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Abstract 
 
Corneal disease is a major cause of global blindness accounting for around 

2% of severe visual impairment in the UK.  Corneal dystrophies are a group of 

rare, bilateral conditions with a genetic basis. 

 

In conjunction with the British Ophthalmic Surveillance Unit (BOSU), a 

national incidence for new cases of corneal dystrophy in patients aged below 

40 years was identified. 73 cases were reported to BOSU with 27 cases 

(42%) returned by questionnaire. There was a positive family history in 48% of 

cases. A minimum UK incidence for new cases per annum of 6.7 cases per 

10 000 000 population was calculated.  

 

To investigate the link between Congenital Hereditary Endothelial Dystrophy 

(CHED), Harboyan syndrome and Fuchs Endothelial Corneal Dystrophy 

(FECD), a longitudinal observational study was performed. CHED and 

Harboyan syndrome (CHED with sensorineural hearing loss) are both caused 

by biallelic mutations in SLC4A11. All four of the CHED patients examined 

had varying degrees of hearing loss at high frequencies, suggesting that 

CHED and Harboyan syndrome are the same condition at different 

developmental stages. In addition, two of the four parents of CHED patients 

examined had guttata, suggesting that the parents are at risk of developing 

FECD. 

 

FECD is a common, complex corneal endothelial disease. The relative 

contributions of the TCF4 SNP rs613872, the intronic TCF4 CTG18.1 

trinucleotide expansion and LOXHD1 variants in a UK Caucasian FECD 

cohort ethnically-matched controls were compared. The results of segregation 

of the CTG18.1 expansion and whole exome sequencing in three local FECD 

families indicated that the CTG18.1 expansion was causative for the FECD in 

two of the three families. This indicated that the TCF4 expansion is a major 

contributor to the pathogenesis of FECD. Whole exome sequencing in the 

third family revealed some good gene candidates, which were considered for 

further screening in the FECD cohort.   
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1  Introduction 

1.1 Gross Anatomy and Function of the Human Eye 
 

The human eye comprises the anterior segment that includes the cornea, iris, 

trabecular meshwork, aqueous humour and the lens, and the posterior 

segment, consisting of the vitreous gel, retina and the optic nerve. The retina 

consists of a neural layer and pigmented retinal pigment epithelium (RPE). 

The macula is a specialised area at the centre of the posterior retina (Snell 

and Lemp, 1997). A schematic diagram of the eye in sagittal cross-section is 

shown in Figure 1.1. 

 

 

 
Figure 1.1 Diagram of the human eye in sagittal view, indicating the gross 
structures. Reproduced with permission from WebMD (http://www.webmd.com/eye-
health/picture-of-the-eyes). 

 

The optical components of the eye are the cornea, aqueous humour, lens and 

vitreous body. The speed with which light travels through these structures is  
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inversely proportional to it density. Therefore light waves striking the cornea 

are slowed differentially, as the refractive index of aqueous humour is greater 

than that of air (Elkington et al., 1999). Light traverses these structures and 

focuses onto the retina. This process relies on the cornea and lens 

transparency, enabling the light to focus on a single point on the retina where 

the light signal is converted into a neural signal by the phototransduction 

cascade. This neural signal is transferred through the optic nerve eventually 

forming an image at the brain visual cortex. The biology of the anterior 

segment is orientated towards achieving clear transmission and sharp 

focusing of light on the retina (Hejtmancik and Nickerson, 2015). The opaque 

scleral coat forms the posterior five-sixths of the eyeball. The sclera itself is a 

relatively avascular structure, however the anterior ciliary arteries form a 

dense episcleral plexus. The tough fibrous structure protects the intraocular 

contents from trauma and mechanical displacement. The intervening layer 

between the retina and the sclera is the choroid, a soft brown, vascular coat 

lining the inner surface of the sclera. This layer provides nourishment for the 

retina as well as for absorbing excess light (Snell and Lemp, 1997).  

 

1.2 Embryological Development of the Human Eye 
 

The eye develops from several embryonic layers. The ectoderm gives rise to 

the lens and the corneal epithelium. The neuroectoderm forms the pigmented 

epithelium and the neural retina. The neural crest cells develop into the 

corneal stroma, the ciliary and iris muscles and the vascular choroid layer 

together with the fibrous sclera. The mesoderm contributes to the cornea and 

forms the angioblasts of the choroid layer. The first evidence of eye formation 

is the formation of the optic sulcus at 22 days of human development. At day 

24, the cranial neuropore closes, by which time the optic stalk is evident 

(Larsen et al., 2009). By the sixth week, the rudimentary eye including the 

optic cup and partially encapsulated lens vesicle are visible. The bilayered 

optic cups, partially encapsulating the lens vesicles have formed (Figure 1.2) 
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(Ali and Sowden, 2011). As the subject of this thesis is the cornea, its 

embryogenesis and development are covered in greater detail below. 

 

 
Figure 1.2 The embryonic development of the human eye a. At early stages of 
eye development, the surface ectoderm thickens and invaginates together with the 
underlying neuroepithelium of the optic vesicle. b. The inner layer of the bilayered 
optic cup gives rise to neural retina and the outer layer gives rise to the retinal 
pigmented epithelium (RPE) c. The mature neural retina. Reproduced with 
permission (Ali and Sowden, 2011). 

 

1.2.1 Corneal Embryogenesis 
 

The formation of the cornea is induced by the lens and the optic cup, and is 

the last series of major inductive events during eye development at around 5 

to 6 weeks of human gestation (18mm stage), when the surface ectoderm 

interacts with the lens vesicle (Figure 1.3). When completely separated, the 

space between them is filled with perinuclear mesenchyme cells from the 

neural crest. The mesenchyme condenses and forms several layers 

separated by extracellular matrix. The mesenchymal cells closer to the lens 

become the endothelium and the surface ectoderm on the anterior surface, 

become the corneal epithelium (Larsen et al., 2009, Zavala et al., 2013). 

Therefore, the corneal layers are derived from differing embryonic origins. 
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Figure 1.3 Formation of the cornea. The cornea begins to develop when the 
surface ectoderm closes after the formation of the lens vesicle and its detachment 
from the surface ectoderm. Mesenchymal cells (neural crest cells) invade the cornea 
and form the corneal stroma after condensation. Reproduced with permission 
(Zavala et al., 2013). 

 

1.2.2 Development of the Corneal Endothelium and Descemet’s 
Membrane 

 

The neural crest cells undergo epithelial-to-mesenchymal transition (EMT) 

and form a cell monolayer that occupies the posterior surface of the cornea. 

The presumptive corneal endothelium begins as a loosely arranged 

monolayer at about 8 weeks gestation. The zonula occludens (tight junctions 

in between the endothelial cells) are present by week 17, although the 

endothelial pump function (Section 1.3.6) is not fully established. The early 

endothelium is evident during the fourth month of human gestation. It secretes 

the basement membrane, Descemet’s membrane (DM), as a multilaminated 

layer between the endothelial cell layer and the posterior stroma. It is a cell-

free matrix consisting predominantly of collagens (Waring et al., 1982) 

(Lwigale, 2015). 
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1.3   Detailed Anatomy of the Adult Human Cornea 
 

The cornea, the major refracting structure of the human eye, occupies one 

third of the external eyeball. It consists of six layers: the epithelium, epithelial 

basement membrane, Bowman’s layer, the stroma, DM and the endothelium 

at the posterior surface of the cornea. These are numbered sequentially in 

Figure 1.4. 

 

Figure 1.4 Histology of the cornea. The layers are numbered sequentially; the 
epithelium (1), epithelial basement membrane (2), Bowman's layer (3), corneal 
stroma (4), DM (5), and endothelium (6). Reproduced with permission (Krachmer et 
al., 2011). 

 

1.3.1 The corneal epithelium 
 

The epithelium comprises four to six layers of non-keratinised stratified 

squamous epithelial cells, and is 50μm in thickness. The superficial two to 
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three layers consist of flat, polygonal cells which have microvillae and 

micropliae on the apical surface. The cell periphery exhibits tight junctions 

which prevent the entry of microorganisms into the cornea. Basal epithelial 

cells are the posterior-most layer of the corneal epithelium and are 

responsible for laying down the basement membrane. Perilimbal basal cells 

differentiate and migrate anteriorly to regenerate the cornea. They utilise 

hemidesmosomes to adhere to the underlying basement membrane (Eghrari 

et al., 2015b). There is little variation in cell density and morphology of basal 

epithelial cells amongst individuals (Harrison et al., 2003). 

 

1.3.2 Basement Membrane 
 

The basal cells of the corneal epithelium are anchored to the basement 

membrane (BM) which is 40-60nm thick (Krachmer et al., 2011). The BM is 

composed of four primary components – collagens (predominantly collagen 

type IV), laminins, heparin sulphate proteoglycans (HSPG) and nidogens.  

Laminins are the most abundant non-collagenous proteins in the BM, and 

interact with collagen networks via nidogens. They have the unique ability to 

self-assemble into sheet-like structures. The most prevalent HSPG is 

perlecan, a multidomain protein which mediates the migration, proliferation 

and differentiation of a variety of cells by mediating cell signalling events 

(Torricelli et al., 2013).  

 

1.3.3 Bowman’s Membrane 
 

Bowman’s layer is an acellular, non-regenerating layer that is posterior to the 

epithelial BM. It is approximately 8-12μm in depth and decreases in thickness 

with age. It consists of collagen fibrils, which are two-thirds the thickness of 

those of the stroma, and which merge with those of the anterior stroma 

(Eghrari et al., 2015b). 
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1.3.4   Stroma or Substantia Propria 
 

This layer forms 90% of the corneal thickness (Figure 1.5 ). It is transparent, 

fibrous and compact. Stromal fibrils consist mainly of type I collagen, with 

smaller amounts of types III, V and VI (Snell and Lemp, 1997). The stroma 

comprises over 200 sheets of lamellae each 1-2µm thick of collagen fibrils 

approximately 36nm in diameter. This arrangement is highly ordered such that 

they lie in parallel, an arrangement essential for maintaining corneal clarity. 

Keratocytes are interspersed between the lamellae forming an interlinking 

network. The main glycosaminoglycan present is keratin sulphate. The stroma 

has a natural tendency to absorb water and swell due to the hydrophilic 

nature of the proteoglycan matrix surrounding the collagen fibrils. The 

mechanism by which the stroma of the cornea remains relatively dehydrated 

is deturgescence (Freegard, 1997).  

 

 
Figure 1.5 Corneal histology image of the human cornea. The stroma occupies 
90% of the corneal thickness, as indicated by the two black arrows (courtesy of Dr 
Hardeep S Mudhar, Consultant Ophthalmic Histopathologist, Royal Hallamshire 
Hospital, Sheffield, UK). 
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1.3.5   Descemet’s Membrane 
 

DM is a basement membrane of the corneal endothelium and measures 3μm 

in children and 8-10μm in adults. Transmission electron microscopy reveals 

the anterior banded layer, approximately 3μm thick, which consists of a 

latticework of collagen fibrils with periodic banding at 110nm intervals. On 

tangential section, the layer reveals a hexagonal formation of collagen fibrils. 

After birth the endothelial cells secrete the relatively homogeneous posterior 

non-banded layer which has a fine granular appearance, and which thickens 

with age (Johnson et al., 1982).  

 

DM contains collagen types IV and VIII fibrils, type VIII being specific to DM. 

Similar to the stroma the ECM protein fibronectin, laminin, keratin sulphate, 

herparin sulphate and dermatin sulphate are also present (Eghrari et al., 

2015b). Fibronectin may play a role in the adhesion of the endothelial cells to 

the DM (Waring et al., 1982). The DM is shown by the black arrow in 1.6A and 

is also labelled in 1.6B. 

 

 
Figure 1.6 The posterior aspect of the human cornea. A. Histopathology image of 
the showing the endothelium and DM. The black arrow indicates DM. The endothelial 
cell layer is indicated by the purple arrow (courtesy of Dr Hardeep S Mudhar, 
Consultant Ophthalmic Histopathologist, Royal Hallamshire Hospital, Sheffield, UK). 
B. Electron micrograph of corneal endothelium underlying DM. Reproduced with 
permission (Zavala et al., 2013). 

 

A. B. 
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1.3.6   Corneal Endothelium 
 

The human corneal endothelial surface (Figure 1.6) is 130mm2 and comprises 

a monolayer of polygonal corneal endothelial cells, which cover the posterior 

surface of DM in a mosaic pattern (Figure 1.7). These cells are 5µm in 

thickness, 20µm in width and are polygonal, mostly hexagonal, in shape. The 

cell density in a 3 to 6-year-old child is 3500–4000 cells per mm2 but this 

value decreases with age. The normal endothelial cell count in a 30 year old 

ranges from between 2700 to 2900 per mm2 and that in an adult over 75 

years old ranges from 2400 to 2600 per mm2 (McCarey et al., 2008). The 

corneal endothelium maintains corneal clarity by keeping the stroma in a state 

of relative dehydration, as well as providing a barrier and pump function. The 

active transport of bicarbonate ions into the aqueous humour is thought to be 

a major role of the endothelial pump function, although the transport of 

sodium and potassium ions also plays a role (Waring et al., 1982). Endothelial 

cells contain a large nucleus and abundant cytoplasmic organelles including 

mitochondria, endoplasmic reticulum, free ribosomes, and Golgi apparatus, 

suggesting that they are highly metabolically active (Krachmer et al., 2011). 

When the endothelial cell counts drops to 400-700 cells per mm2 or less, 

corneal decompensation (corneal oedema resulting from failure of the 

endothelium to maintain deturgescence) occurs, which suggests that there is 

a substantial reserve (Edelhauser, 2006). When the endothelial cell count is 

low, the loss of zonula occludens allows more fluid to enter the stroma, thus 

disrupting the parallel arrangement of the stromal collagen fibrils and 

compromising corneal clarity. 
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Figure 1.7 Normal corneal endothelium as photographed by specular 
microscopy. The regular array of hexagonal cells, all having nearly the same area, 
is seen. Reproduced with permission (Krachmer et al., 2011). 

 

1.3.7 Regenerative Capacity of the Corneal Endothelium 
 

Individuals are born with differing numbers of endothelial cells (Yuen et al., 

2005). Traditionally, it was thought that endothelial cells do not divide and are 

arrested in the G1 phase of the cell cycle (Bourne, 2003). Therefore, as the 

endothelial cells die with age, the cells that remain have a limited regenerative 

capacity (Waring et al., 1982). However, recently this theory has been 

challenged by a study, which suggests that the corneal periphery contains a 

reservoir of stem-like cells that replace damaged or dead endothelium (He et 

al., 2012). The authors evaluated the microanatomy of 88 whole endothelia. In 

61% of the corneas, they noted that the cells located at the extreme periphery 

(the peripheral 200μm of the endothelium) were organized in small clusters, 

estimated to occupy one third of the circumference of the cornea. Additionally, 

in 68% of the corneas, peripheral endothelium formed radial rows, which were 

variable in length but occupied around 86% of the corneal circumference. On 

staining, these cells were less differentiated but expressed stem cell specific 

markers. 
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1.4   Epidemiology of Eye Disease 

1.4.1 Global Burden of Eye Disease 
 

There are approximately 161 million people worldwide with low vision, 37 

million of whom are severely sight-impaired. This figure excludes those with 

uncorrected refractive error (Resnikoff et al., 2004). The main causes of 

global blindness are cataract, glaucoma, corneal scarring, age-related 

macular degeneration (ARMD) and diabetic retinopathy. All of these are 

considered avoidable except for ARMD. The World Health Organisation 

(WHO) Prevention of Blindness programme and the International Agency for 

the Prevention of Blindness set up the VISION 2020 - Right to Sight initiative 

in 1999 to eliminate 80% of avoidable blindness by the year 2020. It sought to 

do this by focusing on the diseases, which are the main causes of blindness 

and for which proven cost-effective interventions are available. The most 

recent global action plan for the period 2014-2019 aims to reduce visual 

impairment as a global public health problem and secure access to 

rehabilitation for visually impaired services (http://www.iapb.org/vision-2020). 

It has been calculated using economic and epidemiological modelling that 

without global initiatives the number of blind individuals would increase to 76 

million in 2020. The cost impact of blindness can be assessed in “blind 

person-years” defined as one year of blindness for one individual. A 

successful VISION 2020 initiative would avoid 429 million blind person-years 

(Frick and Foster, 2003). The impact of this initiative was assessed in 2005. 

The estimates of global blindness were 15 million blind person-years less than 

projected and indicated that VISION 2020 was reducing global blindness 

(Foster and Resnikoff, 2005, Foster et al., 2008).  

 

Visual acuity is the ability to resolve detail, for instance to be able to detect a 

gap between two objects in space. It is a commonly used proxy measure for 

the degree of visual acuity as it is easy to measure and is understood by the 

lay public (https://www.rcophth.ac.uk/professional-

resources/revalidation/clinical-sub-specialties/cataract/visual-acuity/).  
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Snellen acuity (Figure 1.8A) has been used to measure visual acuity since 

1862, however this has more recently been superseded by its assessment 

using a logarithmic method, LogMAR visual acuity (Figure 1.8B) 

(https://www.rcophth.ac.uk/wp-content/uploads/2015/11/LogMAR-vs-

Snellen.pdf). 

 

 
Figure 1.8 An example of A. a Snellen chart  B. LogMAR for testing visual 
acuity. 

 

The International Statistical Classification of Diseases and Related Health 

Problems 10th Revision 2015 

(http://apps.who.int/classifications/icd10/browse/2015/en#!/H53) currently 

classifies visual impairment as outlined in Table 1.1. 
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Table 1.1 Categories of visual impairment (ICD-10 Version 2016) 
(http://apps.who.int/classifications/icd10/browse/2016/en#/H53). Visual acuity is 
shown in both Snellen and LogMAR forms. 

 

1.4.2 Childhood Visual Impairment Epidemiology and Case 
Identification 

 

Childhood blindness is the second largest category of blind-person years. 

Globally about 70 million blind person years are caused by childhood 

blindness (Yorston, 1999). In the UK, an epidemiological study of 439 children 

with severe visual impairment (SVI) was carried out. The results indicated that 

SVI had an incidence of 4 per 100,000 and occurred more frequently in 

conjunction with co-existing non-ophthalmic impairments. The authors found 

that children at the most risk were those of low-birth weight and from ethnic 

minority groups. Cerebral visual impairment was the most common cause of 

SVI in children. SVI caused by sclerocornea and corneal opacity accounted 

for 2% of patients (Rahi and Cable, 2003). Cases of visual impairment may be 

identified by a parent, carer or teacher, through perinatal or pre-school 

screening. Cases may also be identified through assessment following a 

family history of sight loss, or a medical condition with an ophthalmic 

manifestation (https://www.rcophth.ac.uk/professional-resources/information-

from-the-paediatric-sub-committee-for-healthcare-professionals/). 
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1.4.3   Visual Impairment in Adults 
 

Researchers examining the causes of certifiable visual impairment (CVI) in 

working age adults recently found for the first time in five decades the leading 

cause of certifiable blindness was not diabetic retinopathy/maculopathy but 

hereditary retinal disorders (20.2%). This was followed by diabetic 

retinopathy/maculopathy (14.4%), optic atrophy (14.1%) and corneal disease 

which accounted for 45/1756 (2.6%) (Liew et al., 2014).  Overall in adults 

macular degeneration was the most common cause of CVI with corneal 

disorders accounting for 100/7437 (2.1%) of the total number of CVI cases 

(Bunce et al., 2010). A form of corneal disease is the focus of this thesis. 

 

1.5 Overview of Corneal Dystrophies 
 

Corneal dystrophies are defined as a group of bilateral, genetically 

determined, non-inflammatory diseases that are, in the majority of cases, 

limited to the cornea (Klintworth, 2009). There are however exceptions to 

every part of this definition (Weiss et al., 2015). They are both clinically and 

genetically heterogeneous. Many of these conditions are important causes of 

congenital corneal opacity (Nischal, 2015). They can occur as isolated 

conditions or with systemic manifestations. 

 

The International Corneal Dystrophy (IC3D) committee was formed in 2005 

with the purpose of reducing confusion regarding corneal dystrophy 

nomenclature, to critically evaluate the literature and remove outdated 

information. The committee held its first meeting in October 2005 and 

proposed a new classification of corneal dystrophies in 2008 (Weiss et al., 

2008) which consisted of five categories: Epithelial and Subepithelial 

Dystrophies, Bowman Layer Dystrophies, Stromal Dystrophies and Descemet 

Membrane and Endothelial Dystrophies. Additionally, a series of descriptive 

evidential categories indicating the level of evidence supporting the existence 

of each given dystrophy was outlined (Table 1.2). It was postulated that with 

increased knowledge about a dystrophy, its category should progress over 
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time from 4 to 1, and that dystrophies that remain in category 4 should be 

eventually removed from the nomenclature. 

 

Category 1
A well-defined corneal dystrophy in which the gene has been mapped and 
identified and specific mutations are known.

Category 2
A well-defined corneal dystrophy that has been mapped to 1 or more 
specific chromosomal loci, but the gene(s) remains to be identified. 

Category 3
A well-defined corneal dystrophy in which the disorder has not yet been 
mapped to a chromosomal locus. 

Category 4
This category is reserved for a suspected new, or previously documented, 
corneal dystrophy, although the evidence for it, being a distinct entity, is 
not yet convincing. 

Table 1.2 Levels of evidence supporting the existence of corneal dystrophies, 
as described by the IC3D Committee (Weiss et al., 2008). 

 

The traditional anatomic classification of corneal dystrophies described 

(Weiss et al., 2008) was thought to have limitations and in 2015 corneal 

dystrophies were reclassified into four groups; Epithelial and subepithelial, 

Epithelial-stromal TGFβI, Stromal and Endothelial dystrophies (Weiss et al., 

2015). These four classes of corneal dystrophy are summarised below, with 

examples of each given.  
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Class of Corneal Dystrophy Dystrophy MIM Category of Evidence Mode of Inheritance Locus Gene
Epithelial Basement membrane dystrophy (EBMD) 

majority degenerative
MIM #121820 rarely C1 Unknown 5q31 TGFβI

Epithelial recurrent erosion dystrophies (EREDs)
                Franceschetti corneal dystrophy (FRCD) C3 Autosomal Dominant Unknown Unknown

  Dystrophia Smolandiensis (DS) C3 Autosomal Dominant Unknown Unknown
 Dystrophia Helsinglandica (DH) C3 Autosomal Dominant Unknown Unknown

Subepithelial mucinous corneal dystrophy (SMCD) MIM #612867 C4
Autosomal Dominant (but X-linked 

not excluded) Unknown Unknown
Meesmann corneal dystrophy (MECD) C1 Autosomal Dominant 12q13 (KRT3) KRT3
                             - Stocker-Holt variant C1 Autosomal Dominant 17q12 (KRT12) KRT12

Lisch epithelial corneal dystrophy (LECD) MIM #300778 C2 X-chromosomal Dominant Xp22.3 Unknown
Gelatinous drop-like corneal dystrophy (GDLD) MIM #204870 C1 Autosomal Recessive 1p32 TACSTD2

Reis–Bücklers corneal dystrophy (RBCD) MIM #608470 C1 Autosomal Dominant 5q31 TGFβI
Thiel-Behnke corneal dystrophy (TBCD) MIM #602082 C1 Autosomal Dominant 5q31 TGFβI

Lattice corneal dystrophy, type 1 (LCD1), variants 
(III, IIIA, I/IIIA,IV) of lattice corneal dystrophy

MIM #122200 C1 Autosomal Dominant 5q31 TGFβI

Granular corneal dystrophy, type 1 (GCD1) MIM #121900 C1 Autosomal Dominant 5q31 TGFβI
Granular corneal dystrophy, type 2 (GCD2) MIM #607541 C1 Autosomal Dominant 5q31 TGFβI

Macular corneal dystrophy (MCD) MIM #217800 C1 Autosomal Recessive 16q22 CHST6
Schnyder corneal dystrophy (SCD) MIM #21800 C1 Autosomal Dominant 1p36 UBIAD1

Congenital stromal corneal dystrophy (CSCD) MIM #610048 C1 Autosomal Dominant 12q21.33 DCN
Fleck corneal dystrophy (FCD) MIM #121850 C1 Autosomal Dominant 2q34 PIKFYVE

Posterior amorphous corneal dystrophy (PACD) MIM #612868 C1 Autosomal Dominant 12q21.33 KERA, LUM, DCN, 
EPYC

Central cloudy dystrophy of François (CCDF) MIM #217600 C1 Unknown Unknown Unknown
Pre-Descemet corneal dystrophy (PDCD) 

- isolated PDCD C4 Unknown Unknown Unknown
-associated with X-linked ichthyosis C1 Autosomal Dominant Xp22.31 STS

Fuchs endothelial corneal dystrophy (FECD) 
- Early-onset FECD MIM #136800 (FECD1) C1 Autosomal Dominant 1p34.3–p32 (FECD1) COL8A2

MIM #610158 (FECD2) 13pter-q12.13 (FECD2)
  MIM #613267 (FECD3) 18q21.2-q21.3 (FECD3) TCF4, LOXHD1
MIM #613268 (FECD4) C2 in patients with defined genetic loci 20p13-p12 (FECD4) 
  MIM #613269 (FECD5) C3 in patients without known inheritance  5q33.1-q35.2 (FECD5) 
 MIM #613270 (FECD6) 10p11.2 (FECD6) TCF8
 MIM #613271 (FECD7)  9p24.1-p22.1 (FECD7)
 MIM #615523 (FECD8)  15q25 (FECD8)  AGBL1

Posterior polymorphous corneal dystrophy (PPCD) 
MIM #122000 (PPCD1) 
MIM #609140 (PPCD2) 
MIM #609141 (PPCD3) 

C1 - PPCD 2 and PPCD 3                   
C2 -  PPCD 1

Autosomal Dominant Isolated cases 
with no known inheritance pattern

PPCD 1: 20p11.2-q11.2 
PPCD 2: 1p34.3-p32.3 
PPCD 3: 10p11.22

PPCD1: unknown  
PPCD2: COL8A2      
PPCD 3: ZEB1

Congenital hereditary endothelial dystrophy (CHED) MIM #217700 C1 Autosomal Recessive 20p13 SLC4A11
X-linked endothelial corneal dystrophy (XECD) none C2 X-chromosomal Dominant Xq25 Unknown

Cases without known inheritance are 
most common. Some cases with 
Autosomal Dominant inheritance. 

Complex and heterogeneous, 
demonstrating variable expressivity 

and incomplete penetrance

Epithelial and Subepithelial Dystrophies

Epithelial-stromal TGFβI

Stromal Dystrophies

Endothelial Dystrophies

MIM #122400

MIM #122100

none

- Late-onset FECD

 
Table 1.3 Table outlining each corneal dystrophy, its category of supporting evidence (Table 1.2), mode of inheritance, locus and 
gene if known. 
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1.5.1 Epithelial and Subepithelial Dystrophies 
 

Epithelial Basement Membrane Dystrophy (EBMD) (MIM#121820), the most 

common anterior corneal dystrophy, was first described by Cogan (Cogan et 

al., 1964) and is characterised by the presence of subepithelial dots, map-like 

changes (so-called as they are shaped like maps) and blebs Figure 1.9. The 

patient may be asymptomatic or may present with recurrent corneal erosions 

(Schorderet, 2015). Mutations in the Transforming Growth Factor β Induced 

gene (TGFβI) (Section 1.5.2) have been reported in two families with 

autosomal dominant inheritance as well as sporadic cases (Boutboul et al., 

2006). 

 

 
Figure 1.9 Epithelial Basement Membrane Dystrophy A. Map-like changes in 
EBMD. B. Both microcystic changes and map-like changes together. Reproduced 
with permission (Krachmer et al., 2011). 

 

Meesman Corneal Dystrophy (MECD) MCD, (MIM#122100), another 

condition affecting the corneal epithelium, is characterised by distinct tiny 

bubble-like, round to-oval punctate opacities which present during infancy 

(Klintworth, 2009). Dominant mutations in both Keratin 3 (KRT3) 

(MIM*148043) on chromosome 12 and Keratin 12 (KRT12) (MIM*601687) on 

chromosome 17 have been implicated (Irvine et al., 1997). Lisch Epithelial 

Corneal Dystrophy (LECD) (MIM%300778) is characterised by feather shaped 

opacities and microcysts in the corneal epithelium (Lisch et al., 1992). 

Painless blurred vision may begin after 60 years (Klintworth, 2009). Linkage 

A. B. 
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analysis in a large German multi-generational family mapped the disease to a 

locus on chromosome Xp22.3 (Lisch et al., 2000), although the LOD score 

was below 3 (2.93) therefore the  linkage to this region was tentative. 

 

1.5.2  Epithelial-stromal Transforming Growth Factor beta Induced 
(TGFβI) Dystrophies 

 

The corneal dystrophies described below are all caused by heterozygous 

mutations in the TGFβI gene on chromosome 5 and are inherited as dominant 

conditions (Lisch et al., 2000, Munier et al., 2002). 

 
Reis-Bucklers Corneal Dystrophy (RBCD) (MIM#608470) presents with 

bilateral symmetrical irregular ring-shaped subepithelial opacities, which 

become evident in the first few years of life and are associated with pain, 

redness and photophobia (Waring et al., 1978a). Thiel-Behnke Corneal 

Dystrophy (TBCD) (MIM#602082) is similar to RBCD in that it is characterised 

by subepithelial corneal opacities. However clinically the lesions can be 

differentiated by their honeycomb pattern and a clear area near the corneo-

scleral limbus (Krachmer et al., 2011). Although most causative mutations are 

in the TGFβI gene, the disease has been also been mapped to chromosome 

10q23-q24 (Yee et al., 1997). However, when the original linkage data was 

reviewed (Jonsson et al., 2015) a synonymous variant in COL17A1 

c.3156C>T was identified. This variant introduced a cryptic donor site and 

resulting in aberrant pre-mRNA splicing, and therefore was likely to be 

pathogenic. 

 

Lattice Corneal Dystrophy Type I (LCD1) (MIM#122200) presents during the 

first decade. Clinically a network of interdigitating branching filaments is seen 

within the corneal stroma (Klintworth, 2009). Accumulations of amyloid 

material in the stroma distort the architecture of the corneal lamellae (Figure 

1.10A and B). Granular Dystrophy Type I (GCD1) (121900) is a disease of the 

corneal stroma. Characteristic bilateral breadcrumb-like corneal deposits in 

the anterior stroma give rise to glare, reduced vision and photophobia 
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(Krachmer et al., 2011) (Figure 1.10C). Granular Dystrophy Type II (GCD2) 

(MIM#607541) shares some features with Lattice Dystrophy. Clinically and 

histopathologically GCD2 it can be considered to have features of both GCD1 

and LCD1 (Schorderet, 2015) (Figure 1.10D). 

 

TGFβI encodes the transforming growth factor β protein (TGFβI), also known 

as keratoepithelin, a 68-kDa protein composed of 683 amino acid residues. It 

contains a secretory signal peptide sequence, a cysteine-rich EMI domain, 

four homologous fasciclin 1 (FAS1) domains which each contain 140 amino 

acid residues at the N-terminus, and an arginine-glycine-aspartate (RGD) 

motif, which binds to integrin at the C-terminus. It is known to be expressed in 

other organs including the heart, liver, pancreas, bone, tendon, endometrium 

and kidney (Han et al., 2016).  TGFβpI is a member of the TGFβ family of 

cytokines, which regulate diverse cellular processes including proliferation, 

apoptosis, differentiation and ECM homeostasis (Kim et al., 2015a). 

 

1.5.3 Stromal Dystrophies 
 

These dystrophies are those that affect the corneal stroma but are not caused 

by dominant mutations in the TGFβI gene. One such condition, Macular 

Corneal Dystrophy (MCD) (MIM#217800), is an autosomal recessive disease. 

Faint stromal white opacities are seen in the first decade. The opacities 

progress over time and a grainy haze develops (Yanoff and Duker 3rd, 2009).  

MCD is not entirely stromal, as over time the deposits extend to DM and the 

endothelium, giving rise to endothelial decompensation and corneal oedema. 

The disease is caused by recessive mutations in Carbohydrate 

Sulfotransferase 6 (CHST6) on chromosome 16. The encoded protein is an 

enzyme which catalyses the transfer of a sulphate group to the N-

Acetylglucosamine amino acid residue of keratan (Akama et al., 2000). 

Keratan sulphate is a major component of the corneal stroma and helps to 

maintain corneal clarity (Section 1.3.4).  
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Figure 1.10 Corneal photographs of two TGFβI stromal dystrophies. A. Lattice 
Corneal Dystrophy Type I (courtesy of Mr James Ball, Consultant Ophthalmic 
Surgeon, St James’s University Hospital, Leeds).	 B. Lattice corneal dystrophy type I 
variant. The amyloid within the corneal stroma viewed under ultraviolet light after 
staining the fluorescent dye Thioflavin T. C. Granular corneal dystrophy type I. 
Numerous irregular shaped discrete crumb-like corneal opacities. D. Granular 
corneal dystrophy type II. Variable sized crumb-like opacities in the corneal stroma 
that have become fused in areas giving rise to elongated and stellate shapes. Figure 
1.10 B-D reproduced with permission (Klintworth, 2009). 

 

1.5.4 Endothelial Dystrophies 
 

Several dystrophies that primarily affect the corneal endothelium have been 

described. These are Congenital Hereditary Endothelial Dystrophy (CHED), 

Posterior Polymorphous Corneal Endothelial Dystrophy (PPCD), X-Linked 

Endothelial Dystrophy (XECD) and Fuchs Endothelial Corneal Dystrophy 

(FECD). These conditions are all outlined in more detail in separate sections 

below.  

 

A
. 

B
.. 

C. A
.
D 



 21 

1.6    Congenital Hereditary Endothelial Dystrophy 

1.6.1 Clinical Features 
 

Congenital Hereditary Endothelial Dystrophy (CHED) (MIM#217700) was first 

described by Maumenee (Maumenee, 1960) who recognised that the primary 

pathology originated in the corneal endothelium. The hallmark of CHED is 

corneal oedema and opacification presenting at birth or shortly after birth 

(Patel and Parker, 2015). Kirkness et al reported a large case series of 23 

patients which were divided into recessive and dominant, providing a detailed 

description of clinical features, management and pathology (Kirkness et al., 

1987). They noted that progression of corneal signs, including development of 

corneal stromal scarring and deposition of plaques, was observed in four of 

the recessive and three of the dominant cases. Additionally, they examined 26 

corneal buttons, noting thickening of DM in the majority of cases, and 

described more marked thickening in the recessive group. The endothelium 

was discernable in most cases but loss of cells and degeneration was a 

common finding.  

 

The original author’s subsequent report (Judisch and Maumenee, 1978) 

attempted to differentiate the clinical appearance of CHED according to its 

recessive or dominant inheritance. They described what they thought was an 

autosomal dominant CHED patient as having clear corneas at birth with 

slowly progressive corneal opacification and felt that “infantile” might be a 

more descriptive name for the dominant variant.  It was therefore previously 

thought that CHED may be inherited in a dominant (CHED1, MIM#121700) or 

a recessive manner (CHED2, MIM#217700) (Callaghan et al., 1999). CHED2 

was thought to be more common and characterised by a more severe 

phenotype than CHED1. However, CHED1 is insufficiently distinct to be 

considered a unique dystrophy (Nischal, 2015). In the most recent corneal 

dystrophy classification (Weiss et al., 2015), CHED1 was reclassified 

following a review of the original clinical and pathological descriptions, 

concluding that all the families could have PPCD (Section 1.7). Consequently, 

CHED1 has been eliminated from the corneal dystrophy classification and the 
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previously described CHED2 is now simply referred to as CHED, and will be 

throughout this thesis.  

 

1.6.2   Association with Glaucoma 
 

The normal intraocular pressure (IOP) is 12-22mmHg. The upper limit of 

22mmHg is the traditional cut-off for European-derived populations, however 

some Asian populations have a lower mean IOP and a pressure above 

19mmHg might be considered abnormal in such individuals (Yanoff and Duker 

3rd, 2009). The association of raised intraocular pressure (IOP) with CHED 

has been documented (Pedersen et al., 1989, Keates and Cvintal, 1965), and 

has the potential to pose a diagnostic and therapeutic dilemma as it may 

mimic primary congenital glaucoma (PCG). Additionally, stromal oedema can 

give rise to a false artificially raised IOP. PCG may present with additional 

signs of increased corneal diameter, Haab striae (horizontal striae seen on 

the corneal endothelium) and enlarged axial length (Ko et al., 2015). Kirkness 

et al revealed that 5/23 of their case series of CHED patients had undergone 

a surgical glaucoma procedure. It has also been suggested in retrospective 

analysis of 10 CHED patients that CHED and congenital glaucoma may co-

exist in some patients (Ramamurthy et al., 2007).  

 

1.6.3 The genetic basis of CHED  
 

CHED was originally mapped to chromosome 20p13 (Toma et al., 1995). 

Subsequently recessive mutations in solute carrier family 4, sodium borate 

transporter, member 11 (SLC4A11) (MIM*610206) were found to be the 

cause of CHED (Vithana et al., 2006). The authors described 10 families of 

Myanmar, Pakistani and Indian origin. Missense mutations accounted for the 

condition in 8 out of 10 families. In one family, of Indian origin, there was a 

frameshift mutation with 11 amino acid residues followed by a premature stop 

codon, indicating that CHED was cause by a loss-of-function mutation. 

Mutation screening of the coding exons and promoter of SLC4A11 in a cohort 

of 20 Indian CHED families only identified mutations in 11 families leading the 
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authors to speculate that genetic heterogeneity may exist for CHED 

(Hemadevi et al., 2008).  

 

1.6.4  Harboyan Syndrome 
 

Harboyan syndrome (MIM#217400) is characterised by CHED in association 

with progressive sensorineural hearing loss. Typically, the hearing loss does 

not present at birth but within the age range of 10-25 years, affecting mainly 

the 20-50db range (mild to moderate in severity) and affecting the higher 

frequencies (Desir et al., 2007). Recessive mutations in SLC4A11 also 

account for this phenotype, and the authors, who studied six families with 

Harboyan syndrome and one with CHED and possible Harboyan syndrome 

from varying ethnic backgrounds, concluded that some SLC4A11 mutations 

caused CHED while others caused Harboyan syndrome. The reason for 

which remained unclear. Over 60 different homozygous or compound 

heterozygous mutations in SLC4A11 have been reported to cause either 

CHED or Harboyan syndrome with little evidence to support a genetic basis 

for the difference between these phenotypes (Desir and Abramowicz, 2008, 

Mehta et al., 2010). 

