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Abstract

We study combinatorial properties of ordinals under the order topology, focusing

on the subspaces, partition properties and autohomeomorphism groups of countable

ordinals.

Our main results concern topological partition relations. Let n be a positive

integer, let κ be a cardinal, and write [X]n for the set of subsets of X of size n.

Given an ordinal β and ordinals αi for all i ∈ κ, write β →top (αi)
n
i∈κ to mean that

for every function c : [β]n → κ (a colouring) there is some subspace X ⊆ β and some

i ∈ κ such that X is homeomorphic to αi and [X]n ⊆ c−1 ({i}). We examine the

cases n = 1 and n = 2, defining the topological pigeonhole number P top (αi)i∈κ to be

the least ordinal β (when one exists) such that β →top (αi)
1
i∈κ, and the topological

Ramsey number Rtop (αi)i∈κ to be the least ordinal β (when one exists) such that

β →top (αi)
2
i∈κ.

We resolve the case n = 1 by determining the topological pigeonhole number of

an arbitrary sequence of ordinals, including an independence result for one class of

cases. In the case n = 2, we prove a topological version of the Erdős–Milner theorem,

namely that Rtop (α, k) is countable whenever α is countable and k is finite. More

precisely, we prove that Rtop(ωω
β
, k + 1) ≤ ωω

β·k
for all countable ordinals β and

all positive integers k. We also provide more careful upper bounds for certain small

ordinals, including Rtop(ω + 1, k + 1) = ωk + 1, Rtop(α, k) < ωω whenever α < ω2,

Rtop(ω2, k) ≤ ωω and Rtop(ω2 + 1, k + 2) ≤ ωω·k + 1 for all positive integers k.

Outside the partition calculus, we prove a topological analogue of Hausdorff’s

theorem on scattered total orderings. This allows us to characterise countable

subspaces of ordinals as the order topologies of countable scattered total orderings.

As an application, we compute the number of subspaces of an ordinal up to

homeomorphism.

Finally, we study the group of autohomeomorphisms of ωn ·m+1 for finite n and

m. We classify the normal subgroups contained in the pointwise stabiliser of the limit

points. These subgroups fall naturally into D (n) disjoint sets, each either countable

or of size 22ℵ0 , where D (n) is the number of ⊆-antichains of P ({1, 2, . . . , n}).
Our techniques span a variety of disciplines, including set theory, general

topology and permutation group theory.
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Chapter 1

Introduction

Ordinals were introduced by Georg Cantor in 1883, and have since become a

foundational component of modern-day set theory. As with any totally ordered

set, we may endow an ordinal with the order topology, generated by open intervals.

The resulting ordinal topologies are Hausdorff, totally disconnected and scattered,

and in the case of successor ordinals are also compact. They have been studied

within general topology, within set theory, and implicitly via Boolean algebras.

Within general topology, ordinals are a familiar source of counterexamples: ω1

is sequentially compact but not compact; the order topology on the “extended long

ray” ω1× [0, 1)∪{∞} is connected but not path-connected; and the Tychonoff plank

(ω + 1)×(ω1 + 1) is normal but has a non-normal subspace. More general treatment

of ordinal topologies appears to have begun with Sierpiński and Mazurkiewicz

[MS20], who used the Cantor–Bendixson derivative to show that every countable

compact Hausdorff space is homeomorphic to a unique countable ordinal of the

form ωα ·m + 1. There have since been various further characterisations of certain

ordinals, their subspaces and images, and related properties [Bak72, Mor81, Pur90,

vD93, FN99, GP12, Lev13]. This work has typically been done under the general

framework of linearly ordered topological spaces (another name for order topologies).

Within set theory, ordinal topologies appear implicitly behind the well-studied

notion of a club (closed and unbounded) set. Besides this, ordinal topologies have

been studied within the context of topological partition relations. These are defined

in the same way as the usual Erdős–Rado partition relations for cardinals [ER56],

except that the homogeneous set must have the correct topology rather than the

correct cardinality. Preliminary work in this area was performed by Friedman [Fri74],

who proved that every stationary subset of ω1 has a subspace homeomorphic to any

given countable ordinal. The study of countable ordinals in this context was begun

in earnest by Baumgartner [Bau86], and there have been several recent developments

[Sch12, Pn14].

The compact ordinal topologies are closely related to Boolean algebras via Stone

duality, so that results in one area (e.g. [MP60]) may sometimes be re-interpreted

in the other. In particular, the group of autohomeomorphisms of a compact ordinal

1



2 1. Introduction

is isomorphic to the group of automorphisms of its corresponding Boolean algebra.

The automorphism groups of countable Boolean algebras were originally studied by

Monk [Mon75], McKenzie [McK77] and Rubin [Rub80], who looked primarily at the

problem of reconstructing a Boolean algebra from its automorphism group.

In this thesis we study various combinatorial properties of ordinal topologies,

with a focus on countable ordinals. There are three major themes, corresponding

loosely to the three perspectives of general topology, set theory and Boolean

algebras: subspaces of ordinals, topological partition properties of ordinals, and

autohomeomorphism groups of ordinals.

1.1 Subspaces of ordinals

The subspaces of countable ordinals may be characterised topologically in several

ways, as follows [KR74, Corollary 3]. We say that a topological space X is scattered

to mean that every non-empty subspace of X has an isolated point.

Theorem (Knaster–Urbanik–Belnov). Let X be a topological space. The following

are equivalent.

