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Abstract 

The Myelodysplastic Syndromes (MDS) are a biologically and clinically heterogeneous group 

of bone marrow haematopoietic cell disorders that result in ineffective haematopoiesis. 

Unlike most forms of haematological malignancy, the diagnosis of MDS remains heavily 

reliant on subjective morphological interpretation which can result in inaccurate and missed 

diagnoses. The use of flow cytometric immunophenotyping offers a potential solution to aid 

in the diagnosis of MDS, and numerous flow cytometric scoring schemes have been already 

been proposed and tested. However, most flow cytometric scoring schemes are user-

defined, with simple schemes lacking diagnostic sensitivity, whilst the more comprehensive 

schemes may be unfeasible to implement in a large-scale diagnostic setting. 

The use of machine learning classifiers offered a more subjective approach to the use of 

flow cytometric data. Therefore, we have tested a series of classifiers both by combining 

simple immunophenotypic and demographic features, and by utilising a 2 tube-

immunophenotyping panel which contained a large array of numerical and 

immunophenotypic attributes which had been identified as being abnormal in MDS patients.   

We have shown that machine learning classifier-based approaches could reproducibly 

identify patients with definite abnormalities in MDS, and those with normal haematopoietic 

populations in non-diagnostic, reactive conditions. The classifiers further offered the ability to 

aid in the triage of patients unlikely to be MDS by providing the basis to a diagnostic 

confidence score. The application of multiple classifiers also identified a grey-area of MDS 

patients who were consistently misclassified and who may prove to be challenging to 

diagnose by flow cytometry, due to an absence of aberrant immunophenotypic features.  

Finally, we have also shown that a combination of immunophenotyping and targeted gene 

mutation analysis provides the potential to identify non-diagnostic cases which may progress 

to MDS. It is in a combination of these two techniques where the future of MDS diagnosis 

may lie. 
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1 Introduction 

 

1.1 Historic background of MDS 

The current diagnostic criteria for the myelodysplastic syndromes (MDS) have a basis both 

in history and in the sine qua non of morphological dysplasia. Although the presence of free 

iron in sideroblasts in normal and reactive conditions was acknowledged in the 1940’s, the 

first reported MDS-related diagnostic entity was refractory anaemia with sideroblastic 

normoblasts in 1956 (Kaplan et al., 1954; Bjorkman, 1956). Prior to this publication, patients 

who would now be classified as MDS, were described as “pre-leukaemic” due to a series of 

patients with macrocytic anaemia who developed leukaemia  (Hamilton-Paterson, 1949). 

This perception was superseded when it became apparent that most patients succumbed to 

the complications of cytopenias, rather than to progression to acute myeloid leukaemia 

(AML). 

The first reference to MDS, as we know it, in the context of disease classification arrived with 

the publication of the 1976 French-American-British (FAB) classification of Acute 

Leukaemias (Bennett et al., 1976). The production of this document was motivated by a 

requirement to standardise the naming of myeloid disorders and to define morphological 

blast cells features according to lineage and maturation. This would provide (i) a means for 

comparing cases entered into clinical trials and (ii) a reference standard if, or when, new 

diagnostic tools became available. 

Classification according to FAB criteria was based on the morphological examination of both 

Romanowsky- and cytochemically-stained peripheral blood and bone marrow 

haematopoietic cells. Two categories of “dysmyelopoietic syndromes” were noted: 

Refractory Anaemia with Excess Blasts (RAEB) and Chronic Myelomonocytic Leukaemia 

(CMML). These two were identified as requiring discrimination from other categories of AML. 

Furthermore, in a throwback to the “pre-leukaemic” label, it was recommended that patients 

with these two categories should be monitored for transformation to AML.  

Six years later, the publication of “Proposals for the classification of the myelodysplastic 

syndromes” both changed the umbrella term from “dysmyelopoietic syndromes” to 

“myelodysplastic syndromes” and expanded the classification of MDS from two categories to 

five (Bennett et al., 1982). The foundation for classification was based primarily on 
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morphological parameters, with peripheral blood count data used in the diagnosis of Chronic 

Myelomonocytic Leukaemia (CMML). The 1982 FAB MDS classification scheme is shown in 

Table 1.1. The 1982 French-American-British Classification  

Disorder 
Features 

Peripheral Blood Bone Marrow 

Refractory Anaemia 

Reticulocytopenia 

Variable dyserythropoiesis 

Dysgranulopoiesis 

Blast cells < 1% 

Normo/hyperceullular 

Erythroid hyperplasia and/or 

dyserythropoiesis 

Blast cells <5% 

Refractory Anaemia 

with Ring Sideroblasts 

As for Refractory Anaemia except the presence of ringed 

sideroblasts account for >15% of all nucleated cells in the bone 

marrow 

Refractory Anaemia 

with Excess Blasts 

Abnormalities in all 3 of the 

erythroid, granulocytic, and 

megakaryocytic lineages 

Circulating blasts <5% 

Hypercellular 

Granulocytic or erythroid 

hyperplasia 

Dysgranulopoiesis, 

dyserythropoiesis and/or 

dysmegakaryopoiesis 

Ringed sideroblasts may be 

present 

Blast cells 5-20% 

Chronic 

Myelomonocytic 

Leukaemia 

Absolute monocytosis 

(>1 x 109/l) with or without 

dysgranulopoiesis 

Blast cells < 5% 

Similar to RAEB but an increase 

in monocyte precursors 

Variable blast count (up to 20%) 

Refractory Anaemia 

with Excess Blasts ‘in 

transformation’ 

Those not fitting above categories or AML subtypes, and: 

5% or more blast cells 

 

20 – 30% blast cells 

Presence of Auer rods in 

granulocytic precursors 

Table 1.1. The 1982 French-American-British Classification of MDS. 

Table created with data from (Bennett et al., 1982)   



3 
 

 

 

However, despite the classification being widely adopted and used, there appeared to be no 

underlying biological rationale for the boundaries between the subgroups within the 

classification. The 5% cut-off for the blast cell percentage appears to have originated from a 

definition of remission in acute leukaemia. There was also no apparent basis for the 30% 

blast cell boundary between Refractory Anaemia with Excess Blasts ‘in transformation’ and 

Acute Myeloid Leukaemia (reviewed by Lichtman, 2013 (Lichtman, 2013)). A boundary that 

would, however, be addressed in later classification schemes. 

A further feature of this classification system was the reliance on morphology in the 

enumeration of blast cells and monocytes and in the evaluation of dysplasia. This reliance 

remains the keystone for subsequent classification schemes, and for entry into clinical trials. 

Furthermore, due to the origins in both peripheral blood full blood count parameters and 

morphological parameters, multiple ambiguities have become apparent in MDS classification 

schemes. 

1.2 Why MDS can be diagnostically challenging 

At presentation, approximately 80-85% of MDS patients are anaemic with normocytic or 

macrocytic erythrocytes, 40% are neutropenic, and 30-45% are thrombocytopenic 

(Steensma and Bennett, 2006). However, none of these cytopenic features are unique to 

MDS. A large meta-analysis study reported the prevalence of anaemia as 17% in the over 

65 year olds (Gaskell et al., 2008). This percentage varied from 12% in the community to 

47% in nursing homes and 40% in a hospital-based setting. The prevalence was further 

correlated with increasing age and the male gender, and was associated with nutritional 

deficiencies, renal insufficiency, and inflammation (Bach et al., 2014). A population-based 

study, in a well-defined geographical region, reported that thrombocytopenia, in the form of 

Idiopathic Thrombocytopenia Purpura (ITP), has an annual incidence rate of 2.64 per 

100,000, which increases with age (Frederiksen and Schmidt, 1999). 

Once congenital and acquired conditions are excluded, the presence of cytopenia(s), 

erythrocyte macrocytosis, or leucocyte dysplasia may prompt analysis of the bone marrow 

for evidence of MDS. A disadvantage of this wide-ranging, albeit indiscriminate, approach 

was highlighted in a hospital study of 245 patients with unexplained cytopenia, erythrocyte 

macrocytosis, or monocytosis (Beloosesky et al., 2000). Bone marrow analysis resulted in a 

diagnosis of MDS in only 15% of patients. This figure translates into a large number of 

potentially unnecessary and non-diagnostic, invasive bone marrow aspiration procedures. 
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Although this is a relatively safe procedure and associated adverse events are reportedly 

rare (Bain, 2005). 

The reliance on morphology for a diagnosis of MDS can be problematic for a wide range of 

reasons. Erythroid, granulocyte, and megakaryocytic dysplasia can all be seen as features in 

normal and non-MDS individuals (Bain, 1996; Ramos et al., 1999; Parmentier et al., 2012). 

Dysplastic change may result from mineral deficiency or immunocompromise (Karcher and 

Frost, 1991; Gregg et al., 2002). Conditions giving rise to “stress erythropoiesis”, such as 

auto-immune haemolytic anaemia, can show dyserythropoiesis (Bessman, 1977). Vitamin 

B12 and folate level evaluation can be used to help distinguish macrocytosis from 

megaloblastic anaemia (Cafolla et al., 1998). Yet, to complicate matters, MDS has been 

reported as co-existing with megaloblastic anaemia (Drabick et al., 2001). 

Morphological identification of MDS in the bone marrow failure syndromes can be 

problematic. The distinction between aplastic anaemia and hypoplastic MDS is challenging 

due to the common presence of pancytopenia with a hypocellular bone marrow in both 

conditions (Barrett et al., 2000). The presence of paroxysmal nocturnal haemoglobinuria 

(PNH) clonal haematopoiesis which is characterised by loss of GPI-anchored proteins due to 

the acquired mutations in the PIG-A gene and which develops on a background of bone 

marrow failure, can cause further ambiguity. Not only can PNH patients show dysplastic 

bone marrow features, but PNH has also been shown to occur in MDS patients, both clonally 

and non-clonally-related to the underlying dysplasia (Longo et al., 1994; van Kamp et al., 

1994; Araten et al., 2001; Raza et al., 2014). 

MDS diagnostic concordance can be complicated further by subjective morphological 

interpretation. An inter-observer effect was noted in studies where the morphological 

diagnosis of MDS was evaluated in central review or in a large multi-centre trial (Miller et al., 

1992; Cantù Rajnoldi et al., 2005). In both these reports, diagnostic concordance was 

reported as approximately 50%. This inter-observer effect has prompted guidelines and 

publications as how best to morphologically recognise and enumerate cells in the context of 

MDS (Mufti et al., 2008; Goasguen et al., 2009; Goasguen et al., 2014). 

To overcome ambiguity in determining whether a patient is eligible to be returned with a 

diagnosis of MDS, a consensus proposal for minimal diagnostic criteria was produced 

(Valent et al., 2007). This included, amongst other criteria, definitions for cytopenia; 

percentage dysplasia required; requirement for cytogenetic analysis, and guidance on 

immunophenotyping, molecular methods, and colony-forming assays (Valent et al., 2007). 

These guidelines were subsequently updated in 2012 with an increased emphasis on the 

requirement for cytogenetic analysis (Platzbecker et al., 2012). More recently, a 
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morphological diagnostic scoring scheme has been developed by defining thresholds for 

minimal bone marrow dysplasia (Della Porta et al., 2015a) In spite of this guidance, a 

reproducible MDS diagnosis cannot always be achieved (Font et al., 2013; Senent et al., 

2013; Font et al., 2015). 

1.3 Can other techniques be used to aid in the diagnosis of MDS? 

1.3.1 The 2001 WHO classification of Myeloid Neoplasms 

Unlike the FAB classification, the 2001 World Health Organisation (WHO) classification 

system for haematopoietic and lymphoid neoplasms advocated the use of morphology in 

conjunction with other laboratory findings. Genetic information, immunophenotypic data, 

cytochemical findings, and clinical features were incorporated in the definition of diagnostic 

subgroups across a range of myeloid disorders (Vardiman et al., 2002). 

For MDS classification, the WHO wanted to incorporate cytogenetic findings as well as other 

features identified subsequent to the 1982 FAB recommendations. The classification is 

shown in Table 1.2 and the diagnostic criteria for CMML can be seen in Table 1.3. However, 

not everyone agreed with these changes and the classification drew criticism from the 

Members of the International MDS Study Group (Greenberg et al., 2000). 

There were also conceptual changes from the FAB classification. These included transfer of 

CMML to a MDS/MPD subgroup, and inclusion of a myelodysplastic/myeloproliferative 

disorder, unclassifiable category (MDS/MPD-U). This, latter, “overlap” category includes 

patients with features of MDS  but in the presence of either a raised platelet count of 

≥600x109/L or a raised leucocyte count of ≥13x109/L. Again, the cut-off for the platelet count 

originates from an arbitrary point used as a diagnostic threshold for Essential 

Thrombocythaemia (Barbui et al., 2015) However, it is unclear from where the boundary for 

a leucocyte count of ≥13x109/L originates. It is possible that it originates from the WHO 

classification for Atypical chronic myeloid leukaemia, BCR-ABL1 negative which states that 

the WBC for this category is always >13x109/L and references guidelines to distinguish CML, 

aCML, and CMML (Bennett et al., 1994). However, these guidelines only mention a 

leucocyte count of 13x109/L when discussing the behaviour of CMML patients, and not as an 

arbitrary cut-off for diagnosis nor in reference to the reference range (Bennett et al., 1994).  

The FAB entity RAEB-T was removed, with an accompanying reduction in the blast 

threshold for classifying AML to 20% blast cells. The latter changed on the basis of results 

suggesting that, when controlled for karyotype and age, the blast cell percentage did not 

show prognostic difference (Estey et al., 1997).  
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However, the biggest paradigm shift occurred with the first and, so far only, step towards a 

molecular classification of MDS: the creation of a subgroup for patients with an isolated 

chromosome 5q-deletion. This is a distinct disorder with well-defined features (Van den 

Berghe et al., 1985; Nimer and Golde, 1987; Boultwood et al., 1994; Giagounidis et al., 

2004). 

The changes from FAB to WHO classification resulted in prognostic changes. Germing et al. 

reported significant prognostic differences within subgroups in a 1600 patient, pre-validation 

study of the proposed WHO subgroups (Germing et al., 2000). Further post hoc validation 

confirmed these prognostic findings and extended them to report differences in response 

between the newly-defined WHO subgroups (Howe et al., 2003). 

The new classification, however, did not fully resolve the underlying dependence on 

morphology for diagnosing MDS. To re-iterate the problematic nature of the morphological 

diagnosis, guidance was again provided to define how to identify a morphological “blast cell” 

or “blast equivalent”. Furthermore, the number of nucleated cells to be counted to obtain a 

blast cell percentage was also designated. In peripheral blood, this was designated as 200 

cells, whilst a 500 cell differential should be performed on a bone marrow aspirate sample. 

The 95% confidence intervals for a 5% morphological blast count on 100 cells is 1.6 – 11.3% 

and this reduces for a 500 cells differential to 3.3 – 7.3% (Bennett and Orazi, 2009). 

Although this increase from a 100 to 500 cell differential reduces the uncertainty of 

identifying 5% blast cells, it does not exclude it (Vollmer, 2009).   
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Disease Blood Findings Bone Marrow Findings 

Refractory anemia (RA) Anemia 

No or rare blasts 

Erythroid dysplasia only 

< 5% blasts 

< 15% ringed sideroblasts 

   
Refractory anemia with ringed 
sideroblasts (RARS) 

Anemia 

No blasts 

Erythroid dysplasia only 

≥15% ringed sideroblasts 

< 5% blasts 

   
Refractory cytopenia with 
multilineage dysplasia (RCMD) 

Cytopenias (bicytopenia or 
pancytopenia) 

No or rare blasts 

No Auer rods 

< 1 × 10
9
/L monocytes 

Dysplasia in  10% of cells in 2 or more 
myeloid cell lines 

< 5% blasts in marrow 

No Auer rods 

< 15% ringed sideroblasts 

   
Refractory cytopenia with 
multilineage dysplasia and ringed 
sideroblasts (RCMD-RS) 

Cytopenias (bicytopenia or 
pancytopenia) 

No or rare blasts 

No Auer rods 

< 1 × 10
9
/L monocytes 

Dysplasia in  10% of cells in 2 or more 
myeloid cell lines 

≥15% ringed sideroblasts 

< 5% blasts in marrow 

No Auer rods 

   
Refractory anemia with excess 
blasts-1 (RAEB-1) 

Cytopenias 

< 5% blasts 

No Auer rods 

< 1 × 10
9
/L monocytes 

Unilineage or multilineage dysplasia 

5% to 9% blasts 

No Auer rods 

   
Refractory anemia with excess 
blasts-2 (RAEB-2) 

Cytopenias 

5% to 19% blasts 

Auer rods ± 

< 1 × 10
9
/L monocytes 

Unilineage or multilineage dysplasia 

10% to 19% blasts 

Auer rods ± 

   
Myelodysplastic syndrome, 
unclassified (MDS-U) 

Cytopenias 

No or rare blasts 

No Auer rods 

Unilineage dysplasia in granulocytes or 
megakaryocytes 

< 5% blasts 

No Auer rods 

   
MDS associated with isolated 
del(5q) 

Anemia 

< 5% blasts 

Platelets normal or increased 

Normal to increased megakaryocytes with 
hypolobated nuclei 

< 5% blasts 

No Auer rods 

Isolated del(5q) 

Table 1.2. The 2001 World Health Organisation Classification and Criteria for MDS  

(Table reproduced from Vardiman et al., 2002) 
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Diagnostic criteria for chronic myelomonocytic leukaemia 

Persistent peripheral blood monocytosis greater than 1 × 10
9
/L 

 

No Philadelphia chromosome or BCR/ABL fusion gene 

 

 Fewer than 20% blasts* in the blood or bone marrow 

 

 Dysplasia in one or more myeloid lineages. If myelodysplasia is absent or minimal, the diagnosis of 

CMML may still be made if the other requirements are present and: 

  an acquired, clonal cytogenetic abnormality is present in the marrow cells, or 

  the monocytosis has been persistent for at least 3 months and all other causes of 

monocytosis have been excluded 

 

Diagnose CMML-1 when blasts fewer than 5% in blood and fewer than 10% in bone marrow 

 

Diagnose CMML-2 when blasts are 5% to 19% in blood, or 10% to 19% in marrow, or if Auer rods are 

present and blasts are fewer than 20% in blood or marrow 

 

Diagnose CMML-1 or CMML-2 with eosinophilia when the criteria above are present and when the 

eosinophil count in the peripheral blood is greater than 1.5 × 10
9
/L 

*
In this classification of CMML, blasts include myeloblasts, monoblasts, and promonocytes. 

Table 1.3. The 2001 World Health Organisation Criteria for the Diagnosis of Chronic 
Myelomonocytic Leukaemia 

(Table reproduced from Vardiman et al., 2002) 

 

1.3.2 Update and refinement to the 2001 WHO classification of MDS 

The 2008 revision to the WHO classification scheme was published with the aim of 

incorporating new information to refine the diagnostic criteria, introduce new entities, and 

acknowledge the number of dysplastic lineages (Vardiman et al., 2009). Two changes 

included the assimilation of RCMD-RS into the RCMD subgroup and the creation of a new 

childhood entity, refractory cytopenia of childhood, due to the perceived biological 

differences between childhood and adult MDS. 

The revised classification also saw the creation of a unilineage dysplasia category, 

Refractory Cytopenia with Unilineage Dysplasia (RCUD). This contained 3 subgroups: 

refractory anemia (RA), refractory neutropenia (RN), and refractory thrombocytopenia (RT). 

These were defined on the basis of peripheral blood uni- or bi-cytopenia and single lineage 

http://bloodjournal.hematologylibrary.org/cgi/content-nw/full/100/7/2292/T4#TF4-150
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dysplasia in the bone marrow. This is distinct from the pancytopenia and unilineage 

dysplasia of MDS-U. However, this can lead to an almost contradictory scenario whereby the 

dysplasia is evident in the non-cytopenic lineage, a scenario reported in 18 cases by 

Verburgh et al. in a study of 221 low-risk MDS cases (Verburgh et al., 2007).The cytopenia- 

and dysplasia-affected lineages were, however, unreported. However, classification as 

RCUD is rare and it is probable that these cases would have fallen into the RA category. 

This is based on the findings of a large, collaborative study (Gyan et al., 2016). This study 

examined 1445 MDS patients who presented with isolated cytopenia and reported that the 

incidence of RN and RT occurred in 2 and 1 patients, respectively, whilst 54 patients could 

be diagnosed with RA.    

Changes to the classification of the “overlap” syndromes also occurred. Firstly, there was a 

category name change from Myelodysplastic/myeloproliferative disorder (MDS/MPD) to 

Myelodysplastic/myeloproliferative neoplasm (MDS/MPN), in line with changes to the 

nomenclature of the Myeloproliferative Disorder category itself to Myeloproliferative 

Neoplasm. Within this category there was also change to the 

Myelodysplastic/myeloproliferative neoplasm, unclassifiable category. A platelet count cut-off 

of  ≥450x109/L was now adopted in-line with diagnostic criteria for Essential 

Thrombocythaemia. This cut-off was defined based on the statement that it “exceeds the 

95th percentile for normal platelet counts” (Swerdlow et al., 2008). However, a leucocyte 

count cut-off of 13x109 for this classification remained in place.  

The 2008 classification also included a provisional entity within the MDS/MPN-U category: 

Refractory anaemia with ring sideroblasts associated with marked thrombocytosis (RARS-T). 

This was defined as having features of RARS with a platelet count of >450 x 109/L 

Lastly, further emphasis was placed on the use of cytogenetic karyotyping to aid in the 

diagnosis of MDS with the introduction of a category for patients who are lacking 

morphological evidence of MDS but have one of the cytogenetic abnormalities outlined in 

Table 1.4. Karyotypic abnormalities which are absent from the list but are also presumptive 

are: Idic(X)(q13); t(11;16)(q23;p13.3); t(3;21)(q26.2;q22.1); t(1;3)(p36.3;q21.1); 

t(2;11)(p21;q23); t(6;9)(p23;q34); and a complex karyotype (3 or more chromosomal 

abnormalities) involving one or more of the above abnormalities or abnormalities in red in 

Table 1.4  Recurrent cytogenetic abnormalities are reported in patients who are 

morphologically normal yet are cytopenic, with both the cytopenias and cytogenetic 

abnormalities usually persisting (Steensma et al., 2003). 



10 
 

1.4 Does the presence of cytogenetic abnormalities aid in the 

diagnosis of MDS? 

The presence of clonal cytogenetic abnormalities is a recurrent feature of MDS and aids the 

diagnosis. Approximately 50% of patients show identifiable cytogenetic abnormalities (Solé 

et al., 2005; Haase et al., 2007; Pozdnyakova et al., 2008). The incidence and array of 

cytogenetic abnormalities is shown in Table 1.4. 

Anomaly 

Total Isolated 
With one additional 

abnormality 

As part of complex 

abnormalities 

No of 

cases 
% 

No of 

cases 
%

a
 

No of 

cases 
%

a
 

No of 

cases 
%

a
 

5q− 312 15.1 146 47.0 52 17.0 114 36.0 

−7/7q− 230 11.1 86 37.5 31 13.5 113 49.0 

+8 173 8.4 81 46.8 37 21.4 55 31.8 

−18/18q− 78 3.8 3 3.8 2 2.6 73 93.6 

20q− 74 3.6 36 48.6 10 13.5 28 37.8 

−5 69 3.3 1 1.4 4 5.8 64 92.8 

−Y 58 2.8 41 70.7 5 8.6 12 20.7 

+21 45 2.2 5 11.1 18 40.0 22 48.9 

−17/17p− 42 2.0 1 2.4 1 2.4 40 95.2 

inv/t(3q) 41 2.0 16 39.0 8 19.5 17 41.5 

−13/13q− 40 1.9 5 12.5 6 15.0 29 72.5 

+1/+1q 37 1.8 3 8.1 6 16.2 28 75.7 

−21 33 1.6 3 9.1 4 12.1 26 78.8 

+11 28 1.4 6 21.4 4 14.3 18 64.3 

−12 26 1.3 0 0.0 2 7.7 24 92.3 

12p− 25 1.2 7 28.0 6 24.0 12 48.0 

t(5q) 24 1.2 6 25.0 3 12.5 15 62.5 

11q− 23 1.1 8 34.8 4 17.4 11 47.8 

9q− 23 1.1 8 34.8 3 13.0 12 52.2 

t(7q) 22 1.1 6 27.3 6 27.3 10 45.5 

−20 22 1.1 0 0.0 0 0.0 22 100.0 

a
Of cases with the respective abnormality 

Table 1.4. The incidence of chromosomal abnormalities in 2072 MDS patients. 

The abnormalities shown in red are recurrent cytogenetic abnormalities considered 
as presumptive evidence of MDS in the absence of morphological features of MDS. 
(Table created with data combined from Haase et al., 2007 and Vardiman et al., 2009)  
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Although the presence of a solitary 5q deletion is a WHO diagnostic subgroup in itself and 

accounts for 7% of cases in this cohort, a deletion of 5q- is frequently accompanied by other 

cytogenetic abnormalities. An isolated 5q- is also not the only, recurrent, isolated karyotypic 

abnormality, trisomy 8, and monosomy 7/7q deletion are both recurrently identified in MDS. 

However, unlike the isolated 5q-, these are not afforded a WHO subgroup of their own.  

The finding that 50% of MDS patients demonstrate a karyotypic abnormality should aid in a 

confident diagnosis of MDS. However, this finding creates different diagnostic challenges. 

Firstly, the frequency and presence of an identifiable cytogenetic abnormality varies between 

the WHO subgroups (Haase et al., 2007; Pozdnyakova et al., 2008). A normal karyotype is 

found more frequently in the WHO subgroups RA and RARS, than in the RCMD and RAEB 

subgroups (Haase et al., 2007; Pozdnyakova et al., 2008). It is the RA and RARS groups 

which are most diagnostically challenging as they show the least inter-observer concordance 

when assessed morphologically (Font et al., 2013; Font et al., 2015). In addition, none of the 

common chromosomal abnormalities are unique to MDS as all can be found in cases of AML 

and some myeloproliferative disorders. This is, perhaps, unsurprising due to the arbitrary 

boundaries and degree of overlap between the three categories. Moreover, 3 of the most 

frequent, recurrent cytogenetic abnormalities in MDS (del (20q), trisomy 8, and –Y) are 

excluded from the WHO list for presumptive evidence of MDS, in the absence of definitive 

morphological features, due to the presence of these abnormalities in aplastic anaemia 

(Maciejewski et al., 2002). Lastly, the number of patients who do not have a cytogenetic 

result due to failed or missing cytogenetic analysis is not well reported. The cytogenetic 

failure rate for the biggest MDS cohort was 3.3% (Haase et al., 2007). The number of 

cytogenetic failure cases in the three other, largest, MDS karyotypic studies is unreported 

(Greenberg et al., 1997; Solé et al., 2005; Pozdnyakova et al., 2008). The diagnostic and 

prognostic implication of a failed cytogenetic analysis in MDS is unknown. In AML, 

cytogenetic failure rates of 2.1% and 6% have been cited and both reports associated failure 

with a poor prognosis (Medeiros et al., 2014; Lazarevic et al., 2015). The proportion of cases 

in which no sample was sent for cytogenetic analysis in MDS is unknown but, in AML, this 

has been reported as 20% (Medeiros et al., 2014; Lazarevic et al., 2015).  

1.5 Can patients with persistent cytopenia but no dysplasia, or 

vice versa, be classified as MDS? 

One category mentioned in the revised WHO guidelines, but not adopted as an entity, was 

that of idiopathic cytopenia of undetermined significance (ICUS). This term was first used to  

describe in a series of patients who presented with a prolonged (>6 month) cytopenia with, 
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predominantly, a normal karyotype, and no, or insufficient, morphological evidence of 

dysplasia to diagnose MDS (Wimazal et al., 2007). This heterogeneous group of patients 

with ICUS have been reported as progressing to other myeloid disorders including both MDS 

and to AML (Wimazal et al., 2007; Schroeder et al., 2010; Valent et al., 2012).The exact 

percentage of patients with ICUS who progress is unclear due to patient to patient variability 

in the follow-up timeframe. However, in those patients who did progress, the timeframe to 

progression was variable and ranged from 4 months to 186 months (Wimazal et al., 2007; 

Schroeder et al., 2010). 

A counterpart to ICUS is the condition termed idiopathic dysplasia of uncertain significance 

(IDUS). Like ICUS, this condition does not attain minimal diagnostic criteria for MDS and 

patients have a predominantly normal karyotype (Valent et al., 2011). Unlike its counterpart, 

IDUS presents with no cytopenia but has dysplastic bone marrow features, the lineage of 

which varies from patient to patient. Again, the exact percentage of patients who progress to 

myeloid malignancy and time to progression is unclear due to the variable follow-up 

timeframe. However, the timeframe for those patients who did progress ranged from 2 years 

to 6 years (Valent et al., 2004; Valent et al., 2011)        

1.6 Is there an underlying biological basis of MDS? 

Haematopoiesis can be defined as the self-renewal of haematopoietic stem cells and the 

production of mature blood cells by a hierarchy of progressively more lineage restricted, 

differentiated progenitors (Wang and Dick, 2005). The differentiation process combines the 

loss of self-renewal potential with lineage restriction and functional specialisation. These 

self-renewal, commitment and differentiation pathways are governed by transcription factors 

which are influenced by cytokine signals (Zhu and Emerson, 2002). The stage of 

differentiation is dependent upon specific combinations of genes and their protein products. 

Therefore, differentiation can be detected using techniques such as gene expression 

analysis and immunophenotyping of protein expression, as well as by the assessment of 

morphological changes using conventional cytochemical stains. 

In contrast to the detection of differentiation, identification and characterisation of 

haematopoietic stem cells is more challenging. An in vivo functional assay using 

xenotransplantation of sorted stem cells into immune deficient mice, such as the non-obese 

diabetic severe combined immunodeficient strain (NOD-SCID), is required to detect the most 

primitive cell possessing the repopulating abilities attributable to haematopoietic stem cells. 

These repopulating cells were first identified by Baum et al. as expressing CD34 (Baum et 

al., 1992). Studies further isolated these cells to the CD34+ compartment lacking in CD38 
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expression (CD34+CD38-) (Bhatia et al., 1997). In humans, this CD34+CD38- compartment 

was regarded as containing the most primitive bone marrow haematopoietic cell (Terstappen 

et al., 1991; Rusten et al., 1994). More recent studies by Manz et al. and Doulatov et al. 

investigating the expression of CD7, CD10, CD38, CD45RA, CD90, CD123, and CD135 on 

CD34+ cells have further refined the understanding of haematopoietic progenitor cell 

hierarchy (Manz et al., 2002; Doulatov et al., 2010). Table 1.5 shows the current human 

haematopoietic CD34+ population hierarchy. 

 

Group 
name 

Phenotype % of 
MNC’s 

Lineage output 
CD34 CD38 CD90 CD45RA CD123 CD135 CD7 CD10 

HSC         0.04 All 

MPP         0.04 All 

MLP7−         0.01 B, T, NK, MDC 

MLP7+         0.01 B, T, NK, MDC 

CMP         0.15 EMK, G, MDC 

GMP         0.05 G, MDC 

MEP         0.30 EMK 

B-NK         0.05 B or NK 

Table 1.5. Progenitor population hierarchy characterised from cord blood and bone 
marrow. 

Red denotes the presence of antigenic expression, whilst white denotes absence of 
expression. Yellow indicates that expression by this subgroup was unreported. 

Abbreviations (Group name): HSC = haematopoietic stem cell, MPP = multipotent 
progenitor; MLP7- = multilymphoid progenitor CD7-; MLP7+ = multilymphoid 
progenitor CD7+; CMP = common myeloid progenitor; GMP = 
granulocyte/macrophage progenitor; MEP=megakaryocytic/erythroid progenitor; B-
NK = B-lymphoid and NK-lymphoid progenitor. 

Abbreviations (Lineage output): B = B-lymphoid; T = T-lymphoid; NK = Natural killer 
cells; MDC = Monocytes, Macrophages and Dendritic cells; EMK = Erythroid and 
Megakaryocyte; G = Granulocytes   

Table created from data in Manz et al., 2002; and Doulatov et al., 2010.    

 

Findings in acute myeloid leukaemia (AML) patients have given rise to the concepts of 

haematopoietic, clonal stem cell disorders and leukaemic stem cells. Similar to normal 

haematopoiesis, a leukaemia-initiating-cell in the CD34+CD38- compartment of AML patients 

has been demonstrated (Lapidot et al., 1994). The concept of a leukaemic stem cell was 

further strengthened by the finding of both proliferation/differentiation and self-renewal 

properties of the CD34+CD38-cells and functional evidence of organizational hierarchy in 

AML cells (Bonnet and Dick, 1997).    
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1.6.1 The role of stem cells in MDS 

MDS is commonly referred to as a clonal haematopoietic stem cell disorder. However, 

proving this is true remains a challenge. The interpretation of in vitro colony assays is difficult 

due both to the presence of non-clonal, non-MDS progenitor cells and to the increased 

apoptosis of MDS progenitor cells (Asano et al., 1994; Raza et al., 1995). Early NOD-SCID 

repopulating experiments had limited success and, when successful, showed only transient 

MDS-engraftment (Thanopoulou et al., 2004). This study by Thanopoulou et al. did, 

however, manage to demonstrate the co-existence of donor-derived, trisomy 8, B-lymphoid 

and myeloid cells co-existing in a NOD-SCID mouse following xenotransplantation 

(Thanopoulou et al., 2004). Unfortunately, although the donor patient was classified as MDS 

(RAEB-T) at the time of publication, under current WHO classification, they would be 

categorized as AML. 

1.6.1.1 Insights into MDS progenitor and stem cell biology using genetic 

abnormalities   

Better evidence of the stem cell involvement in MDS is derived from studies on patients in 

the 5q- WHO subgroup. These patients offer an attractive model for study due to the 

potential to track the 5q- abnormality by the use of fluorescent in-situ hybridisation (FISH). 

Firstly, Nilsson et al. showed that the 5q deletion was present in over 90% of the cells in the 

CD34+CD38- compartment (Nilsson et al., 2000). Perhaps, more importantly, this study 

demonstrated that the 5q- abnormality was present in a fraction of CD34+CD19+ B-cells, 

which implied that the abnormality resided in a lympho-myeloid stem cell (Nilsson et al., 

2000). The same group demonstrated that gene expression profiling of the CD34+CD38- 

stem cells in normal and 5q- patients showed an almost perfect concordance between the 

two groups of patients (Nilsson et al., 2007). This finding provides support for the 5q- 

abnormality originating in the CD34+CD38- stem cells but, unfortunately, did not reveal any 

further insight into the underlying pathogenesis of the 5q- abnormality. The ability to identify 

and track the 5q- abnormality in both the CD34+CD38- stem cells and the CD34+CD38+ 

myeloid progenitor cells was further exploited for biological and clinical purposes (Tehranchi 

et al., 2010). Despite the presence of the 5q- in both the CD34+CD38- stem cell compartment 

and the CD34+CD38+ myeloid progenitor cell compartment at presentation, the two 

compartments showed differential resistance to lenalidomide therapy with the 5q- persisting 

at a higher level in the CD34+CD38- stem cell compartment which portended cytogenetic 

progression (Tehranchi et al., 2010).   

The use of an underlying (cyto)genetic abnormality to investigate stem cells in MDS was not 

restricted solely to studies of MDS patients with a 5q-. The TET2 gene was found to be 
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mutated in various myeloid malignancies and is mutated in 20-25% of all MDS patients 

(Delhommeau et al., 2009; Solary et al., 2014). In four MDS patients, a TET2 mutation was 

found in both the CD34+CD38- stem cell compartment and the CD34+CD38+ myeloid 

progenitor cell compartment, albeit in a lesser proportion of CD34+CD38- cells (Delhommeau 

et al., 2009). A study by Pang et al. successfully used blocking of CD47 expression to 

xenotransplant stem cells harbouring a monosomy 7 from MDS patients into NOD-SCID 

mice which resulted in chimeric human CD45+ cells that demonstrated monosomy 7 (Pang 

et al., 2013). This study, and a study by Will et al., also demonstrated the presence of 

perturbed subgroup expansions in the CMP and GMP populations in the different subgroups 

of MDS in comparison to normal controls (Will et al., 2012; Pang et al., 2013). 

Perhaps the most comprehensive study to date was by Woll and colleagues (Woll et al., 

2014). By tracking the 5q- abnormality, this study demonstrated that only the CD34+CD38-

CD90+CD45RA-  MDS stem cells (MDS-HSC) from 5q- patients, and not the CMP’s, GMP’s, 

or MEP’s, were capable of reconstituting haematopoiesis in mice. Furthermore, genetic 

mutations which were found within the MDS-HSC compartment in patients were identical to 

those found in the GMP or MEP populations, and there was no mutation found in the bulk of 

the cells which was not present in the MDS-HSC population. A similar approach to Woll et al. 

has been adopted more recently using the presence of mutations in the SF3B1 gene in 

patients with RARS to demonstrate the stem cell origin of this MDS subtype (Mian et al., 

2015)  

1.6.2 The role of ineffective haematopoeisis in MDS 

The bone marrow specimen provides an insight into the disordered and ineffective 

haematopoiesis in MDS. Assessment of the trephine allows evaluation of bone marrow 

cellularity, architectural structure of the bone marrow, presence of fibrosis, and permits 

quantitative evaluation of any accumulation of specific haematopoietic populations. The 

presence of a normo/hyper-cellular bone marrow alongside dyserythropoiesis, 

dysmegakaryopoiesis, reticulin fibrosis, and abnormal localisation of immature precursors 

are all features consistently reported in MDS patients (Tricot et al., 1984; Frisch and Bartl, 

1986; Ríos et al., 1990; Mangi and Mufti, 1992). The finding of a normal/hyper-cellular 

marrow in a cytopenic patient is a key “paradoxical” feature raising the suspicion of MDS. 

This paradox was resolved by the discovery that patients with MDS have increased 

apoptosis in the bone marrow with dysregulation of TNFα, FAS and TRAIL all implicated in 

this process (Raza et al., 1995; Parker et al., 2000; Kerbauy and Deeg, 2007). Whilst MDS 

patients with the 5q- again providing further insight into MDS with the discovery that the 

ineffective erythropoiesis and transfusion requirement attributable to this MDS subtype can 
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be overcome with the administration of lenalidomide which restores erythropoiesis by 

suppressing the 5q- clone (List et al., 2006)  

1.7 What is the incidence of MDS? 

Historically, data on MDS has been rarely collection by cancer registries and epidemiological 

studies were rare.  In 2001, the International Classification of Disease for Oncology (ICDO) 

changed the classification of MDS from /1 (uncertain behaviour) to /3 (malignant, primary 

site). This change permitted evaluation of MDS diagnoses at the population level and 

allowed the annual incidence to be calculated.  

In the US, the average annual MDS incidence is reported as 5 new diagnoses per 100,000 

persons (National Cancer Institute. SEER Cancer Statistics Review 1975-2012.). There is a 

male: female skew in all diagnostic categories, with the exception of MDS with an isolated 

5q- where the inverse occurs. Although MDS can be diagnosed in patients under the age of 

40, it is primarily a disease which occurs in elderly patients. This can be seen in the 

increasing incidence with age which ranges from 0.2 per 100,000 in the under 40 years old 

to 59.1 per 100,000 in the over 80 years old (National Cancer Institute. SEER Cancer 

Statistics Review 1975-2012.). The incidence is also higher in whites compared to other 

racial groups. 

European studies have reported similar findings to the US. Pre-2001 and the ICDO3 

classification, there were few reported studies on the epidemiological findings of MDS. 

Those published were in well-defined populations and these reported higher incidences for 

males than females, increasing incidence with age, and crude annual incidence rates 

between 3.2 and 4.1 (Aul et al., 1992; Radlund et al., 1995; Maynadie et al., 1996). More 

recent large-scale publications by Sant et al. and Visser et al. have re-iterated the male to 

female skew, increased incidence with age, and, albeit lower than previously reported, 

overall crude incidences of 1.8 and 1.5, respectively (Sant et al., 2010; Visser et al., 2012). 

However, the use of the FAB classification of MDS in these European studies has rendered 

it difficult to determine population-based information regarding incidence and survival 

associated with specific MDS categories. 

The Haematological Malignancy Research Network (HRMN) is a collaboration 

encompassing 2 UK Cancer Networks which cover 3.6 million people, 14 hospitals, and a 

single integrated haematopathology laboratory (HMDS), in which the patient data for 

diagnosis in accordance to WHO classification, prognosis, treatment, and outcome are 

obtained as well as socio-demographic measures (Smith et al., 2010a). A map of the 

geographical area covered and the participating hospitals is shown in Figure 1.1. 
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Figure 1.1. The geographical area and 14 hospitals served by HMDS and HMRN 
(HMRN., 2016). 

Work undertaken by HMRN has shown that, overall, MDS accounts for 6% of all 

haematological malignancies, has a median age at diagnosis of 76 years old, an incidence 

of 3.7 per 100,000, a male:female rate ratio of 2.09, and no association with deprivation 

(Smith et al., 2011). From this resource, the incidence, sex ratio rate, median age at 

diagnosis and expected UK cases per year for RARS, RCMD, RAEB, CMML, and 

MDS/MPN-U could be calculated from HMRN data obtained between 2004 and 2013. These 

data are shown in Table 1.6. The incidence with age for RARS, RCMD, and RAEB could 

also be obtained and this is shown in Figure 1.2.  
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 Annual Rate per 100,000   Expected UK cases per year 

Disorder Total Male Female 
M:F 

ratio 

Median age 

at diagnosis 
Total Male Female 

RARS 0.7 0.9 0.5 1.8 77.6 390 250 140 

RCMD 1.5 2.3 0.8 2.9 75.7 910 670 240 

RAEB 1.4 1.9 1.0 1.9 74.5 830 530 300 

5q- 0.1 0.0 0.1 0.2 72.0 NS NS NS 

CMML 0.8 1 0.5 1.8 77.4 440 280 160 

MDS/MPN-U 0.1 0.1 0.1 1.4 77.5 50 30 20 

Table 1.6. HMRN incidence data for the 6 available WHO subgroups in the MDS and 
MDS/MPN categories. 

Data was obtained from the HMRN website (HMRN., 2016.) 
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Figure 1.2. Age-specific incidence and estimated UK cases of (A) RARS, (B) RCMD, 
and (C) RAEB. 

These graphs were created from data available from HMRN (HMRN., 2016.). The 
number of estimated UK cases was calculated by applying HMRN age and sex 
specific rates to the 2001 UK population census data.  
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As noted, HMDS receives specimens referred for the investigation of haematological 

malignancy from all of the centres within the 2 regional cancer networks and, thereby, 

provides diagnostic classification for the HMRN database. However, HMDS receives 

specimens from various other referral centres across the UK as shown in Figure 1.3. Some 

of these centres only provide bone marrow aspirate samples, as the trephine is processed 

in-house by the local histopathology laboratory. Furthermore, due to the geographical 

location and logistical arrangements, bone marrow specimens may be received over 24 

hours following aspiration. This latter feature, if coupled with a lack of referred bone marrow 

aspirate smear and unavailability of full patient clinical information, can make accurate 

diagnosis of MDS and other haematological malignancies challenging.   

 

Figure 1.3. Map of the UK indicating the geographical regions containing hospitals 
which are served by HMDS. 

 

1.8 Does MDS pose a clinical problem?                                                                                                                                                                                                                                                                                                                                                                                                   

As there is a variable natural history of MDS due to the biological heterogeneity, one of the 

first aims following diagnosis is to provide a prognosis for the patient and decide upon 
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appropriate therapeutic approach based on this assessment. As neither the WHO 

classification scheme, nor the FAB classification scheme before it, predicts the need for 

clinical intervention, alternative schemes for generating a prognostic score have been 

proposed. 

1.8.1 The International Prognostic Scoring Scheme 

The International Prognostic Scoring System (IPSS) was established in 1997 to make 

predictions on patient outcome  (Greenberg et al., 1997). This stratified patients into 4 risk 

categories (Low, Intermediate-1, Intermediate-2, and High) on the basis of percentage of 

bone marrow blast cells, cytogenetic karyotype, and presence and number of cytopenias. 

There were limitations to the IPSS. Many patients now considered to have AML were 

included. There was no distinction between the presence of 2 or 3 cytopenias, nor was the 

depth of cytopenia taken into account. This latter point is clinically relevant as there is an 

increased infection rate when the neutrophil count is below 1x109/L, and infection is the 

leading cause of death in MDS (Pomeroy et al., 1991). Furthermore, the depth of anaemia 

has a prognostic value for overall survival (Kao et al., 2008). The requirement for blood 

transfusion was overlooked, with patients requiring blood transfusion having a lower 

probability of survival (Cazzola and Malcovati, 2005). Lastly, the list of cytogenetic 

karyotypes defined as intermediate is long and studies have shown variable prognosis within 

this subgroup (Solé et al., 2000; Solé et al., 2005). 

However, despite these criticisms, the stratification into prognostic subgroups allowed the 

natural history (median survival and time to AML progression) to be evaluated for each of the 

4 subgroups as shown in Table 1.7.  

Risk Group Total score Median survival 

(years) 

Time for 25% to progress 

to AML (years) 

Low 0 5.7 9.4 

Intermediate-1 0.5-1.0 3.5 3.3 

Intermediate-2 1.5-2.0 1.2 1.1 

High ≥2.5 0.4 0.2 

Table 1.7. MDS risk category as defined by the IPSS score values. 

The table shows the clinical outcome as defined by median survival and risk of 
developing AML. 
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1.8.2    The WHO-based Prognostic Scoring System  

An alternative scoring system attempted to address some of the criticisms of the IPSS. The 

WHO-based Prognostic Scoring System (WPSS) was based on the WHO classification, 

used the same karyotypic subgroups as the IPSS, and added transfusion requirement to 

classify patients into 5 different risk groups (very low; low; intermediate; high, very high) with 

different outcomes and progression to AML rates, as shown in Table 1.8 (Malcovati et al., 

2007). 

  
 

 AML Progression (Cumulative 

probability) 

Risk Group Total 

score 

Median survival 

(years) 

 2 years  5 years 

  Test Validation  Test Validation  Test Validation 

Very Low 0 8.6 11.8  0.0 0.03  0.06 0.03 

Low 1 6.0 5.5  0.11 0.06  0.24 0.14 

Intermediate 2 3.3 4.0  0.28 0.21  0.48 0.33 

High 3-4 1.8 2.2  0.52 0.38  0.63 0.54 

Very High 5-6 1.0 0.8  0.79 0.80  1.0 0.84 

Table 1.8. MDS risk category as defined by the WPSS score values. 

The table shows the clinical outcome as defined by median survival and risk of 
developing AML. 

 

However, like the IPSS, there were some concerns, mainly surrounding the definitions 

regarding blood transfusion, the inter-observer reproducibility of the WHO classification, and 

the different ages of the training and validation cohorts (Bowen et al., 2008). 

1.8.3 Other prognostic scoring systems 

Other scoring systems have attempted to address the inadequacies the IPSS, 2 of which 

have been produced by the MD Anderson Cancer Centre. The first evaluated those patients 

in the Low and Intermediate-1 categories of the IPSS and stratified into 3 prognostic groups 

on the basis of age, cytogenetic karyotype, platelet count, haemoglobin, and blast cell 

percentage (Garcia-Manero et al., 2008). The second allowed the inclusion of those patients 
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(CMML, previous therapy, secondary MDS) previously excluded from the IPSS and stratified 

on the basis of performance status, age, platelet count, haemoglobin, blast cell percentage, 

leucocyte count, cytogenetic karyotype, and previous transfusion (Kantarjian et al., 2008). 

The inclusion of age as a prognostic factor is, perhaps, unsurprising given its value as a 

prognostic factor in AML and the finding that it is a significant variable in univariate analysis 

in other MDS prognostic schemes (Greenberg et al., 1997; Malcovati et al., 2007; Döhner et 

al., 2015). Given that epidemiological studies have also shown a sex rate skew in MDS, a 

large German and Austrian collaborative study incorporated both age and sex with the IPSS 

to improve the prognostication of MDS (Nosslinger et al., 2010). 

 

1.8.4 Revised International prognostic Scoring System (IPSS-R) 

In response to criticism, the IPSS was further refined on a larger cohort of patients to 

produce the IPSS-R. This generated new cut-offs for assessment of cytopenia and the 

percentage of blast cells, and included more cytogenetic abnormalities, using a scoring 

system based on nearly 3,000 patient, which contributed the highest weight to the score 

(Greenberg et al., 2012; Schanz et al., 2012). Age was included as a feature, but not sex, 

and this can be used to generate an age adjusted IPSS-R. The outcomes per patient group 

using the IPSS-R are shown in Table 1.9.  

The IPSS-R has been widely adopted and IPSS-R calculators are available on-line and for 

mobile devices (Revised International Prognostic Scoring System (IPSS-R) for 

Myelodysplastic Syndromes Risk Assessment Calculator | MDS Foundation, 2016).  

However, criticism of the IPSS still remains. One criticism regards the ability to determine 

accurate blast cell percentages to the stated cut-offs. One study showed only fair inter-

observer concordance for cases with 0.1-2% blast cells (kappa = 0.50) and for cases with 

>2% but less than 5% blast cells (kappa = 0.28) (Senent et al., 2013). Furthermore, the 

IPSS-R was formulated for untreated patients, although its validation has been performed for 

MDS on a single institute cohort, and on patients treated with azacytidine and lenalidomide 

(Lamarque et al., 2012; Mishra et al., 2013; Sekeres et al., 2014). 
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Risk Group Total score Median survival (years) 
Time for 25% to progress 

to AML (years) 

Very Low ≤1.5 8.8 Not reached 

Low 2.0-3.0 5.3 10.8 

Intermediate 3.5-4.5 3.0 3.2 

High 5.0-6.0 1.6 1.4 

Very High >6.0 0.8 0.73 

Table 1.9.  MDS risk category as defined by the IPSS-R score values. 

The table shows the clinical outcome as defined by median survival and risk of 
developing AML. 

 

1.8.5 Revised WHO-based Prognostic Scoring System 

An initial refinement to the WPSS was proposed in 2011 with the inclusion of the 

haemoglobin threshold level at the expense of transfusion requirement (Malcovati et al., 

2011). As the WPSS uses the same cytogenetic abnormalities as defined by the IPSS, there 

was an obvious requirement for revision to the WPSS following revision to the IPSS. This 

was performed in 2015 on a large cohort of 5326 patients and incorporated the haemoglobin 

thresholds alongside the WHO categories and the recently defined IPSS cytogenetic risk 

group (Della Porta et al., 2015b). The outcomes per patient group using the revised WPSS 

are shown in Table 1.10. Perhaps unsurprising, given similar use of the karyotypic data, the 

revised WPSS and the IPSS-R were strongly correlated, although discrepancies were seen 

between lower risk patients (Della Porta et al., 2015b).  

Risk Group Total score Median survival (years) 
Time for 25% to progress 

to AML (years) 

Very Low 0-1 8.2 Not reached 

Low 2 6.3 14.5 

Intermediate 3 3.7 6 

High 4-5 1.8 1.5 

Very High >5 0.7 0.7 

Table 1.10. MDS risk category as defined by the Revised WPSS score values. 

The table shows the clinical outcome as defined by median survival and risk of 
developing AML. 
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1.8.6 CMML-based scoring schemes 

CMML has dysplastic features and shows overlap with features of MDS cases but, despite 

having a heterogeneous biology and natural history, it was not included for risk assessment 

in the traditional MDS prognostic scoring schemes. However, it has been included in one 

MDS prognostic scoring scheme, an MD Anderson scoring scheme, albeit based on FAB 

criteria (Kantarjian et al., 2008). This is not to say that specific CMML prognostic scoring 

schemes do not exist, but, mainly, these have been based upon FAB defined CMML criteria 

(Worsley et al., 1988; Gonzalez-Medina et al., 2002; Onida et al., 2002). 

In the WHO era, there have been 2 attempts to produce CMML specific prognostic scoring 

schemes. Cytogenetic karyotype alone has been used to assign CMML to 3 prognostic 

categories (Such et al., 2011). Although features previously identified by the FAB CMML 

prognostic scoring schemes as risk factors were available in this cohort (i.e. blast cell count, 

haemoglobin level, leucocyte count, platelet count), they were not included in the final 

scheme (Such et al., 2011). The 3 cytogenetic risk groups were, however, used as a 

foundation to develop to develop a CMML-specific prognostic scoring scheme (CPSS) (Such 

et al., 2013). The outcomes per patient group using the CPSS are shown in Table 1.11.    

 

  Median survival (years)  
 Time for 25% to progress 

to AML (years)  

Risk Group 
Total 

score 
Test Set 

Validation 

Cohort 
 Test Set 

Validation 

Cohort 

Low 0 6.0 5.1  7.9 4.9 

Intermediate-1  1 2.6 2.6  3.3 2.0 

Intermediate-2 2-3 1.1 1.3  0.9 1.1 

High 4-5 0.4 0.8  0.3 0.3 

Table 1.11. CMML risk category as defined by the CPSS score values. 

The table shows the clinical outcome of the training and validation cohort, as defined 
by median survival and risk of developing AML. 

 

A schema comparing and contrasting the features used to generate each prognostic scoring 

scheme is shown in Figure 1.4. 
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Figure 1.4. A comparison of the components used to define the different prognostic 
scoring schemes in MDS and CMML. 

A blue-coloured cell denotes use of feature. A white-coloured cell denotes non-use of 
feature.  

1.9 Treatment aims 

As stated, and as can be seen from the prognostic scoring schemes, MDS poses particular 

clinical management concerns due to the heterogeneity of the disorder with respect to 

survival and transformation to AML. As befits the disorder, there is also heterogeneity in 

treatment aims. At the lower-risk end of the spectrum, the aim may be to give supportive 

care (i.e. observation, clinical monitoring, quality-of-life assessment, blood transfusions and 

chelation therapy, erythroid stimulating agents, and antibiotics to control infections), or, 

ideally, to resolve the ineffective haematopoiesis, especially in the 5q- subgroup with the 

administration of lenalidomide (reviewed by Fenaux and Adès) (Fenaux and Adès, 2013; 

Killick et al., 2014). At the other end of spectrum, the aim is to both overcome any 

differentiation blocks and promote apoptosis of the blast cells, usually by administration of 

hypomethylating agents (Sekeres and Cutler, 2013). Ultimately, however, the only true 

curative therapy is allogeneic bone marrow transplantation, albeit with variable results 

(Stone, 2009). 
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1.10  Can contemporary genetic-based techniques improve the 

identification of MDS patients and of new prognostic features? 

Given the importance of cytogenetic karyotype in the diagnosis of MDS, and in the prognosis 

where it carries the highest statistical weight of all components in the IPSS-R, identification 

of karyotypic abnormalities is critical. Recently, array comparative genomic hybridisation 

(CGH) has identified copy number changes in 11% of MDS patients with a normal karyotype 

by conventional cytogenetic analysis, including a complex karyotype (Volkert et al., 2016). 

However, neither conventional karyotyping nor array CGH can identify uniparental disomy 

(UPD-also referred to as copy neutral loss of heterozygosity (CN-LOH)), which refers to the 

inheritance of two copies of chromosome from one parent and which is a feature of many 

cancers (Tuna et al., 2009). 

