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Abstract 

Staphylococcus aureus is one of the primary causative agents of skin and wound infections. 

As bacterial adherence is essential for infection, blocking this step can reduce invasion of host 

tissues by pathogens. An anti-adhesion therapy, based on a host membrane protein family, 

the tetraspanins, has been developed that can inhibit the adhesion of S. aureus to human 

cells.  

In Chapter 3, we show that peptides based on the EC2 domain of tetraspanins reduce the 

adherence of various strains of Staphylococcus aureus to host cells, and that the efficacy of 

these peptides correlates roughly with the expression levels of CD9 on each cell. We also show 

that one of these peptides, 800, reduces the quantity of viable adhered bacteria in a 3D model 

of a Staphylococcus aureus wound infection of human skin. 

Chapter 4 measures the expression levels of various tetraspanins on cells found in the skin by 

microscopy and flow cytometry, and explores some of the potential ways that interfering with 

tetraspanins using this peptide therapy could interfere with normal host function, such as 

cytokine production, wound healing and cell metabolism. No major effects are seen with the 

peptides, other than a small negative effect of peptide 800 on migration, which was not 

observed in the skin model measuring epidermal migration.  

Chapter 5 then looks at 2 ways that therapies could be improved for clinical use: combination 

therapy and drug delivery. Combining peptide 800 with flucloxacillin, an antibiotic only 

effective against MSSA, increased its efficacy in a cell line model, however, the opposite 

occurred in the 3D human skin model. Combining the peptide into nanoparticles using 

Nanocin™ increased the IC50 and t1/2 of the peptide, however in the skin model anti-adhesive 

effects were lost. 
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Chapter 1: Introduction  
The skin is an important component of the innate immune system, and is the first barrier to 

infection. It protects the body from invasion by pathogens by acting as a semi-permeable 

barrier, allowing the exit of water and ions but not the entry of larger molecules such as 

proteins, lipids, or microorganisms. The skin surface is naturally colonised by a range of 

bacterial flora, including both commensal organisms and potential pathogens, which in 

standard conditions are not harmful.  

Bacterial skin infections occur when the natural barrier is compromised, for instance in 

wounds such as diabetic ulcers, pressure sores and burns and in patients with psoriasis or 

other skin conditions. Infections are characterised by an uncontrolled and excessive growth 

of pathogenic bacteria in or on the skin, and are a widespread problem in healthcare. 

Infections can be chronic, in which the infection persists and stops the wound from healing; 

or acute, in which the wound heals rapidly and infection can be cleared easily by the immune 

system or medication. The most common bacterium isolated from skin and soft tissue 

infections (SSTIs) is Staphylococcus aureus, a gram-positive pathogen commonly found in the 

nasal epithelium and on skin as a commensal organism. Between April 2014 and March 2015 

there were 9,827 reported cases of methicillin sensitive Staphylococcus aureus (MSSA) 

infection and 801 reported cases of methicillin resistant Staphylococcus aureus (MRSA) in the 

UK alone, amounting to a large financial burden to healthcare. S. aureus infections are 

especially prevalent individuals >85 years of age, due to an increased healing time and 

reduced immune efficiency in these patients (Wicke et al., 2009), and fast and efficient 

treatment with anti-microbial agents is an important step towards reducing the severity of 

these infections. 

Wound infections are frequently treated with antibiotics which aim to directly kill any bacteria 

present, however, due to the rise in resistance to these drugs encouraged partially by 

incorrectly administered systemic treatment, alternate drugs are being increasingly 

frequently used (Alanis, 2005). Modern antimicrobial components of wound dressings include 

silver sulfadiazine, manuka honey and polyhexamethylene biguanide (PHMB), and antiseptics 

such as sodium chloride and chlorhexidine (Howell-Jones et al., 2005). These therapies have 

the capacity to reduce bacterial burden, however they are not as fast and effective as 
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antibiotic therapy and some, such as silver, can be expensive as a long-term treatment of 

chronic infections.  

One new target of anti-microbial research is host adhesion, aimed at preventing the initial 

attachment stage of bacterial colonisation and which should therefore reduce the likelihood 

of infection. Although in its infancy, this field shows potential in the prevention of bacterial 

infections, with a more limited chance of resistance developing due to the lack of direct 

selective pressure on the pathogens. 

Here we investigate one potential anti-adherence therapy and its possible application for the 

treatment of wound infections.  

1.1 Innate Immunity as a Barrier 

The skin is a key component of the innate immune system and is a complex, multi-component 

organ capable of mounting a full immune response. It can secrete anti-microbial peptides, 

modulate surface pH and secrete immune recruitment factors such as cytokines and 

chemokines in response to wounding and the presence of invading bacteria (Ong et al., 2002). 

1.1.1 Skin Structure 

Mammalian skin is a multi-layered structure, and consists of an epidermis, a dermis, and a 

subcutaneous layer which together can form an impenetrable barrier to micro-organisms. The 

skin consists of many cell types and distinct structures as shown in Figure 1.1 (Haake et al., 

2001, MacNeil, 2007). The epidermis is the upper-most layer of the skin and is formed 

primarily of keratinocytes, alongside pigment forming melanocytes, Langerhans cells and 

nerve receptors. The epidermis is composed of layers (Fig 1.1B). Keratinocytes start as 

undifferentiated proliferated cells at the epidermal-dermal junction, gradually differentiating 

and stratifying as they move up through the layers towards the surface of the skin.  Each 

epidermal layer has its own characteristics. At the base of the epidermis is the Stratum Basale, 

which consists of actively dividing cells and pigment-producing cells. Above this is the Stratum 

Spinosum, which is a thick layer of partially differentiated cells with oval nuclei and a spiny 

appearance caused by keratin build-up. The Stratum Granulosum above this is the layer in 

which keratinocytes begin to lose their nuclei and flatten to form a hard envelope. Finally, the 

keratinocytes die and form the Stratum Corneum, the uppermost layer of the epidermis  
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Figure 1.1: Structure of Human Skin: (A) Human skin is composed of a keratinocyte dense 

epidermis, connected by a basement membrane to a dermis containing immune cells, fibroblasts 

and structures such as sweat glands and hair follicles. Reproduced with permission from MacNeil 

et al (MacNeil, 2007). (B) Immediately above the basement membrane, are actively replicating 

cells. As newer cells are made, older cells are pushed up through the layers of skin as they 

differentiate and age. As they reach the upper surface of the skin cells fully differentiate, lose their 

nuclei and die, forming the desiccated stratum corneum which acts as the first barrier to infection. 

   

A 

B

N 
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(Haake et al., 2001). This layer is composed entirely of dead cells lacking nuclei with hard 

protein envelopes and forms an effective barrier against pathogens. Due to a lipid build-up 

and the close cell junctions, this layer is waterproof and impermeable to pathogens (Ong et 

al., 2002, Winsor and Burch, 1944, Madison, 2003). The dehydrated nature of the stratum 

corneum also discourages growth of some moisture-requiring microbial species on its surface, 

and a rapid turnover of dead keratinocytes reduces the time available for the establishment 

of infection by surface pathogens (Roth and James, 1988). 

Below the epidermis, separated by the epidermal:dermal junction, is the dermis. The dermis 

is mostly connective tissue and acts as a protective layer for internal structures. It can be 

divided into 2 layers, the papillary region and the reticular dermis. The papillary region is 

located adjacent to the epidermis and is primarily formed of fibroblasts secreting extracellular 

matrix (ECM) proteins, including collagen, elastin and various glycoproteins (Bosman and 

Stamenkovic, 2003). This layer also contains capillaries and sensory structures for heat and 

pressure. The reticular dermis is a deeper layer formed of collagen, elastin and reticular fibres. 

This layer contains hair follicles, sweat glands, nail beds and cutaneous receptors. The main 

cell types in the dermis are fibroblasts (secreting ECM), adipocytes (secreting lipid) and 

macrophages (primarily for immune defence) (Menon, 2002). 

The surface of the stratum corneum also has an acidic pH, first observed by Heuss et al in 

1892 and quantified by Schade and Marchionini in 1928 (Schade and Marchionini, 1928), 

which conveys an extra line of defence against invading pathogens. Low pH is also required 

for lipid organisation and metabolism in the stratum corneum, and has functions in surface 

permeability (Schmid-Wendtner and Korting, 2006). A change in skin pH is observed in 

conditions involving a compromised skin barrier such as atopic dermatitis and psoriasis 

(Schneider et al., 2005).  

1.1.2 Skin Defence Molecules 

Keratinocytes, the primary cell type found in the epidermis, have been shown to secrete 

molecules that chemically protect the skin from microbial colonisation. These include 

lysozyme, secretory leukoprotease inhibitor or antileukoprotease, RNase 7, elafin, and 

dermcidin (Glaser et al., 2005) as well as small 20-46 amino acid peptides known as anti-

microbial peptides which can cause the lysis of a range of resident microorganism. The 
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expression of members of these protein groups has been shown to increase in chronic 

wounds as a defence against continuing infection (Kesting et al., 2010). 

Most anti-microbial peptides (AMPs) have a net positive charge and contain many basic 

residues (Zanetti et al., 2000). They bind to negatively charged components on the bacterial 

cell membrane, including lipopolysaccharides, polysaccharides, phospholipids and teichoic 

acids. Human β-defensins and cathelicidins (2 types of AMP) can also induce the production 

of cytokines such as interleukin 8 (IL-8), which further activate the immune system (Schneider 

et al., 2005).   

Attempts at modifying of these host defence peptides to create an artificial barrier to 

infection are currently being conducted (Kesting et al., 2010). One example of this is the 

development of short hydrophobic peptides based on the IG-19 region of human LL-37, 

synthesised by Nan et al which show prokaryotic selection and LPS neutralising activity when 

applied to bacterial cultures (Nan et al., 2012). 

1.1.3 Immune Response 

Within the skin and underlying tissues there is a large range of active defence mechanisms 

that can act against invading pathogens. The first immune skin response upon wounding is 

the secretion of AMPs, matrix metalloproteases (MMPs) and cytokines such as IL-1β, IL-6, IL-

18 and TNF by keratinocytes. These cytokines are largely pro-inflammatory, inducing an 

increase in blood flow to the wounded area and an influx of immune cells.  

The first immune cells to respond to wounding and infection are Langerhans cells: dendritic 

cells which have been shown to have a range of functions in human skin. These innate cells 

can phagocytose pathogens and present antigen, and contribute further to the immune 

response by further secreting cytokines and chemokines, for example by secreting IL-15 for 

the recruitment of CD8+ T Cells (Klechevsky et al., 2008). Langerhans cells have also been 

shown to upregulate the production and activity of T helper cells, thus suggesting a role for 

them in tissue homeostasis (Seneschal et al., 2012). Cytokines and chemokines secreted by 

dendritic cells, keratinocytes and fibroblasts generate a chemotactic protein gradient to 

attract further immune cells such as neutrophils, T cells, monocytes and macrophages 

(Pasparakis et al., 2014).  
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Mast cells in the skin are one of the fastest responders to signals of a new threat. These cells 

possess specialised cytoplasmic compartments which contain pre-made pro-inflammatory 

cytokines and chemokines, that can be released rapidly upon the detection of antigens. This 

leads to the recruitment of natural killer cells to the site of infection, which clear invading 

pathogens via a range of killing mechanisms (St John et al., 2011).  

Macrophages and monocytes also play a clear role in the initial response to skin wounding 

and infection. Circulating monocytes and resident macrophages both patrol the skin for 

antigens, and transport any antigens to lymph nodes for further immune activation (Jakubzick 

et al., 2013). Macrophages can be split into 3 categories based on their activation and 

function: pro-inflammatory M1, regulatory M2, and wound-healing macrophages which are 

activated at various stages of the wounding process (Mosser and Edwards, 2008). 

Finally, initiation of a T cell response and then B cell defence leads to a longer lasting 

immunity. 2 times more T cells reside in the skin than are found in general circulation, and 

they have been shown to be sufficient to generate an immune response even in the absence 

of alternate lymphocytes (Clark et al., 2006). Figure 1.2, from a review by Nestle et al, shows 

the more complex picture of interactions within the immune response to wounding and 

infection (Nestle et al., 2009). 

1.1.4 Wound Healing 

Another way in which the skin protects wounds from infection is the process of wound 

healing. This is a complex process consisting of 3 main phases and involving many cell types 

secreting a large range of cytokines, chemokines and other signaling molecules (Werner and 

Grose, 2003). The first stage of wound healing, inflammation, is an immediate response to 

trauma: platelets clot to prevent bleeding, blood vessels deliver immune cells, nutrients and 

enzymes to the site of the trauma, and inflammation occurs. The second stage, proliferation, 

is when new granulation tissue is generated and new ECM proteins are synthesized and 

deposited in the wound by fibroblasts. Angiogenesis also occurs during the proliferation 
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Figure 1.2: The Skin’s Immune Response to Wounding and Infection: A trauma to the skin such as 

a wound, burn or infection instigates an immune response involving a plethora of cells and 

signalling molecules. Langerhans cells and keratinocytes are responsible for the first activation of 

the immune system, and secrete a range of cytokines such as IL-1β, IL-6 and IL-18. Fibroblasts in 

the dermis also secrete TNF and IL-6 and contribute to the inflammatory response. Dendritic cell, 

NK cells and T cells are all then recruited to the site of damage and inflammation is instigated. 

Reproduced with permission from Nestle et al (Nestle et al., 2009). 
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stage, creating new blood vessels within the wounded area. The third and final stage of 

wound healing is the matrix remodeling stage. In this stage, keratinocytes proliferate and 

migrate laterally to form a new epidermis upon the freshly placed collagen and ECM.  The 

deeper dermal tissue is also gradually remodeled over a period of years to replace non-

functional cells and weak connective tissue, reducing scarring (Barrientos et al., 2008).  

Chronic wounds are wounds that are deficient in some aspects of the healing process, making 

wound closure a much slower process. One interesting hypothesis suggests that chronic non-

healing wounds are caused by inefficient clearing of opportunistic pathogenic bacteria from 

the wound (Bjarnsholt et al., 2008). 

1.1.5 Microbiome 

The skin is a habitat for various commensal organisms, including many potentially pathogenic 

species of bacteria (Grice et al., 2009). The skin encompasses many different niches; from 

very dry, cold areas such as forearms to warm, moist areas such as underarms; and a different 

range of bacteria thrive in each area. The exact composition of the microbiome varies 

between individuals and can have a large effect on potential personalised treatments 

(ElRakaiby et al., 2014). In 2012 a role for skin microbiota in immune function was outlined by 

Naik et al. This research suggested that commensal organisms in mice can aid in immune 

function at the skin surface by increasing Interleukin-1 signalling and thus promoting the 

activity of T effector cells  (Naik et al., 2012). This has not yet been confirmed in other 

organisms however it suggests that much is still not known about the interplay between 

commensal organisms and the skin, and treatments that effect the microbiota non-

specifically could have dangerous effects on natural skin immunity. 

 

1.2 Skin Pathogens 

Some members of the microbiota of skin are opportunistic pathogens, and after a break in 

the skin barrier can penetrate into the tissue and cause infection. Common causes of skin and 

soft tissue infections are Staphylococcus aureus, Pseudomonas aeruginosa, Staphylococcus 

epidermidis and Streptococcus pyogenes, and often it is a combination of more than one of 

these pathogens that cause clinical conditions. In the wound setting, bacteria can act to cause 
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an infection individually, in their planktonic form or by the formation of a biofilm, which 

grants protection to the pathogens and causes harder to treat infections (Figure 1.3). 

1.2.1 Staphylococcus aureus 

Staphylococcus aureus is a leading cause of skin and wound infections in the developed world. 

It is a Gram positive coccus and commonly colonises the skin, respiratory tract and nasal 

epithelium. Diseases for which it is the causative agent including cellulitis, folliculitis, furuncles 

and impetigo (Tognetti et al., 2012). According to a recent NHS survey, there were 9,827 total 

cases of Methicillin Sensitive Staphylococcus aureus (MSSA) bacteraemias reported by the 

NHS in England between 1 April 2014 and 31 March 2015, and SSTIs accounted for roughly 

one-fifth of these MSSA infections. In that year, 92.5% of all S. aureus infections were sensitive 

to antibiotics, however 7.5% were resistant to one or more treatments (Gerver et al., 2015, 

Acute Trust et al., 2015). Like most bacterial skin pathogens, S. aureus gains access to target 

tissues via a break in the epidermis and once established in the skin, S. aureus causes 

noticeable symptoms associated with skin and soft tissue infections, including dryness, 

itchiness, and boils (NHS, 2011). It has a large range of adhesins and can adhere to fibronectin 

moieties on target epithelial cells via fnBP (Arrecubieta et al., 2008), and this adherence is 

enough to induce the internalisation of the bacterium by the host cell (Sinha et al., 2000). 

Staphylococcus aureus can also penetrate deeper into tissues and enter the blood stream, 

from where it can pass into different areas of the body. These systemic infections can often 

produce high mortality rates by multiple organ failure (Blot et al., 2002). 

1.2.2 MRSA  

Methicillin resistant Staphylococcus aureus (MRSA) is a staphylococcal infection characterised 

by a resistance to β-lactam antibiotics such as methicillin, oxacillin and cephroxadin.  In 98% 

of environmental isolates, MRSA was found to also be resistant to other classes of antibiotics  
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Figure 1.3: Biofilm Formation: Once a small number of bacteria are adhered to a surface, such as 

a wound or implanted medical device, they can replicate to form a biofilm. To do this, the bacteria 

first form a protective coating around themselves and change their gene expression drastically. 

Once established in this way, they can proliferate further and form a 3D colony. At this stage, other 

bacteria can adhere to and proliferate within the biofilm, and will fulfil different roles to live in 

symbiosis within the biofilm. Once established, a full biofilm is very difficult to treat, and constant 

bacterial shedding make secondary infections more likely.    
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(Roberts et al., 2013). MRSA can be categorised into hospital acquired (HA-MRSA) and 

community acquired (CA-MRSA) depending on the source of infection. It employs multiple 

mechanisms to convey resistance to antibiotics as outlined in section 1.4.2, such as mecA, a 

broad spectrum penicillin binding protein (PBP) which prevents the effects of penicillin and 

other β-lactam antibiotics within the cell by cleaving them into harmless products (Tong et 

al., 2012, Chambers, 1997).  

Between April 2014 and March 2015 there were 801 reported cases of MRSA in the UK alone. 

The highest rates of infection are among those ≥85 years in age and in general a higher 

proportion of men exhibit the infections than women. These statistics are not limited to skin 

and soft tissue infections and include Staphylococcal medical device infections and 

pneumonia infections. The mortality rate associated with MRSA infections is almost three 

times higher than that of MSSA (Blot et al., 2002). This is because it is harder to diagnose, and 

doesn’t respond to normal antibiotic treatment, allowing the infection more time to become 

firmly established. Resistant infections such as MRSA are causing significant problems for 

worldwide healthcare. Although 92.5% of infections identified in hospitals are still susceptible 

to non-lactam based antibiotics, resistance is still developing, and typical antibiotic treatment 

is becoming progressively less effective (O'Meara et al., 2000). Additionally, in recent 

decades, Staphylococcus aureus has developed resistance to non-lactam antibiotics such as 

vancomycin (Sieradzki et al., 1999) and ciprofloxacin (Blumberg et al., 1991), and therefore 

the need for new alternative treatments in this area is therefore becoming more pressing 

(Tong et al., 2012).  

1.2.3 Other Common Bacterial Pathogens 

 1.2.3.1 Pseudomonas aeruginosa  

Pseudomonas aeruginosa is an opportunistic infection which causes sepsis, inflammation, 

haemorrhaging and necrosis. After S. aureus, P. aeruginosa is the next most prevalent 

infectious agent in leg ulcers (Hansson et al., 1995), and is also commonly found in burn 

victims. It is also one of the principle bacteria found in wound biofilms (Dowd et al., 2008). 

This infection causes repetitive problems with hospital patients as it flourishes on medical 

equipment such as catheters and heart valves. P. aeruginosa adheres to target cells via a 
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series of adhesins including the lectins: LecA and LecB (Sato and Okinaga, 1987, Chemani et 

al., 2009).  

1.2.3.2 Staphylococcus epidermidis  

Staphylococcus epidermidis are Gram positive cocci which normally exists as a non-

pathogenic commensal organism of the skin. In immunocompromised patients however, such 

as those with chronic wounds, it can cause serious infections. As with P. aeruginosa it is able 

to form biofilms on polymeric surfaces which leads to a wide range of medical device related 

infections, including infections of catheters and heart valves. Its adherence factors include 

capsular polysaccharide adhesins that form part of the slime component of biofilms (Knobloch 

et al., 2002, Ofek et al., 2003).  

1.2.3.3 Streptococcus pyogenes 

Streptococcus pyogenes is a less prevalent causative agent of wound and soft tissue infection. 

This species possesses a number of surface proteins that allow it to adhere to target epithelial 

cells, for example, Protein M on the streptococcal surface binds to GAGs (glycosaminoglycans) 

of the epithelium (Pancholi and Fischetti, 1989). Lipoteichoic acid (LTA) can also bind to 

fibronectin in the ECM (Beachey, 1981), and from there the bacteria can also bind albumin at 

the cell membrane for a tighter association (Egesten et al., 2011). S. pyogenes has been 

isolated from patients with SSTIs, otitis media, bronchitis, sinusitis, meningitis, and 

pneumonia (Nobbs et al., 2009). 

1.3 Entry Pathways for Infection 

As noted previously, colonisation often occurs after stress or trauma to the skin leading to a 

compromised barrier and adherence has been shown to be a key factor in this colonisation 

(Beachey, 1981). This damage is often in the form of a burn, a wound or a bite, or through a 

condition causing a weakened barrier such as atopic dermatitis or psoriasis. When the tissue 

is damaged, bacteria can easily adhere to exposed matrix factors and cellular receptors which 

would normally be concealed.  

The ability of bacteria to adhere to cells via specific receptor interactions allows them to 

target favourable environments in a host and thrive, and after adherence bacteria can flourish 

extracellularly as a bio-film or induce internalisation by various methods. Once internalized, 
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some species of bacteria can pass from cell to cell and potentially into the blood stream where 

an infection can be transported to other sites around the body, resulting in systemic infections 

(bacteraemia, sepsis) (Cozens and Read, 2012). 

The mechanism of adherence employed by bacteria is species-specific, however common 

mechanisms exist across species, as outlined below. Pathogens will often employ multiple 

mechanisms of adherence in order to establish tight docking onto a cell. 

1.3.1 Hydrophobic Attachment 

The initial mode of attachment used by most bacteria is a weak hydrophobic connection. 

Bacteria and cells both have an overall negative charge at physiological pH, which causes 

repulsion, one of the first barriers to adherence. To overcome this, some organisms will 

present positively charged or hydrophobic molecules on their surface, thus reducing the 

repulsive force. This allows for a weak association to form between bacteria and cell, which 

facilitates the formation of a stronger bond necessary to compete with other resident 

commensal organisms and to avoid host clearance (Cozens and Read, 2012, Absolom, 1988). 

It is worth noting that catheters, heart valves and other medical devices are frequently 

manufactured from hydrophobic materials, making it relatively simple for bacteria to adhere 

to them (Krasowska and Sigler, 2014). 

1.3.2 Adhesins 

A stronger connection between pathogen and host can be formed by attachment to host cell 

surface structures or to extracellular matrix. Direct interactions between bacterial adhesion 

molecules (adhesins) and host cell factors such as integrins, cadherins and immunoglobulin-

superfamily cell adhesion molecules is the primary method of attachment. Some bacteria 

however do not bind directly to the host cell, rather they use adhesins to attach to 

extracellular matrix (ECM) proteins such as collagen or fibronectin.  

Bacterial adhesins can be polysaccharide or protein based, and are generally species specific. 

Examples of adhesins include the protein subunit FimH of the pili, which facilitates the 

adhesion of uropathogenic Escherichia coli to the tetraspanin protein Uroplakin 1a on the 

cells of the urinary tract (Martinez et al., 2000, Zhou et al., 2001), and Opc (Opacity protein C) 
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which contributes to the adherence of Neisseria meningitidis to proteoglycan receptors on 

epithelial cells (de Vries et al., 1998).  

1.3.2.1 Staphylococcus aureus Adhesins 

Staphylococcus aureus has a diverse range of adhesins (Figure 1.4). This includes MSCRAMMs 

(microbial surface components recognising adhesive matrix molecules) such as fibronectin 

binding proteins (FnBPs) A and B which attach to fibronectin from the extracellular matrix and 

through a β-zipper mechanism, allowing connections to the cell through β1 integrins 

(Schwarz-Linek et al., 2003). FnBPs also bind to fibrinogen and to Heat shock protein 60 

(hsp60) (Dziewanowska et al., 2000). A surface clumping factor, ClfA, of S. aureus has also 

been shown to bind to fibronectin and fibrinogen in the stratum corneum (Cho et al., 2001, 

McDevitt et al., 1994), and the autolysin/adhesin protein Atl interacts with Hsc70 expressed 

on the cell membrane (Hirschhausen et al., 2010). Additional adhesins include but are not 

limited to: IsdB, Extracellular Adherence Protein (Eap), Sle1, and extracellular matrix protein-

binding protein (Emp) (Foster and Hook, 1998). Many of these attachment mechanisms are 

also exploited to induce internalization of the S. aureus, further demonstrating the link 

between adherence and infection.  

1.4: Treatment of Wound Infections 

Various studies have been undertaken in an attempt to determine the financial burden of 

current wound management in hospitals (Posnett et al., 2009). Figures are inconclusive due 

to the likelihood of multiple complications in skin infections, however average figures have 

been published which suggest treating general wound and infections costs in the area of 2-

4% of the national healthcare budget and that treating antibiotic resistant infections (such as 

MRSA) costs the United Kingdom in excess of £1 billion each year. Finding ways in which to 

treat these wounds more effectively, and prevent the onset of chronic infections, is therefore 

an important goal financially, as well as for the improvement of mortality rates and healthcare 

(Gottrup et al., 2009, Posnett et al., 2009).  

1.4.1 Drugs and Antibiotics  

Systemic drug delivery is commonly used for the treatment of wound infections, in which 

antibiotics are taken orally or intravenously. Vancomycin has been used extensively as a  
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Figure 1.4: Adherence of Staphylococcus aureus: Staphylococcus aureus has a wide range of adhesins for 

binding to host cells including ClfA/B, FnBP A/B, Atl and IsdB amongst others. These help the bacteria bind 

to the cell surface, to β3 integrins, Hsp60 and Hsc70, or to the ECM, to fibronectin or fibrinogen. The 

tetraspanin CD9 is known to be a binding partner to many of the host receptors. 



16 
 

systemic treatment against MRSA infection; however, as with many other antibiotics, strains 

of MRSA have been identified which are also resistant to vancomycin, with up to 74% of soft 

tissue infection isolates having this resistance. Recent guidelines by the Infectious Disease 

Society of America recommend clindamycin, trimethoprim-sulfamethoxazole, tetracycline 

(minocycline or doxycycline) or linezolid for the treatment of suspected community acquired 

MRSA infected wounds (Stevens et al., 2014). Antibiotics generally inhibit essential processes 

found in bacterial metabolism, such as cell wall synthesis and type II fatty acid synthesis. 

Systemic delivery of these drugs however can also have wider unwanted systemic effects, and 

does not always lead to optimal concentrations in the wound, leading to failure in treating 

the infection (Zilberman and Elsner, 2008). 

1.4.2 Antimicrobial Resistance  

Recent decades have seen the emergence of antibiotic resistance as an ever-changing 

challenge for global healthcare. Several ‘super bugs’ have arisen which threaten the efficacy 

of antibiotic treatment and have led to the need for alternate treatments. This resistance has 

emerged due in part to the misuse of antibiotics (Alanis, 2005). Finishing a course of antibiotic 

treatment early or using levels that are too low creates selective pressure on the bacterial 

population. This will often be sufficient to kill sensitive strains, however strains with a 

mutation that conveys resistance or an enhanced potential for survival will be less effected. 

In this situation, competing strains have been removed and a population bottleneck occurs, 

allowing the resistant strain to flourish (Davies and Davies, 2010, Levy and Marshall, 2004). 

Resistance mechanisms can also be transferred between bacteria and potentially species by 

lateral gene transfer by conjugation (Arai, 1967).   

Additionally, antibiotic resistance is known to arise in livestock and in water bodies such as 

lakes, rivers and waste water effluents due to selective pressure exerted by drug 

contamination in the water and the increased occurrence of genetic exchange (Lupo et al., 

2012). Multiple mechanisms of resistance exist in the population and are too numerous to list 

here. Some common examples include β-lactamases which act by breaking down β-lactam 

antibiotics, and multidrug efflux system which can pump multiple types of antibiotics out of 

the bacterial cytoplasm (Levy and Marshall, 2004, Davies and Davies, 2010). Additionally, 
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some pathogenic bacteria can form biofilms which provide protection from antimicrobials 

(Stewart and Costerton, 2001). 

MRSA exhibits a large number of virulence genes which convey antibiotic resistance. The first 

appearance of MRSA was in the 1940s, with a strain which produced penicillinase which 

cleaves and inactivates the essential β-lactam ring of penicillin (Kirby, 1944). The second 

resistant strain identified contained a low affinity penicillin binding protein (PBP 2a) coded by 

the mecA gene conveying resistance to a broad range of methicillin-like antibiotics (Chambers 

and DeLeo, 2009, Kirby, 1944). Another mechanism of resistance in MRSA is known as the 

Erm mechanism, conferring resistance to erythromycins in which the Erm methyl transferase 

enzyme methylates part of the 23S RNA subunit of the ribosome, allowing protein synthesis 

but preventing the binding of erythromycins (Westh et al., 1995). 

Due to the constant increase in the occurrence of resistance, other categories of drugs are 

required to potentially target other aspects of bacterial virulence, such as adherence, toxin 

production or biofilm formation (Kollipara et al., 2014). 