 

1.6.5 Solute Carrier Family 4, Member 11 
 

Much of the previous work on the human Solute Carrier Family 4, Member 11 

gene (SLC4A11) was performed on the NM_032034 transcript, which consists 

of 19 exons spanning 11,774 base pairs (bp) of genomic DNA and encodes 

an 891 amino acid protein (Vilas et al., 2011). However, the largest mRNA 

transcript described NM_001174090 consists of 20 exons and encodes a 918 

amino acid protein.  Expression of SLC4A11 has been demonstrated in the 

human corneal endothelium on transcriptome analysis (Chng et al., 2013). 

The Slc4a11 mouse knockout was shown to exhibit increased endothelial cell 

size and decreased endothelial cell density with increasing age (Han et al., 

2013). The gene is also expressed in the fibrocytes of the stria vascularis in 

the inner ear in mice (Lopez et al., 2009, Groger et al., 2010) and in the 
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kidney (Groger et al., 2010, Han et al., 2013). It has been postulated that as 

the intermediate cells of the striae vascularis share a common neural crest 

origin with corneal endothelial cells, the absence of a borate dependent effect 

on the proliferation of these cells might give rise to sensorineural hearing loss, 

or alternatively that this might result from fluid imbalance in the inner ear 

(Desir et al., 2007). 

 

The SLC4A11 protein is expressed on the cell membrane and has 14 

transmembrane domains. It was previously thought to be a sodium borate 

transporter and was originally named Bicarbonate Transporter-related Protein 

1 (BRT1). When SLC4A11 expression constructs were transfected into 

human embryonic kidney cells (HEK293) with the mutant and wild-type 

SLC4A11 cDNAs, immunoblots indicated that there was little or no expression 

on the cell surface of the predicted 120kDa mutant protein compared to the 

wild-type BRT1. The mutant protein therefore appeared not to be processed 

through the endoplasmic reticulum and subsequently failed to reach the cell 

membrane to fulfil its role as an ion transporter (Vithana et al., 2006, Vilas et 

al., 2012b). More recent studies have indicated that the SLC4A11 protein is a 

Na+:OH- transporter with no significant affinity to borate or bicarbonate ions, 

but with a role in transporting Na+ coupled to OH contributing to pH regulation 

in the corneal endothelium (Ogando et al., 2013, Jalimarada et al., 2013, Kao 

et al., 2015). 

 

1.7 Posterior Polymorphous Corneal Dystrophy 

1.7.1 Clinical Features 
 

Posterior Polymorphous Dystrophy (PPCD) (PPCD1 MIM#122000, PPCD2 

MIM#609140, PPCD3 MIM#609141) is an autosomal dominant condition 

characterised by deep corneal lesions of varying shape including nodular, 

vesicular and blister-like lesions. It is rarely present in the immediate post-

natal period and clinically shows a slow or non-progressive course 

(Schorderet, 2015). PPCD shares some of the corneal features with the non-
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inherited condition iridocorneal endothelial syndrome. The clinical history (in 

particular the presence of a family history) is useful in distinguishing the two 

conditions, and specular microscopy has also been shown to play a useful 

diagnostic role (Laganowski et al., 1991). 
 

1.7.2   The genetic basis of PPCD 
 

Dominant mutations in collagen type VIII, alpha-2 (COL8A2) (MIM*120252) 

have been implicated in PPCD in the same study that found COL8A2 

mutations to be causative for early-onset FECD (Section 1.10.2). The authors 

sequenced the COL8A2 gene in one a PPCD family with two affected family 

members (the structure of the pedigree was not shown) both of whom had 

undergone previous penetrating keratoplasty, and ultrastructural analysis of 

the corneal button had confirmed PPCD. A c.1364C>A;p.Gln455Lys mutation 

was detected in the affected family members but not in any of the 15 

unrelated sporadic cases of PPCD, nor was it present in ethnically-matched 

controls (Biswas et al., 2001). Mutations in COL8A2 have not been identified 

in PPCD in any other study (Kobayashi et al., 2004, Yellore et al., 2005) 

suggests the possibility that this variant may be a rare polymorphism in the 

PPCD family described (Biswas et al., 2001).  

 

The evidence for mutations in Transcription Factor 8 (TCF8) (MIM*189909) 

(Section 1.10.4) also known as Zinc Finger E Box-binding Homeobox 1 

(ZEB1), as causative for PPCD is more convincing. Screening of 14 affected 

family members in three generations of a large PPCD family revealed a 2bp 

deletion 2916_2917delTG in the last exon of TCF8. This was present in all 

family members, however there were also unaffected family members who 

harboured the mutation. Frameshift mutations in TCF8 were found in 4 other 

PPCD families of the 10 that were screened (Krafchak et al., 2005). 

Functional studies involving the transfection of mutant constructs 

corresponding to TCF8 truncating mutations into a human corneal endothelial 

cell line indicated that certain truncating mutations were associated with 

altered nuclear localisation, whereas TCF8 missense changes did not. The 
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resulting reduction of protein abundance in truncating mutations compared 

with the TCF8 wild type construct led the authors to postulate that the 

observed decrease in protein levels was likely the result of nonsense-

mediated decay, which in turn would lead to haploinsufficiency (Chung et al., 

2014). Mutational analysis of 18 unrelated patients with PPCD in another 

study further supported the finding that truncating mutations in TCF8 give rise 

to PPCD. By contrast, missense mutations caused two other progressive eye 

conditions with a genetic basis, Fuchs Endothelial Corneal Dystrophy 

(described fully in Section 1.9) and Keratoconus (Lechner et al., 2013). 

Liskova et al performed whole exome sequencing, SNP arrays and long PCR 

to ascertain the chromosomal deletion breakpoints in the 3 patients of a 

PPCD family, along with a cohort of 14 unrelated PPCD patients previously 

found to be negative for TCF8 mutations. A large heterozygous deletion of 

around 3.3Mb encompassing the TCF8 gene was found all affected patients 

in the PPCD family. Two additional deletions with different breakpoints were 

identified in two other unrelated patients (Liskova et al., 2015).  

 

Causative mutations in the Visual System Homeobox Gene 1 (VSX1) 

(MIM*605020) gene on chromosome 20 have been detected in both PPCD 

and Keratoconus. VSX1 is a member of the Vsx1 group of vertebrate paired-

like homeodomain transcription factors. These transcription factors are 

distinguished by the presence of the CVC domain, a highly conserved region 

of unknown function, which lies C-terminal of the homeodomain (Héon et al., 

2002).  Recently, non-coding mutations in the promoter of Ovo-Like 2 

(OVOL2) (MIM*616441) on Chromosome 20p have been implicated in PPCD. 

OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor 

which induces epithelial-to-mesenchymal transition (EMT) via direct 

repression of TCF8 expression (Davidson et al., 2016). 

 

1.8 X-Linked Endothelial Dystrophy 
 

A large multi-generational pedigree from Western Austria was described with 

a total of 60 family members of whom 35 were individuals affected with a 
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corneal endothelial dystrophy which followed X-linked inheritance 

(MIM%300779) (Schmid et al., 2006).  Males were more severely affected 

than females and there were no examples of male-to-male transmission. The 

one-year-old proband presented with a bilateral, milky ground-glass corneal 

opacification. Other males had abnormalities of the endothelium resembling 

moon craters, complicated by severe band keratopathy. Females presented 

with moon crater-like appearance on slit-lamp examination of the corneal 

endothelium. Ten eyes from six patients underwent penetrating keratoplasty. 

Light microscopy of the corneal button of one of the affected males revealed 

irregular thinning of the epithelium and Bowman’s layer. DM was irregularly 

thickened with occasional excavations. Endothelial cells were atypical and 

multi-layered, with areas of DM devoid of endothelial cells. Linkage analysis 

utilised a panel of 25 microsatellite markers covering the X chromosome in 50  

family members. On multipoint analysis a maximum LOD score of 10.90 was 

obtained, indicating strong evidence of linkage in this family. The 14.79Mb 

interval between markers DXS8057 and DXS1192 on chromosome predicted 

to contain 72 genes. However, the mutation, gene and protein involved have 

yet to be identified. 

 

1.9  Fuchs Endothelial Dystrophy 
 

Prior to the advent of slit-lamp biomicroscopy, Fuchs endothelial corneal 

dystrophy (FECD) was originally described by an Austrian ophthalmologist, 

Ernst Fuchs, as “dystrophia epithelialis” (Fuchs, 1910) due to epithelial 

involvement at the advanced stages. The primary pathology however is 

located in the corneal endothelium. FECD is the most common endothelial 

dystrophy and tends to occur as a late-onset disease. FECD accounts for 

22% of corneal transplants in the UK (Keenan et al., 2012). Its genetic basis is 

complex and heterogeneous, demonstrating variable expressivity and 

incomplete penetrance.  
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1.9.1  Epidemiology of FECD 
 

FECD is more common in women than men (Krachmer et al., 1978). There 

are no prevalence studies for FECD in the UK and few large-scale studies 

world-wide. Many of the studies published examine their study populations for 

the prevalence of guttata (Section 1.9.2.1). Lorenzetta et al examined a 

multicultural cohort of 1016 individuals (783 females and 233 males) in a US 

outpatient clinic. The author stratified the recruited patients by age, sex and 

race, and concluded that 3.9% of individuals over the age of 40 years old 

exhibited confluent guttata and found the sex preponderance of corneal 

guttata to be equal between males and females (Lorenzetti et al., 1967). The 

Reykjavik Eye Study assessed the prevalence of corneal guttata in 774 study 

in subjects 55 years or older. Guttata were seen in 11% of females and 7% of 

males (Zoega et al., 2006). By contrast a Japanese study found the 

prevalence of guttata to be 3.8% in patients aged over 56 years old (Nagaki et 

al., 1996). 

 

1.9.2  Clinical Features of FECD 

1.9.2.1 Corneal Guttata 
 

FECD is characterised by focal accumulations of collagen posterior to the DM, 

known as guttata, and by loss of endothelial cells. The remaining endothelial 

cells exhibit altered morphology and degeneration, and there are wide 

intercellular spaces and an absence of intercellular junctions (Waring et al., 

1978b). A longitudinal study of 4 FECD patients monitored by corneal 

photographs taken up to 30 months apart revealed that the relative positions 

of individual guttata remained unchanged, very few guttata disappeared and 

the emergence of many new guttata was observed (Gottsch et al., 2006). 

Increased numbers of guttata have been correlated with a statistically 

significant reduction in endothelial cells counts (Jackson et al., 1999). This 

causes an influx of fluid into the stroma, leading to oedema and loss of 

corneal clarity followed by disrupted vision. End-stage disease is typified by 

painful epithelial bullae (small vesicles) (Figure 1.11D) as the cornea 
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decompensates in its ability to maintain stromal hydration (Eghrari et al., 

2015a). 

 

1.9.2.2 Clinical Presentation and Course 
 

FECD exists in early-onset and late-onset forms, the former being very rare. 

Early-onset FECD represents a distinct phenotypic variant, typically with 

smaller guttata than are seen in late-onset FECD, and may present as early  

as the first decade. Late-onset FECD generally presents in the fifth or sixth 

decade (Weiss et al., 2015). The patient may complain of glare, diminished 

vision and discomfort, which is typically worse on awakening due to increased 

epithelial and stromal oedema. Corneal examination reveals endothelial 

guttata, as shown in Figure 1.11A. These are seen on retroillumination prior to 

the patient becoming symptomatic. As the disease progresses, guttata 

coalesce and the endothelial cell numbers are reduced giving rise to stromal 

oedema and full corneal oedema with epithelial involvement (Krachmer et al., 

2011). Subepithelial fibrous scarring and superficial vascularisation may also 

be seen in advanced cases. In 1979, Dr Jay Krachmer and colleagues 

proposed a scale for grading FECD which is shown in Table 1.4. 
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Figure 1.11 Fuchs endothelial corneal dystrophy. A. Central guttata viewed in 
retroillumination and in the slit beam (shown with the yellow arrow) B. Cornea guttata 
as seen in specular reflection (red arrow). C. Advanced stromal oedema. D. 
Advanced endothelial decompensation with epithelial microcyst (purple arrow) and 
bullous oedema. Reproduced with permission (Weiss et al., 2008). 

 

 

Table 1.4 The FECD Krachmer Grading Scale (Krachmer et al., 2011). 

 

No apparent disease.

Up to 11 central guttata.

Definitive onset of the disease.

Twelve or more central, non-confluent guttata in at least one eye.

Grade 2 A zone of confluent central guttata 1 to 2 mm in horizontal width.

Grade 3 A zone of confluent central guttata 2 to 5 mm wide.

Grade 4 A zone of confluent central guttata greater than 5 mm wide.

Grade 5
A zone of confluent central guttata greater than 5 mm wide plus oedema of 
the corneal stroma and/or corneal epithelium.

Grade 0

Grade 1
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1.9.3  FECD Associations 
 

A link between FECD and angle closure glaucoma has been described, but 

with conflicting results. One study described a series of 24 patients with FECD 

and found a statistically significant difference between axial 

hypermetropia/shallow anterior chamber and FECD (Pitts and Jay, 1990). 

However, a further series of 23 FECD patients found no association between 

the FECD and angle closure glaucoma (Loewenstein et al., 1991). 

 

One retrospective analysis of 257 patients with FECD compared with 584 

controls indicated no statistically significant association in open angle 

glaucoma between cases and controls (Rice et al., 2014). 107 of the 1610 

eyes (6.6%) enrolled as part of the FECD Multicentre Study were noted to 

have glaucoma or ocular hypertension whereas the prevalence in the control 

group was 6.0%. Although there was little overall difference in the prevalence 

between the controls and the FECD cohort, the prevalence of glaucoma or 

ocular hypertension was higher in index cases (11.2%) with a FECD grading 

of 4-6 (Table 1.4) compared with controls (Nagarsheth et al., 2012). The 

authors concluded that patients with more clinically severe FECD should be 

monitored for the development of glaucoma.  

 

Given the observed association between endothelial dystrophies and hearing 

loss (Desir et al., 2007, Desir and Abramowicz, 2008) and the overlap in 

genetic aetiology between CHED and FECD (Vithana et al., 2006, Vithana et 

al., 2008), the possibility of hearing impairment in FECD patients has been 

explored. A cross-sectional observational case-control study was carried in 

the Netherlands (Stehouwer et al., 2011). A cohort of 72 FECD patients and 

180 matched controls were interviewed by means of a telephone 

questionnaire about their hearing. A higher percentage of the FECD group 

(45.8%) reported hearing disability compared with the control group (34.7%) 

(odds ratio of 1.59). 
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An analysis of risk factors from the FECD Multicenter Study found that female 

sex increased the odds of developing FECD by 34%. Smoking increased the 

odds of developing FECD by 30% (Zhang et al., 2013). 

 

1.10   FECD Genetics 

1.10.1 Summary of FECD Genetics 
 

FECD appears to exist most commonly in the absence of family history but 

familial forms with dominant inheritance have been documented (Krachmer et 

al., 1978, Rosenblum et al., 1980). Studies of such families have implicated a 

number of genes in FECD. Two studies have identified dominant mutations in 

COL8A2 (MIM*120252) (p.Gly455Lys and p.Leu450Trp) on chromosome 1 as 

a cause of early-onset FECD (Biswas et al., 2001) (Gottsch et al., 2005). 

Dominant mutations causing late-onset FECD have been identified in five 

other genes implicating them in late-onset FECD, four of which (SLC4A11 

(MIM*610206) (Vithana et al., 2008), ZEB1/TCF8 (MIM*189909) (Riazuddin et 

al., 2010c), LOXHD1 (MIM*613072) (Riazuddin et al., 2012) and AGBL1 

(MIM*615496) (Riazuddin et al., 2013)), appear to account for only a small 

proportion of cases. The fifth was identified by Baratz et al, who performed a 

relatively small-scale genome-wide association study (GWAS) using only 130 

FECD cases and 260 controls. Their results showed a strong association 

between FECD and common non-coding variants in the gene encoding 

transcription factor 4 (TCF4) (MIM*602272) on chromosome 18 (Baratz et al., 

2010). Subsequently a trinucleotide expansion in TCF4 (Baratz et al., 2010, 

Wieben et al., 2012) was found in 79% of cases compared to only 3% of 

controls, which suggests that this expansion account for most cases of the 

condition. 

 

The FECD Genetics Multicentre Study Group which ultimately aims to map 

genes for FECD published the baseline characteristics of recruited cases and 

controls, and calculated heritability estimates. The group investigated 322 

families, 650 sibling pairs and 304 controls and found heritability estimates of 
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0.304 for severe disease and concluded that the clinical phenotype of FECD 

was highly heritable in a general Caucasian population. They also showed 

that central corneal thickness was more strongly heritable than FECD, with an 

overall heritability measure of 0.466 (Louttit et al., 2012). 

 

1.10.2 Collagen, Type VIII, Alpha-2  
 

Family members of a large Caucasian multi-generational pedigree from the 

north-east of England identified has having early-onset FECD were 

independently examined by three ophthalmologists. All 15 affected individuals 

and unaffected individuals over the age of 50 were selected for linkage 

analysis. The authors demonstrated linkage to chromosome 1p34.3-p32, and 

felt that Collagen, Type VIII, Alpha-2 (COL8A2) represented a strong 

candidate gene. COL8A2 is a large 2-exon gene, which encodes the alpha 2 

chain of the type VIII collagens. Type VIII collagens are heterotrimeric 

proteins composed of alpha-1(VIII) (COL8A1) and alpha-2(VIII) (COL8A2) 

polypeptides in a 2:1 ratio. They are members of the 'short chain collagen' 

subfamily. COL8A2 encodes a 644-amino acid protein with a distinct N-

terminal domain, a central triple-helical domain and C-terminal non-triple 

helical domain. Transcriptome analysis showed that the COL8A2 mRNA is 

present in the corneal endothelial transcriptome (Chng et al., 2013) and is a 

major component of DM (Muragaki et al., 1991). Sanger sequencing of all 

family members revealed a mutation in COL8A2, c.1364C>A;p.Gln455Lys. 

This mutation was also found to segregate with the phenotype in two 

additional early-onset FECD families and a PPCD family (Biswas et al., 2001). 

COL8A2 mutations have also been implicated in two further reported early-

onset FECD families (Gottsch et al., 2005, Liskova et al., 2007) and in 15 

early-onset FECD patients from six pedigrees of Korean origin (Mok et al., 

2009). However, the lack of COL8A2 mutations in early-onset FECD cohorts 

in other studies (Aldave et al., 2006, Kobayashi et al., 2004, Kuot et al., 2013) 

suggests mutations in this gene are a rare cause of this disease.  
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1.10.3  Solute Carrier Family 4, Member 11 
 

Recessive mutations in Solute Carrier Family 4, Member 11 (SLC4A11) cause 

CHED (Vithana et al., 2006) (Section 1.6.5). Dominant mutations in SLC4A11 

are also a rare cause of FECD (Vithana et al., 2008). In Vithana et al’s 2008 

study, the authors recruited 89 patients to their study, 64 of whom were of 

Chinese ethnicity from Singapore and Hong Kong. On Sanger sequencing of 

all 19 exons of the SLC4A11 gene in these patients, four heterozygous 

mutations were identified that consisted of 3 missense mutations and one 2bp 

deletion, all of which were absent from 354 ethnically-matched controls. The 

paper also showed that combinations of mutant (CHED and FECD) and wild-

type constructs gave differing amounts of expression on the cell surface. It 

postulates a dominant negative mechanism with the FECD missense 

mutations. A full description of the SLC4A11 gene is provided in Section 

1.6.5. 
 

1.10.4  Transcription Factor 8 
 

Transcription Factor 8 (TCF8), located on chromosome 10, encodes a zinc-

finger homeodomain protein, a transcription factor that binds to DNA at a 

conserved sequence (CACCTG). It plays a critically important role both in 

development and disease through the repression of transcription of genes 

important for maintaining the epithelial phenotype (Vandewalle et al., 2009). 

Heterozygous frameshift mutations in the TCF8 gene were previously 

identified as causing PPCD (Krafchak et al., 2005) (section 1.7.2). 

Subsequently, heterozygous missense mutations in TCF8 were identified as 

causing FECD (Riazuddin et al., 2010a). As SLC4A11 mutations are 

causative for CHED (Vithana et al., 2006) and a small proportion of FECD 

cases (Vithana et al., 2008), and TCF8 mutations had been identified as 

causative for PPCD (Krafchak et al., 2005) the authors described this as their 

rationale for screening a large FECD pedigree with 12 affected patients in two 

generations for TCF8 mutations. They found a heterozygous missense 

mutation c.2519A>C; p.Q840P which was present in 5/12 affected family 
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members, and additionally found a further 4 missense mutations on screening 

192 unrelated FECD patients. They performed a functional assessment by 

suppressing TCF8 expression in zebrafish embryos, which gave rise to 

shortened body axis and pronounced detachment of cells along the dorsal 

axis. These phenotypes were then rescued with constructs containing the WT 

TCF8 mRNA. Although the authors were cautious in extrapolating the results 

of a developmental assay to late-onset corneal condition, they postulated that 

the TCF8 mutations they identified had a loss-of-function effect.  

 

1.10.5  Lipoxygenase Homology Domain-containing 1   
 

In 2012, mutations in Lipoxygenase Homology Domain-containing 1   

(LOXHD1) (MIM*613072) were implicated in FECD (Riazuddin et al., 2012). 

They analysed three families previously linked to a locus on chromosome 18q 

(Sundin et al., 2006a). Whole exome sequencing was carried out on one 

affected and one unaffected individual from each family, however in two of the 

families no causal mutation was found. They identified a c.1639C>T, 

p.Arg547Cys variant in the third FECD family then went on to identify an 

additional 14 predicted pathogenic variants which they proposed accounted 

for 7.2% of FECD cases of their cohort of 207 unrelated FECD patients. The 

authors approached their analysis as a complex disorder not as a traditional 

Mendelian disorder. Out of 288 controls (576 chromosomes) only 8 potentially 

pathogenic alleles were observed (1.4% of alleles), suggesting significant 

enrichment of putative pathogenic variants in FECD cases over controls. 

 

The authors then went on to detect the distribution of LOXHD1 in mouse 

corneas using a rabbit polyclonal antibody, detecting it in the epithelium and 

the endothelium. They then assessed the LOXHD1 distribution in a corneal 

button from an affected individual of one of their FECD pedigrees found to 

harbour a LOXHD1 mutation, and compared this with two control corneal 

buttons. Examination of the corneal sections, showed an increase in staining 

in the endothelium and DM of the proband with the c.1639C>T; p.Arg547Cys 

LOXHD1 mutation compared with both controls. 
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LOXHD1 is a large gene consisting of 40 exons with a main transcript which is 

179,774bp in length. The LOXHD1 protein consists of 15 PLAT 

(polycystin/lipooxygenase/alpha-toxin) domains, 120 amino acid domains 

which form two opposing anti-parallel beta sheets to make a structures known 

as a beta-sandwich. LOXHD1 is thought to be involved in targeting proteins to 

the plasma membrane. It is expressed in the mechanosensory hair cells in the 

inner ear, and recessive mutations in this gene lead to auditory deafness 

(Grillet et al., 2009) (Edvardson et al., 2011) (MIM#613079). Although the 

exact pathogenic mechanism of LOXHD1 in FECD is not known, it has been 

postulated that, due to the presence of marked precipitates in the corneas of 

the index family, a proportion of FECD cases might be caused by aggregation 

defects similar to those seen in other late-onset diseases such as Parkinson’s 

disease. As LOXHD1 is present in low abundances in the normal cornea, the 

authors (Riazuddin et al., 2012) speculated that cytotoxic effects of increased 

LOXHD1 concentrations might have a role in the pathogenesis of FECD in 

these cases. 

 

1.10.6  Transcription Factor 4 
 

The role of Transcription Factor 4 (TCF4) in FECD was first described by 

Baratz et al (Baratz et al., 2010), who performed a small-scale GWAS using 

130 FECD cases and 260 controls. Control subjects were 60-years-old or 

over and had no guttata observed. They identified one SNP, rs613872, in 

intron 3 of TCF4, that reached genome-wide significance, with minor allele G 

enriched in FECD cases compared to controls. The odds ratio for one copy of 

the risk allele was 5.47. 
 

Following the publication of this GWAS (Baratz et al., 2010), there was 

speculation as to potential mechanisms by which TCF4 gives rise to FECD. 

The largest TCF4 transcript is 21 exons in length, however multiple 

alternatively spliced transcripts exist  (https://genome.ucsc.edu/index.html). 

Heterozygous missense mutations cause Pitt-Hopkins syndrome (MIM 

#610954) (Sweatt, 2013). The TCF4 protein is a member of the E-protein 
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family of class I basic helix-loop-helix (bHLH) transcription factors and is 

known to upregulate TCF8, which in turn has a role in the repressing of E-

cadherin, which can be associated with epithelial-to-mesenchymal transition 

(EMT). Although little is known about EMT in the cornea, one hypothesis 

proposed before the start of this PhD was that corneal stem cells that are 

located in a niche at the corneal endothelial periphery require EMT in order to 

migrate toward and replace damaged endothelium (Wright and Dhillon, 2010). 

It was postulated that mutations in TCF4 might reduce this protective process. 

 

The association of the SNP rs613872 has since been replicated in many 

studies in Caucasians (Igo et al., 2012, Li et al., 2011, Eghrari et al., 2012, 

Kuot et al., 2012, Stamler et al., 2013). The rs613872 minor G allele was not 

found in one study of Chinese patients (Wang et al., 2013). In another study 

of a Chinese population, the rs6137872 SNP was also not found to be 

polymorphic, but the authors found two other TCF4 SNPs (rs17089887 and 

rs17089925) to be associated with FECD, conferring a >2.3-fold increase in 

disease risk per copy of risk allele compared to the wild-type (Thalamuthu et 

al., 2011). 

 

Subsequently, Wieben et al (Wieben et al., 2012) found that a known intronic 

trinucleotide repeat in TCF4, located 43 kilobases away from rs613872, was 

even more strongly associated with FECD than rs613872. Of their cohort, 

79% of cases carried at least one TCF4 allele with more than 50 trinucleotide 

repeats, compared with only 3% in controls. This was independently 

replicated by Mootha et al (Mootha et al., 2014) who used a PCR-based 

method, previously used to test for repeats in Myotonic Dystrophy (Warner et 

al., 1996), to confirm the association of the expanded CTG18.1 allele with 

FECD. 

 

 

 

 



 38 

1.10.7 ATP/GTP-Binding Protein-like 1 
 

Riazuddin et al reported that dominant mutations in ATP/GTP-Binding 

Protein-like 1 (AGBL1), a 24-exon gene on chromosome 15q, were causative 

of FECD. The authors described a 3-generational FECD family and initially 

performed linkage analysis but the resulting lod scores were not significant. 

As they did note some signal from chromosome 3p and 15q, they performed 

WES of one unaffected and two affected individuals to identify a heterozygous 

nonsense mutation on chromosome 15q. The variant c.3082C>T;p.Arg1028* 

was not seen in 384 ethnically-matched controls, but was found on the Exome 

Variant Server at a low frequency of 0.35%. The variant did not however 

segregate fully with the disease in the family with multiple FECD affecteds. 

Screening of their FECD cohort revealed two additional unrelated FECD 

individuals who harboured this mutation. In addition, a further heterozygous 

missense mutation c.2969G>C;p.>Cys990Ser was also seen in another case 

from their FECD cohort. They suggested that AGBL1 mutations accounted for 

1-2% of the genetic burden of FECD (Riazuddin et al., 2013). The gene 

encodes a member of the cytosolic carboxypeptidase family, which catalyses 

the deglutamylation of polyglutamated proteins (Rogowski et al., 2010). The 

authors (Riazuddin et al., 2013) also concluded that AGBL1 altered protein-

protein interactions with TCF4, although given that now the pathogenic effect 

of TCF4 is thought to be due to the toxic effect of the TCF4 trinucleotide 

expansion on the cells, their proposed mechanism seems less plausible.  

 

1.10.8  Other FECD Loci 
 

In addition to the mutations in the genes described above, 3 dominant loci on 

chromosomes 5 (FECD5, MIM%613269) (Riazuddin et al., 2009), 9 (FECD7, 

MIM%613271) (Riazuddin et al., 2010a) and 13 (FECD2, MIM%610158) 

(Sundin et al., 2006b) have been reported. One locus for FECD was mapped 

to on chromosome 18q21.2–21.32 (FECD3) (Sundin et al., 2006a). The 

authors identified three large late-onset pedigrees and established linkage to 

chromosome 18 (maximum LOD score 3.41) in one of the families and 
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tentative linkage (maximum LOD scores 2.89 and 2.45) in the other two 

families. There were, however 8 phenocopies in 36 individuals with no 

disease overall in the three families and one example of non-penetrance. The 

causative gene in this locus was subsequently identified as LOXHD1, 

although TCF4 also lies within this locus and may be the reason for the 

positive LOD scores in this linkage study. 

 

1.11   Mitochondrial disease and Oxidative Stress in FECD 
 

Theories of oxidative stress have been proposed in FECD. One case report 

described a 48-year-old woman who had FECD as well as sensorineural 

hearing loss, diabetes, cardiac conduction defects, ataxia and hyperreflexia 

(defects usually associated with another eye condition Leber’s Hereditary 

optic neuropathy which is strongly associated with mitochondrial missense 

mutations). Lymphocyte mitochondrial DNA (mtDNA) studies were carried out 

and showed missense mutations at mt15257 (G to A, aspartate to asparagine 

in cytochrome b) and mt4216 (T to C, tyrosine to histidine in ND1), suggesting 

that mitochondrial defects might play a role in the pathogenesis of FECD 

(Albin, 1998). Another study conducted in Poland (Wojcik et al., 2015) 

examined the relationship between 5 polymorphisms in base excision repair 

genes in FECD cases and controls. The c.1196A>G polymorphism of the 

XRCC1 gene was positively correlated with FECD. Other mitochondrial 

polymorphisms have also been reported to be associated with FECD. Ten 

mtDNA variants were identified as part of a study of GWAS of 530 FECD 

cases and 498 controls of European descent. Many of the variants identified 

were also associated with other human diseases including Alzheimers 

disease, Parkinson disease, as well as other ocular diseases ARMD, POAG 

and Keratoconus (Li et al., 2014). Furthermore, it has been demonstrated that 

when FECD lymphocytes are subject to oxidative stress, the damage to 

mtDNA is not fully repaired and the number of lesions remaining is higher 

when compared with controls (Czarny et al., 2014), thus supporting the 

hypothesis that mutagenesis of mtDNA might cause susceptibility to FECD. 

As the cornea is part of the anterior segment, it is potentially exposed to 
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greater levels of UV light than other parts of the eye. One of the main inducers 

of apoptosis is oxidative stress, and FECD endothelia are more susceptible to 

oxidative stress compared with that of normal controls (Jurkunas et al., 2010, 

Azizi et al., 2011). It is therefore feasible that FECD patients have less 

efficient systems of repair, and that mtDNA mutations could feasibly reduce 

the cells’ capacity to repair DNA, leaving it susceptible to oxidative stress and 

apoptosis. 

 

1.12   Gene expression in the corneal endothelium 
 

Gene expression in FECD patients has been carried out using serial analysis 

of gene expression (SAGE), which looked at the upregulation and 

downregulation of RNA transcripts compared with normal human 

endothelium. The study identified 9,530 tags from normal endothelium and 

9,606 from FECD endothelium. The expression of 18 transcripts were 

upregulated and 36 that were down-regulated compared with control tissue 

(Gottsch et al., 2003). Expression analysis of cultured corneal endothelial 

cells from both young and old donors has been carried out using high 

throughput RNA sequencing methods (Chng et al., 2013). The study involved 

the dissection of corneal endothelial cells from donor corneas, RNA 

sequencing and annotation of the variants, and reported a comprehensive 

expression profile for the ageing human corneal endothelium. 

 

1.13   Imaging of the Corneal Endothelium 
 

Although the measurement of central corneal thickness allows the pump 

function of the endothelium to be inferred, endothelial cells can be directly 

visualised using a non-contact method known as specular microscopy (SM) 

(Maurice, 1974) which provides a high magnification view of specular light 

reflected from the corneal endothelium. It has the disadvantage of giving poor 

image quality in the presence of severe corneal oedema. This can be 

overcome by the use of confocal microscopy (Kaufman et al., 2004), although 
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in general the method of choice is SM as it is relatively user friendly and 

widely available (Chiou et al., 1999).  

 

From the SM images several morphological variables can be calculated, 

including the mean cell density, mean cell area, the coefficient of variation of 

mean cell area (CV) (a measure of variation in cell size, polymegathism). In 

the healthy cornea, 70-80% of endothelial cells are hexagonal. Deviation from 

hexagonality is referred to as pleomorphism (Bourne and McLaren, 2004). 

 

1.14   Management of Endothelial Dystrophies 
 

The initial treatment for FECD is temporizing and supportive. Medical 

management includes the use of hypertonic saline solutions and of a hair-

dryer to increase tear evaporation (Yanoff and Duker 3rd, 2009). 

 

The mainstay of surgical management for endothelial disease remains 

corneal graft surgery (keratoplasty), which involves replacing the diseased 

corneal tissue with donor tissue. Penetrating Keratoplasty (PK) (full-thickness 

graft) is still the primary surgical procedure for CHED. A large case series 

suggested that delayed keratoplasty, even in the presence of nystagmus, 

seemed to offer more favourable outcome compared with those operated on 

early (before the age of 12 years) (Ozdemir et al., 2012).  

 

Corneal graft techniques have evolved in recent years (Guell et al., 2014). 

Corneal graft surgery performed in the UK (Keenan et al., 2012) and the US 

(Park et al., 2015) for FECD and PPCD is increasingly carried out using a 

lamellar technique, Descemet’s stripping endothelial keratoplasty (DSEK), a 

method described originally by Melles (Melles et al., 1998). This involves 

replacing only the defective endothelial layer of the cornea with donor DM and 

a posterior stroma, leaving behind the healthy epithelium and anterior 

stroma. Further refinement of DSEK has taken place with the development of 

Descemet’s Membrane Endothelial Keratoplasty (DMEK) where the donor 

tissue is composed solely of DM and endothelium (Melles et al., 2006). 
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Comparison of the two lamellar techniques has indicated faster and more 

complete visual rehabilitation with the use of DMEK (Tourtas et al., 2012). In 

CHED patients, successful DSEK has been reported (Mittal et al., 2011). A 

paired-eye comparison of PK and DSEK in a series of CHED patients 

indicated earlier visual rehabilitation and stabilisation of refraction in the eyes 

managed with DSEK (Ashar et al., 2013). 

 

The regenerative capacity of the corneal endothelium, as discussed in Section 

1.3.7, might ultimately prove more forgiving than some of the current surgical 

approaches. Minimizing surgical intervention and thus avoiding surgical 

complications may greatly benefit endothelial dystrophy patients (Bruinsma et 

al., 2013) but before this point can be reached further knowledge about 

disease pathogenesis and new treatments are required. As the cornea is an 

easily visualized and accessible tissue, it is potentially an ideal target for 

future gene therapies (Williams and Klebe, 2012). A sound understanding of 

the genetics of the disease may well lead to the successful tailoring of 

treatments in endothelial dystrophy. 

 

1.15   Objectives of this Study 
 

The aims of this study are: 

 

1. A British Ophthalmic Survey Unit (BOSU) study carried out in conjunction 

with the Royal College of Ophthalmologists is presented in Chapter III. It 

examines the epidemiology of corneal dystrophies in patients of 40 years or 

less.  

 

2. The second aim is to determine whether recessively inherited CHED, 

Harboyan syndrome and late-onset FECD may all coexist over time within 

one family, as the result of the same mutation. Two previously reported CHED 

families (Vithana et al., 2006) are revisited. A newly-recruited CHED patient is 

also analysed along with one of his parents who was available for 

examination. This work is presented in Chapter IV. 
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3. The genetics of FECD are explored in Chapter V.  The relative 

contributions of the TCF4 SNP rs613872, the intronic CTG18.1 trinucleotide 

expansion and LOXHD1 variants in a UK Caucasian FECD cohort are 

compared in order to clarify the significance of the original findings at the 

FECD3 locus. The results of both segregation of the TCF4 CTG18.1 

expansion and whole exome sequencing in three local FECD families are also 

presented.  
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2   Materials and Methods 
 

2.1 Solutions 
 

1 x Tris-EDTA (TE) Buffer (pH8.0) 
 
10mM Tris (pH 8.0) 
1mM ethylenediaminetetraacetic acid (EDTA) 
Adjust to pH 8.0 with concentrated hydrochloric acid 

 
Tris Borate-EDTA (TBE) Electrophoresis Buffer (10x) 
 

0.89M Tris 

0.89M Orthoboric acid (B(OH)3) 

25mM EDTA (pH 8.0) 

 

TAE Tris-acetate-EDTA Electrophoresis Buffer (1x) 
 
40 mM Tris base      

20mM Glacial acetic acid C2H402   

1mM EDTA (pH8.0)    

 

10x Gel Loading Dye 
 

3x TBE 

20%[w/v] Ficoll 400 

0.1% [w/v] Bromophenol blue 

0.2% [w/v] Xylene cyanol 

 

Red Cell Lysis Solution 
 

155mM Ammonium Chloride (NH4Cl) 
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10mM  Potassium Bicarbonate (KHCO3) 

1mM  Ethylenediaminetetraacetic Acid (EDTA) 

 

White Cell Lysis Solution 
 

25mM  EDTA (pH 8.0) 

2% [v/v] Sodium dodecyl sulphate (SDS) 

 

 

Cell Lysis Buffer – DNA 
 

10mM  Tris pH 8.0 

100mM  EDTA 

20ug/ml  RNAase A 

0.25% [v/v]  SDS 

Make up to 1ml with deionized water. 

 

 

2.2 Patient Recruitment 
 

The project was approved by Leeds East Research Ethics Committee 

(reference 10/H1306/63) under the title “Investigation of human inherited 

corneal dystrophies: genetic, tissue and transplant analyses” and adhered to 

the tenets of the Declaration of Helsinki. This application was initiated by Dr 

Aine Rice (AR) then completed by the author (SS) during the PhD after AR 

left Leeds, and all project management was handled by SS. All researchers 

involved in patient recruitment underwent training in taking informed consent 

for research, Good Clinical Practice (GCP) and NHS information governance. 

Local FECD patients were identified by AR, SS and other members of the 

corneal clinical team at St James’s University Hospital (SJUH). The project 

was adopted onto the National Institute of Health Research (NIHR) portfolio 

(UKCRN portfolio no. 11297) in December 2011. Pinderfields Hospital, 
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Wakefield was changed from a Patient Identification Centre to a main 

recruiting site in August 2013. 