1. X is homeomorphic to a subspace of a countable ordinal.

2. X is countable, scattered and metrisable.

3. X is homeomorphic to a countable complete metric space.

4. X is homeomorphic to a subspace of a countable compact Hausdorff space.

Several basic properties of subspaces of ordinals follow from the general theory

of order topologies. Within the field of general topology, a totally ordered set under

the order topology is known as a linearly ordered topological space (LOTS), and a

subspace of a LOTS is known as a generalised ordered space (GO-space).

A basic result due to Cech [CFK66, Theorem 17 A.23] states that GO-spaces

may be equivalently defined as those whose topology contains the order topology and

is generated by a base of order-convex sets. This result may be restricted to well-

orderings to obtain the following characterisation of subspaces of ordinals (Theorem

3.1.2). Following Baumgartner [Bau86], we define an order-homeomorphism as a

bijection that is both an order-isomorphism and a homeomorphism.

Theorem (Cech). Let X be a well-ordered set endowed with some topology. The

following are equivalent.

1. X is order-homeomorphic to a subspace of an ordinal.

2. The topology on X has a base of the form

B ∪ {{y} : y ∈ Y } ,
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where B is the usual base for the order topology on X and Y ⊆ X.

Our main result in this area is the following additional characterisation of the

subspaces of countable ordinals (Theorem 3.4.1).

Theorem. A topological space X is homeomorphic to a subspace of a countable

ordinal if and only if X is homeomorphic to a countable scattered totally ordered set

under the order topology.

It should be noted that the main substance of this result, that any subspace of

a countable ordinal is homeomorphic to a LOTS, follows from a more general result

of Purisch [Pur85], which states that any GO-space whose topology is scattered is

homeomorphic to a LOTS.

We prove this using topological analogue of the following classical theorem of

Hausdorff. We say that a totally ordered set is scattered to mean that it has no

subset order-isomorphic to Q. We will state this result more precisely and provide

a proof later (see Theorem 3.2.4).

Theorem (Hausdorff). A totally ordered set is scattered if and only if it may be

obtained from 1 by repeatedly taking well-ordered sums and backwards orderings.

Our topological analogue (Theorem 3.3.1) uses a new operation on topological

spaces, which we call the “one-point cofinite extension”. This is a generalisation of

the process used to pass from ω to ω + 1, which we will define later.

Theorem. A topological space is homeomorphic to a subspace of a countable ordinal

if and only if it may be obtained from 1 by taking finite or countable topological

disjoint unions and countable “one-point cofinite extensions”.

We prove our main result by combining this topological analogue with

Hausdorff’s theorem itself. We then use ideas from this result show that if α < ωω

then α has at most countably many subspaces up to homeomorphism. Combined

with some simple constructions for α ≥ ωω, this allows us to compute the number

of subspaces of an ordinal up to homeomorphism (see Theorem 3.6.3).

Theorem. Let α be an ordinal. Then the number of subspaces of α up to

homeomorphism is

α + 1, if α < ω

ℵ0, if ω ≤ α < ωω

2ℵ0 , if ωω ≤ α < ω1

2κ, if |α| = κ for some uncountable cardinal κ.



4 1. Introduction

1.2 Topological partition properties of ordinals

Motivated by Ramsey’s theorem, the partition calculus for cardinals and Rado’s

arrow notation were introduced by Erdős and Rado in [ER53]. The version for

ordinals, where the homogeneous set must have the correct order type, first appears

in their seminal paper [ER56]. In the following definition, [X]n denotes the set of

subsets of X of size n.

Definition. Let κ be a cardinal, let n be a positive integer, and let β and all αi be

ordinals for i ∈ κ. We write

β → (αi)
n
i∈κ

to mean that for every function c : [β]n → κ (a colouring) there exists some subset

X ⊆ β and some i ∈ κ such that X is an i-homogeneous copy of αi, i.e., [X]n ⊆
c−1({i}) and X is order-isomorphic to αi.

We write β → (α)nκ for β → (αi)
n
i∈κ when αi = α for all i ∈ κ. For example,

Ramsey’s theorem may be written as ω → (ω)nk for all finite n and k.

With the development of structural Ramsey theory, many variants of this

definition have been introduced. We will be concerned with a “topological” version

and a closely-related “closed” version. (Jean Larson suggested to call the second

version “limit closed”.) Although the second version may appear more natural, it is

the first that has been considered historically, since it can be defined for arbitrary

topological spaces; the second version additionally requires an order structure.

Recall that an order-homeomorphism is a bijection that is both an order-

isomorphism and a homeomorphism.

Definition. Let κ be a cardinal, let n be a positive integer, and let β and all αi be

ordinals for i ∈ κ.

We write

β →top (αi)
n
i∈κ

to mean that for every function c : [β]n → κ there exists some subspace X ⊆ β

and some i ∈ κ such that X is an i-homogeneous topological copy of αi, i.e., [X]n ⊆
c−1({i}) and X is homeomorphic to αi.

We write

β →cl (αi)
n
i∈κ

to mean that for every function c : [β]n → κ there exists some subset X ⊆ β and

some i ∈ κ such that X is an i-homogeneous closed copy of αi, i.e., [X]n ⊆ c−1({i})
and X is order-homeomorphic to αi (equivalently, X is both order-isomorphic to αi

and closed in its supremum).

Note that in both cases, c is arbitrary (no continuity or definability is required).
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A survey of topological partition relations was carried out by Weiss [Wei90],

though this is now slightly outdated. Note that previous authors have written the

label top inside the parentheses, as in β → (top αi)
n
i∈κ.