1.4.3 Combined treatments 

Combination therapy as a method to combat bacterial resistance is the treatment of 

infections with 2 or more compounds with different modes of action, for example a 

fluoroquinolone with a macrolide, or a β-lactam with an aminoglycoside or tetracycline. This 

has shown some success in the treatment of resistant infections, for example the combination 

of levofloxacin and rifampicin, or daptomycin and rifampicin, in the treatment of MSSA 

infection (El Haj et al., 2015), however more detailed clinical studies regarding the success 

and consequences of these combinatory treatments need to be undertaken, and more 

detailed information of the speed of drug delivery and wound concentration need to be 

sought (Davies and Davies, 2010) 

1.4.4 Wound Dressings 

The main requirement of a therapeutic antimicrobial agent is that it prevents infection of 

human cells without negatively affecting cell or tissue function. Therefore, most commercially 

available wound dressings have antibacterial and antifungal activity. Most modern wound 

dressings are now designed as a bilayer, with the layer adjacent to the wound designed to 
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absorb fluid in the wound, and the upper layer designed to stop bacterial penetration into the 

wound. Newer versions of these also secrete anti-microbials into the wound (Zilberman and 

Elsner, 2008) and can aid in wound healing (Mori et al., 2014, Han et al., 2012). 

Modern antimicrobial components of wound dressings include antibiotics, silver sulfadiazine, 

Manuka honey and polyhexamethylene biguanide (PHMB), and antiseptics such as sodium 

chloride and chlorhexidine (Howell-Jones et al., 2005). These therapies are capable of 

reducing bacterial burden, however some such as silver can be expensive as a long-term 

treatment of chronic infections, and in the case of silver sulfadiazine can also be toxic to host 

cells (AshaRani et al., 2009). Resistance to these treatments has also been observed, such as 

a resistance to  sulfadiazine silver identified in Pseudomonas aeruginosa (Modak and Fox, 

1981). 

Wound dressings and topical treatments can also contain a drug delivery material which helps 

maintain the moist environment conducive to wound healing and also delivers the antibiotics 

and antiseptics mentioned above into the wound slowly, over a period of hours or days 

without degradation (Zilberman and Elsner, 2008). These platforms differ in composition 

based on the type of wound and infection and can take on many forms including foams, 

hydrofibers® (Aquacel) and hydrocolloids. One common type are based on dehydrated 

wafers; freeze dried dressings which rehydrate and swell upon application to the wound, 

becoming viscous gels. They can be synthesized from sodium alginate, xanthan gum, 

methylcellulose and other emulsifiers, and allow for the steady release of drugs solubilized 

within the wafer (Matthews et al., 2005) Collagen is also frequently used as a dressing. This 

has the disadvantage of being broken down rapidly by wound enzymes, however this can also 

work in its favour as it allows for steady release of drug from the collagen matrix (Radu et al., 

2002). Collagen is also one of the main components of the ECM and therefore many biological 

dressings have been generated using this as a base, incorporating keratinocytes and 

fibroblasts to secrete molecules useful for would healing (Pruitt and Levine, 1984). 

A new type of wound dressing has also been developed which can release a drug in response 

to the presence of the bacteria. One example of this is the gentamycin polyvinyl acetate 

hydrogel, in which the gentamycin is bound to the hydrogel by a peptide linker which can be 

cleaved by a proteinase secreted by Pseudomonas aeruginosa (Suzuki et al., 1998). 
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1.4.5 Anti-adherence Therapies 

Anti-adhesion therapies are a relatively new area of research focus which are becoming 

increasingly popular with the rise in antibiotic resistance, as they exert a weaker selective 

pressure on bacteria and are therefore less likely to cause resistance to develop. They reduce 

adherence of bacteria, and thus reduce infection and can be host-targeted or pathogen-

targeted (Cozens and Read, 2012).There are a variety of mechanisms by which they can work, 

including: changing host receptor expression, interfering with host receptor function, directly 

blocking host-bacteria interactions, coating the host with non-adhesive molecules, and 

blocking bacterial adhesins (Krachler and Orth, 2013).  

There are currently a number of anti-adhesion therapies being developed to treat bacterial 

skin and soft tissue infections (Krachler and Orth, 2013, Cozens and Read, 2012). One example 

in development are the proanthocyanidins, extracted from cranberry juice, which are being 

developed for the treatment of urinary tract infections (Shmuely et al., 2012). These 

molecules have also been shown to inhibit the binding of Helicobacter pylori (Burger et al., 

2000) and Porphyromonas gingivalis (Labrecque et al., 2006), making them a potentially wide 

spectrum treatment. Alternatively, biphenyl mannosides are known antagonists of FimH, a 

major binding factor of E.coli, first identified over 40 years ago (Hartmann et al., 2012). These 

saccharides have been used to successfully inhibit the adhesion of E.coli to host cells 

(Hartmann et al., 2012). 

Peptide based adhesion inhibitors are much rarer, with issues frequently arising during early 

stages of their development in downstream toxicity, specifically alterations in host cell 

signalling and metabolism (Krachler and Orth, 2013), and degradation in the body. Peptides 

that mimic host receptors and those that competitively inhibit bacterial adhesins can easily 

activate signalling pathways downstream and cause unwanted negative side effects in the 

host. Despite this, there are a number of peptide based anti-adhesion molecules in various 

stages of development. For example, p1025, developed by Kelly et al, is a peptide designed 

to prevent dental cavities by inhibiting the adherence of Streptococcus mutans. It acts by 

preventing the binding of surface protein streptococcal antigen (SA) I/II to hydroxylapatite on 

the tooth surface (a naturally occurring mineral found in bones and teeth)  and has shown 

success at preventing the re-colonisation of teeth by S. mutans in vivo (Munro et al., 1993, 

Kelly et al., 1999). Another series of peptides in development are MAM-7 based inhibitors, 
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which have been shown to inhibit the adherence of Escherichia coli, Yersinia 

pseudotuberculosis, Vibrio cholerae, and Vibrio parahaemolyticus to host cells (Krachler and 

Orth, 2011, Krachler et al., 2011) and show promise as an anti-adhesion therapy. 

1.5 Drug Discovery 

The route to the discovery of a potential new therapeutic and the development necessary to 

prepare it for use in the clinic is a long one, full of potential pitfalls. Most molecules that show 

promise as anti-microbials often have unwanted side effects in the host. Problems also arise 

in how the drugs are distributed in the body and their retention in a system. The final pitfall 

encountered is often the expense. On average it costs £1.15 billion to get a drug to market in 

the UK (Industry, 2016). This funding is almost exclusively available to industrial companies 

and not in an academic setting, which affects which drugs are prioritised for development. 

Below is a basic outline of the main steps of getting a potential therapeutic from the initial 

discovery in the lab (by library screening, structural studies, computer based design or 

serendipity) and into the clinic.  

1.5.1 Cell Lines 

Once identified, therapeutics are then tested on cell line models to give an idea of toxicity, 

dosage and effectiveness. Frequently, immortalized cell lines are used for this as they are 

reproducible and simple to test, however it is known that through repeated culture they can 

pick up small mutations that can make them drastically different to the target cells. Primary 

cells isolated from donors give a more accurate model of human response, however these are 

harder to obtain and cells from different donors behave differently, leading to greater 

variance in the data (Pastor et al., 2010, De Saint Jean et al., 2004). 

1.5.2 Tissue Models 

An optional way of testing potential therapeutic compounds before, or as an alternate to, 

animal testing, is in a 3D tissue model. These are favourable over animal models as they 

indicate human responses, and if used as an alternative also eliminate the element of 

suffering possible in animal testing.  Models exist in various stages of development, of organs, 

various epithelial surfaces, and skin (Mroue and Bissell, 2013, Oliveira et al., 2015). 
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One primary example of a developed tissue testing model, used in this study, is the human 

skin infection model developed by Shepherd et al. This model uses keratinocytes and 

fibroblasts derived from patient biopsies which are seeded onto a de-cellularised dermal 

scaffold, also derived from a biopsy, between 2 metal rings. The centre of this inner ring forms 

a model wound with a 10mm diameter. The construct is cultured for 7-14 days at an air-liquid 

interface, and then is ready to be infected (Figure 1.5) (Shepherd et al., 2009). An advantage 

of this model is that it is easily reproducible, allowing for multiple standardized repeats, and 

uses primary human cells, thus giving a more accurate cellular response. Another simpler 

model used in this study is a model of just the human epidermis, sourced by companies such 

as CELLnTEC, in which keratinocytes are seeded onto a porous membrane and grown to 

confluence before moving to air liquid interface and triggering 3D growth and differentiation 

(CELLnTEC, 2015). These models have been optimised by different research groups using 

different scaffolds, such as electro-spun collagen scaffolds, and by using various immortalised 

cell lines.  

Some skin models are commercially available for this type of testing, including Alloderm® 

from LifeCell Inc, EZ Derm™ from Brennen Medical and Integra® from Integra LifeSciences 

Corp. The aim of developing tissue models is to eventually negate the need for animal testing, 

and to develop more complex models for the study of skin diseases such as psoriasis and 

atopic dermatitits. 

1.5.3 Animal Models 

The next stage of drug testing is generally animal testing. Testing at this stage gives good 

indications of how the drug reacts in a whole system with all immune components present 

and many potential drugs fail at this point. The specific organism chosen for testing varies 

depending on availability and relevance of model.  

1.5.3.1 Zebrafish 

Danio rerio, commonly known as zebrafish, are increasingly being used as a model to test the 

effects of small systemic drugs. Prajsnar et al have developed a model in which the fish are 

injected with Staphylococcus aureus, and the drug being studied is put in the media or 

injected. It is not an ideal system, as even certain antibiotics are above the size threshold to 

diffuse into the fish, and therefore must be injected separately to the S. aureus, which is 
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  Figure 1.5: The Construction of a 3D Model of Human Skin with Reproducible Qualities: A skin biopsy is 

cut into fragments and treated in 2 different ways. To obtain a de-epidermised acellular dermis, the skin 

is treated with 1M sodium chloride, and the epidermis is manually removed and discarded. To obtain 

primary cells, the skin is treated with trypsin, which breaks down connection in the dermal:epidermal 

junction. The bottom side of the epidermis and the top side of the dermis is then scraped into media in 

order to isolate keratinocytes. These are cultured with irradiated 3T3 cells which secrete fibroblasts 

growth factors to help the keratinocytes to adhere to the flask and grow. The remaining dermis is then 

treated with collagenase, releasing fibroblasts which can be expanded in culture. After these cells have 

been scaled up in the laboratory, they are seeded back onto the decellularised dermis and allowed to 

grow at air-liquid interface for 10-14 days until they are ready to use. 
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traumatic for the fish and causes injury and some fatalities. It is however a relatively simple 

and rapid way to achieve results that might indicate any possible effects or any toxicity 

associated with the compound being tested (Prajsnar et al., 2008). Zebrafish also have a 

similar immune response to humans, and therefore provide good indicators of possible 

immune reactions (Nuesslein-Volhard et al., 2002, Prajsnar et al., 2008).  

1.5.3.2 Mice 

A more traditional organism used for animal testing is mice. These have a relatively short 

lifespan and, as a mammal, are similar to humans in many ways such as body temperature, 

skin structure and immune functioning. Testing on mammals such as mice, guinea pigs and 

rabbits is generally kept to a minimum due to ethical concerns. 

1.5.4 Clinical Trials 

Clinical trials are the final stage in testing therapeutic compounds, and can be dangerous due 

to the possibility of the compounds being specifically toxic to humans. These trials show the 

exact clinical effects of the drugs in a range of human subjects, and are essential due to the 

inability to predict individual immune responses. They are normally conducted in 3 phases of 

increasing magnitude, and a pre-test may also be carried out using ‘clinical trial simulation’, 

however this cannot predict individual human response and is not therefore not enough on 

its own to prove drug safety (Holford et al., 2010). Clinical trials looking at wounds specifically 

are difficult to standardize, due to the variety in wound size, type and location, as well as 

individual age and health status, and for this reason very few comprehensive studies of 

wound dressings have been undertaken. 

1.6 Tetraspanins 

Tetraspanins are a superfamily of membrane proteins expressed in a range of eukaryotes 

including humans. There are 33 members of this family in mammals. Tetraspanins are known 

as the ‘molecular organisers’ of the cell membrane as their primary function is suggested to 

be the formation of lateral interactions with other tetraspanins, as well as with other protein, 

lipid and polysaccharide components of the cell membrane in order to form specialized 

microdomains known as tetraspanin enriched microdomains (TEM), or tetraspanin webs 

(Levy and Shoham, 2005). Their expression patterns differ between cell types (Figure 1.6, (Kim 
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et al., 2014, Wilhelm et al., 2014, Wang et al., 2015)), as some tetraspanins such as CD9, CD53 

and CD81 are expressed across various different cell types, whereas other such as uroplakins 

1a and 1b are specialised to one cell type. Previous research by Green et al has also suggested 

that tetraspanin expression varies based on the stage of the cell cycle  (Green, 2010). 

TEM were initially studied by biochemical approaches including isolation of detergent 

resistant membranes, co-immunoprecipitation, protein crosslinking and proteomics (Yanez-

Mo et al., 2009, Le Naour et al., 2006, Charrin et al., 2001, Charrin et al., 2002). While these 

techniques have been instrumental in the original identification of TEMs, they do not provide 

insight in the spatiotemporal characteristics of TEM in the plasma membrane. A recent study 

by Zuidscherwoude et al used high resolution microscopy to determine these characteristics 

and challenge the original view of the tetraspanin web (Zuidscherwoude et al., 2015).  

Tetraspanins have been implicated in a wide range of cell functions including signalling, 

migration, adherence and fusion. The exact function of individual tetraspanins is difficult to 

elucidate, as there is redundancy within the tetraspanin web system  (Boucheix and 

Rubinstein, 2001). 

1.6.1 CD9 

CD9 is one member of the tetraspanin family found in humans and many other eukaryotes. 

Its structure is as noted above, and it has 4 cysteines in its EC2 domain, forming 2 sub-loops 

(Boucheix et al., 1991). It has been implicated in sperm-egg fusion (Higginbottom et al., 2003), 

multinucleated giant cell formation (Takeda et al., 2003) and cell migration (Penas et al., 2000, 

Jiang et al., 2013). CD9 function in migrating cells of a wound is outlined in Section 5.6, and 

its roles in immunity are outlined in section 5.4. Section 5.7 describes its roles in 

Staphylococcus aureus attachment to skin cells. Common binding partners of CD9 include 

Claudin-1, CD81, a6b1 and a1b1 integrins and PSG17 (Boucheix and Rubinstein, 2001). 

1.6.2 Tetraspanin Structure  

Tetraspanins have 4 transmembrane domains, often containing polar residues, with 1 

intracellular and 2 extracellular loops and 2 intracellular termini (Figure 1.7). All tetraspanins 

contain a conserved CCG motif in the EC2 domain, characteristic of the tetraspanin family. At 

the time of writing, there have been no 3D crystal structures published for a complete 
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tetraspanin molecule, however the structure of CD81 EC2 domain has been characterised 

(shown in figure 1.7) and is said to resemble a mushroom (Kitadokoro et al., 2003). Further 

theoretical modelling has supported this theory, suggesting that the closely associated 

transmembrane coils hold the protein’s extracellular loops close to one another to support 

the EC2 structure. Tetraspanins also have varying numbers of conserved cysteine residues in 

the EC2 capable of forming disulphide bridges and thus creating a sub-loop structure. This 

structure generally displays the lowest levels of sequence conservation within the molecule, 

and thus contains much of the functional specificity (Hassuna et al., 2009). Tetraspanins also 

have palmitoylation sites adjacent to the membrane which aid in tetraspanin-tetraspanin 

interactions (Charrin et al., 2002, Kitadokoro et al., 2001, Kitadokoro et al., 2003).  

1.6.3 Tetraspanin Enriched Microdomains 

Tetraspanins associate with each other in the membrane, driven partly by the membrane-

proximal palmitoylation sites as well as membrane lipids such as cholesterol, to alter the 

localisation of cell surface components and to form TEM (Charrin et al., 2002). This dynamic 

structure is thought to be essential for many critical cell functions. TEM have been implicated 

in many cell functions, including cell adherence and fusion, membrane trafficking, 

endocytosis, leukocyte adherence and motility (Berditchevski and Odintsova, 2007, Hemler, 

2005).   

At the time of writing, 2 main models for the organisation of TEM have been proposed (Figure 

1.8). The first widely accepted hypothesis is that within the tetraspanin microdomains there 

are multiple different tetraspanins that all have multiple specific partner proteins. In this 

model each TEM is made up of a large number of mixed interacting tetraspanins. Multiple 

proteomic studies support this theory, with 3 to 7 tetraspanins found in differently isolated 

TEM (Le Naour et al., 2006).  Recently, however, the structure of TEM has been revisited with 

super-resolution dual colour stimulated emission depletion microscopy. This study looked at 

the localisation of multiple tetraspanins and their binding partners on a membrane, and it 

was observed that each TEM was only made up of 1-2 types of tetraspanin and their partner 

proteins, and that they were much smaller than originally thought, at less than 120nm in 

diameter (Zuidscherwoude et al., 2015).   
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Figure 1.6: The Expression of Tetraspanins in Different Tissues: PaxDB was used to assess the relative 

levels of 4 common tetraspanins, CD9, CD63, CD81 and CD151 in various human tissues. CD9 is highly 

expressed in the platelets, colon, and brain, similarly to CD81. CD81 however is not expressed in platelets. 

CD151 is also expressed highly in the colon and platelets but not in the brain whereas CD63 is not 

expressed in the brain but is highly expressed in platelets (although at lower levels than CD9).  Data from 

PaxDB, based on studies by Kim et al and Wilhelm et al combined (Kim et al., 2014, Wilhelm et al., 2014, 

Wang et al., 2015). 

    Protein Expression by Spectral Counting (ppm)

Tissue CD9 CD63 CD81 CD151

Skin 575 163 24 -

Heart 36.1 1.85 55.1 13.1

Kidney 327 43.1 267 46.7

Brain 1516 - 835 3.79

Platelet 1506 917 - 110

Liver 11.5 5.45 249 1.26

Pancreas 319 278 418 32.2

Colon 2674 535 709 233

Lung 258 68.5 116 45.7
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Figure 1.7: Structural Features of Tetraspanins: All tetraspanins have a conserved structure, consisting of 

4 transmembrane domains, a small intracellular loop, and two extracellular loops, as well as two 

intracellular termini. They have a conserved CCG motif and multiple additional conserved cysteines in 

their EC2 domains. They also have cysteines proximal to the cytoplasmic membrane which can be 

palmitoylated to alter function. 3 of the transmembrane helices are also known to contain polar residues. 

A) Diagrammatic representation of a tetraspanin: The area represented by a blue dotted line is the most 

variable part of the tetraspanin family, with the greatest amount of sequence diversity. In different 

members of the family this loop also contains different numbers of cysteine residues, which alter its 

tertiary structure. B) The structures of CD81 EC2 domain as characterized by X-ray crystallography by 

Kitadokoro  et al (Kitadokoro et al., 2003). 

 

A 

B 
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Figure 1.8: Two Conflicting Models of a Tetraspanin Enriched Microdomain (TEM): (A) The 

currently accepted model of TEM, in which multiple different tetraspanins with their partner 

proteins pull together to form a mixed domain. (B) The newly proposed model by Zuidscherwoude 

et al, in which each microdomain is made primarily of one type of tetraspanin and its partners 

(Zuidscherwoude et al., 2015).  
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TEMs were first characterised using three detergents of varying strengths combined with co-

immunoprecipitation. This showed 3 levels of interactions between tetraspanins and their 

partners. Primary interactions, which endure the strongest detergent, are the direct strong 

interactions between tetraspanins and their partners, such as between CD151 and integrin 

α3β1 (Serru et al., 1999). Secondary interactions are suggested to be between tetraspanins, 

pulling together their partner proteins observed in primary interaction, and thus starting the 

formation of the tetraspanin web. Tertiary interactions are detected using a weak detergent 

such as Brij98 but not a stronger one. These partners are most weakly associated with the 

tetraspanin web and could contain proteins that are merely located proximal to TEMs 

(Hemler, 2005, Charrin et al., 2009). 

Different regions of the tetraspanin have been seen to be involved in the lateral associations 

required to generate TEMs. For example, the variable region of the EC2 loop of CD151 

interacts with the membrane-proximal stalk region of its partner protein α3β1. The 

transmembrane domains of CD81 and CD9 however are the domains essential for their 

interaction with EWI-2.  

One of the most characterised series of tetraspanin interactions is between CD151 and the 

laminin binding integrins: α3β1, α6β1 and α6β4; a subject of interest due to the 

overexpression of CD151 in various cancers (Romanska and Berditchevski, 2011). These 

interactions occur during the initial stages of biosynthesis and involves the EC2 region of 

CD151. In CD151 knockdowns, usual integrin functions such as signalling and internalisation 

are reduced (Sheng et al., 2009). Another strongly characterised interaction is between CD19 

and CD81, which complex with CD21 and increase B cell activation. When CD81 was knocked 

down in mice, CD19 failed to traffic to the cell surface and glycosylation of CD19 failed to 

occur, supporting a role for tetraspanin in trafficking partners to the membrane (Shoham et 

al., 2003).  

1.5.4 Tetraspanin Knockouts 

Knockouts of tetraspanins in model organisms has provided us with much information on the 

function of tetraspanins. The primary thing that we have learnt from these model is the level 

of redundancy within the tetraspanin web system. Knockouts of many different tetraspanins 

known to be involved in essential cell functions had no obvious effect on cell phenotype. It is 
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speculated that due to the conservation within the tetraspanin family, certain tetraspanins 

can fill in for the function of others when necessary. However, some tetraspanin knockdowns 

have striking phenotypes. For example, CD151-deficient mice had impaired angiogenesis, 

platelet function and immune function (Takeda et al., 2007, Lau et al., 2004, Wright et al., 

2004). CD9 knockdown mice are phenotypically normal, however they have a defect affecting 

sperm-egg fusion, rendering females infertile, and increased monocyte fusion (Takeda et al., 

2003, Miyado et al., 2000, Le Naour et al., 2000). These knockouts also only exhibit a small 

difference in platelet function, despite CD9 being very highly expressed on platelets (Mangin 

et al., 2009). 

1.6.5 Tetraspanins in Immunity 

At the onset of infection, pathogen associated molecular patterns (PAMPs) from invading 

organisms are detected by pattern recognition receptors (PRRs) on host immune cells which 

then trigger full activation of the immune system, including the secretion of cytokines and 

chemokines and an increase in immune cell migration to the site of infection. Tetraspanins 

have been implicated in many of these processes.  

For example, monoclonal antibodies against several tetraspanins increased the migration of 

dendritic cells and natural killer cells in response to a chemotactic gradient (Kramer et al., 

2009, Mantegazza et al., 2004). CD9, CD37, CD53, CD81 and CD82 have all been shown to 

interact with antigen presenting major histocompatibility complexes (MHC), a key surface 

protein in immune activation, and the localisation of MHC complexes could be essential for 

antigen presentation (Kropshofer et al., 2002, Vogt et al., 2002). Alternately, recent research 

has shown that CD37 and CD82 have opposing function in antigen presentation and migration 

of dendritic cells (Jones et al., 2016). 

CD81 also plays a strong role in B cell and T cell responses. CD81 is essential for the trafficking 

of CD19 to the cell surface, as mentioned previously. Mutations in either CD19 or CD81 

reduces the production of antibodies by B cells (Boucheix and Rubinstein, 2001). Additionally, 

CD81 is enriched at the immune synapse, the area of interaction between immune cells such 

as T lymphocytes and antigen presenting cells involved in cell signalling (Mittelbrunn et al., 

2002).  
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CD9 also has a role in immunity. When CD9 is knocked down in macrophages, the TNF-α acute 

inflammatory response is greatly upregulated upon stimulation with LPS, in turn upregulating 

the inflammation in response to pathogens (Suzuki et al., 2009). Additionally CD9, CD14 and 

TLR4 are all seen to interact directly (Suzuki et al., 2009), and removing CD9 from this system 

leads to the re-localisation of TLR4:CD14 complexes to low density membrane fractions, 

possibly upregulating TLR4 signalling (Pfeiffer et al., 2001, Suzuki et al., 2009). Major 

histocompatibility complexes (MHCs) are also known to form supramolecular cell surface 

structures with a range of tetraspanins including CD9 and CD81, helping to stabilise 

immunological synapse formation (Vogt et al., 2002). 

Dendritic cells are immune cells located in the skin and other peripheral tissues. They express 

high levels of PRRs and simulate T cells as well as producing extensive cytokines for immune 

cell recruitment (de Koning et al., 2012). Many of the immune processes in dendritic cells 

have been shown to be reliant on tetraspanins including CD9 which interacts with MHC class 

II, CD37 which promotes dendritic cell migration to sites of infection, and CD82 which is 

involved in antigen presentation. The organisation and function of PRRs has also recently 

shown to be influenced by tetraspanins, however the mechanism with which they do this has 

not yet been defined (Figdor and van Spriel, 2010). A more in depth review of the role of 

tetraspanins in immunity, can be found in Boucheix et al (Boucheix and Rubinstein, 2001). 

1.6.6 Tetraspanins and Integrins 

The most common binding partners of tetraspanins are integrins (Peddibhotla et al., 2013, 

Scherberich et al., 1998, Hong et al., 2012), cell surface receptors involved in adhesion and 

cross-membrane signaling. They can bind both ECM proteins such as fibronectin and collagen, 

and internal structural proteins such as actin via adaptor proteins, and are formed of 2 

subunits, α and β. In mammals there are 18 individual α subunits which can be found in 

complex with one of 8 different β subunits (Laflamme et al., 1994). 

1.6.7 Tetraspanins and Wound Healing  

Tetraspanins and involved in the process of wound healing, via their roles in cell migration 

and interactions with structural proteins. CD9 specifically was seen to be down-regulated at 

the leading edge of the migrating epidermis and is localised to motility related structures 

(Penas et al., 2000). However, when CD9 was knocked out in mice, re-epithelisation of the 
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wound was delayed through an enhancement of JNK signalling and matrix metalloprotease 

MMP-9 expression (Jiang et al., 2013, Zhang et al., 2012). This process was found to be 

regulated in the HaCaT cell line through an integrin switch from αvβ5 to αvβ6, which is 

confirmed by the presence of α5β6 in human wounds (Haapasalmi et al., 1996). Additionally, 

it was found that antibodies to integrins upregulate the expression of collagenase in 

keratinocytes, also increasing epidermal migration (Larjava et al., 1993). After tissue damage, 

platelets bind to the exposed basement membrane via integrins (Ginsberg et al., 1988). 

Additionally, cytokines secreted by white blood cells stimulate the upregulation of integrins 

on fibroblasts and macrophages, which in turn promotes their migration into the wound 

(Toda et al., 1987, Albelda and Buck, 1990). 

1.6.8 Pathogens and Tetraspanins 

Studies have suggested that both viruses and bacteria may be exploiting tetraspanins as a 

gateway for infection (Green et al., 2011). For example, diphtheria toxin receptor, a key 

virulence factor receptor for Cornyebacterium diphtheria infection, has been shown to 

associate with CD9. Furthermore, over-expression of CD9 in target cells increases 

susceptibility to diphtheria binding (Nakamura et al., 2000). Uropathogenic E.coli has also 

been shown to exploit tetraspanins in order to adhere to and infect cells. TSPAN21, a member 

of the human tetraspanin family (also known as Uroplakin 1a) has been shown to associate 

with the lectin FimH, which  is found at the tip of type 1 fimbrae of E.coli (Zhou et al., 2001).  

CD81 also has a direct role in hepatitis C virus infection and it has been demonstrated that 

antibodies to the EC2 domain of CD81 can inhibit viral binding to cells (Zhu et al., 2012, Helle 

and Cocquerel, 2008, Pileri et al., 1998). 

CD9 is known to be involved with many of the host cell receptors exploited by Staphylococcus 

aureus to instigate an infection. For example, CD9 closely interacts with β1 integrins, as 

identified by co-immunoprecipitation experiments (Rubinstein et al., 1994) and these 

integrins are required for Staphylococcal adherence via FnBP (Wilkinson et al., 1995). CD9 is 

also known to associate with a wide range of other integrins as outlined in Berditchevski et al 

(Berditchevski, 2001), including α6β4 in keratinocytes (Jones et al., 1996) and αvβ3 

(Peddibhotla et al., 2013) , which associates with both CD9 and Hsc70, another cellular 

receptor which S. aureus exploits for adhesion to host cells (Guerrero and Moreno, 2012).  
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Fibronectin, one of the major cell receptors for Staphylococcus aureus, has also been shown 

to bind directly to recombinant CD9 and immobilised platelet CD9, suggesting a direct 

interaction between CD9 and Fibronectin (Guerrero and Moreno, 2012). Additionally, in 

platelets, fibrinogen receptors become exposed when cells are treated with anti-CD9 

antibodies (Hato et al., 1988). 

These examples show how bacteria can exploit tetraspanin interactions in order to adhere to 

and subsequently infect host cells. Recent studies have suggested that tetraspanins could be 

utilized as a potential therapeutic target. Unlike traditional drugs, this therapy would target 

components of the host as opposed to the bacteria, and thus would decrease the likelihood 

of resistance developing (Hassuna et al., 2009). 

1.6.9 Tetraspanin Based Therapies 

Hassuna et al have shown that the application of antibodies to various tetraspanins, and 

recombinant EC2 domains, disrupts the adherence of bacteria such as Neisseria meningitidis, 

Staphylococcus aureus and Salmonella enterica to mammalian cells (Hassuna et al., 2009). 

This work has now been extended to include additional bacterial species and cell types (Table 

1.1). As mentioned previously, tetraspanins connect together molecules on the membrane of 

host cells to create tetraspanin webs, and can create adhesion platforms for bacteria such as 

E. coli. It is likely that as is demonstrated with leukocyte adhesion platforms (Barreiro et al., 

2005), tetraspanins are involved heavily in the organization of bacterial adhesion platforms 

and that treatments are disrupting TEM and therefore these adhesion platforms (Figure 1.9). 

