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Abstract 
Engineering process design for applications that use computationally intensive 

nonlinear dynamical systems can be expensive in time and resources. The presented 

work reviews the concept of a meta-model as a way to improve the efficiency of this 

process. The proposed meta-model will have a computational advantage in 

implementation over the computationally intensive model therefore reducing the time 

and resources required to design an engineering process. This work proposes to meta-

model a computationally intensive nonlinear dynamical system using reduced-order 

linear parameter varying system modelling approach with local linear models in 

velocity based linearization form. The parameters of the linear time-varying meta-

model are blended using Gaussian Processes regression models. The meta-model 

structure is transparent and relates directly to the dynamics of the computationally 

intensive model while the velocity-based local linear models faithfully reproduce the 

original system dynamics anywhere in the operating space of the system. The non-

parametric blending of the meta-model local linear models by Gaussian Processes 

regression models is ideal to deal with data sparsity and will provide uncertainty 

information about the meta-model predictions. The proposed meta-model structure has 

been applied to second-order nonlinear dynamical systems, a small sized nonlinear 

transmission line model, medium sized fluid dynamics problem and the 

computationally intensive nonlinear transmission line model of order 5000. 

 

i 



 

Acknowledgment 
I would like to thank my thesis advisor professor Robert F. Harrison for his continuous 

support, encouragement, patience and guidance throughout my time at the Department 

of Automatic Control and Systems Engineering in the University of Sheffield. 

I come from a different engineering background to computational data modelling and 

Professor Harrison guidance and clear vision made the presented study possible. 

I would like to extend my thanks to Mr. Andy Mills for his input from an industrial 

point of view during the formulation of the presented work. 

I would like to thank my research mates in the University of Sheffield Technology 

Centre especially; Dr. Martha Arbayani Bin Zaidan, Dr. Rue Wang, and Mr. 

Vigneshwaran Venugopalan for their technical and non-technical support especially 

during the long hours spent on computer codes. 

Finally, I would like to thank the research support staff at the Department of Automatic 

Control and Systems Engineering for different kinds of help provided through my time 

at the department. 

 

ii 



 

To my parents 

iii 



 

Table of Contents 
 Introduction ................................................................................... 1 Chapter 1 -

1.1 Computationally Intensive Models ......................................................... 1 

1.2 The Concept of a Meta-Model ............................................................... 2 

1.3 Motivations and Contributions ............................................................... 6 

1.4 Thesis Outline ....................................................................................... 9 

 Mathematical Modelling of a NDS ............................................. 11 Chapter 2 -

2.1 Introduction.......................................................................................... 11 

2.2 The Nonlinear Auto Regressive, Moving Average and Exogenous Input 
NDS Structure ............................................................................................... 15 

2.2.1 The NARMAX Model Classes ....................................................... 16 

2.2.2 The NARMAX Model Structure ..................................................... 17 

2.2.3 Meta-Modelling a CI-NDS with NARMAX ..................................... 19 

2.3 Divide and Conquer Methods .............................................................. 19 

2.4 Velocity-Based Linearization ............................................................... 20 

2.5 NDS modelling with Gaussian Processes ........................................... 25 

2.6 Meta-modelling with GP blended VBL-LPV system ............................. 28 

2.7 Conclusions ......................................................................................... 29 

 Gaussian Processes Blended VBL-LPV system ...................... 31 Chapter 3 -

3.1 Introduction.......................................................................................... 31 

3.2 Meta-Model Structure .......................................................................... 32 

3.3 VBL-LPV Parameters Blending with Gaussian Processes Regression
 32 

3.3.1 Gaussian Processes ..................................................................... 33 

3.3.2 GPM Covariance Function ............................................................ 37 

3.3.3 Properties of the GP Regression Model........................................ 40 

3.3.4 Meta-Model Training ..................................................................... 41 

3.4 The Meta-Model Solver ....................................................................... 50 

3.4.1 The Velocity Solution .................................................................... 51 

3.4.2 The State Equation Solver ............................................................ 55 

3.4.3 The Meta-Model Output ................................................................ 55 

iv 



 

3.4.4 Solving the Two-Tanks NDS Meta-Model .................................... 55 

3.5 Conclusions ........................................................................................ 64 

 Model Order Reduction .............................................................. 66 Chapter 4 -

4.1 Introduction ......................................................................................... 66 

4.2 Linear Model Order Reduction ............................................................ 66 

4.2.1 Proper Orthogonal Decomposition methods ................................ 68 

4.2.2 Krylov Subspace methods ............................................................ 69 

4.2.3 Truncated Balanced Realization .................................................. 73 

4.3 Model Order Reduction of CI-NDSs .................................................... 76 

4.4 Meta- Modelling CI-NDS with Reduced Order Local Linear Models ... 78 

4.5 Canonical Transformations ................................................................. 81 

4.6 Meta-Modelling of the 10th order Nonlinear Transmission Line ........... 83 

4.7 Conclusions ........................................................................................ 93 

 Uncertainty Propagation ............................................................ 96 Chapter 5 -

5.1 Introduction ......................................................................................... 96 

5.2 The Meta-Model Solver Uncertainty Propagation ............................... 96 

5.3 Meta-Modelling of a Chemical Reactor ............................................. 105 

5.4 Meta-Modelling of the 1-D Burgers Equations .................................. 116 

5.5 Conclusions ...................................................................................... 122 

 Meta-Model Computational Complexity Analysis .................. 124 Chapter 6 -

6.1 Introduction ....................................................................................... 124 

6.2 The Meta-Model Training Cost ......................................................... 126 

6.2.1 Collection of Training Data ......................................................... 126 

6.2.2 Computing the LLMs .................................................................. 127 

6.2.3 GP Model Training ..................................................................... 128 

6.3 The Meta-Model Solver ..................................................................... 131 

6.4 Meta-Modelling of a CI-NDS ............................................................. 137 

6.4.1 Meta-Model Training Points ....................................................... 137 

6.4.2 Meta-Model Parameters Training and Validation ....................... 144 

6.4.3 Meta-Model Response to Test Inputs ......................................... 145 

6.5 Conclusions ...................................................................................... 156 

v 



 

 Conclusions and Recommendations ...................................... 159 Chapter 7 -

7.1 Conclusions ....................................................................................... 159 

7.2 Recommendations ............................................................................ 163 

List of References ........................................................................................ 165 

Appendix A ................................................................................................... 180 

A.1 Introduction........................................................................................ 180 

A.2 Two-Tanks NDS ................................................................................ 180 

System Description .................................................................................. 180 

System Equilibrium points ........................................................................ 181 

System Jacobian Matrices ....................................................................... 182 

A.3 Continuously-Stirred Tank Reactor (CSTR) NDS .............................. 182 

System Description .................................................................................. 182 

System Equilibrium points ........................................................................ 184 

System Jacobian Matrices ....................................................................... 186 

A.4 Nonlinear Transmission Line NDS .................................................... 187 

System Description .................................................................................. 187 

System Equilibrium points ........................................................................ 187 

System Jacobian Matrices ....................................................................... 188 

A.5 1-D Burgers Equations ...................................................................... 188 

System Description .................................................................................. 188 

System Equilibrium points ........................................................................ 189 

System Jacobian Matrices ....................................................................... 190 

Appendix B ................................................................................................... 191 

B.1 Approximation of the Input Derivative ................................................ 191 

B.2 Adapting the Approximation for Use with the Fixed Time Step Solver
 194 

 

vi 



 

List of Tables 
Table  3-1: Two-Tanks NDS GPM training results for the time-varying entries of 

meta-model parameter 𝑨𝑨(𝒕) ............................................................................. 48 

Table  3-2: Computational environment ............................................................ 62 

Table  3-3: Meta-Model fitness results for the Two-Tanks NDS simulated with 

step sequence input using different velocity estimation methods .................... 62 

Table  3-4: 𝐸𝑇𝐼 values for the Two-Tanks NDS meta-model for different test 

inputs ............................................................................................................... 63 

Table  4-1: Meta-Model training results for the 10th Order NTL ......................... 87 

Table  4-2: 𝐸𝑇𝐼 values for the 10th order NTL meta-model the for multi-step and 

frequency sweep test inputs............................................................................. 93 

Table  5-1: CSTR meta-model training results ................................................ 108 

Table  6-1 Total number of flops spent in the meta-model velocity vector 

𝒘𝒘(𝑘 + 1) computation using Forward-Euler method ...................................... 134 

Table  6-2 Total number of flops spent in the meta-model state vector 𝒙𝒙(𝑘 + 1) 

computation ................................................................................................... 134 

Table  6-3 Total number of flops spent in the meta-model output vector 𝒚(𝑘) 

computation ................................................................................................... 135 

Table  6-4: 4th order meta-model training results for the CI-NDS NTL model . 145 

Table  6-5: 10th order meta-model training results for the CI-NDS NTL model 145 

vii 



 

Table  6-6: Computational time performance of the of the two meta-model 

scenarios versus the RK4 method for the NTL model of order 5000 (all 

measurements are in seconds) ...................................................................... 153 

Table  6-7: Computational time performance of the MATLAB ODE suit of solvers 

for the NTL model of order 5000 (all measurements are in seconds) ............. 155 

viii 



 

List of Figures 
Figure  2-1: VBL 𝑖𝑡𝑡ℎ LLM in state-space form. .................................................. 23 

Figure  3-1: Two tanks NDS (MATLAB system identification tool box). ............ 45 

Figure  3-2: Two-Tanks NDS pump voltage sequence used to excite the model 

at off-equilibrium dynamics .............................................................................. 46 

Figure  3-3: %𝑅𝑅𝑆𝐷𝐷 for the time-varying entries of the 𝑨𝑨(𝑡𝑡) parameter for the 

Two-Tanks meta-model validation data set ..................................................... 50 

Figure  3-4: Meta-model solution of the Two-Tanks NDS to a step function ..... 56 

Figure  3-5: Meta-model solution of the Two-Tanks NDS to a ramp test input .. 57 

Figure  3-6: Meta-model solution of the Two-Tanks NDS to exponential decay 

test input .......................................................................................................... 58 

Figure  3-7: Two-Tanks NDS step seqiunce test input ...................................... 59 

Figure  3-8: Two-Tanks NDS meta-model solution of the to the step sequence 

test input .......................................................................................................... 59 

Figure  3-9: Plot of %𝑅𝑅𝑆𝐷𝐷 for the non-constant entries of the 𝑨𝑨(𝑡𝑡) parameter for 

the Two-Tanks meta-model during simulation with the step sequence input ... 60 

Figure  3-10: Composite phase plot for the Two-Tanks NDS training points and 

the meta-model solution to the step sequence test input ................................. 61 

Figure  4-1: The Nonlinear Transmission Line circuit. ....................................... 83 

ix 



 

Figure  4-2: Randomly generated step sequence used to excite the 10th order 

NTL model in off-equilibrium regions. The sequence was generated using 

Algorithm  3-2 with parameters: 𝑢𝑢𝑚𝑖𝑛 = 0,𝑢𝑢𝑚𝑎𝑥𝑥 = 1,𝑁𝑡𝑡𝑖𝑐𝑘𝑠 = 20, 𝑇𝑠 = 0.01𝑠 

and 𝑠𝑡𝑡𝑚 = 2 ...................................................................................................... 85 

Figure  4-3: Mean percentage of state contributions of the 10th order NTL 

system balanced training LLMs. ....................................................................... 86 

Figure  4-4: Multi-level step test input (top plot), the 10th order NTL model 

response versus the reduced order meta-model response with confidence 

regions (bottom plot). ........................................................................................ 88 

Figure  4-5: Sinusoidal test input generated from a cosine linear frequency 

sweep from DC, crossing 25𝐻𝑧 at 0.5𝑠. ............................................................ 89 

Figure  4-6: The 10th order NTL model response versus the reduced order meta-

model response with confidence regions. ......................................................... 90 

Figure  4-7: %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥𝑥 for the 10th order NTL reduced-order meta-model during 

the solution of the multi-step test input (Figure  4-4 (Top)). ............................... 91 

Figure  4-8: %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥𝑥 for the 10th order NTL reduced-order meta-model during 

the solution of the frequency sweep test input (Figure  4-5). ............................. 92 

Figure  5-1: Schematic of the (Non-Adiabatic) Continuously-Stirred Tank 

Reactor ........................................................................................................... 105 

Figure  5-2: Random Gaussian signal applied to the CSTR model at the reactor 

coolant temperature input 𝑢𝑢3(𝑡𝑡) to collect meta-model off-equilibrium training 

data ................................................................................................................ 107 

x 



 

Figure  5-3: CSTR meta-model 𝑢𝑢1(𝑡𝑡) test input component (incoming feed 

concentration) ................................................................................................ 109 

Figure  5-4: CSTR meta-model 𝑢𝑢2(𝑡𝑡) test input component (incoming feed 

temperature) .................................................................................................. 109 

Figure  5-5: CSTR meta-model 𝑢𝑢3(𝑡𝑡) test input component (reactor vessel 

coolant temperature). This is the main control input during the CSTR meta-

model simulation ............................................................................................ 110 

Figure  5-6: CSTR meta-model output  𝑦𝑦1(𝑡𝑡) (concentration of incoming feed 

inside the reactor) .......................................................................................... 110 

Figure  5-7: CSTR meta-model output  𝑦𝑦2(𝑡𝑡) (reactor contents temperature) 111 

Figure  5-8: CSTR meta-model repsonses with qualitivate view of uncertainty 

propgation in the meta-model ........................................................................ 112 

Figure  5-9: Time-varying %𝑅𝑅𝑆𝐷𝐷 for CSTR meta-model (trained with 62 training 

points) outputs, the dashed lines shows %𝑅𝑅𝑆𝐷𝐷 values computed using 

quantitative uncertainty propagation and the solid lines represent %𝑅𝑅𝑆𝐷𝐷 values 

computed using qualitative uncertainty propagation values ........................... 114 

Figure  5-10: Qualitative time-varying %𝑅𝑅𝑆𝐷𝐷 for both meta-model training cases 

without (default) and with additional training data (improved) ........................ 115 

Figure  5-11: Mean percentage of state contributions of the 100th order 1-D 

Burgers Equations system balanced training LLMs ....................................... 117 

xi 



 

Figure  5-12: The RK4 solution of the 100th order 1-D Burgers model versus the 

4th order meta-model solution with quantitative confidence intervals .............. 119 

Figure  5-13: 100th order 1D-Burgers equation NDS time-varying parameter 

𝑎21(𝑡𝑡) part of the reduced-order canonical state matrix 𝑨𝑨𝑟𝑐, 𝑎21(𝑡𝑡) was plotted 

for the first few  seconds during the training and the solution of the meta-model

 ....................................................................................................................... 121 

Figure  6-1 Normalized local output errors between the full-order LLMs and the 

Krylov-reduced LLMs at the collected training data of the NTL CI-NDS ......... 139 

Figure  6-2 Mean percentage of state contributions of the balanced Krylov-

reduced LLMs for the NTL meta-model collected training data ...................... 141 

Figure  6-3 NTL meta-models response to test input 𝑡𝑡 = 𝐻(𝑡𝑡 − 0.05) versus the 

RK4 response of the CI-NDS ......................................................................... 147 

Figure  6-4 NTL meta-model multi-step test input ........................................... 148 

Figure  6-5 NTL meta-models response to the multi-step test input versus the 

RK4 response of the CI-NDS ......................................................................... 148 

Figure  6-6 NTL meta-models response to cosine test input versus the RK4 

response of the CI-NDS ................................................................................. 149 

Figure  6-7 NTL meta-model response to exponential test input versus the RK4 

response of the CI-NDS ................................................................................. 150 

Figure  6-8 NTL meta-models response to sinusoidal test input versus the RK4 

response of the CI-NDS ................................................................................. 151 

xii 



 

Figure  6-9 NTL meta-models response to sinusoidal linear frequency sweep 

test input versus the RK4 response of the CI-NDS ........................................ 152 

 

Figure B. 1 a Step function. ........................................................................... 191 

Figure B. 2 Step function approximation (𝐾 = 1). .......................................... 193 

 

xiii 



 

List of Abbreviations 
ANN Artificial Neural Networks  
CFD Computational Fluids Dynamics  
CI Computationally Intensive  
CSTR Continuously-Stirred Tank Reactor  
EA Evolutionary Algorithms  
ED Exact-Discretization  
EM Expectation Maximization  
ETI Execution Time Index 
FEA Finite Element Analysis  
FSGP Fixed Structure Gaussian Process  
GP Gaussian Processes  
GPM Gaussian Processes Model 
HSV Hankel Singular Values 
KLD Karhunen-Loéve Decomposition  
LLM Local Linear Model  
LMN Local Model Networks  
LS Least Square  
MEMS Micro-Electro-Mechanical Systems 
MIMO Multi Input Multi Output  
MSE Mean Squared Error 
NARMAX Nonlinear Auto Regressive, Moving Average and 

Exogenous Input  
NARX Nonlinear Auto  Regressive with Moving Average 
NDS Nonlinear Dynamical System 
NTL Nonlinear Transmission Line 
ODE Ordinary Differential Equations 
PCA Principal Component Analysis 
PDE Partial Differential Equations  
PEM Prediction Error Minimization  
POD Proper Orthogonal Decomposition 
PR Polynomial Regression  
RBF Radial Basis Functions  
RK Runge-Kutta  
RSD Relative Standard Deviation 
SEM Simulation Error Minimization  
SISO Single Input Single Output  
SMSE Standardized Mean Squared Error 
TBR Truncated Balanced Realization 
TPWL Trajectory Piecewise Linear  
VBL-LPV  Velocity-Based Linearization-Linear Parameters Varying  
ZOH Zero-Order Hold 

 

xiv 



 

 Introduction Chapter 1 -

1.1 Computationally Intensive Models 

To discuss Computationally Intensive (CI) models, the concepts of system, model, and 

simulator are presented (Troch and Breitenecker, 2000): 

A system is “a structured sum of elements with well-defined properties and well-

established relations between these elements and with the environment”. 

A model is “an image or abstraction of reality, a mental, physical or mathematical 

representation or description of an actual system. Modelling is the development of 

equations, constraints and logic rules to describe the system”. 

An experiment performed on the model is called simulation; this is performed using a 

simulator which is a piece of computer code that describes the model. Simulation is the 

exercising of a model. 

A CI model can be defined as the model which requires an extensive amount of 

computational resources to run its simulator. Even though computational resources 

continue to expand and grow in power and speed, CI model simulation codes continue 

to grow in complexity and remain computationally expensive (Meckesheimer et al., 

2002, Castelletti et al., 2012). Most engineering processes require a number of runs of 

the model simulator in their design, validation testing, optimization etc. stages, when 

this simulator is CI; it will result in an expensive design cycles. CI simulators are also 

used in settings where physical system experimentation is impossible such in climate 

modelling (Levy and Steinberg, 2010). 

There are many examples of CI models such as: 
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• Finite Element Analysis models (FEA) of mechanical structures cf.eg. the 

simulation of bumper-rail assembly of a pickup truck (Farhang-Mehr and 

Azarm, 2005), this model involve 105 − 106 degrees of freedom and requires 

many hours or days of computer time. Another example is the simulation of 

Micro-Electro-Mechanical Systems (MEMS) models (Cao et al., 2005). 

• Computational Fluid Dynamics (CFD) models of many systems such as the 

simulation of gas turbine engines (Reed and Afjeh, 2000) and the simulation of 

environmental problems such as greenhouse gas emissions (Zhou et al., 2004). 

• CI models of electronic circuits such as the simulation of large DC/DC 

converters for a space station (Karimi et al., 1996), these systems are expensive 

to simulate due to size and high level complexity. Simulation of nonlinear 

transmission lines (Chen and White, 2000). 

1.2 The Concept of a Meta-Model 

A meta-model is a “model of a model” (Blanning, 1974), also known as a surrogate 

model or an approximation model, the meta-model is an approximation model of a CI 

model, it has the important property of being computationally less expensive than a CI 

model. 

A meta-model is not a problem approximation but a model approximation; an example 

for this is the Computational Fluids Dynamics (CFD) model of a turbine blade (Jin, 

2005) modelled using three-dimensional Navier-Stokes equations, this model can be 

approximated by a CFD model using three-dimensional Euler equations (notice that the 

approximation is using the same model class). Another example of this in the model of 

nonlinear thermal dynamics of multi-zone buildings (Goyal and Barooah, 2012) in 
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which the original set of nonlinear of Partial Differential Equations (PDE) are replaced 

by a reduced-order approximation based on Taylor series expansion. 

The meta-model concept has its roots in the topic of sensitivity analysis of CI model 

simulator (Kleijnen, 1975) which have shaped a set of properties a meta-model should 

have: 

• The meta-model is computationally less expensive than a CI model. 

• The meta-model may not include the full set of original inputs of the CI model; 

using the meta-model with a different input set after training may reduce its 

accuracy. 

• The meta-model should provide an error quantification of the predictions. 

Villa-Vialaneix et al. (2012) describes meta-model advantages of being: 

• Easier integration into other processes and simulation platforms. 

• Faster execution and reduced storage needs to simulate one output. 

• Easier applicability across different spatial and/or temporal scales. 

Meta-models structures are generally divided into two types (Shan and Wang, 2010): 

• Parametric meta-models such as Polynomial Regression (PR) models (also 

known by response surfaces), splines (piece-wise polynomial functions), 

Artificial Neural Networks (ANN) and Radial Basis Functions (RBF). 

• Non-parametric or interpolating meta-models such as Gaussian Processes (GP) 

otherwise known by Kriging. 
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Zhou et al. (2007) distinguishes parametric meta-models as a generalization based on 

training data, from interpolating models being restricted to a certain training data. 

Parametric meta-models suffer from the curse of dimensionality, or over-fitting when 

the number meta-model training data is sparse compared to the number of meta-model 

parameters. Non-parametric meta-models generally have far less parameters (hyper-

parameters) and they do not suffer from over-fitting problems with a limited size 

training data set , they allow online training data addition to improve quality of 

predictions (El-Beltagy and Keane, 2001). 

In terms of computational speed, parametric meta-models are faster to train and to 

predict the solution when the CI model dimensionality is low (Villa-Vialaneix et al., 

2012). Their computational speed is independent of the size of the available training 

data. 

Within the group of parametric meta-models, PR and splines methods are the easiest to 

train and the fastest to predict solutions, however they are confined to low-

dimensionality CI models, RBF meta-models are more robust than PR and splines 

methods (Barton, 1998, Giunta et al., 1998). 

Non-parametric meta-models have the distinct advantage in that they provide a 

confidence measure (uncertainty) about the predictions, which make them more useful 

as meta-models in general and especially in the context of sensitivity analysis. 

Meta-models have been part of many engineering processes such as the simulation of 

environmental problems using parametric and non-parametric meta-models (Villa-

Vialaneix et al., 2012), simulation of freshwater reservoir described by PDEs 

(Castelletti et al., 2012), simulation of structural reliability using Kriging meta-models 

(Sudret, 2012), the evolutionary optimization of FEA and CFD models using GP meta-
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models (El-Beltagy and Keane, 2001), sensitivity analysis of computer simulations 

using Evolutionary Algorithms (EA)(Storlie et al., 2009), electromagnetic design 

optimization using Kriging meta-models (Martone et al., 2007), aerodynamic wing 

design using Kriging meta-models (El-Beltagy and Keane, 1999) and within the general 

context of multi-disciplinary design optimization (Simpson et al., 2004, Jin, 2005, Egea 

et al., 2007, Shan and Wang, 2010). 

The process of building a certain meta-model is concerned with the following points: 

i) Analysis; this includes examining the set of inputs, states and outputs of the CI 

model. The analysis of the available CI model response data and the design of 

experiments to detect different dynamical system behaviour such as 

nonlinearities, discontinuities and randomness1. 

ii) Selection of a suitable meta-model structure; different meta-model structure 

have different properties it terms of model transparency, suitability for high-

dimensional training data, solution error management, amount of time to setup 

the model etc.. This will be further discussed in the next chapter. 

iii) The design and selection of input space parameters; this is a crucial step to 

formulate the model’s dimensionality which often relates to the nature of a 

computational intensiveness of a simulator. 

iv) Meta-Model training and validation; this includes the design of experiments that 

will generate response data using the CI model to identify the meta-model 

parameters. 

1CI stochastic dynamical systems are an important part of systems theory however; this thesis will only 
focus on the meta-modelling of deterministic CI models. 
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v) Meta-Model testing; this includes design of experiments to test the constructed 

meta-model. This will be accomplished by testing the meta-model using new set 

of inputs unseen during the meta-model training and validation phases. A set of 

measures will be used to evaluate the results such as model fitness and 

uncertainty information associated with the predictions. 

The trade-off between a meta-model and the CI model is the computational speed 

improvement versus the reduced accuracy; the CI model is a generalization of the 

underlying system while the meta-model often focuses of certain parts of the system. 

Engineering processes designer probably will spend considerable time to train, validate 

and test a certain meta-modelling strategy, but this is only done one time, then the meta-

model can replace the CI model to speed up the engineering process design cycle. 

1.3 Motivations and Contributions 

Meta-model approach selection depends mainly on the dimensionality of the CI model 

with parametric meta-models aimed at CI models with moderate dimensionality and 

non-parametric meta-models usually reserved for high-dimensionality problems with 

sparse training data. 

Jin et al. (2001) identified a number of meta-model performance measures in terms of 

accuracy, efficiency, robustness, simplicity and transparency. Shan and Wang (2010) 

after surveying two hundred research papers on meta-modelling techniques within the 

context of multi-disciplinary optimization have concluded that “most of the research 

focuses on the meta-modelling strategy itself but neglect studying and taking advantage 

of characteristics of the underlying CI model”. This is driven by the fact that all the 

meta-modelling approaches are in fact a form of black-box system identification 

method with the distinct difference that they are operating on the CI simulator rather 
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than the underlying system. This raises the issue of meta-model transparency, in that all 

of the current meta-modelling strategies are not transparent. Castelletti et al. (2012) 

noted that “users of meta-models tend to be reluctant to let their CI models be operated 

upon by some numerical and statistical identification tool and then replaced by a meta-

model that is seen to be the result of some obscure black-box procedure”. 

Analytical CI Nonlinear Dynamical Systems (NDS) are used to model many practical 

systems such as turbine aero-engines, nonlinear transmission lines, nonlinear electronic 

circuits and many CFD and FEA methods that can be reduced to a set of nonlinear 

Ordinary Differential Equations (ODE). Analytical CI-NDSs are transparent models 

and their systems are fully described from first-principle. However, applying current 

meta-modelling techniques to analytical CI-NDS models does not utilize their internal 

structure and will obscure the transparency of those models. 

Having identified these two shortcomings in the literature of the current meta-modelling 

strategies, the goal of this thesis is to device, implement and test a new meta-modelling 

approach specifically tailored for analytical CI-NDSs, this new meta-modelling 

approach will have the following properties: 

• Utilize the internal structure of CI-NDSs to construct an accurate meta-model. 

• The meta-model will be transparent, i.e. its structure will relate directly to the 

underlying dynamics of the original model. 

• Provide uncertainty information about the meta-model predictions. 

The thesis suggest to replace the analytical CI-NDS with Velocity-Based Linearization-

Linear Parameters Varying (VBL-LPV) system. VBL-LPV system is constructed from 

Jacobians of the linearization of the CI-NDS around preselected set of training points to 
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cover the operating space of the CI model. VBL-LPV system has the property that it is 

not an approximation but an exact representation of the CI-NDS dynamics; it is also a 

transparent realization of the original CI model. After constructing the Local Linear 

Models (LLM) of the VBL-LPV, a suitable linear model order reduction (MOR) 

approach is applied to reduce the dimensionality of the meta-model realization. GP 

models are used to blend the reduced-order VBL-LPV meta-model parameters; this will 

give it an advantage to deal with sparse training data, and will provide uncertainty 

information about the meta-model parameters which can be used to improve the 

accuracy of those parameters. Propagation of uncertainty from the meta-model 

parameters to the meta-model solution will be derived and used to improve the accuracy 

of the meta-model predictions. The new meta-modelling approach is called Gaussian 

Processes blended Reduced-Order Velocity-Based Linearization-Linear Parameters 

Varying system (GP blended reduced order VBL-LPV system). 

The GP blended reduced-order VBL-LPV system has the potential of having a reduced 

computational cost compared to the CI-NDS, because it involves solving a reduced-

order set of time-varying LLMs. It also preserves the transparency of the CI-NDS 

because it is coupled to the original dynamics of the CI-NDS via linearization and it 

utilizes the underlying structure of the CI-NDS when computing training the meta-

model parameters. 

The thesis main contributions are: 

• The application of linear MOR projection-based methods to the GP blended 

VBL-LPV system. 
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• Propagation of uncertainty of the GP blended VBL-LPV system from the time-

varying parameters to the model solution. 

1.4 Thesis Outline 

Chapter two is to review different modelling techniques of NDSs with emphasis on the 

model structure suitability for the meta-modelling of analytical CI-NDS. It will be 

focusing on the modelling structure transparency, its applicability to high-dimensional 

problems, and its capacity to deal with sparse training data and the global uncertainty 

bounds (or lack of) on the model predictions. 

Chapter three will reintroduce the GP blended VBL-LPV model structure. It will review 

the math of GP regression model and thoroughly discuss the full-order meta-model 

training, validation, and testing methodology using a simple NDS. 

Chapter four is the first thesis contributions chapter; it will review linear model order 

reduction techniques and their applicability to the meta-modelling of CI models in 

general. This will be followed by a detailed implementation of model order reduction 

for the proposed meta-model structure of Chapter three. 

Chapter five is the second thesis contributions chapter; it will present a complete 

derivation of the uncertainty propagation for the proposed meta-model and how it can 

be applied to improve the accuracy of the proposed meta-model predictions. 

Chapter six discusses the computational complexity of the proposed meta-model 

structure and wraps up with an example implementation of the meta-model for an 

analytical CI-NDS.  
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Chapter seven discusses thesis conclusions and recommendations. Finally, appendices 

A and B contain support materials for the research. 
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 Mathematical Modelling of a NDS Chapter 2 -

2.1 Introduction 

This chapter sets out to compare and choose a suitable analytical CI-NDS meta-model 

structure by exploring different model classes used in modelling NDSs in general. The 

main focus will be on NDS model classes that are transparent and the ones that can 

utilize the underlying structure of the model itself. The chapter will be used to advance 

the preceding thesis arguments about the proposed GP blended VBL-LPV system. 

The chapter will outline NDS global function approximation methods in section 2.2, 

however it will not dwell on these concepts because they are essentially black-box 

models therefore not transparent and does not fit with argument of this thesis for 

selecting a transparent meta-model structure and the utilization of the analytical NDS 

internal structure. 

Next, the chapter will review NDS model classes that are based on the divide and 

conquer (also called operating space decomposition) approach (sections 2.3 and 2.4) 

and within that the suggested VBL-LPV system. Divide and conquer model structures 

are more transparent than global function approximation methods, therefore fits nicely 

with the argument of the thesis. Section 2.5 will discuss the non-parametric GP models 

of NDS from the control and the applied statics perspectives and their suitability as a 

meta-model within the selection criteria of the thesis. 

Within the context of NDS models, a physical system can be defined as the interaction 

of a group of physical components to perform a certain job or a function. A physical 

system consists of: 

i) Outputs; represent the group of observable and measured physical quantities. 
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ii) Inputs; represent the group of physical quantities that can affect the outputs in 

the physical system. Some inputs can be modified by the observer to produce 

desired changes in the outputs, these are called controlled inputs. Other types of 

inputs are observable but not controllable and they are called exogenous inputs, 

these inputs sum the environment effects on a physical system. 

“A dynamical system is a mathematical concept that is used to describe a physical 

system by observing the relation of its components with time” (Kalman et al., 1969). 

The states of the dynamical system (a function of time) represent the “minimal set of 

variables that describe the dynamics of the physical system” (De Silva, 2009). A 

dynamical system model consists of inputs and outputs and states. 

Depending on the mathematical concept used in describing a physical system, 

dynamical system models can fall in one of three main categories: 

i) First-Principle (otherwise called white-box) model is a mathematical model 

where all the dynamics of the physical system can be defined by the use of 

mathematical expressions which reflect the best knowledge of the mathematical 

rules that govern the dynamics of the physical system. 

ii) Black-Box model is a predefined mathematical structure with its parameters 

identified by the use of datasets from the dynamical system response data 

(inputs, outputs and states). 

iii) Grey-Box model is a hybrid model where first-principle model and black-box 

model are both incorporated in defining certain parts in the structure of the 

model. 
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Let 𝑆 be a finite dimensional, continues time, nonlinear, time-invariant, and smooth 

dynamical system given by: 

 

𝑑𝑑𝒙𝒙(𝑡𝑡)
𝑑𝑑𝑡𝑡

= �̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� 

𝒚(𝑡𝑡) = 𝑮�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� 

𝒙𝒙(𝑡𝑡0) = 𝒙𝒙0 

( 2.1) 

𝒖𝒖(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡), … ,𝑢𝑢𝑚(𝑡𝑡)]𝑇 ,𝒖𝒖(𝑡𝑡) ∈ ℝ𝑚×1 is a vector of inputs to 𝑆. 

𝒙𝒙(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡), … , 𝑥𝑥𝑛𝑛(𝑡𝑡)]𝑇 ,𝒙𝒙(𝑡𝑡) ∈ ℝ𝑛𝑛×1 is a vector of states of 𝑆 and 𝑛 is the 

dynamical system order, �̇�𝒙(𝑡𝑡) ∈ ℝ𝑛𝑛×1. 

𝒙𝒙0 ∈ ℝ𝑛𝑛×1 is the initial state of the dynamical system at 𝑡𝑡 = 𝑡𝑡0. 

𝒚(𝑡𝑡) = [𝑦𝑦1(𝑡𝑡),𝑦𝑦2(𝑡𝑡), … ,𝑦𝑦𝑝(𝑡𝑡)]𝑇 ,𝒚(𝑡𝑡) ∈ ℝ𝑝×1 is a vector of outputs of 𝑆. 

𝑭: ℝ𝑛𝑛×1 × ℝ𝑚×1 → ℝ𝑛𝑛×1 is the system (state) mapping. 

𝑮: ℝ𝑛𝑛×1 × ℝ𝑚×1 → ℝ𝑝×1 is the output mapping. 

The mathematical solution to equation ( 2.1) is called the trajectory of the dynamical 

system and is given by: 

 𝒙𝒙(𝑡𝑡) = � �̇�𝒙(𝜏)𝑑𝑑𝜏
𝑡

𝑡0

= �𝑭�𝒙𝒙(𝜏),𝒖𝒖(𝜏)�𝑑𝑑𝜏
𝑡

𝑡0

 ( 2.2) 

Equation ( 2.2) means that if the state of the dynamical system is known at initial time 

𝜏 = 𝑡𝑡0 and the input to the dynamical system is known at both times 𝜏 = 𝑡𝑡0 and future 

time 𝜏 = 𝑡𝑡 then the future state of the dynamical system 𝒙𝒙(𝑡𝑡) can be found (De Silva, 

2009). 
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Dynamical system models are compared based on the following properties (De Silva, 

2009): 

i) Transparency of a model is how transparent a model is in describing the 

underlying physical system that it was formed from. Since first-principle models 

are directly formed from mathematical relations that describe physical system 

dynamics, they are the most transparent way to model a physical system. 

