survival 

analyses were performed individually using two groups of patients: one had showed 

a change in MCPH1/BRIT1 expression (from low to high and vice versa) whilst for 

the other the expression remained unchanged (whether high or low) (Figure 6.5). 

These analyses identified a significant association between change in expression of 

MCPH1/BRIT1 (from low to high) and longer OS (p = 0.010). The mean OS in 

patients showing a change in MCPH1/BRIT1 expression (from low to high) was 

83.7 months (95% CI: 73-94) compared to 54 months (95% CI: 30-77) for those 

with a high to low change in MCPH1/BRIT1 expression (Figure 6. 5A).  

         No statistically significant correlation was observed between the group of 

patients who had showed no change in MCPH1/BRIT1 expression (high and low) 

after NACT treatment and OS (p = 0.469). The mean OS of 66 months (95% CI: 53-

78) in cases with no change in expression (high) was similar to the mean survival 

rate of 58 months (95% CI: 44-72) for cases with no change in expression (low) 

(Figure 6.5B). Overall, Group 1 and Group 2 of NACT regimens presented a similar 

effect on the change in expression of MCPH1/BRIT1 regardless of the type of 

change in expression levels of MCPH1/BRIT1 (from low to high or vice versa) or if 

the expression was unchanged (whether high or low). Although a high proportion of 

patients responded partially to NACT treatment, patients who had showed a 

change in MCPH1/BRIT1 expression from low to high in particular were significantly 

associated with increased OS after NACT treatment.  

A MCPH1/BRIT1 expression Low to high High to low High Low Total
EC, FEC or ECF 7 (33.3%) 1 (4.7%) 11 (52.3%) 2 (9.5%) 21

EC + Taxotere or FEC + 
Taxotere or Neo-tAnGo + EC 
(phase III trial) + Taxotere

12 (40%) 2 (6.6%) 14 (46.6%) 2 (6.6%) 30

P = 0.548 Total 19 3 25 4 51

B MCPH1/BRIT1 expression Low to high High to low High Low Total
No response 5 (55.5%) 0 3 (33.3%) 1 (11.1%) 9
Minimal response 0 0 1  (100%) 0 1
Partial response 19 (34.5%) 5 (9%) 25 (45.4%) 6 (10.9%)55

P = 0.540 Total 24 5 29 7 65

NACT regimes

Change in expression No change in expression

Pathological 
tumour response
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A. Change in MCPH1/BRIT1 expression                                     B. No change in MCPH1/BRIT1 expression  
Post –NACT Post-NACT 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5. Kaplan Meier curves showing correlation between change/no change in MCPH1/BRIT1 expression after NACT treatment and BC OS.  
(A) Change in MCPH1/BRIT1 expression from low to high shows a significant correlation with OS. (B) No change in MCPH1/BRIT1 expression either (high or 
low) shows no significant correlation with OS. 
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6.3.7 Discussion for MCPH1/BRIT1 study 

         Previously, many studies have been conducted to investigate the involvement 

of MCPH1/BRIT1 alterations at mRNA or protein levels in various types of cancer 

including breast, ovarian, leukemia, OSSC and renal cancers (Richardson et al., 

2011; Giallongo et al., 2010; Venkatesh et al., 2013; Wang et al., 2014a; Alsiary et 

al., 2014). However, the influence of its expression in cancer chemosensitivity 

remains unknown. Thus, the aim of this BC study was to examine the protein 

expression of MCPH1/BRIT1 in 96 BC cases (96 pre-NACT samples and 70 post-

NACT samples). The correlation of MCPH1/BRIT1 expression pre- and post-NACT 

with clinico-pathological parameters and molecular biomarkers was also 

investigated. The impact of change in MCPH1/BRIT1 expression on survival rates 

was clarified. Similar examinations also were employed for the available 92 BC 

cases (92 pre-NACT samples and 66 post-NACT samples) from the same cohort 

that were also stained with p53 (Section 6.4). The main aim of investigating p53 

expression, simultaneously with MCPH1/BRIT1 expression, was to confirm whether 

MCPH1/BRIT1 expression is involved in regulation p53 expression using BC 

tumour samples, compared to a previous study performed on BC cell lines (Zhang 

et al., 2013a).  

         IHC staining was performed and the percentage of nuclear MCPH1/BRIT1 

staining used as a continuous variable to evaluate its nuclear expression pre- and 

post-NACT. The specificity of the rabbit MCPH1/BRIT1 antibody ab2612 (Abcam, 

Cambridge, UK) had been validated previously for western blotting in U2OS, 

HEK293 and HeLa cell lines (Xu et al., 2004; Wood et al., 2007; Adams et al., 

2014) and for IHC in several cancer tissues (Xu et al., 2004; Bruning-Richardson et 

al., 2011; Venkatesh et al., 2013; Wang et al., 2014a; Alsiary et al., 2014).  

         In the present study, nuclear and cytoplasmic MCPH1/BRIT1 staining were 

detected in BC tissues pre- and post-NACT, which was concordant with previous 

BC studies (Richardson et al., 2011; Bhattacharya et al., 2013; Jo et al., 2013; 

Partipilo et al., 2016) and a lung cancer study (Zhang et al., 2013i). However, in this 

study, the cytoplasmic staining was not considered due to potential non-specific 

background cytoplasmic staining caused by the anti-MCPH1/BRIT1 antibody. 

Staining a number of BC samples with different batches of anti-MCPH1/BRIT1 

antibody (mentioned above) occasionally displayed considerable variation in the 

level of cytoplasmic staining despite the fact that the lot number for each new batch 

of antibody was identical. Thus, cytoplasmic staining results were not considered 

reliable in this study.  
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         Considerable variation in the percentage staining of nuclear MCPH1/BRIT1 

expression, pre-NACT treatment was observed among the patients, which may 

reflect the tumour heterogeneity and aggressiveness of the disease in this BC 

cohort. The percentage of cases with low MCPH1/BRIT1 expression was 34/70 

cases (48.6%) pre-NACT treatment, which decreased to 13/70 cases (18.6%) post-

NACT. In other words, high nuclear MCPH1/BRIT1 expression was present in 

57/70 cases (81%) post-NACT treatment. Interestingly, patients with tumours 

demonstrating low MCPH1/BRIT1 expression pre-NACT lived 18.8 months longer 

compared to patients those tumours demonstrated high MCPH1/BRIT1 expression. 

Potentially this increased survival suggests that tumours with low levels of 

MCPH1/BRIT1 expression respond better to NACT treatment.  

         The tumour grade may greatly influence and improve the response to 

chemotherapy and survival. Indeed, low nuclear MCPH1/BRIT1 pre-NACT is 

significantly associated with moderate tumour grade (G2) cases whilst 

MCPH1/BRIT1 elevation is associated with high tumour grade. After NACT 

treatment in patients who had expressed high levels of MCPH1/BRIT1 there were a 

reduction in cases with grade 3 tumours whereas patients with moderate grade 

tumours (G2) remained high, which may indicate a partial response to NACT 

treatment for this group of patients compared to the noticeable decrease in the % of 

cases of low MCPH1/BRIT1 expression post-NACT treatment. This may explain the 

substantial response to NACT treatment in cases with low MCPH1/BRIT1 

expression, which were initially diagnosed with moderate tumour grade pre-NACT 

treatment.  

         Additionally, this BC study is clearly different compared to other studies since 

expression status of MCPH1/BRIT1 pre- and post-NACT treatment can be 

evaluated and correlated to patients’ survival. Based on the previous BC studies 

that demonstrated low nuclear MCPH1/BRIT1 expression correlates with higher 

tumour grade and poor survival, chemotherapeutic treatment may influence the 

response of tumours with defective MCPH1/BRIT1 expression. For instance, an 

initial BC study that was conducted by Richardson et al. (2011) and included 285 

IDC patients of which only 59 which had received classical chemotherapy 

(Cyclophosphamide, Methotrexate and 5-Fluorouracial), demonstrated that reduced 

MCPH1/BRIT1 expression in 88/285 (30%) BC sample was noticeably but not 

significantly correlated with poor survival. Indeed, the lower–end survival rate in 

patients with low MCPH1/BRIT1 expression was 33 months as compared to >100 

months in those with high MCPH1/BRIT1 expression (Richardson et al., 2011). 



- 215 - 
 

 

         Another BC study of 126 specimens and showed that reduction of 

MCPH1/BRIT1 protein expression in 17/25 cases (68%) was significantly 

concordant with their molecular alterations (deletion or methylation) (p = 0.01) 

(Bhattacharya et al., 2013). Alterations of MCPH1/BRIT1 predicted a significant 

poor OS (p = 0.01) specifically in patients who underwent chemotherapy with DNA 

damaging agents and/or radiotherapy treatment. 

         Potentially the type of tumours in previous studies may not effectively respond 

to the systemic chemotherapy strategy that has been used to treat these patients in 

these BC studies. Therefore, the use of NACT treatment as a therapeutic strategy 

for patients diagnosed with higher tumour grade and expressing lower levels of 

MCPH1/BRIT1 could be considered as a factor in improving survival compared to 

other treatment strategies. Thus, therapeutic modalities for BC patients with low or 

high MCPH1/BRIT1 expression may be considered during treatment decisions.  

         Furthermore, within this cohort, reduced MCPH1/BRIT1 expression pre-NACT 

may predict an increase in patient survival. Interestingly, the findings were 

strengthened by the fact that patients with tumours with low MCPH1/BRIT1 

expression which changed to high in response to NACT presented a significantly 

better OS rate compared to those with tumours which altered their MCPH1/BRIT1 

expression from high to low. This suggests that reduced MCPH1/BRIT1 expression 

pre-NACT may cause the accumulation of DNA damage, which may lead to 

stimulation of the DNA damage response and a larger increase in MCPH1/BRIT1 

expression post-NACT. Also, it is possible that those cases with low MCPH1/BRIT1 

expression pre-NACT may still have an undamaged C-terminal BRCT domain 

which plays a key role in activating the DNA damage response and repair 

mechanism (Wood et al., 2008; Wood et al., 2007). Moreover, Lin et al. (2010) 

reported that cancer did not progress for about 18 months in a mouse model using 

Mcph1/Brit1 knockout; however, when this mutation was combined with p53 null 

knockout the cancer rapidly progressed. Thus, the status of p53 expression may be 

intact in cases with low MCPH1/BRIT1 expression and may suppress the tumour 

growth, ensure an effective response to NACT and predict a longer OS rate. 

Identification of p53 status in tumours with low MCPH1/BTIT1 pre-NACT may 

enable further understanding of survival statistics.  

         High MCPH1/BRIT1 expression post-NACT may predict a poor response to 

chemotherapy, although a change in MCPH1/BRIT1 from low to high expression 

may contribute to increasing the life expectancy of BC patients post-NACT, 

meaning that the group of patients which maintained high MCPH1/BRIT1 may be 
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considered drug-resistant. Although the OS rate was one year higher, although not 

statistically significant, in patients with high MCPH1/BRIT1 expression tumours 

post-NACT compared to those who had reduced MCPH1/BRIT1 expression in 

tumour samples, it is important to specify that in some cases tumours expressing 

high levels of MCPH1/BRIT1 pre-NACT remained unchanged post-NACT. 

Additionally, the cohort contained nine cases, which failed to respond to NACT 

treatment. Among these cases, five of theses cases (55.5%) were identified within 

the group whose MCPH1/BRIT1 expression levels changed (from low to high), 

while 3/9 cases (33.3%) were within the group with no change in MCPH/BRIT1 

expression (high in both pre and post NACT samples) and 1/9 (11.1%) within the 

group with no change in MCPH/BRIT1 expression (low in both pre and post NACT 

samples). Interestingly, two recent studies included BC patients who received 

NACT treatment showed increased DNA damage repair focus formation of RAD51, 

BRCA1 and γH2AX or overexpression of RAD9 protein in response to NACT 

treatment were associated with reduced chemosensitivity (Asakawa et al., 2010; 

Yun et al., 2014).  

         The caveat that the BC resection samples after surgery may represent 

residual tumour and may not necessarily clinically reflect a resistant disease 

phenotype needs to be considered. Thus, given that low but not high 

MCPH1/BRIT1 expression pre-NACT was associated with a reduction in BC 

mortality, it should be considered that increased MCPH1/BRIT1 expression may 

predict aggressive tumour phenotypes rather than just causing drug resistance. 

Indeed, although only post-NACT clinico-pathological data was available for 

patients with high MCPH1/BRIT1 expression, a noticeable number of cases 28/64 

cases (63.6%) showed a tumour size of > 30mm, residual tumours with 

lymphovascular invasion in 18/44 cases (40.9%) and metastases in 16/60 (28.1%), 

indicating the aggressive nature of tumours which may be but not significantly 

correlated to the elevated MCPH1/BRIT1 expression in this cohort.     

           Furthermore, clinicopathological findings within this cohort demonstrated a 

higher rate of inflammatory BC (IBC) specifically in cases with high MCPH1/BRIT1 

expression pre- and post-NACT treatment, 13/46 cases (28.2%) and 13/55 cases 

(23.6%) respectively, suggesting again the potential influence of IBC on 

MCPH1/BRIT1 expression and tumour response to NACT. IBC is aggressive form 

of invasive BC exhibits a poor response and survival rate (Robertson et al., 2010). 

Thus, further research needs to be carried out using this available BC cohort and 

Fisher’s exact test to investigate the differences in the level of MCPH1/BRIT1 

protein expression between two groups of patients including inflammatory and non-
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inflammatory BC. This would determine if IBC influences the ability of 

MCPH1/BRIT1 expression to respond effectively to chemotherapy.  

         To our knowledge, this is the first study to explore the role of MCPH1/BRIT1 

in response to NACT treatment in advanced BC. A significant reduction in cases 

with low MCPH1/BRIT1 expression was observed post-NACT indicating an 

increase in MCPH1/BRIT1 expression in response to NACT treatment. Tumours 

with low MCPH1/BRIT1 expression pre-NACT predicted better OS. However, 

alteration of MCPH1/BRIT1 expression from low to high was associated with better 

OS. Whether the association of high MCPH1/BRIT1 expression pre-NACT with 

reduced chemosensitivity in BC reflects either the nature of tumour aggressiveness 

or chemotherapy resistance may need further investigation. The results observed in 

this MCPH1/BRIT1 study are different compared to previous studies due to the 

variations associated with differences in tumour characteristics in patient cohorts, 

strategy and type of chemotherapy and methods used for assessment and 

reporting of tumour response. A larger sample size would be need to consider the 

clinical predictive or prognostic value of MCPH1/BRIT1 in BC for improving 

chemosensitivity.  

 

6.4 Study of p53 expression pre- and post-NACT treatment 

The p53 expression study contained 92 BC pre-NACT treatment samples. The core 

biopsy pre-NACT treatment and the matched invasive tumour tissue post-NACT 

treatment were available for 66 samples. The remaining 26 samples showed no 

residual invasive tumours post-NACT treatment and achieved pCR thus no 

resection tissue were available for these patients.   

 

6.4.1 p53 expression status pre- and post-NACT regimen 

         Optimisation of p53 staining in BC and colorectal carcinoma (control) tissues 

was performed in collaboration with Dr. Filomena Esteves using the anti-p53 (clone 

DO-7) antibody at a concentration of 1: 50 (Data not shown). p53 expression was 

predominantly detected in the nucleus and very few cases were seen with p53 

cytoplasmic staining in the core biopsy tumours and the TMA core residual invasive 

samples.  
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Figure 6.6. p53 immunohistochemistry.  
Representative images of pre-NACT core biopsy tissues showing different staining scores of p53 expression, including (A) negative, (B) 10%, (C) 50% and (D) 
and 90%. Magnification was x 10. 
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         The percentage of p53 positive nuclear staining was assessed in relation to 

the total number of tumour cells. The monoclonal antibody (clone DO-7) detects 

wild type and mutant type p53; however, as WT p53 has a short half-life and is 

unstable it is quickly degraded, thus is usually only present in very small amounts 

often below the detection level of IHC (Cooper and Haffajee, 1997).  Thus, the 

majority of p53 positive nucleus staining in tumour cells represents the mutant type 

p53 (Varna et al., 2011; Axelrod et al., 2012). The representative images in (Figure 

6.6) illustrate the various percentages of p53 nuclear staining ranging from 

negative, to 10%, 50% and 90% staining levels.  

        In the p53 study, in order to evaluate the percentage of positive nuclear p53 

staining in BC samples, the percentage of tumour cells with positive nuclear p53 

staining was considered as a continuous variable. However, for dichotomous 

analysis, the cut-off of 10% or greater was employed to dichotomise the percentage 

of positive nuclear p53 staining into negative and positive p53 expression (Vojtěšek 

et al., 1992; Bartley and Ross, 2002; Rohan et al., 2006; Lara et al., 2011; Yang et 

al., 2013; Milicevic et al., 2014). 

 

 

 

 

 

 

 

 

 

 
Figure 6.7. Levels of p53 expression in matched tumour samples pre- and post-NACT 
treatment.  
Expression level (% staining) in each patient sample is symbolised by the lines linking the 
matched samples. There are 26 unmatched samples as their tumours attained pCR. 
 

         Thereafter, the expression of p53 was examined using the matched samples 

(66 cases) of both pre-NACT core biopsy and post-NACT tumour resection. The 

percentage scores for p53 expression pre- and post-NACT treatment are shown in 

(Figure 6.7). The vast majority of pre-NACT BC samples expressed positive p53 

Prechemotherapy Postchemotherapy

0

25

50

75

100

p5
3 

ex
pr

es
si

on
 (%

 s
ta

in
in

g)



- 220 - 
 

 

expression ranging from ≥10% of tumour cells to 100% although in some cases p53 

expression was below 10% or barely detectable. Post-NACT the p53 positive 

scoring for some cases was increased while for others this decreased to below 

10%. In addition, in some cases post-NACT p53 expression remained unchanged 

(positive or negative) (Figure 6.8). 

         The percentage of nuclear p53 staining pre- and post-NACT was compared 

using only the available matched sections (66 cases) to evaluate the overall status 

of p53 expression (Figure 6.7). The continuous analysis of %p53 expression on 

matched pair samples revealed no statistically significant difference in mean %p53 

expression level pre- (39.53%) and post- (32.95%) NACT treatment (p = 0.1136; 

Paired t-test). Although there was no difference in %p53 pre- and post-NACT, the 

mean %p53 expression post-NACT treatment clearly displayed a slight reduction, 

which may indicate a reduction in cases with p53 positive expression in response to 

NACT treatment.  

           This difference became significant after applying dichotomous data analysis 

of p53 expression pre- and post-NACT treatment (p = 0.0001; Wilcoxon matched–

pairs signed-rank test). In these matched pair samples (66 cases), the frequency of 

p53 positive cases was 44 (66.6%) pre-NACT treatment, which was reduced to 28 

cases (42.4%) post-NACT treatment.  

         Of 26 cases who achieved pCR, 12 cases (46.1%) were in p53 negative 

tumours and 14 (53.8%) in p53 positive tumours.   

 

6.4.2 Correlation of p53 expression with clinicopathological 
parameters  

         The vast majority of p53 positive tumours were grade 3 (56.6%) pre-NACT 

treatment, with grade 2 (38.5%) and grade 1 (4.8%). These proportions shifted 

dramatically post-NACT treatment to 35.2% for grade 3, 52.9% for grade 2 and 

11.7% for grade 1 (Table 6.1). The correlation between p53 expression and grade 

was examined. Neither continuous or dichotomous analysis data showed a 

significant correlation for p53 expression with tumour grade pre-NACT treatment 

(Table 6.7). However, continuous analysis post-NACT treatment showed a highly 

significant correlation between p53 positive tumour and grade 3 (G2 vs. G3; p < 

0.001; t-test and Pearson’s correlation test) (Table 6.7).  
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Figure 6.8. Representative staining of p53 in matched tumour samples pre-NACT 
treatment (core biopsy) and post-NACT treatment (surgical resection).  
Percentage of nuclear p53 staining was evaluated for each individual with matched pair 
samples. The scoring for (A and B) was 50% pre and negative post-NACT treatment. 
Samples (C and D) showed no change in p53 expression (negative) pre and post-NACT 
treatment. (E and F) showed no change in p53 expression (positive) at 80% pre and 70% 
post-NACT. Panels (G and H) were negative pre and 30% post-NACT. Magnification in pre-
NACT tissues was x 40 and x 10 in post-NACT TMA core. 
 

Pre-NACT Post-NACT 
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         The mean % p53 positive expression for grade 2 was 14.13% compared to 

56% for grade 3. In addition, dichotomous data analysis revealed a significant 

correlation between p53 expression and tumour grade post-NACT treatment (p = 

0.043; Spearman’s correlation test). p53 negative tumours were associated with 

low tumour grade (G2) since the number of  cases with negative p53 expression 

were higher (21/30) than those with positive p53 expression (6/21). Conversely, 

positive p53 expression was correlated with grade 3. The number of cases who 

expressed positive p53 expression was higher (12/21) than those with negative p53 

expression (6/30) cases (Table 6.7).   

         As previously explained in the MCPH1/BRIT1 study, the majority of patients 

were diagnosed with the most common type of breast cancer (IDC) at both pre and 

post-NACT treatment. The proportion of cases with IDC pre-NACT was 82/90 

(91.1%) in comparison to cases with other special types 8/90 (8.8%). Thus, p53 

expression pre-NACT was significantly correlated with the histological tumour type 

IDC as identified by continuous data analysis (p = 0.046; t-test and Pearson’s 

correlation test). The mean % of p53 expression in cases with IDC was 37.45% 

compared to 11.87% in cases with other special types (Table 6.7). This statistical 

significance was strongly confirmed by dichotomous analysis data pre-NACT 

treatment, again showing a significant correlation between p53 positive tumours 

and IDC (p = 0.042; Spearman’s correlation test). The number of p53 positive 

cases was 51/53 (96.2%) compared to 31/37 cases (83.7%) with p53 negative pre-

NACT. The statistical significance correlation was reduced post-NACT treatment in 

both continuous and dichotomous analyses of p53 expression data (Table 6.7).  

 

Table 6.7. Correlation of p53 expression with clinicopathological features pre- and 
post-NACT treatment. 

 
a. Other special types include invasive lobular carcinoma (ILC) and mixed (IDC and ILC). 
 

         Tumour size data was available for 72 patients only post-NACT. Continuous 

analysis revealed a significant correlation between p53 expression and tumour size 

Parameters

Mean (%) P value Mean (%) P value High n (%) Low n (%) P value High n (%) Low n (%) P value
Pre Post Pre Post

Tumour grade 
G1 16.25 G1 vs. G2 0.507 21.67 G1 vs. G2 0.581 2 (5.7) 2 (4.2) 0.098 3 (10%) 3 (14.3) 0.043
G2  27.93 G1 vs. G3 0.195 14.13 G1 vs. G3 0.092 17 (48.5) 15 (31.3) 21 (70) 6 (28.6)
G3 40.31 G2 vs. G3 0.124 56 G2 vs. G3 < 0.001 16 (45.7) 31 (64.5) 6 (20) 12 (57.1)
Histological tumour type 
IDC 37.45 0.046 34.41 0.147 31(83.7) 51(96.2) 0.042 21(70) 18(85.7) 0.2
Other special typesa 11.87 15.21 6 (16.2) 2(3.7) 9 (30) 3 (14.2)
Age 
<50 33.94 0.637 32.93 0.896 24 (63) 32 (60.3) 0.791 23 (62.1) 18 (64.2) 0.863
>50 37.57 34.35 14 (37) 21 (39.6) 14 (37.8) 10 (35.7)
Inflammatory 
No 36.98 0.329 31.22 0.406 26 (68.4) 41 (79) 0.268 27 (72.9) 20 (74) 0.923
Yes 28.6 37.47 12 (31.5) 11 (21) 10 (27) 7 (25.9)

                                   p53 expression
Continuous Dichotomised  
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post-NACT treatment (p = 0.003; t-test and Pearson’s correlation test). The 

expression of p53 was 51.5% in tumour size < 3mm and 17% in tumour size ≥ 3mm 

(Table 6.8). Surprisingly, dichotomous analysis revealed that decreased tumour 

size was correlated significantly with p53 positive expression while increased 

tumour size with p53 negative tumours post-NACT treatment (Table 6.8). This 

observation was surprizing since p53 negative expression is correlated significantly 

with lower tumour grade while p53 positive was correlated with higher tumour grade 

post-NACT (Table 6.7). Thus, this correlation may be because the imbalance in the 

number of number of cases with negative p53 expression, which was higher at 

20/27 (74%) in the cohort of large tumours (≥ 3mm) compared to 8/21 cases (38%) 

with positive p53 expression (Table 6.8).  