In a model of Neisserial infection of Hec-1-B endometrial cells carried out by Dr Daniel Cozens, 

CD9 EC2 domain showed high levels of success in inhibiting Neisseria meningitidis adherence, 

whereas CD81 EC2 domain had no effect. Chimeric proteins were therefore produced, where 

sections of CD9 were substituted with sections of CD81 to determine the essential sites for 

the anti-adhesive effect. The segments which showed the greatest change in binding were 

generated as short peptides to be developed as potential therapeutics (Figure 1.10). There 

are many proteases in the wound environment, and large molecules such as antibodies and 

EC2 domains would be broken down rapidly, leading to the decision to generate smaller 

peptides with greater permeability and ease of production. (O'Driscoll et al., 2013) These 
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peptides showed an equal success to EC2 domains in reducing the adherence of Neisseria 

meningitis and Salmonella enterica to host cells. 

It was therefore hypothesised that the peptides could have an effect on the adherence of 

Staphylococcus aureus in vivo, and therefore could potentially have a therapeutic role in a 

wound environment. Despite the lack of evidence for a direct interaction, it has been shown 

that tetraspanins interact with the host cell adhesion targets of Staphylococcus aureus. For 

example, Hsc70 is seen to interact with CD38 and CD81 in human lymphoblastoid B cells 

(Zumaquero et al., 2010). S. aureus receptors could therefore be dispersed using a tetraspanin 

targeted therapy.  
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Table 1.1: Tetraspanin Treatments Are Effective on a Range of Cells and Bacteria 

 

 

 

 

 

 

 

Treatment Targets Cell Type Bacterial Species Reduction Source 

Antibody CD9,63,81 DETROIT Neisseria meningitidis 50% 
(Green et al., 
2011) 

  CD9,63,81,151 HEC-1-B Neisseria meningitidis 25% 
(Green et al., 
2011) 

  CD9,63,81 
MD 
Macrophages 

Neisseria meningitidis 20% (Green, 2010) 

  Combi (9,63,81) 
MD 
Macrophages 

Neisseria meningitidis 60% (Green, 2010) 

  Combi (9,63,81) HDMECs Neisseria meningitidis 60% 
(Green, 2010) 

  CD9,63,151 Hec-1-B Neisseria lactamica 70% 
(Green, 2010) 

  Combi (9,63,81) Hec-1-B Neisseria lactamica 50% 
(Green et al., 
2011) 

  Combi (9,63,81) Hec-1-B Escherichia coli 50% 
(Green et al., 
2011) 

  Combi (9,63,81) Hec-1-B Salmonella enterica 30% 
(Green et al., 
2011) 

  Combi (9,63,81) Hec-1-B 
Streptococcus 
pneumoniae 

40% 
(Green et al., 
2011) 

  CD9 J774 Salmonella enterica 45% Unpublished 

  CD81 J774 Salmonella enterica 25% Unpublished 

  CD63 
MD 
Macrophages 

Salmonella enterica 50% (Hassuna, 2010) 

 CD81 HaCaT Pseudomonas 20% Unpublished 

Recombinant 
EC2 domain 

CD9,63,151 DETROIT Neisseria meningitidis 50% (Green, 2010) 

  CD9,63,151 Hec-1-B Neisseria lactamica 40% (Green, 2010) 

  CD9,63,151 Hec-1-B Escherichia coli 40% (Green, 2010) 

  CD9,63,151 Hec-1-B Salmonella enterica 50% (Green, 2010) 

  CD9,63,151 
MD 
Macrophages 

Salmonella enterica 50% (Hassuna, 2010) 

  CD9,63,151 Hec-1-B Staphylococcus aureus 40% (Green, 2010) 

  CD9,63,151 Hec-1-B 
Streptococcus 
pneumoniae 

50% (Green, 2010) 

  CD9,63,82,TSPAN3 Hec-1-B Neisseria meningitidis 50% Unpublished 

  CD9,81 Hec-1-B Staphylococcus aureus 50% Unpublished 

Peptides All Hec-1-B Neisseria meningitidis 50% Unpublished 

  All Macrophages Neisseria meningitidis 50% Unpublished 

Detroit 562 is a human epithelial pharynx carcinoma cells line. Hec-1-B cells are a human endometrial 

adenocarcinoma cell line. MD macrophages are monocyte derived macrophages from human peripheral blood. 

HDMECs are human dermal microvascular endothelial cells. J774 cell line are a murine macrophage tumour line, 

and HaCaT cells are a spontaneously immortalised human keratinocyte cell line. Work was carried out by Dr 

Luke Green, Dr Daniel Cozens, Dr Fawwaz Ali and Ms Jehan Alrahimi. 
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Figure 1.9: Disruption of TEM: The treatment of cells with recombinantly expressed EC2 domains, 

antibodies, or tetraspanin based peptides is thought to disrupt TEMs. This can cause the 

redistribution of host cell receptors and therefore prevent the adherence of bacteria the cell. A) 

Normal organization of adhesion platforms by tetraspanins. B) After therapy, receptors are 

redistributed and bacteria can no longer adhere and are cleared by sheer pressure. 
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Figure 1.10: The Origin of Peptide Sequences: Peptides are generated based on the EC2 domain 

of CD9. 8001 is part of the stalk region of the EC2, 800 is part of the large loop, and 810 is part of 

the highly variable sub-loop structure of CD9. Diagram generated by Dr Daniel Cozens and 

reproduced with consent. 

Peptide Sequences: 

810: GPKKDVLETFTVKS 

810SCR: TSKEKLVGPDTKVF 

8001: SHKDEVIKEVQEFY  

8001SCR: EEVKKFESQHDIYV 

800: EPQRETLKAIHYALN 

800SCR: AYPHLERNLQEIAKT 
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1.7 Conclusion 

Bacterial skin infections are a serious problem for healthcare, in terms of patient mortality 

and comfort, as well as financially. Due to the rise in antibiotic resistance cause by antibiotic 

use and misuse, it is becoming increasingly important to find alternate treatments with which 

to treat or prevent infection. Various compounds that fit this description are currently being 

developed and trialled, and many show great potential for the future. There is room however 

for a greater collection of compounds with a wide range of mechanisms of action to prevent 

the increase in occurrences of resistance, and to treat the infections quickly, efficiently, and 

inexpensively. One particular approach that has not yet been fully explored is that of 

therapeutics that target the host rather than the pathogen, and specifically anti-adhesion 

therapies.  

Tetraspanins are multi-functional eukaryotic membrane proteins, and have previously been 

shown to be involved in infection by pathogens. It has also been shown that antibodies against 

tetraspanins, recombinant EC2 domains and CD9 based peptides can reduce the adherence 

of a variety of pathogens including Neisseria meningitidis, Escherichia coli and Salmonella 

enterica to host cells. This therapy aims to disrupt receptor organization within microdomains 

organized by tetraspanins, and thus reduce the opportunity for bacteria to adhere to their 

target receptors. This approach does not put selective pressure on the bacteria, and thus is 

less likely to induce resistance. 

1.8 Hypothesis 

Tetraspanin-targeted therapies will reduce the adherence of Staphylococcus aureus to skin 

cells, showing a potential use for the treatment of wound infections. 

1.9 Aims and Objectives 

The aim of this study is to determine if peptides based on the EC2 domain of CD9 can disrupt 

the adherence of Staphylococcus aureus to cells found in the skin, and in a 3D model of human 

skin. If successful, further tests will be carried out to visualise the effect of this treatment on 

the cells and test for any toxicity of interfering with tetraspanin functions, for example a 

deceleration in wound healing or a change in cytokine signalling. 
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Chapter 2: Materials and Methods: 

2.1 Reagents, Solutions and Buffers 

2.1.1 Reagents 

Trypsin-Versene  

1.1L Trypsin-Versene was produced by diluting 100ml 10x Trypsin-Versene® (Lonza, Belgium) 

into 1L of Hank’s buffered salt solution (HBSS, section 2.13). This was frozen in 20ml aliquots 

at -20oC and defrosted prior to use.  

Difco trypsin 

0.1%w/v Trypsin with 0.1% w/v D-glucose (Difco) was generated in house by dilution in PBS. 

Collagenase A 

Collagenase A was purchased from Sigma-Aldrich and frozen in 10ml aliquots at 1mg/ml. 

Saponin  

Saponin from Quillaja saponaria bark (Sigma-Aldrich, USA), LotBCBJ8417V, was diluted to an 

appropriate concentration (10% w/v) using Brain Heart Infusion broth (Section 2.3.2). 

Methylcellulose  

For cell line and tissue assays, methylcellulose was made to 2% w/v with using Green’s media 

(section 2.3.1). Powder was dissolved using a vortex mixer after chilling and peptide or 

antibiotic were added as required. For the duration of the experiment, no longer than 3 

weeks, this gel was stored at 5oC (Sigma-Aldrich, UK). For zebrafish work, methylcellulose was 

made to 5% with E3 Media. 

Collagen Coating Matrix 

Coating matrix kit was purchase from Life Technologies and used to coat a 24 well plate by 

diluting as directed and incubating for 1 hour and 37oC  
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Dimethyl Sulfoxide (DMSO) 

DMSO (Sigma) was used for freezing cells by diluting 10x in Foetal Calf Serum (section 2.3.1). 

Nanocin™ 

Nanocin™ was obtained from Tecrea Ltd™, and diluted in dH2O to make a stock solution. This 

was stored at 5oC and added to peptide dilution for formulations. To test for particle 

formulation, approximately 800uL of solution was injected into the stage of a NanoSight LM10 

microscope and analysed by NTA software. 

Bovine Serum Albumin (BSA) 

Bovine serum albumin from First Link Ltd. was diluted 1 in 5 in cell media for use as a blocking 

agent. 

2.1.2 Antibiotics 

Tricane  

Tricane (Sigma-Aldrich) was prepared to a final concentration of 0.02% w/v in E3 media.  

Chloramphenicol  

Chloramphenicol (Sigma-Aldrich) was dissolved in ethanol to a concentration 50mg/ml. This 

was then stored at -20oC in 1ml aliquots and diluted to 10µg/ml for use.  

Flucloxacillin  

Water soluble flucloxacillin sodium, also known as floxacillin from TOKU-E, USA was dissolved 

in distilled water to generate a stock at 1mg/ml. This was then diluted to the appropriate 

concentration in media. CAS number: 1847-24-1. 

Penicillin/Streptomycin 

Penicillin-streptomycin solution (Sigma-Aldrich) with 10,000 units penicillin and 10 mg/ml 

streptomycin p in 0.9% NaCl was generated in-house as 10mg/ml stock solutions and stored 

at -20oC. It was then diluted to 100µg/ml in media for use. 
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2.1.3 Buffers 

Phosphate Buffered Saline, pH 7.3  

Phosphate Buffered Saline (PBS) was made in-house by the addition of 5 PBS tablets 

(containing 140mM NaCl, 8mM Na2HPO4, 2.7mM KCl and 1.5nM K2H2PO4, Thermo Fisher 

Scientific) to 1L distilled water.  This was then autoclaved at 121°C for 15 minutes. 

Hank’s Buffered Saline Solution (HBSS)  

HBSS was purchased with or without divalent cations from Sigma-Aldrich. 

B/B/N buffer 

B/B/N buffer for flow cytometry staining was made in house by adding 0.2% BSA (First Link) 

and 0.1% Sodium Azide to HBSS with divalents. 

2.1.4 Dyes 

DAPI staining solution 

DAPI stain as generated by the addition 0.1% Triton X-100 (Sigma-Aldrich, USA), 0.02% sodium 

dodecyl sulphate and 0.5μg/ml of 4,6-diamidino2-phenyl-indole hydrochloride (DAPI, 

Molecular Probes, USA) to sterile PBS.  

MTT 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT Stain) (Sigma-Aldrich, 

USA) was made in house according to manufacturer’s instructions as a 100x stock solution 

and kept refrigerated until use. 

Resazurin Blue 

7-Hydroxy-3H-phenoxazin-3-one 10-oxide (Resazurin) is a weak blue dye that is converted to 

resorufin, a light pink dye in metabolically active cells, also known as Alamar Blue. Resazurin 

was purchased as a salt from Fisher Scientific and diluted and filter sterilised in house to make 

a stock solution at 1mg/ml. It was diluted in cell media to a final concentration of 50µg/ml for 

use. 
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2.2 Peptides, Antibodies and Recombinant EC2 Regions 

2.2.1 EC2s 

N-Terminal Glutathione S-transferase (GST) tagged recombinant extracellular EC2 proteins 

were synthesized in 2 E.coli strains: E.coli Rosetta-gami B (DE3) pLysS (Novagen) and E.coli 

Shuffle T7 Express lysY (New England Biolabs) by Dr Marzieh Faneaei and Dr John Palmer. The 

relevant tetraspanin expression plasmid was added to competent heat shocked bacteria to 

induce uptake. 

 Transformants were identified using antibiotic selection and these colonies were then grown 

and to an OD600 of 0.6-0.8. The cells were then induced for protein expression using IPTG for 

4 hours, spun down, and cell pellets were kept at -80oC until needed. Protein was collected 

from induced cells using affinity purification (glutathione-sepherase beads) followed by 

dialysis.  LPS was removed where appropriate using Triton X-144 using a technique outlined 

in Reichelt et al (Reichelt et al., 2006, Fanaei, 2014, Palmer, 2016).  

2.2.2 Peptides 

Peptides based on various regions of the EC2 region of CD9 (Tspan 29) were synthesized using 

solid phase synthesis with Fmoc chemistry by SI Biologics at the University of Sheffield or 

GenScript UK with no differences in function or efficacy between batches. 

Figure 1.10 shows the locations of the CD9 EC2 to which the peptides correspond. 8001 is 

based on the ‘stalk’ region of the EC2 loop which has an alpha helix structure. 810, 

corresponds to part of the EC2 sub loop created by disulphide bridge formation, and 800 is 

part of the larger loop of the EC2. Scrambled peptides are randomly generated from the 

cognate CD9 sequence (Table 2.1).  

2.2.2.1 Tagged Peptides 

A version of 800 peptide was then generated with a tetramethylrhodamine tag by GenScript 

UK. This tag has a MW of 481 Da and an excitation/emission of 557/576nm. 
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Table 2.1: Peptide Names and Sequences 

Peptide Alternate names Peptide Sequence 

810  L07009a, Peptide E GPKKDVLETFTVKS 

810 Scrambled L07009b, Scrambled E TSKEKLVGPDTKVF 

8001 L09002, Peptide A SHKDEVIKEVQEFY 

8001 Scrambled L09003, Scrambled A EEVKKFESQHDIYV 

800 L11001, Peptide C EPQRETLKAIHYALN 

800 Scrambled L11002, Scrambled C AYPHLENLQPEIAKT 

2.2.3 Antibodies 

 Anti-hapten (JC1) mouse monoclonal IgG (In house)  

 Anti-CD9 mouse monoclonal IgG (602.29) (In house) 

 Anti-CD9 Alexa Fluor® 647 conjugate mouse monoclonal IgG (MEM-61, ab187776) 
(Abcam) 

 Anti-CD63 (H5C6) mouse monoclonal IgG (In house) 

 Anti-CD81 mouse monoclonal IgG (1D6) (ab35026) (Abcam)  

 Anti-CD151 mouse monoclonal IgG (14A2) (In house) 

 Anti-Involucrin SY5 FitC direct labelled antibody. Mouse monoclonal IgG (Abcam) 

 Anti-mouse FitC conjugate polyvalent produced in goat (Sigma-Aldrich, F1010, batch 

019K6280) 

 Anti-staphylococcal rabbit polyclonal (Ab20920) (Abcam) 

 Anti-Rabbit Alexa fluor® 488 conjugated goat Secondary (Therma-fisher) 

2.3 Growth Media 

2.3.1 Cell and Zebrafish Media 

Foetal Calf Serum (FCS)  

Foetal calf serum was supplied by Source Bioscience, UK (Labtech batch No. 4-107-500/1446). 

It was further heat inactivated (to HI-FCS) by incubation at 56°C for 20 minutes, then frozen 

in 50ml aliquots until use. 

Dulbecco’s Modified Essential Medium (DMEM) 

DMEM was made in house with 500ml Dulbecco’s Modification of Eagle’s Medium high 

glucose AQ media (Sigma Aldrich), 5ml Amphotericin B (Fungizone Life Technologies; 250 
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µg/ml), and 50ml Foetal Calf Serum . Media was stored at 5°C. Penicillin/Streptomycin (ICN, 

Gibco) was added before use at 100µg/ml. Chloramphenicol was added 10µg/ml for infection 

assays.  

Eagle’s Modified Essential Medium (EMEM) 

50ml FCS was added to 500ml EMEM +1% L-glutamine (Lonza). This was sealed and stored at 

5°C between uses. 

Green’s Medium  

500ml Greens medium was made in-house with the following components: 104ml Nutrient 

Mixture Ham’s F-12 with L-glutamine, 17ml Sodium hydrogen carbonate (NaHCO3; 7.4%w/v), 

330ml Dulbecco’s Modification of Eagle’s Medium without sodium bicarbonate and L-

glutamine, 5ml L-glutamine (200 mM), 5ml Penicillin/Streptomycin (100 µg/ml), 1.25ml 

Amphoteracin B  (Fungizone, Life Technologies (250 µg/ml)), 50 ml  Foetal Calf Serum (FCS), 

2ml Adenine (46 mM), 2.5ml Insulin (recombinant human; 1 mg/ml), 0.5ml T/T (Consisting of 

1.36 µg/ml 3,3,5, triiodo-L-thyronine 1.36 ng/ml and 5 mg/ml apo-Transferrin), 0.08ml 

Hydrocortisone (25 mg/ml), 0.025ml Epidermal Growth Factor (EGF; recombinant human; 

200 µg/ml) , 0.5ml Cholera toxin (from Vibrio cholerae; 847 µg/ml)  

(Gibco, BDH, ICN, Sigma, R&D Systems) 

3D Priming and Barrier Medium 

For the construction of epidermal membrane cultures, CNT-prime and CNT-prime 3D barrier 

medium were purchased from CELLnTEC and stored at -20oC in 500ml aliquots. 

E3 

E3 media was generated in house as a 60x stock solution with 34.8g NaCl, 1.6g KCl, 5.8g 

CaCl22H2O, 9.78g MgCl26H2O, 6ml Methylene blue (Sigma-Aldrich) and 2L Distilled Water. 

2.3.2 Bacterial media 

Brain Heart Infusion (BHI) Broth   
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18.5 g of brain heart infusion (BHI) agar base (Oxoid) was diluted in 500ml distilled water and 

autoclaved at 121°C for 15 minutes. 10µg/ml final concentration chloramphenicol was added 

immediately before use. 

Brain Heart Infusion Agar  

5g bacteriological agar was added to 18.5g brain heart infusion agar base (Oxoid) and 500ml 

distilled water and autoclaved at 121oC for 15 minutes. 10µg/ml final concentration 

chloramphenicol was added after cooling before pouring into 10cm bacterial growth plates 

(Sterilin Ltd). 

2.4 Bacterial Strains and Eukaryotic Cell Types: 

2.4.1 Bacterial Strains 

SH1000  

SH1000 strain of Staphylococcus aureus is derived from RN4220 and contains a 

chloramphenicol resistance pSK5487 plasmid expressing GFP (Herbert et al., 2010). All 

culturing of SH1000 prior to the infection of cells therefore occurred in the presence of 

10µg/ml chloramphenicol.  Staphylococcus aureus was grown on Brain Heart Infusion (BHI) 

and was maintained as a frozen stock at -80oC attached to beads in glycerol. 

S235 

S235 is a virulent clinical isolate of Community Associated-MRSA (CA-MRSA) kindly donated 

by the Sheffield School of Clinical Dentistry. 

 USA300 

USA300 is a very well characterised strain of community acquired multi-drug resistant 

Staphylococcus aureus used in this study for analysis of surface distribution. This was obtained 

with a plasmid expressing YFP and chloramphenicol resistance from Dr Andrew Liew Tze Fui. 

MRSA JE2 
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MRSA strain JE2 is a well characterised clinical isolate of community acquired multi-drug 

resistant Staphylococcus aureus. It is derived from a community-associated strain USA300 by 

removing a macrolide resistance plasmid and a cryptic plasmid. 

MRSA NCTC14132  

MRSA NCTC14132 is a clinical isolate of Methicillin-resistant Staphylococcus aureus isolated 

locally from a patient at the Northern General Hospital in Sheffield, UK. 

2.4.2 Mammalian Cells 

HaCaT Cells 

HaCat cells are a human keratinocyte cell line generated by heat shock (Boukamp et al., 1988) 

obtained from Cell Line Services GmbH.  Cells were maintained as a monolayer in T-75 culture 

flasks using DMEM with 10% FCS (Section 2.3), without penicillin or streptomycin or 

fungizone. Long term frozen stocks were made by freezing in FCS with 10% DMSO before 

storing in liquid nitrogen. 

Primary Keratinocytes/Normal Human Keratinocytes (NHKs) 

Keratinocytes were isolated with ethical approval from tissues obtained from female human 

abdominoplasties and breast reductions. These cells were isolated as described in section 2.6 

and were maintained in Green’s media in T-75 flasks at 37oC 5% CO2 with a layer of irradiated 

3T3 cells (generated in house). These cells were kept only up to passage 3, beyond which they 

failed to replicate efficiently. Long term frozen stocks were made by freezing in FCS with 10% 

DMSO before storing in liquid nitrogen. Long term frozen stocks were made by freezing in FCS 

with 10% DMSO before storing in liquid nitrogen. 

Primary Dermal Fibroblasts 

Fibroblasts were isolated as in Section 2.6 then maintained as a monolayer in T-75 flasks in 

DMEM media. These cells were only used after passage three and before passage 10. Long 

term frozen stocks were made by freezing in FCS with 10% DMSO before storing in liquid 

nitrogen. 

 



47 
 

N/TERT 

N/TERT immortalised keratinocytes were obtained from Professor Birgitte Lane. These cells 

are immortalised by removal of the pRB/p16INK4a cell cycle control mechanism along with an 

increase in hTERT expression leading to the upregulation of telomerase activity (Dickson et 

al., 2000). A line of N/TERTs were also used with silenced Filaggrin expression and a GFP 

marker. 

2.5 Bacterial Techniques 

2.5.1 Solid Culture of Bacteria 

Viable bacteria were kept as frozen stocks at -80°C on beads coated in glycerol. Aliquots of 

bacteria were streaked by placing a bead onto an appropriate agar plate and removing 

bacteria by rolling. This was then streaked using a sterile loop. Plates were incubated at 37°C 

with 5% CO2.  

2.5.2 Broth Culture of Bacteria 

For liquid cultures, approximately 1 colony of viable bacteria from solid culture plates were 

transferred using a sterile loop into 10ml appropriate broth. These were cultured in a stirrer 

for 2-5 hours at 37°C with 5% CO2 in a humidified atmosphere. Absorbance at OD600nm was 

taken to define the quantity needed for cell infection.  

2.5.3 Growth Curves 

To determine the OD to cfu conversion figures, growth curves were undertaken with each 

species of bacteria. From an overnight plate, colonies were transferred to 10ml liquid broth 

to an OD600nm of 0.060. These were then grown in aerobic conditions, and OD600 

measurements taken every hour. Additionally, every 2 hours, 20µl of sample was diluted and 

plated to calculate colony forming units.  

2.5.4 Counting Viable Bacteria 

Tenfold serial dilutions followed by plating on BHI agar was used to estimate the quantity of 

viable bacteria in growth culture. Agar plates were split into 6 sections onto which 3 10μl 

aliquots of each dilution were dropped. Plates were air dried within a class II microbiological 
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safety cabinet before being incubated for 12-24 hours at 37°C with 5% CO2.  The mean number 

of bacteria was obtained by taking the average of the 3 spots of the 2 most appropriate 

dilutions number of bacteria, then calculating an estimated total number of bacteria per 1ml 

(colony forming units/ml).  

2.6 Cell Line Assays 

2.6.1 Cell Line Seeding and Growth 

The number of cells in 4 1mm2 sections of a Neubauer counting chamber was determined and 

averaged to give an estimate of cells in 0.1mm3. This figure was then used to determine the 

dilution factor required to obtain the correct seeding density per well. Keratinocytes were 

seeded at 3x105, fibroblasts at 7.5x104, and HaCaT cells at 3.75x104. Cells are seeded onto 12 

mm diameter glass coverslips within 24-well cell culture plates then incubated overnight at 

37°C with 5% CO2 before use. 

2.6.2 Expression of Tetraspanins on Cells 

To analyse the expression of tetraspanins on the cell types used in this study, cells were 

seeded at a density of 1x105 into a 96 well U-bottomed plate. They were then spun at 400rcf 

for 3 minutes. The supernatant was flicked off and the cells re-suspended in PBS and washed 

2 times. 50μl primary antibodies (section 2.2.3) were then added at a concentration of 

10μg/ml in B/B/N buffer and left on ice for 1 hour. The cells were washed again and an equal 

volume and concentration of secondary antibody added for 45 minutes on ice. Cells were 

then washed and re-suspended in BBN before analysis by flow cytometry. Data was collected 

using the Attune acoustic cytometer and analysed using Attune cytometric software.  

2.6.3 Adherence Assays 

Using a sterile Pasteur pipette, media was removed from the wells and the cells washed twice 

with PBS. 1ml of 5% BSA was then added to each well and incubated for 30 minutes, ensuring 

no non-specific bacterial binding. The BSA was then also removed, and the cells were washed 

twice with PBS. Each well was treated with 250μl of relevant recombinant tetraspanin EC2: 

GST fusion proteins at a concentration of 500nM. Glutathione-S-transferase (GST) was used 

as a control. Peptide fragments based on the EC2 region of CD9 were dispensed in a similar 
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protocol to the fusion proteins, at a concentration of 50nM. ‘Scrambled’ peptides with the 

same composition to the active peptides but with alternate amino acid sequences were used 

as a control. 

250μl of bacteria were incubated with pre-treated the cells for 1 hour at an appropriate MOI 

to give around 60% infection. Bacteria were then removed and cells washed 3 times with PBS 

to remove unbound bacteria. The wells were then fixed using 150μl 2% paraformaldehyde. 

2.6.4 Staining 

Cell coated coverslips from wells were stained using PBS containing 0.1% Triton X-100, 0.02% 

sodium dodecyl sulphate and 0.5μg/ml of 4,6-diamidino-2-phenyl-indole hydrochloride 

(DAPI). Each well was incubated with 400μl for 12 minutes at room temperature. DAPI binds 

to nucleic acid and stains both eukaryotic cells and bacteria (maximum excitation wavelength 

of 368nm, maximum emission wavelength of 461nm). 

After 12 minutes, the stain was removed and the cells washed twice with PBS. The cover slides 

were then extracted from the plate using tweezers and mounted onto slides using Vectashield 

mounting medium with DAPI. These were fixed in place using nail varnish to reduce slippage 

and desiccation.  

2.6.5 Quantitative Microscopy 

A DMRB1000 fluorescence microscope (Leica, Germany) at 100x magnification was used for 

counting. Each coverslip was analysed by a random count of 100 cells, scoring for cells with 

bacteria attached, and number of attached bacteria. Cells undertaking mitosis were 

considered abnormal and therefore not scored.  

GraphPad Prism 6 was used for the majority of adherence data analysis. Data were initially 

tested for skew and if this was found to be more than double the standard error, then data 

were considered to be non-parametrically distributed and different analytical tests were 

chosen. The specific statistical test used and separate n values are provided for each 

experiment. 
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2.6.6 Dose Response 

To test at which doses the peptide was effective, cells were treated and infected as in section 

2.6.2, but with varying doses of bacteria. These were then quantified by fluorescence 

microscopy and analysed using a three parameter nonlinear regression. 

2.6.7 Retention 

To test the retention of peptide effects in the system, cells were treated for 1 hour with 50nM 

peptide treatment. They were left for varying lengths of time then all infected simultaneously 

with S235 strain Staphylococcus aureus. Infection was quantified as above. 

2.6.8 Scratch Assay 

To measure the rates of migration and proliferation of cells when treated with peptides, the 

relevant wells of a 24 well plate were first coated in Collagen Coating Matrix for 1 hour with 

incubation. The wells were then washed with PBS before HaCaT cells were seeded at a density 

of 3x105 cells per well. These were then left overnight to adhere and form a monolayer. After 

around 16 hours a scratch was generated in the monolayer using a p200 pipette tip and the 

wells were washed and treatment (200nM peptides, 500nM EC2s/GST, or media control) 

applied before photos were taken. Photos were captured at 0 and 18 hours, and any other 

relevant time points. The percentage coverage in the field of view was measured using ImageJ 

software and analysis carried out in Graphpad Prism 6. 

2.6.9 MTT Assay 

An MTT assay is designed to assess cell viability and under controlled conditions this can also 

reflect cell number. In this assay, enzymes from metabolically active cells reduce the MTT dye 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to formazan, inducing a 

colour change in the dye which is indicative of viability (Berridge et al., 2005).  

HaCaT cells were grown in a 24 well plate for 24 hours, then treated for a further 24 hours 

with 200nM peptides in media. Peptide was then removed and the tetrazolian MTT dye added 

at a concentration of 0.5mg/ml in cell media for 1 hour. Cells were then lysed with Cellusolve 
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(2-butoxyethanol) to release the dye, and replicate samples of each condition plated into a 

96 well plate, then read using a plate reader referenced at OD562nm. 

2.7 Tissue Engineering 

2.7.1 Ethics Approval 

All work using human keratinocytes and fibroblasts was performed on samples from 

abdominoplasty and breast reduction, obtained with prior patient consent. The protocol was 

approved by the local ethics committee Sheffield NHS Trust, Sheffield, UK. Tissues and cells 

were stored under license number 12179 of the Human Tissue Authority (UK). 

2.7.2 Isolation of Keratinocytes  

A sterile scalpel was used to obtain skin pieces of approximately 0.5cm2 in size. These were 

then transferred to 10ml of 0.1% Difco-Trypsin (plus 0.1% D-glucose in PBS, pH 7.45) and 

incubated at 4°C overnight. The epidermis was then excised using sterile forceps and the 

underside of the epidermis and papillary of the dermis gently scraped with a sterile scalpel to 

remove basal keratinocytes. These were then centrifuged at 200g for 5 minutes and re-

suspended in 10ml Greens medium. The keratinocytes were then be cultured in 75cm2 tissue 

culture flasks containing a feeder layer of i3T3 fibroblasts (obtained from communal frozen 

stocks) at 37oC and 5% CO2. For storage, cells were harvested when 60% confluent during 

their first passage and frozen in FCS with 10% DMSO. 

