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Abstract

We study combinatorial properties of ordinals under the order topology, focusing
on the subspaces, partition properties and autohomeomorphism groups of countable
ordinals.

Our main results concern topological partition relations. Let n be a positive
integer, let k be a cardinal, and write [X]" for the set of subsets of X of size n.
Given an ordinal # and ordinals «; for all i € k, write 8 —, (0);-,, to mean that
for every function ¢ : [8]" — k (a colouring) there is some subspace X C  and some
i € k such that X is homeomorphic to a; and [X]|" C ¢! ({i}). We examine the

cases n = 1 and n = 2, defining the topological pigeonhole number P*? (a;),.,. to be

1
1ER)

the least ordinal 8 (when one exists) such that 8 —,, (®);.,., and the topological

Ramsey number R'P(«;)... to be the least ordinal S (when one exists) such that

2
B —top (i)icy:
We resolve the case n = 1 by determining the topological pigeonhole number of

1ER

an arbitrary sequence of ordinals, including an independence result for one class of
cases. In the case n = 2, we prove a topological version of the Erdos—Milner theorem,
namely that R («, k) is countable whenever « is countable and k is finite. More
precisely, we prove that Rt"p(wwﬂ, E+1) < w™™* for all countable ordinals 8 and
all positive integers k. We also provide more careful upper bounds for certain small
ordinals, including R'P(w + 1,k + 1) = w¥ + 1, R'P(a, k) < w* whenever a < w?,
R"P(w? k) < w*” and R™P(w? 4+ 1,k + 2) < w** + 1 for all positive integers k.

Outside the partition calculus, we prove a topological analogue of Hausdorft’s
theorem on scattered total orderings. This allows us to characterise countable
subspaces of ordinals as the order topologies of countable scattered total orderings.
As an application, we compute the number of subspaces of an ordinal up to
homeomorphism.

Finally, we study the group of autohomeomorphisms of w”-m+1 for finite n and
m. We classify the normal subgroups contained in the pointwise stabiliser of the limit
points. These subgroups fall naturally into D (n) disjoint sets, each either countable
or of size 22°°, where D (n) is the number of C-antichains of P ({1,2,...,n}).

Our techniques span a variety of disciplines, including set theory, general

topology and permutation group theory.
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Chapter 1
Introduction

Ordinals were introduced by Georg Cantor in 1883, and have since become a
foundational component of modern-day set theory. As with any totally ordered
set, we may endow an ordinal with the order topology, generated by open intervals.
The resulting ordinal topologies are Hausdorff, totally disconnected and scattered,
and in the case of successor ordinals are also compact. They have been studied
within general topology, within set theory, and implicitly via Boolean algebras.

Within general topology, ordinals are a familiar source of counterexamples: w;
is sequentially compact but not compact; the order topology on the “extended long
ray” wy X [0, 1)U{oo} is connected but not path-connected; and the Tychonoff plank
(w4 1) x (w; + 1) is normal but has a non-normal subspace. More general treatment
of ordinal topologies appears to have begun with Sierpinski and Mazurkiewicz
[MS20], who used the Cantor-Bendixson derivative to show that every countable
compact Hausdorff space is homeomorphic to a unique countable ordinal of the
form w® - m + 1. There have since been various further characterisations of certain
ordinals, their subspaces and images, and related properties [Bak72l, Mor&1l, [Pur90),
vD93| [FN99, [(GP12] [Levi3|. This work has typically been done under the general
framework of linearly ordered topological spaces (another name for order topologies).

Within set theory, ordinal topologies appear implicitly behind the well-studied
notion of a club (closed and unbounded) set. Besides this, ordinal topologies have
been studied within the context of topological partition relations. These are defined
in the same way as the usual Erdés—Rado partition relations for cardinals [ER56],
except that the homogeneous set must have the correct topology rather than the
correct cardinality. Preliminary work in this area was performed by Friedman [Fri74],
who proved that every stationary subset of w; has a subspace homeomorphic to any
given countable ordinal. The study of countable ordinals in this context was begun
in earnest by Baumgartner [Bau86], and there have been several recent developments
[Sch12l Pn14].

The compact ordinal topologies are closely related to Boolean algebras via Stone
duality, so that results in one area (e.g. [MP60]) may sometimes be re-interpreted

in the other. In particular, the group of autohomeomorphisms of a compact ordinal
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2 1. INTRODUCTION

is isomorphic to the group of automorphisms of its corresponding Boolean algebra.
The automorphism groups of countable Boolean algebras were originally studied by
Monk [MonT75], McKenzie [McK77] and Rubin [Rub80], who looked primarily at the
problem of reconstructing a Boolean algebra from its automorphism group.

In this thesis we study various combinatorial properties of ordinal topologies,
with a focus on countable ordinals. There are three major themes, corresponding
loosely to the three perspectives of general topology, set theory and Boolean
algebras: subspaces of ordinals, topological partition properties of ordinals, and

autohomeomorphism groups of ordinals.

1.1 Subspaces of ordinals

The subspaces of countable ordinals may be characterised topologically in several
ways, as follows [KR74, Corollary 3]. We say that a topological space X is scattered

to mean that every non-empty subspace of X has an isolated point.

Theorem (Knaster—Urbanik-Belnov). Let X be a topological space. The following

are equivalent.
1. X is homeomorphic to a subspace of a countable ordinal.
2. X 1s countable, scattered and metrisable.
3. X 1s homeomorphic to a countable complete metric space.

4. X is homeomorphic to a subspace of a countable compact Hausdorff space.

Several basic properties of subspaces of ordinals follow from the general theory
of order topologies. Within the field of general topology, a totally ordered set under
the order topology is known as a linearly ordered topological space (LOTS), and a
subspace of a LOTS is known as a generalised ordered space (GO-space).

A basic result due to Cech [CFK66, Theorem 17 A.23] states that GO-spaces
may be equivalently defined as those whose topology contains the order topology and
is generated by a base of order-convex sets. This result may be restricted to well-
orderings to obtain the following characterisation of subspaces of ordinals (Theorem
3.1.2)). Following Baumgartner [Bau86], we define an order-homeomorphism as a

bijection that is both an order-isomorphism and a homeomorphism.

Theorem (Cech). Let X be a well-ordered set endowed with some topology. The

following are equivalent.

1. X 1is order-homeomorphic to a subspace of an ordinal.

2. The topology on X has a base of the form

Bu{{y}:yeY},
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where B s the usual base for the order topology on X and Y C X.

Our main result in this area is the following additional characterisation of the
subspaces of countable ordinals (Theorem (3.4.1]).

Theorem. A topological space X is homeomorphic to a subspace of a countable
ordinal if and only if X is homeomorphic to a countable scattered totally ordered set

under the order topology.

It should be noted that the main substance of this result, that any subspace of
a countable ordinal is homeomorphic to a LOTS, follows from a more general result
of Purisch [Pur85|, which states that any GO-space whose topology is scattered is
homeomorphic to a LOTS.

We prove this using topological analogue of the following classical theorem of
Hausdorff. We say that a totally ordered set is scattered to mean that it has no

subset order-isomorphic to Q. We will state this result more precisely and provide
a proof later (see Theorem |3.2.4)).

Theorem (Hausdorff). A totally ordered set is scattered if and only if it may be

obtained from 1 by repeatedly taking well-ordered sums and backwards orderings.

Our topological analogue (Theorem (3.3.1]) uses a new operation on topological
spaces, which we call the “one-point cofinite extension”. This is a generalisation of

the process used to pass from w to w + 1, which we will define later.

Theorem. A topological space is homeomorphic to a subspace of a countable ordinal
if and only if it may be obtained from 1 by taking finite or countable topological

disjoint unions and countable “one-point cofinite extensions”.

We prove our main result by combining this topological analogue with
Hausdorft’s theorem itself. We then use ideas from this result show that if a < w®
then « has at most countably many subspaces up to homeomorphism. Combined
with some simple constructions for a > w®, this allows us to compute the number

of subspaces of an ordinal up to homeomorphism (see Theorem [3.6.3)).

Theorem. Let a be an ordinal. Then the number of subspaces of a up to

homeomorphism is

(
a+l, ifa<w

Ny, ifw<a<w

2o ifw’ < a < w

2%, if |a] = K for some uncountable cardinal k.
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1.2 Topological partition properties of ordinals

Motivated by Ramsey’s theorem, the partition calculus for cardinals and Rado’s
arrow notation were introduced by Erdds and Rado in [ER53]. The version for
ordinals, where the homogeneous set must have the correct order type, first appears
in their seminal paper [ER56]. In the following definition, [X]™ denotes the set of

subsets of X of size n.

Definition. Let k be a cardinal, let n be a positive integer, and let 5 and all «; be

ordinals for 7 € k. We write
ﬁ — (ai)zﬂeﬁ

to mean that for every function ¢ : [5]" — k (a colouring) there exists some subset
X C f and some i € k such that X is an i-homogeneous copy of o, i.e., [X]|" C
¢ '({i}) and X is order-isomorphic to o;.

We write 8 — («) for f — ()7, when a; = « for all i € k. For example,
Ramsey’s theorem may be written as w — (w)} for all finite n and k.

With the development of structural Ramsey theory, many variants of this
definition have been introduced. We will be concerned with a “topological” version
and a closely-related “closed” version. (Jean Larson suggested to call the second
version “limit closed”.) Although the second version may appear more natural, it is
the first that has been considered historically, since it can be defined for arbitrary
topological spaces; the second version additionally requires an order structure.

Recall that an order-homeomorphism is a bijection that is both an order-

isomorphism and a homeomorphism.

Definition. Let x be a cardinal, let n be a positive integer, and let g and all «; be
ordinals for i € k.
We write

B —top (ai)?@s

to mean that for every function ¢ : [f]" — k there exists some subspace X C
and some i € k such that X is an i-homogeneous topological copy of o, i.e., [X]* C
¢ 1({i}) and X is homeomorphic to ;.

We write

B —ra ()ien

to mean that for every function ¢ : [§]" — k there exists some subset X C [ and
some i € k such that X is an i-homogeneous closed copy of , i.e., [X]* C ¢ 1 ({i})
and X is order-homeomorphic to «; (equivalently, X is both order-isomorphic to «;
and closed in its supremum).

Note that in both cases, ¢ is arbitrary (no continuity or definability is required).
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A survey of topological partition relations was carried out by Weiss [Wei90)],

though this is now slightly outdated. Note that previous authors have written the

n
1ERK"

label top inside the parentheses, as in 5 — (top «;)

The closed partition relation does not appear to have been explicitly
distinguished from the topological partition relation before. Extending a result
of Baumgartner [Bau86, Theorem 0.2], we will see that the two versions coincide in
many cases, in particular for ordinals of the form w” or w”-m 4+ 1 with m a positive
integer. But in general they may differ; for example, w + 2 is homeomorphic but not
order-homeomorphic to w+ 1, and thus w+1 —4,, (w+2)] while w+1 A4 (w+2)1.

Our work on these partition relations is cleanly divided into the cases n = 1 and

n = 2 of the above definition.

The topological pigeonhole principle for ordinals

The case n = 1 may be viewed as a generalisation of the pigeonhole principle. Thus

we define the (classical) pigeonhole number P(a;);e. to be the least ordinal 5 (when

1
1ER)

one exists) such that  — («;)/,., and we define the topological pigeonhole number
P'P(0;)ser and the closed pigeonhole number P (q;)e. in a similar fashion.

The classical pigeonhole numbers were computed by Milner and Rado [MR65].
The pigeonhole number of a finite sequence of ordinals may be written down
explicitly using Cantor normal forms. The pigeonhole numbers of arbitrary
sequences of ordinals may be described in terms of an algorithm that terminates
in a finite number of steps. This algorithm features as a special case the well-
known Milner-Rado paradox, which states that if s is an infinite cardinal then
Pk, k% K3,...) = kT

We will compute both the topological and the closed pigeonhole numbers. This
will comprise an explicit expression in the topological case (Theorem , and an
algorithm that terminates in a finite number of steps in the closed case (Theorem
4.12.1)).

We build upon previous work focusing on several key cases. These are covered

in Weiss’s survey [Wei90)].

1. If @ € w; \ {0,1}, then o =4, (a)s if and only if @ = w*” for some 3 € w;
[Bau86, Corollary 2.4].

2. W1 —op (a)io for all a € wy. This is essentially Friedman’s result on stationary
sets [Frir4].

3. If a € wy, then a =4, (wl)é. This follows easily from the fact that w; may be

written as a union of two disjoint stationary sets.

4. TV = L then o +,, (w))y for all ordinals o [PS75], but it is equiconsistent
with the existence of a Mahlo cardinal that wy —p (w;)s [Shedg].
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Note that for an ordinal € w; \ {0}, @ — (a)} if and only if o = w” for some
B € wi. Thus in view of [1]it is natural to ask whether or not there is a link between
the classical and topological pigeonhole principles. Our main breakthrough is a
full analysis of the topological pigeonhole principle for finite sequences of countable

ordinals, where we bring this link to light. Here # denotes the natural sum operation.
Theorem. Let ay,ay...ap € wy \ {0}.
1. PP (W + 1, w2 +1,...,w% + 1) = watoe#iae 4 1,

9 ptop (wm,waz’ o ,wak) — Plon,0a,ar)

We prove this (in Theorems [4.7.4] and [4.7.5)) using a result of Weiss [Bau86),
Theorem 2.3]. This was published by Baumgartner, who used it to show that
Wt CmY) (w“’a'(m*l)); for all m € w and all @ € w; [Bau86, Corollary 2.5].

The above theorem greatly generalises this, thereby utilising the full potential of

Weiss’s result.

The only case in which we do not compute PP(q;)ic,. or P9 (;)ie in ZFC is
when 1 < a; < wy for all © € k and we have equality in at least two instances.
In this case we have an independence result. Prikry and Solovay showed that
if V= L then a -4, (wl)é for all ordinals «, from which it follows that it
is consistent for P™P (q;)... not to exist. On the other hand, we show that
Pptop (ci)

to have equality in every case, assuming the consistency of the existence of a

1€ER
ier, = max {wy, kT } and deduce from a result of Shelah that it is consistent
supercompact cardinal.

It remains open which intermediate values can consistently be taken by these
topological pigeonhole numbers, and whether or not Shelah’s consistency result can

be strengthened to equiconsistency.

Topological ordinal Ramsey numbers

Our work on topological partition relations in the case n = 2 is joint with Andrés

Caicedo. Here we define the (classical) ordinal Ramsey number R(a;)iex to be the

2
1ER)

least ordinal 8 (when one exists) such that 5 — («;):,., and we define the topological
ordinal Ramsey number R'P(q;);c, and the closed ordinal Ramsey number R (ay)icy
in a similar fashion.

In the classical setting, a simple argument that goes back to Sierpinski shows
that 8 4 (w + 1,w)? for every countable ordinal 3 [Sie33], which means that if
a > w and R(«, ) is countable, then v must be finite (see also [ER56, Theorem 19|
and [Spe56, Theorem 4]). On the other hand, Erdés and Milner showed that indeed
R(a, k) is countable whenever « is countable and k£ is finite [EM72]. Much work
has been done to compute these countable ordinal Ramsey numbers. In particular,

as announced without proof by Haddad and Sabbagh [HS69al, [HS69b|, [HS69¢], there
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are algorithms for computing R(«, k) for several classes of ordinals @ < w* and
all finite k; details are given in [Cail5] for the case a@ < w? and in [Mil71] for the
case o« = w™ for finite m. See also [Caild], [Wil77, Chapter 7], [HL10], [Sch10] and
[Weild].

In the topological setting, previous work has tackled uncountable Ramsey
numbers.  Erdés and Rado [ER56] introduced a “pressing down argument”
(described in [Schi2], for example) to show that w; —4, (w+ 1)3. Laver noted
in [Lav75| that their argument in fact gives w; — (Stationary, topw + 1)?, meaning
that one can ensure either a 0-homogeneous stationary subset or a 1-homogeneous
topological copy of w + 1 (which is stronger, by Friedman’s result on stationary
sets). The Erdés—Rado result was later extended by Schipperus using elementary
submodel techniques to show that wy —,, ()2 for all & € wy and all finite & [Sch12)
(the topological Baumgartner—Hajnal theorem). Meanwhile, both w; — (w;, a)? for
all @ € w; [Tod83] and w; 4 (w1, w + 2)* [Haj60|] are consistent with ZFC, though
the topological version of the former remains unchecked. Finally, it is also known
that 3 #p (W + 1)3, for all ordinals 8 [Wei90, Theorem 3.4].

We study R™P(a, k) and R%(a, k) when « is a countable ordinal and k is a
positive integer, which have not previously been explored. Our main result is a
topological version of the Erdés—Milner theorem (Theorem .

Theorem. Let o and 3 be countable non-zero ordinals, and let k > 1 be a positive
integer. If
W —top (WP k)2,

then
WP —top (wﬂ, k+ 1)2.

a

Since trivially w*” —,, (W, 2)?, it follows by induction on k that R'P(w*", k+
1) < w**". Hence R™(a, k) (and R%(«, k), since the two versions coincide when o
is a power of w) are countable for all countable a and all finite k.

We also provide the following more careful bounds for certain small ordinals (see
Theorem [5.2.1] Lemmas [5.3.2] and [5.3.3] Theorem Theorem Theorem

and Corollary [5.7.2)).

Theorem. Let k be a positive integer.

1 RP(w+1,k+1)=wk+1.

2. R w+2,3)=w? 2+w+2.

o

W23 < R%(w-2,3) < w - 100,
4. RP(a, k) < w® for all « < w?.

5. RP(w? k) < w@.
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6. RP(w? + 1,k +2) <w k4 1.

We deduce the last of these from the second last using the following more general
result (Theorem [5.7.1)).

Theorem. Let o and 3 be countable ordinals with [ > 0, let k be a positive integer,

and suppose they satisfy a “cofinal version” of
W =g (WP k+2)2

Then
WD L] (WP 1k +2)%

Moreover, if w*® > WP, then in fact
W41 g (WP 1L E+2)2

We will give the precise meaning of this cofinal partition relation later, and also
pose several questions for further research in this area.

Remarking briefly on the case n > 2, not much more can be said in the setting
of countable ordinals, since Kruse showed that if n > 3 and (3 is a countable ordinal,
then 8 /4 (w+1,n+1)" [Kru6s]. As for the ordinal wy, [ER56, Theorem 39 (ii)] shows
that w; — (w+1)} and, in fact, it seems to be a folklore result that wy —4,, (wW+1)}
for all finite n, k; a proof can be found in [HJW90]. On the other hand, we have the
negative relations wy; 4 (n+ 1)% for n > 2 [ER56], w; 4 (w+2,n+ 1)" for n > 4
[Kru65], wi 4 (w+2,w)? [Jon00] and wy 4 (wy,4)® [Haj64]. All that remains to be
settled is the conjecture that wy; — (a, k) for all @ € wy and all finite &, with the
strongest result to date being that wy — (w -2+ 1, k)3 for all finite k& [Jon13]. The

topological version of this result remains unexplored.

1.3 Autohomeomorphism groups of ordinals

The groups of autohomeomorphisms (homeomorphisms from a space to itself) of
ordinals do not appear to have been explicitly studied before. However, they have
been studied implicitly from the perspective of Boolean algebras. Under Stone
duality, countable successor ordinals correspond to so-called superatomic countable
Boolean algebras. The automorphism groups of these Boolean algebras were studied
by Monk, who gave a description of the automorphism group of the Boolean algebra
corresponding to w? + 1 [Mon75, Theorem 7], and also proved the following basic

result, which we have translated into topological language [Mon75, Theorem 6].

Theorem (Monk). Let a be a countable non-zero ordinal. Then the normal subgroup
lattice of the autohomeomorphism group of w® -2+ 1 contains a chain of order type
2+ a+2.
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We will generalise Monk’s description of the autohomeomorphism group of w?+1
to ordinals of the form w™-m + 1 for finite n and m. Our main aim will be to study
the normal subgroups of these autohomeomorphism groups. We will vastly improve
upon Monk’s basic result, finding 22" normal subgroups, including chains of size
2% even within the autohomeomorphism group of w? + 1. This result is somewhat
surprising, since the condition of normality is rather strong in the infinite context.
Indeed, this result stands in stark contrast to the following classical result of Schreier

and Ulam. We write S, for the group of permutations of a countably infinite set.

Theorem (Schreier—Ulam). The normal subgroups of So are exactly: the identity;

the group of finitary alternating permutations; the group of finitary permutations;
and Ss.

Our work may be viewed as a generalisation of this result, since S, is isomorphic
to the autohomeomorphism group of w+ 1. Indeed, we will make essential use of the
following result of Bertram [Ber73], which may be viewed as quantitative version
of the statement that the only normal subgroup of S, containing a permutation of

infinite support is S, itself.

Theorem (Bertram). Let g € Sy, have infinite support and let h € So,. Then h is
the product of 4 conjugates of g.

Fix two positive integers n and m, and consider only those autohomeomorphisms
of w™ - m + 1 lying within the pointwise stabiliser of the set of topological
limit points. In this context, we will introduce the notion of a character of an
autohomeomorphism, which may be thought of as a more refined notion of the size
of the support of a permutation. These characters may be defined as subsets of
P ({1,2,...,n}) in such a way that every character A is a lower set, meaning that
if t € A and s C t then s € A, and moreover, every such lower set arises as the
character of some autohomeomorphism. We will also introduce the notion of the flow
of an autohomeomorphism, which measures how much points are “moved towards”
topological limit points.

Our main result (Theorem is a classification of the normal subgroups of
the autohomeomorphism group of w™-m + 1 contained in the pointwise stabiliser of
the set topological limit points. Here we write L for the subgroup of this stabiliser
consisting of all autohomeomorphisms whose character is a subset of A, and LY for
the subgroup of La consisting of all autohomeomorphisms of “zero flow”, which we

will define later.

Theorem. Let N be a normal subgroup of the autohomeomorphism group of w™-m-+1
contained in the pointwise stabiliser of the set of topological limit points, and assume

that N is not the group of alternating permutations of finite support. Then

LY < N<La
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for a unique lower set A C P ({1,2,...,n}).

Thus these normal subgroups fall naturally into D (n) disjoint sets, where D (n) is
the number of lower sets in P ({1,2,...,n}) (the nth Dedekind number). Moreover,
by studying the different possible flows we will show that each of these sets is either
countable or of size 22°. In particular, we will show that there are 22 normal
subgroups of the autohomeomorphism group of w” - m + 1 for all n > 2.

Some of the groups we will study have appeared before in a different context.
Given a positive integer m, consider the autohomeomorphism group of w - m + 1.
By ignoring the action of the group on the set of topological limit points, we may
view this group as a transitive subgroup of S,,. The resulting permutation group
has been called the almost stabiliser of a partition of a countably infinite set into
m infinite pieces [BCP794], and was shown by Richman [Ric67] to be a maximal
proper subgroup of S,,. However, the corresponding result does not hold for w? + 1
or any larger ordinal.

Our work may also shed some light on whether the countable superatomic
Boolean algebras have the small index property, a question which has been studied
by Truss and Wencel [TW13].



Chapter 2
Preliminaries

The purpose of this chapter is to provide a self-contained exposition of ordinal
topologies from scratch. After covering the basic properties of ordinal topologies,
we will provide a short proof of the classification of ordinals up to homeomorphism.
We will then briefly recap Stone duality and conclude with some characterisations

of the countable compact ordinal topologies.

2.1 Notation

Our notation is standard. Officially, we use the von Neumann definitions of ordinals
and cardinals, namely that an ordinal is the set of all smaller ordinals and a cardinal
is an initial ordinal. We shall try to mitigate any confusion this may cause by
referring explicitly to sets of ordinals where appropriate.

Given a totally ordered class X, we implicitly extend the ordering to include
—o0 as a minimum and oo as a maximum. We then use interval notation in the
usual fashion, so that for example if a,b € X then [a,b) = {z € X :a <z < b} and
(a,00) ={xr € X :a < x}.

We denote the cardinal successor of a cardinal x by ™. We denote the cardinality
of a set X by |X|. We denote the set of subsets of a set X of size n by [X]". We use
the symbol = to denote the homeomorphism relation. Unless otherwise stated all
arithmetic will be ordinal arithmetic, except for expressions of the form 2 where s

is a cardinal.

2.2 Definitions and basic properties

Our starting point is the following generalisation of the Euclidean topology on R.

Definition. Let X be a totally ordered set. The order topology on X is the topology
generated by
{(a,b):a € X U{—o0}, b€ XU{o0}},

which is easily seen to be a base.

11
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Given an arbitrary set X of ordinals, we may endow X with the subspace
topology induced from the order topology on [0, «), where « is any ordinal with
X C [0,a). Note that this does not depend on the choice of . We refer to this
topology simply as the subspace topology. Unless otherwise stated we will always
assume that X is endowed with this topology.

For example, the subspace topology on [0, w] is homeomorphic to the one-point
compactification of N, and the subspace topology on [0,w + 1]\ {w} is discrete. Thus
the subspace topology on a set of ordinals need not coincide with the order topology.

Here are some basic topological properties of ordinals and their subspaces.

Definition. Let X be a topological space.

We say that X is totally disconnected to mean that its only non-empty connected
subspaces are singletons.

We say that X is scattered to mean that every non-empty subspace of X has an

isolated point.

Lemma 2.2.1. Let X be a set of ordinals endowed with the subspace topology. Then
X is Hausdorff, totally disconnected and scattered.

Proof. To see that X is Hausdorff, let z,y € X with x <y. Let U = X N[0,z + 1)
and V = X N (z,00). Then U and V are disjoint open sets with x € U and y € V.

To see that X is totally disconnected, suppose ¥ C X and z,y € Y with z < y.
Let U and V be as above. Then the sets Y N U and Y NV partition Y into two
disjoint open sets.

To see that X is scattered, suppose ¥ C X is non-empty. Let x be the least
element of Y, and let U be as above. Then Y NU = {z}, so z is an isolated point
of Y. O

The following result provides us with an equivalent definition for the subspace

topology on a set of ordinals, which may be familiar from the context of club sets.

Lemma 2.2.2. Let X be a set of ordinals endowed with the subspace topology and
let Y C X. ThenY 1is closed in X if and only if for every non-empty Z CY, if
sup (Z) € X thensup(Z) €Y.

Proof. Suppose first that for every non-empty Z C Y, if sup (Z) € X thensup (Z) €
Y. We show that X \ Y is open. Suppose x € X \ YV and let Z =Y N[0,z). If Z
is empty then X N[0, 2 + 1) is an open subset of X \ Y containing z. Otherwise let
z = sup (Z). Then by assumption z ¢ X \ Y, so z # z, so z < z since z < x by
definition of Z. Hence X N (z,z + 1) is an open subset of X \ Y containing z.
Conversely, suppose Y is closed in X and Z C Y is non-empty. Let z = sup (Z)
and suppose for contradiction that z € X \ Y. Certainly z is a non-zero limit
ordinal, or else z € Z C Y. Now since X \ Y is open, there are ordinals z and w
with 2 < z < w such that X N (z,w) € X \ Y. But then x + 1 < z is an upper
bound for Z, contradicting the definition of z. O]
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Given that sets of ordinals are Hausdorff, there is unsurprisingly a connection

between closed and compacts sets, as the following result illustrates.

Lemma 2.2.3. Let X be a set of ordinals endowed with the subspace topology. Then
X is compact if and only if for every non-empty Z C X, sup (Z) € X.

Proof. Suppose first that Z C X is non-empty with sup (Z) ¢ X. Let z = sup (Z).
Foreachz € Z,let U, = XN[0,z), and let V = XN(z,00). Then {U, : z € Z}U{V'}
is an open cover of X, but if Y C Z is finite then max (Y) ¢ U,y U, UV. Hence
X is not compact.

Conversely, suppose that for every non-empty Z C X, sup(Z) € X. Given an
open cover of X, we choose a finite subcover Vi, V5, ...V, recursively as follows.
Having chosen Vi, Vs, ..., Vi for some k € w, let Y = X\ Uf:ll V;, a closed set.
If YV is empty, then we are done. Otherwise let o = sup (Y'). Then oy € X by
assumption, so o € Y by Lemma [2.2.2] Thus a4 is a maximal element of Y. Take
Vi to be any member of the open cover containing ay. This process must terminate,

or else we obtain a strictly decreasing sequence of ordinals ay > ag > g > .... O

In particular, if « is a non-zero ordinal then [0, ) is compact if and only if « is
a successor ordinal.

The following definition is from Schipperus [Sch12].

Definition. Let X be a set of ordinals. We say that X is internally closed to mean
that for every non-empty Z C X, if sup (Z) < sup (X) then sup (Z) € X.

By Lemma this is equivalent to saying that X is closed in [0, o), where «
is the least ordinal such that X C [0, «). If the context specifies no ambient space,
then we may simply say that X is closed to mean that X is internally closed.

By Lemma [2.2.3] every compact set of ordinals is internally closed. However, if
« is a non-zero limit ordinal then [0, ) is internally closed but neither compact nor
a closed subset of [0, a.

Our final basic result gives another equivalent condition for a set of ordinals to

be internally closed.

Proposition 2.2.4. Let X be a set of ordinals. Then X is internally closed if and
only if the subspace topology on X coincides with the order topology.

The latter condition is equivalent to saying that the order-isomorphism from X

to its order type is a homeomorphism.

Proof. Fix an ordinal o with X C [0, «).

First suppose X is internally closed. Certainly every basic open subset of X in the
order topology is open in the subspace topology. For the other way round, suppose
a€[0,a)U{—oc0} and b € [0,) U {00} are such that X N (a,b) is non-empty. It is
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sufficient to find ¢ € X U{—o0} and d € X U{oo} such that X N (¢,d) = X N (a,b).
First let

p 0, ife<bforall z € X

min (X N [b,00)), otherwise.
Next let Z = X N [0,a]. If Z is empty, then let ¢ = —oo. Otherwise sup (Z) < a <
sup (X) since X N (a,b) is non-empty, so sup (Z) € X since X is internally closed.
In this case let ¢ = sup (Z). Then ¢ and d are as required.
Conversely, suppose the subspace topology on X coincides with the order
topology on X. Let Z C X be non-empty and suppose sup (Z) < sup (X). Let
z =sup (Z). Then X N(z,00) is non-empty and open in the subspace topology and

therefore in the order topology, so we may write

X N (z,00) UXﬂal,l

iel
where [ is a non-empty set and for all i € I, a; € X U {—o0}, b; € X U {oo} and
X N (ai, b;) is non-empty. Let a = min{a, : i € I'}. It is then easy to check that

XN(z,00)=XnN(a,o0). (%)

We claim that a = z and hence z € X, as required. To prove the claim, first observe
that if @ > z then a € X N(z, 00), contrary to (). Finally observe that if a < z then
X N(a,z] =0 by and so a is an upper bound for Z, contrary to the definition of
z. 0

2.3 The Cantor—Bendixson derivative

The key tool in the analysis of ordinal topologies is the Cantor-Bendixson derivative,
which was introduced by Cantor in 1872. In fact, Cantor later introduced ordinals

for the very purpose of iterating this operation.

Definition. Let X be a topological space. The Cantor-Bendizson derivative X' of
X is defined by

X' =X \{z € X :zis isolated} .
The iterated derivatives of X are defined for v an ordinal by
1. XO =X,
2. X0+l — (X(v)) and
3. X0 =N sy X %) when + is a non-zero limit.

For example, if X = [0,w?] then X' = {w-m:m € w} U {w?} and X® = {w?}.

Here are some basic properties of this operation.
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Lemma 2.3.1. Let X be a topological space, let ~v be an ordinal and let Y C X.
Then Y € X0,

Proof. First observe that if y € Y and {y} is an open subset of X, then {y} = Y N{y}
is also an open subset of Y. Therefore Y’ C X’. The result then follows by induction
on . O

Lemma 2.3.2. Let X be a topological space and let v be an ordinal. Then X is

closed.

Proof. First observe that X’ is closed since {z} is open for all z € X \ X’ and
X\ X' =U,ex\x {z}. The result then follows by induction on 7. O

We may describe the effect of the Cantor-Bendixson derivative on sets of ordinals
of the form [0, @) using the following notion. First recall that if  is an ordinal, then
there is a unique sequence of ordinals 7; > 75 > --- > 7, and a unique sequence of

positive integers my, mo, ..., m, such that
r=w"-m+w? -maeg+---+w"m-m,

(the Cantor normal form of z). (Note that it need not be the case that v < z,

since for example gy = w®.)

Definition. Let z be an ordinal with the above Cantor normal form. The Cantor—

Bendixson rank of x is defined by

Vn, ifx >0
0, ifx=0.

CB(z) =

This defines a function CB : [O,wﬁ) — [0, 8) for each non-zero ordinal f.

The relationship between the notions of Cantor-Bendixson derivative and rank is
given by the following simple result, which provides us with an alternative definition

of Cantor-Bendixson rank.

Proposition 2.3.3. Let a be an ordinal. If x € [0,«) then the Cantor—Bendizson
rank of x is the greatest ordinal v such that x € [0, a)(”).

In other words, the Cantor-Bendixson rank of an ordinal is the ordinal number

of iterated derivatives that can be taken before that point “disappears”.

Proof. We prove by induction on v that for v an ordinal,
0,0)" ={z €[0,a): CB(z) >~}.

The case v = 0 is trivial.
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If 7 is a successor ordinal, say v = § + 1, then |0, a)m = ([0, a)(6)>,, and by the
inductive hypothesis [0,a)” = {z € [0,«) : CB(z) > é}. Let z € [0, @) be non-zero
(the case x = 0 is straightforward). If CB (x) = ¢, then we may write x = y + w°
with y a multiple of w®. Then (y,z + 1)N[0,2)”) = {z}, so « is isolated in [0, o).
On the other hand, if CB () > 8, then whenever z < z we have z +w’ € [0, a)®
and z + w’ < x, so any basic open set containing z contains some point of [0, a)(‘s)
and thus x is not isolated in this space.

Finally, if 7 is a non-zero limit then [0, )™ = 5<r 105 @), so by the inductive
hypothesis

0,0)" = ({z €[0,a): CB(z) > 6} ={z €[0,a) : CB(z) > 1} O

o<y

Note that some authors use the term Cantor—Bendixson rank to refer to a
property of a topological space X (the least ordinal v such that X M =X (VH)),

rather than a property of a point in a topological space.

2.4 The classification of ordinal topologies

We shall see in the next chapter that the general problem of classifying the subspace
topologies on sets of ordinals is quite complex. The problem of classifying the order
topologies on ordinals themselves is nonetheless a simple application of Cantor—
Bendixson derivatives. The compact case was stated in terms of Boolean algebras
by Mayer and Pierce [MP60, Theorem 4.6] and then directly by Baker [Bak72l
Corollary 3]. The general classification was later performed by Flum and Martinez
[EFMS88, Theorem 2.2 and Remark 2.5, part 3] and was independently rediscovered
in unpublished work by Kieftenbeld and Lowe [KL06]. We will state this result in a
slightly different way to both of those treatments, and provide a short proof based
on that of Flum and Martinez.

Our statement of the classification makes use of the following piece of notation.
The idea behind it is that the “building blocks” of ordinal topologies have the form
1 or w7+ 1.

Definition. Let v be an ordinal and let m be a positive integer. We define

. wY-m+1, ify>0
@[y, m] = _
m, it y=0.

Thus @ [y, m] is homeomorphic to the topological disjoint union of m copies of

@[y, 1].
Here is the classification.
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Theorem 2.4.1 (Flum—Martinez). Let o be a non-zero ordinal.
If a is compact, then there is a unique ordinal v and a unique positive integer m
such that

a =Wy, ml.

If o is not compact and o™ is either infinite or empty for all ordinals 1, then

there is a unique non-zero ordinal & such that

Otherwise, there are unique non-zero ordinals v and 6 with § < v and a unique
positive integer m such that

a 2wy, m]+ .

Moreover, the proof will reveal how to obtain the required ordinals from the
Cantor normal form of a.
The existence part of the proof is a straightforward consequence of the following

observation.

Lemma 2.4.2. Let a be a successor ordinal and let 5 be any ordinal. Then o+ [

is homeomorphic to the topological disjoint union of a and [3.