 

Table 6.8. Correlation of p53 expression with other clinicopathological features post-
NACT treatment. 

 
 

         Lymph node status (LNS) data was available for 72 patients only post-NACT. 

There were 40/72 cases (55.5%) patients diagnosed with negative LNS (N0) after 

NACT treatment. Patients with positive LNS were graded into 3 types (N1, N2 and 

N3) depending on the number of cancer cells deposited in different areas of the 

lymph nodes. The distribution of patients with positive LNS was as follows; N1 

17/72 (23.6%), N2 8/72 (11.1%) and N3 5/72 (6.9%). In addition, 2/72 cases (2.8%) 

were found with micrometastasis. Continuous analysis of p53 expression revealed 

a significant correlation with lymph node involvement (N0 vs. N1 p = 0.021; t-test 

and Pearson’s correlation test). The mean % of p53 expression in cases classified 

Parameters

Mean (%) P value High n (%) Low n (%) P value 

Tumour size (mm) 
< 30 51.5 0.003 7 (25.9) 13 (61.9) 0.011
≥ 30 17.66 20 (74) 8 (38)
Nottingham prognostic index 
Good 16.11 G vs. M 0.069 6 (23) 3 (14.2) 0.733
Moderate 46.19 G vs. P 0.610 9 (34.6) 12 (57.1)
Poor 23.79 M vs. P 0.104 11 (42.3) 6 (28.5)
Lymph node status 
N0 47.2 N0 vs. N1 0.021 7 (25.9) 11 (52.3)
N1 15.3 N0 vs. N2 0.854 10 (37) 5 (23.8) 0.06
N2 43.8 N0 vs. N3 0.197 4 (14.8) 4  (19)
N3 18.9 N1 vs. N2 0.086 4 (14.8) 1 (4.7)
Micrometastases 0 N1 vs. N3 0.831 2 (7.4)  0 (0)
 N2 vs. N3 0.336
Lymphovascular invasion 
No 23.8462 N vs. Y 0.295 17 (62.9) 9 (42.8) 0.113
Yes or extensive 36.225 N vs. P 0.021 10 (37) 10 (47.6)
Probable 90 Y vs. P 0.089 0 (0) 2 (9.5)
Metastases 
No 31.18 0.906 27 (71) 19 (70.3) 0.953
Positive 33.9 11 (28.9) 8 (29.6)

 Continuous 
p53 expression 

Dichotomised  

Post Post
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with negative LNS (N0) was 47% compared to 15% in cases with positive LNS 

(Table 6.8). The significance level of this correlation was reduced after dichotomous 

analysis of p53 expression into negative and positive (Table 6.8). 

         The pathological data for lymphovascular invasion (LVI) was available for 48 

patients only post-NACT treatment. Another 24 cases were reported as pCR. The 

absence of LVI was detected in 26/48 cases (54.1%) compared to 20/48 (41.7%) 

with positive LVI and 2/48 (4.2%) with a probable incidence of LVI. Continuous 

analysis data of p53 expression identified a significant difference for cases with 

absence of or probable LVI status (p = 0.021; t-test and Pearson’s correlation test). 

The mean % of p53 expression was 23.8% for cases with no LVI present compared 

to 90% in cases with probable LVI. No significant correlation was identified after 

dichotomous p53 expression into negative and positive (Table 6.8). p53 expression 

did not show any significant correlation with other clinico-pathological features such 

as the Nottingham Prognostic Index or metastases (Table 7.8).  

 

6.4.3 Correlation of p53 expression with molecular biomarkers 

         Continuous and dichotomous analyses data of p53 pre-NACT treatment 

indicated no significant correlation with prognostic biomarkers (ER, PR, HER2) or 

other markers such as Ki67 and CK5 (Table 6.9). In comparison continuous 

analysis data post-NACT treatment showed a significant correlation between p53 

expression and negative expression of ER or PR (p < 0.001; t-test and Pearson’s 

correlation). Mean % of p53 expression was significantly higher in ER (65.23%) and 

PR (57.23%) negative tumours compared to ER (18.96%) and PR (13.94%) 

positive tumours. No significant correlation was identified between p53 expression 

and HER2 status post-NACT treatment. In addition, mean % of p53 expression was 

lower in patients with an absence of triple negative BC post-NACT (27.36%) 

compared to patients who were characterized with triple negative BC (57.94%) (p = 

0.011; t-test and Pearson’s correlation test) (Table 6.9). 

         Furthermore, continuous analysis data post-NACT treatment identified a 

significant association between p53 expression and the Ki67 marker (p = 0.002; t-

test and Pearson’s correlation test). The mean % of p53 expression was statistically 

higher in Ki67-positive tumours (57.42%) compared to those with Ki67-negative 

tumours (15.3%). No significant correlation was observed between p53 expression 

and CK5 (Table 6.9). 
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Table 6.9. Correlation of p53 expression pre and post NACT treatment with molecular 
biomarkers.  

 
 
          After dichotomising p53 expression into negative and positive, the significant 

correlation between p53 expression and other biomarkers (ER, PR and Ki67) was 

found to be similar (p = 0.003; p = 0.015 and p = 0.008, respectively; Spearman 

correlation test), and this was only reduced in the case of triple negative BC (p = 

0.09; Spearman correlation test) (Table 6.9). 

 

6.4.4 Correlation of p53 expression pre- and post-NACT 
treatment with overall survival (OS) 

         p53 expression of 90 biopsy core pre-NACT treatment cases was correlated 

with OS. The dichotomous analysis of p53 expression showed no statistical 

significance with OS (p = 0.437; Kaplan-Meier test). No significant differences were 

observed pre-NACT between the mean OS rate of 73.3 months for patients with 

negative p53 expression (95% CI: 64-81 months) and that of 73.3 months for 

patients with positive p53 expression (95% CI: 63-83 months) (Figure 6.9A). 

         The correlation of p53 expression and OS rates post-NACT treatment using 

the available 90 resections of residual invasive carcinoma samples was not 

statistically significant (p = 0.154; Kaplan-Meier test). The mean OS rate for the 

three subgroups was almost equal, for instance, 67.3 months for negative p53 

(95% CI: 68-85), 64 months for positive p53 (95% CI: 49-79) and 63 months for 

pCR cases (95% CI: 55-70) (Figure 6.9B).  

         The death rate and mean FUOS duration of pCR cases have been described 

previously in the MCPH1/BRIT1 study (Section 6.3.4).  
, 

Parameters

Mean (%) P value Mean (%) P value Negative n (%) Positive n (%) P value Negative n (%) Positive n (%) P value 
Pre Post Pre Post

ER
Negative 40.39 0.214 65.23 0.001 18 (47.3) 25 (46.2) 0.92  6 (20.6)  16 (59.2) 0.003
Positive 31.2 18.96  20 (52.6) 29 (53.7)  23 (79.3)  11 (40.7)
PR
Negative 41.07 0.098 57.23 0.001  21 (56.7) 32 (59.2) 0.815 11 (37.9) 19 (70.3) 0.015
Positive 28.65 13.94 16 (44.2) 22 (40.7) 18 (62) 8 (29.6)
Her2
Negative 35.57 0.891 36.58 0.696 29 (78.3) 42 (79.2) 0.922  22 (78.5)  22 (81.4) 0.792
Positive 36.84 42.27 8 (21.6) 11 (20.7) 6 (21.4) 5 (18.5)
Triple negative 
Negative 33.71 0.426 27.36 0.011  24 (64.8) 35 (64.8) 0.966 24 (80) 16 (59.2) 0.09
Positive 39.9 57.94 13 (35.1) 19 (35.1) 6 (20) 11 (40.7)
Ki67
Negative 27.85 0.344 15.3 0.002 3 (11.5) 4 (8.1) 0.638 11 (52.3) 4 (16) 0.008
Positive 41.16 57.42 23 (88.4) 45 (91.8) 10 (47.6) 21 (84)
CK5
Negative 38.91 0.956 44.15 0.99 19 (73) 37 (82.2) 0.37 13 (65) 17 (68) 0.837
Positive 38.33 44.33 7 (26.9) 8 (17.7) 7 (35) 8 (32)

CategorisedContinuous
p53 expression  
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Here, in addition, the death occurrence rate for pCR cases was cross-tabulated with p53 expression (negative and positive) to identify the 

potential association of p53 expression pre-NACT treatment with survival outcome. No significant statistical correlation was identified (p = 0.136; 

Fisher’s Exact test), possibly due to the small size of the sample with pCR (26 cases). However, of the 26 cases, samples from 16 patients 

expressed negative p53, of which 4/16 had died (25%). However, no deaths had been identified among patients with positive p53 expression. 

                                       A. Pre-NACT                                                                    B. Post-NACT 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Kaplan Meier curves showing BC OS in patients with p53 negative or positive expression pre-NACT treatment (A) and in patients with p53 
negative or positive expression or pCR cases post-NACT treatment (B).  
The cut-off percentage (≥10%) was used to dichotomise p53 expression into negative and positive.  
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6.4.5 Correlation of NACT treatment and pathological tumour 
response  

        In the p53 expression study, the response to NACT treatment was evaluated 

using pathological tumour response data available for 87 patients. The response of 

p53 tumours to NACT treatment was varied. The distribution of pathological tumour 

response cases within this p53 study was very similar to that previously described 

in the MCPH1/BRIT1 study. The NR, MR, PR and CR were identified in 9/87 cases 

(10.3%), 1/87 (1.1%) 51/87 (58.6%) and 26/87 (29.8%), respectively (Table 6.1).  

         In addition, the administered NACT regimens in p53 expression study were 

available for 71 patients. Regimen was used again as described in (Table 6.10), for 

example, as we have previously divided the chemotherapy into three groups, which 

were as follows: Group 1 includes ((EC), (FEC), and (ECF), Group 2 includes (EC 

+Taxotere) or (FEC + Taxotere) and (Neo-tAnGo EC +Taxotere) and Group 3 was 

Taxotere + Carboplatin.  

 

Table 6.10. Categorisation of breast cancer patients based on the type of combination 
therapy used for NACT treatment in the p53 cohort. 

          

         No significant correlation was observed (p = 0.444; Spearman correlation test) 

when cross-tabulation analysis was employed to identify the correlation between 

the three different NACT treatment groups with pathological tumour response 

classifications. For Group 1 the distribution of cases with NR, PR and CR was 2/32 

cases (6.2%), 18/32 (56.2%) and 12/32 (37.5%). In Group 2, the proportion of 

cases with NR, MR, PR, and CR were 5/38 (13.1%), 1/38 (2.6%), 21/38 (55.2%) 

NACT 
group 

NACT regimens Patient No.  in p53 
study n = 71 (%) 

Group 1 Epirubicin + Cyclophosphamide (EC) 32 (45%) 

5-Fluorouracil + Epirubicin + Cyclophosphamide 
(FEC) 

Epirubicin + Cisplatin + 5-Fluorouracil (ECF) 

Group 2 EC + Taxotere 38 (53.5%) 

FEC + Taxotere 

Neo-tAnGo + EC (phase III trial)  + Taxotere 

Group 3 Taxotere + Carboplatin 1 (1.4%) 
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and 11/38 (28.9%), respectively. In addition, only one case was treated with 

Taxotere + Carboplatin and it achieved the CR.  

         Next, the available matched section samples (66 patients with residual 

invasive carcinoma) were used to identify the effect of the individual group of NACT 

regimens on change in expression of p53. First, the change in percentage of p53 

expression after NACT treatment was assessed and, using this, the cases were 

divided into four groups as follows; The first group showed a change in p53 

expression from positive to negative (17/66 cases (25.7%)). The second group 

included only one case (1/66 (1.5%)) whose p53 expression changed from negative 

to positive. In the third group p53 expression showed no change and remained 

negative in 21/66 (31.8%) while the fourth group remained positive in 27/66 

(40.9%).  

         Cross-tabulation analysis was then used to identify the association between 

NACT regimens and the change in expression of p53. Neither the first nor the 

second NACT regimens showed any significant change in p53 expression (p = 

0.555; Spearman correlation test) (Table 6.11A). For instance, a positive to 

negative change in expression of p53 was identified in 2/20 cases (10%) treated 

with the first NACT regimen compared to 6/26 cases (23%) treated with second 

NACT regimen. In addition, a similar number of cases with unchanged status for 

p53 expression (negative) were obtained after they were treated with first and 

second group of NACT regimens, 9/20 cases (45%) and 9/26 (34.6%), respectively 

(Table 6.11A). Moreover, the prevalence of cases with no change in p53 

expression (positive) was similar in the first and second groups of NACT regimens, 

9/20 (45%) and 11/26 (42.3%), respectively (Table 6.11A).  

         Similar to pervious results that were observed in MCPH1/BRIT study in 

(Section 7.3.5), there was no significant correlation was identified between 

change/or no change in p53 expression and improved the pathological tumour 

response (p = 0.784; Spearman correlation test). However, cross-tabulation 

analysis between change/or no change in expression of p53 and pathological 

tumour response (NR, MR and PR) revealed that the majority of patients presented 

a PR in 50/65 cases after NACT treatment which were equally distributed in 

patients whose p53 expression had showed no change in expression of p53 

(negative) 20/50 (40%) or (positive) 20/50 (40%) compared to those patients whose 

p53 expression changed from positive to negative 10/50 (20%) (Table 6.11B). 
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Table 6.11. Cross-tabulation groups with change/ or no change in p53 expression 
post-NACT versus type of neoadjuvant chemotherapy (A) and tumour response (B).  
Group 3 of NACT regimens contains only one patient as shown in Table 6.10 thus it was not 
included in table A. The second group which showed change in p53 expression from 
negative to positive in only one patient thus it was not included in tables A and B.  

 

6.4.6 Correlation between change in expression of p53 post-
NACT treatment with OS  

        The change in p53 expression in response to NACT regimens was correlated 

with OS rates using the available 63 matched pair samples. The Kaplan-Meier 

survival analyses were only performed on the three groups of patients, one of which 

showed a change in p53 expression (from positive-negative) and two which showed 

no change in p53 expression (negative or positive). Only one individual showed a 

change in p53 expression from negative to positive; thus this group was excluded 

from survival analysis.  

         No significant association was observed between the change in expression of 

p53 and OS (p = 0.184). The mean OS rate for patients with a change in p53 

expression (from positive to negative) was 73 months (95% CI: 58-87). For those 

patients with no change in p53 expression (negative), the mean OS rate was 77 

months (95% CI: 67-87) compared to 63 months (95% CI: 48-78) for patients with 

no change in p53 expression (positive) (Figure 6.10). 

 

6.4.7 Correlation between MCPH1/BRIT1 and p53 expression  

         The correlation between MCPH1/BRIT1 and p53 expression pre-NACT 

treatment was examined using 91 core biopsies samples. Continuous analysis data 

showed no significant association between the expression of MCPH1/BRIT1 and 

p53 pre-NACT treatment (p = 0.301; Pearson’s correlation test).  

Change in p53 expression

A p53 expression Positive to negative Negative Positive Total
EC, FEC or ECF 2  (10%) 9 (45%) 9 (45%) 20
EC + Taxotere or FEC + 
Taxotere or Neo-tAnGo 
+ EC (phase III trial) + 
Taxotere

6 (23%) 9 (34.6%) 11 (42.3%) 26

 p = 0.555 Total 8 18 20 46

Change in p53 expression
B p53 expression Positive to negative Negative Positive Total

No response 4 (44.4%) 1 (11.1%) 4 (44.4%) 9
Minimal response 0 0 1  (100%) 1
Partial response 10 (20%) 20 (40%) 20 (40%) 50

p = 0.784 Total 14 21 25 65

No change in p53 expression

Chemotherapy 
regimes

No change in p53 expression

Pathological tumour
response
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Figure 6.10. Kaplan Meier survival curves showing correlation between change 
(positive to negative) and no change (negative or positive) in p53 expression post- 
NACT treatment and BC OS.  
 
         The overall mean of % staining of MCPH1/BRIT1 expression was 34.8% 

compared to 35.6% for % staining of p53 expression. Dichotomous data analyses 

did not show any significant correlation between MCPH1/BRIT1 and p53 

expression pre-NACT (p = 0.353; Spearman’s correlation test). The status of p53 

expression in patients with low MCPH1/BRIT1 expression pre-NACT treatment was 

negative in 21/45 cases (46.6%) and positive in 24/45 cases (53.3%).  While in 

samples which expressed high levels of MCPH1/BRIT1, negative p53 expression 

was identified in 17/46 cases (36.9%) compared to 29/46 cases (63%) with positive 

p53 expression. 

         The association between MCPH1/BRIT1 and p53 expression post-NACT 

treatment using 65 matched resections of invasive tumours samples was 

examined. A positive weak Pearson’s correlation was identified between 

MCPH1/BRIT1 and p53 expression post-NACT treatment (r = 0.282), resulting in a 

statistically significant correlation with a p value of 0.023. The overall mean of % 

staining of MCPH1/BRIT1 expression was 66.9% compared to 33.4% as the mean 

of % staining of p53 expression. Again, the statistically significant correlation 

between MCPH1/BRIT1 and p53 was reduced after using the dichotomous analysis 
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data (p = 0.113; Spearman’s correlation test). After NACT treatment, the number of 

cases with low MCPH1/BRIT1 decreased to 10. There were 8 patients (80%) with 

negative p53 expression compared to 2 patients (20%) with positive p53 

expression. However, patients who expressed high levels of MCPH1/BRIT1 

showed similar proportion of cases with p53 expression either negative 29/55 

(52.7%) or positive 26/55 (47.2%). 

         The correlation between MCPH1/BRIT1 with p53 expression in pCR cases 

(26 cases) pre -NACT chemotherapy was also examined to investigate whether the 

status of p53 expression in these patients would be an important factor to achieve 

the pathological complete response. The continuous analysis data using Pearson 

correlation showed no significant association between MCPH1/BRIT1 and p53 

expression (p = 0.886). The mean % of staining of MCPH1/BRIT1 expression was 

29.61% compared to the mean % of staining of p53 expression at 25.26%. 

Dichotomous analysis of MCPH1-p53 expression in CR cases using Spearman 

test, showed no significant correlation between MCPH1 and p53 expression (p = 

0.635). The distribution of cases with negative or positive p53 expression in 

tumours with high MCPH1/BRIT1 were similar to those with low MCPH1/BRIT1 

expression. Negative p53 expression was identified in 8/12 cases (66.6%) 

compared to 4/12 (33.3%) with positive p53 expression for CR patients with high 

MCPH1/BRIT1 expression. While, negative p53 expression was identified in 8/14 

cases (57.1%) compared to 6/14 (42.8%) with positive p53 expression for CR 

patients with low MCPH1/BRIT1 expression. 

 

6.4.8 Discussion for p53 study 

         The aim of investigating the expression status of the p53 protein in BC tissue 

samples alongside MCPH1/BRIT1 expression was to determine whether a 

correlation between p53 and MCPH1/BRIT1 expression exists in BC tissues and if 

this stimulates sensitivity to NACT, increases the survival rate and improves patient 

outcomes. Since the WT p53 usually is correlated with chemo- or radio-sensitivity 

compared to the mutated p53 version (Kandioler-Eckersberger et al., 2000; 

Vogelstein and Kinzler, 2004; Brosh and Rotter, 2009), the status of p53 expression 

may be essential to supporting the impact of MCPH1/BRIT1 expression on tumour 

response to chemotherapy.  
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         In normal tissue, p53 is barely detectable due to its short half-life; however, in 

tumour cells mutant p53 expression can be detected in the nucleus (Varna et al., 

2011), however it has been shown that detection of positive staining for p53 did not 

always indicate the existence of a p53 mutation (Schmitt et al., 1998). This may be 

because the detection of p53 positivity by IHC may reflect stabilisation of WT p53 in 

response to stress but not mutation (Varna et al., 2011). In addition, the absence of 

p53 immunostaining has been reported in tumours that contain mutations in the 

TP53 gene, specifically nonsense mutations, or deletions/splicing errors (Geisler et 

al., 2001).  

         In this study IHC was performed to detect p53 protein expression, but 

unfortunately it was not possible to determine whether low expression indicated the 

TP53 gene was lost or inactivated at the DNA sequence level, due to the lack of the 

primary fresh tumours for this cohort. However, p53 immunostaining has been 

considered a useful tool for assessment of p53 expression since the WT-p53 is 

rapidly degraded and p53 gene mutation often results in a stable form of the p53 

protein, which would be easily detected in cancer cells (Petitjean et al., 2007; Yang 

et al., 2013). Furthermore, the BC tissue samples in this cohort were diagnosed 

with aggressive, invasive and high grade tumour phenotypes, by the consultant 

pathologist Dr. Abeer Shaaban; therefore it is expected that detection of positive 

p53 staining may generally be due to p53 expression of a non functioning form. 

Sequencing the p53 gene for more than 90 cases pre- and post-NACT treatment 

would be expensive and time-consuming, when compared to IHC staining that is 

more convenient for daily practise.  

         In this study, the nuclear p53 protein expression data clearly demonstrated 

the significant effect of NACT treatment on p53 expression. A reduction of p53 

positive cases from 44/66 (66%) pre-NACT to 28/66 (42%) post-NACT clearly 

indicates the frequent reduction in the level of p53 positive expression of tumour 

cells in response to NACT treatment.  

         The difference in p53 expression levels pre- and post-NACT detected in this 

study reached statistical significance in contrast to trends identified in the previous 

study by Faneyte et al. (2003). The latter authors conducted a BC study to evaluate 

p53 immunostaining in 50 cases that received one type of NACT regimen 

Cyclophosphamide, Epirubicin and 5-Fluorouracil (FE120C). This study 

demonstrated no change in p53 expression pre-and post-NACT in 39/50 cases 

(78%) (24 cases remained p53 negative and the other 15 cases p53 positive post-
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NACT) compared to 5/50 (10%) cases or 6/50 (12%) cases whose p53 expression 

changed from positive to negative or from negative to positive, respectively. The 

p53 results in this current study were slightly similar to the aforementioned study as 

p53 expression pre- and post-NACT remained the same in 48/66 (72.7%) (21 

cases remained p53 negative and other 27 cases p53 positive post-NACT). 

However, this current study compared to the aforementioned study showed high 

patient numbers 17/66 (25.7%) whose p53 expression changed from positive to 

negative and only 1 case (1.5%) form negative to positive. Variations associated 

with the size of the patient cohorts, NACT treatment strategies, type of tumours and 

their response to chemotherapy may be considered to be factors may produce 

different results among these studies. 

         Furthermore, the analysis in this study demonstrated a reasonable reduction 

in cases with high-grade (G3) and an increase in cases with low to moderate grade 

(G1 and G2) post-NACT, representing a significant correlation between p53 

positive tumours and high-grade (G3) and between p53 negative tumours and 

moderate grade (G2). This may indicate the effect of NACT in altering expression of 

p53 from positive to negative, resulting in tumour regression. 

         Moreover, in comparison to p53 negative expression post-NACT, p53 positive 

expression, in this study, bears a direct significant association to the proliferation of 

marker Ki67 and an inverse relationship to ER, PR receptors and triple negative 

BC. The expressions of p53 in tumours with negative receptors status and with a 

high proliferation (Ki67) indicate greater tumour aggressiveness and a potential risk 

of relapse (Sirvent et al., 1995; De Azambuja et al., 2007).  