2.7.3 Isolation of Fibroblasts 

A scalpel was used to cut the small sections of dermis obtained when isolating keratinocytes 

into small pieces of <1mm2 in area. These were then transferred into a sterile tube containing 

10ml of 0.5% Collagenase A, and incubated at 37°C and 5% CO2 overnight. Sterile forceps were 

used to remove remaining pieces of dermis and the suspension was centrifuged for 5 minutes 

at 400g.  The cell pellet was then re-suspended in 10ml of 10% DMEM medium and cultured 

in a 75cm2 tissue culture flask at 37°C in a humidified atmosphere of 5% CO2. 
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2.7.4 Isolation of DED 

De-epidermised acellular dermis (DED) was obtained by incubating skin for 24 hours in 1M 

sodium chloride and removing the epidermis manually using sterile forceps. The dermis was 

stored at 4oC in Greens Media until use. 

 

2.7.5 Construction and Culturing of TEskin 

Small pieces of DED (2cm2) were placed onto grids in a 6 well plate, and a 10mm diameter 

steel ring pressed on top to create an airtight seal. Alternatively, for infection work, DED was 

placed in 12 well culture plate inserts with 0.4µm pores to allow media diffusion (Griener Bio-

One). Keratinocytes (between passages 1 and 3) were seeded into the centre of the ring or 

inside the baskets at a density of 3x105 cells per composite, and fibroblasts between passages 

3 and 10 were seeded at a density of 1x105 cells per composite. The centre of the ring and 

surrounding well were filled with Greens media and the composites are cultured for 3 days at 

37oC 5% CO2 in submerged culture. At day 3, media is replaced, so that the underside of the 

composites is immersed in the media however the top layer is exposed to the air (air-liquid 

interface, ALI). Composites are cultured for 10-14 days at air-liquid interface before 

wounding. For infection work, media was replaced with Greens medium not containing 

Penicillin or Streptomycin at least 3 days before infection. 

2.7.6 Infection of TEskin 

On the day of infection the skin was wounded by applying a 4mm diameter rod heated in a 

flame to each composite for 4 seconds. The skin pieces were then washed three times with 

PBS before the treatment was applied. 200nM of the relevant peptide and scrambled control 

were applied to the composite in 100μl Serum Free DMEM and serum free DMEM without 

additions was added to the remaining untreated composites.  

SH1000 bacteria were grown for 2.5 hours until in exponential growth phase, then spun down 

and washed three times with PBS. It was then re-suspended in HBSS and the OD600 measured. 

The bacteria were then re-suspended at a concentration of 1x108 bacteria/ml and 100μl of 

this was then applied to the skin 1 hour after wounding/treatment. The sample was incubated 
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for 5 further hours at 37oC in a humidified environment of 5% CO2, then washed to remove 

non-adherent bacteria. 24 hours after infection the TEskin was washed again and analysed. 

2.7.7 Infection Analysis 

The TEskin was then separated into 2 halves by cutting through the centre of the wound. 

Some pieces were fixed in 4% Paraformaldehyde for histology. Remaining pieces were 

weighed, divided into 8 pieces, and placed in 1ml 10% Saponin for 12 minutes. 20μl of each 

tube was then removed and serially diluted before plating to obtain viable counts. Data were 

analysed using a One-way ANOVA with Sidak’s multiple comparison. 

2.7.8 Cytokine Analysis 

Cytokine samples were taken at 6 and 24 hours by pipetting the serum free media over the 

wound 3 times. The remaining volume was measured before placing into micro-centrifuge 

tubes and centrifuging at 10rcf for 5 minutes to remove any bacteria. Samples were then 

stored as 30μl aliquots at -20oC until analysis with minimum freeze-thaw cycles.  

Cytometric Bead Arrays were run by the flow cytometry core facility at the Medical School, 

University of Sheffield by Susan Clark and Julie Swales according to the protocol by BD 

Bioscience. In essence, beads are coated in antibodies to specific cytokines and are added to 

the sample. The beads are then washed and a secondary fluorescent tagged antibody added 

to allow detection of the beads using flow cytometry. 24 hour samples were analysed for 

MCP-1, IL-1α, IL-6, IL-8, IL-11, TNF-α/β, IFNα and IL-10. Samples for IL-6 and IL-8 analysis were 

diluted 50x in serum free media before further analysis. 

2.7.9 Epidermal Migration Assay 

The ability of the epidermis to migrate and proliferate is indicative of its ability to heal. This 

was assessed by seeding 3x105 keratinocytes and 1x105 fibroblasts into the centre of a 10mm 

diameter ring on top of a de-epidermised dermal scaffold and allowing to grow submerged 

for 3 days and at air liquid interface for another 7 days. At 10 days after seeding the metal 

ring was removed and the epidermis allowed to migrate outwards onto the bare DED. The 

viable area of epidermis was measured by submerging in Resazurin blue stain at 50µg/ml as 

for 1 hour at 0, 7 and 10 days. Treatments were added daily to the top of the skin in a 2% 

methylcellulose gel with serum free media. Resazurin blue images were analysed for 
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percentage coverage using the colour threshold and area measurement tools on ImageJ and 

the rate of healing analysed using GraphPad Prism 6. 

2.7.10 Histology Processing and Embedding 

For histological analysis tissue samples were fixed in 4% formaldehyde overnight and 

processed using a short program on the Leica TP1020 tissue processor as follows: 

1. Formalin - 15 minutes 
2. Formalin - 15 minutes  
3. Alcohol 70% - 15 minutes 
4. Alcohol 80% -  15 minutes   
5. Alcohol 95% -  15 minutes 
6. Alcohol 100% -  15 minutes  
7. Alcohol 100% - 15 minutes  
8. Xylene - 15 minutes  
9. Xylene - 15 minutes  
10. Paraffin -  15 minutes   
11. Paraffin -  15 minutes  
12. Paraffin - 15 minutes 

They were then wax embedded and sectioned using a microtome and mounted on Super 

Frost Plus slides by Fisher Scientific. 

2.7.11 Histology Staining and Immunohistochemistry  

For Haematoxylin and Eosin staining a standard protocol was followed as below. 

Haematoxylin and Eosin were purchased from Thermo-scientific. 

 Xylene – 3 minutes 

 100% IMS – 1 minute 

 70% IMS – 0.5 minutes 

 Distilled water – 1 minute 

 Haematoxylin – 1.5 minutes 

 Running tap water – 4 minutes 

 Eosin – 5 minutes 

 Tap water – 2 brief washes 

 70% IMS - brief wash 

 100% IMS – 0.5 minutes 

 Xylene – Brief wash 

For immunohistochemistry, wax was removed from tissue samples using xylene, and the 

tissue was rehydrated with alcohol and distilled water. Sections were then blocked with BSA 
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serum for 1 hour, washed with PBS and incubated for 2 hours with primary labelled antibodies 

or control JC1 antibody. Sections were then mounted using Vectashield© with DAPI.  

2.7.12 Construction of Epidermal Cultures 

In order to visualise the distribution of bacteria on the surface of the epidermis, just the 

epidermis was grown, using a method outlined by CELLnTEC. In this method, keratinocytes 

are seeded onto porous membranes at 3x105 cells per insert and suspended in CELLnTEC 3D 

priming media. After 3 days submerged growth at 37oC and 5% CO2 they are transferred to 

3D barrier medium, grown overnight, and then grown at air-liquid interface for 14 days before 

analysis. 

These cultures were infected with 7x106 USA300 strain Staphylococcus aureus bacteria per 

insert in 200µl PBS for 5 hours, then washed and left for another 19 hours. Epidermal cultures 

were fixed for 2 hours in 4% paraformaldehyde then divided into 2 sections, half for 

histological analysis and half to separate from the membrane and mount for surface analysis. 

Surface analysis sections were suspended in DAPI staining solution for 12 minutes before 

mounting in Hydro-mount. 

2.8 Zebrafish Methods 

2.8.1 Mating and Embryo Collection 

London Wild-type embryos were collected from fish using the method of ‘marbling’ detailed 

in Zfin.org (S, 2016). After 12 hours the eggs were removed from the marbling trays and 

transferred to petri dishes containing E3 media. Eggs at the wrong cell stage and abnormal 

eggs were removed and discarded. The plates were then incubated at 28.5oC for 1 day (until 

approximately 30 hours post fertilisation).  

On the day of injections, a suitable number of fish (approximately 25 per condition) were 

dechorionated using 2 pairs of fine tweezers and a dissecting microscope. Damaged fish and 

egg debris were removed into a bleach solution with a Pasteur pipette. 

2.8.2 Preparing Bacteria 

SH1000 bacteria used to infect embryos were grown in 50ml BHI broth until they reach 

OD600nm of approximately 1.0 in exponential growth phase, and harvested by centrifugation 
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(4500g, 10 minutes). The supernatant was discarded and pellet of cells re-suspended in 4ml 

sterile PBS. Bacterial concentration was confirmed by serial dilutions and plating on solid brain 

heart infusion media. 

2.8.3 Injecting Fish 

Before injection, embryos were anaesthetised using 0.02% w/v Tricane in E3 media. The dish 

was covered immediately to prevent exposure to light. Fish were injected directly into the 

bloodstream with 1nl bacterial suspension (prepared as above) using a pulled glass 

microcapillary pipette, a pneumatic micropump (World Precision Instruments PV820), and a 

micromanipulator (WPI) over a dissecting microscope. At the beginning, middle and end of 

the injection process, the quantity of bacteria being injected was tested by ejecting the same 

volume into 1ml PBS, which could then be scored by viable counts. Fish that were not injected 

with SH1000, and fish that were injected but untreated were used as control groups. 

Fish were then transferred as groups of approximately 20-25 into a 6 well plate, and the 

treatment added to the media. 8001 peptide was used at a range of concentrations to test 

the most effective, and 8001 scrambled was used as a control. The fish were then decanted 

individually with 200µl treated media into a 64 well plate, and scored for survival twice daily 

up until 120 hours post fertilization. Survival rates were plotted using GraphPad Prism 6 and 

statistical analysis carried out using a survival test. 

2.9 Statistical Analysis 

Statistical analyses were carried out using ImageJ, Excel or GraphPad Prism, and the statistical 

test chosen is specified in the appropriate figure legend. Data were analysed for skew using 

the D'Agostino & Pearson omnibus normality test. Outliers were removed using a ROUT test, 

Q=1%. 
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Chapter 3 – The Use of Tetraspanins for the 

Prevention of Staphylococcus aureus Infections 

3.1 Introduction 

3.1.1 Anti-Adhesion Therapies 

Adhesion is the first stage of bacterial invasion. Once bacteria adhere to a host, they can exist 

on the surface of the skin as a community in the form of a bio-film or colony, or can cross the 

epithelial barrier and cause complex infection. This infection can be intracellular or 

extracellular, but once within the system bacteria can transfer from cell to cell or in the areas 

between cells, and potentially into the blood stream (bacteraemia). Once in the blood, an 

infection can be transported to other sites around the body, resulting in systemic infections 

(Cozens and Read, 2012). One area of focus for new therapeutics is the prevention of this 

initial stage of infection, known as anti-adhesion therapies. 

Anti-adhesion therapies are a relatively new area of research focus, and have varied 

mechanisms of action, as outlined in the recent review by Cozens et al (Cozens and Read, 

2012). They can be host targeted or pathogen targeted and some examples can be found in 

Section 1. Preventative therapies such as anti-adhesion therapies are becoming increasingly 

popular in correlation with the rise in antibiotic resistance, as they exert a weaker selective 

pressure on bacteria and are therefore less likely to cause resistance to develop. 

3.1.2 Tetraspanins as Anti-Adhesion Therapies 

It is known that tetraspanins interact with diverse molecules on the membrane of host cells 

to create tetraspanin enriched microdomains (TEM), and through this mechanism can create 

adhesion platforms for a wide range of bacterial species (Charrin et al., 2009, Green et al., 

2011, Barreiro et al., 2008). It was therefore hypothesised that disruption of these TEM could 

reduce the adherence of bacteria to host cells, and allow the infection to be cleared naturally 

by the immune system or with weaker courses of antibiotics or other anti-microbials.  

Hassuna et al (2009) have previously shown that the application of recombinant tetraspanin 

EC2 domains, and antibodies targeted to the EC2 domain disrupt bacterial adherence to 

mammalian cells (Hassuna et al., 2009, Green et al., 2011). This has been shown for a wide 
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range of bacterial species and in a variety of human and mouse cell lines (Materials and 

Methods, Table 3.1, (Green, 2010, Green et al., 2011, Hassuna, 2010)), and at the time of 

writing, research is still ongoing to determine the range of bacteria affected. The reduction in 

bacterial adherence with anti-tetraspanin antibodies suggests a role for tetraspanins as an 

anti-adherence therapy for the prevention of Staphylococcus aureus infections and this 

possibility is explored in this chapter.  

Peptides are ideal molecules for therapeutics in terms of size, permeability and ease of 

production (O'Driscoll et al., 2013), and therefore a series of peptides based on various 

regions of the extracellular loop (EC2) of CD9 were developed to be tested for anti-adhesive 

action. It was hypothesised that some of these peptides would still exert an anti-adhesive 

effect, preventing the adherence of Staphylococcus aureus to host cells, as well as defining 

the specific areas of EC2 domain necessary for tetraspanin function. 

3.1.3 Staphylococcus aureus Adherence Mechanisms 

Section 1.3.2.1 contains an in depth literature review outlining the mechanisms by which 

Staphylococcus aureus adheres to host cells, and how these mechanisms may be linked to 

tetraspanin function and organisation. In brief S. aureus has a wide range of adhesins, 

including but not limited to: FnBP A and B, ClfA and ClfB, and Atl. These have been shown to 

bind, amongst others, host cell factors fibronectin, fibrinogen, Hsp60 and Hsc70. 

As mentioned previously, CD9 is known to be involved with many of the host cell receptors 

exploited by Staphylococcus aureus to instigate an infection. Some of these assossiations are 

demonstrated in figure 1.4 (introduction). CD9 closely interacts with β1 integrins, as identified 

by co-immunoprecipitation experiments (Rubinstein et al., 1994) and this connection is 

necessary for Staphylococcal adherence via FnBP (Wilkinson et al., 1995). CD9 is also known 

to associate with a wide range of other integrins as outlined in Berditchevski et al 

(Berditchevski, 2001), including α6β4 in keratinocytes (Jones et al., 1996) and αvβ3 

(Peddibhotla et al., 2013), which associates with both CD9 and Hsc70, another cellular 

receptor which S. aureus exploits for adhesion to host cells (Guerrero and Moreno, 2012).  

Fibronectin, one of the major cell receptors for Staphylococcus aureus, has also been shown 

to bind directly to recombinant CD9 and immobilised platelet CD9, suggesting a direct 

interaction between CD9 and Fibronectin (Hato et al., 1988). Additionally, in platelets, 
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fibrinogen receptors become exposed when cells are treated with anti-CD9 antibodies (Hato 

et al., 1988).  

The reliance of multiple staphylococcal target molecules on CD9, our protein of interest, 

further supports the hypothesis that CD9 could be a useful target molecule for the prevention 

of Staphylococcus aureus infections, and this hypothesis is explored in this chapter. 

3.1.4 A Tissue Engineered Skin Model 

The primary method used to test these peptides and EC2 domains until now has been a cell 

line assay outlined in Green et al (Green, 2010), in which generic epithelial cells are pre-

treated with the tetraspanin blocking therapies, then infected with pathogen. After 1 hour of 

infection, non-adherent bacteria are washed off, and remaining adherent bacteria quantified 

by fluorescence microscopy. As a simple system this shows the effects of treatment in a 

simple cell monolayer, and is a good preliminary indicator of anti-adhesive potential. Cell line 

models however do not take into account the more complicated structures of human tissue.  

Staphylococcus aureus is found commonly on skin as a commensal organism, and is the most 

common cause of skin and soft tissue infections. Therefore to test if the effects of these 

treatments were still effective in preventing SSTIs in a simple model, cell lines that reflect this 

target site were chosen, specifically: primary human keratinocytes (NHKs), primary dermal 

fibroblasts, and HaCaT cells, a cell line generated from human keratinocytes (Boukamp et al., 

1988). 

A 3D tissue engineered model of human skin (TEskin) was also constructed, as developed by 

Shepherd et al (Shepherd et al., 2009). This model consists of primary keratinocytes and 

dermal fibroblasts grown on a de-cellularised dermal scaffold at air-liquid interface (ALI).  The 

keratinocytes and fibroblasts migrate and differentiate into their appropriate layers, forming 

a dermis, epidermis and stratum corneum, mirroring basic skin architecture, however it does 

not contain any of the immune cells or other diverse cell types observed in the dermis of live 

skin. The stratified stratum corneum of this TEskin is impermeable to bacteria unless a break 

is formed by burning or wounding, which is also representative of the way opportunistic 

pathogens must invade the skin. This model provides a relevant and reproducible platform 

on which to test the peptides in a more complex setting. 
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3.1.5 Staphylococcus aureus Strains 

For the work detailed below a range of strains of Staphylococcus aureus were used, reflective 

of the range of strains isolated from the clinic. SH1000 is a low virulence lab strain, obtained 

from Professor Simon Foster expressing a pSK5487 plasmid containing a gfp gene and 

chloramphenicol resistance, useful for visualising the bacteria infecting cells at early stages. 

It is a derivative of RN4220 with a restored functional rsbU (Herbert et al., 2010). JE2 is a 

virulent strain of Staphylococcus aureus, generated from community-associated strain 

USA300 by removing a macrolide resistance plasmid and a cryptic plasmid (Kennedy et al., 

2008) and S-235 is a local clinical isolate of Community Associated-MRSA (CA-MRSA) and 

provides a virulent and clinically relevant pathogen model. 
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3.2 Results 

3.2.1 EC2:GST Fusion Proteins Reduce the Adherence of SH1000 to HaCaT 

Cells 

To test the hypothesis that treatment with tetraspanin derivatives would reduce the 

adherence of Staphylococcus aureus to host skin cells, the HaCaT cell line was pre-treated 

with 500nM EC2:GST fusion proteins and infected with S235 strain bacteria. Treatment with 

CD9 and CD81 EC2 reduced the percentage of cells with adherent bacteria (For the purposes 

of this thesis I will refer to these as infected cells), and the number of adherent bacteria per 

100 cells (Figure 3.1). This reduction in infection was not seen using GST alone, used as a 

control, showing that this effect is specific to the tetraspanin domain. Interestingly, no effects 

of any treatment were observed on the number of bacteria per infected cell, indicating that 

the treatment is affecting a subset of the cells. Approximately 40% of cells are unaffected by 

the treatment. A possible explanation for the reduction in bacterial adherence in this 

experiment could be downstream effects of residual lipopolysaccharide (LPS) from the 

protein expression and purification process outlined in Chapter 2.2. Residual levels of LPS 

were measured and shown in Table 3.1, and range from 0.16 ng/ml to 34.5ng/ml.  

Table 3.1: Remaining exotoxin LPS content (ng/ml) in 500nM EC2:GST proteins 

Recombinant Protein  LPS content (ng ml-1 per 500 nM protein 
solution)  

GST (SHuffle)  18.00  

CD9 EC2: GST (SHuffle)  34.50  

GST (Rosetta Gami)  3.25  

CD9 EC2: GST (Rosetta Gami)  12.40  

GST (Rosetta Gami), Triton X-114 wash  0.16  

CD9 EC2: GST (Rosetta Gami), Triton X-114 
wash  

1.40  

Data acquired by Dr Marzieh Fanaei using the Limulus Ameobocyte Lysate chromogenic assay. 
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  Figure 3.1: EC2:GST Fusion Proteins reduce Staphylococcal Adherence to HaCaT Cells: HaCaT cells 

were treated with 500nM Recombinant EC2:GST fusion proteins for 30 minutes before infection 

with SH1000 at an MOI of 30 and bacterial adhesion measured by fluorescent microscopy. (A and 

D) Change in proportion of cells with adherent bacteria (B and E) Change in total number of 

bacteria attached to 100 cells (A-C) Effects of recombinant EC2 domains on SH1000 adherence to 

HaCaT cells, n=5. (D-E) The effects of LPS on the adherence of SH1000 adherence to HaCaT cells, 

n=3. Data represented as mean ± standard error of the mean (SEM), and analysed by One-Way 

ANOVA with Sidak’s multiple comparisons test, percentage data transformed Y= log10Y before 

analysis. * p≤0.05 **p≤0.01 ***p≤0.001 
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LPS alone was therefore tested for anti-adherence effects using the same method as the EC2 

regions. At 10 and 100ng/ml, concentrations higher than those detected in the EC2 solutions, 

no effect was observed with LPS on the adherence of Staphylococcus aureus suggesting that 

the effect observed is due to the addition of the EC2 domains, not LPS contaminants. No 

attempt was made to discriminate between extracellular and intracellular bacteria, as 

previously no effect on these ratios has been observed with other pathogens . 

3.2.2 CD9-Based Peptides Reduced the Adherence of SH1000 to HaCaT Cells 

As inhibition was seen with the EC2 domains of CD9 and CD81, and because success was seen 

with a range of pathogens in the group, a series of peptides were developed based on the 

sequence of the EC2 domain of CD9 (sequences in Section 1, Figure 1.10). Here, we assess the 

3 of these peptides, 800, 810 and 8001, for any inhibitory effects on the adherence of S. 

aureus to skin cells. Scrambled (SCR) peptides were also tested, which contain the same 

amino acids as the peptides, in a random order, as controls for non-specific effects.  

Figure 3.2 shows the effects of the peptides on adherence of a low virulence Staphylococcus 

aureus strain, SH1000, to HaCaT cells. A significant reduction in adherence was observed with 

810 peptide as defined by the number of bacteria per 100 cells. In other places a trend is 

observed however statistical significance was not achieved due to large variances in the data 

when plotted as a percentage of a media treated control value. Some success in reducing 

adherent Staphylococcus aureus however was observed with all peptides, and, as previously, 

no effect was seen on the number of bacteria per infected cell. 

3.2.3 CD9-Based Peptides Have No Effect on the Adherence of SH1000 to 

Primary Dermal Fibroblasts 

To assess if this effect is exclusive to cell lines or is also present in primary cells, primary 

dermal fibroblasts and epidermal keratinocytes isolated from patient biopsy were pre-treated 

with the peptides and infected with SH1000 strain S. aureus.  

Primary fibroblasts from 3 donors were non responsive to the peptides, displaying no 

difference in the number of infected cells or the number of bacteria per 100 cells with 

treatment. To confirm that this was true even at higher concentrations of treatment, 

fibroblasts were then pre-treated with varying concentrations of 8001 peptide, which seemed  
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Figure 3.2: Peptide Treatment Reduces SH1000 Staphylococcal Adherence to HaCaT Cells: HaCaT 

cells were treated with 50nM Peptides or their scrambled controls for 30 minutes then washed 

three times with PBS. SH1000 was then added at an MOI of 160 and allowed to adhere for 1 hour 

at 37oC before washing again to remove non adherent bacteria and fixing in 2% paraformaldehyde 

until analysis by fluorescence microscopy. (A) % of cells with adherent bacteria. (B) Number of 

bacteria attached to 100 cells. (C) Bacteria per infected cell. (D) Representative images of 

adherence of SH1000 bacteria as observed by fluorescence microscopy. Blue: Nuclei with DAPI. 

Green: SH1000 bacteria. n=6, data represented as mean ± SEM. One-Way ANOVA with Sidak’s 

multiple comparisons test, percentage data transformed Y= log10Y before analysis. * p≤0.05 

**p≤0.01  
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the most promising treatment from the previous experiment. These cells however also did 

not show a reduction in adherent bacteria in response to treatment (figure 3.3). As the 

peptides are effective with HaCaT cells, we deduced that the effect is cell specific and that the 

peptides do not affect fibroblasts. Possible reasons for this are suggested later in this chapter. 

3.2.4 CD9-Based Peptides Reduce the Adherence of SH1000 to Differentiated 

and Undifferentiated Keratinocytes 

Keratinocytes are the main cell type found in the epidermis, the top layer of skin. Upon 

wounding these cells are damaged and exposed to the air and are often the first cell type to 

become infected. Keratinocytes in different regions of the epidermis however are different, 

with keratinocytes close to the surface of the skin being strongly differentiated and producing 

high levels of keratins and structural proteins compared to basal keratinocytes, which are 

highly proliferative. To simulate keratinocytes from different layers, primary cells from donors 

were grown in high calcium media with serum (Greens + 10% FCS) or low calcium serum free 

media (MCDB153) for 2 days prior to testing. 

Growth in high calcium media allows keratinocytes to differentiate and stratify as they would 

do as they cycle up through skin layers. These differentiated primary epidermal keratinocytes, 

unlike the dermal fibroblasts, appear responsive to treatment with peptides. 50nM peptide 

treatment reduced the quantity of adherent bacteria per 100 cells and a trend is observed 

with all peptides (figure 3.4). On these cells, 800 peptide, which is derived from the head 

region of EC2 adjacent to the sub-loop, was the most consistently effective. Overall, 

approximately a 40% reduction was seen with the peptides when compared with the 

scrambled controls, consistent with a tetraspanin-specific effect. As in previous experiments, 

no effect was seen in the number of bacteria per infected cell.   

In keratinocytes grown in low calcium media, the cellular processes that lead to cell 

differentiation are stalled, causing these cells to remain in their proliferative state. These cells 

were seeded at the same density and treated and infected in the same conditions as 

differentiated keratinocytes (Figure 3.5). The severity of infection in these undifferentiated 

cells was higher than for differentiated. In control wells, the percentage of infected cells was 

17% in differentiated cells, but 25% in undifferentiated cells. Additionally, upon 

differentiation, the  
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Figure 3.3: Peptide Treatment has No Effect on Staphylococcal Adherence to Primary Fibroblasts: 

Primary fibroblasts isolated from 3 donors were treated with 50nM peptides for 30 minutes and 

washed three times with PBS. SH1000 was then added at an MOI of 5 to the cells and allowed to 

adhere for 1 hour at 37oC. After infection the cells were fixed in 2% paraformaldehyde before 

analysis by fluorescence microscopy. (A-C) Cells were treated with 50nM of peptides. (D-F) Cells 

were treated with varying concentrations of 8001 peptide, with 200nM of 8001SCR as a control. 

Data represented as mean ± SEM, analysed by One-Way ANOVA with Sidak’s multiple comparisons 

test, percentage data transformed Y= log10Y before analysis. A-C n=8,  D-F n=3. 
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Figure 3.4: Peptide Treatment Reduces Staphylococcal Adherence to Primary Differentiated 

Keratinocytes: Primary keratinocytes were isolated from 3 donors and seeded in high calcium 

Greens media with 10% serum. After 2 days they were treated with 50nM peptides for 30 minutes. 

SH1000 was then added at an MOI of 30 to the cells and allowed to adhere for 1 hour at 37oC. 

After infection the cells were washed to remove non adherent bacteria and fixed in 2% 

paraformaldehyde until analysis by fluorescence microscopy. Data represented as mean ± SEM, 

n=4. Data analysed by One-Way ANOVA with Sidak’s multiple comparison test, percentage data 

was transformed by Y= log10Y before analysis.  
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Figure 3.5: Peptide Treatment Reduces Staphylococcal Adherence to Primary Undifferentiated 

Keratinocytes: Primary keratinocytes were isolated from 3 donors and seeded in low calcium 

MCDB153 serum free media to prevent differentiation. After 2 days they were treated with 50nM 

peptides for 30 minutes and SH1000 added at an MOI of 30 for 1 hour at 37oC. After infection the 

cells were washed again to remove non adherent bacteria and fixed in 2% paraformaldehyde then 

analysed by fluorescence microscopy. (A) Percentage of cells with adherent bacteria (B) Number 

of bacteria per 100 cells. (C) Bacteria per infected cell. Data represented as mean ± SEM and 

analysed by One-Way ANOVA with Sidak’s multiple comparison test. Percentage data was 

transformed by Y= log10Y before analysis. n=6. 
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mean number of bacteria per 100 cells in an untreated well falls from approximately 68 to 42, 

suggesting that differentiated cells are less susceptible to bacterial infection. 

When pre-treated with the peptides and infected with SH1000 strain Staphylococcus aureus, 

all tetraspanin peptides tested showed success in reducing the percentage of infected cells, 

and the number of adherent bacteria per 100 cells in these undifferentiated low calcium 

keratinocytes. Noticeably, in undifferentiated keratinocytes, the effect with the peptides is 

much more significant, with a maximum 74% reduction from the scrambled control is 

observed with 810 peptide. In this experiment, there is a small and significant effect on the 

number of bacteria per cell, which is not seen significantly in other cell types infected with 

SH1000 bacteria. This effect can also be observed to a lesser degree with other strains of 

Staphylococcus aureus, (S235) and HaCaT cells in section 3.2.6. 

3.2.5 Peptide Efficacy Correlates with CD9 Expression 

Interestingly, when the efficacy of the peptides against SH1000 adherence is correlated with 

CD9 expression on the cell surface, as quantified by flow cytometry in chapter 4 we can see a 

direct correlation between the two parameters. Figure 3.6 shows that the maximum 

percentage reduction in adherence caused by the peptides, their efficacy, correlates directly 

with the expression of CD9 on the cell membrane of that cell type. As shown, cell types such 

as undifferentiated keratinocytes, which display the highest levels of CD9 expression, also 

respond the best to the peptides and have, relative to their controls, the greatest reduction 

in the percentage of infected cells. Conversely dermal fibroblasts displayed a very low level 

of CD9 and were non-responsive to peptide treatment.  

3.2.6 CD9-Based Peptides Reduce MRSA Adherence to HaCaT Cells 

To test if this anti-adhesive effect is still present on more virulent and clinically relevant strains 

of Staphylococcus aureus, 2 other strains were tested: JE2 and S235.  JE2 is a virulent 

derivative of USA300 strain community associated Staphylococcus aureus.  This strain was 

used to infect HaCaT cells pre-treated with 50nM peptides (Figure 3.7). A significant reduction 

was observed in peptide treated cells compared to those treated with scrambled control 

peptides, in terms of the percentage of cells with adherent bacteria and the number of 

bacteria per 100 cells. Approximately a 65% reduction in adherent bacteria was seen with all 

peptides, with the maximum effect seen with 800 peptide (64.8% reduction in infected cells,  
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Figure 3.6: Peptide Efficacy is Correlated to CD9 Expression: Plotting CD9 expression as quantified 

by flow cytometry in Chapter 4 against the maximum efficacy of the peptides reveals that how 

effective the peptides are directly correlates to the levels of CD9 expressed on the cell surface. 