 

FECD patients were ascertained in outpatient and operating theatre lists at 

SJUH, Leeds by AR, SS and research nurses Frances Cassidy (FC), 

Charmain Tidswell (CT) and Alice Van Lare (AVL) and from Bradford Royal 

Infirmary and Pinderfields Hospital, Wakefield, UK. When SS took over the 

role of PI, all patients on forthcoming corneal operating theatre lists who were 

identified as having endothelial dystrophies as documented in electronic 

casenote letters and the Medisoft database (http://www.medisoft.co.uk) were 

sent a written invitation with the relevant patient information leaflet, and were 

then subsequently approached about joining the study. These patients had 

undergone a detailed slit-lamp examination and specular microscopy analysis 

(Tomey EM-3000 specular microscope, Tomey GmbH, Erlangen-Tennenlohe, 

Germany) at the time of listing and satisfied the criteria of FECD Grade 1 or 

above were selected for recruitment following their informed consent. 

Peripheral blood (2-6ml) was collected by venepunture into BD vacutainer® 

EDTA blood collection tubes (BD Biosciences, Oxford, UK) and genomic DNA 

was extracted by Yorkshire Regional Genetics (SJUH) from blood leukocytes 

according to standard procedures (Section 2.7).  

 

Amendments to the research protocol were sought through the Leeds East 

Research Ethics Committee to enable blood samples to be collected from 

controls individuals. Control patients were subject to slit lamp examination at 

NHS cataract clinics and were identified as suitable with normal endothelia 

and with no family history of eye disease by Consultant Ophthalmologist John 

Buchan. They were recruited following their informed consent. 

 

Human random control panels, HRC-1 and HRC-3, (Public Health England, 

Porton Downs, UK) consisting of 192 genomic DNA samples extracted from 

EBV-immortalised single donor lymphoblastoid cell lines were obtained 

commercially (Sigma-Aldrich).  
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2.3   British Ophthalmic Survey Unit (BOSU) - Incidence of 
Young Onset Corneal Dystrophy  

 

The BOSU study was set-up by Kamron Khan. Cases were defined as a new-

onset corneal dystrophy in a patient aged below 40 years. New cases were 

ascertained using population based active surveillance through the BOSU at 

the Royal College of Ophthalmologists. All permanently employed consultant 

and associate specialist ophthalmologists in the UK received a monthly 

reporting card for a 24-month period commencing November 2011. 

Respondents were asked to indicate any new cases of young-onset corneal 

dystrophy or confirm that there were no new cases to report. Following 

notification, information on patients’ ophthalmic history, examination findings, 

further treatment and follow-up was sought by questionnaire. Questionnaires 

were collected and the results analysed by SS. The questionnaire is shown in 

Appendix I. 

 

2.4 Audiometry 
 

CHED patients underwent audiometry screening using either the Madsen 

Aurical audiometer (GN Otometrics A/S, Taastrup, Denmark) at Bradford 

Royal Infirmary or an AD229 diagnostic audiometer (Interacoustics A/S, 

Assens, Denmark) Institute of Ophthalmology, Mexico City according to the 

manufacturers’ instructions. 

 

2.5 Corneal Tissue  
 

2.5.1 Collection of Human Corneal Tissue  
 

Corneal tissue was retrieved from SJUH Ophthalmology operating theatres 

from patients undergoing graft surgery who had given their informed consent 

for their tissue to be collected for research.  
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Amendments to the research protocol were sought through the local research 

ethics committee to enable control corneal tissue to be collected. Therefore, 

corneal tissue both from corneal endothelial dystrophy patients as well as 

donor tissue not utilised in lamellar surgery was collected from SJUH 

operating theatre. Control tissue was only collected where the donor had 

consented for their tissue to be used for medical research. All tissue was 

stored in RNAlater (Thermo Fisher Scientific) immediately following dissection 

in theatre. 

 

Control tissue was processed, stored, assessed and packaged according to 

Manchester Eye Bank standards (Appendix II), and was deemed fit for clinical 

use. All eyes had been enucleated as soon as possible post mortem and 

always within 24 hours of death. On the intended day of grafting, corneal graft 

tissue stored in Eagles Minimal Essential Medium containing 2% Foetal 

Bovine Serum and antibiotic preparations (Appendix II) was couriered to 

SJUH operating theatre. Following dissection under sterile operating 

conditions all tissue was stored in RNAlater. 

 

2.5.2 Collection of Bovine Tissue 
 

Bovine eyes were enucleated from freshly culled cows by Professor Chris 

Inglehearn (CFI) at Dunbia Abattoir, Sawley, then brought back to the LIMM 

on ice. Ocular structures were dissected immediately by SS. Corneal tissue 

was grossly dissected from the eyes then whole corneal buttons were 

removed using a 9mm corneal graft trephine. Corneal tissue was either stored 

as a whole corneal button or further dissected into endothelium and stroma. 

Cornea (and other ocular structures such as lens, iris and retina) were 

dissected and preserved in formalin, snap frozen in liquid nitrogen or stored in 

RNAlater. 
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2.6   Collection of Human Enucleated Eyes 
 

Pairs of eyes donated for medical research were enucleated by Aidan 

Hindley, the Leeds GIFT Tissue Bank Coordinator 

(http://www.gift.leeds.ac.uk/). The donor’s gender, age, and cause of death 

were recorded.  

 

The eyes were transported in a container with moist cotton wool soaked in 

saline by SS. Corneal debris was removed under magnification using forceps. 

Two openings were created using a 25 Gauge needle 3mm posterior to the 

limbus. One eye was embedded in paraffin and the other prepared for 

cryopreservation. 

 

2.6.1 Eye Fixed for Embedding in Paraffin  
 

The eye was placed in 4% paraformaldeyde (PFA), ensuring that it was 

completely submerged.  After 48 hours, the eye was washed in Phosphate 

Buffered Saline (PBS) and stored in 70% ethanol for 48 hours. 

 

After processing both eyes were then passed to LIMM pathologist Mike Shires 

for paraffin embedding using the Leica ASP200 Fully Enclosed Tissue 

Processor (Leica, Milton Keynes, UK) and then subject to the conditions 

described in Table 2.1. 
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Table 2.1 The paraffin embedding conditions that sectioned tissue was subject 
to. (Ethanol (Sigma-Aldrich), Xylene (Fisher Scientific UK, Loughborough, UK), Wax 
(Cellpath, Powys, Wales)).  

    

2.6.2 Eye for Cryopreservation 
 

The eye was placed in 4% PFA, ensuring that it was completely submerged 

for 2 hours. It was then stored in 10% w/v sucrose in PBS for 12 hours, 20% 

w/v sucrose in PBS for 12 hours then 30% w/v sucrose in PBS for 12 hours. 

 

After processing both eyes were then passed to LIMM pathologist Mike Shires 

for cryopreservation using the following protocol: 

 

Fresh tissue was carefully dissected with a sharp blade and handled with 

care. Fresh Sterile saline was used to prevent tissue dehydration. 

 

70% 
ethanol 30 min 37

80% 
ethanol 30 min 37

90% 
ethanol 30 min 37

95% 
ethanol 30 min 37

100% 
ethanol 1:00h 37

100% 
ethanol 1:00h 37

100% 
ethanol 1:30h 37

Xylene 1:00h 37
Xylene 1:30h 37
Xylene 1:30h 37

Wax 1:00h 65
Wax 1:00h 65
Wax 1:00h 65

Time Temperature (°C)
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1. Freshly excised tissue blocks approximately 5mm3 was placed in a 

drop of Optimal Cutting Temperature (OCT) medium on a cork disc. 

The tissue was quickly covered in OCT and frozen at the earliest 

opportunity. 

 

2. A beaker of liquid isopentane was carefully placed in liquid nitrogen 

until a slush of liquid and frozen isopentane is present.  

 

3. The tissue was immersed in the isopentane slush for 30 seconds using 

long forceps.  

 

4. The tissue was wrapped in aluminium foil and place in a labelled air 

tight container. 

 

5. The tissue was stored at -70°C. 

 

2.7 DNA Extraction Protocol 

2.7.1 Salt Precipitation 
 

In general, a salt precipitation technique was performed to extract DNA from 

blood samples that had not been frozen. Briefly, 3ml of whole blood was 

aliquoted into polypropylene tubes and 9ml of red cell lysis solution (Section 

2.1) was added. After shaking for 10 minutes, samples were spun at 2000 x g 

for a further 10 minutes and the supernatant removed, leaving the white cell 

pellet containing DNA. The pellet was resuspended in 3ml white cell lysis 

solution (Section 2.1) and cells lysed by pipetting. To remove any 

contaminating protein, 1ml of protein precipitation solution (10M ammonium 

acetate) was added and samples mixed well for 20 seconds before 

centrifuging for 10 minutes at 2000 x g. The supernatant, containing the DNA, 

was aliquoted into fresh tubes and DNA was precipitated using isopropanol at 

2000 x g, followed by two washes in 70% ethanol. The precipitate was air 

dried and redissolved in TE buffer (Section 2.1). 
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2.7.2 Phenol-Chloroform Extraction 
 

To extract DNA from blood samples that had been frozen, a phenol-

chloroform extraction procedure was performed. Briefly, 3ml of whole blood 

was aliquoted into polypropylene tubes and 9ml of red cell lysis solution 

(Section 2.1) was added. After shaking for 10 minutes, samples were spun at 

2000 x g for 10 minutes. The supernatant was removed, leaving the white cell 

pellet, to which 500µl of cell lysis buffer - DNA (Section 2.1) was added. After 

a 1-hour incubation at 37°C, proteinase K was added to a final concentration 

of 100µg/ml followed by an incubation at 55°C for 1 hour. 500µl of 1:1 

phenol:chloroform was subsequently added and the tube inverted several 

times. The tube was then mixed well until a milky solution formed and 

centrifuged for 10 minutes at 3100 x g. The upper aqueous phase was 

removed into a fresh tube and an equal volume of chloroform added to this. 

The tube was inverted several times and centrifuged at 3100 x g for 5 

minutes. After aliquoting the upper aqueous phase into another fresh tube, 

sodium chloride (NaCl) was added to a final concentration of 0.2M and a 

further 2 volumes of 100% ethanol added before mixing and centrifuging at 

3100 x g for 5 minutes. The supernatant was discarded and 75% ethanol was 

added to the pellet, followed by a further centrifugation at 3100 x g for 5 

minutes. After removal of the supernatant, the resulting pellet was dried and 

redissolved in deionised water. 

 

2.8  Primer Design and Optimisation 
 

Oligonucleotide primer pairs were designed using either Primer3 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi), ExonPrimer 

through the UCSC Genome Browser (https://ihg.helmholtz-muenchen.de/cgi-

bin/primer/ExonPrimerUCSC.pl?db=hg19&acc=uc010zqf.2) or Autoprimer 3 

software (http://sourceforge.net/projects/autoprimer3). The different primer 

design software used reflected a change in preference as new software was 

developed during the fellowship. The reference sequence for all genes was 

downloaded from UCSC Genome Browser (http://genome.ucsc.edu) (Section 
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2.16). Details of the primer sequences and PCR conditions can be found in 

Appendices IIII and IV.  

 

2.9  DNA Polymerase Chain Reaction (PCR) Amplification 
 

For standard PCR, DNA was amplified in a final reaction volume of 10µl using 

50ng of genomic DNA (2µl of DNA and 8µl of DNA mastermix). Mastermix 

comprised PCR buffer (Invitrogen), 1.5mM MgCl2, 200µM of each dNTP 

(Invitrogen), 10 pmol/µl primers, and 1.0 unit of Taq polymerase. A standard 

PCR cycle, Touchdown and Hotshot cycles are shown. 

 

Standard PCR cycle 
 
95°C for 2 minutes (Denaturation) 

40 Cycles of: 

94°C for 30 seconds (Denaturation) 

53 - 65°C for 45 seconds (Annealing) 

72°C for 45 seconds (Extension) 

72°C for 5 minutes (Final Extension) 

 

Touch Down 
 
98°C for 30 seconds (Denaturation) 

45 cycles of: 

98°C for 10 seconds (Denaturation) 

70°C* for 20 seconds (Annealing) 

72°C for 90 seconds (Extension) 

*Reduce temperature by one degree each cycle for 5 cycles then complete 40 

cycles at 64°C 

Final Extension step 72°C for 10 minutes (Final Extension) 

 

Hotshot 
 
95°C for 10 minutes (Denaturation) 

40 Cycles of: 
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94°C for 30 seconds (Denaturation) 

53 - 65°C for 45 seconds (Annealing) 

72°C for 45 seconds (Extension) 

72°C for 5 minutes (Final Extension) 

 

Reactions using HotShot mastermix (Client Life Science, Stourbridge, UK) 

were carried out in a 10µl volume using the manufacturer’s instructions.  

 

2.10    Whole Genome Amplification 
 

Whole genome amplification was performed using the Illustra GenomiPhi V2 

DNA Amplification kit (GE Healthcare Life Sciences, Little Chalfont, UK) 

according to the manufacturer's instructions. After amplification, samples were 

diluted 1/30 in sterile distilled water and a test PCR was performed to ensure 

DNA was at a concentration sufficient for PCR amplification. The standard 

PCR conditions utilised are outlined in Section 2.9. 

 

2.11   DNA Visualisation and Size Fractionation using 
Agarose Gel electrophoresis 

 

PCR products were mixed with gel loading dye (solution from Section 2.1) and 

loaded using a pipette into the wells of a 1.5% agarose gel. The 1.5% agarose 

gel was made up with 0.5x TBE or 1xTAE and ethidium bromide at a final 

concentration of 0.5µg/ml. DNA products were quantified and sized using 

Easy Ladder 1 (Bioline Reagents Limited, London, UK). The agarose gels 

were visualized on a Bio-Rad UV transilluminator and displayed using Image 

Lab Software (Bio-Rad Laboratories Limited, Hemel Hempstead, UK).  
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2.12   Genotyping and Linkage Analysis 
 

Genotyping was performed using fluorescently tagged microsatellite markers. 

The chromosomal position of the markers was located against the hg19 

version of the Genome Browser. PCR was carried out in a 10µl volume (as 

described in Section 1.7). Following the amplification step, PCR products 

were size fractionated. Samples were denatured and run on an ABI Genetic 

Analyser (Life Technologies Ltd, Paisley, UK) using polymer POP-7 and the 
FragmentAnalysis36_POP7-1 module 3130xl using a 500 ROX size standard 

(Life Technologies Ltd) and subsequently analysed using GeneMapper v4.0 

software (Life Technologies Ltd). Linkage analysis was performed under the 

assumption of a dominant inheritance model with penetrance of 99% and zero 

phenocopy rate (disease allele frequency = 0.001). Multipoint LOD scores 

were calculated using Superlink (http://bioinfo.cs.technion.ac.il/superlink/) 

(Fishelson and Geiger, 2002). Marker allele frequencies were estimated on 

the basis of data from CEPH (http://www.cephb.fr). All microsatellite markers 

used can be found in Appendix IV. 

 

Genotyping of trinucleotide repeat expansions was carried out using the 

method previously described by Warner et al and adapted by Mootha et al 

(Warner et al., 1996, Mootha et al., 2014) (Figure 2.1). 
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Figure 2.1 Overview of the TP PCR to genotype the CTG18.1. A general method 
for the detection of large repeat expansions by fluorescent PCR described by 
Warner et al. A. the STR assay uses primers P1 and P2 that flank the CTG repeat, 
but the allele fails to genotype expanded alleles. B. The specific 3’ end of the P4 
binds at numerous sites within the CTG repeat within the early rounds of 
amplification, resulting in a mixture of products. P4 is quickly consumed due to the 
33:1 molar concentration of P3 to P4. C. P3 amplifies from the end of the mixture of 
products of the prior cycles. Reproduced with permission (Warner et al., 1996). 

 

2.13  Sanger Sequencing 
 

PCR products were treated with 1.5μl Exo-SAP-IT (GE Healthcare Life 

Sciences) then place in the thermal cycler for 37°C for 30 minutes, then 80°C 

for 15 minutes Purified products were subsequently sequenced using the 

BigDye terminator version 3.1 Cycle Sequencing Kit (Applied Biosystems) 

with one of the original PCR primers according to the manufacturer’s 

instructions. The samples were subject to an initial denaturation step of 96°C 

for 10 seconds followed by 25 cycles of 96°C for 10 seconds, 50°C for 5 
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seconds and 60°C for 4 minutes. After the sequencing reaction, 5µl of 125mM 

EDTA was added and the PCR products were precipitated by adding 60µl of 

100% ethanol, mixing and centrifuging at 3900 revolutions per minute (rpm) 

for 30 minutes at 22°C using the Eppendorf Centrifuge 5180R (Fisher 

Scientific UK, Loughborough, UK). The supernatant was carefully removed 

and the pellet was washed with 70% ethanol and centrifuged at 2000rpm for 

15 minutes at 4°C. After resuspending the pellet in Hi-Di Formamide (Applied 

Biosystems), the sequencing reactions were analysed on the ABI 3130xl 

Genetic Analyser using polymer POP-7 and the default RapidSeq36POP7 
module. SeqScape v2.5 and Sequencing Analysis version 5.2 (Life 

Technologies Ltd) software were used to analyse the resulting sequence data. 
 

2.14   RNA extraction and Reverse Transcription PCR 
 

Patient and bovine corneal tissues stored in RNAlater were thawed on ice, 

homogenized using the Ribolyser (Hybaid Ltd, Teddington, UK) and RNA 

extracted using TRIzol Reagent (Sigma-Aldrich) and the RNAeasy Plus 

Universal Minikit (Qiagen) according to the manufacturer’s instructions.   

 

 RNA was treated with Ambion DNAase treatment kit to prevent degradation 

of RNA by nucleases. cDNA synthesis was carried out using reverse 

transcriptase (RT) PCR. Samples were thawed on ice and 1mM Oligo (dT)18 

primers (Thermo Scientific), Random Hexamer primers (Thermo Scientific) 

and Diethylpyrocarbonate (DEPC) water were added. Samples were 

incubated at 70°C for 5 minutes then chilled on ice. A mastermix was 

prepared of 4mM dNTP, BioscriptTM RT (BiolineTM), 2x RT Buffer (BiolineTM), 

40mM DTT and DEPC-treated water. 10 µl of the mastermix was added to the 

reaction and the samples incubated at 42°C for 30 minutes. The reaction was 

then terminated by incubating at 85°C and the cDNA purified using the 

QIAquickTM PCR Purification columns (Qiagen Ltd, Manchester, UK) 

according to the manufacturer’s instructions. The samples then underwent a 

standard PCR reaction for p53 as a house-keeping gene. The sample 

products were size fractionated on a 1.5% agarose gel as described before 
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(Section 1.10). Additionally, the samples were quantified and assessed for 

purity on the Agilent 2100 Bioanalyser (Agilent Technologies LDA UK Ltd, 

Stockport, UK) using the Agilent RNA 6000 Nano Guide (Agilent 

Technologies). 

 

2.15  Whole Exome Sequencing (WES) 
 

Genomic DNA sample concentrations were measured using a Qubit 

fluorometric quantification assay (ThermoFisher Scientific).  Whole exome 

sequencing (WES) was carried out either on a HiSeq2000 using the 

Nimblegen v2 chip by Otogenetics Corporation (Norcross, GA), or on an 

Illumina Genome Analyser HiSeq2500 in the Leeds University Next 

Generation Sequencing Facility following library preparation using the Agilent 

SureSelect All Exon v4 exome enrichment kit for target capture. Libraries 

were prepared either by SS, Layal Abi Farraj or Clare Logan. The sequencing 

output consisted of 80 base pair reads. An overview of the sample preparation 

work flow is given in Figure 2.2. 

 

2.16     Bioinformatics 
 

The UCSC Genome Browser  (https://genome.ucsc.edu) contains the 

reference sequence and working draft assemblies for a large collection of 

genomes. Bioinformatic searches of genomic regions and initial information 

about genes of interest were obtained using this website, including exon and 

intron sequences, mRNA sequences, protein sequences and the location of 

polymorphisms. Literature searches for information on known genes and loci 

were performed using Pubmed (http://www.ncbi.nlm.nih.gov/pubmed). 

Variants identified by Sanger sequencing were annotated using Mutation 

Mapper (http://sourceforge.net/projects/mutationmapper). The reverse 

compliment of an oligonucleotide sequence was calculated using Reverse 

Complement (http://sourceforge.net/projects/revcomp/). 
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Figure 2.2  Overview of sequencing sample preparation using the Agilent 
SureSelectXT Target Enrichment System for Illumina Paired-End Sequencing 
Library. 

 

2.17  Assessment of Variant Pathogenicity 
 

In order to determine the potential pathogenicity of missense mutations, 

variants were assessed using a selection of online matrices. A description of 

these is given below. Given that a single database could grade a variant 

incorrectly, these were used in combination with each other to prioritise 

variants. 
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2.17.1   BLOSUM62 
 

The BLOSUM62 substitution matrix (Henikoff and Henikoff, 1992) 

(http://www.uky.edu/Classes/BIO/520/BIO520WWW/blosum62.htm) 

was developed from 2000 blocks of aligned sequence segments 

characterising more than 500 groups of related proteins. The authors 

calculated a log-odds score for each of the 210 possible substitution pairs of 

the 20 standard amino acids. The scores range from -4 to +3 for a non-

synonymous amino acid substitution, with -4 meaning that the change is 

highly unlikely to be benign and a +3 that the change was highly likely to be 

benign. 

 

2.17.2    Polyphen2  
 

Polyphen2 (Polymorphism Phenotyping) (Adzhubei et al., 2010) 

(http://genetics.bwh.harvard.edu/pph2) uses eight sequence based and three 

structure based predictive features as part of its algorithm for determining 

variant pathogenicity. The programme compares features of the wild type and 

mutant protein and characterises how well the two human alleles fit into the 

pattern of multiple sequence alignment of homologous proteins. Two datasets 

have been used to develop Polyphen, HumDiv and HumVar. In the most 

recent version of Polyphen the user can choose which dataset can be used 

for analysis. The authors recommend the use of HumVar for distinguishing 

Mendelian mutations with drastic effects from normal human variation, and 

HumDiv for evaluating rare alleles in complex diseases. The output gives a 

score of between 0 and 1, 0 being Benign and 1 Damaging. A score of below 

0.2 is scored as Benign, 0.2-0.85 as Possibly Damaging and above 0.85 is 

Probably Damaging. 

 

2.17.3   SIFT  
 

SIFT (Sorting Intolerant from Tolerant) (http://sift.jcvi.org) is a programme 

which uses sequence homology to predict whether an amino acid affects 
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protein function (Ng and Henikoff, 2001). Like Polyphen, it can only be used 

for the assessment of missense variants. SIFT differentiates variants which 

are “Tolerated” and “Damaging”. The score ranges from 0-1, <=0.05 predicted 

as damaging and >0.05 predicted as tolerated. 

 

2.17.4   PROVEAN  
 

PROVEAN (http://provean.jcvi.org/index.php) (Protein Variation Effect 

Analyser) is a software tool which predicts whether a variant has an impact on 

the biological function of the protein (Choi et al., 2012). It can be used to 

assess nonsynonymous single nucleotide variants and indels. A clustering of 

BLAST hits is performed with a parameter of global sequence identity. The 

top 30 clusters of closely related sequences form a supporting sequence set 

which is used to predict the effect of the variant. An alignment score is 

calculated for the variant and the scores averaged to generate a final 

PROVEAN score. If the PROVEAN score is equal to or below the threshold 

(the default threshold is -2.5), the protein variant is predicted to have a 

"deleterious" effect. If the PROVEAN score is above the threshold, the variant 

is predicted to have a "neutral" effect. 

 

2.17.5   Mutation Taster 
 

Mutation taster (http://www.mutationtaster.org) employs a Bayes Factor (BF) 

classifier to predict the disease potential of a variant (Schwarz et al., 2010b). 

Analyses consist of evolutionary conservation, splice-site changes, loss of 

protein features and changes that could affect mRNA levels. There are four 

possible outputs: 

 

1. Disease-causing - i.e. probably deleterious 

2. Disease-causing automatic - i.e. known to be deleterious 

3. Polymorphism - i.e. probably harmless 

4. Polymorphism automatic - i.e. known to be harmless 
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The output score for amino acid substitutions also gives a prediction 

probability value (ranging from 0-1). A value closer to 1 indicates a high 

certainty of the prediction. No numerical score is provided for amino acid 

insertions and deletions. Like PROVEAN, Mutation Taster has the ability to 

process indels.  

 

2.17.6  Combined Annotation Dependent Depletion (CADD)  
  

Many of the databases described above utilise a single type of information, for 

example conservation or protein- based metrics. CADD scores (Kircher et al., 

2014) integrate diverse genome annotations and score any single nucleotide 

variant (SNV) or small Indel (Kircher et al., 2014). This can be used to grade 

nonsense, missense and splice site variants as well as those in intronic 

regions. A variant with a CADD score greater than or equal to 10 is predicted 

to be within the 10% most deleterious substitutions in the human genome.  A 

score of greater or equal to 20 indicates the 1% most deleterious. 

 

2.17.7  Splice prediction tools  
 

The pathogenicity of potential splice site variants was assessed using 

Berkeley Drosophila Genome Project (BDGP) splice prediction site 

(http://www.fruitfly.org/seq_tools/splice.html). This is based on a neural 

network, which is trained to recognise splice donor or acceptor sites using a 

set of known sequences. The input sequence is compared with the training 

sets, and the probability of the input containing a splice site is calculated.  

 

2.18   Assessment of Conservation 
 

To assess whether the normal amino acid residue was evolutionarily 

conserved, protein sequences from different species were downloaded from 

the NCBI (http://www.ncbi.nlm.nih.gov) and aligned using ClustalW 
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(http://www.ebi.ac.uk/Tools/msa/clustalw2) (Larkin et al., 2007) or from NCBI 

Homologene (http://www.ncbi.nlm.nih.gov/homologene).  

 

Clustal W is a multiple sequence alignment programme for DNA or proteins. 

Homologous DNA sequences from multiple species can be pasted into the 

document and are then aligned as closely as possible. This was used to align 

orthologous proteins of interest, allowing the conservation of a particular 

amino acid sequence to be determined. 

 

NCBI Homologene database is an automated system for constructing putative 

homology groups from a wide range of eukaryotic species. The programme 

also aligns protein sequences of interest from different organisms and 

compares these with one another.  

 

2.19  Tools to Aid Candidate Gene Prioritisation  
 

Candidate genes were prioritized using several tools. Mouse Genome 

Informatics (MGI) (http://www.informatics.jax.org) is an international database 

of genetic and biological data from the laboratory mouse. STRING (Search 

Tool for the Retrieval of Interacting Genes/Proteins) (http://string-db.org) is a 

database of known and predicted protein interactions. Published human 

corneal endothelial cells RNA sequencing data (Chng et al., 2013) was also 

utilsed to prioritise candidates. 

 

2.20   Public Databases 
 

The 1000 Genomes (http://www.1000genomes.org), Exome Variant Server 

(EVS) (http://evs.gs.washington.edu/EVS) and Exome Aggregation 

Consortium (http://exac.broadinstitute.org) databases of samples that have 

been whole exome sequenced were utilized to exclude common 

polymorphisms prior to the comparison of missense changes in FECD cases 

versus controls. The frequency of 1000 Genomes SNPs was viewed in 
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SNPedia (http://www.snpedia.com/index.php/SNPedia). 

 

2.21   Next Generation Sequencing (NGS) Bioinformatic 
Analysis Pipeline 

 

Whole exome data was processed using two pipelines, summarised in Table 

2.2. Briefly, reads were aligned to hg19 using Bowtie version 2 (http://bowtie-

bio.sourceforge.net/bowtie2/index.shtml) (Langmead and Salzberg, 2012). 

The resulting SAM files were sorted and indexed using Samtools 

(http://samtools.sourceforge.net) and processed using the Genome Analysis 

Toolkit (GATK) (https://www.broadinstitute.org/gatk/) (McKenna et al., 2010) 

with Picard (http://broadinstitute.github.io/picard/) to perform indel realignment 

and duplicate removal. SNVs and indel variants were called using the 

UnifiedGenotyper feature of GATK. Variants were annotated using Annovar 

(http://annovar.openbioinformatics.org/en/latest/) (Wang et al., 2010). 

 
Step Programme Website

Alignment Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
Removal of non-unique reads N/A

Sorting and indexing to the 
reference file Samtools

(http://samtools.sourceforge.net) 

Local realignment around indel: 
Create list of dubious alignments 

Realign over dubious regions
GATK https://www.broadinstitute.org/gatk/

Removal of duplicate reads Picard http://broadinstitute.github.io/picard/
Variant Calling (SNPs and Indels) GATK as above

Recalibration of SNPs GATK as above
Apply recalibration of SNPs GATK as above

Combine list of recalibrated SNPs 
and Indels 

GATK as above

Annotation of variants Annovar http://annovar.openbioinformatics.org/en/latest/
Table 2.2 Bioinfomatic Pipeline 1 for the processing of NGS FASTQ files 

 

A second pipeline was utilised which incorporated the use of CADD scores at 

the annotation stage (Table 2.3). For the second pipeline reads were aligned 

using Novolign (http://www.novocraft.com). SAM files were then sorted using 

Samtools and duplicates marked using Picard. Indel realignment and SNPs 

recalibrated took place using GATK. Following variant calling in GATK, 
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variants were then annotated using Variant Effect Predictor (VEP) 

(http://www.ensembl.org/info/docs/tools/vep/index.html). 

 
Step Programme Website

Alignment Novolign http://www.novocraft.com
Sorting and indexing to the 

reference file Samtools
(http://samtools.sourceforge.net) 

Removal of duplicate reads Picard http://broadinstitute.github.io/picard/
Local realignment around indel: 
Create list of dubious alignments 

Realign over dubious regions
GATK https://www.broadinstitute.org/gatk/

Recalibration of base quality 
scores

GATK  as above

Variant Calling GATK as above
Annotation of Variants VEP http://www.ensembl.org/info/docs/tools/vep/index.html

Table 2.3 Bioinfomatic Pipeline 2 for the processing of NGS FASTQ files 

 

2.22   Filtering  
 

Following annotation, Variant Call Format (VCF) files from individual affected 

family members were merged into a single file of shared variants using in-

house perl scripts and the Agile Variant Selector software. For those families 

that had data from an unaffected individual, two files were created; one with 

just affected patients and one with affected patients excluding variants from 

the unaffected family member. 

 

Homozygous variants were filtered out in the first instance, then all variants in 

known published FECD genes were analysed. Synonymous and intronic 

variants were then filtered out. Splice site variants in positions 1 to 5 were 

retained along with exons and exon/splicing (variants within the exon but 

close to the intron/exon boundary) variants. Variants that had a frequency of 

more than 2% on the EVS and 1000 Genomes databases were excluded. 

Variants were then prioritised on the basis of variant pathogenicity scores 

(Section 2.17, the RNAseq expression data and MGI (Section 2.19)). This 

process is summarised in Figure 2.3. 
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Figure 2.3 Flowchart summarising the process of filtering and prioritisation of 
variants generated from WES 

 

2.23  CNV Analysis 

2.23.1  ExomeDepth 
 

The ExomeDepth software uses read depth to call CNVs from exome 

sequencing data (Plagnol et al., 2012). 

(https://cran.rproject.org/web/packages/ExomeDepth/index.html). It compares 

this data to an aggregate reference set generated from exomes run at the 
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same time on the same lane of the sequencer. The programme ranks the 

CNV calls using the BF which quantifies the statistical support for each CNV. 

This is the log10 of the likelihood ratio of data for the CNV called divided by 

the null (normal copy number). Therefore, the higher the BF value, the greater 

the confidence regarding the presence of a CNV. The type of CNV can be 

indicated by the ratio of the observed and expected reads: 

 

0 homozygous deletion 

0.5   heterozygous deletion 

  1.5   heterozygous duplication 

2.0   homozygous duplication 

 

The programme is able to identify and annotate common CNV as identified in 

the Conrad database (Conrad et al., 2010). FASTQ files for cases and 

controls were processed using Pipeline 1 described in Table 2.2, up to the 

variant-calling step. The resulting BAM files were run on the ExomeDepth 

programme by Evi Panagiotou. 

 

2.24   Statistical analysis 
 

PLINK 1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007) 

was used to analyse the genotyped alleles and examine Hardy-Weinberg 

equilibrium (HWE) with Fischer’s exact test but also to calculate odds ratios 

(OR) with standard error confidence limits (CI). This was carried out by Dr 

Jose Ivorra. The degree of linkage disequilibrium (r2) between rs613872 and 

the CTG18.1 polymorphism was calculated using Haploview (Barrett et al., 

2005).  
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3 A study of young-onset corneal dystrophies in 
conjunction with the British Ophthalmic 
Surveillance Unit (BOSU) 

 

3.1 Introduction 
 

Corneal dystrophies are a heterogeneous group of non-inflammatory diseases 

that are, in the majority of cases, limited to the cornea (Klintworth, 2009). 

They can occur as isolated cases but most are familial with a genetic basis 

and affected patients can manifest symptoms from birth, during childhood or 

in adult life. The traditional anatomic classification of dystrophies was thought 

to have limitations and in the 2015 International Corneal Dystrophy (IC3D) 

classification (Weiss et al., 2015), corneal dystrophies were reclassified as 

Epithelial and subepithelial, Epithelial-stromal TGFβI, Stromal  and 

Endothelial Dystrophies. Most of these dystrophies follow a dominant 

inheritance pattern, but documented examples of autosomal recessive 

corneal dystrophies also exist (Akama et al., 2000, Vithana et al., 2006).  

 

Although corneal dystrophies are rare, the commonest, Fuchs endothelial 

corneal dystrophy (FECD), is adult onset and accounts for 22% of corneal 

transplants performed in the UK (Keenan et al., 2012). FECD has been 

estimated to affect 4% of the US population over 40 (Lorenzetti et al., 1967). 

The prevalence of the remaining corneal dystrophies is essentially unknown 

and varies worldwide, with the highest numbers found in countries associated 

with a common founder mutation. For example, gelatinous drop-like corneal 

dystrophy (GDCD) is prevalent in Japan, where the incidence is estimated to 

be 1 in 300,000 people (Tsujikawa et al., 1998), whereas X-linked endothelial 

dystrophy has only been reported once in a multigenerational family from 

Western Austria (Schmid et al., 2006). 

 

Most corneal dystrophies cause corneal opacity and result in visual 

impairment or even blindness (Nischal, 2015). Severe visual impairment (SVI) 
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caused by corneal opacity accounts for 2% of patients (Rahi and Cable, 

2003). Corneal disease as a whole accounted for 45/1756 (2.6%) of 

Certificates of Visual Impairment (CVI) in working age adults in the UK in the 

year 2009/10 (Liew et al., 2014). Previous BOSU studies of rare ocular 

disease in the UK population (Papadopoulos et al., 2007), have suggested a 

higher prevalence in certain communities where consanguineous marriages 

are the cultural norm. Advances in gene mapping and the advent of next 

generation sequencing have, in the last decade, led to significant 

improvement  in our ability to characterise the genotypes that are associated 

with these phenotypes at a molecular level. Given the rarity of many of these 

corneal dystrophies, there is great potential benefit to patients in studying 

them collaboratively. There is however a lack of studies examining the 

incidence of corneal dystrophies. 

  

This chapter presents data that aims to advance our knowledge of the 

epidemiological aspects of young onset corneal dystrophies (presenting 

before the age of 40 years) by establishing an incidence rate in the UK, as 

there are currently no national studies in this field. 

 

3.2 Results 
 

The British Ophthalmological Surveillance Unit (BOSU) runs a nation-wide 

surveillance system across the United Kingdom for the epidemiological 

investigation of the incidence and clinical features of rare eye conditions of 

public health or scientific importance (https://www.rcophth.ac.uk/standards-

publications-research/the-british-ophthalmological-surveillance-unit-bosu/).  

 

The author, in collaboration with Mr Kamron Khan, set up a BOSU 

epidemiological survey for the reporting of young onset corneal dystrophies. 

In total 73 cases of new-onset corneal dystrophy were reported to the BOSU 

in response to this survey. The notifying clinicians were sent a questionnaire 

about the case, a sample of which is shown in Appendix 1. There were 31 
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respondents (a response rate of 42%). Four questionnaires were incompletely 

filled in, leaving a total of 27 questionnaires that were analysed.  

 

3.2.1 Source of Patient Referral and Demographics 
 

Patient referrals were from six different sources. 8/27 (29.6%) were referred 

by an Optometrist, 8/27 (29.6%) by their Ophthalmologist and 7/27 (25.9%) by 

their GP. 2/27 (7.4%) were reviewed due to an affected parent/relative, 1/27 

(3.7%) as an acute referral for another presentation and 1/27 (3.7%) via 

orthoptic vision screening. The patients’ ethnicities are summarised in Figure 

3.1. 

 

 

 

 
Figure 3.1 Pie chart indicating the ethnicity of young-onset corneal dystrophy 
patients. 

 

 

 

 

 

77.8%

7.4%

3.7%

3.7%
3.7%3.7%

White-British

White-Irish

Bangaladeshi

Indian

Pakistani

Mixed Race - White 
and Black Caribbean
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The mean age at presentation was 12 years. 48% were female. There was a 

positive family history in 48% of cases. A documented history of consanguinity 

was found in 4% of cases, and in 26% of cases this was unknown.  

 

3.2.2   Clinical Presentation 
 

Best-corrected visual acuity (BCVA) was assessed using LogMAR visual 

acuity in 25.9% of patients. BCVA at presentation in all patients ranged from 

LogMAR 0.0 to Perception of light (PL), with a mean and median of 0.2.  

Corneal sensation was normal in 6 cases (22%) and not documented in 21 

cases (78%). Symptoms at presentation are summarised in Table 3.1. 

 

 
Table 3.1 Symptoms of young-onset corneal dystrophy patients at presentation 

 

The extent of corneal disease was found to be symmetrical in 81.4% of cases. 

Examples of dystrophies which were reported as having markedly unilateral 

signs included Meesman corneal dystrophy, LCD, RBCD, PPCD and Lisch 

Dystrophy. Some degree of corneal opacity was present in 96% of patients. In 

52% of cases this involved the epithelial or subepithelial layers. Epitheliopathy 

was present bilaterally in 22%, unilaterally in 7% and not documented due to 

the patient’s phobia of drops in 4%. Corneal oedema was present diffusely 

and bilaterally in 11% (3/27) and absent in 78% (21/27) of the patients. All 

cases which exhibited endothelial signs had a diagnosis of an endothelial 

dystrophy (either FECD or PPCD). Focal corneal oedema was present 

unilaterally in 7.5% (2/27) of cases.  