The dynamical system transparency is a measure that describes in general how 

well the model clearly relates to the underlying dynamics of its physical system. 

ii) Reliability is the model ability to successfully predict physical system behaviour 

each time new operating conditions are introduced. First-principle models that 

accurately describe the physical interpretations of a physical system are 

considered to be the most reliable models. 

iii) Scalability is the model ability to scale and expand with the introduction of new 

physical system components while maintaining the same structure of the model 

itself. Since first-principle models are mathematical concepts based on physical 

insights of the physical system, scaling and expanding them will also produce 

first-principle models, therefore; the model structure is preserved. 

iv) Complexity of a model describes the mathematical complexity of the dynamical 

system model. Dynamical models can get more complicated with the increase of 

independent dynamical interpretations of the physical system they are formed 

from. 

v) Computational burden of dynamical system models describes the associated 

computational cost of running a dynamical system model simulator. This 
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computational cost comes from the evaluations of mathematical expressions 

contained in the model and for complex dynamical system models this can be a 

computationally expensive process. 

2.2 The Nonlinear Auto Regressive, Moving Average and 
Exogenous Input NDS Structure 

The Nonlinear Auto Regressive, Moving Average and Exogenous Input (NARMAX) is 

one of the important NDS structures, it was introduced in (Leontaritis and Billings, 

1985a,  b). NARMAX is concerned with discrete time representations of the NDS, two 

conditions must be met for it to be used (Chen and Billings, 1989): 

i. The dynamical system must have a finite dimensional state space 

representation. 

ii. If the dynamical system is operating near or at a certain equilibrium point 

then a linearization must exists for it at that point. 

A NARMAX of a Single Input Single Output (SISO) discrete time dynamical system 

with input noise is given in as (Chen et al., 1990b): 

 

𝑦𝑦(𝑘 + 1) = 𝑓 �
𝑦𝑦(𝑘 − 1), 𝑦𝑦(𝑘 − 2), … ,𝑦𝑦(𝑘 − 𝑛𝑥), … ,
 𝑢𝑢(𝑘 − 1),𝑢𝑢(𝑘 − 2), … ,𝑢𝑢(𝑘 − 𝑛𝑢), … ,

 𝑒(𝑘 − 1), 𝑒(𝑘 − 2), … , 𝑒(𝑘 − 𝑛𝑒)
�

+ 𝑒(𝑘) 

𝑘 ∈ ℤ is the discrete time step. 

𝑒(. ) is the input noise term. 

𝑓(. ) is a nonlinear function. 

( 2.3) 
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𝑛𝒚, 𝑛𝒖𝒖,𝑛𝒆 ∈ ℤ are the number of delayed sample terms 

observed in the outputs and inputs and noise respectively. 

A NARMAX system can have infinitely different yet equivalent realizations similar to 

equation ( 2.3) (Chen and Billings, 1989); therefore a minimal representations is 

required i.e. the minimum value for 𝑛𝒚, 𝑛𝒖𝒖 and 𝑛𝒆 that can successfully describe the 

nonlinear system at hand. A NARMAX can be used to represent Multi Input Multi 

Output (MIMO) NDS as well (Chen et al., 1990b). 

2.2.1 The NARMAX Model Classes 

The design process of a NARMAX NDS starts by selecting a class for the function 𝑓(. ) 

in equation ( 2.3). Several classes for 𝑓(. ) that exist in the literature (Aguirre and 

Letellier, 2009) are: 

i) The Polynomial model class (Leontaritis and Billings, 1985b, Chen and 

Billings, 1989) which is linear in parameters making the process of parameter 

identification straight forward (Mendez and Billings, 2001) using Least Squares 

(LS) based algorithms. 

ii) Rational model class (Billings and Zhu, 1991); where the function 𝑓(. ) is the 

ratio of two polynomials; though the polynomials in this model are linear in 

parameters; the ratio between them will result in a model structure that has 

nonlinear parameters. (Aguirre and Letellier, 2009) suggest that the 

identification of parameters in this class can lead to numerical instability issues 

that are known to be non-trivial. 
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iii) Artificial Neural Network model class (Narendra and Parthasarathy, 1990); the 

ANN can consist of one hidden layer with a linear output layer and activation 

functions similar to those in the hidden layer. Using more than one hidden layer 

will result in a modelling class where the identified parameters are highly 

nonlinear (Chen et al., 1990b). There is also the problem of specifying the 

number of hidden layers and the number of neurons in each layer (Sjöberg et al., 

1995). 

iv) Radial Basis Function model class (Chen et al., 1990a); is similar to the one 

layered ANN modelling class except that there are no weights between the input 

layer and the hidden layer (Aguirre and Letellier, 2009); instead the nonlinear 

weights of the radial basis functions model class are identified. 

v) Wavelet Networks (Liangyue et al., 1995); is similar to the RBF approach 

except that they are formed using wave-nets class of functions. (Aguirre and 

Letellier, 2009) suggest that there is no clear guide on how to select these 

functions in practical implementations. Again the weights associated with this 

class are nonlinear. 

vi) Fuzzy logic model class; where linguistic terms are weighted and used to model 

the NDS particularly using RBF and ANN.  Incorporating linguistic terms in the 

model can prove useful to some problems in the modelling of dynamical 

systems. 

2.2.2 The NARMAX Model Structure 

The practical design and identification of NARMAX models starts by the selection and 

identification of a starter set of structures belonging to a certain class using an algorithm 
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which analyse the input/output training data. This process can yield a set of structures 

that are all valid representations of the NDS. To complete the design process, another 

algorithm is used to select and identify the final parsimonious set of NDS 

representations. Aguirre and Letellier (2009) suggest that there is no clear methodology 

to select the most parsimonious structure descriptive of physical system. 

Hong et al. (2008) suggest that from the classes of NARMAX system models discussed 

above, modelling classes which are linear in the parameters have verifiable learning and 

convergence conditions and can be implemented using parallel processing which may 

count towards the goal of  reducing the computational cost of the model learning and 

predictions. 

Some authors base their model structure selection upon Prediction Error Minimization 

(PEM) metrics while others use Simulation Error Minimization (SEM) metrics. The 

parameters of the chosen structure are identified using Least Square (LS) regression 

algorithms, Farina and Piroddi (2011) suggest to use a fully SEM algorithm to select 

both the structure and parameters in one go. They argued that this approach has more 

advantages than the more known and used PEM metric, because PEM metric can 

produce inaccurate and unstable models especially if the noise model does not describe 

the system generating the model’s training data. 

The more recent non-parametric (probabilistic) approach to select and train the 

parameters of the NDS input-output model is the Expectation Maximization (EM) 

algorithm (Baldacchino et al., 2012). This approach involves the maximization of the 

likelihood function in the training phase of the models parameters. Since EM approach 

is probabilistic in nature, it will result in a model with uncertainty information about the 

predictions. 
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2.2.3 Meta-Modelling a CI-NDS with NARMAX 

All NARMAX model classes are black-box models; they will result in a non-

transparent dynamical system realization of the CI model that does not directly relate to 

the dynamical description of the underlying physical system. 

Aside from the NARMAX model transparency issue, the model class itself is not 

suitable to deal with high-dimensionality problems, because such problems will need a 

considerable amount of training information to reach any reasonable accuracy. 

The EM structure selection and parameter training of the polynomial Nonlinear Auto  

Regressive and Exogenous Input (NARX) system discussed in (Baldacchino et al., 

2012) is more suited to deal with high-dimensionality problems with sparse training 

data. 

As for uncertainty information, all the model classes that use parametric regression 

methods in the structure selection and parameter training will not provide uncertainty 

information about the predictions with the exception of the EM approach. 

At this point, it is clear that none of the preceding NARMAX models agree with the 

thesis argument regarding meta-model transparency and utilization of the internal 

structure of analytical NDSs. 

2.3 Divide and Conquer Methods 

An improvement to the transparency of global function approximation methods was 

introduced in (Johansen and Foss, 1992) based on the idea of Divide and Conquer. 

Instead of treating the NDS as a global optimization problem, the operating space of the 

NDS is divided into several regions where each region can get its local model. This 
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allowed mixing first-principle and black-box modelling techniques to form a grey-box 

global model that have better transparency than global function approximation models. 

Johansen and Foss (1992) suggested to use Local Model Networks (LMN) to describe 

the local dynamics of the divided NDS operating space. After dividing the operating 

space of the NDS into sub-regions, each local model is assigned a weight that is a 

function of a scheduling vector; this will determine the contribution of the LLM to the 

global model response at any point in the operating space of the NDS. 

The authors in (Leith and Leithead, 2002, Leith and Leithead, 2003) suggested to use 

LPV systems. LPV systems in contrast to LMNs produce a global model that is 

identical to the LLM structure it was formed from. This gave LPV systems a 

transparency advantage when modelling NDS compared with other NDS identification 

methods. 

2.4 Velocity-Based Linearization  

The concept of modelling a NDS with a family of VBL-LLMs was introduced within 

the context of Divide and Conquer modelling framework for gain-scheduling control of 

Single-Input Single-Output (SISO) nonlinear wind turbine systems in (Leith and 

Leithead, 1996), extended to Multiple-Inputs Multiple-Outputs (MIMO) nonlinear wind 

turbine systems in (Leith and Leithead, 1998a). The framework was set for the 

modelling of continues-time NDS and it has shown that this model is an exact 

representation of the original NDS system with proven stability analysis of the resulted 

VBL-LPV system (Leith and Leithead, 1998b, 1998c, 1999, 1999, 2000). The concept 

of VBL-LPV system continued to be successfully used in gain-scheduling control of 

NDS for example in auto-pilot design for agile missile (Leith et al., 2001), internal 

mode controller for pH-neutralization process (Toivonen et al., 2003) which describes 
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the framework when dealing with discrete-time NDS, control for turbo fan engine 

(Reberga et al., 2005), nonlinear tracking of NDS (Guang-Bin et al., 2010), modelling 

and control of an air breathing hypersonic vehicle (Cai et al., 2011) and aero-engine 

nonlinear model (Yu et al., 2011). The VBL-LPV NDS model has not been as popular 

as global function approximation methods (black-box models) because it was limited to 

model analytical NDSs, aside from the cited applications of this system, very little 

research has gone into exploring it. 

To explain the blended VBL-LPV model of a NDS, reconsider the NDS of interest in 

equation ( 2.1). If the NDS is following a trajectory passing through a general operating 

point at time 𝑡𝑡 = 𝑡𝑡𝑖𝑖, then, the system at that point is described as 

 �̇�𝒙(𝑡𝑡𝑖𝑖) = 𝑭(𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)) ( 2.4) 

Assuming the system is continuously differentiable at that point, it can be approximated 

using first-order Taylor series expansion given as 

 

�̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� 

= 𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)� + ∇𝒙𝒙𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)�𝜹𝒙𝒙(𝑡𝑡)

+ ∇𝒖𝒖𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)�𝜹𝒖𝒖(𝑡𝑡) 

( 2.5) 

And the small signal perturbations are given as 

 
𝜹𝒙𝒙(𝑡𝑡) = 𝒙𝒙(𝑡𝑡) − 𝒙𝒙(𝑡𝑡𝑖𝑖) 

𝜹𝒖𝒖(𝑡𝑡) = 𝒖𝒖(𝑡𝑡) − 𝒖𝒖(𝑡𝑡𝑖𝑖) 
( 2.6) 

Let 𝑨𝑨𝑖𝑖 and 𝑩𝑩𝑖𝑖 be appropriately dimensioned parameters that are given by 
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𝑨𝑨𝑖𝑖 = ∇𝒙𝒙𝑭(𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)) 

𝑩𝑩𝑖𝑖 = ∇𝒖𝒖𝑭(𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)) 
( 2.7) 

And let, 

 𝜸𝑖𝑖 =  𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)� − �𝑨𝑨𝑖𝑖𝒙𝒙(𝑡𝑡𝑖𝑖) + 𝑩𝑩𝑖𝑖𝒖𝒖(𝑡𝑡𝑖𝑖)� ( 2.8) 

The LLM is given by 

 �̇�𝒙(𝑡𝑡) =  𝑨𝑨𝑖𝑖𝒙𝒙(𝑡𝑡) + 𝑩𝑩𝑖𝑖𝒖𝒖(𝑡𝑡) + 𝜸𝑖𝑖 ( 2.9) 

Examining the LLM in ( 2.9), it is locally linear and it describes the NDS anywhere in 

the operating space. When the NDS reaches an operating point that is an equilibrium 

point, the 𝜸𝑖𝑖 term becomes zero. Johansen et al. (1998) have shown that by having 

number of these LLMs and interpolating their outputs, an accurate reconstruction of the 

NDS can be obtained. 

From model transparency point of view, LLMs relate to the underlying dynamics of the 

physical systems when they are operating near equilibrium points of the NDS, but at 

transient regions of the NDS operating space, they lack the interpretability as to what do 

they mean when viewed in terms of the dynamics of the underlying physical system. 

This issue was pointed out in (Leith and Leithead, 1999, Shorten et al., 1999, Murray-

Smith et al., 1999). 

Differentiating equation ( 2.9) w.r.t. time and substituting 𝒘𝒘(𝑡𝑡) for �̇�𝒙(𝑡𝑡) yields 

 �̇�𝒘(𝑡𝑡) = 𝑨𝑨𝑖𝑖𝒘𝒘(𝑡𝑡) + 𝑩𝑩𝑖𝑖�̇�𝒖(𝑡𝑡) ( 2.10) 
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Equation ( 2.10) is the VBL form of the LLM (Figure  2-1). It is linear and consists of 

only two parameters that change with the current operating point (the term 𝜸𝑖𝑖 is 

constant and thus becomes zero upon differentiating). This form of LLM overcomes the 

interpretability problem that first-order Taylor’s series expansion LLM suffered from. It 

provides a transparent model that directly relates to the dynamics of the underlying 

physical system. VBL-LPV systems faithfully describe the nonlinear dynamics 

anywhere in the operating space (including points not local to an equilibrium operating 

point). A LLM in VBL form requires having the derivative of the input signal. In the 

case that the input signal is not continuously differentiable (e.g. a step function), a 

continues time mathematical approximation may be available (McLoone et al., 2001) 

(e.g. a sigmoid function for a step function) that is continuously differentiable. This 

approach is explained further by Appendix B. 

 

Figure  2-1: VBL 𝑖𝑡𝑡ℎ LLM in state-space form. 

There are couple of drawbacks in using the VBL-LPV system, the first being the 

requirement of access to the NDS internal states which limit the frame work to 

analytical NDSs, and the second is the requirement of input derivative. 

+ 

∫  ∫  
𝒘𝒘(𝑡𝑡) �̇�𝒖(𝑡𝑡) 𝒙𝒙(𝑡𝑡) 

𝑩𝑩𝑖𝑖 

𝑨𝑨𝑖𝑖 

𝑑𝑑
𝑑𝑑𝑡𝑡

 
𝒖𝒖(𝑡𝑡) 
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A drawback of using the VBL-LPV modelling framework is the requirement of solving 

second-order set of linear equations. This framework is only available to model NDS 

whose states are accessible. 

The identification of the VBL-LPV parameters is divided between two regions of the 

operating space in a way that covers as much as possible of the change in dynamics of 

interest. At equilibrium points this can be done using many linear system identification 

methods such as subspace system identification (Ljung, 1998). The VBL-LPV system 

LLM at a certain operating point is computed using equation ( 2.7) for the state part and 

the parameters for the output part are given as: 

 
𝑪𝑖𝑖 = ∇𝒙𝒙𝑮(𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)) 

𝑫𝑖𝑖 = ∇𝒖𝒖𝑮(𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)) 
( 2.11) 

However, in the case of off-equilibrium points of the operating space, it is difficult to 

determine the parameters of the VBL-LLM using any linear systems identification 

technique and therefore it must be calculated analytically using first-principle NDS 

Jacobians. This is why VBL-LPV model class is restricted to analytical NDS only. 

The NDS spends so little time at a transient point which makes the process of collecting 

enough amounts of data of sufficient quality for parameter identification very hard. The 

identification data sparsity problem relative to off-equilibrium points is all also called 

the problem of off-equilibrium dynamics. Murray-Smith et al. (1999) were the first to 

point out this problem. This problem is not specific to the divide and conquer approach 

and was pointed out throughout the literature of NDS identification. 
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2.5 NDS modelling with Gaussian Processes 

GP regression models are non-parametric, probabilistic models trained from empirical 

data. They provide predictions that are random variables with means and variances 

which can be used to better solve many engineering problems. GP models provide a 

dependency measure between predictions and their regressors and may lead to 

reductions in computational load (this will be explained further in section 3.3). GP 

models can be used to model NDS directly as black-box models or to blend parameters 

of grey-box representations of the NDS (such as LMN and LPV systems). 

GP models were first used to model a NDS that came in an autoregressive form in 

(Murray-Smith et al., 1999). GP model is a non-parametric black-box model that is 

identified from response data of the system; therefore it suffers from model 

transparency issue. In addition to this problem, GP model training and predictions 

requires the inversion of a covariance matrix whose size depend on the size of the 

training data set, this pose an additional computational cost in comparison to parametric 

models of NDSs. 

In order to decrease the training data set size, Leith et al. (2002) suggested to use a 

“hybrid local/global” GP model which incorporated local linearization of the NDS 

(derivative information) with response data from off-equilibrium regions of the system. 

Instead of using a group of points to describe the NDS behaviour in equilibrium, local 

linearization can describe the NDS by one training data point in terms of the 

linearization Jacobian at that point. This led to a reduction in the size of the covariance 

matrix which in turn improved the computational speed of a GP model. However, this 

model still suffered from model transparency issue. 
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GP regression models were used in creating LMN structures (Gregorčič and Lightbody, 

2007). A global GP model was used to select the centres of the validity function of the 

LMN (by observing the variance). The local models were selected to be local GP 

models. The boundaries of the validity function were identified by observing the 

variance of the corresponding local GP models. Gregorčič and Lightbody (2007) have 

shown that by using local GP models based on a linear covariance function, an 

analytical expression can be reached for both the local GP model and the global LMN. 

However, GP identified LMN suffer just like the parametric version of a LMN when it 

comes to model transparency. 

Azman and Kocijan (2006) proposed to use GP models to blend the parameters of 

VBL-LPV model. They used the GP blended VBL-LPV system to model continues-

time NDS and later to model discrete-time NDS (Ažman and Kocijan, 2009), their 

method was called Fixed Structure Gaussian Process (FSGP). Since the FSGP model 

structure is based on the transparent VBL-LPV model structure, it inherited its 

transparency. 

Under the study of simulators in computer experiments, it was proposed that non-

parametric (probabilistic) meta-models of the CI-NDS simulator can be a valuable tool 

to “analyse simulator discrepancies, quantify its uncertainties, sensitivity analysis, 

parameter uncertainty, residual variability, observation errors, model inadequacy and 

code uncertainty” (Conti et al., 2004). 

The study of computer emulators started with the research in (Sacks et al., 1989, 

Kennedy and O'Hagan, 2001). Two main approaches where suggested at the beginning 

to meta-model complex computer experiments of deterministic systems. 
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The first approach called the response surface (Sacks et al., 1989, Simpson et al., 2001) 

approach which assumes a class of low order polynomial regression (up to third order). 

It is noted that this approach when applied to simulators of dynamical systems 

resembles the polynomial class of NARMAX under a restrictive low order model 

structure. 

The second more favourable approach is Kriging which is the Gaussian Processes 

model. The Gaussian Processes model is an exact interpolator (Kleijnen, 2009) in a 

sense that the model will exactly predict outputs for the same simulator input-output 

pairs it was trained with. The Kriging model is called non-parametric model because it 

does not force the function to have predetermined class or structure (Kennedy and 

O'Hagan, 2001). 

There exits three main types of Kriging (Deng et al., 2012) depending on the choice of 

the mean function: 

i) Ordinary Kriging; the mean function is constant, it is considered to be a wide 

spread choice (Baldi Antognini and Zagoraiou, 2010). 

ii)  Universal Kriging; the assumption of a fixed regression mean model. 

iii) Bayesian Kriging; the assumption of Bayesian (probabilistic) means. 

The Ordinary Kriging is 100 times faster than the Monte-Carlo emulation methods 

(Conti and O’Hagan, 2010). 

The work of emulating complex computer codes started by designing emulators to deal 

with static simulators; The emulators of dynamic simulators first used a single step 

static emulator in a recursive approach (Conti and O’Hagan, 2010). This approach has 
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to deal with drawbacks like the need to extend the theory of static emulators to dynamic 

emulators; higher accuracy requirements are needed at each time step and the fading of 

computational advantage over the Monte-Carlo emulation methods for large time spans. 

In addition to this; the assumption that a recursive emulator having a Gaussian 

distribution is not true if the second time step was fed with a Gaussian distribution input 

rather than the mean of the prediction distribution. 

Depending on the number of outputs a Kriging-based dynamic emulator has to 

represent; three approaches where discussed (Conti and O’Hagan, 2010): 

i) Multi-Outputs Kriging; this approach consists of using a multi-output emulator 

and considered the simplest approach. 

ii) Many Single-Output Kriging; in this approach each output is modelled using a 

single emulator. 

iii) Time Input Kriging; this approach involves building a single-output simulator 

with the simulation time vector included as part of the input space. This 

approach will demand more computational load due to the inclusion of the 

simulation time as direct input component. 

The detailed implementation of the GP regression model will discussed further in 

chapter three. 

2.6 Meta-modelling with GP blended VBL-LPV system 

The goal of this thesis was to propose a meta-modelling technique tailored for 

analytical CI-NDS in a way that preserve the transparency of the meta-model and the 

underlying structure of the analytical CI-NDS is utilized in the meta-model parameters 
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identification process. As stated before; there cannot be any model more transparent 

than a model that was constructed from first-principle. Linear first-principle models 

may be more transparent and useful than equivalent nonlinear descriptions of the same 

system depending on the final goal of creating the meta-model such as in the design of 

controllers. Not all CI-NDS models are well understood from first-principle therefore, 

black box global function approximation methods such as NARMAX and its different 

classes are bound to be used to describe such systems. 

For the rest of CI-NDS constructed from first-principle; the GP blended VBL-LPV 

system can faithfully describe them without the loss of transparency of the original 

model and perhaps improving that transparency further. Examples of analytical CI-NDS 

are systems encountered in FEA models, CFD models, MEMS and nonlinear electronic 

circuits etc. Solving a set of linear differential equations may consume less time than 

solving a nonlinear set of differential equations of similar dimensionality (Berkooz et 

al., 1993). 

2.7 Conclusions 

Parametric global function approximation methods lack global model transparency; 

they are not suitable to meta-model high-dimensional CI-NDS and they generally do 

not provide uncertainty information about their predictions with a notable exception of 

non-parametric global function approximation methods such as GP models but still 

suffering from model transparency issue; they however are the first choice to model a 

NDS not well understood from first-principle and they do not require accesses to the 

NDS internal states. 

NDS models based on the idea of Divide and Conquer provide more transparent models 

than global function approximation methods, however, blending their parameters using 
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parametric methods might not be wise when dealing high-dimensional sparse training 

data. This can be alleviated by using non-parametric blending methods such as GP 

models. 

VBL-LPV systems have the most transparent model after the analytical CI-NDS model; 

they are not mathematical approximations but an exact description of the local model 

dynamics everywhere in the operating space. When mated with non-parametric 

blending methods such as GP models; they will be more suited to deal with high-

dimensional sparse training data and will provide global uncertainty information about 

their predictions. VBL-LPV systems being locally (and globally) linear in nature, there 

is a room for the reduction of the computational cost of the proposed meta-model by 

employing reduced order modelling for the VBL-LLMs, this is one of the two main 

contributions of the thesis which will be studied in depth in chapter four. 

The obvious problem with VBL-LPV system is that they require access to the CI-NDS 

states therefore restricting them to analytical CI-NDS models; however; there still exists 

a wide class of CI-NDS models well understood from first-principle such as FEA 

models, CFD problems, MEMS and nonlinear electronic circuits etc. that will benefit 

from the proposed meta-modelling technique. 
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 Gaussian Processes Blended VBL-LPV Chapter 3 -
system 

3.1 Introduction 

The idea of using VBL-LPV system to model a NDS (section 2.3) is an appealing 

method to choose for a meta-model because it provides a transparent global model that 

resembles a linear time-varying dynamical system. LPV systems require a model for 

scheduling the parameters according to the current operating point of the NDS, and 

from the parametric point of view, these models perform badly in high dimensions 

added to the problem of the training data sparsity in off-equilibrium regions of the 

NDS. 

Azman and Kocijan (2006) suggested to use GP regression model to model the change 

in the LPV parameters over the operating manifold (section 2.5). The appealing 

properties of the GP regression model made it the logical choice to schedule the 

parameters of the VBL-LPV system. 

The smoothing property of GP models meant it can achieve high accuracy compared to 

parametric methods using small number of identification data therefore reducing the 

effects of high dimensionality and off-equilibrium training data sparsity. 

GP regression models provide dependency measures which relate the training data (the 

parameter) to the regressors (the operating point) which meant the ability to reduce the 

size of the scheduling vector which may lead in turn to increased computational speed. 

This chapter will introduce the GP blended VBL-LPV meta-modelling structure in full 

order, it will examine global function approximation based on GP model and show how 

to apply it to compute the proposed meta-model time-varying parameters, it will also go 
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through the details of designing the meta-model for a simple nonlinear dynamical 

system. 

3.2 Meta-Model Structure 

A GP blended VBL-LPV system global model is given as 

 

�̇�𝒘(𝑡𝑡) =  𝑨𝑨(𝑡𝑡)𝒘𝒘(𝑡𝑡) + 𝑩𝑩(𝑡𝑡)�̇�𝒖(𝑡𝑡) 

𝒘𝒘(𝑡𝑡) =  �̇�𝒙(𝑡𝑡) 

𝒚(𝑡𝑡) = 𝑪(𝑡𝑡)𝒙𝒙(𝑡𝑡) + 𝑫(𝑡𝑡)𝒖𝒖(𝑡𝑡) 

𝒘𝒘(0) =  𝒘𝒘0,𝒙𝒙(0) =  𝒙𝒙0  

( 3.1) 

The parameters of the VBL-LPV system are the predictions of the GPMs to the time-

varying elements of each parameter matrix given as 

 

𝑨𝑨(𝑡𝑡) =  𝑮𝑷𝑴𝑨𝑨�𝒙𝒙(𝑡𝑡)� 

𝑩𝑩(𝑡𝑡) =  𝑮𝑷𝑴𝑩𝑩�𝒙𝒙(𝑡𝑡)� 

𝑪(𝑡𝑡) =  𝑮𝑷𝑴𝑪� 𝒙𝒙(𝑡𝑡)� 

𝑫(𝑡𝑡) =  𝑮𝑷𝑴𝑫� 𝒙𝒙(𝑡𝑡)�  

( 3.2) 

The numerical solution of equation ( 3.1) requires a suitable discretization method and 

numerical solvers which will be discussed later in this chapter. The VBL-LPV 

parameters blending using GPM will be discussed in the following sections after some 

background information about GP regression models. 

3.3 VBL-LPV Parameters Blending with Gaussian Processes 
Regression 

In the previous chapter; the review pointed out to the poor performance of parametric 

recursive input-output NDS models and divide and conquer NDS models when they use 
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sparse data to train their parameters (the data scarcity comes from the difficulty to 

gather quality training data in off-equilibrium regions of the NDS to identify the 

parameters of the LLMs). In addition to this problem, the number of LLMs increases 

with the increase in the dimensionality of the NDS (this increase the number of weights 

to train) leading to high computational loads.  

In the context of Bayesian curve fitting, O'Hagan and Kingman (1978) defended GP 

model for regression. Williams and Rasmussen (1996) in an effort to replace parametric 

function approximation methods like ANN, they used GP to model a nonlinear 

function. GP curve fitting models are probabilistic models with a number of hyper-

parameters to train, in contrast to parametric curve fitting models; training data are used 

to train the hyper-parameters and to predict new function values. GP model provides a 

measure of confidence in their predictions which can be used to measure the quality of 

the predictions and the choice of suitable training data sets; it can also be used to 

increase the accuracy of the predictions. 

3.3.1 Gaussian Processes 

In the context of universal function approximation, following a similar derivation in 

(Rasmussen and Williams, 2006), consider a training data set 𝑹 ∈ ℝ𝑛𝑛𝑡×𝑁𝑡 given below 

that consists from 𝑁𝑡𝑡 training input vectors 𝒓𝑖𝑖 ∈ ℝ𝑛𝑛𝑡×1, 𝑖 ∈ {1,2, … ,𝑁𝑡𝑡} and their 

corresponding noisy function observations 𝑧𝑖𝑖 ∈ ℝ. 

 𝑹 = �
𝑟1,1 ⋯ 𝑟1,𝑁𝑡
⋮ ⋱ ⋮

𝑟𝑛𝑛𝑡,1 ⋯ 𝑟𝑛𝑛𝑡,𝑁𝑡

� ( 3.3) 

The assumed relationship between the inputs and the noisy function observations are 

given as 
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 𝑧𝑖𝑖 = 𝑓(𝒓𝑖𝑖) + 𝜀𝑖𝑖 ( 3.4) 

The noise component 𝜀𝑖𝑖 is a random variable with a Gaussian distribution of zero mean, 

and 𝜎𝑛𝑛2 variance given by 

 𝜀𝑖𝑖~𝒩(0,𝜎𝑛𝑛2) ( 3.5) 

The noise is assumed to be independent and identical across all the training data 

samples; in the case of noise-free samples, it can still be introduced in very low 

magnitude. 

In GP regression, a Gaussian Process is a random field that maps the training data set 

{𝒓1,𝒓2, … , 𝒓𝑁𝑡} to a set of random variables given by the noise-free function 

observations {𝑓(𝒓1),𝑓(𝒓2), … ,𝑓(𝒓𝑁𝑡)}. A Gaussian process is specified by its mean 

function 𝑚(𝒓) and its covariance function 𝑐(𝒓𝑖𝑖, 𝒓𝑗). 

 𝑓(𝒓)~𝒢𝒫�𝑚(𝒓), 𝑐(𝒓𝑖𝑖, 𝒓𝑗)� ( 3.6) 

The probability distribution of the individual noise-free function observations is a 

Gaussian distribution specified by its mean vector 𝒎 ∈ ℝ𝑁𝑡×1, and a positive-definite 

covariance matrix 𝜮 ∈ ℝ𝑁𝑡×𝑁𝑡 , it is given by 

 𝑝(𝑓(𝑹)|𝑹) = 𝒩(𝒎,𝜮) ( 3.7) 

The mean function 𝒎 is usually set to zero. The covariance matrix elements 𝛴𝑖𝑖,𝑗 , 𝑖 , 𝑗 ∈

{1,2, … ,𝑁𝑡𝑡} are the covariates between individual noise-free function observations 

𝑓(𝒓𝑖𝑖) which are a function of the individual training inputs 𝒓𝑖𝑖 specified by the 
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covariance function 𝑐(𝒓𝑖𝑖, 𝒓𝑗). A choice for the covariance function with a distance 

measure 𝜃𝑑  ,𝑑𝑑 ∈ {1,2, …𝑛𝑡𝑡} is given by 

 𝛴𝑖𝑖,𝑗 = 𝑐(𝒓𝑖𝑖,𝒓𝑗) = 𝜃0 exp�−
1
2
�𝜃𝑑�𝑟𝑑,𝑖𝑖 − 𝑟𝑑,𝑗�

2
𝑛𝑛𝑡

𝑑=1

� ( 3.8) 

𝜃0 is the process variance parameter, 𝜃𝑑 can be considered as a dependency measure 

parameter that is used to determine the dependency of the training data targets on their 

corresponding inputs, the higher the value for 𝜃𝑑 the lower is the dependence. The use 

of a squared exponential covariance function like the one in equation ( 3.8) implies that 

the translations in the input space are smooth, similar inputs will have a higher 

correlation and using an exponential function will lead this correlation to increase or 

decrease faster. 

Going back to the noisy regression model given earlier by equation ( 3.4), the 

probability distribution of the noisy function observations given the function inputs 

𝑝(𝒛|𝑹) is also Gaussian with zero mean and a covariance matrix 𝜥𝑡𝑡 = 𝜮 + 𝜎𝑛𝑛2𝜤 ,

{𝜥𝑡𝑡, 𝑰 ∈ ℝ𝑁𝑡×𝑁𝑡}. Parameters of the covariance function with the additive noise 

variance are grouped together in a vector 𝜽 called the hyper-parameters vector given by 

 𝜽 = [𝜃0 𝜃1 ⋯ 𝜃𝑛𝑛 𝜎𝑛𝑛2]𝑇 ( 3.9) 

The covariance function hyper-parameters must be determined before it can make any 

prediction with the GP model. Williams and Rasmussen (1996) suggested that the 

hyper-parameters to be inferred by minimizing a cost function of the hyper-

parameters 𝐽(𝜽) given by the negative log of the probability distribution function of the 

marginal likelihood 𝑝(𝒛|𝑹). This cost function is given by 
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 𝐽(𝜽) = −
1
2

(𝑙𝑜𝑔(𝑑𝑑𝑒𝑡𝑡(𝜥𝑡𝑡
−1)) + 𝒛𝑇𝜥𝑡𝑡

−1𝒛 + 𝑁𝑡𝑡 𝑙𝑜𝑔(2𝜋)) ( 3.10) 

Equation ( 3.10) is called the Maximum Likelihood Estimator (Martin and Simpson, 

2005). The hyper-parameters optimization process starts by assigning initial values for 

the hyper-parameters then minimising by evaluating the partial derivative of equation 

( 3.10) w.r.t. 𝑖𝑡𝑡ℎ hyper-parameter 𝜃𝑖𝑖 as 

 
𝜕𝐽(𝜽)
𝜕𝜃𝑖𝑖

=
1
2
�𝑡𝑡𝑟 �𝜥𝑡𝑡

−1 𝜕𝜥𝑡𝑡

𝜕𝜃𝑖𝑖
� − 𝒛𝑇𝜥𝑡𝑡

−1 𝜕𝜥𝑡𝑡

𝜕𝜃𝑖𝑖
𝜥𝑡𝑡
−1𝒛� ( 3.11) 

The goal is to predict the function value 𝑧𝑝 ∈ ℝ for a new input 𝒓𝑝 ∈ ℝ𝑛𝑛𝑡×1. The 

prediction has a prior Gaussian probability distribution with a zero mean, variance 𝑘𝑝𝑝 

and is given by 

 𝑝�𝑧𝑝�𝒓𝑝� = 𝒩�0,𝑘𝑝𝑝� ( 3.12) 

The prior variance 𝑘 represents the auto-covariance of the prediction target and if 

calculated using the covariance function in equation ( 3.8) then 𝑘𝑝𝑝 = 𝜃0. 