The closed partition relation does not appear to have been explicitly

distinguished from the topological partition relation before. Extending a result

of Baumgartner [Bau86, Theorem 0.2], we will see that the two versions coincide in

many cases, in particular for ordinals of the form ωγ or ωγ ·m+ 1 with m a positive

integer. But in general they may differ; for example, ω+2 is homeomorphic but not

order-homeomorphic to ω+1, and thus ω+1→top (ω+2)1
1 while ω+1 6→cl (ω+2)1

1.

Our work on these partition relations is cleanly divided into the cases n = 1 and

n = 2 of the above definition.

The topological pigeonhole principle for ordinals

The case n = 1 may be viewed as a generalisation of the pigeonhole principle. Thus

we define the (classical) pigeonhole number P (αi)i∈κ to be the least ordinal β (when

one exists) such that β → (αi)
1
i∈κ, and we define the topological pigeonhole number

P top(αi)i∈κ and the closed pigeonhole number P cl(αi)i∈κ in a similar fashion.

The classical pigeonhole numbers were computed by Milner and Rado [MR65].

The pigeonhole number of a finite sequence of ordinals may be written down

explicitly using Cantor normal forms. The pigeonhole numbers of arbitrary

sequences of ordinals may be described in terms of an algorithm that terminates

in a finite number of steps. This algorithm features as a special case the well-

known Milner–Rado paradox, which states that if κ is an infinite cardinal then

P (κ, κ2, κ3, . . . ) = κ+.

We will compute both the topological and the closed pigeonhole numbers. This

will comprise an explicit expression in the topological case (Theorem 4.6.1), and an

algorithm that terminates in a finite number of steps in the closed case (Theorem

4.12.1).

We build upon previous work focusing on several key cases. These are covered

in Weiss’s survey [Wei90].

1. If α ∈ ω1 \ {0, 1}, then α →top (α)1
2 if and only if α = ωω

β
for some β ∈ ω1

[Bau86, Corollary 2.4].

2. ω1 →top (α)1
ℵ0 for all α ∈ ω1. This is essentially Friedman’s result on stationary

sets [Fri74].

3. If α ∈ ω2, then α9top (ω1)1
2. This follows easily from the fact that ω1 may be

written as a union of two disjoint stationary sets.

4. If V = L then α 9top (ω1)1
2 for all ordinals α [PS75], but it is equiconsistent

with the existence of a Mahlo cardinal that ω2 →top (ω1)1
2 [She98].
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Note that for an ordinal α ∈ ω1 \ {0}, α → (α)1
2 if and only if α = ωβ for some

β ∈ ω1. Thus in view of 1 it is natural to ask whether or not there is a link between

the classical and topological pigeonhole principles. Our main breakthrough is a

full analysis of the topological pigeonhole principle for finite sequences of countable

ordinals, where we bring this link to light. Here # denotes the natural sum operation.

Theorem. Let α1, α2 . . . αk ∈ ω1 \ {0}.

1. P top (ωα1 + 1, ωα2 + 1, . . . , ωαk + 1) = ωα1#α2#···#αk + 1.

2. P top (ωα1 , ωα2 , . . . , ωαk) = ωP (α1,α2,...,αk).

We prove this (in Theorems 4.7.4 and 4.7.5) using a result of Weiss [Bau86,

Theorem 2.3]. This was published by Baumgartner, who used it to show that

ωω
α·(2m+1) →top

(
ωω

α·(m+1)
)1

2
for all m ∈ ω and all α ∈ ω1 [Bau86, Corollary 2.5].

The above theorem greatly generalises this, thereby utilising the full potential of

Weiss’s result.

The only case in which we do not compute P top(αi)i∈κ or P cl(αi)i∈κ in ZFC is

when 1 < αi ≤ ω1 for all i ∈ κ and we have equality in at least two instances.

In this case we have an independence result. Prikry and Solovay showed that

if V = L then α 9top (ω1)1
2 for all ordinals α, from which it follows that it

is consistent for P top (αi)i∈κ not to exist. On the other hand, we show that

P top (αi)i∈κ ≥ max {ω2, κ
+} and deduce from a result of Shelah that it is consistent

to have equality in every case, assuming the consistency of the existence of a

supercompact cardinal.

It remains open which intermediate values can consistently be taken by these

topological pigeonhole numbers, and whether or not Shelah’s consistency result can

be strengthened to equiconsistency.

Topological ordinal Ramsey numbers

Our work on topological partition relations in the case n = 2 is joint with Andrés

Caicedo. Here we define the (classical) ordinal Ramsey number R(αi)i∈κ to be the

least ordinal β (when one exists) such that β → (αi)
2
i∈κ, and we define the topological

ordinal Ramsey number Rtop(αi)i∈κ and the closed ordinal Ramsey number Rcl(αi)i∈κ

in a similar fashion.

In the classical setting, a simple argument that goes back to Sierpiński shows

that β 6→ (ω + 1, ω)2 for every countable ordinal β [Sie33], which means that if

α > ω and R(α, γ) is countable, then γ must be finite (see also [ER56, Theorem 19]

and [Spe56, Theorem 4]). On the other hand, Erdős and Milner showed that indeed

R(α, k) is countable whenever α is countable and k is finite [EM72]. Much work

has been done to compute these countable ordinal Ramsey numbers. In particular,

as announced without proof by Haddad and Sabbagh [HS69a, HS69b, HS69c], there
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are algorithms for computing R(α, k) for several classes of ordinals α < ωω and

all finite k; details are given in [Cai15] for the case α < ω2 and in [Mil71] for the

case α = ωm for finite m. See also [Cai14], [Wil77, Chapter 7], [HL10], [Sch10] and

[Wei14].