          Many studies have reported that lack of p53 mutations predicts a better OS 

or disease-free survival after chemotherapy (Linjawi et al., 2004; Overgaard, 2000). 

p53 immunostaining in BC has not been used as a regular marker in clinical 

practise, due to the lack of a positive correlation between the accumulation of p53 

and survival outcome in early BC (Harris et al., 2007). Similarly, the presented 

study did not demonstrate the prognostic influence of p53 status as detected by 

IHC staining on patients’ survival pre- and post-NACT treatment. In addition, 

change in p53 expression analysis failed to show a correlation with survival rate 

post-NACT. These findings correlated with results of other studies, which 

demonstrated that p53 expression status is not associated with response 

specifically to NACT or other anti-BC drugs (Daidone et al., 1995; Faneyte et al., 
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2003; Yang et al., 2013). However these results may due to the lack of a sufficiently 

large number of patients included in this study.  

         Since NACT treatment has been reported to cause a reduction in the 

expression level of the mitotic index marker Ki67, assessment of Ki67 expression in 

the re-sectioned samples post-NACT could be used as an indicator for predicting 

the response of p53 positive tumours to NACT (Faneyte et al., 2003; Lee et al., 

2013). Although in this study the dichotomous analysis post-NACT identified a 

significant association between p53 positive tumours and the high proliferation 

index (Ki67), the response to NACT within these tumours was partial and life 

expectancy was low compared to p53 negative tumours. Possibly dysfunctional p53 

may contribute to increasing resistance to NACT particularly to Epirubicin therapy 

due to the abnormal increase in the expression of FOXM1, which is modulated by 

ATM, that may result in suppression of apoptotic and activating anti-apoptotic 

proteins such as BCL2 whereas in normal cells, the activity of FOXM1 is 

suppressed by the intact p53 functions (Millour et al., 2010; Millour et al., 2011; 

Halasi and Gartel, 2012).  

         Additionally, these results suggest that the NACT chemotherapy may not 

work effectively to kill p53 deficient tumours as p53-deficient tumour cells avoid G1 

checkpoint arrest and evade induction of apoptosis. Progression of p53-deficient 

cells in S and G2 phases depends on CHK1, which allows for continual entry into S 

and M phases leading to genomic instability. Therefore, increased dose and cycles 

of Paclitaxel/Taxol, which specially acts particularly during the mitotic phase, in 

combination with CHK1 inhibitor could be highly effective in triggering the 

cytotoxicity of DNA damaging agents and inducing apoptosis in p53 deficient BC 

cells (Kandioler-Eckersberger et al., 2000; Anelli et al., 2003; Sánchez-Muñoz et 

al., 2010; Ma et al., 2012). Moreover, in p53 deficient BC cases, increasing doses 

of Fluorouracil therapy may alter the expression of G1 regulatory proteins such as 

p53 and p21 with a subsequent induction of apoptosis (Grem et al., 1999; Li et al., 

2004). Also, combining of NACT with radiotherapy would improve patient survival. 

         Two studies have previously demonstrated the significance of MCPH1/BRIT1 

deficiency in tumourigenesis, one of which reported the role of MCPH1/BRIT1 in 

regulation of p53 stability (Zhang et al., 2013a) and concluded that MCPH1/BRIT1 

might repress cell transformation in vivo and vitro in a manner that was dependent 

and independent of p53 function. The same group, confirmed their pervious 

findings with the generation of a mouse model with knockout of Mcph1/Brit1 alone 
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or in combination with p53 (Mcph1-/- and Mcph1-/- /p53-/-, respectively) (Liang et al., 

2014). Tumours did not develop early in a mouse with Mcph1-/- compared to a 

Mcph1-/- /p53-/- mouse. The MEFs with Mcph1-/- /p53-/- displayed an impairment in 

DSB repair while HR and NHEJ repair mechanisms were significantly reduced in 

Mcph1-/- /p53-/- MEFs compared to Mcph1+/+ /p53-/- MEFs. The study concluded that 

MCPH1/BRIT1 deficiency alone could progress tumour initiation and cooperate with 

p53 deficiency to accelerate lymphomagenesis and impair DNA repair ability. 

         In contrast, BC tissue has been used in this study to determine if a correlation 

between MCPH1/BRIT1 and p53 expression exists in human BC samples. The 

continuous and dichotomous data analyses in this study showed no significant 

correlation between MCPH1/BRIT1 and p53 expression pre-NACT. However, this 

current study showed that high MCPH1/BRIT1 and p53 positive status are 

correlated significantly with high tumour grade, in addition to a converse correlation 

between p53 positive expression with hormone receptors or triple negative BC and 

a consistent association with the proliferation marker Ki67. Thus, it may be likely 

that MCPH1/BRIT1 is mutated in these cases, specifically the cases with no 

change in MCPH1/BRIT1 expression (high) post-NACT treatment resulting in 

perturbation and alteration in p53 function and subsequent irregular stabilisation in 

tumour cells.  

         Furthermore, in this study, continuous analysis identified a weak positive 

significant correlation between MCPH1/BRIT1 and p53 expression, post-NACT 

treatment. An increased percentage of staining of MCPH1/BRIT1 expression (66%) 

was accompanied with reduced percentage of staining of p53 expression (33%), 

suggesting that alteration of MCPH1/BRIT1 expression from low to high in 

response to NACT treatment stimulates regulation of p53 expression. However, the 

dichotomous analysis failed, post-NACT treatment, to identify the regulation of p53 

expression whether by low or high MCPH1/BRIT1 expression in BC, which may be 

the consequence of the small number of cases included in investigating this 

correlation. Also, further sophisticated experiments, such as functional analysis of 

separated alleles in yeast (FASAY) or direct DNA sequencing, are warranted to 

clarify changes in p53 expression and confirm its correlation with MCPH1/BRIT1 in 

BC samples. Additionally, a large number of samples are warranted to clarify the 

potential role of the absence or presence of p53 expression, not only in tumour 

growth, but also in response to chemotherapy and survival rates, when the 

MCPH1/BRIT1 function is perturbed.     
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6.4.9 Limitations of MCPH1/BRIT1 and p53 breast cancer study  

         This study had some limitations. Firstly, the cohort study lacks a long follow 

up period (e.g. 5 years), which made it difficult to employ Cox regression analysis to 

identify the independent prognostic or predicative factors in BC patients with 

defective MCPH1/BRIT1 or p53 function. Secondly, more than 30 cases from the 

cohort were excluded due to the absence of the patient code number for the core 

biopsy or resected TMA sample which reduced the cohort sample size. Thirdly, 

patients were treated with different NACT regimens therefore creating small sample 

sizes for each NACT treatment group, which might explain the absence of a 

significant effect on tumour response or survival, despite the significant change 

obtained in MCPH1/BRIT1 and p53 expressions after NACT treatment. Fourthly, 

some of the principal clinicopathological data of patients pre-NACT were 

unavailable and made it difficult to define differences post-NACT, including the 

influence of MCPH1/BRIT1 or p53 in enhancing response to NACT.  

         Finally, although the number of cases included in this cohort was reasonable, 

clinicians typically recommend inclusion of  >150 cases in the study in order to 

confirm the significance and the value of the tested marker as a prognostic 

response to chemotherapy and survival predictor in BC. These factors are essential 

to confirm the use of both MCPH1/BRIT1 and p53 as markers in clinical practise. 

Unfortunately a cohort of 150 paired pre and post-NACT treatment was not 

available. An expanded study containing a large cohort, with complete patient data, 

is warranted to accurately identify differences in MCPH1/BRIT1 and p53 status with 

clinicopathological or biomarker parameters for patients pre- and post-NACT. 

However, this study demonstrates for the first time a significant response to NACT 

by alteration of the protein expression of both MCPH1/BRIT1 (from low to high) and 

p53 expression (from positive to negative) in matched pairs of BC samples. 

Moreover, it significantly shows that reduced MCPH1/BRIT1 pre-NACT predicts 

better OS whereas changes in MCPH1/BRIT1 from low to high predict better OS 

post NACT. Further validation might be required for patients exhibiting tumours with 

high MCPH1/BRIT1 or p53 positive expression pre-NACT to make definitive 

conclusions about their predictive role in improving patient outcomes. These cases 

may need a combination of NACT, surgery and radiotherapy to supress invasive 

breast carcinoma growth.  
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Chapter 7 The impact of MCPH1/BRIT1 expression on drug 
cytotoxicity 

7.1 Introduction 

         Deficiency of MCPH1/BRIT1 is not only linked to the primary microcephaly but 

is also associated with cancer (Venkatesh and Suresh, 2014). Numerous studies 

have been conducted to understand the role of MCPH1/BRIT1 in many types of 

cancer such as breast, ovarian, endometrial, glioblastoma and oral squamous cell 

carcinoma (OSCC) (Rai et al., 2006; Hagemann et al., 2008; Bilbao et al., 2010; 

Richardson et al., 2011; Bruning-Richardson et al., 2011; Venkatesh et al., 2013). 

Indeed, loss of heterozygosity (LOH) specifically at chromosome 8p23.1, where 

MCPH1/ BRIT1 is positioned, is also common in breast and ovarian cancer (Rai et 

al., 2006) (See Chapter 1; Section 1.1.6.4).  

         MCPH1/BRIT1, a DNA repair protein, may be involved in sensitising the 

tumour cells to chemotherapy such as Carboplatin and Paclitaxel/Taxol. 

Carboplatin binds to DNA preventing its replication and leading to DNA breaks, 

while Paclitaxel/Taxol binds to microtubules to inhibit mitosis and induce apoptosis. 

Thus, aberration in the function of MCPH1/BRIT1 may compromise the activity of 

such anti-cancer drugs and lead to cancer growth preventing apoptosis. 

         Hence, this study aimed to investigate the role of MCPH1/BRIT1 in 

chemoresistance using different cell viability assays to identify the response of the 

OVCA cell lines 1847 and SKOV-3 to Carboplatin following MCPH1/BRIT1 siRNA 

treatment. In addition, a transfected human embryonic kidney 293 (HEK293) cell 

line with stably overexpression of MCPH1/BRIT1 and inducible system tetracycline 

was exposed to Carboplatin and paclitaxel/Taxol to elucidate the potential role of 

MCPH1/BRIT1 overexpression in chemosensitivity.  

 

7.2 Results  

7.2.1 DAPI whole cell number assay  

        The OVCA 1847 cell line, which shows a resistance phenotype to platinum 

based chemotherapy (Cisplatin) (Godwin et al., 1992) was selected to investigate 
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whether MCPH1/BRIT1 is implicated in drug resistance. Initially a 96- well plate 

format was used to treat the cells with siRNA duplex to knockdown MCPH1/BRIT1 

followed 24hr later by treating the cells with a range of concentrations of 

Carboplatin (µM) for 72hrs. The Operetta imaging system was used to detect the 

DAPI cell nuclei staining and Columbus software was then used to assess cell 

viability as previously described in (Chapter 2; Sections 2.2.4 and 2.2.5). This 

would allow for identifying the effect of depletion of MCPH1/BRIT1 in the response 

of cancer cells to platinum based chemotherapy.  

        The experiment was performed in triplicate and the concentration required to 

kill 50% of cancer cells (IC50) was measured as described previously (Chapter 2; 

Section 2.6.5). Using Columbus, a visual inspection to detect PCC cells as a 

consequence of MCPH1/BRIT1 siRNA was also performed in cells that had not 

been treated with Carboplatin. PCC was used as an additional surrogate marker to 

confirm transfection efficiency and MCPH1/BRIT1 knockdown. Although the 

triplicate repeats showed the PCC cells, IC50 analysis revealed that the response 

of the depleted MCPH1/BRIT1 1847 cells to Carboplatin varied compared to 

controls using either NT-siRNA or untransfected cells (Table 6.1).  

         The cells treated with MCPH1/BRIT1 siRNA and Carboplatin needed a higher 

drug concentration IC50 (SD) = 99.65µM (111.79) than those with the NT-siRNA 

(IC50 = 40.75µM (6.20)) or untransfected cells (IC50 = 43.61µM (40.46)). However, 

there was no statistically significant difference in the response to Carboplatin in 

MCPH1/BRIT1 depleted cells compared to those treated with NT-siRNA (p = 0.413; 

n = 3 repeats; Student Unpaired t-test) (Figure 7.1). This may potentially indicate 

the contribution of depletion of MCPH1/BRIT1 in causing resistance to the platinum 

therapy Carboplatin in 1847 cells, however, the considerable variability in the IC50 

results among the triplicate repeats may affect on the final outcome of DAPI whole 

cell number assay in this study. 

         Clearly, identifying the potential involvement of MCPH1/BRIT1 in drug 

resistance was not possible using the DAPI whole cell number assay since 

considerable variation in the IC50 concentration was observed in the triplicate 

experiments. This may due to manual pipetting errors thus utilising Fluid-X XRD-

384 dispenser could increase the accuracy of DAPI assay outcome. Thus, another 

cell viability assay such as MTS assay was performed. 
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Table 7.1. DAPI whole cell number assay represents variability in the IC50 in 
response to Carboplatin in the triplicate repeats.  
The assay utilised the ovarian cancer 1847 cells in a 96-well plate at (5x104 cells/well), 
untransfected or transfected with MCPH1/BRIT1 siRNA or NT-siRNA (control) followed 24hr 
later by Carboplatin treatment and then incubated for 72hr. The plate was scanned by the 
Operetta and cell number was analysed by Columbus and the IC50 for each repeat was 
calculated.  

 

 

 

 

 

 

 

 

 

 

Figure 7.1. The depletion of MCPH1/BRIT1 may confer Carboplatin resistance in 1847 
cell line.  
The graph shows the mean IC50 of the triplicate (see Table 7.2). No statistically significant 
difference was identified between the IC50 of cells treated with MCPH1/BRIT1 siRNA 
(99.65µM) compared to those with NT-siRNA (40.75µM) (p = 0.413728; n = 3 repeats; 
Student Unpaired t-test). The statistical significance for IC50 is based on a Student test with 
a p value of ≤ 0.05.  The error bar represents the Standard deviation (STDEV) for the three 
repeats.  
  

 

7.2.2 MTS cell viability assay using OVCA 1847 and SKOV-3 cell 
lines 

        Unlike the DAPI whole cell number assay, the MTS assay depends on cellular 

metabolism. It is based on the colorimetric change caused by reduction of a 

tetrazolium compound by the mitochondria in viable cells to produce a formazan 

that can be quantified by measuring absorbance at 490nm.  

        Similar experimental procedures were used in regards to knockdown of 

MCPH1/BRIT1 by siRNA in the 1847 cell line followed by Carboplatin treatment. 

Transfection reagents  IC50 (Repeat 1) IC50 (Repeat 2) IC50 (Repeat 3) 

Untransfected cells 41.61 4.19 85.03 
NT-siRNA (control) 47.22 34.87 40.15 
MCPH1/BRIT1 siRNA  5.18 70.7 223.07 
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After 72hr incubation, the MTS assay was carried out as previously described 

(Chapter 2; Section 2.6.2; Appendix 8) and the IC50 was calculated for 4 repeats. 

The subsequent IC50 results for the 4 replicates were noticeably better than those 

observed using the DAPI whole cell number assay. However, a huge variability in 

the IC50 results were still observed in response to Carboplatin within the four 

replicates, specifically in those cells treated with MCPH1/BRIT1 siRNA in 

comparison to those treated with NT-siRNA or untransfected cells (Table 7.2).  

 

Table 7.2. MTS cell viability assay representing the IC50 in response to Carboplatin in 
quadruplicate.  
The assay used the 1847 cells plated in a 96-well plate at (5x104 cells/well), untransfected 
or transfected with MCPH1/BRIT1 siRNA or NT-siRNA (control) followed 24hr later by 
Carboplatin treatment and then incubated for 72hr. The plate was treated with MTS solution, 
incubated for 90mins, scanned by using the absorbance reader (Dynex technologies). The 
IC50 for each repeat was then calculated.  

         

         To investigate this problem, the cell number of untransfected cells without 

drug addition was checked to determine if there was any variability in plating 

densities between the four replicates. This showed a reasonable and expectable 

difference in cell number (untransfected cells/without drug addition) amongst the 

four repeats. In addition, during the MTS assay process, another plate was stained 

with DAPI and processed at the same time to confirm examine the transfection 

efficiency of the MCPH1/BRIT1 siRNA knockdown using PCC as a surrogate 

marker. In this case only those cells treated with siRNA were checked, not those 

treated with carboplatin. This showed both variability in %PCC and an expected 

reduction in cell number (Table 7.3). Therefore, the noticeable variability in the IC50 

results amongst the 4 replicates particularly in the cells treated with MCPH1/BRIT1 

siRNA and Carboplatin (Table 7.2) may be caused by the level of the transfection 

efficiency since the siRNA transfection itself affects the cell number and the 

reduction in cell number became as a major problem when it was combined with 

use of the cytotoxic drug leading to the variability in cell number for the results of 

the MTS assay. 

 

Transfection 
reagents  

IC50  
(Repeat 1) 

IC50  
(Repeat 2) 

IC50  
(Repeat 3) 

  IC50  
(Repeat 4) 

Untransfected cells  310.4 323.5 252.66 265.61 
NT-siRNA (control) 159.85 247.5 207.87 163.45 
MCPH1/BRIT1 siRNA  273.8 540.6 239.02 534.94 
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Table 7.3. Assessment transfection of MCPH1/BRIT1 siRNA for the fidelity of MTS 
assay using PCC cells as a surrogate marker.  
The 1847 cell line plated in 96-well and treated individually with MCPH1/BRIT1 siRNA and 
NT-siRNA, incubated for 72hr, stained with DAPI and imaged by Operetta. %PCC and cell 
number output were analysed using Columbus. The samples in the table without 
Carboplatin treatment to enable examine the sufficiently of siRNA transfection. 
MCPH1/BRIT1 represented variability in %PCC and remarkable reduction in cell number, 
which may explain the variability in MTS (IC50 concentrations) results.  

 

         However, a similar observation was noted by using MTS assay compared to 

those observed for the DAPI whole cell number assay. The results showed that 

treatment with MCPH1/BRIT1 siRNA and Carboplatin in 1847 cells required twice 

as much drug to kill 50% of cancer cells compared to the corresponding control NT-

siRNA or to untransfected cells that were treated with the drugs. However, this was 

just reached statistically significant since the mean IC50 in µM (SD) for cells treated 

with MCPH1/BRIT1 siRNA was 397.09µM (163.08) as opposed to that for NT-

siRNA 194.67µM (41.44) (p = 0.052, n = 4 repeats; Student Unpaired t-test) (Figure 

7.2). 

 

 

 

 

 

 

 

 

 
Figure 7.2. MCPH1/BRIT1 siRNA cells may develop a resistant phenotype in response 
to Carboplatin in 1847 cells.  
The graph shows the mean IC50 produced from the MTS assay that was performed in 
quadruplicate (see Table 7.2). A statistical significant difference was identified between the 
IC50 of cells treated with MCPH1/BRIT1 siRNA (397.09µM) compared to that of NT-siRNA 
(194.67µM) (p = 0.052; n = 4 repeats; Student Unpaired t-test).  

Transfection 
Reagents   Mean %PCC Mean cell number  
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3 Repeat 1  Repeat 2 Repeat 3 

MCPH1/BRIT1 
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          The noticeable variations in IC50 values of cells treated with MCPH1/BRIT1 

siRNA that was observed among the four repeats may decrease the accuracy of 

the significant final outcome. Thus, this observation could potentially mean that 

MCPH1/BRIT1 may not be involved in the chemoresistance of 1847 cell line to 

platinum-based Carboplatin therapy. However, it may imply the opposite; that its 

deficiency could reduce the sensitivity of cancer cells to chemotherapy. 

          Since the OVCA SKOV-3 cell line does not contain endogenous p53 

(Vikhanskaya et al., 1994) and harbours reduced mRNA levels of MCPH1/BRIT1 

based on previous RT-PCR results from our lab which may negatively influence the 

response to chemotherapy, the effect of depletion of MCPH1/BRIT1 in the SKOV-3 

cell line was examined. However, the MTS assay unexpectedly showed that the 

cells treated with Carboplatin were slightly more sensitive to the drug when 

MCPH1/BRIT1 was depleted by siRNA compared to those treated with NT- siRNA 

controls throughout the three replicates (Table 7.4). 

 

Table 7.4. MTS cell viability assay represents the IC50 in response to Carboplatin in 
quadruplicate.  
The assay used the SKOV-3 cells plated in a 96-well plate at  (5x104 cells/well), 
untransfected or transfected with MCPH1/BRIT1 siRNA or NT-siRNA (control) followed 24hr 
later by Carboplatin treatment and incubated for 72hr. The plate was treated with MTS 
solution, incubated for 90mins, scanned by using the absorbance reader. The IC50 for each 
repeat was then calculated.  

           

         The three replicates of MTS assay using SKOV-3 cell line displayed 

reasonable drug response curves when the cells were treated with either 

MCPH1/BRIT1 siRNA or controls (NT-siRNA, untransfected cells/without drug 

addition) (Data not shown). However, there was no statistically significant IC50 

results identified between cells treated with MCPH1/BRIT1 siRNA 71.41µM (25.21) 

and NT-siRNA 90.53µM (40.47) (p = 0.52; n = 3 repeats; Student Unpaired t-test) 

(Figure 7.3).  

 

 

Transfection reagents  IC50 (Repeat 1) IC50 (Repeat 2) IC50 (Repeat 3) 
Untransfected cells  142.12 158.39 102.77 
NT-siRNA (control) 44.74 121.49 105.36 
MCPH1/BRIT1 siRNA  64.13 50.65 99.46 
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Figure 7.3. MCPH1/BRIT1 siRNA cells may enhance sensitivity in response to 
Carboplatin in SKOV-3 cells.  
The graph shows the mean IC50 generated from MTS assay and was performed in triplicate 
(see Table 7.4). No statistically significant difference was identified between the IC50 of 
cells treated with MCPH1/BRIT1 siRNA (71.4µM) and that of NT-siRNA (90.5µM) (p = 0.52, 
n = 4 repeats, Student Unpaired t-test).  

        The dissimilarity in the results observed from MTS assay between the 1847 

and SKOV-3 cell lines may represent the different genetic backgrounds of the cells. 

Consequently it was not possible to identify a specific effect of MCPH1/BRIT1 

depletion in response to chemotherapy in these cell lines. Therefore, an inducible 

(IND) stable cell line HEK293 cells with overexpression of MCPH1/BRIT1 was used 

to identify its influence in response to anti-cancer agents such as Carboplatin and 

Paclitaxel/Taxol using the Vi-cell trypan blue dye cell viability assay as detailed 

below. 

 

7.2.3 Vi-CELL trypan blue dye cell viability assay using the IND 
stable HEK293 cell line for MCPH1/BRIT1 overexpression 

         The IND HEK293 cell line for stable MCPH1/BRIT1 overexpression and the 

control Inducible Flp-In T-REx system HEK293 cell line for stably overexpressing 

WT-Parkin (Morrison et al., 2011) were used. For both of these cell lines, one 

sample was treated with the inducible expression system activator tetracycline (Tet) 

and the other was not. Then, the cell lines were treated with a series of 

concentrations of Carboplatin or Paclitaxel/Taxol. Cell viability was measured to 

identify the difference in the IC50 between the two cell lines with and without Tet 

treatment.  