1.10.1 Single nucleotide polymorphism arrays 

The single nucleotide polymorphism array (SNP-array) is a valuable tool in the investigation 

of haematological malignancies, including myeloid malignancies, as it is the only technique 

available for assessing copy number changes and CN-LOH (Gondek et al., 2008; 

Maciejewski and Mufti, 2008; O'Keefe et al., 2010). The use of SNP-arrays in MDS was first 

reported in an IPSS low-risk cohort of patients of whom 65% had a normal karyotype 

(Mohamedali et al., 2007). In this study, 18% of patients had abnormalities identified by 

SNP-array but not by cytogenetic analysis. Statistical comparison with the IPSS revealed a 

correlation with the frequency of deletions, although not with the frequency of 

gains/amplifications or with CN-LOH (Mohamedali et al., 2007). Currently, its utility resides in 

complementing, as opposed to replacing, conventional cytogenetic analysis (Tiu et al., 

2011). However, the finding that there was a high concordance between peripheral blood 

and bone marrow SNP-array karyotype (100% for the pilot study and 95% in a larger cohort) 

means that it has clinical advantages over conventional cytogenetic karyotyping, which 

typically requires a bone marrow, and has a potential application in diagnosis using solely a 

peripheral blood sample (Mohamedali et al., 2013; Mohamedali et al., 2015).  

  

1.10.2 Genetic mutations in MDS 

Recurrent areas of LOH can be used to identify regions of interest in myeloid malignancies 

such as mutations in CBL in MPN (Grand et al., 2009). An approach analogous to the 

Knudson 2-hit model of carcinogenesis, as LOH can be thought of as a second “hit”, with the 

first “hit” being a somatic point mutation which either causes activation of an oncogene or 
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loss of a tumour suppressor gene (Knudson, 1971). Once identified, the presence of a 

recurrent somatic point mutation has been reported as an invaluable diagnostic and/or 

prognostic tool in such myeloid malignancies as MPD, AML, and systemic mastocytosis 

(Nagata et al., 1995; Baxter et al., 2005; James et al., 2005; Kralovics et al., 2005; Thiede et 

al., 2006; Beer et al., 2008; Klampfl et al., 2013; Nangalia et al., 2013; Linda M. Scott, 2014). 

1.10.2.1 Can specific, recurrent genetic mutations be found in MDS?  

As if to complement the varied diagnostic features and differing natural history within MDS, a 

large number of genetic mutations have been identified as associated with MDS. It also 

seems appropriate, given the heterogeneous nature of the disease, that a variety of 

techniques and approaches have aided in the identification of these mutations. Early reports 

used in vivo selection assays to identify, and a combination of the polymerase chain reaction 

(PCR) and DNA sequencing to confirm, NRAS mutations (Hirai et al., 1987; Bar-Eli et al., 

1989). PCR/single strand conformation polymorphism (SSCP) was used to demonstrate 

TP53 mutations in MDS (Sugimoto et al., 1993). 

The close, overlapping relationship of MDS to other myeloid malignancies has aided in the 

discovery of mutated genes in MDS. A mutation in FLT3 was first discovered as an internal 

tandem duplication in patients in AML, and then confirmed as present in MDS (Nakao et al., 

1996; Yokota et al., 1997). The search for, and discovery of, mutations in RUNX1 was 

guided by the involvement of this gene in chromosomal translocations in AML and B-ALL 

(Osato et al., 1999; Imai et al., 2000). Likewise, the discovery of NPM1 mutations was 

influenced by the involvement of NPM1 in chromosomal translocations and identified via the 

use of immunocytochemical methods (Falini et al., 2005). SSCP and DNA sequence 

analysis was used to demonstrate an Asp816 KIT (aka cKIT) mutation in patients with 

systemic mastocytosis with associated haematological malignancy (Nagata et al., 1995). 

Both Asp816 and mutations in previous unreported codons were subsequently reported in 

MDS patients (Lorenzo et al., 2006).  

Techniques borrowed from cytogenetic analysis aided in the identification of other genetic 

mutations. Mutations in TET2 and EZH2 were both discovered through detection of areas of 

LOH on chromosomes 4 and 7, respectively (Langemeijer et al., 2009; Ernst et al., 2010). 

Mutations in ASXL1 were discovered via a similar approach to LOH, only by use of CGH 

(Gelsi-Boyer et al., 2009). 

However, the advent of so-called Next Generation Sequencing (NGS) has superseded the 

use of the above approaches for mutation discovery. It has also made the cost of 

sequencing an entire genome relatively now affordable and almost under $1000. This can be 

seen in Figure 1.5 which shows the decreasing cost of DNA sequencing and was plotted 
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using data obtained from the NIH National Human Genome Research Institute website 

(Wetterstrand, 2016). The biggest drop in cost in 2007 was attributable to the switch from 

traditional Sanger sequencing to Next Generation Sequencing methods. 

 

Figure 1.5. The decreasing cost of sequencing the human genome with time. 

The cost per genome is plotted using a logarithmic scale. Graph created with data 
obtained from NIH National Genome Research Institute (Wetterstrand, 2016) 

 

This affordability has enabled the identification of numerous genes which are found to be 

mutated in MDS. Ley et al., in Washington, sequenced the whole genome of a patient with 

AML with a normal karyotype in a bid to identify cancer-specific genetic mutations (Ley et al., 

2008). A repeated approach by this group on a second patient resulted in the identification of 

somatic mutations in IDH1 and a demonstration that this gene was recurrently mutated in 

additional AML patients (Mardis et al., 2009). The same group then retrospectively identified 

a DNMT3A mutation in the first AML patient and, again, demonstrated recurrent mutations of 

this gene in additional AML patients (Ley et al., 2010). Both IDH1 and DNMT3A were 

subsequently shown to be mutated in MDS (Thol et al., 2010; Walter et al., 2011). The 

recurrence of somatic mutations within specific genes in cancer has given rise to the concept 

of a “driver” and “passenger” mutations. A driver mutation is a somatic mutation in a gene in 

a cell with self-renewal abilities which leads to selection advantage and gives rise to a 

mutated clone, whilst a “passenger” mutation has no impact upon neoplastic clone formation 

(Stratton et al., 2009). Although passenger mutations in sub-populations of cancer cells can 
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become driver mutations with the introduction of selection pressure in the form of therapy 

(Stratton et al., 2009). However, it is possible that the delineation of driver and passenger 

mutations may only be resolved with the analysis of incidence of recurrent genetic mutations 

in large scale cancer studies (Greenman et al., 2007).   

The whole genome/exome sequence approach was subsequently applied to MDS patients 

with predictably novel findings and biological insights. Whole exome sequencing and 

targeted re-sequencing identified recurrent genetic mutations in the RNA splicing gene 

SF3B1 (Papaemmanuil et al., 2011). Moreover, there was a strong correlation between the 

presence of a somatic mutation in SF3B1 and the presence of ring sideroblasts 

(Papaemmanuil et al., 2011). The finding of a somatic mutation in a RNA splicing gene was 

not restricted to just SF3B1. Whole exome/genome sequencing identified mutations in other 

genes involved in splicing, including SRSF2, ZRSR2, and U2AF1 (Yoshida et al., 2011; 

Graubert et al., 2012). 

However, the true extent of the number of genes found to be mutated in MDS and the 

proportion of patients who are affected was to be revealed by large scale studies. The first 

study, by Bejar et al., applied a targeted gene panel approach to 439 MDS patients (Bejar et 

al., 2011). The authors identified a somatic mutation in 18 genes with the finding that 52% of 

MDS patients demonstrated the presence of at least one mutation, whilst mutations in two or 

more genes were noted in 18% of patients. TET2 was the most frequently mutated gene 

(mutated in 20.5% of cases) and 26% of patients with a TET2 mutation had two distinct 

mutations. Furthermore, as a portend of things to come, 13 out of the 18 genes sequenced 

were each found to be mutated in less than 5% of MDS cases. 

Two similar, European, collaborative studies were then published which expanded on the 

findings of Bejar et al. Papaemmanuil et al. targeted 104 genes on 738 MDS patients for 

mutational analysis, whilst Haferlach et al. targeted 111 genes on 944 patients 

(Papaemmanuil et al., 2013; Haferlach et al., 2014). Each study identified somatic mutations 

in 43 and 47 genes, respectively, with the top 5 mutated genes (SF3B1, TET2, SRSF2, 

ASXL1, DNMT3A) the same in both publications, albeit in different orders. In neither study 

was a mutation identified in every single case, with Papaemmanuil reporting 74% of patients 

having at least one mutation, and Haferlach reporting 89.5%. Like Bejar, both studies 

reported cases showing multiple genes harbouring mutations with Papaemmanuil reporting 

10% of cases showing the presence of 4-8 mutations. Furthermore, both studies reported 

significant correlations between genes, with the finding of both positive correlations and 

mutual exclusivity between mutated genes. 
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The mutual exclusivity between genes occured mainly for genes within the specific biological 

pathway. For example, mutations in genes involved in the RNA splicing pathway (SF3B1, 

SRSF2, ZRSR2, U2AF1) were mutually exclusive. This extended to those involved with DNA 

methylation (TET2, DNMT3A, IDH1, IDH2); chromatin modification (ASXL1, EZH2) 

transcription factors (RUNX1, NPM1, BCOR), or signalling (FLT3, NRAS, KRAS, CBL, cKIT, 

JAK2, MPL, CSF3R). However, mutual exclusive mutations between genes were also shown 

to exist between genes in different pathways. These findings imply that there is both a 

functional redundancy and underlying biological basis to the mutations found in MDS 

(Papaemmanuil et al., 2013). 

Finally, and to underline the heterogenous nature of MDS, both studies showed the 

presence of a Pareto-type distribution with respect to the number of genes mutated in MDS 

–  described as a so-called “long tail” which indicates the small number of genes mutated in 

approximated 10% of MDS patients and a “long tail” of approximately 50 genes mutated in 

less than 5% of patients. 

1.10.2.2 How can mutation analysis be incorporated into the WHO MDS 

diagnostic classification scheme?  

A WHO-based classification is based on a combination of morphological, phenotypic, 

cytogenetic, and molecular features. Therefore, the incorporation of distinct genetic entities 

with specific disease biology and therapeutic options is an attractive prospect which fits with 

the WHO classification ideology. Currently, the 5q- syndrome is the only 

cytogenetic/molecular-based defect in the WHO MDS category. However, the associated of 

an SF3B1 mutation with the presence of ring sideroblasts makes this mutation an obvious 

candidate. Malcovati et al. showed that SF3B1 could identify a subset of MDS patients with 

similar genotypic and phenotypic features and a good prognosis (Malcovati et al., 2014). 

Incorporation of genetic mutations into a diagnostic classification scheme may not be 

straightforward. The findings from the 2 European large scale studies showed that somatic 

mutations within the 5 most frequently mutated genes were found across most WHO MDS 

categories (the Bejar et al. study used the FAB classification). Simply overlaying the 

underlying genetic mutation or mutations onto the current framework of pre-existing WHO 

MDS entities would subdivide each category into increasing numbers of subcategories and 

create an even more diverse group of disorders. It is possible that patients could be defined 

by the pathway affected by the mutation i.e. RNA splicing (SF3B1, SRSF2, ZRSR2, U2AF1); 

DNA methylation (TET2, DNMT3A, IDH1, IDH2); chromatin modification (ASXL1, EZH2) 

transcription factors (RUNX1, NPM1, BCOR), or signalling (FLT3, NRAS, KRAS, CBL, cKIT, 

JAK2, MPL, CSF3R). Alternatively, a mutation barcode approach which takes into account 
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all MDS-related driver mutations could be used. This would overcome the difficulty in 

classifying those patients who demonstrate mutations in multiple pathways (Papaemmanuil 

et al., 2013; Haferlach et al., 2014).  

However, not every patient tested was found to harbour a mutation in the genes analysed. 

Although patients were investigated with targeted panels which, for example, did not include 

mutation analysis in gene regulatory elements. The percentage of MDS patients with non-

mutated genes was reported as 48.5%, 22%, and 10.5% in the 3 large scale studies (Bejar 

et al., 2011; Papaemmanuil et al., 2013; Haferlach et al., 2014). It remains to be seen 

whether the application of whole genome sequencing to MDS patients, as opposed to 

targeted gene sequencing, in combination with traditional karyotypic studies would identify 

genetic abnormalities in all patients. 

1.10.2.3 Can mutation analysis be incorporated into MDS prognostic 

scoring schemes? 

The use of the mutation analysis may also be suited to prognostication as well as to disease 

classification. Statistical analysis for the construction of the IPSS-R identified the cytogenetic 

chromosomal abnormality component as having the highest weighting of all the features 

(Greenberg et al., 2012). It is thought that chromosomal abnormalities are secondary events 

following an initial driver mutation (Cazzola et al., 2013). Therefore, it is unsurprising that 

prognostic scoring schemes are already being generated which attempt to include genetic 

mutations. 

Studies in CMML patients preceded those in MDS and gave a good overview of the potential 

of genetic mutation analysis in a prognostic setting, although with some conflicting results. A 

study by Kosmider et al. showed that a TET2 mutation was an independent prognostic factor 

for overall survival in CMML (Kosmider et al., 2009). However, this finding did not extend to 

an independent cohort containing both MDS and CMML patients (Smith et al., 2010b). 

In numerous, multi-gene studies of outcome in CMML, an ASXL1 mutation consistently 

appears to have prognostic implications. The presence of a mutation in ASXL1 was reported 

as having a significantly lower time to AML progression, has also been shown to be a 

significant feature in multivariate analysis of overall survival OS, and has been incorporated 

into a prognostic models (Gelsi-Boyer et al., 2010; Itzykson et al., 2013; Cui et al., 2015; 

Padron et al., 2015). One group initially reported no significance in univariate analysis of 

overall survival with the presence of mutation in ASXL1 or in the spliceosomes SF3B1, 

SRSF2, and U2AF1, before reversing their findings for ASXL1 using a larger cohort (Patnaik 

et al., 2013; Patnaik et al., 2014). 
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Various groups have also studied the impact of interactions between genes on outcome. 

Although not initially prognostic for overall survival in multivariate analysis, subgroup 

analysis of SRSF2 in the presence or absence of a RUNX1 mutation showed a difference in 

overall survival (Meggendorfer et al., 2012). Damm et al. and Patnaik et al. reported similar 

findings of a difference in overall survival when assessing ZRSR2 and ASXL1 mutations, 

respectively, in the presence or absence of TET2 mutations (Damm et al., 2012; Patnaik et 

al., 2016). 

The publication of these latter 3 studies highlights a potential issue in the use of multiple 

correlated and mutually exclusive molecular combinations in either diagnostic classification 

or prognosis. Namely, a “combinatorial explosion” associated with evaluating multiple 

genetic mutations. The reported outcomes may highlight a “subgroup within subgroup” 

approach to prognostication, akin to NPM1 and FLT3 in AML (Thiede et al., 2006). 

The 3 large scale studies Bejar el al, Papaemmanuil et al. and Haferlach et al. all showed 

the potential prognostic implications of mutations in MDS patients (Bejar et al., 2011; 

Papaemmanuil et al., 2013; Haferlach et al., 2014). Bejar et al. showed that mutations in 5 

genes (TP53, EZH2, ETV6, RUNX1, and ASXL1) were associated with worse overall 

survival (Bejar et al., 2011). Whilst Haferlach et al. confirmed the independent prognostic 

value of a mutation in 3 of these genes in multivariate analysis (ASXL1, RUNX1, and TP53) 

and included all 5 genes in a 14 gene prognostic model which generated 4 significantly 

different prognostic risk groups (low, intermediate, high, and very high) (Haferlach et al., 

2014). Finally, Papaemmanuil et al. demonstrated that the number of mutations inversely 

correlated with leukaemia free survival rate, and that this also held true for each of the IPSS 

prognostic groups (Papaemmanuil et al., 2013).  

Lastly, it is unknown whether there is any clinical relevance in the position of mutation within 

a specific gene. This may not be obvious until the advent of targeted therapy for specific 

genetic mutations in MDS patients. In this respect, the paradigm would be the treatment of 

chronic myeloid leukaemia in which mutations in the chimeric BCR/ABL sequence cause 

resistance to specific tyrosine kinase inhibitors (Redaelli et al., 2009).  

1.10.2.4 Can the presence of mutation aid in the diagnosis of MDS? 

Although the integration of mutation analysis data into diagnostic classification and 

prognostic scoring schemes may be challenging, it might be assumed that the presence of a 

driver mutation could be used as a simple diagnostic tool to aid in overcoming the difficulties 

involved in the diagnosis of MDS. However, the presence of a genetic abnormality does not 

always translate into malignancy. For example, loss of chromosome Y, or the presence of 

the BCR/ABL or the BCL2/IGH chimeric fusions gene can occur, albeit at a low frequency, in 
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normal individuals without evidence of CML or follicular lymphoma, respectively (Biernaux et 

al., 1995; Limpens et al., 1995; Dumanski et al., 2015).  

Recently, large scale studies have shed light as to whether this phenomenon can be 

extended from chimeric fusion genes and karyotypic abnormalities to driver mutations. The 

first study performed whole exome sequencing on 17182 unselected persons (Jaiswal et al., 

2014). Whilst a second study performed exome sequence analysis on 12380 unselected 

persons (Genovese et al., 2014). Mutations in driver genes were rare in persons under the 

age of 40, but the frequency of mutations increased with age, with Genovese et al. reporting 

10.4% of those of 65 years old demonstrated a mutation, whilst Jaiswal reported a constant 

increase of driver mutations with age, ranging from 5.6% in 60-69 years old up to 18.4% of 

those aged 90 and above (Genovese et al., 2014; Jaiswal et al., 2014). Furthermore, 

although other genes were found to be mutated, both studies demonstrated that the 

mutations primarily occurred in ASXL1, TET2 and DNMT3A, 3 of the top 5 mutated genes in 

MDS (Papaemmanuil et al., 2013; Genovese et al., 2014; Jaiswal et al., 2014; Haferlach et 

al., 2014). These findings of mutated genes in individuals without haematological malignancy 

have led to the concept of clonal haematopoiesis of indeterminate potential (CHIP), whereby 

patients have mutations in MDS driver genes but do not have diagnostic criteria for 

haematological malignancy  (Steensma et al., 2015). 

Jaiswal et al. also examined the full blood count parameters of a subset of 3107 persons 

within their cohort. Aside from a slight difference in red cell distribution width, there were no 

significant differences in full blood count parameters between those with mutations and 

those without (Jaiswal et al., 2014). However, those persons with multiple cytopenias were 

more likely to have a mutation (Jaiswal et al., 2014).  

To investigate the frequency of mutations in patients referred for the investigation of 

cytopenia(s), targeted sequencing using a 22 myeloid gene panel was performed on a 

cohort of 144 patients presenting with at least one cytopenia (Kwok et al., 2015). In the 24 

patients diagnosed with MDS, 71% demonstrated at least one mutation; in the 21 patients 

with cytopenia and present of morphological dysplasia, but which was insufficient to 

diagnose MDS, 62% demonstrated a mutation; in the 99 patients with cytopenia and no 

morphological dysplasia, 20% of patients had mutations (Kwok et al., 2015).  

Currently, there is no guidance as how to monitor those patients who demonstrate mutations 

in known myeloid genes, but do not meet the criteria for MDS. Kwok et al. reported that, from 

their cytopenic patient database, only 8% of those referred for investigation are diagnosed 

with MDS, with 30% having an alternate diagnosis and 62% not meeting any diagnostic 

criteria (Kwok et al., 2015). Overall, 27% of non-MDS cytopenic patients reported by this 
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group had a mutation; the monitoring of such patients may require some effort and 

resources. 

However, monitoring these patients should ultimately identify those mutations with a higher 

risk of progression. Already it has been shown that an increase in the variant allelic fraction 

(VAF) and accumulation of additional mutations occurs with cytopenic patients who progress 

to myeloid malignancy (Cargo et al., 2015). This finding mimics that of progression of MDS 

to a higher risk subgroup, or from MDS to AML (Pellagatti et al., 2016). 

The coexistence of suspected MDS and another haematological malignancy, or in the 

investigation of therapy-related MDS, could complicate the interpretation of the presence of 

a driver mutation. Panels were designed from using cancer-genome studies and some driver 

mutations are not unique to MDS, or indeed to myeloid malignancies. NRAS and KRAS 

mutations can be found in multiple myeloma (Chapman et al., 2011). TET2, IDH1, IDH2, and 

DNMT3A mutations can be found in T-cell lymphomas (Cairns et al., 2012; Couronné et al., 

2012). Mutations in EZH2 have been reported in patients with follicular lymphoma and with 

diffuse large B-cell lymphoma (Morin et al., 2010). The splicesome SF3B1 is found to be 

recurrently mutated in chronic lymphocytic leukaemia (CLL) patients (Rossi et al., 2011; 

Wang et al., 2011; Quesada et al., 2012). Mutations of SF3B1 have also been reported in 

patients with monoclonal B-cell lymphocytosis, a condition with monoclonal circulating CLL-

like phenotype cells not satisfying the criteria for CLL (Greco et al., 2013; Ojha et al., 2014). 

This latter study by Ojha et al. used CD19-selected B-cells to prove the existence of the 

SF3B1 mutation was present in the B-cells and determining the cell of origin may be a 

prerequisite for cases of suspected MDS co-existing with another malignancy (Ojha et al., 

2014). 

A cell of origin approach may not be suitable for all cases presenting with suspected MDS. 

Patients with aplastic anaemia are difficult to distinguish from MDS (Bennett and Orazi, 

2009).  However, targeted and whole exome genetic studies have shown that 5-36% of 

aplastic anaemia patients harbour somatic mutations, particularly in BCOR, ASXL1, 

DNMT3A, and also in the PIG-A gene which is associated with development of PNH clones 

(Lane et al., 2013; Heuser et al., 2014; Kulasekararaj et al., 2014; Yoshizato et al., 2015) 

Currently, all these genetic mutation analysis approaches are being performed in specialised 

laboratories with skilled scientists. The applicability of these methods in a routine diagnostic 

laboratory will require additional resources and, although the cost of sequence analysis is 

decreasing, whole genome analysis still costs over $1000 and, in its current guise, is not 

applicable to the majority of laboratories. A targeted approach which sequences a smaller 

number of myeloid genes may be better suited to a diagnostic setting. 
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1.11 Can flow cytometry be used as a primary technique in the 

investigation of MDS? 

1.11.1 Introduction to flow cytometry 

The last few decades has seen advancement in flow cytometry technology with 8-colour flow 

cytometers now a standard installation in routine clinical laboratories. This technological 

advance has driven, and is driven by, an increase in the availability of antibodies and 

fluorochromes, and improvements in analytic software. These features have combined to 

lead to an increase in the routine use of flow cytometry in the investigation of normal, 

reactive, and malignant haematopoiesis. The outcome of these features is twofold: the 

publication of consensus guidelines for medical indications which support the use of flow 

cytometry in the analysis of haematological malignancies (Davis et al., 2007); and the 

incorporation of flow cytometry into clinical trials to monitor minimal residual disease and to 

direct therapy (Santacruz et al., 2014; Rawstron et al., 2015; AML18 Trial UK Clinical Trials 

Gateway). 

1.11.2 Overview of the use of flow cytometry in the investigation of 

MDS 

Differentiation pathways from haematopoietic stem cells to mature peripheral blood 

haematopoietic cells result from an orderly, programmed process of differential gene 

expression. The receptors for these haematopoietic cytokines are cell surface proteins and 

any differentiation is accompanied by alterations in genes encoding other, functionally 

important, cell surface proteins. Morphological dysplasia in MDS reflects the visual 

integration of organisational and functional abnormalities across the differentiating myeloid 

lineages. 

Therefore, morphological abnormalities should be reflected in changes in protein expression 

and function. It is likely that these changes will be accompanied by abnormal patterns of 

surface protein expression, therefore providing a potential means to identify abnormal 

populations.  Precedent for this phenomenon is ample, with aberrant phenotypes defining 

neoplastic haematopoietic populations in both lymphoid malignancies and AML(Craig and 

Foon, 2008) . 

The utility of flow cytometry in assessing haematopoietic populations within samples referred 

for the investigation of MDS resides in 3 features: 

 Identification of cell lineage 

 The ability to enumerate discrete populations 
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 Comprehensive immunophenotypic profiling to determine the stage of differentiation 

All 3 features are used in assessing the presence of potential dysplasia in suspected MDS 

cases. Furthermore, these 3 features can all be improved by increasing the number of 

antibodies available per individual tube. This improvement can be illustrated by the progress 

made over time in identifying the population containing haematopoietic stem cells (HSC) 

from the CD34+ population through to the CD34+CD38- population and, finally, identification 

within the CD34+CD38-CD45RA-CD90+ population (Baum et al., 1992; Bhatia et al., 1997; 

Manz et al., 2002; Doulatov et al., 2010). 

 

1.11.3 Recommendations for the use of flow cytometry in the 

investigation of MDS 

There is a broad acceptance in the utility use of flow cytometry in the study of MDS. The 

2008 WHO classification acknowledged the role of flow cytometry with the recommendation 

that if 3 or more abnormalities were found then the term “suggestive” of MDS could be used, 

but that these features were not diagnostic of MDS (Vardiman et al., 2009). The European 

LeukemiaNet guidelines for the diagnosis and treatment of MDS recommends the use of 

flow cytometry in the diagnosis of MDS, but recommends that this is performed in 

accordance with the ELN Working Group for Flow Cytometry in MDS guidelines (Westers et 

al., 2012; Malcovati et al., 2013). A 2014 ELN Working Group for Flow Cytometry in MDS 

publication has also provided further guidance in the integration of flow cytometry in the 

diagnosis of MDS (Porwit et al., 2014). In the United States, flow cytometric assessment is 

considered “helpful” in the evaluation of suspected MDS, albeit for the exclusion of PNH or 

large granular lymphocytosis (Greenberg et al., 2013). 

1.11.4 Characterisation of normal pathways 

The characterisation of antigenic expression at the different stages of haematopoiesis 

provides a framework for recognition of normal differentiation pathways. Early 

immunophenotypic studies identified basic differentiation stages in the granulocytic, 

monocytic, erythroid, and megakaryocytic lineages (Loken et al., 1987; Terstappen et al., 

1990; Terstappen and Loken, 1990). Elghetany reviewed these, and other studies, and 

constructed a table to indicate the changes in antigen expression through the neutrophil 

differentiation stages (Elghetany, 2002)  These changes in antigen expression with 

differentiation can be seen in Figure 1.6. More complex, multicolour flow studies, have 

confirmed these studies and have shown reproducible patterns of antigen expression during 

myeloid maturation (Kussick and Wood, 2003; Elghetany et al., 2004; van Lochem et al., 
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2004). The culmination of these studies has been the multi-centre validation of a 

standardised protocol for data analysis and the production of a colour-coded, reference atlas 

to define antigen differentiation patterns in normal bone marrow (Arnoulet et al., 2010).  

 

Figure 1.6. Expression of antigens through differentiation stages during neutrophil 
maturation. 

Figure created from data in table 1 of Surface antigen changes during normal 

neutrophilic development: a critical review (Elghetany, 2002). 

These antigenic differentiation frameworks are, therefore, essential for identifying any 

deviation from normal which may be found in MDS. These deviations can be used to identify 

aberrancies in MDS in two ways: (i) single antigen aberrancies on individual populations and 

(ii) the identification of asynchronous antigen expression within differentiation pathways. 

1.11.5 Population specific immunophenotypic abnormalities in MDS 

Immunophenotypic abnormalities in patients with MDS have been reported for many years. 

A review of the literature conducted by Elghetany in 1998 showed that single, surface 

antigen abnormalities in patients with MDS was a frequently finding by both flow cytometry 

and immunohistochemistry (Elghetany, 1998). Furthermore, analogous to the multi-lineage 
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dysplastic morphological features, flow cytometric analysis of the different haematopoietic 

lineages and populations revealed that antigenic abnormalities could be found in most 

lineages across MDS patients.  

1.11.5.1 Progenitor cell abnormalities 

CD34 recognises haematopoietic progenitor cells in the bone marrow and, as might be 

expected, patients with MDS can demonstrate increased proportions of bone marrow CD34+ 

cells in comparison to controls (Civin et al., 1984; Del Cañizo et al., 2003; Malcovati et al., 

2005). Despite this finding, the WHO is reluctant to allow the use of the percentage of CD34+ 

cells as a surrogate for blast cell as “not all leukaemic blast cells express CD34, and 

hemodilution and processing artefacts can produce misleading results”, although, 

paradoxically, CD34 staining of the trephine biopsy is judged to be useful if the aspirate is 

poorly cellular (Vardiman et al., 2009). A gating strategy using CD34, CD45, CD117, and 

HLA-DR has, however, been shown to correlate well with the morphological blast count in 

patients with MDS and correlates better than CD34+ cells alone (Sandes et al., 2013). 

Although the evidence suggests that MDS is a stem cell disorder, it has not yet been 

possible to distinguish malignant MDS haematopoietic stem cells on the basis of 

immunophenotype. Expression of CD123 has been suggested to distinguish malignant 

CD34+CD38- stem cells from normal CD34+CD38- stem cells in AML and variable expression 

has been reported in MDS (Jordan et al., 2000; Florian et al., 2006; Xie et al., 2010). The 

expression of the C-type lectin-like molecule-1 (CLL-1) has been reported to be present on 

the CD34+CD38- cells in AML patients and in a variable proportion of MDS patients, but is 

absent in the normal and regenerating bone marrow CD34+CD38- stem cell compartment 

(Bakker et al., 2004; van Rhenen et al., 2007). 

There is a caveat in the use of a CD34+CD38- to identify stem cells in MDS. Goarden et al. 

reported the use of a reduction in the fluorescent intensity of CD38 expression on CD34+ 

cells in MDS as both a biological feature and part of a scoring scheme, a reduction which 

was independent of the CD34+CD38- population (Goardon et al., 2009). Whilst Monreal et al. 

reported that there was increased proportion of CD38- cells in the CD34+ population of high 

risk MDS and AML (Monreal et al., 2006). If these two reports are related then studies 

examining proposed haematopoietic stem cells in MDS may be, in reality, assessing a 

population of committed myeloid progenitor cells with abnormal down-regulation of CD38. If 

this down-regulation of CD38 explains the findings of Monreal et al. in high-risk MDS cases, 

then this may be a reason why the most successful stem cell studies have occurred mainly 

with the low-risk 5q- and RARS MDS subgroups (Tehranchi et al., 2010; Woll et al., 2014; 

Mian et al., 2015). 
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An increase in the percentage of CD34+ progenitors is not the only numerical abnormality 

found in the progenitor compartment. Gene expression micro-array analysis of selected 

CD34+ cells identified a reduction in B-lymphoid associated genes in patients with MDS, 

which translated into the common finding of a reduction of B-lymphoid progenitors in the 

bone marrow of patients with MDS (Sternberg et al., 2005). Whilst monocytic, plasmacytoid 

dendritic cell, erythroid, and basophil precursors were all found to be decreased in a 

significantly higher proportion of MDS patients (Matarraz et al., 2008)   

In additional to numerical differences in the CD34+ cells, numerous immunophenotypic 

aberrancies can also be noted in patients with MDS. Aberrant expression of the lymphoid 

antigens CD2, CD5, CD7, and CD56 has been described in MDS patients (Ogata et al., 

2002). In a series of 104 MDS patients, the expression of CD7 and CD56 was found to be 

more frequency than the expression of CD2 and CD5, whilst CD3 and CD19 expression was 

not found (Ogata et al., 2002). The same group also reported asynchronous expression of 

CD11b and CD15 on the CD34+ cells in MDS patients (Ogata et al., 2002). 

Up- and down-regulation of normal myeloid antigens has also been reported as a feature of 

the CD34+ progenitor cells in MDS. As previously noted, CD38 expression can be down-

regulated (Goardon et al., 2009). Expression of the myeloid CD13 and CD117 has also been 

reported as differing significantly between MDS and control groups, with both antigens being 

overexpressed (Matarraz et al., 2008). 

CD117 is recognised as expressed by bone marrow myeloid progenitor cells, with 

approximately half of the CD117+ cells also found to express CD34 (Escribano et al., 1998). 

A finding attributable to the down-regulation of CD34 occurring before down-regulation of 

CD117 during myeloid differentiation (van Lochem et al., 2004). An increase in the CD34-

CD117+ myeloid progenitor population has been found in MDS patients in comparison to 

normal and reactive patients (Matarraz et al., 2010).  

1.11.5.2 Granulocyte abnormalities 

As would be expected due to the morphological granulocytic dysplasia, immunophenotypic 

abnormalities can be found in the granulocyte series. One of the most frequently reported 

abnormalities in patients with MDS is a decreased side scatter (SSC) expression of 

neutrophils, a feature which mirrors the visual hypogranularity noted in this population 

(Stetler-Stevenson et al., 2001). Decreased CD10 expression and expression of CD36 by 

granulocytes have both been reported as abnormalities in MDS patients (Chang and 

Cleveland, 2000; Lacronique-Gazaille et al., 2007). Expression of CD56 has been reported 

on granulocytes in MDS, however expression has also been reported in non-MDS, non-

malignant conditions (Stetler-Stevenson et al., 2001; Wells et al., 2003; Malcovati et al., 



41 
 

2005). Visual assessment of the differentiation pattern of CD13 and CD16, and CD11b and 

CD13 on granulocytes has been reported as a frequent abnormality in MDS patients (Stetler-

Stevenson et al., 2001; Wells et al., 2003). However, there are two caveats with this visual 

assessment approach. Firstly, inter-observer reproducibility remains unproven. Secondly, on 

granulocytes, CD16 is a GPI-linked antigen and is absent on PNH-clone derived 

granulocytes (Kawakami et al., 1990). It is, therefore, unclear how the CD13/CD16 

differentiation pattern would be interpreted in the context of a sizeable PNH clone.      

1.11.5.3 Monocyte abnormalities 

Like precursor cells and granulocytes, the monocytic compartment in MDS and in CMML can 

show a number of differences from their normal counterparts. These include numerical 

differences, down-regulation of expressed antigens, expression of lymphoid antigens, and 

perturbed differentiation patterns. An increased percentage of monocytes (>10%) can be 

found in the peripheral blood of MDS patients who do not fulfil the criteria for CMML (Rigolin 

et al., 1997). Down-regulation of the expression of CD13, CD14, CD16, CD36, CD64, and 

HLA-DR has been reported as a feature in MDS (Wells et al., 2003; Xu et al., 2005; Matarraz 

et al., 2010). However, as antigenic expression levels vary throughout differentiation, it is 

unknown whether this down-regulation is a consequence of a block in the monocytic 

maturation stage (van Lochem et al., 2004). However, it must be noted that, analogous to 

CD16 on granulocytes, CD14 is also a GPI linked antigen therefore absent expression can 

occur due to the presence of a PNH clone (Kawakami et al., 1990). Expression of the 

lymphoid antigens, CD2 and CD56, can occur on monocytes on CMML and MDS (Xu et al., 

2005; Lacronique-Gazaille et al., 2007; Matarraz et al., 2010). Although both of these 

antigens can be expressed by patients with a reactive monocytosis (Xu et al., 2005). Lastly, 

a perturbed HLA-DR/CD11b differentiation pattern can be seen in the monocytes in MDS, 

although the same caveat regarding inter-observer reproducibility applies here as it does for 

assessment of the granulocyte CD13/CD16 differentiation pattern. 

1.11.5.4 Erythroid abnormalities 

Both numeric and immunophenotypic abnormalities can be seen in the erythroid 

compartment in MDS. Furthermore, the evaluation of immunophenotypic features in this 

lineage has given rise to a paradigm shift in flow cytometric assessment of suspected MDS. 

Numerically, a higher overall percentage of nucleated red cells in the bone marrow has been 

noted in the bone marrow of MDS patients (Malcovati et al., 2005). Numerical changes in 

specific erythroid populations can also be seen. A decreased percentage of CD34-CD117+ 

erythroid precursors, and an increased number of CD117+ erythroid cells within the erythroid 

compartment, have both been reported (Matarraz et al., 2010; Westers et al., 2012). 
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Immunophenotypic abnormalities have also been reported with loss of the erythrocyte blood 

group antigens A, B, and H, increased CD105 expression, and decreased expression of 

CD36 and of CD71 (Kuiper-Kramer et al., 1997; Bianco et al., 2001; Malcovati et al., 2005; 

Della Porta et al., 2006; Matarraz et al., 2010). 

A further study which assessed the immunophenotypic properties of CD36 and CD71 

expression gave rise to a previously unreported approach to evaluate antigen expression in 

MDS patients. Mathis et al. reported that the coefficient of variation (CV) of CD36 and CD71 

was higher in MDS patients than control samples (Mathis et al., 2013). Although this is the 

only reported study to formally use this feature so far, the use of the CV offers another 

approach in identifying immunophenotypic differences in MDS patients. The CV is calculated 

by dividing the standard deviation by the mean and indicates the variability of a population. 

This can be useful as two different populations can shown the same mean but different CV’s 

as shown in Figure 1.7. 

 

Figure 1.7. 2 Populations showing the same MFI but with different Coefficient of 
Variations. 

Both populations show normal distribution and have the same MFI. However, the 

population shown in blue has a higher standard deviation than that shown in purple 

and, therefore, has a higher CV. 
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1.11.5.5 Immunophenotypic studies of other haematopoietic lineages  

There have been only limited studies of the megakaryocytic lineage. This is due to the 

technical issues involving clumping and adhesion of platelets to monocytes. One study has 

shown a decreased expression of MPL, glycoprotein IIb/IIIa, and glycoprotein Ib on the 

platelets of MDS patients compared to normal controls (Izumi et al., 2001). Whilst Sandes et 

al. showed both increased and decreased expression of platelet glycoproteins, as well as 

light scatter abnormalities, in patients with MDS (Sandes et al., 2012). However, it is unclear 

whether immunophenotypic studies of platelets are suitable for widespread use. Both these 

studies used peripheral blood samples and guidelines recommend use sodium citrate as the 

anticoagulant and performing platelet studies within 4 hours, both features which may 

preclude uptake as a routine diagnostic procedure (Harrison et al., 2011) 

There is limited published evidence for the presence of abnormalities in the remaining, minor 

leucocyte populations: basophils, mast cells, and plasmacytoid dendritic cells (pDC). 

Conflicting results have been published as to whether the percentage of pDC’s in the bone 

marrow of MDS patients significantly differs (Matarraz et al., 2010; Saft et al., 2013). 

Matarraz et al. reported no difference in percentage of pDC’s or of basophils or mast cells in 

the bone marrow of MDS patients (Matarraz et al., 2010). In contrast, Saft et al. reported a 

significant decrease in pDC’s, as well as a significant decrease in myeloid dendritic cells in 

MDS patients (Saft et al., 2013). Although peripheral blood basophils were reduced in MDS 

patients in comparison to normal controls, these did not show immunophenotypic differences 

(Fureder et al., 2001). A phenotypic exception is mast cells in systemic mastocytosis, in 

which there is an association/overlap with MDS and which have well characterised 

immunophenotypic abnormalities of CD2, CD25, CD59 and HLA-DR (Escribano et al., 2004; 

Jabbar et al., 2014).    

  

1.11.6 Guidelines for the use of flow cytometry in MDS 

Unlike new molecular sequencing methods, flow cytometry is a well-established technique 

which is used daily in both clinical and research settings. Laboratory to laboratory variation 

does, however, occur and inconsistency of both technical and reporting approaches was 

noted as a feature when Elghetany reviewed the literature in search of antigenic 

abnormalities in MDS (Elghetany, 1998). To address these issues, the European 

LeukemiaNet MDS Flow Cytometry Working Group has produced two publications which 

address the issues of sample handling and the lineages and antigens to be assessed by 

immunophenotyping (van de Loosdrecht et al., 2009; Westers et al., 2012).    
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1.11.7 Can immunophenotypic abnormalities be applied to the 

diagnosis of MDS? 

As has been shown, MDS demonstrates heterogeneity with respect to clinical features, 

laboratory parameters, morphological features, genetic and cytogenetic features, and, now, 

immunophenotypic features. This diversity of immunophenotypic features was first exploited 

as an aid to MDS diagnosis by Stetler-Stevenson et al. in a study published in 2001(Stetler-

Stevenson et al., 2001). In this publication, multiple immunophenotypic abnormalities in the 

granulocytic, erythroid, and myeloid lineages were assessed in an attempt to confirm the 

diagnosis of MDS. This study also introduced other important concepts which were adopted 

by further studies. Firstly, there was the selection of Reactive, or so-called pathological 

control, cases as a comparison. Secondly, there was an indication that immunophenotypic 

abnormalities were not solely restricted to MDS and could be found in other normal and 

reactive conditions. A feature the authors tied to the notion that the number of abnormalities 

could be used to discriminate between MDS and other conditions. Finally, there was the use 

of the pattern-recognition approach to identify abnormalities  (Stetler-Stevenson et al., 2001). 

This approach by Stetler-Stevenson et al. shifted the emphasis from simply reporting the 

finding of novel immunophenotypic abnormalities in MDS, to testing whether 

immunophenoptypic abnormalities could distinguish MDS from Reactive conditions. Many 

studies were subsequently published which comparing Reactive cases to MDS cases and all 

showed slight variations in this approach in the use of immunophenotyping. The variations  

in approach included: use of antibody pattern recognition (Kussick et al., 2005; Stachurski et 

al., 2008); use of peripheral blood (Cherian et al., 2005); use of a single immunophenotypic 

feature (Goardon et al., 2009); use of single lineage immunophenotypic abnormalities (Della 

Porta et al., 2006); use of bi-lineage immunophenotypic abnormalities (Malcovati et al., 

2005; Truong et al., 2009); use of tri-lineage immunophenotypic abnormalities (Lorand-

Metze et al., 2007); use of CV and red cell blood count parameters to produce a RED-score 

(Mathis et al., 2013). 

In 2003, Wells et al. applied this approach to define a scoring scheme for MDS patients and 

determine whether it correlates with outcome post-transplantation (Wells et al., 2003). A 

number of immunophenotypic features were assessed and patients were allocated points 

depending upon the type of abnormality present. These points were subsequently converted 

into a flow score (FCSS) which was used to classify patients as mild, moderate, or severe. 

These three classes correlated with IPPS scores and significantly differed in outcome post 

stem-cell transplant (Wells et al., 2003). Although this scoring score was initially applied to 
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patients in a post-transplant setting, further validation of the FCSS was performed on a 

cohort of both MDSS and Reactive patients to show its utility as an aid to MDS diagnosis 

(Chu et al., 2011). Minor modifications to this panel were also reported in 2011 (Cutler et al., 

2010). However, the FCSS does have limitations. It discriminated the classes on the basis of 

the sum of abnormalities, yet applied different, user-assigned, scores for different 

immunophenotypic features. The cut-offs for defining the different MDS class were user-

defined and appeared arbitrary. Furthermore, its applicability in a routine setting may be 

challenging due to the number of features requiring assessment and the use of a visual 

deviation from normal approach, which requires prior user experience. 

Other publications and flow cytometry scoring schemes, attempted to overcome some of 

these limitations. Matarraz et al. evaluated 83 attributes obtained from the global 

assessment of bone marrow haematopoietic populations (Matarraz et al., 2010). These 

numerical and immunophenotypic MFI attributes were compared to normal expression and 

scored according to number of standard deviations from normal. The number of points was 

summed and converted into an immunophenotypic score (IS). The IS classified patients into 

mild, intermediate, or severely altered classes, depending upon overall score (Matarraz et 

al., 2010). This dispensed with a visual approach and was, therefore, applicable to 

laboratories with lesser experience with identifying visual deviations from normal. However, 

the points allocated for deviation from normal were user-defined, as were the boundaries for 

class membership. A simpler, standardised flow cytometry approach was published in 2009. 

Ogata and colleagues defined reference ranges for myeloid progenitor cell parameters, 

some of which were implemented into a flow cytometry scoring scheme (FCM) which was 

based on the low inter-observer variability of 4 parameters: These 4 parameters were: 

percentage of CD34 myeloid progenitors, CD45 expression on the CD34 myeloid 

progenitors, proportion of B-lymphoid progenitors within the CD34+ cells, and granulocyte 

SSC (Ogata et al., 2006; Satoh et al., 2008; Ogata et al., 2009). Each parameter was 

allocated a score of 1 if outside a reference range and a point score of 2 or more was 

considered suggestive of MDS. The validity and reproducibility of this method was then 

further tested in a multicentre study (Della Porta et al., 2012). However, despite its simplicity 

and general applicability, each parameter was weighted the same, despite the authors 

showing logistic regression coefficients which ranged from 1.76 to 2.59 for the 4 parameters 

(Della Porta et al., 2012). It must be noted that two of the parameters are reported as ratios 

(CD45 expression and granulocyte SSC). The use of ratios in regression analysis can result 

in spurious correlations (Kronmal, 1993; Curran-Everett, 2013). As noted elsewhere, 2 of the 

parameters may show collinearity, with a decrease in the percentage of B-progenitors in the 
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CD34+ compartment attributable to an increase in myeloid progenitors in the same 

compartment (Westers et al., 2012).  

The performance metrics of the FCM were broadly similar for the 4 tested cohorts (Japanese 

cohort/Italian cohort/Training cohort/Validation cohort) across both publications, with a high 

specificity (98/90/92/93%) and a lower sensitivity (65/89/70/69%) (Ogata et al., 2009; Della 

Porta et al., 2012). There are some studies which report high sensitivity (>95%) with a high 

specificity (>90%) (Della Porta et al., 2006; Goardon et al., 2009). However, a sensitivity and 

specificity similar to those results obtained with the FCM is a hallmark of most of the flow 

cytometry scoring schemes (Cherian et al., 2005; Stachurski et al., 2008; Truong et al., 

2009; Kern et al., 2010; Xu et al., 2010; Chu et al., 2011; Xu et al., 2012; Mathis et al., 2013; 

Xu et al., 2013). 

The best approach to improve the sensitivity of flow cytometry scoring schemes is unknown. 

Bardet et al. showed that addition of the lymphoid-related antibodies CD5, CD7, and CD56 

to the FCM improves sensitivity, but this showed only a marginal improvement for low-risk 

MDS patients (Bardet et al., 2015). However, Mathis et al. noted that a score suggestive of 

MDS by either the RED score or the FCM score resulted in a sensitivity of 88%, compared to 

81% for the RED score alone and 49% for the Ogata score alone (Mathis et al., 2013). 

There may be different reasons for these low(er) sensitivities. Since each scoring scheme 

classifies on the basis of different attributes, the immunophenotypic composition of each 

misclassified group may be expected to be different and group composition would be 

dependent upon the scoring scheme itself. Therefore an either/or combination of scoring 

schemes, as described by Mathis et al., may further improve sensitivity. Alternatively, the 

lower sensitivities may imply that there are subsets of MDS patients who will be misclassified 

irrespective of the scoring scheme. This may occur as a result of expression of 

immunophenotypic features which are indistinguishable from control samples. Indeed, this 

feature can be seen when unsupervised hierarchical clustering of immunophenotypic and 

numerical attributes is performed. Using 32 attributes for cluster analysis, Matarraz et al. 

showed that, although the majority of normal bone marrow samples and the majority of high 

risk MDS cases formed discrete clusters, low risk RA and RCMD and Reactive cases were 

intermingled and clustered together (Matarraz et al., 2008). If this is a universal feature of 

certain MDS cases, the sensitivity for scoring schemes on lower-risk patients would not be 

expected to improve substantially simply by the inclusion of additional features. Indeed, 

Bardet et al. reports little benefit to sensitivity by inclusion of CD5, CD7, and CD56 (Bardet et 

al., 2015). Whilst simply increasing the number of aberrancies required for a flow scoring 

scheme to be suggestive of MDS understandably decreases sensitivity with little gain in 

specificity (Kern et al., 2010)   
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One further issue which may account for variability between the performance metrics of each 

scoring scheme is the choice of control samples and composition of the control group. 

Although the use of Reactive, or so-called pathological, controls is widespread, there may be 

immunophenotypic differences between the commonly used diagnostic entities which form 

control groups. Some studies have predominantly used ITP, Aplastic Anaemia, Anaemia of 

Chronic Disease (ACD), Megaloblastic Anaemia, and Iron-deficiency Anaemia cases as the 

Reactive control group (Goardon et al., 2009; Truong et al., 2009; Chu et al., 2011). Other 

studies have used unspecified anaemia or non-clonal cytopenias as a control group (Ogata 

et al., 2009; Della Porta et al., 2012; Mathis et al., 2013). The ELN Working Group for Flow 

Cytometry in MDS also proposes the use of well-described haematological malignancies 

including AML, MPN, PNH, and systemic mastocytosis (van de Loosdrecht et al., 2009). 

Since there are different underlying biological mechanisms which give rise to conditions such 

as ITP or Anaemic of Chronic Disease or Megaloblastic Anaemia, it is unknown whether 

these biological differences manifest as immunophenotypic differences. As 

immunophenotypic differences between the control and MDS groups dictate the cut-off 

boundaries for attributes and, therefore, ultimately, a scoring scheme itself, any differences 

in control groups may affect the performance metrics. Indeed, it could be argued that a 

control group containing predominantly uni-lineage diagnostic cases such as ITP and ACD 

cases is not the correct control for cases which may have bi- or tri-lineage cytopenia. Ideally, 

a control group would be patients with bi- or tri-lineage cytopenia without evidence of 

dysplasia, who have no evidence of clonal haematopoiesis (CHIP), and who are clinical 

monitored and shown not to develop MDS. However, attempting to obtain cases for such a 

control group would be impractical for most routine diagnostic laboratories.  

 

 

1.11.8 The utility of immunophenotyping in the prognosis of MDS 

In addition to diagnostic studies, flow cytometric immunophenotyping has been shown to 

have prognostic impact in MDS. An early study showed that CD7 expression on myeloid 

progenitor cells was a poor prognostic indicator in MDS (Ogata et al., 2002). However, this 

was not validated in an independent study, possibly due to the respective MDS subgroup 

composition of each cohort (Font et al., 2006). However, patients with aberrant myeloid 

progenitors which express either CD7, CD5 or CD56 have been reported to have poorer 

response to erythropoietin and G-CSF (Westers et al., 2010). Furthermore, 

immunophenotypic abnormalities in the myeloid and monocytic lineages, including CD7, can 
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be found in patients with in the RA unilineage dysplasia category (van de Loosdrecht et al., 

2008).  

The use of flow cytometry scoring schemes has also been shown to have an impact on the 

prognosis of MDS patients. The FCSS was constructed for the assessment of post-

transplant MDS patients and was reported as an independent prognostic factor within the 

IPSS Int-1 MDS subgroup in this setting (Wells et al., 2003; Scott et al., 2008). In a non-

transplant setting, the FCSS, or modified FCSS, has been reported to correlate with 

transfusion dependency and with the IPSS, IPSS-R, and WPSS, and has been 

demonstrated as an independent prognostic factor within specific IPSS and IPSS-R risk 

subgroups (van de Loosdrecht et al., 2008; Chu et al., 2011; Alhan et al., 2014). Likewise, 

the FCM score has been shown to have prognostic significance in patients classified as very 

low or low risk by the IPSS-R (Della Porta et al., 2014). Both Matarraz et al. and Kern et al. 

have shown a correlation between number of immunophenotypic abnormalities and the IPSS 

score (Matarraz et al., 2008; Kern et al., 2010). Whilst, in a series of patients referred with 

suspected MDS, the number of immunophenotypic abnormalities was associated with 

overall survival (Kern et al., 2015). 

Although flow scoring schemes are composed of multiple variables, identification of the 

individual variable or variables within the schemes with prognostic significance is no well 

reported. The Kern group, in both 2010 and 2015 publications, identified 3 features from 

univariate analysis which, when at least one of these features was present, resulted in a 

worse overall survival. These three features were myeloid progenitor count greater than 5%, 

≥3 aberrant antigens, and a granulocyte side scatter:lymphocyte side scatter ratio (Kern et 

al., 2010; Kern et al., 2015). There was a similar finding from Alhan et al. who reported that a 

new scoring scheme composed of CD117 expression on myeloid progenitors, CD13 

expression on monocytic cells, and myeloid progenitor:lymphocyte side scatter ratio showed 

differences in overall survival overall, and within the IPSS-R low-risk group (Alhan et al., 

2015). In both groups’ publications, it was assumed that the side scatter ratio was a 

surrogate marker for granularity in the granulocyte and myeloid progenitor populations, 

respectively. However, due to its use in a ratio to lymphocytes, any differences in MDS 

cases may also reflect the underlying scatter characteristics of the lymphocyte population. 

Dysregulation of lymphopoiesis is a feature of MDS with both a decrease in B-lymphoid 

progenitors and an expansion in regulatory T-cells reported (Sternberg et al., 2005; Kordasti 

et al., 2007; Kahn et al., 2015). These alterations in the lymphocyte populations may 

manifest as differences in lymphocyte scatter characteristics in MDS patients. This may then 

affect the calculation of the side scatter ratio of the myeloid populations. The side scatter of 

monocytes has also been reported to differ between control and MDS patients (van de 
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Loosdrecht et al., 2008). This was also calculated as a ratio and this finding further implies 

that there are either abnormalities in the scatter characteristics of three major myeloid 

populations in MDS (progenitors, granulocytes, and monocytes) or in the denominator (the 

lymphocytes), or it is a combined effect of the two populations used in the ratio.  

 

1.11.9 Can flow cytometry identify those patients at risk of 

developing MDS  

As noted by Kwok et al., over 60% of patients referred for the investigation of cytopenia do 

not have a confirmed diagnosis, MDS or otherwise (Kwok et al., 2015). As a proportion of 

these patients will progress to MDS and other myeloid malignancies, it was investigated 

whether the presence of immunophenotypic abnormalities could identify those at risk of 

progression. Firstly, Kern et al. reported the findings from a cohort of 142 cytopenic patients 

with no, or insufficient evidence, for a morphological diagnosis of MDS. 5 of these patients 

could be diagnosed with MDS due to the presence of a cytogenetic abnormality presumptive 

of MDS. The remaining patients were classified as probable MDS, possible MDS, or not 

MDS according to a flow cytometry scoring scheme. Of the 47 patients who developed MDS, 

40 patients, at initial referral, were either probable (30) or possible (10) MDS by flow 

cytometry (Kern et al., 2013). Cremers et al. performed a similar analysis of 379 consecutive 

cytopenic patients (Cremers et al., 2016). Of the 164 patients who were reported as non-

diagnostic, 5 developed MDS of which, at initial referral, 1 was classed as MDS by flow 

cytometry and 1 had minimal features of MDS by flow cytometry. The remaining 3 patients 

who developed MDS had no identified features of MDS by flow cytometry. 

Both studies highlight multiple independent and common points. Firstly, the Kern et al. study 

highlights that cytogenetic analysis is not particularly helpful in trying to identify patients 

without morphological dysplasia who are at risk of developing MDS with a lack of 

morphological features. This study also highlights the diagnostic difficulty in identifying 

patients who may have MDS with a third of patients without morphological MDS developing 

MDS. Both studies show that there is utility in assessing immunophenotypic abnormalities in 

patients referred for the investigation of cytopenia, although the sensitivity of each scoring 

scheme differed between studies. The true specificity of each scoring scheme is difficult to 

assess. The median timeframe for patient follow-up in both studies was 9 months and 12 

months, respectively, and both studies, and other studies, demonstrate that patients can 

develop MDS many years after the initial referral (Kern et al., 2013; Cargo et al., 2015; 

Cremers et al., 2016). Finally, a number of patients in both cohorts who developed MDS 

were not identified by immunophenotypic aberrancies. This might implies that the patient has 
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not developed MDS at the time of initial referral, that, as mentioned previously, there may be 

a group of MDS patients whose immunophenotypic features are too similar to non-MDS 

patients, or that there is a potential for sampling error in the process of bone marrow 

investigation and the aspirate and/or trephine is not truly representative of the entire bone 

marrow.     
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1.12  Summary, hypotheses, and aims of the thesis 

When the National Institute for Clinical Excellence (NICE) published the “Improving 

outcomes in Haematological Cancers” document in October 2003, it stated “Improving the 

consistency and accuracy of diagnosis is probably the single most important aspect of 

improving outcomes in haematological malignancy”  (NICE, 2003). Whilst the late diagnosis 

of cancer has been shown to impact on survival (Richards, 2009). However, a consistent 

and accurate diagnosis in MDS has been shown to be elusive and current methods fail to 

identify some patients who progress to MDS. 