Symptom(s) No. of Patients
None 4

Glare; surface irritation 2
Reduced photopic/scotopic VA 7

Reduced photopic/scotopic VA; glare 3
Reduced photopic/scotopic VA; glare; surface irritation 1

Reduced photopic/scotopic VA; surface irritation 1
Surface irritation 8
Not documented 1
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3.2.3 Investigations, Genetic Testing and Diagnoses 
 

The investigations utilised in all cases are outlined in Figure 3.2. In 74% 

(20/27) of cases slit lamp ophthalmoscopy was sufficient for diagnosis. 

 

 

 
Figure 3.2 Pie chart indicating the investigations performed on newly-identified 
young-onset corneal dystrophy patients. 

 

A summary of all diagnoses is given in Table 3.2. In two cases of stromal 

dystrophy a clinical diagnosis could not be made. In one of these cases whole 

exome next generation sequencing was requested. In the other case, a 

metabolic cause was suspected and a referral to medical genetics was made. 

Genetic tests were also requested for three other cases; one clinical case of 

Thiel-Bhenke dystrophy with affected parents which was confirmed on genetic 

testing, one case of posterior polymorphous dystrophy (PPCD) which was 

found to have a ZEB1 mutation and an additional case of PPCD whose 

results were unknown. 

 

74%

15%

4%
7% Slit lamp alone

Specular 
Microscopy

Imaging 
(investigation not 
specified)
Biopsy/Histology
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Table 3.2 Diagnoses of newly-identified young onset corneal dystrophy patients

Corneal Dystrophy Subtype Diagnosis No. of Patients
Epithelial basement membrane dystrophy 4

Meesman Dystrophy 2
Lisch Dystrophy 1

Macular Dystrophy 1
Unknown 2

Reis-Bucklers Dystrophy 3
Thiel-Bhenke Dystrophy 2

Granular Dystrophy 2
Lattice Dystrophy 1

Posterior Polymorphous Corneal Dystrophy 5
Fuchs Endothelial Dystrophy 4

Epithelial and Subepithelial

Stromal

Epithelial-stromal TGFβ1

Endothelial
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3.2.4   Clinical Management and Follow-up 

 

The most frequent form of management was observation with provision of 

artificial lubricants. Two cases required bandage contact lens use. Surgical 

intervention was required in three cases of endothelial dystrophy (Descemet’s 

Stripping Endothelial Keratoplasty, Descemet’s Stripping Automated 

Endothelial Keratoplasty and Penetrating Keratoplasty) (Figure 3.3). 

 

Figure 3.3 Management strategies utilised in young-onset corneal dystrophy 
patients. BCL = Bandage contact lens (a special type of contact lens used to protect 
the ocular surface). 

 

85% of patients were followed up subsequently at six months in the 

presenting clinic, 7% were referred to another ophthalmologist with a 

specialist interest, 4% were referred to another clinic for another 

ophthalmological problem and 4% were discharged. One patient, who 

suffered from PPCD and had undergone penetrating keratoplasty had vision 

sufficiently reduced to be eligible for CVI. 

 

Comparing the incidence of corneal dystrophy with the 2011 UK census data, 

young-onset corneal dystrophies are extremely rare and this study would 

suggest a minimum UK incidence of 6.7 newly-diagnosed cases per 10 000 

000 population aged below 40 years per annum.  

Management	
Strategy 

Number	of	Patients 
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3.3  Discussion  
 

Corneal dystrophies are mostly bilateral and are often inherited. There is 

however a lack of studies examining the incidence of corneal dystrophies in 

the UK. This chapter describes a study, conducted in conjunction with BOSU, 

aiming to assess the incidence of new onset corneal dystrophies in patients 

below 40 years of age. The results show that corneal dystrophies occur rarely 

in young people, thus highlighting the need to study them collaboratively. 

However, the incidence of 6.7 cases per 10 000 000 population aged below 

40 years per annum may be an underestimate given that the questionnaire 

response rate was only 42%, which can be considered a limitation of this 

study. All of those clinicians who had not identified new cases but who did not 

respond with a questionnaire were reminded by telephone and email. 

 

Another reason that the calculated incidence in this study might be an 

underestimate of the actual incidence may be a tendency to under-report mild 

phenotypes, especially those which may be seen more commonly in those 

below the age of 40 years. An example could be epithelial basement 

membrane dystrophy, a relatively common condition compared with many of 

the other corneal dystrophies reported in this chapter. 

 

Corneal disease causes 2% of CVI in children (Rahi and Cable, 2003) and 

2.6% in adults of working age (Liew et al., 2014). In this study there was one 

case (3.7%) of PPCD that presented with PL visual acuity and was eligible for 

CVI. However, two further patients exhibited moderate visual loss (Snellen 

6/18 - 6/60, approximately 0.5 – 1.0 LogMAR). Furthermore, 22/27 (81.5%) 

experienced symptoms ranging from glare and surface irritation to reduced 

photopic or scotopic visual symptoms, suggesting that the burden of these 

conditions is considerable, even in the presence of good vision.  

 

In the study presented in this chapter, 85.2% of the patients were Caucasian, 

which is comparable with the Census UK data from 2011 (11 December 

2012). However, the Asian/British Asian group are a little overrepresented in 
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the group presented here, with 3/27 (11.1%) compared with 7.5% in the 

Census UK data. Two of the diagnoses in this Asian subgroup were macular 

and granular dystrophies but the diagnosis in the third case was unknown. 

Two of the three cases had a positive family history of corneal dystrophy, one 

of which also had a history of consanguinity.  

 

Overall this study reports a positive family history in 50% of cases. Although 

hereditary factors are known to be important in the pathogenesis of these 

conditions, to our knowledge there are no UK studies examining this. 

However a study based in Saudi Arabia examining 193 corneal dystrophy 

cases involving the stroma indicated a positive family history of between 

37.22 and 44.44% in the various dystrophies that they examined (Alzuhairy et 

al., 2015). This study also found that corneal histopathological examination of 

corneal buttons indicated that a proportion of Macular Corneal Dystrophy 

(MCD) cases had been misdiagnosed on clinical examination alone. In the 

study presented in this chapter there were only two cases that had been 

diagnosed with the assistance of corneal histopathology. One of these was a 

severe case of PPCD in which a penetrating keratoplasty was performed soon 

after presentation. Another was a patient with Lisch Dystrophy in whom a 

biopsy had been carried out on an affected first-degree relative. As 

observation and the provision of ocular lubricants were the most common 

treatments in this study, and surgical intervention was performed in only 

11.1% of newly presenting cases, the fact that biopsy was not utilised to aid 

diagnosis more is perhaps not surprising. Despite advances in anterior 

segment imaging modalities (Hong et al., 2011), 74% of diagnoses were 

made using the slit-lamp examination alone, possibly reflecting a lack of 

availability or necessity of these modalities for corneal dystrophy diagnoses. 

 

The mean age of onset was 12 years old, relatively young compared with that 

reported from another dataset (Musch et al., 2011) which used claims data to  

calculate the prevalence of corneal dystrophies in the US. Their study looked 

at the records of 8 million enrolees in a national managed care network. 27, 

372 cases of corneal dystrophy were identified, with an overall prevalence 

rate 897 cases per million. The study presented in this thesis differs from that 
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reported by Musch et al. Even if endothelial dystrophy cases were to be 

excluded from their data, they identified the majority of their corneal dystrophy 

cases from the 45-88 age group. This BOSU study by its very nature studied 

examined a much younger cohort, but even taking this into account the mean 

age of onset of 12 years old can be considered relatively young. Additionally, 

their study looked at the prevalence of corneal dystrophies, whereas the 

results presented in this thesis looked at new cases. 

 

Endothelial dystrophies were the most common group of dystrophies reported 

in this study, consistent with the US data previously described (Musch et al., 

2011). Of these, PPCD was the most common dystrophy reported here. Of 

the three cases of PPCD that were managed by keratoplasty, two of these 

were lamellar endothelial keratoplasties. Endothelial keratoplasty is now 

performed more commonly than penetrating keratoplasty for endothelial 

failure in the UK (Keenan et al., 2012). As PPCD is documented to have good 

outcomes following keratoplasty (Nischal, 2015), this is perhaps a reason why 

this group of cases were more likely to undergo such surgical management 

than any of the other options. Interestingly, despite the known role of LASIK 

and surface ablation in the management of a variety of corneal dystrophies 

(Woreta et al., 2015), there were no cases of corneal dystrophies managed by 

excimer laser in this study. Corneal sensation was not documented in 78% of 

cases. Given that corneal sensation is known to be subnormal in some 

subtypes of corneal dystrophy (Rosenberg et al., 2001, Ahuja et al., 2012) 

and indeed might have implications for tear production and consequent dry 

eye, we would recommend testing corneal sensation as part of the 

assessment of corneal dystrophy.  

 

Genetic testing was carried out in 4/27 cases, two of which carried a 

diagnosis of PPCD. In one of these PPCD cases, whole exome sequencing 

(WES) revealed a mutation in ZEB1, while in the other the result is unknown. 

WES was carried out in a third case, which was an undetermined stromal 

dystrophy. In one case of Thiel-Bhenke dystrophy, genetic screening was 

carried out on an affected first-degree relative. In another case of stromal 

dystrophy of uncertain diagnosis, a referral to the regional medical genetics 



 78 

department was made for further investigations. The use of Next Generation 

sequencing techniques in the molecular characterisation of corneal 

dystrophies has been a major advance in recent years. This has been 

reflected in the designation of the TGFβ1 corneal dystrophies, a category 

based on the molecular diagnosis of corneal dystrophies rather than the 

anatomical location of pathology, and it has been suggested that the 

existence of a new corneal dystrophy must start with identification of the 

clinical phenotype and culminate in characterisation of the causative gene 

mutation (Weiss et al., 2015). As our understanding of molecular genetics 

advances and pressure on traditional therapeutic options, such as corneal 

graft material, remains high, it may become necessary to look for alternative 

treatment options. The cornea is a highly accessible structure which is 

potentially highly advantageous when directing treatments to the target tissue. 

Numerous efficacious vectors, delivery techniques, and approaches have 

evolved in the last decade (Mohan et al., 2013), but for corneal dystrophy, 

these treatments have not yet found their way into clinical practice. It is not 

inconceivable that the identification of causative mutations might not only 

guide genetic counselling of prognosis and recurrence risks but in the future 

pave the way to the development of gene therapies.  

 

In conclusion, corneal dystrophies are a hereditary group of corneal 

conditions which are extremely rare, with a minimum UK incidence of 6.7 

newly-diagnosed cases per 10 000 000 population aged below 40 years per 

annum.  
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4 Genotype-Phenotype Correlations in CHED, 

Harboyan Syndrome and FECD 
 

4.1  Introduction 
 

CHED is an autosomal recessive condition, which is a cause of congenital 

corneal opacity. It is a rare, bilateral disease affecting the posterior aspect of 

the cornea, characterised by corneal oedema, thickening of the DM layer and 

lack of endothelial cells (Maumenee, 1960, Kirkness et al., 1987). 

Presentation is at birth or in the early neonatal period. FECD is a complex 

late-onset condition, which begins with asymptomatic corneal endothelial 

guttata. Its inherited forms are autosomal dominant (Krachmer et al., 2011). 

 

Recessive mutations in SLC4A11 (MIM*610206) on chromosome 20p13 

cause CHED (formerly CHED2 see Section 1.3.6) (Vithana et al., 2006). 

Harboyan syndrome (MIM#217400) is characterised by CHED in association 

with sensorineural hearing loss. Dominant mutations in SLC4A11 are also a 

rare cause of late-onset FECD (Vithana et al., 2008). The hearing deficit in 

Harboyan syndrome is not present at birth but is typically progressive with 

onset around the age of 10 to 15 years (Desir et al., 2007). Recessive 

mutations in SLC4A11 also account for this phenotype. There have been over 

70 different homozygous or compound heterozygous mutations reported in 

the SLC4A11 gene. (Aldave et al., 2013) The mutations reported suggest that 

the three disorders are allelic (Desir and Abramowicz, 2008, Mehta et al., 

2010) but this has not previously been demonstrated by longitudinal follow-up 

of the CHED patients or conclusively documented in the literature.  

 

This chapter describes two previously reported CHED families (Vithana et al., 

2006) and a newly identified family (courtesy of a collaboration with Dr. Juan 

Carlos Zenteno (JCZ), National Autonomous University Mexico, Mexico City) 

to investigate whether CHED and Harboyan syndrome are the same condition 
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at different stages of development, and whether the parents of CHED patients 

are at risk of developing late-onset FECD .  

 

4.2  Results 

4.2.1 Identification and clinical evaluation of the affected CHED 

cases  

 

Three families and their relatives were identified as described below. Families 

A and B were ascertained for a previous study (Vithana et al., 2006) and their 

phenotype and mutation are reported by Vithana et al 2006. Family C was 

ascertained and the mutation identified in this study.   

 

Clinical examination of the patients with endothelial dystrophy suggested a 

diagnosis of CHED, while family history suggested recessive inheritance. The 

pedigrees are shown in Figure 4.1. 

 

 
Figure 4.1. Family structure of patients with CHED.  Families A, B and C are 
shown. The proband is indicated by an arrow. Data from Family C was provided 
courtesy of JCZ. 

 

Family A was of Pakistani origin and was identified at Bradford Royal 

Infirmary (BRI). Clinical information from both affected individuals from Family 

A was derived from the patient records and outpatient follow-up appointments 

at the BRI Department of Ophthalmology. Patient II.1 presented initially during 

the immediate postnatal period with bilateral cloudy corneas. There was no 

evidence of buphthalmos and his mucopolysaccharide screen was negative. 

Examination under anaesthesia at 1 year of age revealed normal corneal 

diameters and signs consistent with CHED. His anterior chambers were deep 
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and his intraocular pressures (IOP) in both eyes were 20mm Hg. At age 5, he 

was registered partially sighted, with visual acuities of 0.60 and 0.70 logMAR 

in the right and left eye respectively and attended school with support from a 

visual impairment nurse. At age 24, his visual acuities had remained stable 

since partial sight registration. His corneal photograph was taken at this age 

(Figure 4.2). 

 

His younger sister, individual II.2, presented shortly after birth due to a cloudy 

cornea. At this time the cause of her brother’s cloudy cornea was under 

investigation. At 5 months of age, an examination under anaesthesia revealed 

bilateral cloudy corneas 11mm in diameter with an extremely poor fundal 

view. At age 2, her mother noted that she held objects very close to her in 

order to localise them and felt that her vision was significantly worse than her 

brothers’. Her vision was measured as 2.22 logMAR in both eyes. She 

underwent a right penetrating keratoplasty at age 3, but her recovery was 

hindered initially by a blunt trauma one month post-operatively. However after 

3 months she maintained a clear graft. Her left eye underwent penetrating 

keratoplasty at age 4 but was later complicated by rejection and graft failure, 

and was subsequently re-grafted at age 9 and 19. At age 21, she had a clear 

graft in the right eye, but her vision in this eye has remained at 1.00 logMAR 

due to initial amblyopia and high astigmatism following penetrating 

keratoplasty. Her vision in her left eye was hand movements (HM). 

 

Family B was also of Pakistani origin, identified at BRI. Clinical information 

was ascertained from the patient records and Ophthalmology outpatient 

follow-up appointments at the BRI. Individual II.1 was noted after birth as 

having a cloudy cornea. At 5 months of age, she underwent an examination 

under anaesthesia, which revealed generalised stromal oedema and corneal 

diameters of 11mm. Her IOPs were raised at 30mmHg and 40mmHg in the 

right and left eyes respectively. She underwent a goniotomy procedure and 

was commenced on Betagan BD to both eyes to reduce her intraocular 

pressure. Her other diagnoses included moderate learning difficulties and 

microcephaly. At age 16 years old, she maintained stable visual acuities of 

1.00 and 1.07 logMAR in the right and left eyes respectively, and her 
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glaucoma was well controlled. She received continued support from a visual 

impairment teacher at school. 

 

Family C were of Mexican origin, identified and recruited by collaborator JCZ. 

The patient presented at 5 months of age with bilateral corneal opacities that 

had been observed at birth. At 6 months of age, the patient received Timolol 

and Dorzolamide eye drops due to high IOP. At this age, a constant horizontal 

nystagmus was noted in both eyes. He underwent goniotomy due to elevated 

intraocular pressure in the left eye at the age of 3 years. At 10 years, he 

presented with congenital corneal clouding, nystagmus and diffuse corneal 

oedema in both eyes, normal intraocular pressure, no Haab striae, no 

buphthalmos and optic nerve head cupping of 0.7. At age 13, he had vision 

1.82 and 1.60 logMAR in his right and left eye respectively. His corneal 

photograph was taken at this age (Figure 4.2).  

 

 
Figure 4.2  Corneal photographs of affected patients from Families A and C. 
Individual II.1 from Family A was 24 years old and individual II.1 from Family C was 
13 years old at the time of these photographs. The typical ground-glass corneal 
appearance is apparent in both photographs, but more prominent in the individual 
from Family C.   

 

The clinical findings are summarised in Table 4.1.  
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Table 4.1 Summary of the ophthalmic findings from Families A, B and C. Age at 
examination and clinical findings for each CHED patient are shown. Any ophthalmic 
interventions are also highlighted. IOP, intraocular pressure OD, right eye; ONH, 
optic nerve head; OS, left eye; VA, visual acuity
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4.2.2 Audiometric testing in the CHED affected cases 

 

As CHED is associated with progressive sensorineural hearing loss (Desir 

and Abramowicz, 2008), hearing assessments of CHED patients from 

Families A-C (Figure 4.3a) were carried out. A normal audiogram is shown for 

comparison (Figure 4.3b). 

 

Audiometric examination of patient II.1 from Family A at 12 years of age 

carried out at the BRI revealed bilateral mid to high frequency sensorineural 

hearing loss (Figure 4.3a). He was subsequently fitted with bilateral hearing 

aids. Audiometry was repeated at age 21, where some deterioration of 

hearing was measured. His younger affected sibling (patient II.2), whose 

corneal opacity was more marked at presentation, had subjective hearing 

problems at the age of 21. When asked about her auditory symptoms, she 

expressed difficulty hearing others’ conversations when studying at college. 

Audiometry was therefore performed at the BRI and showed a mid-frequency 

bilateral sensorineural hearing loss consistent with these symptoms (Figure 

4.3).  

 

Audiometry in the patient from Family B, at age 11 was unremarkable. This 

was repeated at age 15 where bilateral high frequency hearing loss was found 

(Figure 4.3a).  

 

Audiometric testing in the patient from Family C at the age of 12, disclosed 

bilateral sensorineural hearing loss in the range of 30 to 60 decibels, mainly 

affecting the higher frequencies (Figure 4.3a). 

 

These results confirmed that the CHED patients presented in this thesis go on 

to develop sensorineural hearing loss. Thus their diagnosis changed from 

CHED to Harboyan syndrome on longitudinal follow-up. It could therefore be 

concluded that CHED and Harboyan Syndrome are the same condition at 

different stages of development.        
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Figure 4.3 Audiometry of the CHED affected patients from Families A, B and C. 
a. The graphs show the frequency in hertz (x-axis) and the hearing level in decibels 
(y-axis). The test was performed on the patient at 12 years (Family A, II.1), 21 years 
(Family A, II.2), 15 years (Family B, II.1) and 12 years (Family C, II.1) respectively. 
Note reduced sensorineural hearing loss in the range 30 to 50 decibels at the higher 
frequencies. b. A normal audiogram is shown for comparison (courtesy of Mr Glen 
Waugh, Associate Audiologist at Bradford Royal Infirmary, Bradford.) 

 

a. 

b. 
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4.2.3 SLC4A11 mutation screening to confirm clinical diagnosis of 

CHED 

 

Peripheral blood samples were collected from the affected patient from Family 

C. Genomic DNA was extracted using the standard protocol described in 

Section 2.8.  The sample from the affected patient, along with a control DNA, 

were screened by PCR and Sanger sequencing (Section 2.10 and 2.14). All 

19 exons of SLC4A11 transcript NM_032034 were screened, the primer pairs 

for which are listed in Appendix III. Sequencing of SLC4A11 gene in the 

patient from Family C identified the presence of a homozygous novel mutation 

c.397T->C, p.F133L (Figure 4.4) contained in exon 4. To exclude this variant 

as a polymorphism, the EVS and ExAC databases were checked. The EVS 

contains the whole exome data of 6500 individuals, and variants in the 

SLC4A11 gene were found in 175 Europeans and Americans.  The ExAc 

database contains the whole exome of 60,706 individuals. This variant was 

not present in either database, indicating that it is a rare variant.  

 

 
 
Figure 4.4. Sequence chromatogram from Family C, Individual II.1. This depicts 
the novel mutation in SLC4A11 identified in the Family C Mexican CHED patient. 
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Where mutations have been shown to cause disease, there is often a 

remarkable degree of evolutionary conservation in the corresponding genes 

across species (Strachan and Read, 2011). In order to assess the 

evolutionary conservation of this phenylalanine residue, multiple sequence 

alignment of SLC4A11 proteins was performed (Section 2.18) and is shown in 

Figure 4.5. This indicates that the amino acid residue Phenylalanine in the 

position 133 on the SLC4A11 protein is highly conserved through evolution.  

The pathogenicity assessment of the variant using Polyphen2, SIFT, 

PROVEAN, Mutation Taster and CADD (Section 2.17) are shown in Table 

4.2. All of these assessments except for SIFT indicated that this variant was 

likely to be pathogenic. The SLC4A11 protein BTR1 (bicarbonate transporter 

related protein 1) consists of cytoplasmic, transmembrane and extracellular 

domains (Vilas et al., 2011). This variant lies in the cytosolic domain. 

 

 
Figure 4.5 Protein sequence alignment of the human SLC4A11 protein with 
orthologues around the phenylalanine residue was performed using 
Homolgene. The variant p.F133 is highlighted in red and the surrounding amino 
acids that are identical to the human transcript are shaded in grey. Accession 
numbers for SLC4A11 sequence are NP_114423 (human), XP_001160838.1 
(chimp), XP_002798266.1 (monkey), XP_005634909.1 (dog), NP_001178243.1 
(cow), NP_001074631.1 (mouse), NP_001101245.1 (rat), XP_004936342.1 
(chicken), NP_001153300.1 (zebrafish), NP_001033333.1 (roundworm), 
XP_002936409.2 (frog). Note the p.F133 residue is evolutionarily conserved 
suggesting an important role of this residue in the normal function or structure of 
SLC4A11 NP_114423.  
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Table 4.2 Summary of bioinformatics analyses used to determine the likely 
pathogenicity of the c397T>C mutation in SLC4A11. The databases used were 
Polyphen2, http://genetics.bwh.harvard.edu/pph2/, (Adzhubei et al., 2010), SIFT,  
http://sift.jcvi.org (Ng and Henikoff, 2001), PROVEAN, 
http://provean.jcvi.org/index.php (Choi et al., 2012), Mutation Taster 
http://www.mutationtaster.org (Schwarz et al., 2010b) and CADD 
http://cadd.gs.washington.edu (Kircher et al., 2014). *CADD scores are reported as 
scaled C-scores and values ≥ 20 and ≥ 10 respectively represent the 1% and 10% 
most deleterious changes predicted in the human genome.  

 

All these analyses suggest that the F133L variant identified in Family C is 

pathogenic and is the cause of the CHED/Harboyan phenotype.  

 

4.2.4 Clinical examination and specular microscopy of the 

Parents of CHED affected cases 

 

Homozygous mutations in SLC4A11 cause CHED (Vithana et al., 2006), 

whereas heterozygous mutations in SLC4A11 are a rare cause of dominantly-

inherited FECD (Vithana et al., 2008). Given this, it was considered whether 

the parents of affected CHED patients, themselves heterozygous carriers for 

SLC4A11 mutations could be at risk of developing FECD. Therefore, the 

parents of each CHED patient, where available, were clinically evaluated for 

FECD. 

 

For each family the parents, who were related by consanguinity, did not 

manifest obvious visual problems. They underwent clinical examination 

followed by specular microscopy (SM). SM of the parents in Family A showed 

guttata, tiny excrescences in DM which are a hallmark of early FECD, in the 

44 year old father, whereas the 46-year-old mother’s scan showed moderate 

pleomorphism (disruption of the normal endothelial hexagonal pattern which 

may be seen in the initial stages of FECD before guttata are clearly visible) 

with a normal cell count (Figure 4.6).  

 

Variant Polyphen	2 SIFT PROVEAN Mutation	Taster CADD*
c.397T>C;	p.F133L Possibly	damaging Tolerated Deleterious Disease-causing Scaled	C-score

	(Score	0.479) (Score	0.37) 	(Score	-3.328) 	(Prediction	probability	0.9999) 23.6
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SM examination of the Family B mother at age 38 showed unremarkable 

images with a normal endothelial cell count. The Family B father aged 40 was 

unavailable for examination. Specular microscopic examination of the mother 

in Family C, aged 37 years, revealed guttata but a normal cell count (Figures 

1B and C). The father, aged 42 years, was unavailable for clinical 

examination. 

 

These results suggest that the heterozygous parents of CHED and Harboyan 

patients go on to develop FECD. 

 
Figure 4.6 Corneal endothelium analysis. A, Specular microscopy images of the 
father (I.1) and mother (I.2) of family A and also the mother (I.2) of family C are 
shown. B, The table highlights the values for cell density (per square millimeter), 
coefficient of variation, and percentage hexagonality for the specular microscopic 
images. As a guideline, cell density of 2500 cells per square millimeter at middle age 
is within the normal range, and this value decreases with age. A coefficient of 
variation greater than 0.4 and less than 50% hexagonality are indicative of an 
abnormal endothelium.
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4.3   Discussion  
 

In the results reported in this chapter, two previously described local families 

with CHED affected cases (Vithana et al., 2006) (Families A and B) were 

revisited and one new family (Family C) was recruited by Dr Juan Carlos 

Zenteno, Mexico City. Sanger sequencing of the SLC4A11 gene in the 

patients confirmed a novel homozygous missense mutation c.397T>C; 

p.F133L in Family C. Mutations in families A and B had been reported 

previously (Vithana et al., 2006). 

 

Four patients originally diagnosed with CHED were subsequently found to 

have varying degrees of sensorineural hearing loss at the higher frequency 

range following audiometric examination, suggesting that CHED often 

progresses to Harboyan syndrome. The heterozygous mutation-carrying 

parents of these patients were also investigated for early signs of FECD. Two 

out of the four parents that were available to be examined had guttata in their 

endothelium. Interestingly this additive pattern of inheritance for a mutation in 

SLC4A11 is somewhat similar to LRP5, in which dominant mutations and 

recessive mutations cause different eye phenotypes. Dominant mutations 

cause Familial Exudative Vitreoretinopathy (FEVR) and osteopenia or mild 

osteoporosis (Toomes et al., 2004) whereas recessive mutations cause 

OPPG (early onset retinal dysplasia and severe osteoporosis) (Gong et al., 

2001). Additionally, this is not the first time that mutations in a gene causing 

corneal endothelial disease (Riazuddin et al., 2012) have also been shown to 

cause deafness (Grillet et al., 2009). 

 

The basis for the phenotypic heterogeneity seen in homozygous SLC4A11 

mutation carriers with nonsyndromic CHED or Harboyan syndrome has been 

the subject of much speculation. The onset of progressive hearing loss in 

Harboyan syndrome has been described previously in children as young as 2 

years and adults as old as 33 years (Desir et al., 2007, Mehta et al., 2010). 

However auditory abnormalities have not been directly tested or serially 

monitored in these cases of isolated CHED (Vithana et al., 2006, Jiao et al., 
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2007, Kumar et al., 2007, Ramprasad et al., 2007, Aldave et al., 2007, 

Sultana et al., 2007, Hemadevi et al., 2008, Paliwal et al., 2010), suggesting 

that Harboyan syndrome may have gone undetected. As the type and location 

of null and missense SLC4A11 mutations identified in both conditions is 

similar, with no obvious clustering (Desir and Abramowicz, 2008), and the co-

existence of the conditions CHED and Harboyan syndrome within a family has 

been reported (Mehta et al., 2010), there is little evidence to support a genetic 

basis for the difference between them. Instead, the longitudinal study 

presented in this thesis suggests that CHED cases eventually experience 

some degree of sensorineural hearing loss and that the variable age of onset 

of these symptoms may be related to some unknown differences in the 

expression of genetic modifiers or exposure to environmental triggers.  

 

The auditory phenotype seen in Harboyan syndrome is consistent with the 

observation that SLC4A11 is not only expressed in the corneal endothelial 

cells but also in the fibrocytes of the stria vascularis in the inner ear (Lopez et 

al., 2009, Groger et al., 2010), cells with a common embryonic origin in the 

neural crest. SLC4A11 exists as a transmembrane homodimer (Park et al., 

2004) and transports sodium ions coupled to hydroxide  ions regulating pH in 

the corneal endothelium (Ogando et al., 2013, Jalimarada et al., 2013, Kao et 

al., 2015). It has been postulated that defective SLC4A11 expression could 

lead to compromised pH regulation affecting bicarbonate and lactic acid 

transport and depressing endothelial pump function (Jalimarada et al., 2013). 

Consistent with this theory is the finding that its absence in knockout mice 

causes accumulation of sodium chloride in the corneal stroma, collection of 

fluid in the normally relatively dehydrated cornea and morphological changes 

in fibrocytes resulting in deafness (Lopez et al., 2009, Groger et al., 2010). 

Examination of cells transfected with mutant SLC4A11 constructs shows that 

the mutant protein fails to glycosylate and is retained intracellularly, never 

reaching the cell surface (Vithana et al., 2006, Vithana et al., 2008). 

 

Dominant mutations in SLC4A11 cause FECD (Vithana et al., 2008)  which in 

most cases are caused by missense changes. Cell based biochemical assays 

using SLC4A11 constructs appear to distinguish between the mutations that 
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cause FECD and those that cause CHED (Vilas et al., 2012a). Co-expression 

of mutant SLC4A11 with the wild type construct causes partial rescue of most 

CHED-causing mutants but not those implicated in FECD. This is thought to 

be because, while most SLC4A11 mutations do not affect cell surface 

processing of the wild type SLC4A11, presence of the FECD mutant protein 

reduces wild-type processing at the cell surface, suggesting a possible 

explanation for the dominant inheritance pattern for this disorder. However, 

the work presented in this thesis highlights that parents of CHED patients, 

carrying heterozygous missense mutations in SLC4A11, may go on to 

develop guttata as early signs of FECD onset, which might contradict the 

dominant negative mechanism outlined. Serial audiometric monitoring of the 

CHED parents would perhaps be a more helpful additional investigation in 

determining the genetic mechanism underlying these phenotypes. Not only 

would this aid the early detection of a potential hearing deficit, if heterozygous 

mutations do cause haploinsufficiency of the SLC4A11 gene, then some 

degree of sensorineural hearing loss might be evident in the CHED parents. 

 

Given that CHED (Vithana et al., 2008) and Harboyan syndrome (Desir et al., 

2007) are caused by recessive mutations in SLC4A11 and some FECD cases 

are caused by dominant mutations in SLC4A11, it is perhaps surprising that 

these conditions had never been described within the same family at the time 

the study described in this thesis was performed. However, the increased 

susceptibility of the parents of CHED patients in developing FECD has since 

been described in a non-consanguineous family (Kim et al., 2015b). The 

proband’s 64-year-old father and sister were unaffected, but the 

asymptomatic 62-year-old mother was found to have bilateral guttata. When 

screened, the proband possessed a novel homozygous missense mutation 

c.1158C>A; p.Cys386* on exon 9 of SLC4A11, a mutation also harboured as 

a heterozygousvariant by the proband’s father, mother and sister. This caused 

a premature stop codon, predicted to result in a truncated SLC4A11 protein.  

At 62-years-old the mother presented with FECD. This is consistent with the 

observation that presentation usually occurs in affected patients in the fifth or 

sixth decade (Weiss et al., 2015). It is entirely feasible that the heterozygous 

parents of Family B, aged 38 and 40 years-old, were not yet old enough to 
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present with the clinical features of FECD. This raises the question of the 

value of future screening for FECD in the parents of CHED affected cases. 

Currently pre-symptomatic screening for FECD would not alter the treatment 

provided for FECD, although detection of the disease prior to the advanced 

stages of corneal epithelial involvement (Stage 5, Table 1.4 Introduction) 

might avoid the need to perform a full-thickness graft. Therefore there is 

arguably merit in vision screening of the parents of CHED patients in the 

community by their optometrist or screening of the corneal endothelium for 

guttata by a local ophthalmologist. 

 

Pathogenic variants tend to have markedly higher conservation than benign 

variants (Cooper et al., 2010) and indeed many of the variant pathogenicity 

prediction databases used for the assessment of missense variants 

incorporate conservation assessment into their algorithms (Adzhubei et al., 

2010, Ng and Henikoff, 2001, Schwarz et al., 2010b, Kircher et al., 2014). 

However predicting the pathogenicity of a variant is still fraught with 

challenges. The variant was found to be “Tolerated” in SIFT, yet three of the 

other pathogenicity prediction sites indicated that the variant was pathogenic  

(Table 4.2). The variant’s CADD score was 23.6. Scores of ≥ 20 are thought 

to represent the 1% most deleterious changes predicted in the human 

genome. However, there are many non-pathogenic variants in the human 

genome with CADD scores of above 20. Using a combination of pathogenicity 

databases and comparing the outputs is therefore a reasonable way of 

approaching this challenge.  

 

The 2015 International Corneal Dystrophy (IC3D) classification aimed to 

address much of the confusion surrounding some corneal dystrophy 

classification, and it has been suggested that the existence of a new corneal 

dystrophy must start with identification of the clinical phenotype and culminate 

in characterisation of the causative gene mutation (Weiss et al., 2015).  This 

has been reflected in the designation of the TGFβI corneal dystrophies, a 

category based on the molecular diagnosis of corneal dystrophies rather than 

the anatomical location. In this chapter, it has been concluded that the 
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unaffected heterozygous parents or siblings of CHED patients are at risk of 

developing late-onset FECD, individuals who would otherwise be regarded as 

clinically normal. The work presented in this chapter highlights the impact that 

an accurate molecular diagnosis can have on predicting the clinical prognosis. 

It also indicates that the pathways involved in the pathogenesis of two 

different endothelial dystrophies may share some similarities.  
 

CHED patients from Family B and C were noted to have raised IOP on initial 

examination under anaesthesia. In both patients this was in the absence of a 

previous keratoplasty, which is itself a risk factor for glaucoma (Kirkness and 

Moshegov, 1988). There are however no reports of the expression of 

SLC4A11 in the trabecular meshwork and aqueous outflow pathways (Patel 

and Parker, 2015). Embryologically, congenital glaucoma is a result of 

abnormal neural crest cell migration, whereas CHED results from abnormal 

cell differentiation (Bahn et al., 1984). It is therefore feasible that the two might 

co-exist and indeed this has been reported (Ramamurthy et al., 2007). In the 

absence of molecular confirmation, if faced with the diagnosis of glaucoma in 

CHED, a careful examination would need to be performed in order to exclude 

a diagnosis of PPCD, which is more commonly diagnosed with glaucoma 

(Weiss et al., 2015). 
 

The results presented in this chapter describe a novel mutation in SLC4A11. 

Discovering new mutations, especially missense ones, is of scientific interest 

as it informs future studies on the function of the protein. If a single amino acid 

change on a large protein disrupts protein function, this indicates that the 

amino acid performs a vital function. There is considerable allelic 

heterogeneity in CHED (Aldave et al., 2007) and no obvious correlation 

between the location of SLC4A11 mutations, the consequent domain of the 

SLC4A11 protein affected (Vilas et al., 2011) and the phenotype of CHED, 

Harboyan syndrome or FECD have been noted previously (Figure 4.7). 

However, one recent study has suggested that the cytoplasmic domain may 

play an essential role in the transport function of SLC4A11 (Loganathan et al., 

2016). Nonetheless, one implication a lack of clear mutation hotspots could be 

that, when ascertaining a molecular diagnosis in a newly presenting CHED 
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patient, it is likely that the entire coding region of the gene would need to be 

sequenced in order to find the causative mutation.  

 
Figure 4.7 Topology model for human SLC4A11. Identified point mutations 
causing CHED (blue) FECD (red) and Harboyan Syndrome (orange) are shown. The 
numbers indicate the amino acid position.  The predicted N-glycosylation sites are 
indicated in black. The black and grey arrowheads indicate trypsin cleavage sites 
identified through partial digestion of Myc-SLC4A11 and SLC4A11-Myc respectively. 
Reproduced with permission (Vilas et al., 2011). 

 

To conclude, CHED progresses to Harboyan syndrome in all the cases that 

have been studied and presented in this thesis, such that both conditions 

appear to be the same disease at different stages of development. When 

CHED is diagnosed, patients are frequently referred for audiometric 

assessment. Their hearing may initially fall within normal limits but it has been 

shown that it may progress subsequently. Therefore, CHED patients should 

be monitored for progressive hearing loss. Additionally, parents of CHED 

patients are SLC4A11 mutation carriers appear to be at increased risk of 

developing late-onset FECD and should be monitored for this. 
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The results presented in this chapter were published in the journal Cornea 

(Siddiqui et al., 2014). 
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5 Genetic Analysis of Fuchs Endothelial Dystrophy 

in Yorkshire 

5.1 Introduction 
 

FECD is a slowly progressive disease of the corneal endothelium (Krachmer 

et al., 2011). Its prevalence amongst Caucasians is approximately 4% over 

the age of 40 (Lorenzetti et al., 1967) and it accounts for about 22% of corneal 

transplants in the UK (Keenan et al., 2012). The condition is characterised by 

focal collagenous excrescences in DM called guttata seen on the posterior 

surface of the basement membrane and is accompanied by endothelial cell 

pleomorphism in the early stages. Progressive loss of endothelial cells causes 

loss of endothelial barrier and pump functions, leading to the influx of aqueous 

humour into the cornea resulting in corneal oedema, reduced corneal clarity 

and ultimately vision loss (Waring et al., 1978b). 