134.4 

90.5 

71.4 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

Untransfected SKOV-3 Cells  NT-siRNA MCPH1/BRIT1 siRNA  

IC
50

 in
 µ

M
   

 MTS cell viability assay (Ovarian cancer SKOV-3 cell line) 



- 244 - 
 

 

 

         Initially, the efficiency of the Tet inducible system, in HEK293 cells for 

inducing the expression of the transiently transfected cells of full-length construct of 

MCPH1/BRIT1 and WT Prakin was confirmed by western blotting by Dr. Victoria 

Cookson (Figure 7.4A) and by Thomas Ryan (LIBACS, University of Leeds) (Figure 

7.4B). It is important to point out that MCPH1/BRIT1 protein expression was 

unexpectedly highly induced and detectable in transfected stably overexpression 

MCPH1/BRIT1 HEK293 cells without Tet treatment (Figure 4.8A lanes 1 and 3) 

compared to the control WT-MCPH1/BRIT1 expression in untransfected HEK293 

cells (Figure 4.8A lane 5).  

         The Vi-CELL cell viability assay to examine the effect of overexpression of 

MCPH1/BRIT1 in inducible HEK293 cells did not show any difference in response 

to Carboplatin between cells which had been treated with Tet and those which had 

not (Table 7.5). From the three replicates, the mean IC50 (SD) for Tet IND HEK293 

cells expressing MCPH1/BRIT1 treated with Carboplatin was 18.97µM (3.77) as 

opposed to those without Tet treatment 19.22µM (9.92) (Figure 7.5A). In addition, 

the control IND HEK293 cells stably expressing WT Parkin showed similar IC50 

under both conditions when treated with Tet system the mean IC50 was 28.26nM 

(3.04) whilst those without Tet treatment the mean IC50 this was 33.18 (18.01) 

(Figure 7.5B). 

  A B 

 

 
Figure 7.4. Confirmation of the efficiency of the inducible system (IND) in HEK293 
cells for stable overexpression MCPH1/BRIT1 using Tetracycline (Tet).  
(A) IND or wild type HEK293 cells plated at 5x10 4 cells/ml using 24-wells plate, and 24hr 
later Tetracycline was added at 1:2000, mixed with cells and incubated for 72hr. Samples 
were probed with the rabbit anti-MCPH1/BRIT1 antibody (Abcam, Cambridge, UK; 1:1000 
ab2612) or mouse anti– β-Actin antibody (Sigma, St. Louis, MO; 1:5000 100M4789). (B) 
Inducible Flp-In T-REx system HEK293 cells transfected with WT Parkin construct. Cells 
were treated with tetracycline for 24 hours. Parkin is essentially undetectable in the 
uninduced WT Parkin line (The transfected cells with WT Parkin and without Tet treatment). 
Samples were probed with mouse monoclonal anti- Parkin (Prk8) antibody (Cell Signalling 
Technology; 1; 1000; 4211). 
!
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Table 7.5. Vi-CELL cell viability assay shows the IC50 for IND HEK 293 cells with 
stable overexpression of MCPH1/BRIT1 and WT Parkin (control) in response to 
Carboplatin.  

 

 

 

 

Figure 7.5. Stable overexpression of MCPH1/BRIT1 in Tet inducible HEK293 cells 
shows no noticeable difference in response to Carboplatin compared to cells without 
Tet treatment.  
The mean IC50 for Tet inducible HEK293 cells for MCPH1/BRIT1 overexpression was not 
statistically significant 18.97µM in comparison to those without Tet treatment 19.22µM (p = 
0.968986; n = 3 repeats; Student Unpaired t-test). Within the control, the Tet IND HEK293 
cells for the WT Parkin overexpression did not show significant difference in the IC50 
(28.26µM) to those without Tet treatment (33.18µM) (p = 0.666584; n = 3 repeats; Student 
Unpaired t test). 

 

         A similar observation was made when both cell lines were treated with 

Paclitaxel/Taxol. The response of stable MCPH1/BRIT1 overexpression to 

Paclitaxel/Taxol in IND HEK293 cells using Tet treatment did not differ to those 

without Tet treatment among the triplicate repeats. Similarly, the control cell line for 

WT Parkin overexpression showed no difference in response to Paclitaxel/Taxol 

treatment with and without Tet treatment (Table 7.6). 

Table 7.6. Vi-CELL cell viability assay shows the IC50 for IND HEK 293 cells with 
stable overexpression of MCPH1/BRIT1 and WT Parkin (control) in response to 
Paclitaxel/Taxol. 

 

Cell treated with 
Carboplatin (µM) 

Inducible HEK293 cell 
(MCPH1/BRIT1) 

 Control/inducible HEK293 
cell (WT Parkin) 

Inducible system With Tet Without Tet  With Tet Without Tet  
IC50 (Repeat 1) 15.11 10.97 24.76 53.95 
IC50 (Repeat 2) 19.15 30.22 29.76 20.79 
IC50 (Repeat 3) 22.64 16.47 30.25 24.79 

Cell treated with 
Paclitaxel/Taxol (nM) 

 HEK293 cell 
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Inducible system With Tet Without Tet  With Tet Without Tet  
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         The mean IC50 (SD) for Tet IND HEK293 cells expressing MCPH1/BRIT1 

was 0.4nM (0.00) as opposed to those without Tet treatment 0.3nM (0.1) (Figure 

7.6A). In comparison, the control IND HEK293 cells expressing WT Parkin showed 

an IC50 of 0.3nM (0.2) when the cells were induced with the Tet system compared 

to a mean IC50 of 0.3nM (0.1) without Tet treatment (Figure 7.6B).   

 

 

 

 

 

Figure 7.6. Stable overexpression MCPH1/BRIT1 in Tet inducible HEK293 cells shows 
no significant difference in response to Paclitaxel/Taxol compared to cells without 
Tet treatment.  
The mean IC50 for Tet inducible HEK293 cells for MCPH1/BRIT1 overexpression was not 
statistically significant 0.4nM compared to those without Tet treatment 0.3nM (p = 0.158302; 
n = 3 repeats; Student Unpaired t-test). Within the control, using the inducible system 
(with/without Tet) in HEK293 cells for the WT Parkin overexpression did not show any 
significant difference in response to Paclitaxel/Taxol, the IC50 for cells with Tet was (0.3nM) 
to those without Tet treatment (0.3nM) (p = 0.666584, n = 3 repeats, Student Unpaired t-
test).  

         In summary, the cytotoxicity assays DAPI whole number and MTS in 

MCPH1/BRIT1 depleted 1847 and SKOV-3 cell lines showed conflicting IC50 

results in response to Carboplatin. Whereas the Vi-cell trypan blue dye cell viability 

assay in the inducible Tetracycline HEK293 with stable MCPH1/BRIT1 

overexpression cells did not show significant difference in response to Carboplatin 

or Paclitaxel/Taxol in compared to those without Tet treatment.  

 

7.3 Discussion 

         MCPH1/BRIT1 is implicated in the activation of DNA damage responses by 

regulating the expression of cell cycle checkpoint proteins CHK1 and BRCA1, 

inducing mitotic arrest (Xu et al., 2001; Xu et al., 2004) and allowing accumulation 

of BRAC2/RAD51 complex at DNA damage sites to proceed with DNA repair (Wu 

et al., 2009). Deficiency in MCPH1/BRIT1 function is associated with cancer 

progression. Thus, the sensitivity of cancer cells with defective MCPH1/BRIT1 to 
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chemotherapy may be compromised leading to accelerated cancer growth and 

inhibition of apoptosis. Since there is no clear evidence whether MCPH1/BRIT1 is 

involved in chemosensitivity or chemoresistance to anti-cancer drugs, we 

investigated the response of the OVCA cell lines 1847 and SKOV-3 with 

MCPH1/BRIT1 siRNA knockdown to Carboplatin, using different cell viability 

assays. Additionally, we utilised a HEK293 cell line with tetracycline inducible 

overexpression of MCPH1/BRIT1 to further clarify the role of MCPH1/BRIT1 

overexpression in chemosensitivity.  

         There was difference in the cytotoxicity response of 1847 and SKOV3 cell 

lines with MCPH1/BRIT1 depletion to Carboplatin. A potential explanation could be 

the genetic heterogeneity of these diverse cell lines. In patients similar 

considerations usually complicate cancer diagnosis, making the correct choice of 

appropriate treatment options more difficult. 

         Furthermore, some studies demonstrated that the 1847 cell line showed a 

resistant phenotype to platinum-based chemotherapy. Resistance to chemotherapy 

may increase when the function of MCPH1/BRIT1, a DNA damage response 

protein, is diminished or lost. Indeed, this cell line has been found to confer low to 

medium resistance to the platinum-based chemotherapy Cisplatin (1-10 fold) 

compared to other OVCA Cisplatin-treated cell lines such as A2780/CP8 or 

A2780/CP70, which increased resistance to the drug 10-50 fold and 50-300 fold, 

respectively (Godwin et al., 1992). Additionally, Cisplatin-treated 1847 cells showed 

a reduction in DNA adduct formation and an increase in the repair of platinum DNA 

adducts and DNA damage tolerance; both of these abnormal characteristics are 

associated with decreased sensitivity to Cisplatin (Johnson et al., 1997). Moreover, 

the 1847 cell line has been linked to methylation of BRCA1, which reduced its gene 

expression (Stordal et al., 2013). Loss of heterozygosity of BRCA1 and BRCA2 

(mutation in WT BRCA1/2) has also been reported in the 1847 cell line, which may 

consider as a potential factor in decreasing the response to platinum based 

chemotherapy. 

        In contrast, a potential explanation for the chemosensitivity of SKOV-3 cells 

with decreased MCPH1/BRIT1 level is that SKOV-3 expresses phosphatase and 

tensin homolog deleted on chromosome 10 (PTEN) which is involved in tumour 

suppression, activation of the pro-apoptotic protein BCL-2 and caspases 3, 6, 7, 8, 

and 9 in response to Cisplatin (Singh et al., 2013). In addition, the SKOV-3 cell line 

has been found to decrease tumour proliferation in response to combination 
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therapy using Carboplatin and Alvocidib (an inhibitor of CDK1, 2, 4, 6 and 9) 

(Baumann et al., 2013).  

          The Vi-CELL trypan blue dye cell viability assay using the Tet inducible 

system cell line HEK293 for overexpression of MCPH1/BRIT1 did not reveal any 

potential role for MCPH1/BRIT1 in chemosensitivity although the protein expression 

of full length MCPH1/BRIT1 was originally detected by western blot, confirming the 

efficiency of the Tet inducible system in HEK293 cells. This may have been due to 

the use of the non-cancerous HEK39 cell line since its genetic background and 

response to chemotherapy are markedly different to those of cancer cells. More 

important, and as shown in (Figure 7.4A), the uninduced HEK293 cell line (without 

tetracycline addition) expresses quite high levels of MCPH1/BRIT1 in the first place, 

perhaps due to “leaky” expression from the expression cassette. Therefore 

induction of further overexpression with tetracycline may not cause any difference 

in response to chemotherapy.  

         Sensitivity to chemotherapy such as Carboplatin or Taxol may depend on the 

type of cancer cell and, importantly, the correct choice of cytotoxicity assay being 

used to quantify the cell viability results. One study used five different methods 

including MTS and MTT assays which measured the viability of cells with 

metabolically active mitochondria and dye-based quantifying assays such as 

adenosine triphosphate (ATP), deoxynucleic acid (DNA) and trypan blue exclusion 

(Wang et al., 2011). These methods were used for in vitro evaluation of cancer cell 

proliferation and viability in response to the anti-proliferative effect of green tea 

polyphenols (EGCG) on LNCaP prostate cancer and MCF7 BC cells. The study 

found that MTS and MTT assays overestimated the number of viable cells 

compared to ATP, DNA and trypan blue. Consequently the observed IC50 

concentration of EGCG was 2-fold higher in comparison to the other assays used in 

the study. The chemical reaction between the MTS or MTT reagents in response to 

EGCG caused an increase in the activity of mitochondrial dehydrogenase of viable 

cells, reducing the MTS or MTT of the damaged cells which increased the formation 

of formazan leading to artificially high results. 

         Thus, the selection of the correct method for in vitro assessment of cell 

viability, proliferation and apoptotic should be based on the type of cancer cell, 

nature of the chemotherapy being assessed and experimental design. For example, 

in our study, the MTS assay reagent was used in cells treated with siRNA, which 

may both chemically interfere with chemotherapy and influence the metabolic 
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activity of cells, leading to variations in the results of each MTS experimental repeat 

performed with the 1847 cell line (Plumb et al., 1989). In addition, the trypan blue 

cell viability assay using the Tet inducible system requires multiple steps, such as 

the culture medium to be changed and fresh Tetracycline to be added after 

Carboplatin or Taxol treatment and multiple PBS washes before cell scraping which 

may not collect all the available cells in the wells, in addition to the centrifugation 

steps that are time-consuming when large sets of plates or samples need to be 

proceeded and transferred to the cell counter instrument (Riss et al., 2003).  

        Since the MTS assay may overestimate the actual effect of MCPH1/BRIT1 

depletion in cytotoxicity by exhibiting an absorbance which is higher than the actual 

reduction in the tetrazolium produced by dying cells (Jo et al., 2015; Riss et al., 

2003), a careful interpretation of the MTS cytotoxic results is required using a more 

sophisticated method such as flow cytometry to detect apoptosis using annexin V 

conjugates.  

         For future investigation, a more robust method would be recommended for 

the in vitro assessment of MCPH1/BRIT1 expression on tumour proliferation in 

response to anti-cancer drugs, such as the use of stable knockdown or 

overexpression of MCPH1/BRIT1 in cell lines. Also, generating a cancer cell line 

with a stable knockout of MCPH1/BRIT1 using the CRISPR/Cas9 gene editing 

system would be beneficial to circumvent the problems that could occur during the 

use of inhibitory RNA techniques (Ran et al., 2013; Sánchez-Rivera and Jacks, 

2015; Agrotis and Ketteler, 2015). In addition, in order to generate more consistent, 

reliable and precise measurement of cytotoxic results, it is highly recommended 

that different cytotoxic assays, such as clonogenic assays (Jo et al., 2015), cell 

counting Kit-8 (CCK-8)  (Sittampalam et al., 2013) or CellTiter-Glo Luminescent cell 

viability assay for quantifying ATP (Kangas et al., 1983; Petty et al., 1995; Crouch 

et al., 1993) are also employed.  
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Chapter 8 Final discussion 

         Mutations in the MCPH1/BRIT1 gene are responsible for the PCC cells 

detected in patients with microcephaly and PCC disorders (Neitzel et al., 2002; 

Trimborn et al., 2004). PCC occurs when interphase chromatin is abnormally 

condensed into chromosomes at the early G2 phase, a form of premature entry into 

mitosis before completion of DNA replication. Intensive investigations have been 

carried out to study the cellular functions of MCPH1/BRIT1 in multiple pathways 

including regulation of cell cycle checkpoints, chromosome condensation, DNA 

damage response and repair, repressed activity of hTERT, regulation of apoptosis 

and stability of p53 (Chapter 1: Section 1.1.6).  PCC phenotype has been seen in 

multiple types of human cancers (Augustus et al., 1985; Reichmann and Levin, 

1981; Kovacs, 1985; Hittelman et al., 1980) and has been induced by 

MCPH1/BRIT1 siRNA in HeLa and U2OS cancer cell lines (Trimborn et al., 2004; 

Trimborn et al., 2006; Adams et al., 2014).  

         The precise molecular mechanism involved in regulating chromosome 

condensation in normal and cancer cells by MCPH1/BRIT1 has not yet been 

determined. Therefore, one of the main aims of this PhD thesis has been to identify 

the regulatory network that induces PCC in cancer cells in order to understand the 

cellular mechanisms by which the various defects in MCPH1/BRIT1 induce PCC.  

          To this end, a high-throughput high-content imaging system (Operetta) and 

analysis software (Columbus) were utilised to perform both a small molecule and a 

siRNA screen aimed at identifying compounds or genes that would induce PCC in 

cancer cells with functional MCPH1/BRIT1. The Dharmacon siGENOME 

SMARTpool siRNAs targeting the hPK and Ubq siRNA sub-libraries is known as 

the PCC inducer screen. Another Dharmacon siGENOME SMARTpool siRNAs 

targeting hPK siRNA sub-library screen was performed using U2OS cells that had 

also been transfected with MCPH1/BRIT1 siRNA (forward siRNA transfection). This 

was principally aimed at identifying genes reducing and/or increasing PCC and it is 

known as the PCC modifier screen. In this thesis, the cell number data from both 

the hPK siRNA PCC inducer and modifier screens was also combined to identify 

synthetically lethal siRNAs in MCPH1/BRIT1 deficient cells.  

         Furthermore, inactivation of MCPH1/BRIT1 function has been observed in 

many aggressive types of cancers and may influence tumour response to 

chemotherapy since MCPH1/BRIT1 is involved in DNA damage response and 
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repair. Thus, BC samples from a cohort containing patients with advanced BC who 

had undergone treatment with NACT therapy was utilised to investigate the effect of 

MCPH1/BRIT1 expression pre- and post-NACT in tumour response and patient 

survival. The same BC cohort was stained with p53 to study the correlation 

between MCPH1/BRIT1 and p53 expression in BC tissues pre- and post-NACT.  

8.1 General summary and discussion of PhD findings 

8.1.1 Identification of four small molecules potentially induced 
PCC 

         In this PhD thesis, we have carried out, a small molecule screen (SMS) in 

cancer cell culture system. 792 CC were selected by Dr. Richard Foster (University 

of Leeds Chemical Biology and Medicinal Chemistry Group) from an original library 

of 33,000 compounds after an in silica screen based on potential ability of the CC to 

fit within the N -terminal pocket of MCPH1/BRIT1. This SMS is different to other 

screens that do not specify the target’s structure before testing CC (Hoelder et al., 

2012). Human MCPH1/BRIT1 gene encodes a protein known as Microcephalin. It 

contains of three BRCT domains that is common in DNA damage response 

proteins. One BRCT domain is located on the N-terminus while the other two BRCT 

domains are located on the C-terminus (Chapter 1: Section 1.1.3). Richards et al., 

(2009) have determined that the pocket on the surface of N-terminal BRCT domain 

of MCPH1/BRIT1 is necessary to prevent PCC. Thus, identification of small 

molecule inhibitors that target the N-terminal domain of MCPH1/BRIT1 has been 

mainly aimed to induce PCC. This can be a useful laboratory tool for studying the 

biological function of MCPH1/BRIT1 in different cellular pathways. 

          A novel high throughput SMS was developed using the ovarian cancer 1847 

cell line. Interestingly, this cell line harbours moderate levels of MCPH1/BRIT1 

mRNA and protein, genetic defects in BRCA1/BRCA2 genes (Stordal et al., 2013) 

and has shown a moderate resistant phenotype to platinum based chemotherapy 

(Cisplatin) (Godwin et al., 1992; Johnson et al., 1997). Thus, it can be considered 

an ideal cell line system to be utilised for investigating the biological and potential 

cytotoxic effect of novel CC on sensitising cancer cells to Cisplatin. 

         The current SMS was conducted in duplicate after two different incubation 

periods (24hr and 48hr). The SMS conducted a wider analysis which was not only 

aimed at identifying CC which induced PCC but also those which affected cell 
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number or increased numbers of mitotic cell (expressing pHH3 Ser10). This would 

not have been possible without utilising the Operetta high throughput high content 

imaging system since this enabled imaging of multiple phenotypes from a large 

selection of CCs within a short time. The imaging analysis software Columbus was 

used to numerically describe the cellular phenotypes induced by the CC (PCC, cell 

number, mitotic index). 

         Each plate contained the positive control MCPH1/BRIT1 siRNA to assess 

PCC while DMSO (0.2%) was used as a negative control. Therefore, in order to 

eliminate any potential off-target effects, a Z score or Robust Z score analysis for 

hits identification was performed using the negative control DMSO to assay the 

alteration of the three phenotypic endpoints (%PCC, cell number and %mitotic 

cells) caused by CC in this screen. The cut-off used for hits identification with the Z 

score or Robust Z score was ≥ 2 for CC that increased %PCC or %mitotic cells 

whereas ≤ -2 for CC hits decreased cell number. The overall performance quality of 

the SMS was positive; however, the Pearson's correlation between replicates 1 and 

2 in inducing %PCC by CCs was weak at 24hr (r = 0.3017; p < 0.0001) in 

comparison to the strong correlation at 48hr (r = 0.7654; p < 0.0001). This may due 

to the variation in %PCC induced by some CCs in the first and second replicate at 

24hr leading to a weak linear correlation coefficient between the replicates (Chapter 

3; Section 3.2.1.4.2; Figure 3.7).  

         The initial Z score or Robust Z score analysis for identification of potential CC 

hits showed 17 hits after 24hr and other 27 hits after 48hr. Further imaging analysis 

was conducted using Columbus to investigate whether these potential CC hits 

produce other biological alterations in addition to their potential induction of PCC 

phenotype. Indeed, changes in chromatin structure that are associated with 

induction of PCC may be correlated with other cellular phenotypes during mitosis 

such as expression of pHH3 Ser10 (mitotic marker), or with other cellular 

mechanisms such as induction of apoptosis although these potential mechanisms 

need to be confirmed. This suggested that these potential CC hits may induce 

similar cellular effects to those seen with MCPH1/BRIT1 siRNA. Initially, noticeable 

cellular alterations were caused by some CC from 24hr or 48hr hit lists in this SMS. 

For instance, the CC in MP59-241 (well F5) and MP64-65 (well F7) showed 

significant Z scores or Robust Z scores (%PCC) at 24hr and 48hr (Chapter 3; 

Section 3.2.1.5; Table 3.1 A and B). Interestingly, the potential activity of these two 



- 253 - 
 

 

 

CCs in inducing PCC was also correlated with a decrease in cell number (Chapter 

3; Section 3.2.1.5.1; Tables 3.2 A and B).  

         Furthermore, the CC MP59-241 (well F5) maintained an elevated level of 

mitotic index/pHH3 Ser10 expression at 24hr and 48hr whereas the CC MP64-65 

(well F7) displayed a higher mitotic index at 24hr which dropped noticeably after 

48hr (Chapter 3; Section 3.2.1.5.2; Tables 3.3 A and B), suggesting that an 

increase in mitotic cells at 24hr may be associated with abnormal induction of PCC 

whereas the reduction in mitotic cells at 48hr may be due to the induction of cell 

death. The cellular effects (decrease in cell number or increase in mitotic cells) that 

were induced by the remaining potential CC PCC-inducing hits included on the 24hr 

and 48hr hit lists were varied, indicating the diversity in the structure of CCs that 

may be responsible for triggering unique cellular changes in each individual CC at 

different periods of incubation (Chapter 3; Section 3.2.1.5: Section 3.2.1.5.1; 

Section 3.2.1.5.2).  

         Before performing the validation step, a critical visual inspection was carried 

out of each CC included in the hit lists at 24hr (17 CC) and 48hr (27 CC). This was 

followed by 2 phases of primary validation that were conducted using the dose-

response curve. These were filtration steps that are required to preserve the false 

negative CC hits and eliminate any false positive CC reducing the off-target effects. 

Consequently, in the first phase of primary validation, the validation was performed 

for those CC that had presented significant Z scores or Robust Z scores for %PCC 

at both 24hr and 48hr, some 7 potential CC hits. Consequently, only 2 of these hits 

presented an effective dose-response curve for %PCC, namely, MP64-65 (well B2) 

at 24hr and 48hr and MP59-241 (well F5) at 48hr. The 5 remaining CCs, which 

were tested, did not present any consistent changes or reactivity in response to 

different CC concentrations and displayed irregular dose-response curves.  

         Then, the decision was made to perform the second phase of primary 

validation for the remaining potential CC hits (n = 20) that were included only in the 

48hr hit list. The 7 CC hits that initially were tested in the first phase were re-tested 

in the second phase at 48hr for further confirmation of their ability to induce PCC. 