Proof. Simply write « =z + 1 and let U = [0,z + 1) and V = (z,a + ). Then U
and V are disjoint open subsets of a+ with U Z o, V 2 fand UUV =a+ 5. [

In particular, if o and 8 are both successor ordinals then o + 3 = 5 + «.

Here is our proof of the classification.

Proof of Theorem[2.4.1]. First we prove existence.
If o is compact, then « is a successor ordinal by Lemma [2.2.3] Hence using

Cantor normal form we may write
a :w[’ylaml] +w[’72am2] + - +w[’7’mmn]

with vy > v > --- > =, ordinals and n, my, mso,..., m, positive integers. Let
¢ = Wy, mo| + -+ + @[y, my]. Then by Lemma a = wly,m] + ¢ =
C+ Wy, mi] =@ [y, mil.

If « is not compact, then using Cantor normal form we may write

a = [y, mi) + @ [y2, ma) 4+ + D [V, M) + °

with 73 > 75 > -+« >, > > 0 ordinals, my, ms, ..., m, positive integers and n €
w. If o™ is either infinite or empty for all ordinals 7, then n = 0, or else }a(m‘ =m;.
Hence a must in fact equal w®. Otherwise let ¢ = @ [y9, ma] + - - + @ [Yn, My]. Then
by Lemma [2.4.2, o = W [y1, m1] + ¢ + w’ = 4+ @ [y1, ma] + w® =@ [y1, ma] + .
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Now we prove uniqueness by using the fact that |X (7)‘ is a topological invariant
of a topological space X for any ordinal ~.

For the compact case, let v be an ordinal and m be a positive integer. Then
by Proposition , v + 1 is the least ordinal 5 such that @[y,m]" = 0, and

()

m = ’w [v,m|""|. Hence we may recover vy and m from the topology on @ [y, m].

For the first non-compact case, let § be a non-zero ordinal. Then by Proposition

2.3.3, 0 is the least ordinal n such that (w‘;)(n) = (). Hence we may recover ¢ from

the topology on w?’.

For the second non-compact case, let v and § be non-zero ordinals with § < ~,
let m be a positive integer, and let o = w [y, m| + w®. Then by Proposition ,
v+ 1 is the least ordinal 7 such that a™ =@, m = |Oz(7)‘, and 0 is the least ordinal
¢ such that o9 is either compact or empty. Hence we may recover v, m and 6 from

the topology on «. O]

2.5 Stone duality

We now briefly recap the basics of Stone duality applicable to our situation. Further
details may be found in [BS69, Chapter 1] for the basic concepts or |Joh86] for a

comprehensive treatment.

Definition. A Stone space is a topological space that is compact, Hausdorff and
totally disconnected.

Write Stone for the category of Stone spaces and continuous functions, and
BoolAlg for the category of Boolean algebras and Boolean algebra homomorphisms.

Given a Stone space X, write C'(X) for the Boolean algebra of clopen subsets
of X under inclusion.

Given a Boolean algebra B, write S (B) for the set of ultrafilters of B endowed
with the topology generated by the base

{{Ue€S(B):beU}:be B}.

Theorem 2.5.1 (Stone duality). The maps C and S extend to functors C :
Stone — BoolAlg® and S : BoolAlg® — Stone yielding an equivalence of

categories.

This duality allows statements about Boolean algebras to be translated into the
language of Stone spaces, and vice versa. For example, quotient algebras correspond
to subspaces, and products of algebras correspond to disjoint unions of spaces. In

order to state another such correspondence, we require the following notion.

Definition. Let B be a Boolean algebra.

We say that a € B is an atom to mean that a is a minimal element of B\ {0}.
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We say that B is superatomic to mean that every non-trivial quotient of B has

an atom.

Mostowski and Tarski [MT39] gave several equivalent conditions for a Boolean
algebra B to be superatomic, for example that every non-trivial subalgebra of B
has an atom. See [Roi89] for further details.

Here are some particular correspondences of interest in the context of Stone
duality. We say that a topological space X is second-countable to mean that X has

a countable base.

Lemma 2.5.2. Let X be a Stone space.
1. C(X) is countable if and only if X is second-countable.
2. C(X) is superatomic if and only if X is scattered.

Proof. 1. If C'(X) is countable then certainly X has a countable base since C' (X)
is a base for X. Conversely, suppose that X has a countable base B. We show
that each member of C'(X) can be written as a finite union of members of 5,
which suffices. To see this, let Y € C'(X). Then for each z € Y there exists
U, € Bwithxz € U, CY. Then {U, : x € Y} is an open cover of Y. But Y
is a closed subset of a compact space and is therefore compact, so there is a

finite subset S C Y such that Y =, _o U,, as required.

z€s
2. First note that under Stone duality, the non-empty subspaces of a Stone space
correspond to the non-trivial quotients of its Boolean algebra. Hence it is
sufficient to prove that C'(X) has an atom if and only if X has an isolated
point. Now if @ € C'(X) is an atom, then {b € C(X):a < b} is an isolated
point of S (C' (X)) = X. Conversely, if U is an isolated point of X, then {U}
is an atom of C' (X). O

The reason that this result is relevant is of course that by Lemma 2.2.T], if X is
a compact set of ordinals under the subspace topology, then X is a scattered Stone
space.

Note that there are scattered Stone spaces that are not homeomorphic to compact
sets of ordinals under the subspace topology. For example, let X = w; + 1 + w*
endowed with the order topology, where w* is order-isomorphic to the negative
integers and + denotes the ordered sum operation. Then X is a scattered Stone
space, but as observed by Baker [Bak72, p. 25], it is not homeomorphic to any set

of ordinals under the subspace topology. We will prove this fact in the next chapter

(in Proposition |3.4.4)).
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2.6 Countable compact ordinal topologies

We conclude this chapter with some known characterisations of the countable

compact ordinal topologies, since these are a major focus of much of our work.

Theorem 2.6.1. Let X be a non-empty topological space. The following are

equivalent.
1. X is countable, compact and Hausdorff.
2. X 1s the Stone space of a countable superatomic Boolean algebra.

3. X 1is homeomorphic to a countable compact set of ordinals under the subspace

topology.
4. X 2wy, m| for some countable ordinal vy and some positive integer m.

Note that by Lemma [2.5.2] condition 2 is equivalent to saying that X is a
scattered, second-countable Stone space. Note also that by Lemma and
Proposition [2.2.4] condition 3 is equivalent to saying that X is homeomorphic to a
countable successor ordinal.

The equivalence of conditions 1, 3 and 4 was proved by Sierpinski and
Mazurkiewicz [MS20], and condition 2 was later added by Day [Day67, p. 489].
Here we sketch a short proof of the equivalence of all 4 conditions, using ideas from
[Ket78| Section 0].

Our proof has two main ingredients. The first ingredient is the Cantor-Bendixson
theorem, which was originally intended as the “continuum hypothesis for closed
sets”. We say that a topological space is perfect to mean that it has no isolated

points.

Theorem 2.6.2 (Cantor-Bendixson). Let X be a closed subset of a Polish space.
Then we may write X as a disjoint union X = SUP with S scattered and P perfect
m a unique way. Moreover, S is at most countable and P either is empty or has

cardinality 2%°.

This theorem may be proved using Cantor-Bendixson derivatives, and was in
fact the original result for which the tool was invented. All we will need from it
is the fact that a Polish space is countable if and only if it is scattered. Note in
particular that any second-countable compact Hausdorff space is a Polish space by
Urysohn’s metrisation theorem.

The second ingredient of our proof is Vaught’s criterion, which may be stated as
follows [Pie89, Section 1.2].

Theorem 2.6.3 (Vaught). Let R be a symmetric binary relation defined on the

class of second-countable Stone spaces. Suppose that for all such spaces X andY,
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o if XR) then X =0, and

o if XRY and X = AU B with A, B C X disjoint open subsets, then there exist
disjoint open subsets C, D CY such that ARC and BRD.

Then for all such spaces X and Y, if XRY then X =Y.

Sketch of proof of Theorem [2.6.1] The implications 4 = 3 = 1 are given by
Lemmas [2.2.3[ and [2.2.1} so it is enough to prove that 1 — 2 —> 4.

To see that 1 = 2, let X be countable, compact and Hausdorff. One may show
directly that X has a countable base [KTO07, Theorem 2.2]. Then X is a Polish

space by Urysohn’s metrisation theorem, and so X is scattered by the Cantor—

Bendixson theorem. This suffices, since any space that is Hausdorff and scattered
is automatically totally disconnected.

To see that 2 = 4, let X be a scattered, second-countable Stone space. Then
X is a Polish space by Urysohn’s metrisation theorem, and so X is countable by
the Cantor-Bendixson theorem. Let vx be the least ordinal v such that X = ¢,
which exists since X is scattered and is countable since X is countable. Then since
X is compact, vx is a successor ordinal, say yx = § + 1, and X is finite, say
’X (5)‘ = myx. Now define a symmetric binary relation R on second-countable Stone
spaces by X RY if and only if X and Y are both scattered, vx = 7y and mx = my-.
One may easily check that this relation satisfies Vaught’s criterion, and the result
follows. O

Note that the equivalence of conditions 3 and 4 is simply the countable compact
case of Theorem though we have provided an independent proof of this

equivalence.
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Chapter 3
Subspaces of countable ordinals

In this chapter we define the “one-point cofinite extension” operation on topological
spaces and prove our topological analogue of Hausdorff’s theorem on scattered total
orderings. From this we obtain a characterisation of the countable subspaces of
ordinals as the order topologies of countable scattered total orderings. Afterwards
we use these ideas to compute the number of subspaces of an ordinal up to

homeomorphism.

3.1 Linearly ordered topological spaces

We begin by reviewing some basic ideas from the theory of linearly ordered

topological spaces. First recall the following pieces of terminology.

Definition. A linearly ordered topological space (LOTS) is a totally ordered set
under the order topology.

A generalised ordered space (GO-space) is any subset of a LOTS under the
induced ordering and the subspace topology.

An order-homeomorphism is a bijective function that is both an order-
isomorphism and a homeomorphism.

Let X be a totally ordered set. We say that a subset Y C X is order-convex to
mean that if z,y € Y and 2z € X with x < 2z <y, then z € Y.

Many basic properties of ordinal topologies follow from results in the general
theory of linearly ordered topological spaces, such as the fact that every LOTS is
Hausdorff and hereditarily normal (i.e., T5) [Ste70]. Indeed, several of the results

in the previous chapter, such as Lemmas [2.2.2| and [2.2.3] may be viewed as special

cases of such results.
Of particular relevance to subspaces of ordinals is the following basic result of
Cech [CFK66, 17 Theorem A.23], which provides an equivalent definition for a GO-

space.
Proposition 3.1.1 (Cech). Let X be a totally ordered set endowed with some

23
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topology. Then X s a GO-space if and only if the topology on X contains the

order topology and is generated by a base of order-convex sets.

We omit the general proof of this result and instead prove the special case in
which X is well-ordered.

Theorem 3.1.2 (Cech). Let X be a well-ordered set endowed with some topology.

The following are equivalent.

1. X is order-homeomorphic to a set of ordinals under the subspace topology.

2. The topology on X has a base of the form

Bu{{y}:yeY},

where B is the usual base for the order topology on X and Y C X.

In particular, if X is a set of ordinals under the subspace topology and f : X —
[0, ) is an order-isomorphism, then f is continuous. Of course, f need not be a
homeomorphism.

The proof we provide was shown to the author by Robert Leek.

Proof. First let X be a set of ordinals under the subspace topology, say X C [0, «).
Let Y ={y € X : {y} is open} and let B* = BU{{y} : y € Y} where B is the usual
base for the order topology on X. To see that B* is a base for the topology on X,
let a € [0,a) U{—00}, b € [0,a0) U{o0} and = € (a,b). If x € Y, then {z} € B*
with z € {z} C (a,b). Otherwise z must be a limit ordinal such that X is cofinal
in [0, ), in which case there exists ¢ € X with a < ¢ < x, whence (¢, z] € B* with
z € (¢,z] C (a,b).
Conversely, suppose the topology on X has a base of the given form for some

Y C X. Let f: X — [0,«) be an order-isomorphism for some ordinal a. We show
that X is order-homeomorphic to a subspace of [0,2 - «). Define g : X — [0,2 - «)
by

2-f(x)+1, ifzeY

2 f(x), ifx Y.

Let the image of X under g be Z. As a function X — Z, certainly ¢ is an
order-isomorphism, and the image of any basic open set is open. To see that g
is continuous, let a € [0,2-«a) U {—occ} and b € [0,2-«a) U {cc}. We show that
g (Z N (a,b)) is open. First let

g 00, if z<bforall zeZ
g ' (min[Z N [b,00)]), otherwise.

Next let W = Z N [0,a]. If W is empty, then let ¢ = —o0, and if W has a maximal
element w then let ¢ = g~! (w). In both cases g~' (Z N (a,b)) = (c,d) and we are
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done. Otherwise by definition of g we must have a + 1 = g (c) for some ¢ € Y. But
then ¢g=' (Z N (a,b)) = (¢, d) U {c}, and we are done. O

This proof also shows that if X is a set of ordinals of order type « under
the subspace topology, then X is homeomorphic to a subspace of [0,2-«). In
particular, X is homeomorphic to a countable subspace of an ordinal if and only if

X is homeomorphic to a subspace of a countable ordinal.

3.2 Hausdorff’s theorem on scattered total

orderings

In this section we review some basic ideas from the theory of total orderings,
following Rosenstein [Ros82, Chapter 5].

First recall some basic terminology.

Definition. Let X be a totally ordered set.
We say that X is dense to mean that for all z,y € X with z <y, (z,y) # 0.
We say that X is scattered to mean that X has no densely-ordered subset with

more than one point.

Equivalently, X is scattered if and only if no subset of X is order-isomorphic to
Q.

Dense and scattered linear orderings play an important role in analysing arbitrary
total orderings. For instance, Hausdorff proved that any total ordering may be
written as a densely-ordered sum (a notion we shall define shortly) of scattered
total orderings [Ros82, Theorem 4.9].

The key tools in the analysis of scattered total orderings are condensation maps,

which may be thought of as order-homomorphisms.

Definition. Let X be a totally ordered set.

A condensation of X is a partition of X into disjoint non-empty order-convex
sets, which we endow with the induced ordering defined by A < B if and only if
a <bforallae Aandall be B.

A condensation map on X is a function ¢ : X — X such that X is a condensation
of X and z € ¢(z) for all x € X.

The finite condensation map cr is the condensation map defined by cp (x) =
{y € X : (z,y) is finite}.

For example, the image of [0,w?] under cF is order-isomorphic to [0,w].

Note that cp (x) is always order-isomorphic to a finite total ordering, Z, Z~q or
Z<0.

The notion of the finite condensation map immediately allows us to make the

following simple but useful observation.
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Proposition 3.2.1. Let X be a non-empty scattered totally ordered set. Then there
exists v € X such that (—oo, x) is either empty or has a mazimal element and (x,0)

18 either empty or has a minimal element.

Proof. Suppose for contradiction that there is no such z € X. Then |cp (z)| < 2 for

all x € X, and X is certainly infinite. But then it is easy to see that for instance
{min (cp (z)) : x € X}

is a densely-ordered subset of X with more than one element. O]
This observation will be easier to use in the following form.

Corollary 3.2.2. Let X be a scattered totally ordered set with |X| > 3. Then there
exists © € X such that (—oo,x) has a maximal element and (x,00) has a minimal

element.

Proof. Let Y = {x € X : x is neither minimal nor maximal in X}. Then Y # ()
since | X| > 3, so Y is a non-empty scattered totally ordered set, so by Proposition
there exists © € Y such that Y N (—oo,z) is either empty or has a maximal
element and Y N (z,00) is either empty or has a minimal element. Then z is as

required. O]

Here is an easy consequence of our observation, which relates the order-theoretic

notion of “scattered” to the topological notion.

Corollary 3.2.3. Let X be a totally ordered set, and suppose X 1is scattered. Then
the order topology on X is scattered.

Proof. Suppose Y C X is non-empty. Then Y is a non-empty scattered totally
ordered set, so by Proposition there exists y € Y such that Y N (—o0,y) is
either empty or has a maximal element and Y N (y,c0) is either empty or has a

minimal element. Hence {y} is a basic open subset of Y. O

Note that the converse does not hold, in the sense that there is a non-scattered
totally ordered set whose order topology is scattered. For example, let X = Q x Z
under the lexicographic ordering. Then the order topology on X is discrete.

Let us now state and prove Hausdorff’s classical theorem. The precise statement

requires the following notions.

Definition. If X is a totally ordered set, then the backwards ordering X* is defined
to be X under the relation >.

If X is a totally ordered set and Y, is a totally ordered set for all z € X, then
the ordered sum is defined by

ZYx:{(x,y):xEX,yEYx}

zeX
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under the lexicographic ordering. For each z € X we identify the subset
{(z,y) :y € Yo} with Y. We also denote > (1, Yo by Yo + Y1, which defines
an associative binary operation.

Define S to be the smallest class of totally ordered sets subject to the following

conditions. Here, 1 is a totally ordered set with exactly one element.
e S is closed under isomorphism.
e 1cé.
o [f X € §then X* € S.
e If 3 is a non-zero ordinal and X; € S for all i € 3, then ), ; X; € S.
Here is Hausdorft’s theorem.

Theorem 3.2.4 (Hausdorff). S is the class of non-empty scattered totally ordered

sets.

We use the proof from Rosenstein [Ros82, Theorem 5.26], which requires the
finite condensation map to be iterated, in much the same fashion as the Cantor—

Bendixson derivative.

Definition. Given a condensation map c¢ defined for every totally ordered set, its

iterations are defined for v an ordinal and x € X by
L ¢ (z) = {x},
2. M (z)={ye X :c(c"(x)) =c(" (y))}, and
3. () =Us-, ¢ (z) when 7 is a non-zero limit.

For example if X = [0,w”) for some ordinal 3, then ¢} (0) = [0,w?) for all
ordinals v < . Thus the finite condensation map is in some sense analogous to the
Cantor—Bendixson derivative.

Here is the proof of Hausdorff’s theorem.

Proof of Theorem |3.2.4]. First we show by induction on the definition of § that if
X € S then X is scattered. Certainly 1 is scattered, and if X is scattered then so
is X*. So suppose [ is a non-zero ordinal and X, is scattered for all i € 3, and
suppose for contradiction that Y C . 5 Xi is a dense subordering with more than
one element. Then Y N X, is a dense subordering of X; and so has at most one
element. Let Z ={i € §:|Y N X;| =1}, so Z is order-isomorphic to Y. Then 7 is
a dense subordering of 8 with more than one element, which is absurd since 5 has
no infinite strictly descending sequence.

Conversely, suppose X is a non-empty scattered totally ordered set. Let n be

the least ordinal such that ¢ (z) = ¢l () for all z € X, which exists since
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& (z) C ¢} (z) for all z € X whenever ¢ and v are all ordinals with § < 7. (n

is known as the F-rank of X.) Then the condensation {c}. (z):z € X} must be
dense, so since X is scattered it must consist of a single order-convex set, and thus
cl(x) = X for all x € X. We now show by induction on v < 7 that ¢} (z) € S for
all x € X, which suffices.

Certainly ¢% (z) = {z} € Sfor all z € X. If v = § + 1, then ¢} (z) is order-

isomorphic to an ordered sum of sets of the form ¢4 (y) with y € ¢} (z) over either

a finite totally ordered set, Z, w or w*.

Either way it follows by the inductive
hypothesis that ¢} () € S, noting that Z is order-isomorphic to w* + w. Finally,
suppose v is a non-zero limit ordinal. Observe that for all y € ¢} (x), the least

ordinal § such that y € ¢% (x) cannot be limit ordinal. Hence

i (@)= (@) =J (F' @)\ (@) = vl

o<y o<y o<y o<y

where

5 = (4 (@) \ ¢ (2)) N (~o00,2)
and

O = (™ @)\ & (@) N (x,00)

for each ordinal 6 < 7. Since (cf, (m)) ser forms a nested collection of order-convex

sets, it follows that ¢). (x) is order-isomorphic to
(S) - xer
ey ey

Now by the inductive hypothesis, for each ordinal § < v both Cj and Cj are
suborderings of members of S, which are easily seen by induction to lie in §. Hence

ch (x) € S, as required. O

Since our topological analogue of this result will concern countable spaces, we
will only need the special case of this result in which X is countable. We now observe

that in this case we in fact do not require ordinals any larger than w.

Definition. Define S, to be the smallest class of totally ordered sets subject to the

following conditions.
e S, is closed under isomorphism.
e 1S,
e If X €5, then X* € S,,.

e If § <w is a non-zero ordinal and X; € S, for all i € 5, then > ._, X, € S,.

ief
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Corollary 3.2.5. S, is the class of countable non-empty scattered totally ordered

sets.

We deduce this from Hausdorft’s theorem, but it may also be proved directly
[Ros82, Theorem 5.24].

Proof. Trivially every member of S, is countable and S, C &, so by Hausdorft’s
theorem every member of S, is a countable non-empty scattered totally ordered set.

Conversely, if X is a countable non-empty scattered totally ordered set, then
by Hausdorft’s theorem X € §. Since X is countable, all the ordinals used in its
construction may be assumed countable. But it is easy to see that every countable
ordinal lies in &, and hence using the same sequence of steps that witnesses this
we see that X € S,,. O

3.3 One-point cofinite extensions

In this section we state and prove our topological analogue of Hausdorff’s theorem.

First we introduce some notation.

Definition. Let s be a cardinal and let X; be a topological space for all i € k. We

P

1ER

use

to denote the topological disjoint union. We also denote ®i€{0,1} X; by Xg & X,
which defines an associative binary operation. When there is no confusion we

identify X; with the corresponding subspace of the disjoint union.
We now introduce the other operation on topological spaces used in our result.

Definition. Let x be an infinite cardinal and let X; be topological spaces for all
i € k. Assume for simplicity that the X; are pairwise disjoint and * ¢ J,.,, X;. We
by

define the one-point cofinite extension of (X;),.,

®x = X v {

1ER i€k

endowed with the topology generated by the base

U{UQXi U is open}U{UXi U{*}: ACkis Coﬁnite}.

€K €A

(The symbol €8 may be pronounced “starred sum”.)

That this set is a base is an easy exercise.
The aim of this definition is to generalise the way in which ordinals are built up
topologically. For example, @), {0} = [0,w] and &), [0,w] = [0,w?].
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Here is our topological analogue of S,,, which we have chosen in this way in order
for Theorem to hold. Here, 1 is a one-element topological space.

Definition. Define A, to be the smallest class of topological spaces subject to the

following conditions.

e A, is closed under homeomorphism.
e lc A,

e If kK <w is a non-zero cardinal and X; € A, for all i € k, then @,_,. X; € A,,.

1ER

o If X; € A, for alli € w, then &),_ X; € A,.

€W

Here is our topological analogue of Hausdorft’s theorem, which is ultimately much

easier to prove than Hausdorft’s theorem once it has been formulated appropriately.
Theorem 3.3.1. Let X be a topological space. The following are equivalent.

1. X s homeomorphic to a countable non-empty set of ordinals under the

subspace topology.
2. XeA,.

Proof. First let X be a countable non-empty set of ordinals under the subspace
topology. We show by induction on the order type of X that X € A,. Let f :
X — [0,a) be an order-isomorphism for some countable ordinal a. Clearly every
finite discrete space lies in A, so assume o > w. Write a = w” - m + ¢ with v a
non-zero ordinal, m a positive integer and ( < w?. If m > 1 or ( > 1 then both
F7H[0,w"]) and f~!([w” + 1,a)) have order type less than «, and by Theorem
X is homeomorphic to their topological disjoint union, so we are done by the
be
a strictly increasing cofinal sequence of ordinals less than w?, and write n_; = —1.
By Theorem , if ( =0then X =@, [ ([mi-1+ 1,m]), whereas if ¢ = 1 then

either X = @, ., [ (i1 + L)) @ {+} or X = @, [~ ([mi—1 + 1,m]). In each
case we are done by the inductive hypothesis.

inductive hypothesis. So we may assume that m = 1 and ¢ € {0,1}. Let (n;)

€W

Conversely, we show by induction on the definition of A, that if X € A, then
X is homeomorphic to a countable non-empty set of ordinals under the subspace
topology. Certainly this is true of 1. Let x < w be a non-zero cardinal and suppose
that for all i € k, X, is homeomorphic to a countable non-empty set of ordinals
under the subspace topology. As we remarked earlier, by the proof of Theorem
we may assume that in fact X; C [0, ;) with a; a countable ordinal for each
i € k. But then ,., X; is immediately seen to be homeomorphic to a subspace
of @, [0,a;] = [0,3,.,. (a; +1)). Finally suppose that £ = w. Then @), X; is
likewise homeomorphic to a subspace of @), [0, ;] = [0,>,c, (o + 1)]. O
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3.4 A characterisation of countable subspaces of

ordinals
In this section we prove our main result of this chapter.

Theorem 3.4.1. A topological space X is homeomorphic to a countable set of
ordinals under the subspace topology if and only if X is homeomorphic to a countable

scattered totally ordered set under the order topology.

This result itself does not seem to appear in the literature, though there are
several more general results that almost imply it. In the “only if” direction, Purisch
[Pur85] showed that any GO-space whose topology is scattered is homeomorphic to
a LOTS. A shorter proof for the special case of subspaces of ordinals was given
by Gutev [Gutld], and contains some similar ideas to our proof. In the “if”
direction, Telgarsky [Tel68, Theorem 9] showed that any scattered metrisable space
is homeomorphic to a subspace of an ordinal.

Since the class of spaces homeomorphic to a countable set of ordinals under the
subspace topology is itself closed under taking subspaces, we immediately obtain

the following.

Corollary 3.4.2. Fvery subspace of the order topology on a countable scattered
totally ordered set is itself homeomorphic to the order topology on some countable

scattered totally ordered set.

In fact, the proof of Purisch’s result [Pur85] should show that the class of
scattered spaces homeomorphic to a LOTS is closed under taking subspaces, which

would generalise this result.
By Corollary and Theorem [3.3.1, we may restate Theorem as follows.

Theorem 3.4.3. Let X be a topological space. The following are equivalent.
1. X is homeomorphic to some member of S, endowed with the order topology.
2. X € A,.

We prove this result, and thereby Theorem and Corollary by showing

that there is a correspondence between the definitions of S,, and A,,.

Proof of Theorem|[3.4.5 We show by induction on the definition of S,, that if X € S,
is endowed with the order topology, then X € A,,. Clearly 1 € A, and if X € S,NA,,
then X* € A,. We claim that if X, Y € §,N A, then X+Y € A,. Given the claim,
suppose < w is a non-zero ordinal and X; € S,NA, for alli € 8. If § < w, then by
the claim Zieﬁ X; € A, by induction. If § = w, then by the claim we may assume
| X;| > 3 for all i € w by replacing X; with X3; + X3;11 + X3;40 for all i € w. Then
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for each 7 € w, pick z; € X; as in Corollary and let X, ={z e X, 2 <ux;}
and X;" = {r € X, : z > z;}. Then

X=X; o X +X5,)

€W

and we are done.

To prove the claim, suppose X,Y € S, N A,. If neither X has a maximal
element nor Y has a minimal element, or both X has a maximal element and Y
has a minimal element, then X +Y = X @Y and we are done. So by symmetry,
we may assume without loss of generality that X has a maximal element z and Y
has no minimal element. Let X = {reX:z<z} If X has a maximal element,
then let Xo = X and X, = 0 for all n € w \ {0}. Otherwise by repeatedly applying
Corollary we can find a strictly increasing cofinal sequence (), from X
such that (—o0, z,,) has a maximal element for all n € w. Then let Xy = (—o0, z¢)
and X,, = [x,_1,2,) for all n € w\ {0}. Likewise we can find a strictly decreasing

coinitial sequence (y,), .., from Y such that (y,,c0) has a minimal element for all

Yyew

n € w. Then let Yy = (yo,00) and Y, = (yn, yn_1] for all n € w \ {0}. Finally let

Zon = X, and Zgp 1 =Y, for alln € w. Then X +Y = &) _ 7, and we are done.

new

Conversely, we show by induction on the definition of A, that if X € A, then X
is homeomorphic to some member of S,, endowed with the order topology. Certainly
this is true of 1. Suppose k < w is a non-zero cardinal and X; € A, is homeomorphic
to some member of S, for all © € k. We claim that for all ¢ € k, X; is homeomorphic
to some member of S, with a minimal element. Given the claim, we may assume
that X; € S, has a minimal element for all 7 € k. It remains to “match up the ends”
of these orderings in such a way as to avoid placing a maximal element before an
ordering with no minimal element or a minimal element after an ordering with no
maximal element. To do this, write {X; : i € k} = {V; : i € \JU{W, : ¢ € u} where
V; has a maximal element for all ¢ € A and W; has no maximal element for all i € p.
If X is finite, then let

|7 ifi <A

Ziy=qW;, ifi= X+ jfor some even j < u

W, iti= A+ j for some odd j < p

for all © € k. Otherwise, if p is finite then let

Wi, ifi < pand g — i is even
Zi= W, ifi<pand p—iisodd

(2

Vi, iti=p+ 7 for some j < A
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for all 7 € k. Finally, if A =yt = w then let

V; if + = 37 for some j < w
Zi=qW;, ifi=3j+1for some j <w
W*

*, ifi =375+ 2 for some j <w

for all i € w. Then in each case, Y .., Z; = @,., Zi = P, Xi, and if £ = w then
(Yieo Zi) + 12 B, Zi = @, Xi. Thus we are done.

To prove the claim, let X € S, and suppose that X has no minimal element.
If X has a maximal element, then X = X* and we are done. Otherwise X has
neither a minimal element nor a maximal element. Certainly |X| > 3, so pick

z € X as in Corollary and let X~ = (—oo,x) and XT = [r,00). Then
X=X"+4+X"2X X" =2 X"+ X~ and we are done. O

We conclude this section with the following observation, which was previously
made by Baker [Bak72, p. 25]. This demonstrates that there is a scattered total
ordering whose order topology is not homeomorphic to a set of ordinals under the
subspace topology. Thus in spite of the results of Purisch and others that apply to
spaces of arbitrary cardinality, it appears that our techniques are confined to the

countable.

Proposition 3.4.4. w; + 1+ w* is not homeomorphic to a set of ordinals under the

subspace topology.

Proof. Observe that in w; + {*} + w*, * does not have a countable neighbourhood
base but does lie in the closure of a disjoint countable set. On the other hand, if
X is a set of ordinals and =z € X does not have a countable neighbourhood base
then x has uncountable cofinality and hence does not lie in the closure of a disjoint

countable set. O

3.5 Subspaces of ordinals less than w"

In this section we use ideas from our topological analogue of Hausdorff’s theorem

to prove the following result.

Theorem 3.5.1. Let n be a positive integer. Then there are countably many

subspaces of [0,w"] up to homeomorphism.

This result is slightly less trivial than it first appears, and ultimately boils
down to the fact that for each positive integer n, there is a finite set of “building
blocks”, namely a finite set of topological spaces such that any subspace of [0, w"]
is homeomorphic to a finite topological disjoint union of spaces from that set. Our

formulation of A, provides us with the language to describe such a set of topological
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spaces somewhat explicitly. In order to do this, let us introduce the finitary special

cases of the infinitary operations used to define A,,.

Definition. Given a finite sequence Xy, Xo, ..., X;_1 of topological spaces, we write
[Xo, X1,. .., Xp_1], for the sequence (Y;),.,, defined by

}/;:Ximodk

for all i € w, where 7 mod k£ denotes the reduction of ¢ modulo k. We then write

@ [X(),Xl, . 7Xk*1]w for @iEw}/i and @ [X(),Xl, . 7Xk*1]w for @iEw}/i'

For example, @[0,w]], = [0,0? and @ [0,w),[0,w]], = [0,w? \
{w-2m+1):m € w}.

By replacing the infinitary operations in the definition of A, by their finitary
special cases, we obtain a subclass of A,. We will soon see that this subclass

corresponds to the subspaces of ordinals less than w®.

Definition. Define A_, to be the smallest class of topological spaces subject to the

following conditions.
e A_, is closed under homeomorphism.
o lc A,
o If Xo,..., X1 € Acw, then Dic 41y Xi € Aca

o If Xo,...,Xk_l S .A<w, then @[Xo,...,Xk_l]w S A<w and
@ [X07 <. 7Xk71}w € A<w-

We will also use the following closely-related subclass of A,,.

Definition. Define .,Zl\<w in the same way as A., but without non-empty finite
topological disjoint unions. In other words, define j@ = Unew ﬁn, where ./Zl\o =
{X : X =1}, and for n € w,

~

An+1 :./zt\nU{Xng@[Xo,...,Xk_l]w or

X @ [ Xo, ..., Xp_1], for some Xo,..., X)1 € A\n} .

Note that no transfinite recursion is required in this definition, since if
Xo,.. ., X1 € le\<w then Xq,..., X1 € A, for some fixed n € w.

For each positive integer n, the =-equivalence classes of ﬁn will correspond to
our “building blocks”. We now make the simple observation that there are only

finitely many such equivalence classes.

Lemma 3.5.2. Let n be a positive integer. Then le\n has only finitely many =-

equivalence classes.
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Proof. Observe that if Xy, Xi,...,X,_1 are topological spaces, then the
homeomorphism types of @ [Xo, X1, ..., Xp—1], and & [Xo, X1, ..., Xi_1], depend
only on which homeomorphism types are among Xy, Xi,..., Xx_1. The result is
then clear by induction on n, since if S is a finite set then the set of subsets of S is
also finite. O

The following result effectively shows that any subspace of [0,w"] is

homeomorphic to a finite topological disjoint union of “building blocks”.

Proposition 3.5.3. Let X be a non-empty topological space. The following are

equivalent.
1. X 1is homeomorphic to a finite topological disjoint union of members of ./zl\<w.
2. X e A_,,.
3. X is homeomorphic to a subspace of [0,w™] for some positive integer n.

Proof. That [T == [2]is trivial.

To prove that 2] = [B] we show by induction on the definition of A, that
if X € A., then X is homeomorphic to a subspace of [0,w"] for some positive
integer n. Certainly this is true of 1, so suppose Xg, Xi,...,Xp_1 € A., are
such that X; is homeomorphic to a subspace of [0,w"] for some positive integer
n for all i € {0,1,...,k—1}. Then there is some fixed positive integer n such
that X; is homeomorphic to a subspace of [0,w"] for all i« € {0,1,...,k—1}.
Hence as in Theorem , D, (01, k—1} X, is homeomorphic to a subspace of
0,w™ - k), @ [Xo,...,Xg_1], is homeomorphic to a subspace of [0,w"!) and
@ [Xo, . .., Xg_1],, is homeomorphic to a subspace of [0,w"].

To prove that 3| = [1], we show that for a fixed positive integer n, if X is a non-
empty subspace of [0,w"], then X is homeomorphic to a finite topological disjoint
union of members of A,. The proof is by induction on n. For the case n = 1, simply
observe that every subspace of [0,w] is homeomorphic to [0,w), [0,w] or a finite
discrete space. For the inductive step, suppose n > 1 and let X be a non-empty
subspace of [1,w"] 2 [0,w"]. Foreachi € wletY; = XNw" ' i+ 1,w" - (i 4+ 1)].
Then by the inductive hypothesis either Y; = () or Y; is homeomorphic to a finite
topological disjoint union of members of ,Zl\n_l for all i € w. If Y; = (0 for all but
finitely many ¢ € w, then X is homeomorphic to a finite topological disjoint union
of a finite topological disjoint union of members of A, (and possibly the point
w"), and we are done. Otherwise by dividing up those non-empty Y; for i € w into
members of ./Zl\n_l and relabelling if necessary, we may assume Y; € ./zl\n_l for all
t € w. Then by Lemma there exist finitely many pairwise non-homeomorphic
topological spaces Xy, X1,...,X;_1 € ./Zl\n_1 such that for all 7 € w, ¥; = X for some
j€40,1,...,1—1}. Without loss of generality the spaces that are homeomorphic
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to infinitely many of the Y; are X, X3,..., Xy for some k € {1,2,...,l}. Finally

let m be maximal such that Y, is not homeomorphic to any of X, ..., X; 1. Then

Yo - @Y1 ®@P[Xo, Xu,.. ., Xpa],, Hw"¢X
Yo@ @Y1 ®®I[Xo, X1, ., Xpa],, Hfow"eX

X

12

and we are done. O

Theorem [3.5.1| now follows immediately.