 

Early-onset FECD may present as early as the first decade (Weiss et al., 

2015). Missense changes in COL8A2 (MIM*120252) on chromosome 1p34.3-

p32 have been implicated in this rare form of disease (Biswas et al., 2001, 

Gottsch et al., 2005). Late-onset FECD is a common disease, typically 

presenting on average in the fifth decade, although guttata may be clinically 

apparent after the age of 40 (Elhalis et al., 2010). Many cases appear to be 

sporadic, although familial forms with apparent dominant inheritance have 

been documented (Krachmer et al., 1978). Late onset FECD is genetically 

heterogeneous. Rare causative mutations have been identified in SLC4A11 

(MIM*610206) (Vithana et al., 2006, Riazuddin et al., 2010b, Soumittra et al., 

2014, Kim et al., 2015b) as well as ZEB1/TCF8 (MIM*189909) (Riazuddin et 

al., 2010a, Lechner et al., 2013). Furthermore, familial inheritance in single 

pedigrees has been described for dominant loci on chromosomes 5 (FECD5, 

MIM%613269) (Riazuddin et al., 2009), 9 (FECD7, MIM%613271) (Riazuddin 

et al., 2010a) and 13 (FECD2, MIM%610158) (Sundin et al., 2006b), although 

the mutations involved have not yet been identified.  
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During the course of the studies reported in this thesis, rare dominant 

mutations in LOXHD1 (MIM*613072) (Riazuddin et al., 2012), which maps 

close to the FECD3 locus on chromosome 18 (MIM%613267) (Sundin et al., 

2006a)), and AGBL1 (MIM*615496) (Riazuddin et al., 2013), that maps within 

the FECD8 locus on chromosome 15, have been reported to cause late-onset 

FECD (section 1.10.7). Mutations in AGBL1 have not yet been replicated 

independently in another cohort. Recently, 128 FECD cases were examined 

and novel mutations in LOXHD1 were detected, however as this is an 

unpublished thesis, full details of these variants are not yet available (Kuot, 

2015). 

 

FECD has previously been mapped to chromosome 18q and the locus 

designated FECD3. Subsequently, Baratz et al (Baratz et al., 2010) performed 

a small-scale genome wide association study (GWAS) using 130 FECD cases 

and 260 controls. Controls subjects were 60-years-old or over and had no 

observable guttata. This identified one SNP, rs613872, in intron 3 of TCF4 

(MIM*602272) that reached genome-wide significance, with the G allele 

significantly enriched in FECD cases compared with controls. Close to this 

SNP lies an intronic trinucleotide repeat expansion, CTG18.1, which was 

found to be even more strongly associated with FECD and has been shown to 

exist in 79% of cases compared to only 3% of controls (Wieben et al., 2012). 

The TCF4 gene lies within the FECD3 locus on chromosome 18q. Towards 

the beginning of the studies described in this thesis, Riazuddin et al published 

mutations in the LOXHD1 gene, which maps just outside the critical interval 

for the FECD3 locus, as a cause of dominant late-onset FECD (Riazuddin et 

al., 2012). The positions of the rs613872 SNP and CTG18.1 repeat in TCF4, 

the LOXHD1 gene and the FECD3 locus are shown in Figure 5.1. The 

physical position shows that the two genes are within 9.2Mb of each.  
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Figure 5.1 Graphical representation of part of the FECD3 locus and 
surrounding region, including positions of the TCF4 and LOXHD1 genes. All 
physical positions and distances are based on the hg19/GRCh37 version of the 
genome sequence and intervals are relative to the top of the p-arm of chromosome 
18. The gene positions, their length and details of the most common transcript 
isoform for each are depicted. The positions of the TCF4 variants rs17089887, 
rs613872 and CTG18.1, shown to be associated with FECD, are shown.  

 

This chapter describes the genetic analysis of a Caucasian FECD cohort, 

recruited and sampled from Ophthalmology clinics and theatre lists in 

Yorkshire, that consists mostly of single cases but also includes 3 families 

with multiple affected members. The cohort of genomic DNA samples from 

FECD cases was recruited in two phases. At the start of the project, 56 

genomic DNA samples from unrelated FECD cases and 1 family had been 

ascertained by Dr Aine Rice (University of Leeds) and SS. During the course 

of the genetic analysis, a further 61 DNA samples were ascertained and 2 

families recruited. The total FECD cohort contained 117 unrelated cases. 

 

The aim of this study was to analyse this cohort of Yorkshire FECD patients to 

identify genes involved in the pathogenesis of FECD. In the first instance this 

involved investigating LOXHD1 to try and confirm the published data, 

especially given the inconsistencies between the FECD3 mapping data and 

the LOXHD1 mutation identification data. Similarly, the TCF4 expansion was 

investigated to in order to clarify the significance of the original findings. 

Alongside this, WES was used to try and identify the causative mutations in 
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the FECD families and transcriptome analysis of normal corneal endothelia 

was attempted to prioritise candidates in the WES data. 

 

5.2 Results 

5.2.1 Recruitment of local FECD families 
 

Following ethical approval, the proband of a large Caucasian FECD family, 

FECDBRI, was identified in the BRI Ophthalmology Clinics by Mr Nigel 

James, Consultant Ophthalmologist at Bradford Royal Infirmary (Figure 5.2). 

Members of the family were subsequently examined by slit-lamp, recruited 

and sampled at St. James’s University Hospital, Leeds following their 

informed consent. The proband had three affected siblings. One additional 

sibling had very mild pigmented endothelial changes but could not be 

classified as having FECD so her diagnosis remained uncertain. Specular 

microscopy images of the oldest unaffected individual and the proband are 

shown in Figure 5.3. 
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Figure 5.2 Pedigree of the FECD family FECDBRI. Family members for whom DNA was available are labelled. The arrow indicates the 
proband. Individuals II:9 and III:5 have an uncertain diagnosis. 
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A                        B 
Figure 5.3 Specular microscopy of A. an unaffected and B. an affected member 
of the FECDBRI family. A shows the normal polygonal pattern of packed endothelial 
cells B. shows loss of the normal mosaic pattern of the endothelium with reduced 
endothelial cell count, polymegathism and pleomorphism. Several guttata are visible, 
one of which is indicated by the red arrow.  

 

5.2.2 Screening for the previously published FECD causing COL8A2 

mutation in the FECDBRI family 

 

Early onset FECD is a distinct form of FECD (Weiss et al., 2015) caused by 

mutations in the COL8A2 gene (Biswas et al., 2001). Individuals in FECDBRI 

presented with their symptoms between the ages of 40 and 50 years, and 

were therefore thought to have late-onset FECD. However, as one of the 

families first reported with a COL8A2 mutation originated from Yorkshire, the 

possibility that a common founder mutation existed in the FECDBRI family  
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was explored. Primer pairs for exon 2 of COL8A2 (Appendix III) containing 

the published mutation, c.1363C>A, p.Q455K, were used to amplify and 

Sanger sequence the proband’s DNA. For comparison, genomic DNA from an 

affected member of the original pedigree with a COL8A2 mutation was also 

sequenced (Figure 5.4). It was found that the proband in the FECDBRI family 

did not have the COL8A2 mutation, suggesting that the cause of their FECD 

remained unknown. 

 

 

 
Figure 5.4 Sequence chromatograms of COL8A2 exon 2 derived from DNA of 
the FECDBRI proband, a known mutation carrier and wild-type control. The 
heterozygous c.1363C>A, p.Q455K mutation is indicated by an arrow in the mutation 
control.  
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5.2.3 Genetic analysis of the chromosome 18 FECD locus in a local 

FECD family and the Yorkshire cohort 

 

5.2.3.1 Microsatellite linkage analysis across the FECD3 locus on 

chromosome 18 in the FECDBRI family 

 

At the start of this PhD, the plan had been to test this family for linkage to all 

of the known loci (Sundin et al., 2006b, Sundin et al., 2006a, Riazuddin et al., 

2009, Riazuddin et al., 2010a).  In September 2011, CFI spoke to Professor 

Nicholas Katsanis, Duke University Medical Center at a conference. It was 

discussed that his team had identified the causative mutation in the locus on 

chromosome 18. Therefore, it was decided that microsatellite analysis of this 

in the FECDBRI would commence with the locus on chromosome 18 (Sundin 

et al., 2006a). 

 

Genomic DNA from family members was genotyped using microsatellite 

markers as described in Section 2.12. The markers used and their genetic 

distance from the top of the chromosome (according to the Marshfield genetic 

map) (Broman et al., 1998)  were D18S1152 at 80.41 cM, D18S1144 at 82.25 

cM, D18S1103 at 83.46 cM and D18S64 at 84.80 cM. An example of a 

microsatellite genotyping electropherogram is shown in Figure 5.5. The 

genotyped values corresponding to the size of each marker for each family 

member have been plotted onto the pedigree to generate haplotypes (Figure 

5.6). From this analysis, it appears that all the affected cases were found to 

share a common haplotype 268/175/242/190, consistent with linkage to 

FECD3. However, this haplotype was also present in the individual of 

uncertain diagnosis, which might suggest that they are predisposed to 

developing the condition at a later stage or it may be suggest that the 

haplotype has nothing to do with FECD risk and has occurred by chance. 

 

Linkage analysis was carried out using Superlink as described in Section 2.12 

under a dominant model of inheritance with a 99% penetrance and zero 
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phenocopy rate. Disease allele frequency was taken as 0.001. Assuming the 

case with an uncertain diagnosis was affected, the maximum lod score that 

could be obtained was 2.0980. Without these assumptions about clinical 

status and phenocopy, a lod score of 2 would have been significant given the 

previous published linkage study to chromosome 18 (Sundin et al., 2006a). 

However, although the haplotype analysis suggested linkage to chromosome 

18, this could not be confirmed as significant on the basis of statistics as the 

lod score was below 3.0 and suggested that association of this haplotype with 

FECD remained inconclusive. 
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Figure 5.5 Examples of genotyping electropherograms for the chromosome 18 
microsatellite marker D18S1103. Traces for FECDBRI individuals A. II:2 B. II:5 C. 
II:3 are shown.

A. 

B. 

C. 
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Figure 5.6 Chromosome 18 haplotypes across the FECD3 locus for the FECBRI family. The allele sizes for the markers D18S1152, 
D18S1144, D18S1103 and D18S64 are shown from the top to the bottom of the haplotype respectively. A common heterozygous region that is 
indicated in blue is shared amongst the affected individuals, as well as being carried by individuals II.7 and III.5 who are of uncertain diagnosis
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5.2.3.2 The LOXHD1 mutation spectrum in local Caucasian FECD 

cases 

 

Following identification of mutations in LOXHD1 gene on chromosome 18 as 

causative for FECD in February 2012 (Riazuddin et al., 2012), the spectrum of 

LOXHD1 variants in the Yorkshire cohort was assessed. Genomic DNA from 

the proband of FECDBRI and 55 unrelated FECD patients, 10 of whom had a 

family history, were included in this screen. The mean age of these cases at 

venesection was 71.7 +/- 9.5 years, ranging between 48 and 91 years old. 40 

of the 56 cases (71%) were female. The cohort was screened by Sanger 

sequencing for variants in LOXHD1. To do this, primer pairs were initially 

designed against all the 40 exons of transcript NM_144612 and the two 

additional splice variant exons in transcripts NM_001145472.2 and 

NM_001173129 of LOXHD1. The primers were optimized before screening for 

variants in whole genome amplified DNA samples from the patient cohort. All 

variants found on the initial screen were confirmed in an independent PCR 

using unamplified DNA from stock solutions. Primer pairs and reaction 

conditions are shown in Appendix III.  

 

An agarose gel showing amplification of exon 32 in samples 47 to 55 is shown 

in Figure 5.7. 
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Figure 5.7 Agarose gel image after UV illumination showing amplification of 
exon 32 of LOXHD1. Samples 47-55 of the FECD cohort are shown. The expected 
band size is 409bp. NC indicates the negative control. 

 

Sequence variants were considered significant if they were within the coding 

region of the gene or the two base pair splice recognition sites on either side 

of the exon, and were non-synonymous. All variants were found in LOXHD1 

transcript NM_144612. There were no variants found in transcript 

NM_001145472.2 or NM_001173129.   

 

Table 5.1 summarises the 16 variants that were found. All of the sequence 

changes were heterozygous in the subjects. In order to identify the LOXHD1 

variants that were likely to be pathogenic, any variants that had a minor allele 

frequency greater than 4% in either the 1000 Genomes or the Exome Variant 

Server databases were excluded. The threshold of 4% was selected as this 

was the purported frequency of FECD (Lorenzetti et al., 1967). Variants were 

also assessed for pathogenicity using various mutation prediction programs. 

They were considered potentially pathogenic if at least one of these 

predictions was consistent with high pathogenicity, including scores of 

“Possibly” or “Probably Damaging” when assessed by Polyphen (HDIV), 
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“Damaging” on SIFT, “Deleterious” on PROVEAN or “Disease-causing” with 

Mutation Taster (Section 2.17). The LOXHD1 sequence variants that passed 

these filtering criteria are highlighted in Table 5.2. The evolutionary 

conservation of the variants was also assessed using ClustalW (Section 2.18) 

and the multiple sequence alignments are shown in Figure 5.8.  
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Variant
No of samples 

containing variant Samples containing change Polyphen Prediction (HDIV) SIFT prediction PROVEAN Prediction Mutation Taster
1000 genomes Variant 

Frequency (%)
EVS Variant 

Frequency (%)
c.2T>A, p.M1K 4 25, 26, 32, 53 Possibly Damaging Damaging Neutral Polymorphism 3.5 4.0

c.889A>C ,p.T297P 1 3 Benign Tolerated Neutral Polymorphism 0.3 0.1
c.1087G>A, p.V363I 11 3, 9, 11, 14, 18, 21, 23, 29, 31, 36, 53 Benign Tolerated Neutral Polymorphism 7.8 9.0
c.1570C>T, p.R524C 1 31 Probably Damaging Damaging Deleterious Disease Causing 0.0 0.0
c.1876G>T, p.G626C 2 32, 38 Probably Damaging Damaging Deleterious Disease Causing 1.6 1.4
c.1894G>T, p.G632C 2 32, 38 Probably Damaging Damaging Deleterious Disease Causing 1.6 1.4
c.2473G>A, p.V825M 4 33, 38, 41, 48 Benign Tolerated Neutral Polymorphism 7.2 8.7
c.2558G>C, p.R853P 1 40 Benign Tolerated Deleterious Disease Causing 0.0 0.0
c.2825_2827delAGA, 

pK942del
1 40 Unknown Unknown Neutral Polymorphism 2.3 5.8

c.2998C>T, p.R1000W 1 16 Probably Damaging Damaging Deleterious Polymorphism 0.0 0.1
c.3463A>G, p.R1155G 55 All samples except 43 Benign Tolerated Neutral Polymorphism 16.8 83.5
c.4868A>G, p.E1623G 11 1, 6, 9, 11, 17, 23, 26, 36, 37, 38, 47 Probably Damaging Tolerated Deleterious Polymorphism 9.2 11.5
c.5545G>A, p.G1849R 1 31 Probably Damaging Damaging Deleterious Disease Causing 0.0 0.0
c.5616C>A, p.N1872K 2 29, 53 Benign Tolerated Neutral Polymorphism 0.7 0.7
c.6107C>T, p.A2036V 15 4, 5, 6, 11, 18, 19, 20, 21, 25, 26, 29, 31, 35, 41, 56 Benign Tolerated Neutral Polymorphism 22.3 0.0
c.6398G>A, p.R2133H 6 6, 9, 11, 17, 23, 36 Benign Tolerated Deleterious Disease Causing 7.3 8.0  

Table 5.1 All LOXHD1 (NM_144616) variants detected in the first 56 patients recruited in the Yorkshire FECD cohort. An assessment of 
their variant frequency in known databases, pathogenicity prediction and in whom they were identified are depicted. The databases used were 
Polyphen2 (HDIV) http://genetics.bwh.harvard.edu/pph2/, (Adzhubei et al., 2010), SIFT, http://sift.jcvi.org (Ng and Henikoff, 2001), PROVEAN, 
http://provean.jcvi.org/index.php (Choi et al., 2012), Mutation Taster http://www.mutationtaster.org (Schwarz et al., 2010b), 1000 genomes 
(http://www.1000genomes.org) and EVS (http://evs.gs.washington.edu/EVS/databases).  
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Variants Variant frequency: 
1000 genomes (%)

Variant frequency: 
Exome variant server 

(%)

Polyphen 
(HDIV) SIFT PROVEAN Mutation 

Taster
Sample ID containing the 

variant

c.1570C>T, p.R524C 0.0 0 Probably Damaging Damaging Deleterious Disease Causing 31

c.1876G>T, p.G626C 1.6 1.4 Probably Damaging Damaging Deleterious Disease Causing 32, 38

c.1894G>T, p.G632C 1.6 1.4 Probably Damaging Damaging Deleterious Disease Causing 32, 38

c.2558G>C, p.R853P 0.0 0.0 Benign Tolerated Deleterious Disease Causing 40

c.2998C>T, p.R1000W 0.0 0.1 Probably Damaging Damaging Deleterious Polymorphism 16

c.5545G>A, p.G1849R 0.0 0.0 Probably Damaging Damaging Deleterious Disease Causing 31  
Table 5.2 List of putative pathogenic LOXHD1 variants that were identified in Caucasian FECD cases. The LOXHD1 variants remaining 
after filtering for variant frequency in known databases and pathogenicity prediction. ID for the sample in whom they were identified is also 
given.  
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Figure 5.8  Protein sequence alignment of LOXHD1 orthologues around the 
predicted pathogenic variants that were identified in the FECD cases. Each 
variant, a. p.R524C, b. p.G626C, p.G632C, c. p.R853P, d. p.R1000W and e. 
p.G1894R, is highlighted in red and the surrounding amino acids that are identical to 
the human transcript are shaded in grey. Accession numbers for LOXHD1 sequence 
are NP_653213.6 (human), XP_009432217.1 (chimp), NP_001099602.3 (rat), 
XP_547589.3 (dog), XP_003587840.2 (cow), XP_425221.4 (chicken) and 
XP_007055242.1 (turtle).  
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5.2.3.3 The LOXHD1 mutation spectrum in 1000 Genomes database 
 

The published LOXHD1 study (Riazuddin et al., 2012) used a Mendelian 

model to implicate LOXHD1 in a dominant family but used a case-control 

approach to assess the mutational load. A similar approach was used in this 

thesis except that at this point in the PhD there were no ethnically-matched 

controls that had been examined to exclude endothelial disease. Therefore, 

the 1000 genomes database was utilised for the ascertainment of controls.  

 

For the LOXHD1 variant dataset from population controls, the 1000 Genomes 

database was accessed in July 2014. The database was interrogated for any 

cases of Caucasian origin that had a read depth of 5 for at least 85% of the 

LOXHD1 gene. A dataset of 467 individuals (934 alleles) who satisfied these 

criteria was subsequently mined for sequence variation in LOXHD1. Any 

sequence variants were included into the study if they were within the coding 

region of the gene as well as the two base pair splice recognition sites either 

side of the exon. However synonymous variants were excluded. A complete 

list of the 21 LOXHD1 variants found in controls from the 1000 Genomes 

database is given in Table 5.3. 

 

In order to establish which LOXHD1 variants were more likely to be 

pathogenic, any variants that had a minor allele frequency greater than 4% in 

either the 1000 Genomes or the Exome Variant Server databases were 

excluded. Variants were also assessed for pathogenicity according to the 

same mutation prediction programs used to filter variants found in the FECD 

cohort. As for the FECD cases, they were retained if at least one of these 

predictions was consistent with high pathogenicity such as “Possibly” or 

“Probably Damaging” when assessed by Polyphen (HDIV), “Damaging” on 

SIFT, “Deleterious” on PROVEAN or “Disease-causing” by Mutation Taster 

(Section 2.17). The LOXHD1 sequence variants that passed these filtering 

criteria are highlighted in Table 5.4.  
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Variants
1000 Genome 

Variant Frequency

1000 Genome 
Variant 

Frequency (%) SNP ID
Polyphen 

Prediction (HDIV) SIFT Prediction Provean prediction Mutation Taster Prediction

Variant Frequency 
in EVS (%)

c.2T>A, p.M1K 33/934 3.5 rs36024592 Possibly Damaging Damaging Neutral Polymorphism 4.0
c.410G>A, p.R137H 3/934 0.3 rs151268914 Probably Damaging Tolerated Neutral Disease causing 0.0
c.722A>G, p.N241S 2/934 0.2 rs191697915 Probably Damaging Tolerated Deleterious Polymorphism 0.0
c.889A>C, p.T297P 3/934 0.3 rs117747744 Benign Tolerated Neutral Polymorphism 0.1
c.1087G>A, p.V363I 73/934 7.8 rs10163657 Benign Tolerated Neutral Polymorphism 9.0
c.1876G>T, p.G626C 15/934 1.6 rs34589386 Probably Damaging Damaging Deleterious Disease causing 1.4
c.1894G>T, p.G632C 15/934 1.6 rs35088381 Probably Damaging Damaging Deleterious Disease causing 1.4
c.2027A>G, p.D676G 2/934 0.2 rs16978578 Benign Tolerated Neutral Polymorphism 0.0
c.2080G>T, p.D694Y 1/934 0.1 rs35727744 Probably Damaging Damaging Deleterious Disease causing 0.0
c.2473G>A, p.V825M 68/934 7.2 rs36086089 Benign Tolerated Neutral Polymorphism 8.7
c.2554A>G, p.S852G 2/934 0.2 rs183848033 Probably Damaging Tolerated Deleterious Disease causing 0.0
c.2771G>A, p.R924Q 1/934 0.1 rs140904207 Benign Tolerated Neutral Polymorphism 0.0

c.2825_2827del, 
p.K942del

22/934 2.3 rs142960762 Unknown Unknown Neutral Polymorphism 5.8

c.3269G>A, p.R1090Q 23/934 2.5 rs118174674 Probably Damaging Tolerated Deleterious Disease causing 1.9
c.3463A>G, p.R1155G 157/934 16.8 rs1893566 Benign Tolerated Neutral Polymorphism 83.5
c.4148C>T, p.T1383M 4/934 0.4 rs7244681 Possibly Damaging Tolerated Neutral Disease causing 0.1
c.4217C>T, p.A1406V 3/934 0.3 rs146739496 Possibly Damaging Damaging Neutral Disease causing 0.2
c.4868A>G, p.E1623G 86/934 9.2 rs12606417 Possibly Damaging Tolerated Deleterious Polymorphism 11.5
c.5616C>A, p.N1872K 7/934 0.7 rs61733519 Benign Tolerated Neutral Polymorphism 0.7
c.6107C>T, p.A2036V 208/934 22.3 rs1377016 Benign Tolerated Neutral Polymorphism 0.0
c.6398G>A, p.R2133H 68/934 7.3 rs74316327 Benign Tolerated Deleterious Disease causing 8.0  

Table 5.3 All LOXHD1 variants found in Caucasian controls derived from the 1000 Genomes, together with assessment of likely 
pathogenicity. The cohort of Caucasian samples that were screened for variants consisted of 467 controls. The databases used were 
Polyphen2 (HDIV) http://genetics.bwh.harvard.edu/pph2/, (Adzhubei et al., 2010), SIFT, http://sift.jcvi.org (Ng and Henikoff, 2001), PROVEAN, 
http://provean.jcvi.org/index.php (Choi et al., 2012) and Mutation Taster http://www.mutationtaster.org (Schwarz et al., 2010b). Additionally their 
frequency in the 1000 genomes (http://www.1000genomes.org) and EVS (http://evs.gs.washington.edu/EVS/databases) are shown.  
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Variants Variant frequency: 
1000 genomes (%)

Variant frequency: 
Exome variant server 

(%)

Polyphen 
(HDIV) SIFT PROVEAN Mutation 

Taster
Sample ID containing the 

variant

c.410G>A, p.R137H 0.2 0.0 Probably Damaging Tolerated Neutral Disease Causing 19752
c.722A>G, p.N241S 0.2 0.0 Probably Damaging Tolerated Deleterious Polymorphism 1492

c.1876G>T, p.G626C 2.3 1.4 Probably Damaging Damaging Deleterious Disease Causing

1149, 1247, 1624, 1779, 7347, 
11840, 20519, 20586, 20758, 
20765, 20792, 20806; homo alt 
1241

c.1894G>T, p.G632C 2.3 1.4 Probably Damaging Damaging Deleterious Disease Causing

1149, 1247, 1624, 1779, 7347, 
11840, 20519, 20586, 20758, 
20765, 20792, 20806; homo alt 
1241

c.2080G>T, p.D694Y 0.2 0.0 Probably Damaging Damaging Deleterious Disease Causing 19734

c.3269G>A, p.R1090Q 2.8 0.0 Probably Damaging Tolerated Deleterious Disease Causing

128, 149, 156, 1167, 1271, 1624, 
1747, 1775, 12154, 20507, 20509, 
20517, 20756, 20761, 20803; homo 
alt 6985

c.4148C>T, p.T1383M 0.3 0.1 Possibly Damaging Tolerated Neutral Disease Causing 1704, 19734 
c.4217C>T, p.A1406V 0.3 0.2 Possibly Damaging Damaging Neutral Disease Causing 135, 1679  

Table 5.4 List of putative pathogenic LOXHD1 variants identified in 1000 Genomes database controls. The LOXHD1 variants remaining 
after filtering for pathogenicity, their allele frequency in known databases, pathogenicity predictions and in whom they were identified are 
depicted. All the sequence changes identified were heterozygous in the subjects apart from three cases designated “homo alt”. The databases 
used were Polyphen2 (HDIV) http://genetics.bwh.harvard.edu/pph2/, (Adzhubei et al., 2010), SIFT, http://sift.jcvi.org (Ng and Henikoff, 2001), 
PROVEAN, http://provean.jcvi.org/index.php (Choi et al., 2012) and Mutation Taster http://www.mutationtaster.org (Schwarz et al., 2010b). 
Additionally their frequency in the 1000 genomes (http://www.1000genomes.org) and EVS (http://evs.gs.washington.edu/EVS/databases) are 
shown
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5.2.3.4 Comparison of the predicted pathogenic LOXHD1 variant findings 

in the Caucasian FECD cohort and 1000 Genomes database 

controls 

 

From Table 5.1 and Table 5.3 some of the variants were present in individuals who 

carried only a single heterozygous LOXHD1 coding variant, while other individuals 

had two or more variants. Although it was not easily possible to establish the phase 

of multiple variants found in a single individual, it was observed that LOXHD1 

variants p.G626C and p.G632C were always found to co-exist in the same 

individuals and were present at exactly the same frequency in the 1000 Genomes 

and Exome Variant Server databases, suggesting that these variants are almost 

certainly in phase and represent a single complex allele. These variants are 

therefore considered to be a single allele in subsequent analyses.  

 

In terms of comparison of the results, there were two ways the analysis could be 

interpreted, either based on the number of predicted pathogenic alleles identified in 

each cohort or the number of cases with predicted pathogenic alleles. Table 5.5 

summarises these comparisons that were derived from Table 5.2 and Table 5.4 for 

FECD and controls respectively. The results highlight that 6 out of 112 (5.4%) 

potentially pathogenic LOXHD1 alleles were identified in the FECD cohort, whereas 

38 out of 934 (4.1%) pathogenic alleles were identified in the controls, suggesting a 

modest 1.33 fold increased prevalence of alleles amongst the FECD cohort 

compared to controls (Table 5.5). The pathogenic LOXHD1 alleles exist in 5 out of 

56 (8.9%) FECD cases compared to 34 out of 467 (7.3%) controls, suggesting a 

1.24 fold increased enrichment amongst the FECD cases (Table 5.5). 

 

In summary, the Yorkshire FECD cohort was screened for sequence variations in the 

LOXHD1 gene, and the results were compared with controls from the 1000 

Genomes database. This analysis revealed only a modest enrichment of LOXHD1 

putative pathogenic alleles in FECD cases compared with controls, suggesting that 
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mutations in LOXHD1 are unlikely to be the major contributor to FECD onset that 

was previously identified on chromosome 18 (Sundin et al., 2006a).  

 

 
Table 5.5 Comparison of LOXHD1 variant findings in FECD cases and controls. The 
frequency of LOXHD1 alleles predicted to be pathogenic (A) and subjects containing a 
putative pathogenic LOXHD1 variant (B) are shown. n= the number of cases, P= the p 
value, OR= odds ratio. 

 

5.2.3.5 Genetic analysis of the TCF4 intronic polymorphism, rs613872, in 

Caucasian FECD cases, ECACC controls and 1000 Genomes 

database population controls 

 

 

In order to identify whether the GWAS SNP that was associated with FECD in 

Caucasians (Baratz et al., 2010) was associated in the Yorkshire FECD cohort, 

genomic DNA from the 56 unrelated FECD patients and 192 normal control DNAs 

obtained from the ECACC, were genotyped for the TCF4 intronic polymorphism, 

rs613872 by Sanger sequencing. The ECACC control cohort were all Caucasians of 

UK origin. The gender balance was 48% (92/192) females in the ECACC human 

random control group compared to 71% (40/56) in the cases and mean age at 

venesection was 38.7 +/- 8.4 and 71.6 +/- 9.5 years respectively. Sequence 

chromatograms of the three representative genotypes are shown in Figure 5.9 and 

the results summarised in Table 5.6. As a comparison for population control dataset, 

the rs613872 genotypes were also downloaded from the 1000 Genomes database 

for 467 unrelated Caucasian individuals. The results showed that the G allele for the 

Cases Controls P OR
n = 56 n = 467

Number of alleles 112 934 0.45 1.33 (0.55 - 3.23)
Predicted pathogenic alleles 6 38
Frequency 0.054 0.041
Number of subjects 56 467 0.65 1.24 (0.46 - 3.33)
Subjects with pathogenic variant 5 34
Frequency 0.089 0.073

A

B
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intronic polymorphism, rs613872, which had previously been shown to be associated 

with FECD (Baratz et al., 2010, Li et al., 2011, Riazuddin et al., 2011, Kuot et al., 

2012, Eghrari et al., 2012, Igo et al., 2012, Stamler et al., 2013), was identified in 

73% (41/56) of FECD cases compared to 32% (62/192) and 26% (123/467) in the 

different control subject groups. These differences were statistically significant (P = 

2.77 x 10-7 and 9.77 x 10-12) with an odds ratio of 3.81 and 4.47 respectively. 

 

 

 
Figure 5.9 Chromatograms from three FECD samples that had been sequenced for the 
polymorphic SNP, rs613872. The TT, TG and GG genotypes are shown. 
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Table 5.6 Summary of SNP rs613872 genotyping on Caucasian FECD cases and population controls. The subjects were 
categorised for rs613872 according to their G/T genotyped allele status. Caucasian controls were from ECACC* or the 1000 Genomes 
database (July 2014)**. The rs613872 genotyped alleles were in Hardy-Weinberg Equilibrium. 

 

 

 

Cases Controls* Controls**

n = 56 n = 192 n = 467

GG 8 7 2.77 x 10-7 3.81 (2.29 - 6.34) 15

GT 33 55 108

TT 15 130 344

P OR (95% CI) P OR (95% CI)

rs
61

38
72

9.77 x 10-12 4.47 (2.95 - 6.76)



 121 

5.2.3.6 Genetic analysis of the trinucleotide expansion, CTG18.1, in 

Caucasian FECD cases and ECACC controls 

 

The FECD and ECACC control cohorts were also genotyped for the 

previously associated TCF4 trinucleotide repeat polymorphism, CTG18.1. The 

existence of the CTG18.1 trinucleotide repeat was established using the short 

tandem repeat (STR) and Triplet-Primed PCR (TP-PCR) previously described 

(Warner et al., 1996). Primer sequences for both assays are detailed in 

Appendix IV. 

 

The STR genotyping assay uses primer pairs flanking the CTG repeat 

sequence and measures unexpanded CTG18.1 alleles up to 43 trinucleotide 

repeats in length. This threshold is determined by the assay. However, this 

assay can fail to amplify expanded alleles, and hence the requirement for 

parallel analysis using the TP-PCR assay. This detects expanded CTG18.1 

alleles by using a trinucleotide repeat specific 3’ primer that binds at numerous 

sites within the CTG repeat paired with a fixed locus-specific 5’ primer, 

resulting in a mixture of products. The TP-PCR assay allows discrimination 

between the cases with a homozygous unexpanded allele and heterozygous 

cases with one unexpanded and one expanded allele. Characteristic traces 

for the TP-PCR assay are shown in Figure 5.10.  
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A 

 
B 

 
C 

 
 

Figure 5.10 TP-PCR electropherograms for assessing CTG18.1 trinucleotide 
repeat. A. Pattern for a subject with 2 unexpanded alleles at CTG18.1 (the sizes 
determined by STR assay), B. An individual with an expansion and one unexpanded 
allele (again the size of the unexpanded allele determined by STR) and C. A case 
with two expanded alleles (since no product on STR assay).
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A summary of the results of the STR and TP-PCR analysis to determine 

CTG18.1 trinucleotide repeat in FECD cases and controls is given in Table 

5.7. The STR assay failed to detect any alleles in 7% (4/56) of FECD cases 

compared to 0% (0/192) in controls. The 4 FECD cases that failed to detect 

any alleles following STR assay gave the characteristic pattern for an 

expanded allele after the TP-PCR assay, suggesting homozygosity for the 

expansion. It was noted that 68% (38/56) of the FECD cases in the study 

described here had at least one expanded CTG18.1 allele compared with only 

7% (14/192) in the control subjects. The differences between the cases and 

controls were analysed using Fischer’s exact test. This was statistically 

significant (P = 3.43 x 10-14) with an odds ratio of 15.88. 
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Table 5.7 Summary of the CTG18.1 trinucleotide repeat analysis on the FECD cases and ECACC controls. The subjects were 
categorised for CTG18.1 according to the presence (X) or absence (S) of the trinucleotide expanded allele. The CTG18.1 genotyped alleles, 
which consist of two category groups (denoted X and S) based on trinucleotide repeat number being greater than or less than 43 repeats in 
length respectively were out of Hardy-Weinberg Equilibrium in cases (P = 0.045)

Cases Controls*

n = 56 n = 192

XX 4 0 3.43 x 10-14 15.88 (7.77 - 32.45)

SX 34 21

SS 18 171

P OR (95% CI)

C
TG

18
.1
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5.2.3.7 Relationship between the TCF4 trinucleotide expansion and 

the LOXHD1 variants found in the FECD cohort  

 

The 5 cases with LOXHD1 variant alleles described in Section 5.2.3.4 were 

investigated for their trinucleotide expansion status. Table 5.8 summarises the 

number of cases with (LOXHD1/X) and without (LOXHD1/S) an expansion. 

The observations show that more than 50% of the LOXHD1 variant cases 

have an expansion polymorphism at CTG18.1, suggesting that the TCF4 

expansion rather than the LOXHD1 variant may be causal in these cases. 

This provides further evidence that LOXHD1 variants are not a significant 

cause of FECD in this cohort. 

 

Co-existence 
Cases 

n = 5 

LOXHD1/X 3 

LOXHD1/S 2 

Table 5.8 Relationship between the LOXHD1 variants and the CTG18.1 
trinucleotide repeat in FECD cases.  

 

5.2.3.8 Recruitment of endothelium-checked controls and 

additional FECD cases 

 

The analysis of LOXHD1 variants and TCF4 expansion in 56 patients 

(Sections 5.2.3.2 to 5.2.3.7) was written up in a manuscript and submitted for 

publication. The reviewers were positive about many aspects of the study, but 

felt that the number of cases in the LOXHD1 part of the study was inadequate 

to confidently refute the findings of the original study. Additionally, they were 

critical of the lack of controls that had been examined for endothelial disease. 

The ECACC controls used for the TCF4 analysis were commercially available, 

but were not age-or sex-matched and had not had their corneas examined. 

Therefore, it was feasible that a proportion of the control individuals who 

carried the TCF4 expansion would go on to develop FECD. Cognisant of this 
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potential weakness in study design, 83 age-matched controls with healthy 

endothelium were identified from Leeds Teaching Hospitals Trust NHS 

Cataract Clinics by Consultant Ophthalmologist, Mr John Buchan and 

recruited at St. James’s University Hospital, Leeds. This control group had a 

mean age at venesection of 76.7 +/- 7.7 years (range 56 – 93 years old) and 

52% (43/83) were female. 

 

During this time, further recruitment of 61 additional FECD cases had also 

taken place onto the NIHR portfolio project UKCRN 11297. In total, the FECD 

cohort now included 117 patients, of whom 65% (71/117) were female and the 

mean age at venesection was 70.8 +/- 9.2 years (range 48-94 years).   

 

The publication of the TCF4 RNA foci experiments (Du et al., 2015, Mootha et 

al., 2015) (Section 5.3.2) provided a clear mechanism of disease for 

mutations in this gene and cemented the decision to further analyse the TCF4 

mutation spectrum in the full cohort of cases and newly-recruited controls. 

This was therefore prioritised over further experiments to assess LOXHD1 

mutation spectrum in the case/control cohort. 

 

5.2.3.9 Genotyping of the TCF4 intronic polymorphism, rs613872, 

and CTG18.1 trinucleotide repeat in the full cohort of 117 

FECD cases and 83 age-matched, endothelium-checked 

controls 

 

The additional 61 FECD samples and 83 endothelium-checked controls were 

genotyped for the TCF4 intronic polymorphism, rs613872, and CTG18.1 

trinucleotide repeat as described before (Sections 5.2.3.2 to 5.2.3.7) and the 

data combined with the previous study to increase its power. A summary of 

the results is shown in Table 5.9. TCF4 rs613872 and CTG18.1 genotypes for 

all patients in the case/control cohort are listed in Appendix VII. 

 

It was observed that 77.2% (85/117) of the FECD cases in the study have at 

least one expanded CTG18.1 allele compared with only 6.0% (5/83) and 
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10.9% (21/192) in the endothelium-checked subjects and the ECACC controls 

respectively. This was statistically significant (P = 1.95 x 10-18 and 8.43 x 10-28 

with odds ratios of 23.20 and 12.47 respectively. The significantly greater 

values between the cases and the different controls used to perform the 

analysis highlights the value in selecting controls that have had their 

endothelium checked. These findings also show that the CTG18.1 expanded 

allele of TCF4 appears to be a major risk allele for FECD in Caucasians. The 

controls were in HWE, but the cases were not. Linkage disequilibrium 

between the rs613872 SNP and the CTG18.1 was 0.79 as calculated by r2 

suggesting that these alleles were inherited together.  



 128 

A.  

Cases Controls

n = 117 n = 83

GG 21 0 5.45x 10 !"14 6.113 (3.646 – 10.25)

GT 71 22

TT 25 61

XX 13 0 1.95x 10 !"18 23.2 (9.181 – 58.64)

SX 72 5

SS 32 78

P OR (95% CI)
rs

61
38

72
C

TG
18

.1
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B.  

 

 

Cases Controls

n = 117 n = 192

GG 21 7 3.384x 10	-15 4.263 (2.958 – 6.145)

GT 71 55

TT 25 130

XX 13 0 8.43x 10 -28 12.46  (7.473 – 20.76)

SX 72 21

SS 32 171

P OR (95% CI)

rs
61

38
72

C
TG

18
.1

 
Table 5.9 Summary of the intronic SNP rs613872 and CTG18.1 genotyping on the full cohort of FECD cases and controls. The subjects 
were categorised for rs613872, according to their G/T genotyped allele status, and for CTG18.1, according to the presence (X) or absence (S) 
of the trinucleotide expanded allele. Caucasian controls were recruited in St James’s University Hospital Cataract Clinics (A).  As a comparison 
the genotyping data from the ECACC human random control group was included (B).  
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5.2.4  Recruitment of two further local FECD families 

 

Two further families, FECDWAK and FECDBAR, were identified at 

Pinderfields Hospital, Wakefield (Figure 5.11 and Figure 5.12) by Mr Andrew 

Chung, Consultant Ophthalmologist at Pinderfields Hospital. The recruitment 

of the family members took place between September 2013 and September 

2015. 