In the topological setting, previous work has tackled uncountable Ramsey

numbers. Erdős and Rado [ER56] introduced a “pressing down argument”

(described in [Sch12], for example) to show that ω1 →top (ω + 1)2
2. Laver noted

in [Lav75] that their argument in fact gives ω1 → (Stationary, topω + 1)2, meaning

that one can ensure either a 0-homogeneous stationary subset or a 1-homogeneous

topological copy of ω + 1 (which is stronger, by Friedman’s result on stationary

sets). The Erdős–Rado result was later extended by Schipperus using elementary

submodel techniques to show that ω1 →top (α)2
k for all α ∈ ω1 and all finite k [Sch12]

(the topological Baumgartner–Hajnal theorem). Meanwhile, both ω1 → (ω1, α)2 for

all α ∈ ω1 [Tod83] and ω1 6→ (ω1, ω + 2)2 [Haj60] are consistent with ZFC, though

the topological version of the former remains unchecked. Finally, it is also known

that β 6→top (ω + 1)2
ℵ0 for all ordinals β [Wei90, Theorem 3.4].

We study Rtop(α, k) and Rcl(α, k) when α is a countable ordinal and k is a

positive integer, which have not previously been explored. Our main result is a

topological version of the Erdős–Milner theorem (Theorem 5.8.2).

Theorem. Let α and β be countable non-zero ordinals, and let k > 1 be a positive

integer. If

ωω
α →top (ωβ, k)2,

then

ωω
α·β →top (ωβ, k + 1)2.

Since trivially ωω
α →top (ωω

α
, 2)2, it follows by induction on k that Rtop(ωω

α
, k+

1) ≤ ωω
α·k

. Hence Rtop(α, k) (and Rcl(α, k), since the two versions coincide when α

is a power of ω) are countable for all countable α and all finite k.

We also provide the following more careful bounds for certain small ordinals (see

Theorem 5.2.1, Lemmas 5.3.2 and 5.3.3, Theorem 5.6.1, Theorem 5.4.1, Theorem

5.5.1 and Corollary 5.7.2).

Theorem. Let k be a positive integer.

1. Rtop(ω + 1, k + 1) = ωk + 1.

2. Rcl(ω + 2, 3) = ω2 · 2 + ω + 2.

3. ω2 · 3 ≤ Rtop(ω · 2, 3) ≤ ω3 · 100.

4. Rtop(α, k) < ωω for all α < ω2.

5. Rtop(ω2, k) ≤ ωω.
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6. Rtop(ω2 + 1, k + 2) ≤ ωω·k + 1.

We deduce the last of these from the second last using the following more general

result (Theorem 5.7.1).

Theorem. Let α and β be countable ordinals with β > 0, let k be a positive integer,

and suppose they satisfy a “cofinal version” of

ωω
α →cl (ωβ, k + 2)2.

Then

ωω
α·(k+1) + 1→cl (ωβ + 1, k + 2)2.

Moreover, if ωω
α
> ωβ, then in fact

ωω
α·k + 1→cl (ωβ + 1, k + 2)2.

We will give the precise meaning of this cofinal partition relation later, and also

pose several questions for further research in this area.

Remarking briefly on the case n > 2, not much more can be said in the setting

of countable ordinals, since Kruse showed that if n ≥ 3 and β is a countable ordinal,

then β 6→ (ω+1, n+1)n [Kru65]. As for the ordinal ω1, [ER56, Theorem 39 (ii)] shows

that ω1 → (ω+1)nk and, in fact, it seems to be a folklore result that ω1 →top (ω+1)nk
for all finite n, k; a proof can be found in [HJW90]. On the other hand, we have the

negative relations ω1 6→ (n + 1)nω for n ≥ 2 [ER56], ω1 6→ (ω + 2, n + 1)n for n ≥ 4

[Kru65], ω1 6→ (ω+ 2, ω)3 [Jon00] and ω1 6→ (ω1, 4)3 [Haj64]. All that remains to be

settled is the conjecture that ω1 → (α, k)3 for all α ∈ ω1 and all finite k, with the

strongest result to date being that ω1 → (ω · 2 + 1, k)3 for all finite k [Jon13]. The

topological version of this result remains unexplored.

1.3 Autohomeomorphism groups of ordinals

The groups of autohomeomorphisms (homeomorphisms from a space to itself) of

ordinals do not appear to have been explicitly studied before. However, they have

been studied implicitly from the perspective of Boolean algebras. Under Stone

duality, countable successor ordinals correspond to so-called superatomic countable

Boolean algebras. The automorphism groups of these Boolean algebras were studied

by Monk, who gave a description of the automorphism group of the Boolean algebra

corresponding to ω2 + 1 [Mon75, Theorem 7], and also proved the following basic

result, which we have translated into topological language [Mon75, Theorem 6].

Theorem (Monk). Let α be a countable non-zero ordinal. Then the normal subgroup

lattice of the autohomeomorphism group of ωα · 2 + 1 contains a chain of order type

2 + α + 2.
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We will generalise Monk’s description of the autohomeomorphism group of ω2+1

to ordinals of the form ωn ·m+ 1 for finite n and m. Our main aim will be to study

the normal subgroups of these autohomeomorphism groups. We will vastly improve

upon Monk’s basic result, finding 22ℵ0 normal subgroups, including chains of size

2ℵ0 , even within the autohomeomorphism group of ω2 + 1. This result is somewhat

surprising, since the condition of normality is rather strong in the infinite context.