Proof of Theorem[3.5.1. By the equivalence of [1] and [3] of Proposition [3.5.3] it is
enough to prove that JZ@ has countably many =-equivalence classes. But this is
immediate from Lemma by definition of le\<w. O

Note that the proof of Lemma [3.5.2] provides us with an explicit finite
upper bound on the number of Z-equivalence classes of .Xn However, our
proof makes no attempt to optimise this upper bound. Indeed there are
various homeomorphisms between spaces whose explicit definitions differ, such as
@D 0,w)], = [0,w) and & [{0},[0,w]], = BI[0,w]],. More generally, for any
Xo, X1y X, Yo, Vi, Y € Ay

L4 @[@ D/E)a}/la"'7%*1]W7X1>"'7Xk71]w = @[%7}/17"'7}/2717X17"'7Xk71]w;
and

e if ¥{ is used in the explicit definition of X, then @ [Yo, Xo, Xi,..., Xj_1], =
@[XOaXla'--vXk—l]w and @[%,XO,X17-~,X14—1]M
B [Xo, X1, - .. s X—1],,-

12

It may be an interesting problem to determine the exact number of =-equivalence
classes of .Zl\n We conjecture that the only homeomorphisms between spaces whose
explicit definitions differ are consequences of the above identities.

Note also that we showed in the proof of Proposition that every subspace
of [0,w™"] is homeomorphic to a finite topological disjoint union of members of A,
Thus Lemma does indeed provide us with a finite set of “building blocks”,
though there seems to be no reason to think that it is the smallest such set. We
therefore propose the related problem of determining the smallest size of such a set
of “building blocks”.

Question 3.5.4. Let n be a positive integer. What is the smallest size of a set A
of topological spaces such that every subspace of [0, w"] is homeomorphic to a finite

topological disjoint union of members of A?
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3.6 The number of subspaces of an ordinal up to

homeomorphism

In this section we will see that, in contrast to Theorem [3.5.1] the number of subspaces
of an ordinal greater than or equal to w® up to homeomorphism is as large as it could
have been.

Let us illustrate how one may go about constructing non-homeomorphic
subspaces of ordinals with a simple example. Let X = [0,w?] \ {w-m:m € w}.
We show that X is not homeomorphic to [0, «) for any ordinal «. Recall that we
say a topological space is locally compact to mean that every point has a compact
neighbourhood. By Lemma [0, ) is locally compact for any ordinal a. On
the other hand, X is not locally compact, since if U is any neighbourhood of X
containing the point w?, then [w-m,w - (m + 1)) is a closed subset of U for some
m € w, but it is not compact.

Putting this idea together with the Cantor-Bendixson derivative gives us a simple

way to construct large numbers of pairwise non-homeomorphic subspaces of ordinals.

Theorem 3.6.1. There is a collection of 2%° pairwise non-homeomorphic subspaces
of [0,w*).

Proof. For each I C w, let

A= J{Bi,3i+ 130 | {34,3i + 2},

el i€w\I

and let
X; = {ZE S [O,w“’) :CB ([E) € A[}

Observe that for all i € w,

{z€0,w?): CB(x) € {3i,3i + 1}}, ifiel

X @)\ x @+ _ o .
{r €]0,w”):CB(x) € {3i,3i +2}}, ifi¢l.

Thus ¢ € I if and only if X}Qi) \X}Qi”) is locally compact. It follows that (X7)

is as required. O

A similar argument works for every uncountable cardinal, which in this context

should be thought of as an initial ordinal.

Theorem 3.6.2. Let k be an uncountable cardinal. Then there is a collection of 2

pairwise non-homeomorphic subspaces of [0, k).

Proof. First note that since k is uncountable, K = w*" (using ordinal arithmetic).
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Now for each S C &, let

As=J-aw-(a+))U |J (w-aw-(a+ 1)\ {w-a+1}),

a€ES aEr\S

and let
Xg = {LU € [O,li) : CB(Z’) EAs}.

Observe that for all a € k,

{re€]0,k):CB(z) e{w-a,w-a+1}}, ifaes

Xéw-a) \Xéw-aJrQ) _
{re€0,r) :CB(z) e{w-a,w-a+2}}, ifadgs.

Thus a € S if and only if Xéw‘a) \Xéw'aH) is locally compact. It follows that (Xs)gc,

is as required. O

With these constructions we have completed the calculation of the number of

subspaces of an arbitrary ordinal up to homeomorphism.

Theorem 3.6.3. Let « be an ordinal. Then the number of =-equivalence classes of

subspaces of [0, ) is

;

a+1l, ifa<w

No, ifw<a<w”

A ifw’ <a<w

28 if |a| = K for some uncountable cardinal k.

\

Proof. The case a < w is trivial, and the remaining cases are Theorems
and respectively. O

3.7 One-point F-extensions

We conclude this chapter by generalising the one-point cofinite extension operation
on topological spaces to arbitrary filters, as indicated by the following observation.
We adopt the convention that a filter on a set is allowed to contain (), and say that

a filter F' is proper to mean that () ¢ F.

Lemma 3.7.1. Let k be a cardinal and let (X;)
topological spaces with * ¢ | J

be a collection of pairwise disjoint
X; U{x}. Let F be a collection

1ER

en Xio Let X = U,

of subsets of k and let
T={UCX:UNX, is openin X; and if x € U then {i € k : UNX; = X;} € F}.

Then T is a topology on X if and only if F' is a (not necessarily proper) filter on k.
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Proof. The following easily-checked observations are sufficient.
e her.
e X € rifand onlyif xk € F.

e 7 is closed under binary intersections if and only if F' is closed under binary

intersections.
e 7 is closed under arbitrary unions if and only if F' is upward-closed. O
Out of this this result comes the following definition.

Definition. Let s be a cardinal and F' be a filter on «.

Given (Xj),., as in the above result, we define the one-point F-extension of
(Xi)ién by
F
1ER i€k

endowed with the topology 7 from Lemma [3.7.1]

Thus the one-point cofinite extension @),., X; is the one-point F-extension
@f@ X; where F'is taken to be the cofinite filter on w.

One-point F-extensions allow for the construction of some unusual topological
spaces. We do not have much to say about one-point F-extensions in general, but
we do make the curious observation that various properties of topological spaces

correspond to properties of filters, in the following sense.

Definition. Given a property P of topological spaces, we say that F' preserves P
to mean that if X; has property P for all ¢ € k then @F

1ER

X, has property P.
We say that a topological space is extremally disconnected to mean that the

closure of every open set is open.
Proposition 3.7.2. Let k be a cardinal and F be a filter on kK.
1. F preserves Hausdorffness if and only if F' contains the cofinite filter.
2. F preserves compactness if and only if F' is contained in the cofinite filter.

3. F preserves extremal disconnectedness if and only if F' s either improper or

an ultrafilter.

4. F preserves second-countability if and only if k is countable and F has a

countable base.
5. F preserves reqularity if and only if F' contains the cofinite filter.

6. F' preserves discreteness if and only if F' is the improper filter.
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7. F preserves total disconnectedness if and only if F' contains the cofinite filter.
8. F preserves scatteredness.

It is straightforward to extend this list to other properties of topological spaces.

We omit the proof of this result since it is a routine rearrangement of definitions.



Chapter 4

The topological pigeonhole

principle for ordinals

In this chapter we re-introduce the topological and closed partition relations for
ordinals, explore the relationship between them, and discuss other generalities.
We then compute the topological and closed pigeonhole numbers of an arbitrary

sequence of ordinals.

4.1 Partition relation notation

Let us briefly recap the classical, topological and closed partition relations for
ordinals. Recall that we say a subspace X of an ordinal is order-homeomorphic
to an ordinal o to mean that there is a bijection X — « that is both an order-
isomorphism and a homeomorphism. By Proposition this is equivalent to
saying that X is both order-isomorphic to o and internally closed, justifying our use

of the term “closed”.

Definition. Let x be a cardinal, let n be a positive integer, and let 5 and all «; be
ordinals for i € k.
We write
B = (i)ie,

to mean that for every function ¢ : [§]" — k there exists some subset X C [ and
some i € k such that X is an i-homogeneous copy of a, i.e., [X]|" C ¢ *({i}) and X
is order-isomorphic to «;.

We write

B —top (i)icsy

to mean that for every function ¢ : [§]" — k there exists some subspace X C 3
and some i € k such that X is an i-homogeneous topological copy of a, i.e., [X]" C
c1({i}) and X = ;.

We write

B —ra ()i,

41
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to mean that for every function ¢ : 5] — k there exists some subset X C [ and
some i €  such that X is an i-homogeneous closed copy of , i.e., [X]" C ¢ 1({i})

and X is order-homeomorphic to «;.

The function ¢ in these definitions will often be referred to as a colouring, and we
may say that x is coloured with i simply to mean that ¢ (z) = i. We write 8 — (a)?
for f — (o)}

closed relations.

. when o; = o for all @ € x, and similarly for the topological and
Although the closed relation may appear more natural than the topological
relation, it is the topological one that has been considered historically, since it can
be defined for arbitrary topological spaces. Moreover, the two relations are closely
related, as we shall see in Section [£.4]
In this chapter we will be concerned exclusively with the case n = 1. In this case
and v > f3

and similarly for the other relations. Thus it is sensible to make

we work with g rather than [6] for simplicity. Clearly if 8 — ()"

1ER

then v — ()

1ER)

the following definition.

Definition. Let s be a cardinal and let «; be an ordinal for each 7 € &.
to be the least ordinal
the topological pigeonhole number P*P (;),.,. to be the least

We define the (classical) pigeonhole number P (o),
such that § — (az)leﬁ,
ordinal § such that 5 —, (ozz)zlen,
be the least ordinal 3 such that 8 — (al)

We extend the usual ordering on the ordinals to include co as a maximum. If
there is no ordinal 3 such that 8 — (o)

and write P («;),

1ER

1ER

and the closed pigeonhole number P (a;). . to

1ER
1ER"

icrs then we say that P (o)., does not exist
= 00, and similarly for the topological and closed pigeonhole

numbers.

Thus for example if ny, ng, ..., n, are positive integers, then
k
to! cl
P(ni,ng,...,ng) = PP (ny,ng,...,ng) = P (ny,na,...,ng) = E (n; —

=1

Note that P ((0),c,,(1),) = P (a;),., for any cardinal A, and that for fixed &,

P (Oéz)

1ER

1ER

is a monotonically increasing function of («;), . (pointwise), and similarly

1ER
for the topological and closed pigeonhole numbers. Note also that the closed
partition relation implies the other two, and hence P (o)., < P4 (ay),., and

1€ER
PtOp (Oéz) < PCZ (Oéz)

€Kk — 1ER"

4.2 The classical pigeonhole principle for ordinals

The classical pigeonhole numbers were computed by Milner and Rado [MR65]. In
our calculation of the topological and closed pigeonhole numbers, we will use the

special case of their result for a finite sequence of countable ordinals. This uses the
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natural sum, due to Hessenberg, which may be thought of as the base-w sum of

ordinals in Cantor normal form.

Definition. Let o and 8 be ordinals. Then we may choose a sequence of ordinals

Y >y > oo >y, and Uy, lo, ... Ly, My, ma, ..., My, € w such that
oz:w”“-ll—l—w”-lg—i—-“—i—w%-ln

and

BIW'YI.m1+w72.m2+...+w7".mn_

We define the natural sum of o and 3 by
a#f =wm (I +my) +w? - (lo+mo) +-- -+ W™ (I, + my) .

As part of their computation of the classical pigeonhole numbers, Milner and

Rado introduced a related binary operation on ordinals.

Definition. Let o and  be ordinals. Then we define the Milner—Rado sum of «
and (3, denoted by a ® 3, to be the least ordinal § such that if @ < « and B < p

then & £ a#p.

Milner and Rado [MRG5| observed that if ( > a ® 8, @ < a and E < 3, then
¢ # &#5 . They also observed that both # and ® are commutative and associative,
and so brackets may be omitted when three or more ordinals are summed. Notice
that if oy, g, ..., ap are ordinals, then oy ©® as ® - - - ® a is simply the least ordinal
d such that if a; < a; for all i € {1,2,... k} then § # ay#ant - - - #ay.

The relevance of this operation is given by the following result [MR65, Theorem
8].

Theorem 4.2.1 (Milner-Rado). Let oy, s, ..., be non-zero ordinals. Then
P(Oél,OJQ,...,Oék) =N RON« > NORERNON TS

We omit the proof of this result, but it is essentially the statement that
Q1F Qo - - - Fay, is the largest ordinal that may be written as a disjoint union of
k sets of order types aq, s, ..., q; respectively. This follows from the fact that
wY — (uﬂ),{; for all ordinals ~, which may be proved by induction on .

Milner and Rado also computed the Milner-Rado sum of an arbitrary finite

sequence of ordinals in terms of Cantor normal forms [MR65, Theorem 9.

Theorem 4.2.2 (Milner-Rado). Let ay,aq, ..., be non-zero ordinals. We may
choose a sequence of ordinals y; > o > -+ > vy and, for each i € {1,2,...,k},
M1, M2y -+« s Min, € w such that for each i € {1,2,...,k}, my,, >0 and

O[Z» :w’h .mi1+w72 mz2++wvnz mznz
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Let n = min{ny,ny,...,ng} and let s; = Zle m;; for each j € {1,2,...,n}.
Finally let t = |{i € {1,2,...,k} :n; =n}|. Then

Oa® - Oap=w" s +wW? s+ +wn s, g W (s, —t+1).

Together, these results determine the classical pigeonhole number of an arbitrary
finite sequence of ordinals in terms of Cantor normal forms. In our calculation of
the topological pigeonhole number of a finite sequence of countable ordinals, we

will take advantage of this by making the following link between the classical and

topological pigeonhole numbers (see Theorems [4.7.4] and [4.7.5)).

Theorem 4.2.3. Let ay,as, ..., a5 € wy \ {0}.
1. PP (W 1,002 + 1,... W + 1) = worfke#t#an 1,
2. PP (w™ w2 ... w) = whlev,02,..ax)

As we will see in Section [4.4] the corresponding closed pigeonhole numbers are

the same in these cases.

4.3 Biembeddability of ordinals

The notion of biembeddability is a weakening of the notion of homeomorphism that

is useful for simplifying the calculation of topological pigeonhole numbers.

Definition. Let X and Y be topological spaces. We say that X and Y are
biembeddable, and write X =Y, if and only if X is homeomorphic to a subspace of

Y and Y is homeomorphic to a subspace of X.

Clearly = is an equivalence relation. Moreover, biembeddable ordinals may be
substituted in topological (but not in closed) partition relations, in the sense that if
8= 5 and a; & q; for all i € k, then 8 —4,, ()

n
1ER

We will now classify the ordinals up to biembeddability, beginning with a positive

n
1ER"

if and only if E —top ()

result.

Lemma 4.3.1. Let vy, m and § be non-zero ordinals with m € w and 6 < w”. Then
wh-m+1=w-m+4.

Proof. Clearly w”-m+ 1 is homeomorphic to a subspace of w”-m+4, so it is enough
to show that w?” - m + ¢ is homeomorphic to a subspace of w” - m + 1. In fact, we
show that w” -m + 14 0 + 1 is homeomorphic to w” - m + 1, which is sufficient.
Now if a and [ are successor ordinals, then a + § = 8 4+ a by Lemma [2.4.2]
Hence w’ - m+14+0+1=2d+14w’ - m+1=w’-m+1since § < w”. O
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Because of the substitution property of biembeddable ordinals, this has following
immediate consequence, which will be useful.

Proposition 4.3.2. Let k be a cardinal and let «; be an ordinal for each i € k.

Suppose that for some non-zero ordinal ~v and some positive integer m we have
W m+1< PP (), <w' - (m+1).

Then in fact

P (a;)... =w-m+ 1. O

1ER

We now show that Lemma is best possible.

Proposition 4.3.3. Let v, m and § be non-zero ordinals with m € w and 6 < w”.
Then

1. W' m+ 12w -m;
2. WY %0, and

3. wr-(m+1)Zw -m+ 1.

Proof. 1. By Proposition [2.3.3] we have ’(uﬂ-m+1)('y) = m while

‘(w'y . m)(v)

to w? -m + 1.

= m — 1. Therefore no subspace of w” - m can be homeomorphic

2. If y = n+1, then by Proposition (w)™ is infinite while 6 is finite (or
empty). If v is a limit ordinal, then by Proposition m, (uﬂ)(") # () for all
n < v while 6 = ) for some 1 < . In either case no subspace of § can be

homeomorphic to w?.

3. Let X = w"-(m + 1). By Proposition X has the following two properties:
firstly, !X (V)} = m; and secondly, X has a closed subset Z with Z N X = ()

and Z = w?, namely Z = [wY-m + 1,w? - (m+1)).

Suppose then that Y is a subspace of w” - m + 1 with }Y(V)| = m, and that
W is a closed subset of Y with W NY® = (. We show that W 2 w7,
which suffices. Since |[Y| = m = ‘(uﬂ cm+ 1)
(W -m+1D" = {w,w-2,...,w-m}. Therefore since W is closed, for
cach i € {0,...,m — 1} there exists x; € [w”-i+1,w” - (i+ 1)) such that
W N (z,w? - (i+1)) = 0. It follows that W is homeomorphic to the disjoint
union of a finite number of subspaces of { for some ( < w?. The argument of
part [2[ then shows that W 2 w?. O

., we must have Y =

Lemma and Proposition 4.3.3 may be together restated as follows.
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Corollary 4.3.4 (Classification of ordinals up to biembeddability). Two ordinals
a < B are biembeddable if and only if either « = = w" - m for some ordinal v and
somem € w, orw? -m+1<a<f<w’ (m+1) for some non-zero ordinal v and

some positive integer m. 0

4.4 Order-reinforcing ordinals

The topological and closed partition relations are closely related, thanks to the

following notion.

Definition. Let a be an ordinal. We say that « is order-reinforcing if and only if|
whenever X is a set of ordinals under the subspace topology with X = «a, there is

a subset Y C X such that Y is order-homeomorphic to a.

= PCl (Oél)

Baumgartner [Bau86, Theorem 0.2] showed that every countable ordinal of the

Clearly if a; is order-reinforcing for all i € x, then P*P (o), i

form w” 4+ 1 or w” is order-reinforcing. We now extend this result.

Theorem 4.4.1. Let v be a non-zero ordinal and let m be a positive integer. Then
1. WY -m+ 1 is order-reinforcing; and
2. WY s order-reinforcing.

Baumgartner’s proof for ordinals of the form w?” 41 is also valid for uncountable
ordinals of this form, and our proof of part[l]is almost identical. Baumgartner’s proof
for ordinals of the form w?” is valid for uncountable ordinals of this form providing
they have countable cofinality, so we provide a new proof to cover the remaining
case.

In the proof, given a topological space A and a subset B C A, we write cly (B)
for the closure of B in A.

Proof. 1. Let « = w”-m+ 1 and let X be a set of ordinals with X = «. Then
X is compact and therefore internally closed, so by Proposition 2.2.4] X is
order-homeomorphic to its order type. This order type must be at least « in
order for ‘X(V)’ = m. Hence we may take Y to be the initial segment of X of

order type a.

2. Let a = w?”. Baumgartner’s proof covers the case in which a has countable

cofinality, so assume that a has uncountable cofinality.

Let X be a set of ordinals with X = «, and let 1 be the least ordinal with
X Cn. Then X is not compact and is therefore not a closed subset of the

compact space 4 1. So we may let x be the minimal element of cl, 1 (X)\ X.
Let Z = X N[0,z), so that Z is a closed cofinal subset of [0,2). Then by
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Proposition[2.2.4] Z is order-homeomorphic to its order type, say the ordinal .
Observe now that 7 is a closed open subset of X but is not compact. We claim
that any closed open subset of « that is not compact must be homeomorphic
to a. From this it follows that § = « and hence § > « by Proposition
part 2] Hence we may take Y to be the initial segment of Z of order type «.

To prove the claim, suppose W is a closed open subset of a that is not compact.
Then W and a\ W are both closed subsets of «, but they are disjoint and so
cannot both be club in . Now any closed bounded subset of « is compact,
so it must be that W is unbounded in «a while o\ W is bounded. It follows
that W has order type a, and so W = « by Proposition [2.2.4. This proves

the claim, which completes the proof. O]

Thus the topological and closed pigeonhole numbers coincide for ordinals of the
form w?” or w” - m + 1 with m a positive integer.

We now show that this result is best possible for infinite ordinals.

Corollary 4.4.2 (Classification of order-reinforcing ordinals). An ordinal o is order-
reinforcing if and only if either o is finite, or « = WY - m + 1 for some non-zero

ordinal v and some positive integer m, or o = w? for some non-zero ordinal .

Proof. The “if” statement follows from Theorem and the fact that every finite
ordinal is order-reinforcing.

For the “only if” statement, if « is infinite then we may write @« = w” - m + 9
with v a non-zero ordinal, m a positive integer and § < w”. Assume that o does
not have one of the given forms, so that either 6 > 1, or d =0 and m > 1. If § > 1,
then by Lemma we may take X to be a subspace of w7 -m + 1 with X = . If
9 =0 and m > 1, then we may take X = (w?-m+ 1) \ {w”}. In either case X is a

witness to the fact that « is not order-reinforcing. n

4.5 The ordinal w +1

Before stating the topological pigeonhole principle for ordinals in general, we first

prove the following very special case of Theorem for illustrative purposes.

Proposition 4.5.1. Let k be a positive integer. Then
PP (w+1), ="+ 1.

This result may be proved directly by induction on k£, much as in our proof
of Theorem [5.2.1], which is stronger. We provide an alternative proof in order to
illustrate the character of many later proofs. The main idea is the following result,
which says that any finite colouring of w™ is in some sense similar to a colouring

which is constant on ordinals of the same Cantor-Bendixson rank.
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Lemma 4.5.2. Let k and n be positive integers and let ¢ : w™ — k. Then there is
some subset X C w™ such that X = w" and ¢ is constant on X @ \X(”l) for each

1EMN.

Proof. The proof is by induction on n. The case n = 1 is simply the ordinary
pigeonhole principle w —p (w),ﬁ, so assume n > 1. Consider first the restriction of
cto{w-a:a€w !} By the inductive hypothesis, passing to a subset we may
assume that c is constant on (w™)® \ (™)™ for each i € n\ {0}. By considering
the restriction of ¢ to [w™ ™' - m + 1,w" ! - (m + 1)] for each m € w, we may likewise
assume that ¢ is constant on (w™\ (w")') N [w"™'-m+ 1,w" "+ (m+1)] for each
m € w, taking the value ¢,,, say. To finish, simply choose an infinite subset S C w
such that ¢; = ¢, for all [,m € S, and take X to be

U [ m+ 1w (m+ 1)) O

meS

Proof of Proposition[{.5.1 To see that w* -, (w + 1),16, simply colour each x € wk
with colour CB (), and observe that each colour class is discrete.

To see that w*+1 —,, (W + 1),1, let ¢ : wF+1 — k. Choose X C w* as in Lemma
, and let Y = X U {wk} Since Y®) is simply the singleton {wk}, we in fact
have that ¢ is constant on Y \ Y+ for each i € k + 1. By the finite pigeonhole
principle k+1 — (2),, it follows that c is constant on (V@ \ YD)y (Y@ \ y+D)
for some distinct 7, j € k+ 1, a set which is easily seen to contain a topological copy
of w—+ 1. 0

The key idea to take from this proof is the importance of colourings of the form
coCB for some ¢ : k — k. The negative relation was proved using a counterexample
of this form. The positive relation was proved by showing in the Lemma that any
colouring must be similar to some colouring of this form, and applying the pigeonhole
principle to k + 1. The proof of Theorem [4.2.3] will be similar, with this use of the

Lemma and the pigeonhole principle replaced by a result of Weiss.

4.6 Statement of the principle

We now state the topological pigeonhole principle for ordinals in full. Although it
may not be necessary to go through the details of every case at this stage, they
are included here for completeness. Our main breakthrough is given in case [6], and
includes Theorem as a special case. Later we will describe the modifications
required to obtain the closed pigeonhole principle for ordinals.

Observe first that if a,, = 0 for some r € &, then PP (a;),.,. = 0, and if I C &
with ; = 1 for all i € I, then PP ()., = P'P ();c,;- Thus it is sufficient to

consider the cases in which a; > 2 for all ¢ € k.

1ER
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Theorem 4.6.1 (The topological pigeonhole principle for ordinals). Let k be a

cardinal, and let o; be an ordinal with o; > 2 for all i € K.

1. Ifa, > wi+1 and oy > w+1 for some distinct r, s € &, then P'P (a;),, = 00.

2. If ap, > wy + 1 for somer € k and oy; < w for alli € k\ {r}:

(a) if Kk > Ny:

i. if ay is a not a power of w, then P'P ()., = o - KT
i. if o, is a power of w:

A. if cf (ar) > K, then PP (04),c,, = s

B. if Xy < cf (ar) < K, then PP (q),,, = - KT

C. if cf (a,) = Ny, then we may write o, = W’ and B = v + W’ with
0 not a limit ordinal of uncountable cofinality; then
o if 6 < KT, then P (q;)
o if 0 > KT, then P"P («;)

et
iEH_ar K5

iew — %y
(b) if Kk <Ry and oy = w for some s € K\ {r}:

i. if ay is a power of w, then P'P (0;),c,, = s

i. if oy is not a power of w, then PP (a;);c, = Qi - w;
(c) if Kk <Ny and oy < w for alli € xk\ {r}:

i. if ay is a power of w or k =1, then PP ()., = Qu;

i. if k > 1 and . is not a power of w, then W’ m+1 < a, < w?-(m + 1)

for some ordinal B and some positive integer m, then

PP (i) = | D (=1 4+m | +1
ier\{r}

3. If a; < wq foralli € k and a,., s = wy for some distinct r,s € Kk, then the

value of P'P (a;),,. s independent of ZFC in the following sense.

Write “P, = x” for the statement, “k is a cardinal, and for all sequences
(ati);e, of ordinals, if 2 < a; < wy for all i € Kk and a,, s = wy for some
distinct v, s € K, then PP (o), = 7. Likewise for “P, > x”.

Firstly,

“for all cardinals k > 2, P, > max {wz, /-§+} 7
is a theorem of ZFC. Secondly, if ZFC is consistent, then so is
ZFC + “for all cardinals k > 2, P, = o0”.
Thirdly, if ZFC+ “there exists a supercompact cardinal” is consistent, then so

18

ZFC + “for all cardinals k > 2, P, = max {wg, Ii+} 7.
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Moreover, some large cardinal assumption is required, since ZFC+ “there exists

a Mahlo cardinal” is consistent if and only if

ZFC + “Wy —0p (w1)s”

18 consistent.

4. If ap = wy for somer € k and o; < wy for alli € K\ {r}, then PP («;)

i€k

max {wy, kT }.

+

5. If a; < wy for alli € k and k > Ny, then PP (o)., = kT,

1ER
6. If a; <wy forallt € k and kK < Ny:

(a) if a; < w for alli € k, then

P ()se, = Y (s — 1) +1;

1€R
(b) if o, is a power of w for some r € K, then

Ptop (&2) — wﬁO@ﬂl@“‘@ﬁm—l’

1ER

where for each i € K, B; is minimal subject to the condition that oy < w’;

(c) if a; is not a power of w for any i € k and a, > w for some r € K, then
for each i € kK we can find an ordinal B; and a positive integer m; such
that either oy = m; and B; = 0, or WP -m; +1 < oy < WP - (m; + 1) and
B; > 0; then:

i. if there exists s € k such that o, = wP - (my + 1), CB(3s) < CB(5;)
foralli € k, and m; =1 for alli € k \ {s}, then

ptop (a%) — Po#PI#F#Br-1 (ms + 1) :

1ER

1. otherwise,

P (047)¢,, = w0 OE A (Z (m; —1) + 1) +1.

1ER

We prove this result in a case-by-case fashion, as follows. Case [1| has a simple
proof, which we give in Proposition [£.10.1] Case [2] has many subcases, each of
which has a relatively straightforward proof; we reformulate these subcases using
an elementary argument in Lemma [£.10.2] before proving each one individually
in Section [4.11} Case [J| is easy to deduce from results of others, which we do in
Section [£.9) Cases [] and [5] have simple proofs involving stationary sets, which we

give in Section [4.8 Finally, case [0] has the most new ideas. We provide the main
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ingredients for the proof in Section [4.7], before combining them to complete the proof
in Section [4.11] We describe the key ideas first, including the proof of Theorem [4.2.3
in Theorems |4.7.4] and 4.7.5]

4.7 Finite sequences of countable ordinals

We will now go through the cases of the principle in roughly reverse order, providing
the key ingredients for the proof, before combining them to complete the proof. We
begin with case [0] of the principle, including the proof of Theorem [4.2.3] First of all

we state Weiss’s result, which requires us to introduce some notation.

Definition. Let 74 > 79 > -+ > =, be ordinals and S C {1,2,...,n}, say S =

{s1,82,...,8} with s1 < 89 < -+ < 5;. Then we write
DW= Wt W W
€S

and
wzies‘*ﬂi, if § 7£ @

0, if S =10.

Y1 Y2 4... v
(ww w2+ +tw ")S
Weiss’s result is our key tool for proving positive relations in this section, and

was first published by Baumgartner [Bau86, Theorem 2.3].

Theorem 4.7.1 (Weiss). Let 3 > 9 > -+ > 7, be countable ordinals, let

8= T W2t
and let ¢ : B — 2. Then there exists S C {1,2,...,n}, X C ¢ ({0}) and Y C
¢V ({1}) such that X = Bs, Y = Bia,.aps) and X and Y are both either empty

or cofinal in (3.

A careful reading of Baumgartner’s proof reveals that “homeomorphic” can in
fact be strengthened to “order-homeomorphic”. Furthermore, we will be interested
in colourings using more than 2 colours. It will therefore be more convenient to use

this result in the following form.

Corollary 4.7.2. Let B be as in Weiss’s theorem, let k be a positive integer and let
¢:f — k. Then there exists a partition of {1,2,... ,n} into k pieces Sy, S1, ..., Sk_1
and for each i € k a subset X; C ¢ ' ({i}) such that for all i € k, X; is order-

homeomorphic to Bs, and X; is either empty or cofinal in S.

Proof. This follows immediately from the “order-homeomorphic” version of Weiss’s

theorem by induction on k. O]
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To prove negative relations we will frequently consider colourings based on those
of the form ¢ o CB for some ¢ : f§ — Kk, where 3 is a non-zero ordinal. The following

result is our key tool for analysing these colourings.

Proposition 4.7.3. Let a and n be ordinals. Let Y be a set of ordinals of order
type o, and let X = {x € n: CB(z) € Y}. Then X = ().

Proof. For each ¢ < «, let Y, be the initial segment of ¥ of order type ¢ and
let X; = {vren:CB(z) € Y;}. It is easy to prove by induction on ( < « that
X© = X\ X;. Hence X@ = X\ X, = 0. O

We can now apply these two tools to prove Theorem [4.2.3] beginning with part
1

Theorem 4.7.4. Let ag, o, ..., a1 € wy \ {0}. Then
PPP (W™ + 1,w™ +1,...,w% 1 4 1) = wo#or##or— 4 ]

Proof. Write ag#ai1# -+ #ap_ 1 =0 =w"+wP+-- 4w with v, > 7 > -+ > 7,
and write 8 = w°.

To see that B e (W™ 4+ 1,w™ +1,...,w™ 1 + 1), first observe that by
definition of the natural sum, there is a partition of {1,2,...,n} into k pieces
S0, 51, ..., Sk_1 such that for all i € k, o; = ZjeSi wY. Now define a colouring

c:f — k as follows. For each i € k, set ¢ (z) =i if and only if
W w? 4w <CB(z) <w™ w4 w

for some j € S;. Observe that ¢! ({i}) = {x € 3: CB(x) € Y;} for some set Y;
of ordinals of order type «;. Thus by Proposition , ¢V ({i}) ) = 0, whereas
(w* + 1)) = {w*}. Hence ¢! ({i}) cannot contain a topological copy of w® + 1.

To see that 8+ 1 —pp (W + 1w +1,... w2 +1)1, let ¢ : B+1 — k.
Choose Sy, S1,---,5k—1 C {1,2,...,n} and Xy, X;,..., X1 C B as in Corollary
72 If Bs, > w® for some i € k, then we are done. So we may assume [g, < w®
for all ¢+ € k. But then we must in fact have s, = w® for all © € k, or else
B < weotor#-#ak-1 Tg finish, suppose ¢ (3) = j. Then since X; is cofinal in §3,
X; U{p} is a topological copy of w® + 1 in colour j. O

The proof of part [2| of Theorem is similar but a little more complicated
as it makes use of the Milner-Rado sum. We make use of the fact that
P(ag,0q,...,00-1) = ap@a; ®- -+ O ag_1 by using the first expression to prove the

negative relation and the second expression to prove the positive relation.

Theorem 4.7.5. Let ag, aq,...,a5-1 € wy \ {0}. Then

PP (w0, W™, .. wkl) = 00O Ok,
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Proof. First recall from Theorem that P (g, a1, ..., 5 1) =g Qa1 ® -+ ©
ag_1. Write o for their common value, write 6 = W + wW” + --- + W' with v, >
Yo > -+ > 7, and write 8 = w°.

Suppose ¢ < . To see that ¢ -, (W*,w*,... ,wo‘k—l)l, first observe that
¢ <w"-m+1 for some n < § and some m € w, so it is sufficient to consider the case
in which ( = w”-m+1. Since n < P (ag, o, ..., 1), there is a colouring ¢ : n — k
such that for all ¢ € k, the order type of ¢! ({i}) is &; < a;. Let ¢ : ( — k be a
colouring with ¢ (z) = ¢(CB (x)) for all x € ¢\ {w",w"-2,...,w"-m} (it doesn’t
matter how the points w”,w" - 2,... ,w" - m are coloured). By Proposition m,

D@ C{wn w2, wh-m) for all i € k, whereas (w®)® is infinite since
&; < ;. Hence ¢! ({i}) cannot contain a topological copy of w®:.
To see that 8 —p (W,w™,... ,wo‘k—l)l, let ¢ : B — k. Choose

S0, 51, -, 51 € {1,2,...,n} and Xo, Xq,..., X1 C B as in Corollary . If
Bs, > w for some ¢ € k, then we are done, so suppose for contradiction that [g, <
w for alli € k. Write a; = ZjESi WY, so that w® = B, and Qp#a# - - - #ap_1 = 3
by definition. Then since g, < w* foralli € kand S =00 O a1 © -+ O a1, We
have a; < «; for all i € k while ag#a# - #Hap_1 = ag O a; ® -+ O agp_1, contrary
to the definition of the Milner—Rado sum. O

This completes the proof of Theorem 4.2.3], which provides us with the topological
pigeonhole numbers for finite sequences of countable ordinals when either each
ordinal is a power of w or each ordinal is a power of w plus 1.

Our next result generalises Theorem by considering mixtures of such
ordinals including at least one power of w. Using monotonicity, this will provide
us with the topological pigeonhole numbers for all finite sequences of countable
ordinals in which one of the ordinals is a power of w, thereby completing case [6b] of
the principle. The result essentially says that in this case, the topological pigeonhole
number is the same as if the other ordinals were “rounded up” to the next largest
power of w.

The proof involves proving two negative relations, the first of which uses ideas
from Theorem [£.7.4] and the second of which uses ideas from Theorem HE. 7.5

Theorem 4.7.6. Let ag, o, ..., 041,049, ..,0k—1 € w1 \ {0}, where 0 <1 < k.
Then

prov (wao,wal, oW WO o L w4 1)
— 00O O(G141+1)O(8142+1) OO (6k—1+1)

Proof. Write P for the left-hand side and /3 for the right-hand side. Clearly P < /3
by Theorem [4.7.5] and monotonicity, so we prove that P > [5.