The reason for focusing on validation CC hits at 48hr but not 24hr was due to the 

increased variability between the replicate CC screens seen after 24hrs. In addition, 

induction of PCC phenotype by MCPH1/BRIT1 siRNA in cancer cells requires an 

incubation time of 48hr. Consequently, from the 27 potential CC hits, 8 validated, 

namely MP59-241 (wells F5 and F7); MP64-65 (wells F7); MP66-67 (well C1); 
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MP74-75 (wells B11 and G11); and MP76-77 (wells E3 and G3) (Chapter 3; 

Section 3.2.1.8). These CC presented a reliable dose-response curve for increased 

%PCC and, interestingly, this was also correlated by a gradual effect on cell 

number, suggesting the potential association of these CCs with reducing cell 

number potentially by inducing cell death, which may warrant further investigation 

and confirmation.  

         The secondary validation phase was conducted using fresh stock of these 8 

potential CC PCC-inducing hits. At this stage, each CC hit showed an acceptable 

dose-response curve pattern after optimising the serial dilution for each CC 

individually; some CC hits responded better (for instance, they triggered PCC) to 

the use of the higher range of CC concentration, others to the lower range. This 

indicated that the diversity of the structure of the CC hits might make a noticeable 

contribution to triggering their distinctive cellular effect in inducing the PCC 

phenotype. Indeed, the SMS validated 4 promising potential CC hits that induced 

PCC. Two of them (wells B11 and F5) induced the highest %PCC (20.64% and 

12.14% at the lower concentrations of 5µM and 2.5µM, respectively). Thus, they 

were considered to be strong hits. Another two CC (wells F7 and G11) induced a 

lower increase in %PCC rate (7.70% and 3.63%, at a slightly higher concentration 

of 40µM and a moderate concentration of 10µM, respectively) and were thus 

considered to be weaker hits. Validation of 4 out of 792 CC in this SMS confirmed 

the overall hit rate 0.5% that was initially estimated by the library supplier. 

         Although the SMS was mainly conducted for identification of CC inducing 

PCC, other cellular alterations caused by CC, including reduction in cell number or 

increase in mitotic index, were also reported (Chapter 3; Sections 3.1.2.6 and 

3.1.2.7). Data for CC that displayed reduction in cell number or increase in mitotic 

index on their images have recently been made available to scientific investigators 

to perform further essential characterisations of their structure, biological and 

cellular reactions and subsequently identify the molecular mechanisms that lead to 

altered cell number or mitotic index. Combining data from our SMS with other 

available functional genomic and RNAi screening data could be a useful means of 

identifying lead compounds for biological and molecular research applications and 

potentially for therapeutic drug discovery.  

 



- 255 - 
 

 

 

8.1.2 Analysis of high throughput hPK and hUbc siRNA screens 
for genes inducing PCC  

         Although MCPH1/BRIT1 has been shown to regulate multiple cellular 

pathways, the exact molecular mechanism of MCPH1/BRIT1 in regulating 

chromosome condensation awaits further clarification. Hence, siRNA screens 

targeting hPK and Ubq sub-libraries were performed and analysed for genes 

inducing PCC. The identification of genes inducing PCC in cells with intact 

MCPH1/BRIT1 function would allow us to determine which defective regulatory 

networks are potentially responsible for inducing abnormal DNA condensation and 

causing perturbation to cell cycle progression. Then, the potential interaction of 

these molecules with MCPH1/BRIT1 can be investigated, our understanding of the 

biological functions of MCPH1/BRIT1 in cancer can be expanded and, 

subsequently, therapeutic targets could be identified.   

         PCC inducer hPK or Ubq siRNA screens displayed significant Pearson 

correlations for %PCC between the first and the second replicates (r = 0.8391; p < 

0.0001; n = 720) or (r = 0.7986; p < 0.0001; n = 720), respectively. The overall 

false-negative rate was acceptable (5.5%) and extremely low (0.0%) for the hPK 

and Ubq siRNA screens, respectively; the overall false-positive rate for both siRNA 

screens was also very low 0% (n = 72), indicating their powerful performance. The 

initial validation stage only included 4 potential siRNA hits from the hPK sub-library 

and one from the Ubq sub-library, all of which showed significant Z scores ≥ 2 cut-

off. However, none of the 4 hPK siRNAs induced PCC using 4 deconvoluted 

siRNA’s and they were not investigated further. Selection of a small number of 

potential siRNAs candidates may be considered as a potential factor for 

unsuccessful validation. 

         The single selected Ubq siRNA hit FBXO5/EMI1 demonstrated an increase in 

%PCC cells with condensed chromosomes specifically with the use of the individual 

siRNA 2 and 4 and these siRNAs were further validated at both mRNA and protein 

levels. Interestingly, double knockdown of FBXO5/EMI1 siRNA with MCPH1/BRIT1 

siRNA noticeably increased %PCC compared to that observed in single knockdown 

of FBXO5/EMI1 siRNA. Consequently it was speculated that FBXO5/EMI1 siRNA 

might potentially be implicated in inducing PCC. However, visual inspection of both 

the single FBXO5/EMI1 siRNA transfection and double FBXO5/EMI1 and 

MCPH1/BRIT1 knockdown identified large nuclei with condensed chromosomes, 
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which is slightly different to those observed with MCPH1/BRIT1 siRNA alone. 

Moreover, a noticeable reduction in cell number was also observed for both 

conditions. This may suggest that FBXO5/EMI1 functions as an independent 

pathway of MCPH1/BRIT1 to potentially regulate chromosome condensation during 

the cell cycle.  

         However, according to many studies that have demonstrated induction of 

PCC phenotype in cells with defective function of MCPH1/BRIT1, this occurs during 

G2/M phase (Neitzel et al., 2002; Trimborn et al., 2004; Trimborn et al., 2006; 

Trimborn et al., 2010). In contrast, other studies have demonstrated that 

FBXO5/EMI1 deficient cells terminate in S phase causing abnormal DNA re-

replication and this may subsequently lead to the production of cells with larger or 

elongated nuclear size (Machida and Dutta, 2007; Di Fiore and Pines, 2007; 

Shimizu et al., 2013). Thus, potentially, the unique phenotype induced by 

FBXO5/EMI1 siRNA may not correlate with PCC. However, cells with co-depletion 

of FBXO5/EMI1 and MCPH1/BRIT1 siRNA not only displayed a noticeable 

reduction in cell number but also a reduction in the well-recognised PCC cells that 

are usually observed with MCPH1/BRIT1 siRNA. This may suggest that depletion 

of FBXO5/EMI1 sensitises PCC cells to induce cell death. In this case, 

FBXO5/EMI1 siRNA can be considered to be a modifier of PCC in MCPH1/BRIT1 

deficient cells. This may warrant further investigation using more sophisticated 

technique such as time-lapse microscopy for live cell imaging and may contribute 

towards determining the potential involvement of FBXO5/EMI1 siRNA in induction 

of PCC or driving PCC cells to undergo apoptosis.  

         Although PCC induction has been detected as a consequence of defects in 

MCPH1/BRIT1, Condensin II and SET nuclear oncogene protein, the intact 

MCPH1/BRIT1 is required to reversely regulate the activity of Condensin II and to 

form a binding partner with SET protein with the ultimate aim of regulating 

chromosome condensation (Trimborn et al., 2006; Wood et al., 2008; Leung et al., 

2011; Yamashita et al., 2011). This means that MCPH1/BRIT1 plays a vital role in 

controlling cell cycle checkpoints during S and G2/M phases and is thus a unique 

molecule that is substantially required for timely initiation of chromosome 

condensation, just after completion of DNA replication, thus preventing transit of 

prophase cells with incomplete chromatin condensation to mitosis.  

         An additional potential reason for the unsuccessful identification of genes 

induced PCC that needs to be mentioned is that the analysis was conducted on 
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only two siRNA sub-libraries, hPK and Ubq, and these may not directly contribute to 

the induction of PCC. Nevertheless, an additional benefit arising from PCC inducer 

hPK siRNA screen is that it allows the identification of synthetic lethal siRNAs, as 

discussed below.  

 

8.1.3 Combining cell viability data from PCC inducer and modifier 
hPK siRNA screens identified MCPH1/BRIT1 synthetic lethal 
siRNAs (SL siRNA) 

          As mentioned in Chapter 6, 2 complementary hPK siRNA screens were 

utilised to identify MCPH1/BRIT1 SL siRNA. These were PCC inducer hPK siRNA 

screen (with a single knockdown) that was originally performed to identify genes 

induced PCC in the presence of functional MCPH1/BRIT1, and a PCC modifier 

screen (with double knockdown) that was performed to identify genes with 

increased/decreased PCC caused by MCPH1/BRIT1 knockdown. Both these 

screens displayed a strong, positive and significant Spearman correlation, 

indicating the robustness of the assay procedures used to perform the hPK siRNA 

screens. Identification of SL siRNA hits was conducted by using the cell viability 

data from the 2 complementary hPK siRNA screens. Thus, SL siRNA hits can be 

defined as genes whose loss of function specifically reduced cell viability in the 

absence of functional MCPH1/BRIT1 but have no lethal effect in the presence of 

functional MCPH1/BRIT1. 

         Consequently, the difference in % cell viability analysis revealed a list of the 

top 20 hPK siRNA hits that displayed the largest reduction in cell viability in the 

PCC modifier hPK screen compared to the identical siRNA in the PCC inducer 

screen. Five potential SL hPK siRNA hits were selected for validation. Four of these 

showed a similar lethality phenotype in the absence of MCPH1/BRIT1, namely, 

STK39, VRK1, TTK/MPS1 and CDK1/CDC2 (Chapter 5; Sections 5.2.3.3.1-

5.2.3.3.3). Interestingly, CDK1/CDC2 was a SL hit that also potentially increased 

PCC (Chapter 5; Section 5.2.3.3.4). PLK1 was excluded as a SL gene in 

MCPH1/BRIT1 deficient cells because it presented a noticeable lethality in both the 

presence and absence of MCPH1/BRIT1 (Chapter 5; Section 5.2.3.3.5). 

         Identification of SL siRNA hits could greatly enhance our understanding of the 

cellular and biological interaction of MCPH1/BRIT1 with these SL genes during the 

cell cycle, DNA damage response and repair, or apoptosis in cancer. A number of 
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potential explanations needed for the functional and cellular contribution of these 

hPK SL siRNA hits with MCPH1/BRIT1 were collated from different publications 

and presented elsewhere in this thesis (Chapter 5; Sections from 5.3.2 to 5.3.6).  

         Knowing the SL genetic targets in MCPH1/BRIT1 deficient cells could clarify 

the mechanisms of SL interaction and ultimately lead to the development of small 

molecule therapies for cancer. However, the lethality of these validated siRNA hits 

may not only be associated with the known cellular functions of these genes as 

induction of apoptosis. Other mechanisms, which are unrelated to the known 

functions of these genes, may be responsible for their synthetic lethality (Chan and 

Giaccia, 2011). Therefore, it is important to identify the principal molecular 

pathways implicated in SL interactions with MCPH1/BRIT1 rather than focusing 

solely on the known functions of these candidate genes. This could reveal 

additional genetic targets for the development of small molecule inhibitors. SL 

siRNA hits could lead to the development of novel therapeutic strategies for breast 

and ovarian tumours with defective MCPH1/BRIT1 function which are resistant to 

current chemotherapy.   

        The high throughput RNAi screen will be useful in identification of targeted 

cancer therapy. Thus, it is important to define which mutated genes are 

indispensible drivers for progression, proliferation and survival of cancer cells. This 

would lead to development of small molecular inhibitor targeting theses mutated 

genes with few side effects compared to chemotherapy drugs (Gao et al., 2014). 

Interestingly, a number of small molecule inhibitors have been developed to target 

the protein kinases TTK/MPS1 and CDK1/CDC2.  

         The spindle mitotic checkpoint TTK/MPS1 is a subunit kinase of the spindle 

assembly checkpoint (SAC) proteins. It functions at mitosis in centrosome 

duplication, ensuring a proper attachment of chromosomes to the spindle, and the 

regulation of chromosomal alignment and segregation (Liu and Winey, 2012). It 

also contributes in the regulation of cytokinesis (Liu and Winey, 2012) and DNA 

damage responses (Wei et al., 2005). Although a high frequency of TTK/MPS1 

mutations have been observed in microsatellite-unstable colorectal cancer, their 

selective effect in tumourigenesis was not related to weakening of SAC activity 

(Niittymäki et al., 2011). However, overexpression of TTK/MPS1 has been 

observed in various human cancers and its elevated level was associated with poor 

prognosis (Salvatore et al., 2007; Maire et al., 2013a; Tannous et al., 2013; Slee et 

al., 2014). Additionally, unregulated activity of TTK/MPS1 has been found to 
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contribute to aneuploidy, proliferation and survival in BC cells (Daniel et al., 2011). 

Based on these observations, TTK/MPS1 has been considered as an attractive 

therapeutic target for anti-cancer therapy and researchers have identified or 

developed several small molecule inhibitors that target this kinase (Hewitt et al., 

2010; Kwiatkowski et al., 2010; Colombo et al., 2010; Tardif et al., 2011; Liu et al., 

2015). Two inhibitors are in phase 1 clinical trials, which are BAY 1161909 

(Identifier: NCT02138812; https://clinicaltrials.gov/) and BAY 1217389 (Identifier: 

NCT02366949; https://clinicaltrials.gov/). These inhibitors have been examined in 

vitro and in vivo and have found to inactivate the SAC and allow abnormal mitotic 

progression leading to severe chromosomal mis-segregation, mitotic catastrophe, 

and apoptosis (Jemaa et al., 2013; Wengner et al., 2015). TTK/MPS1 inhibition 

causes aberrant mitotic arrest in response to microtubule targeting drugs (such as 

Paclitaxel/Taxol). Thus, the combination of microtubule posing agents and 

TTK/MPS1 inhibition has been found to highly prevent proper chromosomal 

alignment and contribute in inducing chromosomal segregation errors and 

apoptosis and therefore, this would improve efficiency of anti-mitotic drugs and 

could help overcome Paclitaxel/Taxol resistance (Jemaa et al., 2013; Wengner et 

al., 2015). 

         Furthermore, CDKD1/CDC2 is a key regulator of mitotic progression 

(Santamaría et al., 2007). Although there is no substantial contribution of direct 

genetic CDK1/CDC2 alteration in tumorigenesis (Asghar et al., 2015), abnormal 

CDK1/CDC2 activity causes unscheduled entry into mitosis, contributes to 

proliferation that leads to chromosomal and genomic aberrations (Malumbres and 

Barbacid, 2009) and is associated with an aggressive BC phenotype with poor 

prognosis (Aaltonen et al., 2009; Niméus�Malmström et al., 2010). Thus, 

CDK1/CDC2 has been considered as a target for cancer therapy and several small 

molecule inhibitors have been developed against it (de Carcer et al., 2007; Asghar 

et al., 2015). However, the inhibitors that have gone into clinical trail showed 

disappointing clinical outcomes which may due to the lack of understanding of the 

mechanism of action of the kinase, a lack of therapeutic window or selection of an 

inappropriate group of patients (Stone et al., 2012; Asghar et al., 2015). 

Additionally, evidence has suggested that tumour cells may rely on specific CDKs 

(Malumbres and Barbacid, 2009). For example, a study has used siRNA to 

distinguish between MYC dependent and independent human BC cell lines (Kang 

et al., 2014). CDK1/CDC2, CDK2/CDC1 or CDK4/6 inhibitors have been used in 
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theses cell lines. Targeting CDK1/CDC2 but not CDK4/6 or CDK2/CDC1 was found 

to be selectively lethal to MYC dependent BC cell lines, suggesting that 

CDK1/CDC2 is a potential therapeutic target in MYC deficient breast cancer cells. 

Therefore identification of specific genetic backgrounds in which tumour cells are 

likely to be responsive to CDK inhibitors is necessary to improve selectivity and 

enhance efficacy of these inhibitors in clinical trials (Malumbres and Barbacid, 

2009; Stone et al., 2012; Asghar et al., 2015).  

 

8.1.4 The effect of MCPH1/BRIT1 protein expression on 
chemosensitivity in BC 

          MCPH1/BRIT1 is a DNA damage response and repair protein. Consequently 

its function or deficiency may play a significant role in cancer progression and 

response to chemotherapy. The association of MCPH1/BRIT1 positive and 

negative tumours with chemosensitivity or resistance and survival outcome for 

patients with BC remains unknown. Hence, BC samples from patients who had 

been treated with NACT were immunostained for MCPH1/BRIT1 and p53. BC 

patients’ samples were collected (for each patient the pre-NACT core biopsy and a 

matched resection tissue of invasive residual tumour post-NACT). The matched 

post-NACT resection sample was only available for 70 cases out of 96 since 26 

cases achieved pCR after NACT.  

         Alterations in protein expression for both markers pre- and post-NACT 

treatment was examined and correlated to overall survival (OS). However the 

change in protein expression of p53 and its correlation with OS will not be 

discussed further here (both were previously reviewed (Chapter 6; Section 6.4.8)) 

since the main aim for investigating p53 expression in this study was to confirm the 

correlation between MCPH1/BRIT1 and p53 expression in BC tissues compared to 

the previous study in BC cell lines (Zhang et al., 2013a; Liang et al., 2014). 

         The frequency of cases with high MCPH1/BRIT1 expression pre-NACT was 

36/70 (51.4%), which increased to 57/70 (81.4%) post-NACT, suggesting a 

significant alteration of MCPH1/BRIT1 expression in response to NACT treatment. 

However, tumours with low MCPH1/BRIT1 expression pre-NACT predicted a 

significant higher OS rate compared to those with high MCPH1/BRIT1 expression 

and only a change in MCPH1/BRIT1 expression from low to high post-NACT was 

significantly correlated with better OS rate. 
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          It remains to be determined whether increased MCPH1/BRIT1 expression is 

associated with an impaired NACT treatment response and subsequent reduction 

in OS rate. Chemotherapy triggers DNA damage that results in activation of DNA 

damage repair proteins which may increase chemo-resistance in cancer cells (Lord 

and Ashworth, 2012; Bouwman and Jonkers, 2012). A study revealed that the 

status of DNA damage proteins could be used as a biomarker for predicting BC 

chemosensitivity to NACT treatment (Asakawa et al., 2010). The authors reported 

that the presence of BRCA1, RAD51 or yH2AX foci pre- NACT treatment, or 

RAD51 foci post-NACT treatment were correlated with poor tumour response, 

causing resistance to DNA damage-inducing chemotherapy. Indeed, in the current 

study, during scoring procedures for MCPH1/BRIT1 slides, a few core biopsies 

stained with MCPH/BRIT1 pre-NACT treatment were seen to present foci 

formation.  

          Another study has demonstrated that overexpression of human RAD9, a 

DNA damage repair protein, is correlated with reduced response to NACT 

treatment in BC (Yun et al., 2014). Interestingly, this study has found a significant 

correlation between increased protein levels of RAD9 and CHK1. Inhibiting the 

activity of RAD9 by siRNA in BC cells MCF-7 and MDA-MB-231 decreased the 

level of CHK1, enhanced sensitivity to Doxorubicin and increased apoptosis. 

Similarly, in response to DNA damage MCPH1/BRIT1 has been found to regulate 

the expression of CHK1 and BRCA1 (Lin et al., 2005), which are key regulators of 

regulation cell checkpoints at both S and G2/M phases (Sanchez et al., 1997; Xu et 

al., 2001). Thus, increased MCPH1/BRIT1 expression may abnormally activate 

CHK1 and stimulate G2 cell cycle arrest that, in turn, may diminish the cytotoxic 

effects of chemotherapy and allow cancer cells to progress into mitosis without 

DNA damage repair. Targeting CHK1 as a potential anti-cancer therapy could 

enhance the cytotoxicity of anti-cancer agents and improve therapeutic outcomes 

(Archie et al., 2007; Merry et al., 2010; Aarts et al., 2013).  

          Furthermore, MCPH1/BRIT1 is an essential factor in the regulation of the HR 

mechanism during DNA repair by binding with BRCA2 to facilitate its recruitment to 

Rad51, and forming a BRCA2/Rad51 complex that is localised at DNA damage 

sites (Wu et al., 2009; Liang et al., 2010a; Liang et al., 2010g). Enhanced 

expression of Rad51, a DNA double stranded break repair protein and HR factor 

(Baumann and West, 1998), was found in pancreatic cancer (Maacke et al., 

2000a), non-small lung cancer (Qiao et al., 2005) and BC (Maacke et al., 2000b). 
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This increases tumour progression by maintaining DNA damage at a tolerable level, 

enabling cells to survive with a subsequent increase in genetic instability. 

Therefore, a similar effect may be seen with high MCPH1/BRIT1 expression in BC 

that increases the capacity of DNA repair activity in tumour cells instead of 

destroying them. This predisposes cells to immortalisation contributing to an 

increase in chromosomal instability and tumour survival and may, consequently, 

cause drug resistance. Modification of a NACT administered regimen by adding 

and/or increasing the number of cycles of platinum based chemotherapy (such as 

Cisplatin a DNA intra-strand and cross linking agent) or using PARP inhibitor may 

sensitise BC tumours with defective HR repair that express elevated levels of 

MCPH1/BRIT1 to chemotherapy (Lord and Ashworth, 2012; Bouwman and 

Jonkers, 2012).  

          However, the cytotoxicity studies that were performed using ovarian cancer 

cell lines 1847 and SKOV-3 in this PhD thesis produced contradictory results. 

Depletion of MCPH1/BRIT1 using siRNA in ovarian cancer 1847cell line cells was 

associated with slightly significant chemoresistance effect whereas SKOV-3 cell 

line showed a potential but not significant chemosensitivity effect, in response to 

Carboplatin. This may partially account for the noticeable variations among the 

IC50 observed from the 3 or 4 replicates of the MTS assay used. In addition, the 

diversity of the cellular and genomic characteristics between both ovarian cancer 

cell lines may greatly influence the cytotoxicity of chemotherapy (Sun and Yu, 

2015) and may need to be considered.  

         Whether reduced MCPH1/BRIT1 expression diminishes the cytotoxic effect of 

platinum-based chemotherapy and increases resistance phenotype in ovarian 

cancer cells remains to be elucidated. To examine the role of MCPH1/BRIT1 in 

response to chemotherapy effectively, use of an optimal cell line model with stable 

MCPH1/BRIT1 knockout and a more reproducible cytotoxicity assay (such as the 

Vi-cell Trypan blue exclusion assay) may give clearer results.  

         Overall, given the role of MCPH1/BRIT1 in DNA damage repair, it is 

reasonable to consider that the status of protein expression is an indispensible 

factor in predicting cell sensitivity to anti-cancer agents. Additionally, since reduced 

MCPH1/BRIT1 expression in cancer cells elicits S and G2/M cell cycle arrest and 

induces apoptosis, partial inhibition of elevated MCPH1/BRIT1 function may 

effectively sensitize tumour cells to chemotherapy. Therefore, it was hypothesised 

that using potent small molecule inhibitors, of the type validated in this PhD thesis, 
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to partially inactivate MCPH1/BRIT1 may sensitise cancer cells to chemotherapy 

and overcoming drug resistance. However, this may have some disadvantages 

since MCPH1/BRIT1 is an indispensable part of DNA repair and its loss of function 

may predispose cells to substantial genetic mutation rather than eliminating them. 

Consequently, it seems more appropriate to consider using the validated SL siRNA 

hits identified from the hPK siRNA screen to develop small molecule inhibitors as 

therapeutic targets for cancer cells with a defective MCPH1/BRIT1 function. 

 

8.2 Future research directions 

8.2.1 SMS 

1- Exposing the ovarian cancer 1847 cell line treated with MCPH1/BRIT1 siRNA, or 

for contrast an inducible HEK293 cell line stably overexpressing MCPH1/BRIT1 to 

the validated CC inhibitors could identify the most effective CC as the one that is 

expected to either increase the level of PCC (in the case of cells with 

MCPH1/BRIT1 knockdown) or reduce PCC in the inducible HEK293 cell line when 

the tetracycline system is on. Weiss et al. (2007) suggested using the expression of 

drug resistant mutants as a method to define the on- and off- target effects involved 

in validating the specificity of small molecule inhibitors in cells (Girdler et al., 2006).  