Flow cytometry is a key component in the investigation of suspected MDS cases via its 

ability to identify normal and abnormal immunophenotypic features and it has proven its 

utility in both diagnostic and prognostic settings. The overall aim of this PhD was to 

determine the feasibility of using flow cytometry immunophenotyping as a primary technique 

in the investigation of suspected MDS. This was based on the hypothesis that flow cytometry 

immunophenotyping can provide an objective means for MDS classification, thereby 

reducing the inherent subjectivity currently employed due to morphological assessment and 

improving clinical effectiveness. Various flow cytometric scoring schemes have previously 

been proposed. However, their implementation in a large-scale diagnostic laboratory such as 

HMDS is challenging due to the size and cost of the antibody panel, the time required for 

analysis, or sample integrity requirements. As HMDS is mentioned within the 2007 

Department of Health Cancer Reform Strategy to be representative of the current paradigm 

for regional service provision within the NHS, evaluation and development in this setting is of 

particular importance for impacting on patient care pathways in the UK (NHS, 2007). 

To achieve the overall aim of determining the feasibility of the use of flow cytometry in the 

investigation of MDS, this study will: 

 Investigate whether simple immunophenotypic features could be combined with 

demographic details to develop a test to identify MDS or aid in its exclusion. 

 Identify key immunophenotypic features predictive of MDS by an extended 

assessment of antigens across all haematopoietic lineages and combine these 

features in an immunophenotypic panel for further testing on cytopenic cases. 

 Develop methods to produce and test an independent classifier which was capable of 

dealing with the results from the potentially high number of attributes assessed by the 

immunophenotypic panel. 
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2 Materials and Methods 

2.1 Ethical approval, overview of patient selection and study 

design 

All patients were referred for investigation to the Haematological Malignancy Diagnostic 

Service based at St. James’s University Hospital, Leeds. The use of waste clinical samples 

at HMDS was approved by the National Research Ethics Service Committee (reference 

number: 14WS0098). 

All patients for retrospective investigation were identified through the use of the 

Haematological Malignancy Diagnostic Service Laboratory Information Management System 

(HILIS). Patients for prospective studies were identified on the basis of clinical details or 

morphological features. The diagnosis was subsequently confirmed through HILIS following 

normal diagnostic reporting procedures.    

Although categorized in the WHO overlap MDS/MPN-U group, for the purposes of this 

thesis, patients within the diagnostic categories CMML, MPDS/MPN-U, and RARS-T were 

considered for inclusion and, when used, were included as a class within the MDS patient 

group. 

With respect to flow cytometry studies, the progenitor cell screen was routinely performed as 

a component of normal diagnostic investigation. Therefore, acquisition, analysis, results 

checking, and reporting onto the HILIS database was performed by all members of the 

HMDS flow cytometry team, including the author. For all other flow cytometry studies, the 

samples were processed, incubated, acquired and analysed by the author alone. 

For results Chapter 1, a retrospective cohort study was used to assess the clinical and 

laboratory features of MDS patients and compare to those noted in Reactive patients.  The 

development of a predictive logistic regression model and classifier testing both utilised a 

case control study approach. 
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2.2 Retrospective patient identification and selection 

2.2.1 Determining the incidence of MDS in patients referred with 

cytopenia 

All patient request forms are scanned and uploaded onto HILIS and are available for 

viewing. A simple Structural Query Language (SQL) search was performed to identify all 

patients who were referred to HMDS in the calendar month of January 2010. This list of 

patients was imported into Microsoft Excel and filtered to include only those patients on 

whom a bone marrow aspirate (with or without trephine biopsy) was received. For each case 

identified, the request form on HILIS was examined to determine the clinical details/reason 

for referral and the reported diagnosis was recorded. 

2.2.2 Determining the proportion of MDS patients who have previous 

been referred for the investigation of cytopenia. 

A simple SQL search on HILIS was performed to identify all patients who had a diagnosis of 

RARS (including RARS-T), RCMD, RAEB, or CMML in the year 2014. Each patient 

specimen number was re-examined on HILIS to determine (a) whether each diagnosis was a 

presentation or whether MDS had been previously diagnosed and the sample was being 

referred for monitoring or disease progression, and (b) whether the patient had been 

previously referred for the investigation of cytopenia. Patients in whom the sample was not 

the initial diagnostic sample or represented disease progression were excluded. If the patient 

had been previously referred for investigation of cytopenia and had been classified as non-

diagnostic, the duration between the first investigation and MDS diagnosis was recorded. 

2.2.3 Identification of patients on whom a flow cytometric progenitor cell 

screening tube had been performed 

A HILIS search was performed to identify all patients on whom a flow cytometric progenitor 

cell screen (see Materials and Methods section 2.4.3 for flow cytometry details) was 

performed between January 2007 and September 2010. This search was restricted to bone 

marrow aspirate samples (with or without trephine biopsy. The following laboratory data was 

recorded: Patient age and sex; Percentage CD34+ cells (of leucocytes) and percentage 

CD19+ cells (of CD34+ cells); Morphological and diagnostic comments; Diagnosis. 

4756 samples were identified from this search. These records were exported as a .csv file 

and imported into Microsoft Excel for further data clean-up. To obtain a two class dataset of 

MDS patients and Reactive controls, exclusion criteria were applied. These exclusions were: 
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 Any sample from a patient with a confirmed non-MDS haematological malignancy or 

secondary infiltration of the bone marrow by metastatic carcinoma. 

 Follow up samples from patients with known, non-MDS haematological malignancies. 

 Cases with a diagnosis of “Unsuitable specimen” following morphological evaluation. 

For patients who were referred on multiple occasions for the investigation of cytopenia and 

were non-diagnostic, only the initial sample was included. Similarly, in cases of recurrent 

samples on MDS patients who remained in the same WHO subgroup, only the results for the 

initial sample were included. For patients with progressive MDS who changed WHO 

subgroup, both results were included. This occurred in 4 patients. 

The above patients were used to construct the logistical regression model for the training 

set. The same process was applied to records with the timeframe records from September 

2010 until April 2013 to obtain the data for the test set for validation of the model.     

2.3 Sample selection for flow cytometry studies 

2.3.1 Overview of routine diagnostic samples received in HMDS   

All bone marrow samples received in HMDS are drawn into EDTA-containing tubes. Due to 

sample transport logistics, HMDS receives samples which can be over 24 hours old. Some 

referral centres do not provide a trephine biopsy or a peripheral blood sample for FBC 

analysis, nor do they always provide comprehensive FBC results on the request form. 

2.3.2 Comparison of MDS and normal control bone marrow samples 

Samples for the comparison of immunophenotypic features of normal and MDS 

haematopoietic populations were selected based on the following criteria: 

Normal control group MDS group 

FBC parameters within the normal reference range Unambiguous evidence of dysplasia in one or more 

lineage 

Referral for the staging of low-grade B-cell or T-cell 

lymphoma 

 

No morphological evidence of bone marrow 

involvement 

 

A normal B-cell Kappa:Lambda light chain ratio or 

normal T-cell subsets 

 

A cellular aspirate which yielded at least 20 x 10
6
 leucocytes following red cell lysis 

Table 2.1. Criteria for selection of bone marrow aspirate selection for the comparison 
of normal control and MDS samples. 
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2.3.3 Generation of a classifier from MDS and Reactive bone marrow 

samples  

Samples for this study were chosen on the basis of either a referral for the staging of low-

grade B-cell or T-cell lymphoma or for the investigation of cytopenia, with an emphasis on 

testing patients with unambiguously dysplastic morphological features. A cellular aspirate 

was not required as only 2 x 106 leucocytes were required following red cell lysis. There was 

no requirement for the sample to be less than 24 hours old.    

2.3.4 Classifier testing and evaluation against other flow cytometry MDS 

scoring schemes and targeted gene mutation analysis 

Samples for the classifier testing and comparison against other methods of evaluating 

presence of dysplasia or clonal haematopoiesis were selected based on the following 

criteria: 

Normal Cytopenic group 

FBC parameters within the normal reference range Presence of a cytopenia in one or more lineages 

Referral for the staging of low-grade B-cell or T-cell 

lymphoma 

Clinical details which do not indicate the presence of a 

paraprotein or B-lymphoid symptoms 

No morphological evidence of bone marrow 

involvement 

Sufficient sample remaining for DNA extraction for 

targeted gene mutation analysis  

A normal B-cell Kappa:Lambda light chain ratio or 

normal T-cell subsets 
 

Presence of a trephine biopsy  

A cellular aspirate which was less than 24 hours old and which yielded at least 13 x 10
6
 leucocytes following red 

cell lysis, and the presence of a trephine biopsy 

Table 2.2. Criteria for selection of bone marrow aspirate selection for classifier testing 
and evaluation against other flow cytometry scoring schemes and against targeted 
gene mutation analysis. 
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2.4 Flow cytometry studies 

2.4.1 Machine Set-up 

2.4.1.1 Defining instrument voltages and instrument quality control measures 

To define the optimal photomultiplier tube (PMT) voltages for each detector, Cytometer 

Setup and Tracking (CS&T) Beads (BD Biosciences, Oxford, UK) were used. The beads 

were subsequently used to run day-to-day performance checks to ensure consistency of the 

data obtained from the flow cytometer. Rainbow Calibration Particles (Spherotech, Lake 

Forest, Chicago) were also used to monitor flow cytometer performance. This is a solution of 

eight different 3.0m particles, each of which has a discrete fluorescent intensity (peak). One 

drop of beads was incubated with 350µl of FACSFlow. The strongest fluorescent peak was 

used to monitor the CV and MFI in each detector. As the PMT voltage remained fixed, there 

should only be slight day-to-day variation in the CV and MFI per detector. A referral to BD 

Technical Support for further advice would be indicated by a variation of greater than 15% 

for the target MFI or a persistent drift in the CV value for Rainbow Beads, or a consistent fail 

alert from the CS&T day-to-day performance check. 

2.4.1.2 Compensation 

Flow cytometry compensation is the process by which we correct for spectral overlap of 

fluorochromes which are measurable in more than one detector. This calculation relies upon 

the ratio of the fluorescent intensities between the negatively- and positively-stained events. 

Classically, this is calculated using antibodies to peripheral blood lymphocyte subsets, with 

non-antigen expressing lymphocytes as the negative. However, as some of the antibodies 

conjugated to the tandem dyes e.g. CD34 PerCp-Cy5.5 and CD117 PC7 are not expressed 

by peripheral blood lymphocytes, and as a standard approach was preferred, calculation 

was performed using antibody capture beads (Bangs Laboratories, Fishers, USA). As 

different fluorochromes and different antibodies were used in the B670, B780/60, R780/60, 

V450/50, and V530/30 detectors in each different panel, experiment specific antibodies were 

used for these detectors, whilst an anti-CD8 antibody was used for FITC, PE, and APC.  The 

generic compensation set-up experiment for all experiments is shown in Table 2.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              
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Detector name B530/30 B585/42 B670LP B780/60 R660/20 R780/60 V450/50 V530/30 

Fluorochrome(s) 

detected 
FITC PE 

PerCp-

Cy5.5 

PE-Cy7, 

PC7 
APC 

APC-Cy7, 

APC-H7 

Pacific Blue, 

BV421 

Pacific Orange, 

V500 

Antibody used CD8 CD8 
Panel 

specific 

Panel 

specific 
CD8 

Panel 

specific 

Panel 

specific 
Panel specific 

Antibody volume 

(µl) 
5 5 2.5 0.5 2.5 5 0.5 5 

 Table 2.3. Fluorochromes, antibodies and antibody volumes required for the 
compensation experiment for each panel. 

FITC, PE and APC antibodies were all anti-CD8. The antibodies used to compensate 
spectral overlap for the B670LP, B780/60, R780/60, V450/50 and V530/30 were 
determined by which antibodies were employed in the panel    

 

2.4.2 Sample preparation 

2.4.2.1 Red cell lysis and antibody incubation 

Leucocytes were isolated by incubating bone marrow aspirate sample with a 10-fold excess 

of ammonium chloride (8.6g in 1 litre distilled H2O) for 10 minutes at 37oC and washing twice 

with 10ml of FACSFlow containing 0.3% bovine serum albumin (BSA). A full blood count 

was performed to obtain a nucleated cell count.1x106 nucleated cells were then pipetted into 

each microtitre plate well and stained with of the appropriate volume of antibody combination 

cocktail before incubation for 20 minutes in the dark at 40C. The wells were then washed 

twice with 200µl of FACSFlow/BSA and re-suspended in 200µl FACSFlow ready for 

acquisition. 

All antibodies for all immunophenotypic studies were used at a final volume of 5μl per 

fluorochrome per test. Whilst the majority of antibodies were used undiluted, certain 

antibodies required dilution to either appear on scale or to optimise signal-to-noise. Details of 

antibody dilutions, clones, reagents, and manufacturer details can be seen in Appendix 

Table 2.1 and Appendix Table 2.2 . 

2.4.2.2 Flow cytometry data acquisition and analysis 

Samples were acquired on a FACSCanto II analyser (BD Biosciences, Oxford, England). 

Analysis of raw flow cytometry data was performed using FacsDiva software (BD 

Biosciences, Oxford, UK) or InfinicytTM (Cytognos). 

For the SCS, the samples would be acquired on any of 3 given FACSCanto II analysers. 

Due to a standardised reporting template, analyser-to-analyser variability would not affect 

the percentage results. For all other flow cytometry studies the same FACSCanto II analyser 
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was used for panel acquisition. This eliminated the potential analyser-to-analyser variation 

which can be seen due to differences in laser output, detector settings, and signal to noise 

ratios between the different cytometers. 

2.4.3 Flow cytometry evaluation of the progenitor cells using the SCS 

For all samples requiring enumeration and lineage evaluation of progenitor cells, a 

progenitor cell screen (SCS) is performed which uses 30µl of the antibody combination 

shown in Table 2.4. A minimum of 100,000 events is acquired for this panel. 

Fluorochrome FITC PE 
PerCP-

Cy5.5 

PE-

Cy7 
APC APC-Cy7/APC-H7* 

Antibody CD15 CD117 CD19 CD3 CD34 CD45 

Table 2.4. The fluorochrome and antibody combination used for the evaluation of 
progenitor cells in the SCS.  

*The CD45 fluorochrome was changed from APC-Cy7 to APC-H7 in March 2009. 

 

This combination allows the identification of myeloid (CD45dim+CD34+CD19-CD117+) and B-

lymphoid (CD45dim+CD34+CD19+CD117-) progenitors and the calculation of the percentage 

of total CD34+ cells and the percentage of CD19+ B-progenitors within this compartment. 

This is shown in Figure 2.1 below. Patients with greater than 5% B-progenitors were classed 

as having “B-progenitors present”, whilst those with less than 5% were classed as having 

“decreased B-progenitors”. 
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Figure 2.1. Gating strategy and data analysis for the SCS. 

CD34+ cells are identified on the basis of CD45 (P1) and CD34 (P3) expression. CD34+ 

B-lymphoid progenitors (blue) are identified on the basis of positive CD19 expression 

(Q4). CD34+ myeloid progenitors are identified on the basis of CD117 positivity and/or 

CD19 negativity (Q1 and Q3). Non-leucocytes are identified on the basis of CD45 

negativity (P2). The percentage of CD34 is calculated as a percentage of the total 

number of events minus the CD45- events. Whilst the percentage of B-progenitors is 

calculated as the percentage of CD34+CD19+ events of total CD34+ events. 
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2.4.4 Flow cytometry studies for the comparison between MDS and 

normal control sample haematopoietic populations 

2.4.4.1 Antibody panel and acquisition 

A 5-antibody backbone of CD34, CD38, CD45, CD117, and HLA-DR was present in all 20 

tubes in this panel. These backbone antibodies were selected as this combination 

recognises all myeloid progenitors and allows evaluation of myeloid differentiation pathways 

(Matarraz et al., 2010; Sandes et al., 2013). The fluorochrome conjugation for these 5 

backbone antibodies was CD34 PerCp-Cy5.5, CD38 APC-H7, CD45 Pacific Orange, CD117 

PC7, and HLA-DR Pacific Blue. The backbone antibodies were configured to allow the FITC, 

PE, and APC fluorochromes to be available for tube specific antibodies. This is due to the 

majority of antibodies being available on these fluorochromes, whilst availability on the other 

fluorochromes may be limited. The antibody composition and configuration of the FITC, PE 

and APC antibodies for each tube is shown in Table 2.5. 40µl of the antibody combination 

was used per tube and a minimum of 500,000 events were acquired per tube. 

2.4.5 Flow cytometry studies for the generation of a classifier from MDS 

and Reactive bone marrow samples 

2.4.5.1 Antibody panel and acquisition 

A 6-antibody backbone of CD19, CD34, CD38, CD45, CD117, and HLA-DR was present in 

both tubes in this panel. CD19 was added to ensure better discrimination between myeloid 

and B-lymphoid progenitors than side scatter alone. The backbone antibody fluorochromes 

were slightly altered from the previous study to accommodate the inclusion of CD19. The 

antibody composition and configuration of each tube is shown in Table 2.6. 40µl of the 

antibody combination was used per tube and a minimum of 500,000 events were acquired 

per tube. 
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Tube Number FITC PE APC 

1 CD16 CD13 CD11b 

2 CD14 CD64 CD300e 

3 CD61 CD42b CD25 

4 CD71 CD105 CD5 

5 CD36 CD95 CD33 

6 CD45RA CD13 CD45RO 

7 CD90 CD133 CD28 

8 CD13 CD150 CD43 

9 CD7 CD62L CD2 

19 CD9 CD154 CD123 

11 CD4 CD203 CD22 

12 CD24 CXCR4 CD10 

13 CD59 CD84 CXCR5 

14 CD18 CD82 - 

15 CD49d CD86 - 

16 CD11a CD106 - 

17 CD48 CD19 CD56 

18 CD81 CD122 - 

19 CD75 CD163 CD15 

 Table 2.5. FITC, PE, and APC conjugated antibodies used to compare MDS and 
normal control sample haematopoietic populations 

 

 

Tube 

Number 
FITC PE 

PerCp-

Cy5.5 

PC7 APC APC-

Cy7 

BV421 V500 

1 CD64 CD123 CD38 CD117 CD34 HLA-DR CD19 CD45 

2 CD16 CD13 CD38 CD117 CD34 HLA-DR CD19 CD45 

Table 2.6. The fluorochrome and antibody combination used to generate a classifier 
for distinguishing MDS and Reactive samples 
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2.4.6 Flow cytometry studies for classifier testing and comparison 

against other flow cytometry MDS scoring schemes and targeted 

gene mutation analysis 

To allow evaluation of the classifier against other flow cytometry MDS scoring schemes, a 

comprehensive 13-tube flow cytometry panel was assessed against a series of normal and 

cytopenic patients. This panel contained all the antibodies which were used in the study to 

generate a classifier. The panel also contained the majority of antibodies recommended by 

the ELN guidelines and the majority of antibodies present in the FCSS. The antibody 

composition and configuration of each tube is shown in Table 2.7. 40µl of the antibody 

combination was used per tube and a minimum of 500,000 events were acquired per tube. 

Tube 

Number 
FITC PE 

PerCp-

Cy5.5 
PC7 APC 

APC-

Cy7 
BV421 V500 

1 CD123 CD13 CD38 CD117 CD34 HLA-DR CD19 CD45 

2 CD45RO CD45RA CD38 CD117 CD34 HLA-DR CD19 CD45 

3 CD49d CD84 CD38 CD117 CD34 HLA-DR CD19 CD45 

4 CD18 CD133/2 CD38 CD117 CD34 HLA-DR CD19 CD45 

5 CD81 CD62L CD38 CD117 CD34 HLA-DR CD19 CD45 

6 CD71 CD123 CD38 CD117 CD34 HLA-DR CD19 CD45 

7 CD59 CD43 CD38 CD117 CD34 HLA-DR CD19 CD45 

         

8 CD14 CD64 CD34 CD117 CD300e HLA-DR CD19 CD45 

9 CD16 CD13 CD34 CD117 CD11b HLA-DR CD19 CD45 

10 CD36 CD105 CD34 CD117 CD71 HLA-DR CD19 CD45 

11 CD24 CD95 CD34 CD117 CD10 HLA-DR CD19 CD45 

12 CD15 CD86 CD34 CD117 CD33 HLA-DR CD19 CD45 

         

13 CD2 CD7 CD5 CD56 CD34 CD4 CD19 CD45 

Table 2.7. The fluorochrome and antibody combination used for classifier testing and 
comparison against other flow scoring schemes 
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2.4.7    Flow cytometry gating strategies 

A consistent flow cytometry gating strategy using the backbone antibodies CD34, CD45, 

CD117, and HLA-DR was used for the immunophenotypic panels used in 2.4.4, 2.4.5, and 

2.4.6. The backbone antibodies were used to gate the following populations: CD34 

progenitors, CD34-CD117+ committed myeloid progenitors, and granulocytes (as shown in 

Figure 2.2, Figure 2.3, and Figure 2.4). The inclusion of the other antibodies within the 

panels allowed subpopulation analysis to be performed as described in each figure.  

  

 

Nucleated cells were initially identified 

through the use of forward (FSC) and side 

scatter (SSC) characteristics (not shown). 

CD34
+
 cells were identified on the basis of 

low SSC and CD34 expression (A). B-

lymphoid progenitor cells (lower SSC) and 

myeloid progenitor cells could be easily 

identified by SSC. However, for the 

purposes of enumeration, CD117 and CD19 

were used to define myeloid and B-

lymphoid lineages, respectively, as shown 

in (B). For consistency, all population 

percentages were reported as a percentage 

of nucleated cells minus CD45
-
 cells as 

shown in (C). 

Figure 2.2. Gating strategy for the identification and enumeration of CD34+ cells. 

Myeloid progenitors 

CD45
-
 cells 

A 

C 

B 

B-progenitors 
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Figure 2.3. Gating strategy for the identification and enumeration of the CD34-CD117+ 
population and subpopulations. 

CD34 expressing cells were first excluded, as per the gating strategy in Figure 2.2. 

CD117 expressing cells were gating on the basis of CD117 expression and SSC 

characteristics (A). Subpopulations within the CD117 expressing cells were identified 

on the basis of HLA-DR expression as shown in (B). The HLA-DR expressing cells 

were monocytic precursors. The HLA-DR- cells shown in red in (C) could be further 

divided by differential expression of CD38 and CD45 into CD38+(weak)CD45+(weak) 

erythroid precursors and CD38+CD45+ granulocytic precursors.    

 

 

A B 

C D 

HLA-DR- HLA-DR+ 
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Granulocytes were identified on the basis 

of medium to high SSC and absence of 

CD34 (A) and CD117 (B). CD45 expression 

was evaluated (C) to confirm the gating 

strategy 

Figure 2.4. Gating strategy for the identification and enumeration of granulocytes 

  

A B 

C 
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Figure 2.5. Gating strategy and identification of plasmacytoid dendritic cells, 
basophils, and mast cells. 

Plasmacytoid dendritic cells (pDC’s)and basophils were identified on the basis of 

strong CD123 expression and low SSC (A). The basophils can be identified by strong 

CD38 expression and absence of HLA-DR, whilst the pDC’s express HLA-DR and 

show weaker CD38 expression (B). The is also differential CD45 expression between 

these two populations with the pDC’s showing higher CD45 expression (C). Mast cells 

are identified on the basis of very strong CD117 expression (D). 

  

A B 

C 

D 
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Monocytic cells were identified on the 

basis of strong CD64 expression and 

intermediate SSC (A). CD14 expression 

on this population was determined using 

granulocytes as a negative internal 

control (B). The expression of CD300e 

was determined using CD14- monocytes 

as a negative internal control as shown in 

(C).  

Figure 2.6. Gating strategy for identification and enumeration of the monocytic 
populations 

  

A B 

C 
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Figure 2.7. Gating strategy for assessing erythroid dysplasia 

(A) The absence of CD45 and  expression of CD36 was used to identify erythroid cells. 
All erythroid events expressed CD71 with variable CD105 expression (B).   

 

  

Figure 2.8. Identification of lineage infidelity antigen expression. 

Positive expression of lymphocyte-related antigens by lymphoid cells (shown in red) 
was used as an internal control for the inappropriate expression of CD5, CD7, CD19 
and CD56 by myeloid progenitor cells, granulocytes, or monocytes. (A) shows normal 
lymphoid and myeloid expression of CD5 and CD7, whilst (B) shows aberrant 
expression by CD34+ cells shown in green. Expression by >20% of the myeloid cell 
population for a lymphoid-related antigen was considered positive expression.    

 

A B 

A B 
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2.4.8 Data analysis post gating 

For each gated population, the median fluorescent intensity (MFI) and the robust coefficient 

of variation (CV) of each antigen, whether expressed or not, were exported within a .csv file. 

For cases where there were less than 300 events for a specific haematopoietic population, 

the MFI and CV could not be used due to concerns regarding the validity of the result with 

this limited number of events. 

This cut-off did not affect numerical population percentage results which could still be 

calculated for these cases. However, a standardised approach for enumerating cells in CLL 

cases has reported a lower limit of detection and lower limit of quantification as 20 and 50 

events, respectively (Rawstron et al., 2007; Rawstron et al., 2013). Therefore, if the 

analysed population size did not reach 50 events, the number of events was set to the 

pseudovalue of 49, and a maximum population percentage was calculated using this value.  

2.4.9 Antigen exclusion criteria 

A median fluorescent intensity of 103 on the log scale of dot plots is often used as a cut-off 

for distinguishing positive and negative antigen expression. This can be seen with respect to 

CD7 expression by lymphocytes in plot (A) of Figure 2.8 above. In Chapter 4, when 

evaluating antigens for further assessment, it was undesirable to miss any potential 

significant differences in weakly expressed antigens between the control and MDS group. 

Therefore, a cut-off MFI of 500 was used and antigens where the mean group MFI was 

below 500 were not considered to be too weakly expressed for diagnostic purposes and 

were excluded from further analysis. 

2.4.10 Immunophenotypic analysis for the flow scoring schemes   

For evaluation of the Ogata FCM scoring scheme, all analysis and use of attribute cut-off 

values was performed in accordance with the published analytic methods (Ogata et al., 

2009; Della Porta et al., 2012). For the FCSS scoring scheme, a visual approach to deviation 

from normal patterns of expression is used for the majority of the attributes (Wells et al., 

2003) . Therefore, to standardise the approach and remove observer variability, any result 

greater or less than 2 standard deviations from the mean control group MFI was deemed 

abnormal. This approach could not, however, be applied to the visual assessment of the 

CD16/CD13 and CD11b/HLA-DR differentiation patterns. Finally, ELN guidelines 

recommend a “shift towards immature” assessment of monocytes (Westers et al., 2012). For 

this evaluation, this attribute was deemed abnormal if the percentage of CD14 expressing 

monocytes was greater than 2 standard deviations lower than the normal control mean 

value.  



70 
 

2.5 Statistical analysis and data normalisation 

2.5.1 Use of R 

2.5.1.1 Statistical analysis and logistic regression modelling 

All formal statistical analysis and the construction of the logistic regression model from the 

Progenitor cell screen data and demographic data was performed using the R package (R 

Core Team, 2015). As well as the standard, pre-installed, Base Package, the following 

libraries were installed and used to prepare, interrogate, compare, analyse, and plot data: 

aod; dpylr; e1071; ggplot2; glmnet; Hmisc; moments; nortest; OptimalCutpoints; 

PerformanceAnalytics; psych; RColorBrewer; reshape 2; rms; ROCR; scales; and xtable. 

For statistical analysis, χ2 was performed for comparison between groups and Wilcoxon 

signed ranks for continuous variables.  All tests used were two-sided. P values of <0.05 

were considered significant. For between group statistical comparisons involving multiple 

attributes the Bonferroni correction was used to control for the familywise error rate and the 

Benjamini-Hochberg procedure was applied to control for the false discovery rate.   

2.5.1.2 Feature scaling for use in classifier training and testing in Weka, and in 

dChip 

 Feature scaling of attributes allows all attributes to feature equally in a classifier or in 

hierarchical clustering. Feature scaling of attributes using standardisation was performed for 

all attributes in the training and test datasets, and also for attributes used in hierarchical 

clustering. Preparation of the data was done in R using the scale command. This command 

calculated the mean and standard deviation for each attribute. The attribute mean was then 

subtracted from each numerical value within that attribute, and divided by the attribute 

standard deviation. This value is also known as the Z-score or standard-score. 

The mean and standard deviation for each attribute in the training set was then applied to 

the corresponding attribute values in the test set in order to normalize the test set attributes 

to the same scale. The exception to this was CD64 which was used as a FITC-conjugated 

antibody in the training set and a PE-conjugated antibody in the test set. In this case, feature 

scaling using standardisation was applied individually to CD64-FITC in the training set and to 

CD64-PE in the test set.  

2.5.2 Use of dChip 

dChip was developed for the analysis of SNP-array and gene-expression array data  (Li and 

Wong, 2001). It also performs unsupervised hierarchical clustering which, in this case, is a 

method for clustering cases into discrete groups on the basis of attribute similarity. It 
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performs unsupervised hierarchical clustering using an agglomerative approach which 

assumes each case is separate and successively merges cases closest to one another until 

all groups are merged into a single cluster. For all unsupervised hierarchical clustering the 

attributes were standardised as defined in 2.5.1.2. Euclidean distance was used as the 

distance metric and average linkage was the linkage method. 

2.5.3 Use of Weka 

Weka is an acronym for Waikato Environment for Knowledge Analysis. The Weka software 

was developed at the University of Waikato in New Zealand and contains a collection of 

machine learning classifiers and algorithms (Hall et al., 2009). Datasets can be imported in 

Weka and it can be used to assess the result of classifier performance on a dataset. For this 

study, a total of 36 classifiers were tested on the training set. Default classifier parameters 

were retained for each classifier and standard measures of classifier performance were 

evaluated. 

2.6 Cytogenetic analysis 

The cytogenetic results for cases within the test set were obtained from patient reports on 

the HILIS database. All cytogenetic analyses were performed at the Regional Genetics 

Laboratory in St James’s University Hospital, Leeds in accordance with the International 

System for Cytogenetic Nomenclature (Shaffer et al., 2009; Shaffer et al., 2013). 

2.7 Molecular analysis 

DNA was extracted bone marrow nucleated cells using the QIAamp DNA mini kit (QIAGEN, 

Manchester, UK) according to the manufacturer’s instructions. Targeted gene sequencing 

was performed on the MiSeq (Illumina, Chesterford, UK) using panels designed to target 26 

genes as shown in Table 2.8. The D3™ Assay Design service (Fluidigm®, San Francisco, 

CA, USA) was used to design amplicons. DNA libraries were built using Fluidigm® 

technology and all samples were included in runs of forty-eight pooled, barcoded patient 

samples. Samples were subjected to 150bp paired-end sequencing. Library construction and 

sequencing were performed according to the manufacturer’s instructions. Details of the 

forward and reverse primer sequences can be found published in Supplementary Table S4 

of Cargo et al. (Cargo et al., 2015).    

  



72 
 

Gene Targeted Region 

ASXL1 exon 12 

BCOR exon 2-15 

CALR exon 9 

CBL exon 8 & 9 

c-KIT exon 8 & 17 

CSF3R exon 14 & 17 

DNMT3A exon 2-23 

EZH2 exon 2-20 

FLT3 exon 20 

IDH1 exon 4 

IDH2 exon 4 & 5 

JAK2 exon 12 & 14 

KRAS exon 2 & 3 

MPL exon 10 

NPM1 exon 12 

NRAS exon 2 & 3 

RUNX1 exon 4-8 

SETBP1 exon 4 

SF3B1 exon 12-16 

SRSF2 exon 1 

STAG2 exon 3-35 

TET2 exon 3-11 

TP53 exon 5-9 

U2AF1 exon 2 & 6 

WT1 exon 7 & 9 

ZRSR2 exon 2-11 

Table 2.8. Details of the genes and targeted regions which were investigated for 
somatic mutations in patients in the test set.  
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3 Insights into the diagnosis of MDS in a routine laboratory 

setting 

3.1 Rationale and overview 

MDS poses significant diagnostic problems both in the accurate morphological distinction 

from other malignant and non-malignant cytopenic conditions, and in the subclassification of 

MDS according to the WHO classification scheme (Parmentier et al., 2012; Font et al., 2013; 

Font et al., 2015). In this chapter, the extent of this problem in a diagnostic laboratory setting 

was assessed by use of database searches using the HMDS Laboratory Information System 

database (HILIS).  

To investigate the difficulty in diagnosing MDS in a routine setting, HILIS was interrogated to 

determine what proportion of bone marrow samples referred for the investigation of 

cytopenia and/or monocytosis were diagnosed with MDS. A further search was performed to 

ascertain how many patients diagnosed with MDS in a given year had been previously 

referred for the investigation of cytopenia and had a non-diagnostic bone marrow. 

HILIS was further interrogated for demographic data and flow cytometric results for the 

composition of CD34 positive progenitor cells for both MDS patients and Reactive patients. 

This could used to determine whether there were significant inter- and intra-subgroup 

differences and whether these differences could be exploited to aid in accurate MDS 

diagnosis. The resulting data could also be further investigated to determine whether simple 

demographic and biological attributes could distinguish MDS from other cytopenic 

conditions. 
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3.2 What percentage of patients referred for the investigation of 

cytopenia are diagnosed with MDS? 

The proportion of patients who are referred for the investigation of cytopenia and are 

diagnosed with MDS is unknown. Beloosesky et al. investigated over 3000 patients admitted 

to a geriatric ward and reported that 7.5% had either cytopenia or macrocytosis, or a 

monocytosis, and that 15% of these 7.5% were diagnosed with MDS (Beloosesky et al., 

2000). More recently, Kwok et al. reported an 8% MDS diagnostic rate for patients referred 

for the investigation of cytopenia, with 65% of patients having a non-diagnostic bone marrow 

(Kwok et al., 2015). The proportions of MDS and non-diagnostic patients referred to HMDS 

for investigation of cytopenia was unknown. Therefore, a HILIS database search of all 

samples received during a representative timeframe of one calendar month (January 2010) 

was performed to allow an insight into the number of cases referred and, also, whether the 

proportions tallied with those previously reported.  

Bone marrow aspirate samples (with or without trephine biopsies) from 507 patients were 

referred to HMDS for the investigation of any haematological malignancy. 389 patients were 

excluded from further analysis on the basis of the following: referral for staging purposes or 

follow-up of previously diagnosed haematological malignancy, or for the investigation of the 

following conditions: chronic myeloid leukaemia, chronic myeloproliferative disorder, 

myeloma or monoclonal gammopathy of undetermined significance, bone marrow infiltration 

by carcinoma, or storage disorders. 

118 bone marrow aspirate samples were referred for the investigation of cytopenia or, 

explicitly, of MDS or acute leukaemia. Of these 118 cases, 24 were diagnosed with non-

MDS haematological malignancies (AML (n=11), B-ALL (n=1), bone marrow involvement by 

lymphoma (n=7), myeloma or MGUS (n=3), and PNH (n=2)). 

61 cases were reported as non-diagnostic, or reactive, with no evidence to indicate that the 

cytopenia was due to a primary bone marrow disorder. 15 cases were classified as either 

“suspicious of malignancy but not diagnostic” or as “see comments”. In the context of this 

cohort of patients, these two latter diagnostic terms were used for non-diagnostic specimens 

where a primary bone marrow disorder could not be excluded but there was insufficient 

evidence to definitively diagnose malignancy. 

15% of cases were diagnosed as MDS (18 cases in total: 8 RAEB, 9 RCMD, and 1 RARS). 

A further case was suspicious of MDS but not diagnostic and a follow up sample was not 

received. Figure 3.1. shows the breakdown of the initial 507 patients into the different 

diagnostic subgroups.
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Figure 3.1. Breakdown of the cases referred for investigation of cytopenia/acute leukaemia during a single month (January 2010) 
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3.2.1 Follow up of non-diagnostic cytopenic patients 

Due to the diagnostic difficulties associated with MDS combined with the finding that only 

15% of cases referred with cytopenia were diagnosed with MDS, a follow-up database 

search was performed in January 2015, on all 76 patients who were classified as “reactive”, 

“see comments”, or “suspicious of malignancy but not diagnostic” to determine whether any 

had subsequently presented with haematological malignancy. This represented a follow-up 

period of 60 months. During this timeframe, two patients were diagnosed with a 

haematological malignancy: one patient who was initially classified as “reactive changes 

only” was diagnosed with AML (6 months after the initial “reactive” diagnosis). Another 

patient with, “see comments”, was subsequently diagnosed with RCMD, albeit 38 months 

after the initial “see comments” report. 

The finding that 2 out of 76 patients progressed from a non-diagnostic classification to a 

diagnosis of myeloid neoplasm emphasised not only the diagnostic difficulties involved in the 

investigation of cytopenia, but brought to light the question of what proportion of patients 

presenting with MDS had been previously referred for investigation and had been reported 

as non-diagnostic.  

3.3 What proportion of MDS patients are previously investigated 

for cytopenia and reported as non-diagnostic? 

It was hypothesized that there was a proportion of patients, referred for the investigation of 

cytopenia, who were classified with a non-diagnostic bone marrow and who may be either 

en-route to developing MDS or misdiagnosed as non-MDS. There may be various reasons 

for this suggestion. Firstly, there are the well-reported difficulties in the accurate diagnosis of 

MDS. Secondly, the above discovery that only 15% of cases referred for the investigation of 

cytopenia in a single month were diagnosed with MDS and nearly two-thirds were given a 

non-diagnostic classification. Finally, the finding that, in a random month, 2 patients reported 

as non-diagnostic subsequently developed a myeloid disorder. It was unclear whether this 

latter finding was representative as the results were based on a single month’s data. 

Especially as patients with non-diagnostic bone marrow samples are not currently subjected 

to active, long-term monitoring. 

To establish the true extent of the phenomenon, the database was searched to identify all 

patients who presented in 2014 with RARS, RCMD, RAEB, or CMML – the four largest MDS 

diagnostic subgroups. These patients were further investigated as to whether a bone marrow 

sample had previously been referred for the investigation of cytopenia and classified as non-
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diagnostic. Whilst this approach may not be applicable in specialized care centres which 

may not have access to bone marrow results from secondary care centres, as HMDS is a 

regional referral centre it holds data on patients who have undergone investigation in 

secondary care centres within the region, before being transferred to a specialized care 

centre. As the HILIS database began in 2004, this allowed for at least 120 months of 

referrals to be examined. The results of this are shown in Table 3.1. 

MDS 

Subgroup 

No. of 

patients 

presenting 

with MDS 

No. of 

patients 

previously 

investigated 

No of months between non-diagnostic 

and diagnostic bone marrow samples 

   Mean Median Range 

      

RARS 30 2 (7%) 13.5 13.5 1-26 

RCMD 106 23 (22%) 28.4 16.0 1-109 

RAEB 100 4 (4%) 19.3 15.5 6-28 

CMML 49 3 (6%) 52.7 34.0 29-95 

      

All 285 32 (11%) 27.7 19.8 1-109 

Table 3.1. Patients diagnosed with MDS in 2014 who were previously referred for the 
investigation of cytopenia and reported as non-diagnostic. 

 

Overall, 11% of MDS cases in 2014 had been previously referred for the investigation of 

cytopenia and found to be non-diagnostic. This percentage varied between the diagnostic 

subgroups. Patients diagnosed with RCMD showed the highest percentage of previously 

investigated cases with 23%. Whilst those patients diagnosed with RAEB, RARS, or CMML 

all demonstrated less than 10% of cases as being previously investigated, with those 

patients presenting with RAEB showing the lowest percentage overall (4%). 

The median length of time between the initial, non-diagnostic referral and actual MDS 

diagnosis for all subgroups was just under 20 months (19.75 months). For individual MDS 

subgroups, the time scale varied from 1 month to just over 9 years (109 months). Both the 

RCMD and CMML subgroups had patients with a prolonged interval between initial referral 
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and diagnosis (109 and 95 months, respectively), whilst for the RAEB and RARS patients, 

the longest interval was shorter (28 and 26 months, respectively). 

3.4 Do MDS and non-malignant cytopenic patients share similar 

demographic and biological features? 

Based on data provided by HMDS, the median age and age specific incidence for patients 

with a confirmed diagnosis of MDS has been reported for the UK (HMRN., 2016.). However, 

it is unknown whether these ages differ from patients referred for investigation of cytopenia 

or whether the skewing of the male:female ratio, as found in MDS, is a phenomenon found in 

cytopenic patients. Furthermore, although there are reported differences in the percentage 

and composition of bone marrow progenitor cells between MDS patients and Reactive 

patients, it is also unknown whether these findings are independent of age or sex. 

From January 2007, when the flow cytometry progenitor cell screening tube (SCS) was 

introduced, until September 2010, 4756 bone marrow aspirate samples from a range of 

diagnostic and non-diagnostic categories were identified by a HILIS database search as 

having had this screening tube performed. This flow cytometry screening tube enumerates 

the percentage of CD34 positive progenitor cells and denotes whether the B-progenitors 

within the CD34 positive compartment are greater than 5%. Patients with greater than 5% B-

progenitors were classed as having “B-progenitors present”, whilst those with less than 5% 

were classed as having “decreased B-progenitors”. 

This data was used in a threefold manner. Firstly, to determine whether there were 

differences between MDS and non-malignant cytopenic conditions with respect to age, sex, 

and progenitor cell composition. Secondly, whether any differences could be exploited to 

distinguish between the two using a logistic regression model. Thirdly, to discover the extent 

of biological differences between the different MDS subgroups. 

The development of a logistic regression model required the creation of a training set 

containing two classes of patients: (i) patients with a confirmed diagnosis of MDS and (ii) 

patients who were referred for the investigation of cytopenia but were given a non-malignant 

diagnostic classification. Henceforth, these patients were given the broad classification of 

“Reactive”, although these patients can also be referred to as pathological controls 

(Malcovati et al., 2005). 

As this was a training set, and due to the aforementioned phenomena described in 3.2.1, all 

patients with a non-diagnostic bone marrow in whom, by June 2015, there was a subsequent 

diagnosis of MDS or AML were subject to secondary exclusion. 36 patients were identified 
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as fulfilling this criteria and the diagnostic breakdown of these cases was: AML (n=12), 

MDS/MPN-U (n=1), RAEB (n=7), RARS (n=1), and RCMD (n=15). The results for these 

patients were retained for later analysis to evaluate whether the logistic regression model 

would have predicted their malignancy.   

In total, 2710 cases were subject to primary exclusion and 36 to secondary exclusion. 2011 

cases remained: 412 cases were diagnosed with MDS and 1599 cases were classified as 

the reactive group. The descriptive statistics for both the MDS and the reactive subgroups 

are shown in 

 MDS Reactive P value 

Number of cases 412 1599 NA 

Median Age 75.5 70.0 <0.001* 

Number of females 136  743 NA 

Median Age (female) 75.0 69.0 <0.001* 

Number of males 276 845 NA 

Median Age (male) 76.0 70.0 <0.001* 

Male:Female ratio 2.03 1.14 <0.001** 

    

Sex unknown (Median Age)  0 11 (63.0) NA 

Table 3.2. Descriptive statistics for age and sex of the MDS and Reactive groups. 

*p value obtained from Wilcoxon signed ranks test. **p value obtained from χ2 test of 

number of males and females in the MDS and reactive groups. 

Patients with a Reactive diagnosis had a lower age. This was true both overall and for the 

specific sexes. There was no skew in the sex ratio, which is found in MDS. There was no 

difference between the intra-group ages of the males and females in the either the Reactive 

group or the MDS group (p = 0.190 and 0.935, respectively). 

As can be seen from the histogram plots in Figure 3.2, and as indicated by the difference in 

median age between the groups, there was a skew towards younger cases in the Reactive 

group but not in the MDS group. In the MDS group, there was only one paediatric patient 

(male, 10 years old). The next youngest MDS patient was a 29 year old female, whilst in the 

reactive group, 89 patients were 25 years old or under. 
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Figure 3.2. Histograms showing the age distribution for the Reactive and MDS groups 
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Paediatric MDS is a rare entity, with a reported incidence in under 15 year olds in England, 

Scotland and Wales of 1.35 per million (age standardised rate) (Passmore et al., 2003). 

Furthermore, a study has shown that nearly half of reviewable MDS cases in this age range 

were diagnosed with Juvenile CMML, which has easily distinguishable characteristics 

(Niemeyer et al., 1997; Emanuel, 2008). Therefore, there was a concern that the presence of 

this age range within the Reactive category may have an effect on the generation of any 

logistic regression model. 

To determine whether the presence of paediatric cases could skew the percentage of CD34 

positive cells in a logistic regression model, a scatter plot of CD34 percentage versus age 

was produced for the Reactive group Figure 3.3. It was noted that patients with a Reactive 

diagnosis under the age of 10 years had a significantly higher percentage of CD34 positive 

cells compared to those over the age of 10 years (p = <0.001). This difference can be seen 

in Figure 3.4. 

 

Figure 3.3. Scatter plot of age versus percentage of CD34 positive cells for the 
Reactive group and categorised by gender 

 

Due to these findings, 38 patients under the age of 10 years old were excluded from further 

analysis. All patients were from the Reactive group. However, it is recognised that this cut-off 

of 10 years old is arbitrary and specific for this cohort. This removal of younger patients did 

not alter any significant difference between the ages of the Reactive and MDS groups as 

shown in the updated table of descriptive statistics (Table 3.3). 
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Figure 3.4. A box and whisker plot showing the percentage of CD34 positive cells for 
under- and over-10 year olds in the Reactive group. 

 

 MDS Reactive P value 

Number of cases 412 1561 NA 

Median Age 75.5 70.0 (11-94) <0.001* 

Number of females 136  727 NA 

Median Age (female) 75.0 69.0 (12-93) <0.001* 

Number of males 276 823 NA 

Median Age (male) 76.0 71.0 (11-94) <0.001* 

Male:Female ratio 2.03 1.13 <0.001** 

    

Sex unknown (Median Age)  0 11 (63.0) NA 

Table 3.3. Descriptive statistics for age and sex of the MDS and Reactive groups form 
patients over the age of 10 years. 

*p value obtained from Wilcoxon signed ranks test. **p value obtained from χ2 test of 

number of males and females in the MDS and reactive groups. 
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3.5 Identifying biological differences between and within the MDS 

and Reactive Groups 

Previous studies have noted an increase in the percentage of CD34 positive progenitors and 

a reduction in the B-progenitor population within the CD34 population in MDS patients in 

comparison to patients with a Reactive diagnosis (Sternberg et al., 2005; Ogata et al., 2006). 

These studies had smaller cohorts in comparison to this study and it was unknown whether 

differences would still be present in a larger dataset of unselected patients or whether 

differences were sex specific. 

Descriptive statistics for CD34 positive cell attributes for the Reactive and the MDS groups 

are shown in Table 3.4. There was a difference between the Reactive and the MDS group 

for the percentage of CD34 positive progenitors (p=<0.001). This difference was found when 

inter-group male-to-male and female-to-female comparisons were performed (p=<0.001 for 

both). 

The MDS group showed a significant higher percentage of cases with decreased B-

progenitors compared to the Reactive group (p<0.001). This difference was not due to the 

skewed male to female ratio in the MDS subgroup as there was no difference between the 

proportions of males and of females who had decreased B-progenitors present in the MDS 

subgroup (p= 0.302). However, more males had decreased B-progenitors than females 

(p=0.030) within the Reactive group. 

Within the Reactive group, the females had a lower median age (69 years versus 71 years 

for males), although this was not significant (p=0.190). Also, within the Reactive group, 

patients with decreased B progenitors were found to be significantly older than patients with 

B-progenitors present (p=<0.001). 

3.6 Are there intra-subgroup differences within the Reactive 

group? 

In the literature, the different Reactive subgroups are collected into one main umbrella group 

(Ogata et al., 2006; Chu et al., 2011; Della Porta et al., 2012). For example, the Ogata et al. 

used a broad range of control patients with the largest single subgroup being Idiopathic 

Thrombocytopenia Purpura (ITP) patients (Ogata et al., 2006). However, it was unknown 

whether there were differences in the male to female rate, age, and CD34 positive 

percentage and composition between different non-malignant cytopenic conditions. If so, the 
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Diagnosis 

CD34% B-progenitors Present  Decreased B-progenitors  

 Median  Mean  Min  Max  SD 
Number of 

cases 

Median Age 

(years) 

Number of 

cases 

Median Age 

(years) 

MDSall 2.20 4.65 0.1 34 5.51 107 75.0 305 76.0 

MDS ♂ 2.30 4.36 0.1 29 5.02 76 75.0 200 76.0 

MDS ♀ 2.05 5.23 0.1 34 6.37 31 74.0 105 76.0 

Reactive all 1.50 1.61 0.1 9.3 0.99 1079 67.0 482 74.0 

Reactive ♂ 1.50 1.59 0.1 9.3 1.00 550 69.0 273 74.0 

Reactive ♀ 1.50 1.62 0.1 8.8 0.99 523 66.0 204 75.0 

Reactive (U) 1.50 1.95 0.7 5.0 1.26 6 54.0 5 76.0 

Table 3.4. Percentage CD34 positive progenitors and B-progenitor cell status in the MDS and Reactive groups as determined by sex.
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composite make-up of a Reactive control group could affect any differences between this 

group and the MDS group. 

In this dataset, two large subgroups existed which could be evaluated: an Anaemia of 

Chronic Disease (ACD) group (n=343) and an ITP group (n=102). The descriptive statistics 

for these two subgroups are shown in Table 3.5 and Table 3.6. The ACD group was found to 

be significantly older (p=<0.001) and had a significantly lower male to female ratio (p=0.032). 

Despite these differences, there were no significant differences for the percentage of CD34 

positive progenitors (p=0.162) or for the proportion with presence of B-progenitors (p=0.134) 

between the ACD and ITP groups.  

3.7 Does the percentage of CD34 positive cells show age related 

changes in the Reactive and MDS patient groups? 

Age-related changes are reported to occur in the haematopoietic stem cell (HSC) 

compartment in humans, including an increase in HSC’s but a decrease in function (Geiger 

et al., 2013). Despite the CD34 positive compartment containing HSC’s, a slight decrease in 

the percentage of CD34 positive cells across four age groups from 0 to 80 years has been 

reported in a series of 332 spinal cord injury patients (Dedeepiya et al., 2012). It is unknown 

whether these characteristics are present in the Reactive group and in MDS patients across 

the different age groups. To evaluate this, the percentage of CD34 positive progenitor cells 

for 10 year age ranges were examined in both groups. 

Figure 3.5 shows the box and whisker plots for the percentages of CD34 positive cells 

across the different age ranges in the Reactive and the MDS groups. In both groups, there is 

a slight decrease in the percentage of CD34 positive progenitors with age. In the Reactive 

group this reduction appears to occur continuously from the 41-50 age range until the 81-90 

age range. For the MDS group, due to the limited number of patients there can be no 

comment regarding patients below 50 years of age. However, there does not appear to be a 

downward trend. As it was feasible that the presence of RAEB cases may skew the 

percentage of CD34 positive cells, these patients were further excluded and the box and 

whisker plots were re-plotted as shown in Figure 3.6. However, even with this subgroup 

excluded, there does not appear to be an upward or downward trend for MDS patients with 

age. 
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Diagnosis 

Age B-progenitors Present  Decreased B-progenitors  

 Median  Mean  Min  Max  SD 
Number of 

cases 

Median Age 

(years) 

Number of 

cases 

Median Age 

(years) 

ACDall 76.0 73.9 33.0 94.0 10.1 225 76.0 118 76.5 

ACD ♂ 77.0 75.0 41.0 94.0 9.0 100 77.0 66 74.5 

ACD ♀ 75.0 73.0 33.0 93.0 11.0 124 74.0 51 78.0 

ACD (U) 69.5 69.5 63.0 76.0 9.2 1 63.0 1 76.0 

ITP all 69.5 64.4 12.0 91.0 17.3 75 67.0 27 75.0 

ITP ♂ 72.0 65.9 12.0 91.0 18.3 45 70.0 17 77.0 

ITP ♀ 64.0 62.0 19.0 87.0 15.6 30 64.0 10 63.5 

ITP (U) NA NA NA NA NA 0 NA 0 NA 

Table 3.5. Descriptive statistics for age for the ACD and ITP subgroups within the Reactive group. 
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Diagnosis 

CD34% B-progenitors Present  Decreased B-progenitors  

 Median  Mean  Min  Max  SD 
Number of 

cases 

CD34% 

median 

Number of 

cases 

CD34% 

median 

ACDall 1.50 1.54 0.10 4.90 0.73 225 1.60 118 1.30 

ACD ♂ 1.40 1.45 0.10 4.00 0.66 100 1.50 66 1.30 

ACD ♀ 1.50 1.63 0.10 4.90 0.78 124 1.70 51 1.20 

ACD (U) 1.75 1.75 1.50 2.00 0.35 1 1.50 1 2.00 

ITP all 1.65 1.67 0.30 3.80 0.81 75 1.90 27 1.10 

ITP ♂ 1.80 1.71 0.30 3.80 0.84 45 1.90 17 1.10 

ITP ♀ 1.60 1.61 0.30 3.00 0.77 30 1.70 10 1.30 

ITP (U) NA NA NA NA NA 0 NA 0 NA 

Table 3.6. Descriptive statistics for percentage of CD34 positive cells for ACD and ITP subgroups within the Reactive group. 
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Figure 3.5. Box and whisker plots showing the percentage of CD34 positive cells per 
10 year age range for the Reactive and the MDS groups. 

The top plot with the green box and whisker plots shows the Reactive group whilst 

the bottom, orange, box and whisker plots shows the MDS group. 
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Figure 3.6. Box and whisker plots showing the percentage of CD34 positive cells per 

10 year age range for the MDS group following exclusion of RAEB cases. 

 

3.8 Is the decreased B-progenitor phenomenon a consequence of 

age-related changes? 

The different age range did not affect the percentage of CD34 positive progenitors between 

the ACD and ITP subgroups, nor did it affect the incidence of decreased B-progenitors. For 

the Reactive group as a whole, there was a difference between the ages of patients with B-

progenitors present and those with decreased B-progenitors. This difference was not found 

within the MDS group. 

Studies have shown that a decrease in B-progenitors occurs with age and this may be as 

consequence of alterations in frequency of populations within the stem cell compartment 

(McKenna et al., 2001; Kuranda et al., 2011). As patients within the MDS group had an older 

median age, it was unclear whether the increased number of patients with decreased B-

progenitors within the MDS group was a result of aging or the underlying biology of the 

disease. 

To investigate the possibility that the decrease in B-progenitors was an age-related 

phenomenon, patients in both the Reactive group and in the MDS group, were grouped into 
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10 year age bins and the percentage of patients with decreased B-progenitors was 

evaluated for each age bin. 