Suppose first that a; is a successor ordinal for all i € {0, 1,...,1}, say a; = 6;+ 1.
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Then by Theorem [1.2.2] 8 = w#1##%-1+1 Suppose ¢ < 8. We will show that
C *top (W60+17W61 + 1,w62 +1,... ,w‘sk—l + 1)1 ’

which suffices. Write 6 = So#01# - - - #6,_1, and observe first that ¢ < w?-m + 1
for some m € w, so it is sufficient to consider the case in which ¢ = w?-m 4 1. Next
recall from the proof of Theorem that there is a colouring d : w® — k with the
property that d=* ({i})® = 0 for all i € k. Now define a colouring ¢ : ¢ — k by

d(y), ifr=w’-l+ywithl€wand0<y<w’

¢(z) =
0, ifxe{O,w‘s,w‘s-Q,...,w‘s'm}.
Then for all i € {1,2,...,k—1}, 7' ({i})® = 0, whereas (w’ + 1)(5i) = {w},
so ¢! ({i}) cannot contain a topological copy of w’ + 1. On the other hand,
({0 C {wdwi-2,...,w’ - m}, whereas (w50+1)(6°) is infinite, so ¢! ({0})
cannot contain a topological copy of w®*!. This completes the proof for this case.
Suppose instead that a; is a limit ordinal for some j € {0,1,...,l}. Write
B = w’. Then by Theorem 0 is a limit ordinal. This observation enables us
to complete the proof using simpler version of the argument from Theorem [4.7.5]

Suppose ¢ < 5. We will show that
1

5 5 S
¢ *top (wao,wal,...,wo‘l,w L4 w0 1w +1)

Observe first that since ¢ is a limit ordinal, {( < w" for some n < J, so

it is sufficient to consider the case in which ( = w”7. Write oy = 9; + 1
for all ¢ € {I+1,1+2,...,k—1}, and recall from Theorem that § =
P (ag,0q,...,qp_1). Since n < ¢, there is a colouring ¢ : n — k such that for

all © € k, the order type of ¢! ({i}) is a; < «a;. Define a colouring ¢ : ¢ — k
by ¢ = ¢ o CB. By Proposition , L ({i)'® = 0 for all i € k. However,
(w*) @ s infinite for all i € {0,1,...,1}, and (w% +1)" D {w¥} for all
i€ {l+1,1+2,....,k—1}. Hence ¢! ({i}) cannot contain a topological copy of
w (ifi €{0,1,..., 1)) orw% +1 (ifie{l+1,1+2,....k—1}). O

Next we move beyond powers of w and powers of w plus 1 to consider ordinals
of the form w®-m + 1 with a € w; \ {0} and m a positive integer. At this point
considerations from the finite pigeonhole principle come into play.

At the same time we will also consider finite ordinals, since they behave in a
similar fashion: just as w®-m+ 1 is homeomorphic to the topological disjoint union
of m copies of w* + 1, so m € w is homeomorphic to the topological disjoint union
of m copies of 1. In order to consider both forms of ordinal at the same time we

therefore recall the following definition.
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Definition. Let a be an ordinal and m be a positive integer. We define

w* m+1, ifa>0
wWla,m| =
m, if a=0.

The following result deals with finite sequences of countable ordinals of the form
W [a, m]. It generalises both Theorem and the finite pigeonhole principle, and

the proof essentially combines these two theorems.

Theorem 4.7.7. Let «ag,aq,...,ap_1 € wy; and mq,msa,...,M_1 be positive

integers. Then
PP (@ [ag, mo] , @ [o, M), ..., @ [ag_1, my_1]) = @ [, m]

where o = ap#Ha# -+ - #ag_1 and m = Zf:_ol (m; — 1) + 1.
Proof. We assume for simplicity that a; > 0 for all ¢+ € k, the other case being no
harder. Thus @ [, m;] = w® -m; + 1 for all ¢ € k and @ [a, m] = w® - m + 1.

To see that

_ 1
WM ey (W -mo+ Lw™ -my + 1, w™temy 1),

recall from the proof of Theorem that there is a colouring d : w* — k with
the property that d=! ({i})*) = () for all i € k. Additionally observe that since
m—1 - (mg,mq, ..., mu_1)", there is a colouring e : {1,2,...,m — 1} — k with the

property that [e™! ({i})] < m;—1 for all i € k. Now define a colouring ¢ : w®-m — k

d(y), ifz=w*l+ywithlcwand 0 <y<w®
cl@)=1qe(l), ifzr=wlwithie{l,2,...,m—1}
0, if x =0.
Then for all 7 € k,

Smi—l

(i

by construction, whereas

‘(w‘“ cmy + D = m,.

Hence ¢! ({i}) cannot contain a topological copy of w® - m; + 1.
To see that

w* - m+1 = (W -me+ 1,w™ -my + 1, w1 -mk,1+1)1,

let ¢ : w*-m+1 — k. Observe that for each j € m, [w*-j+ L,w* - (j+1)] =
w* + 1. Therefore by Theorem there exists i; € k and X; C ¢ ' ({i;}) N



56 4. THE TOPOLOGICAL PIGEONHOLE PRINCIPLE FOR ORDINALS

w*-j+1w* (j+1)] with X; = w* 4 1. Next observe that by the finite
pigeonhole principle, m — (mg, mq,. .. ,mk,l)l. Hence there exists ¢ € k such
that |[{j e m :i; =i} > my, say S C {j € m :4; = i} satisfies |S| = m;. But then

UjeS X is a topological copy of w® - m; + 1 in colour i. O]

We conclude this section by considering at last ordinals of the form w® - (m + 1)
with @ € wy \ {0} and m a positive integer. Such an ordinal is homeomorphic to the
topological disjoint union of w® - m + 1 and w® and behaves similarly to w® - m + 1,
but there are additional complications.

The following simple consequence of Theorem [4.7.5] will be useful for finding

extra homeomorphic copies of w® in the required colour.

Lemma 4.7.8. Let ag, vy, ...,a51 € wy \ {0}, let @« = ap#an# -+ #ag_1 and let

c:w® — k be a colouring. Then either ¢ ({j}) contains a topological copy of w1

for some j € k, or ¢™* ({i}) contains a topological copy of w* for alli € k.

Proof. Fix i € k. It is sufficient to prove that either ¢! ({i}) contains a topological
copy of w®, or ¢! ({j}) contains a topological copy of w®*! for some j € k \ {i}.
To see this, simply observe that by Theorem m (or by inspection),

(+1)o0 01 +1) 0O (1 +1) O O (a1 + 1) <«
and hence by Theorem [4.7.5|
W —=op (wo‘°+1, L wemt L e it ,wo"“—lﬂ)l . O

In our next result we use this to narrow the topological pigeonhole number down

to one of two possibilities.

Theorem 4.7.9. Let ap,aq,...,a0 € wy \ {0}, a1, qpp2,...,a5-1 € wy and
mg, my, ..., Mg_1 be positive integers, where 0 <1 < k. Then
PP (W™ - (mo + 1), w™ - (my 4 1)@ [oagr, miga], -, @ (o1, M 1])

is equal to either w® - m + 1 or w® - (m+ 1), where o = y#Ha1# - Fay_1 and
m =3y (mi—1)+1.

Proof. Write P for the topological pigeonhole number in the statement of the
theorem. Recall that by Proposition [4.3.2] it is sufficient to prove that w®-m+1 <
P <w*-(m+1). The first inequality follows immediately from Theorem and
monotonicity since w® - (mg+ 1) > @ [a;, m;] for all @ € {0,1,...,1}. The second

inequality states that

W (M A1) =g (W (mo+ 1), @™ - (my + 1), @ [rgr, muga - @ o1, miea])
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To see this, let ¢ : w® - (m+ 1) — k. First note that for i € {0,1,...,1}, w® -
(m; 4+ 1) is homeomorphic to the topological disjoint union of @ [a;, m;| = w® -m; +1
and w®. Now by Theorem [4.7.7] there exists i € k and X C ¢! ({i}) N (w® - m + 1)
with X 2 wla;,m;]. ifi e {l+1,1+2,...,k— 1}, then we are done, so assume i €
{0,1,...,1}. Next consider the restriction of ¢ to [w* - m + 1,w® - (m + 1)), which is
homeomorphic to w®. By Lemmal[4.7.§] either ¢ ({j}) N [w® - m + 1,w® - (m + 1))
contains a topological copy of w® ™! for some j € k, in which case we are done, or
there exists Y C ¢! ({i}) N [w® - m + 1,w* - (m+ 1)) with Y = w®_ in which case
X UY is a topological copy of w* - (m; + 1) in colour 7. ]

Recall that by Lemma it is enough to consider ordinals of the form w® - m
and w® - m + 1 with m a positive integer. It follows that Theorems [£.7.7] and [£.7.9

together cover case [6d of the principle. Thus to complete case [f] it remains only to

distinguish between the two possibilities presented by Theorem [4.7.9]

In our final result of this section we do this for the case in which m; = 1 for
all i € k\ {0}. In particular this completes case [6(c)i] At this point the Cantor—
Bendixson ranks of ordinal ezponents come into play. They essentially determine
whether or not the negative relation can be proved using the type of colouring given
in the first half of the proof of Theorem [£.7.4]

Theorem 4.7.10. Let ag, o, ..., 041 € wi\{0}, let mg be a positive integer and let
0 <1< k. Assume without loss of generality that if mg = 1 then CB (ap) < CB (o)
foralli e {1,2,...,l}. Then

W Mg+ 1 =gy (W - (Mg + 1), w™ -2, ., w™ - 2,0 + 1, w4 1)

if and only if CB (ay,) < CB () for some h € k, where a = apFHon# - - #ag_1.
We will prove the “if” part by combining Lemma [4.7.8| with the following result.

Lemma 4.7.11. Let ag, o, ..., 001 € wy \ {0}, let o = cg#Hon# -+ F#ay_1 and let
c:w*+1—k be a colouring. Then there exists j € k such that either ¢ ({j})
contains a topological copy of w* -2, or ¢ ' ({j}) contains a topological copy of
w* + 1 and CB () < CB () for alli € k.

The proof of this lemma uses ideas from the proof of Weiss’s theorem [Bau86l,
Theorem 2.3|. In particular we will make use of the following result, which was also

published by Baumgartner [Bau86, Lemma 2.6].

Lemma 4.7.12 (Weiss). Let a € wy not be a power ofw. Write « = w" +w??+-- -+
W with v > 9 > -+ >y, and n > 1, and let § = w2t gnd e = w9
Suppose Z C {6 -z : x € £} is order-homeomorphic to e, say Z = {z, :n € e}. Then
for each n € ¢ there exists Y;, C (2, zy+1) such that Y, is order-homeomorphic to 0

and Y, is cofinal in (2, Zy41)-
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Proof of Lemmal[{.7.11 Write @ = w™ +w” + -+ + W™ with 73 > 79 > -+ > 7,
and observe that for j € k, the condition that CB (o) < CB () for all i € k is
equivalent to the condition that CB (o) = v,. The case k = 1 is trivial, so assume
k > 1 (and hence n > 1) and let § = w* ™ T+ and ¢ = ™ as in Weiss’s
lemma.

First let ¢ (w®) = jo. Next, by Corollary there exists j; € k and Z C
c P {a})N{0-2z:z € e} such that Z is cofinal in {6 - x : € £} (and hence in w*)
and Z is order-homeomorphic to ¢, say Z = {z,:n € e}. For each n € ¢ choose
Y, as in Weiss’s lemma. Then for each 7 € ¢, by Corollary there exists a
partition of {1,2,...,n— 1} into k pieces Sj,SY,..., S} ; and for each i € k a
subset X' C ¢! ({i}) N}, such that for all i € k, X} is order-homeomorphic to dg»
and X' is either empty or cofinal in ¥, (and hence in (z,, z,+1)). Moreover since
£ — (5)1{ for all positive integers r (either using Theorem or simply from the
fact that € is a power of w), there exists T C ¢ of order type € and a single partition
of {1,2,...,n — 1} into k pieces Sy, S1,. .., Sk_1 such that S}’ = S; for all n € T" and
all 7 € k.

Now if §5, > w® for some j € k, then we are done. So we may assume dg, < w*
for all 7 € k. But then there must exist j, € k with CB (aj,) = 7, such that in fact
s, =w for all i € k \ {ja} and ds,,u(ny = w2.

There are now three possibilities.

e If j; # jo, then take j = ;. Pick n,12 € T and take
X=X U{zpn}uXP
Then X is a topological copy of w® -2 in colour j.

e If jo # jo, then take j = jo. We now use an argument from the proof of
Weiss’s theorem. Let (n,),, be a strictly increasing cofinal sequence from
T and let (Q)TEW\ (o) be a strictly increasing cofinal sequence from w®, so
that w® is homeomorphic to the topological disjoint union of the collection
(G + 1)y qoy- For each 7 € w\ {0}, choose W, C X" with W, = ¢, + 1, and
take

X=x"u [J W u{w}.
rew\{0}

Then X is a topological copy of w® -2 in colour j.

o If jo = j1 = jo, then take j to be their common value. We now use
another argument from the proof of Weiss’s theorem. Let Z; be the closure of
{zy4+1 :m €T} in Z and take

X=JXxIuziu{w}.

neT
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Then X is a topological copy of w® + 1 in colour j, and since j = j, we have

CB (a;) = Yn. O

Proof of Theorem[{.7.10. Write & = w"™ +w? + -+ +w™ with 73 > 79 > -+ > 7,
and let = w®-mg + 1.

Suppose first that CB(ag) < CB(«;) for all @ € k. As in the proof of
Theorem [4.7.4] observe that by definition of the natural sum, there is a partition of
{1,2,...,n} into k pieces Sy, S, ..., Sk—1 such that for all i € k, a; = Z].Esi Wi,
Moreover, since CB (o) < CB(«;) for all ¢ € k we may assume that n € Sj.
Now define a colouring ¢ : f — k as follows. If CB(z) < « (ie, = ¢
{w* w*-2,...,w* - mp}), then as in Theorem for each i € k set c(z) =i
if and only if

w’h _i_w’m_i__”_i_wwﬂ SCB(:C)<(.U71 _|_w’72+,,__|_w’7j

for some j € S;. If CB (x) = a, then set ¢ (z) = 0. If i € k\ {0}, then as in Theorem
¢! ({i}) cannot contain a topological copy of w® + 1. To deal with the case

i=0,let =73 q\(nw" By the proof of Proposition 4.7.3}
o1 ({0})(77) ={zef:CB)>wn+w?+ - +wh 1} 2™ mg+1,

whereas (w™ - (mg + 1)) 2 W™ . (mg +1). It follows by part 3 of Proposition
that ¢! ({0}) cannot contain a topological copy of w® - (mg + 1).

Suppose instead that CB(a;) < CB(ag) for some h € k. If my = 1, then by
assumption CB (ag) < CB(«;) for all © € {1,2,...,1}, so CB(a;) < CB(«;) for
all i € {1,2,...,1l} and we are done by Lemma So assume mg > 1. Then
for each p € my apply Lemma to obtain j, € k and X, C ¢ ' ({jp,}) N
[w*-p+1,w*- (p+1)] such that either X, = w% -2, or X, = w%% + 1 and
CB (ajp) < CB(«) for all ¢ € k. If j, = 0 for all p € my, then X, = w* -2
for all p € mg and so ;) ! X, contains a topological copy of w® - (mg + 1), and
we are done. So assume j, # 0 for some ¢ € my. Now pick any r € my \ {¢} and
apply Lemma to [w*-r+1,w* - (r +1)). Since we would be done if ¢~ ({j})
contained a topological copy of w® ™! for some j € k, we may assume that there
exists Y C ¢ ({j,}) N[w* - r+ 1w (r+1)) with Y = w%. Then X,UY is a

topological copy of w®a - 2 in colour j,, which suffices. n

We leave the final few considerations pertaining to case for later.

4.8 Arbitrary sequences of ordinals at most w;

We now move on to cases 3 4 and [f] of the principle, in which no ordinal exceeds wy

but either there are infinitely many ordinals or there is at least one ordinal equal to
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wy. Here the arguments are less combinatorial and more set-theoretical than in the
previous section, and stationary sets are ubiquitous.

We will cover cases [4 and [f] in this section and leave the independence results of
case 3 to the next section.

To understand the relevance of club sets, recall Proposition [2.2.4, From that
result and the fact that w; is order-reinforcing, it follows that given X C wy, X is
club if and only if X = w;.

The essential reason for the ubiquity of stationary sets in this section is the

following result of Friedman [Fri74].

Theorem 4.8.1 (Friedman). Let S C wy be a stationary set, and let o € wy. Then

S has a subset order-homeomorphic to «.

We will need a slightly more general version of this result. In order to state it

we make the following definition.

Definition. Let A be an uncountable regular cardinal. Define
EA={r e \:cf () =w}.

Note that E? is stationary in .

Here is our generalisation of Friedman’s theorem.

Theorem 4.8.2. Let \ be an uncountable reqular cardinal, let S C E) be stationary

n A, and let a € wy. Then S has a subset order-homeomorphic to «.

Proof. The proof is essentially identical to the proof of Friedman’s theorem [Fri74].
O

Our final introductory result is a well-known property of stationary sets.

Lemma 4.8.3. Let A be an uncountable regular cardinal, let S C X be stationary,
and let ¢ : S — Kk for some cardinal k < X. Then ¢ ({i}) is stationary in X for

some i € K.

Proof. This follows easily from the fact that if C; C X is club for all i € x then
ﬂie,{ C; is also club. -

We are now ready to deal with cases [4 and [5] of the principle. The result for case
is an easy consequence of Theorem and Lemma [£.8.3]

Theorem 4.8.4. Let k > N be a cardinal, and let o; be an ordinal with 2 < a; < wy
for alli € k. Then
P (a;).. =K.

1€ER
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Proof. Clearly if ¢ < k™ then ( -4, (Oéz‘):eﬁ by considering an injection ¢ — k.
To see that kT —,, (042-)1 let ¢ : kT — k. Then by Lemma |4.8.3| there exists

1ER)

i € rsuch that ¢! ({i})NE~" is stationary in x*, which by Theorem [4.8.2| contains

a topological copy of «;. O]
The proof for case [4is a little trickier.

Theorem 4.8.5. Let k be a cardinal, let o, = wy for some r € Kk, and let «; be an
ordinal with 2 < a; < wy for alli € K\ {r}. Then

PP (a;);c,, = max {wy, "} .
Proof. As in the proof of Theorem , if ¢ < kT then ¢ 44 (ai)l Additionally,

1ERK"
if ¢ < w; then ¢ 0, ()"

i Dy considering the constant colouring with colour 7.

1

To see that max {wi, K7} =0y ()¢, first observe that the case k < Ry follows
from the case kK = Ny. So we may assume k > R, implying that max {w;,x"} = k™.

So let ¢: kT — k. Then let

7 = (cfl ({r}) N Eg*) U (w \ Eg*) .

Suppose first that Z has a subset C' that is club in k™. Then CN{w -z : x € KT}
is also club. Let the initial segment of this set of order type w; be Y, and let
X =Y'. Then X = w; by Proposition [2.2.4] but in addition X C E*" and hence
X C ¢t ({r}) by definition of Z.

Suppose instead that Z has no subset that is club in x*. Then £\ Z is stationary
in k™. But by definition of Z,

\Z= | (c’l({z’})ﬂE'f).

ier\{r}

Hence by Lemmam there exists i € x\ {r} such that ¢~ ({i})NE"" is stationary
in k™, which by Theorem contains a topological copy of «;. ]

4.9 Independence results

We now move on to case 3| of the principle, in which no ordinal exceeds w; and two
or more ordinals are equal to wy;. To begin with we quote the following result, a
proof of which can be found in Weiss’s article [Wei90, Theorem 2.8]. This follows
easily from the fact that w; may be written as a disjoint union of two stationary

sets.

Proposition 4.9.1. If 5 € wy then [ -4 (wl);.
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Corollary 4.9.2. Let k be a cardinal, and let c;; be an ordinal with 2 < co; < wy for
all i € k. Suppose a,., s = wy for some distinct r, s € k. Then
PtOp (Oél)

jer = Mmax {wg, /~€+} .

Proof. Clearly if ¢ < &% then ¢ -, (ay)l., and if ¢ < wy then ¢ =, (w1)s by

1ER)

Proposition and hence ¢ 4 (ai);@g. O

We shall now see that, modulo a large cardinal assumption, this is the strongest
ZFC-provable statement applicable to case [3. Recall from the statement of the
principle that we write “P, = x” for the statement, “x is a cardinal, and for all

sequences («;)... of ordinals, if 2 < a; < w; for all 7 € k and ., g = wy for some

1ER

distinct 7, s € K, then P'P (ay)

In one direction, we use the following result of Prikry and Solovay [PST75].

e = 27, and likewise for “P, > x7.

Theorem 4.9.3 (Prikry—Solovay). Suppose V' = L and let 5 be any ordinal. Then
B +top (Wl);
Corollary 4.9.4. If ZFC is consistent, then so is

ZFC + “for all cardinals k > 2, P, = o0”. O

Proof. This follows immediately from the Prikry—Solovay theorem and monotonicity

of pigeonhole numbers. O]

In the other direction, we use a result of Shelah, who introduced the following
notation [She98, Chapter X, §7].

Definition (Shelah). Let A be an uncountable regular cardinal. Write Fr™ ()
to mean that every subset of E) that is stationary in A has a subset order-

homeomorphic to ws.

Note the similarity between this notion and Theorem [£.8.2] In fact the letters
“Fr” here refer to Friedman, who first asked whether or not there exists an ordinal
B with 8 —0p (w1} [Fri74).

Here is the result of Shelah [She98, Chapter XI, Theorem 7.6].

Theorem 4.9.5 (Shelah). If ZFC+ “there exists a supercompact cardinal” is

consistent, then so s
ZFC + “Fr™ (A\) holds for every reqular cardinal X > Ny

In order to apply Shelah’s result to case [3| we make the following observation.



4.10. SEQUENCES INCLUDING AN ORDINAL LARGER THAN w; 63

Lemma 4.9.6. Let k > Ny be a cardinal. If Fr* (k%) holds, then
kY —iop (wl)i.

Proof. Simply apply Lemma [4.8.3| ]

Corollary 4.9.7. If ZFC+ “there exists a supercompact cardinal” is consistent, then
50 1S
ZFC + “for all cardinals k > 2, P, = max {wz, Ii+} 7,

Proof. Observe that by Corollary |4.9.2 the following is a theorem of ZFC: “for all
cardinals k > 2, P, > max {wy, <" }”. To finish, simply combine Theorem with
Lemma [4.9.6] ]

To conclude this section, we address the question of whether a large cardinal
assumption is required. To this end we give an equiconsistency result essentially
due to Silver and Shelah.

Silver proved the following result by showing that if wy —,, (wl)é then U, does
not hold, a proof of which can be found in Weiss’s article [Wei9(, Theorem 2.10].

Theorem 4.9.8 (Silver). If wy —p (w1)y then wy is Mahlo in L.
Here is the result of Shelah [She98, Chapter XI, Theorem 7.1].

Theorem 4.9.9 (Shelah). If ZFC+ “there exists a Mahlo cardinal” is consistent,
then so is ZFC + “Frt (Ny)”.

Corollary 4.9.10. ZFC+ “there exists a Mahlo cardinal” is consistent if and only if

ZFC + “Wy —op (w1)s”

18 consistent.

Proof. Theorem gives the “if” statement. The “only if” statement follows by
combining Theorem with Lemma [4.9.6] O

4.10 Sequences including an ordinal larger than w;

It remains to cover cases [I] and [2| of the principle, in which one of the ordinals
exceeds wy. Although this appears to be a very large class of cases, the situation
is dramatically simplified by the following elementary argument covering case [I} It
is our only result in which the topological pigeonhole number (ZFC-provably) does

not exist.

Proposition 4.10.1. PP (w; + 1,w + 1) = oo.
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Proof. Let 8 be any ordinal. We show that 8 -, (w1 +1,w + 1)1. First observe
that a topological copy of w; + 1 must contain a point of cofinality w;, while a
topological copy of w + 1 must contain a point of cofinality w. The result is then

witnessed by the colouring ¢ : f — 2 given by

1, ifcf(z) > w
c(x) = O
0, otherwise.

We conclude this section by simplifying case using another elementary

argument. We leave the rest of the proof for this case for the next section.

Lemma 4.10.2. Let k be a cardinal and let «; be an ordinal for each i € k. Suppose
ar >wy+ 1 for somer € k and 2 < o; <w foralli € K\ {r}, and let

KT, if k>N
A= 4Ry, if K <Ny and oy = w for some s € K\ {r}

Diemin (i = 1)+ 1, if K <Ng and oy <w for alli € k\ {r}.

Let B be any ordinal. Then

B —rtop (ai)gen

if and only if for every subset A C [ with |A| < X there ezists X C 5\ A with
X = q,.

Proof. First suppose that 8 —, (Ozi);eﬁ and let A C g with |A] < A. If K > Ry,
then take f : A — &\ {r} to be any injection; if K < Wy and «; = w for some
s € k\ {r}, then take f : A — {s} to be the constant function; and if x < R
and a; < w for all i € k\ {r}, then take f : A — &\ {r} to be any function with

If7'({i})] < a; — 1 for all i € k\ {r}. Now define a colouring c¢: 3 — k by

T, ifexg A
f(z), ifzeA

Then by construction |¢™! ({i})| < «; for all i € k\ {r}, so since 8 — (ai)ien there
exists X C ¢! ({r}) =8\ A with X ¥ q,..

Conversely, suppose that for every subset A C 3 with |A| < A there exists
X C B\ A with X 2 q,. Let ¢: 8 — & be a colouring, and let A =c7!(k\ {r}). If
|A] < A then by assumption there exists X C S\ A = ¢! ({r}) with X = o, and we
are done, so assume |A| > . If k > N, then |7 ({j})| > kT for some j € x\ {r}; if
k < Vg and o, = w for some s € x \ {r}, then | ({j})] > N for some j € x\ {r};
and if kK < Xy and a; < w for all i € k\ {r}, then by the finite pigeonhole principle
7 ({4})] > a; for some j € £\ {r}. In every case ¢ ({j})| > |a;| and we are

done. O
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4.11 Proof of the principle

Having provided the key ingredients, we now complete the proof of the principle.

Proof of Theorem[/.6.1. We split into the same cases as in the statement of the

theorem.

1. This follows from Proposition [4.10.1

2. Let A be as in Lemma 4.10.2, and note first of all that if «,. is a power of w
then P*P (y),.,. > o, by part [ of Proposition [4.3.3]

(a) In this case A = k™.

1.

11.

Write w® - m + 1 < a, < w? - (m+1) with 3 an ordinal and m a
positive integer, and note that «, - K+ = w? - k.
Suppose ¢ < w’ - k™. To see that ¢ 4 (ai)gen, let A =(nN

{w? - n:nert\{0}}, so |A] < k*. Then (C\ A)? = () whereas
(8)
(673

=m, so ¢ \ A cannot contain a topological copy of a..

To see that w® - k1 = (a0)1.,, let A C wP- kT with |[A] < k. Then

1ER)

AC (U [wﬂ-n+1,wﬂ~(n+1)]> U{wtninext}

nes

for some S C k* with |S| < k™. Let T C kT \ S with [T| = m + 1.
Then
U [w’ -+ 1,0 - (n+1)]

neT

is a topological copy of w”-(m + 1)+1 disjoint from A, which suffices.

1

Write o, = w”. To see that a, - kT =, () icr> Simply observe that

kT = (o +1)-k1 =4 <0zr +1, (ai)iem\{r}> by the previous case

1

and use monotonicity. It remains to show either that o, —0p (%),c,.

or that if ( < a, - kK1 then ¢ —»4,, (ai);@{.
1

A. To see that o, —p (0);c,,, simply observe that if A C «, with
|A| < kT, then supA < a, since cf (o) > kT, and so a, \

[0, sup A] = «, since «, is a power of w.

1
1ER)

B. Suppose ¢ < a, - k7. To see that ( -4, () let B C ay, be

club with |B| = cf («.), and let
A=(n{a, - n+z:nert,ze BU{0}}.

Then |A| < kT since cf (o) < kT. Suppose for contradiction
X C ¢\ Awith X ¥ «,. Since «, is a power of w, using Theorem

and passing to a subspace if necessary, we may assume that
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X is order-homeomorphic to . Let Y = X U{sup X} = o, + 1.
Then Y = {sup X}, so by Proposition sup X = «,. - n for
some 7 € k1 \ {0}. It follows using Proposition that X is
club in «, - . But then cf (o, - ) = cf () > Ry and A is also

club in o, - 1, so X N A # (), contrary to the definition of X.

1
1ER)

let
A:Cﬂ{ar-n—f—w”-x:nem+,x€w“’6},

so |A| < kT since § < kT. Then (¢ A)(V) — () whereas ol =

w

w 6, so ¢ \ A cannot contain a topological copy of «..

e First note that since 0 > 0, either J is a successor ordinal or
cf (6) = Rp. To see that a, —p (ai)ileﬁ, let A C «, with
|A| < k™. Using the fact that 6 > x*, we now choose a strictly

new from 3 with cf (wﬁ") =

cf (B,) = kT forallm € w. If 6 = ¢ + 1, then take 5, =

v+ w-n+ kT forall n € w. If cf (§) = R, then let (0,)

be a strictly increasing cofinal sequence from 6 with 4, > x*

increasing cofinal sequence (f3,)

new

for all n € w, and take 8, = v + w + x* for all n € w. Then
for each n € w, let x,, = max {wﬁn,sup (A N wﬁn“)} and let
X, = (xn,wﬁnﬂ). Then X,, = w?+1 so there exists Y, C X,

with Y, & wf" 4+ 1. Then J

disjoint from A.

new

(b) In this case A\ = Ny.

i. To see that «, —top (oz@-)iem

|A| < Xy then o, \ [0, max A] = a.

Y, is a topological copy of «,

simply observe that if A C «, with

ii. Write w? -m +1 < a, < w?-(m+1) with 8 an ordinal and m a

positive integer, and note that a, - w = w1

Suppose ¢ < Wt To see that ¢ -y (i), let A = ¢ N

1ER)

{w?-n:new\{0}}, which is finite. Then (¢\ AP = ) whereas

To see that w/tl —,,, (Oéi)l

1ER)

aﬁﬂ)‘ =m, so ¢ \ A cannot contain a topological copy of a..

simply observe that w/*! —,,

1
(wa+1, () ey {T}) by the previous case and use monotonicity.

(c) In this case A =3,y (@i — 1) + 1.

i. The result is trivial if k = 1, and if «, is a power of w then the

argument of case suffices.

ii. Suppose ¢ < w?- (A—=1+m)+ 1. To see that ¢ -, (o))

let

1ER)

A= Cﬂ{wﬁ,wﬁa,...,wﬁ (A= 1)},80 |A| < A\. Then ’(g\A)(B)‘ <

(8)

m — 1 whereas

Qy ’ = m, so ¢ \ A cannot contain a topological copy
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of a.

To see that W’ - (A —1+m) + 1 — <O‘i);em suppose A C w” -
(A =1+ m)+1 with |A] < A. Then by the argument of case[2(b)j we
may assume A = {wﬁ-n:n € S} forsome S C {1,2,..., A\ —1+m}

with S < \. Since kK > 1 we have S # (), say s € S. Then

U (W’ n+1,0" (n+1)] U’ s+ 1,0 (s+1))
nef1,2,.. A—1+mh\S

is a topological copy of w” - (m + 1) disjoint from A, which suffices.

3. This is Corollaries [£.9.2] [£.9.4], [£.9.7 and [£.9.10]

4. This is Theorem .85

5. This is Theorem [4.8.4

6. (a)
(b)

(c)

This is the finite pigeonhole principle.
This follows from Theorems and using monotonicity of

pigeonhole numbers.

By Lemma4.3.1] we may assume that for each i € &, either a; = @ [3;, my]
or a; = wh - (m; + 1) and 5; > 0. It follows that one of Theorems m
and applies, and thus PP («;),.,. is equal to either w” - m + 1 or

w? - (m+1), where 8 = Bo#bi# -+ #Ber and m = 3, (m; — 1) + 1.
1

It remains to determine whether or not w” - m + 1 =, ().

i. This is the “only if” part of Theorem [4.7.10

ii. e If there is no s € & such that ay = w’ - (m, + 1), then o; =
w [B;, m;] for all i € k and the result is given by Theorem [4.7.7]

e If there exists s € k with a, = w” - (m, + 1) and m; = 1 for all
i € K\ {s}, then assume without loss of generality that CB (/3;)
is minimal among any s € k with these properties. By definition
of case there must still exist ¢ € k such that CB(8;) <
CB (fs), and so the result is given by the “if” part of Theorem
4710

e Otherwise, let ¢ : w® - m 4+ 1 — & be a colouring, and assume
for simplicity that §; > 0 for all © € k, the other case being no
harder. First note that if ¢7! ({j}) contains a topological copy
of w1 for some j € k, then we are done. Therefore by Lemma
4.7.8] we may assume that for each [ € m and each ¢ € k, there
exists iy C ¢ ({i}) N [wf -1+ 1,0 (1+1)) with V;;, = P
Now by Theorem[4.7.7, there exists j € x and X C ¢! ({;j}) with
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X = wf -m; +1, and moreover by the proof of that theorem we

may assume that

XclWw i+ 1,00 (1+1)]
les

for some S C m with |S| = m;. Two possibilities now remain.

— If there exist distinct s, € k with mg, m; > 2, then m > m;

for all 7 € k.
— If there exists s € k with a, = @W[B,, ms], ms > 2 and m; = 1
for all i € K\ {s}, then m > m,; for alli € K\ {s}. If j =5

then we are done, so we may assume that j # s.

In either case we have m > m;. Therefore there exists [ € m\ S,
whence X UYj, is a topological copy of w% - (m; + 1) in colour
7, which suffices. O]

4.12 The closed pigeonhole principle for ordinals

We have now completed the proof of the topological pigeonhole principle for ordinals.
Using order-reinforcing ordinals and monotonicity, we automatically obtain from
this many cases of the closed pigeonhole principle for ordinals. We now examine the

remaining cases. This section is joint work with Andrés Caicedo.

Theorem 4.12.1 (The closed pigeonhole principle for ordinals). Given a cardinal

k and an ordinal o; > 2 for each i € k, there is an algorithm to compute P (c)icy.

We use the word “algorithm” here merely as a shorthand for the full statement
of the result. Rather than providing this explicitly, as we did for the topological
principle, we merely explain within the proof the modifications required to obtain
the closed principle from the topological principle.

While the topological principle gave in each case an explicit expression for
the topological pigeonhole number in terms of Cantor normal forms, the closed
pigeonhole principle will use a recursive expression. However, it will be seen that

this yields an explicit expression after a finite number of applications.

Proof. The proof of the topological pigeonhole principle for ordinals shows that
P a;)ier = P ()i, except in two cases, which we now examine.

The first case is when k is finite and greater than 1, o, > w; + 1 for some r € k,
«; is finite for all i € &\ {7}, and «, is not a power of w, say a, = w” - m + 1+~
for some ordinal 3, some positive integer m and some ordinal v < w” (case .
Then

PtOp(@i)ien = wﬁ . Z (Oéi — 1) +m -+ 1,
ier\{r}
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whereas a very similar argument shows that

PCZ(Oéi)iGH:wB' Z (a,—l)—i—m +1+’Y
ier\{r}

The second case is when («;);ex is a finite sequence of countable ordinals (case
[6). In this case the following results carry across for 81, (s, ..., B € wi \ {0}.

o PUWA + 1,02 +1,... WP + 1) = WI#P##5 1 1 where # denotes the
natural sum (Theorem {4.7.4)).

o PUwPr wh2 . whk) = W08k wwhere ® denotes the Milner-Rado sum

(Theorem (4.7.5)).

o Let aj,ay,...,ar € wy with a, = WP for some r € {1,2,...,k}. Suppose
f3; is minimal subject to the condition that o; < w? for all i € {1,2,..., k}.
We then have that P(ay, aq,...,ap) = P WP, w?, ... wP) (by Theorem
17.6).