The joint probability of the training targets 𝒛 and the prediction target 𝑧𝑝 is a 

multivariate Gaussian distribution function given by 

 𝑝�𝒛, 𝑧𝑝� = 𝒩�0, �
𝑲𝑡𝑡 𝒌𝑡𝑝
𝒌𝑡𝑝𝑇 𝑘𝑝𝑝

�� ( 3.13) 

𝒌𝑡𝑝 ∈ ℝ𝑁𝑡×1 is a covariance vector which describes the covariates between the noisy 

function observations 𝒛 and prediction target 𝑧𝑝, the elements of 𝒌𝑡𝑝 vector are 
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constructed using the covariance function given earlier by equation ( 3.8). To make a 

prediction we calculate the posterior probability given by 

 𝑝� 𝑧𝑝�𝒛,𝑹, 𝒓𝑝� =
𝑝�𝒛, 𝑧𝑝�
𝑝(𝒛|𝑹)  ( 3.14) 

The mean and the variance of the posterior probability distribution (a Gaussian 

distribution) are given as (Williams and Rasmussen, 1996). 

 
𝑚𝑝 = 𝒌𝑡𝑝𝑇 𝜥𝑡𝑡

−1𝒛 

𝜎𝑝2 =  𝑘𝑝𝑝 − 𝒌𝑡𝑝𝑇 𝜥𝑡𝑡
−1𝒌𝑡𝑝 + 𝜎𝑛𝑛2 

( 3.15) 

It is clear from equation ( 3.15) that the prediction mean and variance of a GP regression 

model is a function of the covariance matrix inverse. The computational cost of 

evaluating equation ( 3.15) is proportional to the size of the training data set 𝑁𝑡. While 

the covariance matrix inverse can be computed beforehand and stored aside before 

making any predictions; for very large training data sets this might be infeasible. 

3.3.2 GPM Covariance Function 

The GPM covariance function (equation ( 3.8)) has a central role in capturing the 

covariance between different input space samples. The choice of the covariance 

function affects the shape of the functions drawn under the Gaussian probability prior 

therefore care must be taken when specifying a certain covariance function to avoid 

model misspecification. 

Not any function can be used as a GP covariance function because the function has to 

be positive semi-definite (Rasmussen and Williams, 2006). A Covariance function can 

be stationary (invariant to translations in input space) or non-stationary. Different 
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covariance functions can be combined together to produce one big covariance function 

that gives higher likelihood the drawn functions from the Gaussian probability prior 

match the true underlying function described by the data multiplication of two 

covariance functions resembles a logical AND operator and addition of them resembles 

a logical OR operator. 

The squared-exponential covariance function of equation ( 3.8) is an example of a 

stationary covariance function. This covariance function can provide what is called 

automatic relevance determination (ARD) known in ANN with Bayesian treatment 

(Neal, 1996).  The covariance function hyper-parameters play the role of characteristic 

length scale which indicates the relevance of a certain input component. If the 

optimized hyper-parameter has a relatively high value for a certain input component 

then it can be eliminated from future training of the GPM. 

The squared exponential function can be called isotropic if it depends only on |𝒓𝑖𝑖 − 𝒓𝑗| 

with a single length scale hyper-parameter for all input dimensions. The squared 

exponential covariance function is a smooth function (infinitely differentiable) and 

considered the most widely used in regression problems (Rasmussen and Williams, 

2006). 

A covariance function is called dot-product if it depends on (𝒓𝑖𝑖. 𝒓𝑗), a dot-product 

covariance function is invariant to rotation around origin but not to translations in 

inputs space thus it is considered to be a non-stationary covariance function. 

Another important covariance function is the Matèrn-class given below for the case of 

one-dimensional input vector (𝒓) (Rasmussen and Williams, 2006). 
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 𝑐�𝑟𝑖𝑖, 𝑟𝑗� =
21−𝑣

Γ(𝑣)
⎝

⎛
�2𝑣�𝑟𝑖𝑖 − 𝑟𝑗�

𝑙
⎠

⎞

𝑣

𝐾𝑣

⎝

⎛
�2𝑣�𝑟𝑖𝑖 − 𝑟𝑗�

𝑙
⎠

⎞ ( 3.16) 

With , 𝑙 > 0 , 𝐾𝑣 is modified Bessel function. 

The Matèrn-class covariance function is often employed where discontinuity is present 

in the function modelled by the GPM which can be a true discontinuity or due to poor 

description of the underlying function by the training data (due to noise or limited 

number of training data samples). 

Another important covariance function is the neural network covariance function 

(Rasmussen and Williams, 2006) given by 

 𝑐�𝒓𝑖𝑖, 𝒓𝑗� = 𝜃0
2
𝜋
𝑠𝑖𝑛−1

⎝

⎛ 2𝒓𝚤�
𝑇𝚲𝒓𝚥�

��1 + 2𝒓𝚤�
𝑇𝚲𝒓𝚤���1 + 2𝒓𝚥�

𝑇𝚲𝒓𝚥��⎠

⎞ ( 3.17) 

Where 𝒓� = [1, 𝑟1, … , 𝑟𝑛𝑛𝑡]𝑇 is an augmented input vector and 𝚲 = 𝑰𝒍 with 𝒍 =

[𝑙1, … , 𝑙𝑛𝑛𝑡]𝑇 is the covariance function vector of length scales. 

The neural network covariance function is a non-stationary covariance function; it 

allows the saturation of the process parameter 𝜃0 in both negative and positive 

directions therefore allowing it to generate rapidly changing functions under the GP 

prior. This is important when modelling functions that are rapidly changing or 

discontinues. 

There are other types of covariance functions out of the scope of the presented research 

and for more in depth review the reader is referred to (Rasmussen and Williams, 2006) 

and the references therein. 
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3.3.3 Properties of the GP Regression Model 

GP regression models in comparison with parametric regression models can provide 

function predictions with a confidence measure that can be used to improve the 

selection of the training data sets to further improve the accuracy of those predictions, 

this is accomplished by isolating high uncertainty predictions and examining the 

amount of GPM  training data available in the vicinity of those predictions, increasing 

the number of the training data at these locations may improve the accuracy of the 

predication (reduce the uncertainty) provided that the covariance function model is 

specified correctly. 

The training of a GP model provides a way to determine the relevance between an input 

component and its prediction, this is done through the training of the hyper parameter 

𝜃𝑑 in the 𝑑𝑑𝑡𝑡ℎ dimension of the individual input vector 𝒓𝑖𝑖. This knowledge helps to 

choose input components that will be used to make the predictions later. This may 

result in regression dimensionality reduction of the input component which leads to 

computational savings when making the predictions. 

The smoothing property of the GP regression helps the model to perform relatively 

better than a parametric regression models when it deals with sparse function 

observations. 

On the other hand, Regression with GP models involves the inversion of the 𝑁𝑡𝑡 × 𝑁𝑡𝑡 

covariance matrix. This inversion is a computationally intensive process that increases 

with the increase in the size of the training data set. 
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All the practical results for the GP regression models are obtained using the open source 

Gaussian Processes for Machine Learning (GPML) toolbox developed in (Rasmussen 

and Nickisch, 2010) for MATLAB. 

3.3.4 Meta-Model Training 

Recalling equation ( 3.2) which defines the parameters of the VBL-LPV meta-model, 

each non-constant element in every parameter is described by a GPM function of the 

current operating point of the CI-NDS of which the meta-model is trained for. 

The first step in meta-model training is the collection of training data. The meta-model 

has to be trained ideally in equilibrium and off-equilibrium points of the required 

trajectory starting from some initial conditions (𝒖𝒖0,𝒙𝒙0,𝒘𝒘0). The number of training 

points should be enough to describe the underlying parameter function along this 

trajectory (the minimum number of training points to achieve high accuracy prediction 

and reduce the computational cost). 

The equilibrium training (𝒖𝒖𝑒 ,𝒙𝒙𝑒 ,𝒘𝒘𝑒) points can be analytically evaluated in most 

cases, or by allowing the NDS velocity to approach zero and measuring the 

corresponding equilibrium states and inputs. 

The off-equilibrium training points are a collection of points selected along the 

trajectory starting at some initial condition leading to some final-states and velocities 

denoted by (𝒖𝒖𝑓,𝒙𝒙𝑓 ,𝒘𝒘𝑓). 

One approach to secure a finite number of training data in the case of CI-NDS modelled 

by a piecewise-linear model was proposed in (Vasilyev et al., 2003). The first training 

data point is set to the initial condition of the system; then the CI-NDS following a 

certain input 𝒖𝒖(𝑡𝑡) is simulated while a suitable distance measure between the current 
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simulation state and its initial state is less than some predefined maximum threshold. If 

this maximum threshold is passed the simulator state passing that threshold is registered 

as a training point along with its corresponding input at that time. This procedure is 

given by Algorithm  3-1 

1 input: 𝒙𝒙0 (initial state), 𝒖𝒖𝑚 (trajectory input), 𝛿: (0 < 𝛿 < 1), 𝑖𝑡𝑡𝑚𝑎𝑥 ∈ ℕ+  
2 compute 𝒙𝒙𝑒 at 𝒖𝒖𝑚 from NDS first-principle model. 
3 if �|𝒙𝒙0|� = 0, set 𝑑𝑑𝑖𝑠𝑡𝑡𝑚𝑎𝑥: = δ�|𝒙𝒙𝑒|�, else 𝑑𝑑𝑖𝑠𝑡𝑡𝑚𝑎𝑥: = δ �|𝒙𝒙𝑒−𝒙𝒙0|�

�|𝒙𝒙0|�
 

4 𝑖: = 1, set 𝑹(: , 𝑖): = [𝒖𝒖𝑚;𝒙𝒙0], 𝑿(: , 𝑖) ≔ 𝒙𝒙0 
5 while 𝑖 < 𝑖𝑡𝑡𝑚𝑎𝑥  
6 while �|𝒙𝒙−𝑿(:,𝑖𝑖)|�

�|𝑿(:,𝑖𝑖)|�
< 𝑑𝑑𝑖𝑠𝑡𝑡𝑚𝑎𝑥 simulate NDS with  𝒖𝒖𝑚 

7 𝑖 = 𝑖 + 1, set 𝑹(: , 𝑖) = [𝒖𝒖𝑚;𝒙𝒙], 𝑿(: , 𝑖) = 𝒙𝒙 
8 end while loop, end while loop 
9 return:  𝑹 = �𝑹, [𝒖𝒖𝑚;𝒙𝒙𝒆]� (Set of meta-model training data points) 

Algorithm  3-1: Meta-model training data 

The maximum threshold the simulator state should pass to identify an off-equilibrium 

training point is given by the normalized distance between the final equilibrium state 𝒙𝒙𝑒 

and the initial state 𝒙𝒙0 multiplied by a positive constant 𝛿. Algorithm  3-1is suitable for 

one-dimensional training inputs transitioning to a single operating point from some 

initial state i.e. single trajectories. 

Other authors have proposed to excite the system with large randomly varying 

magnitude step inputs to try and capture the system at various off-equilibrium operating 

points. This approach will result in a larger number of operating points covering wider 

area of the NDS state-space. Algorithm  3-2 was used to generate a random sequence of 

pulses with varying magnitudes and widths to excite the NDS in off-equilibrium 

regions. 
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1 
input: 𝑢𝑢𝑚𝑖𝑖𝑛𝑛(minimum input), 𝑢𝑢𝑚𝑎𝑥 (maximum input), 𝑁𝑡𝑖𝑖𝑐𝑘𝑠 ≥ 2, 𝑁𝑡𝑖𝑖𝑐𝑘𝑠 ∈
ℕ+(number of identification pulses), 𝑇𝑠 (sampling time) and 𝑠𝑡𝑡𝑚 ≥ 1, 𝑠𝑡𝑡𝑚 ∈
ℝ+(sampling time multiplier) 

2 initialize pulse amplitude vector 𝒑𝒂 ∈ ℝ1×𝑁𝑡𝑖𝑐𝑘𝑠    
3 initialize pulse width vector 𝒑𝒘𝒘 ∈ ℝ1×𝑁𝑡𝑖𝑐𝑘𝑠 

4 initialize pulse position index vector 𝒑𝒊𝒅𝒙𝒙 = [1 … 𝑁𝑡𝑖𝑖𝑐𝑘𝑠],𝒑𝒊𝒅𝒙𝒙 ∈
ℝ1×𝑁𝑡𝑖𝑐𝑘𝑠  

5 initialize individual pulse sequence vector 𝒑𝒔𝒆𝒒 
6 initialize final off- equilibrium input pulse sequence vector 𝒖𝒖𝑜𝑓𝑓 
7 𝑖: = 1, 𝒑𝒂(𝑖) = 𝑢𝑢𝑚𝑖𝑖𝑛𝑛,  𝒑𝒘𝒘(𝑖) = 𝑠𝑡𝑡𝑚 × 𝑇𝑠, 𝑖 = 𝑖 + 1 
8 while 𝑖 < 𝑁𝑡𝑖𝑖𝑐𝑘𝑠 

9 𝒑𝒂(𝑖) = 𝒑𝒂(𝑖 − 1) +
𝑢𝑢𝑚𝑎𝑥 − 𝑢𝑢𝑚𝑖𝑖𝑛𝑛

𝑁𝑡𝑖𝑖𝑐𝑘𝑠
 

10 𝒑𝒘𝒘(𝑖) = 𝑖 × 𝑠𝑡𝑡𝑚 × 𝑇𝑠 
11 𝑖 = 𝑖 + 1 
12 end while loop 
13 compute random permutation of 𝒑𝒊𝒅𝒙𝒙 entries  
14 𝑖 = 1,  
15 while 𝑖 < 𝑁𝑡𝑖𝑖𝑐𝑘𝑠 
16 𝑗: = 1 
17 while 𝑗 < 𝒑𝒘𝒘(𝒑𝒊𝒅𝒙𝒙(𝑖)) 
18 𝒑𝒔𝒆𝒒(𝑗) =  𝒑𝒂�𝒑𝒊𝒅𝒙𝒙(𝑖)� 
19 𝑗 = 𝑗 + 1 
20 end while loop 
21 𝒖𝒖𝑜𝑓𝑓 = [𝒖𝒖𝑜𝑓𝑓 ,𝒑𝒔𝒆𝒒] 
22 𝑖 = 𝑖 + 1 
23 end while loop 
24 compute time-series object with 𝒖𝒖𝑜𝑓𝑓 uniformly re-sampled at 𝑇𝑠  
25 return:  𝒖𝒖𝑜𝑓𝑓 (off-equilibrium input step sequence) 

Algorithm  3-2: Meta-model off-equilibrium training input using randomly 

generated pulse sequence 

The inputs to Algorithm  3-2 are the minimum and maximum pulse sequence 

magnitudes (𝑢𝑢𝑚𝑖𝑖𝑛𝑛, 𝑢𝑢𝑚𝑎𝑥), the number of individual levels in the sequence (𝑁𝑡𝑖𝑖𝑐𝑘𝑠), the 

default sampling time (𝑇𝑠) of the NDS and a sampling time multiplier (𝑠𝑡𝑡𝑚) to specify 

base pulse widths larger than 𝑇𝑠. 𝑠𝑡𝑡𝑚 sets the length of the generated pulse sequence, 

relatively large 𝑠𝑡𝑡𝑚 value (compared to (𝑠𝑡𝑡𝑚 × 𝑇𝑠)) will generate longer minimum 

pulse width therefore allowing to the NDS to approach equilibrium state at the end of 

the an individual pulse (depends on the NDS characteristics). 
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Algorithm  3-2 will return 𝒖𝒖𝑜𝑓𝑓 an identification input pulse sequence which is applied 

to the NDS to compute the meta-model off-equilibrium training data (states).  

Due to the computational complexity associated with CI-NDSs, a short length 

excitation signal is desirable to reduce the time needed to collect the meta-model 

training and validation data. A small training data set for the meta-model is important to 

reduce the computational overhead associated with making prediction using the GP 

regression model (This will be discussed further in Chapter 6). 

The Two-Tanks NDS (Figure  3-1) and appendix A.2 is a simple second order NDS that 

can be found part of MATLAB system identification tool box. The model being of 2nd 

order, its phase response can be visualized and will be used as an example of how the 

meta-model is created based on the proposed GP blended VBL-LPV meta-modelling 

structure. 

The Two-Tanks NDS has one input described by the voltage applied to a water pump 

𝑢𝑢(𝑡𝑡) that creates an inflow to the upper tank which has a small hole in the bottom that 

creates an outflow to the lower tank, the lower tank has a small hole in the bottom that 

generate an outflow. The water levels (meters) in both tanks at any time are the two 

states of the system 𝑥𝑥1(𝑡𝑡)𝑎𝑛𝑑𝑑 𝑥𝑥2(𝑡𝑡) and the model output is specified by 𝑦𝑦(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡). 

The minimum pump voltage was inferred from an example of the system in the 

MATALB documentation to be greater than one, this will allow the incoming water 

flow speed to be greater than system water outflow speed to prevent a singularity in the 

solution. 
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Figure  3-1: Two tanks NDS (MATLAB system identification tool box). 

The upper range of the pump voltage was set arbitrarily at 10v. The initial water level in 

both tanks at the minimum pump voltage must be greater than zero to prevent 

singularity in the model solution, for this experiment the initial conditions was set at 

𝑥𝑥0 = (0.05, 0.1). The set of the above initial conditions will result in a well behaved 

and predictable response across the forcing input range. The default sampling time of 

the system is 0.2𝑠. 

The equilibrium points of the system were analytically evaluated uniformly at 100 

points across the pump voltage range (1 ≥ 𝑢𝑢(𝑡𝑡) ≥ 10), this resulted in 100 equilibrium 

data points. The off-equilibrium training data are taken of the system response to a 

randomly generated sequence of varying magnitude steps (Algorithm  3-2). This was 

accomplished by randomly sampling the pump voltage range 1 ≥ 𝑢𝑢(𝑡𝑡) ≥ 10 at 100 

points and setting 𝑠𝑡𝑡𝑚 = 2. The generated pulse sequence was uniformly sampled 

Water pump voltage 𝑢𝑢(𝑡𝑡)  

𝑥𝑥1(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) 
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every 0.2𝑠 resulted in 588 data points that includes off-equilibrium points of the 

system, the identification pulse sequence is given by Figure  3-2. 

 

Figure  3-2: Two-Tanks NDS pump voltage sequence used to excite the model 

at off-equilibrium dynamics 

After the collection of the meta-model training points (a total of 688), the GP models of 

the model’s time-varying parameters must be trained; in the case of the Two-Tanks 

NDS, only three entries in parameter 𝑨𝑨(𝑡𝑡) needs to be trained with GPM, parameters 

𝑩𝑩(𝑡𝑡),𝑪(𝑡𝑡) and 𝑫(𝑡𝑡) are constants (appendix A.2). The meta-model training points 

function targets are computed using the true values of the parameters calculated from 

the Jacobians of the NDS first-principle model given by equations ( 2.7) and ( 2.11) at 

each training point. 

A covariance function has to be selected for each GP model of the meta-model time-

varying parameters, initial guesses has to be assigned as to what the hyper-parameters 

values are before training of the GP model. 
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In the case of the Two-Tanks NDS, a squared-exponential with ARD has been chosen 

and the GP model’s means were set to zero. This choice was repeated during the 

training of the GPM for all three time-varying entries in the 𝑨𝑨(𝑡𝑡) parameter. During the 

training of each GPM, cross-validation (Rasmussen and Williams, 2006) was used to 

choose a best GPM model that agrees with validation data. This was implemented by 

splitting the collected training points into two disjoint sets one for training and the other 

for validation using uniform sampling with odd-even indices, this resulted in 344 points 

used for the training of the GPMs and the rest are used for validation. Although the 

training data are noise free, very small (1 × 10−5) zero-mean Gaussian noise was added 

to all training points’ targets to stabilize GPM calculations. 

The GPM covariance function hyper-parameters are trained by minimizing the cost 

function 𝑱(𝜽) in equation ( 3.10) using the conjugate gradient optimization method (part 

of the GPML toolbox). The chosen covariance function for the Two-Tanks NDS time-

varying entries of parameter 𝑨𝑨(t) has a total of four parameters including the GPM 

noise parameter. 

A measure for the trained GPM fitness can be computed using the Mean Square Error 

(MSE) which is the average squared error between the GPM predictions and true targets 

but is sensitive to the magnitude of the data so Standardized Mean Squared Error 

(SMSE) (Rasmussen and Williams, 2006) (which is the MSE divided by the variance of 

the true targets variance) was computed instead. MSE and SMSE metrics are only 

useful when having results from different experiments (for the same parameter model) 

such as when performing cross-validation, examining the lowest achievable SMSE 

value indicates a good agreement between the trained GPM and the validation data set 
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with minimum uncertainty. Another way to test how the validation data agrees with the 

trained GPM in any single experiment is given by 

 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 = 100 �1 −
|�𝒇𝑡𝑟𝑢𝑒 − 𝒇𝑝𝑟𝑒𝑑𝑖𝑖𝑐𝑡𝑖𝑖𝑜𝑛𝑛�|
�|𝒇𝑡𝑟𝑢𝑒 − 𝑚𝑒𝑎𝑛(𝒇𝑡𝑟𝑢𝑒)|�

� ( 3.18) 

Equation ( 3.18) fitness measure will also be used to evaluate the meta-model solution as 

well. 

The GPMs training result for the Two-Tanks NDS meta-model parameters are given in 

Table  3-1. 

Table  3-1: Two-Tanks NDS GPM training results for the time-varying entries of 

meta-model parameter 𝑨𝑨(𝒕) 

 𝐺𝑃𝑀(𝑎11) 𝐺𝑃𝑀(𝑎21) 𝐺𝑃𝑀(𝑎22) 
𝜽𝑖𝑖𝑛𝑛𝑡𝑖𝑖𝑎𝑙 𝜽𝑡𝑟𝑎𝑖𝑖𝑛𝑛𝑒𝑑 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝜽𝑡𝑟𝑎𝑖𝑖𝑛𝑛𝑒𝑑 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 𝜽𝑡𝑟𝑎𝑖𝑖𝑛𝑛𝑒𝑑 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 

𝜃1 1 1.28 × 10−2 97.28 1.88 × 10−2 97.79 1.86 × 103 97.52 
𝜃2 1 8.62 × 102 𝑆𝑀𝑆𝐸 3.23 × 105 𝑆𝑀𝑆𝐸 3.27 × 10−2 𝑆𝑀𝑆𝐸 𝜃3 1 1.86 3.44 × 101 1.03 × 101 

𝜃4 1
× 10−5 2.3 × 10−3 7.37

× 10−4 2.6 × 10−3 4.89
× 10−4 2.39 × 10−3 6.12

× 10−4 

Table  3-1 shows that across all the three meta-model parameters, the GPMs 

successfully captured the underlying function with model finesses greater than 97%. 

Among things to observe in the trained hyper-parameters, the chosen squared-

exponential covariance function with ARD assigned the first two hyper-parameters 

{𝜃1, 𝜃2} to each one of the possible regression inputs and in the case of the Two-Tanks 

NDS they are {𝑥𝑥1, 𝑥𝑥2}. The covariance function ARD feature automatically revealed the 

relevant input to model the underlying parameter function by assigning a relatively 

small value to the relevant input. This can be verified by observing the analytical Two-

Tanks NDS Jacobians (appendix A.2). 
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The covariance function with ARD feature is useful to detect the relevant regression 

inputs when the meta-model order has been reduced (chapter four). 

The variance of the validation data provided by the GPM validation stage can be used 

to calculate the percentage of the Relative Standard Deviation (%𝑅𝑅𝑆𝐷𝐷) given below to 

provide an insight of where the GP regression model was uncertain when it made the 

prediction. 

 

%𝑅𝑅𝑆𝐷𝐷 = 100 �
𝜎𝑝
𝑚𝑝

� 

𝜎𝑝 is the standard deviation of the prediction. 

𝑚𝑝 is the mean of the prediction. 

( 3.19) 

This fitness measure cannot be used with data where the function targets approaches 

zero value. A plot of the GPMs validation data %𝑅𝑅𝑆𝐷𝐷 for the Two-Tanks NDS 

parameter 𝑨𝑨(𝑡𝑡) is given by Figure  3-3. 

The plot in Figure  3-3 demonstrates that most of the GPM validation points achieved 

%𝑅𝑅𝑆𝐷𝐷 below 5% indicating high confidence predictions. This is a good indication that 

the meta-model will be able to provide a low variance solution with unseen test inputs 

as long as these inputs stayed close to the training data space. There are few outliers 

above the 5% , this is normal because an ideal fit is not expected between the trained 

meta-model parameters and the validation data. However, the effect of outliers on the 

final meta-model solution can be dramatic since this a model for nonlinear dynamical 

system and an anomaly at any point of time could affect the rest of the solution. 
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The %𝑅𝑅𝑆𝐷𝐷 plot is an important tool in the meta-model validation phase because it is 

easy to plot (two-dimensional) and a single glance at this plot reveals the GPM 

confidence in predictions. 

 

Figure  3-3: %𝑅𝑅𝑆𝐷𝐷 for the time-varying entries of the 𝑨𝑨(𝑡𝑡) parameter for the 

Two-Tanks meta-model validation data set 

This concludes the training procedure of the GP blended VBL-LPV meta-model. 

3.4 The Meta-Model Solver 

The thesis has explored a set of numerical methods to solve the meta-model equations 

( 3.1) and ( 3.2). These methods deploy a discretization approach to the set of differential 

equations to be solved given by a Zero-Order Hold (ZOH) on the meta-model inputs 

followed by fixed-time step sampling at 𝑡𝑡 = 𝑘ℎ, {𝑘 = 0,1,2 … } where ℎ is the fixed-

time step. The sampled version of the meta-model equations is given by 
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�̇�𝒘(𝑘ℎ) =  𝑨𝑨(𝑘ℎ)𝒘𝒘(𝑘ℎ) + 𝑩𝑩(𝑘ℎ)�̇�𝒖(𝑘ℎ) 

𝒘𝒘(𝑘ℎ) =  �̇�𝒙(𝑘ℎ) 

𝒚(𝑘ℎ) = 𝑪(𝑘ℎ)𝒙𝒙(𝑘ℎ) + 𝑫(𝑘ℎ)𝒖𝒖(𝑘ℎ) 

𝒘𝒘(0) =  𝒘𝒘0,𝒙𝒙(0) =  𝒙𝒙0  

( 3.20) 

And the sampled meta-model parameters are given by 

 

𝑨𝑨(𝑘ℎ) =  𝑮𝑷𝑴𝑨𝑨� 𝒙𝒙(𝑘ℎ)� 

𝑩𝑩(𝑘ℎ) =  𝑮𝑷𝑴𝑩𝑩�𝒙𝒙(𝑘ℎ)� 

𝑪(𝑘ℎ) =  𝑮𝑷𝑴𝑪�𝒙𝒙(𝑘ℎ)� 

𝑫(𝑘ℎ) =  𝑮𝑷𝑴𝑫�𝒙𝒙(𝑘ℎ)�  

( 3.21) 

At each discrete time step ℎ taken by the solver, two solution estimates are needed; a 

solution for the velocity part, then the state part later. The proposed meta-model 

discrete-time step solver is making an assumption that because of the ZOH, the LLM 

parameters are constant during the fixed-time stepping of the solver which may not be 

valid for a CI-NDS with very high speed dynamics. 

3.4.1 The Velocity Solution 

The velocity solution of the VBL-LPV system at any time step is given by 

 

𝒘𝒘�(𝑘 + 1)ℎ� =  𝑒𝑨𝑨(𝑘)(𝑘+1)ℎ𝒘𝒘(0)

+ � 𝑒𝑨𝑨(𝑘)(𝑘+1)ℎ−𝜏𝑩𝑩(𝑘)�̇�𝒖(𝜏)𝑑𝑑𝜏

(𝑘+1)ℎ

0

  
( 3.22) 

Equation ( 3.22) can be decomposed to 
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𝒘𝒘�(𝑘 + 1)ℎ� =  𝑒𝑨𝑨(𝑘)ℎ �𝑒𝑨𝑨(𝑘)𝑘ℎ𝒘𝒘(0)

+ � 𝑒𝑨𝑨(𝑘)(𝑘ℎ−𝜏)𝑩𝑩(𝑘)�̇�𝒖(𝜏)𝑑𝑑𝜏
𝑘ℎ

0

�

+ � 𝑒𝑨𝑨(𝑘)(𝑘+1)ℎ−𝜏𝑩𝑩(𝑘)�̇�𝒖(𝜏)𝑑𝑑𝜏

(𝑘+1)ℎ

𝑘ℎ

  

( 3.23) 

Setting the term between large brackets to 𝒘𝒘(𝑘) and introducing the term 𝛽 =

(𝑘 + 1)ℎ − 𝜏 into equation ( 3.23) to get 

 
𝒘𝒘(𝑘 + 1) =  𝑒𝑨𝑨(𝑘)ℎ𝒘𝒘(𝑘) + �𝑒𝑨𝑨(𝑘)𝛽𝑑𝑑𝛽𝑩𝑩(𝑘)�̇�𝒖(𝑘)

ℎ

0

 

  

( 3.24) 

Further rearrangement of equation ( 3.24) yield 

 

𝒘𝒘(𝑘 + 1) =  𝑨𝑨𝑑(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩𝑑(𝑘)�̇�𝒖(𝑘) 

𝑨𝑨𝑑(𝑘) = 𝑒𝑨𝑨(𝑘)ℎ 

𝑩𝑩𝑑(𝑘) =  �𝑒𝑨𝑨(𝑘)𝛽𝑑𝑑𝛽
ℎ

0

 

( 3.25) 

The meta-model velocity solution in equation ( 3.25) is called Exact-Discretization 

method (ED). The discrete parameter 𝑩𝑩𝑑(𝑘) of the forcing part in the ED velocity 

solution can be approximated using the equality 𝑨𝑨(𝑘)∫ 𝑒𝑨𝑨(𝑘)𝛽𝑑𝑑𝛽ℎ
0 = 𝑒𝑨𝑨(𝑘)𝛽 − 𝑰 as 

given by 
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 𝑩𝑩𝑑(𝑘) = 𝑨𝑨(𝑘)−1(𝑨𝑨𝑑(𝑘) − 𝑰)𝑩𝑩(𝑘)  ( 3.26) 

Provided that 𝑨𝑨(𝑘) is not singular. 

The ED velocity solution method will provide a solution that exactly matches the 

continues-time solution at the discrete time samples. The rest of the proposed velocity 

solutions in the following paragraphs can be viewed as numerical approximation to the 

ED velocity solution. 

The velocity solution at any discrete time 𝑘 can be approximated using Forward-Euler 

method by 

 𝒘𝒘(𝑘 + 1) =  𝒘𝒘(𝑘) + ℎ�𝑨𝑨(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘)� ( 3.27) 

The Forward-Euler method require small time stepping in general for any reasonable 

accuracy, as the time step ℎ approaches smaller values; rounding errors start 

accumulating throughout the solution. The Forward-Euler method can produce unstable 

solutions for larger time steps especially or when meta-modelling stiff NDS. The local 

truncation error of the Forward-Euler method is 𝒪(ℎ2) while the total accumulated 

error is 𝒪(ℎ). 

Heun’s method (Ascher and Petzold, 1998) can be applied to solve for the velocity, this 

method is given by 
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�́�𝒘(𝑘 + 1) =  𝒘𝒘(𝑘) + ℎ�𝑨𝑨(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘)� 

𝒘𝒘(𝑘 + 1) =  𝒘𝒘(𝑘)

+
ℎ
2
��𝑨𝑨(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘)�

+ �𝑨𝑨(𝑘)�́�𝒘(𝑘 + 1) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘 + 1)�� 

( 3.28) 

Heun’s method can be viewed as a correction to the Forward-Euler method solution 

estimate by averaging the velocity estimate at both ends of the fixed time step. Heun’s 

method is a predictor-corrector method with Forward-Euler method as the predictor 

and the Trapezoidal method of integration as the corrector. Therefore; Heun’s method 

is more accurate than the Forward-Euler method but still have the same drawbacks of 

the Forward-Euler method concerning the stability of the obtained solutions. The local 

truncation error of the Heun’s method is 𝒪(ℎ2) similar to the Forward-Euler method 

while the total accumulated error is 𝒪(ℎ2) an improvement on the Forward-Euler 

method. 

To improve on the predictions accuracy of the previous methods, an explicit classical 

Runge-Kutta method of fourth order (RK4) is proposed to solve the velocity equation, 

this method is given below. The RK4 method is a fourth order method which means the 

local truncation error is 𝒪(ℎ5) and the total accumulated error is 𝒪(ℎ4). Therefore; the 

RK4 method should provide more accurate solutions to the meta-model velocity 

equation but will require extra computations. RK4 method fairs better than Forward-

Euler method especially with large time steps. 
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𝑑𝑑𝒘𝒘1 = 𝑨𝑨(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘) 

𝑑𝑑𝒘𝒘2 = 𝑨𝑨(𝑘) �𝒘𝒘(𝑘) +
ℎ
2
𝑑𝑑𝒘𝒘1� + 𝑩𝑩(𝑘)�̇�𝒖(𝑘) 

𝑑𝑑𝒘𝒘3 = 𝑨𝑨(𝑘) �𝒘𝒘(𝑘) +
ℎ
2
𝑑𝑑𝒘𝒘2� + 𝑩𝑩(𝑘)�̇�𝒖(𝑘) 

𝑑𝑑𝒘𝒘4 = 𝑨𝑨(𝑘)(𝒘𝒘(𝑘) + ℎ𝑑𝑑𝒘𝒘3) + 𝑩𝑩(𝑘)�̇�𝒖(𝑘 + 1) 

𝒘𝒘(𝑘 + 1) =  𝒘𝒘(𝑘) +
ℎ
6

(𝑑𝑑𝒘𝒘1 + 2𝑑𝑑𝒘𝒘2 + 2𝑑𝑑𝒘𝒘3 + 𝑑𝑑𝒘𝒘4) 

( 3.29) 

3.4.2 The State Equation Solver 

There is not much to solve the state part of the meta-model equation ( 3.20) other than 

using a Forward-Euler method to estimate the state solution from the velocity solution. 

The state solution is given by 

 𝒙𝒙(𝑘 + 1) =  𝒙𝒙(𝑘) + ℎ𝒘𝒘(𝑘 + 1) ( 3.30) 

3.4.3 The Meta-Model Output 

The meta-model output only requires the discrete state solution of equation ( 3.30) to be 

substituted in the output part of equation ( 3.20). 

3.4.4 Solving the Two-Tanks NDS Meta-Model 

To test the Two-Tanks meta-model, a number of test inputs have been applied. The 

original NDS model response was simulated for each test input using fixed-time step 

(ℎ = 0.2𝑠) classical RK4 method to provide a reference response. 

The first test input is a step function given by 
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𝑢𝑢(𝑡𝑡) = 5, 𝑡𝑡 < 1.8 

𝑢𝑢(𝑡𝑡) = 10, 𝑡𝑡 ≥ 1.8 
( 3.31) 

Since this input is discontinues and the meta-model structure requires a continues-time 

input with a valid first-order derivative, it was approximated using a sigmoid like 

function as described in Appendix B. 

Exact-Discretization velocity solver was used to obtain the meta-model solution to this 

input. The response of the meta-model is shown in Figure  3-4. 