Indeed, this result stands in stark contrast to the following classical result of Schreier

and Ulam. We write S∞ for the group of permutations of a countably infinite set.

Theorem (Schreier–Ulam). The normal subgroups of S∞ are exactly: the identity;

the group of finitary alternating permutations; the group of finitary permutations;

and S∞.

Our work may be viewed as a generalisation of this result, since S∞ is isomorphic

to the autohomeomorphism group of ω+1. Indeed, we will make essential use of the

following result of Bertram [Ber73], which may be viewed as quantitative version

of the statement that the only normal subgroup of S∞ containing a permutation of

infinite support is S∞ itself.

Theorem (Bertram). Let g ∈ S∞ have infinite support and let h ∈ S∞. Then h is

the product of 4 conjugates of g.

Fix two positive integers n and m, and consider only those autohomeomorphisms

of ωn · m + 1 lying within the pointwise stabiliser of the set of topological

limit points. In this context, we will introduce the notion of a character of an

autohomeomorphism, which may be thought of as a more refined notion of the size

of the support of a permutation. These characters may be defined as subsets of

P ({1, 2, . . . , n}) in such a way that every character ∆ is a lower set, meaning that

if t ∈ ∆ and s ⊆ t then s ∈ ∆, and moreover, every such lower set arises as the

character of some autohomeomorphism. We will also introduce the notion of the flow

of an autohomeomorphism, which measures how much points are “moved towards”

topological limit points.

Our main result (Theorem 6.7.7) is a classification of the normal subgroups of

the autohomeomorphism group of ωn ·m+ 1 contained in the pointwise stabiliser of

the set topological limit points. Here we write L∆ for the subgroup of this stabiliser

consisting of all autohomeomorphisms whose character is a subset of ∆, and L0
∆ for

the subgroup of L∆ consisting of all autohomeomorphisms of “zero flow”, which we

will define later.

Theorem. Let N be a normal subgroup of the autohomeomorphism group of ωn·m+1

contained in the pointwise stabiliser of the set of topological limit points, and assume

that N is not the group of alternating permutations of finite support. Then

L0
∆ ≤ N ≤ L∆
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for a unique lower set ∆ ⊆ P ({1, 2, . . . , n}).

Thus these normal subgroups fall naturally intoD (n) disjoint sets, whereD (n) is

the number of lower sets in P ({1, 2, . . . , n}) (the nth Dedekind number). Moreover,

by studying the different possible flows we will show that each of these sets is either

countable or of size 22ℵ0 . In particular, we will show that there are 22ℵ0 normal

subgroups of the autohomeomorphism group of ωn ·m+ 1 for all n ≥ 2.

Some of the groups we will study have appeared before in a different context.

Given a positive integer m, consider the autohomeomorphism group of ω · m + 1.

By ignoring the action of the group on the set of topological limit points, we may

view this group as a transitive subgroup of S∞. The resulting permutation group

has been called the almost stabiliser of a partition of a countably infinite set into

m infinite pieces [BCP+94], and was shown by Richman [Ric67] to be a maximal

proper subgroup of S∞. However, the corresponding result does not hold for ω2 + 1

or any larger ordinal.

Our work may also shed some light on whether the countable superatomic

Boolean algebras have the small index property, a question which has been studied

by Truss and Wencel [TW13].



Chapter 2

Preliminaries

The purpose of this chapter is to provide a self-contained exposition of ordinal

topologies from scratch. After covering the basic properties of ordinal topologies,

we will provide a short proof of the classification of ordinals up to homeomorphism.

We will then briefly recap Stone duality and conclude with some characterisations

of the countable compact ordinal topologies.

2.1 Notation

Our notation is standard. Officially, we use the von Neumann definitions of ordinals

and cardinals, namely that an ordinal is the set of all smaller ordinals and a cardinal

is an initial ordinal. We shall try to mitigate any confusion this may cause by

referring explicitly to sets of ordinals where appropriate.

Given a totally ordered class X, we implicitly extend the ordering to include

−∞ as a minimum and ∞ as a maximum. We then use interval notation in the

usual fashion, so that for example if a, b ∈ X then [a, b) = {x ∈ X : a ≤ x < b} and

(a,∞) = {x ∈ X : a < x}.
We denote the cardinal successor of a cardinal κ by κ+. We denote the cardinality

of a set X by |X|. We denote the set of subsets of a set X of size n by [X]n. We use

the symbol ∼= to denote the homeomorphism relation. Unless otherwise stated all

arithmetic will be ordinal arithmetic, except for expressions of the form 2κ where κ

is a cardinal.

2.2 Definitions and basic properties

Our starting point is the following generalisation of the Euclidean topology on R.

Definition. Let X be a totally ordered set. The order topology on X is the topology

generated by

{(a, b) : a ∈ X ∪ {−∞} , b ∈ X ∪ {∞}} ,

which is easily seen to be a base.

11
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Given an arbitrary set X of ordinals, we may endow X with the subspace

topology induced from the order topology on [0, α), where α is any ordinal with

X ⊆ [0, α). Note that this does not depend on the choice of α. We refer to this

topology simply as the subspace topology. Unless otherwise stated we will always

assume that X is endowed with this topology.

For example, the subspace topology on [0, ω] is homeomorphic to the one-point

compactification of N, and the subspace topology on [0, ω + 1]\{ω} is discrete. Thus

the subspace topology on a set of ordinals need not coincide with the order topology.