Fibroblasts which have a low CD9 expression show very low level success with the peptide 

treatment, whereas undifferentiated keratinocytes have high CD9 expression, and showed the 

greatest response to the peptides by the greatest decrease in adherent bacteria. Data is fitted to 

a linear regression, and is significantly non-zero. 
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Figure 3.7: Peptide Treatment Reduces Staphylococcal JE2 Adherence to HaCaT Cells: HaCaT cells 

were treated with 50nM peptides for 30 minutes then washed with PBS before infection by JE2 

strain S.aureus at an MOI of 200 for 1 hour. After infection the cells were washed to remove non 

adherent bacteria and fixed in 2% paraformaldehyde before staining and analysis by fluorescent 

microscopy. Data presented as mean ± SEM. n=6. Data analysed by One-Way ANOVA with Sidak’s 

multiple comparisons test, percentage data was transformed by Y= log10Y before analysis. * p≤0.05 

**p≤0.01 ***p≤0.001 ***p˂0.0001. 
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62.0% reduction in number of bacteria per 100 cells). No significant effect is seen on the 

number of bacteria per infected cell. 

The S235 MRSA clinical isolate was then used to infect HaCaT cells pre-treated with 50nM 

peptides or scrambled control peptides (Figure 3.8). A significant effect was seen with all 

peptides in reducing the number of adherent bacteria and proportion of infected cells, but no 

difference was observed with the number of bacteria per cell. The greatest effect was seen 

with 800 peptide, which reduced the number of cells with adherent bacteria by an average of 

77.52% and reduced the number of bacteria per 100 cells by up to 74.55%. 

Due to the slightly stronger effect of 800 peptide, this was chosen as a candidate for further 

development. 

3.2.7 Tagged Peptides Retain Function and Interact Directly with Host Cells 

To visualise how the peptides interact and localise, versions of 800 peptide and 800SCR 

peptide were generated with tetramethylrhodamine (TMR) tags. Due to the relatively large 

size of the TMR tag (MW 478.97Da) comparative to the peptide size (MW 1783.02Da), these 

new peptide conjugates were tested for their anti-adhesive properties, thus indicating any 

steric hindrance or changes in net charge exerted by the tag. Figure 3.9 shows the effects of 

the tagged peptides versus their original counterparts in preventing the adherence of S235 

strain Staphylococcus aureus to HaCaT cells. The fluorescently tagged peptides were shown 

to function to an equal, if not greater extent than the original peptides suggesting that the 

relatively large tag is not affecting their function or localisation. 

These TMR peptides were then used to visualise peptide interactions with cells. To do this, 

primary keratinocytes were grown overnight, then treated with 500nM peptides for 30 

minutes. They were then fixed using 2% paraformaldehyde and analysed by confocal 

microscopy. Peptides were observed localised on the surface of the cells (Figure 3.10). TMR 

peptides could not be visualised using flow cytometry due to low level fluorescence.  

3.2.8 Determining the Optimum Dose for 800 Peptides in HaCaT Cells 

A dose response experiment was carried out to ascertain at what doses 800 peptide 

treatment was effective (figure 3.11). HaCaT cells were pre-treated for 30 minutes with a  



73 
 

**********

C
o

n
tr

o
l

8
1
0

8
1
0
 S

C
R

8
0
0
1

8
0
0
1
 S

C
R

8
0
0

8
0
0
 S

C
R

0

5

1 0

1 5

2 0

2 5

%
 C

e
ll

s
 w

it
h

 a
d

h
e

r
e

n
t 

b
a

c
te

r
ia

C
o

n
tr

o
l

8
1
0

8
1
0
 S

C
R

8
0
0
1

8
0
0
1
 S

C
R

8
0
0

8
0
0
 S

C
R

0

2 0

4 0

6 0

8 0

1 0 0

B
a

c
te

r
ia

 p
e

r
 1

0
0

 c
e

ll
s

**** *** ****

C
o

n
tr

o
l

8
1
0

8
1
0
 S

C
R

8
0
0
1

8
0
0
1
 S

C
R

8
0
0

8
0
0
 S

C
R

0

1

2

3

4

5

B
a

c
te

r
ia

 p
e

r
 i

n
fe

c
te

d
 c

e
ll

BA C

  

Figure 3.8: Peptide Treatment Strongly Reduces Staphylococcal S235 Adherence to HaCaT Cells: 

HaCaT cells were treated with 50nM peptides for 30 minutes then washed. S235 strain S. aureus 

at an MOI of 40 was then added to the cells and allowed to adhere for 1 hour. After infection the 

cells were washed to remove non-adherent bacteria and fixed in 2% paraformaldehyde until 

analysis by fluorescent microscopy. (A) Percentage of cells with adherent bacteria (B) Number of 

bacteria attached to 100 cells (C) Bacteria per infected cells.  Data represented as Mean ± SEM. 

n=6. Data analysed by One-Way ANOVA with Sidak’s multiple comparisons test. Percentage data 

was transformed by Y= log10Y before analysis. * p≤0.05 **p≤0.01 ***p≤0.001 **** p≤0.0001 
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Figure 3.9: The Anti-adhesive Effect of Peptide 800 is Retained with the Addition of a Tetramethyl 

Rhodamine (TMR) Tag: Peptides 800 and 800SCR were conjugated to a Tetramethylrhodamine tag 

by GenScript UK in order to visualise their localisation. These conjugates were tested for their anti-

adhesive effects at 50nM against the adherence of S235 Staphylococcus aureus at an MOI of 40. 

Data represented as mean ±SEM Data were analysed by One-way ANOVA with Sidak’s multiple 

comparisons, and percentage data was transformed by Y=Log10Y before analysis. * p≤0.05 

**p≤0.01 ***p≤0.001. n=6. 
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C o n tro l 8 0 0 8 0 0 S C R

Figure 3.10: Peptide 800 Interacts with the Cell Surface: Primary human keratinocytes were 

seeded onto glass coverslips and grown overnight, then treated with 800 peptide or its scrambled 

control conjugated with a TMR tag or media only control for 30 minutes. They were then fixed in 

paraformaldehyde and stained with DAPI before imaging by confocal microscopy. 100x objective, 

scale bar 25µm. DAPI shown in blue, TMR shown in yellow. 
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Figure 3.11: Dose Response of 800 Peptide: HaCaT cells were pre-treated with a range of peptide 

concentrations from 0.1 to 50nM then infected with S235 bacteria at an MOI of 40 for 1 hour. As 

previous, cells were fixed in paraformaldehyde, stained with DAPI and quantified by fluorescence 

microscopy. Data analysed by three parameter nonlinear regression, with the top values 

constrained at no treatment average control figures, and consequently to 100% as appropriate. 

Control values are indicated with a horizontal dotted line. Goodness of fit R2 value is 0.42-0.78 

suggesting a good fit for the data. When compared with other reasonable fits, this was chosen as 

statistically the most appropriate. (A) Change in proportion of cells with adherent bacteria (B) 

Change in total number of bacteria attached to 100 cells (C, D) Non-normalised data represented 

as mean ± SEM. n=5, duplicate. (A and B) represented as mean ± SD. 
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range of peptide doses then infected with S235 strain for 1 hour. Cells were then washed to 

remove non-adherent bacteria and infection quantified by fluorescence microscopy. For each 

curve a three parameter non-linear regression curve was fitted, and an IC50 value calculated.  

The IC50 indicate that the peptides retain 50% function to concentrations as low as 1x10-9 to 

4x10-9 M. The inhibitory peptide effect is lost at concentrations below 5x10-10M. 

3.2.9 Determining the Duration of the Anti-Adhesive Effect of 800 Peptide 

To determine the persistence of the effect of 800 peptide after wash-out, HaCaT cells were 

treated with 800 peptide or media as a control for an hour, then washed. They were then left 

in media for 0-6 hours before being infected with S235 strain for 1 hour (Figure 3.12). The 

data show that a full effect of the peptide in reducing the adherence of bacteria to cells is 

observed for up to 2.6 hours. For example, when the peptide is added for 1 hour, washed off 

and replaced with media, then infected 2 hours later, we can still see a significant reduction 

in the number of cells with adherent bacteria and number of bacteria per 100 cells. The effect 

begins to be lost after the cells are incubated in media for more than 2 hours, as shown by 

the one-phase dissociation kinetics following the plateau, the model statistically shown to 

best fit the data, however the effect is not completely lost until approximately 8 hours after 

wash-out. 

3.2.10 Effects of Peptides on Bacterial Growth and Viability 

S235 strain Staphylococcus aureus were grown in the presence or absence of 200nM peptides 

over 48 hours to determine if the tetraspanin therapy was having any effect on bacterial 

viability, growth or proliferation (Figure 3.13). No reduction was seen in these factors over a 

48 hour period, confirming that the peptides work by targeting the host as opposed to the 

pathogen. 

3.2.11 Construction of a 3D Tissue Engineered Model of Human Skin (TEskin)  

Although cell lines are a good preliminary method for determining the effects of the 

tetraspanin based treatments in a simple system, they cannot tell us much about how the 

therapy would work in a bigger system such as skin. To this end, a 3D tissue engineered skin 

model  was constructed (Shepherd et al., 2009), and optimised as a system to represent   
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Figure 3.12: Anti-Adhesive Effects of 800 Peptide are Retained for More Than 2 Hours: HaCaT cells were 

treated with 200nM 800 peptide for 1 hour at different time points, then washed off and re-suspended 

in media until infection. S235 strain S.aureus was then added to all wells at the same time at an MOI of 

40 for 1 hour, then washed off, fixed in paraformaldehyde, and adherent bacteria quantified by 

fluorescence microscopy. (A) Shows the change in the proportion of infected cells. (B) Shows the change 

in the number of bacteria per 100 cells. Data normalised as a percentage of a no treatment control figure 

and plotted as Mean ± SD. n=3, duplicate. Data is modelled as a plateau followed by one phase 

association.  
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  Figure 3.13: Peptides Do Not Impact Bacterial Viability: S235 strain Staphylococcus aureus was 

grown for 48 hours in the presence of 200nM peptides or their scrambled controls. Optical density 

measurements were taken at 600nm, and colony forming unit measurements were taken by serial 

dilution followed by viable counts. n=3, data analysed by two-way ANOVA with Sidak’s multiple 

comparisons, no significance found. Data displayed as mean ± SEM. (A and B) Growth over 48 

hours. (C and D) Growth over 24 hours. (A and C) Optical density of bacteria. (B and D) Viable 

counts. 
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Staphylococcus aureus infected wounds in human skin. TEskin mimics the tissue structure of 

normal adult human skin and can be used to analyse the penetration of peptides and bacteria, 

and the effectiveness of the peptides in a more relevant model. Figure 3.14 (A) shows a cross 

section of TEskin after 14 days growth at air-liquid interface (ALI) stained with haematoxylin 

and eosin. The cells migrate and differentiate within the decellularised dermal scaffold to 

form a fibroblast-seeded dermis, an epidermis consisting of granular, basal and spinous 

keratinocytes, and a fully stratified stratum corneum.  When the model is wounded, much of 

the epidermis is lost (B) and the dermis is exposed. At the periphery of the wounded area, 

lower levels of the epidermis are exposed leaving undifferentiated keratinocytes susceptible 

to infection. 

After 1 hour of 800 peptide treatment, bacteria are added to the top of the wounded TEskin 

and allowed to adhere for 5 hours. The TEskin is then washed to remove non-adherent 

bacteria, and the remaining bacteria allowed to grow and infect until 24 hours after 

wounding, when it was washed again. The TEskin is then fixed, and bacteria can be visualised 

by indirect antibody staining and the nuclei by DAPI staining (Figure 3.15). Even after 24 hours, 

infecting bacteria are localised to the surface of the skin, with some infecting the remaining 

epidermis, but very few penetrating deeper into the dermis. 

3.2.12 Peptide 800 treatment Reduces Staphylococcal Adherence to TEskin 

TEskin was wounded with 3 seconds of burning, pre-treated for 1 hour with 200nM 800 

peptide, and then infected with S235 bacteria. At 6 hours post-burning, non-adherent 

bacteria were washed off, and the remaining adhered bacteria allowed to proliferate for a 

further a further 18 hours before the skin was treated with saponin, to isolate the bacteria 

viable cell counts (Figure 3.16). Treatment with 800 peptide reduced the quantity of adherent 

bacteria to around 52% of the untreated control value. This reduction in bacteria indicate a 

less severe infection in the pieces of TEskin that were treated with peptide, suggesting a 

possible role for the peptides as an anti-adherence therapy candidate for development. This 

reduction in infection was not reflected in the 800SCR peptide, suggesting a specific effect.  
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Figure 3.14: Construction of a 3D Tissue Engineered Model of Human Skin (TEskin): In order to 

test the peptide effects in a more relevant model, a tissue engineered model of human skin (TEskin) 

was generated as shown in section 1. This model is made of primary keratinocytes and fibroblasts 

from human biopsies, seeded back on decellularised dermis (DED). The cells migrate to their 

appropriate layers, with fibroblasts seeding the dermis (1), and keratinocytes forming the 

epidermis (2), migrating upwards and stratifying to produce the stratum corneum (3). A small 

amount of damage in the form of keratinocytes detaching from the basement membrane is 

observed, caused by the process of sample processing and embedding. (B) After 2 weeks growth 

at air-liquid interface a wound is generate in the TEskin by burning, which removes the epidermis 

and damages the tissue, allowing for penetration by the bacteria. Paraffin wax embedded TEskin 

sections of 8µm stained with haematoxylin and eosin, 20x magnification, scale bars 75µm. Small 

dust particles are visible in the background of the slide. 
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Bacteria – Isotype No Bacteria 

Figure: 3.15: Bacterial Infection of a TEskin Wound: TEskin was wounded by burning, infected for 

24 hours with S235 stain Staphylococcus aureus, then washed to remove non-adherent bacteria. 

Samples were fixed, sectioned, and stained indirectly using a rabbit anti-staphylococcal antibody 

and an Alexa Fluor® 568 tagged anti-rabbit secondary (yellow) then mounted in Vectashield® 

mounting medium with DAPI as a nuclear stain (blue). The blue dotted line indicates the 

approximate location of the dermal:epidermal junction, or basement membrane. Scale bars: 

50µm. 
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Figure 3.16: Peptide Treatment Reduces Infection of a TEskin Model: TEskin was constructed as 

in section 2 using tissue culture inserts. It was then burned to generate a wound, treated with 

200nM peptide, then infected with 1x107 S235 strain Staphylococcus aureus per TEskin. 24 hours 

after the initial wound was generated, each TEskin was cut in half, weighed, and viable counts 

taken to ascertain proportion of adherent bacteria in the tissue. (A) All replicates bacterial isolated 

per mg of tissue. (B) Mean CFU/mg. (C) Data plotted as a percentage of no treatment control 

figures. (A and B) Data are presented as mean ± SEM (C) Data presented as mean ± SD. Data are 

normally distributed as determined by D’Agostino-Pearson Omnibus Normality Test. n=3-6, 

triplicate, data analysed by Ordinary One-way ANOVA, with Sidak’s multiple comparisons post-

test. Percentage data was transformed by Y= log10Y before analysis. * p≤0.05. 
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3.2.13 Construction of Simple Epidermal Cultures as an Alternative Model for 

Infection 

An alternate model to the 3D DED model of TEskin is a simpler multi-layered epidermal model, 

which only requires keratinocytes. In this model, cells are seeded onto a semi-permeable 

membrane insert and allowed to proliferate into a confluent monolayer. Their media is then 

switched to one that allows stratification and the formation of a multi-layered epidermal 

structure. After 14 days at air-liquid interface, the epidermal cultures can be tested on.  

Epidermal cultures made with primary keratinocytes were compared to those made with 

N/TERT immortalised keratinocytes at a passage number of 58, and these cultures had a 

similar thickness and morphology, showing multiple layers or gradually differentiating 

keratinocytes with a fully formed stratum corneum (Figure 3.17A). Part of each membrane 

culture was removed from its membrane, stained with DAPI, then mounted onto slides for 

viewing with confocal microscopy (Figure 3.2.17B). A 3D reconstruction shows the bacteria 

localised to the top of the epidermis, with a gap of cellular material not containing DNA (the 

stratum corneum) visible between the bacteria and the upper keratinocyte nuclei. The 

bacteria are not seen to penetrate further than the surface in the skin infection model. The 

epidermal cultures could not be wounded due to their depth and fragility. 

To assess if these epidermal culture models could be used for studies of bacterial infections 

of a compromised barrier, cultures were also made using N/TERT cells containing silencing 

RNA for the knockdown of filaggrin, mimicking a mutation often found in patients with atopic 

dermatitis. These epidermal cultures showed a similar morphology to those made with wild 

type N/TERTs and with primary cells. In these cells however bacteria may penetrate more 

deeply into the cell layers (data not yet quantified). 
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  Primary Cells N/TERT cells N/TERT Sh FLG cells A 

N/TERT 

shFLG 

USA300 

N/TERT 

WT 
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Figure 3.17: Epidermal Cultures as an Alternate Skin Model:  Primary keratinocytes, N/TERT 

immortalised keratinocytes or N/TERTs containing filaggrin silencing RNA were grown as a 

monolayer on a porous membrane (Thermo scientific, Nunc, 0.4µm pore) at a density of 3x105 cells 

per insert until a confluent monolayer was formed. They were then switch from 3D priming to 3D 

barrier medium (CELLnTEC), and the following day moved to air liquid interface. After 14 days’ 

growth they were sent for histological analysis or infected with USA300 strain Staphylococcus 

aureus. (A) Histology: Samples fixed in paraformaldehyde were rehydrated and stained with 

haemotoxylin and eosin as previous, by the IMCB institute of molecular and cell biology, Singapore. 

40x magnification. Microscopy carried out by Dr Vijaya Chandra Shree Harsha. (B) 3D 

reconstructions: Samples were stained by submersion in DAPI for 15 minutes, then mounted onto 

slides with HydroMount. Stacked images were taken with an Olympus FV1000 upright confocal 

microscope and reconstructed using ImageJ and Imaris software. 100x magnification. Scale bar 

20µm. Based on size and stain distribution, smaller spots represent bacteria on the surface of the 

skin, larger patches of signal indicate cell nuclei. 

 

Exp 1 

Exp 2 
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3.3 Discussion 

 

In this chapter it has been shown that peptides based on sequences of CD9 EC2 domain 

reduce the adherence of various strains of Staphylococcus aureus to HaCaT cells and human 

epidermal keratinocytes, and finally to a tissue engineered model of human skin. This effect 

is not observed with scrambled control versions of these peptide made at the same time by 

the same supplier, which contain the same amino acids in a random order, suggesting that 

the anti-adhesive effect is tetraspanin specific and not a non-specific peptide effect. This 

effect was also not seen when bacterial adherence was observed with flow cytometry, which 

used different cell and bacteria numbers, and was exposed to greater flow pressure 

(appendix).  It has also been deduced that the peptides are causing this effect by interacting 

with host cells as opposed to the bacteria, as no effect of prolonged 200nM peptide treatment 

is seen against S235 strain staphylococcal growth or viability over 48 hours. 

 

The correlation of CD9 expression and efficacy of treatment leads us to hypothesise therefore 

that the mechanism of action of the treatment is CD9 related, and that the peptides, similarly 

to the EC2s, have an indirect mode of action, and may work by disrupting the tetraspanin web 

structures by disrupting these CD9 interactions (Barreiro et al., 2008, Green et al., 2011). 

Previously, cholesterol depletion by Methyl-β-cyclodextrin has been linked to disruption of 

TEMs, and dual treatment with the peptides did not further reduce bacterial adherence, 

suggesting that when TEMs are already disrupted by cholesterol depletion the peptides no longer 

have an effect, and that therefore the peptides also work by disrupting TEMs (Cozens, 2016). To 

further elucidate the mechanism of action of these peptides, super-resolution microscopy 

could be used to visualise the distribution of TEMs on addition of peptides or EC2s, or the 

localisation of Staphylococcal host cell receptors with or without peptide treatment and 

infection. 

Pre-treatment with the peptides and EC2 domains has proven effective on multiple different 

cell types, as outlined in table 3.1. Within this study, we have shown that the efficacy of these 

peptides is directly correlated with the CD9 expression on those cells, and that cells, for 

example fibroblasts, with low cell surface CD9 do not exhibit a strong reaction to the peptides. 
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CD9 however is expressed constitutively across many cell types, suggesting the peptides could 

have a broad range of therapeutic actions, for example in the prevention of vascular smooth 

muscle (high CD9 expressing cells (Dechend et al., 1999, Scherberich et al., 1998)) infection 

by Chlamydia pneumoniae (Dechend et al., 1999), or in the prevention of urinary tract 

infections caused by E. coli. 

As well as reducing bacterial adherence to various cell lines, this treatment has been shown 

to be successful against several different bacteria, including Escherichia coli and Salmonella 

enterica. In this study different levels of inhibition have been seen with different strains of 

Staphylococcus aureus.  The greatest reduction in bacterial load was observed with the two 

more virulent strains of S. aureus: S235 and JE2. These both originate as clinical isolates and 

are therefore the sort of strains that a new anti-microbial treatment must be effective against, 

more so than the SH1000 lab strain. Without a full genome study it is difficult to draw a 

conclusion as to why the treatment should be more effective against the clinical strains, which 

by natural selection should be some of the best at adhering to the host. We speculate that 

the difference in peptide efficacy could be due to a heavier reliance of SH1000 strain on CD9 

independent mechanisms of adherence. Alternatively, a large build-up in mutations in a long 

standing lab strain such as SH1000 due to repeated subcultures could also enhance, diminish 

or change genes involved in adherence.  

Although a significant effect was seen with the peptide, generally up to 50% of cells still have 

adherent bacteria despite pre-treatment. This, combined with the observation that there is 

no change in the number of bacteria per cell, suggests that a subset of cells exist in each 

population which are resistant to the peptides. These cells could be presenting surface 

markers more suitable to different forms of staphylococcal adherence, or their CD9 may be 

unavailable for other reasons related to cell cycle, as it has previously been shown that levels 

of tetraspanins on the cell surface changes as cells progress through the cell cycle (Green, 

2010). 

Dose response and retention of effect experiments show that the peptides display positive 

pharmacological properties. Peptide 800 is effective against S235 adherence to HaCaT cells 

down to a concentration of 1.8x10-9M, and this effect remains up to 2 hours after the 

treatment is removed. This supports the conclusion that the peptides could be a suitable 
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candidate for clinical development, as they would still be active throughout wound dressing 

changes, and work potentially even when diluted with would fluids. 

Another positive result indicating the potential usefulness of the peptides as a therapy is the 

reduction of bacterial load observed in the TEskin model pre-treated with 200nM peptide. A 

50% reduction from the untreated control is observed with 800 peptide against S235 clinical 

isolate infection. This infection would consequently be easier to then clear with normal 

biological wound clearing processes, such as shear force from the wound effluent and 

antimicrobial peptide secretion. 

In the cell line model, peptide treatment did not reduce the proportion of fibroblasts with 

SH1000 strain Staphylococcus aureus, indicating that this cell type is immune to peptide 

treatment. The observation that the peptide treatment was successful in the wound model 

therefore indicates that the therapy is having an effect in the area in which keratinocytes have 

become exposed to the bacteria, at the periphery of the wound, as opposed to at the centre 

of the wound where the material is mostly bare dermis and fibroblasts. 

Immunohistochemistry from the TEskin indicated however that S235 Staphylococcus aureus 

infect more strongly at the areas at the periphery of the wound, which can go some way to 

explaining the 50% reduction in this model. 

This model is a better representation of the normal pathological niche of Staphylococcus 

aureus than monolayer cell models, with the same basic morphology as an acute burn. This 

model also retains good barrier function as shown previously by Shepherd et al (Shepherd et 

al., 2009): neither Staphylococcus aureus nor Pseudomonas aeruginosa could infect the 

model without a wound to act as a gateway for infection (MacNeil et al., 2011). It  has been 

shown in chapter 4 to secrete some of the same cytokines found elevated in wounds, and it 

can be assumed that the keratinocytes around the wound will also secrete anti-microbial 

peptides.  

The TEskin model presented here however has limitations in its application as a full skin model 

due to its simplicity. The model lacks immune cells, and many natural structural features such 

as hair follicles and sweat glands. Work is ongoing to improving the model to include 

components such as immune cells. For example, Chau et al embedded dendritic cells into an 

agarose-fibronectin gel and sandwiched this between an epidermal scaffold seeded with 
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keratinocytes and a dermal scaffold seeded with fibroblasts  to form ‘Immunoskin’ (Chau et 

al., 2013). Additionally, HDMEC cells have been added to the skin grafts to introduce low 

levels of vascularisation, which could lead to more complex skin models (Supp et al., 2002). 

Construction of the TEskin also relies heavily on a constant supply of fresh skin biopsy for the 

retrieval of sufficient cells and dermal scaffold material. This however has been a limiting 

factor of this project, with little availability throughout the research. Recent studies indicate 

that alternate scaffolds could potentially be used as an alternate to DED, such as collagen 

(Venkatesan et al., 2015, Held et al., 2015) or electrospun fibres (Blackwood et al., 2008), 

however unlike DED these options will not contain the complex basement membrane 

structure. Additionally a simple 3D membrane culture has been developed and marketed by 

CELLnTEC which contains just keratinocytes, but grown into multiple layers and formed into 

a fully stratified barrier (Section 3.2.13) (Ananta et al., 2012). Immortalised keratinocytes such 

as N/TERT immortalised keratinocytes can provide an equal barrier function to primary 

keratinocytes, without the limitations of low population doubling potential (van Drongelen et 

al., 2014). As of the time of submission, a fully comprehensive study comparing all the 

methodologies has not yet been undertaken, leaving the primary model used here as the 

most characterised and consistent model used within the lab.  

The use of immortalised cells for the construction of 3D skin models however has opened up 

new avenues for studying the effect of mutations on development and retention of an active 

skin barrier. For example, Atopic Dermatitis (AD), also known as Eczema, is characterised by 

itchiness, dryness of the skin and a pre-disposition to bacterial infections. This disease 

phenotype is caused by a variety of genetic and environmental factors, and is frequently 

characterised by mutations in the filaggrin gene expressed in keratinocytes. Mutations 

mirroring AD can therefore be introduced into N/TERT keratinocytes using siRNA much more 

simply than into primary cells, and these immortalised AD cells can then be used to study 

barrier function in a 3D model, as seen in section 3.2.13 (van Drongelen et al., 2013). As AD 

sufferers are susceptible to infection this model could highlight some differences in skin 

architecture and methods of invasion by pathogens such as Staphylococcus aureus or 

Pseudomonas aeruginosa. 
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Overall, data presented here shows that pre-treatment with all peptides reduced the 

adherence of Staphylococci to host cells and that peptide 800 can reduce the adherence of 

S235 strain to TEskin. This effect however is limited to around a 40-60% reduction, which is 

insufficient alone for the removal of pathogens such as MRSA. Therefore, work was carried 

out in chapter 5 to improve the efficacy of the peptide, and to test for any synergistic effects 

with MSSA treatment antibiotics. Another avenue of exploration is testing for any obvious 

side effects on cells, as targeting a multifunctional tetraspanin such as CD9 could have effects 

on metabolism, cell proliferation, migration, and wound healing. 

Chapter 4: Expression of Tetraspanins and Toxicity of 

Peptides 

4.1 Introduction 

4.1.1 Tetraspanins 

As outlined previously, tetraspanins are a superfamily of membrane proteins expressed in a 

range of eukaryotes, with 33 known members in humans. Tetraspanins associate with each 

other in the membrane via membrane-proximal palmitoylation sites as well as with other cell 

components including proteins and lipids, in order to form specialised microdomains known 

as TEM (tetraspanin enriched microdomains) (Charrin et al., 2002). TEM have been implicated 

in many cell functions, including cell adherence and fusion, membrane trafficking, 

endocytosis and motility (Berditchevski and Odintsova, 2007, Hemler, 2005). 

4.1.2 Tetraspanin Expression 

Tetraspanins have been observed in nearly all cell types in most genotyped eukaryotic 

species. They are mostly membrane localised, but additionally, they are also commonly found 

in exosomes. Some tetraspanins, such as CD81 and CD9, are known to be expressed 

constitutively, whereas others are highly regulated, based on cell type and conditions. For 

example, the spinal cord expresses high levels of CD9, CD81 and CD151, but little CD63 

whereas, conversely, CD63 is highly expressed in platelets, in which only mid-levels CD151 are 

observed, and CD81 is not detected at all. Other tetraspanins are expressed in just one specific 

cell type such as CD37 which is expressed almost exclusively in lymphoid cells (Wilhelm et al., 
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2014, Kim et al., 2014, Wang et al., 2015). Human tissue expression patterns for common 

tetraspanins CD9, CD63, CD81 and CD151 studied here are outlined in Figure 1.6. These 4 

tetraspanin proteins have been identified on nearly all Homo sapien tissue types in varying 

levels (Wang et al., 2015).  

Previously it was shown that tetraspanins interact in clusters with other tetraspanins and 

partners, however with the development of super resolution microscopy this view has been 

challenged. A recent report published by van Spriel et al contradicted the previous 

understanding of TEM, by demonstrating that each TEM is composed of predominantly of one 

type of tetraspanin and its partner molecules, and there are interactions between these and 

other tetraspanin abundant microdomains, however there is not a large amount of mixing of 

tetraspanins within domains, as was previously thought (introduction – figure 1.8) 

(Zuidscherwoude et al., 2015). This study however was only conducted on membrane 

fractions rather than intact cells and therefore is not yet widely accepted.  

4.1.3 CD9 Functions and Keratinocytes 

The majority of the work in this study focuses on the tetraspanin CD9. One of the most 

characterised tetraspanins, CD9 has a wide variety of implicated functions outlined in section 

1.6.1, including immune functioning, cell motility and adhesion. 