 

Figure  3-4: Meta-model solution of the Two-Tanks NDS to a step function 

Figure  3-4 shows that the meta-model successfully predicted the output with model 

fitness of 97.14%. The plot contains meta-model confidence regions around the 

solution and it can be seen that they are virtually indistinguishable from the meta-model 

response due to the small time step of the solver (more on this will be discussed in 

chapter 5). This excellent meta-model response to the step test input was expected 
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considering the meta-model training data was from a randomly generated sequence of 

step inputs. 

The next test input is a ramp function with slop of one between 1 and 8.5 sampled 

every 0.2𝑠, the meta-model response is shown in Figure  3-5. 

 

Figure  3-5: Meta-model solution of the Two-Tanks NDS to a ramp test input 

The meta-model was successful (%𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 = 98.4%) to predict the above input. 

The next test input is an exponential decay given by 

 𝑢𝑢(𝑡𝑡) = 4 + 𝑒−0.1𝑡, (0 ≤ 𝑡𝑡 ≤ 75) ( 3.32) 

This input was sampled every 0.2𝑠, the meta-model response to this input is shown in 

Figure  3-6. 
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Figure  3-6: Meta-model solution of the Two-Tanks NDS to exponential decay 

test input 

The meta-model response to the exponential decay test input was similar (%𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 =

95.38%) to the true model response. 

The final test input was taken from the Two-Tanks NDS example in the MATLAB 

system identification tool box. It’s a series of step signals controlling the Two-Tanks 

pump voltage. The original sequence (being discontinues) has been approximated using 

the method described in Appendix B. The meta-model solver time is 0.2𝑠 and the 

resultant test input is shown in Figure  3-7. 
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Figure  3-7: Two-Tanks NDS step seqiunce test input 

The response of the meta-model to the above test input is given by Figure  3-8. 

 

Figure  3-8: Two-Tanks NDS meta-model solution of the to the step sequence 

test input 
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Figure  3-8 shows that the meta-model successfully predicted the response of the step 

sequence and achieved %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 = 97.54%. 

%𝑅𝑅𝑆𝐷𝐷 can be computed for the time-varying elements of the 𝑨𝑨(𝑡𝑡) state matrix during 

the meta-model solution in all the above examples at each step of the solution, this will 

result in a time-varying confidence measure for the meta-model parameters solution 

during the simulation and can be useful in identifying problematic regions where the 

GPM of the parameter is uncertain about the prediction. The time-varying %𝑅𝑅𝑆𝐷𝐷 plot 

for the last test input has been produced below as a proof of the concept. 

 

Figure  3-9: Plot of %𝑅𝑅𝑆𝐷𝐷 for the non-constant entries of the 𝑨𝑨(𝑡𝑡) parameter for 

the Two-Tanks meta-model during simulation with the step sequence input 

Figure  3-9 shows that %𝑅𝑅𝑆𝐷𝐷 for all three paramters kept below 5% most of the time 

(high confidence) with the exception of 𝑎22 parameter peaking at 83%, this indicates 

that at these operating points, the GPM of the parameter was not confident. Before 

jumping to conclusions, the problematic parameter magnitude must be tested for 

60 



 

approaching zero value. This was not the problem in the case of the 𝑎22 parameter, 

therefore the GPM of the parameter struggled to produce confident predictions for some 

parts of the solution. Since the Two-Tanks NDS is a simple second-order system, the 

phase plot of the model states can be easily visualized. A composite phase plot 

containing the states at which the 𝑎22 GPM was trained, and the meta-model states 

solution to the step sequence test input (Figure  3-7) highlighting in red the states at 

which the parameter 𝑎22 %𝑅𝑅𝑆𝐷𝐷 was over 5% is shown in Figure  3-10. 

 

Figure  3-10: Composite phase plot for the Two-Tanks NDS training points and 

the meta-model solution to the step sequence test input 

It can be seen why the 𝑎22 time-varying %𝑅𝑅𝑆𝐷𝐷 has peaked during the meta-model 

solution by simply looking at the red marks in Figure  3-10 and observing the sparsity of 

meta-model training points around them. Despite this high uncertainty in one of the 

meta-model parameters, it produced a good approximation to the solution of this test 

input probably because of the smoothness of the true parameter function. 
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To present a numerical comparison of the accuracy of the different meta-model solvers 

proposed earlier, the Two-Tanks NDS was simulated using a fixed-time step (ℎ =

0.2𝑠) classical RK4 method; then the meta-model was solved using different velocity 

solvers for the step-sequence test input (Figure  3-7). All computational work in this 

thesis was conducted using the computational environment given in Table  3-2. 

Table  3-2: Computational environment 

Processer Intel 820QM i7 Quad-Core 
Processer maximum speed  3.06𝐺𝐻𝑧 

RAM 8𝐺𝐵 DDR3 
RAM speed 667𝑀𝐻𝑧 

Operating System Microsoft Windows 7 
Ultimate x64 

MATLAB version 7.12.0.635 (R2011a) x64 
Machine Epsilon   2.2204 × 10−016 
GPML version 3.4 

The meta-modelling results are given in Table  3-3. 

Table  3-3: Meta-Model fitness results for the Two-Tanks NDS simulated with 

step sequence input using different velocity estimation methods 

Velocity estimation method %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 
Forward-Euler 85.45 

Heun’s 96.95 
RK4 97.46 

Exact-Discretization 97.54 

Table  3-3 shows that Exact- Discretization velocity estimation method performed the 

best (as predicted by section 3.4.1) and the rest three methods being a numerical 

approximation to the Exact-Discretization method performed lower with Forward-Euler 

being the worst considering the large time step this NDS was solved at (ℎ = 0.2𝑠). 

Repeating the Forward-Euler simulation using the time step ℎ = 0.1𝑠 improved the 

meta-model %𝑓𝑖𝑛𝑡𝑡𝑒𝑠𝑠 to 93.23%. 
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For the rest of meta-model simulations in this thesis, the default velocity estimation 

method will be Exact- Discretization unless otherwise stated. 

To shed some light on the meta-model solver execution time relative to the true NDS 

model solver time, the Execution Time Index (𝐸𝑇𝐼) is defined as 

 

𝐸𝑇𝐼 =  
𝑇𝑆𝐼𝑀𝑁𝐷𝑆 −  𝑇𝑆𝐼𝑀𝑀𝑀

𝑇𝑆𝐼𝑀𝑁𝐷𝑆
 

𝑇𝑆𝐼𝑀𝑁𝐷𝑆 is the NDS simulation time (𝑠). 

𝑇𝑆𝐼𝑀𝑀𝑀 is the meta-model simulation time (𝑠). 

( 3.33) 

Negative 𝐸𝑇𝐼 value means the meta-model solver is taking longer time than the true 

NDS solver and positive values indicates computational time saving over the true NDS 

model solver. The implemented fixed-time step meta-model solver performs many 

more things in a single solution iteration compared to the RK4 fixed-time step solver, 

these include predicting meta-model parameters, their variances, predicting the meta-

model solution, and performing uncertainty propagation (chapter 5). The meta-model 

computational complexity will be discussed in depth in chapter 6. 

Table  3-4 shows the 𝐸𝑇𝐼 values for the Two-Tanks NDS four test inputs previously 

presented in this section. 

Table  3-4: 𝐸𝑇𝐼 values for the Two-Tanks NDS meta-model for different test 

inputs 

Test Inputs Step-like Ramp-like Exponential 
decay Step-sequence 

𝐸𝑇𝐼 −2.44 −2.04 −2.08 −2.62 
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𝐸𝑇𝐼 values between different runs of the same experiment have variability that depends 

on many factors such as code optimization, math libraries used, memory storage 

operations (size of data sets involved and available cache) and amount of computational 

resources available at the time of execution, therefore the values in Table  3-4 are 

indicative of meta-model computational speed rather being precise. 

𝐸𝑇𝐼 values given in Table  3-4 clearly show that the Two-Tanks NDS meta-model 

execution time was more than twice the execution time of the RK4 fixed time solver 

using the true NDS model, this is expected because the meta-model order matches the 

true model order and the meta-model parameters estimation using GP regression model 

adds a computational overhead (this will be discussed in chapter six). 

3.5 Conclusions 

This chapter presented the analytical framework for the full-order GP blended VBL-

LPV meta-model. GP regression models can deal with high-dimensional data problems; 

they do not suffer from model overfitting with a limited training data set and provide 

uncertainty information for their predictions. 

Meta-model equilibrium training data can either be computed analytically using the 

first-principle structure of the CI-NDS or numerically by exciting the CI-NDS with a 

set of constant inputs until the model outputs reaches equilibrium (or the states 

derivative approaches zero). Off-equilibrium training data can be gathered by exciting 

the NDS with randomly generated pulse sequence with variable magnitude and duty 

cycles. 
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Training the meta-model time-varying parameters involves using cross-validation 

through splitting the set of collected training data into disjoints sets, one used for 

training of the parameters and the other used for validation. 

A suitable GP model covariance function should be selected to reflect the properties of 

the meta-model time-varying parameter underlying function such as smoothness, 

discontinuities. 𝑆𝑀𝑆𝐸 and %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 metrics was used to compare across different sets 

of training data. 

The GP blended VBL-LPV meta-model was applied to a 2nd order Two-Tanks NDS, the 

meta-model accurately managed to reproduce the NDS dynamics, although that the 

Two-Tanks NDS was not a CI model, the computational speed was drastically worse 

than the original model due to the following: 

• The meta-model order is the same order as the tested NDS, the hypothesis is 

that the meta-model can improve the computational speed by reducing the order 

of the LLMs, this will be the subject of the next chapter. 

• The GP model of the meta-model time-varying parameters adds an additional 

cost to the meta-model; this cost depends on the size of the meta-model training 

data set. This will be explained in depth in Chapter six. 

The full-order GP blended full-order VBL-LPV meta-model is not yet suitable to 

improve the computational speed of a CI-NDS model, because they share the same 

model order, chapter four will introduce reduced-order GP blended VBL-LPV meta-

model. 
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 Model Order Reduction Chapter 4 -

4.1 Introduction 

The GP blended VBL-LPV system has an order equal to that of the analytical CI-NDS, 

therefore it will not provide any computational speed saving over the analytical CI-

NDS. Since the local velocity models are linear, reducing their order before blending by 

GPMs can decrease the meta-model computational cost. 

This chapter is one of the main contribution chapters in the thesis, because linear MOR 

of VBL LLMs was never attempted before. The chapter will review and present an 

analytical description of some of the popular linear MOR methods and explain how 

they can be integrated within the proposed meta-modelling approach of chapter three. 

Finally, the reduced-order meta-model will tested using a simple NTL model of order 

10. The results of this chapter will be used in meta-modelling of a medium CFD 

problem in chapter five and on the CI NTL model of order 5000 in chapter six. 

4.2 Linear Model Order Reduction 

The literature concerned with linear model order reduction is well established and a 

number of schemes are used to achieve reduced order linear models (Antoulas, 2005). 

Linear model order methods can be divided into two main classes (Antoulas, 2005): 

i) Projection-based methods. 

ii) Non-projection based methods. 

Non-projection based MOR methods is concerned with realizations of the liner models 

in frequency domain rather than time domain (Vasilyev, 2007), therefore the thesis will 

be focusing on the widely used projection-based methods because they can fit neatly 
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into the developed structure (state space model) of the proposed GP blended VBL-LPV 

meta-model, Projection-based methods can be divided into three main sub classes: 

• Proper Orthogonal Decomposition (POD) methods. 

• Krylov Subspace methods. 

• Truncated Balanced Realization (TBR) method. 

Consider the linear time-invariant and casual system of order 𝑛 

 

�̇�𝒙(𝑡𝑡) =  𝑨𝑨𝒙𝒙(𝑡𝑡) + 𝑩𝑩𝒖𝒖(𝑡𝑡) 

𝒚(𝑡𝑡) = 𝑪𝒙𝒙(𝑡𝑡) + 𝑫𝒖𝒖(𝑡𝑡) 

𝒙𝒙(0) =  𝒙𝒙0 

𝒖𝒖(𝑡𝑡) ∈ ℝ𝑚×1,𝒙𝒙(𝑡𝑡) ∈ ℝ𝑛𝑛×1,𝒚(𝑡𝑡) ∈ ℝ𝑝×1 

𝑨𝑨 ∈ ℝ𝑛𝑛×𝑛𝑛,𝑩𝑩 ∈ ℝ𝑛𝑛×𝑚,𝑪 ∈ ℝ𝑝×𝑛𝑛,𝑫 ∈ ℝ𝑝×𝑚 

( 4.1) 

Assume another version of the system in equation ( 4.1) with model order 𝑞 such that 

𝑞 < 𝑛 exists as 

 

�̇�𝒙𝑟(𝑡𝑡) =  𝑨𝑨𝑟𝒙𝒙𝑟(𝑡𝑡) + 𝑩𝑩𝑟𝒖𝒖(𝑡𝑡) 

𝒚𝑟(𝑡𝑡) = 𝑪𝑟𝒙𝒙𝑟(𝑡𝑡) + 𝑫𝒖𝒖(𝑡𝑡) 

𝒙𝒙𝑟(0) =  𝒙𝒙𝑟0 

𝒖𝒖(𝑡𝑡) ∈ ℝ𝑚×1,𝒙𝒙𝑟(𝑡𝑡) ∈ ℝ𝑞×1,𝒚𝑟(𝑡𝑡) ∈ ℝ𝑝×1  

𝑨𝑨𝑟 ∈ ℝ𝑞×𝑞 ,𝑩𝑩𝑟 ∈ ℝ𝑞×𝑚,𝑪𝑟 ∈ ℝ𝑝×𝑞 ,𝑫𝑟 ∈ ℝ𝑝×𝑚 

( 4.2) 

The MOR of the system in equation ( 4.1) is achieved by applying state transformation 

in 
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 𝒙𝒙(𝑡𝑡) = 𝑼𝒙𝒙𝑟(𝑡𝑡),𝑼 ∈ ℝ𝑛𝑛×q ( 4.3) 

And define the projection matrix 𝑽 ∈ ℝ𝑛𝑛×𝑞 such that the following 

 

𝑨𝑨𝑟 = 𝑽𝑇𝑨𝑨𝑼 

𝑩𝑩𝑟 = 𝑽𝑇𝑩𝑩 

𝑪𝑟 = 𝑪𝑼 

( 4.4) 

All projection-based methods determine 𝑼 and 𝑽 projection matrices according to 

constraints that examine the relationship between the original system output and the 

reduced system output to ensure close approximation to the original system. This is 

accomplished by computing Euclidian or Infinity norms cost functions. 

4.2.1 Proper Orthogonal Decomposition methods 

The Proper Orthogonal Decomposition (Moore, 1981) otherwise known by Principal 

Component Analysis (PCA), or Karhunen-Loéve Decomposition (KLD), have been used 

in many scientific fields such as modelling of fluids dynamics (Rowley, 2005, Hinze 

and Volkwein, 2005, Efe and Ozbay, 2003, Berkooz et al., 1993, Aubry, 1991), 

modelling of mechanical systems (Sifakis and Barbic, 2012, Kerschen et al., 2005, 

Lenaerts et al., 2001), Micro Electromechanical Systems (MEMS) (Liang et al., 2002a, 

Liang et al., 2002b), image processing and data compression among many others fields. 

The main idea of POD is to construct a matrix of snapshots of the dynamical state of the 

system over time and reducing the dimensionality of the system via the Singular Value 

Decomposition (SVD) through elimination of weak states contribution. The POD is 

considered to be optimal in capturing the most dominant components of system 

dynamics, when modelled using empirical response data of a dynamical system whose 
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formulation from first-principle is unknown, it reveals hidden structures in the data and 

helps to give some insight on the original system dynamics. Authors in (Efe and Ozbay, 

2003) argue that capturing of all dominant components in the dynamics of a system 

response may still lead to qualitatively wrong dynamics of the system because of the 

loss of the weak yet important dynamics (Rowley, 2005). Also the reduction may not 

preserve the stability characteristics of the original system (Vasilyev, 2007). 

4.2.2 Krylov Subspace methods 

The Krylov Subspace methods are also known by, Arnoldi, Lancoz Moment Matching, 

methods (Antoulas, 2005) and Padé Approximation via Lancoz (Gallivan et al., 1994). 

Krylov Subspace methods for linear model order reduction are associated with transfer 

function description of the linear dynamical system (Druskin and Simoncini, 2011) and 

moment matching methods (Gugercin et al., 2008, Boley, 1994). 

The transfer function of the full-order LTI system in equation ( 4.1) which relates the 

system output and its input in frequency domain (through 𝒚(𝑠) = 𝑯(𝑠)𝒖𝒖(𝑠)) is given 

by 

 𝑯(𝑠) = 𝑪(𝑠𝑰 − 𝑨𝑨)−1𝑩𝑩 + 𝑫  ( 4.5) 

Krylov subspace methods involve transfer function moments which are given by the 

Taylor series expansion of the high dimensional transfer function ( 4.5) around zero to 

yield low frequency moments, or around infinity to yield high frequency moments 

(Markov Parameters) or any frequencies of interest (Lohmann and Salimbahrami, 

2000). 

The Krylov subspace is defined by 
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𝐾𝑞�𝑨𝑨�,𝒃�� = 𝑠𝑝𝑎𝑛�𝒃�,𝑨𝑨�𝒃�, … ,𝑨𝑨�𝑞−1𝒃�� 

𝑨𝑨� ∈ ℝ𝑛𝑛×𝑛𝑛,𝒃� ∈ ℝ𝑛𝑛×1,   

𝐾𝑞�𝑨𝑨�,𝒃�� ∈ ℝ𝑛𝑛×𝑞  

( 4.6) 

𝒃� is called the starting vector of the Krylov subspace. The MOR projection matrices 𝑼 

and 𝑽 are any basis of the Krylov subspace in 

 

𝑽 ⊂ 𝐾𝑞1(𝑨𝑨−1,𝑨𝑨−1𝑩𝑩)

= 𝑠𝑝𝑎𝑛�𝑨𝑨−1𝑩𝑩, … , (𝑨𝑨−1)𝑞1−1𝑨𝑨−1𝑩𝑩� 

𝑼 ⊂ 𝐾𝑞2((𝑨𝑨−1)𝑇, (𝑨𝑨−1)𝑇𝑪)

= 𝑠𝑝𝑎𝑛�(𝑨𝑨−1)𝑇𝑪, … , ((𝑨𝑨−1)𝑇)𝑞2−1(𝑨𝑨−1)𝑇𝑪 � 

( 4.7) 

𝑞1 and 𝑞2 are chosen such that both projection matrices 𝑼 and 𝑽 have a rank of 𝑞 and 

the reduced state matrix 𝑨𝑨𝑟 (equation ( 4.4)) is not singular. This method is called the 

two-sided Krylov MOR. If only the 𝑽 projection matrix is constructed from a Krylov 

subspace and 𝑼 chosen arbitrarily the MOR method is called one-sided Krylov 

(Lohmann and Salimbahrami, 2000). A common choice of the 𝑼 projection marix in 

one-sided Krylov MOR is 𝑼 = 𝑽. 

Krylov subspace methods are iterative methods, for linear systems of order thousand or 

above; they are generally considered the most preferred way to deal with such systems 

because of its iterative nature in constructing the Krylov subspace in an increasing order 

through the projection of the original system matrices to the low dimensional Krylov 

subspace (Boley, 1994). Krylov methods often converge fast enough and produce low 

order approximations much lower than that of the original high dimensional system. 
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Building the basis vectors for Krylov subspaces is accomplished through iterative 

numerical algorithms that ensure independency of these vectors via orthogonality and 

normalization of the basis, often done with either Arnoldi Processes, Lanczos 

Algorithms or modified versions of them (Grimme et al., 1996). 

The thesis will consider using one-sided Krylov subspace MOR (Algorithm  4-1) 

generated by Arnoldi Processes with choice of projection matrix 𝑼 = 𝑽 as an example 

(Lohmann and Salimbahrami, 2000). 

1 input: 𝒙𝒙0 (initial state), 𝑨𝑨,𝑩𝑩 and 𝑪 state-space matrices for LTI system of 
order 𝑛 

2 initialize projection matrix 𝑽 ∈ ℝ𝑛𝑛×𝑞 
3 compute 𝑨𝑨−1  
4 𝑽(: ,1) ≔ 𝑨𝑨−1𝑩𝑩

�|𝑩𝑩|�
 (Krylov subspace starting vector). 

5 for 𝑖 ≔ 2 to 𝑞  
6 𝑽(: , 𝑖) = 𝑨𝑨−1𝑽(: , 𝑖 − 1)  
7 for 𝑗 ≔ 1 to 𝑖 − 1  
8 𝑜𝑣: =  𝑽(: , 𝑖)𝑇𝑽(: , 𝑗)  
9 𝑽(: , 𝑖) = 𝑽(: , 𝑖) − 𝑜𝑣𝑽(: , 𝑗) (orthogonalize the 𝑖th projection basis) 
10 end for loop 
11 𝑽(: , 𝑖) = 𝑽(:,𝑖𝑖)

||𝑽(:,𝑖𝑖)||
 (normalize the 𝑖th projection basis) 

12 end for loop 
13 𝑨𝑨𝒓: = 𝑽𝑇𝑨𝑨𝑽  
14 𝑩𝑩𝒓: = 𝑽𝑇𝑩𝑩  
15 𝑪𝒓 = 𝑪𝑽  
16 𝒙𝒙𝟎𝒓 = 𝑽𝑇𝒙𝒙𝟎  

17 return: 𝒙𝒙𝟎𝒓 (reduced order initial state), 𝑨𝑨𝑟 ,𝑩𝑩𝑟 and 𝑪𝑟  state-space matrices 
for LTI system of reduced order 𝑞 

Algorithm  4-1: Arnoldi one-sided Krylov subspace MOR 

The Arnoldi Algorithm  4-1 does two important things while constructing the projection 

matrix 𝑽, it ensures uniqueness of any projection basis by ensuring its orthogonality to 

the previous ones, then it performs the normalization of all projection basis vectors; 

therefore; 𝑽𝑇𝑽 = 𝑰. The reduced order linear time invariant state-space model will 

match the first 𝑞 moments of the transfer function of the full order system. A final note 
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on Algorithm  4-1, 𝑨𝑨−1 has to be calculated at the start of the algorithm which is 

inaccurate for high order systems and the practical way is to solve a linear equation 

given by 𝑽(: , 𝑖 − 1) = 𝑨𝑨𝑽(: , 𝑖) during the construction of the projection matrix 𝑽, there 

are many ways of solving linear system of equations and for those with sparse and 

structured matrices the computation runs faster than dense state matrices. 

Krylov subspace methods do not always preserve the stability of the original system 

(Bai, 2002, Lohmann and Salimbahrami, 2000, Grimme et al., 1996, Gallivan et al., 

1996), the initial guess of the starting basis vectors is a trial and error procedure and no 

information regarding the observability matrix is used in the reduction in one-sided 

methods. 

Many solutions have been proposed to tackle these problems, but again they are not 

global solutions and often tailored to certain system. 

Despite its limitations; the low computational complexity (Lohmann and Salimbahrami, 

2000), its ability to implement with Parallel Processing techniques and low 

computational storage needs makes it leading in model order reduction tools of highly 

complex dynamical systems. The iterative nature of the Krylov subspace MOR methods 

means once a reduced order model was obtained for a certain choice of order; the 

calculations for the Krylov projection matrices can be repeated for a higher choice of 

order starting from the last projection matrices. 

Krylov subspace methods have been applied to many complex engineering problems 

like Structural dynamics (Yue and Meerbergen, 2012), Electronic Circuit Simulation 

(Freund, 2008, Freund, 2003, Bai, 2002, Freund, 2000), Mechanical Systems (Fischer 

and Eberhard, 2014), and MEMS (Rewienski, 2003), all did achieve computational time 

savings in comparison with system’s full order models. 
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4.2.3 Truncated Balanced Realization 

The method of model order reduction for a balanced realization of linear time invariant 

systems was introduced in (Moore, 1981) and later developed in (Pernebo and 

Silverman, 1982, Laub et al., 1987). A balanced realization of a linear time invariant 

system is achieved through the examination of the controllability and observability 

notions in such system, then by applying a state transformation such that the associated 

controllability 𝓟 and observability 𝓠 Gramians are diagonal and equal i.e. are balanced. 

The balanced controllability 𝓟𝑏 and observability 𝓠𝑏 Gramians are the solution to two 

Lyapunov equations 

 
𝑨𝑨𝓟𝑏 + 𝓟𝑏𝑨𝑨𝑇 + 𝑩𝑩𝑩𝑩𝑇 = 0 

𝑨𝑨𝑇𝓠𝑏 + 𝓠𝑏𝑨𝑨 + 𝑪𝑪𝑇 = 0 
( 4.8) 

The square roots of the eigenvalues 𝜆𝑗 of the balanced controllability 𝓟𝑏 and 

observability 𝓠𝑏 Gramians ordered decreasingly are called the Hankel Singular Values 

(HSV) 𝜎𝑗 given by 

 𝜎𝑗 = �𝜆𝑗(𝓟𝑏 = 𝓠𝑏)𝟐  , σ1 > σ2 > ⋯ > σ𝑛𝑛 ( 4.9) 

The balanced realization of the LTI system from equation ( 4.1) is computed with state 

transformation 𝒙𝒙𝑏(𝑡𝑡) = 𝑻𝒙𝒙(𝑡𝑡),𝑻 ∈ ℝ𝒏×𝒏 and is given by 
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�̇�𝒙𝑏(𝑡𝑡) =  𝑻𝑨𝑨𝑻−1𝒙𝒙𝑏(𝑡𝑡) + 𝑻𝑩𝑩𝒖𝒖(𝑡𝑡) 

𝒚𝑏(𝑡𝑡) = 𝑪𝑻𝒙𝒙𝑏(𝑡𝑡) + 𝑫𝒖𝒖(𝑡𝑡) 

𝒙𝒙𝑏(0) =  𝑻𝒙𝒙(0) 

( 4.10) 

The balanced transformation matrix 𝑻 relates the unbalanced controllability 𝓟 and 

observability 𝓠 Gramians to the balanced versions through 

 
𝓟𝑏 =  𝑻 𝓟𝑻𝑇 

𝓠𝑏 = (𝑻−1)𝑇𝓠𝑻−1 
( 4.11) 

Therefor; the balanced state transformation matrix 𝑻 is found by plugging ( 4.11) into 

equation ( 4.8) and solving. 

Model order reduction is accomplished by removing the least controllable and 

observable states of the balanced realization equation ( 4.10) which is called state 

truncation and the reduced order modelling technique is called Truncated Balanced 

Realization (TBR). This process is done after the transformation of the original system 

to balanced realization and observing the HSVs of this system to decide the order of the 

reduction 𝑞, a relatively small singular value means the associated states contribute 

little to the system response and therefore can be eliminated to reduce the model order. 

The balanced realization of the system is given by 

 

𝑨𝑨𝑏 = 𝑻𝑨𝑨𝑻−1 

𝑩𝑩𝑏 = 𝑻𝑩𝑩 

𝑪𝑏 = 𝑪𝑻 

( 4.12) 

74 



 

And decide the order of the reduced system 𝑞 to decompose equation ( 4.12) to 

 

𝑨𝑨𝑏 = �𝑨𝑨11 𝑨𝑨12
𝑨𝑨21 𝑨𝑨22

� 

𝑩𝑩𝑏 = (𝑩𝑩1 𝑩𝑩2) 

𝑪𝑏 = �𝑪1𝑪2
� 

( 4.13) 

The parameters of the reduced order system 𝑞 are given by 

 

𝑨𝑨𝑟 = 𝑨𝑨11 

𝑩𝑩𝑟 = 𝑩𝑩1 

𝑪𝑟 = 𝑪1 

( 4.14) 

In all the above state-space transformations the 𝑫 matrix was invariant to the 

projection. Another truncated realization to the reduced order model called singular-

perturbation TBR, it provide better accuracy in the steady-state response of the TBR 

MOR system and is given as 

 

𝑨𝑨𝑟 = �𝑨𝑨11 − 𝑨𝑨12𝑨𝑨22−1𝑨𝑨21� 

𝑩𝑩𝑟 = �𝑩𝑩1 − 𝑨𝑨12𝑨𝑨22−1𝑩𝑩2� 

𝑪𝑟 = �𝑪1 − 𝑪2𝑨𝑨22−1𝑨𝑨21� 

𝑫𝑟 = �𝑫 − 𝑪2𝑨𝑨22−1𝑩𝑩𝟐� 

( 4.15) 

Important properties of the TBR are: 

• The optimality of the reduced order model through the informed choice of 𝑞 

based on HSVs of the balanced realization. 
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• The preservation of the original system stability and provable error bounds. 

•  The drawback of the TBR is that it is not suitable for large model orders 

(𝑛 > 1000) due to computational complexity and storage requirement of the 

solution to equations ( 4.8) and ( 4.11). 

Other methods have been proposed to extend the TBR to high order systems (Gugercin 

and Antoulas, 2004, Willcox and Peraire, 2002, Li, 2000) and also to different linear 

structures (Sandberg, 2008), for more in-depth review please refer to (Antoulas, 2005) 

and the references therein. 

4.3 Model Order Reduction of CI-NDSs 

To date, MOR for CI-NDSs is a premature subject. Nonlinear MOR methods remodel 

the system nonlinearity with a local linearization or a global trajectory piecewise linear 

or polynomial approaches obtained from series expansion around the NDS operating 

points. The end result is always a model with linear parameters that their dimensionality 

can be reduced through linear MOR projection techniques or a combination of them 

(Phillips and Silveira, 2005). 

POD combined with balanced realization have been applied to MOR of nonlinear 

systems empirical controllability and observability Gramians constructed from input-

output data (Lall et al., 1999, Hahn and Edgar, 2002). Hahn et al. (2003) proposed to 

use POD with empirical controllability and observability covariance matrices as an 

improvement over the previous method. The authors have shown that this method can 

capture the nonlinear behaviour better and is suitable for wide range of inputs. 

A Trajectory Piecewise Linear (TPWL) nonlinear MOR has been proposed in 

(Vasilyev et al., 2003). TPWL generated local models from the Taylor’s series 
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expansion around the NDS operating point along its simulation trajectory as model 

training points. The order of the generated local models has been reduced using either 

POD MOR, or Krylov subspace MOR and or TBR MOR or a combination of them 

(depending on the computational complexity of the original NDS and the end goal). The 

reduced order linear models have been assigned weights in terms of the Euclidian 

distance of the CI-NDS current solution state to the linearization point in a fashion 

resembling radial basis networks. 

TPWL nonlinear MOR approaches have been applied successfully to the modelling of 

MEMS models, nonlinear transmission line circuits, nonlinear analogue circuits and 

nonlinear fluid dynamics problems (Bond and Daniel, 2005, Rewieński and White, 

2006, Bechtold et al., 2008, Cardoso and Durlofsky, 2010). Nahvi et al. (2013) argued 

that TPWL weights that are function of the Euclidian distance are constant for the 

nonlinearity in the trajectory of the NDS and therefore they do not preserve the 

nonlinear field curvature and superposition principle. They have proposed Nonlinearity-

aware TPWL MOR approach (NTPWL). In contrast to TPWL approach, NTPWL 

places error bounds on the weighting procedure by incorporating the state velocity 

along with the state; therefore improving the quality of the reduced order NDS 

predictions. This method was applied successfully to nonlinear transmission line model 

and nonlinear RC ladder circuit (Nahvi et al., 2013). 

Authors in (Dong and Roychowdhury, 2003, Dong and Roychowdhury, 2008) proposed 

Piecewise Polynomial (PWP) MOR to remodel the nonlinear system. The PWP MOR 

was proposed because TPWL methods have bad small input signal performance as in 

the case of nonlinear circuits, TPWL models fail to replicate harmonic distortion and 
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the noise generated in such circuits. PWP MOR was successfully applied to nonlinear 

transmission line circuit model with small magnitude input signals. 

4.4 Meta- Modelling CI-NDS with Reduced Order Local Linear 
Models 

The most popular approach out of the nonlinear MOR schemes explored in the previous 

section is the TWPL MOR. TWPL local models are linear but their global model is not 

which creates a model transparency issue from the viewpoint of this thesis. All 

nonlinear MOR techniques explored by this thesis use parametric regression approach 

in the blending of the LLMs during the simulation, therefore they lack any uncertainty 

information to their predictions of the LLMs parameters  and by extension the global 

model predictions. TPWL MOR requires the computation of LLMs at a number of 

operating points on the trajectory of the NDS; the research has found no information on 

how these Taylor’s series expansion parameters are computed and therefore assumed 

they are found from the Jacobian (partial derivatives) derived from the CI-NDS first-

principle model. 

The GP blended VBL-LPV meta-model introduced in chapter three is a globally linear 

and transparent model, the VBL-LLMs describe the behaviour of the NDS exactly at 

any operating point along the trajectory. The non-parametric blending of the VBL-

LLMs through GPMs provides confidence measure on their predictions and by 

extension the meta-model predictions. 

Since the VBL-LLMs used by the meta-model are linear, their model order can be 

reduced using suitable projection-based linear MOR techniques. 

The meta-model training points described in chapter three can undergo model order 

reduction prior to the training of the GPMs of those parameters.  
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The rest of the thesis will explore the one-sided Krylov subspace MOR with Arnoldi 

procedure (Algorithm  4-1) as well as the TBR MOR (section  4.2.3) or a combination of 

both methods when modelling a CI-NDS. 

The proposed reduced order meta-model is similar to the meta-model structure in 

chapter three except that after the generation of the VBL-LLMs, MOR technique of 

choice is applied and new reduced order VBL-LLMs are computed and their associated 

operating point state vector is transformed according to the computed MOR projection 

basis. 

For the linear MOR technique to work, an informed choice for the reduced model order 

𝑞 has to be made. Since all the collected LLMs in the training phase of the meta-model 

were obtained at different parts of the CI-NDS trajectory, a choice of reduced LLM 

order 𝑞 is not necessarily be globally valid for all the collected LLMs i.e. some LLM 

will need higher reduced model order than others. Therefore, an error measure has to be 

constructed to quantify how much the reduced order LLM deviated from the full order 

one. In the case of the proposed meta-model structure; this error is calculated by 

observing the error between the outputs of the full and the reduced order model at its 

associated operating point {𝒙𝒙𝑖𝑖,𝒖𝒖𝑖𝑖} . For the 𝑖th LLM; this error is given by 

 

𝑒𝑟𝑟𝑞𝑖𝑖 =
�|𝒚𝑖𝑖 − 𝒚𝑟𝑖𝑖|�
�|𝒚𝑖𝑖|�

 , ∀�|𝒚𝑖𝑖|� ≠ 0 

𝒚𝑖𝑖 = 𝑪𝑖𝑖𝒙𝒙𝑖𝑖 + 𝑫𝑖𝑖𝒖𝒖𝑖𝑖 

𝒚𝑟𝑖𝑖 = 𝑪𝑟𝑖𝑖𝒙𝒙𝑟𝑖𝑖 + 𝑫𝑖𝑖𝒖𝒖𝑖𝑖 

( 4.16) 

Where 𝒚𝑖𝑖 are the full-order function targets and 𝒚𝑟𝑖𝑖 are the reduced-order function 

targets, If �|𝒚𝑖𝑖|� = 0 then 𝑒𝑟𝑟𝑞𝑖𝑖 = �|𝒚𝒓𝒊|�. 
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With the error criteria specified, the reduced order LLMs in the meta-model training 

phase can be tested for any choice of 𝑞 and a good choice of 𝑞 can be selected if all the 

computed errors are below some specified error tolerance. 