Thus it remains to compute PCl(al,ag, ...,ax) when o; € w; is not a power
of w for any 7 € {1,2,...,k}. In that case, for all i € {1,2,...,k} we may write
a; = W +1+; for some B; € wy \ {0} and some ordinal v; < W+ (or a; = 1 +;
for some ordinal v; < w if «; is finite).

Let Q; = Py, ..., 1,%, Qig1,-..,qx) for each i € {1,2,...,k}. We claim
that

Pd(ozl,ag, c Q) = Pd((,uﬁ1 + 1,w62 +1,... ,wﬁ’“ + 1) + max{Q1,Q2, ..., Qr} (*)

(replacing w® + 1 with 1 if o is finite). That this is large enough is clear. That no
smaller ordinal is large enough follows from the existence for each r € {1,2,... k}
of a colouring ¢, : w#P2##5 11 — {1,2,... k} with the property that for each
i € {1,2,...,k}, thereis a closed copy of w’+1 in colour i if and only if i = 7, and no
closed copy of any ordinal larger than w® 41 in colour r. To obtain such a colouring,
simply extend the colouring given in Theorem by setting c, (w1 #P2##5k) = p.
This equation allows P (aq, o, ..., ax) to be computed recursively, since it will be

reduced to the three cases above after a finite number of steps. n

Let us conclude by illustrating with a simple example of how the recursive

expression may be used to compute a closed pigeonhole number. Reusing the
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definition of @ [, m] from Section [4.7| for clarity, we have

PYw? -2+ 2,w+2)

= P (w[2,2] + w[0,1],w[1, 1] + [0, 1])

= P (w[2,1],w[1,1])

+ max{ P*(w[2, 1] + |0, 1], @[1, 1] + @[0, 1]), P*(@[2, 2] + ][0, 1], [0, 1))}
3,1] + PY@[2, 1] +©[0, 1],@[1, 1] + ©[0, 1])

3,1] + @[3,1] + P (@[2,1] + [0, 1], [0, 1])

3,2] + w[2, 1] + @[0, 1]

.24 w42

€l
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Chapter 5

Topological Ramsey theory of

countable ordinals

In this chapter we study topological and closed partition relations with superscript
2. We look primarily at upper bounds for topological and closed ordinal Ramsey
numbers of countable ordinals, and prove a topological version of the Erdos—Milner
theorem, namely that R'P(«, k) and R*(«, k) are countable whenever « is countable

and k is finite. The entire chapter is joint work with Andrés Caicedo.

5.1 Ordinal Ramsey numbers

Recall once again the classical, topological and closed partition relations for ordinals.
In the previous chapter we solved the case n = 1, so we now move on to the case
n = 2. We therefore make the following definition, which is analogous to definition

of the pigeonhole numbers.

Definition. Let s be a cardinal and let «; be an ordinal for each 7 € k.

to be the least ordinal 5 such
ien» the topological Ramsey number R'P (o)
(3 such that 5 —,, (ai)?@i,
ordinal § such that § —¢ (o)

1ER"

We define the (classical) Ramsey number R (o)
that 8 — (q;)>

1€ER
to be the least ordinal
to be the least

1ER

and the closed Ramsey number R (CYZ‘),-GN

For example, R(w,w) = R (w,w) = R%(w,w) = w by Ramsey’s theorem.
2
1ER?

As with the pigeonhole numbers, if there is no ordinal § such that § — (o)
then we say that R (o;),., does not exist, and similarly for the topological and
closed Ramsey numbers. Furthermore, R(q;)ice, RP(;)icr and R (c;)ie, are also
monotonically increasing functions of (a;);e, (pointwise), and R(a)icx < R (a)icx
and R'P(q;)iex < RY(y)iex since the closed partition relation implies the other
two. Note also that R((c)iex, (2)x) = R(a)iex for any cardinal A, similarly for the
topological and closed Ramsey numbers.

Since our interest is with countable Ramsey numbers, we are restricted by the

following simple argument of Specker [Spe56, Theorem 4]. Here and throughout the

71
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chapter we identify 0 with the colour red and 1 with the colour blue.

Theorem 5.1.1 (Specker). Let 8 be a countable ordinal. Then

B A (w+1,w)

Proof. Since f is countable, we may let < be an ordering on [ of order type w.
Define a colouring ¢ : [3]*> — {red,blue} as follows. Given x,y € 3 with z < y, set
c({z,y}) = red if and only if x < y. Thus if X C 3 is red-homogeneous, then the
<-order type of X is the same as the <-order type of X, and if X C [ is blue-
homogeneous, then the <-order type of X is the same as the >-order type of X.
Hence there is no red-homogeneous copy of w + 1, or else we obtain a set of <-order
type w + 1, and there is no blue-homogeneous copy of w, or else we obtain a set of

<-order type w*. L

Note that this implies 8 44 (w+ 1,w)? and 8 A4 (w+ 1,w)? for all countable
S. It follows that if @ > w and R(«,7) is countable, then 7 must be finite, and
similarly for the topological and closed Ramsey numbers. Thus if we wish to work
with countable ordinals while avoiding considerations of purely finitary Ramsey
theory, then we must look at R(a, k), R"P(a, k) and R¥(a, k) with o countable and
k finite.

Erd6s and Milner [EMT72] proved that R(«,k) is indeed countable for all
countable o and all finite k. More precisely, they proved the following result, from
which it follows by induction on k that R(w!te, 2F) < wltek,

Theorem 5.1.2 (Erdos-Milner). Let o and B be countable non-zero ordinals, and

let k > 1 be a positive integer. If
W — (wl—i-B’ ]{3)2,

then
WP (WP 2K)2.

We will provide a simplified proof of a weak version of this result later, followed
by a topological version of this result, which tells us that R!P(a, k) and R%(a, k)
are countable for all countable o and all finite k.

Beforehand we study the topological and closed ordinal Ramsey numbers
R'P(a, k) and R%(a, k) for certain small values of a. Note that these are closely
related, since if « is order-reinforcing then R'P(«, k) = R%(a, k) for all finite k.

Let us conclude this section with a lower bound for Ramsey numbers in terms of
pigeonhole numbers, which is obtained by considering a k-partite graph. Although

it is very simple, it remains our best lower bound with the exception of a couple of

special cases (Lemmas [5.3.3 and [5.6.4)), both of which rely on finite combinatorial

arguments.
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Proposition 5.1.3. If a > 2 is an ordinal and k is a positive integer, then
R(a,k+1) > P(a)y,

and similarly for the topological and closed relations.

Proof. Suppose 8 < P(«a)g. By definition of the pigeonhole number, it follows that
there exists a colouring ¢ : 8 — k such that for all ¢ € k, no subset of ¢™1({i}) is
order-isomorphic to a. To see that 3 /4 (o, k + 1)2, simply consider the colouring
d : [B8]* — {red,blue} given by

red, if c(z) = c(y)
blue, if ¢(z) # c(y).

d({z,y}) =

It is straightforward to verify that d does indeed witness 3 /4 (a, k + 1)2.
For the topological and closed relations, simply replace “order-isomorphic” with

“homeomorphic” or “order-homeomorphic” as necessary. O

5.2 The ordinal w +1

We begin with the simplest non-trivial case of an infinite topological Ramsey
number. It may be viewed as a strengthening of Proposition £.5.1] Later, we will
provide a second proof of this result (in Section .

Theorem 5.2.1. If k is a positive integer, then
RP(w+1,k+1)=RYw+1,k+1)=wr +1.

Proof. The first equality is immediate from the fact that w + 1 is order-reinforcing,
and the fact that R'P(w + 1,k + 1) > w* + 1 follows from Propositions and
A5l

It remains to prove that w* 4+ 1 —,, (w + 1,k + 1)?, which we do by induction
on k. The case kK = 1 is trivial. For the inductive step, suppose k > 2
and let ¢ : [w* + 1] — {red,blue} be a colouring. For each m € w, let
Xp = [w - m+1L,w - (m+1)] 2w 4 1. For each m € w, we may assume
by the inductive hypothesis that X, has a blue-homogeneous set B,, of size k, or
else it has a red-homogeneous closed copy of w + 1 and we are done. If for any
m € w it is the case that c({z,w*}) = blue for all x € B,,, then B,, U {w*} is a
blue-homogeneous set of size k + 1 and we are done. Otherwise for each m € w we
may choose z,,, € B, with ¢({z,,,w*}) = red. Finally, by Ramsey’s theorem, within
the set {z,, : m € w} there is either a blue-homogeneous set of size k + 1, in which
case we are done, or an infinite red-homogeneous set H, in which case H U {w*} is

a red-homogeneous closed copy of w 4 1, and we are done as well. O]
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It is somewhat surprising that we are able to obtain an exact equality here using
the lower bound from Proposition [5.1.3] As we shall see, for ordinals larger than
w + 1 there is typically a large gap between our upper and lower bounds, and we

expect that improvement will usually be possible on both sides.

5.3 Stepping up by one

In this section we consider how to obtain an upper bound for R (a+1,k+1), given
upper bounds for R (a, k + 1) and R%(a + 1,k) for a successor ordinal o and a
positive integer k. Note that if « is an infinite successor ordinal, then a + 1 = «;, so
trivially R'P(a+ 1,k + 1) = R'P(a, k + 1), which is why we study R instead.
First we give two simple upper bounds. The first comes from considering the
edges incident to the largest point, as in a standard proof of the existence of the finite
Ramsey numbers. The second typically gives worse bounds, but is more similar to

the technique we will consider next.

Proposition 5.3.1. Let a be a successor ordinal, and let k > 2 be a positive integer.
1. R a+1,k+1) < PYRY o,k +1), R+ 1,k)) + 1.
2. RYa+1,k+1) < PYRYa, k+ 1)), + R a+ 1,k).

Proof. First note that since « is a successor ordinal, a closed copy of a+1 is obtained

from any closed copy of «a together with any larger point.

1. Let B = PY R a,k+ 1), R+ 1,k)) and let ¢ : [3 + 1]> — {red, blue} be
a colouring. This induces a colouring d : f — {red,blue} given by d(z) =
c({z,8}). By definition of P, there exists X C /8 such that either X C
d~({red}) and X is a closed copy of R”(a,k + 1), or X C d~*({blue}) and
X is a closed copy of R%(av + 1,k). In the first case, by definition of R, we
are either done immediately, or we obtain a red-homogeneous closed copy Y
of o, in which case Y U {f} is a red-homogeneous closed copy of a + 1. The

second case is similar.

2. Let B = PR a,k+ 1)) and let ¢ : [8 + R a + 1,k)]> — {red,blue}
be a colouring. By definition of R, either we are done or there is a blue-
homogeneous set of k points among those > 3, say {x1, 2, ...,z }. If for any
y < B we have c¢({y,z;}) = blue for all i € {1,2,...,k}, then we are done.
Otherwise define a colouring d : f — k by taking d(y) to be some i such
that c({y,x;}) = red. Then by definition of P, there exists i € {1,2,...,k}
and X C 3 such that X C d~!({i}) and X is a closed copy of R%(a, k + 1).
But then X either contains a blue-homogeneous set of k£ + 1 points, or a red-
homogeneous closed copy Y of a, in which case Y U{x;} is a red-homogeneous

closed copy of a4 1, as required. O
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Note that R%(a,2) = « for any ordinal a. Hence if « is a successor ordinal
and we have an upper bound on R(a, k) for every positive integer k, then we may
easily apply either of these two inequalities recursively to obtain upper bounds on
R (a + n, k) for all positive integers n and k.

Unfortunately, neither of these techniques appears to generalise well to limit
ordinals, since they are “backward-looking” in some sense. Our “forward-looking”
technique is a little more complicated and, in the form presented here, only works

below w?. Before we state the general result, here is an illustrative special case.
Lemma 5.3.2. R (w+2,3) < RY(w+1,3) + PYw +2)y =w? 24+ w+ 2.

Proof. First note that R4 (w + 1,3) + PYw +2)s = (w? + 1) + (W +w +2) =
w? -2+ w + 2 by Theorem and Theorem . It remains to prove that
RYw+1,3) + PYw+2)y —a (w+2,3)2

Let B = R w+1,3), let ¢ : [B4 P%(w+2)s]* — {red, blue} be a colouring, and
suppose for contradiction that there is no red-homogeneous closed copy of w+ 2 and
no blue triangle.

By definition of R, either there is a blue triangle, in which case we are done, or
there exists X C ( such that X is a red-homogeneous closed copy of w + 1. Let x
be the largest point in X and let H = X \ {z}.

Let Ay = {y > p: c({z,y}) = blue} and let Ay = {y > B : c({h,y}) = blue for
all but finitely many h € H}.

First of all, we claim that A; is red-homogeneous. This is because if y, z € A;
and c({y, z}) = blue, then {z,y, z} is a blue triangle.

Next, we claim that Ay is red-homogeneous. This is because if y, 2 € Ay and
c¢({y, z}) = blue, then c¢({h,y}) = c({h, z}) = blue for all but finitely many h € H,
and so {h,y, z} is a blue triangle for any such h.

Finally, we claim that if y > 3, then y € A; U Ay. For otherwise we would have
y > B with c¢({x,y}) = red and ¢({h,y}) = red for all h in some infinite subset
K C H, whence K U {z,y} is a red-homogeneous closed copy of w + 2. Hence by
definition of P, either A; or A, contains a closed copy of w + 2, which by the above

claims must be red-homogeneous, and we are done. O

Digressing briefly, we show that in this particular case the upper bound is
optimal, and thus R%(w + 2,3) = w? -2+ w + 2. The colouring we present was

found by Omer Mermelstein.
Lemma 5.3.3. R (w+2,3) > w? 2+ w+2.

Proof. We provide a colouring witnessing w? -2 +w + 1 44 (w + 2,3)%. In order to
define it, let GG be the graph represented by the following diagram.
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{w?} {w? -2}

| T

{w-(n+1):new} {W+w-(n+1):new}

{0yu{r+1:2cw? {W+z+1:2€w?} {w24zr+1:2€w}
S

Define a colouring ¢ : [w?-2+w+1]? — {red, blue} by setting ¢({z, y}) = blue if and
only if x and y lie in distinct, adjacent vertices of G. First note that there is no blue
triangle since G is triangle-free. Now suppose X is a closed copy of w + 2, and write
X =ZU{z}U{y} with z <z <y forall z € Z. If ZU{x} is red-homogeneous,
then either x = w? and Z C {0} U{z +1: 2 € w?}, or z = w? - 2 and (discarding a
finite initial segment of Z if necessary) we may assume Z C {w? +z + 1: x € w?}.
In each case either ¢({z,y}) = blue or ¢({z,y}) = blue for all z € Z. Hence X

cannot be red-homogeneous, and we are done. O]
Here is the general formulation of our “forward-looking” technique.

Proposition 5.3.4. Let k, m and n be positive integers with k > 2. Then
RYw-m+n+1,k+1) < RN w-m+nk+1)+PYRYw-m+n+1,k))omin 1

Proof. Let 8 = R%(w-m+n,k+1) and let ¢ : [+ P4 RY(w-m+n+1,k))amen1]> —
{red, blue} be a colouring.

By definition of R, either there is a blue-homogeneous set of k + 1 points, in
which case we are done, or there exists X C [ such that X is a red-homogeneous

closed copy of w-m + n. In that case, write
X = H U{z1} UHy U{a} U U{@p1} U Hp U{y1, 92, -, Yn}

with Hy, H, ..., H,, each of order type w and hy < x1 < hs < x93 < -+ < Tpp1 <
hm <y1 <ya <+ <y, whenever h; € H; for all i € {1,2,...,m}.
For each z > f, if every single one of the following 2m + n — 1 conditions holds,

then X U {z} contains a closed copy of w-m +n + 1, and we are done.

e c({h,z}) = red for infinitely many h € H; (one condition for each i €

{1,2,...,m})
e c({x;,z}) = red (one condition for each i € {1,2,...,m —1})
e c({y;,z}) = red (one condition for each i € {1,2,...,n})

Thus we may assume that one of these conditions fails for each z > . This

induces a 2m + n — l-colouring of these points, so by definition of P there is
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a closed copy X of R%(w-m + n + 1,k) among these points such that the same
condition fails for each z € X.

Finally, by definition of R, X contains either a red-homogeneous closed copy
of w-m 4+ n 4+ 1, in which case we are done, or a blue-homogeneous set of k points,
in which case using the failed condition we can find a final point with which to

construct a blue-homogeneous set of k 4+ 1 points. [

Because of Theorem [5.2.1) any one of the inequalities from Propositions [5.3.1
and is enough for us to obtain upper bounds for R¢(w +n, k) for all finite n, k.
We conclude this section with an explicit statement of a few of these upper bounds.
Curiously, in the second part, we require both Propositions [5.3.1 and [5.3.4] in order
to obtain the best bound.

Corollary 5.3.5. 1. RYw+2,4) <w? 3+ w?+w? +w+2.
2. If k > 4 1is a positive integer, then
R (w42, k+1) < w" 34w w2 w8 o B gm0 ko,
where r = %.
3. If n > 3 is a positive integer, then

R w+n,3) < PYw+n), = w"+w"  (n—1)+w" 2 (n—1)+- - -+w-(n—1)+n.

Proof. 1. By Proposition and Lemma [5.3.2) R (w+2,4) < R (w+ 1,4) +
PURY w+2,3))y=w+1+PUw? 2+w+2)=w' 3+wd+w?+w+2.

2. This can be obtained from part [1| by recursively applying the first inequality

from Proposition [5.3.1]

3. By Proposition R w+n,3) < RYw+ (n—1),3) + P%w+n),. Using
Lemma for the base case, it is easy to see by induction that the second
term here has the largest power of w, since n > 3. Hence R%(w + n,3) <
P (w + n),, and the equality with the right-hand side is a simple induction

exercise. m

Remark 5.3.6. The inequality in part [3| of this result is improved upon by Lemma
from the following section for all n > 9.

For comparison, the corresponding lower bounds given by Proposition [5.1.3| are

as follows. If k,n > 3 are positive integers, then

R w+2,k+1) > Pw+2)r=w +w" "+ +w+2
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and
RYw+n,3)>Pw+n)y=w?4+w-(n—1)+n,

but note the latter is already far behind R%(w +n,3) > R (w+2,3) = w?-2+w+2.

5.4 Ordinals less than w?

So far we only have upper bounds on R%(a, k) for a < w - 2. In this section we

extend this to o < w? with the following result.

Theorem 5.4.1. If k and m are positive integers, then
RYw-m+1,k+1) < w”.

In fact, in each case the proof gives an explicit upper bound below w®.
Our proof builds upon the stepping up technique from Proposition [5.3.4 We
also make use of some classical ordinal Ramsey theory in the form of the following

result.

Theorem 5.4.2 (Erdés—Rado). If k and m are positive integers, then R(w-m, k) <
2

w”.

In fact, Erdés and Rado computed the exact values of these Ramsey numbers
in terms of a combinatorial property of finite digraphs. More precisely, we consider
digraphs for which loops are not allowed, but edges between two vertices pointing in
both directions are allowed. The complete digraph on m vertices is denoted by K.
Recall that a tournament of order k is a digraph obtained by assigning directions to
the edges of the complete (undirected) graph on k vertices, and that a tournament
is transitive if and only if these assignments are compatible, that is, if and only if
whenever x, y and z are distinct vertices with an edge from x to y and an edge from
y to z, then there is also an edge from z to z. The class of transitive tournaments
of order k is denoted by Lj.

Using this terminology, Theorem [5.4.2] can be deduced from the following two
results of Erdés and Rado (who stated them in a slightly different manner). See
[ER56, Theorem 25] and [ER67].

Lemma 5.4.3 (Erdés—-Rado). If k and m are positive integers, then there is a
positive integer p such that any digraph on p or more vertices admits either an

independent set of size m, or a transitive tournament of order k. We denote the
least such p by R(K},, Ly).

Theorem 5.4.4 (Erdés—-Rado). If k,m > 1 are positive integers, then R(w-m, k) =
w- R(K%, Ly).
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Before indicating how to prove Theorem [5.4.1] in general, we first illustrate the
key ideas with the following special case. We use the special case of Theorem [5.4.4
that R(w-2,3) =w - 4.

Lemma 5.4.5. R (w-2+1,3) <w®- 7+ 1.

The proof uses a non-principal ultrafilter on w. This use is superfluous, but
makes the idea more transparent, since in some sense the ultrafilter makes many

choices for us. The result is actually provable in (a weak sub-theory of) ZF (see

Remark [5.4.7)).
Proof. To make explicit the reason for using the ordinal w® - 7 + 1, let
e fi=PYw-2+1w-2+1,w*+1)=w? - 3+1,
¢ fo=Plw -2+ 1,w-2+ 1,0 +1+5) =wb-5+1,
o B3=PYw -2+ 1,w-2+1,w>+1+ ) =w-7+1and
e B=w4+1+B=uw’-T+1.

Fix a non-principal ultrafilter & on w and let ¢ : [3]*> — {red, blue} be a colouring.
Among the first w? + 1 elements of 3, we may assume that we have a red-
homogeneous closed copy of w+ 1. Let x be its largest point and let H be its subset
of order type w. Write H = {h,, : n € w} with hg < hy < ....
Now the set of points > w? + 1 forms a disjoint union A; U Ay U A3, where

o Ai={a>w?+1:c({x, a}) = blue},
e Ay={a>w?+1:c({z,a}) =red but {n € w: c({hn,a}) =blue} € U}} and
e As={a>w?+1:c({x,a}) =red and {n € w: c({hn,a}) =red} € U}}.

If either A; or As contains a closed copy of w -2+ 1, then we are done. (For A,,
we use the fact that if U,V € U then UNV € U.) So by definition of S5, we may
assume that Az contains a closed copy X of w? + 1 + S3,.

Now we repeat the argument within X. Among the first w? + 1 members of X,
we may assume we that have a red-homogeneous closed copy of w + 1. Let y be its
largest point, and let I be its subset of order type w. Write [ = {i, :n € w...}
with ig < i; < .... (Note that at this stage, {n € w : ¢({h,,1}) = red} € U for all
i € I, yet we cannot conclude from this that there are infinite subsets H' C H and
I' C I such that H' U I’ is red-homogeneous.)

Just as before, write the subset of X lying above its first w? + 1 members as a
disjoint union By U By U By, where b € By if and only if ¢({y,b}) = blue, b € By if
and only if ¢({y,b}) = red but {n € w : ¢({i,,b}) = blue} € U, and b € By if and
only if c¢({y,b}) = red and {n € w: ¢({in,b}) = red} € U. Again we may conclude
from the definition of 3, that By contains a closed copy Y of w? +1 + 3.
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Repeat this argument once again within Y, and then pass to a final red-

homogeneous closed copy of w + 1. We obtain a closed set
Hu{z}ulu{ytuJu{z} UK U{w}

of order type w-4+ 1 (with J = {j,:n€w}, jo < <... and K = {k,, : n € w},
ko < ki < ...)such that HU{x}, IU{y}, JU{z} and KU{w} are red-homogeneous,
{z,y, z,w} is red-homogeneous, c({z,i,}) = c({z,7.}) = c{x, k.}) = c({y, jn}) =
c({y, kn}) = c({z,k,}) = red for all n € w, and finally for any a > 2, b > yand ¢ > z
in this set, we have {n € w: ¢c({hn,a}) =red} €U, {n € w: c({in,b}) =red} €U
and {n € w: c({jn,c}) =red} € U.

At last we use the ultrafilter, in which is the crucial step of the argument. Let
o« H' = {he H:o({hy}) = c({h, =) = c({h,w}) = red},

o I'={iel:c({iz})=c{i,w}) =red} and

o J'={jeJ:c({jw}) =red},

each of which corresponds to some U € U and is therefore infinite. (Note that
if we had tried to argue directly, without using the ultrafilter or modifying the
construction in a substantial way, then we would have been able to deduce that J’ is
infinite, but it would not have been apparent that H' or I” are.) This ensures that
c({a,b}) = red whenever a € {z,y, z,w} and b € H'U{x}UI'U{y}UJ U{z}UKU{w}.

To complete the proof, recall that that w -4 — (w-2,3)2. Tt follows that there
is either a blue triangle, in which case we are done, or a red-homogeneous subset
M C H'UI'UJ UK of order type w-2. Let S be the initial segment of M of order
typew and T'= M\ S, and let s = sup(S) and ¢t = sup(7T’) (so that s,t € {z,y, z,w}).
Then S U {s} UT U {t} is a red-homogeneous closed copy of w - 2 + 1, and we are
done. O

We now indicate the modifications required to obtain the general result.

Proof of Theorem [5.4.1. The proof is by induction on k. The case k = 1 is trivial.
For the inductive step, suppose k& > 2. We can now use the argument of Lemma
with just a couple of changes.

Firstly, we require w* + 1 points in order to be able to assume that we have a
red-homogeneous closed copy of w + 1.

Secondly, it is no longer enough for A; or A, to contain a closed copy of w-m+1,
but it is enough for one of them to contain a closed copy of R%(w -m + 1, k), which
we have an upper bound on by the inductive hypothesis (and likewise for B; and
By, and so on).

Finally, in order to complete the proof using Theorem [5.4.4] we must iterate the

argument R(K, Lii1) times.
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This argument demonstrates that R (w-m+ 1,k +1) < w”+1+ Brks 1, 1)1,
where 3y = 0 and 3; = PYRYw-m + 1,k), R (w - m + 1,k),w* + 1 + Bi_;) for
i€ {1,2,... R(K:, Li) — 1}, O

To obtain upper bounds for R%(w - m + n, k) for all finite k, m and n, one can

again use any of the three inequalities from Propositions [5.3.1] and [5.3.4] which may

give better bounds than simply using the bound on R%(w - (m + 1) + 1, k) given by
Theorem (.4.1]

Remark 5.4.6. It is perhaps worth pointing out that the classical version of this
problem, the precise computation of the numbers R(w-m +n, k) for finite k, m and
n, was solved more than 40 years ago. It proceeds by reducing the problem to a
question about finite graphs that can be effectively, albeit unfeasibly, solved with a
computer. This was announced without proof in [HS69a] and [HS69b]. See [Cail5]
for further details.

Remark 5.4.7. At the cost of a somewhat more cumbersome approach, we may
eliminate the use of the non-principal ultrafilter and any appeal to the axiom of
choice throughout this and the next section. Rather than presenting this version
of the proof, we mention a simple and well-known absoluteness argument ensuring
that choice is indeed not needed.

We present the argument in the context of Lemma the same approach
removes all other uses of choice in this and the next section. Work in ZF. With [ as
in the proof of Lemma [5.4.5] consider a colouring ¢ : [8]> — 2, and note that L[c] is
a model of choice, and that the definitions of 5 and of homogeneous closed copies of
w-2+1 and 3 are absolute between the universe of sets and this inner model. Since
Llc] is a model of choice, the argument of Lemma gives us a homogeneous set

as required, with the additional information that it belongs to Lic|.

5.5 The ordinal w?

In this section we adapt the argument from the previous section to prove the

following result.
Theorem 5.5.1. If k is a positive integer, then w* —q (W, k).

Since w? is order-reinforcing, it follows that R'P(w? k) = R (w? k) < w”.
The ordinal w” appears essentially because P%(w®),, = w“ for all finite m,
allowing us to iterate the argument of Lemma [5.4.5| infinitely many times.

Again we require a classical ordinal Ramsey result. This one is due to Specker
[Speb6, Theorem 1] (see also [HS69D]).

Theorem 5.5.2 (Specker). If k is a positive integer, then w? — (w?, k).
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Proof of Theorem [5.5.1 The proof is by induction on k. The cases k < 2 are trivial.
For the inductive step, suppose £ > 3. Fix a non-principal ultrafilter &/ on w and
let ¢ : [w¥]? — {red, blue} be a colouring.

We argue in much the same way as in the proof of Lemmal[5.4.5] Among the first
wk=1 + 1 elements of w*”, we may assume that we have a red-homogeneous closed
copy of w+ 1. Let xg be its largest point and let Hj be its subset of order type w.
Write the set of points > w*~' +1 as a disjoint union A; U Ay U A; as in the proof of
Lemma [5.4.5] If either A; or A, contains a closed copy of w*, then by the inductive
hypothesis we may assume it contains a blue-homogeneous set of k — 1 points, and
we are done by the definitions of A; and A,. But P%(w*)3 = w*, so we may assume
that A3 contains a closed copy X7 of w”.

We can now work within X; and iterate this argument infinitely many times to
obtain a closed set

HyU{xo} UH  U{z1} U...

of order type w?. For each i € w, write H; = {hin :n € w} with hjp < hip < ....

By construction, for all 7,7 € w with 7 < j,
1. c({z, z;}) = red,
2. ¢({zs, hjn}) = red for all n € w and

3. {ncw:c({hin x;}) =red} € U.

We would like to be able to assume that condition |3 can be strengthened to
c({hin,z;}) = red for all n € w by using the ultrafilter to pass to a subset. However,
for each 7 there are infinitely many j > 7, and we can only use the ultrafilter to deal
with finitely many of these.

In order to overcome this difficulty, we use two new ideas. The first new idea is
to modify our construction so as to ensure that for all i, j € w with ¢ < j, we also

have
4. c({hin,z;}) =red for all n < j.

We can achieve this by modifying the construction of X; (the closed copy of w*
from which we extracted H; U {z;}). Explicitly, we now include in our disjoint
union one additional set for each pair (¢,n) with ¢,n < j, which contains the points
y that remain with c¢({h;,,y}) = blue. We then extract X, using the fact that
P (W) j2q3 = w”.

This extra condition is enough for us to continue. The second new idea is to

pass to a subset of the form
H ={hin:i€el,ne N}U{x,:i €}

for some infinite /, N C w, and to build up I and NN using a back-and-forth argument.
To do this, start with 7 = N = () and add an element to I and an element to N
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alternately in such a way that c({h;,,z;}) = red whenever n € N and i, j € I with
1 < j. Condition {4] ensures that we can always add a new element to I simply by
taking it to be larger than all other members of I and all members of N so far.
Meanwhile, condition |3 ensures there is always some U € U from which we may
choose any member to add to N: at each stage, there are only finitely many new
conditions and so our ultrafilter is enough.

Then ¢({a,b}) = red whenever a € H and b € H' N{z; : ¢ € w}. Finally,
by Theorem we may assume that there is a red-homogeneous subset M C
H'\ {z; : i € w} of order type w?, and then the topological closure of M in H' is a

red-homogeneous closed copy of w?. O

Remark 5.5.3. We have organised this argument in such a way that the reader
may readily verify the following. For any positive integer k£ and any colouring
¢ : [w¥]? — {red,blue}, there is either a blue-homogeneous set of k points, or a
red-homogeneous closed copy of an ordinal larger than w?, or a red-homogeneous

closed copy of w? that is moreover cofinal in w*. This strengthening of Theorem

[(.5.1] will be useful in Section 5.7

5.6 The anti-tree partial ordering on ordinals

The techniques from the last few sections enable us to reach w?, but do not seem
to get us any further without cumbersome machinery. In this section we introduce
a new approach, which does not directly help get us beyond w? but does provide a

helpful perspective. We use this approach to prove the following result.
Theorem 5.6.1. w? -3 < R™P(w - 2,3) < w? - 100.

It is more transparent to describe this new approach in terms of a new partial
ordering on ordinals. A variant of this ordering was independently considered by
Pina in [Pnl4], who identified countable ordinals with families of finite sets. Readers
who are familiar with that work may find it helpful to note that for ordinals less
than w®, our new relation <* coincides with the superset relation O under that
identification. (Note that none of the results we prove here are used outside this

section.)

Definition. Let a and S be ordinals. If § > 0, then write § = n + w” with n a
multiple of w?. Then we write a <*  to mean that § > 0 and o« = n + ( for some
0 < ¢ <w’. We write a <* # to mean that a <* g and there is no ordinal § with
a < o<*p.

Equivalently, o <* § if and only if § = a + w" for some v > CB(«), and o <*
if and only if 8 = a+w B+ For example, w’ +w <* w?-2 and w?-24+1 <* w33,
but w? +w £* w3 -3and w? -2+ 1 £* W3- 2.

Here are some simple properties of these relations.
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1. <* is a strict partial ordering.
2. If « <* B then a <  and CB(a) < CB(f).
3. If  <* B then CB(8) = CB(«) + 1.

4. The class of all ordinals forms an “anti-tree” under the relation <* in the sense
that for any ordinal «, the class of ordinals § with o <* 3 is well-ordered by
<*.

By property , if k is a positive integer, then w* + 1 forms a tree under the
relation >*. It fact it is what we will call a perfect No-tree of height k.

Definition. Let k£ be a positive integer and let X be a single-rooted tree. We say
that x € X has height k to mean that = has exactly k predecessors. We say that
x € X is a leaf of X to mean that x has no immediate successors, and denote the
set of leaves of X by ¢(X). We say that X is a perfect Ro-tree of height k to mean
that every non-leaf of X has Xy immediate successors and every leaf of X has height
k.

Let X be a perfect Np-tree of height k. We say that a subset ¥ C X is a full
subtree of X to mean that Y is a perfect Ng-tree of height & under the induced

relation.

Note that if X is a full subtree of w* + 1, then X = w* 4 1. Note also that full

subtrees are determined by their leaves.

A perfect Ny-tree of height 2, corresponding to the ordinal w? + 1

Here is a simple result about colourings of perfect Ro-trees of height k. The proof

essentially amounts to k applications of the infinite pigeonhole principle.

Lemma 5.6.2. Let k be a positive integer, let X be a perfect Ro-tree of height k and
let ¢ : U(X) — {red, blue} be a colouring. Then there exists a full subtree Y of X

such that (Y') is monochromatic.

Proof. The proof is by induction on k. The case £ = 1 is simply the infinite
pigeonhole principle, so assume k£ > 1. Let Z be the set of elements of X of height
at most k — 1, so Z is a perfect Ry-tree of height £ — 1. Then for each z € ¢(Z), by
the infinite pigeonhole principle again there exists d(z) € {red, blue} and an infinite
subset Y, of the successors of z such that ¢(x) = d(z) for all x € Y,. This defines a
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colouring d : ¢(Z) — {red, blue}, so by the inductive hypothesis there exists a full
subtree W of Z such that ¢(W) is monochromatic for d. Finally let

Y =Wu U Y,.
wel(W)

Then Y is as required. [

Recall Theorem [5.2.1] which states that if k is a positive integer, then R'P(w +
Lk+1) = RYw+1,k+1) > w*+1. To illustrate the relevance of these notions, we
now provide a second proof of this result. This is also the proof that we will mirror
when the result is generalised in Theorem [5.7.1}{

The crux of the proof is the following result, which says that any {red,blue}-
colouring of w* 41 avoiding both a red-homogeneous topological copy of w+1 and a
blue-homogeneous topological copy of w is in some sense similar to the k£ + 1-partite
{red, blue}-colouring that falls out of the proofs of Propositions [5.1.3| and [4.5.1}

Lemma 5.6.3. Let k be a positive integer and let c : [w* + 1] — {red, blue} be a

colouring. Suppose that
(a) there is no red-homogeneous topological copy of w+ 1, and
(b) there is no blue-homogeneous topological copy of w.

Under these assumptions, there is a full subtree X of w¥+1 such that for all x,y, z €
X:

1. ifx <* z and y <* z then c({x,y}) = red; and
2. if x <* y then c({x,y}) = blue.
The proof makes use of Lemma [5.6.2

Proof. The proof is by induction on k.

For the base case, suppose k = 1. By the infinite Ramsey theorem there exists an
infinite homogeneous subset Y C w. By condition (]ED this must be red-homogeneous.
Now by the infinite pigeonhole principle there must exist i € {red,blue} and an
infinite subset Z C Y such that c¢({z,w}) = ¢ for all z € Z. By condition () we
must have ¢ = blue. Then Z U {w} is a full subtree of w + 1 with the required
properties.