CD9 has also been shown to affect certain facets of keratinocyte function. For example, 

keratinocyte migration, a critical process in wound healing, can be up-regulated by anti-CD9 

antibodies (Jiang et al., 2013). CD9 has also been implicated in the juxtacrine growth and 

proliferation of keratinocytes, with anti-CD9 antibody ALB6 reducing this growth by up to 50% 

(Inui et al., 1997). Additionally CD9 is seen to be upregulated in squamous cell carcinomas 

suggesting a role in tumour expansion and invasion in skin cancers (Ach et al., 2010).  

4.1.4 Tetraspanins and Immunity 

The immune system is a complex system for protection against invading pathogens and is 

outlined in Figure 1.4. Tetraspanins are known to be heavily involved in the immune system, 

in immune cell migration (Gartlan et al., 2013), the organisation of immune signalling 

complexes on the cell surface (Unternaehrer et al., 2007), antigen presentation(Jones et al., 

2012), and the secretion of signalling molecules (Zumaquero et al., 2010, Murayama et al., 
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2008, Levy and Shoham, 2005), with CD9 being involved directly with many of these 

processes. Due to these numerous interactions, molecules that interfere with normal CD9 

function could have detrimental effects on normal immune function. To test for these effects, 

we can test for differences in the expression of cytokines, the signalling molecules of the 

immune system. 

4.1.5 Tetraspanin-mediated Toxicity 

Along with the immune system, targeting tetraspanins could interfere with other aspects of 

normal host function such as cell migration, wound healing and cell metabolism. 

Some preliminary data on peptide effects on cell metabolism can be ascertained from simple 

cell line assays. Various metabolic stains can be used to indicate cell viability or quantity such 

as MTT, Sulforhodamine B, and Resazurin Blue. Scratch assays, in which cells are grown to a 

confluent monolayer and then scratched with a 200µl pipette tip, producing a ‘wound’ which 

cells can migrate to cover, indicate effects on both cell proliferation and migration. The 

addition of a proliferation inhibitor allows distinguishing between the two. An alternate assay 

for migration is a membrane migration assay which measures the rate at which cells migrate 

through a membrane. 

Additionally, the 3D tissue model outlined in section 1.5.2, can be used to test for toxic effects 

in a more complex system, in which the 2 major skin cell types interact with each other as 

well as with the external environment, however it will only provide information on the 

response of keratinocytes, fibroblasts and extracellular matrix. This model can be used to 

study cytokine production, as well as presenting a more complex model for wound healing 

that the scratch assay mentioned above. 

Another model system used here to study peptide toxicity and anti-adhesive effects is that of 

the Zebrafish, Danio rerio, whose early immune system is similar to our own (Nuesslein-

Volhard et al., 2002).  These fish have previously been used as a model to test the effects of 

small systemic drugs and other therapies. Prajsnar et al have expanded the range of this 

technique and developed a model in which the fish are injected with Staphylococcus aureus 

to establish a late term systemic infection, and then treated with potential therapeutic agents 

(Prajsnar et al., 2008). This is a simple and rapid way to detect any whole-organism toxicity 
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associated with the compound being tested; however, it is not a full reflection of a human 

system. 

4.2 Results 

As mentioned above, tetraspanins are expressed on a wide range of cell types. Here we look 

at the expression levels in the main cell types in skin and in HaCaT cells, a human epidermal 

keratinocyte cell line, using flow cytometry and fluorescence microscopy. 

4.2.1 Microscopic Analysis of Tetraspanin Expression 

Figure 4.1 shows the expression of 4 tetraspanins, CD9, CD63, CD81 and CD151 as viewed by 

fluorescence microscopy. Cells were grown overnight and labelled with the antibodies stated 

in section 2 with a FitC labelled anti-mouse secondary antibody. JC1 was used as an isotype 

control and shows no staining. CD9 is highly expressed on keratinocytes and HaCaT cells but 

in low abundance on fibroblasts. CD63 is highly expressed on fibroblasts, but not on other cell 

types. The HaCaT keratinocyte cell line shows expression patterns similar to that of 

keratinocytes. This would indicate that these cells are a reasonable model for studying 

tetraspanin function in human keratinocytes. 

4.2.2 Flow Cytometric Analysis of Tetraspanin Expression 

The expression of tetraspanins was then quantified by flow cytometry, with the same 

antibodies as above (Figure 4.2). CD9 was highly expressed on keratinocytes, and not 

expressed on fibroblasts; CD63 is highly expressed on fibroblasts but expressed in low level 

on keratinocytes. CD81 and CD151 were expressed most on HaCaT cells, and least on 

keratinocytes. From this data, a difference in tetraspanin expression was observed between 

keratinocytes from the same donor in their proliferative state (grown in low calcium medium), 

and in their differentiated state (grown in high calcium media, figure 4.3). Analysis by two-

way ANOVA showed that CD9 expression was significantly reduced in differentiated 

keratinocytes, suggesting that, in skin, CD9 is not evenly distributed across all layers of the 

epidermis. 

To check if the expression levels of tetraspanins were consistent across donors, primary 

fibroblasts from 4 donors were stained for tetraspanin expression and analysed by flow 

cytometry (figure 4.4). Fibroblasts were chosen for this assay as they were the most readily  
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HaCaT Cells Fibroblasts (286) 
Differentiated 

Keratinocytes (296) 

Cells 
Only 

JC1 

CD9 

CD63 
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Undifferentiated 

Keratinocytes (296) 

Figure 4.1 Expression of Tetraspanins by Microscopy: Representative images showing the 

expression of tetraspanins on HaCaT cells, primary dermal fibroblasts and undifferentiated vs 

differentiated primary epidermal keratinocytes. Tetraspanin expression was observed by indirect 

antibody staining (outlined in section 2) and visualised by fluorescence microscopy, shown in 

green. All cells are mounted in Vectashield with DAPI to visualise nuclei (blue) No staining was 

observed in the JC1 isotype control wells. 100x magnification. Scale bars = 25µm. 
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available cell type, and the cell type most consistent for growth rate so that cells could be 

harvested simultaneously.  The fibroblasts viewed here share the same pattern with those 

analysed above in figure 4.2, with very low CD9 expression, high CD81 expression, and mid-

levels of CD63 and CD151 expression. This pattern was observed in fibroblasts from all 4 

donors. The levels of each specific tetraspanin however varied significantly between donors, 

for example donor 196 had consistently low tetraspanin expression, whereas donor 109 had 

higher levels of both CD63 and CD81. 

4.2.3 CD9 is Expressed in the Epidermis of TEskin 

In order to further hypothesise about the efficacy of the peptide treatment in skin, the 

expression of CD9 in the skin model was analysed by indirect staining. TEskin was grown for 

14 days at air liquid interface then fixed with 3.8% formalin overnight. It was then processed 

into paraffin blocks and sectioned into 8µm samples. Involucrin, a marker of differentiation 

was used to help visualise the layers of epidermis. This is primarily expressed in higher, more 

terminally differentiated layers of keratinocytes. Here, CD9 is also seen to be similarly 

expressed, with the highest expression being observed in spinal and granular layers of the 

epidermis of TEskin. Figure 4.5 also shows high CD9 expression observed in sub-epidermal 

structures such as hair follicles.  

4.2.4 Peptides Do Not Have a Negative Effect on Cell Metabolism 

As mentioned previously, CD9 is a highly multifunctional molecule, and therefore anti-

adhesion therapies targeting CD9, as described in chapter 3, could have a large range of side 

effects in human cells. A series of tests was therefore undertaken to test for any toxicity of 

peptide treatment on cell metabolism, proliferation and migration. 

Firstly, an MTT stain was used to test for effects on cell viability metabolism. This assay uses 

the tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 

which in actively metabolising cells is reduced by oxidoreductase enzymes to its purple form, 

formazan. This assay gives an indication of any treatment induced effects on cell metabolism 

(Figure 4.6). After 24 hours’ peptide treatment, no reduction in cell metabolism was 

measured in this assay with any treatment or scrambled control peptide. No effect on cell 

phenotype was observed by light microscopy (data not shown). 
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Figure 4.2: Expression of Tetraspanins Observed by Flow Cytometry:  The levels of tetraspanin 

expression were measured by indirect antibody staining as previously described, and quantified by 

flow cytometry on the Attune Acoustic Focusing Cytometer. Isotype and secondary only controls 

gave comparable signals to the unstained control, which was subtracted from the positive values 

prior to analysis. Cells were not gated to distinguish singlets/doublets, due to the small proportion 

of differentiated keratinocytes existing singularly. (A) CD9 expression, (B) CD63 expression, (C) 

CD81 expression, (D) CD151 expression. n=1. Gating of cells is demonstrated in Supplementary 

Figure 3. 
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Figure 4.3: Stage of Cellular Differentiation Affects the Expression of Tetraspanins: Cells from the 

same donor were grown in low calcium (undifferentiated) or high calcium (differentiated) media 

for 2 days, then stained for tetraspanin expression as previous. Live stained cells were run through 

the Attune Acoustic Focusing Cytometer, and analysed for size and fluorescence. n=1. 
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Figure 4.4: Cell Donors Express Differing Levels of Tetraspanins: Primary dermal fibroblasts from 

different donors (109,121,196,284) were stained for their tetraspanin expression using antibodies 

detailed in Section 2. n=1.  
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4.2.5 CD81 EC2 Domain May Have an Effect on Cell Migration, While Peptides 

Do Not 

In 2000, a role for tetraspanins in cell migration and wound healing was first observed by 

Penas et al (Penas et al., 2000), and later studies found that blocking CD9 with antibodies 

actually increased HaCaT migration in a cell scratch assay (Jiang et al., 2013, Jiang et al., 2014). 

Treatment with 500nM EC2:GST fusion domains had no significant effect on cell migration 

and proliferation when compared to the GST control (figure 4.6). CD81 however did have a 

small negative effect on scratch healing when compared to the media only control, and also 

showed a larger range of healing speeds. None of the peptides had any effect when compared 

to their scrambled controls at 200nM or when compared to a media only control. A small shift 

in the healing rate of cells treated with 800 peptide is not significant but was deemed worth 

exploring further as this peptide was selected as an anti-adhesion therapy due to its 

consistent anti-adhesive effects against virulent strains of Staphylococcus aureus. 

4.2.6 800 Peptide Does Not Affect Epidermal Migration in TEskin 

To determine if 800 peptide can affect the migration and proliferation essential for wound 

healing, the TEskin model was constructed with the keratinocytes and fibroblasts grown onto 

DED but contained in the centre of a metal ring until fully formed and stratified. This ring was 

removed after 7 days at air liquid interface, and the live keratinocytes and fibroblasts allowed 

to re-epithelise the bare dermis, representative of the exposed dermis of a wound. The area 

of viable cells was measured by Resazurin Blue staining and ImageJ analysis at 0, 7, and 10 

days after removal of the metal ring (Figure 4.8). TEskin was treated with 200nM peptides 

every two days throughout the experiment. No negative effects on the essential wound 

healing process were observed in this more complex model at any of the time point observed, 

and therefore 800 peptide was deemed to not have a negative effect on cell migration and 

proliferation.  
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Figure 4.5: CD9 Distribution in TEskin: TEskin was grown at ALI for 14 days, then fixed, processed 

and paraffin embedded. Sections were then indirectly stained for Involucrin, a marker of 

keratinocyte differentiation, CD9, or with a JC1 isotype control antibody. DAPI was also used to 

visualise cell nuclei. The top of the image is the surface of the skin piece, the bottom of the image 

is the dermis, and so lower cell layers are fibroblasts and basal keratinocytes, and upper layers are 

stratified terminally differentiated keratinocytes. No staining is observed with the isotype control. 

20x objective, exported with LASAF and optimised uniformly with ImageJ. Scale bars 50µm. 
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Figure 4.6: Peptide Treatment Does Not Affect Cell Viability: HaCaT cells were seeded at a density 

of 100,000 cells/well and grown overnight. Wells were then treated with 200nM Peptide for 24 

hours, before MTT dye was added. Cells were lysed with 2-ethoxyethanol and the dye transferred 

to a 96 well plate for analysis by reading at 562nm. (A) Raw data presented at mean ± SEM (B) 

Normalised as a percentage of the control, presented as mean ± SD. Analysed by One-Way ANOVA 

with Sidak’s multiple comparison post-test. Percentage data transformed as Y=log10Y prior to 

testing by ANOVA. n=3. 

Figure 4.7: Tetraspanin Peptide Treatment Does Not Have Significant Effects on Cell Migration 

and Proliferation in a Monolayer Scratch Model: HaCaT cells were seeded to form a confluent 

monolayer. A scratch was then made using a sterile p200 pipette tip, and 200nM peptides and 

500nM EC2:GST fusion proteins added. The area of the scratch was measured at 18 hours to 

deduce the rate of migration and proliferation. Serum free media was used as a positive control.  

(A) The effects of EC2 domains (B) The effects of 200nM peptides or scrambled peptides. Data 

presented as mean ± SEM. * p≤0.05. (A) n=4, duplicate. (B) n=5, duplicate. Data analysed by One-

way ANOVA with Sidak’s multiple comparisons. 
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4.2.7 Peptides Do Not Affect Cytokine Production by TEskin 

Tetraspanins are involved in cell signalling and immunity, and therefore treatment with the 

peptides could affect immune functions carried out by the skin. To test for any obvious effects 

on immunity, a cytometric bead array (CBA) was performed to see if any changes in cytokine 

or chemokine production in the 3D skin model were observed with and without treatment. 

Samples were collected 24 hours post wounding, in serum free media. 

CBAs are a quantitative technique which detects cytokine/chemokine levels in a sample by 

flow cytometry. Beads coated with anti-cytokine/chemokine antibodies are added to samples 

to trap the target of interest, then fluorescent secondary antibodies to the 

cytokines/chemokines are added so that the beads can be detected by the flow cytometer. 

The Median Fluorescence Index (MFI) values are compared to a standard curve to determine 

the concentration of cytokines in the samples. 

In a preliminary experiment, a small number of samples were screened for the cytokines 

known to be secreted by keratinocytes and fibroblasts, to assess which could also be detected 

in wound effluent from TEskin (Figure 4.9). Detectable levels of interleukins (IL)-11, IL-6, IL-8, 

CCL2 (MCP-1) and IL-1α were secreted by the TEskin, however IL-11 was excluded from 

further analyses as the levels observed were comparatively very low. 

Wound effluent was therefore collected at 24 hours post wounding/treatment from TEskin in 

various conditions: wounded and mock-wounded, infected or sterile, and with or without 

peptide treatment. Figure 4.10 shows that differences in cytokine levels occur in response to 

wounding and to wound infection by S235 strain Staphylococcus aureus. 24 hours after 

burning TEskin we can see a significant increase in levels of IL-6 and IL-8 secreted into the 

wound compared to the levels secreted by intact unwounded TEskin. A possible increase in 

IL-1α levels are also seen however this did not reach significance.  When burned TEskin was 

infected with S235 bacteria, a significant increase in IL-1α was observed after 24 hours, along 

with a significant reduction in MCP-1 chemokine. No change was observed with IL-6 or IL-8. 

To assess if treatment with 800 peptide, had any effect on the cytokine response, CBAs were 

performed on samples of each condition, with 200nM peptide on the skin throughout the 24 

hour incubation. No effect was seen on cytokine secretion by TEskin with 200nM 800 peptide 

treatment (Figure 4.11, 4.12). There is however a small significant increase in the secretion of  



103 
 

0

1

2

3

D a y s

A
r
e

a
 c

m
2

70 10

0 1 0

0

1

2

3

D a y s

A
r
e

a
 c

m
2

7 0 1 0

0

2 0

4 0

6 0

8 0

1 0 0

D a y s

%
 C

o
v

e
r
a

g
e

7

M e d ia  O n ly

8 0 0

8 0 0 S C R

A

C

B

D

 

  

Figure 4.8: Peptide Treatment Did Not Affect Epidermal Migration in the Tissue Engineered Skin 

Model: Keratinocytes and fibroblasts were seeded into the centre of a 10mm diameter metal ring 

and grown for 3 days in submerged culture and at air liquid interface for 7 days, before the ring 

was removed. 200nM peptide treatment or media control was then applied to the surface of the 

skin every day for 10 days and the epidermis allowed to migrate outwards. Resazurin Blue stains 

were performed at 0, 7 and 10 days to measure the area of metabolically active viable skin cells. 

Conditions were judged to be not significantly different by Two-way ANOVA, and percentage data 

was transformed by Y=log10Y before analysis. The data is presented as mean ± SEM. (A) Each TEskin 

piece is plotted individually. (B) Representative images of skin pieces at 0, 7 and 10 days. (C) Mean 

summary data. (D) Mean percentage coverage. n=3. 
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Figure 4.9: The Production of Cytokines by TEskin: Wound supernatant was collected 24 hours 

post-wounding/treatment in serum free media and tested with a cytometric bead array for a range 

of cytokines and chemokines. MFI figures were converted to pg/ml using a standard curve based 

on beads combined with pre-defined quantities of cytokines. Media only controls were subtracted 

from data values. n=1, duplicate. 
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IL-6 with peptide 800SCR treatment. This could be due to contaminant in the 800SCR peptide 

or non-specific effect of the scrambled sequence. 

4.2.8 Peptide Treatment Does Not Affect the Development or Survival of 

Zebrafish 

To test for any toxic effects on an in vivo model, peptide 8001 was injected at a final 

concentration of 50nM-150nM into London Wild Type zebrafish embryos against a PBS 

control, and allowed to develop for 76 hours. Zebrafish were scored for survival every 12-24 

hours. No effect on the survival of zebrafish was seen with any peptides or their scrambled 

control suggesting that at this concentration neither the peptides, nor any remaining by-

products of the peptide production process, are having any effect on the growth or viability 

of the zebrafish.  

To test if the peptides had any effect on zebrafish viability during an infection, we used the 

Staphylococcus aureus zebrafish infection model as published in Prajsnar et al (Prajsnar et al., 

2008). In this model, treatments are co-injected with bacteria directly into zebrafish and their 

survival scored for up to 5 days (Figure 4.13). We saw no significant difference in survival rates 

of fish injected with 8001 peptide, however when treated with a final concentration of 

50nM8001SCR peptide a significant increase in fish mortality was observed. Injections were 

performed by Dr Nelly Wagner and Mr Alex Williams. 
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Figure 4.10: Wounding and Infection Exert Different Effects on Cytokine Production in TEskin: (A) 

Cytokines were collected from the supernatant of unwounded TEskin and TESkin 24 hours after 

burning. (B) Cytokines were collected from wounded skin with or without infection with S235 strain 

Staphylococcus aureus 24 hours post-burning. n=3, triplicate, data analysed by Unpaired T-test * 

p≤0.05 **p≤0.01, Data presented as mean ±SEM 
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Figure 4.11: Cytokine Levels Change in Response to Infection But Not Peptide Treatment: (A) IL-

1α levels (B) MCP-1 levels. (C) IL-6 levels D) IL-8 levels. n=3 triplicate Data analysed by One-way 

ANOVA with Sidak’s multiple comparisons. Percentage data was transformed as Y=log10Y before 

analysis. 



108 
 

IL
-1


M
C

P
-1

IL
-6

IL
-8

1

1 0

1 0 0

1 0 0 0

E ffe c ts  o n  In ta c t  T E s k in
%

 C
o

n
tr

o
l:

 p
g

/m
l **

IL
-1


M
C

P
-1

IL
-6

IL
-8

1

1 0

1 0 0

1 0 0 0

E ffe c ts  o n  In fe c te d  T E S k in

%
 C

o
n

tr
o

l:
 p

g
/m

l
A

C

B

C o n tro l

8 0 0

8 0 0 S C R

IL
-1


M
C

P
-1

IL
-6

IL
-8

1

1 0

1 0 0

1 0 0 0

E ffe c ts  o n  W o u n d e d  T E S k in

%
 C

o
n

tr
o

l:
 p

g
/m

l

 

  

Figure 4.12: Peptide 800 does not Influence the Cytokine Response of TEskin:  A) Effects of peptide 

treatment on intact TEskin. (B) Effects of peptide treatment on wounded TEskin. (C) Effects of 

peptides on infected TEskin. Data is normalised as a percentage of untreated control and 

transformed by Y=Log10Y before analysis by Two-way ANOVA. Presented as Mean ± SD * p≤0.05 

**p≤0.01 
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Figure 4.13: Peptide Treatment Alone Does Not Affect the Survival of Zebrafish Embryos, but 

may Affect Their Susceptibility to Infection: A) Viability: 8001 and 8001SCR 25-30 embryos per 

group were injected with 1nl peptide to a final internal concentration of 50 to 150nM, and scored 

every 12-24 hours for survival. (A) Fish are injected with just peptide. (B) Zebrafish were co-injected 

with peptide and SH1000 strain Staphylococcus aureus, to a final concentration of 50-150nM, and 

the cfu counts of SH1000 bacteria indicated by the bracketed numbers in the associated key. Log-

rank test for trend, n=1. 
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4.3 Discussion 

Here we have shown that tetraspanin expression levels vary between cell types, donors, and 

the differentiation state of cells. We have also shown that peptide treatment has no major 

effects on cell metabolism, migration, proliferation, or the production of cytokines in 

response to wounding and infection. 

The expression of various tetraspanin proteins on single cell types from the skin has not 

before been extensively studied. Data from the PaxDb database shows mid-levels of CD9 and 

CD63 expression with low levels of CD81 expression in the skin (Kim et al., 2014, Wilhelm et 

al., 2014). How these levels vary between all the different cell types however is poorly 

characterised. Here we looked at the expression of CD9, CD63, CD81 and CD151 by flow 

cytometry and microscopy to determine the relative expression levels in the cell types 

relevant to this study.  

Keratinocytes showed high levels of expression of CD9, whereas fibroblasts showed very low 

expression levels. Interestingly, fibroblasts showed very high levels of CD63 expression at the 

cell surface, which was unexpected as CD63 is seen to be mostly expressed in intracellular 

vesicles. HaCaTs showed a similar level of CD9 expression to primary differentiated 

keratinocytes and so, HaCaTs are an acceptable model for primary keratinocytes in the 

context of CD9-targeted therapies. These cells however do exhibit higher levels of CD81 and 

CD151 than any other cell type studied here, which suggests that they should be treated with 

caution when used as a model for other systems, as many other proteins could be differently 

expressed. 

Protein levels are known to be expressed differently between individuals, based on gender, 

age and tissue localisation as well as environmental factors (Sprenger et al., 2013). Co-culture 

of keratinocytes and fibroblasts also extensively changes the gene expression of fibroblasts, 

suggesting that cells in a 3D model will differ from those in monolayer culture (Nowinski et 

al., 2004). The differences in tetraspanin expression based on the differentiation state of cells 

should also be considered in other cell line studies. As keratinocytes become more 

differentiated as they move into the upper layer of the epidermis, we hypothesised that CD9 

will be located in the basal to spinous layers of the epidermis and will be expressed less in 

granular layers and in the stratum corneum. In the TEskin model assessed here however we 
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see CD9 expressed in higher levels of epidermis. This distribution partially disagrees with 

online databases which place CD9 in the basal levels of skin, however all these data are 

collected from skin biopsies, whereas the distribution of proteins in TEskin is known to differ 

slightly. This discrepancy highlights another drawback of the TEskin model as well as the 

difficulties of using cell line models which only reflect one cell state. 

As mentioned previously, CD9 is a highly multi-functional molecule and targeting it could 

affect cell function. If the peptides were to be used therapeutically, as outlined in chapter 3, 

they would have to be tested for toxicity against host cells. Therefore, tests were performed 

that could detect perturbation of normal cellular activity. No major effects on cell viability 

were observed with an MTT test. Also, no negative effects were seen on cell proliferation and 

migration a cell monolayer scratch model with CD9 EC2 or the majority of the CD9 peptides. 

There was however an effect with CD81 EC2 domain, which reduced the scratch healing time. 

CD81 is a tetraspanin commonly found associated with CD9, and in multiple systems they 

have been shown to have contradicting functions. Therefore, if CD9 downregulation can 

increase wound healing, as seen in Jiang et al (Jiang et al., 2013), it would not be surprising to 

see a decrease in migration speed with CD81 downregulation. In this study however we only 

see the CD81 decreasing migration speed without the converse increase by CD9 blocking, 

possibly due to the EC2 domains not being as effective as blocking antibodies. As MTT tests 

give an indication of cell number, and this assay showed no peptide effects, we can assume 

that the effects here are in relation to cell migration as opposed to proliferation. 

There was also a small but not significant effect of 800 peptide on the migration of HaCaT 

cells. This reduction in cell migration could be a detrimental side effect of peptide 800 

treatment, and therefore it was important to test for this effect using an alternate assay, 

namely epidermal migration in the TEskin model. This assay showed no reduction in migration 

or re-epithelisation time with 800 peptide treatment. Although fresh peptide was added to 

the top of the skin every 2 days and the overall healing rate was not reduced. As mentioned 

previously, the TEskin model is simplistic and therefore limited, especially for a biological 

process as complicated as wound healing, however it is more representative of cell migration 

on skin than a cell monolayer model. More variance exists in the data obtained from this 

model, due to the difficulty in measuring viable area, and differences in the growth rate of 

primary cells. 
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The immune response of the skin is a highly complex process and is frequently the first line of 

defence against infections. The cytokines and cells involved in this process are outlined in 

figure 1.2. We have shown in this study that the TEskin model produces sufficient quantities 

of cytokines to be measured by CBA analysis, despite the lack of immune cells in the model. 

The functions of these detected cytokines are outlined in table 4.1 (Grone, 2002, Grossman 

et al., 1989, Sasaki et al., 2003, Cornelissen et al., 2010, Giustizieri et al., 2001, Sato et al., 

1999, Turksen et al., 1992, Sugawara et al., 2001, Luckett and Gallucci, 2007, Mohamadzadeh 

et al., 1994, Yen et al., 1996). Upon wounding, we can see a significant increase in interleukins 

(IL)-6 and IL-8, despite the reduction in viable cells upon burning. In our TEskin we can also 

see a small but non-significant increase in IL-1α levels upon wounding, with data variance 

contributing to lack of significance. No increase in MCP-1 levels were observed, suggesting 

that the increase in MCP-1 levels seen in skin in other studies (Tekstra et al., 1999, Cornelissen 

et al., 2010, Kiang et al., 2010) may be primarily due to other cell types. Previously, cytokines 

IL-1α, IL-6 and IL-8 have been shown to increase within 24 hours of wounding of bio-

engineered skin substitutes, however the model used in that study differed from the TEskin 

tested here, as it uses a collagen matrix rather than de-epidermised dermis as a scaffold and 

allows less time for stratification at air liquid interface (Falanga et al., 2002).  Clinical data has 

also been collected that suggests a difference between mechanical wounding and burn 

wounding on cytokine response, including an increase in Macrophage chemotactic protein 

(MCP)-1, IL-6 and Tumour Necrosis factor (TNF)-α in burn wounds as opposed to scalpel 

wounds (Schwacha et al., 2010).  

Additionally, we observed a significant change in cytokine production in response to burned 

TEskins infection with S235 strain Staphylococcus aureus, with an increase in IL-1α and a 

decrease in MCP-1. Previous studies have highlighted that in skin and in keratinocytes alone 

IL-1α is upregulated upon staphylococcal infections (Donnarumma et al., 2004), and the 

bacterial endotoxin lipopolysaccharide (LPS) alone increases the secretion of IL-6 and IL-8 

from keratinocytes (Sasaki et al., 2003, Schwacha et al., 2010). Again a small increase in IL-8 

is observed in infected TEskin, however this is not statistically significant compared to the 

uninfected control. No difference in IL-6 levels are observed, however opposing research has 

found that virulent strains of Staphylococcus aureus can in some situations reduce IL-6 

production (Tajima et al., 2007). Differences in cytokine levels compared to the literature 
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Table 4.1: The Function of Cytokines Detected from TEskin 

IL-1α, IL-6, IL-8 and MCP-1 were found to be expressed in fibroblasts and keratinocytes, and some basic functions 

of these cytokines/chemokines were elucidated from a search of available literature. 

predicted values could be explained by differences in the model system use, the reduction in 

number of viable cells as a consequence of infection, or potentially staphylococcal 

suppression of the immune response. 

In some systems, correlations between expression of tetraspanins and cytokines have been 

observed. For example, CD37 has been shown to inhibit IL-6 production when interacting with 

Dectin-1 (Meyer-Wentrup et al., 2007) and that this mechanism can be induced by 

Toxoplasma gondii infection (Yan et al., 2014). Additionally, CD63 deficient mast cells have 

reduced degranulation, leading to a loss of TNFα and IL-6 secretion (Kraft et al., 2013). Here 

we assessed if treatment with tetraspanin peptides affected the production of cytokines by 

TEskin. Analysis by One-way ANOVA showed that 200nM peptide 800 treatment had no effect 

on the production of cytokines in intact, wounded or infected TEskin. Peptide 800SCR, which 

Cytokine Keratinocytes Fibroblasts Function Sources 

IL-1α Express Express Pro-inflammatory A. Gröne et al, 

2002       Chemotactic for keratinocytes 

      Induces keratin 6 expression 

      

Decreases adherence of certain bacteria 

to keratinocytes 

IL-6 Express Express Pro-inflammatory Grossman et al, 

1989, Sato et al, 

1999, Turksen 

et al, 1992, 

Sugawara et al, 

2001, Luckett et 

al, 2007 

      Stimulates keratinocyte proliferation  

      Modulates fibroblast migration 

      

Role in wound healing 

IL-8 Express Express Pro-inflammatory Mohamadzadeh 

et al, 1994, Yen 

et al, 1996 

     Neutrophil attractant 

     

Produced in response to external 

chemical stimuli 

      

Observed in auto-immune-mediated 

diseases 

MCP-1 Express Express 

Regulates cell traffic in both homeostatic 

and inflammatory conditions 

Giustizieri et al, 

2001 

      

Attracts eosinophils, basophils, 

monocytes, and TH2 cells 
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was assessed here as a negative control, had a small effect on IL-6 production in intact TEskin, 

however, as observed, there are large levels of variance in the data, perhaps caused by 

differences between donors and in cell viability and this could contribute to a false positive. 