2- Utilising the surface plasmon resonance technique would be an ideal method of 

verifying the small molecule-protein interaction and binding affinity and would be a 

useful means of confirming the binding of these 4 CC hits to the N-terminal pocket 

of MCPH1/BRIT1.  

3- Furthermore, immunofluorescence analysis can be performed by the treatment 

of different cell lines expressing diverse levels of MCPH1/BRIT1 (such as 1847, 

U2OS, SKOV-3, MCF7, MCF10A and MDA-MB-468 (ATCC® HTB-132™) with 

MCPH1/BRIT1 siRNA or the validated PCC-inducer CC. The cell would be stained 

with DAPI and pHH3 Ser10. This would allow comparisons to be made between the 

cellular phenotype alterations induced by siRNA and the CC that would confirm the 

specificity of validated CC hits in targeting the N-terminal domain of MCPH1/BRIT1. 

The distribution of pHH3 Ser10 on the chromosome could be determined in order to 

characterise the effect of these CC hits on the activity of chromosome 

condensation. In normal cells, pHH3 Ser10 usually spreads to the whole 

chromosome arm. However, chromosomes with an incomplete (or centromeric) 
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pHH3 Ser10 staining have been detected in cells with a defect on the N-terminal 

domain of MCPH1/BRIT1 (Trimborn et al., 2010).  

4- As the gradual increase of %PCC caused by these CC was correlated with a 

reduction in cell number, the potential implication of these 4 CC in the induction of 

apoptosis or in inhibiting cell proliferation could be examined. Performing a cell 

death experiment that show the effect of CC on cell viability would subsequently 

stress the potential cytoxicity effect of these CC in primary cell culture systems from 

patients with breast and ovarian cancers expressing low or high levels of 

MCPH1/BRIT1.  

 5- Validation of the CC target on the N-MCPH1/BRIT1 pocket would provide a 

useful molecular biology tool for studying the function of MCPH1/BRIT1, not only in 

DNA condensation but also in investigating whether N-MCPH1/BRIT1 function is 

implicated in cancer. A further area of investigation could involve inducing the PCC 

phenotype in a cancer cell line using MCPH1/BRIT1 siRNA followed by screening 

with the same CC library (792 CC) as a potential means of discovering CC hits that 

can modify and reduce PCC cells in the absence of MCPH1/BRIT1. This may also 

pave the way to identifying other CC that increases the rate of PCC in cells. 

Studying the functional and structural association of these CC hits with their targets 

could lead to the discovery of personalised medicines designed specifically for 

women with ovarian or breast cancer patients with defective DNA repair function of 

MCPH1/BRIT1 and resistance to current chemotherapy.  

 

8.2.2 Improvement of hits identification and validation for high 
throughput siRNA screening 

Recently considerable efforts have been made to improve the quality of siRNA 

analysis for hit identification and validation. Thus, if new experimental methods, 

imaging analysis and bioinformatics software were used for future siRNA 

experiments, then more reliable novel cellular pathways or druggable targets might 

emerge. It is now important to understand how to improve the analysis of siRNA 

screens to ensure more efficient hit selection and subsequent successful validation. 

Some of the sophisticated screening techniques and analysis software that have 

already been utilised in different studies to improve the screening strategy will be 

outlined here. 
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1- shRNA could be used to help search more efficiently for successful transfection 

and to provide additional verification for assessing siRNA hits (Kulkarni et al., 

2006).  

2- utilising other analysis resources would support analysis of individual siRNA 

screens, such as an open-source bio-conductor/R package like cellHTS 

(http://www.dkfz.de/signaling/cellHTS) (Boutros et al., 2006).  

3- Understanding the function of MCPH1/BRIT1 and its overlap with other cellular 

regulatory pathways would be possible by incorporating the experimental results of 

MCPH1/BRIT1 that have been produced by our group with different experimental 

approaches, such as microarray data (produced from siRNA knockdown of 

MCPH1/BRIT1 in several ovarian cancer cells), PCC-inducer hPK siRNA screen 

(based on genes inducing PCC in the presence of MCPH1/BRIT1) and the 

complementary PCC modifier hPK siRNA screen (based on genes which 

reduce/induce PCC cells in the absence of MCPH1/BRIT1).  

4- The siRNA screening data (from either the PCC inducer or PCC modifier 

screens) could be incorporated into other available RNAi public database, such as 

GenomeRNAi (http://genomernai.org/), or PubChem BioAssay 

(http://pubchem.ncbi.nlm.nih.gov) (Wang et al., 2012) since these databases 

provide information about phenotypes produced by gene knockdown in different 

species including human, rat and Drosophila melanogaster. This could provide 

useful functional information that may lead to the development of other hypotheses 

or models, for example, for identifying phenotypic similarities between gene 

knockdowns and MCPH1/BRIT1 in regulating chromosome condensation. 

5- A genome editing approach such as the CRISPR/CAS9 system for knockout of 

genes identified in siRNA screens can be used to validate hits. Concordance in the 

phenotypes of the knockout and knockdown would increase the quality and 

validation of screening data and could lead to an enhanced understanding of the 

function of siRNA hits and identification of interaction networks. A genome-wide 

siRNA screen, using a human glioblastoma cell line, identified FAT as a negative 

regulator of apoptosis. Thus, the use of the CRISPR/CAS9 system to knockout 

FAT-enhanced apoptosis confirmed the result from the original siRNA screen 

(Kranz and Boutros, 2014). Recently, a number of reviews have presented an 

outline of the latest developments in the CRISPR/CAS9-based functional genomics 

approach, comparing this with the RNAi-based screening approach (Heintze et al., 

2013; Mohr et al., 2014; Shalem et al., 2015; Agrotis and Ketteler, 2015).  
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6- Browsing other RNAi-related databases would help to improve the design of 

strategies for siRNA analysis and follow-up studies. For example, a screening 

guideline website such as Minimum Information About an RNAi Experiment 

(MIARE) (http://miare.sourceforge.net/) provides guidelines that researchers can 

utilise to report, produce and interpret results from RNAi experiments.  

7- The availability of the RNAi database could be useful for comparing the on-target 

and OTEs in related RNAi screens, which might help to reduce the false discovery 

rate (Buehler et al., 2012b; Sigoillot et al., 2012). 

8- The siRNA true hits could be evaluated by using an effective control with a 

siRNA mismatched design. An experimental tool known as C911 control can be 

designed for any siRNA antisense strand by changing the middle bases 9-11 to 

their complement bases (Buehler et al., 2012a). The C911 control is based on 

using the same siRNA seed region (bases 2–8) as the original siRNA reagent; 

however, it lacks the full complementarity sequence to match with the intended on-

target gene. The C911 version of the false positive siRNAs maintains the OTE 

phenotype when examined whilst the C911 versions of true positive siRNAs reduce 

or abolish inhibition of the intended mRNA. The C911 controls for siRNA can be 

designed by using an online C911 calculator 

(http://rnai.nih.gov/haystack/C911Calc.html). 

9- In any siRNA screening experiment, the ability to rescue the observed 

phenotypic effect by re-expressing the target protein from a construct that cannot 

be silenced by the siRNA used in the screen is a powerful method of confirming the 

status of a hit. 

 

8.2.3  Investigation of the connection between SL siRNA hits and 
MCPH1/BRIT1 in cell biology and apoptosis 

1- Confirmation of gene silencing by the 4 individual siRNAs of the SL hits (STK39, 

VRK1, TTK/MPS1 and CDCK1/CDC2) could be tested at the mRNA and protein 

expression levels using RT-PCR and western blotting respectively to identify the 

most potent individual siRNA’s. 

2- Then, the synthetic lethal effect of the 4 SL siRNA hits could be validated in other 

breast and ovarian cancer cell lines expressing diverse levels of MCPH1/BRIT1 

(such as 1847, SKOV-3, MCF7, MCF10A and MDA-MB-468 (ATCC® HTB-132™). 
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This could be performed using the most effective siRNA concentration (50nM) that 

showed reasonable results during the validation stage. The difference in cell 

viability between cells treated with single knockdown (siRNA hit alone) and double 

knockdown (siRNA hit in combination with MCPH1/BRIT1 siRNA) would be 

calculated as previously mentioned (Chapter 2: Section 2.4.1.1; Figure 2.3). The 2 

individual siRNAs of each SL hit with the most pronounced effect on cell viability 

would be selected based on the control (NT-siRNA in single knockdown and NT- 

MCPH1/BRIT1 siRNA in double knockdown); then they would be considered 

statistically significant with a p value of ≤ 0.05. This could assess the specificity of 

the most potent individual siRNA targeting each SL siRNA hit in each cell line.  

3- Breast and ovarian cancer cells lines without and with MCPH1/BRIT1 siRNA 

could be used to investigate the biological significance of gene silencing for each 

SL hits. This could be examined by treating the cells with DNA damaging agents 

such as Cisplatin or Carboplatin, or anti-microtubule agents such as Docetaxel or 

Paclitaxel/Taxol. The apoptotic response would be examined using Annexin 

V/FACS. Moreover, the effect of SL hits on the DNA damage response would be 

examined by immunofluorescence staining using confocal microscopy to quantify 

the levels of foci formation induced as a consequence of H2AX phosphorylation, 

which is a marker of DNA DSB. The involvement of these SL hits in stimulating 

DNA repair foci by RAD51, a homologous recombination (HR) repair marker, could 

be examined by pulsing the cell with bromodeoxyuridine (BrdU) to accumulate cells 

at S phase before exposing them to irradiation. The % of (BrdU) cells with ≥ 5 

RAD51 foci would be evaluated in irradiated and non-irradiated cells (Turner et al., 

2008). An increase in the basal level of H2AX and RAD51 as a result of SL gene 

silencing in MCPH1/BRIT1 deficient cells would be viewed as an indicator that SL 

gene silencing can activate DNA damage response and DNA repair. Reduced HR 

rate as a consequence of BRCA1 siRNA has been previously confirmed and thus it 

can be used as control for this experiment (Turner et al., 2008). Any SL hit showing 

positive results in activating DNA damage response and repair and with no reverse 

effect on HR rate would be potentially considered to be a strong hit since its 

silencing does not reversely effect the DNA repair mechanism. Thus its potential 

efficacious therapeutic action in human is increased with minimal or no side effects.  

4- Live cell imaging could be utilised to demonstrate the effect of known inhibitors 

against the SL hits on mitosis. For example, HeLa cells stably expressing a H2B-

GFP could be grown in 35-mm 4-well, glass-bottomed culture dishes and treated 



- 268 - 
 

 

 

with small molecule inhibitors of TTK/MPS1 or CDK1/CDC2; cells would then be 

transfected with or without MCPH1/BRIT1 siRNA or controls (NT- MCPH1/BRIT1 

siRNA or NT-siRNA). The cells would be observed for 48hr after transfection using 

time-lapse microscopy. Cells would be imaged every 5min using fluorescent and 

phase contrast microscopy. This experiment could be supported by Annexin 

V/FACS analysis for quantification of apoptosis.  

5- The synergistic effect of chemotherapy drugs (such as Paclitaxel/Taxol, 

Docetaxel, Cisplatin and Carboplatin) with small molecule inhibitors of TTK/MPS1 

or CDK1/CDC2 could be examined using low dose response relationships, in cells 

with defective and functional MCPH1/BRIT1. The sensitivity will be measured using 

Vi-cell Trypan blue exclusion assay and IC50 values will be determined 

experimentally. It is anticipated that the small molecule inhibitors of TTK/MPS1 or 

CDK1/CDC2 may restore resistance to chemotherapy and increase the sensitivity 

of cells with defective MCPH1/BRIT1 to anti-cancer agents.  

6- MCF7, SKOV-3 cell lines with stable overexpression of each SL hit individually 

would be generated using FLAG-tagged constructs of each SL gene as previously 

described in (Zhang et al., 2013a). Each cell line harbouring overexpression of a 

wild type SL gene would be treated with MCPH1/BRIT1 siRNA to determine the 

effect of SL gene hits on cell proliferation using BrdU incorporated assay; any 

changes in BrdU incorporation would be detected by fluorescence microscopy. 

Findings from the cell proliferation assay could be complemented by another 

apoptotic assay such as FITC Annexin V/FACS to compare the effect of stable 

MCF7 or SKOV-3 knockdown of each individual SL gene (using lentiviral vector 

based Mission shRNA) in cells with/without MCPH1/BRIT1 siRNA on early 

induction of apoptosis as previously described in (Zhang et al., 2013a). 

 

8.2.4 Investigation of the influence of MCPH1/BRIT1 expression 
in response to chemotherapy in breast and ovarian cancer            

1- It would be interesting to investigate the role of MCPH1/BRIT1 as a predictive 

marker in BC sensitivity to NACT or other platinum-based drug agents, by detecting 

MCPH1/BRIT1 foci formation in BC tissues and correlating this with response and 

survival rates pre- and post-chemotherapy.  

2- Investigation of the correlation between MCPH1/BRIT protein levels and proteins 

including CHK1, PARP and the validated SL genes on advanced BC tissue using 
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IHC. This method would be complemented by in vitro assays such as Vi-cell Trypan 

blue assay and FITC/PI Annexin V/ FACS analysis that will measure the effect of 

stable MCPH1/BRIT1 knockout or overexpression on chemosensitivity and 

apoptosis respectively on breast and ovarian cancer cell lines. The mRNA 

expression and protein levels of CHK1, PARP and SL hits would be measured pre- 

and post-chemotherapy treatment. This would reveal the effector elements that 

enhance or prevent susceptibility of MCPH1/BRIT1 deficient cancer cells to 

chemotherapy and thus this could further confirm the significance of SL hits as 

therapeutic targets.  

3- Another study could be performed to investigate the effect of the nuclear and 

cytoplasmic localisations of MCPH1/BRIT1 in response to chemotherapy and 

survival using BC tumour samples and to examine whether different MCPH1/BRIT1 

isoforms and microRNA contribute to the failure in response to chemotherapy 

(Gavvovidis et al., 2012; Venkatesh et al., 2013; Wang et al., 2014a). 
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Appendix 

1. List of reagents’ suppliers (email and addresses) 

 

 

2. Preparation of drug stock solutions used in SMS as 
controls 

All chemotherapy drugs controls were added at the same time the CC were 

dispensed on to the cells and incubated for 24hr and 48hr. 

Supplier Address

Abcam 330 Cambridge Science Park, Cambridge, CB4 0FL.                               
www.abcam.com

Alfa Aesar Shore Road, Port Of Heysham Industrial Park, LA3 2XY Heysham.                                                                        
www.alfa.com

ATCC Supplied by LGC Promochem.                                                   
www.atcc.org

Applied Biosystem by life 
Technologies Supplied by Invitrogen Life Technologies 

Beckman Coulter 
Oakley Court, Kingsmead Business Park, London Road, High 
Wycombe, Buckinghamshire, HP11 1JU.          
www.beckmancoulter.co.uk

Bio-Rad Laboratories Bio-Rad House, Maylands Avenue, Hemel Hempstead, Herts HP2 7TD.                                                                                                           
www.bio-rad.com

BIORON GmbH Rheinhorststraße 18, D-67071 Ludwigshafe, German.        
www.bioron.net

Biotium 3159 Corporate Place, Hayward, CA 94545 U.S.A.                                                                        
www.biotium.com 

DAKO Produktionsvej 42, 2600 Glostrup, Denmark.                                            
www.dako.com

 Dharmacon                       Supplied by GE Healthcare Life Sciences. 
dharmacon.gelifesciences.com

Dualsystems Biotech AG Grabenstrasse 11A, 8952 Schlieren, Switzerland. 
www.dualsystems.com 

G-Bioscience 92 Weldon Parkway, Maryland Heights, MO 63043-3202, U.S.A.                                                        
www.gbiosciences.com

GE Healthcare Life Sciences Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA.                                                              
www.gelifesciences.com

Invitrogen 
Supplied by Life Technologies Ltd, 3 Fountain Drive, Inchinnan 
Business Park, Paisley, PA4 9RF.                                                        
www.lifetech.com

Leica 
Leica Microsystems (UK) Ltd, Davy Avenue, Knowlhill, Milton Keynes, 
Buckinghamshire, MK5 8LB.                                                              
www.leica-microsystems.com

Mayne Pharma 1538 Main N Rd, Salisbury South SA 5106, Australia. 
www.maynepharma.com  

New England Biolabs 75-77 Knowl Piece, Wilbury Way, Hitchin, Hertfordshire, SG4 0TY.                                                                                  
www.neb.com

Novocastra Supplied by Leica Biosystems
Novex  Supplied by Life Technologies

Novus Biologicals 19 Barton Lane, Abingdon Science Park, Abingdon, OX14 3NB.                                                                  
www.novusbio.com

PerkinElmer 940 Winter St, Waltham, MA 02451, USA.               
www.perkinelmer.co.uk

Qiagen 27220 Turnberry Lane. Suite 200. Valencia, CA 91355.  
www.perkinelmer.co.uk 

Roche Applied Biosystem Supplied by Life Technologies

Roche Diagnostics GmbH Sandhofer Strasse, 116 68305 Mannheim Germany.                               
www.roche.com

Sigma-Aldrich Fancy Road, Poole, Dorset BH17 7NH.                                        
www.sigma-aldrich.com

Thermo Fisher Scientific Bishop Meadow Road, Loughborough, Leicestershire, LE11 5RG.                                                                          
www.fisher.co.uk

Vector Laboratories Bakewell Rd, Peterborough PE2 6XS.                             
www.vectorlabs.co.uk
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2.1 Doxorubicin 0.4µg/ml 

Doxorubicin stock solution at 0.4mg/ml was first prepared by mixing 4µl of 

Doxorubicin (stock 10mg/ml / Sigma) with 96µl RPMI1640 medium without P/S. 

This solution was diluted to final concentration of 0.4µg/ml (1:1000) by mixing 5ml 

RPMI1640 medium (no P/S) with 5µl of 0.4mg/ml Doxorubicin mixture. Thus, the 

suspension media was removed from the desired wells of the 96 well plates and 

100µl of 0.4µg/ml Doxorubicin was added.  

2.2 Nocodozole 1µM 

A 20µM Nocodozole solution was first prepared by mixing 3.01µl of Nocodozole 

(stock 6.64mM), 6.99µl of 100% DMSO with 990µl RPMI1640 medium. Then, this 

mixture was diluted to a final concentration of 1µM with a final amount of 1% DMSO 

by mixing 20µL of 20µM dilution of Nocodozole with 380µl of medium contains 1% 

DMSO then 20µl of 1µM Nocodozole was added to the desired wells.  

3. siRNA  

3.1 siRNA controls 

 

 

Oligo Name Sense strand sequence 

MCPH1/BRIT1 (Dharmacon) CUCUCUGUGUGAAGCACCA  

Stealth™ RNAi negative 
control Duplex (Invitrogen)  

Control for transfection efficiency of 
MCPH1/BRIT1 siRNA in SMS experiments; 
Cat. No. 12935-300 

ON-TARGET plus single NT-
siRNA (Dharmacon)  UGGUUUACAUGUCGACUAA 

PLK1 pool (Dharmacon) 

GCACAUACCGCCUGAGUCU,  
CCACCAAGGUUUUCGAUUG, 
GCUCUUCAAUGACUCAACA, 
UCUCAAGGCCUCCUAAUAG 
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3.2 ON-TARGT plus four individual siRNAs (Dharmacon) 

 

 

 

 

 

 

 

 

Oligo Name Sense strand sequence 
CDK1/CDC2 siRNA 1 GGUUAUAUCUCAUCUUUGA 

CDK1/CDC2 siRNA 2 UCGGGAAAUUUCUCUAUUA 

CDK1/CDC2 siRNA 3 GUAUAAGGGUAGACACAAA 

CDK1/CDC2 siRNA 4 CAAACGAAUUUCUGGCAAA 

TTK/MPS1 siRNA 1 GAUAAGAUCAUCCGACUUU 

TTK/MPS1 siRNA 2 GCAAUACCUUGGAUGAUUA 

TTK/MPS1 siRNA 3 CCAGUUAACCUUCUAAAUA 

TTK/MPS1 siRNA 4 GAUAGUUGAUGGAAUGCUA 

CAMK2N1 siRNA 1 GCAAGCGGGUUGUUAUUGA 

CAMK2N1 siRNA 2 GAUUGAUGACGUGCUGAAA 

CAMK2N1 siRNA 3 CGACAAGGCACCUCCUGGU 

CAMK2N1 siRNA 4 CAAAGACAAUGAGUUAAGG 

WEE1 siRNA 1 AAUAGAACAUCUCGACUUA 

 WEE1 siRNA 2 AAUAUGAAGUCCCGGUAUA 

 WEE1 siRNA 3 GAUCAUAUGCUUAUACAGA 

 WEE1 siRNA 4 CGACAGACUCCUCAAGUGA 

STK39 siRNA 1 GGUGGAUGGUCACGAUGUA 

STK39 siRNA 2 GAGCAGCGCCUUAUCACAA 

STK39 siRNA 3 GGGUGAGGAUGGUUCAGUA 

STK39 siRNA 4 AAACAGGGGUAGAGGAUAA 

VRK1 siRNA 1 GCAGUUGGAGAGAUAAUAA 

VRK1 siRNA 2 AUACUUGGUUAUUGCAUGA 

VRK1 siRNA 3 GGCUUUGGCUGUAUAUAUC 

VRK1 siRNA 4 AGGUGUACUUGGUAGAUUA 

PLK1 siRNA 1 GCACAUACCGCCUGAGUCU 

PLK1 siRNA 2 CCACCAAGGUUUUCGAUUG 

PLK1 siRNA 3 GCUCUUCAAUGACUCAACA 

PLK1 siRNA 4 UCUCAAGGCCUCCUAAUAG 

FBXO5/EMI1 siRNA 1 CAACAGACACUUAAUAGUA 

FBXO5/EMI1 siRNA 2 CGAAGUGUCUCUGUAAUUA 

FBXO5/EMI1 siRNA 3 UGUAUUGGGUCACCGAUUG 

FBXO5/EMI1 siRNA 4 GAAUUUCGGUGACAGUCUA 
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4. An example of the 96 well plate layout (View Plates; 
PerkinElmer) used for preparing PCC inducer hPK or Ubq 
siRNA screens  

 

Controls for PCC inducer screen 

Columns 1 and 12 

 

 

 

 

 

 

 

 

 

 

All the wells on the plate are treated with RNAiMAX.  

Wells G1 and G12 were treated with Nocodazole and wells H1 and H12 were 

treated with Paclitaxel/Taxol. Drugs were added to the cells and incubated at 37°C 

for 1hr only before cell fixation and IF staining.  

Row 
 

siRNA Details 

A 
 

1x buffer 5x siRNA buffer 
Dharmacon Cat.No. B-002000-UB-100 

RNase free water 
Dharmacon Cat.No. B-003000-WB-100 

B 
 

NT-siRNA siGENOME control pool Non-Targeting 1 
Dharmacon - Cat.No. D-001206-13-05 

C 
 

NT-siRNA 

D 
 

EB1 siGENOME SMARTpool Human MAPRE1 
Dharmacon - Cat.No. M-006824-00 

E 
 

MCPH1 ‘Custom siRNA’ – see above 

F 
 

PLK1 siGENOME SMARTpool Human PLK1 
Dharmacon - Cat.No. M-003290-01 

G 
 

1x buffer As stated in row A 

H 
 

1x buffer 

1 2 3 4 5 6 7 8 9 10 11 12

A RNAiMAX siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA RNAiMAX

B NT-siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA NT-siRNA

C NT-siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA NT-siRNA

D EB1 siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA EB1

E MCPH1 siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA MCPH1

F PLK1 siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA PLK1

G
1x siRNA 

buffer 
+Nocodazole 

siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA
1x siRNA 

buffer 
+Nocodazole 

H 1x siRNA 
buffer +Taxol siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA 1x siRNA 

buffer +Taxol



- 305 - 
 

 

5. An example of the 96 well plate layout (View Plates; 
PerkinElmer) used for preparing PCC modifier hPK siRNA 
screens 

 

Controls for PCC modifier screen 

 Columns 1 and 12 

After 24hr incubation, all the wells on the plates are treated with RNAiMax and 

MCPH1/BRIT1 siRNA. 