 

FECDWAK had five affected individuals in generation II. The brother of the 

proband was managed clinically by Mr James Ball (JLB) in SJUH and had 

undergone bilateral DSEKs in 2008. Unaffected individuals from generation III 

were recruited at a later point in the study.  

 

The son of the FECDBAR proband, individual III:28, was referred from 

Pinderfields Hospital to St James’s University Hospital for an endothelial graft 

in 2015. DMEKs were carried out by JLB in April and July 2015 to the right 

and left eyes respectively. His daughter IV:1, aged 28, accompanied him to 

his follow-up appointments and expressed some concerns about her vision. 

She was examined and noted to have FECD. Both her and her asymptomatic 

half-brother IV:II, who was phenotypically normal when examined at the slit-

lamp, were recruited, sampled and underwent specular microscopy. The 

specular microscopy images of both grandchildren of the proband are shown 

in Figure 5.13. 
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Figure 5.11 Pedigree of the FECD family FECDWAK. Family members for whom DNA was available are labelled. Individuals from generation 
II were recruited initially, followed by individuals in generation III. The arrow indicates the proband. Individuals in [ ] brackets indicated that the 
offspring were adopted. The dashed line indicates that the parents were the adoptive parents. 

 

I 

II 

III
III



 132 

 

 
Figure 5.12 Pedigree of the FECD family FECDBAR. Family members for whom DNA was available are labelled. Individuals from generation 
II and III were recruited 2013-2014. The two individuals from generation IV were recruited in September 2015. The arrow indicates the proband. 

 



 133 

 

 
Figure 5.13 Specular microscopy scans of individuals IV:1 and IV:2 from 
FECDBAR family. The SM scan of IV:1 shows multiple gutatta with associated loss 
of endothelial cells consistent with FECD. The SM scan of IV:2 exhibits the normal 
arrangement of densely packed polygonal endothelial cells (Photos courtesy of Mr 
James Ball, Consultant Ophthalmic Surgeon, St James’s University Hospital, Leeds). 

 
 

5.2.5 Genotyping the multiplex FECD families for TCF4 risk alleles of 

SNP rs613872 and the CTG18.1 trinucleotide repeat 

 

Given that the TCF4 CTG18.1 expansion is a common variant in FECD 

patients (Wieben et al., 2012) and has been shown to segregate with FECD in 

families (Mootha et al., 2014), all members of the three families for whom 

DNA was available were tested for the TCF4 rs613872 SNP and the CTG18.1 

trinucleotide repeat as described before (Sections 5.2.3.5 to 5.2.3.9). 

 

The results for the FECDBRI family are summarised in Figure 5.14. All 

affected individuals in the family possessed the rs613872 TT genotype. The 

CTG18.1 expansion was also absent in all individuals that were tested 

suggesting that the cause of FECD in this family is unknown.  

 

The results for the FECDWAK family are summarised in Figure 5.15. All the 

affected individuals possessed the rs613872 G allele and the CTG18.1 
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expansion that predisposes to FECD onset. Two of the affected individuals 

were found to be homozygous for the expansion. There was no clear 

phenotypic difference in terms of disease severity or age of onset of the 

FECD in those who had a single expanded allele when compared with those 

who had two expanded alleles. There were unaffected cases in generation III 

of FECDWAK who possessed the CTG18.1 expansion but were not old 

enough to manifest signs or symptoms of FECD.  

 

The results for the FECDBAR family are summarised in Figure 5.16. Most of 

the affected individuals were found to possess the rs613872 G allele and a 

CTG18.1 expansion that could account for their FECD phenotype, with the 

exception of one subject who has an rs613872 TT genotype and no expanded 

alleles. It was concluded that this individual with no expanded alleles was 

likely to be a phenocopy for which the cause of FECD is unknown. Following 

the clinical analysis of FECD affected female IV.1 and her unaffected cousin 

IV.2, both were found to be heterozygous for the rs613872 G allele and the 

CTG18.1 expansion, suggesting that the unaffected cousin may be at risk of 

developing FECD at a later stage in life. It was also noted in this pedigree that 

affected family members with a TCF4 CTG18.1 expanded allele existed in 

three successive generations and that the FECD phenotype appeared to 

present at an earlier age at each generation.  

 

On the basis of this segregation analysis, it was concluded that the TCF4 

CTG18.1 expanded allele accounted for the FECD in FECDWAK and 

FECDBAR. In FECDBRI no CTG18.1 expansion was detected, therefore the 

causative mutation remained unknown and warranted further work.  
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Figure 5.14 Segregation of TCF4 rs613872 and the CTG18.1 trinucleotide repeat in FECDBRI. rs613872 is represented by the genotypes 
TT, TG or GG. SS = no expanded allele, SX = one expanded allele and XX = two expanded alleles. The arrow represents the proband.  
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Figure 5.15 Segregation of TCF4 rs613872 and the CTG18.1 trinucleotide repeat in FECDWAK. rs613872 is represented by the genotypes 
TT, TG or GG. SS = no expanded allele, SX = one expanded allele and XX = two expanded alleles. The individual in brackets denote that 
offspring were adopted. The arrow represents the proband.  
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Figure 5.16 Segregation of TCF4 rs613872 and the CTG18.1 trinucleotide repeat in FECDBAR. rs613872 is represented by the genotypes 
TT, TG or GG. SS = no expanded allele, SX = one expanded allele and XX = two expanded alleles. The part of the pedigree containing 
recruited patients is shown. The arrow represents the proband.  
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5.2.6 Next Generation Sequencing 

 

To assist in finding mutations in genes causing FECD in the recruited families 

and cohort of FECD cases, RNA sequencing of normal corneal tissue was 

attempted to determine the normal corneal expression. 

 

5.2.6.1 RNA-seq analysis of the normal corneal endothelium 

 

Determining which genes are expressed in the normal corneal endothelium 

would provide a useful data set with which to prioritise candidate genes for 

analysis in inherited diseases of the corneal endothelium. A study by Chng 

and co-workers took this approach to identify the genes expressed in corneal 

endothelial cells from young and old research-grade donors tissue (tissue 

unsuitable for corneal grafting) as well as from cell culture, by RNA extraction 

using a Qiagen RNeasy column, then performing RNA sequencing (Chng et 

al., 2013).  

 

This study attempted a similar analysis except that the tissue used here was 

corneal endothelial and epithelial/stromal tissue remaining from lamellar graft 

surgery (endothelial tissue remaining when the epithelium and anterior stroma 

was utilised for corneal grafting). This was collected from corneal operating 

theatres at SJUH and immediately stored in RNAlater. RNA was extracted 

simultaneously using 2 methods. These were either using the Trizol method 

according to manufacturer’s instructions or the RNAeasy Plus Universal 

Minikit (Qiagen) (section 2.14). 

 

Following Trizol extraction of 6 tissue samples, an aliquot of the RNA was 

subjected to reverse transcription PCR (RT-PCR) using primers against a 

ubiquitous housekeeping gene, p53, as described in section 2.14. A sample of 

the PCR product was analysed by agarose gel electrophoresis (Figure 5.17). 

The gel shows that no band could be seen for the endothelial samples, 

indicating the absence of a PCR product, which in turn shows that the RNA 
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extraction was unsuccessful. However, the presence of a band for PCR 

derived from the epithelial/stromal tissue confirms that RNA had been 

extracted from those samples. 

 

 
Figure 5.17 Agarose gel showing PCR amplification of cDNA generated by 
reverse transcription RNA from endothelial and epithelial/stromal tissue. L = 
Ladder, Lane 1 = Genomic DNA expected band size 1056bp, Lanes 2-7 = 
Endothelial samples, Lanes 8-13 Epithelial/Stromal Samples, RNA expected band 
size 407bp. NC = No DNA control. No band is visible in Lanes 2-7. There is a visible 
band in lanes 8-11 and 13. 

 

As a further verification, the RNA samples were run on an Agilent 2100 

Bioanalyser, as this has the capacity to detect very small amounts of RNA 

(Figure 5.18). The electropherogram traces indicated that there was 

insufficient RNA extracted from the corneal endothelial samples to proceed 

with RNA sequencing. The RNA Integrity number (RIN) helps to estimate the 

integrity of the total RNA and is determined by the whole electrophoretic trace 

rather than just the ratio of the ribosomal bands alone. It can be used to 

directly compare the RNA integrity of different RNA samples.  

 

Following RNA extraction using the RNAeasy Plus Universal Minikit (Qiagen) 

on 6 further samples and Bioanalyser measurements, the total RNA 

concentration was 2ng/μl, which again was inadequate to proceed with RNA 
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sequencing. Therefore, RNA sequencing of corneal endothelial samples was 

not possible. 

 

One possible explanation for this was that the RNA had degraded during the 

time it was stored in RNAlater. Therefore RNA extractions were carried out on 

6 freshly dissected bovine endothelial samples (section 2.14) using the 

RNAeasy Plus Universal Minikit (Qiagen). Although the RNA concentrations 

were greater than detected in human endothelium, average 8ng/μl, this was 

the total RNA, a proportion of which would be ribosomal RNA.  

 

 

               A. 

 
               B. 

 
Figure 5.18 Bioanalyser electropherogram traces for the detection of RNA 
concentration and quality. The two samples are (A) an endothelial corneal tissue 
sample at an RNA concentration of 3μg/l and RNA Integrity Number (RIN) not 
detectable, and (B) an epithelial/stromal corneal tissue sample at 35ng/μl with RIN 
8.5. FU = Fluoresence units, nt = nucleotide.  
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5.2.6.2 Whole Exome sequencing of FECD Families 

 

The whole exome sequencing of FECD family members was carried out over 

a number of years as samples became available and in small batches to 

reduce the cost. The WES analysis of FECDBAR and FECDWAK was 

performed alongside the TCF4 CTG18.1 expansion analysis described in 

section 5.2.5. As it was concluded from this that the TCF4 trinucleotide repeat 

expansion was causative in these two families, an assessment of the genes 

known to cause FECD was carried out. No further analysis of WES data was 

performed in these two families. 

 

 

5.2.6.2.1 Whole Exome Sequencing Library Preparation and 

Evaluation of the known FECD genes in the three FECD 

families 

 

FECDBRI samples II:3, II.5 and II:10 were processed commercially by 

Otogenetics Corporation whereas samples II:9 and II:2 were processed by the 

author and run on the in-house sequencer (section 2.15). Additionally, 

FECDWAK II:6, II:8, II:10, II:17, II:19, II:21 and FECDBAR II:17, II:19, II:24 

III:28 and III:32 were sequenced in-house.   

 

A representative Bioanalyser trace after the different stages of library 

preparation is shown in Figure 5.19. 
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Figure 5.19 Bioanalyser traces of sheared genomic DNA from the different 
stages of library preparation prior to whole exome sequencing for 
FECDBAR II:17. The stages of library preparation are (a) after shearing, (b) after 
amplification and (c) after hybridisation of the DNA during library preparation for 
exome sequencing. FU = Fluorescence units, bp = base pairs 

 

The resulting FASTQ next generation sequencing output files were analysed 

as detailed in Section 2.22, looking for variants common to all the affected 

cases in the family but absent from the unaffected case if there was one 

sequenced from the family. 

 

Analysis of shared variants was carried out using two methods. Firstly, 

following annotation of the variants using Annovar 

(http://annovar.openbioinformatics.org/en/latest/), the individual lists of 

annotated variants from affected individuals from the same family were 

merged so that variants shared by affected individuals could be analysed 

using the Agile Variant Selector (software designed by Dr Ian Carr, LIMM 

Bioinformatician). This was carried out on all three families. 

 

Pipeline 2 was a more advanced pipeline developed in 2015 after refinements 

were made to Pipeline 1 (Section 2.21) and also incorporated CADD scores at 

the annotation stage, therefore the variant list was further prioritised based on 

this. Pipeline 1 utilised Bowtie2 for the alignment whereas in pipeline 2 
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Novoalign was used. Additionally, Pipeline 2 incorporated the use of the VCF 

on VCF perl script (https://github.com/gantzgraf/vcfhacks) developed by Dr 

David Parry. This script merged the individual VCF files into a single file of 

shared variants, which was then subsequently annotated using Annovar. Both 

pipelines allowed the subtraction of variants from an unaffected individual 

from the total list of shared variants, which was carried out in FECDBRI. Read 

depth was not used for filtering purposes but was taken into account for 

prioritisation of variants. This was carried out on FECDBRI. 

 

Prior to filtering the refined list, variants in the known genes that cause FECD 

COL8A2, SLC4A11, TCF4, TCF8, LOXHD1 and AGBL1 were selected in all 

three families  

 

For FECDBRI, there were 39 variants present, two of which were in the 

coding regions or splice site recognition signal in SLC4A11 (Table 5.10A). 

One was a synonymous variant c.G639A: p.S213S and the other was a non-

synonymous variant c.C77G: p.P26R with a frequency of 0.64 in 1000G, 

graded as non-pathogenic by the pathogenicity prediction tools Polyphen, 

SIFT and Mutation Taster. These variants were therefore excluded. Given the 

tentative linkage of FECDBRI to chromosome 18 (Section 5.2.3.1), an intronic 

TCF4 A>G change at position 53,177,742 from the top of chromosome 18 

(according to the human Genome Browser version, hg19) was also 

highlighted. This variant, termed rs192075715 in the dbSNP database, has a 

frequency of 0.32% in the 1000 Genomes database.  

 

Primers were designed across rs192075715 that were used in the PCR to 

confirm the segregation of this variant in all available FECDBRI family 

members (Appendix IV). This variant was found to segregate with FECD in 

FECDBRI and was also present in the individual of unknown disease status 

II:7 (Table 5.12). 

 

As this intronic variant rs192075715 was only 68 base pairs away from an 

exon, the possibility that it might affect splicing was considered. The wild type 

and variant sequences entered into the BGBP splicing prediction website 
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(http://www.fruitfly.org/seq_tools/splice.html) (Section 2.17.7) predicted that 

there was no effect on splicing. 

 

In FECDWAK, there were 96 variants present in the known genes, all of which 

were intronic except for one synonymous coding variant in TCF4 

rs143944746 (0.09% frequency) (Table 5.10B). All variants were present in 

the 1000 genomes and/or EVS databases at a frequency greater than 2% 

except for two variants in TCF4; rs143944746 and a TCF4 intronic SNP at 

position 53173173 T>A rs17512480 (frequency 1%). 

 

In FECDBAR, there were 199 variants in the genes known to be causative for 

FECD, 20 of which were coding variants (Table 5.10C). Of these 20, 7 were 

common non-synonymous SNPs graded as non-pathogenic by the 

pathogenicity prediction tools Polyphen, SIFT and Mutation Taster. One 

intronic SNP in TCF4 G>A at position 52942827 (rs1788027), which had a 

1000Genome frequency of 50% was common to both FECDWAK and 

FECDBAR.  

 
As the CTG18.1 expanded allele was found to segregate with the FECD 

phenotype in FECDBAR and FECDWAK (section 5.2.5), and as no clear 

pathogenic variants were detected, no further analysis of the WES data on 

these families was carried out in these families. FECBRI was selected for 

further analysis of variants from WES. 
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A. 
 

   
Chr Start End Ref Alt Gene.refGene ExonicFunc.refGene Otherinfo AAChange.refGene EVS 1000g snp137 SIFT Polyphen2 MutationTaster
chr20 3214581 3214581 C T SLC4A11 synonymous3SNV het NM_032034:exon5:c.G639A:p.S213S,SLC4A11 0.186222 0.16 rs3803956 Unknown Unknown Unknown
chr20 3218634 3218634 G C SLC4A11 nonsynonymous3SNV het NM_001174090:exon1:c.C77G:p.P26R Unknown 0.64 rs3810562 0.66 Benign Polymorphism3(Automatic)  

 
   B. 
 

Chr Start End Ref Alt Gene.refGene ExonicFunc.refGene Otherinfo AAChange.refGene EVS 1000g snp137 SIFT PolyPhen2 MutationTaster
chr18 52901846 52901846 C G TCF4 synonymous4SNV het NM_001243226:exon17:c.G1725C:p.P575P 0.001922 0.0009 rs143944746 Unknown Unknown Unknown  

    
   C. 
 

Chr Start End Ref Alt Gene.refGene ExonicFunc.refGene Otherinfo AAChange.refGene EVS 1000g snp137 SIFT PolyPhen2 MutationTaster
chr15 86800209 86800209 C T AGBL1 synonymous3SNV hom NM_152336:exon7:c.C723T:p.P241P 0.645368 0.52 rs1353578 Unknown Unknown Unknown
chr15 86806029 86806029 C T AGBL1 synonymous3SNV hom NM_152336:exon9:c.C852T:p.D284D 0.691817 0.56 rs1566088 Unknown Benign3 Unknown
chr15 86807542 86807542 C T AGBL1 synonymous3SNV hom NM_152336:exon10:c.C1002T:p.A334A 0.160255 0.12 rs10520617 Unknown Unknown Unknown
chr15 86807843 86807843 T C AGBL1 nonsynonymous3SNV hom NM_152336:exon10:c.T1303C:p.S435P 0.169 0.12 rs11857527 Tolerated Unknown Polymorphism
chr15 86807884 86807884 A C AGBL1 synonymous3SNV hom NM_152336:exon10:c.A1344C:p.V448V 0.174007 0.12 rs11856833 Unknown Unknown Unknown
chr15 86814866 86814866 A G AGBL1 synonymous3SNV hom NM_152336:exon14:c.A1866G:p.L622L 0.731923 0.64 rs11858435 Unknown Benign Unknown
chr15 86940622 86940622 T C AGBL1 synonymous3SNV het NM_152336:exon17:c.T2262C:p.T754T 0.607208 0.7 rs4362360 Unknown Benign Unknown
chr15 86940673 86940673 C T AGBL1 synonymous3SNV het NM_152336:exon17:c.C2313T:p.T771T 0.109367 0.09 rs1367647 Unknown Unknown Unknown
chr15 87217613 87217613 A G AGBL1 nonsynonymous3SNV hom NM_152336:exon22:c.A3029G:p.Q1010R 0.8897 0.87 rs8028043 Tolerated Unknown Polymorphism
chr15 87531281 87531281 A C AGBL1 synonymous3SNV hom NM_152336:exon23:c.A3147C:p.T1049T 0.806037 0.82 rs1006030 Unknown Unknown Unknown
chr18 44063598 44063598 G A LOXHD1 nonsynonymous3SNV het NM_144612:exon39:c.C6107T:p.A2036V NA 0.41 rs1377016 Tolerated Benign Polymorphism
chr18 44126909 44126909 T C LOXHD1 nonsynonymous3SNV het NM_144612:exon22:c.A3463G:p.R1155G 0.771572 0.7 rs1893566 Tolerated Unknown Polymorphism
chr18 52895531 52895531 T C TCF4 synonymous3SNV het NM_001243226:exon20:c.A2247G:p.S749S 0.364678 0.38 rs8766 Unknown Unknown Unknown
chr18 53303101 53303101 C G TCF4 nonsynonymous3SNV hom NM_001243226:exon1:c.G28C:p.A10P 0.998774 1 rs611326 Tolerated Unknown Polymorphism
chr20 3210301 3210301 G A SLC4A11 synonymous3SNV het NM_032034:exon13:c.C1659T:p.N553N,SLC4A11 0.093803 0.06 rs41281860 Unknown Unknown Unknown
chr20 3211235 3211235 C T SLC4A11 synonymous3SNV het NM_032034:exon11:c.G1389A:p.T463T,SLC4A11 0.090804 0.06 rs6084312 Unknown Benign Unknown
chr20 3214819 3214819 T G SLC4A11 synonymous3SNV het NM_032034:exon4:c.A481C:p.R161R,SLC4A11 0.480932 0.49 rs3827075 Unknown Unknown Unknown
chr20 3218563 3218563 T C SLC4A11 nonsynonymous3SNV het NM_001174090:exon1:c.A148G:p.R50G NA 0.06 rs79057061 Tolerated Benign Polymorphism3(Automatic)
chr20 3218634 3218634 G C SLC4A11 nonsynonymous3SNV het NM_001174090:exon1:c.C77G:p.P26R NA 0.64 rs3810562 Tolerated Benign Polymorphism3(Automatic)  

Table 5.10 The list of coding variants in the FECDBRI, FECDWAK and FECDBAR affected cases in genes known to cause FECD. The 
databases used were Polyphen2 (HDIV), SIFT, PROVEAN, and Mutation Taster. Additionally their frequency in the 1000 genomes and EVS 
databases are shown (Genome Browser version hg19). 
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5.2.6.2.2  Analysis of WES in FECDBRI to identify the pathogenic 

mutation causing FECD 

 

The refined list containing variants shared by all the affected cases in family 

FECDBRI was filtered by removing the homozygous variants, followed by the 

synonymous and intronic variants. Spice site variants at positions +/-1-5, 

along with exons and exon/splicing variants (variants within the exon but close 

to the intron/exon boundary) were included in the analysis. Variants that had a 

frequency of more than 2% within EVS or 1000 Genomes databases were 

also excluded. The reason for choosing this threshold was that as TCF4 

accounted for the majority of FECD, it was felt likely that the remainder of 

variants would be rare. This left a list of 14 variants, which are shown in Table 

5.11A. The analysis was also repeated using the more advanced Pipeline 2 in 

2015, and after applying CADD scores to the list of variants, the ones with a 

CADD score greater than or equal to 10 were retained. 5 variants were 

highlighted (Table 5.11B). These were all variants that had been found using 

Pipeline 1. This included variants in Oxysterol-binding Protein-like Protein 1A 

(OSBPL1A) c.115_116insAATT: p.C39_K40delinsX, Tandem C2 domains, 

nuclear (TC2N) c.T962C: p.I321T, Tetratricopeptide repeat domain 40 

(TTC40) c.T1814C: p.L605P, URB1 Ribosome biogenesis 1 Homolog (URB1) 

c.C2126T: p.A709V and Crystallin, Zeta-like 1 (CRYZL1) c.C461G: p.A154G. 
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A.  
Alt Gene.refGene ExonicFunc.refGene Otherinfo AAChange.refGene EVS 1000g snp137 SIFT Polyphen2 MutationTaster
G TTC40 nonsynonymous	SNV het NM_001200049:exon15:c.T1814C:	p.L605P Not	present 0.0005 rs146983053 Damaging Probably	Damaging Deleterious
A TDRD3 nonsynonymous	SNV het NM_030794:exon13:c.G1850A:	p.G617D 0.000846 0.0009 rs140870765 Tolerated Benign Deleterious
G SLAIN1 nonsynonymous	SNV het NM_001242868:exon4:c.C1069G:	p.P357A 0.001768 0.0023 rs144139933 Tolerated Damaging Deleterious
G TC2N nonsynonymous	SNV het NM_001128596:exon9:c.T962C:	p.I321T 0.000231 0.0005 rs148609061 Damaging Benign Deleterious
A URB1 nonsynonymous	SNV het NM_014825:exon17:c.C2126T:	p.A709V Not	present 0.0005 rs190315797 Tolerated Benign Polymorphism	(Automatic)
A RPUSD3 nonsynonymous	SNV het NM_173659:exon8:c.C799T:	p.R267C 0.002691 0.0023 rs146799821 Tolerated Benign Deleterious
A IL17RC nonsynonymous	SNV het NM_153460:exon11:c.G970A:	p.A324T 0.013314 0.01 rs115461448 Tolerated Damaging Polymorphism	(Automatic)
- HOMEZ nonframeshift	deletion het NM_020834:exon2:c.1634_1636del:	p.545_546del Not	present Not	present rs148005528 NA NA Unknown
A KCNJ12,KCNJ18 nonsynonymous	SNV het NM_021012:exon3:c.C1206A:	p.D402E Not	present Not	present rs2917720 Tolerated Benign Polymorphism	(Automatic)
T KCNJ12,KCNJ18 nonsynonymous	SNV het NM_021012:exon3:c.G1214T:	p.S405I Not	present Not	present rs73979902 Tolerated Benign Deleterious
G KCNJ12,KCNJ18 nonsynonymous	SNV het NM_021012:exon3:c.A1289G:	p.E430G Not	present Not	present rs5021699 Damaging Damaging Deleterious

AATT OSBPL1A stopgain	SNV het NM_080597:exon2:c.115_116insAATT:	p.C39_K40delinsX 0.002796 Not	present NA Unknown NA Unknown
C CRYZL1 nonsynonymous	SNV het NM_145858:exon7:c.C461G:	p.A154G Not	present Not	present NA Tolerated Possibly	Damaging Deleterious
C RP1L1 nonsynonymous	SNV het NM_178857:exon4:c.C3956G:	p.A1319G Not	present Not	present rs4840501 Tolerated Benign Polymorphism	(Automatic)  

 

   B.  

 
symbol variant gene feature allele consequence cds_position protein_position amino_acids codons existing_variation exon CaddPhredScore
OSBPL1A c.115_116insAATT:	p.C39_K40delinsX ENSG00000141447 ENST00000319481 AATT stop_gained&frameshift_variant 115-116 39 C/*LX tgc/tAATTgc ~rs74793804 2/28 35
TC2N c.T962C:	p.I321T ENSG00000165929 ENST00000435962 G missense_variant 962 321 I/T aTt/aCt rs148609061 9/12 25.2
TTC40 c.T1814C:	p.L605P ENSG00000171811 ENST00000368586 G missense_variant 1814 605 L/P cTc/cCc rs146983053 15/58 25
URB1 c.C2126T:	p.A709V ENSG00000142207 ENST00000382751 A missense_variant 2126 709 A/V gCg/gTg rs190315797 17/39 23
CRYZL1 c.C461G:	p.A154G ENSG00000205758 ENST00000381554 C missense_variant 461 154 A/G gCa/gGa 7/13 21  

Table 5.11 Filtered variants in FECDBRI family common to the affected cases but absent from the unaffected member after whole 
exome sequencing using A. Pipeline 1 (annotated by Annovar) and B. Pipeline 2 (annotated by VEP) in FECDBRI. Pipeline 2 was a 
more advanced pipeline developed in 2015 and incorporated the use of CADD scores (http://cadd.gs.washington.edu). The 5 variants in B were 
all seen in A. and all had CADD scores of above 10 (Genome Browser version hg19).
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The variants were Sanger sequenced in the FECDBRI family to confirm their 

presence in the family members that were exome sequenced and also to 

assess segregation in other family members (Table 5.12). The findings 

showed that all of the variants segregated perfectly with those known to have 

FECD, some segregated with the individual with an unknown disease status 

from generation II, individual II:7. Additionally, family members from 

generation III and IV might have been asymptomatic mutation carriers who 

were not yet old enough to have developed the condition, and so caution 

ought to be considered in interpreting the analysis.  

 

 
Table 5.12 Segregation analysis of the 5 coding variants identified in the 
FECDBRI family after exome sequencing. Affected individuals are highlighted in 
green, unaffected in grey and those of uncertain diagnosis in pink. The variant 
residues are highlighted in blue. Segregation of the intronic SNP, rs192075715, is 
also shown as a comparison. All variants shown are heterozygous. 

 

The OSBPL1A variant c.115_116insAATT: p.C39_K40delsinX represents a 

null variant whereas the other 4 variants are missense changes. Protein 

sequence alignments of the residues affected by these missense changes in 

orthologues highlight that the normal residue in CRYZL1 is fully conserved 

through evolution while the residues altered by other variants are not (Figure 

5.20). It is worth highlighting that CRYZL1, URB1 and OSBPL1A were found 

to be expressed at significant levels in corneal endothelial cells whereas 

TC2N and TTC40 were not (Table 5.14). OSBPL1A is on chromosome 18, but 

not within or near the published locus (Sundin et al., 2006a). The other 

variants were not within the other published loci (Sundin et al., 2006b, 

Riazuddin et al., 2009, Riazuddin et al., 2010a). Based on this evidence, it 

seemed likely that CRYZL1 and OSBPL1A were the best gene candidates for 

further screening. However due to time constraints, Sanger sequencing in an 

FECDBRI
rs1920757150 OSBPL1A0

c.115_116insAATT:p.C39_K40
delinsX

TC2N0
c.T962C:p.I321T

TTC400000
c.T1814C:p.L605P

URB10
c.C2126T:p.A709V

CRYZL10
c.C461G:p.A154G

II:2 AA WT TT TT CC CC
II.3 AG INS TC TC CT CG
II:4 AA WT TT TT CC CC
II:5 AG INS TC TC CT CG
II:7 AG INS TC TC CC CC
II:9 AG INS TC TC CT CG
II:10 AG INS TC TC CT CG
III:5 AG WT TT TT CT CG
III:6 AA INS TT TT CT CG
III:8 AA WT TC TT CC CC
IV:1 AA WT TT TT CT CG
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FECD case/control cohort was not possible. A summary of these variants is 

provided below. 

 

5.2.6.2.3  Oxysterol-binding Protein-like Protein 1A 

 

Oxysterol-binding Protein-like Protein 1A (OSBPL1A) (MIM*606730) has 28 

exons and encodes a member of the oxysterol-binding protein (OSBP) family, 

a group of intracellular lipid receptors (Jaworski et al., 2001). It is differentially 

regulated by FOXC1, which has a role in cell viability and resistance to 

oxidative stress in the eye, and has been implicated in Axenfeld-Rieger 

syndrome, a condition characterised by anterior segment malformations in the 

eye and glaucoma (Berry et al., 2008). As detailed above, it has been shown 

to be expressed in the corneal endothelium (Chng et al., 2013) (Table 5.14). 

The insertion/frameshift variant identified has an allele frequency of 0.18% in 

ExAc (http://exac.broadinstitute.org). It was originally assigned a reference of 

rs74793804 but was removed from dbSNP in 2013 due to mapping errors 

(http://www.ncbi.nlm.nih.gov/SNP/).  

 

5.2.6.2.4  Crystallin, Zeta-like 1 

 

Crystallin, zeta(quinone reductase)-like 1 (CRYZL1) (MIM*603920) is a 13 

exon gene on chromosome 21 which encodes a protein that has sequence 

similarity to zeta crystallin, also known as quinone oxidoreductase (Kim et al., 

1999). The missense variant identified is present in ExAc 

(http://exac.broadinstitute.org) at a frequency of 0.0001%, and the transcript is 

expressed in the corneal endothelium (Chng et al., 2013) (Table 5.14). A 

study assessing the differential response of lens and corneal crystallins in 

degenerative corneas suggested a potential role of crystallins in the 

maintenance of corneal clarity, although the study concluded that lens 

crystallins might play a greater role in this than corneal crystallins. (Gong et 

al., 2012). 
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Figure 5.20 Protein sequence alignment of WES variants segregating in 
FECDBRI with orthologues. A. URB1 c.C2126T:p.A709V, B. CRYZL1 
c.C461G:p.A154G, C. TC2N c.T962C:p.I321T and D TTC40 c.T1814C:p.L605P. 
Analysis was performed using Homologene. Each variant is highlighted in red and 
the surrounding amino acids that are identical to the human transcript are shaded in 
grey. Accession numbers for URB1 are NP_055640.2 (human), XP_531425.3 
(chimp), XP_005638888.1 (dog), NP_001192909.1(cow), NP_083773.1 (mouse), 
NP_001178590.1 (rat), XP_003640527.1 (chicken), XP_002664599.3 (zebrafish), 
NP_001131087.1 (frog)   for CRYZL1 are NP_114423.1 (human), XP_531441.3 
(chimp), XP_001090445.1 (monkey), XP_535585.1 (dog), NP_001030209.2  (cow), 
NP_598440.1 (mouse), NP_001013062.1 (rat), XP_004934579.1 (chicken), 
NP_001002633.1 (zebrafish), NP_001016084.1 (frog) for TC2N are 
NP_689545.1(human),XP_001145068.1 (chimp),XP_001091431.1(monkey), 
XP_547711.1(dog), NP_001180133.1 (cow), NP_001273293.1 (mouse), 
NP_001020323.1 (rat), XP_004941928.1 chicken, XP_005157017.1 zebrafish), 
XP_002933250.2(frog) and for TTC40 are  NP_001186978.2 (human), 
XP_003951835.1 (chimp), XP_005637957.1 (dog), XP_005225941.1 (cow), 
XP_006230566.1 (rat), XP_005157133.1 (zebrafish), XP_002936855.2 (frog). 
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5.2.6.2.5 ExomeDepth analysis of whole exome sequencing data 

from case II.9 in the FECDBRI family 

 

In order to investigate whether the causative mutation in affected cases of the 

FECDBRI family was a large copy number variation (CNV) or other structural 

variation that affects the coding region captured by exome sequencing, 

ExomeDepth analysis was carried out on the WES from affected case II:9. 

The FASTQ files were processed as described in Section 2 using Pipeline 1, 

up to and including the removal of duplicate reads by Picard (Table 2.2). The 

programme requires the exome samples to have good depth of coverage. The 

sample that met these requirements was sequenced in the Next Generation 

facility in Leeds. The other affected samples were sequenced at Otogenetics, 

and therefore had reduced depth of coverage compared to the data from 

individual II:9. For ExomeDepth, control samples were also required, 

preferably those run on the same Illumina sequencing lane as the test 

sample. The other 4 samples run on the same lane as individual II.9 were 

FECD samples from FECDBAR and FECDWAK. 

 

A list of Bayes Factor (BF) scores are shown in Table 5.13. The higher the BF 

score, the more confidence of the presence of a CNV. The BF score 

calculates the log10 of the likelihood of the testing data having a CNV relative 

to the normal copy number at that position using the control exomes. The BF 

does not however have a clearly defined threshold. 

 

The highest BF score in case II.9 was a heterozygous duplication at 

chromosome 10, positions 46,965,003-47,087,911 (hg19) that includes the 

start of SYT15, the entire GPRIN2 and end of NPY4R genes and 

encompasses 8 exons (Figure 5.21). It was noted that only SYT15 and 

GPRIN2 are both expressed in the corneal endothelium (Table 5.14) so any 

aberrant transcripts as a result of the duplication event could be considered 

candidates for FECD.  
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Figure 5.21 The genomic region identified to have a putative CNV in case II.9 from FECDBRI family. 
The interval with a putative CNV is chr10:46965003-47087911 as indicated on the Genome browser version hg19. This 122,909bp duplication 
encompasses the start of the SYT15, the entire GPRIN2 and the end of NPY4R genes.  
 
 
 
 

 
 
Table 5.13 ExomeDepth results of individual II:9 from the FECDBRI family. The variant with the highest BF score is shown in the top row. 
The read ratio of 1.41 indicates that this is a heterozygous duplication event encompassing 8 exons. None of the structural variants listed were 
present in the Conrad database (Conrad et al., 2010). 
 
 
 
 
 
 
 
 
 

start.p end.p Type nexons start end chromosome id BF reads.expected reads.observed reads.ratio Conrad.hg19 exons.hg19
21864 21871 duplication 8 46965003 47087911 chr10 chrchr10:46965003847087911 44.1 2912 4112 1.41 NA NA
154672 154692 deletion 21 32485517 32632844 chr6 chrchr6:32485517832632844 29.6 134 1 0.00746 NA NA
167146 167151 deletion 6 100331793 100336236 chr7 chrchr7:1003317938100336236 29.4 394 187 0.475 NA NA
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Table 5.14 RNA expression levels in old, cultured and young endothelia cells and stroma (Chng et al., 2013). Levels of expression in the 
corneal endothelium are shown for transcripts of genes containing candidate FECD causal variants identified in exome sequencing; OSPBL1A, 
CRYZL1 and URB1; or in Exomedepth analysis of WES; STY15 and GPRIN2. RPKM = Reads Per Kilobase of transcript per Million, RPM = 
reads per million 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

RefSeq&ID Gene&ID Total&Length Total&Count RPKM RPM Total&Count RPKM RPM Total&Count RPKM RPM Total&Count RPKM RPM
NM_018030( OSBPL1A( 3301 0 0.00 0.00 22 1.44 4.75 2 0.22 0.72 30 5.04 16.65
NM_145858( CRYZL1( 1697 0 0.00 0.00 43 5.47 9.28 98 20.73 35.17 2 0.65 1.11
NM_014825( URB1( 10769 0 0.00 0.00 50 1.00 10.79 1 0.03 0.36 4 0.21 2.22
NM_031912( SYT15( 5500 3 0.29 1.57 104 4.08 22.44 5 0.33 1.79 0 0.00 0.00
NM_014696( GPRIN2( 1820 0 0.00 0.00 1 0.12 0.22 10 1.97 3.59 0 0.00 0.00

Old&endothelial&cells Cultured&endothelial&cells Young&endothelial&cells Stroma
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5.3   Discussion 
 

FECD is a genetically heterogeneous disease, with mutations in COL8A2, 

SLC4A11, LOXHD1, TCF4, ZEB1 and AGBL1 having been identified as 

causative (Biswas et al., 2001, Vithana et al., 2008, Riazuddin et al., 2012, 

Wieben et al., 2012, Riazuddin et al., 2010a, Riazuddin et al., 2013). In this 

chapter, families and cases were examined to look for the genetic contributors 

to FECD. An assessment of the mutational load of LOXHD1 variants was 

carried out in cases and controls, and the results suggested that LOXHD1 

was not significant contributor to the FECD in the Yorkshire cohort. Whole 

exome sequencing (WES) was carried out on the affected members of 

FECDBRI, FECDBAR and FECDWAK. Additionally, unaffected family 

members of FECDBRI and FECDWAK were also selected for WES. Samples 

from FECDBAR and FECDWAK were analysed for variants in the known 

genes, however as both of these families were found to harbour a CTG18.1 

expansion which fully either (FECDWAK) or partially (FECDBAR) segregated 

with the disease, further analysis of WES variants focussed on FECDBRI in 

which a CTG18.1 expansion was not seen in any family member.  

 

5.3.1 Genetic contribution of LOXHD1 variant alleles causing FECD 
 

The FECD3 locus on chromosome 18q21.2-q21.32 was identified in 2006 

following genome- wide microsatellite linkage analysis on 3 families with 

multiple FECD affected members. The disease allele frequency was set very 

low at 0.0001. Significant linkage was detected using a dominant model of 

inheritance, taking into account non-penetrance and allowing for an 

phenocopy rate of 5% (Sundin et al., 2006a). However only one of the families 

individually reported in this study independently reached a significant lod 

score and is therefore the only one that can be used to define the locus 

boundaries.  LOXHD1, which maps close to (but not within the locus originally 

reported) the FECD3 locus, appeared to be a strong candidate for 

involvement in FECD. Riazuddin et al went on to report an enrichment of 
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mutations in their DNA cohort of 208 cases compared to 838 ethically-

matched controls (Riazuddin et al., 2012), implying that heterozygous 

LOXHD1 missense mutations were implicated in 7.2% of FECD cases.   