In the Reactive group there was an increase of percentage of patients with decreased B-

progenitors as age increased. This trend is shown in the Figure 3.7 and Table 3.7. This trend 

was not seen for the MDS group, with the majority of patients with MDS having decreased B-

progenitors throughout all age ranges. Taken together, these data suggest that, although 

decreased B-progenitors do appear to be a feature of aging, the decreased B-progenitor 

phenomenon in MDS is not an age-related consequence. 

Age 

Range 

B-progenitors 

Present (no. of 

cases) 

Decreased B-

progenitors (no. of 

cases) 

% of cases with 

Decreased B-

progenitors 

 Reactive MDS Reactive MDS Reactive MDS 

10-19 27 0 1 1 3.6 100.0 

20-29 39 0 4 1 9.3 100.0 

30-39 42 2 10 4 19.2 66.7 

40-49 90 1 23 5 20.4 83.3 

50-59 152 13 41 19 21.2 59.4 

60-69 243 18 89 57 26.8 76.0 

70-79 325 38 168 116 34.1 75.3 

80-89 149 34 138 92 48.1 73.0 

90-99 12 1 8 10 40.0 90.9 

Total 1079 107 482 305 30.9 74.0 

Table 3.7. Age distribution and proportion of cases with present or decreased B-
progenitors in the Reactive and the MDS groups. 
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Figure 3.7. Spineplots showing the distribution and proportion of cases with present 
or decreased B-progenitors with age. 

The Reactive group is depicted in the top plot and the MDS group in the bottom plot. 

Yellow indicates the proportion (on a scale of 0 to 1) of cases within that age bin 

which have B-progenitors present whilst purple indicates the inverse proportion with 

decreased B-progenitors. The width of the age bins is proportional to the number of 

patients within that bin. 
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3.9 Is the decreased B-progenitor proportion a consequence of an 

increased CD34 percentage? 

To determine whether the proportion of patients with decreased B-progenitors within the 

CD34 positive compartment decreased with increasing CD34 percentage, and whether this 

was constant for both the Reactive group and the MDS group, patients were grouped into 

increasing one percent CD34 positive bins and the proportion of cases with decreased B-

progenitors was evaluated for each bin.  

In the Reactive group, there was an increase in the proportion of patients with B-progenitors 

present, as seen in Table 3.8. This feature occurred for increasing percentages of CD34 

positive cells up to 4% and implies that there is a linear relationship with an increase of B-

progenitors with increasing CD34 positive cells. This trend did not, however, continue for the 

patients with >4% CD34 positive cells, although this may have been a consequence of the 

small sample size with only 11 cases in this group. Statistically, there was a significant 

difference between the median value for CD34 positive percentage between the group with 

B-progenitors present and the group with decreased B-progenitors (1.6% versus 1.2%, 

p=<0.001). 

The MDS group showed an opposite trend to the Reactive group, as shown in Table 3.9 and 

Figure 3.8. For this group, each CD34 positive percentage range contained at least 60% of 

patients with decreased B-progenitors and this percentage increased with increasing CD34 

percentage. In contrast to the Reactive group, the median CD34 positive percentage for 

cases with B-progenitors present was significantly lower compared to cases with decreased 

B-progenitors (1.70% versus 2.70%, p=<0.001). 

CD34+ 

Range (%) 

B-progenitors 

Present (no. of 

cases) 

Decreased B-

progenitors (no. of 

cases) 

% of cases with 

Decreased B-

progenitors 

0.1-1.0 471 208 30.6 

1.1-2.0 284 71 20 

2.1-3.0 74 16 17.8 

3.1-4.0 15 3 16.7 

4.1+ 6 5 45.5 

Table 3.8. B-progenitor status for the different percentage CD34 positive cell bins for 
Reactive patients 
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CD34+ 

Range (%) 

B-progenitors 

Present (no. of 

cases) 

Decreased B-

progenitors (no of 

cases) 

% of cases with 

Decreased B-

progenitors 

0.1-1.0 38 73 65.8 

1.1-2.0 18 30 62.5 

2.1-3.0 8 25 75.8 

3.1-4.0 6 17 73.9 

4.1-5.0 1 17 94.4 

5.1-6.0 4 16 80 

6.1-7.0 1 8 88.9 

7.1-8.0 0 7 100 

8.1-9.0 1 5 83.3 

9.1-10 0 3 100 

10+ 6 51 89.5 

Table 3.9. B-progenitor status for the different percentage CD34 positive cell bins for 
MDS patients 

 

Inter-group comparison showed that there was a significant difference between the median 

CD34 positive percentage between the Reactive group with decreased B-progenitors and 

the MDS group with decreased B-progenitors (p=<0.001). However, no difference was seen 

between the Reactive group with B-progenitors present and the MDS group with B-

progenitors present (p=<0.087) which may have implications for scoring schemes based on 

these two attributes.  
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Figure 3.8. Spineplots showing the distribution and proportion of cases with present 
or decreased B-progenitors with percentage of CD34 positive cells. 

The Reactive group is depicted in the top plot and the MDS group in the bottom plot. 

Yellow indicates the proportion (on a scale of 0 to 1) of cases within that age bin 

which have B-progenitors present whilst purple indicates the inverse proportion with 

decreased B-progenitors. The width of the age bins is proportional to the number of 

patients within that bin. 
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3.10  Creation of a Logistic Regression Model 

As all the attributes age, sex, percentage of CD34 positive cells and B-progenitors status all 

differed between the MDS and the Reactive group, and as age and percentage of CD34 

positive cells are continuous variables, a logistic regression model was used to produce a 

probability model based on all these attributes. 

This data series was used as a training set to produce the model. To simplify the model, the 

cases in whom the gender could not be determined (n=11) were excluded from analysis. 

The model was therefore constructed using 1550 Reactive patients and 412 MDS patients. 

The baseline accuracy was calculated on the basis of every case belonging to the largest 

class which, in the training set, was the Reactive group and was 0.7900. The performance 

metrics (accuracy, Kappa statistic, sensitivity, specificity, positive predictive value, negative 

predictive value) were all reported using the MDS group as the “Positive” Class. Class 

prediction was on the basis of having a probability of >0.5 for class membership for class 

membership of the MDS group and <0.5 for the Reactive group. 

Table 3.10 shows the confusion matrix for predicted class versus actual class and Table 

3.11 shows the model results for all attributes. All 4 attributes were statistically significant (all 

p<0.001) with a decrease in B-progenitors showing the largest odds ratio. 

  Predicted Class 

  MDS Reactive 

Actual 

Class 

MDS 160 252 

Reactive 24 1526 

Table 3.10. Confusion matrix showing the outcomes of the logistic regression model.  

 

The variance inflation factor (VIF) for age, sex, percentage of CD34 positive cells and B-

progenitor status was 1.055, 1.000, 1.037, and 1.033 respectively. The square root of the 

VIF (sqrtVIF) was 1.027, 1.000, 1.018, and 1.017 respectively. The VIF indicates evidence of 

multicollinearity and if the value is not unusually larger than 1.0, as found here, then 

multicollinearity does not pose a problem (Mansfield and Helms, 1982). The sqrtVIF 

indicates the standard error for the attribute, for example, the largest sqrtVIF is for age and is 

1.027, indicating that the standard error for this attribute is 2.7% higher were it uncorrelated 

with any other attribute. 
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Parameter 

Estimate 

Standard 

Error 

Confidence intervals for 

parameter estimate 

Odds Ratio 

Confidence intervals for 

Standard error 

2.5% 97.5% 2.5% 97.5% 

Intercept -6.168451 0.452953 -7.08564889 -5.3091744 0.002094478 0.0008370315 0.004946009 

Age 0.036263 0.005707 0.02534317 0.0477265 1.036929041 1.0256670346 1.048883747 

Sex (Male) 0.541354 0.141315 0.26663068 0.8210754 1.718383481 1.3055581876 2.272942838 

CD34 0.522281 0.046539 0.43470005 0.6170333 1.685868636 1.5444997123 1.853421385 

B-progenitors 

(decreased) 
1.511978 0.140263 1.23985912 1.7901585 4.535691971 3.4551266670 5.990401837 

Table 3.11. Results of the contributions of the individual attributes to the logistic regression model. 
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The c index, also known as the area under the ROC curve (AUROC) was 0.824 indicating 

the predictive accuracy of the model (Austin and Steyerberg, 2012). The accuracy itself of 

the model was 0.8593, compared to the baseline of 0.7900. The Kappa statistic, which takes 

into account a correct prediction by chance, was 0.4679. Sensitivity was 0.3883, specificity 

was 0.9850, the positive predictive value was 0.8696, and the negative predictive value was 

0.8621. 

As MDS is a heterogeneous group comprising multiple diagnostic categories, the model 

prediction outcome for actual cases within each subgroup of MDS was determined. This 

would ascertain whether the model predicted specific subgroups better than others. The 

results of this are shown in Table 3.12. With the exception of the RAEB and RAEB-F WHO 

subgroups, the model fails to correctly predict more than 30% of cases within any other 

WHO subgroup.  

 
5q- CMML 

MDS/MPN-

U 
RAEB RAEB-F RARS RARS-T RCMD RCUD 

Correct 

Prediction    

(as MDS) 

1 3 2 96 4 6 0 48 0 

Incorrect 

Prediction        

(as Reactive) 

6 30 6 19 0 68 4 117 2 

Predicted 

correctly (%) 
14 9 25 83 100 8 0 29 0 

Table 3.12. Model prediction accuracy for the different MDS subgroups contained 
within the logistic regression training set. 

 

3.11 Testing the performance of the logistic regression model on an 

independent dataset 

The logistic regression model produced a probability of an individual patient having MDS on 

the basis of age, gender, CD34% and presence of B-progenitors >5%. This model could be 

then used to give a probability value for MDS on unseen, individual patient results via the 

input of results into the model. For example, an 86 year old male patient with a CD34 of 

4.2% and decreased B-progenitors would have a probability of 0.753 (75.3%) of belonging to 

the MDS class. Likewise, a 35 year old female with a CD34% of 1.5% and B-progenitors 

>5% would have a probability of 0.016 (1.6%) of belonging to the MDS class. However, to 

determine the actual performance of the model, an independent patient cohort was required 
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and a dataset comprising of patients whose samples had been subject to the SCS for the 

investigation of cytopenia between September 2010 and April 2013 was used. 

The same exclusion criteria as those applied to the training set were applied to the test set. 

1753 cases were initially identifying as either Reactive (n=1606) or MDS (n=147). 26 

patients from the Reactive group subsequently presented with either MDS or AML by June 

2015 and were excluded from further analysis, but were retained to be added to the original 

transformed cases. 57 cases were excluded due to age being less than 10 years old, all 

from the Reactive group. 11 patients were of unknown gender and were excluded, all from 

the Reactive group. The descriptive statistics for this test set are shown in Table 3.13. 

 MDS Reactive P value 

Number of cases 147 1512 NA 

Median Age 76.0 70.0 <0.001* 

Number of females 61  696 NA 

Median Age (female) 76.0 68.0 <0.001* 

Number of males 86 816 NA 

Median Age (male) 76.0 71.0 <0.001* 

Male:Female ratio 1.41 1.18 0.2912** 

Table 3.13. Descriptive statistics for age and sex of the MDS and Reactive groups of 
the independent test set. 

*p value obtained from Wilcoxon signed ranks test. **p value obtained from χ2 test of 
number of males and females in the MDS and Reactive groups. 

Like the training set, the test set was skewed towards the inclusion of Reactive cases and 

this resulted in a baseline accuracy of 0.9114. Unlike both the training set and published 

data, in this set there was no significant difference in the male-to-female rate ratio in the 

MDS group. 

Application of the model derived from the training set on the test set resulted in a probability 

that the individual case belonged to the MDS class. The performance metrics (accuracy, 

Kappa statistic, sensitivity, specificity, positive predictive value, negative predictive value) 

were all reported using the MDS group as the “Positive” Class. The logistic regression model 

calculates a probability for each patient. Therefore, although the usual probability for class 

membership is 0.5, the performance metrics could be determined using a probability range 

from 0.1 to 0.9 in incremental cut-offs of 0.1 for class membership of the MDS class. The 

results for the range of different probabilities are shown in Table 3.14. 
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Probability 

of MDS 

Reactive 

classed 

as 

Reactive 

(no. of 

cases) 

Reactive 

classed 

as MDS 

(no. of 

cases) 

MDS 

classed 

as 

Reactive 

(no. of 

cases) 

MDS 

classed 

as MDS 

(no. of 

cases) 

Accuracy Kappa 

statistic 

Sensitivity Specificity Positive 

predictive 

value 

Negative 

predictive 

value 

 

0.1 765 747 22 125 0.5365 0.1104 0.8503 0.5060 0.1433 0.9720 

0.2 1120 392 47 100 0.7354 0.2044 0.6803 0.7407 0.2033 0.9597 

0.3 1309 203 75 72 0.8324 0.2552 0.4898 0.8657 0.2618 0.9458 

0.4 1432 80 100 47 0.8915 0.2843 0.3197 0.9471 0.3701 0.9347 

0.5 1486 26 116 31 0.9144 0.2677 0.2109 0.9828 0.5439 0.9276 

0.6 1500 12 127 20 0.9162 0.1981 0.1361 0.9921 0.6250 0.9219 

0.7 1506 6 133 14 0.9162 0.1496 0.0952 0.9960 0.7000 0.9189 

0.8 1510 2 137 10 0.9162 0.1139 0.0680 0.9987 0.8333 0.9168 

0.9 1511 1 140 7 0.9150 0.0819 0.0476 0.9993 0.8750 0.9152 

Table 3.14. Performance metrics for the different probabilities of class membership for the MDS class for the test set. 
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Using the 0.5 probability for class membership resulted in the correct classification for 98.3% 

Reactive cases. However, only 21.1% of MDS cases were correctly classified. If the cut-off 

for class membership of the MDS class was set low at 0.1, then 85.0% of MDS cases would 

be correctly classified as MDS. However, at this threshold only 50.6% of Reactive cases 

were correctly classified (specificity = 0.5060). Conversely, if the probability for class 

membership of the MDS class was set high at 0.9, only 4.8% of MDS cases would be 

correctly classified as MDS. However, this threshold would result in the correct classification 

of 99.9% of Reactive cases, with only one case misclassified. This single case was a 86 

year old male with metastatic carcinoma, a CD34 of 6.3% and <5% B-progenitors whose 

probability of MDS was 0.9084. 

3.12  Testing the performance of the logistic regression model on 

patients who developed myeloid malignancy 

Patients from both the training set and the test set were excluded on the basis of the 

subsequent development of a myeloid malignancy, MDS or otherwise. To determine whether 

these patients could have been identified as being at risk of development, the logistic 

regression model was applied to this cohort. 

Overall, 62 patients (36 patients from the training set and 26 patients from the test set) were 

excluded from initial training or test set analysis and available for analysis as a separate 

cohort. In this cohort, there were 26 females and 36 males, the median age was 71.0 years 

(range 38.0-87.0), the median percentage of CD34 positive cells was 1.70% (range 0.2-

8.1%), and 40 out of the 62 patients had reduced B-progenitors. The diagnostic breakdown 

of this group was as follows: 2 patients with MDS with 5q- as a sole abnormality, 19 patients 

with AML, 1 patient with blastic plasmacytoid dendritic cell neoplasm, 1 patient with chronic 

myeloproliferative neoplasma with myelofibrosis, 1 patient with MDS/MPN-U, 13 patients 

with RAEB, 1 patient with RARS, and 24 patients with RCMD. 

The classification of these patients according to different probabilities of MDS class 

membership is shown in Table 3.15. Using a probability of 0.5 for inclusion into the MDS 

class resulted in only 9.7% of patients being classified as MDS in their non-diagnostic 

sample. However, with the exception of the very high probabilities for membership of the 

MDS class (0.8 and 0.9), there appeared to be a greater percentage classified as MDS at 

every probability level than the percentage of Reactive cases misclassified as MDS in the 

test set. 
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Probability 

of MDS 

No of cases 

classified 

as Reactive 

No of cases 

classified 

as MDS 

% classified 

as MDS 

% of Reactive cases 

classified as MDS in 

the test set 

0.1 11 51 82.3% 49.4% 

0.2 29 33 53.2% 25.9% 

0.3 39 23 37.1% 13.4% 

0.4 48 14 22.5% 5.3% 

0.5 56 6 9.7% 1.7% 

0.6 59 3 4.8% 0.8% 

0.7 61 1 1.6% 0.4% 

0.8 62 0 0% 0.1% 

0.9 62 0 0% 0.1% 

Table 3.15. Percentage of cases classified as MDS per probability cut-off according to 
the logistic regression model in the cohort of Reactive diagnosis patients who 
developed a myeloid malignancy 

 

3.13  Evaluation of demographic and biological features on the 

combined cohort of training and test set MDS patients 

As the predictive model showed better prediction for certain subgroups of MDS (Table 3.12 

above), MDS patients from the training (412) and test (147) sets were combined to form one 

cohort which could be examined for biological and demographic differences between the 

MDS subgroups. Box and whisker plots showing the age distribution per MDS subgroup for 

all patients is shown in Figure 3.9 and sex-specific distribution is shown in Figure 3.10. A 

tabulated version for age and gender of patients per MDS diagnostic group is shown in 

Table 3.16. 

3.13.1 Are there differences in age between the MDS subgroups? 

To determine whether there were differences between ages for the different MDS 

subgroups, a pairwise Wilcoxon rank sum test with Bonferroni correction applied to account 

for multiple comparisons was performed. The only difference was between the RCMD and 

RAEB groups with RAEB patients having a lower age (Table 3.17). 
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 Figure 3.9. Box and whisker plots showing the age distributions within the different 
MDS subgroups 

 

Figure 3.10. Box and whisker plots showing the age distributions by sex within the 
different MDS subgroups. 

Males are shown in blue and females are shown red. 
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Subgroup 
No of 

patients 
Median Age 

(range) 
No of 

Females 
Median Age 

F (range) 
No of 
Males 

Median Age 
M (range) 

M:F 
Ratio 

5q- 10 64 (46-87) 8 61.5 (46-73) 2 81.5 (76-73) 0.25:1 

CMML 36 78 (48-91) 8 75 (66-82) 28 78.5 (48-91) 3.5:1 

MDSMPNU 21 77 (54-88) 9 76 (54-88) 12 77 (59-84) 1.33:1 

RAEB 127 73 (10-92) 49 74 (34-92) 78 72 (10-88) 1.59:1 

RAEBF 6 76.5 (57-89) 2 80.5 (78-83) 4 71 (57-89) 2:1 

RARS 106 77(30-92) 42 77.5 (37-92) 64 76.5 (30-91) 1.52:1 

RARST 9 72(54-85) 4 74 (69-82) 5 69 (54-85) 1.25:1 

RCMD 240 76 (29-96) 74 78 (29-93) 166 76 (36-96) 2.24:1 

RCUD 4 73 (63-82) 1 63 3 75 (71-82) 3:1 

        

All cases 559 76 (10-96) 197 75(29-93) 359 76(10-96) 1.82:1 

Table 3.16. Demographic results for MDS patients per diagnostic subgroup from the combined training and test set data 
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5q- CMML 

MDS 

MPN-U 
RAEB RAEBF RARS RARST RCMD 

CMML 0.298        

MDS 
MPN-U 

1.000 1.000       

RAEB 1.000 0.274 1.000      

RAEBF 1.000 1.000 1.000 1.000     

RARS 0.388 1.000 1.000 0.294 1.000    

RARST 1.000 1.000 1.000 1.000 1.000 1.000   

RCMD 0.260 1.000 1.000 0.012 1.000 1.000 1.000  

RCUD 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Table 3.17. P values for pairwise comparisons for evaluation of differences in age per 
MDS subgroup. 

Wilcoxon rank sum test with Bonferroni correction for multiple comparisons was 
performed. Significant differences are highlighted in red 

 

3.13.2 Evaluation of CD34 positive cells in the different MDS 

subgroups 

In the classification and prognostication of MDS, morphological blast cell percentage cut-offs 

are used to denote membership of the different WHO MDS subgroups, and are used as a 

component of the IPSS-R. As some of these cut-offs appeared arbitrarily defined, it was 

unclear whether there was have an underlying biological basis with respect to the 

percentage of progenitors. It was, therefore, of interest to determine whether the percentage 

of CD34 positive cells in MDS was normally distributed with overlaps between MDS 

subgroups, or whether distinct cut-offs occurred which correlated with diagnostic subgroups. 

To determine whether the percentage of CD34 positive cells for all cases of MDS showed a 

normal distribution, a Quantile-Quantile plot (Q-Q plot) was produced which shows a non-

normal distribution (Figure 3.11). The skew in distribution can also be seen in the male and 

female histogram plots in Figure 3.12. These histograms also show that there are no obvious 

cut-offs at or around the 2% and the 5% levels which would correspond to the identification 

of different IPSS-R prognostic entities or WHO diagnostic subgroups.   
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Figure 3.11. Q-Q plot to show the distribution of the percentage of CD34 positive cells 
for all MDS cases in the training and test set 

The red line is a theoretical normal distribution line which passes through the 1st and 

3rd quantiles. In this plot, the data does not follow the theoretical line and is non-linear 

and, therefore, non-normally distributed.

 

Figure 3.12. Histogram of percentage CD34 positive cells for males and females. 

Each bin represents a 0.5% CD34 positive increment. 
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Unsurprisingly, the RAEB and RAEB-F subgroups had the highest median percentage of 

CD34 positive progenitors as shown in Table 3.18. However, box and whisker plots in Figure 

1.1 showed that there was overlap between the different MDS diagnostic subgroups 

although, statistically, the different MDS subgroups did show inter-group differences for the 

percentage of CD34 positive cells (Table 3.19).   

Subgroup No of 
patients 

Median 
CD34% 

All cases 

CD34% 
Range 

All cases 

Median CD34% 
Female (range) 

Median CD34% 
Male (range) 

5q- 10 2.10 0.20-6.60 2.40 (0.20-6.60) 1.35 (0.40-2.30) 

CMML 36 1.05 0.10-19.00 1.00 (0.30-2.60) 1.05 (0.10-19.00) 

MDSMPNU 21 1.80 0.20-8.40 1.70 (0.20-3.40) 2.20 (0.20-8.40) 

RAEB 127 9.00 0.10-34.00 12.00 (0.10-34.0) 7.70 (0.40-29.00) 

RAEBF 6 7.55 2.00-19.00 4.25 (2.00-6.50) 10.30 (6.50-19.00) 

RARS 106 1.50 0.100-8.20 1.65 (0.10-5.40) 1.45 (0.40-8.20) 

RARST 9 1.30 0.30-2.60 1.85 (0.30-2.60) 0.90 (0.30-1.80) 

RCMD 240 1.80 0.10-13.00 1.60 (0.10-13.0) 1.90 (0.10-12.00) 

RCUD 4 1.45 0.70-1.70 1.90 (1.30-1.70) 1.60 (0.70-1.70) 

  
    

All cases 559 2.00 0.10-34.00 2.00 (0.10-34.00) 2.05 (0.10-29.00) 

Table 3.18. Percentage of CD34 positive progenitors per MDS diagnostic subgroup for 
male and female cases 

 

Figure 3.13. Box and whisker plots showing the percentage of CD34 positive 
progenitor cells for each MDS diagnostic subgroup 
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5q- CMML 
MDS 

MPN-U 
RAEB RAEBF RARS RARST RCMD 

CMML 1.0000        

MDS 
MPN-U 

1.0000 1.0000       

RAEB 0.0015 <0.0001 <0.0001      

RAEBF 0.5228 0.0213 0.0870 1.0000     

RARS 1.0000 0.4914 1.0000 <0.0001 0.0065    

RARST 1.0000 1.0000 1.0000 0.0004 0.1387 1.0000   

RCMD 1.0000 0.0067 1.0000 <0.0001 0.0231 0.0717 1.0000  

RCUD 1.0000 1.0000 1.0000 0.1068 0.5012 1.0000 1.0000 1.0000 

Table 3.19. P values for pairwise comparisons for evaluation of differences in 
percentage of CD34 positive cells per MDS subgroup. 

 Wilcoxon rank sum test with Bonferroni correction for multiple comparisons was 
performed. Significant differences are highlighted in red 

3.14 . Assessment of B-progenitors in the different MDS subgroups 

Although a decrease in B-progenitors is a consistent feature in MDS, it was unknown if the 

MDS subgroups differed in the proportion of cases in which there were decreased B-

progenitors. Overall, 75% of all MDS cases showed decreased B-progenitors. However, 

there was variability across the MDS subgroups (Figure 3.14) with the lower grade MDS 

subgroups like RARS and RARS-T having a lower percentage of patients with decreased B-

progenitors than the higher grade MDS groups like RAEB and RAEB-F. Table 3.20 shows 

the differences between the MDS subgroups for age and percentage CD34 positive cells for 

with respect to sex and B-progenitor cell status. 
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Figure 3.14. Percentage of MDS cases which show present and decreased B-
progenitor cells per diagnostic subgroup. 

The number of patients in each subgroup is denoted in parentheses after the 

subgroup name. 

0 20 40 60 80 100 

All cases 
(n=559) 

RCUD (n=4) 

RCMD (n=240) 

RARS-T (n=9) 

RARS (n=106) 

RAEBF (n=6) 

RAEB (n=127) 

MDS/MPN-U 
(n=21) 

CMML (n=36) 

5q- (n=10) 

% of cases 

% with decreased B-progenitors 

% with B-progenitors present 
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Subgroup 

B-progenitors decreased B-progenitors present 

Female Male Female Male 

Number 

of 

patients 

Median 

Age 

(range) 

%CD34 

(range) 

Number 

of 

patients 

Median 

Age 

(range) 

%CD34 

(range) 

Number 

of 

patients 

Median 

Age 

(range) 

%CD34 

(range) 

Number 

of 

patients 

Median 

Age 

(range) 

%CD34 

(range) 

5q- 6 61.5 (46-73) 2.60 (0.20-6.60) 0 NA NA 2 63.5 (58-69) 2.10 (1.30-2.90) 2 81.5 (76-87) 1.35 (0.40-2.30) 

CMML 8 75.0 (66-82) 1.01 (0.32-2.60) 25 78.0 (48-91) 1.20 (0.59-19.00) 0 NA NA 3 81.0 (50-82) 0.30 (0.07-0.80) 

MDSMPNU 7 76.0 (64-88) 1.89 (0.92-3.40) 9 77.0 (60-84) 1.90 (0.21-8.40) 2 68.0 (54-82) 0.58 (0.22-0.94) 3 77.0 (59-83) 2.50 (0.27-3.80) 

RAEB 46 74.5 (34-92) 12.00 (0.10-34.00) 63 72.0 (10-88) 9.00 (0.35-29.00) 3 63.0 (56-73) 0.81 (0.09-11.00) 15 71.0 (52-86) 6.20 (1.30-15.00) 

RAEBF 2 80.5 (78-83) 4.25 (2.00-6.50) 4 69.0 (57-89) 10.30 (6.50-19.00) 0 NA NA 0 NA NA 

RARS 24 78.5 (65-92) 1.65 (0.50-5.40) 30 82.0 (55-91) 1.50 (0.86-8.20) 18 74.0 (37-88) 1.60 (0.12-2.70) 34 74.5 (30-87) 1.40 (0.40-3.20) 

RARST 1 69.0 (NA) 0.30 3 69.0 (54-74) 0.91 (0.28-1.40) 3 76.0 (72-82) 2.40 (1.30-2.60) 2 72.0 (59-85) 1.29 (0.77-1.80) 

RCMD 54 78.0 (29-93) 1.60 (0.10-8.50) 128 76.0 (36-96) 2.00 (0.10-12.00) 20 76.5 (39-88) 1.95 (0.19-13.00) 38 77.5 (54-95) 1.70 (0.17-9.50) 

RCUD 1 63.0 (NA) 1.30 3 75.0 (71-82) 1.60 (0.69-1.70) 0 NA NA 0 NA NA 

    
 

        

All cases 149 76.0 (29-93) 2.40 (0.10-34.00) 265 76.0 (10-96) 2.30 (0.10-29.00) 48 73.5 (37-88) 1.50 (0.09-13.00) 97 75.0 (30-95) 1.70 (0.07-15.00) 

Table 3.20. Age and percentage of CD34 positive cells by MDS subgroup, sex, and B-progenitor status 



110 
 

3.15  Discussion 

3.15.1 MDS in the context of the investigation of cytopenia 

At the time of investigation in 2010, it was unclear how many patients, referred for the 

investigation of cytopenia, were returned with a diagnosis of MDS. The largest study was on 

an unselected cohort of elderly hospitalised patients in whom MDS was reported in 15% of 

cytopenic patients (Beloosesky et al., 2000). This prompted the approach adopted here to 

assess the features of a more diverse cohort of patients referred for the investigation of 

cytopenia. More recently, Kwok et al. reported that 8% of cases referred for the investigation 

of cytopenia were diagnosed with MDS (Kwok et al., 2015). Therefore, the finding that in a 

single calendar month, 15% of patients referred to HMDS were diagnosed with MDS was in 

keeping with previous reports. 

Specific guidelines regarding the referral of patients for the investigation of cytopenia do not 

exist, although there are British Society of Haematology MDS guidelines which state that 

MDS should be suspected in unexplained cytopenic patients (Killick et al., 2014). Therefore, 

although this figure of 15% appears to be low for a MDS diagnostic hit rate, the value in 

referring a sample for the investigation of cytopenia is not solely about the diagnosis of MDS. 

Indeed, in this study, 20% of referred patients had a non-MDS haematological malignancy. 

Furthermore, although the majority of referred patients had a non-diagnostic sample, this 

result in itself can be equally as informative as its diagnostic counterpart when considered as 

a component of an investigatory workup.    

However, it is the finding that a proportion of non-diagnostic, cytopenic cases (2 patients in 

this cohort) develop a myeloid malignancy that presents a challenge. Clinical monitoring of 

non-diagnostic, cytopenic patients could aid in the identification of those who are at risk of 

progression. The finding that, in 2014, 11 percent of patients diagnosed with MDS had been 

previously referred for bone marrow investigation gives credence to this approach. Indeed, 

this approach is recommended for those patients who are classified as ICUS and IDUS, into 

which many of these patients will undoubtedly fall (Valent et al., 2012). However, the 

progression rate of patients with ICUS has never been formally reported in a peer reviewed 

journal, only as a presentation at an international conference (Hanson et al., 2009). 

Clinical monitoring would, though, pose a challenge. 76 non-diagnostic patients were 

identified in January 2010 alone and, assuming the same monthly rate, would equate to 

nearly 1000 extra patients requiring clinical monitoring per annum. Furthermore, the duration 

of follow-up could be indefinite as, although the median duration between the non-diagnostic 

and the diagnostic marrow for all MDS subgroups was 19.8 months and the maximum 
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latency between samples varied from 26 to 109 months depending upon subgroup. A 

community monitoring based approach whereby patients could send biannual or yearly 

samples for full blood count analysis may be one feasible option. 

The actual reason for the differences in progression rate to, and the median and maximum 

latency between samples, in the different MDS subgroups is unclear. The aforementioned 

difficulty in the accurate diagnosis of MDS and inter-observer variability could result in an 

under diagnosis of MDS. It is, indeed, likely that the classical morphological findings of in 

RCMD are a relatively late-stage event in the natural history of MDS, following several 

genetic insults then development of cytopenia, before the advent of morphological dysplasia. 

Currently, the latency period post genetic insult in humans is unknown. In-house evidence 

has shown that a patient with a somatic mutation at MDS presentation had the same 

mutation over 6 years previously, implying that a second or multiple hits were involved in the 

transformation to MDS (Cargo et al., 2015). 

The term Clonal hematopoiesis of interdeterminate potential (CHIP) has been proposed to 

define patients with somatic mutation but no evidence of dysplasia, and these patients are 

reported to have a low rate of progression (0.5-1% per annum) (Steensma et al., 2015). 

However, mutations in genes associated with MDS can be found in 10% of American people 

over the age of 70 years old with no evidence of haematological malignancy or cancer 

(Jaiswal et al., 2014). In contrast, the overall MDS incidence rate for Americans has been 

reported as 3.3 per 100,000, rising to 20.0 per 100,000 in patients in the 70-79 age range 

(Rollison et al., 2008). Therefore, as CHIP is more common than MDS, this suggests a 

requirement for a specific combination of genetic and epigenetic events in the pathogenesis 

of MDS. 

It is clear that additional tools or screening tests could be useful adjuncts to genetic mutation 

studies and/or long-term clinical monitoring in cytopenic patients to identify those at risk of 

progression. Full blood count parameters may aid and it may be that the depth of cytopenia 

is important or that patients with mutlilineage cytopenia are more at risk of progression. 

Unfortunately, haematological parameters were unavailable on the majority of patients due 

to sole referral of a bone marrow from external sources. The department now recommends a 

peripheral blood sample to accompany any bone marrow sample referrals. This may help to 

clarify which patients are at risk of progression. The use of flow cytometric 

immunophenotyping may aid in a more accurate identification of patients with MDS or, 

alternatively, in identifying patients with cytopenia who may require closer monitoring. This 

approach in the use of flow cytometry in cytopenic patients and its potential utility will be the 

focus of the subsequent chapters of this thesis. 
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3.15.2 Biological and demographic features of MDS and Reactive 

patients 

When filtering cases for inclusion in the training set, the finding that 36 non-diagnostic 

patients (2.3%) progressed to either MDS or AML echoes the findings of 3.15.1 above. As 

does the finding that Reactive patients outnumbered MDS patients, with initial ratio being 

412 MDS patients (20.5%) and 1599 Reactive cases (79.5%). 

Epidemiological studies report that the incidence rate of MDS increases with age and that 

there is a higher incidence in males (Rollison et al., 2008; National Cancer Institute. SEER 

Cancer Statistics Review 1975-2012.; HMRN., 2016.). The finding of an skewed male-to-

female rate ratio in MDS is not unexpected as most haematological malignancies show this 

skew (HMRN., 2016.). The age of the MDS patients in this study was similar to that reported. 

The absence of younger patients indicates the rarity of patients under the age of 30 with this 

disorder. In contrast, those patients referred for the investigation of cytopenia who were non-

diagnostic were slightly younger than those with MDS. This was true even after the removal 

of a cohort of paediatric cases and remained true when gender was taken into account. 

Furthermore, there was no skew of the male-to-female rate ratio in the Reactive group. This 

implies that the increased incidence in males in MDS is not simply because more males are 

referred for the investigation of cytopenia. 

With respect to biological differences between the Reactive group and the MDS group, the 

MDS group showed a statistically increased percentage of CD34 positive progenitor cells. 

This was unsurprising given that this group contained RAEB patients, an MDS subgroup in 

which there are, by definition, increased myeloid progenitor cells. This increase was found 

when both male-to-male and female-to-female Reactive to MDS group comparisons were 

performed. This study further confirms the previously described tendency for MDS patients 

to have decreased B-progenitors (Sternberg et al., 2005). Decreased B-progenitors were not 

unique to the MDS group as they were found in some, but significantly fewer, patients in the 

Reactive category. 

For this study, the composition of the Reactive control group did not contain a small series of 

cytopenic cases. Rather, an unselected group of patients referred for investigation of 

cytopenia to a routine, diagnostic service was used. This, thereby, represented a real patient 

cohort. Furthermore, to determine whether there was a group composition effect, a 

comparison of the ACD and ITP subgroups within the Reactive group was performed. 

Although there were significant differences with respect to median age and sex ratio for 

these two subgroups, there was no overall difference for the percentage of CD34 positive 

cells or proportion of cases with B-progenitors. This finding implies that the subgroup 
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composition of the Reactive group may not play a critical role in any biological differences 

found between the Reactive group and the MDS group. 

As the Reactive group was found to have a lower percentage of CD34 positive cells and a 

lower proportion of cases with decreased B-progenitors, it was hypothesized that these 

attributes may be affected by the lower median age of this group. However, although the 

percentage of CD34 positive cells appeared to show a slight, progressive decrease between 

the ages of 40 and 90 in the Reactive group, the MDS group did not show this decrease. 

Within the Reactive group, there was a relationship between age and decreased B-

progenitors. Patients with decreased B-progenitors were older than patients with B-

progenitors present. This is consistent with the findings that age affects B-lymphopoiesis 

(Min et al., 2006; Guerrettaz et al., 2008; Kuranda et al., 2011). This finding was not 

replicated in the MDS group as there was no difference between the ages of MDS patients 

with decreased B-progenitors and those with B-progenitors present. This implies that the 

decreased B-progenitor phenomenon found in MDS patients may not be solely due to age-

related alterations, but may be a biological feature of the underlying disease whose 

mechanism is currently unknown. Furthermore, due to the differences in percentages of 

cases with B-progenitors present between MDS groups, it would be of interest to discover 

whether those patients with B-progenitors present have better clinical outcomes and whether 

the presence of B-progenitors indicates the retention of some normal haematopoiesis. 

Alternatively, due to high proportion of RAEB cases with a decrease in B-progenitors, it may 

be the case that a reduction in B-progenitors is associated with MDS progression.    

When assessing the significance of any decrease in B-progenitors, there is the caveat of the 

5% cut-off. From the HILIS database results used here, it was not possible to assess 

whether the percentage of B-progenitors is a continuous variable and/or whether the 5% cut-

off was optimal for this dataset. There may be notable biological differences between those 

patients with a percentage of B-progenitors of 4.9% and those with B-progenitors below the 

limit of detection, despite both being classified the same. In addition, as this 5% cut-off 

depends upon the presence of myeloid progenitors, it is entirely possible that two patients 

with the same number of absolute B-progenitors can be classified differently dependent 

upon the numbers of myeloid progenitors present.  

 In relation to this caveat, it was noted that, in the Reactive group, with an increasing 

percentage of CD34 positive progenitors there was an increased proportion of patients with 

B-progenitors present. This implies that, in non-diagnostic cytopenic patients, there was a 

concomitant increase in myelopoiesis and B-lymphopoiesis. This feature was not found in 
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the MDS group, in whom the proportion of patients with decreased B-progenitors showed no 

discernible trend with an increasing percentage of CD34 positive progenitors. 

Lastly, when examining the CD34 positive cells distribution for all subgroups of MDS, these 

were found not to show a normal distribution. This is unsurprising given that the RAEB cases 

with increased CD34 positive cell percentages would skew the distribution and the 

constitution of the distribution comprises of varying proportions of each MDS diagnostic 

subgroups. However, assessment of the histograms for this attribute also showed that there 

were no obvious breaks in the histogram distribution either. This is despite the use of 

myeloid progenitor percentages of 2%, and 5% and 10% in the IPSS-R and the WHO 

classification of MDS.  This would imply that there is no biological basis behind these cut-

offs.  

3.15.3 Building a logistic regression model 

As there were two classes, Reactive and MDS, and due to the continuous spectrum, non-

Gaussian distribution and the overlap between Reactive and MDS groups for the percentage 

of CD34 progenitors, it was thought that using a logistic regression model might work better 

than a simple scoring scheme for distinguishing these two classes. The presence or 

decrease in B-progenitors could be provided as a binary class input whilst, unlike other flow 

cytometry scoring schemes, there was the benefit of being able to use age and sex, 

especially as MDS patients were older with a skewed male-to-female ratio. There were 

further benefits to using a logistic regression model over conventional flow cytometry scoring 

scheme. Firstly, the generation of weights for attributes instead of arbitrary assignment of 

points. Secondly, an individual patient probability would be produced and although, class 

membership would be reported using a probability cut-off of 0.5, these probabilities would 

indicate the degree of confidence of class membership and could be examined to identify 

cases where the model may perform either well or poorly. 

The baseline accuracy for the training set was 0.7900 and was based on every case being 

classified into the majority class (also known as the Zero R classifier) which, in this case, 

was the Reactive group. The reason for this high figure was due to the class imbalance, with 

nearly four times as many Reactive cases as MDS cases. Although the logistic regression 

model improved on the baseline accuracy and the specificity was very high (0.9850), the 

sensitivity was poor (0.3883). The model showed good classification ability for RAEB and 

RAEB-F cases, but correctly predicted all other MDS subgroups less than 30% of the time. 

This was understandable due to 2 of the 4 attributes being CD34 positive cells and presence 

of B-progenitors. 
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Similar results were obtained for the test set. The model showed high specificity (0.9828) but 

low sensitivity (0.2109). Therefore, it would appear that this approach of using these four 

attributes as a method to accurately diagnose MDS is not a feasible option. The model may 

be improved by the addition of blood count parameters and use of depth of cytopenia, but 

these were unavailable on the majority of patients in the training set. Furthermore, despite a 

request to provide a peripheral blood sample with every referral, not every referral centre 

provides this. 

However, although this model may not have utility in a diagnostic setting, a simple model 

such as this may have a use in a triage approach for further clinical monitoring or more 

comprehensive diagnostic testing of patients. As the logistic regression model produces a 

probability for each patient, different cut-off probabilities for class membership can be 

applied. For example, if a probability cut-off of 0.1 was applied to the test set to denote MDS 

class membership, 85% of MDS cases would be correctly classified. However, 

approximately 50% of the Reactive cases would be misclassified as MDS. Initially, this 

appears to be a poor cut-off. Although, if the 15% of misclassified MDS cases could be 

identified as MDS by morphological means, or by the additional of another simple attribute 

into the model, then the 50% of Reactive cases who were classified as Reactive could be 

excluded from further clinical monitoring or diagnostic testing.       

This approach can be demonstrated on the cohort of non-diagnostic cytopenic cases who 

developed a myeloid malignancy. At a proposed MDS cut-off probability of 0.1, 51 out of 62 

of these non-diagnostic cases were classified as MDS (82.30%). Therefore, the majority of 

these patients would have been further investigated. The challenge is to identify attributes 

which could be included in a simple model to accurately identify those 15-20% of MDS 

patients, or non-diagnostic patients who were at risk of progression, who were not classified 

as MDS by this approach   

In summary, although a classification model based on simple parameters such as features of 

CD34 progenitor cells and age and gender works well for the higher grade subgroups, the 

biological features of the lower grade MDS groups such as RARS and RCMD overlap with 

Reactive cases to such an extent that a simple model is insufficient to identify these cases. 

Therefore, any flow cytometry classification approach will have to identify alternative 

attributes to aid in the accurate classification of these cases. 
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4 Immunophenotypic panel development for the identification 

MDS patients 

4.1 Rationale and Overview 

Initial flow cytometry immunophenotypic studies used approaches based primarily upon 

aberrant features of CD34 positive cells and, to a lesser, extent, granulocytes and 

monocytes (Stetler-Stevenson et al., 2001; Wells et al., 2003; Ogata et al., 2006). Further 

studies have concentrated on the immunophenotypic features of specific populations, for 

example, erythroid dysplasia or of monocytes (Malcovati et al., 2005; Xu et al., 2005; Della 

Porta et al., 2006). An extended analysis of the CD34+ progenitor populations has also been 

performed (Matarraz et al., 2008). 

However, at the time of experimentation, there was no reported approach looking at 

antigenic differences between MDS and normal patients using a systematic approach from 

stem cells through to the differentiated myeloid cells and it was unknown whether 

aberrancies might be present at all stages of differentiation. 

The advent of routine 8-colour flow cytometry offered the potential of tracking phenotypic 

differentiation pathways from stem cells through erythroid, granulocytic and monocytic 

developmental pathways in both normal and MDS patients. 

The aims of the work presented in this chapter were twofold: Firstly, to verify gating 

strategies for less commonly reported or less well-defined haematopoietic populations. 

Secondly, to analyse numerical and immunophenotypic attributes in MDS and normal 

individuals to identify features for inclusion in a smaller antibody panel which would be 

subsequently evaluated on a larger cohort of MDS and non-malignant cytopenic patients. 

For the purposes of this chapter, it must be noted that, when referring to immunophenotypic 

studies, the use of the term CD34 expressing or CD34+ cells refers solely to the 

myeloid/stem cell CD34 compartment and does not include the CD34+ B-lymphoid 

progenitors, unless stated otherwise.   
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4.2 Patient cohort for panel testing 

32 patients overall were selected for evaluation: 8 normal (lymphoma staging) patients and 

24 patients from across the WHO diagnostic spectrum. The patient characteristics are 

shown in Table 4.1. 

Group Subgroup 
Number of 

Patients 

Male:Female 

Ratio 

Median Age 

(years)(range) 

Normal Lymphoma Staging 8 5:3 52.5 (25-75) 

  5q- 1 0:1 70 

  CMML 3 1:2 78.0 (71-89) 

MDS MDS/MPN-U 3 2:1 84.0 (71-89) 

  RARS-T 1 1:0 77 

  RCMD 10 7:3 69.0 (54-82) 

  RAEB 6 3:3 75.0 (53-89) 

All MDS N/A 24 14:10 74.0 (53-89) 

Table 4.1. Patient demographics for the MDS and Normal control groups  

4.3 Gating strategies for haematopoietic populations infrequently 

evaluated in MDS 

Immunophenotypic gating strategies for most of the major bone marrow haematopoietic 

populations have previously been published and the populations assessed for differences 

between MDS and control samples. These include assessment of: CD34+ progenitors; B-

lymphoid progenitors, granulocytes, monocytes, erythroid cells, and platelets (Stetler-

Stevenson et al., 2001; Wells et al., 2003; Sternberg et al., 2005; Xu et al., 2005; Ogata et 

al., 2006; Della Porta et al., 2006; Matarraz et al., 2008). However, some haematopoietic 

populations had not previously been reported as assessed in MDS and confirmation that 

these populations existed in MDS patients or that the immunophenotypic gating strategy was 

truly identifying the purported population was required. 
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4.3.1 Validation and comparison of CD34+CD38- and CD34+CD38+ 

progenitors 

It is now well established that both normal and MDS haematopoietic stem cells reside in the 

CD34+CD38- compartment (Doulatov et al., 2010; Woll et al., 2014; Mian et al., 2015). 

However, although the expression of CD38 has been reported to be downregulated in MDS, 

it is unknown whether the CD34+CD38- population differs immunophenotypically between 

normal and MDS patients (Goardon et al., 2009). To confirm and evaluate phenotypic 

differences CD34+CD38- compartment between MDS and normal, an immunophenotypic 

analysis of normal CD34+CD38- and CD34+CD38+ populations was performed to determine 

whether there were immunophenotypic differences between the two. Statistical analysis of 

these two populations can be seen in Table 4.2 whilst box and whisker plots can be seen in 

Figure 4.1. 

 CD34
+
CD38

- MFI  CD34
+
CD38

+ MFI 

P value 

Bonferroni 

correction Antigen Min Max Median  Min Max Median 

CD34 1159 10766 5186  802 7414 3640 0.083122937 1 

CD117 3597 8325 5443  1948 8306 5906 0.792895503 1 

HLA-DR 766 3386 1946  2184 9691 5256 0.002761604 0.055232 

CD45 1165 2039 1433  907 1386 1175 0.003849924 0.076998 

CD13 1585 7560 2994  340 2425 1129 0.001947528 0.038951 

CD71 550 1483 831.5  1047 4817 2324 0.010081694 0.201634 

CD105 438 1048 694  533 1126 815.5 0.636502487 1 

CD95 368 3270 690  775 1287 968 0.029662259 0.593245 

CD33 121 1153 671  43 900 577 0.701478109 1 

CD45RO 76 1923 1232  43 1005 451 0.052029618 1 

CD43 2366 14949 8792  7762 27661 21962 0.040568856 0.811377 

CD133 888 3589 1107  207 781 336 0.000939106 0.018782 

CD62L 278 7931 1831  214 2625 689 0.372029339 1 

CD123 157 1378 869.5  86 1404 461 0.066081916 1 

CD59 6184 18635 13268  4939 15994 10114 0.201336485 1 

CD84 389 1336 545  2363 5135 3072 0.002165029 0.043301 

CD18 363 914 586  385 969 599 0.792895503 1 

CD49d 810 1287 930  1847 2754 2466 0.002165029 0.043301 

CD11a 135 1043 710  191 1323 559 0.798297847 1 

CD81 3286 4524 4359  4622 7215 6202 0.01519361 0.303872 

Table 4.2. Phenotypic comparison of the antigenic differences between the 
CD34+CD38- and CD34+CD38+ cells in normal individuals. 

Antigens showing significantly different expression between groups by both the 
Wilcoxon signed rank test and the Bonferroni correction are shown in red, whilst 
those significant by the Wilcoxon signed rank alone are shown in blue.       
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Figure 4.1. Box and whisker showing differential antigen expression for the CD34+CD38- and the CD34+CD38+ cells for the 8 normal 
patients.  

For graphical visualisation on the same scale, standardisation of MFI expression for all antigens was performed 
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20 antigens were assessed for differences in the median fluorescence intensity (MFI). 

Although 10 antigens were initially noted to be significantly different, following Bonferroni 

correction to control the familywise error rate, 4 antigens, CD13, CD49d, CD84, and CD133, 

still showed significantly different expression between groups. A phenotypic signature of 

strong expression of CD133 and weak CD49d and CD84 on the CD34+CD38- cells was 

consistent with phenotypic features previously reported on stem cells confirming that the 

gating strategy identified a CD34+CD38- stem cell enriched population and the CD34+CD38+ 

committed myeloid population (Yin et al., 1997; Zaiss et al., 2003). Surprisingly, the stem cell 

marker CD90 did not appear to be expressed by the CD34+CD38- population. In this panel, 

the CD90 antibody was conjugated to FITC, which has weak fluorescent, and CD90 

expression may have been weak and masked by background noise. 

4.3.2 CD34-CD117+ Myeloid progenitors 

There have been few reports of the evaluation of this population in MDS, or myeloid 

malignancy, with two studies by Matarraz et al. mentioning the use of HLA-DR and CD45 to 

identify erythroid, granulocytic and monocytic differentiation pathways (Matarraz et al., 2010; 

Matarraz et al., 2015). CD71, CD64, and CD24 were used to validate the gating strategy for 

the proposed erythroid, monocytic, and granulocytic subpopulations as shown in Figure 4.2 

and Figure 4.3 .   

 

Figure 4.2. Box and whisker plots showing CD71 antigen expression for the CD34-

CD117+ Erythroid, Granulocytic, and Monocytic populations for the 8 normal control 
patients. 
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Figure 4.3. Box and whisker plots showing CD64 and CD24 antigen expression for the 
CD34-CD117+ Erythroid, Granulocytic, and Monocytic populations for the 8 normal 
control patients. 

 

CD71 shows the highest expression in the proposed erythroid differentiating compartment 

and is reported as showing restricted expression by erythroid precursors (Marsee et al., 

2010). CD64 is expressed by both granulocytes and monocytes although monocytic 

progenitors express CD64 at a higher level (Matarraz et al., 2015). CD24 is reportedly 
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expressed by granulocytes from the myelocyte stage of differentiation, but not on monocytic 

cells. The differential expression of these 3 antigens is shown in Figure 4.3 (Elghetany and 

Patel, 2002; Elghetany, 2002). 

4.3.3 Other haematopoietic populations 

Although the use of CD64 alone to identify monocytic cells is not the approach outlined for 

the standardisation of immunophenotyping of peripheral blood monocytes, in bone marrow 

CD64 is lineage specific for granulo-monocytic cells (Olweus et al., 1995; Maecker et al., 

2012). Furthermore, the expression of both HLA-DR and of the monocyte specific antigen 

CD300e confirmed the monocytic lineage of these cells (Aguilar et al., 2004) 

The identification of mast cells by the strong expression of CD117 has previously been 

reported, and is used as a gating strategy in the immunophenotypic analysis of mast cells in 

systemic mastocytosis CD117 (Orfao et al., 1996; Escribano et al., 2004). Plasmacytoid 

dendritic cells (pDCs) were identifying by strong expression of CD123 and HLA-DR as 

previously reported (McKenna et al., 2005). Basophils were identified by two different 

strategies: The first strategy was by the use of strong expression of CD203c (Buhring et al., 

1999). An alternative strategy for identifying basophils was assessed using strong 

expression of CD123 and HLA-DR negativity (Han et al., 2008).  

4.4 Identification of numerical population differences between the 

MDS and normal control groups 

In total, 18 haematopoietic populations or sub-populations were assessed for percentage 

differences between the MDS and the normal group (Table 4.3). In the MDS group, a 

number of cases demonstrated an insufficient number of events (50) for population 

percentages to be calculated and were reported as below the limit of detection. This included 

a RAEB patient with CD34- myeloid progenitors. No control group cases showed this feature. 

Although 11 of the 18 populations showed a significant differences between the MDS and 

normal control group including increased CD34+ (myeloid) progenitors, subpopulations 

differences within the CD34-CD117+ population, percentage of plasmacytoid dendritic cells, 

and monocytic subpopulations, following Bonferroni correction for multiple comparison only 4 

populations retained significance. These were the percentage of B-progenitors of CD34+ and 

of CD45+ cells, the percentage of CD34-CD117+ cells, and the percentage of monocytes 

which express CD300e.  
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 MDS Normal  

Population Min% Max% Median% Min% Max% Median% P value 
Bonferroni 

correction 

CD34
+
 Progenitors N/A 31.975 2.600 0.664 3.005 1.39 0.2863 1.0000 

CD34
+
 B-lymphoid N/A 0.651 0.003 0.018 0.750 0.26 0.0003 0.0054 

CD34
+
 myeloid cells 0.377 31.648 2.275 0.472 1.700 0.92 0.0280 0.5040 

B-lymphoid 

progenitors of 

CD34
+
 cells 

N/A 27.242 0.769 2.002 40.146 24.04 0.0001 0.0018 

CD34
-
CD117

+ 1.321 18.660 7.118 2.089 5.083 2.91 0.0025 0.0450 

CD117 Erythroid 1.366 60.131 13.491 21.802 45.589 39.50 0.0250 0.4500 

CD117 Myeloid 27.624 98.633 73.169 43.621 71.484 52.32 0.0387 0.6966 

CD117 Monocytic N/A 47.119 5.997 4.874 11.616 9.87 0.1704 1.0000 

Granulocytes 16.408 96.452 70.208 49.107 95.676 75.11 0.3064 1.0000 

CD123Basophils 0.0002 3.502 0.031 0.028 0.211 0.12 0.2863 1.0000 

CD203cBasophils 0.021 3.082 0.180 0.118 0.454 0.29 0.4727 1.0000 

pDC’s 0.001 4.542 0.058 0.275 0.745 0.33 0.0123 0.2214 

CD117
+
 Mast cells N/A 0.329 0.017 0.004 0.10 0.016 0.9151 1.0000 

CD64
+
 Monocytes  N/A 75.583 4.836 4.188 9.518 5.01 0.9134 1.0000 

CD14
+
 of CD64

+
 

Monocytes 
N/A 91.678 52.399 63.982 78.357 71.56 0.0096 0.1728 

CD300e
+
 of CD64

+
 

Monocytes 
N/A 71.955 16.578 29.487 45.827 37.89 0.0016 0.0288 

CD300e
+
 of CD14

+
 

Monocytes 
N/A  78.487 40.288 44.702 61.067 51.25 0.0348 0.6264 

CD14
+
 Monocytes  N/A 16.480 2.472 3.000 6.559 3.67 0.1027 1.0000 

CD300e
+
 

Monocytes  
N/A 10.285 0.639 1.405 2.932 1.95 0.0280 0.5040 

Table 4.3. Percentage of haematopoietic populations and sub-populations in the bone 
marrow of MDS and normal control groups  

NA = below the limit of detection. All percentages are reported as a percentage of 
CD45+ cells unless otherwise stated. Antigens showing significantly different 
expression between groups by both the Wilcoxon signed rank test and the Bonferroni 
corrected p value are shown in red, whilst those significant by the Wilcoxon signed 
rank alone are shown in blue.       
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A numerical statistical comparison between the CD38 compartments of the CD34 expressing 

cells between the MDS and the normal control group was not performed. Although all 

patients within the control group had an identifiable CD34+CD38- subpopulation, 10 of the 

MDS patients were unsuitable for assessment of this population due to either (a) an 

insufficient number of events in the CD34+CD38- compartment (n=2) or (b) a downregulated, 

heterogeneous pattern of CD38 expression which rendered identification of an obvious 

CD38 cut-off impossible (n=8) as shown in Figure 4.4.  