Additionally, as seen in chapter 6 the sequence of 800SCR peptides is also found on other 

human proteins, which could be involved in IL-6 secretion. The production and testing of an 

alternate 800SCR peptide with a different amino acid sequence would show if this data is 

valid. 

In addition to cell line and TEskin models described here, a zebrafish model was also used to 

look for any toxic effects of the peptides. The zebrafish embryo model was chosen as Danio 

rerio has a similar immune system to humans, whilst not being limited by the same ethical 

constraints as other in vivo models. Peptide 8001 rather than 800 was used for this study as 

it was carried out prior to all cell line assays that determined to use peptide 800. Additionally, 

the peptide 8001 has good sequence homology to CD9b in tetraspanins (11/12 identical or 

chemically similar residues). Peptides were injected to a final concentration of 50nM-150nM, 

based on the assumptions about the volume of a zebrafish embryo made initially by Leung et 

al in 1998 (Leung et al., 1998). In this model, no toxicity was seen in the fish when injected 

with 8001 and 8001SCR peptides, however, no increase in the survival of SH1000 

Staphylococcus aureus infected zebrafish was observed. This could be due to the peptide 

concentration being too low, or because the peptides had to be injected at the same time as 

the pathogen instead of being administered as a pre-treatment. The peptides could also be 

being degraded before they can act. Additionally, this model mirrors the late stages of 

Staphylococcus aureus infection when the pathogen reaches the blood stream. Upon 

injection all the bacteria are taken up by the fish phagocytes, and the organisms survive until 

the S. aureus escape and cause downstream terminal infections (Prajsnar et al., 2008, Prajsnar 

et al., 2012). At this stage, bacterial adherence is not necessary for fish mortality. In thus 

model, 8001SCR peptide actually had a negative effect on zebrafish survival, perhaps due to 

contaminants in the peptide, or because of interference with other proteins that 8001SCR has 

homology with in zebrafish, as outlined in table 4.2 (Altschul et al., 1990). Additionally, the 

volume of liquid injected into fish has been shown to have a strong effect on zebrafish 

viability, and therefore small variances in the needle sizes used in for each condition could 

lead to higher mortality in the 800SCR condition (Schubert et al., 2014).   
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Table 4.2: Sequence Homology Between Peptides and Zebrafish Proteins 

 Description Max 
score  

Total 
score  

Query 
cover  

E 
value  

Ident Accession 

8001 tetraspanin-2 31.2 31.2 85% 0.022 67% NP_001018160.1 

vacuolar protein sorting-associated protein 
45 

28.6 28.6 71% 0.15 80% NP_001243585.1 

CD9 antigen 26.1 26.1 100% 0.93 50% NP_998593.1 

sorting nexin-5 24.8 24.8 78% 2.4 53% ABD34790.1 

inhibitor of growth protein 2 24.4 24.4 71% 3.3 70% NP_001002448.1 

PREDICTED: CD9 antigen isoform X1 24 24 100% 4.6 43% XP_005164541.1 

DNA damage-binding protein 1 24 24 64% 4.7 78% AFI92852.1 

TATA element modulatory factor 23.5 23.5 78% 6.5 52% NP_001003522.2 

8001SCR PREDICTED: protein MTO1 homolog, 
mitochondrial isoform X2  

24.8 24.8 50% 2.5 86% XP_009304746.1 

PREDICTED: starch-binding domain-
containing protein 1 isoform X2 

24 38.6 85% 4.6 67% XP_005161545.1 

PREDICTED: zinc finger protein 208 isoform 
X3 

24 96.1 64% 4.7 47% XP_009289660.1 

general vesicular transport factor p115 23.1 34.4 85% 9 75% NP_956449.1 

semaphorin 4d 22.7 22.7 64% 12 78% NP_001038473.1 

Ddx46 protein  22.7 39.9 42% 12 100% AAI33101.1 

protein tyrosine phosphatase type IVA 2 
isoform 2  

22.3 22.3 50% 17 86% NP_001019269.1 

A protein search was performed using the Basic Local Alignment Search Tool to test sequence overlaps between 

the peptides and proteins in the host organism. Last accessed: 16/12/15 

Overall, we have shown that tetraspanin expression varies between cell types, donors, and 

between the specific proliferative state of the cell. Additionally, we have not found any 

debilitating toxicity of the peptides in cell lines, TEskin or in a zebrafish model. 

 

  

http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=1&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=2&HSP_SORT=1
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=4&HSP_SORT=0
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http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Get&ALIGNDB_BATCH_ID=251567981&ALIGNDB_CGI_HOST=blast.be-md.ncbi.nlm.nih.gov&ALIGNDB_CGI_PATH=/ALIGNDB/alndb_asn.cgi&ALIGNDB_MASTER_ALIAS=SD_ALIGNDB_MASTER&ALIGNDB_MAX_ROWS=100&ALIGNDB_ORDER_CLAUSE=seq_evalue%20asc,aln_id%20asc&ALIGNDB_WHERE_CLAUSE=seq_evalue%20is%20not%20null&ALIGNMENTS=100&ALIGNMENT_VIEW=Pairwise&CDD_RID=71EWE4H5013&CDD_SEARCH_STATE=0&DATABASE_SORT=0&DESCRIPTIONS=100&DYNAMIC_FORMAT=on&ENTREZ_QUERY=txid7955%20%5bORGN%5d&FIRST_QUERY_NUM=0&FORMAT_OBJECT=Alignment&FORMAT_PAGE_TARGET=&FORMAT_TYPE=HTML&GET_SEQUENCE=yes&I_THRESH=&LINE_LENGTH=60&MASK_CHAR=2&MASK_COLOR=1&NEW_VIEW=yes&NUM_OVERVIEW=100&OLD_BLAST=false&PAGE=Proteins&QUERY_INDEX=0&QUERY_NUMBER=0&RESULTS_PAGE_TARGET=&RID=71EWFET4016&SHOW_LINKOUT=yes&SHOW_OVERVIEW=yes&STEP_NUMBER=&USE_ALIGNDB=true&WORD_SIZE=2&OLD_VIEW=false&DISPLAY_SORT=0&HSP_SORT=0
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Chapter 5 – Development of Peptides as Anti-Microbial Therapeutics 

5.1 Introduction 

Tetraspanin based peptides have been shown to have broad range anti-adhesive activity with 

no apparent toxicity to host cells. The maximum reduction in adherent bacteria observed in 

response to treatment with the peptides is around 60%. This reduction would theoretically 

aid the host’s natural ability to clear the infection, reducing the likelihood of skin and soft 

tissue infections and sepsis. For immunocompromised patients, or for patients with chronic 

long-term wounds however, a 60% reduction would likely not be sufficient to fully clear an 

infection, and consequently we have attempted to improve the efficacy, retention and 

permeability of the peptides, exploring 2 common avenues by which the success, duration or 

delivery of treatments can be improved: combination therapy and drug delivery platforms. 

5.1.1 Current Wound Treatment 

Various methods are currently utilised to prevent infection or treat ongoing infections of 

wounds. Systemic drug delivery is commonly used, in which antibiotics are taken orally or 

intravenously. Vancomycin has been used extensively as an effective systemic treatment 

against multi-drug resistant Staphylococcus aureus (MRSA) infection, however, as with many 

other antibiotics, strains of S. aureus have been identified which are resistant to vancomycin, 

with up to 74% of soft tissue infection isolates having this resistance. Recent guidelines by the 

Infectious Disease Society of America recommend clindamycin, trimethoprim-

sulfamethoxazole, tetracycline (minocycline or doxycycline) or linezolid for the treatment of 

suspected community acquired MRSA infected wounds (Stevens et al., 2014). Antibiotics 

generally inhibit essential processes found in bacterial metabolism, such as cell wall synthesis 

and type II fatty acid synthesis. Due to the rise in resistance to these drugs, encouraged partly 

by incomplete courses of treatment and the over-use of antibiotics, alternative treatments 

are being increasingly frequently sought (Alanis, 2005). Other categories of drugs are required 

which target other aspects of bacterial virulence, such as adherence, toxin production and 

biofilm formation (Kollipara et al., 2014).  

Wound infections may also be treated using locally applied wound dressings, which generally 

have antibacterial and antifungal activity. Advantages include a smaller chance of adverse 

reactions and more specific targeting of the therapy. Local therapy also prevents interference 
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with commensal organisms usually found in the stomach and other surfaces. Modern 

antimicrobial components of wound treatments include silver (Maneerung et al., 2008, 

Wilkinson et al., 2011), manuka honey (Mavric et al., 2008, Cushnie and Lamb, 2005, Al-Waili 

et al., 2011, Kwakman et al., 2010), polyhexamethylene biguanide (PHMB) (Mueller et al., 

2013, Lee et al., 2004, Huebner and Kramer, 2010), topical oxygen (Woo et al., 2012, Greif et 

al., 2000), and antiseptics such as chlorhexidine (NHS, 2011, Breuer et al., 2002). These 

therapies are capable of reducing the bacterial burden, however they are not normally as fast 

and effective as antibiotic therapy and some, such as silver, can be expensive for the long-

term treatment of chronic infections. These treatments have also been known to cause side 

effects and can be toxic to the host. For example, silver treatment can cause cell cycle arrest 

and DNA damage after long term exposure (AshaRani et al., 2009). 

5.1.2 Anti-adhesion Therapies in Development 

There are currently a number of anti-adhesion therapies being developed to treat bacterial 

skin and soft tissue infections (Krachler and Orth, 2013, Cozens and Read, 2012). The major 

advantage of anti-adhesion therapy is that it exerts weaker selective pressure on the bacteria 

relative to antibiotics and thus does not encourage the development of more virulent strains 

(Krachler and Orth, 2013). One example of an anti-adhesion therapy in development are the 

proanthocyanidins, extracted from cranberry juice, which are being developed for the 

directed inhibition of urinary tract infections (Shmuely et al., 2012). These molecules have 

also been shown to inhibit the binding of Helicobacter pylori (Burger et al., 2000) and 

Porphyromonas gingivalis (Labrecque et al., 2006), making them a potentially wide spectrum 

treatment. Alternatively, biphenyl mannosides are known antagonists of FimH, a major 

binding factor of E.coli, first identified over 40 years ago (Hartmann et al., 2012). These 

saccharides have been used to successfully inhibit the adhesion of E.coli to host cells 

(Hartmann et al., 2012). 

Peptide based adhesion inhibitors are much rarer, with issues frequently arising during early 

stages of their development with downstream toxicity and alterations in host cell signalling 

and metabolism (Krachler and Orth, 2013). Peptides that mimic host receptors and those that 

competitively inhibit bacterial adhesins can easily activate signalling pathways downstream 

and cause unwanted negative side effects in the host. Despite this, there are a number of 
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peptide based anti-adhesion molecules in various stages of development. For example, 

p1025, developed by Kelly et al, is a peptide designed to prevent tooth cavities by inhibiting 

the adherence of Streptococcus mutans. It acts by preventing the binding of surface protein 

streptococcal antigen (SA) I/II to salivary receptors on the tooth surface and has shown 

success at preventing the re-colonisation of teeth by S. mutans in vivo (Munro et al., 1993, 

Kelly et al., 1999). Another series of peptides in development are MAM-7 based inhibitors, 

which have been shown to inhibit the adherence of E. coli, Yersinia pseudotuberculosis, Vibrio 

cholerae, and Vibrio parahaemolyticus to host cells (Krachler and Orth, 2011, Krachler et al., 

2011). 

One of the main problems facing anti-adhesive therapies, and peptide therapies specifically, 

is their retention and penetration into a wound. Peptides in a wound setting are also 

susceptible to degradation by matrix metalloproteases (MMPs) secreted by the wound to aid 

wound healing. Although tightly controlled, these enzymes degrade foreign matter as well as 

ECM components such as collagen and elastin to allow re-epithelisation (Sinclair and Ryan, 

1994). Due to the nature of skin as a barrier, many peptides also cannot penetrate deeply into 

the skin to act on deeper levels of cells. Both of these problems have been addressed using 

nanoparticle delivery systems, such as liposomes and vesicular systems, and more recently 

nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles 

(Desai et al., 2010). 

The efficacy of peptide adhesion inhibitors could also be improved by increasing their 

stability. Peptide stabilisers that induce peptides to form alpha-helical type structures have 

previously been tested to look for any increase in the efficacy of the tetraspanin-based 

peptides. At low concentrations these stabilisers, provided by Professor David Fairlie from the 

University of Queensland, Australia, combined with the peptides to further reduce the 

proportion of adherent bacteria on host cells. Additionally, cyclisation of 8001 and 810 

peptides, and an addition of tyrosine and aspartate to the termini of these peptides, improved 

their inhibitory concentration (Cozens, 2016). 

5.1.3 Nanocin™ 

Nanocin™ is a polymer based nanoparticle drug delivery system first synthesised as a stand-

alone antimicrobial therapy over 80 years ago, now developed by Tecrea™. This delivery 
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system has been shown to deliver small molecules such as drugs, dyes and DNA into cells and 

deep into tissues (Good and Ridden, Ridden et al., Tecrea, 2016, Cook and Ridden, 2014) and 

has been used safely in the clinic for over 30 years. It has also been shown at high 

concentrations to have inherent antimicrobial action against intracellular Staphylococcus 

aureus as well as Leishmania major, and unpublished data suggested that it functions by 

condensing bacterial chromosomes (Good, 2016/2017). Here we assess whether packaging 

tetraspanin-based peptides into nanoparticles using Nanocin™ technology can improve their 

function in reducing staphylococcal adherence to host cells and tissues. All work outlined 

relating to Nanocin™ was undertaken in collaboration with Blueberry Therapeutics. 

Additionally, we test if combining the peptides with an antibiotic to which MRSA are resistant 

can improve the functionality of either. Flucloxacillin is a β-lactam antibiotic, and functions by 

inhibiting bacterial cell wall synthesis similarly to penicillins (Sutherland et al., 1970) 

(Sutherland et al., 1970). Contrary to other penicillins, flucloxacillin cannot be degraded by 

pathogen secreted beta-lactamase, which renders most penicillin members useless. It 

however is not frequently used to treat methicillin-resistant Staphylococcus aureus (MRSA) 

infections, as these pathogens have resistance to flucloxacillin caused by a small mutation in 

their bacterial penicillin binding protein which inhibits targeting of the drug (Guenthner and 

Wenzel, 1984, Hartman and Tomasz, 1984). Flucloxacillin is only therefore capable of 

eliminating MRSA infection at high concentrations in vitro (Guenthner and Wenzel, 1984).  

5.2 Results 

5.2.1 Peptide Treatment May Improve Staphylococcal Susceptibility to 

Flucloxacillin Treatment 

Here, NCTC15132 strain MRSA was used as a model for MRSA infection (Figure 5.1).  

NCTC15132 is a local clinical isolate of methicillin resistant Staphylococcus aureus used 

previously in the lab to test for synergistic effects with the peptides, and previous data has 

suggested a possible beneficial combinatory effect of flucloxacillin with peptide 8001 (Cozens, 

2016). To explore this further, flucloxacillin at various doses was added to MRSA, and it was 

observed that concentrations as low as 0.01µg/ml reduced the number of viable bacteria. At 

a flucloxacillin concentration of 1µg/ml approximately 50% of the bacteria were no longer 
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viable, however even at a concentration as high as 100µg/ml 16±1.2% of bacteria were still 

viable, a concentration much higher than the calculated bioavailability of orally administrated 

flucloxacillin (Paton et al., 1982). 

This MRSA strain was then used to infect HaCaT cells, with or without peptide pre-treatment. 

After infection the cells were washed and treated with flucloxacillin for 3 hours with agitation. 

In this system, a synergistic effect was observed, where pre-treating with the peptide then 

treating with antibiotic led to a greater reduction in the bacterial load at 0.01 and 1 µg/ml of 

flucloxacillin (Nauta and Mattie, 1975). This synergistic effect was not seen at high 

concentrations of flucloxacillin. Almost 99% of control bacteria were eradicated with a 

combined treatment of 50nM 800 peptide and 1 µg/ml antibiotic, whereas there were still 

12.6±5.7% viable bacteria with just 1µg/ml antibiotic treatment. 

When the TEskin model described in Chapters 3 and 4 was pre-treated with peptides then 

infected with MRSA, a more complex trend is observed. In this model TEskin was burned, then 

treated for 1 hour with the tetraspanin-based peptide 800. MRSA was then added and after 

5 hours TEskin was washed to remove non-adherent bacteria, and left to infect until 24 hours 

post burning, as previously. Finally, flucloxacillin was added on top of the TEskin for 3 hours 

before bacterial isolation. Previous experiments demonstrated that peptide 800 treated skin 

has a reduced bacterial load (Chapter 3), however in this experiment, the peptide applied 

with the flucloxacillin does not reduce the number of adherent bacteria. Furthermore, at high 

flucloxacillin concentrations (10µg/ml), pre-treatment with 200nM 800 peptide led to a 

significantly greater number of viable bacteria than flucloxacillin only treated TEskin. The 

quantity of bacteria in TEskin pre-treated with peptide then treated with 10µg/ml 

flucloxacillin is comparable to control figures and those treated with low concentrations of 

flucloxacillin. 

5.2.2 Formulation of Nanoparticles 

Previous research has shown that small peptides and molecules can be packaged into 

nanoparticles by the addition of Nanocin™ from Tecrea Ltd™. To test if the peptides were 

suitable for nanoparticle generation, they were mixed with Nanocin™ at ratios of 1:1, 1:2 and 

1:3 peptide:Nanocin™, and their size and distribution measured by a NanoSight LM10. The 

NanoSight and its associated software use a laser to assess the size and intensity of particles,  
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Figure 5.1: Flucloxacillin has Varied Effects in Combination with 800 Peptide: (A) The effects of 

flucloxacillin alone on the growth of NCTC15132 strain of Staphylococcus aureus: Bacteria were 

treated with varying concentrations of flucloxacillin to determine their sensitivity. n=3. (B) The 

effects of peptide and flucloxacillin treatment on bacteria adhered to HaCaT cells were determined 

by treating HaCaT cells with peptide or a media control before infecting them with NCTC15132 

bacteria. S. aureus were recovered using saponin and plated for viable counting. n=6. (C) The 

effects of peptide and flucloxacillin treatment on S. aureus adhered to TEskin. n=3. Data were 

analysed by multiple T tests. * p≤0.05 **p≤0.01 ***p≤0.001, presented as mean ±SEM 
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making calculations of size based on the Brownian motion of the particles using the Stokes-

Einstein equation (Figure 5.2). 

Nanocin™ alone does not form nanoparticles unless combined with suitable small molecules 

and no particles were detected in the Nanocin™ only solution. Small particles were detected 

in the peptide only suspensions, which were thought to be peptide aggregates and are 

commonly observed in standard peptide suspensions. When combined with the Nanocin™ in 

a 1:3 ratio, the size distribution of the particles changed significantly, with the mean size 

decreasing from 307nM for 800 and 303nM for 800SCR in the peptide only solutions, 

to185nM for 800 and 266nM for 800SCR diameter in the Peptide:Nanocin™ solutions. This is 

indicative of the formulation of nanoparticles. The detected particle concentration also 

increases from 0.83 to 2.15 x108 for 800 peptide, and from 0.18 to 1.21 x108 for 800 scrambled 

peptide when combined with the Nanocin™. The 1:1 ratio and a 1:2 ratio were also measured 

however these formulations resulted in a lower concentration of nanoparticles and a less 

obvious particle formation, and the 1:3 ratio was therefore chosen for further testing. 

5.2.3 Nanocin™:Peptide Formulations Retain Anti-adhesive Effects 

The formulations were then tested for effects on the adherence of S235 to HaCaTs (Figure 

5.3). A reduction in the proportion of adherent bacteria comparable to that of 800 alone were 

observed with the two 800:Nanocin™ conjugates in terms of percentage of cells infected and 

the number of bacteria per 100 cells, indicating that combination with Nanocin™ (and 

therefore possible intracellular delivery) did not affect the inhibitory activity of the peptides. 

Nanocin™ alone at the equivalent concentrations had no effect on bacterial adherence, nor 

did treatment with the 800SCR:Nanocin™ formulation, showing that the effect is still peptide 

specific. 

5.2.4 Peptides and Formulation Show No Negative Effects on Cell Viability and 

Epidermal Migration 

An MTT assay was used as in chapter 4 to assess any effects of the peptides on cell 

metabolism. A one-way ANOVA demonstrated statistically that none of formulations nor 

Nanocin™ alone have any drastic effects on cell metabolism (Figure 5.4). TEskin was then used 

to perform an epidermal migration assay as in chapter 4, in which keratinocytes and 

fibroblasts are allowed to migrate onto bare dermis to re-epithelise as in a wound. In this  
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Formulation Size Distribution 
(x-particle size. Y- 
Concentration/ml) 

Concentration Size 
Distribution 

Nanocin™ Only 

 

0.00x108 particles / ml 
 

Mean: 0nm, 
Mode: 0nm, 
SD: 0nm 
 

800 Peptide 

 

0.83x108 particles / ml Mean: 307nm,  
Mode: 185nm, 
SD: 160 nm 

800: Nanocin™   
1:3 

 

2.15x108 particles / ml Mean: 185nm, 
Mode: 117nm, 
SD: 95 nm 
 

800SCR Peptide 

 

0.18x108 particles / ml Mean: 303nm, 
Mode: 228nm, 
SD: 113 nm 

800SCR: 
Nanocin™ 1:3 

 

1.21x108 particles / ml Mean: 266nm, 
Mode: 225nm, 
SD: 153 nm 

  

 

 

 

Figure 5.2: Formation of Peptide Nanoparticles with Nanocin™ Technology: 800 and 800SCR peptides 

were combined with existing pharmaceutical technology, Nanocin™ by Tecrea™ to form nanoparticles. A 

NanoSight was used to visualise and quantify particle formation. Data displayed here was obtained 3 

hours after formulation. Particle size was calculated by tracking individual particle tracks and analysing 

this using the Stokes-Einstein equation, which relates the Brownian motion of particles to their size in 

suspension. 
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  Figure 5.3: Anti-adhesive Effects of Peptide:Nanocin™ Formulations: The peptide:Nanocin™ 

formulations were tested against S235 Staphylococcus aureus adherence to HaCaT cells, as in 

chapter 3. Data were analysed by One-way ANOVA with Sidak’s multiple comparisons* p≤0.05 

**p≤0.01 ***p≤0.001. n=6, percentage data was transformed by Y=Log10Y before analysis. Data 

presented as mean ±SEM. ‘Nano’ denotes Nanocin™. 
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  Figure 5.4: Nanoparticles Do Not Influence Cell Viability or Epidermal Migration: (A) An MTT assay 

was performed in which HaCaT cells were treated with peptides or conjugates for 24 hours then 

dyed with MTT for 1 hour before the quantification of metabolic products by OD562. Data analysed 

by One-way ANOVA, n=3, duplicate. Dotted lines denote media only control figures. (B-D) 

Epidermis was allowed to migrate across bare scaffold to simulate the epidermal migration which 

occurs during wound healing. TEskin was treated with peptide or formulation at 200nM basal 

concentration every 2 days for 10 days. (B) Mean area of metabolically active epidermis per repeat. 

(C) Area of metabolically active epidermis of each replicate. (D) The percentage of increase in 

metabolically active area over the ten days of observation. Data analysed by One-way ANOVA, n=3. 

Percentage data were transformed by the function Y=Log10Y before analysis. 
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800 

800SCR 

800:Nanocin™ 

Figure 5.5: Peptide Treatment Does Not Affect the Structure of TEskin: TEskin was treated with 

800 peptide, 800SCR or 800:Nanocin™ 1:3 formulations throughout 10 days of epidermal 

migration as in figure 5.4. Skin was then paraffin embedded, sectioned and stained with 

haematoxylin and eosin which stains nuclei and other negatively charged material blue 

(haematoxylin), and acidic or positively charged structures pink to red (eosin). 
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experiment, TEskin pieces were treated with peptides, Nanocin™ or media only as a control 

every 2 days during migration. The 800:Nanocin™ nanoparticles had no effect on the speed 

of epidermal migration across a bare dermal scaffold over 10 days. Histological samples also 

showed no difference in epidermal/dermal organisation in TEskin treated with peptide or 

Nanocin™ over 10 days (Figure 5.5). 

5.2.5 Dose Response and Retention of Peptides and Formulations 

To explore any changes in pharmacokinetics after formulation with Nanocin™, a dose 

response assay was carried out (as in Chapter 4) to assess if packaging of the peptides into 

nanoparticles increases or decreases their efficacy at lower concentrations. Figure 5.6 shows 

that the inhibitory concentration (IC50) of 800 peptide alone when formulated into Nanocin™ 

nanoparticles is improved by around an order of magnitude from 1.5-3.5x109 to 2.4x1010 M. 

This improvement is observed in terms of the percentage of cells with adherent bacteria and 

the number of adherent bacteria per 100 cells. The number of bacteria per infected cell 

remains constant throughout the conditions as observed previously (data not shown). 

The duration of the anti-adhesive effects of the peptide was also increased by formulation 

with Nanocin™ (Figure 5.7). These data were best fitted with a plateau followed by one-phase 

association, which is reflected in their K2 figure. A full 60% reduction in cells with bacterial 

adherence is maintained for 2.6±0.5 hours with peptide alone, which increases to 3.7±0.5 

hours when packaged into nanoparticles. There was also a difference in efficacy as shown by 

the significant reduction in the IC50 figures of the peptide:Nanocin™ formulation.  

5.2.6 The Effects of Nanoparticle Formulations on Cytokine Production 

To assess if treatment with the nanoparticles affected a normal cytokine response to a wound 

infection the cytokine response in response to staphylococcal wound infection was measured 

in TEskin as in chapter 3 (Figure 5.8). Peptide:Nanocin™ nanoparticles, 800 peptide alone and 

a serum free media control were left on the TEskin throughout the experiment. Samples were 

taken at 24 hours post wounding and analysed by cytometric bead array. Outliers were then 

identified by the ROUT method and removed, and a one-way ANOVA performed to test for 

any changes in production of MCP-1, IL-1α, IL-6 or IL-8 secretion. No effect was seen on the 

levels of cytokines tested secreted into the wound effluent of TEskin with any of the 

treatments. Additionally, no effect was observed with the scrambled control of the peptide. 
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5.2.7 Nanoparticles Abolished Peptide Function in TEskin 

TESkin was burnt and treated with the peptide and nanoparticles as previously described. 

After 1 hour of pre-treatment, S235 bacteria at 3x106 per piece of TEskin was added and 

allowed to adhere for 5 hours. The skin was then washed to remove non-adherent bacteria 

and the remaining allowed to grow until 24 hours post-wounding, when it is washed again  
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Figure 5.6: Dose Response Curve of the Nanocin™ Formulation: Dose response showing the 

effectiveness of 800 peptide vs 800:Nanocin™ nanoparticles against the adherence of S235 

Staphylococcus aureus to HaCaT cells as in chapter 4. Varying doses of peptides or formulation 

were added to the cells for 30 minutes prior to 1 hour of infection with bacteria. (A and B) Data 

normalised as a percentage of the no treatment control figure, presented as mean ±SD. (C and D) 

Non-normalised data represented as mean ±SEM. Log-inhibitor vs response – three parameter 

non-linear regression. The two conditions are statistically different based on an unpaired t-test 

comparing the log IC50 figures for both conditions; p=0.0001. 
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Figure 5.7: Nanoparticle Formulations Retain Their Effects for Longer: The duration of the anti-

adhesive effect of 200nM peptides to S.aureus S235 strain was compared to that of an equal 

concentration 800:Nanocin™ formulations. Treatment was added to the cells at different time 

points for 1 hour then washed off. Cells were incubated in media for varying lengths of time, then 

infected with S235 bacteria for 1 hour before fixing Bacterial adhesion was quantified by 

fluorescence microscopy. Data are modelled by a plateau followed by one-phase association non-

linear fit. Data presented as mean ±SEM. Curves compared by t-test were considered statistically 

significantly different p=0.001. 
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Figure 5.8: Peptide and Nanocin™ Formulations Do not Affect Cytokine Production by TEskin: 

Skin was wounded by burning then treated with 800, 800:Nanocin™, SCR:Nanocin™ for 1 hour. 

S235 Staphylococcus aureus was then added for a further 6 hours before the treatment and 

bacteria was washed off and replaced with serum free media. Cytokine samples were taken from 

the serum free media on top of the skin and stored at -20oC until analysis by cytometric bead array. 

Outliers were removed by ROUT test, Q=1%. Data were analysed for skew, and non-parametric 

columns were compared to the control column using a Wilcoxon Signed Rank Test. Normally 

distributed data were analysed by One-way ANOVA and percentage data was transformed by 

Y=Log10Y before analysis. No significant data. Horizontal lines denote the mean value for each 

repeat. 
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and fixed. Treatment was left on throughout the infection period and data was collected by 

viable counts (Figure 5.9). A significant reduction in bacterial load was observed with those 

skin pieces that had been treated with 800 peptide. This trend however was not observed 

with the 800:Nanocin™ or the SCR:Nanocin™ nanoparticles, indicating that these 

formulations no longer exert an anti-adhesive effect in the TEskin model. 

To test if this was due to a change in localisation of the treatment caused by the Nanocin™, 

TEskin was treated with the peptides or the peptide:Nanocin™ formulations for 24 hours, 

then fixed. Analysis by histology suggested that the peptide and the nanoparticle formulation 

are both confined to the surface in un-wounded skin (Figure 5.10).  No obvious penetration 

into lower layers of the skin was observed. This is not entirely unexpected due to the strong 

barrier provided by an intact stratum corneum, and confirms previous data that suggests 

Nanocin™ penetrates intact skin through hair follicles rather than by direct diffusion through 

the stratum corneum (Good et al, unpublished data).  