This error estimation is of great importance when using Krylov subspace MOR. As 

stated before, Krylov subspace MOR lack error bounds and the choice of the reduced 

model order 𝑞 is as good as any without some error quantification. The error estimation 

in equation ( 4.16) can be incorporated into the Krylov subspace MOR algorithm when 

constructing the Krylov projection basis 𝑽 as a stopping criteria for the algorithm to 

reach some optimal solution at order 𝑞. The application of this stopping criteria based 

on some error tolerance to all the collected full order LLMs may result in different 

values of 𝑞 and since all the reduced order LLMs must be of the same order for the 

meta-model GPMs blending to work; the highest reduced order among all the reduced 

LLMs orders can be selected and the MOR repeated at that order to insure all local 

errors are below the specified error tolerance. 

In the case of TBR MOR method; an informed choice for the reduced model order at 

any LLM can be selected through the observation of the HSVs (equation ( 4.9)) of the 

balanced full order LLM. Each HSV reflects how much energy each state of the 

balanced full-order LLM is contributing to the output, therefore a plot of these HSVs 

can show where the states vector can be truncated. 

The percentage of the 𝑗th state contribution (𝑝sc)𝑗 in the 𝑖th balanced LLM of order 𝑛 

is given in terms of the 𝑗th HSV (𝜎𝑗) computed in the balancing of the LLM, as 
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 (𝑝sc)𝑗 = 100 × �
𝜎𝑗

∑ 𝜎𝑗𝑛𝑛
1

� ( 4.17) 

For all the collected full order LLMs in the meta-model training, all state contribution 

percentages for each balanced LLM can be added up and averaged to reflect the 

percentages of the average contribution of states across the collected LLMs. This will 

require the storage of all the balanced realization for all the LLMs prior to deciding the 

reduced order model 𝑞 which may consume great amounts of memory and might not be 

feasible for large order systems, in this case; selecting the reduced order model 𝑞 can be 

done in a similar fashion to Krylov subspace MOR method. 

4.5 Canonical Transformations 

The reduced order VBL-LLMs parameters obtained using Krylov subspace MOR and/ 

or TBR MOR are fully parameterized even when constructed from sparse full order 

matrices. If left in their dense form; they will require large number of GPMs for each 

time-varying element of the reduced order parameter matrix thus contributing heavily to 

the training and simulation times of the meta-model. If the feed-through matrix 𝑫 of the 

full order LLM was zero; then the maximum number of GPMs that needs training and 

used during the simulation of the reduced-order meta-model can reach (𝑞2 + 𝑞𝑚 +

𝑝𝑞). 

The thesis is proposing to transform reduced order LLMs to a canonical form that has 

more constant elements in the parameters of the reduced order LLMs.  

One suitable form is the modal canonical form also known as the diagonal canonical 

form. 
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The modal canonical form is achieved by computing a projection matrix 𝑻𝑐 ∈ ℝ𝑞×𝑞 

with the state transformation 𝒙𝒙𝑟𝑐 = 𝑻𝑐𝒙𝒙𝑟. The modal canonical form of the reduced 

order model is given by 

 

�̇�𝒙𝑟𝑐(𝑡𝑡) =  𝑨𝑨𝑟𝑐𝒙𝒙𝑟𝑐(𝑡𝑡) + 𝑩𝑩𝑟𝑐𝒖𝒖(𝑡𝑡) 

𝒚𝑟𝑐(𝑡𝑡) = 𝑪𝑟𝑐𝒙𝒙𝑟𝑐(𝑡𝑡) + 𝑫𝒖𝒖(𝑡𝑡) 

𝒙𝒙𝑟𝑐(0) =  𝒙𝒙𝑟𝑐0 

( 4.18) 

The parameters of the modal form of the reduced-order model are given by 

 

𝑨𝑨𝑟𝑐 = 𝑻𝑐𝑨𝑨𝑟𝑻𝑐−1 

𝑩𝑩𝑟𝑐 = 𝑻𝑐𝑩𝑩𝑟 

𝑪𝑟𝑐 = 𝑪𝑟𝑻𝑐−1 

( 4.19) 

The modal form state matrix 𝑨𝑨𝑟𝑐 is a block-diagonal matrix of the eigenvalues of the 

original reduced order 𝑨𝑨𝑟 matrix. In the case that the reduce order model only contained 

real eigenvalues; the number of the non-constant elements that need to be trained and 

simulated by the meta-model is  (𝑞 + 𝑞𝑚 + 𝑝𝑞) therefore greatly reducing the meta-

model training and simulation times. 

Another form is the controllability staircase canonical form which is basically a 

decomposition of the reduced order LLMs to controllable and uncontrollable parts. 

There is generally no way to know beforehand which of the two forms, if any, will 

work for a particular reduced-order meta-model. In addition to the requirement that a 

certain canonical form have the highest number of constants during the blending of the 

reduced-order meta-model parameters to reduce the computational load from GPM 

predictions, they should also provide smooth parameter functions if possible. 
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4.6 Meta-Modelling of the 10th order Nonlinear Transmission 
Line 

The Nonlinear Transmission Line (NTL) circuit (Chen and White, 2000) given in 

Figure  4-1 is a CI-NDS, the NTL system has stiff ordinary differential equations 

contributing to the long simulation time especially in high model orders (even with 

dedicated solvers). 

 

Figure  4-1: The Nonlinear Transmission Line circuit. 

The NTL in Figure  4-1is a nonlinear dynamical system of order 𝑛, it consists of one 

input 𝑢𝑢(𝑡𝑡) which is a current source feeding node 𝑥𝑥1, a cascading number of electrical 

elements of unit-resistors (𝑅𝑅 = 1𝑂ℎ𝑚), unit capacitors (𝐶𝐶 = 1𝐹𝑎𝑟𝑎𝑑𝑑) and diodes (𝐷𝐷). 

The states of the NDS are the voltages at nodes {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}. The nonlinear part of 

the NTL is the diode current given by 𝑖𝐷(𝑣) = 𝑒40𝑣−1 in terms of the voltage (𝑣) across 

each diode/resistor combination (Chen and White, 2000), this lead to the set of 

nonlinear ordinary differential equations given by appendix A.4. The range of the input 

current 𝑢𝑢(𝑡𝑡) is between zero and one amperes. The default initial condition 𝒙𝒙0 of the 

NTL model is set to zero. 
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𝐶𝐶 
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𝐶𝐶 
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𝐶𝐶 
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In this section, a 10th order NTL model with output set to 𝑦𝑦 = 𝑥𝑥5 (node five) will be 

used to showcase the proposed reduced-order meta-modelling (TBR-MOR applied to 

the full-order LLMs), the 10th NTL is not a CI-NDS, and the thesis will present the 

reduced-order meta-modelling for a far more complex 5000 order NTL in chapter six to 

highlight the prospective savings in computational time. The 10th order NTL meta-

model equilibrium training data was generated by uniformly selecting 20 points from 

model input range between zero and one, and then analytically computing the 

corresponding equilibrium states (appendix A.4).  

The step sequence in Figure  4-2 generated using Algorithm  3-2 and used to excite the 

10th order NTL model to collect the meta-model off-equilibrium training data (210 

points). The total meta-model training data is 230 points. VBL-LLMs for each collected 

training point are computed with the NTL model Jacobians obtained from first-principle 

(appendix A.4). The order of the collected LLMs is given by 𝑛 = 10. 
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Figure  4-2: Randomly generated step sequence used to excite the 10th order 

NTL model in off-equilibrium regions. The sequence was generated using 

Algorithm  3-2 with parameters: 𝑢𝑢𝑚𝑖𝑖𝑛𝑛 = 0,𝑢𝑢𝑚𝑎𝑥 = 1,𝑁𝑡𝑖𝑖𝑐𝑘𝑠 = 20, 𝑇𝑠 = 0.01𝑠 and 

𝑠𝑡𝑡𝑚 = 2 

TBR MOR approach was selected to compute a reduced order LLMs because the 

problem of order reduction is small. The mean percentages of states contribution to the 

balanced LLMs was computed with the aid of the balanced LLMs HSVs and equation 

( 4.17) and is given by Figure  4-3. 

Figure  4-3 helps to make an informed decision on the order of the reduction for the 

LLMs by observing that state contribution to the output energy falls dramatically after 

the 4th balanced state component, therefore the reduced order of LLMs was set to 𝑞 = 4 

in the case of the 10th order NTL system. 
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Figure  4-3: Mean percentage of state contributions of the 10th order NTL 

system balanced training LLMs. 

Controllability canonical form (section  4.5) was applied to the reduced order LLMs 

therefore reducing the non-constant elements of 𝑨𝑨𝑟 from sixteen to ten in 𝑨𝑨𝑟𝑐, therefore 

the total number of GPMs that needs training is ten ((𝒃𝑟𝑐 , 𝒄𝑟𝑐) vectors are cosntant). 

A squared-exponential with ARD covariance function was chosen and the GPM means 

are assumed to be zero for all the reduced order LLM time-varying entries. 

During the training of each GPM, cross-validation was used to test the accuracy 

resulted GPM model. This is done through splitting the collected training points into 

two disjoint sets (115points each) using uniform sampling with odd-even indices. 

The GPM covariance function hyper-parameters are trained by minimizing the cost 

function 𝑱(𝜽) in equation ( 3.10). The chosen covariance function for the 10th order NTL 

model has a total of six parameters (four for each state, one for process variance and 

one for noise parameter). The initial values of the six GPM parameters prior to 
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optimization were set to one (parameters one to five) and the noise parameter was set to 

1 × 10−7 after adding the same amount of zero-mean Gaussian noise to the collected 

training data targets. The GPMs optimization results for the 10th order NTL NDS meta-

model are given by Table  4-1. 

Table  4-1: Meta-Model training results for the 10th Order NTL 

𝐺𝑃𝑀(𝑨𝑨𝑟𝑐) 𝑆𝑀𝑆𝐸 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 
𝑎11 4.07 × 10−4 97.97 6.47 × 10−2 
𝑎12 6.96 × 10−5 99.16 7.57 × 10−2 
𝑎21 6.96 × 10−5 99.16 7.57 × 10−2 
𝑎22 1.37 × 10−3 96.28 1.58 × 10−2 
𝑎23 1.05 × 10−3 96.74 1.5 × 10−1 
𝑎32 1.05 × 10−3 96.74 1.5 × 10−1 
𝑎33 1.05 × 10−4 98.97 5.92 × 10−2 
𝑎34 3.75 × 10−4 98.06 1.36 × 10−1 
𝑎43 3.75 × 10−4 98.06 1.36 × 10−1 
𝑎44 1.93 × 10−5 99.56 5.61 × 10−2 

Table  4-1 shows the high values of GPM fitness when tested with the validation data set 

coupled with low values of 𝑆𝑀𝑆𝐸, %𝑅𝑅𝑆𝐷𝐷 values are all below 0.2% indicating high 

confidence in the predictions. There are similar values of 𝑆𝑀𝑆𝐸, %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 and 

%𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 among some of the trained meta-model parameters; it indicates that those 

parameters share the same underlying model for the considered training data and this 

property can used to significantly boost the meta-model solver performance during 

simulation by predicting only one parameter at each time step and using this prediction 

directly for all the other similar parameters, this is called parameters similarity 

detection. With the cross-validation phase finished; the reduced order meta-model of 

the 10th order NTL model is ready to be tested. The simulation of the 10th order NTL 

was conducted using classical fixed-time RK4 solver. 
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The first test input is given by simple multi-level step input approximated by a sigmoid 

function (appendix B) and its reduced-order meta-model simulation result is given by 

Figure  4-4. 

 

 

Figure  4-4: Multi-level step test input (top plot), the 10th order NTL model 

response versus the reduced order meta-model response with confidence 

regions (bottom plot). 
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The multi-level step test input in Figure  4-4 was sampled every 0.01𝑠, therefore the 

NTL full order model and the reduced order meta-model were both solved with a fixed 

time step of ℎ = 0.01𝑠. Exact-Discretization velocity solver was used in the reduced-

order meta-model because it provided the highest numerical accuracy (section 3.4.1). 

The reduced-order meta-model achieved 97.38% fitness and prediction has tight 

confidence regions (subject of Chapter five). 

To push the limits of the trained meta-model, a more challenging frequency sweep 

sinusoidal test input was used (Figure  4-5), this signal was generated with the aid of 

‘chirp’ command in MATLAB which generates a cosine upward linear frequency 

sweep using time frame of one second, starting from DC, crossing 25𝐻𝑧 at 0.5𝑠 and 

sampled at 10𝑘𝐻𝑧 (this high sampling rate was chosen to account for the nature of 

fixed-time step meta-model solver). 

 

Figure  4-5: Sinusoidal test input generated from a cosine linear frequency 

sweep from DC, crossing 25𝐻𝑧 at 0.5𝑠. 
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The generated sinusoidal test input of Figure  4-5 has a top frequency of 50𝐻𝑧, the 

choice of the maximum frequency of the sinusoidal test input was due to the selection 

of the NTL circuit passive components having a high time-constant(𝑅𝑅𝐶𝐶 = 1𝑠, with 

−3𝑑𝑑𝐵 cut-off frequency of 1
2𝜋𝑅𝐶

= 0.16𝐻𝑧) will be highly attenuated, if the NTL 

model was used with small time constants, higher frequency test inputs can be used but 

this will require variable-time meta-model solvers which are beyond the scope of this 

work. The meta-model solver is of fixed-time step and it cannot produce a good 

response accuracy for anything less than a fixed-time step of ℎ = 1 × 10−4𝑠. The meta-

model response for the sinusoidal test input in Figure  4-5 is given by Figure  4-6. 

 

Figure  4-6: The 10th order NTL model response versus the reduced order meta-

model response with confidence regions. 

Although the frequency sweep test input of Figure  4-5 has amplitude which extends 

below zero well outside the range of the collected meta-model training inputs(between 

zero and one), the reduced-order meta-model achieved 97.37% fitness and the 
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predictions has indistinguishable confidence regions due to the very small solver time 

step (subject of Chapter five). 

The %𝑅𝑅𝐷𝐷𝑆𝑚𝑎𝑥 can give insight about the uncertainty of the reduced order meta-model 

solver time-varying parameters during the solution of the previous test inputs. For the 

10th order NTL system, these parameters are the time-varying entries in 𝑨𝑨𝑟𝑐 matrix (10 

of them). %𝑅𝑅𝐷𝐷𝑆𝑚𝑎𝑥 values for the multi-step test input in Figure  4-4 are given by 

Figure  4-7. 

 

Figure  4-7: %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 for the 10th order NTL reduced-order meta-model during 

the solution of the multi-step test input (Figure  4-4 (Top)). 

Figure  4-7 show that %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 kept very small values druing the solution of the multi-

step test input therefore indicating high confidence in the reduced-order meta-model 

parameters predictions. Constant-entries in the 𝑨𝑨𝑟𝑐 matrix have no uncertainty 

associated with them and are denoted with white spaces in Figure  4-7, while equal time-
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varying entries in the 𝑨𝑨𝑟𝑐 state matrix have equal values of uncertainty and therefore 

equal values of %𝑅𝑅𝐷𝐷𝑆𝑚𝑎𝑥. 

%𝑅𝑅𝐷𝐷𝑆𝑚𝑎𝑥 values for the frequency sweep test input in Figure  4-5 are given by 

Figure  4-8. 

 

Figure  4-8: %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 for the 10th order NTL reduced-order meta-model during 

the solution of the frequency sweep test input (Figure  4-5). 

Figure  4-8 show that %𝑅𝑅𝑆𝐷𝐷𝑚𝑎𝑥 values (for the time-varying entries in 𝑨𝑨𝑟𝑐 state matrix) 

during the simulation of the frequency sweep test input are higher than those values 

obtained during the meta-model simulation of the multi-step input, this is because of the 

frequency sweep test input range (Figure  4-5) being outside the collected training data 

of the meta-model. 

Finally, the execution time of the fourth-order meta-model to the 10th order NTL model 

was compared using 𝐸𝑇𝐼 (equation ( 3.33)) but this time for two cases of the meta-
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model solver( with or without the meta-model parameters similarity detection feature). 

𝐸𝑇𝐼 values for the two previously discussed test inputs are given by Table  4-2. 

Table  4-2: 𝐸𝑇𝐼 values for the 10th order NTL meta-model the for multi-step and 

frequency sweep test inputs. 

Test Inputs Multi-step test input Frequency sweep test input 
𝐸𝑇𝐼 −2.83 −2.89 

𝐸𝑇𝐼 (parameter similarity 
detection) −2.1 −2.35 

Table  4-2 shows that all the computed 𝐸𝑇𝐼 values are negative meaning that the 

reduced-order meta-model was slower than the full-order model of the 10th order NTL 

system. This result was expected because the of the nature of the GPM in the sense it 

adds a computational cost overhead which depends on the size of the included training 

data set. There is a certain combination of reduced model order and size of the meta-

model training data at which the proposed meta-model will become faster in execution 

compared to the CI-NDS full order model, this will be the subject of chapter six. The 

meta-model solver’s parameter similarity detection feature produced lower execution 

times in both test inputs because of the computational saving accomplished by not 

making redundant predictions for similar meta-model parameters (highlighted entries in 

Table  4-1) during simulation. 

4.7 Conclusions 

This chapter reviewed linear MOR projection methods and demonstrated their 

integration within the proposed GP blended VBL-LPV meta-model structure of chapter 

three. This chapter also reviewed some of nonlinear MOR methods implemented by 

others based on parametric blending and shown that our method provides a transparent 

local and global meta-model, exact representation of the system dynamics everywhere 
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in the operating space and deals well with training data sparsity almost guaranteed to be 

a problem for parametric blending methods in high dimensions. 

The amount of meta-model time-varying parameters that needs training depends on the 

linearization of the original full-order model in question, and most of those time-

varying parameters are contained in the state-matrix of the LLM in the case of SISO 

models, which can be reduced by applying a suitable canonical method. However, when 

dealing with MIMO models, the amount of time-varying parameters in need of training 

will increase (through the additional time-varying parameters contained in the input and 

output matrices), therefore putting an additional computational cost to the training of 

the meta-model and when making predictions. This is the cost that must be paid if the 

goal was to provide a transparent meta-model, compared to nonlinear MOR methods 

with parametric blinding. There is the issue of the computational overhead associated 

with GPM predictions (it depends on the size of the training data set) which parametric 

blending methods does not suffer from, its justified since GPM ability to deal with 

sparse meta-model training data in higher dimensions better than parametric global 

function approximation methods, and they have the advantage of providing uncertainty 

information about their predictions which can be helpful when collecting CI-NDS 

training data (which involves multiple runs of the CI model itself) to select where 

additional training data are needed to improve the model accuracy. 

The reduced-order meta-model of the 10th order NTL model has been successfully 

applied as an example. TBR-MOR method was applied to reduce the LLM order from 

ten to four and controllability canonical form was applied to reduce the number of 

reduced-order meta-model time varying parameters from sixteen to ten. 
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The 10th order NTL meta-model performance has been evaluated for two test inputs 

(one of them drove the model outside the range of the collected training data); both 

cases scored high model fitness percentages. The reduced-order meta-model solver had 

higher computational cost compared to the full order model which is expected because 

of the GPM compositional overhead. 

The 10th NTL model served its purpose as an preliminary example to showcase the 

proposed reduced-order meta-modelling method, in chapter five, it will be applied to a 

100th order CFD model in which LLM order is reduced using Krylov subspace MOR 

method and in chapter six it will be applied to a 5000th order NTL model in which LLM 

order is reduced using a combination of Krylov and TBR-MOR methods. 
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 Uncertainty Propagation Chapter 5 -

5.1 Introduction 

This chapter discusses the idea of uncertainty propagation in the GP blended reduced-

order VBL-LPV meta-model (section 4.4). It is also the second contribution chapter in 

the thesis. The meta-model time-varying parameters are blended using GP models, and 

for each one of these parameters, uncertainty information (variance) is computed during 

the meta-model solver iteration. This chapter aims to answer the following questions: 

• How local parameter uncertainties can propagates through the meta-model 

solver to reach its outputs? Can the variance be quantified in the meta-model 

outputs? 

• What can the meta-model solution variances tell about the meta-model solution 

confidence? Can it help to select better training data for the meta-model to 

improve the accuracy and confidence of predictions? 

To answer the above, the meta-model solver equations (chapter three) will be re-

examined and an analytical derivation of the meta-model solution variances will be 

presented. 

The resultant meta-model with uncertainty propagation will be tested on a second-order 

MIMO NDS of nonlinear chemical reactor as a meta-modelling case without MOR, 

then on a 100th order SISO fluid dynamics model with MOR. 

5.2 The Meta-Model Solver Uncertainty Propagation 

The solution to the discrete time version of the proposed meta-model is given by 

(section  3.4). 
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𝒘𝒘(𝑘 + 1) =  𝑨𝑨𝑑(𝑘)𝒘𝒘(𝑘) + 𝑩𝑩𝑑(𝑘)�̇�𝒖(𝑘) 

𝒙𝒙(𝑘 + 1) = 𝒙𝒙(𝑘) + ℎ𝒘𝒘(𝑘 + 1) 

𝒚(𝑘) =  𝑪(𝑘)𝒙𝒙(𝑘) + 𝑫(𝑘)𝒖𝒖(𝑘) 

𝒘𝒘(0) = 𝒘𝒘0,𝒙𝒙(0) = 𝒙𝒙0 

( 5.1) 

The parameters of the meta-model velocity and output solutions in equation ( 5.1) will 

have their non-constant entries modelled by their respective GPMs to be normally 

distributed random variables specified by their statistical first (their means) and second 

moments (their variances). The goal is to quantify this uncertainty in terms of the 

statistical second moments in the meta-model velocity, state and output equations. 

There is a need to quantify the uncertainty at every time step 𝑡𝑡 = 𝑘ℎ taken by the solver 

and to identify what uncertainty propagates to the subsequent time step (𝑘 + 1)ℎ. 

At each time step 𝑘ℎ, the meta-model will provide a prediction of the parameters for the 

VBL-LLMs at the current operating point of the system (given by the mean value of the 

current state). 

The GPMs predictions of the non-constant entries in the parameters for the VBL-LLMs 

are normally distributed variables given by 

 
𝐴𝑖𝑖𝑗~𝒩�𝜇𝐴𝑖𝑗 ,𝜎𝐴𝑖𝑗

2 � ,𝐵𝑖𝑖𝑗~𝒩�𝜇𝐵𝑖𝑗 ,𝜎𝐵𝑖𝑗
2 � 

𝐶𝐶𝑖𝑖𝑗~𝒩�𝜇𝐶𝑖𝑗 ,𝜎𝐶𝑖𝑗
2 � ,𝐷𝐷𝑖𝑖𝑗~𝒩�𝜇𝐷𝑖𝑗 ,𝜎𝐷𝑖𝑗

2 � 
( 5.2) 

Therefore, the computed VBL-LLM parameter matrices at any discrete time step 𝑘 will 

have elements as a combination of deterministic (constant entries) and normally 

distributed random variables. 
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The computed 𝑨𝑨,𝑩𝑩,𝑪 and 𝑫 paramters at any time step 𝑘 are of the continues time 

version of the VBL-LLMs and therefore the 𝑨𝑨 and 𝑩𝑩 matrcies will have an equlivent 

sampled versions of them 𝑨𝑨𝑑 and 𝑩𝑩𝑑 which in turn depends on the method the discrete 

meta-model velocity equation is being solved (section  3.4.1). 

𝑨𝑨𝑑 and 𝑩𝑩𝑑  matrices obtained by the Exact-Discretization method used in section  3.4.1 

are given as 

 
𝑨𝑨𝑑(𝑘) = 𝑒𝑨𝑨(𝑘)ℎ 

𝑩𝑩𝑑(𝑘) = 𝑨𝑨(𝑘)−1�𝑒𝑨𝑨(𝑘)ℎ − 𝑰�𝑩𝑩(𝑘) 
( 5.3) 

The matrix exponential in equation ( 5.3) can be approximated in terms of the power 

series given by 

 𝑒𝑨𝑨(𝑘) = �
1
𝑗!

∞

𝑗=0

�𝑨𝑨(𝑘)�
𝑗
 ( 5.4) 

The random entries of the non-constant elements of the 𝑨𝑨 matrix will have their 

probability distribution function change to something that is difficult to quantify and 

express analytically if computations of matrix exponential are involved. 

The research suggests to approximate matrix exponential in equation ( 5.3) with 

something more analytically tractable expressed by the first two terms in the power 

series equation ( 5.4). The approximation is given by 

 𝑒𝑨𝑨(𝑘) ≅ �𝑰 + 𝑨𝑨(𝑘)� ( 5.5) 

Substituting the matrix exponential approximation of equation ( 5.5) in equation ( 5.3) 

will result in approximate discrete time parameters given by equation ( 5.6). 
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𝑨𝑨𝑑(𝑘) = (𝑰 + 𝑨𝑨(𝑘)ℎ) 

𝑩𝑩𝑑(𝑘) = ℎ𝑩𝑩(𝑘) 
( 5.6) 

The simplified discrete time meta-model solution in equation ( 5.1) is now given by 

 

𝒘𝒘(𝑘 + 1) = 𝒘𝒘(𝑘) + ℎ𝑨𝑨(𝑘)𝒘𝒘(𝑘) + ℎ𝑩𝑩(𝑘)�̇�𝒖(𝑘) 

𝒙𝒙(𝑘 + 1) = 𝒙𝒙(𝑘) + ℎ𝒘𝒘(𝑘 + 1) 

𝒚(𝑘) =  𝑪(𝑘)𝒙𝒙(𝑘) + 𝑫(𝑘)𝒖𝒖(𝑘) 

𝒘𝒘(0) = 𝒘𝒘0,𝒙𝒙(0) = 𝒙𝒙0 

( 5.7) 

The approximated velocity solution in equation ( 5.7) is the solution velocity estimation 

method of Forward-Euler previously discussed in section  3.4.1. 

In the following derivation, we will assume statistical independence among all the 

GPMs predicted random non-constant entries of the parameters of the VBL-LLMs. 

For the real valued function 𝑓𝑅(. ) of two independent random variables 𝑅𝑅1, 𝑅𝑅2 ∈ ℝ 

with means 𝜇𝑅1 and 𝜇𝑅2 and variances 𝜎𝑅1
2  and 𝜎𝑅2

2  the following set of variance 

identities holds true 

 

𝑓𝑅(𝑅𝑅1)  = 𝑎𝑅𝑅1 → 𝜎𝑓𝑅
2 = 𝑎2𝜎𝑅1

2 ,𝑎 ∈ ℝ 

𝑓𝑅(𝑅𝑅1,𝑅𝑅2)  = 𝑎𝑅𝑅1 + 𝑏𝑅𝑅2 → 𝜎𝑓𝑅
2 = 𝑎2𝜎𝑅1

2 + 𝑏2𝜎𝑅2
2 ,𝑎, 𝑏 ∈ ℝ 

𝑓𝑅(𝑅𝑅1,𝑅𝑅2) = 𝑅𝑅1𝑅𝑅2 → 𝜎𝑓𝑅
2 = 𝜎𝑅1

2 𝜎𝑅2
2 + 𝜎𝑅1

2 𝜇𝑅2
2 + 𝜎𝑅2

2 𝜇𝑅1
2  

( 5.8) 

We will make use of the above variance estimation identities to compute the uncertainty 

in the meta-model solver. 

At discrete time 𝑡𝑡 = (0ℎ) = 0; the meta-models solution is given by 
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𝒘𝒘(1) = 𝒘𝒘0 + ℎ𝑨𝑨(0)𝒘𝒘0 + ℎ𝑩𝑩(0)�̇�𝒖(0) 

𝒙𝒙(1) = 𝒙𝒙0 + ℎ𝒘𝒘(1) 

𝒚(0) =  𝑪(0)𝒙𝒙0 + 𝑫(0)𝒖𝒖(0) 

( 5.9) 

The second moments of equation ( 5.9) by random numbers algebra written with slight 

abuse of notation (all the vector/matrix square operation are on their individual 

elements) are given by 

 

𝝈𝒘𝒘(1)
2 = ℎ2�𝝈𝑨𝑨(0)

2 𝒘𝒘𝟎
2 + 𝝈𝑩𝑩(0)

2 �̇�𝒖(0)2� 

𝝈𝒙𝒙(1)
2 = ℎ2𝝈𝒘𝒘(1)

2  

𝝈𝒚(0)
2 =  𝝈𝑪(0)

2 𝒙𝒙02 + 𝝈𝑫(0)
2 𝒖𝒖(0)2 

( 5.10) 

𝝈(.)
2  is a vector or matrix of the variance of the random entries in the predicted velocity, 

state and solution vectors computed in terms of the variances of the normally 

distributed non-constant entries of the VBL-LLMs parameter matrices. The variance for 

the deterministic part is simply zero. The variance enters equation ( 5.10) through the 

GPMs predicted meta-model parameters variance in the velocity and output parts. At 

this step, the probability distribution of the velocity, state and output is Gaussian. 

When the solver progress to the discrete time step 𝑡𝑡 = 1ℎ, the newly estimated meta-

model parameters will be a function of the current deterministic operating point of the 

system {𝝁𝒙𝒙(1),𝒖𝒖(1)}. The meta-model solution at this time step is given by 

 

𝒘𝒘(2) = 𝒘𝒘(1) + ℎ𝑨𝑨(1)𝒘𝒘(1) + ℎ𝑩𝑩(1)�̇�𝒖(1) 

𝒙𝒙(2) = 𝒙𝒙(1) + ℎ𝒘𝒘(2) 

𝒚(1) =  𝑪(1)𝒙𝒙(1) + 𝑫(1)𝒖𝒖(1) 

( 5.11) 

And the second moments of the meta-model solution at this time step is given by 
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𝝈𝒘𝒘(2)
2 = 𝝈𝒘𝒘(1)

2 + ℎ2�𝝈𝑨𝑨(1)
2 𝝁𝒘𝒘(1)

2 + 𝝈𝑩𝑩(1)
2 �̇�𝒖(1)2� 

𝝈𝒙𝒙(2)
2 = 𝝈𝒙𝒙(1)

2 + ℎ2𝝈𝒘𝒘(2)
2  

𝝈𝒚(1)
2 =  𝝈𝑪(1)

2 𝝈𝒙𝒙(1)
2 + 𝝈𝑪(1)

2 𝝁𝒙𝒙(1)
2 + 𝝈𝒙𝒙(1)

2 𝝁𝑪(1)
2

+ 𝝈𝑫(1)
2 𝒖𝒖(1)2 

( 5.12) 

For the velocity and state parts of the solution at this time step, the variance is the sum 

of the velocity and state variances from the previous time step added to the current time 

step variances. Since probability distributions of the previous time step velocity and 

state predictions are Gaussian, and the added uncertainty probability distributions are 

also Gaussians, then the probability distribution of the velocity and state solution at this 

time step will also be Gaussian. 

The variance of the output part in equation ( 5.11) is the variance of the product of two 

random normally distributed quantities (the output matrix multiplied by the state vector) 

added to the variance incurred by the normally distributed input feed-through matrix of 

the system). The product of two random Gaussians is a Gaussian distribution scaled by 

a Gaussian shaped function but is not a valid probability distribution (Bromiley, 2013) 

i.e. the integration of the of the resulted probability distribution function for this product 

from minus infinity to infinity is not one. The meta-model output part of equation ( 5.11) 

has no known probability distribution but its variance can still be estimated using the 

identities in equation ( 5.8). In the special case where the meta-model output matrix is 

deterministic, the meta-model output will be a normally distributed random variable. 

Progressing further in the meta-model solver time and according to the above 

reasoning, the first moment can be computed by applying the expected value operator 

𝔼(. ) (the mean) for the meta-model solver equation ( 5.7) at any time step 𝑡𝑡 = 𝑘ℎ is 
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𝝁𝒘𝒘(𝑘+1) = 𝝁𝒘𝒘(𝑘) + ℎ𝝁𝑨𝑨(𝑘)𝝁𝒘𝒘(𝑘) + ℎ𝝁𝑩𝑩(𝑘)�̇�𝒖(𝑘) 

𝝁𝒙𝒙(𝑘+1) = 𝝁𝒙𝒙(𝑘) + ℎ𝝁𝒘𝒘(𝑘+1) 

𝝁𝒚(𝑘) =  𝝁𝑪(𝑘)𝝁𝒙𝒙(𝑘) + 𝝁𝑫(𝑘)𝒖𝒖(𝑘) 

( 5.13) 

And the second moment at any time step 𝑡𝑡 = 𝑘ℎ is 

 

𝝈𝒘𝒘(𝑘+1)
2 = 𝝈𝒘𝒘(𝑘)

2 + ℎ2�𝝈𝑨𝑨(𝑘)
2 𝝁𝒘𝒘(𝑘)

2 + 𝝈𝑩𝑩(𝑘)
2 �̇�𝒖(𝑘)2� 

𝝈𝒙𝒙(𝑘+1)
2 = 𝝈𝒙𝒙(𝑘)

2 + ℎ2𝝈𝒘𝒘(𝑘+1)
2  

𝝈𝒚(𝑘)
2 =  𝝈𝑪(𝑘)

2 𝝈𝒙𝒙(𝑘)
2 + 𝝈𝑪(𝑘)

2 𝝁𝒙𝒙(𝑘)
2 + 𝝁𝑪(𝑘)

2𝝈𝒙𝒙(𝑘)
2

+ 𝝈𝑫(𝑘)
2 𝒖𝒖(𝑘)2 

( 5.14) 

Examining equations ( 5.13) and ( 5.14) for the meta-mode solution derived first and 

second moments; the following important points are observed: 

• The expected value of the meta-model solution in equation ( 5.13) is simply the 

deterministic version of the original meta-model solver in equation ( 5.7). 

• The variance of the meta-model solver in equation ( 5.14) will monotonically 

increase as the solver progresses in time due to all variance contributions by the 

past time samples resulting in an expanding cone of uncertainty around the 

meta-model solution. 

•  The local uncertainty contributions at any time step to the velocity and state 

parts of the meta-model solution are heavily scaled down by a factor of the 

square of the fixed time step ℎ. This reflects that the uncertainty about the 

velocity and state parts of the solution decreases with 𝒪(ℎ2) as the meta-model 

solver make smaller jumps in time which matches the local truncation error 

expected by using the Forward-Euler method in computing velocity and state 
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solutions previously described in section  3.4. This heavy scale down of local 

uncertainty estimation in the meta-model velocity and state solutions is simply 

saying that local uncertainty in the velocity solution parameters does not 

contribute much to the global uncertainty of the solution and the final deciding 

factor in the meta-model accuracy is the time step ℎ. In a setting where the 

meta-model solution is computed using variable step size solver; the impact of 

local uncertainty estimation of the velocity and state solutions will be further 

sensed as the time step increase or decrease in size. 