  

 

Figure 4.4. Normal and abnormal 
patterns of CD38 expression of CD34+ 
cells 

A. shows normal CD38 expression on 

CD34+ cells, which are coloured red. 

B. shows a lack of a CD38- population. 

C. shows downregulated CD38 

expression with no clear CD38 cut-off   

 

 

 

 

C 

A B 
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These 10 patients and the RAEB case with no CD34+ myeloid progenitors were removed for 

statistical analysis of the CD38 populations within the CD34+ cells and for this reduced 

cohort, there was no significant difference for the percentage of CD34+CD38- cells between 

the MDS group and the normal group (p=0.2381,Wilcoxon signed ranks). 

4.5 Do the MDS patients with CD38 abnormalities on the CD34+ 

cells have a stem cell or myeloid progenitor cell signature? 

Although the 10 MDS patients with indiscriminate CD38 expression on their CD34+ cells 

were removed from a numerical statistical comparison, it was hypothesized that comparing 

the phenotype of these cells against normal CD34+CD38- and CD34+CD38+ populations 

would give an insight into whether these cells had a immunophenotypic signature closer to 

stem cells or to myeloid progenitors. 

The earlier confirmation of immunophenotypic MFI differences between the normal 

CD34+CD38- and CD34+CD38+ populations would allow the use of unsupervised hierarchical 

clustering to assess immunophenotypic signatures of the 2 normal CD34+ populations and 

the CD34+ populations from MDS patients in a systematic fashion. This approach would 

determine whether either individual patients or the group of MDS patients as a whole 

showed immunophenotypic features more in keeping with stem cells or myeloid progenitors. 

The results of this unsupervised clustering approach showed that the CD34+ cells in the 

majority of MDS patients demonstrated a unique signature which did not correspond to the 

immunophenotype of either the CD34+CD38- and CD34+CD38+ populations (Figure 4.5). 8 

MDS patients formed a discrete cluster and did not cluster with either of the normal the 

CD34+CD38- and CD34+CD38+ populations. The other 2 MDS patients formed a cluster with 

each other within 2 CD34+CD38- populations and 1 CD34+CD38+ population.  

 



126 
 

  

Figure 4.5. Unsupervised hierarchical clustering of MDS cases with indiscriminate 
CD38 expression and normal CD34+CD38- and CD34+CD38+ cells 

The rows represent immunophenotypic expression patterns using the MFI whilst each 

column represents each individual MDS patient or specified control population.  Red 

represents expression greater than the mean whilst blue represents expression lower 

than the mean
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4.6 Identification of immunophenotypic population differences 

between the MDS and normal control groups 

4.6.1 Identification of the coefficient of variation as a feature of interest 

The coefficient of variation (CV) was first noted as a feature of interest in MDS patients when 

evaluating CD13 expression on CD34+ cells as shown in Figure 4.6. 

  

Figure 4.6. An example of a lower CD13 CV on CD34+ cells in an MDS patient in 
comparison to a normal control patient 

The perturbed CV values for CD13 expression on CD34+ cells was a consistent finding 

across MDS patients and prompted further investigation of other antigens. It was noted that 

this finding could be extended to other antigens, most notably CD117 and CD123 on the 

CD34+ cells and CD64 on the CD34-CD117+ populations (Figure 4.7). Therefore, for 

populations where there were sufficient events for immunophenotypic studies, both the MFI 

and the CV were recorded.  

Normal MDS 
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Figure 4.7. CV versus Median MFI for CD13, CD117, and CD123 on CD34+ cells and for CD64 on CD34-CD117+ cells. 

For all antigens, the majority of MDS patients have lower CV values than the control group, irrespective of the Median MFI.    
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4.6.2 Immunophenotypic MFI and CV differences between the MDS and 

the normal control group  

12 main haematopoietic populations were assessed for the presence of immunophenoptypic 

differences between the MDS group and the normal control group. These were: CD34+ cells, 

of which CD34+CD38+ and CD34+CD38- cells were also assessed; CD34-CD117+ cells of 

which the eythroid, granulocytic, and monocytic differentiating compartments were also 

assessed; granulocytes; and CD64+ monocytes of which the CD14- and CD14+, and the 

CD300e+ populations were also assessed. These latter monocytic populations were 

assessed for the backbone antigens only. For the other populations (mast cells, basophils, 

and pDC’s), although sufficient cells were present in the majority of cases to quantify the 

populations, there were usually insufficient events (<300) for immunophenotypic studies and 

were excluded from further analysis.  

In total 388 immunophenotypic attributes (MFI and CV) were recorded and compared for 

statistical differences between the MDS group and the normal control group. Using the 

Wilcoxon signed rank test to compare attributes between groups resulted in 74 attributes 

showing a significantly difference at the p<0.05 level. MFI differences accounted for 24 

significant differences whilst 50 were CV differences. The statistical analysis for the MFI and 

CV of expressed antigens for all populations are shown in the appendices as Appendix 

Tables 4.1 to 4.18.  

However, due to the number of attributes assessed and the multiple comparison problem, it 

was assumed that there would be numerous false positives (type I error) amongst these 74 

attributes. The Bonferroni correction reduces the number of type I errors but, in doing so, 

increases the number of false negatives (type II error). As the primary purpose of this 

chapter was an exploratory data approach to identify immunophenotypic features which 

could be applied to a larger cohort, the Bonferroni correction was deemed too conservative 

and an alternative approach was sought. 

Therefore, a false discovery rate (FDR) strategy was implemented using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). This method reports an adjusted FDR p-

value based on the reported p values and the number and rank of comparisons performed. 

For example, for the data in this chapter, the adjusted FDR p values were calculated on the 

reported Wilcoxon signed ranks p values on the basis of 388 comparisons. An FDR is then 

chosen and this equals the fraction of significant tests which are false positives. For example 

an FDR of 0.5 would result in 50% of the attributes with a value of <0.5 being false positives. 

As this was an exploratory approach which was to be combined with pre-existing biological 
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knowledge, an arbitrary FDR of 0.2 (20%) was chosen, meaning that 20% of attributes with 

an adjusted FDR p value of <0.2 would be false positives.  

45 attributes were identified from this dataset as having an FDR adjusted p value of <0.2. 

Differences in the CV between the MDS and normal control group accounted for 30 

attributes, and the remaining 15 were MFI differences (Table 4.4.below). Although 45 

attributes were identified, due to redundancy and expression by multiple populations, only 22 

individual antigens were identified, of which 14 had more than one entry on the list. These 

were: CD13, CD33, CD36, CD38, CD49d, CD59, CD62L, CD64, CD71, CD81, CD84, 

CD117, CD123, and CD300e. These 14 antigens represented a restricted set of attractive 

candidates for further evaluation on a larger cohort of cytopenic cases. 

4.6.3 The frequency of lymphoid expression on progenitor cells in MDS 

The presence of lineage infidelity expression of the lymphoid antigens CD5, CD7, CD19, and 

CD56 on myeloid cells is a well-reported phenomenon in MDS. In this cohort, no expression 

of CD5, CD7, CD19, or CD56 was found on the CD34 expressing cells of any of the normal 

cases. In the MDS group, 11 cases (46%) demonstrated expression by >20% of CD34+ cells 

of at least one of CD5, CD7, or CD56. 7 cases showed CD7 expression of which 3 

demonstrated concurrent CD5 expression. 2 MDS cases demonstrated sole expression of 

CD5. The remaining 2 cases showed sole CD56 expression. No case showed CD19 

expression. 

4.6.4 Visual assessment of the CD11b/CD13 and CD13/CD16 

differentiation patterns 

Stetler-Stevenson et al. reported that abnormalities in the CD13/CD16 and CD11b/CD13 

differentiation patterns have been reported as occurring frequently in MDS patients and 

occur in 70% and 78% of MDS patients, respectively (Stetler-Stevenson et al., 2001). None 

of the normal group displayed an abnormal pattern, whilst the frequency of these 

abnormalities in the MDS cohort was 37.5% for the CD11b/CD16 abnormality and 29% for 

the CD13/CD16 abnormality, which was more in keeping with recently reported figures of 

34.5% and 31%, respectively (Chung et al., 2012) Seven MDS cases demonstrated both an 

abnormal CD11b/CD16 and an abnormal CD13/CD16 pathway and two cases solely 

demonstrated an abnormal CD11b/CD16 pathway. No case demonstrated a sole 

CD13/CD16 pathway abnormality which implies that CD16 is the critical abnormality in these 

pathways. Example images showing normal and abnormal differentiation patterns are shown 

in Figure 4.8 below.  
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Population Attribute Wilcoxon p value FDR p value 

CD117Erythroid CD105CV 0.000195751 0.057 

CD117Erythroid CD59CV 0.000563443 0.057 

CD117Erythroid CD49dCV 0.00049806 0.057 

CD117Erythroid CD81CV 0.000653838 0.057 

MatureGrans CD81CV 0.001021418 0.057 

CD117Gran CD71Median 0.001017236 0.057 

CD117Total CD64CV 0.001017236 0.057 

Monocytic CD14posCD300eCV 0.001244427 0.06 

CD117Total CD13CV 0.001604115 0.069 

MatureGrans CD59CV 0.00203891 0.072 

Monocytic TotalCD64CD300eCV 0.002486335 0.072 

CD34Total CD13Median 0.001985374 0.072 

CD34Total CD123CV 0.00228507 0.072 

CD34posCD38pos CD13Median 0.002651809 0.072 

CD34posCD38pos CD33CV 0.002801666 0.072 

CD34posCD38neg CD49dMedian 0.004334354 0.105 

CD117Total CD62LCV 0.005701074 0.123 

CD34Total CD13CV 0.005496475 0.123 

MatureGrans CD43CV 0.006528915 0.127 

CD34Total CD84CV 0.006813056 0.127 

CD34posCD38pos CD123CV 0.007283437 0.127 

CD34posCD38pos CD18CV 0.008188098 0.127 

Monocytic CD300eposCD38CV 0.008820854 0.127 

CD34Total CD117Median 0.007228943 0.127 

CD34posCD38pos CD33Median 0.008628478 0.127 

MatureGrans CD81Median 0.008144547 0.127 

CD117Monocytic CD95Median 0.007834104 0.127 

CD34Total CD71CV 0.00943655 0.129 

CD117Total CD71Median 0.009614191 0.129 

CD117Erythroid CD36CV 0.010061215 0.13 

CD117Total CD84CV 0.011643996 0.143 

CD34posCD38pos CD123Median 0.011787107 0.143 

Monocytic TotalCD64CD14MFI 0.012226783 0.144 

Monocytic CD14negCD38CV 0.013002184 0.148 

CD34posCD38pos CD45RACV 0.013774032 0.148 

MatureGrans CD33Median 0.013443888 0.148 

CD117Total CD15CV 0.014218423 0.149 

CD34Total CD62LCV 0.015724794 0.153 

CD34Total CD33Median 0.015762456 0.153 

Monocytic CD300eposCD300eMFI 0.015724794 0.153 

CD117Total CD45CV 0.017701283 0.164 

CD117Total CD36Median 0.017794849 0.164 

CD117Total CD33CV 0.020385259 0.18 

MatureGrans CD64CV 0.019896782 0.18 

Table 4.4. The immunophenotypic attributes with an FDR adjusted p value of <0.2. 

45 attributes have a Wilcoxon signed rank p value <0.05, denoting a significant 

difference between the normal control group and the MDS group, and have an FDR p 

value of <0.2. The attribute are ranked from top to bottom on the basis of the FDR p 

value. The haematopoietic population group is also given as it the original Wilcoxon 

signed ranks p value. 
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Figure 4.8. Examples of normal and abnormal granulocyte CD13/CD16 and 
CD11b/CD16 differentiation patterns 

The top two plots show normal granulocyte CD13/CD16 and CD11b/CD16 patterns 

with characteristic visual differentiation patterns. The bottom two plots are from an 

MDS patient with abnormal patterns.  

 

 

 

 

 

Normal Normal 

Abnormal Abnormal 
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4.7 Discussion 

In this chapter, the numerical and immunophenotypic properties of different haematological 

populations of a cohort of MDS patients were compared to a normal control group in an 

attempt to identify a series of attributes which might best discriminate MDS from other, 

Reactive cytopenic conditions. Two methods for correcting for multiple comparisons 

(Bonferroni and the Benjamini-Hochberg false discovery rate) were employed to identify 

those attributes which could be employed in a smaller diagnostic panel. 

4.7.1 Numerical differences 

Unsurprisingly, given the number of populations evaluated, there were initial significant 

differences between the MDS and the normal control group, some of which (differences in 

CD34+ B-lymphoid and myeloid populations, increases in CD34-CD117+ cells, and a shift 

towards undifferentiated monocytes) are present in ELN guidelines (Westers et al., 2012). 

Following the Bonferroni correction, this number understandably decreased due to the 

conservative nature of this correction method. 

The decrease in B-progenitors in MDS was noted again as an important feature and this has 

been discussed in the previous results chapter. This decrease is well reported and forms a 

component of guidelines and scoring schemes, with a cut-off of <5% of CD34+ cells used in 

the FCM scoring scheme (Sternberg et al., 2005; Della Porta et al., 2012; Westers et al., 

2012). However, the discovery that B-progenitors were below the limit of detection in 20 out 

of 24 patients in the MDS group was unexpected and this absence, as opposed to a general 

decrease, was not a feature of the normal control group. Three out of 4 of the remaining 

MDS cases had detectable B-progenitors but these were below the 5% cut-off.  Therefore a 

reduction from the oft-employed 5% cut-off may help distinguish additional cases of MDS 

from cytopenic cases. Whether those MDS cases with detectable B-progenitors, albeit below 

5%, represent a different biological or prognostic group than those with B-progenitors below 

the limit of detection is unknown, and would require clinical monitoring studies or correlation 

with any cytogenetic abnormalities for further elucidation. 

An increase in the CD34-CD117+ population in MDS patients, as noted in this chapter, has 

been previously reported by Matarraz et al., but this population does not form part of scoring 

schemes or guidelines (Matarraz et al., 2010). From a diagnostic perspective, the increase in 

the CD34-CD117+ population offers a reproducible MDS abnormality to monitor. 

Furthermore, subpopulation analysis of this CD34-CD117+ population hinted at an increased 

granulocytic and decreased erythroid compartment with this population in MDS patients 

which should be evaluated on a larger cohort. As this population is not found in peripheral 
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blood, the different percentage composition within the sub-compartments would be useful as 

this population would be independent of any blood-dilution of the bone marrow aspirate. 

Despite the inclusion of 3 CMML cases within the MDS group, there was no difference 

between the overall percentage of monocytes between the MDS group and the normal 

control group. However, the distibution of subsets within this population with respect to the 

proportions expressing CD300e did differ and indicated a maturation shift towards less 

differentiated forms in the MDS group. A maturation shift in the monocytes is included as a 

feature for MDS flow cytometric assessment in the ELN guidelines (Westers et al., 2012). 

This shift has also been reported as a differentiating feature between CMML  and acute 

monblastic and monocytic leukaemia (Matarraz et al., 2015). Furthermore, as CD300e is 

expressed by circulating monocytes, the presence of a shift in maturation stages offers a 

potential target as an aid to MDS diagnosis by the use of peripheral blood monocytes. 

Indeed, an approach using CD14 and CD16 expression on peripheral blood monocytes has 

already been adopted for helping to distinguish CMML from a reactive monocytosis 

(Selimoglu-Buet et al., 2015).  

4.7.2 Immunophenotypic differences 

Perhaps the most surprising feature of these studies was the more frequent finding that the 

CV of both common and lineage specific antigens was perturbed across all stages of 

differentiation. Furthermore, this appeared to be independent of the percentage of cells and 

of antigenic MFI with CV differences noted for population specific antigens when there was 

no difference for the MFI e.g. CD105 CV and MFI on CD117+ erythroid cells. The use of 

population percentages and the MFI to report antigenic under- and over-expression are both 

widely reported in MDS, and differences in these parameters between MDS and normal 

controls have been demonstrated here. However, the potential benefit of using the CV to aid 

in the discrimination of MDS from normal was, at this time point, unreported with no studies 

reported which have evaluated the utility of this approach. A recent publication regarding the 

use of the CV when assessing flow cytometric erythroid dysplasia may potentially represent 

a change in practice (Mathis et al., 2013). 

The underlying biological basis of this change in CV is unknown. The CV represents the 

relative variability within a population and any change may represent an increase or 

decrease in minor subpopulations within the population of interest. For example, this can be 

seen in the normal control group when the CD34-CD117+ compartment is further broken 

down into the erythroid, granulocytic, and monocytic sub-compartments, each with different 

levels of expression of antigens. Therefore, a relative increase in one of these 

subpopulations at the expense of another would result in a change in overall antigen 
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expression which may cause alterations in the CV. Indeed, this hypothesis may be 

broadened to other haematopoietic populations as haematopoiesis is a dynamic process 

with changes in protein (antigen) expression in response to stimuli. A more comprehensive 

immunophenotypic evaluation of the generic haematopoietic groups may reveal further 

immunophenotypic subpopulations with distinct expression profiles. This may help to identify 

in which subpopulations these potential increases or decreases may reside. 

An alternatively explanation for the perturbed CV may be that, instead of representing 

expansion or contraction of subpopulations, a neoplastic cell may express an antigen at an 

inappropriate level. Should a cell show inappropriate antigen expression which is close to 

the mean of normal expression, this would also result in a reduced CV in comparison to 

normal, despite a normal MFI. Evidence for an inappropriate level of antigen expression in 

MDS was highlighted by those cases of MDS with indiscriminate CD38 expression on the 

CD34+ cells. 8 out of 10 of these cases showed a distinct immunophenotypic profile by 

hierarchical clustering which corresponded to neither the CD38+ nor the CD38- sub-

compartment.       

4.7.3 Panel design for further testing 

A primary aim of this chapter was to identify numerical and phenotypic attributes for inclusion 

in an antibody panel for further evaluation on cytopenic patients. Therefore, the challenge 

was to design a small panel which could distil the numerical and phenotypic aberrancies 

discovered from this MDS cohort into a reduced panel which could be simple enough to be 

implemented in routine practice without recourse to a lengthy analytical process and further 

tested on a series of MDS and non-malignant cytopenic cases.  

In this study cohort, the comparison of phenotypic features has shown 74 significant 

differences at the p<0.05 level. One reason for this high number is that assessment of the 

CV and MFI, compared to MFI, alone doubles the available data for each antigen. Indeed, 

24 of the 74 differences were MFI differences and 50 were CV differences. This number of 

differences highlights multiple issues. Firstly, there would be an issue when attempting to 

incorporate these features in, or building upon, traditional points based MDS diagnostic 

scoring schemes and classification schemes using more complex data handling features 

would be required. Secondly, the reality that 74 significant differences were found highlights 

the challenge of evaluating statistical differences when assessing a large number of 

attributes. This encapsulates the so called multiple comparisons problem. 

To overcome the multiple comparison problem and aid in the selection of antigens for a 

smaller panel, a false discovery rate (FDR) strategy was implemented. As there is an 

immense number of potential antibody combinations for further testing, an approach 
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identifying antigens in whom the FDR was <0.2, combined with pre-existing knowledge of 

MDS biology was adopted. 

Due to the number of immunophenotypic attributes tested, even the use of an FDR approach 

resulted in 45 attributes of potential interest, although this represented only 22 different 

antibodies. Specific backbone markers were required for population identification (CD45, 

CD34, CD19, HLA-DR, and CD38), which were included irrespective of any significant 

difference. CD64, CD117 and CD123 were identified more than once by the FDR approach 

and could be used for haematopoietic population identification. The myeloid antigen CD13 

warranted inclusion due to its perturbed CV properties on the CD34+ and CD34-CD117+ 

populations. Finally, although the CD16MFI on granulocytes missed inclusion in FDR top 

ranked list by virtue of having adjusted FDR p value of 0.0206 (the Wilcoxon signed rank p 

value was 0.025), this was included as it could be combined in the panel with CD13 and 

thereby would allow potential visual assessment of the CD3/CD16 granulocytic pathway. 

The selection of these antigens in these combinations allowed the panel to be distilled down 

to a 2 tube panel (Table 2.6) which would be manageable in a routine laboratory setting, 

would only require a relatively small number of initial cells ( 2 million in total) and would allow 

a relatively large amount of population and phenotypic data to be collected on a large series 

of MDS and non-malignant cytopenic patients. However, even with a 2 tube panel, the 

potentially large number of attributes available for assessment would require analytical 

methods which could process the complex immunophenotypic data which would be 

generated. 
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5 Classification studies in the identification of MDS from other 

non-diagnostic cytopenic cases 

5.1 Rationale and introduction 

The previous results chapters have shown both numerical population differences between 

MDS and cytopenic patients, and numerical and phenotypic differences between normal 

patients and MDS. A flow cytometry panel consisting of two tubes of 8 antibodies per tube 

was therefore designed to exploit some of these differences and, as the panel contained 

only two tubes, evaluation of pauci-cellular aspirate cases was also feasible. 

Due to the number of lineages and subpopulations affected in MDS, even relatively small 

flow cytometry panels could yield large amounts of numerical and phenotypic data. Current 

flow cytometry MDS scoring schemes do not utilise all available information, instead using a 

smaller number of user-defined parameters. This could lead to the potential omission of 

diagnostically relevant features which could add to the utility in distinguishing MDS cases 

from other cytopenic conditions. Furthermore, there is no simple process by which additional 

parameters can be readily incorporated into these current flow scoring schemes. 

In this chapter, the aforementioned two-tube flow cytometry panel was evaluated on a cohort 

of MDS and cytopenic patients to determine whether a combination of numerical and 

phenotypic attributes could distinguish MDS cases from non-malignant cytopenic patients. It 

was further hypothesized that a machine learning approach could be used to (a) overcome 

the issue of generating diagnostic algorithms for a dataset with a large number of attributes, 

(b) allow novel attributes and traditional scoring parameters to be used in conjunction, and 

(c) offer an objective means for maximising the information available to aid in the 

identification MDS patients. 

For the purposes of this chapter, it must be noted that, when referring to immunophenotypic 

studies, the use of the term CD34 expressing or CD34+ cells refers solely to the 

myeloid/stem cell CD34 compartment and does not include the CD34+ B-lymphoid 

progenitors, unless stated otherwise.   
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5.2 Demographic details, diagnoses, and exclusions 

The panel was tested on 183 bone marrow aspirate cases of which 52 patients were 

diagnosed according to WHO criteria as either MDS or within the MDS/MPN subgroup as 

shown in Table 5.1. 

WHO subgroup (sex) 
Number of 

patients 

Median Age 

(Years)  

Age Range 

(Years) 

RARS (Male) 3 81 74-89 

RARS-T (Female) 1 70 70-70 

RCMD (Female) 5 79 77-87 

RCMD (Male) 16 73 58-89 

RAEB (Female) 4 74.5 65-84 

RAEB (Male) 9 73 63-87 

CMML (Female) 3 82 78-86 

CMML (Male) 4 77.5 75-80 

MDS-U (Female) 1 64 64-64 

MDS/MPN-U (Male) 3 76 70-85 

5q- (Female) 2 64.5 57-72 

Systemic Mastocytosis with 

associated MDS (Male) 
1 77 77-77 

Table 5.1. Demographic breakdown of the MDS group by WHO subgroup 
classification, sex, and age 

 

Of the remaining 131 cases, 52 patients were excluded from final analysis due to the 

following reasons: 4 patients were reported as having an inadequate sample for 

morphological evaluation; 1 patient was diagnosed with metastatic carcinoma; 16 patients 

were diagnosed with a non-MDS haematological malignancy (4xAML, 3xBLPD, 3xPNH, 

2xHodgkin, 1xLGL, 1xMPD, 1xCML, and 1xMGUS); 31 patients were excluded, despite 

having a non-diagnostic bone marrow sample, due to the reported presence of dysplastic 

features in cells of the myeloid or erythroid lineages, albeit at an insufficient percentage to 

diagnose as MDS. 
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The remaining 79 cases consisted of10 cases referred for the staging of lymphoma with no 

evidence of bone marrow infiltration and 69 patients who were referred for the investigation 

of cytopenia. These latter patients were further investigated to determine whether 

subsequent bone marrow samples were referred, with a minimum of 13 months follow-up. 

For 3 patients, a subsequent bone marrow sample led to a diagnosis of myeloid malignancy 

(2 patients developed RCMD and 1 patient was diagnosed with atypical CML). The non-

diagnostic samples on these cases were, therefore, excluded from the final analysis. 

Therefore, in total, 128 patients were used for the final analysis: 76 “Reactive” cases which 

contained the 10 cases referred for lymphoma staging and the 66 non-diagnostic cytopenic 

cases with no mention of dysplastic features. The remaining 52 cases were the MDS or 

overlap, MDS/MPN subgroup cases. The age and sex of the MDS group and the Reactive 

group is shown in Table 5.2. This shows a typical skew male:female ratio in the MDS group 

and a younger age for the Reactive group. 

Diagnostic Group 

(sex) 
Number of patients Median Age (years) Age Range (years) 

Reactive (male) 40 73.0 40-90 

Reactive (female) 36 66.0 40-91 

Total Reactive 76 72.0 40-91 

MDS (male) 36 74.5 58-89 

MDS (female) 16 78.5 57-87 

Total MDS 52 75.5 57-89 

Table 5.2. Demographic details for the MDS and the Reactive groups 

5.3   Initial assessment of the numerical and phenotypic attributes 

of the MDS and the Reactive groups  

5.3.1 Features of the two tube flow cytometric panel 

Although the panel comprised of only two tubes, it was designed to offer numerical 

percentage assessment of multiple bone marrow haematopoietic populations. It also allowed 

evaluation of the Median Fluorescent Intensity (MFI) and coefficient of variation (CV) of 

antigens expressed by those haematopoietic populations with sufficient cells for reliable 

phenotypic evaluation. The phenotypic method of population identification along with antigen 

attribute usage is summarised in Table 5.3 
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Population Subpopulation  
Means of phenotypic 

Identification 

Numerical 

assessment 

Assessment of 

Phenotypic 

features 

CD34
+
 Precursor 

cells 
 CD34 and CD45 Yes Yes 

 
CD34

+
CD19

- 

Progenitors 

CD34, CD45, and 

CD19 
Yes Yes 

 CD34
+
CD38

-
 

CD34, CD45, CD19, 

and CD38 
Yes No 

 CD34
+
CD38

+
 

CD34, CD45, CD19, 

and CD38 
Yes No 

 
CD34

+
CD19

+
 B-

progenitors 

CD34, CD45, and 

CD19 
Yes No 

CD34
-
 CD117

+
 

Myeloid Precursor 

cells 

 
CD34, CD117, and 

CD45 
Yes Yes 

 
CD34

-
 CD117

+
 

Erythroid 

CD34, CD117, CD38, 

HLA-DR and CD45 
Yes No 

 
CD34

-
 CD117

+
 

Granulocytic 

CD34, CD117, CD38, 

HLA-DR and CD45 
Yes No 

 
CD34

-
 CD117

+
 

Monocytic 

CD34, CD117, CD38, 

HLA-DR and CD45 
Yes No 

CD34
-
 CD117

+
 

Granulocytes 
 

CD34, CD117, CD38, 

HLA-DR and CD45 
Yes Yes 

Monocytes  CD64 and CD45 Yes Yes 

Basophils  CD123 and HLA-DR Yes No 

Plasmacytoid 

Dendritic Cells 
 CD123 and HLA-DR Yes No 

Mast cells  CD117 Yes No 

Table 5.3. Haematopoietic subpopulation phenotypic identification and attribute 
usage status for MDS and Reactive patients.      
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5.3.2 Do attributes previously identified as different between MDS and 

normal also differ between MDS and Reactive patients 

Formal statistical comparisons, including correction for multiple comparisons, between the 

MDS and the Reactive groups for numerical and immunophenotypic attributes are shown in 

Appendix Table 5.1. 

As noted in the previous results chapter, many numerical and immunophenotypic attributes 

differed statistically between the normal control group and the MDS group. Similarly, the 

results here demonstrated that a substantial fraction of attributes showed statistically 

significant differences between the MDS group and Reactive group. Of 65 attributes that 

were evaluated between the MDS and Reactive groups, a total of 29 differed significantly at 

the p<0.05 level using a standard Wilcoxon signed rank comparison. False discovery rate 

analysis using the Benjamini Hochberg method showed that, of these 29 attributes, 23 had 

an adjusted FDR p value of <0.05, 5 attributes had an adjusted FDR p value of <0.1, and 

only one attribute had an adjusted FDR p value value of >0.1 (CD64 MFI expression on 

CD34 cells, adjusted FDR p value of 0.108). Use of the conservative adjustment (Bonferroni 

correction) to account for the family wise error rate/multiple comparison problem yielded 13 

significantly different attributes between the MDS and Reactive groups.   

The remaining 36 attributes were not found to significantly differ between the MDS and 

Reactive Groups at the p<0.05 level, nor did any achieve an FDR adjusted p value of <0.1.   

However, formal statistical analysis of the MDS and Reactive groups only identifies 

differences between populations and cannot be used to determine whether an individual 

case can be classified as MDS or as Reactive. Therefore, an aim of this results chapter was 

to develop a classification system which would combine all available attributes and aid in the 

diagnosis of individual cases of MDS from reactive cytopenic conditions. 

 

5.4 Use of supervised machine learning classifiers to aid in the 

diagnosis of MDS  

The use of machine learning classifiers to aid in the flow cytometric identification of MDS has 

not been previously reported in studies of MDS. The main MDS flow cytometry scoring 

systems in use, Ogata and Wells/modified Wells, were formulated using either user defined 

thresholds from ROC curve analysis (Ogata) or from user defined criteria (Wells/modified 

Wells) (Wells et al., 2003; van de Loosdrecht et al., 2008; Ogata et al., 2009). With each 

report of a novel flow cytometric difference between MDS and reactive cases, the number of 
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potentially evaluable attributes increases. Production of a new, user-defined diagnostic 

algorithm or incorporation of new features into pre-existing diagnostic scoring schemes is 

challenging due to the complexity of evaluating multiple features. Additional complexity 

results from the problems of confounding variables, multicollinearity, and feature 

redundancy. The use of machine learning algorithms is, thus, an attractive proposition as it 

offers an objective tool for modelling attributes in classification problems such as the 

identification of MDS cases from Reactive cases. 

5.4.1 Use of this cohort as a training set to evaluate standard classifier 

performance 

Overall, 36 classifiers were evaluated for their performance in separating MDS and Reactive 

cases in this training set. A brief synopsis of each classifier is shown in Appendix Table 5.2. . 

All classifiers were initially run with the “Use training set” Test option in WEKA. To evaluate 

and compare classifiers, 8 performance metrics were assessed and these were: Accuracy, 

sensitivity, specificity, Kappa statistic, Precision, F-measure, Matthews Correlation 

Coefficient (MCC), and Area under the ROC curve (AUROC).  The sensitivity and specificity 

measured the proportion of MDS which were correctly identified and the proportion of 

reactive cases which were correctly identified, respectively. Precision is the positive 

predictive value, whilst the Kappa statistic measures agreement between predicted and 

observed classification whilst taking into account the agreement occurring by random 

chance. The F-measure is the harmonic mean of both precision and sensitivity (see 

Appendix Table 5.3 for calculation of metrics). The formula for calculating each metric is 

shown in Appendix Table 5.3. Classifier performance for each evaluable metric is shown in 

Appendix Table 5.4. 

5.4.1.1 Evaluation of the Zero R classifier 

The Zero R classifier can be thought of as a baseline classifier as it simply classifiers all 

cases as the most common class and ignores all attributes. In this cohort there was a class 

imbalance with the reactive class (n=76) as the majority class and the MDS class as the 

minority class (n=52). As the Reactive class was the predominant class, all cases were 

labelled as such. Therefore, all 76 Reactive cases were correctly classified and all 52 MDS 

cases were incorrectly classified. The Zero R classifier had an accuracy of 0.594 and an 

area under the ROC curve (AUROC) of 0.500.  

The MCC was used to evaluate classifier performance due to the class imbalance, as it 

takes into account both false positive and false negative classification errors. An MCC of 1 

represents perfect classification, whilst a value of 0 indicates average random prediction. For 

the Zero R classifier, the MCC was 0, indicating the underlying Zero R methodology. 
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5.4.1.2 Evaluation of the One R classifier 

The One R classifier is a simple, decision tree based approach which classifies on the basis 

of the single attribute with the smallest total error. For this cohort, classification was based 

on the percentage of CD34 cells and resulted in 110 cases being correctly classified. This 

gave a classifier accuracy of 0.859, an AUROC of 0.836 and an MCC of 0.712. However, 

although only 18 cases were incorrectly classified, 15 of these 18 cases were MDS cases, 

therefore highlighting the requirement for the other evaluable performance metrics 

(sensitivity, specificity, precision, Kappa statistic and F-measure). 

For the One R classifier, the sensitivity was 0.712, the specificity was 0.987, precision was 

0.925, and F-measure was 0.804. With the obvious exception of specificity, all performance 

metrics were higher than those produced by the Zero R classifier. As this was the simplest 

classifier, in the first instance, all other classifiers were compared to One R for evaluation of 

performance metrics. 

5.4.1.3  Evaluation of the Bayesian classifiers 

In comparison to One R, the Bayesian classifiers were more accurate and had a higher 

sensitivity, Kappa, F-measure, MCC and AUROC. Within this group, the Bayesian Logistic 

Regression classifier had the fewest misclassified cases (2 MDS and 1 reactive) and, whilst 

the A2DE classifier was less accurate than the Bayesian Logistic Regression classifier, it did 

not misclassify any reactive case, therefore had a specificity of 1. The Naive Bayes classifier 

was the only classifier in this group with a lower specificity and precision than One R. 

5.4.1.4 Evaluation of the Functions group of classifiers 

In comparison to One R, all classifiers within this group had higher accuracy, Kappa statistic, 

MCC, F-measure, AUROC and, with the exception of the S Pegasos classifier, a higher 

sensitivity. Although the S Pegasos classifier misclassified more MDS cases than One R (16 

cases in comparison to 15) it did not, however, misclassify any Reactive case as MDS. 

Specificity and precision varied within this group of classifiers between 0.882 and 1, and 

between 0.833 and 1, respectively. All classifiers except the RBF Classifier, the Simple 

Logistic and the Voted Perceptron classifiers achieved higher specificity and precision than 

the One R classifier. 

The MLP Classifier and the Multilayer Perceptron both achieved high accuracy and only 

misclassified 1 reactive case and 2 MDS cases, respectively. Lastly, both the Kernal Logistic 

Regression and Logistic (multinomial logistic regression model with a ridge estimator) 

classifiers appeared to show perfect classification. However, in any such analysis the issue 

of overfitting to the data is a critical consideration and is further evaluated below.   
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5.4.1.5 Evaluation of the CHIRP and VFI classifiers 

Both classifiers equalled or outperformed One R for every evaluable metric. Each classifier 

misclassified 6 cases, therefore both had the same overall accuracy. However, whilst the 

CHIRP classifier misclassified 3 MDS and 3 reactive cases, all 6 cases misclassified by VFI 

belonged to the MDS class. 

5.4.1.6 Evaluation of Rule-based classifiers 

Both the Conjunctive Rule and Ridor classifiers had lower accuracy than the One R 

classifier, with the Ridor classifier misclassifying more MDS (19) cases than Conjunctive 

Rule (12). Ridor was also outperformed by One R for Kappa statistic, F-measure, and 

AUROC. Although Conjunctive Rule misclassified fewer MDS cases than One R, it 

misclassified more Reactive cases therefore had a lower Kappa statistic, specificity, 

precision, and MCC.   

The other two classifiers, FURIA and JRip, either equalled or bettered the One R classifier 

for all evaluable metrics. 

5.4.1.7 Evaluation of the Tree-based classifiers 

4 classifiers within this group of classifiers showed perfect classification accuracy and 

overfitting was suspected for the AD Tree, FT, NB Tree, and Random Forest classifiers. 

The Decision Stump, REP Tree and CART classifiers all misclassified 18 MDS cases and 1 

Reactive case, therefore scored lower than One R for accuracy, Kappa statistic, sensitivity, 

F-measure, MCC and AUROC.  

The BF Tree, J48, and J48 Graft classifiers all outperformed or, in the case of the specificity 

of the BF Tree classifier, equalled the One R classifier for all evaluable metrics. The 

Hoeffding Tree classifier misclassified fewer MDS cases than One R (11 cases compared to 

15) but misclassified the same number of reactive cases. The LMT classifier had a higher 

accuracy, Kappa statistic, sensitivity, F-measure, MCC, and AUROC than One R by virtue of 

misclassifying fewer overall cases and fewer MDS cases. However, as it misclassified more 

Reactive cases than One R (5 cases in comparison to 3), specificity and precision were both 

lower. 

5.4.2 Are the same MDS cases repeatedly misclassified? 

As different classifiers returned similar sensitivities and specificities, it was unclear whether 

the same cases were repeatedly misclassified by a variety of classifiers or whether different 

types of classifiers were misclassifying different cases. Each classifier has a different bias, 

therefore cases repeatedly misclassified by different classifier may have common biological 
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features. If these features could be identified then alternative methods could be employed in 

the future similar when similar cases were encountered. 

To evaluate whether repeat misclassification occurred, a clustering heatmap was produced 

to show how cases were classified by individual classifiers as shown in Figure 5.1. 24 cases 

of MDS and 55 cases of reactive were correctly classified by every classifier. There was, 

however, heterogeneity between classifiers for accuracy and the ability to determine the 

class of specific cases. This is shown in Figure 5.1 whereby MDS and Reactive cases 

towards the middle of the heatmap are differentially classified depending upon classifier. 

To evaluate those MDS patients who were misclassified, a second heatmap was produced 

to show misclassified MDS cases. These MDS cases were labelled by WHO subgroup and 

were compared to individual classifiers (Figure 5.2). The results show that there is 

misclassification across all the WHO subgroups by the majority of classifiers, and that no 

specific WHO subgroup evaded misclassification. 

It was found that the two most frequently misclassified MDS cases were an RARS case 

(misclassified by 22 different classifiers) and a CMML case (misclassified by 18 different 

classifiers). Although the root causes of misclassification amongst the various different 

classifiers could not be determined (due to the different underlying mathematical methods), it 

was notable that both these cases had a CD34 percentage of less than 1% and there were 

more than 5% B-progenitors within the CD34+ compartment. Both an increased CD34 

percentage and a decreased proportion of B-progenitors are features used in flow cytometric 

scoring schemes to discriminate MDS from reactive conditions (Wells et al., 2003; Ogata et 

al., 2009; Della Porta et al., 2012). 
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Figure 5.1. Unsupervised hierarchical cluster analysis showing the accuracy of the different classifiers in correctly classifying MDS 
and Reactive cases. Cases classified as MDS as shown in blue whilst those classified as Reactive are shown in pink. MDS cases 
correctly classified by all classifiers are enclosed in a blue rectangle. Reactive cases correctly classified by all classifiers are 
enclosed in a red rectangle.
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Figure 5.2. Hierarchical cluster analysis of misclassified MDS cases as determined by 
each classifier. 

Squares shown in blue indicates where misclassification has occurred. At least one 

case from all WHO MDS subgroups was misclassified and misclassification was not 

restricted to specific MDS subgroups. 
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5.4.3 Can generalised classifier performance be predicted from the 

training set? 

As 6 classifiers produced no misclassified cases, it was hypothesized that these classifiers 

were overfitting the data. This phenomenon of overfitting refers to the classifier training on 

random noise within the training set data as opposed to generalising the data. This results in 

a classifier which performs accurately on the training set but has poor predictive 

performance on an unseen, test set. Moreover, this phenomenon may have occurred with 

the other classifiers. 

To overcome the problem of overfitting, 10-fold cross validation was applied to all the 

classifiers. 10-fold cross validation functions by random partitioning of the dataset into 10 

equal sized subsets. The classifier is then trained on 9 subsets and tested on the remaining 

subset. This is repeated 9 more times and the average accuracy and other metrics are 

determined. This process is illustrated in figure Figure 5.3 and is used as a technique to 

assess how well a classifier will generalise on an unseen dataset (Stone, 1974). 
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Partition data into 10-folds Iteration 1. Train classifier on folds 1-9 and test on fold 10 

to obtain accuracy 

Iteration 2. Train classifier on folds 1-8 and 10 and 

test on fold 9 to obtain accuracy 

 

 

 

Iteration 3. Train classifier on folds 1-7 and 9-10 and test 

on fold 8 to obtain accuracy 

Repeat iterative process with testing on folds 7, 6, 5, 4, 3, 

and 2. 

Iteration 10. Train classifier on folds 2-10 and test 

on fold 1 to obtain accuracy. 

Final Accuracy = average (iteration 1, iteration 2, iteration 3............iteration 10) 

Figure 5.3. Schematic of 10-fold cross validation process. 

The dataset is randomly partitioned into 10-folds. The classifier is then trained on 9 folds and tested on the remaining 10th fold. This 

iterative process is repeated 10 times and the classification performance from all 10 iterations is then averaged.    
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5.4.3.1 Evaluation of classifier performance following 10-fold cross-validation  

As expected, the classification performance of all classifiers decreased following 10-fold 

cross validation (Figure 5.4 and Appendix Table 5.5). This indicates that all classifiers were 

overfitting the data. No classifier now showed 100% accuracy and none correctly classified 

either all MDS cases or all Reactive cases. 

To evaluate relative performance, classifiers were again compared to One R. In comparison 

to the One R classifier, 15 classifiers had higher accuracy, although 2 of these (Conjunctive 

Rule and J48 Graft) misclassified a higher number of MDS cases than One R. 

13 classifiers misclassified fewer MDS cases than One R (which misclassified 13 MDS 

cases) and, with the exception of the VFI classifier, all had higher accuracy than One R. The 

Bayesian classifiers A1DE, Bayes Net, A2DE, and Naive Bayes, and the Hoeffding Tree 

classifier were found to have the highest accuracy and misclassified fewer MDS and 

Reactive cases (or, in the case of A2DE, equal numbers of Reactive cases). 

To determine the overall performance of each classifier, a ranking system was used with 

each classifier ranked for best and worst performance in each of the following 8 categories: 

accuracy, sensitivity, specificity, kappa statistic, precision, F-measure, MCC, AUROC. This 

allowed the generation of an average rank for overall performance with the lowest score 

indicating best overall average classifier performance. The sensitivity and specificity and 

rank of all the classifiers are shown in figure 5.4. 

The Bayesian classifiers performed the best as A1DE, Bayes Net, A2DE, and Naive Bayes 

were the overall top four classifiers, respectively. The validation of this approach was 

confirmed by the finding that the top three overall classifiers were also the top 3 ranking 

classifiers for sensitivity. However, it must be noted that the VFI classifier, which ranked 5th 

overall for sensitivity performance, was only ranked 20th overall as it had misclassified 16 out 

of the 76 Reactive cases as MDS, thereby having a lower specificity. 
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Figure 5.4. Classifier sensitivity and specificity following 10-fold cross validation. 

Classifiers are ranked in order from top to bottom with the overall best ranked classifier at the top and the lowest ranked classifier at 
the bottom. Classifier specificity is shown in red and sensitivity in blue
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5.4.4 Can classifier performance be improved through cost sensitive 

classification or cost sensitive learning? 

For scoring schemes and classifiers, the relative cost of a false positive or a false negative is 

assumed to be the same. However, in a MDS diagnostic setting it can be argued that these 

costs are not the same. One might argue that a patient with MDS misclassified as non-MDS 

(false negative) is denied early clinical intervention and access to medication. This would 

then outweigh a false positive diagnosis, especially as late diagnosis of cancer has been 

reported as associated with poorer survival (Richards, 2009). Alternatively, it could be 

argued that the consequence of falsely classifying a patient with MDS is equally serious. 

Studies from other fields have shown that there are cost implications associated with false 

positive screening tests, not to mention to patient anxiety and worry (Lerman et al., 1991; 

Elmore et al., 1998; Lafata et al., 2004). Unfortunately, a formal analysis of the relative cost 

of misclassification with respect to financial costs, psychological implications, appropriate 

treatment and overall survival has not been reported for MDS. For the purposes of 

evaluation for the cohort of patients in this study, it was assumed that a false negative MDS 

diagnosis was considered more unfavourable in a diagnostic setting. 

A key feature of machine learning classifiers is the ability to modify the relative cost of a false 

positive or false negative by changing the decision boundary. Cost sensitive classification 

adjusts the output to alter the decision boundary (Witten et al., 2011). For example, to 

penalise false negative MDS classification, an arbitrary cost of a false negative MDS 

classification was set at 5 instead of 1. The classifier, therefore, attempts to avoid false 

negatives as the cost is equivalent to 5 false positives.  

Furthermore, an alternative approach known as cost-sensitive learning can be adopted. In 

this procedure, a new classifier could be relearned by duplicating (internally reweighting) 

instances (Witten et al., 2011). Due to the presence of a class imbalance between the 76 

Reactive cases and the 52 MDS cases, an arbitrary classifier cost for the MDS group for this 

approach was set at 1.46 (ratio of 76 Reactive cases divided by 52 MDS cases), with the 

cost for Reactive group was retained at 1.0. 

For this cohort, the effect of both cost sensitive classification and cost sensitive learning was 

evaluated for classifier performance with the sensitivity metric considered the most valuable 

classifier performance indicator for this approach. Furthermore, the cost sensitive 

approaches were combined with the 10-fold cross validation approach so as to avoid the 

problem of overfitting. 



153 
 

5.4.4.1 Results of cost sensitive classification classifier performance 

The same ranking approach as used to evaluate 10-fold cross validation classifier 

performance was adopted to determine the best overall classifier. Figure 5.5 and Appendix 

Table 5.6 shows the results of classifier performance in cost sensitive classification. 

The cost sensitive classification approach improved the accuracy and sensitivity of 5 

classifiers over regular 10-fold cross validation and improved the sensitivity alone of another 

14 classifiers. 8 classifiers now had a greater sensitivity than the classifiers with the best 

sensitivity (A1DE and A2DE) by regular 10-fold cross validation. However, this improvement 

was at the expense of specificity and only 3 of the 8 had a specificity of >0.5 (AD Tree, 

Simple Logistic, and NB Tree). 

The classifier with the highest sensitivity was the RBF Classifier which had a sensitivity of 

0.981, but had a specificity of 0.487. This classifier was ranked 26th for overall classifier 

performance.  

The artificial neural network classifier, RBF Network, was the overall best performing 

classifier. The top ranking classifier which had a sensitivity value higher than the RBF 

Network classifier was the AD Tree classifier which had a sensitivity of 0.923, and a 

specificity of 0.711, therefore ranking it 15th in overall classifier performance. 

5.4.4.2 Results of cost sensitive learning classifier performance 

The same ranking approach as used to evaluate regular 10-fold cross validation classifier 

performance was adopted to determine the best overall classifier. Figure 5.6 and Appendix 

Table 5.7 shows the results of cost sensitive learning classifier performance. 

The cost sensitive learning approach improved the accuracy and sensitivity of 8 classifiers 

over use of regular 10-fold cross validation. It improved the accuracy alone of 1 classifier 

and improved the sensitivity alone of another 3 classifiers. 

The A1DE classifier had the highest accuracy and sensitivity. However, as the cost sensitive 

learning approach resulted in an extra misclassification of a Reactive case, both the 

accuracy and specificity of A1DE decreased in comparison to its 10-fold cross validation 

performance.  
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Figure 5.5. Classifier sensitivity and specificity performance following cost sensitive classification 

Classifiers are ranked in order from top to bottom with the overall best ranked classifier at the top and the lowest ranked classifier at 
the bottom. Classifier specificity is shown in red and sensitivity in blue 



155 
 

 

Figure 5.6. Classifier sensitivity and specificity performance following cost sensitive learning. 

Classifiers are ranked in order from top to bottom with the overall best ranked classifier at the top and the lowest ranked classifier at 
the bottom. Classifier specificity is shown in red and sensitivity in blue 
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5.4.5 Does cost sensitive analysis improve classifier performance over 

regular 10-fold cross validation? 

The performance of the best ranking classifier identified from training using either cost 

sensitive classification or cost sensitive learning did not improve on the performance of 

A1DE, which was the best classifier trained with regular 10-fold cross validation (Figure 5.4). 

The highest ranked classifier using Cost sensitive classification was the RBF Network, 

although none of its metrics outperformed that of A1DE using regular 10-fold cross 

validation. The highest ranked classifier using Cost sensitive learning remained the A1DE 

classifier, although this showed a decrease in performance in comparison to 10-fold cross 

validation due to the misclassification of an extra Reactive case. 

Approach Classifier Accuracy Kappa 

Statistic 

Sensitivity Specificity Precision F-Measure MCC 

Regular 10-

fold cross 

validation 

A1DE 0.882813 0.7578 0.865 0.895 0.849 0.857 0.758 

Cost sensitive 

classification 

RBF 

Network 
0.867188 0.7255 0.846 0.882 0.83 0.838 0.726 

Cost sensitive 

learning 
A1DE 0.875 0.7425 0.865 0.882 0.833 0.849 0.743 

Table 5.4. Performance comparison between the highest ranked classifiers. 

Classifiers were trained using 10-fold cross validation, cost sensitive classification 
and cost sensitive learning approaches. 

 

Classifier performance was then evaluated by comparison between the classifiers with the 

highest sensitivity, trained using each approach. The Cost sensitive classification approach 

trained the most sensitive classifier, the RBF Classifier (Table 5.5). This classifier had the 

highest overall sensitivity (0.981) of any classifiers using any process. However, this 

sensitivity came at the expense of poor specificity (0.487) resulting in low values for the 

other performance metrics. The classifier with the highest sensitivity using the Cost sensitive 

learning approach was A1DE and, as stated above, this showed a decrease in performance 

in comparison its regular 10-fold cross validation performance due to the misclassification of 

an extra Reactive case. 
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Approach Classifier Accuracy Kappa 

Statistic 

Sensitivity Specificity Precision F-Measure MCC 

Regular 10-

fold cross 

validation 

A1DE 0.882813 0.7578 0.865 0.895 0.849 0.857 0.758 

Cost sensitive 

classification 

RBF 

Network 
0.688 0.4192 0.981 0.487 0.567 0.718 0.503 

Cost sensitive 

learning 
A1DE 0.875 0.7425 0.865 0.882 0.833 0.849 0.743 

Table 5.5. Performance comparison between classifiers with the highest sensitivity. 

Classifiers were trained using 10-fold cross validation, cost sensitive classification 
and cost sensitive learning approaches. 
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5.5 Discussion 

As previously reported in the first results chapter, a small percentage of non-diagnostic 

cytopenic cases subsequently develop MDS or other myeloid malignancy. Unsurprisingly, 

this finding occurred in this cohort with 3 patients subsequently developing a myeloid 

malignancy. This phenomenon re-iterates both the difficulty in diagnosing MDS and the 

requirement for follow-up on any case used as a control subject in a training set for MDS 

diagnosis. Given a longer follow-up period, it is possible that more Reactive cases in the 

training set will progress to a myeloid malignancy, however, within the scope of this study, 

these cases remain without evidence of such a transition. 

The exclusion of cases which subsequently develop a myeloid malignancy is necessary to 

produce a dataset which is as untainted as possible. Immunophenotypic changes have been 

reported in MDS cases in lineages unaffected by morphological dysplasia (van de 

Loosdrecht et al., 2008; Kern et al., 2010). Therefore, the removal of these cases should 

improve classifier performance by limiting the inappropriate inclusion of features from cases 

that subsequently shift between major diagnostic classes into the classifier. 

With this in mind, a further 31 cases were excluded from the Reactive control group due to 

the presence of morphological dysplasia, albeit insufficient for the diagnosis of MDS. There 

is an understandable ambiguity as to whether these patients can be used as control cases. It 

can be argued that the morphological dysplasia present is insufficient to diagnose MDS 

therefore these patients should be included, especially as none of these cases were 

subsequently found to have been re-referred and diagnosed with a myeloid malignancy with 

a 13 month minimum timeframe. However, this lack of re-referral does not preclude the 

presence of a malignancy. Again, the underlying issue here returns to user-to-user variability 

in diagnosing MDS using a gold standard of subjective morphological assessment.  

Furthermore, as the aim of any classifier is to be as accurate as possible and is dependent 

upon the correct labelling of cases in the training set, if a correct label cannot be 

convincingly assigned then it was reasoned that the case should be excluded.  

One approach would be to employ these cases as a test (validation) cohort although, as the 

clinical follow up and outcome of these cases would be unknown, there would be no means 

to accurately measure the performance of any classifier on these patients. This diagnostic 

uncertainty, coupled with the confirmation that a small proportion of cases with a non-

diagnostic cytopenia progress to myeloid malignancy, advances the proposal in the first 

results chapter for the requirement for long-term clinical monitoring of patients referred for 

the investigation of cytopenia. An alternative approach would be to perform targeted 
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sequence analysis using a panel of myeloid genes on all cases in a training set and use the 

presence or absence of mutation(s) as the class-defining feature. 

Further regarding the composition of the Reactive group, 4 cases were removed from the 

initial dataset due to the sample being inadequate for morphological assessment. Due to the 

limited sample requirement of this two tube panel, these 4 patients generated usable flow 

cytometric data and were constrained solely by the inadequacy of the sample for a 

morphological diagnosis. A feature also reported in one of the early flow cytometry studies in 

MDS (Stetler-Stevenson et al., 2001). It further highlights the potential of flow cytometric 

evaluation of MDS as, should the flow cytometry results predict a reactive process, the 

patients may be spared the discomfort of a subsequent bone marrow aspiration. 

The use of machine learning classifiers is not widespread in diagnostic flow cytometric 

studies, although attempts to use machine learning algorithms for the classification of 

subpopulations using data obtained from the underlying FCS files have been reported 

(Kalina et al., 2009; Costa et al., 2010). The reason for underuse is unknown and underuse 

is perhaps surprising given the complexity of multi-colour flow cytometry panels and the 

number of evaluable attributes. It may be that “black box” approaches such as Artificial 

Neural Network and Support Vector Machine based classifiers are less appealing than user-

defined scoring schemes using transparent biological attributes. However, classifiers can 

also give an indication of underlying biological features as algorithms such as One R and the 

J48 tree classifier produce optimal splitting on attributes which differ between two classes. 

Other factors in classifier underuse may be the issues of classifier choice, the number of 

parameters which can be manually tweaked within each classifier, and which metric defines 

the best classifier for a given dataset. Although this latter factor is also true of any user-

defined classification scheme. 

The advantage of using machine learning algorithms for classification is highlighted in this 

study. The 2 tube flow cytometry panel generated 11 numerical and 54 phenotypic features 

for assessment on 76 Reactive and 52 MDS cases. This number of attributes is higher than 

the number recommended for evaluation by the ELN MDS Flow cytometry guidelines and is 

despite the fact that many of the ELN recommended attributes were not included in the 

panel to be assessed (Westers et al., 2012). Incorporation of so many attributes into a user-

defined scoring scheme would be problematic. Therefore, alternative methods must be 

sought and this supports the value of applying machine learning algorithms when assessing 

so many attributes. 