For the inductive step, suppose k > 1. First apply the inductive hypothesis to
obtain a full subtree Y;, of [wF-m+ 1,0k - (m+1)] = w*! 4+ 1 for each m € w,
and let Y = J,,., Y U {w*}. Then use the inductive hypothesis again to obtain a
full subtree Z of Y \ £(Y) = wk~1 + 1, and let

W=2ZU{yelY):y<"zfor some z € Z}.
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By our uses of the inductive hypothesis, conditions [1] and [2| hold whenever x,y, z €
Y,, for some m € w or x,y,z € Z. Thus it is sufficient to find a full subtree X
of W such that c¢({x,w*}) = blue for all z € ¢(X). To do this, define a colouring
¢ : L(W) — {red,blue} by ¢(x) = c({z,w*}). Then apply Lemma to obtain
i € {red, blue} and a full subtree X of W such that c({z,w*}) =i for all x € {(X).
Now let V' be a cofinal subset of ¢(X) of order type w. By the infinite Ramsey
theorem there exists an infinite homogeneous subset U C V', which by condition
must be red-homogeneous. But then U U {w*} is a topological copy of w + 1, so by

condition @ we must have ¢ = blue, and we are done. O

Theorem [5.2.1] now follows easily.

Second proof of Theorem[5.2.1. As in the first proof, R?(w + 1,k + 1) = R%(w +
Lk+1)>wk+1.

To see that w® + 1 =4, (w+ 1,k + 1)% let ¢ : [w* + 1] — {red,blue} be
a colouring. If there is a red-homogeneous topological copy of w + 1 or a blue-
homogeneous topological copy of w, then we are done. Otherwise, choose X C w*+1
as in Lemma m Then any branch (i.e., any maximal chain under >*) of X forms

a blue-homogeneous set of k£ + 1 points. 0

We conclude this section by proving our bounds on R'P(w - 2, 3). Before doing
this, we remark that it is crucial that we consider here the topological rather than
the closed Ramsey number. Since w +n = w + 1 for every positive integer n,
from a topological perspective, w - 2 is the simplest ordinal space larger than w + 1.
Moreover, there are sets of ordinals containing a topological copy of w - 2 but not
even a closed copy of w+2, such as (w-2+1)\ {w}. Accordingly, we have only been
able to apply the technique we present here to this simplest of cases. Nonetheless,
it may still be possible to adapt this technique to obtain upper bounds on closed

(as well as topological) Ramsey numbers.

We begin by proving the lower bound. Recall from Theorem [4.12.1] that
P'P(w - 2); = w?- 2. Thus we have indeed improved upon the lower bound given
by Proposition [5.1.3] As with the lower bound of Lemma [5.3.3] we provide a simple

colouring based on a small finite graph.
Lemma 5.6.4. R'P(w-2,3) > w?- 3.
Proof. Since any ordinal less than w? - 3 is homeomorphic to a subspace of w? -2 +1,

it is sufficient to prove that w?-2+1 4, (w-2,3)% To see this, let G be the graph

represented by the following diagram.
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{w?) {w? -2}

{w-(n+1):necw} {W+w-(n+1):new}

{0yu{r+1:2€cw? {W+z+1:2€w’}

Now define a colouring ¢ : [w?-2+1]? — {red, blue} by setting ¢({x,y}) = blue if and
only if x and y lie in distinct, adjacent vertices of GG. First note that there is no blue
triangle since G is triangle-free. To see that there is no red-homogeneous topological
copy of w - 2, first note that every vertex of (& is discrete, and moreover the union of
any vertex from the left half of G and any vertex the right half of G is also discrete.
Therefore the only maximal red-homogeneous subspaces that are not discrete are
{w-(n+1):ne€wu{w?u{w? 2} and {w?+w-(n+1):n € wU{w?u{w? 2},

neither of which contains a topological copy of w - 2. O

Our upper bound makes use of several classical ordinal Ramsey results.

Firstly, we use the special case of Theorem that w? — (w?, 3)%.

Secondly, we use Theorem [5.4.4] In fact, we essentially prove that R'?(w-2,3) <
w3 - R(K7},, L3). The best known upper bound on R(K7},, L3) is due to Larson and
Mitchell [LM97].

Theorem 5.6.5 (Larson-Mitchell). Ifn > 1 is a positive integer, then R(K, Ls) <

n2.

In particular, R(K},, L3) < 100 and hence w - 100 — (w - 10,3)? by Theorem
.44l

Finally, we use the following result, which was claimed without proof by Haddad
and Sabbagh [HS69b] and has since been proved independently by Weinert, [Weil4,
Theorem 2.14].

Theorem 5.6.6 (Haddad-Sabbagh; Weinert). R(w?-2,3) = w?- 10.

We are now ready to prove our upper bound. The first part of the proof is the
following analogue of Lemma [5.6.3l The proof uses in an essential manner that we

are looking for a topological rather than a closed copy of w - 2.

Lemma 5.6.7. Let ¢ : [w? + 1]? — {red, blue} be a colouring. Suppose that

(a) there is no red-homogeneous topological copy of w -2, and

(b) there is no blue triangle.

Under these assumptions, there is a full subtree X of w?+1 such that for allz,y € X :

1. if CB(z) = CB(y) then c({z,y}) = red;
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2. if CB(x) = 0 then c({z,w?}) = blue; and
3. if CB(x) = 1 then c({x,w?}) = red.

Proof. First note that (w?+ 1) \ (w? 4 1)’ has order type w?, so by condition (b)) it
has a red-homogeneous subset W of order type w?, since w? — (w?,3)?. Let Yj be
a full subtree of w? + 1 with ¢(Yy) € W. By applying the infinite Ramsey theorem
to Yy \ Y}](Q), we may similarly pass to a full subtree Y of Y such that Y/ \ Yl(z) is
red-homogeneous. Thus Y] satisfies condition [I}

Next apply Lemma to obtain i € {red,blue} and a full subtree Z of Y}
such that c({z,w?}) =i for all z € ((Z). If i = red, then ¢(Z) U {w?} would be
red-homogeneous, so by condition t = blue and Z satisfies condition .

Finally apply the infinite pigeonhole principle to Z'\ Z to obtain j € {red, blue}
and a full subtree X of Z such that c({z,w?}) = j for all z € X with CB(x) = 1. If
j = blue, then by condition (b)) we would have ¢({z,y}) = red for all z,y € X with
CB(z) = 0 and CB(y) = 1, whence X \ {w?} would be red-homogeneous. Hence by
condition @ 7 =red and X is as required. O

We can now complete the proof of our upper bound and hence of Theorem [5.6.1]

Proof of Theorem |5.6.1. By Lemma m, it remains only to prove that R™P(w -
2,3) < w? - 100.

Let X = w3100, let ¢ : [X]* — {red,blue} be a colouring and suppose for
contradiction that there is no red-homogeneous topological copy of w-2 and no blue
triangle.

First note that X® \ X () has order type w - 100, so it has a red-homogeneous
subset U of order type w - 10, since w - 100 — (w - 10,3)%. Next let V = {z € X :
x <* y for some y € U}. Note that V has order type w? - 10, and so V has a red-
homogeneous subset W of order type w? - 2, since w? - 10 — (w? - 2,3)? by Theorem
5.6.6, Finally, let

Y=cd(W)U{zxe X :z<"y for somey e W},

where cl denotes the topological closure operation. Replacing Y with Y\ {max Y} if
necessary, we may then assume that Y = w®-2, and by construction both Y2\ Y3
and Y\ Y® are red-homogeneous.

Assume for notational convenience that Y = w? - 2. By applying Lemma
to the interval [w?-a + 1,w? - (a+ 1)] for each a € w -2, we may assume that
c({w? a+w-(n+1),w? (a+1)}) =red for all n € w. By applying Lemma [5.6.7]
to (w? + 1), we may then assume that c({w?- (@ +1),w?}) = red and c({w? - a+w-
(n+1),w?}) = blue for all a,n € w.

Finally by applying the infinite pigeonhole principle to {w?-(a+1) : a € [w,w-2)},
we may assume that c({w?, w?-(a+1)}) = i forall @ € [w,w-2), where i € {red, blue},
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and then by applying the infinite pigeonhole principle to {w - (n + 1) : n € w}, we
may assume that c({w-(n+1),w?+w?}) = j, where j € {red, blue}. Now if i = red,
then (w? - 2)® would be a red-homogeneous topological copy of w -2, and if j = red,
then {w-(n+1):newU{w*+w-(n+1):n€w}uU{w®+w?} would be a red-
homogeneous topological copy of w - 2. So i = j = blue. But then {w,w? w3 + w?}

is a blue triangle. O

5.7 The ordinal w? + 1

We now use our earlier result on w? together with some of the ideas from the previous
section to obtain upper bounds for w? + 1. We deduce these from Theorem [5.5.1]

and the following general result.

Theorem 5.7.1. Let a and B be countable ordinals with B > 0, let k be a positive

integer, and suppose they satisfy a “cofinal version” of
W = (WP R+ 2)2

Then
WD L (WP 41,k +2)%

Moreover, if w** > WP, then in fact
W1 sy (WP 1k 4 2)2

The cofinal version of the partition relation requires that for every colouring c :

[w“a}z — {red, blue},
e there is a blue-homogeneous set of k + 2 points, or
e there is a red-homogeneous closed copy of w® that is cofinal in w*", or
e there is already a red-homogeneous closed copy of w” + 1.

Before providing the proof, we first deduce our upper bounds for w? + 1. Since
w? + 1 is order-reinforcing, it follows that R™P(w? + 1,k +2) = R4 (w? + 1,k +2) <
w-k
w4 1.

Corollary 5.7.2. If k is a positive integer, then w** +1 —4 (W? + 1,k + 2)2.

Proof. By Theorem [5.7.1} since w® > w? it is enough to prove the cofinal version of
w” =g (W% k + 2)% The usual version is precisely Theorem [5.5.1] and the cofinal
version is easily obtained from the same proof, as indicated in Remark [5.5.3| O

Observe that by applying Ramsey’s theorem instead of Theorem [5.5.1] one
obtains yet another proof of Theorem from the case a = 0. Indeed, our
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proof of Theorem [5.7.1] is similar to our second proof of that result, though we do
not explicitly use any of our results on the anti-tree partial ordering.

The bulk of the proof of Theorem is in the following result, which is our
analogue of Lemma [5.6.3] The proof makes detailed use of the topological structure
of countable ordinals. In particular, we use two arguments due to Weiss from the
proof of [Bau86, Theorem 2.3]. It may be helpful for the reader to first study that

proof, and to recall Weiss’s lemma [Bau86, Lemma 2.6], which we stated earlier (in

Lemma 4.7.12]).

Lemma 5.7.3. Let o, § and k be as in Theorem [5.7.1. Let | be a positive integer
and let ¢ : [w“’a'l + 1}2 — {red, blue} be a colouring. Suppose that

1. there is no red-homogeneous closed copy of w® + 1, and
2. there is mo blue-homogeneous set of k + 2 points.

Under these assumptions, there exists a cofinal subset X C w*" ! such that X is a
closed copy of w*"! and c({z,w*"'}) = blue for all x € X.

Proof. The proof is by induction on [.

For the case [ = 1, since w*” — (w*")}, there exists X C w*” and i € {red, blue}
such that X is a closed copy of w*® (and therefore X is cofinal in w*”) and
c({z,w*"}) =i for all z € X. Suppose for contradiction that i = red. By our
assumptions together with the definition of the cofinal version of the partition
relation, there exists a cofinal subset Y C X such that Y is a closed copy of w”
and [Y]? C ¢ !({red}). But then Y U {w*"} is a red-homogeneous closed copy of
w? 4 1, contrary to assumption . Hence i = blue and we are done.

For the inductive step, suppose [ > 1. Let

7 = {w“’a oy iy e w DN {0}} ,

=1), By the inductive hypothesis, there exists a cofinal

so Z is a closed copy of w*"
subset Y C Z such that Y is a closed copy of w** ("1 and ¢({z,w*"'}) = blue for
all z € Y. Write Y = {ys : § € w*"" (=1} in increasing order. Then by Weiss’s
lemma, for each § € w*" =1 there exists a cofinal subset Z5 C (Ys, Ys+1) such that
Zs is a closed copy of w*”.

Now since w*® — (w*")}, for each § € w1 there exists X5 C Zs and
is € {red, blue} such that X; is a closed copy of w*” (and therefore X; is cofinal in
Zs5) and c({x,w*"'}) = is for all z € Xs. Recall now that w*" (=1 — (@™ (=1)]
since w1 is a power of w. It follows that there exists S C w** ¢~ of order type
w1 and i € {red, blue} such that i =i for all § € S.

Suppose for contradiction that ¢ = red. We now use an argument from the proof
of [Bau86, Theorem 2.3]. Let (0,,)mew be a strictly increasing cofinal sequence from

S, and let (9, )mew be a strictly increasing cofinal sequence from w® (or let 1, = 0 for
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all m € w if « = 0). For each m € w, pick W,,, C X such that W, is a closed copy
of wm + 1, and let W = J, . W,,. Note that W is cofinal in w*"!, W is a closed

copy of w*” and c({z,w*"'}) = red for all z € W. By our assumptions together with

mew

the definition of the cofinal version of the partition relation, there exists a cofinal
subset V' C W such that V is a closed copy of w” and [V]?> C ¢ !({red}). But then
V U {w*“" !} is a red-homogeneous closed copy of w” + 1, contrary to assumption .

Therefore ¢ = blue. Finally, let

X = U XU Cl({y5+1 10 € S}),
6es

where cl denotes the topological closure operation. Then the set X is as required. [J

We may now deduce Theorem [5.7.1] in the much same way that we deduced
Theorem [(.2.1] from Lemma [5.6.3

Proof of Theorem[5.7.1 First assume that w*® > w®. We prove by induction on I
that for all I € {1,2,...,k},

W1 =y (WP 41,14 2)2

In every case, if either of the assumptions in Lemma does not hold, then
we are done since [ < k. We may therefore choose X as in Lemma [5.7.3]

For the base case [ = 1, to avoid a blue triangle, X must be red-homogeneous.
But X contains a closed copy of w? + 1 since w*® > w® + 1, and so we are done.

For the inductive step, suppose [ > 2. Then X has a closed copy Y of w*™ (=141,
By the inductive hypothesis, either Y contains a red-homogeneous closed copy of
w? + 1, in which case we are done, or Y contains a blue-homogeneous set Z of [ + 1
points. But in that case Z U {w“" !} is a blue-homogeneous set of [ + 2 points, and
we are done.

Finally, if we cannot assume that w*® > w?, then the base case breaks down.
However, we may instead use the base case w*” + 1 —¢ (W’ + 1,2)%, which follows
from the fact that w*® > w?. The inductive step is then identical. O

5.8 The weak topological Erd6s—Milner theorem

Finally we reach our main result, which demonstrates that R'P(«, k) and R%(a, k)
are countable for all countable o and all finite k.
This is a topological version of a classical result due to Erdds and Milner [EMT72].

Before stating it, we first provide a simplified proof of the classical version.

Theorem 5.8.1 (Weak Erdés—Milner). Let o and 8 be countable non-zero ordinals,
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and let k > 1 be a positive integer. If
W — (lerﬁ’ ]{])2,

then
WP (WP R+ 1)2

Since trivially w't® — (w!t* 2)? it follows by induction on k that R(w'™®, k +
1) < w'**k for all countable a and finite k. In fact, Erdés and Milner proved a
stronger version of the above theorem, in which k + 1 is replaced by 2k, implying
that R(w'te® 2F) < w!™** This is why we use the adjective weak here.

Our proof is essentially a simplified version of the original, which can be found
in [Wil77, Theorem 7.2.10]. The basic idea is to write w®"? as a sequence of w”
intervals, each of order type w®, to enumerate these intervals, and to recursively
build up a red-homogeneous copy of w? consisting of one element from each interval.
This would achieve the above theorem with 1 4  weakened to 5. To obtain a copy
of w'*#, we simply choose infinitely many elements from each interval instead of just

one. In the proof we use the fact that w® — (w*)} for all finite m.

Proof. Let c: [u)‘”ﬁ}z — {red, blue} be a colouring.
For each z € w”, let
I, = [w* z,w" (x+1)),

so I, has order type w®. Let (z,)ne. be a sequence of points from w? in which every
member of w? appears infinitely many times. We attempt to inductively build a

red-homogeneous set A = {a, : n € w} of order-type w'*? with a, € I,, for every

new.
Suppose that we have chosen ai, as, ..., a,,_1 for some m € w. Let
P={a,:ne{l,2,...,m—1},a, € 1., },
and let
I, if P=1(

J f—
I, \ [0,max P|, if P # (),

so J has order type w®. For each n € {1,2,...,m — 1} let

Jp={a € J:c({an,a}) = blue}.

If U J, = J, then since w® — (w®)! _,, J, has order type w® for some n €
{1,2,...,m — 1}. Then since w* — (w'™? k)2, J, either has a red-homogeneous

subset of order type w!'*?, in which case we are done, or a blue-homogeneous subset

B of k points, in which case BU{a,} is a blue-homogeneous set of k + 1 points, and

we are done. Thus we may assume that J \ Unm:_11 J, # 0, and choose a,, to be any
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member of this set.

Clearly the resulting set A is red-homogeneous. To see that it has order type
wlt? simply observe that by choice of (2, )necw, AN I, is infinite for all x € W’ and
that by choice of J, AN I, in fact has order type w for all z € w®. O

Here is our topological version of the weak Erdos—Milner theorem.

Theorem 5.8.2 (The weak topological Erdés—Milner theorem). Let a and [ be

countable non-zero ordinals, and let k > 1 be a positive integer. If
W s iop (WP K2,

then
WP —iop (WP k4 1)2,

In particular, as we shall deduce in Corollary [5.8.5, R'?(a, k) and R%(a, k) are
countable whenever « is a countable ordinal and k is a positive integer.

Our proof follows the same outline as our proof of the classical version, except
that we use intervals in the sense of the anti-tree partial ordering rather than in
the usual sense. Furthermore, rather than constructing a closed copy of w” directly,
we instead construct a larger set and then thin it out. As in the previous section,
we make detailed use of the structure of countable ordinals, including an argument
from the proof of Weiss’s lemma [Bau86l, Lemma 2.6]. Note that the proof does not

directly use any of our previous results.

Proof. Let c: [wwa‘ﬁf — {red, blue} be a colouring.
First of all, fix a strictly increasing cofinal sequence (7, )ne, from w””.

Define an indexing set of pairs
S = {(m,y) cx e B,w ) Ly e w“’a'ﬁ} ,
and for each (z,y) € 9, let
Xay) = {wwa.(xﬂ) YWz e w” \ {0}} )

50 Xz, is a closed copy of w*”. Let (T, Yn)new be a sequence of pairs from S in
which every member of S appears infinitely many times. We attempt to inductively
build a red-homogeneous set A = {a,, : n € w}, which will contain a closed copy of
w?, with a, € X, 4, for every n € w.

Suppose that we have chosen ay,as,...,a,,_1 for some m € w. Let
P={a,:ne{l,2,....om—1},a, € X(zpo.ym) } »

let
Q = PU {wwa.(mm+1) U + wwa.mm . V\P\} 7
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and let
Y = X(l’maym) \ [07 max Q]7

so Y is a closed copy of w*”. For each n € {1,2,...,m — 1} let
Y,={aecY :c({a,a}) =1}

If UV, = Y, then since w*" —4 (W)L, Y, contains a closed copy of w*" for
some n € {1,2,...,m — 1}. Then since w*" —, (W’ k)?, Y, either contains a red-
homogeneous closed copy of w?, in which case we are done, or a blue-homogeneous
set B of k points, in which case BU{a,} is a blue-homogeneous set of k + 1 points,
and we are done. Thus we may assume that Y\ UZ:II Y, # 0, and choose a,, to be
any member of this set.

Clearly the resulting set A is red-homogeneous. To complete the proof, observe
that by choice of (2, Yn)new; A N X(zy) is infinite for all (z,y) € S, and that by
choice of @, AN X, is a cofinal subset of X(, ) of order type w for all (z,y) € S.
We claim that this property is enough to ensure that A contains a closed copy of
wP.

To prove the claim, for each § € [1, 8] and each ordinal y with w*"?% .y € w*"#
we find a cofinal subset Cs, C [w*"? -y + 1,w*"? - (y + 1)) such that Cs, C A and
Cs, is a closed copy of w’; then Czo C A is a closed copy of w”, as required. We do
this by induction on §.

First suppose 6 € [1,[] is a successor ordinal, say 6 = = + 1. Fix an ordinal
y with w*"? -y € w*"# and observe that (z,y) € S and that X(,,) is a cofinal
subset of the interval [w“™?.y+1, w"?.(y+1)). Recall now that AN X, is
a cofinal subset of X(,,) of order type w. Thus if 6 = 1 then we may simply take
Cry = AN Xy, so assume ¢ > 1, and write AN X(;,) = {b, : n € w} in increasing
order. For each n € w\ {0} we find a cofinal subset D,, C (b,_1,b,) such that
D,, € A and D, is a closed copy of w”; then we may take Cj,, = UnEw\{O} D, u{b,}.
We do this using an argument essentially taken from the proof of Weiss’s lemma
[Bau86, Lemma 2.6]. Fix n € w\ {0} and write b, = w*" @) .y + ¥** . » with
z € w" \ {0}. Let v =w*" -y + z so that b, = w*"*-v. If v is a successor ordinal,
say v = u + 1, then by the inductive hypothesis we may take D, = C,,. If vis a
limit ordinal, then let (u,,)me, be a strictly increasing cofinal sequence from v with
Wy > by, and let (Mm)mew be a strictly increasing cofinal sequence from w®.
By the inductive hypothesis, for each m € w we may choose a subset E,, C C,,, .
such that F,, is a closed copy of 1,, + 1. Then take D, = E

mew M

Suppose instead & € [1, /] is a limit ordinal. Fix an ordinal y with w®"? -

y € w P Let (z,)new be a strictly increasing cofinal sequence from §. For
each n € w, let (, be the ordinal such that 6 = z, + 1+ (, and let y, =
w6 oy + 1. Then w?™ @+ g = "9 .y 4 " @+ and so Cp, 41y, C

(w0 -y T @D ] @0y @ (@t L 2) - By the inductive hypothesis, for



5.8. THE WEAK TOPOLOGICAL ERDOS—MILNER THEOREM 95

each n € w we may choose a subset D,, C C,, 11, such that D,, is a closed copy of
w™ + 1. Then take Csy = ,,c, Dn- O

Remark 5.8.3. We expect that as in the original Erdés—Milner theorem, it should
be possible to improve k + 1 to 2k in Theorem [5.8.2] Indeed, the basic argument
from [Wil77, Theorem 7.2.10] works in the topological setting. The key technical
difficulty appears to be in formulating and proving an appropriate topological version

of statement (1) in that account.

The weak topological Erdés—Milner theorem allows us to obtain upper bounds for
countable ordinals of the form w?. Before describing some of these, we first observe
that by very slightly adapting our argument, we may obtain improved bounds for

ordinals of other forms. Here is a version for ordinals of the form w? - m + 1.

Theorem 5.8.4. Let o and 3 be countable non-zero ordinals, and let k > 1 be a
positive integer. If
W =y (WP m 41,k

then
WP R kA1) 1 =y (W m 1k 1)

Proof. Write w**# . R(m, k + 1) + 1 as a disjoint union M U N, where
N={w"" (y+1):ye{0,1,...,R(m,k+1) —1}},

and let ¢ : [M U N]? — {red, blue} be a colouring.

First of all, we may assume that N contains a red-homogeneous set of m
points, say ag,aq,...,0n,_1. Now continue as in the proof of Theorem and
attempt to build a red-homogeneous set A = {a, : n € w}, only start by including
ag, A1, - - -, Am_1, and then work entirely within M.

If we succeed, then the same proof as the one in Theorem shows that for
eachy € {0,1,..., R(m,k+1)—1}, A\ {ao, a1, ..., an,_1} contains a closed copy C,
of w” that is a cofinal subset of the interval [w*"? .y +1,w"?. (y + 1)]. Writing
a; = w*" . (y; + 1) for each i € {0,1,...,m — 1}, we see that

m—1
U Cyi U {al}
=0

is a red-homogeneous closed copy of w” - m + 1, as required. O

We conclude this section with some explicit upper bounds implied by our results.

It is easy to verify similar results for ordinals of other forms.

Corollary 5.8.5. Let o be a countable non-zero ordinal and let k, m and n be

positive integers.
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1. RP(w*” k+1) = R W k+1) <w".

w

", if a is infinite

ww(n+1)-k—1

2. RYP(w*" +1,k+1) = RYw*" +1,k+1) <
+1, if a =n is finite.

9. RP(w™-m+1,k+2) = RYw" - m+1,k+2) <w " Rim, k+2)+ 1.

Proof. First note that all three equalities are immediate since all ordinals considered

are order-reinforcing. It remains to prove the inequalities.

1. This follows immediately from Theorem by induction on k, the case k = 1

being trivial.

2. Tt follows from part [1f that w* ™™™ S, (™ k)? (the case k = 1
W (W™ + 1,k)% Therefore
w T s (W + 1,k + 1)2 by Theorem m If o is infinite, then
(a+1)-(k—1)+a=a-k, and if @ = n is finite, then (a«+1)-(k—1)+a =
(n+1)-k—1, as required.

again being trivial) and hence w

3. Tt follows from part [1| that w*" —, (w*, k + 1)% and hence w*" —¢ (W™ - m +
1,k + 1)% The result then follows from Theorem [5.8.4] O

Remark 5.8.6. For the case in which @ = n is a positive integer, if a cofinal
version of part [I] holds, then we could use Theorem to improve part [2] to
R W™ + 1,k +2) <w "k 41,

5.9 Questions for further research

We close with a few questions. Firstly, there is typically a large gap between our
lower and upper bounds, leaving plenty of room for improvement. In particular,
our general lower bound in Proposition [5.1.3|is very simple and yet is still our best
bound with the exception of a couple of special cases.

Some further exact equalities could be informative. One of the key reasons
why the classical results detailed in [HS69al, [HS69bL [HS69d, [Cailsl, IMil71] are more
precise than our topological results in Sections is that for various o < w?,
the computation of R(«, k) reduces to a problem in finite combinatorics. Some hint

of a topological version of this appears in the proof of the lower bounds of Lemmas

[5.3.3] and [5.6.4] though it is far from clear how to obtain an exact equality.

Question 5.9.1. Is it possible to reduce the computation of R'P(«, k) or R%(c, k)

to finite combinatorial problems, even for o < w??

A partition ordinal is an ordinal « satisfying o — (a,3)?. As we have seen, w
and w? are partition ordinals. Other than these, every countable partition ordinal
has the form w*”, and in the other direction, w*” is a partition ordinal if S has the

form w? or w” + w°® [Schi().
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Question 5.9.2. Are there any countable “topological partition” ordinals, satisfying
a —10p (v, 3)%, other than w?

By our lower bound (Proposition , these must all have the form w*’. Since
every power of w is order-reinforcing, this question is equivalent if we replace the
topological partition relation by the closed partition relation.

We expect that a strong version of the topological Erdés—Milner theorem should
hold, that is, we expect that in Theorem [5.8.2/it should be possible to improve k+ 1
to 2k.

Question 5.9.3. Let a and 8 be countable non-zero ordinals, and let £ > 1 be a

positive integer. Is it the case that if
w® = (WP k)2,

then
WP — (WP 2k)%2

See Remark [5.8.3] for further details.
Finally, it would be nice to determine whether the existing conjecture w; —
(o, k)3 holds, and also to discover something about the topological or closed version

of this relation.

Question 5.9.4. Is it the case that for all countable ordinals « and all finite k,

w1 —op (a, k)37

Again, since every power of w is order-reinforcing, this question is equivalent
if we replace the topological partition relation by the closed partition relation. If
the answer to this question is yes, then the classical and closed relations are in fact
equivalent whenever the ordinal on the left-hand side is w; and the ordinals on the

right-hand side are countable.
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Chapter 6

Autohomeomorphism groups of

countable compact ordinals

We begin this chapter by studying the basic properties of autohomeomorphism
groups of compact ordinals in general. We then focus on finding the normal
subgroups of autohomeomorphism groups of ordinals of the form w” - m + 1 for
finite n and m. We manage to find 22" normal subgroups for all n > 2, which is
somewhat surprising, since the condition of normality is rather strong in the infinite
context. Furthermore, we completely classify those normal subgroups contained in

the pointwise stabiliser of the set of topological limit points.

6.1 A criterion for continuity

First we briefly mention a useful way of checking whether or not a function between
ordinal topologies is continuous. This generalises the equivalence of the -9 definition

of continuity for functions from R to R.

Definition. Let Y and Z be totally ordered sets equipped with the order topology,
let f:Y — Z and let y € Y. We say that f is continuous at y if and only if for
all ¢,d € Z U {£o0} with f (y) € (¢,d), there exist a,b € Y U {£oo} with y € (a,b)
such that for all x € Y, if = € (a,b) then f(x) € (c,d).

Lemma 6.1.1. LetY and Z be totally ordered sets equipped with the order topology
and let f:Y — Z. Then f is continuous if and only if f is continuous at y for all
yeyY.

We omit the proof since it is entirely analogous to the e-9 definition of continuity

for functions from R to R.

Note that since we will be working with compact Hausdorff topological spaces,

it will be enough to check continuity to show that a bijection is a homeomorphism.

99
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6.2 The semidirect product decomposition

Let us introduce some notation for the objects of our study.

Definition. Given an ordinal §, we write X5 = [1,4].
We then write Hs for the group of autohomeomorphisms of Xy, i.e., the group
of homeomorphisms X5 — Xs.

Given an ordinal 3, we also write H f for the group of autohomeomorphisms of
x¥.

Excluding the point 0 from our definition of Xy makes no essential difference,
but makes our results easier to state. Indeed, the notation @ [y, m| was introduced
in Chapter [2] for related reasons, and for any ordinal v and any positive integer m
we have X, ., = W[y, m].

For the rest of this section, fix a non-zero ordinal §. Recall that Xy is compact
by Lemma [2.2.3] and so by Theorem we may as well assume that 6 = w® - m
for some ordinal o and some positive integer m.

We begin by introducing the normal subgroups of Hs identified by Monk [Mon75),
Theorem 6], which are the pointwise stabilisers of Xéﬁ ) for each B < a. These are
normal because any autohomeomorphism of X5 must fix X éﬂ ) setwise. We shall see
that in fact these normal subgroups yield inner semidirect products of Hs. For the

rest of this section, fix an ordinal g < a.

Definition. Define the map rf :Hs — H f to be restriction. This is well-defined
since any autohomeomorphism of Xz must fix X 6(’6 ) setwise.

Define the “block map” bf - H f — Hj as follows. Intuitively, bg (f) is obtained
from f by replacing each isolated point of X (gﬁ ) by a copy of [1,wﬁ}. Formally,
let f e H and z € X;5. If z € X7, then define b} (f) (z) = f (). Otherwise
r = w’ -y + (¢ for some ordinals n and ¢ with 0 < ¢ < w”. Now f must preserve
Cantor-Bendixson ranks, and since 8 < «, we have w’ - n 4+ w? € X. Hence
f(w?n+w’) =w? 0+ w’ for some ordinal 6. Define b (f) () = w’ -0+ .

It is easy to see that bj (f) is a bijection, and that b (f) is continuous follows
easily from Lemma m Thus bf (f) € Hs, in other words, b’g is well-defined.

The key properties of these maps are as follows.
Lemma 6.2.1. 1. 7"? and bg are group homomorphisms.

2. bf s an njection.

3. r8 o b is the identity map on HY .

Proof. Part[I]is straightforward, and parts[2 and [3] are immediate from the fact that
vy (f) (z) = f (x) WheneveerX(gB). O
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From these properties we immediately obtain our semidirect product

decomposition of Hy.

Definition. Define
K 55 = Ker (r? )

and
B} =1m (1) .

Thus K ? is the pointwise stabiliser of X 5(5 ), Clearly K 56 < Hs and B? < H;s.
We may now restate Lemma as follows. Here x denotes an inner semidirect

product.
Proposition 6.2.2. Hy = K(/;B X B?. [

In particular, any f € Hs may be written uniquely as k o b with k£ € K f and
b e B? . Note moreover that we obtain a distinct decomposition for each ordinal

£ < a. We will however mainly use this result in the case § = 1.

6.3 An explicit description of H n.,,

Monk [Mon75, Theorem 7| gave an explicit description of which permutations of
X,z lie in H,2. (In fact, he worked with the corresponding Boolean algebra, but it
is easy to re-interpret his result in terms of ordinals.) In this section we generalise
this to a recursive description of Hn.,, for all finite m and n. We achieve this by
using the case § = 1 of Proposition to describe Hn.,, in terms of H n-1.,, for
all n > 0.

Our construction is valid in general, not only for ordinals of the form w™ - m,
so for the rest of this section fix a non-zero ordinal d, and assume once again that
0 = w®-m with a an ordinal and m a positive integer. We may as well assume that
0 is infinite, i.e., a > 1, for otherwise Hy is simply a finite symmetric group.

Our description is based upon the following notion.

Definition. A cofinitary system on X; is a collection of sets (A;),, XI\XY with the
following property. For each x € X;\ X{, we may write z = n+w with 1 a multiple
of w. Then A, is a subset of [n+ 1,z) whose complement is finite and non-empty.

Given such a system, its complementary set is

X\ J Auf{s}.

TEX\XY
A key property of cofinitary systems is the following.

Lemma 6.3.1. Let (Aaf)a:exg\xg be a cofinitary system on Xs with complementary
set A.. If o =1, then A, is finite, and if o > 2, then A, = Xj.
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Proof. The case v = 1 is easy, so assume a > 2. In this case, both A, and Xj
contain all of X, so it is sufficient to show the following for each x € X7\ X"

writing z = 1 + w? with 1 a multiple of w?, we have that

AN+ Lzl = Xsnn+1,a].

[a¥)

To see this, simply observe that the set on the right is homeomorphic to [1, wQ], =
[1,w], while the set on the left is homeomorphic to [1,w] by definition of a cofinitary

system (being infinite by the condition of non-emptiness). O]

In order to state our construction, let ¢ be the unique ordinal of the form w® -m
such that X§ = Xy. For example, if § = w™ - m with n and m positive integers then

N =w"1-m.

Proposition 6.3.2. Let f: X; — X5 be any function. Then f € K} if and only if
there are two cofinitary systems (A;),c XXV and (By),¢ xnxy O X5, with respective

complementary sets A, and B,, such that the following conditions hold.
1. f(z)==x forallz € X5\ X{.

2. For each x € X\ Xj, the restriction of f to A, is an injection with image
B,.

3. The restriction of f to A, is an injection with image B,.

4. If a« > 2, so that by Lemma|6.3.1 we may view the restriction of f to A, as a
function from Xg to Xg, then this function lies in K.

Note that the cofinitary systems in this result need not be unique. Indeed, for
each z € X\ X/, one may remove any finite subset from A, while removing its

image under f from B,.

Proof. We again assume « > 2 since the case a = 1 is similar but easier.

Suppose first that f € K}. Condition [1]is immediate. To extract the required
cofinitary systems, let x € X5 \ X§, and write = 1 + w with 1 a multiple of w.
By Lemma , there exist a,b € X5 with x € (a,b) such that for all y € Xj, if
y € (a,b) then f(y) € (n,z +1). Certainly a > n since f(n) = n if n > 0. Take
A, = (a+1,z) and B, = f (A,). These are clearly both subsets of [+ 1, z) whose
complements are finite and non-empty.

Conditions [2[ and |3| now follow immediately from the fact that f is a bijection.
For condition , first observe that f (x) = x for all x € X} since f € K}. Finally,
the continuity of the restriction f to A, follows easily from the continuity of f using
Lemma [6.1.1]

Conversely, suppose (A,), . XX and (B;),. xp\xy Are cofinitary systems on X,

with respective complementary sets A, and B,, such that all 4 conditions hold. The
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first 3 conditions ensure that f is a bijection, and conditions [1| and 4] together imply
that f (z) =« for all z € Xj. It remains only to check continuity, for which we use
Lemma [6.1.11

Continuity at isolated points is trivial, and continuity at a point of X§ follows
straightforwardly using the continuity of the restriction of f to A, at that point. To
complete the proof, let x € X;\ X{, and let ¢,d € X;U{£o0} withz = f (z) € (¢, d).
Since B, is cofinite, there exists e € (c,x) such that (e,z) C B,. By condition
2l f7*((e,z)) is a cofinite subset of A,, so there exists a € A, such that (a,z) C
f~'((e,x)). Thenforally € X5, ify € (a,x + 1) then f (y) € (e,x + 1) C (¢,d). O

Thus we have described K} in terms of Kj. We also know that B} = Hj =~ Hy
by part [2] of Lemma [6.2.1] Since any f € Hgs can be written uniquely as k o b with
k € K} and b € B} by Proposition we therefore have a complete description
of Hs in terms of Hyg.