 

Work presented in this thesis included Sanger sequencing of the LOXHD1 

gene to screen for mutations in a cohort of 56 unrelated FECD patients. The 

results show that 6/112 (5.4%) potentially pathogenic LOXHD1 alleles were 

identified in FECD cases, whereas 38/934 (4.1%) pathogenic alleles were 

identified in the controls. The abundance of rare pathogenic LOXHD1 alleles 

identified in this study was therefore only modestly elevated at 1.33-fold in the 

FECD cohort compared to controls, considerably less than the 3.53-fold 

enrichment that was described before (Riazuddin et al., 2012) (Table 5.5). 

Riazuddin and colleagues began their analysis assuming Mendelian 

inheritance at this locus, as illustrated by use of linkage data under a 

dominant inheritance model and variant filtering criteria that exclude all 

changes present in the 1000 genomes database. Their conclusion is that 

LOXHD1 alleles are enriched in FECD cases but are nevertheless also 

present in controls, implying complex etiology for this relatively common 

condition. The identification of a rare mutation in familial cases, followed by 

the screening for the mutation in a complex cohort is a strategy that has been 

successfully employed in a previous study, which found a link between 

apolipoprotein E and Alzheimer’s Disease (Strittmatter et al., 1993). 

 

The study by Riazuddin et al (2012) Sanger sequenced a large gene in a 

relatively large patient cohort and also in controls, carried out cell-based 

functional assessments of key mutations, and provided evidence of LOXHD1 

corneal expression as well as altered expression in cornea from a patient, all 

of which are notable strengths. However, their rationale for screening 

LOXHD1 as a candidate gene was based on a study of dominant FECD 

families which showed linkage to the region 18q21.2-q21.32 (the FECD3 

locus (Sundin et al., 2006a)). The fact that they then only identified a LOXHD1 

coding sequence mutation in one of the three families poses questions as to 

whether LOXHD1 mutations account for the published FECD locus. It is 

possible that the other two families may have had a non-coding mutation in 
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LOXHD1, which would have been missed by their screening strategy.  

Though plausible, this could also imply that the two families without a 

LOXHD1 mutation may have had a mutation in another gene at the FECD3 

locus. Although rare, microheterogeneity has been reported in other genetic 

eye conditions (Toomes et al., 2004). However, in the more recent study 

(Riazuddin et al., 2012) it would appear that different microsatellite markers 

were used and the locus boundaries are broader compared with the original 

linkage study (Sundin et al., 2006a) and encompass the region 18q21.1 

where LOXHD1 is located. 

 

It must be acknowledged that the analysis described herein also has 

significant weaknesses. The cohort of 56 FECD patients is modest in size by 

comparison with the 207 cases tested by Riazuddin et al, so may be too 

under-powered to attain significant enrichment for a small effect size. 

Although both studies utilised database controls, the ethnically matched 

control samples from the 1000 Genomes database will undoubtedly include a 

small number of individuals who later go on to develop FECD. The Yorkshire 

endothelial-checked controls were not recruited and sampled until later in the 

study and were therefore not available at the time that the screen was 

performed. Even if these controls had been available, it would be costly both 

financially and in terms of time to screen a control cohort for LOXHD1 

variants. By contrast, the 192 control individuals used by Riazuddin et al were 

all aged over 60 and were phenotyped by slit lamp examination so it can be 

stated with certainty that they did not have FECD. The lower abundance of 

pathogenic LOXHD1 alleles found in the controls used in their study could 

therefore possibly reflect the exclusion of presymptomatic cases from their 

control population. It is, however, unclear whether these same controls were 

among the 288 control individuals sequenced for LOXHD1 at a later stage of 

their study, about whom no information on ethnicity, age or ophthalmic status 

was given. It was not explicitly stated that these were the same controls 

whose variants were listed in their report. Additionally, the prevalence of 

FECD is possibly higher in Europe than the US (Eghrari and Gottsch, 2010) 

and the control individuals analysed from the 1000 Genomes database, 

though all Caucasian, have been drawn from a variety of different populations, 
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so they may not be the best available match for FECD cases from the north of 

England.  

 

Another significant difference between the study by Riazuddin and colleagues 

and the study presented in this thesis is the assessment criteria for variant 

pathogenicity. Riazuddin et al used only a single bioinformatic software 

program, Polyphen2 (Adzhubei et al., 2010) to predict mutation pathogenicity, 

Of the two available versions of the Polyphen database 

(http://genetics.bwh.harvard.edu/pph2/), the HDIV model is the most suitable 

for looking for rare alleles in complex disease, and it was felt to be the most 

appropriate model to use in this study. Riazuddin et al (Riazuddin et al., 2012) 

did not state which model they used, and given the variation in results that the 

two versions produce, and the fact that this was the only pathogenicity 

prediction software used in the study, this could potentially produce variation 

in the results. The analysis presented in this chapter used four prediction 

programs, Polyphen2, SIFT (Ng and Henikoff, 2001), PROVEAN (Choi et al., 

2012) and Mutation Taster (Schwarz et al., 2010a) and included LOXHD1 

variants if they were predicted to be pathogenic by any one. 

 

Unlike Polyphen and SIFT, PROVEAN and Mutation Taster are able to 

process and score small indels as well as missense changes. However, since 

this analysis was performed, more comprehensive algorithms have been 

introduced and are now widely utilised. CADD scores can be used to grade 

nonsense, missense and splice site variants as well as those in intronic 

regions (Kircher et al., 2014). The Eigan score is the most recently published 

approach to the analysis of variant pathogenicity (Ionita-Laza et al., 2016). 

The authors state that this scoring system, which used a large set of variants 

in its development but no labelled training data set, performs better than 

CADD in discriminating between disease-causing and benign variants. Given 

the fact that different pathogenicity prediction tools utilised can give different 

pathogenicity gradings for the same variant, it seems prudent to utilise all of 

the available tools in deciding if a variant is potentially pathogenic.  
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All of the rare LOXHD1 variants described in the previous study (Riazuddin et 

al., 2012) were absent from the 1000 Genomes database whereas the ones 

described in this study were considered if their allele frequency was less than 

or equal to 4% in the databases. This less stringent approach was felt to 

better reflect the approximately 4% FECD frequency in Caucasians over the 

age of 40 years old in the general population (Lorenzetti et al., 1967). 

Furthermore, for the assessment of evolutionary conservation of the amino 

acid residues that were mutated in LOXHD1, numerous orthologues were 

listed in the report by Riazuddin et al (2012). The way that this data was 

presented suggested that the mutations were highly conserved. However, as 

Chimp, Orangutan, Rhesus and Baboon are all higher-order mammals from 

an evolutionary perspective, there seemed limited value in listing these in their 

evaluation. In the assessment of conservation presented in this thesis (Figure 

5.8), the putative LOXHD1 mutations had fewer organisms listed with a 

greater variation in species order, which made the analysis of evolutionary 

conservation more meaningful.  

 
Recessive mutations in LOXHD1 cause non-syndromic sensorineural hearing 

loss (ARNSHL) with defects of mild-moderate and high frequency range 

typically presenting during childhood and adolescence. (Grillet et al., 2009). 

The involvement of mutations in LOXHD1 in endothelial corneal dystrophy 

would therefore have some similarity to the finding that dominant mutations in 

SLC4A11 cause FECD and recessive mutations cause CHED2 and 

sensorineural hearing loss (Harboyan syndrome) (Desir et al., 2007, Siddiqui 

et al., 2014). Late-onset FECD has also been associated hearing loss 

(Stehouwer et al., 2011) but given that these symptoms affect 20-30% of 

patients by the age of 70 and 45-55% by age 80 years old (Roth et al., 2011) 

and that presbyacusis is also a common complex condition with significant 

environmental contributory factors, any link between heterozygous LOXHD1 

mutations and hearing loss should be interpreted with caution. 

 
The failure of the study presented in this thesis to replicate significant 

enrichment of LOXHD1 mutations in FECD cases does not disprove the 

involvement of LOXHD1 variants in FECD. However, considered alongside 
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the lack of LOXHD1 mutations in two out of three linked families that were 

studied in the original report, the presence of the nearby trinucleotide 

expansion in TCF4 which is very strongly associated with FECD (Wieben et 

al., 2012) and the data presented herein, it does cast some doubt on the 

involvement of LOXHD1 variants in FECD. When inspecting the five cases 

with predicted pathogenic LOXHD1 variants for their TCF4 CTG18.1 status, it 

was noted that they were inherited independently of one another, but 

nevertheless 3/5 cases with LOXHD1 predicted pathogenic variants co-

existed with an expanded CTG18.1 trinucleotide variant. This suggests that 

the LOXHD1 variants may contribute to disease symptoms in the absence of 

the major TCF4 FECD-predisposing expanded allele only in a small number 

of cases. 

 

5.3.2 Genetic contribution of TCF4 variant alleles to FECD 
 

In 2010, Baratz et al published the results of a modestly-sized GWAS in which 

a significant association was found in Caucasians with the G allele of an 

intronic SNP rs613872 in the TCF4 gene on Chromosome 18 (Baratz et al., 

2010). In contrast to the LOXHD1 analysis, work presented in this thesis 

replicated this association in the Yorkshire FECD cohort compared with 

controls. The association of rs613872 in TCF4 has also been replicated 

independently in Caucasian populations in a number of other studies (Li et al., 

2011, Riazuddin et al., 2011, Kuot et al., 2012, Igo et al., 2012, Stamler et al., 

2013). In Chinese cases (Thalamuthu et al., 2011) and in one study of Indian 

cases (Nanda et al., 2014) there was an association with another TCF4 

intronic SNP, rs17089887. However, since then one published study of North 

Indian FECD cases has replicated the association with rs613872 (Gupta et 

al., 2015). Igo et al (Igo et al., 2012) found a highly significant association 

between FECD and SNP, rs613872 (P = 2.0 x 10-19) and additionally 

performed a meta-analysis of other studies (Baratz et al., 2010, Li et al., 2011, 

Riazuddin et al., 2011, Kuot et al., 2012). The combined odds ratio for each G 

allele in this meta-analysis was 4.96. Subsequent replication studies have 
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also supported the association of this SNP with FECD (Mootha et al., 2014, 

Stamler et al., 2013).  

 

Researchers have gone on to show that a trinucleotide repeat expansion 

within the TCF4 gene gives an odds ratio of more than 10 for FECD risk in 

Caucasian (Wieben et al., 2012, Mootha et al., 2014), Chinese (Xing et al., 

2014), Indian (Nanda et al., 2014) and Japanese (Nakano et al., 2015) 

populations, and cosegregates with the disease in approximately 50% of 

families with complete and 10% with incomplete penetrance (Mootha et al., 

2014). Mootha et al examined 120 Caucasian subjects and 100 controls and 

found that the two polymorphisms, rs613872 and CTG18.1 were in linkage 

disequilibrium (Mootha et al., 2014). Both rs613872 and the expanded 

CTG18.1 were found to be significantly associated with FECD in the FECD 

cohort presented in this thesis as well as in two of the three FECD families 

recruited, and it can be concluded that TCF4 mutations are a major 

contributor to the pathogenesis of FECD, greater than any other gene 

identified to date. 

 

The major association of the trinucleotide expansion within the TCF4 gene in 

FECD cases previously suggested a number of possible disease 

mechanisms. One possibility, that the expansion could be in linkage 

disequilibrium with a functional variant in TCF4, has already been investigated 

but comprehensive sequencing of the coding regions as well as the splice 

recognition signals have previously failed to identify any potential pathogenic 

variants in cases to account for disease (Riazuddin et al., 2011, Wieben et al., 

2014). This may not be too surprising since haploinsufficiency caused by 

heterozygous gene deletions, nonsense, frameshift, splice-site and missense 

mutations in TCF4 (http://www.LOVD.nl/TCF4/) that impact on the helix-loop-

helix, Rep repressor or second activation protein domains, give rise to the 

neurological condition Pitt-Hopkins Syndrome (MIM#610954). This condition 

is characterised by intellectual disability, developmental delay, intermittent 

hyperventilation and distinctive facial features, as well as problems with the 

eyes, testes and skin (Amiel et al., 2007, Brockschmidt et al., 2007, Zweier et 

al., 2007).  
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Alternatively the expansion could be directly causative, affecting TCF4 gene 

transcription either by inactivating some of the transcript isoforms that are 

generated through different 5’-exon usage (Sepp et al., 2011) or it may 

stabilise transcripts containing the expansion. Recent studies confirm a direct 

causative effect since transcripts containing expanded repeats have been 

shown to form RNA foci in the nuclei of cultured fibroblasts and cornea 

endothelium (Du et al., 2015, Mootha et al., 2015).  

 

In Du et al’s study FECD patients’ endothelia were collected at the time of 

corneal transplant, whereas control tissue was obtained as corneoscleral 

buttons from an eye bank or fresh from enucleation specimens that did not 

involve the anterior segment. Endothelia from four FECD patients with a 

repeat expansion, one FECD patient without an expansion and three 

unaffected individuals were collected. RNAseq data suggested sequences 

from the intron containing the repeat preferentially accumulated in patients 

with FECD. In order to explore the mechanism by which the expanded 

CTG18.1 causes FECD, fibroblast lines from FECD patients were examined. 

They determined that the CTG-CAG trinucleotide repeat expansion was 

transcribed into stable RNA, which causes the formation of CUG RNA foci in 

the affected tissue. There was selective abundance of poly(CUG) RNA foci in 

FECD corneal endothelial cells compared to fibroblasts, suggesting that TCF4 

poly(CUG) transcripts predominantly accumulate in the corneal endothelium, 

leading to FECD. When present, the foci were shown to sequester RNA 

binding proteins such as splicing factor, muscleblind-like 1 (MBNL1). RNAseq 

analysis of the relative abundance of alternatively spliced isoforms for each 

gene demonstrated widespread changes in splicing in many genes including 

those involved in EMT, when four corneal endothelial samples harbouring a 

trinucleotide repeat were compared with three controls samples. This 

suggests that the presence of a trinucleotide repeat leads to aberrant splicing 

in FECD. As TCF4 is known to have a regulatory role in EMT and MBNL1 

splicing alterations have been implicated as an important factor in EMT, the 

RNAseq results that the authors describe indicate a possible disease 

mechanism in patients with a TCF4 trinucleotide repeat (Du et al., 2015). This 
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is the first time a trinucleotide repeat expansion has been identified as being 

causative for FECD.  

 

Another group (Mootha et al., 2015) published similar findings using 

fluorescence-in-situ hybridisation. They examined 8 FECD expansion-positive 

endothelial samples and noted abundant discrete, spheroidal RNA foci, which 

were absent in controls samples that did not harbour a TCF4 expanded 

CTG18.1. There were no correlations between the CTG18.1 repeat length 

and the percentage of cells that contained RNA foci. The authors postulated 

an RNA gain-of-function model in which mutant expanded CUG transcripts 

were stabilized through their interaction with RNA binding proteins to form 

nuclear inclusions triggering corneal endothelium-specific aberrant splicing an 

possibly also apoptosis. Like Du at al, they concluded that RNA nuclear foci 

were pathognomonic for CTG18.1-mediated FECD and that the disease 

mechanism was similar to other rare neurodegenerative trinucleotide 

disorders, such as Myotonic Dystrophy Type I. 

On statistical analysis of the LOXHD1 and TCF4 variants, both control cohorts 

were found to be in HWE, but the cases were not in HWE (there were 

insufficient homozygote expansions to be in HWE). This has also been found 

in previous FECD case control studies (Mootha et al., 2014). Departure from 

the HWE have been documented in other studies and in some cases it has 

been assumed that there was a biological reason for this, whereas others 

assume a genotyping error has occurred (Wittke-Thompson et al., 2005). In 

the study presented in this thesis there could be a number of reasons behind 

the departure from HWE. It is possible, although unlikely, that those 

homozygous for the CTG18.1 expanded allele are disadvantaged in some 

way from an evolutionary perspective, and therefore fewer case with this 

genotype exist in the case population. Another could be that the cases 

selection is not random as FECD is largely a dominant disease, and therefore 

the case population will contain a greater number of heterozygotes than 

homozygotes. Other reasons relate to the TP-PCR assay. Perhaps the 

threshold of “normal” and “disease” is different clinically from that determined 

by the laboratory TP-PCR assay), and that if the threshold were actually lower 
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then there would be a greater number of homozygotes. A Southern Blot would 

be useful in defining this threshold by accurately sizing the CTG18.1 

trinucleotide repeat lengths in cases and controls (this is explored fully in 

Section 5.3.3). 

 

5.3.3 The role of pre-symptomatic testing in FECD diagnosis 
 

The CTG18.1 TCF4 trinucleotide expansion appears to be the major 

presymptomatic factor in causing FECD in Caucasians. Of the 3 families 

presented in this thesis, FECDBAR and FECDWAK had unaffected members 

who were identified as having a CTG18.1 expanded allele, some of whom 

were too young to exhibit clinical signs of the disease. This raises the 

question of whether pre-symptomatic testing would be of value in individuals 

with a family history of FECD, by looking for either a trinucleotide expansion 

or another mutation before the disease had manifested. The role of pre-

symptomatic diagnostic testing in diseases caused by trinucleotide expansion 

mutations is clearer in conditions which present with rare and more severe 

phenotypes than FECD, such as Huntingtons Disease (Katsanis and 

Katsanis, 2013), and where the disease is completely penetrant (Mielcarek, 

2015). The existence of the CTG.18.1 expansion in controls might be due to 

the fact that the threshold of a disease-causing repeats is yet to be 

determined or that the mutation is incompletely penetrant. Therefore pre-

symptomatic testing and genetic counselling in FECD patients is potentially 

fraught with challenges and caveats. Perhaps more information needs to be 

ascertained about the full genetic architecture of FECD, along with more 

comprehensive knowledge of contribution of disease modifiers and 

environmental influences before pre-symptomatic testing can be widely 

available. Certainly, in the cases of FECDWAK and FECDBAR families who 

possess an expanded CTG18.1, it would be of benefit to analyse the exact 

size of the expansion and follow these patients longitudinally.  

 
Of the 83 controls tested using the TP-PCR assay, 5 of the controls, who 

were aged between 64 and 88, were found to have a CTG18.1 expansion. 
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There were many advantages of the PCR based assay used in this study 

(Warner et al., 1996). It allowed the analysis of a large number of cases and 

controls to be performed accurately and relatively cheaply. The limit of this 

assay is that, while it can determine the boundary of a “normal” allele and 

“expanded” allele, clinically this is an arbitrary cut-off point. In Mootha et al’s 

study the authors distinguish between two groups based on an expansion 

greater than or less than 43 repeats (Mootha et al., 2014). However, the 

repeat length is a linear variable, and the exact threshold at which the 

expansion becomes unstable or pathogenic remains unknown. Therefore, 

whether an individual subject with a repeat in the 40 to 60 range has an 

increased risk of disease is also unknown.  

 

There is evidence that repeat length can influence the severity of the disease 

(Mootha et al., 2015), but the Krachmer grading (Table 1.4) on which disease 

severity is based in this study, is not a simple objective measure of disease 

severity as it varies with time over the course of the disease. It is therefore 

entirely possible that repeat length can influence penetrance or severity of 

FECD, but this remains largely speculative. The definition of the threshold for 

a repeat expansion may directly influence the odds ratio. For the association 

between CTG expansion and FECD, the odds ratio may increase with 

increasing repeat length. Hypothetically speaking, it is entirely possible that a 

repeat length of 55 might cause disease, perhaps with a lower odds ratio than 

that estimated in this or other studies, whereas a repeat length of 2000 will 

certainly cause disease, perhaps with a much higher odds ratio. Unlike 

Myotonic Dystrophy Type, the TCF4 CTG18.1 in FECD does not yet have the 

benefit of a long and detailed history of validation. The challenge of better 

defining these boundaries relates to the technical challenges of determining 

large trinucleotide repeat lengths in the laboratory, and Southern blotting will 

almost invariably play a role in defining this. It would be interesting to know 

the exact size of the expansion in the 5 controls in whom an expanded 

CTG18.1 was found. Southern blotting could be a means of ascertaining 

whether the trinucleotide repeat length in these controls exists in the 

intermediate range. This could be an avenue of further work. Additionally, 

long-term follow-up of the controls that possess the CTG18.1 expanded allele 
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to assess for the development of FECD could be useful in determining 

whether the mutation is incompletely penetrant. 

 

5.3.4 Anticipation and trinucleotide instability in FECD patients with 
the CTG18.1 expansion 

 

Trinucleotide expansions are the causative mutation for many genetic 

diseases, including Myotonic Dystrophy Type I and 2 (DM1 and DM2 

respectively), Fragile X and Huntington’s Disease (HD). The mechanism of 

RNA toxicity seen in FECD patients who possess a CTG18.1 expansion is 

similar to that seen in DM1 (McMurray, 2010). Both myotonic dystrophy and 

HD exhibit anticipation, worsening of disease severity and earlier age of onset 

in successive generations (Orr and Zoghbi, 2007). The mechanism by which 

anticipation occurs may vary between trinucleotide repeat diseases. In Fragile 

X and Myotonic Dystrophy, CGG repeats in the non-coding region expand 

almost exclusively through maternal transmission, whereas in HD CAG 

repeats expand more commonly through paternal transmission (McMurray, 

2010) However, the sex preponderance of these diseases remains unaffected 

by this mechanism. 

 

Instability of the repeat sequence is the hallmark of trinucleotide disease and 

can be characterized by anticipation, worsening of the clinical phenotype, of 

progressively younger age of onset in successive generations. There are 

32,448 trinucleotide repeat sequences in the human genome and 878 

trinucleotide repeat sequence-containing genes (Kozlowski et al., 2010). 

While the mechanisms of triplet repeat instability remains unclear, possible 

contributions include polymerase slippage, DNA secondary structure, 

chromatin structure and triplex DNA formations (Longshore and Tarleton, 

1996). When the CTG18.1 was originally identified, some evidence of 

instability was indicated on Southern blotting (Breschel et al., 1997). While 

anticipation is not considered a typical feature of FECD, the presence of the 

CTG18.1 in the FECDBAR family and the earlier age of onset of affected 

individuals in the younger generation suggests that instability of the CTG18.1 
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mechanism might underlie this process. This is particularly true in the case of 

individual IV:1 (Figure 5.12), who was 28 -years-old when she was found to 

have guttata. A Southern blot analysis of individuals II:17, III:28 and IV:I would 

help to determine whether the repeat expansion length was increasing in 

successive generations in this family.  

 

5.3.5 The use of endothelial-checked controls or ECACC population 
controls in FECD studies 

 

For FECD, whether the controls have had their endothelium checked could 

have a profound effect on the findings of studies. From the work presented in 

this thesis, the mean age of the ECACC controls, who had not had their 

endothelium checked, was 38.7 +/- 8.4 years, which was considerably less 

than the mean age of the 56 FECD cases initially recruited. Had these 

controls been examined for endothelial abnormalities, a small proportion may 

had been found to have guttata, indicating that they would go on to develop 

FECD, and this proportion would have increased if they were checked when 

they reached an age equivalent to the patient cohort. This issue was 

addressed with the recruitment of age-matched endothelial checked controls 

from NHS cataract clinics. Unsurprisingly, a greater number of CTG18.1 

expansions had been noted in the ECACC controls compared with the 

endothelial-checked controls. This reduction in the frequency of such pre-

symptomatic signs in controls increased the odds ratio and significance of 

findings when using endothelial-checked as opposed to unchecked population 

controls. 

 

The presence of the expanded allele in a small proportion of the general 

population could have implications for the use of donor corneas to treat 

FECD, as some donor corneas may in fact be taken from pre-symptomatic 

carriers. One might expect that if the cornea belonging to a patient with a 

TCF4 trinucleotide expansion were used for transplant, that the recipient 

might be at risk of developing FECD. However, FECD recurs extremely rarely 

following corneal transplantation. Furthermore, corneas that have been 



 167 

donated for transplantation are checked under light microscopy for abnormal 

corneal endothelial cell morphology. The data presented in this thesis 

suggests that examination of the corneal endothelium appears to be adequate 

in screening out patients with a repeat expansion. This would suggest that, 

until such a time as corneal gene therapies reach the clinic and theatre, there 

is no current need for genotyping corneal graft tissue, as the existing quality 

control appears to exclude abnormal morphology and therefore largely 

excludes those patients that might develop FECD. This data therefore 

highlights the importance of these checks, though one exception might be the 

use of tissue from a very young donor, who might be too young even to show 

these presymptomatic abnormalities.  Around 65% of patients who donate 

their corneas are above the age of 60-years-old (http://www.nerc-

charity.org.uk/cornea-donation), leaving a significant minority who might be 

too young to manifest signs of endothelial disease. A further study examining 

the genotypes of corneal tissue assessed and not ultimately utilised for 

corneal grafting could add weight to this argument. An alternative explanation 

for this lack of recurrence of FECD in grafted individuals is that perhaps on 

occasion a corneal graft harbouring a TCF4 CTG18.1 expanded allele is 

transplanted, but the disease does not manifest itself during the lifetime of the 

patient or the individual experiences graft failure for a different reason prior to 

this. There might therefore still be value in tissue genotyping in younger FECD 

patients being grafted. As genetic mechanisms in FECD continue to be fully 

elucidated, and as patient management becomes increasingly individualised, 

the role of genotyping tissue may become increasingly prominent in the 

future.  

 

5.3.6 The corneal endothelium transcriptome 
 

From the work presented in this thesis, RNA extractions performed on 

endothelial tissue using two different methods were unsuccessful (Section 

2.15). The use of either method led to unmeasurable levels of RNA, and 

therefore RNA sequencing of this tissue could not be carried out. The 

advantages of using graft tissue left over from lamellar graft procedures was 
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that it was tissue that was deemed suitable for corneal transplant and 

accurately dissected into the appropriate layers under sterile operating 

conditions. There is a lengthy exclusion criteria for the use of graft tissue in 

patients (Zuberbuhler et al., 2013). Therefore, the tissue used for grafting has 

come from healthy patients without significant co-pathology.  

 

This strategy worked well for the RNA sequencing of epithelial and anterior 

stromal tissue, where RNA sequencing was successfully carried out for 

another project. One reason for the lack of RNA extracted from endothelial 

corneal tissue was most likely degradation of the RNA from the single 

endothelial monolayer from the time the eyes were enucleated until the time 

they were placed in RNA later. This could have been overcome by using 

tissue from freshly enucleated eyes from donors with other general pathology 

not deemed suitable for corneal transplant. This would have had the 

advantage of being freshly extracted, although overall this tissue might have 

been less suitable as control tissue due to other general pathology in the 

patient, which potentially could affect corneal expression. However, had 

degradation of tissue been the sole reason for failure of extracting sufficient 

quantities of RNA, then one would expect the bovine tissue to yield sufficient 

amounts of RNA, which it did not. It may be that the volumes of endothelial 

tissue used were too small for the RNA kits to extract useful levels of RNA. 

 

A published database of RNA sequencing in control tissue can be used to aid 

the prioritisation of gene candidates following next generation sequencing 

studies (Chng et al., 2013, Du et al., 2015). The study by Du et al (2015) used 

tissue from an eye bank, or eyes enucleated for pathology that did not involve 

the anterior segment. The corneal endothelial tissue was bluntly stripped 

away from the corneal button and the RNA extracted using two different 

Qiagen RNA extraction kits. The authors do not mention whether the patients 

whose eyes were used as controls had any other general pathology.  
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5.3.7  Whole exome sequencing of members of the FECD Families 
 

Two different methods of NGS were employed in FECDBRI. Three affected 

family member’s DNA samples were sent to Otogenetics. However, as the 

read depth and data quality were significantly better at the Leeds NGS facility, 

a fourth affected sample and an unaffected sample were prepared and 

sequenced in Leeds. When the shared variants were analysed, the same 5 

variants were present after analysis with both Pipeline 1 and Pipeline 2 

(Section 2.21).The reason for the use of two NGS pipelines in this study was 

broadly the development and refinement of existing NGS pipelines over time 

with updated guidance on best practice of variant discovery 

(https://www.broadinstitute.org/gatk/guide/topic?name=methods) and 

experience within the VRG. Specifically, in pipeline 1 Bowtie 2 was used for 

the alignment of the FASTQ files, whereas in pipeline 2 Novoalign was the 

utilised. Experience from the members of the VRG and from other research 

groups in the Section of Ophthalmology and Neuroscience indicated that 

Novoalign outperformed Bowtie2 in terms of alignment accuracy, including 

where a large number of indels were present and overall in the identification 

of common and novel variants. Additionally, a published article (Yu et al., 

2012) compared four different aligners including Bowtie2 and Novoalign and 

concluded that all aligners perform similarly, with a slight advantage of using 

Novoalign in terms of accuracy and sensitivity to improved data quality. 

Therefore when Novoalign was ultimately used by most members of the VRG 

and included on the standard NGS pipelines developed by local 

bioinformaticians. 

 

The use of an unaffected individual in the analysis of data significantly 

reduced the number of variants when subtracted from the list of shared 

variants in affected individuals. Individual II:2 of FECDBRI was identified as 

clinically unaffected with FECD, presymptomatic endothelial cell changes 

were also excluded and this individual did not develop the disease during the 

course of the study. However, the issue of non-penetrance in FECD could be 

considered a potential problem in the analysis of exome data that utilises a 

sample from an unaffected individual. If the individual possesses the mutation 
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but does not manifest the disease then this could erroneously exclude a 

causative mutation from the analysis.  

 

In the analysis of exome data, the frequency of each variant in the 1000 

Genomes or ExAc databases is provided. It is therefore possible to filter 

variants on frequency. For the study of rare autosomal recessive disease a 

threshold of <1% is usually employed. While FECD is a relatively common 

disease, mutations in published genes have largely been rare (Biswas et al., 

2001, Vithana et al., 2006, Riazuddin et al., 2010a, Riazuddin et al., 2012, 

Riazuddin et al., 2013). Therefore rather than selecting a threshold of 4%, the 

cited prevalence of FECD (Lorenzetti et al., 1967), a threshold of�≤2% was 

selected.  

 

In relation to this, one of the major challenges of studying the segregation of 

putative mutations in a late-onset disease in a pedigree such as FECDBRI 

was the uncertainty of whether members of generation III will develop the 

disease. While individual III:5 did not have definitive signs of FECD, there was 

some evidence of pleomorphism, and the consultant examining her felt that 

she might well be at risk of developing FECD. This has implications for the 

variant segregation of the potential gene candidates in FECDBRI. On Sanger 

sequencing she was found to possess the wild-type allele for OSBPL1A but 

the c.C461G variant of CRYZL1A. As the disease status of the younger 

individuals of generation III in FECDBRI was not ultimately confirmed as they 

may not have been old enough to exhibit clinical signs of FECD, it was difficult 

to make a definite decision on screening the cohort based on this segregation 

analysis. 

 

With all the caveats in this analysis listed above, CRYZL1 and OSPBL1A 

were considered the best candidate genes highlighted by WES of FECDBRI. 

CRYZL1 encodes a corneal crystalline, is expressed in the corneal 

endothelium (Chng et al., 2013), and there is a potential mechanism by which 

a mutation in this gene might compromise corneal clarity (Gong et al., 2012). 

The variant c.C461G:p.A154G is not only rare or absent from publicly 

available databases but is also highly conserved throughout evolution (Figure 
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5.20). OSBPL1A is also expressed in the corneal endothelium (Chng et al., 

2013) and additionally it interacts with FOXC1, a gene known to be involved in 

the development of the anterior segment (Berry et al., 2008). Furthermore, the 

OSBPL1A variant c.115_116insAATT:p.C39_K40delinsX is a stopgain 

mutation which leads to a frameshift  and premature stop codon, so if 

pathogenic would have a clear effect on the protein translation and function. 

However, the relatively frequent occurrence of other OSBPL1A homozygous 

variants in ExAc make a loss-of-function mutation less likely to be disease-

causing. 

 

Had the study been carried out on an early-onset disease and therefore led to 

a clearer result from the Sanger sequencing of variants in FECDBRI, these 

data might have led to the screening of the FECD cohort for mutations in 

these genes. However, doubts over diagnostic accuracy in the younger 

generations, together with restricted PhD lengths, meant that this follow-up 

work was not completed. Although an accurate method of sequencing a gene, 

Sanger sequencing (Sanger and Coulson, 1975) is a time-consuming and 

expensive method of sequencing large genes. Alternative high throughput 

methods avoiding the full costs of exome sequencing include long-range PCR 

followed by sequencing of products on a MiSeq machine, as utilized clinically 

in the screening of BRCA1 mutations (Morgan et al., 2010) or using molecular 

inversion probes (MIPs), a strategy that has been employed in the sequencing 

of genes that cause autism spectrum disorders (O'Roak et al., 2012). Both of 

these methods require meticulous optimisation of primers, which itself can be 

extremely time-consuming, and which can ultimately prove costly. 

Additionally, they can only be used in the screening of a selection of genes, 

unlike WES which provides the coding sequence for all genes in an individual. 

It may be that, as the cost of exome sequencing diminishes further, WES of 

either the entire cohort of FECD patients, or those who did not possess a 

CTG18.1 expansion, might become feasible. This is a potential future avenue 

of this project (Chapter 6). 

 

The rare TCF4 SNP rs192075715 was found to segregate with FECD in the 

FECDBRI family, and when combined with the initial linkage to chromosome 
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18 (Section 5.2.6.2.1), pointed towards the same region of chromosome 18 to 

be linked in the FECDBRI family. However, no expansion was found on TP-

PCR in this family, nor any potential pathogenic variant in LOXHD1. Given 

that the CADD score of SNP rs192075715 is 2.5 and the fact that, using the 

BDBG splicing prediction modeler (Section 2.17.7), it has no discernable 

effect on splicing, it is unlikely that this SNP is itself increasing susceptibility to 

FECD in this family. It remains possible that this SNP is in linkage 

disequilibrium with an FECD causing variant in this region. There are well-

documented examples of causative intronic mutations, such as that seen in 

Lebers Congenital Amaurosis (den Hollander et al., 2006) or mutations within 

a promoter region in PPCD (Davidson et al., 2016). Such mutations would 

have been missed by the strategy presented in this thesis but could be found 

using WGS. The TCF4 CTG18.1 is the first example of an association of a 

trinucleotide repeat with a common, complex disease. Therefore it is possible 

that the causative mutation in FECDBRI is another trinucleotide expansion on 

chromosome 18. A disadvantage of NGS is that it cannot directly sequence 

trinucleotide repeat sequences in the genome. Therefore, in the absence of 

other linkage data, it is not currently possible to ascertain whether other 

trunucleotide repeats cause or are associated with FECD.   

 

Another potential drawback of exome sequencing is, while it is more robust 

when it comes to determining structural variants such as deletions and 

insertions than Sanger sequencing, this cannot be done using the standard 

WES pipelines (Section 2.22). ExomeDepth (Plagnol et al., 2012) addresses 

this by its capacity to determine the presence of indels and larger structural 

variants. The need for controls run on the same next generation sequencing 

lane was a potential disadvantage in this study as the controls were FECD 

patients from different FECD families. The other FECD patients were from 

families which had been identified as having an expanded CTG18.1, therefore 

perhaps this was not a significant limitation. Nonetheless the ExomeDepth 

output presented for the FECDBRI family gave a list of pathogenic structural 

variants, with the highest BF score of 44.1 being a heterozygous duplication 

of 122,909 base pairs on chromosome 10. This was not identified as a 

common duplication in the Conrad database (Conrad et al., 2010) (Section 
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2.23). A large duplication would be challenging to verify on Sanger 

sequencing, however whole genome sequencing (WGS) could be performed 

in another affected individual to assess a limited form of segregation and 

examine the potential breakpoints. A pipeline is being developed locally that 

could perform this analysis on WGS data, and can manage the large FASTQ 

file sizes more efficiently that the standard aligners used in WES. 

 

In the FECD cohort presented in this thesis, 33/117 (28%) of the patients did 

not harbour a CTG18.1 expanded allele. A further study could also evaluate 

these cases by WES to determine their genetic basis. 

 

5.3.8 The contribution of phenocopies in FECD families 
 

An individual affected by a condition despite not having the disease genotype 

is called a phenocopy (Strachan and Read, 2011). Phenocopies have been 

reported previously in large FECD pedigrees where putative causative 

variants have been identified (Sundin et al., 2006a, Riazuddin et al., 2012). 

Additionally they have been reported in rare severe conditions caused by 

trinucleotide repeat expansion (Wild and Tabrizi, 2007, Abbruzzese et al., 

1996). Individual II:19  in FECDBAR exhibited signs of FECD but possessed 

the rs613872 genotype TT and was negative for the CTG18.1 expansion. This 

result was verified with stock DNAs in this individual. This supports the 

concept that FECD is a complex disease, implying that perhaps there are 

significant environmental factors or variants in other genes which played a 

part in the pathogenesis of the disease in this individual. Other explanations 

for the lack of CTG18.1 expanding allele in FECDBAR individual II:19 include 

the possibility of a sample mix up during the DNA extraction process or non-

paternity of the individual.  
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6  General Summary, Concluding Remarks and 
Future Directions 

 

This thesis aimed to examine the genetic basis of corneal endothelial 

dystrophies. Chapter 3 looked broadly at corneal dystrophies as a whole, 

examining their incidence in patients below the age of 40 years. This was 

carried out in conjunction with the British Ophthalmic Surveillance Unit. In 

Chapters 4 and 5, the focus turned to corneal endothelial dystrophies. In 

Chapter 4, a rare Mendelian congenital form of endothelial dystrophy, CHED, 

was explored. A newly recruited CHED patient from Mexico was screened by 

Sanger sequencing for mutations in SLC4A11. This patient’s hearing was also 

tested by audiometry along with two other CHED families previously 

confirmed as harboring a mutation in SLC4A11. Additionally, parents of CHED 

patients that were available for testing were examined for evidence of adult 

onset corneal endothelial disease. Chapter 5 focused on the genetic analysis 

of a Caucasian cohort of 117 patients with the more common but potentially 

more genetically complex endothelial dystrophy FECD, recruited and sampled 

for genomic DNA from Ophthalmology clinics and theatre lists in Yorkshire. 

This cohort consisted mostly of single cases but also one member of each of 

3 families with multiple affected members. The genetic analysis evaluated the 

relative contributions of LOXHD1 variants and the TCF4 expansion to 

endothelial disease susceptibility in the FECD cohort compared with controls, 

and to identify the genetic cause of FECD in the families using whole exome 

sequencing and segregation analysis. The major findings of these studies are 

discussed below, together with the implications for diagnostic testing, current 

treatment regimes and future therapies for endothelial dystrophies. 
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6.1 Summary of key findings and future directions. 