• The global uncertainty of the meta-model solution output is a combination of the 

weak local uncertainty of the state solution and the strong uncertainty of the 

meta-model output and feed-through matrices. In the case the meta-model 

solution had deterministic output (and feed-through) matrices (which is the case 

in any meta-model with full order parameters), the global uncertainty estimation 

of the meta-model solution will not reveal much about the uncertainty especially 

for small solver time steps. In the case the meta-model had reduced order 

parameters, the local contribution by the output matrix uncertainty will have the 

greatest impact on the global uncertainty of the meta-model output solution. 

• The assumption of statistical independence between the meta-model solutions 

computed at any two subsequent time steps stems from the fact that the GPMs 

predictions of the meta-model parameters are functions of the mean of the state 

solution 𝝁𝒙𝒙(𝑘) therefore transferring no uncertainty information to the GPMs 

regression inputs. 

• The derived first and second moments of the meta-model solution are valid for 

Forward-Euler meta-model solver; however, they can only be considered as an 
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approximation when used with other meta-model velocity solvers (section  3.4). 

While it is difficult to quantify the first and second moments for the Exact-

Discretization method as we have demonstrated earlier in this chapter, similar 

reasoning can be applied to the proposed other numerical methods of the meta-

model velocity solution (section  3.4.1) given by Heuns and RK4 methods with 

the expectation that these two methods will result in lower value of variance for 

the meta-model velocity solution and by extension to the meta-model state and 

output solutions. 

Despite the heavy scale down of uncertainty in the velocity and state parts of the meta-

model solution, the derived global uncertainty propagation measure of equation ( 5.14) 

can still play a significant rule in relating meta-model uncertainties in the output 

solution contributed by the meta-model output matrix (and the input feed-through 

matrix) uncertainties in the case of reduced order meta-models which sees this matrix to 

be fully parameterized by GPMs predictions. 

The uncertainty propagation in general can serve as a starting point to analyse the meta-

model solution but more in depth picture is best to be observed in the individual 

uncertainties of the meta-model parameters. 

The uncertainty in GPMs of meta-model parameters do not necessarily give a statement 

about the correctness/incorrectness of the meta-model solution, but are more about the 

confidence of the meta-model in the predictions based on the prior knowledge provided 

in terms of the selected meta-model training data. In simple words, the meta-model 

might still be confident in its predictions even if it has provided the wrong solution to 

the original model. 
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5.3 Meta-Modelling of a Chemical Reactor 

The (Non-Adiabatic) Continuously-Stirred Tank Reactor (CSTR) model (Bequette and 

Bequette, 1998) (also part of MTALAB system identification tool box) is a second-

order nonlinear dynamical system model of a chemical reactor, the schematic of the 

reactor is given by Figure  5-1. 

 

Figure  5-1: Schematic of the (Non-Adiabatic) Continuously-Stirred Tank 

Reactor 

The chemical reactor in Figure  5-1mixes incoming stream with the contents, the vessel 

of the reactor is thermally isolated and cooled  with coolant, inputs of the model are the 

sensors readings given in terms of incoming feed concentration 𝑢𝑢1(𝑡𝑡) with units of 

(𝑘𝑔𝑚𝑜𝑙/𝑚3), incoming stream temperature 𝑢𝑢2(𝑡𝑡) and reactor vessel coolant 

temperature 𝑢𝑢3(𝑡𝑡) both in degree Kelvins. During the reaction, the incoming stream 

𝑢𝑢1(𝑡𝑡) 

𝑢𝑢2(𝑡𝑡) 

𝑢𝑢3(𝑡𝑡) 

𝑦𝑦1(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) 𝑦𝑦2(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) 
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concentration 𝑢𝑢1(𝑡𝑡) and its temperature 𝑢𝑢2(𝑡𝑡) are kept constant at 10𝑘𝑔𝑚𝑜𝑙/𝑚3 and 

298𝐾. The reactor coolant temperature is varied between 273𝐾 and 325𝐾. 

After the initial mixing of the chemical reactor contents, their volume is kept constant 

throughout the reaction by allowing the reactor output stream flow rate to be equal to 

the flow rate of incoming stream. The chemical reactor model outputs are the sensors 

readings for the incoming feed concentration inside the reactor vessel 𝑦𝑦1(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡) 

and the reactor contents temperature 𝑦𝑦2(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡). The nonlinear model of the 

chemical reactor is given by appendix A.3, for more information consult the cited 

reference at the beginning of this section. The CSTR model initial conditions are given 

by 𝒙𝒙0 = [8.5695, 311.267]𝑇 . 

The CSTR meta-model equilibrium training data were analytically estimated (appendix 

A.3) using model input values of 𝑢𝑢𝑒1 = 10, 𝑢𝑢𝑒2 = 298 and 𝑢𝑢𝑒3 uniformly sampled 

between 273 and 325 at 52 points, this will result in 52 meta-model equilibrium 

training points. 

The CSTR meta-model off-equilibrium points were collected on the trajectory of the 

system response to a randomly generated Gaussian signal (Figure  5-2) (299 mean and 

26 standard deviation) applied to 𝑢𝑢3(𝑡𝑡), 𝑢𝑢1(𝑡𝑡) and 𝑢𝑢2(𝑡𝑡) are both constants at 10 and 

325. The generated random sequence is sampled every 0.1ℎ𝑜𝑢𝑢𝑟. 
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Figure  5-2: Random Gaussian signal applied to the CSTR model at the reactor 

coolant temperature input 𝑢𝑢3(𝑡𝑡) to collect meta-model off-equilibrium training 

data 

Exciting the CSTR model with the signal contained in Figure  5-2 will generate 544 

meta-model off-equilibrium training data points. The meta-model training time-varying 

parameters were analytically computed (appendix A.3) using the collected meta-model 

training data points in equilibrium and off-equilibrium regions (596 points), a small 

zero-mean Gaussian noise (1 × 10−5) was added. The resultant meta-model training 

data were randomly shuffled and equally-split into two disjoint training and validation 

sets. 

A squared exponential with ARD covariance function has been selected to for each of 

the GPMs of the four time-varying parameters in the 𝑨𝑨 matrix Jacobian of the CSTR 

model (appendix A.3). The results of the CSTR meta-model training are given in 

Table  5-1. 
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Table  5-1: CSTR meta-model training results 

𝐺𝑃𝑀(𝑨𝑨) 𝑆𝑀𝑆𝐸 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 
𝑎11 2.56 × 10−6 99.84 
𝑎12 6.23 × 10−4 97.5 
𝑎21 1.84 × 10−8 99.99 
𝑎22 4.19 × 10−6 99.8 

Table  5-1 shows that the CTSR meta-model parameters achieved satisfactory model 

fitness when verified against the collected validation data set, 𝑆𝑀𝑆𝐸 values are given 

for reference only, and they are useful when training the meta-model using multi- 

partition cross-validation (more than two partitions), relatively lower 𝑆𝑀𝑆𝐸 values 

means better fit. 

The CSTR meta-model was tested using a real world example input to the model taken 

from the CSTR model documentation in MATLAB system identification toolbox. The 

inputs are discontinues, therefore they were approximated using a sigmoid like function 

(appendix B). The CSTR three approximated test input components are given by 

Figure  5-3, Figure  5-4 and Figure  5-5. All test input components were resampled at 

ℎ = 0.01ℎ𝑜𝑢𝑢𝑟 to match the meta-model solver fixed-time step. 

The main control input of the CSTR model is 𝑢𝑢3(𝑡𝑡) *the reactor vessel coolant 

temperature) given by Figure  5-5, the other two input components (Figure  5-3and 

Figure  5-4) have little variation around their nominal levels during this experiment. 

The CSTR meta-model response to the above test input was computed using Exact-

Discretization velocity solver, the CSTR model response was computed using RK4 

fixed-time step solver, the CSTR model outputs were plotted against those of the meta-

model in Figure  5-6 and Figure  5-7. 
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Figure  5-3: CSTR meta-model 𝑢𝑢1(𝑡𝑡) test input component (incoming feed 

concentration) 

 

Figure  5-4: CSTR meta-model 𝑢𝑢2(𝑡𝑡) test input component (incoming feed 

temperature) 
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Figure  5-5: CSTR meta-model 𝑢𝑢3(𝑡𝑡) test input component (reactor vessel 

coolant temperature). This is the main control input during the CSTR meta-

model simulation 

 

Figure  5-6: CSTR meta-model output  𝑦𝑦1(𝑡𝑡) (concentration of incoming feed 

inside the reactor) 
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Figure  5-7: CSTR meta-model output  𝑦𝑦2(𝑡𝑡) (reactor contents temperature) 

The CSTR meta-model did well to describe the original model with model fitness of 

98.07% for 𝑦𝑦1 and 97.45% for 𝑦𝑦2.Uncertainty propagation was computed using 

equation ( 5.14) and the two standard deviations confidence regions of the meta-model 

simulation were plotted around the meta-model response in Figure  5-6 and Figure  5-7. 

The confidence regions are extremely narrow and practically indistinguishable from the 

meta-model response plot (unless by zooming in the y-axis of the plots), this is 

expected due to the heavy scale down of the meta-model velocity and state solutions 

local uncertainties (equation ( 5.14)) by a factor of 𝒪(ℎ2). 

A qualitative view of the meta-model velocity and state solution uncertainties can be 

obtained if the solver time step ℎ was set to unity in equation ( 5.14), therefore rendering 

the local uncertainty of the meta-model solutions independent of the solver time step. A 

plot of CSTR meta-model responses with scaled uncertainties versus the CSTR model 

RK4 responses are given by Figure  5-8. 
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Figure  5-8: CSTR meta-model repsonses with qualitivate view of uncertainty 

propgation in the meta-model 

The qualitative view of the meta-model solution uncertainty in Figure  5-8 is more 

apparent than the quantitative view of uncertainty in Figure  5-7. The meta-model output 

in Figure  5-8 is contained inside the qualitative confidence regions therefore indicating 

the trained meta-model is a good approximation to the underlying CSTR model, this is 
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supported by the obtained %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 for meta-model outputs. The computed meta-

model outputs qualitative uncertainties in Figure  5-8 are characterized by expanding 

cones as the meta-model solver progresses in time; this is due to local uncertainty 

propagation adding up in each solver time step, the same observation can be made on a 

smaller scale in Figure  5-7 due to the heavy scale down of the meta-model quantitative 

uncertainties sustained by the solver time step. 

To demonstrate how uncertainty propagation information can be used to improve the 

meta-model predictions, the CSTR meta-model was trained with a smaller training data 

set of 62 points randomly selected from the training data set obtained earlier in this 

section. The meta-model training follows the same procedure describe earlier in this 

section just with smaller training data set (as opposed to 298 points in the first case). 

The meta-model response to the test inputs in Figure  5-3, Figure  5-4 and Figure  5-5, 

achieved model faintness of 93.73% for 𝑦𝑦1(𝑡𝑡) and 92.1%, lower than what was 

achieved when bigger size training data set was used. 

The time-varying %𝑅𝑅𝑆𝐷𝐷 for this meta-model outputs was computed twice using the 

quantitative uncertainty and the qualitative uncertainty and is shown in Figure  5-9. The 

plot show the effect of the meta-model solver time step greatly influencing the 

magnitude of the quantitative uncertainty propagation, therefore giving false confidence 

in the meta-model predictions, using the qualitative uncertainty propagation to compute 

the time-varying %𝑅𝑅𝑆𝐷𝐷 removes the effects of the solver time step, therefore gives 

better view of the underlying uncertainty in the meta-model predictions. Uncertainty 

around meta-model output 𝑦𝑦1(𝑡𝑡) peaks at solver time 12.41ℎ𝑜𝑢𝑢𝑟 and 17.71ℎ𝑜𝑢𝑢𝑟 

(circled in Figure  5-9), while uncertainty around meta-model output 𝑦𝑦2(𝑡𝑡) is relatively 

much lower throughout the meta-model solution. 
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Figure  5-9: Time-varying %𝑅𝑅𝑆𝐷𝐷 for CSTR meta-model (trained with 62 training 

points) outputs, the dashed lines shows %𝑅𝑅𝑆𝐷𝐷 values computed using 

quantitative uncertainty propagation and the solid lines represent %𝑅𝑅𝑆𝐷𝐷 values 

computed using qualitative uncertainty propagation values 

Those two peaks in uncertainty around meta-model output 𝑦𝑦1(𝑡𝑡) can be used to improve 

the meta-model predictions by constraining the GPM of the meta-model parameters to 

have a prior knowledge of these operating points. A single operating point can be added 

just before the one where the peaking in global uncertainty occurs or add a number of 

them leading and/or trailing this point (more is better until no useful improvement in 

meta-model predictions is detected). The newly added meta-model training points are 

obtained from the real model response around the location the uncertainty peak in time. 

In this case of the CSTR meta-model, 10 continuous operating points time indices was 

selected before and after each uncertainty peak, then augmented with the meta-model 

training data set (now consists of 104 training points), these state-space points were 

used to compute the meta-model parameters using the Jacobians of the CSTR model 
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(appendix A.3), then the meta-model was retrained and the solution obtained again. 

This procedure improved the meta-model %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 to 97.44% for 𝑦𝑦1(𝑡𝑡) and 96.89% 

for 𝑦𝑦2(𝑡𝑡). Qualitative time-varying %𝑅𝑅𝑆𝐷𝐷 for both meta-model training cases 

(without/with additional training data) was computed and plotted in Figure  5-10. 

 

Figure  5-10: Qualitative time-varying %𝑅𝑅𝑆𝐷𝐷 for both meta-model training cases 

without (default) and with additional training data (improved) 

Figure  5-10 shows an overall improvement in the meta-model qualitative time-varying 

%𝑅𝑅𝑆𝐷𝐷 after adding more training points to the meta-model training data, the meta-

model uncertainty improvement is globally sensed across the meta-model solution. 

Therefore, it has been demonstrated that uncertainty propagation information can be 

used to improve the quality of meta-model predictions in this example, the results here 

are directly applicable to meta-models of higher orders and to those with reduced order 

LLMs. The time-varying %𝑅𝑅𝑆𝐷𝐷 for individual meta-model parameters can also be used 

to improve meta-model predictions in similar manner, however, for high order meta-
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models with hundred or even thousands parameters, this task becomes intractable and 

this is where having a global uncertainty measure coupled with the meta-model outputs 

is advantageous. 

5.4 Meta-Modelling of the 1-D Burgers Equations 

The 1-D Burgers equations (Rewienski, 2003) are nonlinear partial differential 

equations describing the movement of shock in a fluid or a medium. The 1-D Burgers 

equations are an example of nonlinear boundary value problem, the exciting input is 

part of the boundary of the problem. Spatial discretization of these equations in one 

dimension will result a set of nonlinear ordinary differential equations (appendix A.5). 

The default fixed-time step for the equations solver is 0.1𝑠. This system was considered 

to be a numerical challenge, because it has high speed dynamics and requires extended 

computational time in high dimensions. This section will consider the meta-modelling 

of the 100th order 1-D Burgers equations. The reduced-order meta-model of this system 

will result in a parameterized output matrix in which the effects of the uncertainty 

propagation can be examined. Each state in the full order 1-D Burgers equations is a 

prospective output of the system, for sake of simplicity, only one output of the system 

at node 5 was considered, higher output nodes will require higher order meta-model and 

therefore will require to have more meta-model parameters. The considered system is a 

mathematical abstract and therefore does not have any units assigned to its inputs, states 

or outputs in its present form. 

The Meta-model training points were collected along the trajectory of the system 

starting from the initial condition (𝑥𝑥1 … 𝑥𝑥100 = 1) to a constant simulation input 

𝑢𝑢(𝑡𝑡) = √5 sampled every ℎ = 0.1𝑠 with simulation time of 50𝑠, this amount of 

simulation time allows the system to enter equilibrium state therefore provides meta-
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model training points that cover both transient and equilibrium states of the system. 501 

meta-model training points were collected and full order LLMs were constructed using 

the Jacobians of the 1-D Burgers equations (appendix A.5). 

TBR MOR was applied to the collected full-order LLMs; the balanced realizations of 

the LLMs were computed at first and the mean percentages of states contribution to the 

balanced LLMs were computed with the aid of the balanced LLMs HSVs, equation 

( 4.17) and are given by Figure  5-11. 

 

Figure  5-11: Mean percentage of state contributions of the 100th order 1-D 

Burgers Equations system balanced training LLMs 

Figure  5-11 was used to make an informed decision on the order of the reduction for the 

LLMs by observing that states contribution to the output energy falls dramatically after 

the 4th balanced state component, therefore the reduced order of LLMs was set to 𝑞 = 4 

in the case of the 100th order 1-D Burgers reduced-order meta-model. 
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Controllability canonical form (section  4.5) was applied to the reduced order LLMs 

therefore reducing the non-constant elements of 𝑨𝑨𝑟 from sixteen to thirteen and input 

reduced-order vector 𝒃𝑟 from four to one. The total number of reduced-order meta-

model parameters that needs training is eighteen (thirteen for the state matrix, one for 

the input vector and four for the output vector). 

A squared-exponential with ARD covariance function was chosen to train the reduced-

order meta-model parameters. The chosen covariance function for the 100th order 1-D 

Burgers Equations NDS has a total of six parameters (one process parameter, one added 

noise parameter and four regression input parameters corresponding to the four states of 

the reduced order meta-model). 

During the training of each GPMs, cross-validation was used to test the accuracy of the 

resulted GPM model by splitting the collected training points into two equal disjoint 

sets one for training and the other for validation. A very small (between 1 × 10−8 and 

1 × 10−13) zero-mean Gaussian noise was added to all training points’ targets. The 

GPM covariance function hyper-parameters are trained by minimizing the cost function 

𝑱(𝜽) in equation ( 3.10). All trained meta-model parameters achieved model %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 

over 99% for the given validation data-set. 

The reduced order meta-model was tested using a simulation input 𝑢𝑢(𝑡𝑡) = √5 sampled 

every ℎ = 0.1𝑠 with simulation time of 50𝑠 and Exact-Discretization meta-model 

velocity solver (section  3.4.1). The results of the 4th order meta-model simulation is 

plotted against the result of the RK4 simulation of the 100th order 1-D Burgers 

equations in Figure  5-12. 
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Figure  5-12: The RK4 solution of the 100th order 1-D Burgers model versus the 

4th order meta-model solution with quantitative confidence intervals 

Figure  5-12 shows a bad agreement (%𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 = 65%) between the 4th order meta-

model solution and the 100th order 1-D Burgers equation solution. The reduced-order 

meta-model managed to capture the shape of the dynamics but failed to produce the 

correct magnitudes, this triggered the following diagnostic procedure to help understand 

what went wrong with this model: 

• A full-order exact meta-model was solved using exact values of LLMs 

parameters obtained from original model Jacobians (appendix A.5), this 

produced almost matching response (over 99%) to the original NDS therefore 

proving the collected full-order LLMs data are correct and that the meta-model 

solver in full-order has no problem reproducing the correct system dynamics. 

• A GP blended full-order meta-model was constructed using the same set of 

training data (only in full order) and the it did manage to produce almost 
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matching response (over 99%) to the original model, this eliminated the 

possibility of a problem with the parameters GPM. 

• Having done the above steps, there was clearly a problem with reduced order 

model itself, the results of the reduced-order meta-model training mentioned 

earlier leaves little doubt that the GPM failed to capture the underlying 

parameter function, so the only logical explanation is the parameters of the 

reduced-order meta-model were changing very fast for the VBL-LPV system to 

reproduce them over a single time step, the VBL-LPV system assumes that the 

time-varying parameter are constant over the time step during the solution 

(section 3.4) because of the implemented zero-order hold, this condition is met 

when using a full order meta-model of this particular system but became a 

problem when dealing with a reduced order version of the same system, 

decreasing the reduced-order meta-model solver time step has no effect on the 

quality of the meta-model predictions therefore affirms the above reasoning. 

To demonstrate the fast changing dynamics of the reduced-order meta-model 

parameters, one of the time-varying parameters 𝑎21 was examined and plotted its value 

during the training and the solution of the meta-model (Figure  5-13), most of the 

reduced-order meta-model time varying parameters exhibits the same fast changing 

dynamics. 

Figure  5-13 shows that at solver time zero, the meta-model produced the correct 

estimate for the parameter using the reduced-order canonical initial state of the system; 

this is true for the rest of the time-varying parameters of the meta-model. The problem 

occurred when the meta-model attempted a failed estimate for the next state at time 
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0.1𝑠𝑒𝑐𝑜𝑛𝑑𝑑 due to meta-model solver inability to track the fast change of model 

dynamics. 

 

Figure  5-13: 100th order 1D-Burgers equation NDS time-varying parameter 

𝑎21(𝑡𝑡) part of the reduced-order canonical state matrix 𝑨𝑨𝑟𝑐, 𝑎21(𝑡𝑡) was plotted 

for the first few  seconds during the training and the solution of the meta-model 

1D-Burgers equation NDS meta-modelling work by (Rewienski, 2003) using TPWL-

MOR frame work (earlier described in section 4.3) managed to produce the correct 

dynamics of this system though their meta-models suffered in high orders of the system 

(𝑛 = 1000), others used POD-MOR method successfully (again low orders) to 

reproduced the correct dynamics with most recent example by (Jarvis, 2012). 1D-

Burgers equation NDS is notorious when it comes to meta-modelling, the shock-wave 

dynamics are sensitive to initial perturbation of the system and might have been a tall 

order to meta-model this system using VBL-LPV system approach which if it had 

succeeded would have been a transparent reduced-order meta-model of this system. 
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The plot in Figure  5-12 also shows the meta-model quantitative confidence regions at 

two standard deviations around the mean of the model predictions. Most of the 

uncertainty in the meta-model output was contributed by the uncertainty of the solution 

vector 𝒄𝑟𝑐 with less contribution from the uncertainty in the meta-model velocity and 

state solutions due to the heavy scale down of the exact uncertainty by solver time step. 

There is no value in the acquired confidence regions in this case because the source of 

the meta-model uncertainty is characterized by model miss-specification. 

5.5 Conclusions 

Conclusions for the uncertainty propagation of the proposed GP blended VBL-LPV 

meta-model are summarized by the following: 

1. Uncertainty propagation depends on the choice of the meta-model solver; for the 

fixed time step Forward-Euler solver, the solver time step has profound effect 

on the magnitudes of the uncertainty in the meta-model velocity and state 

solutions.  

2. The meta-model variance can only detect regions where the GPMs of the system 

parameters fails to make a prediction. The rate of the expansion of the meta-

model solution variance gives an indication to the correctness/incorrectness of 

the meta-model predicted solution. 

3. Due to the sequential nature of any ODE solver, an error in a prediction at 

certain time step can affect the rest of the solution trajectory, and while the 

Gaussian Processes model faithfully provide accurate predictions at input spaces 

covered by its training points, it will provide the same faithful predictions for 
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the incorrect solution trajectory if it happens to pass on the same trained input 

spaces. 

4. The information provided by the uncertainty propagation is a valuable tool when 

dealing with reduced order meta-model of complex NDS which generally have 

tens or even hundreds of GPMs for their VBL-LPV parameters. It conveys a lot 

about the meta-model solution and is a starting point to improve meta-model 

solution accuracy. This was demonstrated in the meta-modelling of the CSTR 

NDS. 

5. Uncertainty propagation can be computed for the reduced-order meta-modelling 

of higher order NDS, this was demonstrated using the 100th order 1D-Burgers 

equation NDS. However, the proposed reduced-order meta-model did not 

manage to reproduce correct system dynamics due to the nature of the ZOH 

employed in the meta-model fixed-time step solver (not an issue for the full 

order meta-model). 
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 Meta-Model Computational Complexity Chapter 6 -
Analysis 

6.1 Introduction 

This chapter will analyse the computational time complexity analysis of the GP blended 

Full (or Reduced) Order VBL-LPV meta-model. Computational time complexity will 

be examined during the training phase of the meta-model, and later for the meta-model 

solver. 

Big Oh asymptotic notation 𝒪(. ) can be used to place an upper bound on how 

numerical algorithms scale with the increased size of input data and, it can be used to 

indicate asymptotic performance of the algorithm in terms of computational speed 

though this will mainly depend on the practical implementation of that algorithm. For 

real world performance of algorithms, benchmarking can be used to compare the run 

speed of two numerical algorithms, by taking a number of runtimes for each algorithm 

and averaging to get a comparative runtime between the two algorithms, however, this 

will be influenced by many factors such as code optimization and the available 

computational resources. 

ODE solvers computational time complexity can be measured by either the number of 

function evaluations or the number of floating-point operations per second (flops) (Ilie 

et al., 2008), it varies greatly depending on the type of the solver (fixed-time step versus 

variable-time step) and the required accuracy (resolution in case of fixed-time step 

solver or error tolerance in case of variable-time step solver (Ilie et al., 2008)), the 

computational time complexity of a single function (the CI-NDS itself) evaluation will 

be part of the ODE solver computational time complexity. 
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The main source of computational time saving in the proposed meta-modelling 

approach is the dimensionality reduction of the problem and to a lesser extent by 

computational time savings obtained in evaluating linear (in the case of VBL-LPV 

system) set of equations against nonlinear ones. Regardless of the implemented ODE 

solver, the computational time complexity of a single evaluation of the CI-NDS set of 

ODEs is the baseline at which the computational time complexity of a single iteration of 

the reduced-order meta-model solver can be compared, both in terms of the problem 

order. 

The computational time complexity of a single solver function evaluation for 𝑛 order 

CI-NDS can be defined as a polynomial time complexity of 𝒪(𝑛𝛼) where 𝛼 is a 

positive scalar. In the case of stiff CI-NDS, the variable-time step solver attempt 

advancing at smaller time scales in problematic regions of the solution with multiple 

evaluations of the NDS to establish the required solution accuracy, this greatly 

increases the computational time cost of the entire solution. 

In the GP blended VBL-LPV meta-model solver, the number of flops in a single 

iteration of the meta-model solver can be computed and the order of computational time 

complexity can be evaluated, all meta-model calculations are vector-matrix arithmetic 

and their dimensionality can be expressed by a set of positive integers. 

In the following sections, the computational time cost of the meta-model training phase 

will be discussed (section 6.2), followed by a discussion on the computational time cost 

for a single iteration of the meta-model solver (section 6.3), and finally a real world 

meta-modelling example of CI-NDS given by the NTL system of 5000 order will be 

examined along with benchmarking results of that system against different off shelf 

nonlinear ODE solvers. 
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6.2 The Meta-Model Training Cost 

The meta-model training phase (section 3.3.4) can be divided into the following: 

• Collection of Training data. 

• Computing the LLMs of the associated training data. 

• Training and validation of GPMs of the LLMs non-constant entries. 

Each of the above sub-phases will be discussed in the following sections. 

6.2.1 Collection of Training Data 

As demonstrated over the course of the previous chapters, training data for the meta-

model plays a significant role in the final success of making informed predictions. 

In order to provide reliable predictions, training data (set of inputs, states and 

corresponding outputs) must be computed along the required CI-NDS trajectory. 

Training data should include steady state and transient behaviour of the complex 

system, both require evaluating the CI-NDS itself and one of the main questions that 

arise is how many training data are enough to do the job? There is no definitive answer 

to this, but one can hope to choose the minimum number of data points with the 

maximum variance to cover important parts of the solution trajectory. 

The computational time complexity when collecting the meta-model training points will 

depend on the CI-NDS computational time complexity 𝒪(𝑛𝛼), the type of NDS solver, 

the resolution/accuracy and length of the modelled trajectory which will determine the 

number of available meta-model training data 𝑁𝑡. In the case of the fixed-time step 

classical RK4 solver employed throughout the thesis, and for a single iteration of the 
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solver, the CI-NDS is evaluated four times, for the entire length of the solution 

trajectory, the CI-NDS is evaluated 4𝑁𝑡 times. 

6.2.2 Computing the LLMs 

LLMs are constructed from first-principle or identified using a suitable system 

identification method in the case of equilibrium data. Unfortunately there is no valid 

system identification method that can construct LLMs for transient regions. Regardless 

of the type of operation (construction, linear MOR, and canonical transformation) being 

conducted on LLMs, it must be repeated 𝑁𝑡 times each to cover the size of the meta-

model training data set. 

Constructing full-order LLMs for the CI-NDS from first-principle generally requires 

small computational times and they are in general sparse, therefore requiring small 

computer memory. 

On the other hand, applying a linear MOR approach such as TBR or Krylov subspace 

methods will result in reduced-order LLMs (of order 𝑞) that are fully parameterized and 

may require larger memory to store them than the full-order Jacobians of the CI-NDS. 

For the reduced-order LLMs using TBR-MOR, their full-order balanced realization has 

to be computed before applying state truncation (section  4.2.3); the balanced full-order 

Jacobians are dense and fully parameterized therefore requiring large amounts of 

computer memory. The balancing procedure for a single full-order LLM will have a 

computational cost on the order of 𝒪(𝑛3) (Badía et al., 2006), making it impractical for 

large model order over few thousands. 

Krylov subspace MOR method such as the one described by Algorithm  4-1 will require 

the inverse of the full-order LLM system matrix, at worst case, when dealing with dense 
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representation of the full-order system matrix, the inverse will have computational time 

cost of 𝒪(𝑛3), this however is very rare and the general case will usually have a sparse 

structured system matrix making the computational time complexity of the system 

matrix inverse with a suitable algorithm much lower than that, therefore Krylov 

subspace MOR algorithms is the preferred choice when dealing with model orders 

above few thousands. 

The way to deal with very high order systems is to reduce them first to intermediate size 

problem with order 𝑞𝑖𝑖~𝑓𝑒𝑤 ℎ𝑢𝑢𝑛𝑑𝑑𝑒𝑟𝑒𝑑𝑑𝑠 using Krylov Subspace MOR and then 

applying the TBR MOR approach to obtain the final 𝑞 order model of the LLMs to 

insure the stability of the final reduced-order LLMs. 

The cost of applying canonical transformation to a reduced order LLMs is insignificant 

relative to the cost of computing full-order LLM MOR because it will only have to deal 

with LLM of reduced-order 𝑞 ≪ 𝑛. 

6.2.3 GP Model Training  

The collected set of meta-model training data and their corresponding VBL-LPV 

system time-varying components of size 𝑁𝑡 is partitioned into two disjoint sets one for 

GPM hyper-parameters training of size 𝑁𝑡𝑡 and the other for GPM validation of size 

𝑁𝑡𝑣. 

A GPM for each VBL-LPV system time-varying component must be trained as follows: 

• A suitable covariance function must be chosen, this involve the examination of 

the collected training data and choosing the best covariance function to reflect 

our prior understanding of underlying meta-model parameter function. 
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• Training the GPM covariance function hyper-parameters, this step involves 

choosing initial guesses of the hyper- parameters and the optimization of those 

parameters. This is followed by the GPM validation cycle where the separated 

validation data set is used to make predictions using the newly trained GPM, the 

combined GPM training and validation cycles has a computational time 

complexity that depends directly on the number of the GPM training data 𝑁𝑡𝑡 

(because of the inverse of the covariance matrix during the validation cycle) 

with cost of 𝒪(𝑁𝑡𝑡3) (Snelson, 2007). It should be noted that the GPM training-

validation cycles are often repeated multiple times with different hyper-

parameters initial values especially the additive noise hyper-parameter to 

achieve the highest possible confidence in the predictions. 

The time spent in the GPMs training-validation cycles of all the time-varying 

components of the VBL-LPV system will have to factor in the total number of those 

components which depends on the final order and the structure of the LLMs. To discuss 

this further, consider a hypothetical CI-NDS of order 𝑛 = 100 with no forcing input 

and 100 output components for each state, upon gathering full-order LLMs at the 

model training points, the following linear system structure is revealed: 

• 𝑨𝑨 matrix is 100 × 100 sparse diagonal matrix, and the number of time-varying 

components in this matrix is 100. 

• 𝑩𝑩 matrix is empty because there is no forcing input. 

• 𝑪 matrix is 100 × 100 sparse diagonal matrix, and the number of time-varying 

components in this matrix is 100. 
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If the meta-model was to be trained at full-order, it will require 200 GPMs to describe 

all the time-varying components of the VBL-LPV system with computational time cost 

of 𝒪�𝑁𝑡𝑡3� each. 

Now assume TBR-MOR was applied to the collected full-order LLMs, and it was found 

that a reduced-order LLM was sufficient to describe the dynamics say at order 𝑞 = 10. 

The reduced order LLMs structure is as follows: 

• 𝑨𝑨𝑟 matrix is 10 × 10 dense matrix, and the number of time-varying components 

in this matrix is 100. 

• 𝑩𝑩𝑟 matrix is empty because there is no forcing input. 

• 𝑪𝑟 matrix is 100 × 10 dense matrix, and the number of time-varying 

components in this matrix is 1000. 

In the case of the above reduced-order system, training the meta-model will require the 

training of 1100 GPMs to describe all the time-varying components of the VBL-LPV 

system with computational time cost of 𝒪�𝑁𝑡𝑡3� each, this is significant increase in 

computational time cost relative to the full order meta-model of the same system. It can 

be seen that the source of increase in computational time cost is the number of CI-NDS 

outputs. Assume modal canonical transformation was applied to the reduced-order 

LLMs and the following structure is obtained: 

• 𝑨𝑨𝑟𝑐 matrix is 10 × 10 sparse diagonal matrix, and the number of time-varying 

components in this matrix is 10. 

• 𝑩𝑩𝑟𝑐 matrix is empty because there is no forcing input. 
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• 𝑪𝑟𝑐 matrix is 100 × 10 dense matrix, and the number of time-varying 

components in this matrix is 1000. 

Applying the canonical transformation works to reduce the number of time-varying 

components in LLM system matrix 𝑨𝑨𝑟 (from 100 to 10), but it will not change the 

number of time-varying components of the LLM output matrix 𝑪𝑟 and this will 

continue to be a problem in training of the meta-model. 

Indeed most of the meta-modelling examples presented earlier used models with limited 

number of outputs (one or two at most) to justify MOR of full-order LLMs therefore 

reducing the overall computational time needed to train the meta-model time-varying 

parameters. 

6.3 The Meta-Model Solver 

The computational time complexity analysis is achieved by examining the steps the 

meta-model solver takes during a single iteration and computing the total number of 

flops per step. The worst case scenario is that no MOR has been applied to the meta-

model and no canonical form was selected either. 

In order to compute the number of flops involved in the meta-model solver calculations 

we have identified the number of flops in the following basic matrix-vector arithmetic 

as follows: 

• Addition or subtraction of two 𝑛 sized vectors requires 𝑛 flops. 

• Inner product of two 𝑛 sized vectors requires 𝑛 mutiplications and 𝑛 − 1 

additions therefore require 2𝑛 − 1 flops. 
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• Multiplication of 𝑚 × 𝑛 sized matrix with 𝑛 sized vector, each element in the 

solution requires inner product of 𝑛 sized vector therefore the total operations is 

𝑚(2𝑛 − 1) flops. 