A traditional, standard statistical comparison of the Reactive and MDS groups can still be, 

and was, undertaken and this showed that 29 attributes significantly differed between these 
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two groups. Significant differences were also found when both conservative (Bonferroni) and 

less-conservative (FDR) corrections were applied to take into account multiple comparisons. 

These differences extend the findings of the previous chapter to show that, as well as 

differences of haematopoietic cells between MDS and normal cases, differences exist 

between MDS and non-diagnostic cytopenic cases. These significant differences between 

the MDS and both the Normal and Reactive control groups indicate that phenotypic and 

numeric differences in the MDS group did not simply result from a cellular response to a 

population reduction (cytopenia) or, in the case of MDS/MPN cases, a population increase. 

However, a formal statistical comparison approach cannot be used to classify individual 

cytopenic cases as MDS or Reactive. In this study, individual case classification was 

proposed by use of a machine learning approach. However, it is a well known adage that no 

single classifier works best on all datasets, the so-called “No Free Lunch” theory (Wolpert 

and Macready, 1997). As such, this study was not intended to be a formal comparison of 

classifier methodologies. The aim was to identify the classifier which best discriminated MDS 

from Reactive conditions in this training set of case. The chosen classifier could then be 

tested on a test (validation) cohort to assess generalised performance. 

The concept of defining a “best classifier” and measuring best performance for this cohort 

posed difficulties. For the Ogata FCM scoring scheme, attribute cut-offs were chosen based 

on ROC curve analysis or mean values of controls +/- 2 standard deviations (Ogata et al., 

2009; Della Porta et al., 2012). However, there was no indication as to the method used to 

chose the ROC curve cut-off (be it Youden’s J statistic, shortest Euclidean distance to (0,1), 

user-defined, or other (Liu, 2012). Furthermore, no indication was given whether any 

alterative cut-points could achieve higher sensitivity at the expense of specificity or vice 

versa (Ogata et al., 2009). For the Wells FCSS scoring scheme, with the exception of the 

percentage of myeloblasts, all abnormalities were weighted as one point each and, 

accuracy, sensitivity and specificity for MDS and non-MDS cases were all reported for 

overall scores at single cut-point increments. Cases were then categorised as mild, 

moderate or severe, depending upon the overall score (Wells et al., 2003). 

However, neither of the above studies set out to compare classifiers. For comparison of 

machine learning classifiers, both speed of computation and accuracy is an important 

feature. However, as this cohort was a relatively small data set and speed of computational 

analysis was not an issue, no formal evaluation of classifier processing speed was 

undertaken. Although it is recognised that this may be more of an issue if a larger cohort with 

more attributes is to be assessed ultimately the goal would be to develop a classifier 

implementation that worked on a case-by-case basis, as, for example, previously reported in 

the context of gene expression data (Care et al., 2013; Sha et al., 2015). 
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Therefore, to determine the best classifier for this cohort, multiple performance metrics were 

evaluated. These were accuracy, sensitivity, specificity, Kappa statistics, precision, F-

measure, Matthews Correlation Coefficient (MCC) and area under the receiver operating 

characteristics curve (AUROC). When the accuracy of the standard classifiers was 

evaluated, 6 classifiers had perfect performance with 100% accuracy. These were the 

Kernell Logistic Regression, Logistic, AD Tree, FT, NB Tree, and Random Forest classifiers. 

With the exception of the Zero R classifier, all the remaining classifiers were more accurate 

than the Zero R classifier, with accuracies ranging from 0.852 to 0.992. 

However, as previously noted in this study, the referrals for the investigation of cytopenia 

result in an imbalanced dataset. This cohort is no different with a slight numerical skew 

towards Reactive cases. Evaluation of the accuracy metric is based on the assumption that 

class numbers are balanced. Therefore, in this cohort, accuracy will be skewed by the 

classification of the Reactive cases. This is illustrated by the performance of the Zero R 

classifier which has an accuracy of 0.594 and which was obtained simply by classifying all 

cases in the most frequent class (the Reactive class). 

A further issue with accuracy is defining the best classifier when multiple classifiers return 

the same accuracy. For example, the classifiers A1DE, CHIRP, and VFI all misclassify 6 

cases therefore all have an accuracy of 0.953, yet they all misclassify different numbers of 

MDS cases (5, 3, and 6, respectively). Whilst, between the three classifiers, CHIRP returns 

the highest Kappa statistic and F-measure, and VFI returns the highest precision, MCC, and 

AUROC. Therefore, by virtue of scoring highest on the most performance metrics, VFI would 

be the best classifier of these three. However, this classifier also misclassifies the most MDS 

case and, therefore, it is important to evaluate sensitivity and specificity. 

All classifiers, except the 6 classifiers with perfect accuracy, misclassified at least one MDS 

case.13 classifiers misclassified 5 or fewer cases, thereby returning a sensitivity of >0.900. 

The sensitivities of the remaining classifiers ranged from 0.635 to 0.885. 35 classifiers 

reported a specificity of >0.900, with the Voted Perceptron classifier the sole outlier with a 

specificity of 0.882. These sensitivities and specificities compare very favourably with those 

obtained from the Ogata FCM which has reported sensitivities of 0.65/0.89 and specificities 

of 0.98/0.90 from a two centre study, and a sensitivity of 0.69 and specificity of 0.92 in a 

multicentre validation study (Ogata et al., 2009; Della Porta et al., 2012). 

An interesting result of the approach of comparing multiple classifiers was the separation 

between MDS cases that could be consistently identified, versus those cases of MDS which 

were repeatedly misclassified by different types of classifier. Two MDS cases provided 

extreme examples of this, showing a high degree of misclassification. One case was an 
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RARS case which was misclassified by 22 classifiers, the other was a CMML case, which 

was misclassified 18 times. As different classifiers utilise different mathematical modelling, it 

was unlikely to be an issue with each classifier’s methodology. It was hypothesized that both 

these cases had a high degree of misclassification due to the presence of underlying 

biological features indistinguishable from those found in cases within the Reactive group. 

Given the number of attributes evaluated for this cohort, the finding of cases potentially 

indistinguishable from Reactive is somewhat surprising. Despite it being unfeasible to 

comparatively evaluate every attribute in these two cases, it was noted that one feature 

common to both was a relatively low percentage of CD34+ cells, a key feature of all flow 

cytometry MDS scoring schemes. 

It is possible that certain cases with a morphological MDS diagnosis are phenotypically too 

similar to non-MDS cytopenic cases, irrespective of the number of antigens or numerical 

attributes assessed. Kern et al. reported that 99 out of 804 unselected cytopenic patients 

had a morphological diagnosis of MDS but with no evidence of dysplastic features by flow 

cytometry (Kern et al., 2015). These patients had better 2-year and overall survival 

compared to those patients with both morphological and flow cytometric evidence of 

dysplasia (Kern et al., 2015). 

An alternative explanation is that, in this cohort, there were numerous MDS cases with no, or 

insufficient, morphological evidence of dysplasia and these were labelled Reactive for 

classification. If sufficient in number, a classifier may then classify similar cases, albeit with 

morphological evidence of dysplasia, as Reactive. Kern et al. reported that 30 out of 804 

unselected cytopenic patients had evidence of dysplastic features by flow cytometry but had 

insufficient morphological features for a diagnosis of MDS (Kern et al., 2015). The WHO 

classification provides the MDS-U category for patients with presumptive cytogenetic 

abnormalities but no morphological evidence of dysplasia (Vardiman et al., 2009). Whilst 

there is a proposal for patients with genetic mutations but no morphological evidence of 

dysplasia to be labelled CHIP, there is currently no such diagnostic category for patients with 

presumptive phenotypic aberrancies (Steensma et al., 2015). 

Ultimately, the development of a classifier voting-based scheme which identifies repeatedly 

misclassified cases may identify MDS patients with potentially better clinical outcomes, or, 

alternatively, reactive cases which may be at a higher risk of developing MDS. Long-term 

monitoring of clinical outcome in both types of patients would be necessary. 

A central principle of machine learning is that classifiers are trained to obtain the best 

performance on the training set. However, by maximizing performance this way, it may be 

the case that any classifier has simply learned the data and is unable to generalise to 
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unseen data. This concept is known as overfitting. The inclusion of a cross validation step 

provides a simple process which can be used to limit the effects of overfitting. 

In the context of this dataset, the use of 10-fold cross validation to anticipate how a classifier 

would perform on an unseen dataset was a feature which has not been employed by 

previously reported user-defined, scoring schemes. As expected, the use of the 10-fold 

cross validation approach on this cohort resulted in a decrease in performance metrics for all 

classifiers. Whereas using the standard training set approach, 6 classifiers had an accuracy 

of 1 and the majority of classifiers had an accuracy >0.9, now the best performing classifier 

for accuracy following 10-fold cross validation (A1DE classifier) had an accuracy of 0.883.  

The decrease in accuracy upon 10-fold cross-validation was not caused by a decrease just 

in either sensitivity or specificity; rather there was a global decrease in both sensitivity and 

specificity. The decrease in performance metrics following 10-fold cross validation can be 

seen as a surrogate for the underlying variability within both the MDS class and the Reactive 

class. If inter-group attributes were similar across all Reactive or MDS cases, then 10-fold 

cross validation should not decrease performance metrics. This suggests that the 10-fold 

cross validation worked effectively to reduce over fitting, and that performance at this level 

would be transferrable to future data sets. Ultimately, although 10-fold cross validation can 

give an indication of how a particular classifier may generalise in future studies, it does not 

replace the requirement for an unseen, validation cohort to test classifier performance.  

One feature of machine learning algorithms is their initial training of classifiers on the basis 

of equal error costs, with false positives and false negatives weighted the same. However, 

there is the option to amend the relative cost weights. In the context of the diagnosis of 

MDS, false positive and false negative costs might be considered unequal. For this study, it 

was assumed that false negative was more costly than false positives. Cost sensitive 

classification was, therefore, combined with 10-fold cross validation and applied to this 

cohort so that classifiers would penalise a false negative result. The cost of classifying cases 

as false negative was given a cost of 5, meaning that this cost was 5 times higher than the 

cost of the misclassification of a case as false positive. Unfortunately, formal studies have 

not been performed indicating a cost resulting from the non-diagnosis of a genuine MDS, nor 

the cost of a false positive MDS. Therefore, it is recognised that this value of 5 was arbitrary. 

For cost sensitive classification analysis, the altered cost matrix changes the threshold of the 

decision boundary. An alternative approach was to use cost sensitive learning with 10-fold 

cross validation. For this approach, a value of 1.46 was given for the cost of false negatives. 

This value was calculated so as to make the class distribution balanced. Cost sensitive 

learning replicates cases via internal weighting and is known as oversampling. 
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Following cost sensitive classification, 18 classifiers increased their sensitivity. The RBF 

classifier showed the biggest increase with a specificity improving from 0.788 to 0.981. 

However, this classifier, like all classifiers which increased sensitivity following cost sensitive 

classification, did so at the expense of specificity. Therefore, ultimately, any classifier found 

to increase sensitivity by the use of cost sensitive classification had a decreased overall 

accuracy in comparison to regular 10-fold cross-validation. 

Following cost sensitive learning, 11 classifiers increased their sensitivity. However, unlike 

cost sensitive classification, this method of cost sensitive analysis did not decrease classifier 

specificity to the same extent. Indeed, 9 classifiers improved accuracy, of which 7 showed 

increased sensitivity. Overall, for cost sensitive learning, the classifier with the highest 

sensitivity was A1DE. However, unlike the RBF classifier learned using the cost sensitive 

classification method, A1DE also had high specificity. 

Ultimately, a classifier for further testing had to be chosen. The choice between classifiers is, 

fundamentally, a trade-off between sensitivity and specificity. For this cohort, correct 

classification of the MDS class was deemed of greater importance. Therefore, it was 

preferable to choose a classifier which had high sensitivity, yet retained a reasonable 

specificity. Standard classification of this training set, without 10-fold cross validation, yielded 

a number of classifier with seemingly perfect classification accuracy. However, these 

classifiers were overfitting the data and, as such, would have performed worse on unseen 

data. The use of 10-fold cross validation decreased performance metrics, but gave a better 

estimate as to how classifiers would perform on an unseen dataset. Furthermore, although 

cost sensitive methods improved upon regular 10-fold cross validation sensitivity, this 

approach either did not improve upon the best classifier identified by regular 10-fold cross 

validation (A1DE) or, for those classifiers where the sensitivity was higher than for A1DE, the 

cost sensitive approach vastly reduced the specificity of the classifier. 

It is possible that classifier performance could have been further improved as, for all 

classifiers evaluated, the default WEKA settings were used. Parameter tuning may have 

improved performance of individual classifiers for this training set. However, the tweaking of 

multiple parameters per individual classifier would, undoubtedly, have resulted in further 

overfitting to the data therefore this approach was not pursued. 

Given the sensitivity (0.75) and specificity (0.868) obtained from the One R classifier 

following 10-fold cross validation, it was notable that more complex classifiers only 

marginally improved over this simple model which classified on a cut off of the percentage of 

CD34+ cells. Indeed, it has been reported that simpler classifiers perform very well on a 

variety of datasets (Holte, 1993). It may be the case that the number of attributes used, in 
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conjunction with a relatively small sample size, led to “noisy” data. The attribute to sample 

size ratio may diminish classifier performance and an optimal model may use fewer 

attributes. Due to the mathematical methods used by the different classifiers, it is unknown 

from this assessment which attributes other than the percentage of CD34+ cells best 

discriminate MDS from Reactive cases. However, there are algorithmic methods of choosing 

attributes (Attribute Selection) and attribute evaluation would be possible on this dataset. 

However, this is beyond the scope of this thesis and would require more samples and 

independent datasets to prevent overfitting. Any reduction of the number of attributes would, 

though, have a two-fold benefit. Firstly, it would make classifiers easier to understand and 

give insights into any underlying biology of MDS. Secondly, it would allow flow cytometry 

panels to be simpler and could be applicable to smaller laboratories not wanting to perform 

extensive flow cytometric testing. 

Ultimately, the classifier chosen for further testing on a validation cohort was A1DE. It was 

the highest overall ranked classifier based on 8 performance metrics and had the joint 

highest sensitivity using the 10-fold cross validation approach. Although, following the cost 

sensitive classification approach the RBF classifier had the highest sensitivity of any 

classifier, the specificity of this classifier was poor (0.471) and was therefore disregarded. 

Lastly, although A1DE is a Bayesian classifier, and a problem of Bayesian classifiers is the 

assumption of independence between attributes. However, A1DE was formulated to have 

less of an assumption of independence than Naive Bayes (Webb et al., 2005). The choice of 

this classifier has then followed the standard approach of learning a classifier on a training 

set and will be used to make predictions on an unseen, validation cohort with its accuracy 

measured (Langley, 1988). 

Finally, the analysis presented here illustrates that the difficulty of evaluating flow cytometric 

analysis of MDS is shifting from performing extensive flow cytometric tests, to development 

of algorithms to best use the sizable data that can be generated. Machine learning 

algorithms can only aid in this respect. Furthermore, the identification of flow cytometric 

attributes which may be influential in the diagnosis of MDS may be achieved in the future 

using attribute selection methods, and through the comparison of MDS cases that are 

consistently classifiable versus those that represent a challenge for separation using metrics 

derived from current panels. Creation of larger flow cytometric datasets and correlation with 

molecular studies and clinical outcome should help. 
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6 Classifier validation for the identification of MDS from non-

diagnostic cytopenic cases 

6.1 Rationale and introduction 

The diagnostic sensitivity using flow cytometric MDS scoring schemes or classifiers remains 

an area with potential for development. Two flow cytometry MDS scoring schemes, the 

Ogata FCM and the Wells FCSS, both have demonstrated high specificity on validation sets 

(Chu et al., 2011; Della Porta et al., 2012). However, the sensitivity for both was lower with 

values of 0.69 and 0.75, respectively. The previous results chapter saw the mathematical 

training of alternative classifiers to discriminate between MDS and Reactive cases.  The 

classifier chosen for further testing, A1DE, demonstrated both high sensitivity and high 

specificity during this training phase. Importantly, it appeared to generalise well when its 

performance was assessed following 10-fold cross validation. 

To further test the performance of the A1DE classifier, a validation cohort was required. As 

conventional morphological diagnosis of MDS is affected by subjective bias, classification 

against other methods for assessing the presence of myeloid dysplasia was also desirable. 

Cross comparison against published flow cytometric MDS scoring schemes would identify 

non-diagnostic cases with a strong suspicion of MDS. Comparison against the presence of 

targeted, annotated MDS-related driver mutations could reveal the incidence of mutations in 

cytopenic patients and determine whether flow cytometric classification correlated with 

underlying genetic abnormalities. Furthermore, it would address whether a combination of 

both flow cytometry and targeted sequencing was required to fully identify all cases of MDS. 

6.2 Patient selection 

A 13 tube, 8 colour flow cytometry panel designed to examine bone marrow haematopoietic 

populations was acquired on the bone marrow aspirate samples from 50 patients referred to 

HMDS. The cohort was divided into samples identified as potential control samples and 

samples from patients referred for the investigation of cytopenia. The samples were selected 

on the basis of demonstrating good bone marrow aspirate cellularity, combined with the 

availability of a trephine biopsy. This was a requirement as, unlike the two tube MDS panel, 

there was a requirement for at least 13 million leucocytes to be present following erythrocyte 

lysis. A final stipulation was the requirement for samples to be less than 24 hours old. This 
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was due to an intended comparison with attributes from ELN recommendations for the 

assessment of dysplasia by flow cytometry (Westers et al., 2012). 

6.2.1 Control group patients 

For comparison to published flow cytometric MDS scoring schemes, a reference range was 

required to define normal antigenic expression. Identification of antigen expression in control 

cases would permit both the visualisation of normal expression and construction of a 

numerical reference range. This would then allow the identification of antigen under- and 

over-expression. Numerically this was defined as above or below 2 standard deviations from 

the mean of the control cases. For defining a reference range, the bone marrow aspirate 

from 6 patients with normal full blood count parameters who were referred for lymphoma 

staging was acquired. 5 of the 6 patients were found to have a bone marrow uninvolved by 

malignancy. One patient showed focal bone marrow involvement by Hodgkin lymphoma, but 

no morphological features of myeloid dysplasia. This latter patient was excluded from 

construction of the reference range. The patient was, however, retained for further analysis 

to determine whether features of flow cytometric dysplasia-related abnormalities were 

present in other haematological malignancies. The values obtained from the remaining 5 

control patients were subsequently used to denote whether antigen expression was within 2 

standard deviations of the mean of the reference range. 

6.2.2 Patients referred for the investigation of cytopenia 

The remaining 44 patients were referred for the evaluation of cytopenia. Two patients 

presented with a non-MDS haematological malignancy. One patient was diagnosed with 

AML, whilst the other patient returned a diagnosis of a B-lymphoproliferative disorder. 

Analogous to the Hodgkin lymphoma patient, these patients were retained for analysis. 

A diagnosis of MDS was returned in 13 patients. Nine patients demonstrated dysplastic 

changes albeit insufficient for a diagnosis of MDS. A further two patients were reported as 

suspicious of malignancy but not diagnostic. These 11 patients were labelled as equivocal 

for classification purposes. The remaining 18 patients were considered pathological controls 

and labelled as Reactive. 

All non-diagnostic patients were re-investigated for a subsequent diagnosis of myeloid 

malignancy, with a minimum follow up of 29 months. Similarly to previous chapters, one 

patient was subsequently diagnosed with RCMD, and another with CMML. Both patients had 

previously been labelled as equivocal. The durations between non-diagnostic and diagnostic 

samples were 7 and 9 months, respectively. One patient labelled as equivocal was 

subsequently found to have PNH clones present in the peripheral blood. Two further patients 
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labelled as Reactive were subsequently found to have PNH clones present in the peripheral 

blood. 

6.3 How successfully does each flow cytometry scoring scheme 

classify cases against conventional diagnostic criteria? 

6.3.1 Ogata FCM Scoring scheme 

When compared to the initial diagnoses, the FCM had a sensitivity of 0.62. For calculating 

specificity, the 5 control samples and the 3 haematological malignancy cases (Hodgkin, B-

LPD, and AML) were excluded. This resulted in a cohort of 29 cases with an initial non-MDS 

diagnosis. 21 of these 29 patients had an FCM score of less than 2 (specificity = 0.72). 

When the two equivocal patients with subsequent MDS diagnoses were included with the 

MDS group, the sensitivity increased to 0.67 and the specificity increased to 0.78. 

All of the normal control samples were correctly classified, although UPN2 had a perturbed 

granulocyte side scatter ratio and UPN16 had a perturbed CD34+ myeloid precursor CD45 

ratio. 8 out of the 13 MDS patients had a score >2 and were classified as suggestive of 

MDS. 4 of the 18 Reactive cases were classified as suggestive of MDS. 4 equivocal patients 

were classified as suggestive of MDS. Included in this equivocal group were the two patients 

who progressed to RCMD and CMML, who both had scores of 2. The AML patient was 

classified as suggestive of MDS, whilst both the Hodgkin lymphoma patient and the B-LPD 

patient had a negative FCM score. 

When compared to the initial diagnoses, the FCM had a sensitivity of 0.62. For calculating 

specificity, the 5 control samples and the 3 haematological malignancy cases (Hodgkin, B-

LPD, and AML) were excluded. This resulted in a cohort of 29 cases with an initial non-MDS 

diagnosis. 21 of these 29 patients had an FCM score of less than 2 (specificity = 0.72). 

When the two equivocal patients with subsequent MDS diagnoses were included with the 

MDS group, the sensitivity increased to 0.67 and the specificity increased to 0.78.   

6.3.2 Wells FCSS Scoring scheme 

The Flow Cytometric Scoring System (FCSS) utilises some of the attributes found in the 

Ogata score and contains numerous additional attributes (Wells et al., 2003). This scoring 

scheme was formulated in a prognostic setting for MDS patients, but has subsequently been 

used in a diagnostic setting (Chu et al., 2011). Due to its origins in a prognostic setting, and 

to the number of attributes assessed, overall scores are partitioned into 3 groups: 

normal/mild (0 or 1 points), moderate (2 or 3 points), and severe (4 points and above). 
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All of the 5 normal control patients were classified as normal/mild, with 3 of the 5 having 

scores of 1 point. All 13 MDS patients were classified as either moderate (3 patients) or 

severe (10 patients). 10 of the 18 Reactive controls were classified as moderate with the 

remaining 8 patients classified as normal/mild. Only one of the 11 equivocal patients was 

classified as normal/mild, the remainder were classified as moderate (5 patients) or severe 

(5 patients). In this group, the patient who progressed to RCMD was classified as severe, 

and the patient who progressed to CMML was classified as moderate. The AML patient was 

classified as severe, the Hodgkin lymphoma patient as normal/mild, and the patient with B-

LPD as moderate. 

A diagnostic flow score of 2 or above applied to initial diagnoses, excluding the normal 

control samples and other haematological malignancies, resulted in a sensitivity of 1 and 

specificity of 0.31. When the two patients with subsequent diagnoses of MDS were included 

in the MDS group, the sensitivity remained at 1, whilst the specificity increased to 0.33. 

6.3.3 A1DE 

The A1DE classifier belongs to the class of Aggregating One Dependence Estimators, a 

naive-Bayes-like classifier which has a reduced dependence upon the assumption of 

attribute independence (Webb et al., 2005). This classifier was chosen for further testing on 

a validation cohort due to its overall performance in the previous results chapter. 

All of the normal control samples were correctly classified as non-MDS with high predictive 

probabilities of 0.99 or higher. 8 of the 13 MDS patients were predicted as MDS. 14 of the 18 

Reactive controls were classified as non-MDS, with the remaining 4 classified as MDS. The 

4 misclassified cases had predictive probabilities of 0.821 and above. 8 out of the 11 

patients in the equivocal group were classified as MDS. The two patients who progressed to 

RCMD and CMML both were classified as MDS. The A1DE classified the AML patient as 

MDS, whilst both the Hodgkin lymphoma and B-LPD patients were classified as non-MDS. 

Classification with the A1DE classifier according to the initial diagnosis, excluding the normal 

control samples and the other haematological malignancies, resulted in a sensitivity of 0.62 

and specificity of 0.59. When the two patients with subsequent diagnoses of MDS were 

included in the MDS group, the sensitivity increased to 0.67, whilst the specificity increased 

to 0.63. 
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6.3.4 Ensemble learning (majority voting) classification scheme 

As each classifier predicted class on the basis of both exclusive attributes and by 

interpreting common attributes differently, an ensemble learning (majority voting) 

classification scheme was adopted. Class prediction was defined as two or more of the 

classifiers predicting the class. This ensemble learning approach was then compared to the 

morphological diagnosis. 

Using this ensemble learning approach, all the normal control samples were classified as 

non-MDS. Sensitivity over both the Ogata and A1DE classifiers were improved upon for the 

diagnosis of MDS with 9 out of 13 MDS cases now classified as MDS. 14 of the 18 Reactive 

controls were classified as non-MDS, with the remaining 4 classified as MDS.  8 out of the 

11 patients in the equivocal group were classified as MDS. The two patients who progressed 

to RCMD and CMML were both classified as MDS. The AML patient was classified as MDS, 

whilst both the Hodgkin lymphoma and B-LPD patients were classified as non-MDS. 

Classification using ensemble learning, according to the initial diagnosis, resulted in a 

sensitivity of 0.69 and specificity of 0.59. When the two patients with subsequent diagnoses 

of MDS were included in the MDS group, the sensitivity increased to 0.73, whilst the 

specificity increased to 0.63. 

The combined performances of each classifier compared to conventional morphological 

diagnosis and to class label is shown in Table 6.1. 

Overall, the performance of the three classifiers decreased from expected or published 

sensitivities and specificities, with two of the classifiers (FCM and A1DE) misclassifying over 

a third of the MDS group, whilst the other (FCSS) misclassified over two-thirds of the 

Reactive group. As the antibody panel contained the majority of the attributes recommended 

for flow cytometry dysplasia assessment according to ELN guidelines and contained 

antibodies used in other scoring schemes, an evaluation of these could be undertaken to 

determine whether performance could be improved over the A1DE, FCM, and FCSS.  
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Patient 
Number  

Diagnosis Class Progression  
Ogata 
Score 

Ogata Score 
interpretation 

Wells 
Score 

Wells Score 
Interpretation 

A1DE 
prediction 

A1DE 
Prediction 
probability 

Ensemble 
Learning 
Meta-Vote 

UPN1 AML NOS Other   3 MDS 5 severe MDS 1 3 

UPN2 Normal Control Normal    1 
negative FCM 
score 

1 normal/mild Control 1 0 

UPN3 RCMD MDS   2 MDS 7 severe MDS 1 3 

UPN4 
No evidence of 
disease 

Reactive    0 
negative FCM 
score 

0 normal/mild Control 0.555 0 

UPN5 See comments Equivocal   1 
negative FCM 
score 

3 moderate MDS 0.994 2 

UPN6 See comments Equivocal Yes - PNH 3 MDS 4 severe MDS 0.984 3 

UPN7 Normal Control Normal    0 
negative FCM 
score 

0 normal/mild Control 0.99 0 

UPN8 RCMD MDS   2 MDS 4 severe Control 0.979 2 

UPN9 
Reactive changes 
only 

Reactive    1 
negative FCM 
score 

1 normal/mild Control 0.997 0 

UPN10 Normal Control Normal    0 
negative FCM 
score 

0 normal/mild Control 1 0 

UPN11 RCMD MDS   2 MDS 9 severe MDS 1 3 

UPN12 
Classical Hodgkin 
lymphoma 

Other   1 
negative FCM 
score 

1 normal/mild Control 0.999 0 

UPN13 
Suspicious of 
malignancy but 
not diagnostic  

Equivocal Yes – RCMD 2 MDS 4 severe MDS 0.916 3 

UPN14 See comments Equivocal Yes - CMML 2 MDS 3 moderate MDS 0.988 3 

UPN15 
Reactive changes 
only 

Reactive    1 
negative FCM 
score 

3 moderate Control 0.999 1 

UPN16 Normal Control Normal    1 
negative FCM 
score 

1 normal/mild Control 0.999 0 

UPN17 
Reactive changes 
only 

Reactive  Yes - PNH 1 
negative FCM 
score 

3 moderate Control 0.828 1 

UPN18 See comments Equivocal   0 
negative FCM 
score 

3 moderate MDS 0.561 2 
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UPN19 RCMD MDS   1 
negative FCM 
score 

2 moderate MDS 0.684 2 

UPN20 Normal Control Normal    0 
negative FCM 
score 

1 normal/mild Control 0.999 0 

UPN21 RCMD MDS   1 
negative FCM 
score 

4 severe Control 0.792 1 

UPN22 RCMD MDS    1 
negative FCM 
score 

3 moderate Control 0.797 1 

UPN23 RCMD MDS   1 
negative FCM 
score 

4 severe Control 0.981 1 

UPN24 
Reactive changes 
only 

Reactive    2 MDS 1 normal/mild Control 1 1 

UPN25 See comments Reactive    2 MDS 3 moderate MDS 1 3 

UPN26 RCMD MDS   3 MDS 5 severe MDS 0.923 3 

UPN27 
CD5-negative B-
cell LPD NOS 

Other   1 
negative FCM 
score 

2 moderate Control 1 1 

UPN28 
Reactive changes 
only 

Reactive    1 
negative FCM 
score 

2 moderate MDS 0.98 2 

UPN29 
Anaemia of 
Chronic Disease 

Reactive    0 
negative FCM 
score 

2 moderate Control 0.993 1 

UPN30 RCMD MDS   3 MDS 2 moderate MDS 0.577 3 

UPN31 
Suspicious of 
malignancy but 
not diagnostic  

Equivocal   1 
negative FCM 
score 

2 moderate Control 0.999 1 

UPN32 
Reactive changes 
only 

Equivocal   0 
negative FCM 
score 

1 normal/mild MDS 0.693 1 

UPN33 See comments Reactive  Yes - PNH 1 
negative FCM 
score 

1 normal/mild Control 0.992 0 

UPN34 
Reactive changes 
only 

Reactive    0 
negative FCM 
score 

2 moderate Control 1 1 

UPN35 
Reactive changes 
only 

Reactive    0 
negative FCM 
score 

0 normal/mild Control 1 0 

UPN36 
Reactive changes 
only 

Reactive    0 
negative FCM 
score 

0 normal/mild Control 0.931 0 

UPN37 See comments Equivocal   2 MDS 4 severe Control 1 2 
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UPN38 See comments Equivocal   1 
negative FCM 
score 

5 severe MDS 0.998 2 

UPN39 
Reactive changes 
only 

Reactive    2 MDS 3 moderate Control 0.999 2 

UPN40 
Reactive changes 
only 

Reactive    2 MDS 3 moderate MDS 1 3 

UPN41 
Reactive changes 
only 

Reactive    0 
negative FCM 
score 

1 normal/mild Control 0.99 0 

UPN42 
Reactive changes 
only 

Reactive    1 
negative FCM 
score 

1 normal/mild MDS 0.821 0 

UPN43 
Reactive changes 
only 

Reactive    1 
negative FCM 
score 

3 moderate Control 1 1 

UPN44 See comments Equivocal   1 
negative FCM 
score 

5 severe Control 0.785 1 

UPN45 
No evidence of 
disease 

Reactive    0 
negative FCM 
score 

3 moderate Control 1 1 

UPN46 RAEB MDS   4 MDS 9 severe MDS 1 3 

UPN47 RAEB MDS   3 MDS 6 severe MDS 1 3 

UPN48 RARS MDS   1 
negative FCM 
score 

4 severe Control 0.683 1 

UPN49 RCMD MDS   2 MDS 6 severe MDS 1 3 

UPN50 See comments Equivocal   1 
negative FCM 
score 

2 moderate MDS 1 2 

Table 6.1. Classifier performance versus initial diagnosis. 

The 50 patients were labelled as MDS, Reactive, Other, Equivocal, or Normal control and the diagnosis and label was compared 

against the Ogata FCM, the Wells FCSS, the A1DE classifier, and the ensemble learning scheme. Progression refers to patients who 

had an initial non-diagnostic bone marrow but who were subsequently diagnosed with a malignancy.
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6.3.5 Comparison against other reported flow cytometry abnormalities 

and evaluation against ELN recommendations 

Other flow cytometric abnormalities have been reported and two notable reports show 

diagnostic utility in distinguishing MDS from other cytopenic conditions. Decreased CD38 

expression on CD34 expressing progenitor cells has been shown to have high sensitivity 

and specificity for MDS (Goardon et al., 2009). Whilst the RED score is a three parameter 

scoring scheme using CD36 CV, CD71 CV and haemoglobin level to evaluate erythroid 

dysplasia (Mathis et al., 2013). 

6.3.5.1 Use of CD38 expression to distinguish MDS from cytopenic patients  

 

Figure 6.1. Box and whisker plots showing the CD38 Median fluorescent intensity on 
CD34+ myeloid progenitors. 

The groups were labelled as described in Table 6.1.   

From the box and whisker plot, there appeared to be good discrimination between the MDS 

group and the other groups. However, when a reference range was created using the normal 

controls, no MDS patient had a CD38 MFI below the bottom of the reference range (Mean+/-

2SD). 
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For discriminating between MDS and other cytopenias, Goardon et al. used a cut-off value 

for CD38 MFI (Goardon et al., 2009). However, for that study, CD38 was used as a PE-Cy5 

fluorochrome and the MFI was calculated as a ratio to isotype control. As the CD38 

fluorochrome used for this results chapter was PerCP-Cy5-5, and no isotype control was 

used, a new cut-off for CD38 was required. To prevent overfitting, the cut-off was determined 

using the training set of MDS and Reactive control groups used in Chapter 5. For the ROC 

curve analysis itself, the shortest Euclidean distance to (0,1) was used to determine the cut-

point Figure 6.2. This gave a CD38 MFI cut-off of 8263. When this cut-off value was applied 

to the training set, it resulted in a sensitivity of 0.71 and a specificity of 0.79. For this 

validation cohort, when applied to the initial diagnosis, this cut-off resulted in a sensitivity of 

0.46 and a specificity of 0.86. When the two patients with a subsequent MDS diagnosis were 

included in the MDS class the sensitivity decreased to 0.4 and the specificity decreased 

slightly to 0.85. 

 

Figure 6.2. ROC curve analysis for CD38 MFI on CD34 

The cut-off for CD38 MFI was determined on the training cohort by the shortest 

Euclidean distance to (0,1), as shown by the double-headed arrow. 



176 
 

6.3.5.2 RED score and evaluation of erythroid dysplasia  

Due to an absence of FBC data, a formal comparison to the RED score could not be 

undertaken. However, a phenotypic comparison using CD36 and CD71 was undertaken to 

determine the prevalence of erythroid dysplasia in this cohort. Using published CV cut-offs of 

65% for CD36 and 80% for CD71, 1 MDS case had an abnormal CD36 and abnormal CD71, 

no patients had an abnormal CD71 alone, and 8 cases had an abnormal CD36 alone. Of the 

8 cases with an abnormal CD36 alone, 6 were MDS cases, 1 case was a patient 

subsequently demonstrated to have PNH clones and the remaining case was the patient in 

the Other class who was diagnosed with AML.  

However, the CD71 antibody for this results chapter was a different fluorochrome (and 

possibly a different clone; this detail was absent in the publication) to that published (Mathis 

et al., 2013). It was unclear whether published cut-offs would be valid when using different 

antibodies and a different flow cytometer. Unlike CD38 expression, CD71 expression could 

not be assessed in the training cohort and an independent cut-off could not be determined. 

Therefore, an approach using an upper limit of 2 SD above the mean of the control samples 

was adopted. This resulted in CV cut-offs for this cohort of 63% and 67%, for CD36 and 

CD71 respectively. When these new CV cut-offs were applied, 2 patients had abnormal 

CD36 and CD71 and both patients were diagnosed with RCMD. 5 patients had an abnormal 

CD71 alone and all belonged to the Reactive class. 10 patients had an abnormal CD36 

alone. 6 patients were MDS cases, 1 patient was in the equivocal class and subsequently 

demonstrated to have PNH clones, 2 patients were in the Reactive class and the remaining 

case was the patient in the Other class who was diagnosed with AML. Table 6.2 shows the 

results of the assessment of CD38, and of the erythroid antigens CD36 and CD71 per 

patient. 

 

 

  



177 
 

Patient Number  Class CD38MFI on CD34 Erythroid CD36CV Erythroid CD71 CV 

UPN1 Other abnormal abnormal normal 

UPN2 Normal  normal normal normal 

UPN3 MDS abnormal abnormal abnormal 

UPN4 Reactive  normal normal abnormal 

UPN5 Equivocal normal normal normal 

UPN6 Equivocal abnormal abnormal normal 

UPN7 Normal  normal normal normal 

UPN8 MDS normal normal normal 

UPN9 Reactive  normal normal normal 

UPN10 Normal  normal normal normal 

UPN11 MDS abnormal abnormal abnormal 

UPN12 Other normal normal normal 

UPN13 Equivocal normal normal normal 

UPN14 Equivocal normal normal normal 

UPN15 Reactive  normal normal normal 

UPN16 Normal  normal normal normal 

UPN17 Reactive  normal normal abnormal 

UPN18 Equivocal normal normal normal 

UPN19 MDS abnormal abnormal normal 

UPN20 Normal  normal normal normal 

UPN21 MDS normal normal normal 

UPN22 MDS  normal normal normal 

UPN23 MDS normal normal normal 

UPN24 Reactive  normal normal normal 

UPN25 Reactive  abnormal abnormal normal 

UPN26 MDS abnormal abnormal normal 

UPN27 Other normal normal normal 

UPN28 Reactive  normal abnormal normal 

UPN29 Reactive  normal normal abnormal 

UPN30 MDS normal abnormal normal 

UPN31 Equivocal normal normal normal 

UPN32 Equivocal normal normal normal 

UPN33 Reactive  normal normal normal 

UPN34 Reactive  normal normal abnormal 

UPN35 Reactive  abnormal normal normal 

UPN36 Reactive  normal normal normal 

UPN37 Equivocal normal normal normal 

UPN38 Equivocal normal normal normal 
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UPN39 Reactive  normal normal normal 

UPN40 Reactive  abnormal normal normal 

UPN41 Reactive  normal normal abnormal 

UPN42 Reactive  normal normal normal 

UPN43 Reactive  normal normal normal 

UPN44 Equivocal normal normal normal 

UPN45 Reactive  normal normal normal 

UPN46 MDS abnormal abnormal normal 

UPN47 MDS abnormal normal normal 

UPN48 MDS normal abnormal normal 

UPN49 MDS normal abnormal normal 

UPN50 Equivocal normal normal normal 

Table 6.2. Assessment of CD38 and erythroid-related flow cytometric aberrant 
phenotypic features. 

A reduction in CD38 expression on CD34+ myeloid cells and decreased CD36 CV and 

CD71 CV on erythroid cells was defined as abnormal.  

 

6.3.5.3 ELN recommendations 

Although in itself not a scoring scheme, the European LeukemiaNet MDS Flow Cytometry 

Working Group has produced recommended minimal requirements for evaluation of 

dysplasia in MDS (Westers et al., 2012). These recommendations are a mixture of 31 visual 

aberrancies and numerical attributes, and include the 4 Ogata FCM attributes and several of 

the Wells FCSS attributes. The antibody panel used in this results chapter allowed 

assessment of 28 of the 31 ELN recommended attributes. The 3 non-assessable attributes 

were: the relationship of CD15 and CD10 on maturing neutrophils; the relationship of CD36 

and CD14 on monocytes; and the relationship of CD71 and CD235a in the erythroid 

compartment. 

As the attributes of the ELN recommendations have not been incorporated into a single 

scoring system, it was hypothesized that summing the total number of aberrancies may be 

able to distinguish between MDS from other non-MDS cytopenias. Although the normal 

control samples scored low for the number of phenotypic aberrancies (median = 1), there 

was overlap between the MDS (median = 9) and equivocal (median = 6) and Reactive 

(median = 5) groups, as seen in Figure 6.3.  
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Figure 6.3. The number of ELN phenotypic aberrancies per class. 

A total of 28 of the ELN recommended phenotypic aberrancies were assessed to 

attempt to discriminate between the MDS and the other classes. 

Although the number of phenotypic aberrancies did not appear to distinguish MDS from the 

other classes, it was hypothesized that there may be a phenotypic signature (or signatures) 

of aberrancies which could identify MDS cases. If such signatures were present, these 

could, potentially, identify cases with non-dysplastic morphology which were at risk of 

progression to MDS. To evaluate this further, unsupervised hierarchical clustering was 

performed and a heatmap generated to determine whether signatures were apparent (Figure 

6.4). The clustering showed that MDS cases did not group as a distinct cluster and multiple 

clusters composed of MDS, reactive, and ambiguous cases existed. The 5 normal control 

cases were found to cluster together, and these cases were hierarchically distinct from the 

MDS cases. Therefore, whilst the number of ELN abnormalities was effective at 

distinguishing Normal from MDS, this approach failed to separate the Reactive or Equivocal 

groups from the MDS group. 
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Figure 6.4. Unsupervised hierarchical clustering using the presence of ELN 
recommended flow cytometric abnormalities. 

The normal control samples cluster towards the right of the heatmap with cases in 

which there is a low number, or absence, of abnormalities. The ELN abnormalities are 

ordered as encountered in table 1 of the ELN recommendations (Westers et al., 2012). 

The colour red denotes attribute abnormality, whilst white indicates no abnormality. 

Average linkage was used as the clustering distance metric and clustering was 

performed on samples but not flow attributes. 

6.4 Comparison of flow classifiers to targeted sequence analysis 

of MDS-related driver mutations 

The presence of a clonal genetic abnormality provides an alternative indicator of abnormality 

within bone marrow haematopoietic cells. Furthermore, it is less subject to observer bias 

than conventional morphology. Therefore, to determine if flow cytometry correlated with an 

underlying MDS-related driver mutation, or if a combination of flow cytometry and presence 

of mutations better identified MDS cases, targeted sequence analysis of annotated driver 

mutations was performed on 41 cases: 12 MDS cases, 17 Reactive cases, and 11 equivocal 

cases. Sequence analysis was not performed on the 5 normal control patients, the Hodgkin 

lymphoma and B-LPD patients, and UPN8 (MDS class) and UPN25 (Reactive class). 
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6.4.1 Does initial diagnosis correlate with the presence of a driver 

mutation? 

In the first instance, a comparison of the presence of annotated driver mutation against 

conventional morphological diagnosis was performed. An annotated mutation was identified 

in 23/41 cases (56%) with a median of 2 annotated mutations per patient (range 1-7).  All 12 

MDS patients that were tested showed at least 1 annotated driver mutation with a median of 

2 (range 1-7). The AML patient demonstrated 5 annotated mutations. 

14 of the 17 Reactive patients had no mutations. Three Reactive patients demonstrated at 

least one mutation. UPN40 had 3 annotated mutations, whilst UPN42 had 2 annotated 

mutations. The remaining Reactive case (UPN 43) had an ASXL1 mutation (4189G>A) 

which has been reported as both a driver mutation and a SNP. For comparative purposes, 

this was considered to be a driver mutation. 

7 of the 11 equivocal cases demonstrated at least 1 annotated mutation (range 1-5, median 

of 2). One equivocal patient (UPN32) showed an ASXL1 variant of undetermined 

significance. This was not considered to be a driver mutation. The remaining three equivocal 

patients showed no mutations. The patient who subsequently progressed to RCMD did not 

demonstrate any mutation, whilst the patient who progressed to CMML showed two 

mutations in the TET2 gene and a mutation in ZRSR2. All annotated mutations and variants 

of undetermined significance for each patient in this cohort are shown in Appendix Table 6.1.  

6.4.2 Comparison of flow classifiers versus presence of mutation 

To evaluate whether abnormalities detected by flow cytometry correlated with the presence 

of driver mutations, the performance of each of the flow classifiers was determined for the 

presence (n=23) or absence (n=18) of a driver mutation. For the purposes of performance 

evaluation, the original class for each case was disregarded. Instead, cases with the 

presence of a mutation were considered to be the disease (MDS) class, and cases with an 

absence of mutation to be the control class. 

11 patients with annotated mutations had an FCM score of 2 or higher, resulting in a 

sensitivity of 0.48. The specificity of the FCM was 0.78 with 14 out of 18 patients without an 

annotated mutation having an FCM score of 0 or 1. 

For the FCSS score, 22 patients with annotated mutations were classified as moderate or 

severe (FCSS score of 2 or above). This resulted in a sensitivity of 0.96. The specificity of 

the FCSS was 0.44. 8 out of 18 patients without an annotated mutation were classified as 

normal/mild by the FCSS. 
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16 out of 23 patients with annotated mutations were classified as MDS by the A1DE 

classifier (0.70 sensitivity). This classifier had a specificity of 0.78 with 14 out of 18 patients 

without an annotated mutation predicted to be non-MDS. 

Using the ensemble learning approach, 15 out of 23 cases with annotated mutations were 

classified as MDS, resulting in a sensitivity of 0.65. The specificity was 0.72 with 13 cases 

without annotated mutations classified as non-MDS. The 8 cases with an annotated mutation 

who were not classified as MDS demonstrated either 1 (n=4) or 2 (n=4) annotated 

mutations. Although, these cases did not have a ensemble learning classification of MDS by 

virtue of scoring less than 2, all 8 cases were classified as MDS by either the FCSS ( n=7) or 

the A1DE classifier (n=1). 

Figure 6.5 shows the results of each scoring scheme/classifier versus presence or absence 

of annotated mutation, and the number of mutations, for each class. 
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Figure 6.5. Number of annotated mutations versus flow cytometry classifier score/prediction per class label.  

Jitter has been added to the x-axis to allow visualisation of all cases. 
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6.4.3 Does the number of flow abnormalities correlate with the number 

of annotated mutations 

It was noted that 3 of the 5 of MDS cases with the highest Wells FCSS score were also 

amongst the top 5 cases with the highest number of annotated mutations. It was 

hypothesized that the number of flow abnormalities might correlate with number of annotated 

mutations. To assess this, an exploratory analysis comparing the number of ELN 

recommended flow cytometry abnormalities to the number of annotated mutations was 

performed as shown in Figure 6.6. 

 

Figure 6.6. The number of annotated mutations versus the number of ELN flow 
cytometry aberrancies per class. 

Jitter has been added to both the x-axis and y-axis to allow visualisation of all cases. 

The two cases with the most annotated mutations also had the two highest numbers of flow 

abnormalities. With the exception of one case (UPN31), all cases with an annotated 

mutation had 4 or more flow cytometric aberrancies present. The equivocal case (UPN31) 

with an annotated mutation but only 1 flow cytometric aberrancy demonstrated an SRSF2 

mutation (284C>T) with an allelic burden of 9.74%. 
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6.4.4 Does the presence of specific mutations give rise to phenotypic 

signatures? 

To evaluate whether the presence of mutation in a specific gene correlated with a specific 

flow abnormality, a visual analysis of these features per patient was performed (Figure 6.7). 

The plot demonstrated heterogenetity of both flow aberrancies and, to a lesser extent, 

genetic mutations. No obvious visual pattern was evident. However, it is known that the 

presence of a mutation in SF3B1 correlates strongly with the presence of ring sideroblasts 

(Papaemmanuil et al., 2011). Furthermore, an increase in the CV of CD36 or CD71 on 

erythroid cells correlates with the presence of morphological dyserythropoiesis (Mathis et al., 

2013). Therefore, it was hypothesized that patients with SF3B1 may have a specific pattern 

of aberrant flow cytometric erythroid attributes and this was examined further. 

An identical, annotated SF3B1 mutation was found in 4 out of the 12 tested MDS cases 

(UPN5, UPN23, UPN26, and UPN48). One case (UPN5) demonstrated a second annotated 

SF3B1 mutation. The erythroid flow cytometric phenotypic features for these cases were 

compared to determine if there was a phenotypic signature common to cases with an SF3B1 

mutation (Table 6.3). Although there were common features in all cases (the CD71CV, the 

percentage of erythroid cells, and the percentage of erythroid cells expressing CD117), there 

were inter-group differences with respect to CD36 MFI and CD71 MFI, and no specific 

signature was present in these 4 cases. 
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Figure 6.7. Presence of driver mutations and presence of flow cytometry aberrancies per patient. 

The patients are grouped by diagnostic category. A blue square denotes the presence of an annotated gene mutation whilst a red 

square denotes the presence of a flow cytometric abnormality. 
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UPN CDS VAF (%) Protein Consequence CD36 CV CD71 CV 

% nucleated 

erythroid 

cells 

CD36 MFI CD71 MFI %CD117
+
 

UPN5
*
 

2098A>G 

1998G>C 

40.31 

6.74 

Lys700Glu 

Lys666Asn 

Missense variant normal normal normal abnormal normal normal 

UPN23
** 

2098A>G 45.09 Lys700Glu Missense variant normal normal normal abnormal normal normal 

UPN26 2098A>G 28.63 Lys700Glu Missense variant abnormal normal normal normal normal normal 

UPN48 2098A>G 48.15 Lys700Glu Missense variant abnormal normal normal abnormal abnormal normal 

Table 6.3. Comparison of the presence of SF3B1 mutations to the presence of flow cytometric erythroid abnormalities 

CDS is coding sequence. VAF is variant allelic fraction. *UPN5 demonstrated a co-existing TET2 annotated mutation in addition to the 

two SF3B1 mutations. **UPN23 demonstrated a co-existing DNMT3A mutation. 
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6.5 Discussion 

6.5.1 Defining a typical sample cohort and adequate control samples 

The specific sample requirements (cellular material less than 24 hours old) to allow 

comparison using ELN recommendations placed an artificial restriction on the cases which 

could be evaluated. The concern was that these restrictions could have resulted in a non-

representative cohort of referred samples for the investigation of cytopenia, as many 

samples in referral practice of the host laboratory will be processed with delay of over 24 

hours in routine practice. The proportion of MDS cases within this cohort (13 patients out of 

42 cases – 31%) is slightly higher than the proportion in the first results chapter and the 

figures reported in the literature (Beloosesky et al., 2000; Kwok et al., 2015). This increase 

may reflect the better certainty when assessing a cellular specimen or is possibly just a 

chance increase. 

One reason for the requirement for testing within 24 hours of aspiration is due to an 

alteration in both granulocyte scatter characteristics and expression of CD11b with 

increasing age of sample. Side scatter is a key component of the FCM, whilst examination of 

CD11b patterns of expression is a key component of the FCSS. However, in the setting of a 

diagnostic referral centre, a sample may be referred from an external source and be older 

than 24 hours. This renders the routine use of the FCM or the FCSS to be problematic in the 

diagnostic setting of HMDS, which is representative of practice across the NHS. 

Although all the samples in this cohort were less than 24 hours old, it also appeared that the 

availability of a cellular bone marrow sample less than 24 hours old does not preclude 

morphological uncertainty and 11 cases produced an equivocal diagnostic result. Somewhat 

unsurprisingly, and as discussed in previous results chapters, a proportion of non-diagnostic 

cases (in this cohort 2 out of the 11 equivocal cases) progressed to MDS. 

The lack of recommendations for producing reference ranges for normal bone marrow 

attributes is a difficulty with respect to the flow cytometric experimental procedure which is 

not widely discussed. However, the methodology used for the previous results chapters 

negated the requirement for a pre-determined reference range.  

ELN recommendations currently do not specify the number of control patients required to 

determine a reference range for normal expression of antigens. In published MDS flow 

cytometry studies, the number (and percentage) of normal control cases, independent of 

pathological controls, varies widely and numerous studies lack inclusion of normal controls 

(summarised in the ELN recommendations (Westers et al., 2012)). A figure of 120 instances 

has been cited as the number required for creating a reference interval (Jones and Barker, 
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2008). This number could theoretically double, if separate reference intervals were required 

for males and females. This may be unfeasible if normal controls are required, especially 

when considering the invasive procedure for obtaining a bone marrow aspirate biopsy. This 

may be further restricted by a potential requirement to obtain age and gender matched 

controls specific to the MDS. 

One difficulty arises from what constitutes a normal control group to determine reference 

ranges for antigen over- and under-expression. An advantage of using a numerical range 

lies in the ability to define whether antigen expression is within 2 standard deviations from 

the mean of the control population. An alternative approach is to use a visual “deviation from 

normal pattern” approach to define antigen over- and under-expression. This approach was 

adopted by Wells et al. for the FCSS (Wells et al., 2003). 

6.5.2 Evaluation of flow classifier performance 

The cohort in this study differed from those in published flow cytometric studies of MDS by 

virtue of the initial diagnostic classification. As summarised by Westers et al. cases used in 

published flow cytometry scoring scheme studies are either MDS, so-called pathological 

controls/Reactive cases, and frequently but not always, control samples (Westers et al., 

2012). The number of cases in these studies is predominantly skewed towards MDS relative 

to pathological controls, a feature inconsistent with findings in a diagnostic setting, where the 

reverse is generally the case. In previous studies ambiguous or equivocal cases have 

frequently not been included or addressed. Whilst, understandably, well-defined populations 

are required when training a classifier, testing of performance on an unseen, real-world, 

validation cohort including ambiguous cases is desirable. However this comes with the 

caveat that the ambiguous nature of the cases, precludes a definite conclusion in the 

absence of prolonged follow up to determine the biological course of disease. 

In the cohort in this results chapter, 11 equivocal cases were present. Although this 

accurately portrayed a real world scenario, it presented a challenge as to how best to 

compare classifier performances as these cases fall into a “grey zone” between MDS and 

Reactive cases. These cases were given the label equivocal as they did not have a 

confirmed diagnosis of MDS. Interestingly, two cases progressed to RCMD and CMML, 

which underlined the value of follow up and repeat assessments in such instances. Classifier 

performance as judged by the sensitivity and specificity was calculated twice by including 

these two cases firstly in the non-MDS class and then in the MDS class. 

The use of a single attribute, CD38 MFI expression on CD34+ myeloid cells, to discriminate 

between MDS and Reactive cases was conceptually similar to the use of the OneR classifier 

(Holte, 1993). Like most classification schemes, the sensitivity of classification using this 
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attribute dropped between the training set and the validation cohort, with a resultant 

sensitivity of under 0.5. Furthermore, use of CD38 did not classify the two equivocal cases 

which progressed to RCMD and CMML as MDS. However, the specificity of this method was 

found to be high (>0.85). Overall, the results of this classifier served as a baseline to indicate 

whether more complex classifiers allowed improved sensitivity through increased complexity. 

When compared to the initial morphological diagnosis, the 3 classifiers (FCM, FCSS, and 

A1DE) all showed better sensitivities than the use of CD38 alone. FCM and A1DE had 

identical sensitivities of 0.62 whilst the FCSS had a sensitivity of 1. Unlike the use of CD38, 

all 3 classifiers classified the two equivocal cases, which progressed to RCMD and CMML, 

as MDS. Again, this highlights the use of flow cytometry in cases with equivocal morphology. 

However, in contrast to the use of CD38, they all demonstrated lower specificities with the 

FCM showing the highest specificity. This would indicate that the A1DE was the worst 

performing classifier with its performance decreasing considerable from the training set. 

However, in routine practice, there are drawbacks to the use of the FCM and FCSS, and 

advantages of using the A1DE classifier. Firstly, both the FCM and the FCSS use attributes 

which are time sensitive and which should be tested within 24 hours (side scatter and 

CD11b, respectively). Neither attribute is used in the A1DE classifier, therefore age of 

sample is not an issue. Secondly, the FCSS requires a visual interpretation of antigen 

differentiation patterns. This approach requires prior experience of antigenic differentiation 

patterns and may not be suitable for laboratories with little or no previous experience. 