6.1.1 A study of young-onset corneal dystrophies in conjunction with 
the British Ophthalmic Surveillance Unit 

 

The aim of the study described in Chapter 3 was to ascertain the incidence of 

new-onset corneal dystrophies in patients presenting below the age of 40. 

This was carried out in conjunction with BOSU, which runs a nation-wide 

surveillance system for the epidemiological study of incidence, clinical 

features and management of rare ophthalmic diseases. For any study 

adopted by the BOSU, reporting cards naming the conditions of interest are 

sent to UK ophthalmologists monthly by the BOSU team. This reduces the 

burden of work for doctors identifying patients and avoids the reporting of 

different conditions to multiple sources. 

 

Corneal dystrophies are an ideal group of conditions to be studied in 

conjunction with BOSU. There are no existing national incidence studies of 

corneal dystrophy, and there is likely to be significant variation in practice. As 

young-onset corneal dystrophy is a relatively rare but important cause of 

severe visual impairment, BOSU provided an ideal way of collaboratively 

identifying rare cases. The study found that the majority of referrals originated 

either from an ophthalmologist or an optometrist. In terms of patient 

demographics, nearly 80% of the patients studied were White-British and 

females accounted for 48% of the patients identified. The mean age at 

presentation was 12 years old and the most commonly-reported type of 

dystrophy was endothelial. The incidence of corneal dystrophy in patients 

younger than 40 years was compared with UK census data and it was 

concluded that young-onset corneal dystrophies are extremely rare and this 

study would suggest a minimum UK incidence of 6.7 newly-diagnosed cases 

per 10 000 000 population aged below 40 years per annum.  

 

The knowledge of epidemiology and presentation gained could be used to 

inform clinicians about the expected presentation, common visual symptoms, 

clinical course and commonly utilised management strategies. In turn 
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clinicians could use this information to help manage and counsel their 

patients. Additionally, knowledge of the epidemiology of corneal dystrophies 

could be utilized for service planning in the NHS. Half of the patients identified 

in the study had a positive family history of a corneal dystrophy. However, a 

molecular diagnosis was sought in only four patients. It would be interesting to 

further explore the results of whole exome sequencing in those patients who 

underwent genetic testing and indeed to perform genetic testing in all of those 

with a family history of corneal dystrophy. The corneal dystrophy classification 

has been recently amended to incorporate those dystrophies caused by 

mutations in the TGFβI gene. It is therefore entirely probable that in the future, 

next generation sequencing will become a routine part of corneal dystrophy 

work-up and management. 

 

6.1.2 Genotype-Phenotype Correlations in CHED, Harboyan 
Syndrome and FECD 

 

CHED is a rare, bilateral autosomal recessive condition affecting the corneal 

endothelium. It is characterized by corneal oedema and opacity. Harboyan 

syndrome is a considered a distinct syndrome consisting of the symptoms of 

CHED combined with later onset sensorineural hearing loss. Both conditions 

are caused by mutations in the SLC4A11 gene. In Chapter 4 of this thesis, a 

new mutation in the SLC4A11 gene, c397T>C F133L, was identified in a 

newly-recruited CHED patient from Mexico. Additionally, sensorineural 

hearing loss was found to be present in this patient and in three other patients 

who had been diagnosed with CHED when they were younger. This 

suggested that, rather than Harboyan syndrome being a distinct condition, it is 

more likely to be the same condition as CHED but at a later stage of 

progression. The study examines just a small number of cases and their 

families. A further study could longitudinally monitor a larger cohort of CHED 

patients to verify this finding of eventual high-frequency sensorineural hearing 

loss determined by audiometry. The results of this chapter suggest that in 

clinical practice, serial monitoring by audiometry should be carried out in 

CHED patients, even if the initial audiometry findings were unremarkable. 
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When individual II.2 from Family A (Figure 4.1) attended her routine 

Ophthalmology appointment at the BRI in 2012, she was coping with low 

vision (acuities of 6/60 in the right eye and hand movements in the left eye), 

and therefore the additional impact of hearing loss to her day-to-day activities 

could not be understated. Repeating the audiometry at this stage meant that 

her hearing impairment was correctly diagnosed and she was fitted with 

bilateral hearing aids. It also enabled her to receive additional social support. 

 

The later onset endothelial dystrophy FECD also results from mutations in 

SLC4A11, but has onset in late adulthood and is the result of heterozygous 

rather than homozygous mutations. This implies that parents of CHED 

patients, who are almost certainly carriers of SLC4A11 mutations, may also 

be at risk of developing endothelial dystrophy in later life. The heterozygous 

parents of the CHED patients examined herein were found to have early signs 

of corneal endothelial disease including guttata and reduced endothelial cell 

counts, implying that they are indeed at increased risk of developing FECD. 

Future studies monitoring the parents for the development of FECD would be 

useful. Additionally, studying more parents of CHED patients for corneal 

disease outcome would further validate the link presented in this thesis 

between CHED patients and FECD in their heterozygous parents, and would 

mean that prognostic information including the likelihood of requiring corneal 

graft surgery could be offered to other parents of CHED patients. 

 

6.1.2.1  Genetic Analysis of Fuchs Endothelial Dystrophy in         
Yorkshire 

 

FECD is a progressive disease of the corneal endothelium. In Chapter 5, the 

genetic basis of FECD was explored. The relative contributions of the TCF4 

SNP rs613872, the intronic CTG18.1 trinucleotide expansion and LOXHD1 

variants in a UK Caucasian FECD cohort were compared in order to clarify 

the significance of the original findings at the FECD3 locus on chromosome 

18. Mutations in LOXHD1 were not found to be significantly enriched in cases 

compared with public databases. The TCF4 CTG18.1 expanded allele, in 
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contrast, was present in 72.6% of cases compared with only 6.0% of 

endothelial-checked controls (odds ratio 23.2). Furthermore, the results of the 

segregation analysis of the TCF4 CTG18.1 expansion in three local FECD 

families showed that the CTG18.1 was also likely to be involved as a 

causative or susceptibility allele in two of the three FECD families.  The 

mutation in the third family, FECDBRI, was not explained by the TCF4 

CTG18.1 expanded allele, and therefore further analysis of the WES in this 

family was carried out. Segregation analysis of five of the variants obtained 

from WES after filtering was performed, two of which, OSBPL1A and CRYZL1 

were considered to be good candidates. However, due to the unknown 

disease status of members of generation III of FECDBRI, segregation 

analysis of the entire family was not sufficiently powerful to provide compelling 

evidence of the involvement of one or both of these variants. Screening of the 

FECD cohort for these variants did not take place, in part for this reason and 

also, due to time constraints of the PhD, which meant that other experiments 

were prioritized.  

 

The main conclusions drawn from this chapter were that, in our cohort, 

LOXHD1 mutations did not appear to be significantly enriched in the FECD 

cases compared with controls, suggesting that the role of LOXHD1 mutations 

is minor. By contrast, in the Leeds FECD cohort there is a highly significant 

association of TCF4 mutations in FECD cases compared with controls, 

suggesting that mutations in TCF4 contribute significantly to the pathogenesis 

and more than any other gene found to date. Nevertheless, there remain a 

proportion of FECD cases which do not carry TCF4 expansions, and some 

unaffected individuals do carry the expanded TCF4 allele yet do not develop 

the condition, which confirms the contribution of other genetic, and potentially 

environmental, factors in protection from or susceptibility to FECD. 

 

In our cohort there were 6% of control individuals who were of an age at 

which FECD might be expected to develop, had normal corneas on 

examination, and yet who possessed an expanded CTG18.1 allele. The TP-

PCR assay was only able to determine whether the allele exceeded 43 

repeats, which was a laboratory rather than clinical threshold. It was 



 179 

considered possible that the threshold of “normal” and “disease” could be 

slightly above or slightly below 43 repeats, and that the control individuals with 

an expanded allele might in fact carry a CTG18.1 allele of this intermediate 

length (around 43 repeats). Future avenues of work include Southern blotting 

to determine the trinucleotide length in controls who possessed the 

expansion, to determine whether their expansion is of an intermediate length. 

This technique would also be of use in individuals from generation III of the 

FECD families, FECDBAR and FECDWAK, who may still be too young to 

manifest signs of the condition and therefore whose clinical status remains 

unknown. If very large repeats were found in these individuals, they could be 

considered at risk of developing FECD and followed longitudinally. Studying 

FECD in families could also give valuable information about how repeat 

lengths are inherited by an individual’s offspring, and would allow clarification 

of whether anticipation had occurred as the expanded allele passed from one 

generation to the next. In this thesis, the three generations of the FECDBAR 

family with affected individuals could be examined for this purpose. 

 

Southern Blotting allows the detection of specific DNA sequences or small 

repeats separated by gel electrophoresis which are then transferred from the 

gel to a porous membrane by capillary action using absorbent paper to soak 

solution through the gel and the membrane. These specific sequences are 

detected in the membrane by hybridization with labelled nucleic acid probes 

(Southern, 2006). It is an accurate means of assessing variable repeat 

lengths, however does have disadvantages. It is expensive, time-consuming 

to perform when large number of samples are processed, and traditionally 

requires the use of radiation. 

 

A major limitation of NGS is its inability to accurately size trinucleotide 

repeats. Newer techniques are evolving, utilising high throughput technology, 

which may make the characterization of trinucleotide repeat lengths a 

possibility without the need for Southern Blotting. Single-molecule real-time 

(SMRT) sequencing generates longer reads than traditional WES (Guo et al., 

2015). This technology utilises a sequencing-by-synthesis approach, in which 

a circular DNA molecule is used as a template for a single DNA polymerase. 
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Linear amplicons are converted to a circular form, and the resulting SMRT 

library is then sequenced using a SMRT cell containing 150,000 DNA 

polymerases. The main advantage of this technique is the creation of single-

molecule reads that exceed 10kb in length. This technology has been used to 

sequence large trinucleotide repeat sequences that are causative for Fragile 

X (Loomis et al., 2013), and there is great potential to use this to accurately 

ascertain the CTG18.1 repeat length in both FECD patients and controls. 

 

As tentative linkage to chromosome 18 was found in FECDBRI in chapter 5, 

whole genome sequencing (WGS) would be of use in order to fully examine 

the FECD3 locus on chromosome 18, as well as rest of the genome, in this 

family. This would screen for large structural variants, especially those in 

genes known to cause FECD. Although this analysis could be carried out 

using WES data, for example using the program ExomeDepth (Section 

2.23.1), WGS provides a much better dataset for such analysis, and includes 

the sequence for intronic and intragenic regions. Therefore, if a large 

structural variant were found, the breakpoints of this could be accurately 

determined. This would also screen for mutations in promoter regions and 

introns, and would specifically assess the presence of the heterozygous 

duplication described in Section 5.2.6.2.5.  

 

As TCF4 is genetically a major contributor to the pathogenesis of FECD, WES 

of the patient samples from the Yorkshire FECD cohort without a TCF4 

CTG18.1 expansion could be carried out in order to screen for mutations in 

the best gene candidates from WES in FECDBRI, CRYZL1 and OSBPL1A. 

This strategy could highlight novel variants in other genes as potential 

causative mutations in FECD, and if performed collaboratively with different 

research groups, could result in sufficient patients recruited to perform a 

GWAS to assess for genetic associations in expansion-negative patients. 
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6.2 Implications of research for corneal dystrophy patients 
 

6.2.1 Strategies in the screening of candidate genes 
 

Despite advances in Next Generation capabilities over recent years, if the 

next step in this project were to involve screening a large cohort of FECD 

patients, the total cost of WES is still prohibitive at this time. It therefore 

becomes necessary to consider the available target enrichment strategies. 

These include those based on hybridisation strategies such as the Agilent 

SureselectQXT kit, the use of molecular inversion probes (MIPS) and PCR 

based enrichment strategies. The method utilised might depend on the ease 

of experimental design, cost, scalability and the uniformity of coverage 

(Kozarewa et al., 2015). The employment of such methods could have been 

useful for example in carrying out the screen of a large gene such as 

LOXHD1 for mutations in a larger cohort of FECD cases and controls, as well 

as for screening for mutations in the other genes known to cause FECD. 

However, at the time that the LOXHD1 screen was carried out, these 

technologies were not freely available or fully developed, and may not have 

proved cost-effective in a cohort of the size studied in this project. Assessing 

the FECD case/control cohort for mutations in OSBPL1A and CRYZL1 might 

have been possible using one of these high throughput methods. However, 

the ideal way of analyzing the FECD cohort if further time allowed would be to 

exclude FECD with expansions by means of Southern Blot, then analyse 

smaller numbers of patients negative for the CTG18.1 expanded allele using 

WES. 

 

6.2.2   Challenges of NGS 
 

One of the current main disadvantages of WES is the associated cost of 

performing it. However, this has diminished in recent years and it is feasible 

that it could be reduced further to allow large cohorts of patients to be exome 

sequenced. The ability to perform WES in a cohort of ethnically-matched 
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examined controls would be invaluable for use in studies of other corneal 

diseases. The major drawback in the use of WES data drawn from databases 

of control individuals in the study of common, complex, late onset disease is 

that inevitably some of these patients sequenced will have, or go on to 

develop, corneal disease, and therefore disease alleles will be present in the 

resulting datasets. The major advantage of an exome sequenced cohort of 

examined patients would be that the number of corneal disease alleles 

present would be reduced, allowing greater power in the detection of 

mutations in case cohorts. 

 

The advent of WGS would increase the ability to assess such cohorts for 

mutations in non-coding or promoter regions. WGS has allowed researchers 

to make a more detailed assessment of intronic and intragenic variants and a 

more comprehensive analysis of structural variants in genomic DNA. There 

are notable examples in ophthalmology (Davidson et al., 2016, Small et al., 

2016) where this technology has led to the detection of a causative mutation 

where previously WES alone had failed to reveal this. However, such 

advances are not without their challenges. Firstly, WGS generates millions of 

genetic variants, and the task of finding the causative mutation amongst these 

is an extremely difficult task. This can be addressed in part by developing 

effective filtering strategies but these strategies are still evolving and this is 

therefore an ongoing issue. Secondly, there are challenges relating to the 

storage of the large files generated from WGS, which can be several hundred 

gigabytes in size and may contain sensitive information about an individual’s 

genetic make-up, which raises additional issues regarding the confidentiality 

of data. Locally in Leeds, this has been addressed with the installation of an 

advanced computational infrastructure with over 2.5 petabytes of secure data 

storage capacity, through the Leeds Institute for Data Analytics (LIDA - 

http://www.lida.leeds.ac.uk/).  

 

Next generation sequencing as a whole is usually requested for a specific 

clinical or research reason, and may yield a primary finding specific to the 

indication for which the test was carried out. However, this approach also 

generates data on other genetic variants, some of which may have medical 
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significance and can be challenging both in their interpretation and in the 

process of reporting back to patients and their clinicians. NGS variants which 

are not related to the diagnostic indication, but which are likely to have 

medical consequences, and for which preventative treatment may be 

beneficial, are referred to as secondary findings.  Variants of unknown 

significance, or those variants of medical significance but for which no 

preventative measures are available, are referred to as incidental findings. On 

the whole, genetic professionals feel that secondary results, but not incidental 

findings, should be offered to adult patients, healthy adults and parents of a 

child with a medical condition (Yu et al., 2014). Among patients themselves 

there is considerable diversity of opinion in terms of what information should 

or should not be returned and most patients feel that they should have a 

choice and participate in this decision. It is therefore crucial that patients are 

allowed to opt out of receiving certain results (Clift et al., 2015). Fortunately 

there are guidelines available to assist those counselling patients in making 

these difficult decisions (Green et al., 2013). The working group involved in 

the development of these guidelines acknowledged that there was insufficient 

evidence about the benefits, risks and costs of disclosing incidental findings to 

make evidence-based recommendations, but felt that secondary findings were 

likely to have a medical benefit for patients and their families undergoing 

sequencing. The current Leeds corneal dystrophy ethics approval covers the 

use of Next Generation Sequencing for WES of patients’ DNA samples, and 

the WES of the CHED and FECD samples used in this study so far have not 

raised any such issues. However, the question of whether the patient does, or 

does not, want to be made aware of secondary findings is not specifically 

addressed in the consent form used. A new ethics approval is currently being 

drafted to address this issue.  

 

6.2.3 Clinical genetic testing of the TCF4 CTG18.1 allele in FECD 
patients 

 

The results presented in Chapter 5 indicate a highly significant association 

between FECD cases and the CTG18.1 expansion, with carriers 23.2 times 
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more likely to develop FECD than non-carriers. It can therefore be concluded 

that TCF4 mutations contribute more to the pathogenesis of FECD than any 

other gene identified to date. This may lead to demand for a clinical genetic 

test to look for an expanded CTG18.1 allele in the families of FECD patients. 

For the TP-PCR assay to become an accredited method of clinical diagnostic 

screening for the CTG18.1 expansion in FECD patients, further validation 

would be required. Analysis of the CTG18.1 allele indicated that the FECD 

cases were not in Hardy Weinberg Equilibrium (HWE). Departure from HWE 

can occur for biological results or as a result of genotyping error. As FECD is 

a dominant disease, the population from which these alleles are drawn are 

largely heterozygous, which could account for the relative lack of homozygous 

CTG18.1 variants. Alternatively, homozygous variants might be evolutionarily 

disadvantaged, resulting fewer than expected homozygotes, although given 

that the disease occurs in otherwise healthy adults, this is unlikely. Errors in 

genotyping as a result of laboratory assay may also be responsible.  If this 

were the case, one possible explanation for this could be that the TP-PCR 

was failing to detect those homozygous for the expanded allele. Designing 

primers enabling the TP-PCR assay to be performed in both directions would 

be an additional confirmatory step to ensure that the genotyping calls were 

correct. Southern Blotting of several FECD patients and examined control 

individuals would also provide further validation by establishing the threshold 

of repeat expansion associated with “normal” and “disease” status. This 

knowledge would be invaluable for genetic counselling of FECD patients with 

an expanded CTG18.1. In both FECDBAR and FECDWAK there are 

apparently normal individuals who carry the CTG18.1 expansion but are 

potentially too young to manifest the symptoms and signs of FECD. A detailed 

understanding of the link between trinucleotide repeat number and FECD 

causation, phenocopy rates and penetrance are essential for correct 

counselling of these individuals. 
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6.2.4   Gene therapy for corneal disease 
 

Much of the focus of gene therapies in eye disease has been on the treatment 

of retinal disorders. One example of this is the gene therapy trials for Leber’s 

Congenital Amaurosis caused by mutations in the RPE65 gene. Long-term 

follow-up of treated patients has indicated improved vision for three years, 

although in the longer term eventual progressive photoreceptor degeneration 

hindered sustained improvements in vision (Cideciyan et al., 2013). 

 

A number of approaches to treating corneal disease using gene therapies 

have also been considered. These include the use of adeno-associated viral 

vectors to facilitate gene transfer, siRNA-based approaches and therapy for 

corneal scarring by ameliorating TGFβI or matrix metalloprotease expression 

in the cornea. However these have yet to be developed to the point of 

reaching clinical trials (Williams and Klebe, 2012). Treatment of CHED by 

gene replacement seems feasible in some respects as, compared with the 

retina, the corneal endothelium is relatively easily accessible. Additionally, as 

the mechanism is thought to be deficiency of the SLC4A11 protein, this 

makes CHED an ideal target for gene replacement. Approaches to gene 

therapy for trinucleotide expansion-type diseases, of which FECD due the 

TCF4 CTG18.1 expansion is thought to be one, are also under development. 

These approaches include the use of Zinc finger nucleases, transcription-

activator–like effector nucleases and CRISPR-Cas nucleases to shorten 

trinucleotide repeats. However the development of these methods is very 

much in its infancy and it is not known whether they will ultimately lead to 

effective therapies (Richard, 2015). 

 

6.2.5  Strategies for cellular replacement in corneal disease 
 

Traditionally, it was thought that endothelial cells do not divide (Bourne, 2003) 

and that therefore, as they die with age, the cells that remain have a limited 

regenerative capacity (Waring et al., 1982). However, a more recent study 

suggests that the corneal periphery contains a reservoir of stem-like cells that 



 186 

replace damaged or dead endothelium (He et al., 2012). As human donor 

corneal tissue for use in corneal transplants is a limited resource and demand 

for it remains high, the possibility of endothelial regeneration is an exciting 

avenue for research. Novel treatments based on this approach might 

overcome the problems with existing graft operations, with the challenges of 

limited availability of graft tissue, graft rejection and the surgical complications 

of infection and glaucoma being avoided. Currently, research is aimed at 

identifying the optimal conditions for the isolation and culture of corneal 

endothelial cells and the results of animal studies in this area are promising 

(Zavala et al., 2013). If the progenitor cells in the corneal periphery could be 

used in this way, corneal endothelium prepared from the patient’s corneal 

endothelial cells, bioengineered to correct the endothelial dystrophy-causing 

defect and grown in culture, could present an exciting therapeutic prospect for 

corneal endothelial disease. Full knowledge of the genetic architecture of 

endothelial dystrophies and their mechanisms of disease are an essential 

step in progressing towards these therapeutic avenues. 
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Appendix I 
A sample of the BOSU Corneal Dystrophy Questionnaire is shown below 
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Appendix II 
 

 

Corneal tissue processing 
 
Donor tissue was tested for the presence of Hepatitis B Surface Antigen, 

Hepatitis C Antibody, Human Immunodeficiency virus (HIV) 1 and 2, Antibody, 

Human T-lymphotropic Virus (HTLV) and 2, Syphilis serology, Hepatitis B 

core Antibody (HBcAb). Following enucleation the donor eye was cleaned in 

3% Povidone-iodine and 0.3% Sodium Thiosulphate prior to corneal excision. 

The corneascleral disc was then stored at 34°C in Eagles Essential Medium 

containing 2% FBS and the following antibiotics: 

 

Penicillin 100 units/ml 

Streptomycin 0.1mg/ml 

Amphotericin B 0.25 µl/ml 

 

Manchester Eye Bank Standards 
 

The corneal endothelium was examined by light microscopy a few days 

before use to ensure its suitability for transplantation in patients with corneal 

endothelial disease/deficiency. Organ-cultured corneas were delivered to 

hospitals in medium containing 5% dextran to reverse the stromal oedema 

that occurs during storage. Corneas with an inadequate endothelium could 

still be suitable for anterior lamellar grafts. The corneas may also be 

transferred to 70% ethanol and stored at room temperature for up to 12 

months or used in glaucoma surgery. Sclera, which was also stored in 70% 

ethanol for up to 12 months, can also be used for glaucoma or other 

reconstructive surgery. Ocular surface stem cells may be isolated from the 

limbus and expanded in ex vivo culture fortreating limbal stem cell deficiency. 
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Appendix III 
	
Primer Pair Sequences 
Standard PCR Conditions and Mastermix were used unless otherwise stated 

SLC4A11 
 

 
 

 

COL8A2 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

Exon Forward*Sequence*5'23' Reverse*Sequence*5'23'
Product*
Size*(bp)

Annealing*Temperature*
(°C)/Programme

1 CCTAGCAGATGGGCTAAGCA GAGCAAAGCCACAGGACTCT 374 59
2,-3 CGAGAGTGGGACAGTCCAG CTCCCTGTTGAGCTGCTCCT 554 61
4,-5 TCCAGGAGCAGCTCAACAG CAGCCCTCTTCTCCCAAGTT 686 59
6 CCAACCAACTTGGGAGAAGA CCTTCAGAGGCCAGGACAT 391 57

7,-,8 AAAACCTGCTGCCAGTTCAT AAAACCTGCTGCCAGTTCAT 589 55
9,-10 ACTGATGGTACGTGGCCTCT CGTCCATGCGTAGAAGGAGT, 567 59
11,-12 TCTACATCCAGGGTGCAGTG ACTCAGCTTGAGCCAGTCCT 660 59
13-14 GAGCCCTTTCTCCCTGAGAT GGTTGTAGCGGAACTTGCTC 623 59
15,-16 CGGGAAATCGAGAGTGAGTT CGTCTCCTTCACGTTCACAA 673 57
17-18 CTGGCCACATGGGACATAG CTAGGCAGGACCCCTCCTC 678 59
19 CAGGAGGGGCTCCAGTCTA CTGTCCCTTGCATTCCACTT 692 57

Exon% Forward%5'-3' Reverse%5'-3'
Product%
Size%(bp)

Annealing%Temperature%
(°C)/Programme

2 AGGTGAGAGGGGACTTCCTG GATGCCAGTCTCATCGAAGG 400 57
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LOXHD1 

 
* Redesigned primer   

**Primer Pair 5III was a nested primer used for DNA sequencing only 

Hotshot Mastermix was used for Exons 1 - 4, 6, 7, 10, 11,15, 18, 19, 22, 23, 

30-32, 34, 38 and 40, For all of these Hotshot Cycling Conditions were used 

except for 2 and 7 where Touchdown was utilised. 

 

Exon Forward*Sequence*5'23' Reverse*Sequence*5'23'
Product*
Size*(bp)

Annealing*Temperature*
(°C)/Programme

1 CAGAGCTCAGGGAGGAGG AATCAGTGAGGAAGGGCTTG 336 69
2 AAGAGTCCTTTGTGCTTGGG CTTCTCCCCAGAGAAGCAGG 319 Touchdown
3 GGGATGATGGAGGAAGAAGC TGGGAAGTAATTCATACCCAGAA 273 57
4 ATGATGGAGGAAGAAGCGG TGGGAAGTAATTCATACCCAGA 377 57
5 GCTCTGTTATTGACAGTAATGGTGAC GCTCAATAGAGGAGCCCAAA 355 *
6 TGGAAGAGCATCTTTCAGTGG GAGTGGATGCAGATGGACCT 149 57
7 AAAGTAGACTCAAGTGATTGGAAGA GTTTGATCACAGGCCTCCAG 314 Touchdown
8 GTGGAGGAGGAGGGCTTT TTCAGAGAAGTAGCATTCAGGTT 455 57
9 GTCTCTAAATGTGGGGCTGG GAGTGGACTGCCCTCATAGC 329 65
10 GTATACCCCGCCCTTCAGTC TTGGTCCAAAACCTGGCTTA 371 57
11 GCTGAAGAAAGAGCCCAAAG CAGAGGCAAATTTATGTGACAG 287 57
12 TGGCTTCTCTGCAATGAGAT CTAAGGGGCCTGAAGATGC 346 57
13 TCAGCCCAGATGAGAACTAGA CAGCTCAACTTTAACAGGGCA 364 57
14 TTGCCTAACCCATCAGCTCT TTGCTTGCTGGTCATGGTAG 368 57
15 CTCTGGGCCTCCATAGTGAC GCCACCTCTGTGAAACATGA 283 57
16 CTGGATTTTCAATTCCCAGC TCTTCAAAATGTGTTTACCCTTATGT 470 57
17 CTGGAGACCTGGGTTGTGTT TGTCAGCAAGACCTGCTTTG 401 57
18 GGAACAGGCTCAGGAAAGG CGGGTGAGTATTGACTGAGGA 349 61
19 GCCTTGTGCCTGGCTCT TGCCCACCTATTTGGCCT 673 69
20 AGGATCTGGCTGGATCTGAG TGAACAAGTCACACTGCCAA 673 57
21 CTGCCCTGGTTCTTGGG CCTCACCCTCCACCGTC 338 *
22 GACAGGGGAGAGTTTGGGAC ACAGGGGAGGGAAGGAAGAT 368 67
23 GGGAGTGAATCAAGGAAGCC CATAATTAGGATTCCCCTTGGA 304 57
24 TGGAAGTTCAGAAATTTGGTCA CAGATGGCATTCAAATTTCC 339 57
25 CAGCCACCTAAGGAAGGAAG GCCCACAGTCAATCCTGAAG 361 57
26 CTGGTTGTGCTGGTGAAGAA CATCAGGATGAAGGGCATGT 372 57
27 GAAATGCAAAGGGACTCAGG GCTGATCTAGCCAGTAGGTCC 322 57
28 CCATGATCCTTGTCCTTGGT tccTGGGTGAAGAGGCTTAG 367 57
29 CCTAGGCCAGAAGCTTAGCA GATGTCCCCAGGAACCAAG 351 57

30831 AGGTCTGTTCAGTGCAGCAA GATGGTGGGGCTCAAGAAT 658 69
32 GCCCTCAGAGGTCACTTCC CAGGTAGGCTGTTCTTCCCA 409 69
33 GCTGTGGAACTTGGACAGTG GGCATGTGAGAATCAGCCT 329 57
34 ATCTTCTCCCTCACCCCAAA TTTGTGCTTTAACAAGGTCCA 311 65
35 GATCTCCAGGGTTGGGATTC TGGAAGGCCTTATGAAGAAAA 385 57
36 TGTCCACCTGTACCCCTGAC ATCAGAGTCAATGTGCTGCC 389 57
37 GATAACTTGTCCAGGGCCAC CTGTATCTGGCACCTGACCC 377 *
38 GATCAAATGAAGGACCGGAG CTGGTTAGGCCCATTTGTGT 341 61
39 CATCCCTGTTCCCTGGC GAGACCTCATCATACCCTGC 366 57
40 CACCTTGGGAAGGGATCATT GCCAATGCTAGAGGCTTTGA 689 61
32B GAGCACTTCCTTCCCAGTTG GATGCCCCAGTGATGAGTCT: 356 57
40B GAGATGCCCCAATCTCACAT: TGCCAATGCGTTCTCTGTAA: 568 57
5II* GATGGTCATACATCCAATGGC ATTGCAATCAACCCACACAC 622 61
5III* TTTGGAACCAATGTGGACTG AGGACAGGTCACTCCAAACC ** **
21* GTGGGGAGGGGTAGGTCTTA CCCCAGTCTTCTTCCAGGAC 271 57
37* ATGGGTTGTGGGGATGTAGA CCTCCTGAGCCAATGATCTC 281 57
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TCF4  

 
Hotshot was used for rs613872 

 

 

FECDBRI Exome Sequencing Variants 
 
 

 
 

SNP Forward*5'-3' Reverse*5'-3'
Product*
Size*(bp)

Annealing*Temperature*
(°C)/Programme

!rs613872! GTTGGGAACACCCATTTGTC ACCCCAGTAGGGTTGTGATG 275 65
rs192075715 TTCTCATTTATATGTGTCCAACCTG CACCAGATATATTGGGGGAA 253 60

Gene Forward*5'-3' Reverse*5'-3'
Product*
Size*(bp)

Annealing*Temperature*
(°C)/Programme

OSBPL1A TCTGTGGGGTTCTTCCTAGC CACCCTGCAACGGATTTATT 398 59
CRYZL1 GGAGAGAAATAGATCCAGGAGG* CAAATGGATGGCTCATTGCT* 286 55
TC2N TGAGAGCCTTCCAGATCCTC CAAGTCATTGCCATTCTTATTTTC* 466 55
TTC40 GAACCACAACCCTTCCCAC CCACACTTGTCTACTCACCTTTCA 250 59
URB1 TCACTTGCCTTGATTTTGACC* TTCTCAATCTCTTAACACGTCACT* 307 63
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Appendix IV 
 

Standard PCR Mastermix was used for all PCRS using these primers 

 

 

 

Chromosome 18 Linkage Markers 

 

 

 
 

 
 

 
 

 

Marker Physical-Location-
(hg19)

Forward-5'<3' Reverse-5'<3' Size-(bp) Dye

D18S1152 54716520+,+54716915 GTTTGGAGACAGGGCG TTATAGTTCAGGCTCTTGTGTATTT 222,274 HEX
D18S1144 55568578+,+55568922 CTGGATTAGCCAGGCCC TGACTTGTGGACACATCACTC 159,181 TET
D18S1103 56930137+,+56930437 GAATCTCTTGAACCAGGGA AACCAGTAGGCATTTGGAA 206,254 FAM
D18S64 57426031+,+57426378 ATACTGGTGGTGGTTATACAACAT AAATCAGGAAATCGGCA 188,208 FAM
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TCF4 STR and TP-PCR Primers (to measure CTG18.1 expansion) 
 
 
 
 
 

 
 
Primer Ratios: 
 
STR    P1:P2   1:1 
 
TP-PCR   P1:P3:P4  1:1:0.5 
 
 

 

Primer Sequence
P1 AATCCAAACCGCCTTCCAAGT
P2 CAAAACTTCCGAAAGCCATTTCT
P3 TACGCATCCCAGTTTGAGACG
P4 TACGCATCCCACTTTGAGACGCAGCAGCAGCAGCAG

TCF4!CTG18.1!Genotyping
Annealing!Temperature!

(°C)/Programme
STR 61

TP'PCR 60
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Appendix V 

Rs613872 and CTG18.1 Genotype and Demographic Data 

Cases and Controls 

 

 

ID rs613872 CTG18.1 Age2at2Venesection Gender
P1 TT SS 68 F
P2 TG SX 60 F
P3 TT SS 57 F
P4 TG SX 60 M
P5 TT SS 65 F
P6 TG SS 48 M
P7 TT SS 49 F
P8 TG SX 60 F
P9 TG SS 91 M
P10 GG XX 89 F
P11 TT SS 80 F
P12 GG SX 78 F
P13 TG SS 79 F
P14 TG SX 76 M
P15 TT SS 69 M
P16 GG SX 81 M
P17 TG SS 65 F
P18 TG SX 70 F
P19 TT SX 69 F
P20 GG XX 74 M
P21 TG SX 66 F
P22 TG SX 76 F
P23 TT SS 69 M
P24 TG SX 67 F
P25 TT SS 59 M
P26 TT SX 56 F
P27 GG XX 77 F
P28 TT SS 72 F
P29 TG SX 69 F
P30 TG SX 66 F
P31 TG SX 76 F
P32 TT SS 65 M
P33 TG SX 80 F
P34 TG SX 72 F
P35 TG SX 67 M
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P36 TG SX 86 F
P37 TT SS 88 M
P38 TG SX 80 F
P39 TG SX 62 F
P40 TT SS 79 F
P41 TT SS 70 M
P42 TG SX 85 F
P43 TG SX 82 F
P44 TG SX 64 M
P45 GG SX 63 F
P46 TG SX 68 F
P47 TG SX 75 F
P48 TG SS 73 F
P49 TG SX 83 F
P50 TG SX 70 M
P51 GG XX 68 F
P52 TG SX 77 F
P53 TG SX 77 F
P54 TG SX 88 F
P55 TG SX 75 M
P56 GG SX 75 F
P57 TT SS 94 M
P58 GG SX 66 M
P59 TG SX 68 M
P60 TT SS 48 F
P61 TT SS 82 F
P62 TG SX 67 F
P63 TG SX 74 M
P64 TG SX 81 M
P65 TG SX 63 M
P66 TT SS 85 F
P67 TG SX 78 M
P70 TG SS 64 F
P71 TT SS 89 F
P72 GG SX 63 F
P73 GG XX 76 M
P74 TG SX 76 F
P75 TG SX 84 F
P76 TT SS 69 F
P77 TG SX 76 M
P78 TG SX 82 F
P79 GG SX 65 M
P80 TG SX 65 F
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P81 TG SX 68 F
P82 GG XX 64 M
P83 TG SX 73 F
P84 TG SX 68 F
P85 TG SX 68 F
P86 TG SX 69 M
P87 TG SX 71 F
P88 TG SX 69 F
P89 TT SS 76 F
P90 TG SS 85 F
P91 TG SX 56 M
P92 TG SX 73 F
P93 TG SS 69 F
P94 TG SX 74 F
P95 TG SX 79 M
P96 GG XX 69 F
P97 TG SX 59 F
P98 GG SX 68 M
P100 TG SX 60 F
P101 TG SX 73 F
P103 GG XX 54 M
P104 TT SS 52 F
P105 TG SX 67 M
P106 TG SX 80 F
P107 TG SX 72 M
P108 TG XX 66 M
P109 TG SX 66 M
P110 GG SS 71 F
P111 TG SX 68 M
P112 TG SX 67 F
P115 GG XX 72 M
P116 GG XX 73 M
P117 TG SX 73 F
P118 TG SX 62 M
P119 TT SS 58 F
P120 TT SS 63 F
P125 GG XX 74 F
P126 GG XX 68 F
P127 TG SX 58 M



 231 

	

ID rs613872 CTG18.1 Age2at2Venesection Gender
C1 TT SS 74 M
C2 TT SS 80 F
C3 TT SS 67 F
C4 TG SS 79 M
C5 TT SS 78 M
C6 TT SS 85 M
C7 TT SS 76 M
C8 TT SS 80 F
C9 TT SS 81 F
C10 TT SS 80 F
C11 TT SS 82 M
C12 TT SS 82 F
C13 TG SS 77 M
C14 TT1 SS 78 F
C15 TG SS 80 F
C16 TT SS 67 M
C17 TT SS 75 M
C18 TT SS 67 F
C19 TT SS 84 F
C20 TT SS 77 M
C21 TT SS 78 F
C22 TT SS 77 M
C23 TG SS 76 F
C24 TT SS 62 F
C25 TT SS 78 M
C26 TT SS 56 M
C27 TT SS 74 F
C28 TT SS 81 M
C29 TT SS 69 M
C30 TG SX 88 F
C31 TG SS 81 F
C32 TT SS 70 F
C33 TT SS 74 F
C34 TG SX 83 M
C35 TT SS 87 F
C36 TG SX 73 F
C37 TG SS 86 F
C38 TT SS 83 M
C39 TT SS 66 M
C40 TT SS 68 M



 232 

	 	

C41 TT SS 81 M
C42 TG SS 93 M
C43 TG SX 64 M
C44 TG SS 88 M
C45 TT SS 76 F
C46 TG SX 66 M
C47 TT SS 77 M
C48 TG SS 88 F
C49 TT SS 79 F
C50 TT SS 80 M
C51 TG SS 73 F
C52 TG SS 83 M
C53 TG SS 68 F
C54 TT SS 71 M
C55 TT SS 70 F
C56 TG SS 81 F
C57 TT SS 73 M
C58 TT SS 87 M
C59 TT SS 83 F
C60 TT SS 73 F
C61 TT SS 77 F
C62 TT SS 77 M
C63 TT SS 92 F
C64 TT SS 87 M
C65 TT SS 86 F
C66 TT SS 69 F
C67 TT SS 78 M
C68 TG SS 73 F
C69 TT SS 79 F
C70 TT SS 73 M
C71 TG SS 67 M
C72 TT SS 71 F
C73 TT SS 86 F
C74 TT SS 90 M
C75 TT SS 78 F
C76 TT SS 72 F
C77 TG SS 61 M
C78 TT SS 82 M
C79 TT SS 86 F
C80 TT SS 75 F
C85 TT SS 68 M
C86 TG SS 63 F
C87 TT SS 67 M