To simplify the computational time cost analysis for the meta-model solver, the 

following assumptions were made: 

• A constant size of training data set 𝑁𝑡𝑡 has been employed for all the meta-

model time-varying components. 

• The covariance function is the same for all the meta-model time-varying 

components. 

The GPM covariance function evaluation cost depends on the structure of the 

covariance function and is a function of the number of regression inputs (the number of 

states of the LLM so either 𝑛 states for full-order LLM or 𝑞 states for reduced-order 

LLM), this cost is negligible compared to the cost of computing the GPM prediction 

mean and variance. 

Each GPM prediction involves computing the prediction mean 𝑚𝑝 and its variance 𝜎𝑝2 

(equation ( 3.15)) which is included again here 

 
𝑚𝑝 = 𝒌𝑡𝑝𝑇 𝜥𝑡𝑡

−1𝒛 

𝜎𝑝2 =  𝑘𝑝𝑝 − 𝒌𝑡𝑝𝑇 𝜥𝑡𝑡
−1𝒌𝑡𝑝+𝜎𝑛𝑛2 

( 6.1) 

𝒛 is the noisy training data vector of size 𝑁𝑡𝑡, 𝒌𝑡𝑝 is the cross-covariance vector of size 

𝑁𝑡𝑡 between the noisy training data and prediction target, and 𝑘𝑝𝑝 is the auto-covariance 

of the prediction target (a scalar). 
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𝜥𝑡𝑡 is the noisy training data covariance matrix of size 𝑁𝑡𝑡 × 𝑁𝑡𝑡, the inverse of this 

covariance matrix has a computational time cost of 𝒪�𝑁𝑡𝑡3�, therefore computing 

equation ( 6.1) will cost 𝒪�𝑁𝑡𝑡3� which is impractical. A more suited approach 

(Rasmussen and Williams, 2006) is to compute Cholesky decomposition of the 

covariance matrix and use this to compute the 𝑁𝑡𝑡 sized vector 𝒂𝒍𝒑𝒉𝒂 = 𝜥𝑡𝑡
−1𝒛 during 

the training phase of the GPM. This will reduce the GPM prediction to 𝑚𝑝 =

𝒌𝑡𝑝𝑇 𝒂𝒍𝒑𝒉𝒂 which is the inner product of two 𝑁𝑡𝑡 sized vectors therefore uses (2𝑁𝑡𝑡 −

1) flops and have a computional time cost of 𝒪(𝑁𝑡𝑡). Using the pre-stored Cholesky 

decomposition of the covariance matrix to compute the GPM prediction variance 𝜎𝑝2, 

will have a computational time cost of 𝒪�𝑁𝑡𝑡2� (Snelson, 2007). Therefore, the 

computational time cost of one GPM prediction is 𝒪�𝑁𝑡𝑡2�. 

The analysis of the meta-model solver algorithm in single iteration is broken down to 

four distinctive operations: 

1. Compute the GPM predictions for all time-varying components of the VBL-

LPV meta-model, as it have been established by the above discussion, the 

computational time cost of one GPM prediction is 𝒪�𝑁𝑡𝑡2�, the total number of 

meta-model time varying component depends on the LLMs structure. This will 

add a fixed computational time cost bias to the total cost of single iteration of 

the meta-model solver. 

2. Compute the meta-model velocity vector  𝒘𝒘(𝑘 + 1), when using Forward-Euler 

method (equation ( 3.27)), the number of flops required is given in Table  6-1. 
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Table  6-1 Total number of flops spent in the meta-model velocity vector 

𝒘𝒘(𝑘 + 1) computation using Forward-Euler method 

𝒘𝒘(𝑘 + 1) = 
𝒘𝒘(𝑘) + 
ℎ × ( 
𝑨𝑨(𝑘)𝒘𝒘(𝑘) 
+ 
𝑩𝑩(𝑘)�̇�𝒖(𝑘) 
) 

Number of flops 
𝑛 
𝑛 

𝑛(2𝑛 − 1) 
𝑛 

𝑛(2𝑝 − 1) 
Total flops = 2𝑛2 + 2𝑛𝑝 + 𝑛 

Examining the total number of flops in Table  6-1 indicates that the computational time 

cost of the meta-model velocity vector depends mainly on the meta-model order 

(usually the number of model inputs 𝑝 ≪ 𝑛) therefore will have a computational time 

cost of  𝒪(𝑛2). For other types of meta-model velocity solvers described by section 3.4, 

the total number of flops required will be different but the computational cost will also 

be 𝒪(𝑛2). 

3. Compute the meta-model state vector 𝒙𝒙(𝑘 + 1) given by equation ( 3.30), the 

number of flops required is given in Table  6-2. 

Table  6-2 Total number of flops spent in the meta-model state vector 𝒙𝒙(𝑘 + 1) 

computation 

𝒙𝒙(𝑘 + 1) = 
𝒙𝒙(𝑘) + 
ℎ × 𝒘𝒘(𝑘 + 1) 

Number of flops 
𝑛 
𝑛 

 Total flops = 2𝑛 

Examining the total number of flops in Table  6-2 indicates that the computational time 

cost of the meta-model state vector only depends on the meta-model order and therefore 

will have a computational time cost of  𝒪(𝑛). 

4. Finally, Compute the meta-model output vector 𝒚(𝑘) given as part of equation 

( 3.20), the number of flops required is given by Table  6-3.  
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Table  6-3 Total number of flops spent in the meta-model output vector 𝒚(𝑘) 

computation 

𝒚(𝑘) = Number of flops 
𝑪(𝑘)𝒙𝒙(𝑘) 𝑚(2𝑛 − 1) 

+ 𝑚 
𝑫(𝑘)𝒖𝒖(𝑘) 𝑚(2𝑝 − 1) 

 Total flops = 2𝑛𝑚 + 2𝑝𝑚 + 𝑚 

Examining the total number of flops in Table  6-3 indicates that the computational time 

complexity of the evaluating the meta-model output vector depends mainly on the order 

𝑛 and the number of outputs 𝑚 of the meta-model, as the number of outputs approaches 

the order of the meta-model (such as in the case of distributed parameters CI-NDS), the 

computational time cost will be  𝒪(𝑛2). 

In conclusion, for a single iteration of the full-order meta-model solver, the total 

computational time cost will be a combination of a fixed computational time cost bias 

of GPM predictions given by 𝒪�𝑁𝑡𝑡2� plus a computational time cost of 𝒪(𝑛2). Since 

the meta-model computational time complexity depends partly on the LLMs order, 

reducing the order of the meta-model will provide computational time saving. Applying 

canonical transformation to the LLMs can also reduce the computational time cost to 

𝒪(𝑛) if it resulted in sparse state matrix. GPM predictions computational time cost 

overhead can be reduced from 𝒪�𝑁𝑡𝑡2� to 𝒪(𝑁𝑡𝑡) if only the prediction mean is 

computed which is sufficient to obtain the meta-model solution. This can be 

implemented after verifying the uncertainty of the meta-model solution meets the 

experiment criteria. 

The derived computational time cost of the proposed GP blended reduced order VBL-

LPV meta-model has been anticipated due to the nature of the non-parametric meta-

model blending by GPM regression specifically chosen earlier because it can deal with 
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high dimensional CI-NDS whose training data are generally sparse therefore; the size of 

the meta-model training points is generally small. 

Now the asymptotic computational time cost of the GP-blended VBL-LPV meta-model 

have been established, a couple of remarks concerning its practical applicability: 

• LLMs structure plays an important role in the performance of the meta-model 

solver, reducing the LLM model order and applying MOR and canonical forms 

helps to reduce the number the meta-model time-varying parameters therefore 

sees the computational time cost reduced from 𝒪(𝑛2) to 𝒪(𝑛) because of LLMs 

sparsity. However, there is no practical way of knowing beforehand if MOR of 

the full-order LLM will lead to computational savings because this is model 

specific. Other parts of the LLMs structure such as the number of meta-model 

outputs could lead to increased computational costs defeating any gains made by 

MOR as demonstrated in section 6.2.3 and this section. 

• The number of GPM training data contributes a computational overhead of 

𝒪�𝑁𝑡𝑡2� to the meta-model solver cost, careful selection of a smallest-sized 

training data set greatly reduces this overhead, and optioning to predict the GPM 

mean during the solution will have a great positive effect on the computational 

speed of the meta-model solver (only 𝒪(𝑁𝑡𝑡)). There is a trade-off between the 

GP parameter model accuracy and the number of training data, more prior 

evidence (i.e more training data) lead to improved predictions, GPM does not 

suffer from over fitting like in parametric regression methods. All things being 

equal, reducing the prior evidence will reduce the GPM accuracy, however it is 

difficult to anticipate the effects of reducing GPM predictions accuracy on the 

meta-model solution because the GP static models provide predictions to a 
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dynamic VBL-LPV meta-model which in many cases could alter the properties 

of the time-varying LLMs such as stability. Therefore, the general rule of thumb 

is to optimize the size of training data set to provide the highest GPM 

predication accuracy. 

6.4 Meta-Modelling of a CI-NDS 

The section is concerned with meta-modelling of a CI-NDS theoretical system given by 

the NTL model previously described in section 4.6, with a couple of notable 

differences: 

• The model order is set at 5000 to demonstrate the computational complexity 

possible advantage of using the proposed GP-blended VBL-LPV meta-model. 

• The NTL model being a distributed parameters model, it has potential outputs 

across its entire range of states, for the sake of simplicity the output was selected 

to be at node 1 �𝑦𝑦(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡)� to provide a large MOR span compared to full-

order model, therefore reducing the potential number of meta-model time-

varying parameters. 

This section is further divided into three subsections, the first section will describe the 

meta-model training data and the application of MOR, the second section will describe 

the training of the meta-model time-varying parameters and the final section will 

present a number of test inputs to rate the meta-model computational time cost against 

those of some standard nonlinear ODE solvers. 

6.4.1 Meta-Model Training Points 

The meta-model training points have been collected using the same procedure 

previously described in section 4.6 for the 10th order NTL model, it used the same range 
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of inputs for the collection of equilibrium data points and the same randomly generated 

pulse sequence (Figure  4-2) for the collection of the off-equilibrium data points. This 

resulted in 230 meta-model training points (input-state pairs) at the full-order LLMs 

were computed from the first-principle Jacobians of the NTL model (appendix A.4). 

The computed full-order LLMs have the following structure: 

• 𝑨𝑨 state matrix is sparse tri-diagonal matrix of order 𝑛 = 5000 with (3𝑛 − 2) or 

14998 time-varying elements. 

• 𝒃 input vector is a constant sparse 5000-long vector with only one element 

located at 𝒃(1). 

•  𝒄 output vector is a constant sparse 5000-long vector with only one element at 

located 𝒄(1). 

• There is no feed-through input-output element in the system. 

In order to produce a meta-model that is faster than the original CI-NDS model, linear 

MOR techniques must be applied to the collected full-order LLMs at the meta-model 

training data as explained previously in section  4.4. 

Attempting to apply TBR-MOR directly on the full-order LLMs will have a 

computational cost of 𝒪(𝑛3), impractical for this LLM order not to mention that the 

full-order balanced matrix is dense requiring tremendous amounts of storage prior to 

state truncation. 

Krylov subspace MOR methods such as the one-sided method with Arnoldi iteration 

Algorithm  4-1 will require the inverse of the full-order state matrix that is also 𝒪(𝑛3) 

computational complexity in the case of a dense state matrix. 
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However, the computed full-order state matrix is sparse therefore, a creating sparse 

matrix object and solving the linear system of equations in MATLAB will have only 

𝒪(𝑛) when implementing the Arnoldi One-Sided Krylov Subspace MOR Algorithm 

which is a significant computational gain over the TBR-MOR approach. The problems 

with Krylov subspace MOR approach (as demonstrated before in section  4.2.2) are the 

lack of provable error bounds and the chance it may not preserve the stability of the full 

order LLMs. To overcome this, the full-order LLMs have been reduced to an 

intermediate model order 𝑞𝑖𝑖 = 150 using Algorithm  4-1 and the results from this 

intermediate MOR step was reduced further using TBR-MOR to ensure stability of the 

reduced-order LLMs. Normalized local errors between outputs of the full-order and the 

reduced-order LLMs at the collected linearization points are computed using equation 

( 4.16) and shown by Figure  6-1. 

 

Figure  6-1 Normalized local output errors between the full-order LLMs and the 

Krylov-reduced LLMs at the collected training data of the NTL CI-NDS 
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Figure  6-1 Shows that the normalized output error 𝑒𝑟𝑟𝑖𝑖 between the full-order LLMs 

output and those of the reduced-order LLMs, it indicates a very good agreement 

between the reduced-order LLMs and the full-order ones. The local error 𝑒𝑟𝑟𝑖𝑖 of the 

LLMs outputs appears to approach zero in magnitude as it moves through the range of 

the collected equilibrium training points data set ( the first 20 indices on the x-axis of 

Figure  6-1), since the Krylov MOR of Algorithm  4-1 is based on the Taylor’s series 

expansion of the full-order LLM transfer function around 𝑠 = 0 frequency; it will 

generally provide an excellent fit for the steady state dynamics of the system and hence 

the decrease of the computed output errors in the steady state regions of model. 

At the end of the Krylov intermediate MOR step, the LLMs have the following 

structure: 

• 𝑨𝑨𝑘𝑟 state matrix is a dense matrix of order 𝑛 = 150 with 22500 time-varying 

elements. 

• 𝒃𝑘𝑟 input vector is a dense with 150 time-varying elements. 

• 𝒄𝑘𝑟 output vector is a with 150 time-varying elments. 

Although the LLM order have been reduced from 5000 to 150, the meta-model time-

varying components have risen from 14998 to 22800, making it even more difficult to 

train the meta-model in its present form. The computed reduced-order LLMs must be 

compressed further using TBR-MOR to reduce the number of meta-model time-varying 

components. This is accomplished by computing the balanced realization of the 

reduced-order LLMs, then computing the ℎ𝑠𝑣 values of state contributions to the 

reduced-order model outputs (section 4.2.3) to establish the level of state truncation. 
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Figure  6-2 Mean percentage of state contributions of the balanced Krylov-

reduced LLMs for the NTL meta-model collected training data 

Figure  6-2 shows mean percentage of each state contribution in the balanced realization 

of the 150-order Krylov MOR of the full-order LLMs computed using equation ( 4.17). 

Figure  6-2 shows that the majority of state contribution is contained within the first four 

states (approximately 95.195%), selecting a TBR-MOR of order four will result in 

fast-changing meta-model time-varying parameters that are difficult to train using the 

GPM. A tenth order reduction will only discard 0.125% of model output energy and 

will provide easier to train meta-model parameters. 

It has been decided to train two meta-model scenarios based on two different final 

reduced model orders of four and ten to showcase the trade off in predictions accuracy 

and meta-model computational time performance. 

The 4th order LLMs have the following structure: 

• 𝑨𝑨𝑟 state matrix is a dense matrix of order 𝑞 = 4 with 16 time-varying elements. 
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• 𝒃𝑟 input vector is a dense with 4 time-varying elements. 

• 𝒄𝑟 output vector is a with 4 time-varying elments. 

The number of LLMs time-varying parameters has seen a massive reduction from 

22800 to 24, this number can be reduced more through the application of a suitable 

canonical form. The controllability staircase canonical form was applied to the fourth 

order LLMs computed by the TBR-MOR step resulting the following LLMs structure: 

• 𝑨𝑨𝑟𝑐 state matrix is a sparse tri-diagonal matrix of order 𝑞 = 4 with 10 time-

varying elements. 

• 𝒃𝑟𝑐 input vector is sparse 4 elements vector with only one time-varying 

component located at 𝒃𝑟𝑐(4). 

• 𝒄𝑟𝑐 output vector is sparse 4 elements vector with only one time-varying 

component located at 𝑪𝑟𝑐(4). 

The number of time-varying components in the reduced-order LLMs with canonical 

form has been reduced from 24 to 12. A close examination of the final meta-model 

time-varying parameters revealed that some of them is only changing on a small scale 

(< 1 × 10−4 variance) over the collected envelope of the training data therefore they 

were averaged and assumed to be constant, this further reduced the total number of 

meta-model parameter from 12 to 10 all contained in the canonical reduced-order state 

matrix 𝑨𝑨𝑟𝑐. 

The 10th order LLMs have the following structure: 
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• 𝑨𝑨𝑟 state matrix is a dense matrix of order 𝑞 = 10 with 100 time-varying 

elements. 

• 𝒃𝑟 input vector is a dense with 10 time-varying elements. 

• 𝒄𝑟 output vector is a with 10 time-varying elments. 

The number of reduced-order LLMs time-varying parameters has seen a massive 

reduction from 22800 to 120, this number can be reduced more through the application 

of a suitable canonical form. The controllability staircase canonical form was applied to 

the tenth order LLMs computed by the TBR-MOR step resulting the following LLMs 

structure: 

• 𝑨𝑨𝑟𝑐 state matrix is a sparse tri-diagonal matrix of order 𝑞 = 10 with 28 time-

varying elements. 

• 𝒃𝑟𝑐 input vector is sparse 10 elements vector with only one time-varying 

component located at 𝒃𝑟𝑐(10). 

• 𝒄𝑟𝑐 output vector is sparse 10 elements vector with only one time-varying 

component located at 𝑪𝑟𝑐(10). 

The number of time-varying components in the reduced-order LLMs with canonical 

form has been reduced from 120 to 30. A close examination of the final meta-model 

time-varying parameters revealed that some of them are only changing on a small scale 

(< 1 × 10−4 variance) over the collected envelope of the training data therefore they 

were averaged and assumed to be constant, this further reduced the total number of 

meta-model parameter from 30 to only 19 all contained in the canonical reduced-order 

state matrix 𝑨𝑨𝑟𝑐. 

143 



 

It can be seen that the tenth order meta-model have more time-varying parameters than 

the fourth order one (19 versus 10), this will produce a faster meta-model if the size of 

the meta-model training data set is equal between the two meta-models. However, this 

computational speed advantage will come at the cost of meta-model predictions 

accuracy and a harder to train meta-model parameters. 

6.4.2 Meta-Model Parameters Training and Validation 

The meta-model training points collected on the trajectory of the NTL model was split 

using into two disjoint randomly selected sets, one with 46 points for training of the 

GPMs and the other with 184 points for the validation of the trained models as part of 

the cross-validation process. Additive white noise of zero mean and very small variance 

(1 × 10−7) was added to all training points’ targets. 

To level the computational overhead attributed by the GPMs, both meta-model 

scenarios have the same covariance function for all the time-varying parameter models 

(squared-exponential with ARD), they also share the same number of training and 

validation data. The GPM covariance function hyper-parameters are trained by 

minimizing the cost function 𝑱(𝜽) in equation ( 3.10). The covariance function noise 

parameter was set to 1 × 10−7 after adding the same amount of zero-mean Gaussian 

noise to the collected training data targets. 

The GPMs optimization results for the 4th order meta-model are given in Table  6-4. It is 

evident that the GPM struggled to model some of the time-varying parameters because 

of their fast changing dynamics. This will definitely reduce the quality of meta-model 

predictions. 
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Table  6-4: 4th order meta-model training results for the CI-NDS NTL model 

𝐺𝑃𝑀(𝑨𝑨𝑟𝑐) 𝑆𝑀𝑆𝐸 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 
𝑎11 2.13 × 10−3 95.37 

𝑎12 = 𝑎21 6.17 × 10−2 75.09 
𝑎22 8.13 × 10−4 97.14 

𝑎23 = 𝑎32 1.25 × 10−4 98.88 
𝑎33 5.51 × 10−3 92.56 

𝑎34 = 𝑎43 1.05 × 10−2 89.72 
𝑎44 5.73 × 10−4 97.6 

The GPMs optimization results for the 10th order meta-model are given in Table  6-5. 

Table  6-5: 10th order meta-model training results for the CI-NDS NTL model 

𝐺𝑃𝑀(𝑨𝑨𝑟𝑐) 𝑆𝑀𝑆𝐸 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 
𝑎44 2.13 × 10−5 99.54 

𝑎45 = 𝑎54 3 × 10−5 99.45 
𝑎55 5.41 × 10−6 99.77 

𝑎56 = 𝑎65 4.13 × 10−6 99.8 
𝑎66 1.92 × 10−6 99.56 

𝑎67 = 𝑎76 6.28 × 10−6 99.75 
𝑎77 1.17 × 10−5 99.66 

𝑎78 = 𝑎87 3.62 × 10−6 99.81 
𝑎88 1.66 × 10−4 98.71 

𝑎89 = 𝑎98 2.64 × 10−4 98.34 
𝑎99 1.2 × 10−5 99.56 

𝑎9,10 = 𝑎10,9 7.55 × 10−6 99.72 
𝑎10,10 5.3 × 10−7 99.93 

The meta-model parameters training results in Table  6-5 proved to be successful, very 

small 𝑆𝑀𝑆𝐸 values (small variances) coupled with very high %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 indicate a very 

good agreement of the meta-model validation data set and the trained parameter model. 

In contrast to the 4th order meta-model training results, the 10th order meta-model 

parameters are smooth and easier to train. 

6.4.3 Meta-Model Response to Test Inputs 

This section will examine the response of the trained meta-models to several test inputs, 

the performance of the meta-model will be benchmarked against fixed and variable-

time step nonlinear ODE solvers. 
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It has been established in section 6.3 that the meta-model computational time 

complexity is a function of its order and the size of GPM training data set. It is harder to 

train a meta-model below a certain reduced model order (evident by the 4th order meta-

model training results in Table  6-4), because this will force the meta-model time-

varying parameters to change rapidly making it difficult to train without using some 

‘exotic’ GP covariance function. Therefore, it may limit the range of reduced-order 

model scenarios to benchmark the meta-model performance. For a certain reduced order 

meta-model, the other part of computational time complexity is controlled by the size of 

the meta-model training data set, however it is always important to get the trained meta-

model time-varying parameters to faithfully reproduce their true function, because any 

lower quality predications of the time-varying parameters will induce unrecoverable 

errors in the meta-model sequential solution. Therefore it is not possible to rely on 

computational savings from reductions in the meta-model training data set. 

The default solver time step for the NTL meta-model has been established at ℎ = 1 ×

10−4𝑠 to provide an accurate solution. 

All the meta-model test inputs have a time frame of one second to provide a comparison 

across the meta-model computational speeds. The meta-model solver used Exact-

Discretization method (section 3.4.1) to solve the velocity equation, parameter 

similarity detection has been employed in the meta-model solver to detect similar meta-

model time-varying parameters and reduce the meta-model solver processing time 

during the solution. 

Classical RK4 fixed-time step solver has been used to obtain the CI-NDS response to 

different test inputs to produce exact CI-NDS response plot against that the two meta-
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models responses. All step-like discontinues-time test inputs were approximated using 

sigmoid function (appendix B). 

Finally, the meta-model exact uncertainty propagation plots have been omitted because 

of the extremely small value of the meta-model solver time step (as explained by 

chapter 5). 

The first test input is a Heaviside unit step function 𝐻(. ) given by 𝑢𝑢(𝑡𝑡) = 𝐻(𝑡𝑡 − 0.05), 

the results of the meta-models simulation with this test input are given by Figure  6-3. 

Figure  6-3 shows an excellent match between the 10th order meta-model output and the 

true CI-NDS model output achieving 99.76 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠, with less accuracy for the 4th 

order meta-model achieving 96.23 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠. 

 

Figure  6-3 NTL meta-models response to test input (𝑡𝑡) = 𝐻(𝑡𝑡 − 0.05) versus 

the RK4 response of the CI-NDS 

The second test input is a multi-step function given by Figure  6-4. 
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Figure  6-4 NTL meta-model multi-step test input 

The meta-model response to the above test input is given by Figure  6-5. 

 

Figure  6-5 NTL meta-models response to the multi-step test input versus the 

RK4 response of the CI-NDS 
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Figure  6-5 shows an excellent match between the 10th order meta-model output and the 

true CI-NDS model output achieving 99.83 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠, with less accuracy for the 4th 

order meta-model achieving 96.92 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠. 

The third meta-model test input is a cosine function given by 𝑢𝑢(𝑡𝑡) = (cos(2𝜋𝑡)+1) 
2

., the 

results of the meta-model simulation are shown in Figure  6-6. 

Figure  6-6 shows an excellent match between the 10th order meta-model output and the 

true CI-NDS model output achieving 98.82 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠, with a slightly higher accuracy 

for the 4th order meta-model achieving 98.83 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠. It is plausible in the case of 

the 4th order meta-model that the trajectory of a test input might have passed through 

part of well-trained meta-model parameters operating space and produce good model 

accuracy. 

 

Figure  6-6 NTL meta-models response to cosine test input versus the RK4 

response of the CI-NDS 

149 



 

The fourth meta-model test input is an exponential function given by 𝑢𝑢(𝑡𝑡) = 𝑒−10𝑡. The 

results of the meta-model simulation with this test input are given by Figure  6-7. 

Figure  6-7 shows an excellent match between the 10th order meta-model output and the 

true CI-NDS model output achieving 98.1 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠, with less accuracy for the 4th 

order meta-model achieving 95.94 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠. 

 

Figure  6-7 NTL meta-model response to exponential test input versus the RK4 

response of the CI-NDS 

The fifth meta-model test input is a 1Ap-p , 5𝐻𝑧 sinusoidal function, the results of the 

meta-model simulation with this test input are given by Figure  6-8. This test input is 

interesting because it spans meta-model input range (−1, 1) beyond that used in the 

training phase (0, 1), the both meta-models saw degraded prediction accuracy, the 10th 

order meta-model achieved 88.01 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠, while the 4th order meta-model only 

achieved 41.44 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 While the meta-model is not generally expected to deal with 

inputs outside its training data range, this massive reduction in the 4th order meta-model 
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accuracy is mostly attributed to the inadequate training results rather the actual model 

order. 

 

Figure  6-8 NTL meta-models response to sinusoidal test input versus the RK4 

response of the CI-NDS 

The final test input the linear frequency sweep previously described in section 4.6 

(Figure  4-5) used in testing the 10th order NTL meta-model. This test input also spans 

meta-model input range (−1, 1) beyond that used in the training phase (0, 1). 

The results of the meta-model simulation with this test input are given by Figure  6-9. 

Again both meta-models saw degraded solution accuracy. The 10th order meta-model 

achieved 93.83 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 and the 4th order meta-model only achieved 62.6 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠. 

In terms of prediction accuracy, the 10th order meta-model has an apparent advantage 

on the 4th order meta-model in almost all the six test cases. The 4th order meta-model 

could have led to high prediction accuracy if was not for it’s difficult to train rapidly-

changing time-varying parameters. Testing the meta-models with inputs outside its 
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range of training inputs reveals how much they have uncovered of the underlying time-

varying parameter functions during the training phase. 

 

Figure  6-9 NTL meta-models response to sinusoidal linear frequency sweep 

test input versus the RK4 response of the CI-NDS 

The computational time performance of the two meta-modelling scenarios versus the 

fixed-time step RK4 method has been computed by measuring the time to obtain the 

solution in all test input cases. This has been done twice for each meta-model case; one 

without uncertainty propagation and the other with it to showcase the difference in 

speed. Since the fixed-time step solver total time to obtain a solution only depends on 

the solver time step and the length of the modelled trajectory, and since of all of the 

previous test inputs share the same trajectory length and solver time step, the final total 

time to obtain the solution was averaged and the time for each solution point can be 

computed by simple division on the number of solution points (in this case is 9999 

based on a trajectory length of 1𝑠 and a solver time step of 1 × 10−4𝑠). Computational 
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time performances of the two meta-model scenarios versus the RK4 method for the 

NTL model of order 5000 are given in Table  6-6. 

Table  6-6: Computational time performance of the of the two meta-model 

scenarios versus the RK4 method for the NTL model of order 5000 (all 

measurements are in seconds) 

 RK4 
(order 5000) 

10th order meta-model 4th order meta-model 

Mean only Mean and 
variance Mean only Mean and 

variance 
Heaviside 
unit step 158.85 141.98 268.49 82.57 145.03 

Multi-step 156.22 140.69 271.51 81.12 148.54 

Cosine 
function 149.55 143.03 276.28 81.65 149.09 

Exponential 
function 152.40 143.00 278.49 82.36 151.19 

Sinusoidal  161.76 147.12 286.44 82.57 151.75 

Sinusoidal 
linear 

frequency 
sweep 

176.37 158.19 303.63 81.94 149.77 

Average solver time 

 159.19 145.67 280.81 82.04 149.23 

Average solver time for single solution point (based on 9999 points) 

 1.59 × 10−02 1.46 × 10−02 2.81 × 10−02 8.20 × 10−03 1.49 × 10−02 

Table  6-6 shows the computational speed advantage of the 4th order meta-model solver 

(without uncertainty propagation) over the RK4 method (almost twice as fast) while the 

10th order meta-model solver only achieved a marginally better performance to the RK4 

solver. Table  6-6 also shows that obtaining the meta-model solution without uncertainty 
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propagation (i.e. without the GPM predictions variance computation) is almost twice as 

fast as when it computed with uncertainty propagation. 

The 5000 order NTL model was solved using a set of MATLB variable-time step 

solvers. The MATLAB ODE solvers suit (Shampine and Reichelt, 1997) contains a 

number of explicit and implicit ODE solvers. Explicit solvers as such ODE23, ODE45 

and ODE113 are used to solve non-stiff NDS. Implicit solvers such ODE23s and 

ODE15s are used to solve both stiff and non-stiff NDS. ODE113 and ODE15s are 

variable-order solvers in addition of being variable-time step solvers. 

The solution error (which reflects on the accuracy of the solver solution) at each step 

taken by the variable-time step solver is controlled by two quantities: 

• Relative error tolerance (𝑅𝑅𝑒𝑙𝑇𝑜𝑙), controls the number of correct digits in all 

solution components bellow the Absolute error tolerance (𝐴𝑏𝑠𝑇𝑜𝑙). The default 

value of 𝑅𝑅𝑒𝑙𝑇𝑜𝑙 is 1 × 10−3. 

• Absolute error tolerance (𝐴𝑏𝑠𝑇𝑜𝑙) is a threshold below which the value of a 

solution component is unimportant. 𝐴𝑏𝑠𝑇𝑜𝑙 determine the accuracy when the 

solution approaches zero. The default value of 𝐴𝑏𝑠𝑇𝑜𝑙 is 1 × 10−6. 

Default relative and absolute error tolerances were used for all the above ODE solvers. 

The Jacobian matrix pattern (a sparse tri-diagonal matrix of order 5000) of the full-

order NTL model was supplied to the stiff solvers (ODE23s and ODE15s) to speed up 

the computations. The computational time performance of the MATLAB ODE suit of 

solvers for the NTL model of order 5000 is given in Table  6-7. The tested ODE solvers 

solution (if successful) achieved more than 99%𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 referenced to the solution of 

the RK4 solver. 
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Table  6-7: Computational time performance of the MATLAB ODE suit of solvers 

for the NTL model of order 5000 (all measurements are in seconds) 

 ODE23 ODE45 ODE113 ODE23s ODE15s 
Heaviside 
unit step 14.04 Fail 18.0659 18.38 16.46 

Multi-step 13.99 Fail 17.8509 19.56 17.35 
Cosine 

function 13.20 14.26 16.31 20.39 15.82 

Exponential 
function 13.19 13.38 17.59 18.87 15.67 

Sinusoidal  25.30 17.66 49.73 37.94 29.41 

Sinusoidal 
linear 

frequency 
sweep 

148.63 35.52 1288.90 125.92 668.29 

Table  6-7 shows a good overall performance of the variable-time step solvers, the 

following highlights the performance: 

• The ODE23 solver achieved the best performance across the first four test 

inputs. 

• The ODE45 solver failed to make a prediction for the first two step-like test 

inputs, the rest of the solvers had a comparable performance for those test 

inputs. 

• The fixed and variable frequency sinusoidal test inputs (five and six) had 

proved to be more problematic for all the tested solvers except the ODE45 

which achieved the best performance in these inputs. 

While it is unfair to compare the computational time performance of variable-time step 

solvers against fixed-time step solvers (because they will traverse the length of the 

solution trajectory much faster due to the variable-time steps), comparing the average 
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total solver time of the meta-model in Table  6-6 to the variable-time step solvers 

performance in Table  6-7 highlights the following points: 

• For all the tested inputs, there exists at least one variable-time step solver that 

has a better performance than the two meta-model scenarios (orders 10 and 4). 

• The 4th order meta-model computational time performance for the sinusoidal 

linear frequency sweep input was better than four of the five variable-time step 

solvers except for ODE45. However, the 4th order meta-model achieved only 

62.6 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 of the true model. 

• The 10th order meta-model computational time performance for the sinusoidal 

linear frequency sweep input was comparable to the ODE23 and ODE23s 

solvers, and was better than ODE113 and ODE15s solvers. The 10th order meta-

model achieved 93.83 %𝑓𝑖𝑡𝑡𝑛𝑒𝑠𝑠 for this test input. 

6.5 Conclusions 

The computational time cost of the meta-model during the collection of training data, 

training the meta-model and making predictions was analysed and the following points 

have been observed: 

• When collecting meta-model training data, the CI-NDS must be solved, and the 

cost of this operation will follow the cost of the employed ODE solver for this 

system. 

• The computational time cost of meta-model training is the cost of training a 

GPM which depends on the size of the training data set (𝑁𝑡𝑡), the process 

involves the inversion of the covariance matrix with cost of 𝒪�𝑁𝑡𝑡3� but with 
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the application of Cholesky decomposition on the covariance matrix, this cost 

can be reduced to 𝒪 �𝑁𝑡𝑡
3

6
� (Rasmussen and Williams, 2006). The overall time to 

train the meta-model depends on the structure LLMs and the total number of 

meta-model time-varying parameters both specific to the Jacobians of the CI-

NDS. 

• The computational time cost of the meta-model fixed-time step solver is a 

combination of the meta-model order (with cost of 𝒪(𝑛2)) and a computation 

time cost (𝒪�𝑁𝑡𝑡2�) overhead attributed by the GPM predictions (this depends 

on the meta-model training data set). The meta-model computational time cost 

can be reduced if the order of the meta-model is reduced, or if the size of the 

training data set is reduced. Use of sparse-structured LLMs (through the 

application of a suitable canonical form) and omitting the uncertainty 

predictions in the GPMs can reduce both costs to 𝒪(𝑛) and 𝒪(𝑁𝑡𝑡) respectively. 

• The final number of meta-model time-varying parameters affects the speed of 

the meta-model solver. Care must be taken when dealing with CI-NDS of many 

outputs as this can significantly decrease the meta-model computational time 

performance. 

A case study for the practical computational time performance of the meta-model 

was conducted for the NTL model of order 5000. Two meta-model scenarios were 

trained of orders four and ten. The 10th order meta-model was easier to train than 

the 4th order meta-model because the meta-model time-varying parameters were 

smooth. The meta-model solver being a fixed-time step solver was tested against the 

RK4 fixed-time step solver. The 10th order meta-model have showed a great 
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modelling accuracy and a comparable time to the full-order RK4 solver. The 4th 

order meta-model achieved had less accuracy than the 10th order meta-model for test 

inputs within the range of its training, but achieved considerable (~50%) 

computational time saving against the full-order RK4 solver. 