Row siRNA Details 

A 
 

NT-siRNA siGENOME control pool Non-Targeting #1 

Dharmacon - Cat.No. D-001206-13-05 
B 
 

NT-siRNA 

C 
 

CAPG2 siGENOME SMARTpool Human  NGAP G2 

Dharmacon - Cat.No. M-018283-01 

D 
 

CAPH2 siGENOME SMARTpool Human NGAP H2 

Dharmacon - Cat.No. M-016186-01 

E 
 

Incenp siGENOME SMARTpool Human INCENP 

Dharmacon - Cat.No. M-006823-01 

F 
 

KIF11 siGENOME SMARTpool Human KIF11 

Dharmacon - Cat.No. M-003317 -01 

G 
 

PLK1 siGENOME SMARTpool Human PLK1 

Dharmacon - Cat.No. M-003290-01 

H 
 

1x buffer Dharmacon 

5x siRNA buffer Cat.No. B-002000-UB-100 

RNase free water Cat.No. B-003000-WB-100 

1 2 3 4 5 6 7 8 9 10 11 12

A NT-
siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA NT-

siRNA

B NT-
siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA NT-

siRNA

C
CAPG2

siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA
CAPG2

D
CAPG2

siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA
CAPG2

E
CAPH2

siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA
CAPH2

F
CAPH2

siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA
CAPH2

G Incenp siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA Incenp

H PLK1 siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA siRNA PLK1
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6. Preparation of chemical solutions used in this PhD thesis 

All chemical solutions were made using dH2O.  

6.1 Preparation of RIPA buffer  

 

 

 

 6.2 Preparation of bovine serum albumin (BSA) standard dilution series 

The serial dilution were prepared from 2mg/ml BSA and 10% RIPA buffer solutions 

that were mentioned in Chapter 2; Section 1. 

 

 

  

 

 

 

6.3 Preparation of Antigen retrieval 10mM citric acid buffer (pH 6.0) 

About 5 big sizes of sodium hydroxide pellets were mixed with 800ml dH2O in a 1L 

media bottle (containing magnetic stir bar) and placed on magnetic stirrer plate 

allowing the pellets to be dissolved. Next, 2.1g citric acid was added to the solution, 

the mixture solution was allowed to be well dissolved. Then, pH of the solution was 

first checked using calibrated pH probe and 10% w/v sodium hydroxide (NaOH) 

was used to adjust the pH of the solution to 6. The final volume of the solution was 

made up to 1L with dH2O.  

Buffer Volume  
1% Nonidet-P-40   1 ml 
0.5% Sodium Deoxycholate  500mg 
0.1% SDS   1ml of 10% 
1x PBS Up to 100ml  

Dilution series  BSA (2mg/ml) 10% RIPA buffer 

0.1µg/µl 5µl 95µl 

0.25µg/µl 12.5µl 87.5µl 

0.5µg/µl 25µl 75µl 

0.8µg/µl 40µl 60µl 

1µg/µl 50µl 50µl 

1.5µg/µl 75µl 25µl 

2µg/µl 100µl - 
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7. Ethical approval for IHC staining of breast cancer tissues 
provided by Dr. Abeer Shaaban  
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Continued Appendix 7. 
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Continued Appendix 7. 
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8. Calculation of IC50 concentration designed by Sally 
Jackson (University of Leeds) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculating 50% inhibition concentrations 
(IC50)  

 
For ease of manipulation, input cell data into Excel sheet in this 
format. Use ‘IC50 Template’ saved on P drive as a guide. 
 

 
 

Transforming the data. 
 
Cell numbers are likely to be skewed with the drug concentration 
range. Log transformation of the data will give a straight line graph 
which can be better used to calculate an IC50.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

CELL DRUG CONC REP VALUE CONTROL
1 1 0 3 2.34 2.54
1 1 0 1 2.45 2.54
1 1 0 2 2.83 2.54
1 1 0.0001 3 1.56 2.54
1 1 0.0001 2 1.61 2.54
1 1 0.0001 1 1.77 2.54
1 1 0.0005 1 1.66 2.54
1 1 0.0005 2 1.88 2.54
1 1 0.0005 3 1.98 2.54
1 1 0.001 1 1.75 2.54
1 1 0.001 3 1.8 2.54
1 1 0.001 2 1.81 2.54
1 1 0.005 2 1.46 2.54
1 1 0.005 3 1.46 2.54
1 1 0.005 1 1.81 2.54
1 1 0.01 2 0.98 2.54
1 1 0.01 3 1.2 2.54
1 1 0.01 1 1.32 2.54
1 1 0.05 1 0.33 2.54
1 1 0.05 3 0.36 2.54
1 1 0.05 2 0.4 2.54
1 1 0.1 2 0.3 2.54
1 1 0.1 3 0.33 2.54
1 1 0.1 1 0.36 2.54
1 1 0.5 1 2.54
1 1 0.5 2 2.54
1 1 0.5 3 2.54
1 1 1 1 2.54
1 1 1 2 2.54
1 1 1 3 2.54

Cell. Assign numbers for 
different cell lines. 
 
Drug. Assign numbers for 
different drugs. 
 
Conc. Drug concentration. 
 
Rep. Number of replicate. 
 
Value. Viable cell number 
x10^6 
 
Control. Average of control 
cell number. 

 

EFFECT (dead cells)* LOGDOSE LOGODDSEFFECT**

0.385826772 -9.210340372 -0.46489
0.366141732 -9.210340372 -0.5488
0.303149606 -9.210340372 -0.83234
0.346456693 -7.60090246 -0.63465
0.25984252 -7.60090246 -1.04679
0.220472441 -7.60090246 -1.26292
0.311023622 -6.907755279 -0.79534
0.291338583 -6.907755279 -0.88889
0.287401575 -6.907755279 -0.90804
0.42519685 -5.298317367 -0.30148
0.42519685 -5.298317367 -0.30148
0.287401575 -5.298317367 -0.90804
0.614173228 -4.605170186 0.464889
0.527559055 -4.605170186 0.110348
0.480314961 -4.605170186 -0.07878
0.87007874 -2.995732274 1.901655
0.858267717 -2.995732274 1.800976
0.842519685 -2.995732274 1.677097
0.881889764 -2.302585093 2.010449
0.87007874 -2.302585093 1.901655
0.858267717 -2.302585093 1.800976

EFFECT. 1-(value/control) 
This gives you number of 
dead cells so any values of 
0 or less (minus) need 
removing from the data 
set. 
LOGDOSE. Ln drug conc. 
LOGODS EFFECT.    
ln[effect-(1-effect)] 
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Continued Appendix 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphing the data. 
 

 
 

Select Tools and then Data Analysis from the drop down menu. 
 
Select Regression from the options box and click OK. 
 

The Regression analysis tool performs linear regression analysis by 
using the "least squares" method to fit a line through a set of 
observations. You can analyze how a single dependent variable is 
affected by the values of one or more independent variables. 

For example, you can analyze how an athlete's performance is 
affected by such factors as age, height, and weight. You can 
apportion shares in the performance measure to each of these three 
factors, based on a set of performance data, and then use the 
results to predict the performance of a new, untested athlete. 

 
To add Data Analysis option if not already on menu. 
 
From the main menu select Tools, then Add-ins from the drop 
down menu. 
 
 

 
 
 
 

 
 

Check the box next to Analysis ToolPak and click OK. 
 
 
 
 
 

 
 
 

X  input is 
the logdose 
values. 
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Continued Appendix 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each drug and cell line combination; make sure that any blanks 
are taken out from any negative results in the effects column. 
(Copy and paste the results into new columns alongside and cut the 
blanks so there are no gaps and you can easily select the column 
for the input ranges). 

Select residual plot. This will produce a graph that should be 
random and would show up inconsistency in the data.  

Select line fit plots.  

Graphs and statistical output will be displayed in separate sheet. 

There will be a number of tables showing regression statistics, 
ANOVA and confidence levels. However, just key values are needed 
to calculate the IC50; Multiple R, Intercept and X variable. 

 

 

Input. Y input is 

the values in the 

‘logodseffect’ 

column 

Graphing the data. 
 

 
 

Select Tools and then Data Analysis from the drop down menu. 
 
Select Regression from the options box and click OK. 
 

The Regression analysis tool performs linear regression analysis by 
using the "least squares" method to fit a line through a set of 
observations. You can analyze how a single dependent variable is 
affected by the values of one or more independent variables. 

For example, you can analyze how an athlete's performance is 
affected by such factors as age, height, and weight. You can 
apportion shares in the performance measure to each of these three 
factors, based on a set of performance data, and then use the 
results to predict the performance of a new, untested athlete. 

 
To add Data Analysis option if not already on menu. 
 
From the main menu select Tools, then Add-ins from the drop 
down menu. 
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Continued Appendix 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Identification of CC hits that reduce cell number  

9.1 CC hits that reduce cell number after 24hr 

 

 

To calculate the IC50. 

 

Graphs can be manipulated in the usual way. Here, the predicted Y 
line has been formatted to show automatic line and no markers. 

Right click on one of the predicted markers and select Format Data 
Series. 

 

 

 

 

 

 

 

Intercept 
and X 
variable 

Multiple R 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the values produced the relevant numbers have to be 
transformed back to drug concentration. This can be done using the 
following equation. =Exp(-intercept/X variable) 

Select an empty cell. Type in ‘=’ to indicate a formula. Type ‘Exp’ 
which is the function. [Alternatively it can be selected from the 
option box opened with the formulas button (fx in the toolbar) in 
the ‘Math and Trig’ function category].Next, open brackets.  

Type a minus sign. With the mouse, select the cell with the 
intercept coefficient value from the table. Type in a forward slash / 

Click on the cell with the X-variable co-efficient value from the 
table. Close brackets. Click enter. 

The resulting value is the IC50 value, which will have the same 
units as the values used for drug concentration. 

X variable = the slope of the predicted values. This generates the 
IC50 value as X variable, or drug concentration. 

In the regression statistics box, ‘Multiple R’ is the correlation co-
efficient. This gives an indication of how strong the effect is, with 
values closer to 1 showing more confident results. 
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Master Plate 

Name
Well 

Name

Whole 
Cells 

Number
Z score Robust 

Z score

Whole 
Cells 

Number
Z score Robust 

Z score

Whole 
Cells 

Number
Z score Robust 

Z score

MP72-MP73 D11 42 -10.2 -30.08 56 -14.69 -17.48 49 -12.44 -23.78
MP72-MP73 D4 89 -10 -29.51 7 -15.03 -17.88 48 -12.52 -23.7
MP74-MP75 B11 220 -17.71 -26.81 243 -6.65 -9.72 232 -12.18 -18.26
MP76-MP77 E8 1136 -1.06 -29.1 1155 -2.15 -3.08 1146 -1.6 -16.09
MP64-MP65 F7 171 -7.02 -13.21 600 -8.72 -14.55 386 -7.87 -13.88
MP64-MP65 B2 473 -5.43 -10.19 471 -9.28 -15.54 472 -7.35 -12.87
MP72-MP73 F6 1322 -4.89 -14.75 1163 -7.03 -8.25 1243 -5.96 -11.5
MP59-MP241 F5 119 -5.65 -9.13 116 -10.95 -13.57 118 -8.3 -11.35
MP74-MP75 G11 1269 -9.86 -14.95 649 -5.01 -7.3 959 -7.44 -11.13
MP62-MP63 D11 514 -8.46 -15.54 828 -5.61 -6.7 671 -7.03 -11.12
MP70-MP71 F6 982 -11.71 -17.73 301 -2.1 -4.21 642 -6.9 -10.97
MP59-MP241 C8 403 -4.64 -7.53 145 -10.73 -13.3 274 -7.68 -10.41
MP74-MP75 C5 1119 -10.99 -16.65 1183 -2.86 -4.13 1151 -6.92 -10.39
MP76-MP77 G7 1913 -0.21 -12.21 4 -5.22 -7.46 959 -2.71 -9.83
MP72-MP73 G8 1664 -3.47 -10.65 1105 -7.43 -8.73 1385 -5.45 -9.69
MP72-MP73 D8 1768 -3.04 -9.41 967 -8.39 -9.88 1368 -5.71 -9.65
MP72-MP73 G6 1717 -3.25 -10.02 1071 -7.67 -9.02 1394 -5.46 -9.52
MP72-MP73 D6 1825 -2.8 -8.72 954 -8.48 -9.99 1390 -5.64 -9.36
MP72-MP73 B7 1709 -3.29 -10.11 1128 -7.27 -8.54 1419 -5.28 -9.33
MP59-MP241 F7 296 -5.02 -8.13 435 -8.51 -10.52 366 -6.76 -9.33
MP72-MP73 F8 1720 -3.24 -9.98 1127 -7.28 -8.55 1424 -5.26 -9.27
MP72-MP73 F7 1643 -3.56 -10.9 1248 -6.44 -7.54 1446 -5 -9.22
MP74-MP75 D5 1376 -9.06 -13.75 1138 -3.04 -4.39 1257 -6.05 -9.07
MP76-MP77 F6 1765 -0.37 -15.42 1378 -1.55 -2.23 1572 -0.96 -8.83
MP72-MP73 C6 1840 -2.74 -8.54 1090 -7.54 -8.86 1465 -5.14 -8.7
MP76-MP77 G5 1883 -0.24 -12.86 796 -3.1 -4.45 1340 -1.67 -8.65
MP72-MP73 E7 1877 -2.59 -8.1 1060 -7.75 -9.11 1469 -5.17 -8.61
MP72-MP73 G7 1924 -2.39 -7.54 998 -8.17 -9.63 1461 -5.28 -8.58
MP72-MP73 D7 1924 -2.39 -7.54 1008 -8.11 -9.54 1466 -5.25 -8.54
MP72-MP73 E8 1915 -2.43 -7.65 1106 -7.43 -8.73 1511 -4.93 -8.19
MP74-MP75 G7 1678 -6.8 -10.33 883 -4.07 -5.91 1281 -5.44 -8.12
MP76-MP77 E3 1831 -0.3 -13.99 1388 -1.53 -2.19 1610 -0.91 -8.09
MP74-MP75 D8 1688 -6.73 -10.22 948 -3.81 -5.52 1318 -5.27 -7.87
MP74-MP75 C7 1668 -6.88 -10.45 988 -3.65 -5.29 1328 -5.26 -7.87
MP70-MP71 E7 1410 -8.36 -12.69 910 -1.23 -2.73 1160 -4.8 -7.71
MP74-MP75 B7 1717 -6.51 -9.89 1009 -3.56 -5.16 1363 -5.04 -7.53
MP72-MP73 D5 1947 -2.3 -7.26 1227 -6.59 -7.72 1587 -4.44 -7.49
MP72-MP73 C7 1951 -2.28 -7.22 1223 -6.62 -7.75 1587 -4.45 -7.48
MP74-MP75 D6 1671 -6.85 -10.41 1126 -3.09 -4.46 1399 -4.97 -7.44
MP74-MP75 G8 1728 -6.43 -9.77 1027 -3.49 -5.05 1378 -4.96 -7.41
MP74-MP75 E6 1649 -7.02 -10.66 1196 -2.81 -4.05 1423 -4.91 -7.35
MP78-MP79 C10 907.5 -5.6 -8.71 761 -4.34 -5.94 834 -4.97 -7.32
MP74-MP75 B5 1685 -6.75 -10.25 1143 -3.02 -4.36 1414 -4.88 -7.31
MP72-MP73 B6 1967 -2.22 -7.02 1302 -6.07 -7.09 1635 -4.14 -7.06
MP60-MP61 F7 502 -9.49 -9.89 1150 -1.67 -4.22 826 -5.58 -7.05
MP70-MP71 G6 1678 -6.26 -9.54 254 -2.17 -4.33 966 -4.22 -6.93
MP74-MP75 F5 1735 -6.38 -9.69 1182 -2.86 -4.13 1459 -4.62 -6.91
MP74-MP75 E8 1808 -5.83 -8.86 1090 -3.23 -4.68 1449 -4.53 -6.77
MP70-MP71 B6 1708 -6.03 -9.19 367 -2.01 -4.05 1038 -4.02 -6.62
MP74-MP75 G6 1930 -4.92 -7.49 993 -3.62 -5.26 1462 -4.27 -6.37
MP74-MP75 F6 1842 -5.58 -8.48 1189 -2.83 -4.09 1516 -4.2 -6.28
MP62-MP63 D6 1019 -4.22 -7.89 1052 -3.88 -4.66 1036 -4.05 -6.27
MP74-MP75 F8 1955 -4.73 -7.2 996 -3.61 -5.24 1476 -4.17 -6.22
MP64-MP65 E5 841 -3.48 -6.51 1772 -3.57 -5.53 1307 -3.53 -6.02
MP70-MP71 C5 1678 -6.26 -9.54 1092 -0.97 -2.29 1385 -3.62 -5.92
MP59-MP241 F8 1008 -2.48 -4.12 737 -6.19 -7.63 873 -4.34 -5.87
MP59-MP241 F6 788 -3.26 -5.36 871 -5.17 -6.35 830 -4.22 -5.85
MP70-MP71 C6 1867 -4.79 -7.32 296 -2.11 -4.23 1082 -3.45 -5.77
MP70-MP71 B7 1824 -5.12 -7.82 533 -1.77 -3.65 1179 -3.45 -5.74
MP59-MP241 G5 1234 -1.67 -2.85 661 -6.78 -8.36 948 -4.22 -5.6
MP74-MP75 C8 2088 -3.73 -5.7 958 -3.77 -5.46 1523 -3.75 -5.58
MP70-MP71 F5 1728 -5.87 -8.95 1148 -0.89 -2.15 1438 -3.38 -5.55
MP70-MP71 G5 1748 -5.72 -8.72 1068 -1.01 -2.35 1408 -3.36 -5.53
MP62-MP63 F8 1044 -4.01 -7.51 1175 -2.93 -3.54 1110 -3.47 -5.52
MP74-MP75 B6 1927 -4.94 -7.52 1284 -2.45 -3.52 1606 -3.69 -5.52
MP70-MP71 F7 1790 -5.39 -8.22 878 -1.28 -2.81 1334 -3.33 -5.52
MP59-MP241 E8 1232 -1.67 -2.86 684 -6.6 -8.14 958 -4.14 -5.5
MP74-MP75 D7 2066 -3.9 -5.95 1046 -3.41 -4.94 1556 -3.66 -5.44
MP60-MP61 E1 886 -6.58 -6.86 1170 -1.58 -4.01 1028 -4.08 -5.43
MP78-MP79 G10 1589 -2.52 -3.9 613 -4.99 -6.85 1101 -3.75 -5.37
MP64-MP65 F5 833 -3.53 -6.59 1955 -2.77 -4.13 1394 -3.15 -5.36
MP74-MP75 F7 2017 -4.27 -6.5 1169 -2.91 -4.21 1593 -3.59 -5.36
MP59-MP241 B5 1175 -1.88 -3.18 762 -6 -7.39 969 -3.94 -5.28
MP60-MP61 F6 1015 -5.6 -5.85 1104 -1.87 -4.71 1060 -3.74 -5.28
MP62-MP63 F6 1041 -4.04 -7.55 1235 -2.47 -3 1138 -3.25 -5.27

Cytotoxic CC hits Batch 1 Batch 2 Average 
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Continued 9.1 CC hits that reduce cell number after 24hr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Master Plate 
Name