Furthermore, unlike the morphological diagnoses of MDS, where the problems of inter-

observer variability have been widely reported, there has been no formal evaluation of inter-

observer variability in recognising visual aberrancies using flow cytometric antigenic 

differentiation patterns.  Thirdly, unlike the FCM and FCSS, the A1DE classifier outputs a 

prediction probability, which allows the user to make a judgment upon the confidence of 

classification. Finally, although the FCSS did not misclassify any MDS case per se, its 

specificity was found to be low (0.31). When assessing the sensitivity and specificity 

together, it could be seen that the FCSS was over-classifying the majority of cases as MDS. 

To dilute this effect of over-classification by FCSS and, as A1DE and FCM differed in the 

classification of 2 MDS cases (UPN8 and UPN19), an ensemble learning/majority-vote 

approach was implemented. When this ensemble learning approach was compared to initial 

diagnosis, the sensitivity and specificity were 0.69 and 0.59, respectively. The sensitivity was 

improved over both FCM and A1DE and the specificity was improved over FCSS. Following 

reclassification of the RCMD and CMML cases, the sensitivity and specificity improved 

further to 0.73 and 0.63, respectively. However, the implementation of this ensemble 
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learning in a routine setting may not be practical. Moreover, this approach still misclassified 

over a quarter of MDS cases and over a third of Reactive cases. 

6.5.3 ELN recommendations 

The ELN recommended minimal requirements to assess flow cytometric dysplasia consist of 

31 different attributes generated from a mixture of published studies (Westers et al., 2012). 

Multiple haematopoietic cells and lineages are evaluated and analyses consist of evaluation 

of numerical, phenotypic and visual features. Like the FCM and FCSS, assessment of side 

scatter and CD11b, and evaluation of antigenic differentiation patterns are within these ELN 

recommendations. Therefore, this leads both to a strict requirement for rapid sample 

processing and requires a high level of user training, potentially limiting general application. 

The rationale that assessing ELN recommended flow cytometric aberrancies could improve 

on classifier performance was investigated. A “sum of aberrancies” approach was initially 

adopted. Although there was no overlap between the sum of aberrancies for normal control 

samples and for MDS cases, there was overlap between the MDS, equivocal, and Reactive 

cases. A cut-off of 11 aberrancies discriminated MDS from the other classes, but only 3 

MDS cases would be classified by this method, rendering it very insensitive. It was further 

hypothesized that the presence of specific abnormalities giving rise to an MDS phenotypic 

signature, as opposed to the sum of aberrancies, may better distinguish MDS cases. 

Unsupervised hierarchical clustering demonstrated phenotypic heterogeneity within this 

cohort of MDS cases and there was no obvious phenotypic signature, with equivocal and 

Reactive cases clustered among MDS cases. 

Currently, there are no recommendations as to how best to use the ELN attributes. A binary, 

present or absent approach culminating in a “sum of aberrancies” may not be the optimal 

technique. The weighting of attributes, as performed by machine learning classification such 

as logistic regression, may yield better discrimination or identify those cases at risk of 

progression to MDS. The ELN recommendations were generated from an array of 

publications and are comprehensive in nature. However, further studies applying attribute 

selection to large cohorts will be needed to determine which specific attributes better 

discriminate MDS from non-MDS cases, whilst allowing the removal of attributes which may 

display multicollinearity. 

6.5.4 Driver mutations and classification 

At present, there is no literature regarding a comparison, or validation, of flow cytometric 

scoring schemes against the presence of a genetic mutation. However with the routine 

application of NGS based sequencing panels for common driver mutations in routine 
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practice, this is clearly a key area for further development. In this cohort, targeted sequence 

analysis of 26 commonly mutated genes was available on 41 cases. This included 12 of the 

13 MDS cases, 17 Reactive cases, and 11 equivocal cases. This granted the opportunity to 

begin to study correlation between underlying genetic mutations and phenotypic 

aberrancies. 

Somatic mutations have previously been reported in peripheral blood cells from a large 

cohort of 17182 persons irrespective of haematological parameters (Jaiswal et al., 2014). 

The frequency of these mutations increased with age and could be found in patients without 

cytopenia. To complicate matters, these mutations occurred primarily in DNMT3A, TET2, 

and ASXL1, all genes which rank in the top 5 genes mutated in MDS (Papaemmanuil et al., 

2013). In the cohort in this results chapter, all cases which were initially diagnosed with MDS 

demonstrated at least one annotated mutation, a finding which supports the morphological 

diagnosis. Those MDS patients with mutations in DNMT3A, TET2, or ASXL1 all had 

mutations in at least one other gene. In contrast, 2 out of the 3 Reactive patients had solitary 

mutations in either TET2 (UPN42) or ASXL1 (UPN43). The third Reactive patient (UPN40) 

had a mutation in both TET2 and in SRSF2. These patients would fit the criteria for a 

diagnosis of Clonal hematopoiesis of indeterminate potential (CHIP) (Steensma et al., 2015). 

Whether the patient with two mutations is more likely to progress to, or actually be, MDS is 

difficult to predict. In MDS, poorer outcome correlates with the number of mutations 

(Papaemmanuil et al., 2013). On the other hand, SRSF2 was cited as one of the genes 

found to be mutated in the aforementioned study of 17182 individuals and a small number of 

individuals in this study (n=49) had 2 mutations (Jaiswal et al., 2014). However, given the 

finding that the presence of two mutations only occurred in 0.29% of the individuals means 

that this is a rare occurrence. Therefore, this patient should be a potential candidate for 

clinical monitoring. 

Within the equivocal group, CHIP could also be a straightforward diagnosis for 4 patients 

who have solitary mutations in either TET2 (UPN38 and UPN44), ASXL1 (UPN6), or SRSF2 

(UPN18). However, a further 4 patients within the equivocal group highlight the underlying 

problematic nature of both CHIP and MDS as diagnoses. Firstly, UPN13 subsequently 

progressed to RCMD within a relatively short timeframe (7 months). This patient did not have 

a mutation present, whilst cytogenetic karyotypic analysis demonstrated a non-diagnostic 

loss of Y, which can be found found in normal, older individuals and is associated with 

tobacco smoking (Jacobs et al., 1963; Pierre and Hoagland, 1972; Dumanski et al., 2015). It 

is possible that the patient had a mutation in the “long tail” of mutated genes, or rapidly 

developed a mutation. However, at initial referral, the patient would not fulfil the criteria for 

either a diagnosis of CHIP or MDS, therefore may be clinically overlooked. Secondly, UPN 5 
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had both a TET2 and an SF3B1 mutation, and ring sideroblasts were noted as a feature in 

the bone marrow aspirate. A diagnosis of MDS could not, however, be returned due to the 

presence of less than 15% ring sideroblasts. Therefore, although this case did not reach the 

arbitrary cut-off of 15% at diagnostic assessment, the subjective nature of this assessment 

combined with the presence of any ring sideroblasts and an SF3B1 mutation suggests that 

this case should be viewed as satisfying sufficient criteria for a diagnosis of RARS. Thirdly, 

like UPN13, UPN14 progressed to CMML within a relatively short timeframe (9 months) and 

was found to have a mutation in both TET2 and in ZRSF2, whilst a fourth patient (UPN50) 

had a ZRSF2 mutation coexisting with a TET2 and an ASXL1 mutation. ZRSF2 was not 

reported as mutated in the large cohort of 17182 persons, yet recent studies show this to be 

the 8th and 12th most mutated gene in MDS (Papaemmanuil et al., 2013; Haferlach et al., 

2014). Therefore a mutation in this gene may have clinical relevance and warrant close 

clinical monitoring.  

As an alternative to the number of mutations or specific gene involvement, it may be 

possible that a combination of flow cytometric analysis and targeted sequence could be used 

to better identify cytopenic patients with MDS or at higher risk of MDS diagnosis. It appears 

that presence of flow cytometric aberrancies and presence of mutations may not be 

absolutely correlated. Cases with up to 7 flow cytometric aberrancies were found to have 

had no mutations amongst the driver mutations tested. This may therefore reflect the use of 

a non-exhaustive panel of assessed genes in this cohort and it is possible that whole 

genome or whole exome sequencing analysis would reveal mutations in other genes. 

Alternatively, a different genetic abnormality (epigenetic 

silencing/translocation/deletion/gain/LOH/UPD) may be present to account for the presence 

of high numbers of flow cytometric aberrancies in such non-diagnostic cases. 

Conversely, cases with mutations were found to have low numbers of flow cytometric 

aberrancies. This discord between the presence of mutation and flow cytometric aberrancies 

further extends to the flow scoring schemes/classifiers. Both the FCM and the A1DE 

classifier showed only weak concordance with the presence of mutation. This should come 

as no surprise considering that both scoring schemes/classifiers were trained on a 

morphological diagnosis. The FCSS had a higher sensitivity than the FCM and A1DE in 

predicting presence of mutation, but this was at the expense of specificity. Alternatively, it 

may be the case that the presence of certain genetic mutations is an age, and not 

malignancy, related phenomenon as shown by Jaiswal et al. (Jaiswal et al., 2014). 

It was notable that no common flow cytometric aberrancy signature was evident either 

overall or, specifically, for the well-defined SF3B1 (genotype) to ring sideroblast (phenotype) 

relationship. This strengthens the argument that a genetic mutation does not necessarily 
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give rise to a specific phenotype. Indeed, it is in the ability for flow cytometry and mutation 

analysis to assess different facets of dysplasia that may be critical in evaluating patients 

presenting with cytopenia. It has already been demonstrated that flow cytometric 

aberrancies can be found in lineages unaffected by morphological dysplasia in MDS patients 

(van de Loosdrecht et al., 2008). Therefore, a combination of mutation(s) plus either flow 

cytometric aberrancies or a classifier-based MDS diagnosis increases confidence of a 

diagnosis of MDS or CHIP. The finding that not every case with a mutation has a flow 

abnormality, and vice versa, may reflect the use of a non-exhaustive technique in the results 

presented in this study. Alternatively, it may reflect normal biological heterogeneity within an 

elderly population. However, the identification of cases with both a genetic abnormality and a 

flow cytometric aberrancy would allow future, prospective studies to determine the clinical 

significance of those cases with either solely genetic mutations or solely flow aberrancies. 

In this respect, UPN13 and UPN31 are paradigms for this study. The former was classified 

as MDS by all three classifiers yet had no mutation and progressed to RCMD. The latter 

demonstrated an SRSF2 mutation and evidence of dyserythropoiesis, albeit insufficient for a 

diagnosis of MDS, but was not classified as MDS by any flow cytometry classifier. Long-term 

clinical monitoring of patients such as these using a combination of flow cytometry and 

molecular techniques is essential for two reasons. Firstly, to identify flow cytometric or 

genetic features genuinely associated with a clinically progressive cytopenia. These features 

would, hopefully, be distinct from those flow cytometric aberrancies found in Reactive 

patients who do not progress, or distinct from those mutations found as part of aging 

process. Secondly, to confirm the finding that accumulation of additional genetic mutations is 

associated with progression to MDS (Cargo et al., 2015). This could be further extended to 

discover the relationships between the accumulation of mutations and the development of 

additional flow cytometric abnormalities. 
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7 General Discussion 

7.1 The accurate diagnosis of MDS and the inherent difficulties 

therein 

Theoretically, a diagnosis of MDS should be straightforward. A textbook example would 

usually exhibit hallmark features such as the presence of cytopenia, multi-lineage 

morphological dysplasia in the bone marrow, and a clonal cytogenetic abnormality. However, 

this scenario belies the complexities involved in diagnosing a heterogeneous disorder which 

has been divided into arbitrary categories based, in the main, on subjective morphological 

interpretation. Indeed, even in the presence of classical MDS features, interpretation varies 

from user-to-user and a consistent classification in accordance with WHO criteria may not be 

achieved. Furthermore, there is also a corresponding, two-fold challenge when assessing 

patients referred for the investigation of cytopenia which is to neither over-diagnose MDS, 

which would abrogate other diagnostic investigations, nor to under-diagnose MDS, thereby 

restricting access to therapies such as erythropoietin stimulating agents. 

Data presented here shows that less than a quarter of patients referred for the investigation 

of cytopenia are diagnosed with MDS, with the majority having a non-diagnostic bone 

marrow. This, in itself, may not be a detrimental finding as cases may be referred to exclude 

a diagnosis of MDS, as opposed to being referred to due to suspicion of MDS. However, a 

constant theme running through this work has been the finding that patients can be 

investigated for the presence of cytopenia months and even years before the development 

of overt morphological signs of dysplasia. Due to the number of cases referred for 

investigation, it is implausible to attempt to monitor all these patients and, therefore, different 

methods to diagnosis MDS or to identify patients at risk of MDS are desirable. 

7.2 Classification studies based on simple attributes and the 

identification of immunophenotypic features 

Published flow cytometric scoring schemes for the identification of MDS vary from simple 4-

parameter schemes to complex scoring schemes involving over 40 different user-defined 

attributes (Wells et al., 2003; Ogata et al., 2009; Matarraz et al., 2010). Both possess 

advantages and weaknesses. A simple scoring scheme will be easy to interpret and 

implement, but may lack sensitivity and, if it includes the evaluation of an attribute which is 
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time critical, may not be applicable in certain, routine diagnostic setting. It was hypothesized 

that, due to the finding of significant differences in age and sex ratio between MDS patients 

and non-diagnostic patients, demographic attributes and the use of a logistic regression 

model classifier-based approach could improve this sensitivity. However, this approach 

ultimately suffered the same weakness as other schemes in its lack of sensitivity. 

Yet an advantage of the logistic regression model over other schemes was in the calculation 

of a mathematical probability for class membership. Firstly, this can aid in the confidence of 

a diagnosis of MDS, or in the exclusion of MDS.  The class probability feature also has a 

further advantage due to its potential application in the triage of cases for a second, more 

comprehensive method of evaluating MDS. For example, flow cytometric evaluation of 

dysplasia according to ELN guidelines involves the assessment of 18 antigens on 5 different 

haematopoietic populations to produce a total of 31 different attributes which can be 

evaluated. Due to cost and labour required to perform this evaluation, it may be appropriate 

to exclude those cytopenia patients with a very low probability of MDS from analysis. 

Therefore, there is the potential for patients who have a very low probability for MDS using a 

logistic-regression model based classifier to be excluded from a subsequent comprehensive 

technique, allowing resources to be better focused. 

The use of a classifier-based approach also hinted at a solution for some of the issues 

surrounding the use of multi-attribute, complex scoring schemes, with regards to the number 

of assessable attributes, redundancy of attributes, the weighting of attributes and 

incorporation of novel attributes. In some respects, the technique of immunophenoptyping 

overcomes the inherent subjectivity associated with morphological assessment but, in its 

own way, it has merely shifted subjectivity to the construction of scoring schemes based on 

user-defined attributes. The discovery of the coefficient of variation as an important 

discriminatory feature in the diagnosis of MDS is a case in point. Attempting to incorporate 

one or two CV attributes into a pre-existing scoring scheme may be achievable, as shown by 

Mathis et al. in attempting to amalgamate the REDDS score and the FCM (Mathis et al., 

2013). However, use of the CV potentially doubles the number of antigenic attributes which 

are evaluable in any flow cytometric panel and, although methods such as Bonferroni and 

the FDR help to restrict the number of significant attributes, a two-tube, 8-colour flow 

cytometry panel can still yield a large amount of biological data. In this context, machine 

learning classifiers can aid in handling the data whilst providing a tool to standardise the 

approach to classification. 

Machine learning classification produces its own series of challenges including classifier 

evaluation and choice of classifier. For the purposes of this study, a voting system based on 

numerous evaluable metrics of multiple classifiers tested on the training set was used to 
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produce a best overall classifier (A1DE) for further performance evaluation. Although 

defining the best classifier for further evaluation depends upon both the composition of the 

underlying dataset, and the ultimate requirement of the classifier. 

As multiple classifiers were tested on the training set, the feature that each classifier differs 

in its method of determining class membership could be exploited in a classifier meta-vote 

scheme to produce an overall confidence in classification. This multi-classifier, meta-vote 

approach has already been adopted in the machine learning classification of subsets in 

Diffuse Large B-cell Lymphoma using gene expression array studies (Care et al., 2013). This 

has subsequently been applied in a routine practice setting in the context of a phase-3 

clinical trial, demonstrating the potential for usage of machine learning classifier based tools 

in clinical practice. 

Furthermore, the evaluation of multiple classifiers on the training set also allowed an insight 

into the underlying cases as there was repeated misclassification by different classifiers of a 

number of MDS cases. This implies that there was little difference in the population 

percentages or in immunophenotypic features between the Reactive control group and these 

cases, at least for the attributes evaluated. The expectation would be that these cases would 

have a good prognosis due to the presence of features indistinguishable from the control 

group. This would be analogous to the reported better prognosis of patients with mild flow 

cytometry abnormalities (Alhan et al., 2014). Furthermore such cases will be interesting to 

explore in future work aimed at assessing whether there are consistent molecular features 

that may co-segregate with these “hard to classify” MDS cases. 

There are two additional benefits to the use of machine learning classifiers over user-defined 

scoring schemes. The first is the ability to perform cost sensitive analysis. For this study, it 

was deemed that a false negative (misclassification of MDS as Reactive) had a higher 

associated cost. However, it could be argued that, due to the lack of viable treatment options 

for low-grade MDS that labelling a patient with a false diagnosis of MDS is equally, or more, 

costly. Secondly, is the use of 10-fold cross validation to try and give an indication of any 

potential overfitting to the data. 

Unfortunately, although a decrease in classifier performance was expected, it appeared that 

overfitting of the A1DE classifier to the training set did occur. This could be seen when the 

classifier was tested on the independent test set and the performance metrics decreased 

more than 10-fold cross validation had suggested. Overfitting is a well described 

phenomenon when assessing the performance of a classifier which is trained using a large 

number of attributes relative to the sample size. This problem of overfitting could be 

improved by the use of more patient samples thereby training a classifier to generalise the 
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data better. Alternatively, the number of attributes for classifier training could be reduced. 

This could be performed by manual selection or by the use of statistical attribute selection 

algorithms (of which numerous are available with the WEKA software). However, another 

independent dataset would be required to evaluate the effects of attribute selection, 

otherwise overfitting can again occur. An alternative approach to attribute selection is to 

choose those attributes which are correlated with overall survival of MDS patients for 

inclusion in a diagnostic panel. This approach is one recently reported by Alhan et al., albeit 

for inclusion in a prognostic flow cytometry panel (Alhan et al., 2015). 

Two other reasons for the decreased classifier performance on the test set may be related to 

the control groups. Firstly the panel was design on the basis of attributes identified as 

significantly different in comparison to a normal control group. It may be the case that 

performance would have improved for attributes identified by comparison against a Reactive 

control group, although this is an extension of the aforementioned attribute selection 

process. Secondly, there was an assumption that all patients in the Reactive group did not 

have MDS nor did they receive a diagnosis of MDS in the 13 month follow-up timeframe. 

This may be an erroneous assumption which was dependent upon patients re-presenting to 

HMDS with a diagnosis MDS. It is entirely feasible that the control group in this study may 

have contained patients who have already progressed or will progress to MDS, thereby 

potentially including patients with immunophenotypic abnormalities in the control group and 

reducing classification accuracy. Therefore, due to the problems of progression to MDS in 

cytopenic patients, a cohort of age and sex-matched cytopenic patients who underwent flow 

cytometric testing and on whom there was long-term follow-up data would represent the 

ideal control group,  

7.3 Combining molecular studies with immunophenotyping 

The use of contemporary molecular methods to evaluate genetic mutations in patients within 

an MDS group and within a control group, or a non-diagnostic group, may offer an 

alternative approach, due to a high proportion of MDS harbouring genetic mutations. 

Although the use of targeted gene mutation analysis or whole genome or exome sequencing 

is not without interpretative problems as mutations have been reported in normal individuals, 

whilst cytopenic patients appear more inclined to demonstrate  mutations (Jaiswal et al., 

2014; Kwok et al., 2015). Therefore, there is still ambiguity surrounding the significance of 

gene mutations in the absence of morphological dysplasia. 

Although it appears that currently there is much interest in the use of genetic mutation 

analysis in MDS and that this may well be overtaking the use of flow cytometry in this field, in 
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a diagnostic setting the two would be complementary, with immunophenotypic studies 

adding credence to any finding of a genetic mutation. A patient with an absence of 

morphological dysplasia but the presence of a gene mutation (or mutations) with a flow 

cytometry classifier indicative of MDS would, at least, suggest close clinical monitoring, if not 

raise the strong suspicion of MDS. In this respect, case UPN14 in Chapter 6 is the paradigm 

as this patient demonstrated a mutation in both the TET2 and the ZRSR2 genes and was 

classified as MDS by all the flow scoring schemes. However, this patient did not have 

morphological features of MDS nor, importantly, a peripheral blood monocytosis and was 

reported as non-diagnostic. Yet, 9 months later, the patient presented with a confirmed 

diagnosis of CMML.    

Ultimately, this combination of immunophenotyping and NGS could give rise to a new 

classification scheme which dispenses with morphological based diagnoses and which 

classify on the basis of the biological features of the disease i.e. cytopenia with flow 

cytometric aberrancies in the erythroid and progenitors cells with a mutation in ASXL1, or 

monocytosis with flow cytometric aberrancies in the granulocytic and monocytic lineages and 

a TET2 mutation. This approach would be less subjective than morphological methods and 

such a multi-faceted approach to diagnosis would be a fitting tribute to what is a multi-

faceted disease.   

7.4 Further studies 

The issues of classifier overfitting and attribute selection appear to be linked and it is 

possible that they can both be solved with the acquisition of more cases. DNA would be 

stored for these cases so that targeted gene mutation sequence analysis using the panel 

described in Chapter 6 could be performed. Furthermore, as DNA has not been stored on 

the cases in the training set, it is proposed that DNA is extracted from bone marrow aspirate 

smears on these patients so that targeted gene mutation sequence can be performed and 

classifier training can re-occur in the context of the genetic mutation results. There are also 

currently plans to liaise with HMRN to try to obtain outcome data on those patients within the 

training and test sets who reside within the HMRN network. This should aid in any future 

classifier training.  

Although the development of a machine learning classifier removes subjectivity regarding 

flow scoring schemes and can easily incorporate newly discovered attributes, it is unclear 

whether this approach would work on a multi-centre scale. All analyses were performed on a 

single cytometer, before attribute values were standardised, therefore it is unknown if 

different machines, antibody clones, and fluorochrome preferences between laboratories 
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may restrict this approach. Standardisation, not harmonisation, of flow cytometry protocols 

across centres could overcome a hurdle in the general applicability of a classifier based 

approach, as standardisation would for any MDS scoring scheme. However, so far, only the 

Euroflow panel offers this level of standardisation. Therefore, in the first instance, attempts 

will be made to evaluated attributes on in-house cytometers to determine whether any 

cytometer-to-cytometer variability affects classifier performance.  

In summary, in this thesis an in-depth exploration of flow cytometric approaches to the 

diagnosis of MDS has led to the following conclusions: 

 Flow cytometry can be used to reproducibly identify cases with a definite abnormal 

pattern in MDS or with a normal pattern in reactive and normal marrow states. 

 A significant “grey zone” exists of cases that cannot be confidently classified by 

multiple different approaches using flow cytometry. 

 Machine learning approaches fail to enhance sensitivity of MDS detection but provide 

the basis for applying confidence scores which would be of value in sample triage. 

 The integration of flow cytometry and targeted gene mutation analysis provides the 

potential to identify cases which progress to dysplastic states prior to the emergence 

of confidently identifiable morphological dysplasia. 
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8 List of abbreviations 

AML - Acute myeloid 

APC - Allophycocyanin 

AUROC - Area under the receiver operating curve 

BSA - Bovine serum albumin 

CD - Cluster of differentiation 

CDS - Coding sequence 

CHIP - Clonal haematopoeisis of indeteminate potential 

CLL-1 - C-type lectin-like molecule 1 

CLL - Chronic lymphocytic leukaemia 

CML - Chronic myeloid leukaemia 

CMML - Chronic myelomonocytic leukaemia 

CMP - Common myeloid progenitor 

CN - LOH  -  Copy neutral loss of heterozygosity 

CS&T - Cytometer Setup & Tracking beads 

CV - Coefficient of variation 

Cy - Cyanine 

DLBCL - Diffuse large B - cell lymphoma 

DNA - Deoxyribonucleic acid 

EDTA - Ethylenediaminetetraacetic acid  

ELN - European Leukemia Net 

FAB - French - American - British 

FBC - Full blood count 

FCM - Flow cytometry score 

FCS - Flow cytometry standard 

FCSS - Flow cytometry scoring system 

FDR - False discovery rate 

FITC - Fluorescein isothiocyanate 

FSC - Forward scatter 

G-CSF - Granulocyte colony-stimulating factor  

GMP - Granulocyte/macrophage progenitor 

HILIS -  HMDS Integrated Laboratory Information System 

HLA-DR - Human leukocytye antigen-DR 

HMDS - Haematological Malignancy Diagnostic Service 
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HMRN - Haematological Malignancy Research Network 

HSC - Haematopoietic stem cell 

ICDO - International Classification of Diseases for Oncology 

ICUS - Idiopathic cytopenia of undetermined significance 

IDUS - Idiopathic dysplasia of uncertain significance  

IPSS -  International Prognostic Scoring System 

IPSS-R - Revised International Prognostic Scoring System 

IS - Immunophenotypic score 

ITP - Idiopathic thrombocytopenia purpura 

IWG - International Working Group 

LOH - Loss of heterozygosity 

LPD - Lymphoproliferative disorder 

MBL - Monoclonal B-cell lymphocytosis 

MCC - Matthews Correlation Coefficient 

MDS - Myelodysplastic syndrome 

MEP - Mmegakaryocytic/erythroid progenitor 

MDS-U - Myelodysplastic syndrome unclassified 

MFI - Median fluorescent intensity  

MGUS - Monoclonal gammopathy of undetermined significance 

MLP - Multilymphoid progenitor  

MPN - Myeloproliferative neoplasm 

MPP - Multipotent progenitor 

NICE - National Institute for Clinical Excellence 

NOD-SCID - Non-obese diabetic severe combined immunodeficient 

OS - Overall survival 

pDC - Plasmacytoid dendritic cells 

PE - Phycoerythrin 

PerCp - Peridinin chlorophyll protein complex 

PMT - Photomultiplier tube 

PNH - Paroxysmal nocturnal haemoglobinuria 

Q-Q plot - Qunatile-Quantile plot 

RAEB-F - Refractory anaemia with excess blasts with fibrosis 

RAEB - Refractory anaemia with excess blasts 

RAEB-T - Refractory anaemia with excess blasts ‘in transformation’ 

RA - Refractory anaemia 

RARS - Refractory anaemia with ring sideroblasts 
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RARS-T - Refractory anaemia with ring sideroblasts with thrombocytosis 

RCMD - Refractory cytopenia with multilineage dysplasia 

RCMD-RS - Refractory cytopenia with multilineage dysplasia with ringed sideroblasts 

RCUD - Refractory cytopenia with unilineage dysplasia 

RN - Refractory Neutropenia 

ROC - Receiver operating characteristics 

RT - Refractory Thrombocytopenia 

SCS - Progenitor cell screening tube 

SD - Standard Deviation 

SM-AHNMD - Systemic mastocytosis with associated clonal haematological non-mast cell 

lineage disease 

SNP - Single nucleotide polymorphism 

SQL - Structured Query Language 

SSCP - Single Strand Conformational Polymorphism 

SSC - Side scatter 

UPD - Uniparental disomy 

VAF - Variant Allelic Fraction 

WHO - World Health Organisation 

WPSS - WHO - based scoring system 

 



231 
 

9 Appendices 

  



232 
 

Antigen Conjugate Clone Supplier Product 
code 

Dilution 

CD2 FITC S5.2 BD Biosciences 347404 None 

CD2 APC S5.2 BD Biosciences 341024 None 

CD3 FITC UCHT1 BD Pharmingen 555332 None 

CD3 PE-Cy7 SK7 BD Biosciences 341111 1 in 2 

CD4 FITC QS4120 In-house In-house None 

CD4 APC-Cy7 RPA-T4 BD Pharmingen 557871 None 

CD5 PerCp-Cy5.5 L17F12 BD Biosciences 341109 None 

CD5 APC L17F12 BD Biosciences 345783 None 

CD7 FITC M-T701 BD Biosciences 332773 None 

CD7 PE M-T701 BD Biosciences 332774 None 

CD9 FITC M-L13 BD Biosciences 341646 None 

CD10 APC HI10A BD Biosciences 332777 None 

CD11a FITC G-25.2 BD Biosciences 347983 None 

CD11b APC D12 BD Biosciences 333143 None 

CD13 PE L138 BD Biosciences 347406 None 

CD14 FITC* MDP9 BD Biosciences 333179 None 

CD15 FITC C3D-1 Dako F0830 1 in 5 

CD15 APC HI98 BD Pharmingen 551376 None 

CD16 FITC NKP15 BD Biosciences 347523/335035 None 

CD18 FITC L130 BD Biosciences 347953 None 

CD19 PE SJ25C1 BD Biosciences 345789 None 

CD19 PerCp-Cy5.5 SJ25C1 BD Biosciences 332780 1 in 2 

CD19 BV421 HIB19 Biolegend 302234 1 in 5 

CD22 APC S-HCL-1 BD Biosciences 333145 None 

CD24 FITC ML5 BD Pharmingen 555427 None 

CD25 APC 2A3 BD Biosciences 340907 None 

CD28 APC CD28.2 BD Pharmingen 559770 None 

CD33 APC P67,6 BD Biosciences 345800 None 

CD33 APC WM53 BD Pharmingen 551378 None 

CD34 PerCp-Cy5.5 8G12 BD Biosciences 347222 1 in 5 

CD34 APC 8G12 BD Biosciences 345804 1 in 10 

CD36 FITC CLB-IVC7 Sanquin M1613 None 

CD38 PerCp-Cy5.5 HIT2 BD Pharmingen 551400 1 in 10 

CD38 APC-H7 HB7 BD Biosciences Custom 
conjugate 

1 in 5 

CD42b PE AN51 Dako R7014 None 

CD43 PE L10 Caltag MHCD4304 None 

CD43 APC L10 Invitrogen MHCD4305 None 

CD45 APC-Cy7 2D1 BD Biosciences 348815 1 in 2 

CD45 APC-H7 2D1 BD Biosciences 641417 1 in 2 

CD45 Pacific 
Orange 

HI30 Invitrogen MHCD4530 1 in 5 

CD45 V500 HI30 BD Horizon 560777 1 in 4 

CD45RA FITC L48 BD Biosciences 335039 None 

CD45RA PE ALB11 Beckman Coulter PNIM1834U None 

CD45RO FITC UCHL1 eBiosciences 11-0457-41 None 

CD45RO APC UCHL1 BD Biosciences 340438 None 

CD48 FITC TU145 BD Pharmingen 555759 None 

CD49d FITC 44H6 Serotec MCA923F None 

CD56 PE-Cy7 335826 BD Biosciences NCAM16.2 1 in 10 

CD56 APC B159 BD Pharmingen 555518 None 



233 
 

CD59 FITC P282 (H19) BD Pharmingen 555763 None 

CD61 FITC Y2/51 Dako F0803 None 

CD62L PE SK11 BD Biosciences 341012 None 

CD64 FITC 10.1 BD Pharmingen 555527 None 

CD64 PE* MD22 BD Biosciences 333179 None 

CD71 FITC L01.1 BD Biosciences 333151 1 in 2 

CD71 APC M-A712 BD Pharmingen 551374 1 in 5 

CD75 FITC LN1 BD Pharmingen 555654 None 

CD81 FITC JS-81 BD Pharmingen 551108 None 

CD82 PE 50F11 BD Pharmingen 555908 None 

CD84 PE 2G7 BD Pharmingen 559589 None 

CD84 PE CD84.1.21 Biolegend 326007 None 

CD86 PE 2331 (FUN-
1) 

BD Pharmingen 555658 None 

CD90 FITC Thy1/310 Immunotech 1839 None 

CD95 PE DX2 BD Pharmingen 555674 None 

CD105 PE 1G2 Beckman Coulter A07414 None 

CD106 PE 51-10C9 BD Pharmingen 555647 None 

CD117 PE 104D2 BD Biosciences 332785 None 

CD117 PC7 104D2D1 Beckman Coulter IM3698 1 in 10 

CD122 PE TU27 BD Biosciences 340254 None 

CD123 FITC AC145 Miltenyi- Biotec 130-090-897 None 

CD123 PE AC145 Miltenyi- Biotec 130-090-899 None 

CD123 APC AC145 Miltenyi- Biotec 130-090-901 None 

CD133 PE AC133 Miltenyi-Biotec 130-080-801 None 

CD133 PE 293C3 Miltenyi-Biotec 130-090-853 None 

CD150 PE A12 BD Pharmingen 559592 None 

CD154 PE TRAP1 BD Pharmingen 555700 None 

CD163 PE GHI/61 BD Pharmingen 556018 None 

CD203c PE 97A6 Beckman Coulter IM3575 None 

CD300e/ APC UP-H2 Immunostep IREM2A-
100T 

None 

IREM2 

CCR1 PE 53504 R&D Systems FAB145P None 

CXCR4 PE 12G5 BD Pharmingen 555974 None 

CXCR5 APC 51505 R&D Systems FAB190A None 

HLA-DR APC-Cy7 L243 BD Biosciences 335831 1 in 10 

HLA-DR Pacific Blue L243 Biolegend 307624 1 in 50 

Appendix Table 2.1. Details of antibodies used in immunophenotyping studies 

*CD14 and CD64 in combination as an BD OncomarkTM reagent 

Reagent Manufacturer Comments 

Ammonium Chloride Sigma Aldrich 8.6 g/l in distilled H2O 

FACSFlow BD Biosciences  

Bovine Serum Albumin Sigma Aldrich 0.3% in FACSFlow 

Simply Cellular anti-Mouse 
Silica 

Bangs Laboratories, Inc.  

Appendix Table 2.2. Details of reagents used in immunophenotyping studies



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD34 1019 10440 4488 951 8420 4088.5 0.635486 0.85044052 

CD117 2159 20867 12192 3405 7676 6131.5 0.007229 0.126758939 

CD38 180 3707 1498 1471 3032 1697 0.484088 0.795873426 

HLA.DR 312 18797 5939 1467 8351 3482.5 0.354723 0.688163462 

CD45 660 2447 1294 998 1489 1264.5 1 1 

CD13 698 24861 5518 636 3497 1957.5 0.001985 0.071917916 

CD71 519 5821 1853 898 3836 1720.5 0.946011 0.983436591 

CD105 309 2398 833 500 1072 776 0.874452 0.966630402 

CD36 51 6512 257 138 570 203 0.770404 0.930806906 

CD95 317 2682 929 620 2329 821 0.957687 0.988906502 

CD33 47 10249 2436 53 978 634 0.015762 0.152895823 

CD45RA 37 1130 271 149 538 222.5 0.60361 0.843851151 

CD45RO 39 4086 382 53 1243 870.5 0.512642 0.797027382 

CD43 9381 79905 22453 5880 23836 17021.5 0.055029 0.272526844 

CD133 285 2795 621 382 1414 550.5 0.542224 0.797027382 

CD62L 191 3786 594 243 4891 1001.5 0.734922 0.916573092 

CD123 225 2536 1156 96 1393 645.5 0.048132 0.25236986 

CD59 2305 21062 7139 5565 16807 10364 0.151999 0.453657975 

CD84 178 7477 2075 1209 3097 1770 0.831933 0.954999867 

CD18 256 2263 727 459 944 592 0.366534 0.703463308 

CD49d 1140 3969 2035 1506 2421 1798 0.844504 0.95556308 

CD11a 225 2030 690 165 1377 549 0.404519 0.716682686 

CD81 2437 9042 6386 3956 6284 5384 0.404519 0.716682686 

Appendix Table 4.1. Statistical analysis of the antigen expression for the MFI for CD34+ progenitors for the MDS and the normal groups.  

  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 
VALUE 

CD34 40.1 103.8 54.4 48.4 70.3 58 0.484088 0.795873426 

CD117 46.4 154.4 76.3 86.4 129.2 108.8 0.022619 0.195027183 

CD38 39 146.4 65.1 57.8 89.9 68.3 0.619442 0.843851151 

HLA.DR 54.6 101.8 82.9 80.7 103.6 94.4 0.04697 0.249650989 

CD45 22 52.3 41.1 33.4 43.6 37.95 0.512684 0.797027382 

CD13 57.7 139.3 108.7 121.5 129.3 124.1 0.005496 0.122889817 

CD71 50.4 123.8 85.1 84.4 113.3 101.6 0.009437 0.128631245 

CD105 51.1 128.1 67.5 69.9 87.9 81.6 0.060842 0.282922122 

CD36 49.4 188.6 92.3 91 120.7 103.2 0.426127 0.744761959 

CD95 41.8 86.9 65.5 53.1 125.1 61.3 0.457614 0.768633151 

CD33 38.7 305.7 113.9 115.6 274.8 128.3 0.033818 0.220462702 

CD45RA 27.3 263.4 85.8 82.1 109.1 101.8 0.142321 0.446101482 

CD45RO 55.4 371.7 124.9 103.7 274.8 140.2 0.231566 0.552507194 

CD43 32.5 97.8 52.6 57.4 78.3 65.4 0.042182 0.23381105 

CD133 49.7 150.2 81.4 97.3 126.5 110.85 0.074551 0.302330372 

CD62L 72.9 142.9 103.1 102.7 138 118.1 0.015725 0.152895823 

CD123 46.7 152.2 95 117.5 198.2 119.95 0.002285 0.072469761 

CD59 32.9 98.5 42.6 37 48.8 39.5 0.395812 0.714800675 

CD84 52.2 123.2 87 90 120.7 109.7 0.006813 0.126758939 

CD18 47.4 114.7 80.6 73.1 104.4 93.05 0.028559 0.213095815 

CD49d 35 87.2 56 54.5 78.2 68.1 0.069638 0.302330372 

CD11a 40.3 118.5 72.7 74.3 114.8 95.8 0.062392 0.2848027 

CD81 39.8 70.4 54.8 47.3 62.7 56.4 0.96087 0.988906502 

Appendix Table 4.2. Statistical analysis of the antigen expression for the CV for CD34+ progenitors for the MDS and the normal groups.  

 



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD34 2793 14090 7943 1159 10766 5185.5 0.15789 0.453787863 

CD117 2677 16920 8372 3597 8325 5443 0.039019 0.225959137 

HLA.DR 546 10853 3372 766 3386 1946.5 0.054966 0.272526844 

CD45 1080 2872 1498 1165 2039 1433 0.913467 0.981817505 

CD13 1428 44104 6069 1585 7560 2994 0.11946 0.396157551 

CD71 398 2794 1070 550 1483 831.5 0.447005 0.76742497 

CD105 467 2752 874 438 1048 694 0.23211 0.552507194 

CD95 278 1457 650 368 3270 690 1 1 

CD33 231 7079 1388 121 1153 671 0.085293 0.315178383 

CD45RA 88 2074 165 106 264 152.5 0.218117 0.535628254 

CD45RO 58 4217 951 76 1923 1232 0.63783 0.85044052 

CD43 6628 67615 14954 2366 14949 8792.5 0.039019 0.225959137 

CD133 468 3296 1323 888 3589 1107 0.538175 0.797027382 

CD62L 185 5117 622 278 7931 1831 0.491455 0.796003165 

CD123 417 3540 1653 157 1378 869.5 0.052325 0.269193675 

CD59 2202 21451 11297.5 6184 18635 13268 0.526168 0.797027382 

CD84 245 2498 1047.5 389 1336 545 0.290766 0.626762163 

CD18 245 1878 682 363 914 586 0.447005 0.76742497 

CD49d 977 1631 1246 810 1287 930 0.004334 0.105108085 

CD11a 215 1844 509 135 1429 710 0.936839 0.983436591 

CD81 2218 8056 5911 3286 6360 4359 0.112999 0.384591958 

Appendix Table 4.3. Statistical analysis of the antigen expression for the MFI for CD34+ CD38- progenitors for the MDS and the normal groups.  

  



 

 MDS CV Control CV 
 

Antigen Min Max Median Min Max Median P value FDR p value 

CD34 31.2 82.9 37.6 30 43.4 35.45 0.799903 0.941898876 

CD117 45.9 131.8 67.6 58.2 76.4 69.95 0.538175 0.797027382 

HLA.DR 48.1 90.6 68.1 58.5 79.7 72.35 0.79984 0.941898876 

CD45 27.1 48.1 36.4 25.9 38.2 33.9 0.346151 0.688163462 

CD13 58.5 113.2 70.7 53.9 86 76.05 1 1 

CD71 62.6 102 75.7 69.6 105.4 91.25 0.059626 0.282922122 

CD105 40.1 81.2 56.7 52.5 66.1 54.5 0.293672 0.629529329 

CD95 34.2 69.3 52 43.7 64.9 54.2 0.717153 0.912312309 

CD33 53.1 130 86.4 35.8 98.3 89.8 0.785853 0.938187182 

CD45RA 34.6 85 69.6 57.4 111.2 69.45 0.537646 0.797027382 

CD45RO 52 235.8 98.9 86 187.9 108.75 0.799903 0.941898876 

CD43 31.1 73.8 46.6 38.9 65.9 47.7 0.491455 0.796003165 

CD133 45.4 123.2 65.1 36.8 64.3 51.3 0.15789 0.453787863 

CD62L 58.9 123.8 92.1 73.8 116.3 94.5 0.856327 0.960193236 

CD123 47.5 88.7 61.1 56.4 136 67.8 0.148454 0.446511871 

CD59 25.5 84.7 33.25 22.9 41.2 25.9 0.031151 0.220462702 

CD84 43.5 94.8 69.3 67.9 85.7 80.4 0.703584 0.897995931 

CD18 42.5 94.3 63.4 59.2 83.4 75.95 0.180316 0.492694494 

CD49d 31 66.2 48.5 40 56.5 47.3 0.842903 0.95556308 

CD11a 39.6 102.1 69.6 54.9 88.4 77.1 0.153606 0.453787863 

CD81 32.5 89.6 46.5 35.4 45.3 41.2 0.23458 0.554982117 

Appendix Table 4.4. Statistical analysis of the antigen expression for the CV for CD34+ CD38- progenitors for the MDS and the normal groups.  

  



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD34 1328 9778 4415 802 7414 3640 0.538175 0.797027382 

CD117 863 34444 11263 1948 8306 5906 0.076012 0.302330372 

CD38 1048 3125 2049 1993 3431 2256 0.690399 0.894917926 

HLA.DR 2787 19304 8560 2184 9691 5256.5 0.11946 0.396157551 

CD45 710 2340 1292 907 1386 1175 0.15789 0.453787863 

CD13 599 22852 3946 340 2425 1129 0.002652 0.072469761 

CD71 1016 7674 2442 1047 4817 2323.5 0.913495 0.981817505 

CD105 414 1565 817 533 1126 815.5 0.63783 0.85044052 

CD36 173 3051 383 244 1379 298 0.61822 0.843851151 

CD95 729 2333 1400 775 1287 968 0.057184 0.277343302 

CD33 339 10219 4494 43 900 577 0.008628 0.126758939 

CD45RA 167 1171 380 232 691 340.5 0.538175 0.797027382 

CD45RO 77 3919 275 43 1005 451 0.971115 0.99417541 

CD43 13585 57287 24012 7762 27661 21961.5 0.180316 0.492694494 

CD133 155 1131 429 207 781 336 0.261641 0.580095836 

CD62L 197 3416 631 214 2625 689 0.942248 0.983436591 

CD123 305 4961 1215 86 1404 461 0.011787 0.142918672 

CD59 2600 23800 7757 4939 15994 10114 0.526168 0.797027382 

CD84 763 9189 4042.5 2363 5135 3072 0.582765 0.838711243 

CD18 408 2435 793 385 969 599 0.076012 0.302330372 

CD49d 1693 3536 2294 1847 2754 2466 0.691947 0.894917926 

CD11a 235 2228 744 191 1323 559 0.302936 0.63879998 

CD81 2638 11920 7717 4622 7215 6202 0.383387 0.712962488 

Appendix Table 4.5. Statistical analysis of the antigen expression for the MFI for CD34+ CD38+ progenitors for the MDS and the normal groups.  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD34 43.6 97.7 56.7 49.5 66.1 56.6 0.663703 0.875907184 

CD117 55.5 160.2 93.5 87.8 144.9 132.2 0.039019 0.225959137 

CD38 37.2 55.1 46.3 34.6 47.6 39.8 0.0647 0.288933601 

HLA.DR 50 102 76.8 67 110.7 87.8 0.064787 0.288933601 

CD45 31.1 52.1 39.4 31.1 39.3 37.6 0.310478 0.64420099 

CD13 76.6 132.8 114.9 105.2 131.1 125.45 0.23211 0.552507194 

CD71 57.2 110.5 79.5 78.4 109.1 96.8 0.027186 0.213095815 

CD105 53.5 118.7 67.1 79.2 101.9 93 0.088777 0.319009549 

CD36 63.2 143.2 87.4 82 137.2 114 0.204822 0.529805412 

CD95 38.8 81.6 51.7 54 130.7 62.2 0.147319 0.446511871 

CD33 59.9 145.7 101.9 122.6 335.2 138.2 0.002802 0.072469761 

CD45RA 51.6 114.8 74.9 74.9 122.6 98 0.013774 0.148453456 

CD45RO 55 223.3 152.6 104.7 335.2 167.05 0.328233 0.65986739 

CD43 34.3 81.5 51.5 49.5 59.4 52.3 0.468794 0.780653301 

CD133 56 148.3 102 98.2 118.4 111.3 0.328233 0.65986739 

CD62L 70.3 138.2 105.5 113.2 138.8 126 0.039019 0.225959137 

CD123 80.8 162.8 106.2 134.7 215 144.5 0.007283 0.126758939 

CD59 31.5 118.5 44.9 38.7 44.7 42 0.176107 0.492678492 

CD84 45.2 107.5 71.75 58.9 104.8 84.6 0.253887 0.569411979 

CD18 51 124.3 84 71.3 116.7 95.95 0.008188 0.126758939 

CD49d 37.1 73.8 52 39.8 59.3 46.7 0.500266 0.797027382 

CD11a 55.8 127.9 72 84.2 126.4 101.4 0.068366 0.301432187 

CD81 46 92.9 53 49.4 64.4 58 0.32173 0.65986739 

Appendix Table 4.6. Statistical analysis of the antigen expression for the CV for CD34+ CD38+ progenitors for the MDS and the normal groups.  

  



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 2373 10115 4658 3092 5293 4037 0.231391 0.552507194 

CD38 347 3427 1423.5 871 2645 1404.5 0.844737 0.95556308 

HLA-DR 321 6605 674 410 919 557 0.267109 0.588853714 

CD45 948 2555 1437 948 1614 1249 0.089619 0.319009549 

CD16 398 961 632 482 802 603 0.777272 0.930806906 

CD13 443 53846 7191.5 445 22232 4081 0.248802 0.569411979 

CD14 364 883 593.5 490 731 570.5 0.844737 0.95556308 

CD64 223 5482 1368 394 3826 1106.5 0.616742 0.843851151 

CD71 1626 33938 3482.5 5122 17663 8285 0.009614 0.952956131 

CD105 344 33070 650 510 1162 739 0.306447 0.128631245 

CD36 379 29978 696.5 726 16348 1043 0.017795 0.642709972 

CD95 704 6170 2222.5 365 2683 1946 0.320314 0.16439051 

CD33 305 18475 6608.5 377 5728 1682 0.034427 0.220462702 

CD45RA 344 1326 633.5 494 791 617.5 0.965284 0.990820931 

CD45RO 139 4693 874 253 1255 577 0.144868 0.446101482 

CD43 18581 91867 43930 13962 67570 45884.5 0.616742 0.843851151 

CD62L 178 1644 441 309 701 472.5 0.37227 0.703463308 

CD4 510 2805 938.5 670 1268 835.5 0.396088 0.714800675 

CD24 448 18739 1094.5 598 1580 852.5 0.144868 0.446101482 

CD59 2448 29462 8108.5 5955 19813 9065 0.74044 0.916573092 

CD84 405 6397 2813.5 1224 8258 1995 0.858427 0.960193236 

CD18 448 1893 798 602 784 694 0.177265 0.492678492 

CD49d 532 7073 3108 2853 5431 4393 0.247014 0.569411979 

CD11a 474 5597 783.5 543 883 674 0.193812 0.515062625 

CD81 526 10292 3754.5 3043 5641 4526 0.943503 0.983436591 

CD15 88 1303 529 101 713 219 0.034991 0.220462702 

Appendix Table 4.7. Statistical analysis of the antigen expression for the MFI for total CD34-CD117+ progenitors for the MDS and the normal 

groups.  

  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 63.3 108.5 82.3 68 89 82.2 0.744125 0.916573092 

CD38 34.5 119.5 54.95 46.5 121.4 97.4 0.034799 0.220462702 

HLA-DR 35.8 116.5 75.4 58.5 107.7 78.15 0.542307 0.797027382 

CD45 21.5 99.3 38.05 34.8 84.2 55.95 0.017701 0.16439051 

CD16 31.6 69.7 43.3 37.7 68.2 46.1 0.616742 0.843851151 

CD13 85.3 146.3 109.8 126.2 160.7 141.4 0.001604 0.06915518 

CD14 30.3 62.7 39.9 33.3 65.9 43.5 0.586378 0.838711243 

CD64 59.9 140.7 92.75 119.6 153.2 133.05 0.001017 0.056615741 

CD71 41.5 141.7 67.65 49.2 118.4 76.5 0.396001 0.783681667 

CD105 34.2 142.7 47.05 45.1 105.7 78.3 0.077951 0.714800675 

CD36 31.8 145.6 50.9 52.4 143.3 79.4 0.044103 0.302330372 

CD95 29.4 89.5 39 33.7 59.3 40.7 0.683444 0.240614239 

CD33 34.3 139.9 67.95 64.7 169.2 130.8 0.020385 0.17976092 

CD45RA 30.9 70 45.25 36.7 72 42.25 0.810795 0.941898876 

CD45RO 64.4 153.7 97 103 131.5 111.45 0.081695 0.306663064 

CD43 32.3 84.5 42.25 38 56.9 43.85 0.777232 0.930806906 

CD62L 34.9 103.7 59.8 72.5 123.8 80.65 0.005701 0.122889817 

CD4 36.8 85.6 58.45 43.3 64.1 55.95 0.61671 0.843851151 

CD24 38 144.7 71.8 46.9 76.7 63.7 0.127679 0.409416612 

CD59 38.4 118.4 62.45 60.9 109.4 82.7 0.034427 0.220462702 

CD84 29.4 115.5 71.25 69.2 118.6 106.7 0.011644 0.142918672 

CD18 29.5 83.7 44.75 33.3 66.8 44.95 0.947952 0.983436591 

CD49d 32.8 87.1 45.9 43.9 77.7 53.9 0.088941 0.319009549 

CD11a 29.4 87.5 47 37.9 55.8 45.7 0.813237 0.941898876 

CD81 38.1 93.8 70.25 57 72.4 60.1 0.080388 0.305790305 

CD15 61.4 169.1 101.7 106.2 183.7 152.4 0.014218 0.149101301 

Appendix Table 4.8 Statistical analysis of the antigen expression for the CV for total CD34-CD117+ progenitors for the MDS and the normal groups.  

 
 

 

  



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 1413 5910 2591.5 2044 4012 2491.5 0.373488 0.703463308 

CD38 570 5179 2177.5 1835 3074 2030 0.628963 0.850305938 

HLADR 3638 52098 16101 6516 31696 15611.5 0.85873 0.960193236 

CD45 1502 7049 1972 1748 2561 1999.5 0.959436 0.988906502 

CD16 287 1219 538 427 859 494 1 1 

CD13 234 89646 4897 885 12580 5114.5 0.85873 0.960193236 

CD14 336 958 513.5 398 627 500.5 0.628916 0.850305938 

CD64 985 43989 10016 8533 21967 13842 0.212786 0.530999582 

CD71 770 5483 1651.5 1411 5030 1907 0.492373 0.796003165 

CD105 355 2110 661 477 1071 605.5 0.838786 0.95556308 

CD36 423 9346 807 634 1872 739 0.907958 0.981817505 

CD95 1409 5696 2442 239 2117 1816 0.007834 0.126758939 

CD33 1628 37027 11578 2060 14135 10089 0.073129 0.302330372 

CD45RA 271 2133 670 846 1102 990.5 0.297169 0.630064159 

CD43 8600 55946 23706 7898 38816 24202.5 0.74098 0.916573092 

CD62L 213 5482 912 623 5229 1710.5 0.177771 0.492678492 

CD123 291 5839 1662 931 3011 1883 0.676922 0.890324843 

CD4 431 2393 1115 840 1278 1054.5 0.818988 0.945736462 

CD24 460 5133 707 509 1380 713.5 0.740946 0.916573092 

CD59 674 22792 8069.5 3495 7463 6118 0.237923 0.559256373 

CD84 278 14299 5423 4782 19370 6666 0.193177 0.515062625 

CD18 926 12255 3840.5 3325 4961 4059.5 0.939195 0.983436591 

CD49d 2348 15844 3407 2774 4204 3418 0.933858 0.983436591 

CD86 340 8759 1202 799 2617 1046.5 0.939195 0.983436591 

CD11a 905 8267 3711 881 6794 5514 0.599153 0.843851151 

CD48 362 1304 617.5 532 691 567 0.933858 0.983436591 

CD81 780 16358 7531 6081 10308 9010 0.391119 0.714800675 

CD15 109 2472 511 399 1578 841 0.203458 0.529805412 

Appendix Table 4.9. Statistical analysis of the antigen expression for the MFI for CD34-CD117+ monocytic differentiating progenitors for the MDS 

and the normal groups.  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 40.2 90.3 58.7 52.7 74.8 66.1 0.161961 0.462065717 

CD38 33.2 109.6 38.9 31.6 50.5 38.6 0.524812 0.797027382 

HLADR 41.4 79.2 61.8 46 71.3 52.7 0.070982 0.302330372 

CD45 28.4 63.4 40.3 31.3 51.4 42.45 0.74098 0.916573092 

CD16 39.7 98.9 57.8 40.3 87.5 59.15 0.898832 0.981817505 

CD13 51.6 139.5 82.2 69.5 120.9 74.1 0.430551 0.749120432 

CD14 35.9 74.1 47.55 31.8 54.2 41.25 0.147126 0.446511871 

CD64 54.7 142.2 83 74 134.2 105.6 0.120885 0.397485765 

CD71 44 93.9 57.6 52.5 81.6 67.4 0.088362 0.319009549 

CD105 36.4 97 47.3 39.1 51.7 43.9 0.093262 0.326828787 

CD36 43.7 119.2 79.3 57.8 79.1 67.7 0.385882 0.712962488 

CD95 35.9 62.2 45.7 38.1 66 42.2 0.728664 0.916573092 

CD33 29.5 98.7 46.1 40.3 63.6 45.5 0.772516 0.930806906 

CD45RA 39.3 92.2 52.7 41.3 57.9 51.5 0.647128 0.857710706 

CD43 32.2 102.6 54 40 57.8 47.65 0.252527 0.569411979 

CD62L 52.1 128.9 78.75 69.9 120.1 92.65 0.252462 0.569411979 

CD123 49.6 124.5 82.45 71.6 96.6 79.45 0.911483 0.981817505 

CD4 49.2 99.1 57.1 50.3 58.5 54.25 0.297037 0.630064159 

CD24 41.1 136.8 56.7 48.2 81.4 61.65 0.898832 0.981817505 

CD59 36.8 87.4 59.25 56.4 81.7 67.9 0.250081 0.569411979 

CD84 32.2 86.3 51.35 36 68.7 48.5 0.585885 0.838711243 

CD18 35.5 92.8 48.35 42.9 66.7 52.85 0.72178 0.915198238 

CD49d 32.2 71.5 39.5 31.3 42.2 38.4 0.280264 0.610912239 

CD86 49.3 128.9 98.25 88 121.6 107.7 0.127047 0.409416612 

CD11a 35.5 93.3 48.9 32.4 64.8 45.1 0.391119 0.714800675 

CD48 40.9 111.5 51.4 46.8 62.6 51.9 0.933858 0.983436591 

CD81 42.4 72 60.9 48.9 76 59.7 0.506664 0.797027382 

CD15 60.4 152.1 103.6 79.2 137.4 122.5 0.385882 0.712962488 

Appendix Table 4.10. Statistical analysis of the antigen expression for the CV for CD34-CD117+ monocytic differentiating progenitors for the MDS 

and the normal groups.  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 1780 8970 4441 3397 5688 4469 0.874452 0.966630402 

CD45 345 1102 687 485 752 654.5 0.527328 0.797027382 

CD71 2628 235219 34582 4192 99104 47490 0.874452 0.966630402 

CD105 613 49527 21472 18446 31070 24336.5 0.378685 0.709805965 

CD36 580 115753 29623 24778 41011 36597 0.557725 0.813523862 

CD95 492 6438 3069.5 452 3229 2664 0.078699 0.302330372 

CD43 5685 100129 50132 12687 66281 50317.5 0.512727 0.797027382 

CD59 9257 46471 22965 13323 33060 26672 0.595725 0.843581431 

CD49d 404 10724 6312 5339 7895 7180 0.239269 0.559256373 

CD81 1372 12237 5056 3070 7475 4523 0.59256 0.84217358 

Appendix Table 4.11. Statistical analysis of the antigen expression for the MFI for CD34-CD117+ erythroid differentiating progenitors for the MDS 

and the normal groups.  