The performance of the meta-model was rated against a set of MATLAB ODE 

variable-time step solvers, overall, the variable-time steps had a better performance 

solving the CI-NDS except for a couple of test inputs (sinusoidal inputs). However 

this performance comparison is not fair due to the different nature of fixed and 

variable-time step solvers. 
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 Conclusions and Recommendations Chapter 7 -

7.1 Conclusions 

Within the literature of meta-modelling approaches, an area of concern was the 

transparency of the meta-model structure, and the failure to utilize the transparent 

structure of analytical CI-NDS. Therefore, this thesis sat out to develop a meta-

modelling framework tailored for analytical CI-NDS. 

After consulting the literature on NDS mathematical modelling approaches, it was 

found that the VBL-LPV system was the only structure that fully-preserved the 

transparency of the analytical NDS. The VBL-LPV system utilized the underlying 

structure of the analytical NDS to construct VBL-LLMs. The difficulty with VBL-LPV 

system is it requires the numerical derivative of the forcing input of the NDS, which 

may pose a problem if the NDS inputs were corrupted by noise. The derivative of 

discontinues noise-free piecewise inputs can be computed after input approximation by 

a sigmoid like function. 

GP models have been used to blend the parameters of the VBL-LPV system because 

they do not suffer from over-fitting problems with limited training data and they 

provide uncertainty information about predictions. 

The GP blended VBL-LPV system was never used to meta-model any type of CI 

models, because the order of the GP blended VBL-LPV system matches that of the CI-

NDS, therefore it was not going to offer any computational saving over the CI-NDS. 

The first contribution of the thesis was to apply projection-based linear MOR to the 

LLMs of the GP blended VBL-LPV system to reduce their order therefore permitting a 

possible computational speed advantage over the CI-NDS. The GP blended reduced-
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order VBL-LPV system has been applied to meta-model a 100th order 1D-Burgers 

equations and two scenarios of the NTL model (10th order and 5000th order). The 

following was observed: 

i. MOR of the meta-model LLMs below a certain (model specific) reduced model 

order can cause the meta-model time-varying parameters to rapidly change with 

time, this has two consequences: 

• The GP model may struggle to model the underlying meta-model time-varying 

parameters due to the lost smoothness of the underlying function, a possible 

solution is to invest in a more complicated GP model covariance function, but this 

takes more design time and may not necessarily give adequate results. The GP 

model predictions inaccuracy will result in the meta-model predictions being 

inaccurate. 

• Due to the above, the dynamic capability of the meta-model to produce different 

accuracy grades for different reduced-order LLMs is limited, this in turn will restrict 

the range of computational time savings to just one corresponding to the one 

reduced-order meta-model with smooth time-varying parameters. 

ii. The reduced-order meta-model of the 100th order 1D-Burgers equations model did 

not perform well despite the excellent training results of the reduced-order meta-

model parameters. The reason for this is the very fast dynamics contained in the 

reduced order VBL-LPV model of the 100th order 1D-Burgers equations did not 

comply with the meta-model solver rule of constant parameters within one period of 

the fixed-time step (due to solver’s ZOH). Therefore, the thesis concluded that this 
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meta-modelling approach may not be suitable for analytical CI-NDS with rapidly 

changing dynamics or at least for this particular system. 

iii. The computational time complexity of the meta-model was shown to be a 

combination of a computational time bias introduced by the GP model of the meta-

model parameters (function of the size of the training data set) and the order of the 

meta-model. The 5000 order NTL was used to test the meta-model computational 

time saving, the following was observed: 

• The number of meta-model time-varying parameters depends on its order, 

number of inputs and outputs, while MOR and canonical transformation deals 

with reducing the number of parameters in the LLM state matrix only, the 

output matrix will be fully-parameterised. The additional parameters in the 

output matrix will considerably increase the meta-model training time and will 

impact negatively on the meta-model solver computational time. This will limit 

its usefulness for CI-NDSs that arise from CFD, FEA and practically any CI-

NDS with large number of outputs. Therefore this meta-modelling structure is 

not recommended for modelling a CI-NDS with more than one or two outputs 

at a time. 

• The meta-model solver implementation around a fixed-time step solver is 

inadequate to compete with the standard NDS variable-time step solvers, 

however the positive results of the 4th order NTL meta-model computational 

time in comparison with the RK4 fixed-time step solver indicates that there is a 

potential for computational time saving if the meta-model solver was 

implemented around a variable-time step topology. 
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The second contribution of the thesis is the propagation of uncertainty from the meta-

model time-varying parameters to the meta-model predictions. The following was 

observed for the fixed-time step meta-model solver: 

i. Quantitative uncertainty in the meta-model velocity and state solutions is 

heavily scaled down by the meta-model solver’s fixed-time step. A logical result 

for this kind of solver that the uncertainty diminishes as the time step get smaller 

however, this will obscure the underlying uncertainty of the meta-model time-

varying parameters. 

ii. A qualitative measure of uncertainty can be computed instead the quantitative 

one to visualize the uncertainty in the meta-model velocity and state solutions. It 

can also be used to improve the accuracy of the meta-model predictions evident 

by the CSTR meta-model example. 

iii. Meta-modelling errors due to the selection of the wrong order for the reduction 

of the CI-NDS LLMs will not show in the computed meta-model uncertainty of 

the solution, because the source of uncertainty is the blending of the GP 

regression models which are independent of the suitability of a certain reduced 

order LLM choice in describing the local dynamics of the full-order one. 

Despite the above limitations, the GP blended VBL-LPV system, it was a transplant 

model and did utilize the underlying structure of the analytical NDS, it also produced 

accurate predictions for most of the test problems with the exception of the 1D-Burgers 

equations. 
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7.2 Recommendations 

The thesis recommends the following to address theoretical and practical shortcomings 

in the proposed meta-modelling framework: 

• The VBL-LPV system can only be applied to analytical CI-NDS because of the 

requirement to find a valid LLM at operating points of interest. This places a 

restriction on the type of CI-NDS that can benefit from the proposed meta-

modelling approach. So the idea should be extended to cover black-box CI-

NDS. LLM Jacobians described by a pre-specified structure can be found 

empirically at equilibrium points of the trajectory with the aid of many linear 

system identification methods. The goal is to extend this structure to identify 

state-space LLMs at off-equilibrium points as well. 

• In depth analysis of the deformation (in some) of the reduced-order time-

varying parameter space and the proposal of robust covariance functions to deal 

with this. This is of particular importance since the meta-model accuracy 

depends on the correct blending of the time-varying parameters predicted by the 

GP regression models. 

• Implementation of variable-time step numerical solvers for the proposed meta-

modelling structure, will improve the overall computational speed of the solver. 

Variable-time step solver can be applied to the meta-model velocity equation 

and it can consist from low order solver such as Forward-Euler method 

implemented against Exact-Discretization method or RK4 method to produce 

local truncation error measure to estimate the local step size. 
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• Redesign the meta-model solver algorithm to utilize parallel-processing methods 

to reduce the computational bias introduced by the size of the meta-model 

training data sets and improve the computational speed of the meta-model and 

provide simultaneous meta-model time-varying parameters predictions. The 

meta-model time-varying parameters have to be predicted at each time step 

taken by the solver and their estimation is independent from each other so it is 

possible to apply parallel-processing methods such as matrix-vector 

multiplications through GPU cores or multiple CPU cores will reduce the 

overall-computational speed of the meta-model. 

• Implementation of a tool-box for the proposed meta-modelling approach with 

suitable programming languages. 
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Appendix A  

A.1 Introduction 

This appendix contains supplemental information about the nonlinear dynamical 

systems used as examples in the preparation of this thesis. Each section contains the 

nonlinear model, its mathematical description from first-principle, the calculation of its 

equilibrium points and Jacobians of the system at any operating point. 

A.2 Two-Tanks NDS  

System Description 

The system is given 

 

𝑥𝑥1̇(𝑡𝑡) =
1
𝐴1
�𝑘𝑢𝑢(𝑡𝑡) − 𝑎1�2𝑔𝑥𝑥1(𝑡𝑡)� 

𝑥𝑥2̇(𝑡𝑡) =
1
𝐴2

�𝑎1�2𝑔𝑥𝑥1(𝑡𝑡) − 𝑎2�2𝑔𝑥𝑥2(𝑡𝑡)� 

𝒙𝒙(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡) 𝑥𝑥2(𝑡𝑡)]𝑇 ,𝑦𝑦(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) 

𝒙𝒙(0) = [0.05 . 1]𝑇 

𝑎1 = 0.02, 𝑎2 = 0.015,𝐴1 = 0.5,𝐴2 = .25,𝑔 = 9.81 and 

𝑘 = 0.005 

(A. 1) 

The NDS in equation (A. 1) is re-arranged to the form below 
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�̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

=

⎣
⎢
⎢
⎢
⎡−𝑎1�2𝑔

𝐴1
0

𝑎1�2𝑔
𝐴2

−𝑎2�2𝑔
𝐴2 ⎦

⎥
⎥
⎥
⎤
�
�𝑥𝑥1(𝑡𝑡)
�𝑥𝑥2(𝑡𝑡)

� + �
𝑘
𝐴1
0
� 𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝑔�𝒙𝒙(𝑡𝑡)� = [0 1]𝒙𝒙(𝑡𝑡) 

(A. 2) 

𝑢𝑢(𝑡𝑡) is the input to the system with range {1 ≤ 𝑢𝑢(𝑡𝑡) ≤ 10}, the input is a step like 

function and is discontinuous, the calculation in Appendix B was applied to 

approximate the input using a sigmoid like function. 

System Equilibrium points 

Let the input to the system at equilibrium be 𝒖𝒖𝑒 and the state corresponding to that 

input 𝒙𝒙𝑒 then the system at equilibrium is given by 

 𝒙𝒙�̇� = 𝑭(𝒙𝒙𝑒,𝒖𝒖𝑒) = 0 (A. 3) 

For the Two Tanks system in equation (A. 1), at equilibrium the states are given by 

 

�̇�𝑥𝑒1 =
1
𝐴1
�𝑘𝑢𝑢𝑒 − 𝑎1�2𝑔𝑥𝑥𝑒1� = 0 

�̇�𝑥𝑒2 =
1
𝐴2

�𝑎1�2𝑔𝑥𝑥𝑒1 − 𝑎2�2𝑔𝑥𝑥𝑒2� = 0 

�̇�𝒙𝒆 = [�̇�𝑥𝑒1 �̇�𝑥𝑒2 ]𝑇 

(A. 4) 

Equation (A. 4) is solved to get the analytical expression for the equilibrium points state 

given by equation (A. 5). 
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𝑥𝑥𝑒1 =

1
2𝑔 �

𝑘𝑢𝑢𝑒
𝑎1

�
2

, 𝑥𝑥𝑒2 =
1

2𝑔 �
𝑘𝑢𝑢𝑒
𝑎2

�
2

 

𝒙𝒙𝑒 = [𝑥𝑥𝑒1 𝑥𝑥𝑒2 ]𝑇 

(A. 5) 

The equilibrium states corresponding to a certain input can be calculated using equation 

(A. 5) above. 

System Jacobian Matrices 

The LPV system parameters are given by 

 

𝑨𝑨(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� =
1
2

⎣
⎢
⎢
⎢
⎢
⎡ −𝑎1�2𝑔

𝐴1�𝑥𝑥1(𝑡𝑡𝑖𝑖)
0

𝑎1�2𝑔

𝐴2�𝑥𝑥1(𝑡𝑡𝑖𝑖)
−𝑎2�2𝑔

𝐴2�𝑥𝑥2(𝑡𝑡𝑖𝑖)⎦
⎥
⎥
⎥
⎥
⎤

 

𝒃(𝑡𝑡𝑖𝑖) = 𝛻𝑢𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� = �
𝑘
𝐴1

0�
𝑇

 

𝒄(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑔�𝒙𝒙(𝑡𝑡𝑖𝑖)� = [0 1] 

(A. 6) 

A.3 Continuously-Stirred Tank Reactor (CSTR) NDS 

System Description 

The system is given by 
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𝑥𝑥1̇(𝑡𝑡) =
𝐹
𝑉
�𝑢𝑢1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)� − 𝑘0𝑥𝑥1(𝑡𝑡)𝑒−

𝐸
𝑅𝑥2(𝑡) 

𝑥𝑥2̇(𝑡𝑡) =
𝐹
𝑉
�𝑢𝑢2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)� −

𝐻𝑘0
𝐻𝐷

𝑥𝑥1(𝑡𝑡)𝑒−
𝐸

𝑅𝑥2(𝑡)

−
𝐻𝐴
𝐻𝐷𝑉

�𝑥𝑥2(𝑡𝑡) − 𝑢𝑢3(𝑡𝑡)� 

𝑦𝑦1(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡), 𝑦𝑦2(𝑡𝑡) = 𝑥𝑥2(𝑡𝑡) 

𝑥𝑥1(0) = 8.5695, 𝑥𝑥2(0) = 311.267 

𝐹 = 1,𝑉 = 1,𝑘0 = 35 × 106,𝐸 = 11850,𝑅𝑅 =

1.98589,𝐻 = −5960,𝐻𝐴 = 145 and 𝐻𝐷 = 480 

(A. 7) 

Equation (A. 7) can be simplified using the following set of parameters 

 𝑝1 = 𝐹
𝑉

 , 𝑝2 = −𝑘0 , 𝑝3 = −𝐸
𝑅

 , 𝑝4 = 𝐻
𝐻𝐷

 , 𝑝5 = − 𝐻𝐴
𝐻𝐷𝑉

 (A. 8) 

Re-writing equation (A. 8) using the introduced parameters as 

 

𝑥𝑥1̇(𝑡𝑡) = 𝑝1�𝑢𝑢1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)� + 𝑝2𝑥𝑥1(𝑡𝑡)𝑒
𝑝3

𝑥2(𝑡) 

𝑥𝑥2̇(𝑡𝑡) = 𝑝1�𝑢𝑢2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)�

+ 𝑝2𝑝4𝑥𝑥1(𝑡𝑡)𝑒
𝑝3

𝑥2(𝑡)+𝑝5�𝑥𝑥2(𝑡𝑡) − 𝑢𝑢3(𝑡𝑡)� 

(A. 9) 

Let, 

 

𝒖𝒖(𝑡𝑡) = [𝑢𝑢1(𝑡𝑡) 𝑢𝑢2(𝑡𝑡) 𝑢𝑢3(𝑡𝑡)]𝑇 

𝒙𝒙(𝑡𝑡) = [𝑥𝑥1(𝑡𝑡) 𝑥𝑥2(𝑡𝑡)]𝑇 

�̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� 

𝒚(𝑡𝑡) = 𝑮(�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� = [𝑦𝑦1(𝑡𝑡) 𝑦𝑦2(𝑡𝑡)]𝑇 = �1 0
0 1� 𝒙𝒙(𝑡𝑡) 

(A. 10) 
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𝒖𝒖(𝑡𝑡) is the input to the system, the input is a step like function and is discontinuous, the 

calculation in Appendix B was used to approximate the input using a sigmoid like 

function. The input is a group of three control inputs. The range of the inputs is 

{𝑢𝑢1(𝑡𝑡) = 10,𝑢𝑢2(𝑡𝑡) = 298 , 273 ≤ 𝑢𝑢3(𝑡𝑡) ≤ 350} . 

System Equilibrium points 

Let the input to the system at equilibrium be 𝒖𝒖𝑒 and the state corresponding to that 

input 𝒙𝒙𝒆 then CSTR system at equilibrium is given by 

 𝒙𝒙�̇� = 𝑭(𝒙𝒙𝒆,𝒖𝒖𝑒) = 0 (A. 11) 

For the CSTR system described by equation (A. 9), the equilibrium manifold is given 

by 

 

𝑥𝑥𝑒1̇ = 𝑝1(𝑢𝑢𝑒1 − 𝑥𝑥𝑒1) + 𝑝2𝑥𝑥𝑒1𝑒
𝑝3
𝑥𝑒2 = 0 

𝑥𝑥𝑒2̇ = 𝑝1(𝑢𝑢𝑒2 − 𝑥𝑥𝑒2) + 𝑝2𝑝4𝑥𝑥𝑒1𝑒
𝑝3
𝑥𝑒2+𝑝5(𝑥𝑥𝑒2 − 𝑢𝑢𝑒3) = 0 

�̇�𝒙𝒆 = [�̇�𝑥𝑒1 �̇�𝑥𝑒2 ]𝑇 

(A. 12) 

Solving for  𝑥𝑥𝑒1̇  results in 

 

𝑥𝑥𝑒1̇ = �𝑝1(𝑢𝑢𝑒1 − 𝑥𝑥𝑒1) + 𝑝2𝑥𝑥𝑒1𝑒
𝑝3
𝑥𝑒2 = 0� �

1
𝑝1
� 

𝑢𝑢𝑒1 − 𝑥𝑥𝑒1 +
𝑝2
𝑝1
𝑥𝑥𝑒1𝑒

𝑝3
𝑥𝑒2 = 0 

𝑥𝑥𝑒1 =
𝑢𝑢𝑒1

1 − 𝑧1𝑒
𝑝3
𝑥𝑒2

 

𝑧1 =
𝑝2
𝑝1

 

(A. 13) 
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Solving for  𝑥𝑥𝑒2̇  results in 

 

�𝑥𝑥𝑒2̇ = 𝑝1(𝑢𝑢𝑒2 − 𝑥𝑥𝑒2) + 𝑝2𝑝4𝑥𝑥𝑒1𝑒
𝑝3
𝑥𝑒2+𝑝5(𝑥𝑥𝑒2 − 𝑢𝑢𝑒3)

= 0� �
1
𝑝1
� 

𝑢𝑢𝑒2 − 𝑥𝑥𝑒2 + 𝑧1𝑝4𝑥𝑥𝑒1𝑒
𝑝3
𝑥𝑒2 + 𝑧2(𝑥𝑥𝑒2 − 𝑢𝑢𝑒3) = 0 

𝑧2 =
𝑝5
𝑝1

 

(A. 14) 

Substituting equation (A. 14) in equation (A. 13) and re-arranging to get 

 
𝑥𝑥𝑒2(𝑧2 − 1) +

𝑧1𝑝4𝑢𝑢𝑒1𝑒
𝑝3
𝑥𝑒2

1 − 𝑧1𝑒
𝑝3
𝑥𝑒2

+ 𝑧3 = 0 

𝑧3 = 𝑢𝑢𝑒2 − 𝑧2𝑢𝑢𝑒3 

(A. 15) 

Further re-arrange equation (A. 15) to get 

 
𝑥𝑥𝑒2(𝑧2 − 1) −

𝑝4𝑢𝑢𝑒1

1 − 1

𝑧1𝑒
𝑝3
𝑥𝑒2

+ 𝑧3 = 0 
(A. 16) 

Equation (A. 16) can be solved numerically to find 𝑥𝑥𝑒2 value, then it can be substituted 

in equation (A. 13) to get 𝑥𝑥𝑒1. 
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System Jacobian Matrices 

The LPV system parameters are given by 

 

 

𝑨𝑨(𝑡𝑡𝑖𝑖) = ∇𝒙𝒙𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)� =

⎣
⎢
⎢
⎢
⎡
𝜕𝑥𝑥1̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥1(𝑡𝑡𝑖𝑖)

𝜕𝑥𝑥1̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥2(𝑡𝑡𝑖𝑖)

𝜕𝑥𝑥2̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥1(𝑡𝑡𝑖𝑖)

𝜕𝑥𝑥2̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥2(𝑡𝑡𝑖𝑖)⎦

⎥
⎥
⎥
⎤
 

𝜕𝑥𝑥1̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥1(𝑡𝑡𝑖𝑖)

= −𝑝1 + 𝑝2𝑒
𝑝3

𝑥2(𝑡𝑖) 

𝜕𝑥𝑥1̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥2(𝑡𝑡𝑖𝑖)

= −𝑝2𝑝3
𝑥𝑥1(𝑡𝑡𝑖𝑖)
𝑥𝑥2(𝑡𝑡𝑖𝑖)2

𝑒
𝑝3

𝑥2(𝑡𝑖) 

𝜕𝑥𝑥2̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥1(𝑡𝑡𝑖𝑖)

= 𝑝2𝑝4𝑒
𝑝3

𝑥2(𝑡𝑖) 

𝜕𝑥𝑥2̇(𝑡𝑡𝑖𝑖)
𝜕𝑥𝑥2(𝑡𝑡𝑖𝑖)

= −𝑝1 − 𝑝2𝑝3𝑝4
𝑥𝑥1(𝑡𝑡𝑖𝑖)
𝑥𝑥2(𝑡𝑡𝑖𝑖)2

𝑒
𝑝3

𝑥2(𝑡𝑖)+𝑝5 

(A. 17) 

And, 

 
𝑩𝑩(𝑡𝑡𝑖𝑖) = ∇𝒖𝒖𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)� = �𝑝1 0 0

0 𝑝1 −𝑝5
� 

𝑪(𝑡𝑡𝑖𝑖) = ∇𝒙𝒙𝑮�𝒙𝒙(𝑡𝑡𝑖𝑖),𝒖𝒖(𝑡𝑡𝑖𝑖)� = �1 0
0 1� 

(A. 18) 
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A.4 Nonlinear Transmission Line NDS 

System Description 

The considered nonlinear transmission line system model of order 𝑛 is given by 

 

�̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

= 𝑨𝑨𝒙𝒙(𝑡𝑡) + 𝑵�𝒙𝒙(𝑡𝑡)� + 𝒃𝑢𝑢(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝑔�𝒙𝒙(𝑡𝑡)� = 𝒄𝒙𝒙(𝑡𝑡) 

𝑨𝑨 =

⎣
⎢
⎢
⎢
⎡
−2 1    
1 −2 1   
 ⋱ ⋱ ⋱  
  1 −2 1
   1 −1⎦

⎥
⎥
⎥
⎤
∈ ℝ𝑛𝑛×𝑛𝑛 

𝑵�𝒙𝒙(𝑡𝑡)� =

⎣
⎢
⎢
⎢
⎡ 2 − 𝑒40𝑥1 − 𝑒40(𝑥1−𝑥2)

𝑒40(𝑥1−𝑥2) − 𝑒40(𝑥2−𝑥3)

⋮
𝑒40(𝑥𝑛−2−𝑥𝑛−1) − 𝑒40(𝑥𝑛−1−𝑥𝑛)

𝑒40(𝑥𝑛−1−𝑥𝑛) − 1 ⎦
⎥
⎥
⎥
⎤

∈ ℝ𝑛𝑛×1 

𝒃 = 𝒄𝑇 = [1 0 ⋯ 0] ∈ ℝ𝑛𝑛×1 

𝒙𝒙(0) = 𝒙𝒙0 = [0 ⋯ 0] ∈ ℝ𝑛𝑛×1 

𝑢𝑢(𝑡𝑡) ∈ ℝ 

(A. 19) 

System Equilibrium points 

Let the input to the system at equilibrium be 𝑢𝑢𝑒 and the state corresponding to that input 

𝒙𝒙𝒆 then NTL system at equilibrium is given by 

 𝒙𝒙�̇� = 𝑭(𝒙𝒙𝒆,𝑢𝑢𝑒) = 0 (A. 20) 

Examining equation (A. 19); �𝒙𝒙(𝒕),𝒖𝒖(𝒕)� = 0 ∀𝑥𝑥1 = 𝑥𝑥2 = ⋯ = 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑒 ; therefore the 

equilibrium manifold can be computed numerically by solving 
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 𝑥𝑥�̇� = −𝑥𝑥𝑒 + e40𝑥𝑒 + 1 + 𝑢𝑢𝑒 = 0 (A. 21) 

System Jacobian Matrices 

The Jacobians of the NTL system parameters are given by 

 

𝑨𝑨(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� 

𝒃(𝑡𝑡𝑖𝑖) = 𝛻𝑢𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� 

𝒄(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑔�𝒙𝒙(𝑡𝑡𝑖𝑖)� 

(A. 22) 

A.5 1-D Burgers Equations 

System Description 

The 1-D Burgers equations are partial differential equations given by 

 𝜕𝑥𝑥(𝑑𝑑, 𝑡𝑡)
𝜕𝑡𝑡

+
𝜕𝑓�𝑥𝑥(𝑑𝑑, 𝑡𝑡)�

𝜕𝑑𝑑
= 𝜑(𝑑𝑑) (A. 23) 

With 𝑓(𝑥𝑥) = 0.5𝑥𝑥2 and 𝜑(𝑑𝑑) = 0.02𝑒0.02𝑑  

The initial and boundary conditions are given 

 
𝑥𝑥(𝑑𝑑, 0) = 1 

𝑥𝑥(0, 𝑡𝑡) = 𝑢𝑢(𝑡𝑡) 
(A. 24) 

For all 𝑥𝑥 ∈ (0, 𝐿) and 𝑡𝑡 > 0, 𝑢𝑢(𝑡𝑡) is the incoming flow and 𝐿 is the length of the 

modelled region. 
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Applying spatial discretization to the length of modelled region at 𝑛 nodes with ∆𝑑𝑑 = 𝐿
𝑛𝑛
  

results in 𝑛 set of nonlinear ordinary differential equations and the 𝑛th order CI-NDS is 

given by 

 

�̇�𝒙(𝑡𝑡) = 𝑭�𝒙𝒙(𝑡𝑡),𝑢𝑢(𝑡𝑡)� 

= 𝝋�𝒙𝒙(𝑡𝑡)� + 𝑵�𝒙𝒙(𝑡𝑡)� + 𝒃𝑢𝑢(𝑡𝑡)2 

𝑦𝑦(𝑡𝑡) = 𝑔�𝒙𝒙(𝑡𝑡)� = 𝒄𝒙𝒙(𝑡𝑡) 

𝝋 = 0.02[𝑒0.02∆𝑑, … , 𝑒0.02∆𝑑]𝑇 ∈ ℝ𝑛𝑛×1 

𝑵�𝒙𝒙(𝑡𝑡)� =
1
∆𝑑𝑑

⎣
⎢
⎢
⎡ −0.5𝑥𝑥1(𝑡𝑡)2

0.5(𝑥𝑥1(𝑡𝑡)2 − (𝑥𝑥2(𝑡𝑡)2)
⋮

0.5(𝑥𝑥𝑛𝑛−1(𝑡𝑡)2 − (𝑥𝑥𝑛𝑛(𝑡𝑡)2)⎦
⎥
⎥
⎤
 

𝒃 = [
1
∆𝑑𝑑

0 ⋯ 0]𝑇 ∈ ℝ𝑛𝑛×1 

𝒙𝒙(0) = 𝒙𝒙0 = [1 ⋯ 1] ∈ ℝ𝑛𝑛×1 

𝑢𝑢(𝑡𝑡) ∈ ℝ 

(A. 25) 

𝒄 is a vector containing the required location of the node output. 

System Equilibrium points 

Let the input to the system at equilibrium be 𝑢𝑢𝑒 and the state corresponding to that input 

𝒙𝒙𝒆 then NTL system at equilibrium is given by 

 𝒙𝒙�̇� = 𝑭(𝒙𝒙𝒆,𝑢𝑢𝑒) = 0 (A. 26) 

The equilibrium states are given by 
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𝑥𝑥𝑒1 = �2∆𝑑𝑑(𝜑1 + 𝑏1𝑢𝑢𝑒2) 

𝑥𝑥𝑒𝑖𝑖 = �𝑥𝑥𝑒(𝑖𝑖−1)
2 + 2∆𝑑𝑑𝜑𝑖𝑖 ∀2 ≤ 𝑖 ≤ 𝑛 

(A. 27) 

System Jacobian Matrices 

The Jacobians of the NTL system parameters are given by 

 

𝑨𝑨(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� 

𝒃(𝑡𝑡𝑖𝑖) = 𝛻𝑢𝑭�𝒙𝒙(𝑡𝑡𝑖𝑖),𝑢𝑢(𝑡𝑡𝑖𝑖)� 

𝒄(𝑡𝑡𝑖𝑖) = 𝛻𝒙𝒙𝑔�𝒙𝒙(𝑡𝑡𝑖𝑖)� 

(A. 28) 
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Appendix B  

B.1 Approximation of the Input Derivative 

The thesis pointed out that the input signal derivative need to be calculated in order to 

use in the GP blended VBL-LPV system. Sometimes; the CI-NDS forcing input might 

be discontinuous like the in the case of a Heaviside step function. A step function given 

by 

 𝑢𝑢(𝑡𝑡 − 𝑡𝑡0) = �
𝑐2 
𝑐1  ∀𝑡𝑡 > 𝑡𝑡0

∀𝑡𝑡 < 𝑡𝑡0
 (B. 1) 

𝑐1 and 𝑐2 are constants that define the lower and upper limits of the step function and 𝑡𝑡0 

is an arbitrary value of time at which the change in the step occurs. This function is 

shown in Figure B. 1. 

 

Figure B. 1 a Step function. 

The derivative of this function w.r.t. time is given by 
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𝑑𝑑𝑢𝑢(𝑡𝑡 − 𝑡𝑡0)
𝑑𝑑𝑡𝑡

= �
0 

𝛿(0) = ∞
0

 
∀𝑡𝑡 > 𝑡𝑡0
𝑡𝑡 = 𝑡𝑡0
∀𝑡𝑡 < 𝑡𝑡0

 

𝛿(𝑡𝑡) is the Dirac delta function. 

(B. 2) 

Equation (B. 2) has a value of infinity at 𝑡𝑡 = 𝑡𝑡0. For applications where the derivative 

of a step function needs to be continuous over time, the study proposes to approximate 

the step function using a sigmoid function (Figure B. 2) given by 

 
𝑓(𝑡𝑡 − 𝑡𝑡0) = 𝑐1 +

(𝑐2 − 𝑐1)
1 + 𝑒−2𝐾(𝑡−𝑡0) 

𝐾 is a constant 

(B. 3) 

Now examine equation (B. 3) to see how it behaves at different time values as in 

 

lim
𝑡→−∞

𝑓(𝑡𝑡 − 𝑡𝑡0) = lim
𝑡→−∞

(𝑐1 +
(𝑐2 − 𝑐1)

1 + 𝑒−2𝐾(𝑡−𝑡0)) = 𝑐1 

𝑓(𝑡𝑡 − 𝑡𝑡0)|𝑡=𝑡0 = 𝑐1 +
(𝑐2 − 𝑐1)

1 + 𝑒−2𝐾(0)) =
𝑐1 + 𝑐2

2
 

lim
𝑡→+∞

𝑢𝑢(𝑡𝑡 − 𝑡𝑡0) = lim
𝑡→+∞

(𝑐1 +
(𝑐2 − 𝑐1)

1 + 𝑒−2𝐾(𝑡−𝑡0)) = 𝑐2 

(B. 4) 
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Figure B. 2 Step function approximation (𝐾 = 1). 

From equation (B. 4) we can see how the constant 𝐾 determine how fast 𝑓 approach its 

lower and upper limits in both directions, the higher the value of 𝐾 the faster the 

approach is. The derivative of equation (B. 3) is given by 

 

𝑑𝑑𝑓(𝑡𝑡 − 𝑡𝑡0)
𝑑𝑑𝑡𝑡

= 0 +
−(𝑐2 − 𝑐1) 𝑑𝑑𝑑𝑑𝑡𝑡 �1 + 𝑒−2𝐾(𝑡−𝑡0)�

(1 + 𝑒−2𝐾(𝑡−𝑡0))2
 

=
2𝐾(𝑐2 − 𝑐1)𝑒−2𝐾(𝑡−𝑡0)

(1 + 𝑒−2𝐾(𝑡−𝑡0))2
 

(B. 5) 

Next examine equation (B. 5) behaviour with time in 
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lim
𝑡→−∞

𝑑𝑑𝑓(𝑡𝑡 − 𝑡𝑡0)
𝑑𝑑𝑡𝑡

= lim
𝑡→−∞

2𝐾(𝑐2 − 𝑐1)𝑒−2𝐾(𝑡−𝑡0)

(1 + 𝑒−2𝐾(𝑡−𝑡0))2
= 0 

𝑑𝑑𝑓(𝑡𝑡 − 𝑡𝑡0)
𝑑𝑑𝑡𝑡

|𝑡=𝑡0 =
2𝐾(𝑐2 − 𝑐1)𝑒−2𝐾(0)

(1 + 𝑒−2𝐾(0))2
=
𝐾(𝑐2 − 𝑐1)

2
 

lim
𝑡→+∞

𝑑𝑑𝑓(𝑡𝑡 − 𝑡𝑡0)
𝑑𝑑𝑡𝑡

= lim
𝑡→+∞

2𝐾(𝑐2 − 𝑐1)𝑒−2𝐾(𝑡−𝑡0)

(1 + 𝑒−2𝐾(𝑡−𝑡0))2
= 0 

(B. 6) 

It can be seen that the derivative of 𝑓 w.r.t. time is continues and has a finite value 

defined at 𝑡𝑡 = 𝑡𝑡0. 

B.2  Adapting the Approximation for Use with the Fixed Time 
Step Solver 

This approximation was developed to be used with the proposed fixed-time step meta-

model solver  

Re-writing equation (B. 3) at fixed time instances (𝑡𝑡 = 𝑘ℎ, {𝑘 = 0,1,2 … } ) in 

 
𝑓�(𝑘 − 𝑘0)ℎ� = 𝑐1 +

(𝑐2 − 𝑐1)
1 + 𝑒−2𝐾(𝑘−𝑘0)ℎ 

𝑘0 is an arbitrary time sample 

(B. 7) 

The derivative of (B. 7) w.r.t. discrete time was approximated and is given by 
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𝑑𝑑𝑓((𝑘 − 𝑘0)ℎ)
𝑑𝑑𝑘ℎ

≈
𝑓�(𝑘 + 1 − 𝑘0)ℎ� − 𝑓�(𝑘 − 𝑘0)ℎ�

ℎ

=
1
ℎ
�𝑐1 +

(𝑐2 − 𝑐1)
1 + 𝑒−2𝐾(𝑘+1−𝑘0)ℎ − 𝑐1

−
(𝑐2 − 𝑐1)

1 + 𝑒−2𝐾(𝑘−𝑘0)ℎ�

=
(𝑐2 − 𝑐1)

ℎ
�

1
1 + 𝑒−2𝐾(𝑘+1−𝑘0)ℎ

−
1

1 + 𝑒−2𝐾(𝑘−𝑘0)ℎ� 

(B. 8) 

Equation (B. 8) performs similarly to equation (B. 5) when 𝑘 approaches (±)∞ , and at 

time 𝑘 = 𝑘0 it has a value given by 

 

𝑑𝑑𝑓�(𝑘 − 𝑘0)ℎ�
𝑑𝑑𝑘ℎ

|𝑘=𝑘0 ≈
(𝑐2 − 𝑐1)

ℎ
�

1
1 + 𝑒−2𝐾ℎ

−
1

1 + 𝑒0
� 

=
(𝑐2 − 𝑐1)

2ℎ
�

1 − 𝑒−2𝐾ℎ

1 + 𝑒−2𝐾ℎ
� 

(B. 9) 

The value of the constant 𝐾 can be set to be 1/ℎ to cancel the effect of the time step on 

the rising and settling time of the sigmoid function approximation. 
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