Here are some basic topological properties of ordinals and their subspaces.

Definition. Let X be a topological space.

We say that X is totally disconnected to mean that its only non-empty connected

subspaces are singletons.

We say that X is scattered to mean that every non-empty subspace of X has an

isolated point.

Lemma 2.2.1. Let X be a set of ordinals endowed with the subspace topology. Then

X is Hausdorff, totally disconnected and scattered.

Proof. To see that X is Hausdorff, let x, y ∈ X with x < y. Let U = X ∩ [0, x+ 1)

and V = X ∩ (x,∞). Then U and V are disjoint open sets with x ∈ U and y ∈ V .

To see that X is totally disconnected, suppose Y ⊆ X and x, y ∈ Y with x < y.

Let U and V be as above. Then the sets Y ∩ U and Y ∩ V partition Y into two

disjoint open sets.

To see that X is scattered, suppose Y ⊆ X is non-empty. Let x be the least

element of Y , and let U be as above. Then Y ∩ U = {x}, so x is an isolated point

of Y .

The following result provides us with an equivalent definition for the subspace

topology on a set of ordinals, which may be familiar from the context of club sets.

Lemma 2.2.2. Let X be a set of ordinals endowed with the subspace topology and

let Y ⊆ X. Then Y is closed in X if and only if for every non-empty Z ⊆ Y , if

sup (Z) ∈ X then sup (Z) ∈ Y .

Proof. Suppose first that for every non-empty Z ⊆ Y , if sup (Z) ∈ X then sup (Z) ∈
Y . We show that X \ Y is open. Suppose x ∈ X \ Y and let Z = Y ∩ [0, x). If Z

is empty then X ∩ [0, x+ 1) is an open subset of X \ Y containing x. Otherwise let

z = sup (Z). Then by assumption z /∈ X \ Y , so z 6= x, so z < x since z ≤ x by

definition of Z. Hence X ∩ (z, x+ 1) is an open subset of X \ Y containing x.

Conversely, suppose Y is closed in X and Z ⊆ Y is non-empty. Let z = sup (Z)

and suppose for contradiction that z ∈ X \ Y . Certainly z is a non-zero limit

ordinal, or else z ∈ Z ⊆ Y . Now since X \ Y is open, there are ordinals x and w

with x < z < w such that X ∩ (x,w) ⊆ X \ Y . But then x + 1 < z is an upper

bound for Z, contradicting the definition of z.
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Given that sets of ordinals are Hausdorff, there is unsurprisingly a connection

between closed and compacts sets, as the following result illustrates.

Lemma 2.2.3. Let X be a set of ordinals endowed with the subspace topology. Then

X is compact if and only if for every non-empty Z ⊆ X, sup (Z) ∈ X.

Proof. Suppose first that Z ⊆ X is non-empty with sup (Z) /∈ X. Let z = sup (Z).

For each x ∈ Z, let Ux = X∩[0, x), and let V = X∩(z,∞). Then {Ux : x ∈ Z}∪{V }
is an open cover of X, but if Y ⊆ Z is finite then max (Y ) /∈

⋃
y∈Y Uy ∪ V . Hence

X is not compact.

Conversely, suppose that for every non-empty Z ⊆ X, sup (Z) ∈ X. Given an

open cover of X, we choose a finite subcover V1, V2, . . . , Vn recursively as follows.

Having chosen V1, V2, . . . , Vk−1 for some k ∈ ω, let Y = X \
⋃k−1
i=1 Vi, a closed set.

If Y is empty, then we are done. Otherwise let αk = sup (Y ). Then αk ∈ X by

assumption, so αk ∈ Y by Lemma 2.2.2. Thus αk is a maximal element of Y . Take

Vk to be any member of the open cover containing αk. This process must terminate,

or else we obtain a strictly decreasing sequence of ordinals α1 > α2 > α3 > . . . .

In particular, if α is a non-zero ordinal then [0, α) is compact if and only if α is

a successor ordinal.

The following definition is from Schipperus [Sch12].

Definition. Let X be a set of ordinals. We say that X is internally closed to mean

that for every non-empty Z ⊆ X, if sup (Z) < sup (X) then sup (Z) ∈ X.

By Lemma 2.2.2, this is equivalent to saying that X is closed in [0, α), where α

is the least ordinal such that X ⊆ [0, α). If the context specifies no ambient space,

then we may simply say that X is closed to mean that X is internally closed.

By Lemma 2.2.3, every compact set of ordinals is internally closed. However, if

α is a non-zero limit ordinal then [0, α) is internally closed but neither compact nor

a closed subset of [0, α].

Our final basic result gives another equivalent condition for a set of ordinals to

be internally closed.

Proposition 2.2.4. Let X be a set of ordinals. Then X is internally closed if and

only if the subspace topology on X coincides with the order topology.

The latter condition is equivalent to saying that the order-isomorphism from X

to its order type is a homeomorphism.

Proof. Fix an ordinal α with X ⊆ [0, α).

First supposeX is internally closed. Certainly every basic open subset ofX in the

order topology is open in the subspace topology. For the other way round, suppose

a ∈ [0, α) ∪ {−∞} and b ∈ [0, α) ∪ {∞} are such that X ∩ (a, b) is non-empty. It is
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sufficient to find c ∈ X ∪{−∞} and d ∈ X ∪{∞} such that X ∩ (c, d) = X ∩ (a, b).

First let

d =

∞, if x < b for all x ∈ X

min (X ∩ [b,∞)) , otherwise.