What is not clear, however, is that Hy is any simpler than Hs. Indeed, ' must

satisfy 6 = w - ¢’, and hence

w" ' -m, if @ =n is finite

0, otherwise.

Hence we obtain recursively a complete description of Hyn., for all n € w and all

positive integers m, but only an infinite regress for Hy in the case § > w".

6.4 A partial description of H o

From the next section onwards, we will focus exclusively on the first case from the
above dichotomy. But first, let us briefly examine some of the complexities that
arise in the second case. In this section, fix § = w®.

In this case Xj is order-homeomorphic X, and hence by induction Xé") is order-

homeomorphic to X for all n € w. We may therefore make the following definition.

Definition. Let n € w and let ¢,, be the unique order-homeomorphism X(g") — Xs.
Define a group homomorphism ¢" : H; — H? by ¢" (f) = ¢, o f 0¢,. Then define
d" = by o c”, where bf : Hy — Hs is the block map.

Thus if f € Hy, then d" (f) € Hy is obtained by applying f to Xé") >~ X5 and
extending this to the whole of X using the block map. One may check that in fact
d™ = (d*)" for all n € w. This map enables us to iteratively decompose any f € H;
using the case = 1 of Proposition [6.2.2] as follows.

Definition. Given f € Hj, write f = fy = hgo gy with gy € K} and hy € B}. Since
B} =Tm (b}), we may write hg = d* (f;) with f; € Hs. Thus f = d" (f1)ogo. Iterate



104 6. AUTOHOMEOMORPHISM GROUPS OF COUNTABLE COMPACT ORDINALS

this procedure to obtain f,, € Hs and g,, € K} for each n € w such that

f=d"(fa)o d! (gn-1) 0 d (gn-2)o---o0 d* (91) © g0

for all n € w. We then define the block decomposition of f to be (gn)

new’

The term “decomposition” here is justified by the following result.

Proposition 6.4.1. The map taking f € Hy to its block decomposition is an

mgjection.

Proof. Fix x € X5 and let f € Hs have block decomposition (g,,)

Cantor normal form as

Write f (z) in

new’

N-1

fx)=w my+w “Mmy_1+ -+ w-my +mg

with m,, € w for all n € {0,1,..., N}, and define m,, = 0 for all n > N. Thus we

may recover f (z) from the sequence (m,,) We claim that for all n € w, we may

new’
recover mg, my, ..., My_1 from go, g1, - .., gn—1 (without f). It follows that we may
recover f (x) from (gn),c,, and since x is arbitrary the result follows.

To prove the claim, simply recall that for all n € w,

f=d"(fa)o d! (gn-1) © d— (gn-2)o---o0 d' (91) © g0

for some f,, € Hs. Observe that d" (f,,) € B} and so f, does not affect the values

of mg,mq,...,my_1. O]

Thus Hs; may in some sense be described entirely in terms of its subgroup K},
though this description is somewhat complicated.

Note that not every sequence (gy),,c,, With g, € K, 3 for all n € w may be obtained
as the block decomposition of some f € Hs. For example, let g,, be the transposition

(12) for all n € w. If we tried to recover (m,,), . in the case x =1 as in the above

necw
proof, then we would obtain m, = 2 for all n € w, which is absurd. There are
nonetheless many sequences that may be obtained in this fashion. For example, it
is sufficient (but not necessary) for the support of g, to be subset of [2,w) for all
necw.

Note also that if f € Hs has block decomposition (g,,) then for allm € w, f €

news
K§" if and only if g, is the identity function for all n > m. In particular, the quotient
Hs/Ume, K3 is non-trivial. It may be interesting to study the normal subgroups
of this quotient, since many of the techniques we will present seem to break down in
that context. Moreover, the corresponding quotient defined for superatomic Boolean
algebras in general is an important notion in the study of uncountable superatomic

Boolean algebras [Roi89) Definition 1.7].
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6.5 The normal subgroups of H .,

The remainder of the chapter is devoted to studying the normal subgroups of H,n.,,
for finite n and m. Fix positive integers n and m and let § = W™ - m.

We have seen the importance of the subgroup K3, the pointwise stabiliser of
Xj. Because the more general problem appears to be somewhat harder, our results
concern only the normal subgroups of Hs contained in K. After proving these, we
will briefly indicate how one may attempt to generalise these results and thereby
obtain a complete classification of the normal subgroups of Hs.

In order to state our main result, we require the notions of the character and flow
of a function in K}. Note that these are not related to characters in representation
theory or flows in topological dynamics. It will take some work to define these
precisely, so we begin with some examples in order to make these ideas more
transparent.

First let us introduce a useful abbreviation.

Definition. Given a topological space X and an ordinal -, we write XD = X0 \
X0+

For example, X(go] = {x € X : z is isolated}.
The character of a function in K} will be a function of its support, for which we

use the following notation.

Definition. Let f € Hs. Define the support of f by

supp (f) ={x € Xs: f(x) # x}.

For example, if f € H; then f € K} if and only if supp (f) C X(EO].

In the very simplest special case, we have 6 = w. Then X has exactly one limit
point, so K} = Hs. Moreover, by ignoring the trivial action of the group on this
limit point, we obtain the group S, of permutations of [1,w). The Schreier-Ulam
theorem states that the normal subgroups of this group are exactly: the identity; the
group of alternating permutations of finite support; the group of all permutations
of finite support; and S,.

Now consider the special case § = w?. Once again, the following are all normal
subgroups of Hs contained in K}: the identity; the group of alternating permutations
of X g)] of finite support; the group of all permutations X (go] of finite support; and
K}. But we now have several new normal subgroups of H; contained in K}, such

as:

e the group of all functions in K} whose support is contained in a proper initial

segment of [1,w?);

e the group of all functions in K} whose support is finite on every proper initial

segment of [1,w?); and
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e the group of all functions in K} whose support is finite on every proper initial

segment of [z,w?) for some z € [1,w?).

The notion of the character of a function in K} for arbitrary § < w* will allow us
capture these sorts of characteristics of the support of a permutation that give rise
to normal subgroups.

The notion of the flow of a function in K} captures the other properties of a
permutation that give rise to normal subgroups. To illustrate this, consider the
special case d = w - 2. Note that X is homeomorphic to Z U {+oo} under the order
topology, and moreover the induced action of the group on 400 is determined by its
action on Z. We may therefore identify Hs with the induced group of permutations
of Z, which we shall denote by Hy.

Let us now describe Hz more explicitly. Given f € Sym (Z), say that f preserves
limits to mean that if z; € Z for all i € w and lim;_,, z; = +00, then lim; ., f (z;) =
lim; .. z;, and say that f flips limits to mean that if x; € Z for all © € w and

lim; o x; = +00, then lim; o f (z;) = —lim;_,o, ;. We then have
Hy ={f € Sym (Z) : f preserves limits or f flips limits} .

Furthermore, let us denote the the subgroup of Hyz corresponding to K , under our
identification by Kz. Then

Kz ={f € Sym(Z) : f preserves limits} .

The flow of f € Kz is intended to capture the amount by which f moves
points away from —oo and towards oco. It may be defined using disjoint cycle
decompositions, so let us first define it for a single cycle. Note that if f =
(...z_120x1 ...) € Kz is an infinite cycle, then lim; , . x; = 00 and lim; o z; =

400 since f preserves limits.

Definition. If f € Kj is a finite cycle, then define flow (f) = 0. If f =

(...z_129x1 ...) € Kz is an infinite cycle, then define

flow (f) =<1, if lim;, o z; = —o0 and lim; o z; = 00
—1, if lim;,_ z; = 00 and lim;_,,, z; = —00.

Now if f € K7 is written as a product of disjoint cycles, then only finitely many
of these cycles has non-zero flow, since f preserves limits. We may therefore make

the following definition.
Definition. Let f € Kz. The flow of f, denoted by flow (f), is defined to be the sum

of the flows of each cycle in the disjoint cycle decomposition of f, which converges

absolutely.
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It is easy to check that an alternative definition of flow for f € Ky is given by

flow (f) = N\ S (N)| = [/ (N) \ N[,

where both cardinalities in this expression are finite because f preserves limits. We
will use a version of this definition later, since it is easier to work with.

It follows from this second definition that flow : Kz — Z is a surjective
homomorphism, and moreover flow (g~ o f o g) = flow (f) for all f € Kz and all
g € Hy. Hence Ker (flow) < Hy, (it is actually the commutator subgroup of both K7
and Hz), and we obtain a normal subgroup of Hy contained in K7 for each subgroup
of Z. In fact, we shall see later that the normal subgroups of Hz contained in Ky are
exactly: the identity; the group of alternating permutations of Z of finite support;
the group of all permutations of Z of finite support; and the normal subgroups
containing Ker (flow) corresponding to the subgroups of Z.

Our classification result for arbitrary § < w® essentially says that the normal
subgroups of Hs contained in K} are exactly those that emerge via characters and
flows. We will give a precise statement of this result once we have fully developed

these notions.

6.6 Characters

From now until the end of the chapter, fix positive integers n and m and let § =
w™ - m.
In this section we introduce and develop the basic theory of characters. Here is

a crucial piece of notation we require.

Definition. Let | € w and suppose ¥ C Xg]. Given k € w with k£ > [, we define
Y((R]=ay)nx,

where cl denotes the topological closure operation relative to Xs.

Given ki, ko, ... k. € w with | < k; < ky < -+ < k,, we inductively define
Yk, .., k)] = (Y [(k1,...,k—1)]) [(k)]. By convention the sequence of length 0
is denoted by () and we take Y [()] =Y.

For example, suppose 6 = w?. If Y = {w-i+1:i€w}, then Y[(1)] = 0,
Y[(2)] = {w?} and Y[(1,2)] = 0. IfY = {w-i+j:i€w,jew)\{0}}, then
Y1) ={w-(i+1):i€w}, Y[2)] ={w?} and Y[(1,2)] = {w?}.

Here are the key properties of this piece of notation.

Lemma 6.6.1. Let | € w and suppose Y, Z C Xg].

1. Let k € w with k > 1. Then (YU Z)[(k)] =Y [(k)]U Z[(k)]. In particular, if
Y C Z then Y [(k)] C Z [(k)].
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2. Let ]{31, ko € w withl < ki < ky. Then'Y [(k?l, kQ)] cY [(k?g)]
3. Y is infinite if and only if Y [(k)] # 0 for some k € w with k > 1.

Proof. 1. This is immediate from the fact that cl (YU Z) = cl(Y)Ucl(Z). To

see this, observe that the right-hand side is a closed set containing ¥ and Z.
2. Y [(ky, ko)] = (cl (V)N X(g'fll) NX™ C @) nx™ =y (k).

3. SinceY C X g], Y is discrete in the subspace topology, so Y is compact if and
only if Y is finite. Since Xj is compact and Hausdorff, it follows that Y is
closed if and only if Y is finite. But ¢l (Y)\Y C Xélﬂ). Hence Y is infinite
if and only if 1 (V) \'Y # 0, if and only if Y [(k)] # 0 for some k € w with
k>l ]

We may now use square bracket notation to define characters.

Definition. Define
Up={(k1,ko,...; k) :r >0, 1 <ky <hky<---<k.<n}.

Thus given Y C X g)}, Y [s] is defined for all s € T',,.
We define the type of Y C X g)] by

tp(Y)={sel,:Y[s] #A0}.
We define the character of f € K; by

char (f) = tp (supp (f)) -

The following key property of types and hence of characters is inherited from the

corresponding property of square bracket notation.

Lemma 6.6.2. Let Y, Z C X(go}_ Then tp (Y U Z) =tp(Y)Utp(Z). In particular,
if Y C Z then tp (Y) C tp (2).

Proof. Let s € I',,. Then (Y UZ)[s] =Y [s]U Z[s] by applying part (1| of Lemma
inductively. Hence s € tp (Y U Z) if and only if s € tp (Y) U tp (Z). O

From this result we immediately obtain several normal subgroups of Hs contained

in Kj.
Definition. Given A C I',,, we define
La={f € Kj:char(f) CA}.

Proposition 6.6.3. Let A CT',,. Then Lan < Hs.
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Proof. First note that the definition of types is entirely topological, so if ¥ C X 0]

and g € Hg then tp(g(Y)) = tp(Y). Hence if f € Ln and g € Hj then

char (go fog™) = tp(supp(go fog™!)) = tp(g(supp(f))) = char(f). So it is
sufficient to prove that La is a group.

Clearly the identity function is a member of La, and if f € La then supp (f~1)
supp (f) and so f~!' € La. Finally, if f,h € La then supp(foh) C supp(f)U
supp (h) and so char (f o h) C char (f) U char (h) C A by Lemma [6.6.2] O

The other key property of types also follows from the key properties of square
bracket notation. This result shows that these normal subgroups need not all be
distinct.

Lemma 6.6.4. Let Y C X(g], suppose (ki,ka,... k.) € tp(Y) and let i €
{1,2,...,7’}. Then(lﬁ,...,ki,l, 2+1,...,]€T)Etp( )
)

Proof. 1f i = r then in fact Y [(k1,...,k,_1)] is infinite by part [3| of Lemma [6.6.1]

and we are done. Otherwise Y [(ki,...,ki41)] C Y [(k1, ..., ki1, kir1)] by part 2] of
Lemma[6.6.1] and hence Y [(k1,..., k)] CY [(k1,..., ki_1, ki1, - .., k)] by part [1] of
Lemma [6.6.1, and we are done. O

This result motivates the following definition. It may be helpful to note here
that there is a natural way to identify I',, with P ({1,2,...,n}) in such a way that

subsequences correspond to subsets.

Definition. Let A, S C I',. We say that A is a lower set to mean that if s € A
and t is a subsequence of s, then ¢t € A. We say that S is an antichain to mean that
if s,¢ € S then t is not a subsequence of s.

Given S C T, let (S) = {teTl,:tisasubsequence of some s € S}, or

equivalently, (S) is the smallest lower set of I', containing S. Abbreviate

({s1,52,...,8:}) as (s1,82,..., ).

Lemma may now be restated as saying that if Y C Xgo}, then tp (V) is a
lower set.

The main reason for introducing antichains is that the map

{antichains of I',,} — {lower sets of I',,}
S = (5)

is a bijection with inverse given by
A — {t € A : tis not a subsequence of s for any s € A\ {t}}.

Thus antichains are simply another way of thinking about lower sets, but they
contain no redundant information in the sense that any subset of an antichain is

another antichain.
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We will show in Section that Lemma is in fact the only restriction
on which subsets of ', may be obtained as the character of some f € K}. In
other words, for each lower set A C I', we will find a witness fao € K g with
char (fa) = A, which we will call the canonical function with character A. Tt will
follow that Proposition provides us with exactly one distinct normal subgroup
for each lower set A C T',,. (The exact number of lower sets A C T, is called the
nth Dedekind number and is denoted by D (n).)

Let us conclude this section by illustrating our claim in the special case § = w?,
thereby demonstrating the expressive power of characters. In this case, there are six
possible characters of a function f € K}, whose corresponding normal subgroups

were identified in the previous section:
e (), the character of the identity function;

e {()}, the character of a function with non-empty finite support;

{0, (1)} = ((1)), the character of a function whose support is infinite, but

contained in a proper initial segment of [1,w?);

e {(),(2)} = ((2)), the character of a function whose support is infinite, but

finite on every proper initial segment of [1,w?);

e {(),(1),(2)} =((1),(2)), the character of a function whose support is neither
contained in a proper initial segment of [1,w?) nor finite on every proper initial
segment of [1,w?), but is finite on every proper initial segment of [z,w?) for

some r € [1,w?); and

e {(),(1),(2),(1,2)} = ((1,2)), the character a function whose support is

infinite on some proper initial segment of [z, w?) for every z € [1,w?).

6.7 Flows

In this section we introduce and develop the basic theory of flows, which will at last
allow us to state our main result.

Given f € K ; and a subset C C X, we would like to measure the amount by
which f moves points “into” C'. The following simple result enables us to formalise
this when C' is clopen (closed and open). Here C'\ f (C) should be thought of as
the points “entering” C' under f, and f (C) \ C should be thought of as the points

“leaving” C' under f.

Lemma 6.7.1. Let f € K} and C C X; be clopen. Then C'\ f(C) and f(C)\ C

are finite.

Proof. Let Y = C'\ f (C). It is enough to show that Y is finite, since | f (C) \ C| =
IF L (F(C)\C)| = |C\ f1(C)]. To see this, simply observe that ¥ C X[ since
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[ € K}, and that Y is closed since Y = C'N f (X \ C) and C is clopen. Hence YV’

is both discrete and compact and therefore finite. n
This result enables us to make the following definition.

Definition. Let f € K} let C be a clopen subset of X;. We define the flow of f
into C' by

flowe (f) = C\ F(O) = IF(C)\C.

Here are the basic properties of this definition. Let us introduce some standard

notation for conjugation: given f,g € Hy, write f9 =g 1o foy.
Lemma 6.7.2. Let f € K} and let C and D be disjoint clopen subsets of X.
1. floweup (f) = flowe (f) + flowp (f).

2. flowx,\c (f) = —flowe (f).

8. If g € K}, then flowe (f o g) = flowe (f) + flowe (9).

4. If g € Hs, then flowe (f9) = flowycoy (f).
Proof. These are all simple set-theoretic identities that we leave as exercises. O

The most convenient clopen subsets to use are “blocks”, which are defined as

follows.

Definition. Let z € X}. Write z = 1+ " with 1 a multiple of w*. Define
B(z)=[n+1,z].

Note that the image of the block map from Section preserves these blocks in
the sense that if z € ng] for some k € {1,2,...,n} and b € B¥, then b(B(z)) =
B (%) for some 2’ € ng].

Clearly B(z) is clopen for all z € X§. The collection of all such blocks has the

following useful property.

Lemma 6.7.3. Let C' be a clopen subset of Xs. Then C 1is a finite Boolean
combination of sets of the form {x} with x € X(EO] and B (z) with z € Xj.

Proof. Recall that 6 = w™-m, and note first of all that the general case follows from
the case m = 1, since X is a topological disjoint union of m copies of X ». So
assume m = 1, so B (w") = X;. The remainder of the proof is by induction on n.
For the base case, suppose n = 1. If w € C, then X5\ C is a finite subset of
X(go] = [1,w), and if w € X5\ C, then C' is a finite subset of Xg)]. In either case the
result follows.
For the inductive step, suppose n > 1. Similarly to the case n = 1, either C' or

X5\ C (whichever does not contain the point w™) is a finite disjoint union (J;_, C;,



112 6. AUTOHOMEOMORPHISM GROUPS OF COUNTABLE COMPACT ORDINALS

where C; is a clopen subset of B (z;) for some z; € X(gn_l] for each i € {1,2,...,7}.
Now X_n-1 is order-homeomorphic to B (z;) for all i € {1,2,...,r}, and moreover
this order-homeomorphism maps blocks of X, »-1 to blocks of X ». Hence by the
inductive hypothesis, each of C,C5, ..., C, is a finite Boolean combination of sets

of the required form, and the result follows. n
We may now define the flow map.

Definition. We define a map flow : K} — Z%5 by

flow () = (Rowegs) () e,

The identity (0),cy, of 75 is denoted by 0.

It is possible to define this map in terms of disjoint cycles as in Section [6.5]
though it is unnecessary and somewhat cumbersome to do so.
We immediately obtain the following important fact from part 3| of Lemma[6.7.2]

Lemma 6.7.4. flow is a homomorphism. O

We also obtain the following consequence of Lemma [6.7.3] This result may be
interpreted as saying that the flow map encapsulates every possible flow into a clopen
subset of Xj.

Lemma 6.7.5. Let f € K}. Then flow (f) = 0 if and only if flowc (f) = 0 for
every clopen subset C' C Xj.

Proof. The “if” statement is clear from the fact that B (z) is clopen for all z € Xj.
For the “only if” statement, suppose flow (f) = 0. First observe that flow, (f) =0
for every z € X g”]. It follows by combining Lemma with parts |1| and [2| of
Lemma that flowe (f) = 0 for every clopen subset C' C X. O

Trivially Ker (low) < K}, but by combining the above result with part 4| of
Lemma [6.7.2] we obtain the following.

Lemma 6.7.6. Ker (flow) < H;.

Proof. Let f € Ker (flow) and g € Hs. Then by Lemma6.7.5(flowe (f) = 0 for every
clopen subset C' C Xj, so by part |4 of Lemma m flowe (f9) = flowge) (f) = 0
for every clopen subset C' C Xj, so by Lemma 19 € Ker (flow). O

Let us now introduce some notation for some of the relevant groups we have now

obtained.

Definition. Let A C I',, be a lower set.
Define Za to be the image of L under flow.
Define L = Ker (flow) N La.
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Thus LY < Hj for every lower set A C T',,. In fact, it is not too hard to deduce
from the proofs of the results in Section that LY is the commutator subgroup of
L for every lower set A C T',,.

We may at last state our main result of this chapter, a complete classification of
the normal subgroups of Hs contained in K;. Note that we obtain in particular our
claim about the special case § = w - 2 from Section

Theorem 6.7.7. Let N be a normal subgroup of Hs contained in K} other than the

group of alternating permutations of finite support. Then
LY <N < La
for a unique lower set A C T,,.

Moreover, given a lower set A C I',,, the normal subgroups N < Hs with LOA <
N < La may be characterised in terms of the subgroups of Za to which they
correspond. Specifically, since H; = K} x B; and the induced conjugation action
of K} on Zp is trivial, a subgroup of Za will correspond to a normal subgroup
of Hy if and only if it is invariant under the induced conjugation action of Bj on
Z. We will come back and analyse these subgroups of Za after proving our main
result. In particular, we will find 22°° such subgroups whenever (k1,k2) € A for
some ki, ko € {1,2,...,n}.

6.8 Canonical functions

Recall that if f € K}, then char (f) is a lower set. The purpose of this section is
to find for each lower set A C T, a function fa € K} with char (fa) = A, which
we will call the canonical function with character A. We will choose these functions
carefully, since they will be an important tool in the proof of Theorem [6.7.7, In
particular, they will all have zero flow.

Our basic construction uses a product of permutations whose supports are
pairwise disjoint, which is defined in the obvious way. Note that if f; € Hy for
all i € w and supp (f;) Nsupp (f;) = 0 for all distinct ¢, j € w, then in general it need
not be the case that the infinite product []
be the transposition (i + 1w +1i+ 1) for all i € w. However, the infinite products

icw Ji lies Hs: for example, take f; to
used in our construction will clearly satisfy the criterion of Proposition and
therefore lie in Kj.

Here is our basic construction.

Definition. For each subset Z C Xj, we define f; € H; as follows.
Let z € X}. Write z = n + w” with  a multiple of w*. For each positive integer
i, let a; = n+w* ' -i+1. Then define fi, to be the cycle (... agasasar azas ...).
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For an arbitrary subset Z C Xj, define fz = [[,., fi:3- It is easy to check that

this is a product of disjoint cycles.
The point of this definition is to obtain the following result.

Lemma 6.8.1. Let Z be a closed subset of X5. Then

cl(supp (fz)) N X5 = Z.

Note that by definition of the square bracket notation, if f € K} has non-empty
support, then char (f) depends only cl (supp (f))N X}, which must be a closed subset
of X§. This result shows that in fact any closed subset of X§ may be realised in
this fashion, thereby reducing the problem of finding canonical functions to finding

certain closed subsets of X g.

Proof. First note that by construction, supp ( f{z}) Cc X go} and cl (supp ( f{z})) =

supp (f{z}) U {z} for each z € Z, and moreover supp (fz) = U, supp (f{z}).

We show that cl(supp(fz)) = supp(fz) U Z, which suffices. First of all,
cl(supp (fz)) 2 U,ezdl (Supp (f{z})) = supp(fz) U Z. Conversely, let z €
cl (supp (fz)) \ supp (fz), say z = sup (V) for some V' C supp (fz), and suppose

for contradiction z ¢ Z. By definition of fz, for all v € V we may write

v = n,+wh1.i, 41 with i, a positive integer, 7, a multiple of w** and n, +w* € Z.

Now write z = ¢ + w' with ¢ a multiple of w!. We may assume without loss of
generality that v € ((+1,2) for all v € V. But the only members of (¢ + 1, 2)
that are multiples of w'™! plus one lie in supp ( f{z}), so since z ¢ Z it follows that
k, <l for all v € V. But then 7, + w* < 2z for all v € V, so z = sup (V) where
Y = {'r]v +wkw e V} C Z. Hence z € Z since Z is closed, and we are done. []

These functions also have the following convenient properties.

Lemma 6.8.2. Let Zy,Z,,...,Z, C Xj.
1. supp (fur_, z) = Ui_, supp (fz,)-

2. supp (fz, © fz, 0+ 0 fz,) = Ui, supp (fz,)-
Proof. 1. This is immediate from the fact that if Z C Xj, then supp(fz) =
UzeZ Supp (f{z})'
2. Let f = fz,0fz 00 fz and Z = |J_, Z;. For each z € Z,
let r, = {i€{1,2,....r}:2€ Z;}|. Then f = [[.c;f(Z, a product of
disjoint permutations. Moreover, for each 2 € Z, since fi;; is an infinite

cycle, supp (f{“;}) = supp (f(-). Hence supp (f) = supp ([I.cy fry) =
Uzzl supp (sz) =

It will also be important for the proof of Theorem that these functions have

zero flow.
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Lemma 6.8.3. Let Z be a closed subset of X;. Then flow (fz) = 0.

Proof. Let z € Z and y € Xj. Note that B (y) and B (z) are either nested or disjoint.
If = ¢ B (y), then supp (f(.}) N B (y) is either empty (if B(z) N B (y) = 0) or finite
(if B(y) € B(z)). On the other hand if z € B (y), then supp (f(.1) € B(z) C B (y).
In either case we see that flowpy) ( f{z}) = (0. Moreover, there are at most finitely
many z € Z with B(y) € B(z), and hence flowpg,) (fz) = 0 for all y € Xj, as
required. O

Suppose we were to extend the definition of the square bracket notation and of
types to include all subsets of X, rather than only subsets of X g)}. Lemma m
would then imply that Z [s] = supp (fz) [s| whenever Z is a closed subset of X§ and
s € I', \ {()}. Hence if A C T, is a lower set, then in order to find f € K} with
char (f) = A, it is sufficient to find a closed subset Z C X} with tp (Z) = A in this
sense.

We now construct such closed subsets of X3, beginning with the case in which
A has the form (s) with s € T',,.

Definition. Define Z ((s)) for each s € T, inductively by Z ({())) = 0 and
Z (k1 kay ..o k) = {wF ™ 2i+ 2i€w,z € Z({(kr ks hesr))) } U {7}

forr > 1.

For example, when 6 = w?, Z ({(1,3))) ={w? - 2i +w:i € w} U{w}.
We now give the key properties of these sets, showing in particular that they are

as we desired.
Lemma 6.8.4. Let (ky,ko,... k) € 'y, for somer > 1.
1. Z ({(k1,ka, ..., k,))) is a closed subset of X§N [1,wk].
2. Z({(ky, .. ki, kivr, k) € Z({(ky, ke, .. k) for all @0 €
{1,2,...,r}.
3. char (f2(<(k1,k;2 ..... kr)>)) = <(kla ko, . .. 7kr)>'

Proof. 1. This is immediate by induction on r.

2. Let ¢ € {1,2,...,7} First note that Z(((k1,...,ki—1))) C
Z (((k1, ko, ..., ki))). It follows by induction on 5 that
Z(<<k1,...,kifl,ki+1,...,]{,’j)>) g Z(<<k1,k2,,]€j)>) for all j S

{i+1,i+2,...,7}, as required.

3. Let Z = Z(((k1,ka,....k.))). Extend the definition of the square bracket
notation and of types to include all subsets of X5. As we remarked above, by
Lemma it is sufficient to prove that tp (Z) = ((k1, ka2, ..., k;)).
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The proof is by induction on r. For the case r = 1, Z(((k1))) = {wh}
and so tp (Z (((k1)))) = {(), (k1)}, as required. So assume that r > 1 and
let W = Z(((k1,ke,...,k-—1))). By Lemma it is sufficient to prove
that (k1,k2, ..., k) € tp(Z) and if k € {1,2,...,n} \ {k1,ko,...,k.} then
(k) ¢ 1 (2).

For the first part, let V. = W [(ky,ks,...,k.—1)]. By the inductive
hypothesis, V' # 0, so let x € V, and note that =z € [1,@0“*1} by
part . Then {wk’_l it xii € w} C Z|(ki, ko, ..., k.—1)] and so wh €
A (Z[(ky, ko, kp)]) N XI = Z (ki ks, ... k)], Hence (ky, ks, ... k) €
tp (Z), as required.

For the second part, suppose k € {1,2,...,n} \ {ki,k2,...,k.}. Then

Ad(W) n x¥ = @ by the inductive hypothesis.  But cl(Z) =
{wh 1. 2i+zicw,zecd (W)} U {wh}, and hence cl(Z) N ng] =0. In
other words, (k) ¢ tp (Z), as required. O

Our definition of Z ((s)) for s € I';, may now be extended to a definition of Z (A)
for every lower set A C I',,. Part 2| of Lemma [6.8.4] ensures that our two definitions

agree when A = (s) for some s € [',,.

Definition. Let A C T',, be a lower set. Define

z@)=Jzs).
s€A

By part [2| of Lemma we may equivalently define Z (A) = (.4 Z ((s)),
where S is the antichain of I, with (S) = A.

We now have all the ingredients ready for us to define canonical functions. We
need to distinguish the case A = {()} because Z ({()}) = Z(0) = 0. Indeed, if
f € K} has finite support, then cl (supp (f))NX} = @ whether or not char (f) = {()}
or char (f) = 0.

Definition. Let A C I', be a lower set. We define the canonical function with

character A by
(12), ifA={(}

fz(a), otherwise.

fa=

By convention, the empty product fj is the identity function.
It is now easy for us to check that these functions are as we desired.
Proposition 6.8.5. Let A C T, be a lower set. Then char (fa) = A.

Proof. The result is clear if A = {()}. Otherwise, char (fa) =

tp (USGA supp (f3(<s>))) = U,en char (fg(<s>)) = U,en (5) = A by, respectively, part
of Lemma [6.8.2] Lemma part [3] of Lemma and the fact that A is a

lower set. O
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Combined with Lemma [6.6.4], this result finally shows that if A C I',,, then there
exists f € K} with char (f) = A if and only if A is a lower set.

Because of how we chose our canonical functions, we may use part [2| of Lemma
to generalise this result.

Proposition 6.8.6. Let Ay, Ay, ..., A, C T, be lower sets with A; # {()} for all
ie{1,2,...,r}. Then

r

char (fa, o fa, 0+ o fa,) = [ J A
i=1
Proof. By definition fa, = fzn, for all ¢ € {1,2,...,7}. Hence
char (fA1 © fA2 ©---0 fAr) = tp (U:ﬂ supp (fZ(Ai))) = U::1 char (fZ(Ai)) =

Ui_; A; by, respectively, part [2] of Lemma Lemma and Proposition
0.8.9l ]

We now use canonical functions to reduce our main result, Theorem [6.7.7] to
a pair of statements about conjugate closures, which may be viewed as roughly

converse to one another.
Theorem 6.8.7. Let h € K} have infinite support and let A = char (h).

1. If {0} € A" C A is a lower set, then far is the product of finitely many

conjugates of h or h™!.
2. Ifflow (h) = O then h is the product of finitely many conjugates of fa or fx'.

It is straightforward to deduce Theorem from this result. The crucial claim

in our proof uses Proposition |6.8.6]

Proof of Theorem[6.7.7 from Theorem[6.8.7. Let N be a normal subgroup of Hj
contained in K}. If every member of N has finite support, then by the Schreier—
Ulam theorem, N is either the identity, or the group of alternating permutations of
X (£0] of finite support, or the group of all permutations of X g)] of finite support, and
we are done. Assume instead that N has an element of infinite support. We show
that LY < N < La, where A = Upen char (h). Uniqueness is then immediate from
the fact that far € LY, and char (fa/) = A’ for every lower set A’ C T,,.

Clearly N < La. To see that LY < N, let ¢ € L. It is sufficient to prove
that ¢ is the product of finitely many conjugates of members of N. If g has finite
support, then this is immediate from the Schreier—Ulam theorem. Otherwise let
A’ = char (g), so A’ is a lower set with {()} € A’ C A. We claim that there is a
product h of finitely many conjugates of members of N with char (h) = A. Given
the claim, fas is the product of finitely many conjugates of h or h~! by part [1] of
Theorem , and ¢ is the product of finitely many conjugates of fas or fg,l by
part [2{ of Theorem [6.8.7], which completes the proof.
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It remains to prove the claim. Since I',, is finite and () is a member of every
non-empty lower set, there exist hi,hg,...,h, € N such that |J;_, char(h;) =
Upenchar (h) = A and char(h;) 2 {()} for all i € {1,2,...,7}. For each
i € {1,2,...,r}, let A; = char(h;). Then by part [l| of Theorem fa, is
the product of finitely many conjugates of h; or h; ! for all i € {1,2,...,r}. Take
h = fa, © fa, 00 fa,. Then char (k) = A by Proposition [6.8.6] as required. [

6.9 Proof of the classification

In this section we prove Theorem [6.8.7], thereby completing the proof of our main
result, Theorem [6.7.7]
A crucial ingredient in our proof is the following result of Bertram [Ber73|. It is

essentially the corresponding result for S.,, the group of permutations of [1,w).

Theorem 6.9.1 (Bertram). Let g € So have infinite support and let h € So. Then
h is the product of 4 conjugates of g.

The number 4 is best possible here in general, though this result may be further
refined using case distinctions [Dro83, [Dro85, [Dro87, [Mor89]. However, we will not
be unduly concerned with careful numerical bounds, and so Bertram’s formulation
is the most convenient for our purposes.

As in the previous section, we make frequent use of infinite products of disjoint
permutations. In each case it will again be easy to check these products lie in Hy,
either using Lemma , or using Proposition for functions lying in K}.

We begin by proving the first part of Theorem [6.8.7] which states that we may
obtain a canonical function as a product of finitely many conjugates of a suitable
given function and its inverse. Our proof has two steps. In the first step, we obtain

a function of the form f.

Proposition 6.9.2. Let h € K} and let Z C cl(supp (h)) N X§. Then fz is the
product of 8 conjugates of h or h™*.

The first step in our proof of the first part of Theorem essentially amounts
to the case Z = cl (supp (h)) N Xj. However, our more general statement makes this
result a useful tool at several other points in the proof of Theorem

Proof. The idea of the proof is straightforward, though the details are somewhat
technical. Let Z = cl(supp (h)) N X}. We aim to construct a product r &

K} of 2 conjugates of h or h™! such that r is an infinite product [Iezr- of

disjoint permutations with supp (r,) C supp ( f{z}) for all 2 € Z. We may then
simultaneously apply Bertram’s theorem to r, for each z € Z and obtain fz as the

product of 4 conjugates of r. In order to obtain r, we first construct g € K} so

1

that the commutator p = ¢g7' o h o g o h™! may be written as an infinite product
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[1..7 p- of disjoint permutations with cl (supp (p:)) N X5 = {2} for all z € Z (note
that in particular, p has zero flow). We then construct ¢ € K} and obtain r as the
conjugate ¢ ' opogq.