Well 
Name

Whole 
Cells 

Number
Z score Robust 

Z score

Whole 
Cells 

Number
Z score Robust 

Z score

Whole 
Cells 

Number
Z score Robust 

Z score

MP59-MP241 E5 1036 -2.38 -3.96 850 -5.33 -6.55 943 -3.85 -5.26
MP74-MP75 C6 2058 -3.96 -6.04 1126 -3.09 -4.46 1592 -3.52 -5.25
MP74-MP75 G5 2014 -4.29 -6.54 1215 -2.73 -3.93 1615 -3.51 -5.24
MP70-MP71 D6 1998 -3.76 -5.78 105 -2.38 -4.69 1052 -3.07 -5.23
MP60-MP61 B7 1326 -3.25 -3.4 888 -2.82 -7.01 1107 -3.04 -5.2
MP62-MP63 C7 1312 -1.77 -3.45 807 -5.77 -6.89 1060 -3.77 -5.17
MP70-MP71 C7 1896 -4.56 -6.98 701 -1.53 -3.24 1299 -3.05 -5.11
MP59-MP241 G8 1247 -1.62 -2.77 760 -6.02 -7.41 1004 -3.82 -5.09
MP70-MP71 G7 1900 -4.53 -6.93 712 -1.51 -3.21 1306 -3.02 -5.07
MP59-MP241 E6 1096 -2.16 -3.62 855 -5.29 -6.5 976 -3.73 -5.06
MP62-MP63 F5 1096 -3.58 -6.72 1190 -2.81 -3.4 1143 -3.2 -5.06
MP60-MP61 F8 983 -5.85 -6.1 1172 -1.57 -3.98 1078 -3.71 -5.04
MP59-MP241 D6 1268 -1.55 -2.65 759 -6.03 -7.42 1014 -3.79 -5.04
MP70-MP71 G8 1841 -4.99 -7.62 1040 -1.05 -2.42 1441 -3.02 -5.02
MP74-MP75 F11 2125 -3.46 -5.28 1090 -3.23 -4.68 1608 -3.35 -4.98
MP59-MP241 G6 1123 -2.06 -3.47 861 -5.24 -6.44 992 -3.65 -4.96
MP59-MP241 C5 1068 -2.26 -3.78 895 -4.98 -6.12 982 -3.62 -4.95
MP62-MP63 F7 1034 -4.1 -7.66 1322 -1.79 -2.2 1178 -2.95 -4.93
MP60-MP61 C6 1268 -3.69 -3.85 992 -2.36 -5.9 1130 -3.03 -4.88
MP70-MP71 E5 1852 -4.9 -7.49 1113 -0.94 -2.24 1483 -2.92 -4.87
MP64-MP65 G5 932 -3 -5.6 1956 -2.76 -4.12 1444 -2.88 -4.86
MP59-MP241 G7 1238 -1.65 -2.82 814 -5.6 -6.89 1026 -3.63 -4.86
MP76-MP77 E6 2243 0.16 -5.03 741 -3.25 -4.66 1492 -1.55 -4.84
MP74-MP75 E7 2106 -3.6 -5.5 1177 -2.88 -4.16 1642 -3.24 -4.83
MP59-MP241 D5 1250 -1.61 -2.75 816 -5.59 -6.88 1033 -3.6 -4.82
MP70-MP71 B8 1880 -4.69 -7.16 1020 -1.07 -2.46 1450 -2.88 -4.81
MP59-MP241 C6 1183 -1.85 -3.13 864 -5.22 -6.42 1024 -3.54 -4.77
MP62-MP63 G7 1084 -3.68 -6.9 1276 -2.15 -2.62 1180 -2.91 -4.76
MP59-MP241 E7 1383 -1.13 -2.01 751 -6.09 -7.5 1067 -3.61 -4.75
MP70-MP71 D8 1921 -4.36 -6.68 945 -1.18 -2.65 1433 -2.77 -4.66
MP70-MP71 F8 1876 -4.72 -7.21 1163 -0.87 -2.12 1520 -2.79 -4.66
MP62-MP63 B8 1227 -2.48 -4.73 1064 -3.79 -4.55 1146 -3.13 -4.64
MP74-MP75 B8 2152 -3.26 -4.98 1166 -2.93 -4.23 1659 -3.09 -4.6
MP62-MP63 G5 1252 -2.27 -4.36 1040 -3.97 -4.77 1146 -3.12 -4.56
MP64-MP65 B5 855 -3.41 -6.37 2140 -1.96 -2.7 1498 -2.68 -4.54
MP70-MP71 D5 1943 -4.19 -6.42 986 -1.12 -2.55 1465 -2.66 -4.49
MP59-MP241 B6 1162 -1.92 -3.25 942 -4.62 -5.67 1052 -3.27 -4.46
MP60-MP61 G5 1242 -3.88 -4.06 1092 -1.92 -4.84 1167 -2.9 -4.45
MP60-MP61 G7 1341 -3.13 -3.28 1021 -2.24 -5.59 1181 -2.69 -4.43
MP70-MP71 E8 1934 -4.26 -6.53 1111 -0.94 -2.24 1523 -2.6 -4.39
MP62-MP63 E8 1225 -2.5 -4.77 1133 -3.25 -3.92 1179 -2.87 -4.34
MP60-MP61 G8 1337 -3.16 -3.31 1046 -2.13 -5.32 1192 -2.65 -4.32
MP70-MP71 C8 1961 -4.05 -6.21 1038 -1.05 -2.42 1500 -2.55 -4.32
MP60-MP61 C5 1291 -3.51 -3.67 1082 -1.97 -4.94 1187 -2.74 -4.31
MP64-MP65 F6 944 -2.94 -5.48 2086 -2.19 -3.12 1515 -2.57 -4.3
MP64-MP65 G7 1051 -2.38 -4.41 1959 -2.75 -4.1 1505 -2.56 -4.25
MP62-MP63 B5 1255 -2.24 -4.31 1107 -3.45 -4.16 1181 -2.85 -4.23
MP74-MP75 E5 2187 -2.99 -4.58 1223 -2.7 -3.89 1705 -2.85 -4.23
MP62-MP63 G8 1199 -2.71 -5.16 1209 -2.67 -3.23 1204 -2.69 -4.2
MP60-MP61 B5 1280 -3.6 -3.76 1126 -1.77 -4.47 1203 -2.69 -4.12
MP62-MP63 E6 1251 -2.28 -4.37 1147 -3.15 -3.8 1199 -2.71 -4.08
MP60-MP61 B8 1390 -2.76 -2.89 1054 -2.09 -5.24 1222 -2.43 -4.07
MP66-MP67 E7 1242 0.12 0.23 1402 -3.03 -8.3 1322 -1.45 -4.04
MP60-MP61 E7 1382 -2.82 -2.96 1091 -1.93 -4.85 1237 -2.38 -3.9
MP62-MP63 D7 1291 -1.94 -3.77 1123 -3.33 -4.01 1207 -2.64 -3.89
MP62-MP63 C6 1343 -1.51 -2.98 1039 -3.98 -4.78 1191 -2.74 -3.88
MP60-MP61 F5 1179 -4.36 -4.56 1255 -1.21 -3.1 1217 -2.78 -3.83
MP78-MP79 B11 1709 -1.97 -3.05 1005 -3.26 -4.43 1357 -2.61 -3.74
MP60-MP61 D7 1494 -1.97 -2.07 1042 -2.14 -5.37 1268 -2.06 -3.72
MP64-MP65 E8 1114 -2.04 -3.78 2017 -2.5 -3.65 1566 -2.27 -3.72
MP60-MP61 C8 1387 -2.79 -2.92 1130 -1.76 -4.43 1259 -2.27 -3.67
MP64-MP65 G8 1110 -2.06 -3.82 2035 -2.42 -3.51 1573 -2.24 -3.67
MP62-MP63 B7 1342 -1.51 -2.99 1092 -3.57 -4.3 1217 -2.54 -3.64
MP68-MP69 D6 1682 -8.83 -9.53 1720 0.97 2.26 1701 -3.93 -3.63
MP60-MP61 E8 1455 -2.27 -2.38 1120 -1.8 -4.54 1288 -2.04 -3.46
MP60-MP61 G6 1430 -2.46 -2.58 1146 -1.69 -4.26 1288 -2.07 -3.42
MP60-MP61 C7 1326 -3.25 -3.4 1235 -1.29 -3.31 1281 -2.27 -3.36
MP62-MP63 B6 1388 -1.13 -2.3 1092 -3.57 -4.3 1240 -2.35 -3.3
MP59-MP241 G3 1109 -2.11 -3.55 1243 -2.32 -2.79 1176 -2.22 -3.17
MP62-MP63 G6 1350 -1.45 -2.87 1186 -2.84 -3.44 1268 -2.15 -3.16
MP64-MP65 B8 1111 -2.06 -3.81 2174 -1.81 -2.44 1643 -1.93 -3.13
MP60-MP61 B6 1462 -2.22 -2.33 1186 -1.51 -3.84 1324 -1.86 -3.08
MP70-MP71 E6 2213 -2.08 -3.25 854 -1.31 -2.87 1534 -1.7 -3.06
MP60-MP61 E5 1470 -2.16 -2.26 1198 -1.46 -3.71 1334 -1.81 -2.99
MP62-MP63 E7 1407 -0.97 -2.01 1160 -3.05 -3.68 1284 -2.01 -2.84
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 9.2 CC hits that reduce cell number after 48hr 

 

Master Plate 
Name

Well 
Name

Whole 
Cells 

Number 
Z score Robust 

Z score 

Whole 
Cells 

Number 
Z score Robust 

Z score 

 Whole 
Cells 

Number 
Z score Robust 

Z score 

MP64-MP65 F7 60 -22.75 -58.86 216 -28.99 -33.85 138 -25.87 -46.35
MP64-MP65 B2 78 -22.62 -58.54 290 -28.49 -33.26 184 -25.56 -45.9
MP66-MP67 F6 7 -34.19 -62.95 6 -17.21 -25.79 7 -25.7 -44.37
MP74-MP75 G11 305 -13 -14.4 148 -39.01 -57.28 227 -26.01 -35.84
MP74-MP75 B11 121 -13.61 -15.08 260 -37.75 -55.42 191 -25.68 -35.25
MP59-MP241 F5 186 -26.44 -34.76 96 -19.51 -33 141 -22.98 -33.88
MP59-MP241 F7 226 -26.17 -34.39 501 -16.92 -28.57 364 -21.54 -31.48
MP59-MP241 C8 563 -23.87 -31.34 280 -18.33 -30.99 422 -21.1 -31.17
MP66-MP67 C1 1091 -23.01 -42.11 1848 -10.01 -15.02 1470 -16.51 -28.56
MP64-MP65 B6 1949 -9.58 -25.13 458 -27.35 -31.92 1204 -18.46 -28.52
MP74-MP75 F11 432 -12.58 -13.94 1407 -24.75 -36.3 920 -18.66 -25.12
MP66-MP67 E8 961 -24.35 -44.61 3590 -3.19 -4.83 2276 -13.77 -24.72
MP64-MP65 D8 1565 -12.25 -31.98 2658 -12.37 -14.39 2112 -12.31 -23.19
MP64-MP65 G5 1140 -15.22 -39.57 4194 -1.92 -2.16 2667 -8.57 -20.86
MP72-MP73 D4 31 -6.39 -35.92 1 -3.79 -5.04 16 -5.09 -20.48
MP72-MP73 D11 56 -6.35 -35.72 843 -2.72 -3.66 450 -4.54 -19.69
MP64-MP65 E5 1871 -10.12 -26.52 3008 -9.99 -11.61 2440 -10.06 -19.06
MP64-MP65 F6 1729 -11.11 -29.05 3961 -3.5 -4.01 2845 -7.31 -16.53
MP59-MP241 C6 2437 -11.12 -14.38 1464 -10.75 -18.05 1951 -10.93 -16.22
MP60-MP61 E1 1236 -2.11 -9.5 955 -9.29 -21.71 1096 -5.7 -15.61
MP66-MP67 D8 2306 -10.49 -18.74 2571 -7.18 -10.79 2439 -8.83 -14.76
MP59-MP241 G8 3415 -4.46 -5.53 979 -13.86 -23.35 2197 -9.16 -14.44
MP64-MP65 E6 2137 -8.27 -21.77 3639 -5.69 -6.58 2888 -6.98 -14.17
MP74-MP75 G7 3327 -2.93 -3.29 2124 -16.62 -24.35 2726 -9.78 -13.82
MP59-MP241 F8 2849 -8.31 -10.66 1682 -9.35 -15.67 2266 -8.83 -13.16
MP64-MP65 G8 2245 -7.51 -19.84 3654 -5.59 -6.46 2950 -6.55 -13.15
MP64-MP65 G7 2377 -6.59 -17.48 3361 -7.59 -8.79 2869 -7.09 -13.14
MP64-MP65 D6 2183 -7.95 -20.95 3835 -4.36 -5.02 3009 -6.15 -12.98
MP66-MP67 C6 2181 -11.78 -21.14 3612 -3.11 -4.7 2897 -7.44 -12.92
MP66-MP67 C7 2265 -10.91 -19.53 3385 -4 -6.03 2825 -7.45 -12.78
MP74-MP75 C7 3169 -3.46 -3.87 2304 -14.58 -21.35 2737 -9.02 -12.61
MP59-MP241 B8 2788 -8.73 -11.21 1889 -8.03 -13.4 2339 -8.38 -12.31
MP64-MP65 C8 2234 -7.59 -20.04 3895 -3.95 -4.54 3065 -5.77 -12.29
MP66-MP67 B7 2286 -10.69 -19.13 3542 -3.38 -5.11 2914 -7.04 -12.12
MP66-MP67 F5 2272 -10.84 -19.39 3617 -3.09 -4.67 2945 -6.96 -12.03
MP64-MP65 B5 2277 -7.29 -19.27 3883 -4.03 -4.63 3080 -5.66 -11.95
MP66-MP67 B5 2365 -9.88 -17.61 3386 -3.99 -6.02 2876 -6.94 -11.81
MP64-MP65 F5 2294 -7.17 -18.96 3918 -3.79 -4.35 3106 -5.48 -11.66
MP59-MP241 E8 3042 -7 -8.91 1858 -8.23 -13.74 2450 -7.61 -11.33
MP66-MP67 E6 2356 -9.97 -17.78 3662 -2.91 -4.41 3009 -6.44 -11.09
MP68-MP69 G7 1486 -6.7 -8.63 1605 -5.35 -13.55 1546 -6.02 -11.09
MP74-MP75 D8 3567 -2.13 -2.41 2413 -13.35 -19.53 2990 -7.74 -10.97
MP66-MP67 C5 2427 -9.24 -16.41 3475 -3.64 -5.5 2951 -6.44 -10.96
MP74-MP75 C8 3415 -2.64 -2.97 2457 -12.85 -18.8 2936 -7.74 -10.88
MP66-MP67 D6 2470 -8.8 -15.59 3359 -4.1 -6.18 2915 -6.45 -10.88
MP64-MP65 C5 2332 -6.91 -18.29 4112 -2.47 -2.81 3222 -4.69 -10.55
MP64-MP65 B8 2454 -6.06 -16.11 3874 -4.09 -4.71 3164 -5.08 -10.41
MP59-MP241 F6 3275 -5.41 -7.55 1917 -7.85 -13.1 2596 -6.63 -10.32
MP64-MP65 F8 2515 -5.63 -15.02 3768 -4.82 -5.55 3142 -5.22 -10.28
MP66-MP67 B6 2454 -8.96 -15.89 3629 -3.04 -4.6 3042 -6 -10.25
MP66-MP67 G7 2460 -8.9 -15.78 3627 -3.05 -4.61 3044 -5.97 -10.2
MP64-MP65 E8 2461 -6.01 -15.98 3927 -3.73 -4.28 3194 -4.87 -10.13
MP64-MP65 C6 2460 -6.02 -16 3948 -3.59 -4.12 3204 -4.8 -10.06
MP74-MP75 F6 3559 -2.16 -2.44 2535 -11.97 -17.5 3047 -7.06 -9.97
MP66-MP67 D7 2553 -7.94 -13.99 3434 -3.8 -5.74 2994 -5.87 -9.87
MP64-MP65 D7 2502 -5.72 -15.25 3904 -3.89 -4.47 3203 -4.81 -9.86
MP59-MP241 G7 3440 -4.29 -5.31 1812 -8.52 -14.25 2626 -6.41 -9.78
MP66-MP67 E7 2491 -8.58 -15.18 3701 -2.76 -4.18 3096 -5.67 -9.68

Cytotoxic CC hits Batch 1  Batch 2 Average 
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Continued 9.2 CC hits that reduce cell number after 48hr 

 

 

Master Plate 
Name

Well 
Name

Whole 
Cells 

Number 
Z score Robust 

Z score 

Whole 
Cells 

Number 
Z score Robust 

Z score 

 Whole 
Cells 

Number 
Z score Robust 

Z score 

MP66-MP67 F7 2586 -7.6 -13.36 3446 -3.76 -5.67 3016 -5.68 -9.51
MP70-MP71 B7 2446 -1.94 -6.2 1122 -7.1 -12.81 1784 -4.52 -9.51
MP74-MP75 E6 3250 -3.19 -3.58 2663 -10.52 -15.37 2957 -6.85 -9.47
MP66-MP67 G6 2533 -8.15 -14.38 3644 -2.98 -4.51 3089 -5.57 -9.44
MP66-MP67 D5 2478 -8.72 -15.43 3859 -2.14 -3.26 3169 -5.43 -9.35
MP60-MP61 D7 2972 -0.22 -2.53 1433 -6.92 -16.15 2203 -3.57 -9.34
MP64-MP65 B7 2550 -5.39 -14.39 3931 -3.71 -4.25 3241 -4.55 -9.32
MP64-MP65 D5 2501 -5.73 -15.27 4046 -2.92 -3.33 3274 -4.33 -9.3
MP66-MP67 E5 2501 -8.48 -14.99 3802 -2.36 -3.59 3152 -5.42 -9.29
MP66-MP67 B8 2585 -7.61 -13.38 3567 -3.28 -4.96 3076 -5.45 -9.17
MP59-MP241 E6 3524 -3.72 -4.55 1856 -8.24 -13.77 2690 -5.98 -9.16
MP64-MP65 C7 2509 -5.67 -15.13 4091 -2.62 -2.98 3300 -4.15 -9.05
MP74-MP75 B5 3471 -2.45 -2.76 2665 -10.49 -15.33 3068 -6.47 -9.05
MP59-MP241 G5 3486 -3.97 -4.89 1908 -7.91 -13.2 2697 -5.94 -9.04
MP60-MP61 F5 2764 -0.44 -3.37 1562 -6.28 -14.65 2163 -3.36 -9.01
MP64-MP65 E7 2549 -5.39 -14.41 4025 -3.07 -3.5 3287 -4.23 -8.96
MP60-MP61 F6 1902 -1.38 -6.83 1869 -4.75 -11.08 1886 -3.07 -8.95
MP60-MP61 F7 989 -2.38 -10.49 2188 -3.17 -7.37 1589 -2.77 -8.93
MP59-MP241 B5 3388 -4.64 -5.78 2035 -7.09 -11.81 2712 -5.87 -8.79
MP59-MP241 G6 3450 -4.22 -5.22 2026 -7.15 -11.91 2738 -5.69 -8.56
MP74-MP75 G5 3294 -3.04 -3.41 2769 -9.32 -13.6 3032 -6.18 -8.51
MP59-MP241 C5 3550 -3.54 -4.31 1963 -7.56 -12.6 2757 -5.55 -8.45
MP74-MP75 E8 3309 -2.99 -3.36 2774 -9.26 -13.52 3042 -6.12 -8.44
MP59-MP241 B7 3332 -5.02 -6.29 2156 -6.32 -10.49 2744 -5.67 -8.39
MP74-MP75 E5 3485 -2.4 -2.71 2745 -9.59 -14 3115 -6 -8.36
MP60-MP61 F8 2132 -1.13 -5.9 1905 -4.57 -10.66 2019 -2.85 -8.28
MP74-MP75 G1 3219 -3.29 -3.69 2839 -8.52 -12.43 3029 -5.91 -8.06
MP66-MP67 C8 2749 -5.92 -10.22 3411 -3.89 -5.88 3080 -4.91 -8.05
MP59-MP241 C7 3719 -2.39 -2.78 1899 -7.97 -13.3 2809 -5.18 -8.04
MP59-MP241 B6 3572 -3.39 -4.11 2022 -7.18 -11.95 2797 -5.28 -8.03
MP59-MP241 D5 3692 -2.57 -3.03 1987 -7.4 -12.33 2840 -4.99 -7.68
MP62-MP63 D11 1000 -9.47 -11.01 1305 -3.72 -4.34 1153 -6.59 -7.67
MP64-MP65 B12 2720 -4.2 -11.36 3977 -3.39 -3.88 3349 -3.8 -7.62
MP59-MP241 E5 3676 -2.68 -3.17 2022 -7.18 -11.95 2849 -4.93 -7.56
MP60-MP61 B7 2541 -0.69 -4.26 1913 -4.53 -10.57 2227 -2.61 -7.42
MP66-MP67 F8 2813 -5.26 -8.99 3440 -3.78 -5.71 3127 -4.52 -7.35
MP59-MP241 E7 3717 -2.4 -2.8 2041 -7.06 -11.74 2879 -4.73 -7.27
MP66-MP67 G5 2691 -6.52 -11.34 3882 -2.05 -3.12 3287 -4.29 -7.23
MP60-MP61 C5 2792 -0.41 -3.25 1876 -4.72 -11 2334 -2.57 -7.13
MP64-MP65 G6 2850 -3.3 -9.04 3817 -4.48 -5.16 3334 -3.89 -7.1
MP70-MP71 F7 2539 -1.81 -5.85 1960 -4.31 -7.91 2250 -3.06 -6.88
MP70-MP71 G5 1520 -3.25 -9.7 2625 -2.09 -4.02 2073 -2.67 -6.86
MP74-MP75 C5 3598 -2.03 -2.3 2900 -7.83 -11.42 3249 -4.93 -6.86
MP70-MP71 E12 2236 -2.23 -7 2184 -3.56 -6.6 2210 -2.9 -6.8
MP60-MP61 B6 3058 -0.12 -2.18 1841 -4.89 -11.41 2450 -2.51 -6.8
MP60-MP61 G5 2496 -0.73 -4.44 2071 -3.75 -8.73 2284 -2.24 -6.59
MP60-MP61 C8 3018 -0.17 -2.35 1981 -4.2 -9.78 2500 -2.18 -6.06
MP60-MP61 B5 2891 -0.3 -2.86 2056 -3.82 -8.91 2474 -2.06 -5.88
MP64-MP65 B11 2878 -3.1 -8.54 4098 -2.57 -2.92 3488 -2.84 -5.73
MP64-MP65 G3 2878 -3.1 -8.54 4129 -2.36 -2.67 3504 -2.73 -5.6
MP60-MP61 C7 2745 -0.46 -3.44 2179 -3.21 -7.48 2462 -1.84 -5.46
MP60-MP61 G7 2914 -0.28 -2.76 2125 -3.48 -8.1 2520 -1.88 -5.43
MP60-MP61 B8 2942 -0.25 -2.65 2118 -3.52 -8.19 2530 -1.88 -5.42
MP60-MP61 G8 2828 -0.37 -3.11 2175 -3.23 -7.52 2502 -1.8 -5.32
MP59-MP241 G3 3192 -5.98 -7.55 2838 -1.95 -3.03 3015 -3.96 -5.29
MP70-MP71 C6 2951 -1.22 -4.3 2360 -2.97 -5.57 2656 -2.1 -4.93
MP70-MP71 F5 3073 -1.05 -3.84 2388 -2.88 -5.41 2731 -1.97 -4.62
MP70-MP71 C5 2831 -1.39 -4.75 2550 -2.34 -4.46 2691 -1.87 -4.61
MP60-MP61 G9 2831 -0.37 -3.1 2297 -2.63 -6.1 2564 -1.5 -4.6
MP76-MP77 G3 2339 -5.66 -7.54 644 -1.4 -1.65 1492 -3.53 -4.6
MP70-MP71 B5 2744 -1.52 -5.08 2616 -2.12 -4.07 2680 -1.82 -4.58

Cytotoxic CC hits Batch 1  Batch 2 Average 
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10. Identification of CC hits inducing increased numbers of 
mitotic cells 

 10.1 CC hits inducing increased numbers of mitotic cells after 24hr 

 

10.2 CC hits inducing increased numbers of mitotic cells after 48hr 

 

Master Plate 
Name

Well 
Name

Whole 
Cells 

Number 

%mitotic 
cells Z score Robust  

Z score

Whole 
Cells 

Number 

%mitotic 
cells Z score Robust  

Z score

Whole 
Cells 

Number 

 %mitotic 
cells  Z score Robust 

Z score

MP59-MP241 F5 186 15.38 1.71 2.68 96 20 35.57 42.81 141 17.69 18.64 22.75
MP74-MP75 B11 121 6.17 7.34 11.55 260 10.14 13.5 19.19 191 8.15 10.42 15.37
MP64-MP65 F7 60 4.2 1.81 4.03 216 10.53 7.42 11.65 138 7.36 4.61 7.84
MP62-MP63 G12 3665 16.58 2.75 7.06 3372 6.58 1.7 2.96 3519 11.58 2.23 5.01

CC hits increase 
%mitotic cells (48hr)  Batch 1 Batch 2 Average 

Master Plate 
Name

Well 
Name

Whole 
Cells 

Number 

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number 

%mitotic 
cells Z score Robust 

Z score

Whole 
Cells 

Number 

 %mitotic 
cells Z score Robust 

Z score

MP74-MP75 B11 220 38.84 9.78 27.98 243 32.5 22.6 43.46 232 35.67 16.19 35.72
MP64-MP65 B2 473 42.18 6.23 10.78 471 42.18 6.23 10.78 472 42.18 6.23 10.78
MP76-MP77 C3 2536 2.38 1.24 3.03 961 37.52 8.18 15.48 1749 19.95 4.71 9.26
MP64-MP65 F7 171 37.22 4.87 8.35 600 37.22 4.87 8.35 386 37.22 4.87 8.35
MP72-MP73 D8 1768 28.04 4.62 8.61 967 23.43 1.84 2.33 1368 25.74 3.23 5.47
MP74-MP75 G2 2667 15.02 0.79 2.77 1597 10.19 3.8 7.68 2132 12.6 2.29 5.23
MP74-MP75 B6 1927 15.58 1 3.37 1284 9.54 3.26 6.65 1606 12.56 2.13 5.01
MP76-MP77 C4 2364 3.2 2.55 6.46 1551 22.65 1.22 2.48 1958 12.92 1.88 4.47
MP76-MP77 C2 2182 2.97 2.18 5.5 2140 22.96 1.36 2.75 2161 12.96 1.77 4.13
MP72-MP73 D2 2562 25.63 2.94 5.28 2191 23.5 1.88 2.37 2377 24.56 2.41 3.82
MP76-MP77 G2 2508 2.32 1.15 2.81 2443 24.87 2.26 4.43 2476 13.6 1.71 3.62
MP76-MP77 C12 2422 2.52 1.47 3.65 1928 22.74 1.26 2.56 2175 12.63 1.36 3.1
MP64-MP67 E7 1319 25.81 1.74 2.78 2337 25.81 1.74 2.78 1828 25.81 1.74 2.78
MP76-MP77 D2 2670 2.22 0.99 2.4 2290 23.28 1.51 3.03 2480 12.75 1.25 2.72
MP64-MP68 E8 1114 25.33 1.61 2.54 2017 25.33 1.61 2.54 1566 25.33 1.61 2.54
MP59-MP241 F5 119 6.57 0.7 2.14 116 24.12 1.79 2.7 118 15.34 1.24 2.42

CC hits increase 
%mitotic cells (24hr)  Batch 1 Batch 2 Average 