Next let Z = X ∩ [0, a]. If Z is empty, then let c = −∞. Otherwise sup (Z) ≤ a <

sup (X) since X ∩ (a, b) is non-empty, so sup (Z) ∈ X since X is internally closed.

In this case let c = sup (Z). Then c and d are as required.

Conversely, suppose the subspace topology on X coincides with the order

topology on X. Let Z ⊆ X be non-empty and suppose sup (Z) < sup (X). Let

z = sup (Z). Then X ∩ (z,∞) is non-empty and open in the subspace topology and

therefore in the order topology, so we may write

X ∩ (z,∞) =
⋃
i∈I

X ∩ (ai, bi)

where I is a non-empty set and for all i ∈ I, ai ∈ X ∪ {−∞}, bi ∈ X ∪ {∞} and

X ∩ (ai, bi) is non-empty. Let a = min {ai : i ∈ I}. It is then easy to check that

X ∩ (z,∞) = X ∩ (a,∞) . (∗)

We claim that a = z and hence z ∈ X, as required. To prove the claim, first observe

that if a > z then a ∈ X∩(z,∞), contrary to (∗). Finally observe that if a < z then

X ∩ (a, z] = ∅ by (∗) and so a is an upper bound for Z, contrary to the definition of

z.

2.3 The Cantor–Bendixson derivative

The key tool in the analysis of ordinal topologies is the Cantor–Bendixson derivative,

which was introduced by Cantor in 1872. In fact, Cantor later introduced ordinals

for the very purpose of iterating this operation.

Definition. Let X be a topological space. The Cantor–Bendixson derivative X ′ of

X is defined by

X ′ = X \ {x ∈ X : x is isolated} .

The iterated derivatives of X are defined for γ an ordinal by

1. X(0) = X,

2. X(γ+1) =
(
X(γ)

)′
, and

3. X(γ) =
⋂
δ<γ X

(δ) when γ is a non-zero limit.

For example, if X = [0, ω2] then X ′ = {ω ·m : m ∈ ω} ∪ {ω2} and X(2) = {ω2}.
Here are some basic properties of this operation.
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Lemma 2.3.1. Let X be a topological space, let γ be an ordinal and let Y ⊆ X.

Then Y (γ) ⊆ X(γ).

Proof. First observe that if y ∈ Y and {y} is an open subset of X, then {y} = Y ∩{y}
is also an open subset of Y . Therefore Y ′ ⊆ X ′. The result then follows by induction

on γ.

Lemma 2.3.2. Let X be a topological space and let γ be an ordinal. Then X(γ) is

closed.

Proof. First observe that X ′ is closed since {x} is open for all x ∈ X \ X ′ and

X \X ′ =
⋃
x∈X\X′ {x}. The result then follows by induction on γ.

We may describe the effect of the Cantor–Bendixson derivative on sets of ordinals

of the form [0, α) using the following notion. First recall that if x is an ordinal, then

there is a unique sequence of ordinals γ1 > γ2 > · · · > γn and a unique sequence of

positive integers m1,m2, . . . ,mn such that

x = ωγ1 ·m1 + ωγ2 ·m2 + · · ·+ ωγn ·mn

(the Cantor normal form of x). (Note that it need not be the case that γ1 < x,

since for example ε0 = ωε0 .)

Definition. Let x be an ordinal with the above Cantor normal form. The Cantor–

Bendixson rank of x is defined by

CB (x) =

γn, if x > 0

0, if x = 0.

This defines a function CB :
[
0, ωβ

)
→ [0, β) for each non-zero ordinal β.

The relationship between the notions of Cantor–Bendixson derivative and rank is

given by the following simple result, which provides us with an alternative definition

of Cantor–Bendixson rank.

Proposition 2.3.3. Let α be an ordinal. If x ∈ [0, α) then the Cantor–Bendixson

rank of x is the greatest ordinal γ such that x ∈ [0, α)(γ).

In other words, the Cantor–Bendixson rank of an ordinal is the ordinal number

of iterated derivatives that can be taken before that point “disappears”.

Proof. We prove by induction on γ that for γ an ordinal,

[0, α)(γ) = {x ∈ [0, α) : CB (x) ≥ γ} .

The case γ = 0 is trivial.
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If γ is a successor ordinal, say γ = δ+ 1, then [0, α)(γ) =
(

[0, α)(δ)
)′

, and by the

inductive hypothesis [0, α)(δ) = {x ∈ [0, α) : CB (x) ≥ δ}. Let x ∈ [0, α) be non-zero

(the case x = 0 is straightforward). If CB (x) = δ, then we may write x = y + ωδ

with y a multiple of ωδ. Then (y, x+ 1)∩ [0, α)(δ) = {x}, so x is isolated in [0, α)(δ).

On the other hand, if CB (x) > δ, then whenever z < x we have z + ωδ ∈ [0, α)(δ)

and z + ωδ < x, so any basic open set containing x contains some point of [0, α)(δ)

and thus x is not isolated in this space.

Finally, if γ is a non-zero limit then [0, α)(γ) =
⋂
δ<γ [0, α)(δ), so by the inductive

hypothesis

[0, α)(γ) =
⋂
δ<γ

{x ∈ [0, α) : CB (x) ≥ δ} = {x ∈ [0, α) : CB (x) ≥ γ} .

Note that some authors use the term Cantor–Bendixson rank to refer to a

property of a topological space X (the least ordinal γ such that X(γ) = X(γ+1)),

rather than a property of a point in a topological space.