First we construct g € K} as the product 1.7 9- of disjoint permutations. For
each k € {1,2,...,n}, let us simultaneously define g, for each z € ZnN X(Ek} by
backwards induction on k. Fix k € {1,2,...,n} and assume that we have defined g,
for each z € Z N Xékﬂ) in such a way that cl (supp (Hzegmx(gk+l) gz>> N X5 C

XékH). Now fix z € Zn X(gk] and write z = 1 + w* with n a multiple of

wk. Then there is a strictly increasing sequence (b;)... with b; € supp (h) for

€W
all i € w and z = sup({b; : © € w}). By passing to a subsequence if necessary,

we may assume (h (b;)),.., is monotonic and therefore strictly increasing. Then

icw
z = sup ({h(b;) : i € w}) since h(z) = z and h is continuous at z, so by passing
to another subsequence if necessary we may assume both b,y and h(b;1) are
larger than max ({b;, h (b;)}) for all i € w. Finally, by the inductive hypothesis,
supp (HzeszékH) gz> N[n+ 1, z) is finite, so by passing to yet another subsequence
we may assume both b; and h (b;) are larger than every member of this set for
all i € w. Then take g. to be the product [, (b2ib2ir1) of disjoint cycles.
Observe that g;' o ho g, o h™' = [[.c,, (b2i bait1) (B (ba;) h (bai+1)). Note also that
cl(supp (g.)) N X5 = {2} € X gk] as required for the inductive hypothesis. This
completes our construction of g.

Let p =g 'ohtogoh and write p, = g;' oh ' o g, oh for each z € Z,
so that p = J[,.zp.. Next we construct ¢ € Kj as the product ] ;¢
of disjoint permutations. Fix z € Z, write z = 7 + w* with n a multiple
of w¥ and write g, = [Lc., (b2i b2iz1) as above. For each positive integer i,
let a; = n+ i+ 1 (so that fr is the cycle (... agasasarazas ...)).
Pick a positive integer j such that a; > by, which ensures that {a;,a;1,...}
is disjoint from supp (p,) for each z € Z N Xékﬂ). Then take g. to be the
product []ic,, (aj+4ib2i) (j1ai11 b2iv1) (@jiai2 1o (b2) (@j44iv3 I (baiv)) of disjoint
permutations. Observe that ¢-' o p. 0 . = [lic, (@j44i @j1aiv1) (Qj1ai12, Qjrairs).
This completes our construction of q.

Finally let r = ¢7' o po g and write r, = q;' o p, o ¢, for each z € Z, so that
7 = [l,ez7.. By Bertram’s theorem, f,; is the product of 4 conjugates of r, for
ecach z € Z , and the identity is the product of 4 conjugates of r, for each z € Z\ Z.
By taking the infinite product of these conjugands in much the same way as above,
it follows that fz = [[,., fiz3 is the product of 4 conjugates of r and hence 8

conjugates of h or h™!. O

The second step of our proof of the first part Theorem is to obtain a

canonical function from a function of the form f.

Proposition 6.9.3. Let Z be a closed subset of X5 and let A = char (fz). Then fa
is the product of finitely many conjugates of f; or f,*.
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The basic idea of our proof is that by using Proposition [6.9.2] it is in some sense
sufficient to build up for each s € A a copy of Z ((s)) inside a conjugate of fz. We
do this inductively by mirroring the definition of Z ((s)), which it may be helpful
to recall at this stage. The fact that we used even numbers in that definition makes
our construction cleaner. In order to build up the copy of Z ({s)), we conjugate
by functions obtained from block maps. This is to be contrasted with the proof of

Proposition [6.9.2) where we only conjugated by functions from Kj.

Proof. The result is trivial if A = (), so assume A # () and note that A # {()}.
Let S be the antichain of I';, with (S) = A. We claim that for all s € S there is a
conjugate g of fz such that Z ((s)) C cl(supp (¢)) N X;. Given the claim, it follows
from Proposition that fz(.) is the product of 8 conjugates of fz or f, U for
all s € S. Now let S = {s1,52,...,5.} and let h = fz()) © fz((s2)) © - - © [2((s,))-
Then supp (h) = |J,_, supp (fg«si))) by part [2| of Lemma , so ¢l (supp (h)) N
X5 = Ui Z((s:)) = Z(A) by Lemma [6.8.1] Hence fao = fz(a) is the product
of 8 conjugates of h or h™! by Proposition [6.9.2) and therefore the product of 64r
conjugates of f; or f,', as required.

It remains to prove the claim. To do this, fix s € S and write s = (kq, ko, ..., k;)
with » > 1. We show that for all j € {1,2,...,r} there is a conjugate g; of fz
such that supp (g;) [(k1, k2, ..., kj)] = supp (fz) [(k1, k2, ..., k;)], and for all z €
supp (g;) [(k1, k2, - . ., k;)], writing 2 = n + w* with 1 a multiple of w*,

{n+x:2eZ(((k, k..., k;)))} Ccl(supp (g5)) N X;.

Once we have done this, we may choose z € supp (g,) [(k1, k2, . . ., k)] and take g to
be the conjugate of g, by bf’" ((z wk’”)), where b? is the block map and (z wk’“) € Hfr
is a transposition. Then g is as required since Z ((s)) C [1, wk’“}.

We prove this by induction on j. For the case 7 = 1 we may simply
take g1 to be fz since Z(((k1))) = {w™}. So suppose j > 1. Fix z €
supp (gj—1) [(k1, k2, ..., k;)] and write z = 1 + w® with n a multiple of w*. Then

there is a strictly increasing sequence (a;),. , such that ag > 7, z = sup ({a; : i € w})

icw
and a; € supp(gj_1)[(k1,ke2,...,kj—1)] for all i € w. For each i € w write
a; =n+ w4+ G+ W with ¢; € w and ¢ < W1 a multiple of whi—1
(it is possible that k;_y = k; — 1, in which case (; = 0). By passing to a
subsequence if necessary, we may assume c;.1 > ¢; + 2 for all ¢+ € w. Then
there is a permutation ¢ of w such that o (¢;) = 2i for all i € w, which induces
a function p, € H(fj_l such that p, (n+ w1 (¢;+1)) = np+ ™. (20 +1)
for all i € w. Let ¢ = [[,o, (ai n+wki—t. ¢ —I—wkﬂ'*l), a product of disjoint
transpositions lying in H;j’l. Now let ¢, = b’;j_l (p.) o b’;j’l (¢.). Then t,(2) = 2
and t, (a;) = n+wh =1 2i+wki-1 for all i € w. It follows by the inductive hypothesis
that {n+z:z € Z(((k1, ko, ..., k;)))} C cl(supp (t,0g;_10t;')) N X} Thus we
may let t = b’gj_l (ILeyp:) b’gj’l (IT,cz ¢-) and take g; to be t o g;_1 o t~*. This
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completes the proof. O]

We will not keep any further track of how many conjugates we use, but in this

case we used 64 |S| conjugates, where S is the antichain of I';, with (S) = A. By

n
[n/2]
whether or not this upper bound may be reduced to a constant (independent of n).

Sperner’s theorem, this is at most 64( ) It may be interesting to determine

Let us now put Propositions [6.9.2] and [6.9.3| together to complete the proof of
the first part of Theorem [6.8.7]

Proof of part[d] of Theorem[6.8.7 Recall that h € K} has infinite support and A =
char (h). Let {()} € A" C A be a lower set. We are required to prove that fas is
the product of finitely many conjugates of h or h~!.

First we show that fa is the product of finitely many conjugates of h or h=. To
see this, let Z = cl(supp (h)) N X;. Then char (fz) = A. Hence fz is the product
of 8 conjugates of h or h=' by Proposition [6.9.2] and fa is the product of finitely
many conjugates of fz or f, ! by Proposition m

To complete the proof, simply observe that Z (A") C Z (A) = cl (supp (fg(A))) N
X5, and so by Proposition , fzay = far is the product of 8 conjugates of
fza) = fa or fo'. u

We now prove the second part of Theorem which states that we may obtain
an arbitrary function in K} of zero flow as a product of finitely many conjugates of
an appropriate canonical function and its inverse. Like the first part, our proof has
two steps. In the first step, we obtain an appropriate function of the form f,. This

may be viewed as the converse of Proposition [6.9.3]

Proposition 6.9.4. Let Z be a closed subset of X§ and let A = char (fz). Then fz
is the product of finitely many conjugates of fa or fi'.

The proof of this result is the most technically challenging part of this chapter,
essentially because of the lack of control we have over Z. In order to address this,

we use the following notion.

Definition. Let Y C Xgo] and A = tp (V). We say that Y is primitive to mean that
A = (s) for some s € ', and Y [(ky, k2, ..., k;)] = Y [(k;)] for all j € {1,2,...,7},
where s = (ky1, ko, ..., k).

For example, let n = 3, Z = Z({(2))) U{w?’+2z:2€ Z({(1,2)))} and ¥ =
supp (fz). Then tp (Y) = ((1,2)) but Y is not primitive since Y [(2)] \ Y [(1,2)] =
Z(((2)) #0.

Let Y C X(go] and A = tp(Y), and suppose A = (s) with s = (ky, ks,..., k).
By Lemma , if j € {1,2,...,r} and t is any subsequence of (k1, k2, ..., k;) such
that the last term of ¢ is k;, then Y [(k1, ko, ..., kj)] C Y [t] C Y [(k;)], so if YV is
primitive then Y [t] =Y [(k1, ko, ..., kj)].
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It is easy to check that if s € T, \ {()} then supp (fz(())) is primitive. Thus
by definition, sets of the form supp (fz(A)) with {()} # A C I',, may be written
as a union of primitive sets. The following result shows that this in fact holds for
any subset of X (£0}7 and moreover that this union may be taken to be disjoint, as
we indicate here with the word “partition”. This powerful result will allow us to
prove Proposition [6.9.3] though strictly speaking the disjointness condition will not

be required when we apply this result.

Lemma 6.9.5. Let Y C X(QO] and let A = tp(Y'). Then there is a partition Y =
Usena Ys such that Yy is primitive with tp (Y;) = (s) for all s € A.

Proof. 1f |A| < 1 then the result is trivial, so assume |A| > 1, let S be the antichain
of I';, with (S) = A and let s € S. We show that there is a partition Y = AU B
such that A is primitive with tp (4) = (s) and tp (B) = A\ {s}. The result then
follows by induction on |A|.

Let s = (k1, ko, ..., k). For each j € {r,r —1,...,0} we construct a partition
Y [(ki, ko, ... k)] = A;UB;. First of all let A, =Y [(k1, ko, ..., k)] and B, = (). For
each j € {r,r—1,...,0}, let D; = J, Y [t], with the union ranging over all ¢ € A
such that the last term of ¢ is k; and (ky, k2, ..., k;) is a proper subsequence of t.
Note that D, = () since s € S. Now for each j € {r — 1,7 —2,...,0}, we construct
A; and Bj; inductively in such a way that for all k € {k; + 1,k; +2,...,n} (writing
ko = 0):

Ay, if k=kjy for some j' e {j+1,j+2,...,7}

0,  otherwise;

Bj, if k= Fkjn
Y [(k1,...,kj, k)], otherwise;

3. A;ND; =0; and
4. B,_1 #0.

This is sufficient to complete the proof since we may then take A = Ay and B = B,.
To do this, suppose A;;; and Bj;;; have been defined for some j €
{r—1,r—2,...,0}. Fix z € Aj;; and write z = 1 + w"+ with 7 a multiple

of wki+1. Then there is a strictly increasing sequence (a;). ., such that ag > 7,

icw
r = sup ({a;:i €w}) and a; € Y [(k1,ke,...,k;)] for all i € w. Now by the
inductive hypothesis (or the fact that D, = 0), x ¢ D;;;. Therefore we may
choose (a;);c,, in such a way that a; ¢ D; for all 7 € w, and also in such a way
that Y [(k1, ko, ..., k;)|N[ag,x) ={a;:i € w}, orelse x € Y [(ky,..., kj, k, kjiqp)] for
some k € {k; +1,k;j+2,...,kjs1 —1}. Let ¢, = ap and C; = {a;:7i € w\ {0}}

(it is important that ap is excluded here). Finally take A4; = | C, and

Z’GAjJrl

B; =Y [(k1, ko, ..., k;)] \ A;. We now show that A; and B; are as claimed.
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ks
1. Firstly let 5/ € {j+1,j+2,...,r}. Let x € X(S[J] and write z = n + W

with 7 a multiple of w"'. If x ¢ Aj, then it is clear inductively that
Ay_y,Aj_s, ..., A; must each be disjoint from [ + 1, ), and so = ¢ A; [(k;/)].
Conversely, suppose x € Ay, If j/ > j+ 1 then Ay C Aj[(kj)] by the
inductive hypothesis and A; [(kj11, k;)] € A; [(k;)] by part [2 of Lemma [6.6.1]
so it is sufficient to prove that A; 11 C A; [(kj11)]. In other words, it is enough
to consider the case j' = j+1. But then = € cI(C,), so x € A, [(k;4+1)]. Hence
Aj [(kj)] = Ajr.

Suppose instead k € {k; +1,....,n} \ {kj+1,...,k-}. Let x € X(gk] and write
x = 1+ w" with 7 a multiple of w*. If k& < kjy1 then [n+1,z) intersects
(cy,y) for at most one y € Aj4q, so Aj N [n+1,x) is finite and = ¢ A; [(k)].
So assume k > k;i; and suppose for contradiction x € A;[(k)]. Then there

is a strictly increasing sequence (y;),.., with y; € A;; for all i € w and for

€W

each i € w a member ¢; € C,, such that z = sup ({¢; : i € w}). But then
x=sup ({y; 1 i € w}), so x € Ajy[(k)], contrary to the inductive hypothesis.

2. Firstly we show that B; [(kj11)] = Bjt1. Let ¢ € Y [(k1, ke, ..., kj11)] and
write £ = 1 + wh+ with n a multiple of w*+1. If x € B, then A; is disjoint
from [n+1,z), so x € Bj[(kj+1)]. Conversely, if € A, then B, is disjoint
from (c,, ), so x ¢ B; [(kj11)]-

Suppose now k € {k; +1,...,n}\ {kjs1} and let z € Y [(k1,...,k;,k)]. Then
with ¢; € Y [(lﬁ, kg, RN k‘])] for
all i € w and = = sup ({¢; : i € w}). If ¢; € B; for infinitely many ¢ € w then

there is a strictly increasing sequence (¢;),c,
we are done, so we may assume ¢; € A; for all i € w. But since k # k;;1 we
with C; € Cyi
for all ¢ € w. But then ¢,, € B, for all i € w and = = sup ({¢,, : i € w}), and

may also assume there is a strictly increasing sequence (y;) icw

we are done.
3. This is clear by construction.
4. This is immediate from the fact that ¢, € B,_; for all x € A,. O

We are now ready to prove Proposition thereby completing the first step
in our proof of the second part of Theorem [6.8.7 We do this by using Lemma[6.9.5
to reduce to the case in which supp (fz) is primitive. This makes Z simple enough
that we are almost able to build up a copy of Z (A) inside it, in a similar sense to
the proof of Proposition [6.9.3. However, for technical reasons we need to take the
product of a pair of conjugates at each stage rather than using a single conjugate as

in the proof of Proposition [6.9.3

Proof of Proposition[6.9.4. The result is trivial if Z = 0, so assume Z # () (and
hence {()} C A).



124 6. AUTOHOMEOMORPHISM GROUPS OF COUNTABLE COMPACT ORDINALS

We claim that it is sufficient to prove the result for the case in which supp (fz)
is primitive. To see this, suppose the result holds for this case. Let Y = supp (fz)
and let (Y;), 5 be as in Lemmaw For each s € A\ {()}, let Z, = cl (Y;) N X,
so supp (fz,) is primitive, char (fz,) = (s) and Z = [J,ca\(() Zs- Then for each
s € A\ {()}, by assumption fz, is the product of finitely many conjugates of fi, or
f@;, and furthermore f,) is the product of 8 conjugates of fa or f;l by Proposition
6.9.2] since Z ((s)) € Z(A) = cl(supp (fa)) N X}. Hence writing A\ {()} =
{s1,82,...,8:}, fz,,0fz,0 -0 fz, is the product of finitely many conjugates of fa
or fx'. But el (supp (fz,, © fz, 00 fz,)) N X4 = UL, el (supp (f2,)) N X} =
UseA\{()} Zs = Z by Lemma , so using Proposition again, f is the product

of finitely many conjugates of fa or fi', as required.

So assume supp (fz) is primitive and write A = ((ky,ko,..., k). Let Y =
supp (fz). We claim that it is sufficient to construct for each j € {r,r —1,...,1} a

product f; of finitely many conjugates of fa in such a way that

supp (f5) [(k1, ko, ... k)] =Y [(k1, ko, ... Kj)]

and supp (f;) is primitive. To see this, suppose we have constructed such a collection.
Then for all j € {1,2,...,7}, supp (f1)[(k;)] = supp (fi)[(k1,ke,... . kj)] =
Y [(k1, ko, ..., k;)] = Y [(k;)] since supp (f1) and Y are primitive. Furthermore,
supp (f1) [(k)] = 0 for all k € {1,2,...,n} \ {k1,ko,..., K.} since f; € La. Thus
supp (f1) [(k)] = Y [(k)] for all & € {1,2,...,n} and so cl(supp(fi)) N X; =
cl (Y)NX} = Z. Hence f is the product of 8 conjugates of f; and f; ' by Proposition
6.9.2 and we are done.

It remains to construct f; for each j € {r,r— ., 1}, which we do
inductively. First of all, since Y [(k1, ko, ..., k)] is finite, write Y [(k1, ka2, ..., k)] =
{z1,29,...,2;} and take f, = filgr((wmm)) o figr((wkrm)) 0---0 f25 (( kwl)),
which is as required Now suppose fj11 has been constructed for some j €
{r—1,r— .,0}. For each 2z € Y [(ky, ka, ..., kji1)], write z = n + whi+1 with 7

a multlple of whi+1 and let

[S (Y [(kl,kz,,k]+1)]>75] U[l,n] if 2 = min (Y [(1{31,1{?2,,]{3]4_1)])
[sup (Y [(k1, ko, ..., kjp1)] N1, 2)),n], otherwise.

F(2)=

7

Thus F(z) is the “gap” between B(z) and the previous member of
V{(ky, oy k)], and Xs = ULeyig by B(2) U F'(2). Now fix z €
Y [(k1, ko, ... kjp1)]. Then Y [(ky, ko, ..., k;)] N F (2) is finite since Y is primitive,
say Y [(k1, ko, ... k) NF (2) = {xo,21,...,x1-1}, and Y [(k1, ko, ..., k;)|NB (2) is an
infinite set of order type w, say Y [(k1, ko, ..., k;)] ﬂB( ) =A{z, 141, ... } with z; <
Tipr < .... Also, supp (fj+1) [(k1, ko, ... k)] NB(2) = {n+wh - (2i+1):i €w}

because of how f;;; was constructed from the canonical function fa. Let G (z) =
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{xo, 21,22, ..., 21 1}U <X§kj) NnB (Z)), a clopen subset of Xékj). We would like to be
able to find an autohomeomorphism g, of G (z) such that g, (z;) = n+w* - (2i + 1)
for all 7 € w. However, this may not be possible since if k;j;; = k; + 1,
then {z; :7 € w} may be a cofinite subset of Xé[kj] NG(z) = {xo,z1,..., 221} U
{77 +whi - (i+1):i€ w}. Instead, we construct two autohomeomorphisms g, and
h. of G (z) such that g, (z9) = n+ w* - (20 + 1) for all i € w and h, (v9;4,) =
n+wh - (20+1) for all i € w. To construct g,, observe that if k;;1 = k; + 1,
then both {29 : i € w} and {n+w" - (2i + 1) : i € w} are infinite-coinfinite subsets
of X(E’“j] NG(z) = {xo,z1,...,21-1} U {77+wkj (i41):ie w}. Hence we can
simply take g, (xo;) = 1 + w* - (2i+1) for all i € w and extend g. using the
order-isomorphism G (2) \ {z2; : i €w} = G (2) \ {n+wh - (20 +1) :i € w} (using
the usual ordering but with xg,xq,..., ;1 considered less than everything else
if they are not already). h, may be constructed similarly. By extending them
to act as the identity, we may view ¢, and h, as members of H(];j. Finally
define g = HzeY[(k1,k2,...,kj+1)] b? (9:) and h = HzGY[(kl,kQ,...,kj+1)] blgj (h2) and take
fi = fl o fl. Then supp (f;) [(k1, ko, ..., kj)] = Y [(K1, ko, ..., k;)] using the
argument from the proof of part [2 of Lemma m and supp (f;) is easily seen to

be primitive, as required. O

The second and final step in our proof of the second part Theorem is to
obtain an arbitrary function from K} of zero flow from an appropriate function of
the form f5.

Proposition 6.9.6. Let f € Ker (flow) and let Z = cl(supp (f))NX;. If Z # 0
then f s the product of finitely many conjugates of f.

We prove this using an inductive argument, dealing with Z N X g] during the ith
stage for each ¢ € {1,2,...,n}. For simplicity we include details only for the first
stage. The basic idea is to apply Proposition [6.3.2] Together with the fact that f
has zero flow, this allows us to make a small modification to f and to decompose the
result as a product of disjoint permutations. We may then apply Bertram’s theorem
to each of these permutations simultaneously, much as in the proof of Proposition
0.9.21

Proof. First of all, let (A;),. xnxy and (Ba),e xnxy Pe the cofinitary systems on
X given by Proposition [6.3.2] with respective complementary sets A, and B,. For
each © € X§ \ X{, write z = 1 + w with 1 a multiple of w. If x ¢ Z, then we may
assume without loss of generality that f fixes A, pointwise. Suppose instead z € Z,
and assume without loss of generality that n+1 ¢ A, U B,. Since f (A,) = B, and
flow4, (f) = 0 by Lemma [6.7.5] we have |A, \ B,| — |B, \ 4;] = 0 and hence the
finite sets (n+ 1,2) \ A, and (n+ 1,z) \ B, have the same size. We may therefore
choose a bijection (n+ 1,2) \ A, — (n+1,2) \ B, and let ¢, be a permutation of
(n+1,2) \ (A; N B;) extending this bijection. Now let ¢t = HzeZ\Xg ty, a product
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of disjoint permutations. Then f ot~! stabilises A, setwise for all z € Z \ X, so
we may write fot ! =] _ 2\x1 9z © Ge where g, is a permutation of A, for each
r € Z\ Xj§ and g, is a permutation of A,.

Take g. to be the identity function for all z € ZNX{ so that fot™' =T]._, g.0g..
Then by Bertram’s theorem, for each z € Z we may write g, as a product of 4
conjugates of fi.}, and hence we may write [],_, g. as a product of 4 conjugates of
fz. Therefore it is sufficient to write g, ot as a product of finitely many conjugates
of fz.

Now flow (t) = flow ([[,c;9:) = 0 and hence flow (g.) = flow (g.ot) = 0.
Morevover, cl(supp (g« ot)) N X5 € Z N XJ by construction. Hence there exists
f1 € Ker (flow) conjugate to g, ot such that cl (supp (f1)) N X5 C Z N X{ and, for
all x € X(gl], writing = 1 + w with 7 a multiple of w, supp (f1) N (n+ 1,2) =0. It
is now sufficient to write f; as a product of finitely many conjugates of f.

We may now repeat our entire argument so far with f replaced by f; to obtain
some fy € Ker (flow) with cl (supp (f2)) N X5 C X§3) and, for all x € XE], writing
T = 1+ w? with n a multiple of w?, supp (f2) N (n +1,z) = 0. It is now sufficient to
write fy as a product of finitely many conjugates of f.

Continuing in this fashion, we eventually obtain f, € Ker (flow) with
cl (supp (fr)) N X5 C Xénﬂ) = (b, such that it is sufficient to write f, as a product
of finitely many conjugates of f;. But f, has finite support and may therefore be
written as a product of finitely many conjugates of fz, either by Bertram’s theorem
or by writing f, as a product of transpositions and checking the result directly for

a single transposition. O

Let us now put Propositions [6.9.4] and [6.9.6] together to complete the proof of
the second part of Theorem [6.8.7 This completes the proof of Theorem [6.8.7 and
hence of our main result, Theorem [6.7.7]

Proof of part[q of Theorem[6.8.7 Recall that h € K} has infinite support and A =
char (h). Assume that flow (h) = 0. We are required to prove that h is the product
of finitely many conjugates of fa and fx'. Let Z = cl(supp (h)) N X}. Then Z is
a non-empty closed subset of Xj and A = char(fz). Hence fz is the product of
finitely many conjugates of fa or fy' by Proposition , and h is the product of
finitely many conjugates of f by Proposition [6.9.6] O

6.10 The number of normal subgroups of H, .,

We have now completed the proof of our main result, which states that if N is
a normal subgroup of Hj contained in K} other than the group of alternating
permutations of finite support, then L) < N < LA for a unique lower set A C T',,.
In this section we study which normal subgroups N < Hj satisfying LY < N < La
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actually arise for each lower set A C I',,. In particular, we show that if n > 2 then
Hjy has 22°° normal subgroups.
We begin by describing which x € Z%5 arise as flow (f) for some f € K 5. Let us

first introduce some coordinate notation.
Definition. Given x € Z*5 we write x = (x (Z))zexg'

The following result shows that there is just one simple restriction on which

x € 7% arise as flow (f) for some f € K}.

Proposition 6.10.1. The image of K} under flow is

x € 2% . Z x(z)=0

ZGX([;H]

Proof. First note that if f € K} then ZZGX([SH] flowg.) (f) = ﬂOWUzeX["’] 5 (f) =
flowy, (f) = 0. Conversely, let x € ZX5 with ZzeXgn]x(z) = 0. V\;e construct
f € K} with flow (f) = x.

Our construction is analogous to our construction of fz, which is defined in terms

of fr.y for z € Xj. First we define f. ., € K(} for each 21,20 € Xj in such a way
that if C' is a clopen subset of X, then

1, ifzn¢CandzneC
flowe (fa152) = —1, if 21 € C and 20 ¢ C

0, otherwise.

To do this, given 21, 20 € Xj, write z; = n; + Wk with n; a multiple of w*? and 2z, =
no +wk? with 1y a multiple of w*2. For each positive integer i, let a; = n; +w* = 1-i+1
and b; = 1o + w1 i+ 1. Then let f., ., be the cycle (... aya; by by ...). (This
should be compared with the definition of f(.; for z € Xj.) It is easy to see that
f21—2, 18 as required.

We may now combine infinite sequences of such functions to obtain the desired
flow into B (z) for each z € Xj \ X(gn]. To do this, given z € X§2), write z = 1 + w*
with 7 a multiple of w*, let z; = n+ W™ - (i 4+ 1) for all i € w and define

f, = Z(igz)o o Z(i?z);rX(n) o Z(igz);rX(m)vLX(zz) o-
This “infinite composition of functions” makes sense because each member of Xy is
in the support of only finitely many of these functions, and it is easy to see that it
lies in Kj. Moreover flowg.,) (f.) = Z;':o x (%) — Z;;BX (2j) =x(z) for all i € w.
To obtain the desired flow into B (z) for each z € X(En], let y; = w™ - (i+ 1) for
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each i € {0,1,...,m — 1} and define

g = Fm), 0 Fmi0 oo BT,
Then flowp,) (9) = x (y;) for all i € {0,1,...,m — 1} by a similar argument, using
the assumption that 37" x (y;) = 0.

Finally take
f=9 1[I -

zEXéZ)

a product of disjoint permutations lying in K3. Then f is as required. O

Let A C I, be a lower set. Recall that Z is defined to be the image of La
under flow. In order to find the normal subgroups N < Hs with LY < N < L,
we must consider the conjugation action of Hs on La, which induces an action of
Hs on Za. Now the induced action of Kj on Za is trivial. So since Hs = K; x B}
by Proposition , it is enough to consider the induced action of B} on Za. This

motivates the following definition.

Definition. Given x € Zr, and g € H}, define x9 = flow (fb§(9)>, where f € K}
is any function with flow (f) = x. (Here b} is the block map defined in Section
[6.2] though by Lemma we may equivalently replace b} (g) by any h € Hs with
r§ (h) = g.) This is well-defined because if f1, fo € Kj with flow (f;) = flow (f2) and
h € Hg, then flow (flh) = flow (th) by Lemma .

For example, it is easy to show using part 4| of Lemma that if x € Zr,,
g € H} and z € Xy], then (x9) (2) = x(g(2)). Note that this simple formula need
not hold if we allow z € X §2).

Let A C T, be a lower set, suppose LY < N < La and let M be the image
of N/LY under the natural isomorphism La/LY — Za. Clearly N is a normal
subgroup of Hy if and only if whenever x € M and g € Hj we have x? € M.

When § = w? and A = I'y, Za is isomorphic to the countable direct product Z*,
which is known as the Baer—Specker group. We now show that H 2 has 22" normal
subgroups lying between LY. , = Ker (flow) and Lr, = K, 4, stating our result in terms

of Z¥. Here, given x € Z* and g € Sym (w), we write x? = (x (g (2)))

ZEW'

Proposition 6.10.2. There are 92" subgroups M < 7% with the property that
whenever x € M and g € Sym (w) we have x9 € M.

Proof. Let P be the set of primes. By a standard argument we may let Q be
a collection of 2% infinite subsets of P with the property that Q; N Q. is finite
for all Q1,Q2 € Q. Let QY = {P\Q:Q € Q}. For each R € QY, let eg =
(1,po, pop1,---) € Z¥, where R = {p; : i € w} and py < p; < .... Finally, for each
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subset A C QY. let
My = {j:Ze%i :TEw,Rl,RQ,...,RrGA,gl,gg,...,gTESym(w)}.
i=1

Certainly there are 22" subsets of QF, and My < Z¥ is a subgroup such that
whenever x € M4 and g € Sym (w) we have x? € M4 for every subset A C Q°. So
it is sufficient to prove that for all Ay, Ay C QY if A; # Ay then My, # My,.

So suppose A, A, C QY with A; # A,. Without loss of generality there exists
R € A, \ As. Then eg € A; has infinitely many non-zero entries modulo p for all
p € P\ R. We claim that on the other hand, for all x € Ay there exists p € P\ R
such that x has only finitely many non-zero entries modulo p. To see this, let x € Ay
and write x = £3 70, e% with Ry, Ry,..., R, € Aj and g1, 62,...,9, € Sym (w).
Let @ = U;_; P\ R;. Then Q N (P \ R) is finite by definition of Q, so there exists
pe (P\Q)N(P\ R) since P\ R is infinite. But then p € R; for alli € {1,2,...,r},
so eg, has only finitely many non-zero entries modulo p for all i € {1,2,...,7}, so

X has only finitely many non-zero entries modulo p, as required. O]

Essentially the same argument works for any lower set A C I', such that
(]{71, k'g) € A for some kl, kg € {1, 2, c. ,n}.

Corollary 6.10.3. Let A C T, be a lower set and suppose (ki,ks) € A for some
ki,ke € {1,2,...,n}. Then there are 22 subgroups M < Za with the property that
whenever x € M and g € H} we have x9 € M.

Proof. Let z = wk2, let z; = w*~1 i + WM for each i € w and let N = {2, : i € w}.
Since (k1, ko) € A, if f € K} is such that cl (supp (f)) N X} = NU{z}, then f € La.
Hence by the construction given in Proposition |6.10.1) Z~ x (0)zeX3\N < Zn.
Moreover, if g € Bi* and f € La then by part |4 of Lemma M, flowg.y (f9) =
flowyse)) (f) = fowgye) (f) for all z € Xé’“]. Now copy the argument of
Propositionwith w replaced by N and Sym (w) replaced by 7} (Bfl) to obtain
the result. O

The assumption that (ki,ks) € A for some ki, ky € {1,2,...,n} is necessary
here, because otherwise Za is not large enough to have 920 subgroups, as we now

observe.

Proposition 6.10.4. Let A C T'), be a lower set such that every member of A has
length at most 1. Then {z € Xj:x(2) # 0} is finite for all x € Za. In particular,

Za is countable.

Proof. Let f € La and let x = flow (f). Since every member of A has length at
most 1, it follows from part [3|of Lemma that cl (supp (f))NXj is finite. But for
each y € X}, there are only finitely many z € Xj such that y € B(z). Hence there
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are only finitely many z € X} such that cl (supp (f))NX;NB(z) # . We claim that
for any clopen subset C' C X, if flowe (f) # 0 then cl (supp (f))NX;NC # 0. Given
the claim, there must be only finitely many z € X with x (z) # 0, as required.

To prove the claim, let C' be a clopen subset of X;. If cl (supp (f))NX;NC =0,
then supp (f)NC is finite, so by part of Lemma , flowe (f) = flowensupp(r) (f)—
2 sesupp(f) HOWa} (f) = Howersupp(s) (f) = 0. O

It is not much harder to show that if A C I', is a lower set such that every

member of A has length at most 1, then in fact Z, is isomorphic to

7=, if (k) € A for some k <n
zm=t, it A={(n)}
{0}, ifA=0or A={(},

where Z<¥ = {x € Z¥ : {z € w : x(z) # 0} is finite}.

Moreover, if Zx # {0}, then in this case there are exactly Rg subgroups M < Za
with the property that whenever x € M and g € H} we have x9 € M. This may be
contrasted with Corollary [6.10.3] Rather than proving this claim in general, we deal
only with the special case in which § = w? and A = ((1), (2)), stating our result in
terms of Z<“. Again, given x € Z<¥ and g € Sym (w), we write x? = (x (g (2))),c,.-

The following result was discovered in discussion with Lovkush Agarwal.

Proposition 6.10.5. Suppose M < Z<¥ is a subgroup with the property that
whenever x € M and g € Sym (w) we have x9 € M. Then there exist a,b € Zg

such that either
M = {ax:xe Z<w,2x(z) :O},

zZEW

orb>0 and

M = {ax iX €LY, Zx(z) is divisible by b} .

ZEW

In particular, there are exactly Ry such subgroups.

Proof. Assume M # {0}, since this is covered by the case a = 0. Let a be the
minimum absolute value of any non-zero coordinate of any member of M. Then
every coordinate of every member of M must be a multiple of a, else we could use the
Euclidean algorithm to contradict the minimality of a. Next, we may choose x € M
with x (0) = a and x (1) = 0, whence (—a,qa,0,0,...) = x®Y —x € M. Taking
sums of permutations of this, we see that {ax :x € Z<%, > _ x(z) =0} < M.

If we have equality here, then take b = 0 and we are done. Otherwise, let ab =
min ({>, ., x(z) :x€ M, > x(2) >0}) > 0. We show that for all y € Z<¥,
ay € M if and only if )~ _ vy (2) is divisible by b, which suffices. The “only if”

ZEW
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statement follows because otherwise we could use the Euclidean algorithm again
to contradict the minimality of b. For the “if” statement, let w € M witness the
minimality of b. If y € Z<% and }_,_ vy () = kb for some k € Z, then kw — ay €
{ax:x ez Y, ,x(z) =0} < M, and hence ay € M, as required. O

ZEW

This completes our analysis of the normal subgroups of Hs contained in K}. Let
us now conclude this chapter by briefly indicating how one may attempt to generalise
our results and thereby obtain a complete classification of the normal subgroups of
H;.

First observe that by Proposition [6.2.2) Hs/K} = B} =~ H} =~ H,

wn—1).,,- Hence

the normal subgroups of Hs containing K} correspond to the normal subgroups
Of Hw(nfl)

many normal subgroups of H; that neither are contained in nor contain Kj. For

.m,» many of which we have already analysed. There may nonetheless be
example, the group of all functions in H_» whose support is contained in a proper
initial segment of [1,w?) is a normal subgroup of H,: that neither is contained in
nor contains Kblﬂ.

It may be possible to extend our analysis by generalising our notions of characters
and flows to the whole of Hs. For example, one may define the generalised character

of an arbitrary function f € Hs to be
(tp (supp (/N Xg()]) ,tp (supp (f)n X(gll) . tp (supp (f)n Xgn_ﬂ)) 7

where we have extended the definition of types to allow subsets of X gk] for all k €
{0,1,...,n— 1}. This generalised character must satisfy certain conditions. For
example, if (Ag, A1) is the generalised character of a function in H, 2 and A; # 0,
then (1) € Ay. Many other details remain to be checked, and there is certainly

plenty of room for further research.
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