 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 60.4 100 79.7 59 83.1 75.45 0.268707 0.589030104 

CD45 23.6 44.7 33.7 25.8 35.4 31.45 0.060894 0.282922122 

CD71 16.3 136.1 89.9 36.5 113.1 67.75 0.354723 0.688163462 

CD105 33.7 128.3 50.5 30.7 38 33.55 0.000196 0.056615741 

CD36 38.9 145.2 67.35 34.9 63.4 44.3 0.010061 0.130125047 

CD95 38.2 88.3 57.6 40.8 75.6 46.4 0.052729 0.269193675 

CD43 32.1 103 43.8 33 47.9 39.25 0.078239 0.302330372 

CD59 30.3 109.4 47.4 28.8 37.4 31.2 0.000563 0.056615741 

CD49d 28.5 99.1 41.1 26.8 33.1 29.1 0.000498 0.056615741 

CD81 39.3 134.7 54.6 33 45.4 41.5 0.000654 0.056615741 

Appendix Table 4.12. Statistical analysis of the antigen expression for the CV for CD34-CD117+ erythroid differentiating progenitors for the MDS 

and the normal groups.  



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 2501 13660 4954 3041 5208 4382 0.199204 0.5222375 

CD38 617 3513 1564.5 1530 3107 1905.5 0.214863 0.530999582 

HLA-DR 314 6078 720.5 503 1539 694 0.947952 0.983436591 

CD45 1083 2902 1600.5 1285 1814 1650.5 0.542307 0.797027382 

CD13 4766 70643 10249 14215 44533 23129 0.349444 0.688163462 

CD64 382 7023 1632.5 1995 6293 2862.5 0.112183 0.384591958 

CD71 1228 9785 3085 3709 17341 7284 0.001017 0.056615741 

CD95 915 6114 2172.5 347 2439 1897 0.211798 0.530999582 

CD33 1715 18955 8208.5 963 7617 5603 0.078699 0.302330372 

CD45RO 222 5349 1253.5 491 2926 1602.5 0.810829 0.941898876 

CD43 14175 93664 44584 16640 69907 45477.5 0.647704 0.857710706 

CD4 565 2880 1215.5 938 1503 1099.5 1 1 

CD24 544 22052 1528.5 918 2216 1337.5 0.327488 0.65986739 

CD59 2032 26696 7219 4231 8852 5800 0.211798 0.530999582 

CD84 417 7726 3120.5 2482 11410 4027 0.211798 0.530999582 

CD18 437 2274 900.5 669 836 794.5 0.144831 0.446101482 

CD49d 1670 5635 3034.5 2429 3966 2878 0.868661 0.966630402 

CD11a 456 2237 819 657 927 760 0.344656 0.688163462 

CD81 514 13063 3331.5 2905 4115 3858 0.75877 0.930806906 

CD15 199 1591 833 506 1440 878 0.883052 0.973363741 

Appendix Table 4.13. Statistical analysis of the antigen expression for the MFI for CD34-CD117+ granulocytic differentiating progenitors for the 

MDS and the normal groups.  

  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD117 65.3 107.8 80.15 68.2 92.7 83.65 0.744125 0.916573092 

CD38 30.5 96.9 38.65 29.2 49.6 36.55 0.102558 0.355290488 

HLA-DR 31.8 104.2 61.75 41.7 80.1 57.75 0.947947 0.983436591 

CD45 21.1 40.6 26.9 22 31.7 26.5 0.810829 0.941898876 

CD13 47.2 139.8 89.15 63 100.8 87.05 0.420714 0.738704055 

CD64 54.5 101 68.9 64.1 89 74.05 0.446305 0.76742497 

CD71 39.9 73.7 52.7 38.8 57.6 43.85 0.02501 0.205636128 

CD95 28.8 60 31.85 28.6 49.3 29.9 0.358774 0.692558421 

CD33 31.7 102.2 42.9 38.6 59.1 42.5 0.740409 0.916573092 

CD45RO 43.4 152.2 75.15 63.9 116.2 98.2 0.157212 0.453787863 

CD43 30 77.1 38.55 35.9 51.1 38.95 0.513852 0.797027382 

CD4 36.4 74.9 52.75 52.6 57.3 54.7 0.486154 0.795898336 

CD24 40.3 144.1 78.2 57.2 75.9 64.6 0.184355 0.500208819 

CD59 35.7 99.5 49.3 42.4 55.2 47.3 0.798811 0.941898876 

CD84 29 97.2 50.45 37.5 56.5 47.2 0.574968 0.832416281 

CD18 26.7 89.4 37.45 30.5 40.1 34.7 0.19145 0.515062625 

CD49d 30.6 95.2 36.1 31.1 47.8 38.8 0.88722 0.975188236 

CD11a 27.1 76.5 38.05 31 40.7 34.5 0.142785 0.446101482 

CD81 33.3 81.4 67.25 59 78.1 74.8 0.04465 0.240614239 

CD15 48.7 132 79.6 61 74.8 68 0.169768 0.480802084 

Appendix Table 4.14. Statistical analysis of the antigen expression for the CV for CD34-CD117+ granulocytic differentiating progenitors for the MDS 

and the normal groups.  

 

 



 

 MDS MFI Control MFI  

Antigen Min Max Median Min Max Median P value FDR p value 

CD16 271 9290 606 625 2591 803 0.024983 0.205636128 

CD13 1157 22360 3353.5 972 4788 2598.5 0.327488 0.65986739 

CD11b 415 9089 3913.5 1136 8939 4180.5 0.98264 0.998073766 

CD64 386 16149 2371 1014 5138 3371 0.810829 0.941898876 

CD71 225 1016 563 319 580 455.5 0.257799 0.57486231 

CD95 1436 6158 2795.5 2442 3560 2607 0.702287 0.897995931 

CD33 1128 8418 3039.5 556 3222 2183 0.013444 0.148453456 

CD45RO 1619 16629 7394.5 1080 10704 5888 0.372314 0.703463308 

CD43 9491 73639 36578.5 13954 47245 32632 0.372314 0.703463308 

CD62L 198 22502 782.5 415 3696 1424 0.420757 0.738704055 

CD24 7580 40520 15055.5 7929 28526 13504 0.52802 0.797027382 

CD10 139 1377 322 220 473 291.5 0.777272 0.930806906 

CD59 5023 24366 10557.5 6542 12599 9262 0.459914 0.769166557 

CD18 657 3568 1729.5 1056 2671 1726 0.810829 0.941898876 

CD49d 340 1731 556.5 294 656 366 0.042157 0.23381105 

CD11a 472 2546 935 346 1202 959 0.619839 0.843851151 

CD81 229 1374 401.5 247 392 284 0.008145 0.126758939 

CD15 694 6969 3455 2496 7777 3842 0.404519 0.716682686 

Appendix Table 4.15. Statistical analysis of the antigen expression for the MFI for CD34-CD117- mature granulocyte compartment for the MDS 

and the normal groups. 

 

 

 

  



 

 MDS CV Control CV  

Antigen Min Max Median Min Max Median P value FDR p value 

CD16 41.1 142.3 93.3 92.5 133 114.85 0.055489 0.272526844 

CD13 63.2 137.6 115.65 102.3 134.5 122.8 0.061251 0.282922122 

CD11b 58.3 136.4 109.8 71.2 131 93.1 0.286101 0.62015137 

CD64 50.6 133.7 103.5 89.6 132.7 124.6 0.019897 0.179533754 

CD71 35.8 132.2 70.3 51.8 91.8 66.55 0.55686 0.813523862 

CD95 32.4 65.7 40.7 32.5 40 36.7 0.070378 0.302330372 

CD33 41 104 60.8 46.7 67 53.6 0.241063 0.560075486 

CD45RO 34.8 83.4 56.7 38.7 57.8 46.55 0.034799 0.220462702 

CD43 31.5 86.3 49.65 29.6 49.7 38.6 0.006529 0.126758939 

CD62L 52.5 144.9 110.6 91.9 140.7 125.75 0.349444 0.688163462 

CD24 42.7 101.2 66.25 47.4 81.5 66.1 0.571492 0.830482181 

CD10 54 135.3 92.45 74.6 112.3 85.65 0.52802 0.797027382 

CD59 31.9 58.1 43.2 29.4 42.5 32.1 0.002039 0.071917916 

CD18 41.6 96.5 70.95 47.2 89.3 73.65 0.777272 0.930806906 

CD49d 37.9 96.6 66.1 49.1 67.5 56.4 0.0935 0.326828787 

CD11a 32.5 98.2 39 29.7 39.9 36.4 0.072543 0.302330372 

CD81 44 115.6 63.1 39 54.4 44.4 0.001021 0.056615741 

CD15 43.9 100.1 58.6 58.3 68 60.7 0.211014 0.530999582 

Appendix Table 4.16. Statistical analysis of the antigen expression for the CV for CD34-CD117- mature granulocyte compartment for the MDS 

and the normal groups.  

  



 

  MDS MFI Control MFI  

Population Antigen Min Max Median Min Max Median P value FDR p value 

Total CD64
+
 Monocytes 

CD14 374 35937 1229 3570 16386 9738.5 0.012226783 0.143757327 

CD64 13792 59797 27581 18297 50520 29429 0.512726563 0.797027382 

CD300e 125 4545 341 317 858 500 0.028543211 0.213095815 

CD38 373 2180 1492 1104 1463 1297 0.456339753 0.768633151 

HLA-DR 1006 11721 3719 1684 5923 2731 0.701178644 0.897995931 

CD45 2241 5756 2995 2436 4495 3619 0.456339753 0.768633151 

CD64
+
CD14

-
 

Monocytes 

CD14 181 1008 379 347 535 399.5 0.354723434 0.688163462 

CD64 15269 55340 26869 20963 53533 29655 0.198225442 0.5222375 

CD300e 79 367 176 103 212 164.5 0.587962521 0.838711243 

CD38 563 3062 1844 1632 2406 1935.5 0.231566084 0.552507194 

HLA-DR 1102 27959 8812 5481 22224 11223 0.456339753 0.768633151 

CD45 1625 4617 2228 1567 3155 2399 0.981991402 0.998073766 

CD64
+
CD14

+
 

Monocytes 

CD14 2840 38111 9878 9396 28076 19227.5 0.032003011 0.220462702 

CD64 12494 62100 28534 17156 49691 29432 0.603646387 0.843851151 

CD300e 215 5281 718 853 2669 1262 0.082198347 0.306663064 

CD38 326 1910 1083 984 1191 1129 0.769162849 0.930806906 

HLA-DR 754 6385 2053 1143 4053 2113 0.701178644 0.897995931 

CD45 2809 7146 3833 2701 5299 4092 0.981991402 0.998073766 

CD64
+
CD14

+
 

CD300e
+
 Monocytes 

CD14 5119 50961 21163 15216 43013 28494.5 0.214428811 0.530999582 

CD64 11770 62467 27189 16106 48004 28286.5 0.910140172 0.981817505 

CD300e 1589 7796 3857 3750 8331 5234.5 0.015724794 0.152895823 

CD38 241 1619 938 769 1050 933 1 1 

HLA-DR 1275 12482 2671 1603 5131 2428 0.76918546 0.930806906 

CD45 3011 7967 4902 3325 6475 4730.5 0.910140172 0.981817505 

Appendix Table 4.17. Statistical analysis of the antigen expression for the MFI for the different CD64+ monocytic populations for the MDS and 

the normal groups. 

 

  

  



 

  MDS CV Control CV  

Population Antigen Min Max Median Min Max Median P value FDR p value 

Total CD64
+
 Monocytes 

CD14 45.5 145.3 124.4 126.4 143.8 137.85 0.02544 0.205636128 

CD64 29.3 51.9 37.9 29.1 40.1 35.35 0.114019 0.384690822 

CD300e 93.4 160.1 111.9 123.4 151.7 135 0.002486 0.072469761 

CD38 33 90.2 51.5 42.1 55.8 50.65 0.68446 0.891176538 

HLA-DR 72.9 119.8 104.1 88 101.1 93.55 0.074551 0.302330372 

CD45 28.2 61.9 42.3 32 53.9 45.25 0.635418 0.85044052 

CD64
+
CD14

-
 

Monocytes 

CD14 37.9 94.6 52.5 38.6 65 47.1 0.039968 0.228050418 

CD64 30 53.2 36.9 33.7 39.4 36.4 0.54198 0.797027382 

CD300e 83.9 171.6 112.7 95.4 146.1 111.9 0.946005 0.983436591 

CD38 32.7 92.1 40.5 31.4 37.2 35.1 0.013002 0.148377864 

HLA-DR 56.4 126 96.3 69.9 97.6 78.7 0.035797 0.220462702 

CD45 22.1 40.7 33.3 26.9 37.3 33.25 0.684189 0.891176538 

CD64
+
CD14

+
 

Monocytes 

CD14 51.4 118.4 97.4 70.3 103.1 93.45 0.403618 0.716682686 

CD64 26.9 56.3 39.5 28 41.2 33.55 0.035759 0.220462702 

CD300e 81.9 136.4 118.7 125.1 139.8 132.75 0.001244 0.06035471 

CD38 32.4 80.8 46.5 36.8 48 45.25 0.309746 0.64420099 

HLA-DR 44.9 100.4 76.1 69.2 88 74.9 0.512684 0.797027382 

CD45 23.8 41.9 32 25.8 40.7 35.95 0.124766 0.406798629 

CD64
+
CD14

+
 

CD300e
+
 Monocytes 

CD14 34.5 94.8 51.3 29.1 56.1 42.1 0.028559 0.213095815 

CD64 29.3 55.9 38.9 28.5 46.6 33.9 0.035797 0.220462702 

CD300e 45.7 101.2 73.1 60.9 108.2 71.35 0.512727 0.797027382 

CD38 36.5 78.2 44.9 38 49.7 39.85 0.008821 0.126758939 

HLA-DR 61.6 111.5 82.7 70.5 95.1 75.4 0.619442 0.843851151 

CD45 17.8 38.7 29 21.6 38.6 31.55 0.456294 0.768633151 

Appendix Table 4.18 Statistical analysis of the antigen expression for the CV for the different CD64+ monocytic populations for the MDS and the 

normal groups.  



 

Attribute P value 
FDR P 
value 

Bonferroni 
correction 

Attribute P value 
FDR 
P 
value 

Bonferroni 
correction 

CD34 <0.00001 0 0 
Percentage 
CD64posMonocytes 

0.5407 0.628 1 

Percentage CD19+ B-Progenitors Of CD34+ 

cells 
<0.000001 0 0 Percentage Basophils 0.3417 0.444 1 

Percentage CD34-CD117+ <0.000001 0 0 Percentage pDCs 0.8714 0.885 1 

CD34-CD117+DRPosMonoOfCD34-CD117+ 0.020148 0.05 1 CD34+ CD64 CV 0.0652 0.137 1 

CD34-CD117+DRnegErythroidOfCD34-
CD117+ 

0.000419 0.002 0.027 CD34+ CD123 MFI 0.4040 0.505 1 

CD34-CD117+DRnegGranOfCD34-
CD117+ 

0.000436 0.002 0.028 CD34+ CD38 CV 0.1594 0.256 1 

Percentage Granulocytes 0.000112 0.001 0.007 CD34+ CD34 MFI 0.3617 0.461 1 

Percentage Mast Cells 0.019625 0.05 1 CD34+ CD34 CV 0.0956 0.173 1 

CD34+ CD64 MFI 0.048011 0.108 1 CD34+ HLA-DR MFI 0.1154 0.203 1 

CD34+ CD123 CV 0.000014 0 0.001 CD34+ CD45 MFI 0.0719 0.142 1 

CD34+CD38 MFI 0.000004 0 0 CD34+ CD45 CV 0.4787 0.566 1 

CD34+ CD117 MFI 0.000006 0 0 CD34+ CD13 CV 0.1616 0.256 1 

CD34+ CD117 CV 0.000383 0.002 0.025 CD34-CD117+ CD64 MFI 0.1455 0.249 1 

CD34+ HLADR CV 0.002239 0.01 0.146 CD34-CD117+ CD123 MFI 0.2880 0.398 1 

CD34+ CD13 MFI 0.004468 0.018 0.29 CD34-CD117+ CD117 MFI 0.6518 0.731 1 

CD34-CD117+ CD64 CV 0.006212 0.02 0.404 
CD34-CD117+ HLA-DR 
MFI 

0.1594 0.256 1 

CD34-CD117+ CD123 CV 0.009441 0.028 0.614 CD34-CD117+ CD45 MFI 0.4178 0.512 1 

CD34-CD117+ CD38 MFI <0.000001 0 0 CD34-CD117+ CD16 MFI 0.7015 0.76 1 



 

CD34-CD117+ CD38 CV 0.005943 0.02 0.386 CD34-CD117+CD13 MFI 0.3392 0.444 1 

CD34-CD117+ CD117 CV 0.004782 0.018 0.311 Granulocytes CD64 MFI  0.9362 0.936 1 

CD34-CD117+ HLA-DR CV 0.019361 0.05 1 Granulocytes CD64 CV 0.2178 0.315 1 

CD34-CD117+ CD45 CV 0.008608 0.027 0.56 Granulocytes CD123 MFI 0.5769 0.658 1 

CD34-CD117+ CD16 CV 0.041327 0.096 1 Granulocytes CD123 CV 0.7159 0.763 1 

CD34-CD117+ CD13 CV 0.000004 0 0 Granulocytes CD38 MFI 0.8518 0.879 1 

Granulocytes CD45 CV 0.006120 0.02 0.398 Granulocytes CD38 CV 0.2054 0.31 1 

Monocytes CD64 CV 0.000103 0.001 0.007 Granulocytes CD45 MFI 0.2624 0.371 1 

Monocytes CD38 MFI 0.017181 0.049 1 Granulocytes CD16 MFI 0.2133 0.315 1 

Monocytes HLA-DR CV 0.033783 0.081 1 Granulocytes CD16 CV 0.0726 0.142 1 

Monocytes CD45 MFI 0.002221 0.01 0.144 Granulocytes CD13 MFI 0.4653 0.56 1 

        Granulocytes CD13 CV 0.6872 0.757 1 

        Monocytes CD64 MFI 0.1682 0.26 1 

        Monocytes CD123 MFI 0.8196 0.859 1 

        Monocytes CD123 CV 0.0625 0.135 1 

        Monocytes CD38 CV 0.3270 0.443 1 

        Monocytes HLA-DR MFI 0.0742 0.142 1 

        Monocytes CD45 CV 0.0794 0.148 1 

Appendix Table 5.1. Statistical comparison between the MDS and Reactive groups for numerical and phenotypic attributes. The attributes on 

the left hand side of the table were all statistical significant at the p<0.05 level (Wilcoxon signed ranks). Benjamini-Hochberg false discovery 

rate adjusted p values and Bonferroni correction p values are also quoted. All attributes on the right hand side of the table did not show 

significant differences between the MDS and Reactive groups. 



 

 

 

Classifier Family   Classifier Description 

Bayes 
A1DE 

A1DE is an Averaged one-dependence estimator which achieves highly accurate classification 
by averaging over all of a small space of alternative naive-Bayes-like models that have weaker 
(and hence less detrimental) independence assumptions than naive Bayes. 

A2DE 
A2DE is an Averaged one-dependence estimator which achieves highly accurate classification 
by averaging over all of a small space of alternative naive-Bayes-like models that have weaker 
(and hence less detrimental) independence assumptions than naive Bayes. 

Bayesian Logistic 
Regression 

Bayesian approach to learning a linear logistic regression model. Implements Bayesian Logistic 
Regression for both Gaussian and Laplace Priors. 

Bayes Net Bayes Network learning using various search algorithms and quality measures. 

Naive Bayes Standard probabilistic Naive Bayes classifier using estimator classes.  

Functions KernelLogisticRegression This classifier generates a two-class kernel logistic regression model. 

Logistic Class for building and using a multinomial logistic regression model with a ridge estimator. 

MLPClassifier 
Trains a multilayer perceptron with one hidden layer using WEKA's Optimization class by 
minimizing the squared error plus a quadratic penalty with the BFGS method. 

MultilayerPerceptron A classifier that uses a backpropagation neural network to classify instances. 

RBFClassifier 
Class implementing radial basis function networks for classification, trained in a fully 
supervised manner using WEKA's Optimization class by minimizing squared error with the BFGS 
method. 

RBFNetwork Implements a normalized Gaussian radial basis function network 

SGD 
Implements stochastic gradient descent for learning various linear models (binary class SVM, 
binary class logistic regression, squared loss, Huber loss and epsilon-insensitive loss linear 
regression). 

SimpleLogistic Builds linear logistic regression models with built-in attribute selection 



 

SMO Sequential minimal optimization algorithm for support vector classification 

SPegasos 
Implements the stochastic variant of the Pegasos (Primal Estimated sub-GrAdient SOlver for 
SVM) method of Shalev-Shwartz et al. 

VotedPerceptron Implementation of the voted perceptron algorithm by Freund and Schapire. 

Miscellaneous 
CHIRP 

CHIRP is an iterative sequence of three stages (projecting, binning, and covering) that are 
designed to deal with the curse of dimensionality, computational complexity, and nonlinear 
separability. 

VFI Classification by voting feature intervals methods, simple and fast 

Rules 
ConjunctiveRule 

This class implements a single conjunctive rule learner that can predict for numeric and 
nominal class labels. 

FURIA FURIA: Fuzzy Unordered Rule Induction Algorithm 

JRip 
This class implements a propositional rule learner, Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER), which was proposed by William W Cohen as an optimized version of 
IREP. 

Ridor 

An implementation of a RIpple-DOwn Rule learner. It generates a default rule first and then the 
exceptions for the default rule with the least (weighted) error rate.  Then it generates the 
"best" exceptions for each exception and iterates until pure.  Thus it performs a tree-like 
expansion of exceptions.The exceptions are a set of rules that predict classes other than the 
default. IREP is used to generate the exceptions. 

Trees ADTree Classifier for generating an alternating decision tree. 

BFTree 
Classifier for building a best-first decision tree classifier. This class uses binary split for both 
nominal and numeric attributes. For missing values, the method of 'fractional' instances is 
used. 

 
DecisionStump  

Classifier for building and using a decision one-level decision trees. Usually used in conjunction 
with a boosting algorithm. Does regression (based on mean-squared error) or classification 
(based on entropy). 

FT 
Classifier for building 'Functional trees', which are classification trees with oblique splits that 
could have logistic regression functions at the inner nodes and/or leaves. 



 

 
HoeffdingTree 

A Hoeffding tree (VFDT) is an incremental, anytime decision tree induction algorithm that is 
capable of learning from massive data streams, assuming that the distribution generating 
examples does not change over time. 

J48 Classifier for generating a pruned or unpruned C4. 

 J48graft Classifier for generating a grafted (pruned or unpruned) C4. 

LMT 
Classifier for building 'logistic model trees', which are classification trees with logistic 
regression functions at the leaves. 

 

NBTree  Classifier for generating a decision tree with naive Bayes classifiers at the leaves. 

RandomForest Classifier for constructing a forest of random trees. 

REPTree 
Fast decision tree learner. Builds a decision/regression tree using information gain/variance 
and prunes it using reduced-error pruning (with backfitting).  Only sorts values for numeric 
attributes once. 

SimpleCart Classifier implementing minimal cost-complexity pruning. 

 
OneR 

Classifier for building and using a 1R classifier; in other words, uses the minimum-error 
attribute for prediction, discretizing numeric attributes. 

ZeroR  Class for building and using a 0-R classifier. Predicts the majority class. 

Appendix Table 5.2. Synopsis of classifier features. All descriptions reproduced from the either the weka.gui.GenericObjectEditor in Weka 

software alone or as an amalgamation with Chapter 11 “The Explorer”, section 11.4 “Learning Algorithms”, Table 11.5 “Classifier Algorithms in 

Weka” in “Data Mining – Practical Machine Learning Tools and Techniques” (Hall et al., 2009; Witten et al., 2011) 

  



 

(A)    

 Predicted MDS Predicted Reactive Total 

Actual MDS True Positive (TP) False Negative (FN) TP + FN 

Actual Reactive False Positive (FP) True Negative (TN) FP + TN 

Total TP + FP FN + TN TP + FP + FN + TN 

(B)   

Metric Description Formula 

Accuracy 
Degree of closeness to the actual results from the predicted 

results 
= (TP + TN)/(TP+FP+FN+TN) 

Sensitivity Proportion of Actual MDS predicted to be MDS = TP/(TP + FN) 

Specificity Proportion of Actual Reactive predicted to be Reactive = TN/(FP + TN) 

Kappa Statistic 
Compares the accuracy of the classifier compared to the 

random accuracy of the classifier 
See (Cohen, 1960) 

Precision 

True MDS as a proportion of True MDS plus Reactive 

cases predicted as MDS. Also known as the Positive 

Predictive Value 

= TP/(TP + FP) 

F-measure 
A measure of the test’s accuracy taking into account 

sensitivity and precision 
= 2 x TP/(2 x TP + FP + FN) 

Matthews Correlation Coefficient (MCC) 

Generalises the confusion matrix as a single number taking 

into account both actual and predicted MDS and Reactive 

cases and imbalanced datasets. 

= TP x TN – FP x FN/ 

√(TP + FP)(TP + FN)(TN + FP)(TN + FN) 

 Area under the Receiver Operating Characteristic Curve (AUROC) 
Reduces the ROC performance (FN and FP for every cut-

off) to a single value thereby allowing classifier comparison 
See (Fawcett, 2006) 

Appendix Table 5.3. Confusion matrix (A) and (B) descriptions and formulas of the metrics evaluated. The formula is shown for metrics which 

are a function of the confusion matrix.  



 

  Classifier Accuracy Sensitivity Specificity Kappa 

Statistic 

Precision F-

Measure 

MCC ROC 

Area 

True 

Positives 

False 

Negative 

False 

Positive 

True 

Negative 

A1DE 0.953 0.904 0.987 0.9016 0.979 0.94 0.904 0.985 47 5 1 75 

A2DE 0.969 0.923 1 0.9344 1 0.96 0.936 0.988 48 4 0 76 

Bayesian Logistic Regression 0.977 0.962 0.987 0.9513 0.98 0.971 0.95 0.974 50 2 1 75 

Bayes Net 0.945 0.904 0.974 0.8856 0.959 0.931 0.887 0.977 47 5 2 74 

Naive Bayes 0.883 0.808 0.934 0.7533 0.894 0.848 0.759 0.961 42 10 5 71 

KernelLogisticRegression 1.000 1 1 1 1 1 1 1 52 0 0 76 

Logistic 1.000 1 1 1 1 1 1 1 52 0 0 76 

MLPClassifier 0.992 1 0.987 0.9839 0.981 0.99 0.984 0.99 52 0 1 75 

MultilayerPerceptron 0.984 0.962 1 0.9674 1 0.98 0.968 0.982 50 2 0 76 

RBFClassifier 0.930 0.904 0.947 0.8538 0.922 0.913 0.854 0.97 47 5 4 72 

RBFNetwork 0.891 0.788 0.961 0.7676 0.932 0.854 0.774 0.974 41 11 3 73 

SGD 0.977 0.962 0.987 0.9513 0.98 0.971 0.951 0.974 50 2 1 75 

SimpleLogistic 0.914 0.885 0.934 0.8213 0.902 0.893 0.821 0.98 46 6 5 71 

SMO 0.938 0.904 0.961 0.8697 0.94 0.922 0.87 0.932 47 5 3 73 

SPegasos 0.875 0.692 1 0.7277 1 0.818 0.756 0.846 36 16 0 76 

VotedPerceptron 0.875 0.865 0.882 0.7425 0.833 0.849 0.743 0.952 45 7 9 67 

CHIRP 0.953 0.942 0.961 0.9028 0.942 0.942 0.903 0.951 49 3 3 73 

VFI 0.953 0.885 1 0.901 1 0.939 0.905 0.995 46 6 0 76 

ConjunctiveRule 0.852 0.769 0.908 0.6876 0.851 0.808 0.69 0.839 40 12 7 69 

FURIA 0.992 0.981 1 0.9838 1 0.99 0.984 1 51 1 0 76 



 

JRip 0.961 0.962 0.961 0.9193 0.943 0.952 0.919 0.969 50 2 3 73 

Ridor 0.852 0.635 1 0.6735 1 0.776 0.713 0.817 33 19 0 76 

ADTree 1.000 1 1 1 1 1 1 1 52 0 0 76 

BFTree 0.977 1 0.961 0.9519 0.945 0.972 0.953 0.994 52 0 3 73 

DecisionStump  0.852 0.654 0.987 0.6756 0.971 0.782 0.706 0.82 34 18 1 75 

FT 1.000 1 1 1 1 1 1 1 52 0 0 76 

HoeffdingTree 0.891 0.788 0.961 0.7676 0.932 0.854 0.774 0.962 41 11 3 73 

J48 0.984 0.981 0.987 0.9676 0.981 0.981 0.968 0.993 51 1 1 75 

J48graft 0.984 0.981 0.987 0.9676 0.981 0.981 0.968 0.993 51 1 1 75 

LMT 0.914 0.885 0.934 0.8213 0.902 0.893 0.821 0.98 46 6 5 71 

NBTree  1.000 1 1 1 1 1 1 1 52 0 0 76 

RandomForest 1.000 1 1 1 1 1 1 1 52 0 0 76 

REPTree 0.852 0.654 0.987 0.6756 0.971 0.782 0.706 0.82 34 18 1 75 

SimpleCart 0.852 0.654 0.987 0.6756 0.971 0.782 0.706 0.82 34 18 1 75 

OneR 0.859 0.712 0.961 0.6975 0.925 0.804 0.712 0.836 37 15 3 73 

ZeroR  0.594 0 1 0 0 0 0 0.5 0 52 0 76 

Appendix Table 5.4. Performance metrics for the different classifiers used in regular classification of the Training set for the MDS and Reactive 

groups. The top score for each metric is indicated in bold (Zero R classifier excluded). 

  



 

Classifier Accuracy Sensitivity Specificity Kappa 

Statistic 

Precision F-

Measure 

MCC ROC 

Area 

True 

Positives 

False 

Negative 

False 

Positive 

True 

Negative 

A1DE 0.883 0.865 0.895 0.7578 0.849 0.857 0.758 0.919 45 7 8 68 

A2DE 0.867 0.865 0.868 0.7272 0.818 0.841 0.728 0.92 45 7 10 66 

Bayesian Logistic Regression 0.813 0.75 0.855 0.609 0.78 0.765 0.609 0.803 39 13 11 65 

Bayes Net 0.875 0.865 0.882 0.7425 0.833 0.849 0.743 0.919 45 7 9 67 

Naive Bayes 0.867 0.788 0.921 0.7205 0.872 0.828 0.723 0.913 41 11 6 70 

KernelLogisticRegression 0.781 0.692 0.842 0.541 0.75 0.72 0.542 0.863 36 16 12 64 

Logistic 0.719 0.615 0.789 0.4098 0.667 0.64 0.411 0.747 32 20 16 60 

MLPClassifier 0.781 0.692 0.842 0.541 0.75 0.72 0.542 0.871 36 16 12 64 

MultilayerPerceptron 0.805 0.731 0.855 0.5914 0.776 0.752 0.592 0.811 38 14 11 65 

RBFClassifier 0.844 0.788 0.882 0.6741 0.82 0.804 0.674 0.905 41 11 9 67 

RBFNetwork 0.859 0.827 0.882 0.7085 0.827 0.827 0.709 0.856 43 9 9 67 

SGD 0.805 0.731 0.855 0.5914 0.776 0.752 0.592 0.793 38 14 11 65 

SimpleLogistic 0.820 0.712 0.895 0.6194 0.822 0.763 0.624 0.901 37 15 8 68 

SMO 0.836 0.769 0.882 0.6568 0.816 0.792 0.658 0.825 40 12 9 67 

SPegasos 0.789 0.75 0.816 0.5641 0.736 0.743 0.564 0.783 39 13 14 62 

VotedPerceptron 0.828 0.808 0.842 0.6459 0.778 0.792 0.646 0.858 42 10 12 64 

CHIRP 0.805 0.654 0.908 0.5812 0.829 0.731 0.591 0.781 34 18 7 69 

VFI 0.805 0.827 0.789 0.6036 0.729 0.775 0.607 0.798 43 9 16 60 

ConjunctiveRule 0.836 0.635 0.974 0.6414 0.943 0.759 0.67 0.785 33 19 2 74 

FURIA 0.805 0.712 0.868 0.5889 0.787 0.747 0.591 0.867 37 15 10 66 



 

JRip 0.844 0.808 0.868 0.6761 0.808 0.808 0.676 0.831 42 10 10 66 

Ridor 0.758 0.712 0.789 0.4995 0.698 0.705 0.5 0.751 37 15 16 60 

ADTree 0.828 0.712 0.908 0.6349 0.841 0.771 0.641 0.897 37 15 7 59 

BFTree 0.781 0.692 0.842 0.541 0.75 0.72 0.542 0.757 36 16 12 64 

DecisionStump  0.805 0.596 0.947 0.5731 0.886 0.713 0.599 0.759 31 21 4 72 

FT 0.836 0.788 0.868 0.6589 0.804 0.796 0.659 0.889 41 11 10 66 

HoeffdingTree 0.867 0.788 0.921 0.7205 0.872 0.828 0.723 0.916 41 11 6 70 

J48 0.836 0.769 0.882 0.6568 0.816 0.792 0.658 0.83 40 12 9 67 

J48graft 0.836 0.712 0.921 0.6504 0.86 0.779 0.658 0.807 37 15 6 70 

LMT 0.852 0.75 0.921 0.6856 0.867 0.804 0.69 0.881 39 13 6 70 

NBTree  0.789 0.712 0.842 0.5587 0.755 0.733 0.559 0.85 37 15 12 64 

RandomForest 0.836 0.75 0.895 0.6547 0.83 0.788 0.657 0.883 39 13 8 68 

REPTree 0.781 0.692 0.842 0.541 0.75 0.72 0.542 0.793 36 16 12 64 

SimpleCart 0.805 0.673 0.895 0.5838 0.814 0.737 0.59 0.784 35 17 8 68 

OneR 0.820 0.75 0.868 0.6241 0.796 0.772 0.625 0.809 39 13 10 66 

ZeroR  0.594 0 1 0 0 0 0 0.5 0 52 0 76 

Appendix Table 5.5. Performance metrics for the different classifiers used in the 10-fold cross validation set for the MDS and Reactive groups. 

The top score for each metric is indicated in bold (Zero R classifier excluded). 

  



 

Classifier Accuracy Sensitivity Specificity Kappa 

Statistic 

Precision F-

Measure 

MCC ROC 

Area 

True 

Positives 

False 

Negative 

False 

Positive 

True 

Negative 

A1DE 0.844 0.865 0.829 0.6819 0.776 0.818 0.685 0.847 45 7 13 63 

A2DE 0.844 0.865 0.829 0.6819 0.776 0.818 0.685 0.847 45 7 13 63 

Bayesian Logistic Regression 0.813 0.75 0.855 0.609 0.78 0.765 0.609 0.803 39 13 11 65 

Bayes Net 0.836 0.865 0.816 0.667 0.763 0.811 0.671 0.841 45 7 14 62 

Naive Bayes 0.859 0.788 0.908 0.7049 0.854 0.82 0.706 0.848 41 11 7 69 

KernelLogisticRegression 0.789 0.769 0.803 0.5667 0.727 0.748 0.567 0.786 40 12 15 61 

Logistic 0.719 0.615 0.789 0.4098 0.667 0.64 0.411 0.702 32 20 16 60 

MLPClassifier 0.805 0.808 0.803 0.6012 0.737 0.771 0.603 0.805 42 10 15 61 

MultilayerPerceptron 0.781 0.75 0.803 0.5493 0.722 0.736 0.55 0.776 39 13 15 61 

RBFClassifier 0.688 0.981 0.487 0.4192 0.567 0.718 0.503 0.734 51 1 39 37 

RBFNetwork 0.867 0.846 0.882 0.7255 0.83 0.838 0.726 0.864 44 8 9 67 

SGD 0.805 0.731 0.855 0.5914 0.776 0.752 0.592 0.793 38 14 11 65 

SimpleLogistic 0.789 0.904 0.711 0.5842 0.681 0.777 0.605 0.807 47 5 22 54 

SMO 0.836 0.769 0.882 0.6568 0.816 0.792 0.658 0.825 40 12 9 67 

SPegasos 0.789 0.75 0.816 0.5641 0.736 0.743 0.564 0.783 39 13 14 62 

VotedPerceptron 0.828 0.808 0.842 0.6459 0.778 0.792 0.646 0.825 42 10 12 64 

CHIRP 0.805 0.654 0.908 0.5812 0.829 0.731 0.591 0.781 34 18 7 69 

VFI 0.438 0.904 0.118 0.0187 0.412 0.566 0.035 0.511 47 5 67 9 

ConjunctiveRule 0.492 0.942 0.184 0.1073 0.441 0.601 0.183 0.563 49 3 62 14 

FURIA 0.805 0.827 0.789 0.6036 0.729 0.775 0.607 0.808 43 9 16 60 



 

JRip 0.844 0.808 0.868 0.6761 0.808 0.808 0.676 0.838 42 10 10 66 

Ridor 0.758 0.712 0.789 0.4995 0.688 0.705 0.5 0.751 37 15 16 60 

ADTree 0.797 0.923 0.711 0.6008 0.686 0.787 0.625 0.817 48 4 22 54 

BFTree 0.695 0.769 0.645 0.3959 0.597 0.672 0.407 0.7017 40 12 27 49 

DecisionStump  0.430 0.962 0.066 0.0226 0.413 0.578 0.059 0.514 50 2 71 5 

FT 0.844 0.808 0.868 0.6761 0.808 0.808 0.676 0.838 42 10 10 66 

HoeffdingTree 0.859 0.808 0.895 0.7067 0.84 0.824 0.707 0.851 42 10 8 68 

J48 0.844 0.788 0.882 0.6741 0.82 0.804 0.674 0.835 41 11 9 67 

J48graft 0.836 0.712 0.921 0.6504 0.86 0.779 0.658 0.816 37 15 6 70 

LMT 0.836 0.712 0.921 0.6504 0.86 0.779 0.658 0.816 37 15 6 70 

NBTree  0.781 0.904 0.697 0.5701 0.671 0.77 0.593 0.801 47 5 23 53 

RandomForest 0.641 0.962 0.421 0.3393 0.532 0.685 0.425 0.691 50 2 44 32 

REPTree 0.703 0.788 0.645 0.4131 0.603 0.683 0.426 0.717 41 11 27 49 

SimpleCart 0.633 0.808 0.513 0.2965 0.532 0.641 0.324 0.66 42 10 37 39 

OneR 0.820 0.75 0.868 0.6241 0.796 0.772 0.625 0.809 39 13 10 66 

ZeroR  0.406 1 0 0 0.406 0.579 0 0.5 52 0 76 0 

Appendix Table 5.6. Performance metrics for different classifiers used for the cost sensitive classification analysis of the MDS and Reactive 

groups. The top score for each metric is indicated in bold (Zero R classifier excluded). 

  



 

Classifier Accuracy Sensitivity Specificity Kappa 

Statistic 

Precision F-

Measure 

MCC ROC 

Area 

True 

Positives 

False 

Negative 

False 

Positive 

True 

Negative 

A1DE 0.875 0.865 0.882 0.7425 0.833 0.849 0.743 0.914 45 7 9 67 

A2DE 0.859 0.846 0.868 0.7103 0.815 0.83 0.711 0.915 44 8 10 66 

Bayesian Logistic Regression 0.836 0.788 0.868 0.6589 0.804 0.796 0.659 0.828 41 11 10 66 

Bayes Net 0.867 0.865 0.868 0.7272 0.818 0.841 0.728 0.912 45 7 10 66 

Naive Bayes 0.859 0.788 0.908 0.7049 0.854 0.82 0.706 0.913 41 11 7 69 

KernelLogisticRegression 0.773 0.654 0.855 0.5202 0.756 0.701 0.524 0.844 34 18 11 65 

Logistic 0.711 0.596 0.789 0.3916 0.66 0.626 0.393 0.738 31 21 16 60 

MLPClassifier 0.773 0.654 0.855 0.5202 0.756 0.701 0.524 0.854 34 18 11 65 

MultilayerPerceptron 0.797 0.731 0.842 0.5764 0.76 0.745 0.577 0.821 38 14 12 64 

RBFClassifier 0.852 0.865 0.842 0.6969 0.789 0.826 0.699 0.903 45 7 12 64 

RBFNetwork 0.859 0.846 0.868 0.7103 0.815 0.83 0.711 0.854 44 8 10 66 

SGD 0.805 0.712 0.868 0.5889 0.787 0.747 0.591 0.79 37 15 10 66 

SimpleLogistic 0.844 0.75 0.908 0.6701 0.848 0.796 0.673 0.912 39 13 7 69 

SMO 0.852 0.827 0.868 0.6932 0.811 0.819 0.693 0.848 43 9 10 66 

SPegasos 0.758 0.654 0.829 0.4902 0.723 0.687 0.492 0.741 34 18 13 63 

VotedPerceptron 0.836 0.808 0.855 0.6609 0.792 0.8 0.661 0.836 42 10 11 65 

CHIRP 0.742 0.615 0.829 0.545 0.711 0.66 0.457 0.722 32 20 13 63 

VFI 0.805 0.827 0.789 0.6036 0.729 0.775 0.607 0.802 43 9 16 60 

ConjunctiveRule 0.805 0.615 0.934 0.5758 0.865 0.719 0.595 0.773 32 20 5 71 

FURIA 0.508 0.385 0.592 -0.0234 0.392 0.388 -0.023 0.488 20 32 31 45 



 

JRip 0.781 0.731 0.816 0.5466 0.731 0.731 0.547 0.809 38 14 14 62 

Ridor 0.781 0.769 0.789 0.552 0.714 0.741 0.553 0.779 40 12 16 60 

ADTree 0.813 0.692 0.895 0.6017 0.818 0.75 0.607 0.885 36 16 8 68 

BFTree 0.797 0.75 0.829 0.5789 0.75 0.75 0.579 0.766 39 13 13 63 

DecisionStump  0.805 0.596 0.947 0.5713 0.886 0.713 0.599 0.759 31 21 4 72 

FT 0.797 0.692 0.868 0.5711 0.783 0.735 0.574 0.835 36 16 10 66 

HoeffdingTree 0.859 0.788 0.908 0.7049 0.854 0.82 0.706 0.916 41 11 7 69 

J48 0.828 0.769 0.868 0.6415 0.8 0.784 0.642 0.815 40 12 10 66 

J48graft 0.836 0.731 0.908 0.6525 0.844 0.784 0.657 0.813 38 14 7 69 

LMT 0.813 0.712 0.882 0.6041 0.804 0.755 0.607 0.875 37 15 9 67 

NBTree  0.750 0.712 0.776 0.4849 0.685 0.698 0.485 0.799 37 15 17 59 

RandomForest 0.859 0.846 0.868 0.7103 0.815 0.83 0.711 0.909 44 8 10 66 

REPTree 0.789 0.731 0.829 0.5614 0.745 0.738 0.561 0.835 38 14 13 63 

SimpleCart 0.789 0.75 0.816 0.5614 0.736 0.743 0.564 0.77 39 13 14 62 

OneR 0.711 0.673 0.737 0.4062 0.636 0.654 0.407 0.705 35 17 20 56 

ZeroR  0.453 0.577 0.368 -0.0507 0.385 0.462 -0.055 0.469 30 22 48 28 

Appendix Table 5.7. Performance metrics for the different classifiers used for the cost sensitive learning of the MDS and Reactive groups. The 

top score for each metric is indicated in bold (Zero R classifier excluded). 

  



 

UPN Exon / Allele/ Variant Consequence Coding sequence Protein Co-located variants 
Cytogenetic karyotypic 
analysis 

UPN1 SRSF2_17_74732959_G/T missense_variant c.284C>A p.Pro95His 
COSM146290,COSM14
6288,COSM2... 

Not done 

UPN1 ASXL1_20_31022534_-/C frameshift_variant,feature_elongation c.2018_2019insC 
p.His674ProfsTe
r3 

- 

UPN1 ASXL1_20_31022536_A/C missense_variant c.2021A>C p.His674Pro - 

UPN1 TET2_4_106157527_C/T stop_gained c.2428C>T p.Gln810Ter COSM43446 

UPN1 TET2_4_106158168_C/- frameshift_variant,feature_truncation c.3069delC 
p.Ser1023Argfs
Ter10 

- 

UPN3 SETBP1_18_42531917_T/C missense_variant c.2612T>C p.Ile871Thr 
rs267607038,COSM168
5361,COS... 

Not done 

UPN3 CSF3R_1_36933434_G/A missense_variant c.1853C>T p.Thr618Ile - 

UPN3 RUNX1_21_36231791_T/C missense_variant c.593A>G p.Asp198Gly 
COSM36059,COSM247
99 

UPN3 U2AF1_21_44514777_T/G missense_variant c.470A>C p.Gln157Pro 
rs371246226,COSM211
534,COSM... 

UPN4 NONE     Not done 

UPN5 SF3B1_2_198266834_T/C missense_variant c.2098A>G p.Lys700Glu COSM84677 Normal Karyotype 

UPN5 SF3B1_2_198267359_C/G missense_variant c.1998G>C p.Lys666Asn 
rs377023736,COSM131
557,COSM... 

UPN5 TET2_4_106180816_G/- frameshift_variant,feature_truncation c.3844delG 
p.Gly1282ValfsT
er81 

- 

UPN6 ASXL1_20_31023596_T/- frameshift_variant,feature_truncation c.3081delT 
p.Ser1028Argfs
Ter19 

- 
Not done 

UPN9 NONE     Not done 

UPN11 U2AF1_21_44524456_G/A missense_variant c.101C>T p.Ser34Phe 
rs371769427,COSM146
287,COSM... 

Normal Karyotype 

UPN11 TET2_4_106180865_G/A missense_variant c.3893G>A p.Cys1298Tyr 
COSM87138,COSM434
74 

UPN13 NONE     
Missing Y as the sole 
abnormality  

UPN14 TET2_4_106155764_AT/- frameshift_variant,feature_truncation c.665_666delAT 
p.His222ArgfsTe
r2 

 
Normal Karyotype 

UPN14 TET2_4_106197210_C/G stop_gained c.5543C>G p.Ser1848Ter  

UPN14 ZRSR2_X_15838340_T/C missense_variant c.838T>C p.Cys280Arg  

UPN15 NONE     Not done 

UPN17 NONE     Normal Karyotype 

UPN18 NONE     Normal Karyotype 

UPN19 SRSF2_17_74732959_G/T missense_variant c.284C>A p.Pro95His 
COSM146290,COSM14
6288,COSM2... 

Normal Karyotype 

UPN19 TET2_4_106156759_-/C frameshift_variant,feature_elongation c.1659_1660insC 
p.Thr556AsnfsT
er11 

- 

UPN21 U2AF1_21_44514780_C/T missense_variant c.467G>A p.Arg156His 
COSM1235014,COSM1
235015 

Monosomy 7 

UPN21 EZH2_7_148507475_C/T missense_variant c.1979G>A p.Gly660Glu - 

UPN22 ZRSR2_X_15838370_C/T stop_gained c.868C>T p.Arg290Ter - Missing Y as the sole 



 

abnormality 

UPN23 SF3B1_2_198266834_T/C missense_variant c.2098A>G p.Lys700Glu COSM84677 Normal Karyotype 

UPN23 DNMT3A_2_25457242_C/T missense_variant c.2645G>A p.Arg882His 
rs147001633,COSM442
676,COSM... 

UPN24 NONE     Not done 

UPN26 SF3B1_2_198266834_T/C missense_variant c.2098A>G p.Lys700Glu COSM84677 

G-banding failed. FISH 
found no evidence of 
chromosome 7 
abnormalities but did 
detect deleted 5q. 

UPN28 NONE     Not done 

UPN29 NONE     Not done 

UPN30 U2AF1_21_44524456_G/T missense_variant c.101C>A p.Ser34Tyr 
rs371769427,COSM146
287,COSM... 

Missing Y as the sole 
abnormality 

UPN30 TET2_4_106156336_C/- frameshift_variant,feature_truncation c.1237delC 
p.Pro413HisfsTe
r14 

- 

UPN31 SRSF2_17_74732959_G/A missense_variant c.284C>T p.Pro95Leu 
COSM146290,COSM14
6288,COSM2... 

Missing Y as the sole 
abnormality 

UPN32 ASXL1_20_31024579_A/G missense_variant c.4064A>G p.Asp1355Gly - Not done 

UPN33 NONE     Not done 

UPN34 NONE     Not done 

UPN35 NONE     Not done 

UPN36 NONE     Not done 

UPN37 NONE     Normal Karyotype 

UPN38 TET2_4_106180874_C/- frameshift_variant,feature_truncation c.3902delC 
p.Arg1302Glufs
Ter61 

- 
Deleted 20q 

UPN38 TET2_4_106180876_A/- frameshift_variant,feature_truncation c.3904delA 
p.Arg1302Glufs
Ter61 

- 

UPN39 NONE     Not done 

UPN40 SRSF2_17_74732959_G/A missense_variant c.284C>T p.Pro95Leu 
COSM146290,COSM14
6288,COSM2... 

Normal Karyotype 

UPN40 TET2_4_106156082_-/T  frameshift_variant,feature_elongation  c.982_983insT  p.Glu330Ter  - 

UPN40 TET2_4_106164071_C/G missense_variant c.3581C>G p.Pro1194Arg - 

UPN41 NONE     Not done 

UPN42 TET2_4_106164005_-/GT frameshift_variant,feature_elongation c.3514_3515insGT 
p.Lys1173ValfsT
er54 

- 
Not done 

UPN42 TET2_4_106197080_A/- frameshift_variant,feature_truncation c.5413delA 
p.Asn1805Thrfs
Ter15 

- 

UPN43 ASXL1_20_31024704_G/A missense_variant c.4189G>A p.Gly1397Ser 
rs146464648,COSM133
033 

Not done 

UPN44 TET2_4_106157385_-/C frameshift_variant,feature_elongation c.2285_2286insC 
p.Gln764ProfsT
er5 

- 
Not done 

UPN44 TET2_4_106197255_C/T missense_variant c.5588C>T p.Ala1863Val COSM166836 

UPN45 NONE     Not done 

UPN46 SRSF2_17_74732959_G/C missense_variant c.284C>G p.Pro95Arg 
COSM146290,COSM14
6288,COSM2... 

Not done 

UPN46 ASXL1_20_31023000_C/T stop_gained c.2485C>T p.Gln829Ter COSM97040 



 

UPN46 RUNX1_21_36252856_-/C 
frameshift_variant,splice_region_variant,feature_
elongation 

c.506dupG 
p.Gly170ArgfsTe
r43 

COSM36060 

UPN46 STAG2_X_123181311_C/T stop_gained c.775C>T p.Arg259Ter 
COSM216178,COSM15
98816 

UPN46 STAG2_X_123195108_T/G missense_variant c.1451T>G p.Met484Arg - 

UPN46 STAG2_X_123195109_G/A missense_variant c.1452G>A p.Met484Ile COSM372362 

UPN47 KRAS_12_25380279_C/T missense_variant c.179G>A p.Gly60Asp 
COSM87290, 
COSM1667041,COSM5
48 

Trisomy 8 

UPN47 BCOR_X_39932085_-/G frameshift_variant,feature_elongation c.2514dupC 
p.Lys839GlnfsT
er5 

COSM1319442 

UPN48 SF3B1_2_198266834_T/C missense_variant c.2098A>G p.Lys700Glu COSM84677 Normal Karyotype 

UPN49 SRSF2_17_74732959_G/T  missense_variant  c.284C>A  p.Pro95His  
COSM146290,COSM14
6288,COSM2... 

G-banding failed. FISH 
found no 5,7 or 17p 
abnormalities but did 
show trisomy 8 

UPN49 RUNX1_21_36231782_C/T missense_variant c.602G>A p.Arg201Gln 
rs74315450,CM992140,
COSM24805 

UPN49 TET2_4_106196738_T/G missense_variant c.5071T>G p.Ser1691Ala COSM1426220 

UPN49 STAG2_X_123179156_C/G stop_gained c.605C>G p.Ser202Ter - 

UPN49 STAG2_X_123179197_C/T stop_gained c.646C>T p.Arg216Ter 
COSM1315170,COSM1
315169 

UPN49 STAG2_X_123197044_C/T stop_gained c.1810C>T p.Arg604Ter 
COSM487905,COSM11
38070 

UPN49 BCOR_X_39933978_G/- frameshift_variant,feature_truncation c.621delC 
p.Asp208ThrfsT
er8 

- 

UPN50 ASXL1_20_31022658_AG/- frameshift_variant,feature_truncation c.2143_2144delAG 
p.Arg715SerfsT
er2 

- 
Normal Karyotype 

UPN50 ASXL1_20_31022661_G/T missense_variant c.2146G>T p.Ala716Ser - 

UPN50 TET2_4_106157341_T/- frameshift_variant,feature_truncation c.2242delT 
p.Leu748TyrfsT
er3 

- 

UPN50 TET2_4_106157718_C/- frameshift_variant,feature_truncation c.2619delC 
p.Pro874GlnfsT
er47 

- 

UPN50 TET2_4_106197348_C/G missense_variant c.5681C>G p.Pro1894Arg COSM87189 

UPN50 ZRSR2_X_15836741_G/T missense_variant c.803G>T p.Gly268Val - 

Appendix Table 6.1. Annotated driver mutations for 41 patients in the validation cohort. 

 