Peptides tagged with tetramethylrhodamine as shown in chapter 3 were also combined into 

nanoparticles with FitC tagged Nanocin™, to test for co-localisation on the skin. Nanoparticle 

formation could not be observed with these peptides directly as the emission of the TMR tag 

disrupted to sensors on the NanoSight LM10, and a more advanced version would be required 

to detect the particles and determine their fluorescent composition. The new tagged peptides 

however are still of an appropriate size and charge for nanoparticle formation, and should 

behave in the same way as the standard peptide:Nanocin™ formulations. In unwounded 

TEskin we can see that the Nanocin™ and peptides are co-localised, suggesting that the 

formulations hold together when applied to the skin. There are areas however, as highlighted 

in Figure 5.11 A2 and B2, where the two components are co-localised, but the signal is 

concentrated in slightly different regions, which could indicate that the nanoparticles are not 

all composed of the same ratios of peptide and Nanocin™, or that the Nanocin™ is changing 

delivering the peptides into different regions.  
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Figure 5.9: Nanocin™ Formulation Have a Lesser Effects on the Adherence of Staphylococcus 

aureus to TEskin: TEskin was burnt and treated continuously with 200nM 800 peptide or 

formulations. After 1 hour it was then infected with S235 strain Staphylococcus aureus for 5 hours, 

then the composite was washed and the bacteria harvested 24 hours after burning. A) Mean cfu 

count per mg of tissue B) Normalised as a percentage of the control C) Mean cfu/mg per. No skew 

is detected with skew analysis, data are parametrically distributed. Data for Control and 800 

included from previous experiment as methods remain comparable. All data n=4, Control and 800 

n=7. Percentage data were transformed by the function Y=Log10Y before all data were analysed by 

One-way ANOVA with Sidak’s multiple comparisons. * p≤0.05. 
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800SCR TMR 

800TMR 

800 TMR:Nanocin™ 

Figure 5.10: TMR tagged Peptides and Nanocin™ are Localised to the Surface of Unwounded 

TEskin: Peptides and formulations at 1µM in cell media were applied to the top of 14 days old 

TEskin in the centre of a 10mm diameter metal ring and left for 24 hours. TEskin was then washed 

once and fixed overnight in 4% paraformaldehyde. Sections were mounted in Vectashield with 

DAPI. Nuclei are shown in blue and peptides/Nanocin™ formulation in yellow. 20x magnification, 

scale bars 50µm. 
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TMR - Peptide FitC-Nanocin™ 

DAPI - Nuclei Merge 

Figure 5.11: Peptide and Nanocin™ are Co-localised on TEskin: TMR labelled peptide 800 was 

combined with FitC labelled Nanocin™ and applied to TEskin for 24 hours as in figure 4.2.10. 

Sections were mounted in Vectashield with DAPI, nuclei are shown in blue and peptides/Nanocin™ 

formulation in yellow. 20x magnification, scale bars 50µm 



135 
 

5.3 Discussion 

In this chapter we aimed to explore some avenues through which the anti-adhesive effects of 

the tetraspanin based peptide could be improved for therapeutic use. We showed that in a 

cell line model, the peptides can work synergistically with the antibiotic flucloxacillin, however 

this synergistic effect was not seen in a 3D model of human skin. We also showed that the 

packaging of peptide 800 into nanoparticles with Nanocin™ preserved the peptide’s function, 

and improved the IC50 and retention time in a cell monolayer. This formulation however lost 

its anti-adhesive properties when applied to the TEskin model. 

Combination therapy is commonly used for the treatment of wound infections. Therefore the 

ability of the peptides to work without interfering with other drugs, and possibly to aid their 

function is important. In an effort to test for this, we combined the peptides with a weak 

antibiotic recommended for methicillin sensitive Staphylococcus aureus treatment. Based on 

pharmacological data, bioavailability and recommended dose of flucloxacillin (Paton et al., 

1982, Nauta and Mattie, 1975), we estimate that the final active concentration of antibiotic 

in tissues to be a maximum of 4µg/ml, varying depending on tissue location, individual size, 

rate of metabolism and many other factors. According to our data, this concentration of 

flucloxacillin is enough to kill approximately 95% of this clinical MRSA isolate in a cell line 

model, a figure which in our model is increased to 98% by pre-treatment with the peptides. 

With 800 peptide pre-treatment the proportion of remaining viable bacteria could potentially 

be halved. 

In theory, as an anti-adhesive therapy, the peptides should leave non-adhered bacteria 

exposed on the wound surface, allowing for more effective antibiotic action and increased 

killing.  This however does not appear to be the result in the TEskin model in which the 

synergistic effect observed in the cell line model is lost completely. This could be due to the 

peptide and antibiotic working against each other, although the mechanisms through which 

this could happen are unclear and an indication of this would be visible in the cell line model. 

Alternatively, how the antibiotics are administered in the more complex wound environment 

is a point for consideration; flucloxacillin is normally administrated orally as opposed to 

topically, and perhaps something in the wound effluent could be affecting its normal 

mechanism of action, or reducing the quantity of antibiotic present. This unknown factor 

could be upregulated in response to the peptide treatment, explaining the abolishing of 
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flucloxacillin activity in 800 treated TEskin. To assess this, flucloxacillin could be pre-incubated 

with wound effluent from treated and untreated TEskin, then tested against bacterial growth 

to assess any change in function. The presence of sub-inhibitory concentrations of antibiotics 

is known to alter, and often upregulate, the expression of adhesins by invading pathogens 

(Bisognano et al., 1997, Ohlsen et al., 1998), and so the infection dynamics over the course of 

a 24 hour infection and 3 hour flucloxacillin treatment are unpredictable. If the flucloxacillin 

is being degraded at all then it is possible that the anti-adhesive effects of the peptides are 

cancelled out by the pro-adhesive effects of low working concentrations of flucloxacillin. 

 It should be noted that this data is based only on 3 repeats due to limited materials and time, 

and the variance in the data could be causing a false result. The control figures in these 

experiments were also uncharacteristically small, so that despite the figures for skin treated 

with 800 peptide being very similar to those obtained in previous experiments, this is greater 

than the control figures. Therefore the assay should be repeated and the infection time, 

concentration of flucloxacillin and peptide, and methods of application should all be 

optimised in order to confirm a significant result before further experiments are carried out. 

The TEskin model is also a very simple model of in vivo human skin. In a real wound, immune 

cells such as dendritic cells and macrophages, and pressure exerted by fluid movement 

contribute to a much more effective barrier against infection. These immune factors would 

constantly clear the non-adherent bacteria from the system, whilst flucloxacillin could diffuse 

constantly from basal skin layers into the wound and surrounding cells steadily to prevent 

infection. In this TEskin model those factors are missing, and the bacteria are confined in the 

system without clearing for large periods of time, with the flucloxacillin applied to the surface 

of the skin for that time. 

In conclusion, these data do not tell us that the peptides are incompatible with all antibiotic 

treatments, and more testing should be carried out to elucidate any potential negative 

consequences of combination therapy. A range of antibiotics with varying modes of action, 

as well as multiple different strains of bacteria should be screened against. 

As mentioned previously, one of the major pitfalls of anti-adhesive peptides is their inability 

to penetrate into tissues and their susceptibility to degradation (Krachler and Orth, 2013). In 

order to address these issues, peptide 800, which we have previously shown to have anti-
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adhesive properties, and its scrambled peptide control, were combined with a 

nanotechnology based drug delivery platform developed by Tecrea™ known as Nanocin™. 

Due to IP restrictions not much information is available on the mechanism of action of this 

compound, and how and why it forms these ‘nanoparticles’, however the formation and 

presence of the nanoparticles is observable using a NanoSight. 

We chose to combine the peptides with Nanocin™ for a number of reasons. Initially, we were 

interested to see if the peptides still retained their function when potentially delivered 

intracellularly, which was initially shown in the HaCaT cell line adherence assay. CD9, the 

peptide target, is seen expressed abundantly on the outer cell membrane, and therefore we 

hypothesised that combining the peptides with an agent known to deliver molecules inside 

of cells might abolish the function of the peptides. This however was not the case, and anti-

adhesive effects were retained. We then hypothesised that perhaps intracellular delivery 

would cause some harm to the cells, as CD9 is known to also be expressed in low abundance 

on intracellular vesicles (Fernvik et al., 1995, Okochi et al., 1997, Ryu et al., 2000) and have 

intracellular functions, but no obvious toxicity was observed using an MTT test or migration 

assays.  Based on these results it is possible to assume that the Nanocin™ is not delivering the 

peptides to the inside of the cells, or is delivering only a portion of the peptide, and this could 

be assessed using high resolution microscopy. These test however are limited, and more 

detailed assessment of CD9 dependent pathways should be performed. 

From the perspective of pharmacological properties, the combination of Nanocin™ with 800 

peptide has increased its applicability. At the concentrations used in these experiments, the 

Nanocin™ has no anti-microbial activity, as reflected by the lack of direct anti-adhesive effects 

in cell infection assay. Therefore, effects observed with the 800:Nanocin™ formulation are 

due to an increase in peptide efficacy, delivery or retention, as opposed to being an inherent 

property of the Nanocin™. In the two pharmacological characteristics tested for, IC50 and half-

life (t1/2) of effect, a noticeable increase in the effectiveness of the peptide was seen using 

peptide nanoparticles. Further development, e.g. by incorporating this into a hydrogel or 

complexing with a polymer could increase the stability and retention of the peptide. 

An interesting result obtained here was the lack of nanoparticle function in the TEskin model. 

We speculate that 800 peptide could become non-functioning when combined with the 
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Nanocin™ due to a change in the localisation of the peptide in the skin. In a wound setting, 

Nanocin™ is thought to deliver the peptide to deeper layers of the wound and into cells 

however data shown in chapter 3 suggested that after 24 hours, the majority of bacteria were 

either localised on top of the dermis, or were in the upper layers of the epidermis at the 

periphery of the wound, and therefore deeper penetration in this case would actively remove 

the peptide from where it would function, possibly leaving too low a concentration to prevent 

adherence. To try and determine if this was the case, some preliminary assays were 

undertaken to try and visualise peptide penetration into the skin. In intact skin both the 

peptide alone and the formulations appeared to be limited to the surface of the stratum 

corneum. On wounded skin the treatments may penetrate further, however in these skin 

pieces, the signal became to diffuse to detect with the microscopes available (data not shown) 

either due to simple diffusion, or the presence of proteinases produced by the wound. This 

microscopy however could be repeated with higher concentrations of peptide/nanoparticles 

or with a higher resolution, more sensitive microscope to determine the location of the 

treatment. Alternatively, the apparent lack of function of the nanoparticles on the TEskin 

could, as earlier, just be due to variance in the data, as the data for the 800:Nanocin™ 

formulation does appear slightly negatively skewed. As before, further repeats would be 

needed to confirm or deny this. 

These data highlight the need for extensive testing of potential therapies before moving 

forward to animal and clinical trials. Based on data from previous chapters, changing variables 

such as the strain of Staphylococcus aureus or the location of the CD9 EC2 from which the 

peptide is derived could influence the outcome of each experiment. Additionally, a lot of 

potentially hazardous side effects would not be detected with the relatively simple assays 

performed here, and processes as complex and individualised as wound healing and 

infections, can never be modelled easily in cellular systems.  Also, although the use of primary 

cells and models using primary cells are more representative models of the human reaction 

than cell line assays, using these cells also greatly increases the variance in data with donor 

bias, making conclusions difficult to draw. 

Overall, we have explored some ways in which to practically apply the tetraspanin-based 

peptides developed in previous chapters, in progression towards the clinic. However we have 

also generated more questions to be addressed about both the usefulness of this TEskin 
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model as well as the necessary localisation and retention of therapies on the surface and top 

layers of the wound. 

All work relating to Nanocin™ was carried out in collaboration with Blueberry Therapeutics, 

who possess an extension of the IP which covers the use of Nanocin™. 
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Chapter 6 - Discussion 
Staphylococcus aureus is a major causative agent of skin and soft tissue infections (SSTIs) in 

the developed world. It is involved in a range of clinical conditions with different severities 

such as impetigo and necrotizing fasciitis, and estimates of its financial burden on the NHS 

exceed £1 billion per annum. Although the mortality rate associated with Staphylococcal SSTIs 

themselves is low, these infections allow entry of pathogens into the bloodstream to cause 

secondary infections and sepsis, which have much higher mortality rates. 

The presence of antibiotic resistance in Staphylococcus aureus was first observed in the 

1940s, and since then a large range of mechanisms have evolved, leading to a greater 

population of S. aureus with multiple resistance genes. Initially, MRSA was considered a 

nosocomial infection but many strains of community-acquired Staphylococcus aureus have 

now appeared, with no hospital visit required for an infection to set in. The demand for a 

wider range of treatments, including new antibiotics, is therefore becoming increasingly 

urgent. 

For wound treatments specifically, there is a need for compounds with varying mechanisms 

of action to prevent the increase in resistance, and to treat SSTIs quickly, efficiently, and 

inexpensively. An increase in the speed in which these drugs are brought to the market is also 

needed, to keep up with the rate of microbial adaptation. For example, resistance to 

antimicrobial agents such as silver, a common component of wound dressings, is already 

beginning to be observed, although it has not yet been observed in pathogenic species 

(Woods et al., 2009).  

One potential method is to target bacterial adherence, as reviewed in Cozens et al (Cozens 

and Read, 2012), preventing the initial attachment stages of bacterial infection. Resistance to 

these therapies should in theory be much slower to arise, as they do no kill the organisms 

directly and therefore do not apply as much selective pressure. Resistance may still appear 

however, by selection for bacteria with stronger or faster adhesins, but in combination with 

other therapies it could be sufficient to make highly resistant species more susceptible to 

killing. 

The work undertaken here was motivated by previous work in Sheffield by Drs Luke Green 

and Daniel Cozens, which demonstrated that antibodies to tetraspanins, recombinant EC2 
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domains and tetraspanin-derived peptides could reduce the adherence of both Gram positive 

and Gram negative pathogens to host cells. The peptides are also currently being tested for 

their effects against Salmonella enterica adherence (Mr Fawwaz Ali), Pseudomonas 

aeruginosa adherence (Ms Jehan Alrahimi) and monocyte giant cell fusion (Mr Thomas 

Champion). These studies will hopefully help to further elucidate further the mechanism 

through which the peptides work, and to confirm or deny the theory that they function by 

disrupting receptor organization by disrupting tetraspanin enriched microdomain 

organization. An alternate theory is that the peptides and EC2s are causing the cross-linking 

and internalization of receptors associated with tetraspanins, and this could be investigated 

by assessing the amount of cell-surface tetraspanin throughout the peptide treatment. 

Peptides as anti-microbial agents 

The success of the peptides in preventing S. aureus adherence to host cells can be regarded 

as mixed. Different strains of Staphylococcus aureus showed different levels of response to 

the treatment, with the most virulent strains being most sensitive. Cell type also seemed to 

have an effect on the peptide efficacy, with keratinocytes exhibiting a large significant change 

in infection levels, as opposed to fibroblasts, which appeared unresponsive to treatment. We 

initially hypothesized that this could be due to incomplete saturation of cells with the 

peptides, which had previously been titrated for use on keratinocyte and epithelial cell lines, 

with an optimal dose of 50nM. Fibroblasts may for example, have a larger surface area than 

the other cell types so far tested. However, higher doses of peptides (up to 200nM) also failed 

to inhibit bacterial adhesion. When we compared the expression levels of tetraspanins 

between cell types however, we observed that CD9 expression in fibroblasts was very low 

compared to other cells, and a weak correlation between CD9 expression and peptide efficacy 

was observed. Although promising, this is still preliminary data and standardized studies in 

different cell types across different species should be completed before solid conclusions are 

drawn. Additionally, testing the peptides in a CD9 knockdown cell line would confirm that 

peptide function is dependent on CD9, and would help to elucidate whether the peptides act 

by interacting with CD9 or with its partner proteins. 

Across all of the cell lines and bacteria tested, the maximum reduction in bacterial adherence 

by the peptides is around 60%, consistent with previous experiments using anti-tetraspanin 
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antibodies and recombinant fragments (Cozens, 2016). The reason for this is currently 

unknown, and requires further research into the mechanism by which the peptides act. As 

the number of bacteria per cell is unaffected by peptide treatment, this suggests that there is 

a subpopulation of the cells, around 40%, upon which the peptides are ineffective. The levels 

of tetraspanins expressed on the cell surface changes during the cell cycle, and this might 

have an effect on the efficacy of the peptides on cells in different places in the cell cycle 

(Green, 2010). This might also account for some of the reduced function of peptides on 

fibroblasts which are a highly proliferative cell type in culture. Alternatively, these bacteria 

may be attaching to cells via a CD9 independent mechanism, or may be capable of adhering 

despite the dispersal of receptors (Green et al., 2011). 

This also leads to the question: as a therapeutic, is a 60% reduction in bacterial adherence 

good enough? Currently used systemic antibiotics function by killing or disrupting the 

bacteria’s ability to grow or divide, and the efficacy of these treatments has been difficult to 

define in vivo. Even with infections of antibiotic-sensitive bacteria, a 100% clearance rate is 

not observed (O'Meara et al., 2000, Howell-Jones et al., 2005). There are multiple advantages 

to having these tetraspanin targeted peptides as a therapy. As mentioned previously, anti-

adherence therapies put less selective pressure onto the pathogens and therefore resistance 

is less likely to develop. This is important in a new clinical drug, as the rate at which resistance 

is developing means standard drugs and antibiotics are less cost effective to develop and 

produce. Additionally, the tetraspanin based peptides have shown activity against a very 

broad range of both Gram-negative and Gram-positive pathogens at various target sites, and 

therefore could be very broadly applicable. Finally, as this therapy is host targeted it has 

strong potential for being combined with bacterially targeted drugs, allowing for a two 

pronged approach for the prevention and treatment of infection. This would be particularly 

useful in combination with antibiotics, which would initially kill a proportion of the bacteria, 

and later in the time-course, at sub-inhibitory concentrations, potentially reduce bacterial 

adhesion to host cells by altering bacterial surface properties (Krachler et al., 2011). 

Many further experiments need to be conducted to determine the mechanism of action of 

the peptides. Some of these possible experiments, such as CD9 knockdown are mentioned 

above. Additionally, high-resolution microscopy such as ‘STORM’ microscopy would give us 

further information about how the TEM are organized and what effect peptide treatment 
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would have on this. Further studies could include testing the peptide efficacy on cells 

expressing chimeric or mutated versions of CD9, which would indicate how the peptides may 

be interacting with the cell. Furthermore, using different strains of Staphylococcus aureus 

with defined mutations in specific virulence factors and adhesins would define exactly which 

staphylococcal adherence mechanisms are affected by tetraspanin treatment.  

Previous experiments have also been undertaken to show how effective the peptides are if 

applied at the same time as bacteria or after the bacteria. Although a reduction in peptide 

efficacy was observed, there were fewer adherent bacteria in the system after 30 minutes of 

peptide treatment. This has not been confirmed with Staphylococcus aureus.  

Potential Toxicity 

Tetraspanins are very diverse molecules with varying functions across the body. Interfering 

with CD9 could cause long ranging effects, and testing for these is also important. We have 

shown here that peptide treatment did not affect cell metabolism using an MTT test. We also 

showed that peptides 8001 and 810 had no effect on cell migration in a monolayer model, 

whilst 800 reduced migration in this model but had no effects on epidermal migration in the 

larger skin model. Additionally, peptide 800 treatment did not affect cytokine production 

from the TEskin model. Previous data has suggested the interfering with CD9 using blocking 

antibodies does not affect the uptake of bacteria by monocyte-derived macrophages, which 

would suggest the peptides should not affect initial phagocytic stages of innate immunity 

(Green, 2010). These tests are sufficient as preliminary data, however the toxicity of the 

therapy should be reviewed throughout all stages of development.   

Table 6.1 outlines other molecules to which 800 and 800SCR peptide have high levels of 

homology (>6 matched amino acid). Some of these are membrane proteins and therefore 

accessible to the peptides in the system. If the peptides were to interfere with the functions 

of these proteins, there could be additional unwanted side effects that we have not tested 

for here. 
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Table 6.1: Proteins with homology to tetraspanin peptide sequences.   

Peptide Homologous Protein Function Homology Reference 

800 Type IV collagen, α5 Structural, basement 
membranes and ECM 

7/8 Pöschl, 2004 

(Poschl et al., 2004) 

Neurobeachin Trafficking of 
neurotransmitter receptors 

6/6, 4/4. Nair, 2013 (Nair et 

al., 2013) 

800SCR Nucleoporin  Component of the nuclear 
pore complex 

9/10 Krull, 2004 (Krull et 

al., 2004) 

Autophagy related 

protein 2 

Autophagosome formation 8/11 Mizushima,2011 

(Mizushima et al., 

2011) 

EGF receptor  Cell signaling, motility 6/6 Wells, 1999 (Wells, 

1999) 

Obtained from a NCBI protein basic local alignment search tool (Altschul et al., 1990). 

Peptides as a Tool for Studying Tetraspanins 

Studies with these peptides, combined with studies using chimaeras of CD9 and CD81 

mentioned previously, have been useful for highlighting functional regions within the EC2 

domain of CD9. The generation of tagged peptides was also a useful tool in studying how the 

peptides interact with cells, and further high resolution microscopy such as STORM, with 

varying peptide concentrations and conditions that disrupt TEMs such as cholesterol 

depletion. The peptides could also be used for a wide range of reasons not relating to their 

potential as a therapeutic. For example, to deduce the role of specific regions of the EC2 

domain in multinucleated giant cell fusion (Fanaei, 2014). 

TEskin as a Model 

In this study, TEskin constructed of primary adult keratinocytes and fibroblasts on a de-

epidermised acellular dermis (DED), was used as a complex model to test for peptide effects 

in a bigger system prior to any animal testing. This has advantages over a cell line model as it 

creates a 3D environment for bacteria to interact with, and it mimics the structure of normal 

human skin. It also has advantages over an animal model in ethical terms, as it cuts out animal 

suffering, although it could be debated that the quantity of foetal calf serum used to culture 
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the TEskin is enough to narrow this ethical divide. The TEskin, unlike animal trials, did allow 

for multiple repeats of multiple experiments at a relatively low cost, however the availability 

of skin biopsies to use as DED and a cell source was a limiting factor throughout the length of 

the PhD, and more repeats and therefore less varied data could have been obtained if the 

supply was more abundant and consistent. 

Much of the variability in TEskin data arose from donor bias, also observed in primary cell 

models. Cells derived from different patients varied in morphology, growth rate and viability, 

and in specific characteristics such as strength of dermal:epidermal junction. When TEskin 

was constructed, fibroblasts and keratinocytes were taken from different donors in order to 

combat this, however differences in keratinocyte growth and division, for example, can have 

a big effect on cell number over a 2 week growth period. 

The TEskin model also allowed for testing of the cytokine response. Testing cytokines in this 

model led to a greater variation in the data, due to donor bias, size of wound, and remaining 

quantity of viable cells. It also however gives a more realistic measurement of skin cytokine 

response, as research has shown that the expression of cytokines by fibroblasts can affect 

those secreted by keratinocytes and vice versa (Barrientos et al., 2008, Marionnet et al., 2006, 

Nedelec et al., 2007, Nowinski et al., 2004). This interplay is also important when looking for 

effects on cell migration that could affect wound healing. As seen in this study (Sections 3, 4 

and 5), a result obtained in a cell line model can yield different results to a result in a model 

involving multiple cell types, and therefore testing on multiple cell systems is a crucial step in 

therapeutic development. 

This said, a variety of different models of skin are available with varying levels of complexity. 

Those that use immortalized cell lines such as HaCaT cells or N/TERT immortalized 

keratinocytes are easier to set up and culture and therefore larger numbers of repeats can be 

undertaken, however there are genetic differences between these cell lines and primary cells 

which may lead to false results. Furthermore there are skin models which use collagen 

scaffolds rather than DED, which reduce the quantity of biopsy needed for making the skin, 

however cells in these models struggle to make a good epidermal:dermal junction membrane 

which is already present in the DED, and therefore the skin architecture is compromised 

(Blackwood et al., 2008, MacNeil, 2007). As an alternate, skin straight from biopsy could be 
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used providing it is transported rapidly from the site of surgery and kept perfectly sterile. This 

however would require an even larger area of skin, would display more donor bias, and there 

would be no cell expansion for preliminary cell experiments. Finally, some model systems 

available consist of just the epidermis, constructed of keratinocytes and differentiated into a 

3D structure. Although good for surface penetration studies, these models do not contain the 

complex basal membrane structures, and due to only containing one cell type cannot give any 

information regarding keratinocyte and fibroblast signalling (CELLnTEC, 2015). 

Another advancement in TEskin models is immunoskin, which contains a fibroblast seeded 

dermis and a keratinocyte seeded epidermis, both grown on acrylic acid scaffolds, and also 

has a layer of monocyte derived dendritic cells within an agarose-fibronectin gel in the centre 

(Chau et al., 2013). Having an immune cell layer represented in the model signifies a first step 

towards a fully comprehensive skin model which can model immune cell migration and other 

immune functions. Research into angiogenesis within these models and a range of other 

characteristics is also ongoing, and in coming years we may see a commercially available 

immune competent model for the testing of therapeutics.   

Enhancing Drug Potential with Nanocin™ 

Nanocin™ (Tecrea) is a commercially available tool for the intracellular delivery of small 

molecules. Upon mixing with the small molecules, Nanocin™ spontaneously forms 

nanoparticles which are capable of penetrating into tissue such as skin and nails and 

delivering the molecules. The current model of how this works is not the Nanocin forming an 

encompassing sphere, but more of a mixed particle containing both Nanocin™ and the target 

molecule (Good, unpublished). It has intrinsic antimicrobial properties at concentrations 

greater than 50µg/ml. The concentration used in this study is 0.13µg/ml, approximately 400x 

smaller than the toxic value, and cell line studies showed no decrease in bacterial number 

when treated with this concentration of Nanocin™. 

Our initial hypothesis was that intracellular delivery of tetraspanin peptides using Nanocin™ 

would reduce the activity of 800 peptide, which by its nature should act extracellularly at the 

cell membrane. Dose response and retention experiments however showed that the 

nanoparticles improved the action of the peptides.  The particles also showed no toxicity by 

MTT test and epidermal migration assay. This was also not expected as CD9 is involved in 
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intracellular vesicle trafficking which the peptides could have interfered with (Fernvik et al., 

1995). One possible explanation for this is that the peptides are not being delivered into the 

cell cytoplasm, and that the formulations generated here are not capable of passing into the 

cells. Delivery of the PHMB into target cells is thought to occur through an endocytic pathway 

involving the GTPase protein dynamin (Firdessa et al., 2015). The expression of dynamin-2 

specifically is known to be dependent on CD9 in pancreatic cancer cells (Tang et al., 2015), 

and therefore tetraspanin treatment could be affecting the internalization mechanisms of the 

cell and preventing Nanocin™ localization. This could be confirmed by confocal microscopy 

studies using the tagged peptides and FitC labelled Nanocin™. 

Conclusion and Future Directions 

In this study we have explored the potential of tetraspanin-based peptides as a therapeutic 

agent in the treatment of Staphylococcus aureus skin and wound infections. This therapy 

conferred a 60% reduction in adherent bacteria to host cells, and reduced the bacterial load 

in a 3D tissue engineered model of human skin. The redundancy within the tetraspanin 

system also would suggest that the peptides should not have any toxic effects, which was 

confirmed with an MTT test and migration assays. Packaging into nanoparticles using 

Nanocin™ improved their retention and lowered their inhibitory dose, however this also 

seemed to abolish their effects in the TEskin model, possibly suggesting a change to peptide 

localization due to the Nanocin™. Combination therapy also showed synergistic effects 

between flucloxacillin and the peptides in a cell line model, however this also was not 

reproduced in the TEskin. 

The additional work needed to bring these peptides closer to the clinic has been mentioned 

throughout these chapters, specifically experiments examining the peptides mode of action. 

At each stage of development and improvement they should be examined closely for adverse 

effects on the host cell. 

Overall, I believe that the global problem of antibiotic resistance is now becoming an urgent 

cause for concern, and that it will be incredibly fortunate if the treatments we currently use 

are effective even for another 20 years. Now therefore is the ideal time to search out 

alternatives. These tetraspanin based peptides exhibit some potential in preventing infection, 

and any improvement to current treatment that they can provide should be welcomed. 
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Furthermore, I believe that novel approaches to a problem as wide and complex as antibiotic 

resistance, such as anti-adherence therapies, should be pursued fully before rejection. 
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Appendix 
 

Quantification of Bacterial Adherence by Flow Cytometry: 

Methods: 

HaCaT cells were detached from flasks using cell dissociation solution (Sigma) and placed in a 96 well 

plate at a density of 1x105 cells/well. They were then spun at 400rpm for 5 minutes, and washed using 

B/B/N buffer and spin cycles. Cells were peptide treated with 50nM peptides for 30 minutes. SH1000 

expression gfp was then added to the cells at an MOI of 200 for 1 hour at 37oC with gentle agitation. 

Cells were washed 3 times to remove non-adherent bacteria and then fixed and re-suspended in 

B/B/N before quantification using the Attune Acoustic Focussing Flow Cytometer. Uninfected cells, 

bacteria alone, and cells infected with non-fluorescing SH100 were used for gating. 

Results: 

SH1000 bacteria were observed adhered to cells at an MOI of 200 No bacteria were observed at a 

lower MOI. No effect was of the peptide treatment was observed on Sh1000 adherence to HaCaT cells. 

This could be due to the increased MOI necessary to observe the fluorescence on the flow cytometer, 

or due to the mechanical stress of the experiment removing some of the adhered bacteria. 
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Supplementary Figure 1: Quantification of Bacterial Adherence by Flow Cytometry. (A) Median 

fluorescence of each condition. (B) Percentage of cells with gfp positive signal (C and D) Data 

normalised as a percentage of the no treatment control. Background fluorescence subtracted 

before plotting and analysis. % data transformed by Y=log10(Y) before analysis by one way 

ANOVA. No significance. MFI is median fluorescence index. 
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N/TERT FLG knockdown: 

  

 

 

 

 

 

 

Filaggrin knockdown in N/TERT cells was performed by Christabelle Goh. Briefly, the lentiviral plasmid 

pGIPz (depicted above, Dharmacon, GE Healthcare) containing silencing RNA for Filaggrin was 

transfected into N/TERT keratinicytes. Greatly reduced levels of pro-filaggrin were observed in cells 

transfected with this plasmid and selected with puromycin. 