2.4 The classification of ordinal topologies

We shall see in the next chapter that the general problem of classifying the subspace

topologies on sets of ordinals is quite complex. The problem of classifying the order

topologies on ordinals themselves is nonetheless a simple application of Cantor–

Bendixson derivatives. The compact case was stated in terms of Boolean algebras

by Mayer and Pierce [MP60, Theorem 4.6] and then directly by Baker [Bak72,

Corollary 3]. The general classification was later performed by Flum and Mart́ınez

[FM88, Theorem 2.2 and Remark 2.5, part 3] and was independently rediscovered

in unpublished work by Kieftenbeld and Löwe [KL06]. We will state this result in a

slightly different way to both of those treatments, and provide a short proof based

on that of Flum and Mart́ınez.

Our statement of the classification makes use of the following piece of notation.

The idea behind it is that the “building blocks” of ordinal topologies have the form

1 or ωγ + 1.

Definition. Let γ be an ordinal and let m be a positive integer. We define

ω [γ,m] =

ωγ ·m+ 1, if γ > 0

m, if γ = 0.

Thus ω [γ,m] is homeomorphic to the topological disjoint union of m copies of

ω [γ, 1].

Here is the classification.
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Theorem 2.4.1 (Flum–Mart́ınez). Let α be a non-zero ordinal.

If α is compact, then there is a unique ordinal γ and a unique positive integer m

such that

α ∼= ω [γ,m] .

If α is not compact and α(η) is either infinite or empty for all ordinals η, then

there is a unique non-zero ordinal δ such that

α ∼= ωδ.

Otherwise, there are unique non-zero ordinals γ and δ with δ ≤ γ and a unique

positive integer m such that

α ∼= ω [γ,m] + ωδ.

Moreover, the proof will reveal how to obtain the required ordinals from the

Cantor normal form of α.

The existence part of the proof is a straightforward consequence of the following

observation.

Lemma 2.4.2. Let α be a successor ordinal and let β be any ordinal. Then α + β

is homeomorphic to the topological disjoint union of α and β.

Proof. Simply write α = x + 1 and let U = [0, x+ 1) and V = (x, α + β). Then U

and V are disjoint open subsets of α+β with U ∼= α, V ∼= β and U ∪V = α+β.

In particular, if α and β are both successor ordinals then α + β ∼= β + α.

Here is our proof of the classification.

Proof of Theorem 2.4.1. First we prove existence.

If α is compact, then α is a successor ordinal by Lemma 2.2.3. Hence using

Cantor normal form we may write

α = ω [γ1,m1] + ω [γ2,m2] + · · ·+ ω [γn,mn]

with γ1 > γ2 > · · · > γn ordinals and n,m1,m2, . . . ,mn positive integers. Let

ζ = ω [γ2,m2] + · · · + ω [γn,mn]. Then by Lemma 2.4.2, α = ω [γ1,m1] + ζ ∼=
ζ + ω [γ1,m1] = ω [γ1,m1].

If α is not compact, then using Cantor normal form we may write

α = ω [γ1,m1] + ω [γ2,m2] + · · ·+ ω [γn,mn] + ωδ

with γ1 > γ2 > · · · > γn ≥ δ > 0 ordinals, m1,m2, . . . ,mn positive integers and n ∈
ω. If α(η) is either infinite or empty for all ordinals η, then n = 0, or else

∣∣α(γ1)
∣∣ = m1.

Hence α must in fact equal ωδ. Otherwise let ζ = ω [γ2,m2] + · · ·+ω [γn,mn]. Then

by Lemma 2.4.2, α = ω [γ1,m1] + ζ + ωδ ∼= ζ + ω [γ1,m1] + ωδ = ω [γ1,m1] + ωδ.
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Now we prove uniqueness by using the fact that
∣∣X(γ)

∣∣ is a topological invariant

of a topological space X for any ordinal γ.

For the compact case, let γ be an ordinal and m be a positive integer. Then

by Proposition 2.3.3, γ + 1 is the least ordinal η such that ω [γ,m](η) = ∅, and

m =
∣∣∣ω [γ,m](γ)

∣∣∣. Hence we may recover γ and m from the topology on ω [γ,m].

For the first non-compact case, let δ be a non-zero ordinal. Then by Proposition

2.3.3, δ is the least ordinal η such that
(
ωδ
)(η)

= ∅. Hence we may recover δ from

the topology on ωδ.

For the second non-compact case, let γ and δ be non-zero ordinals with δ ≤ γ,

let m be a positive integer, and let α = ω [γ,m] + ωδ. Then by Proposition 2.3.3,

γ + 1 is the least ordinal η such that α(η) = ∅, m =
∣∣α(γ)

∣∣, and δ is the least ordinal

ζ such that α(ζ) is either compact or empty. Hence we may recover γ, m and δ from

the topology on α.

2.5 Stone duality

We now briefly recap the basics of Stone duality applicable to our situation. Further

details may be found in [BS69, Chapter 1] for the basic concepts or [Joh86] for a

comprehensive treatment.

Definition. A Stone space is a topological space that is compact, Hausdorff and

totally disconnected.

Write Stone for the category of Stone spaces and continuous functions, and

BoolAlg for the category of Boolean algebras and Boolean algebra homomorphisms.

Given a Stone space X, write C (X) for the Boolean algebra of clopen subsets

of X under inclusion.

Given a Boolean algebra B, write S (B) for the set of ultrafilters of B endowed

with the topology generated by the base

{{U ∈ S (B) : b ∈ U} : b ∈ B} .

Theorem 2.5.1 (Stone duality). The maps C and S extend to functors C :

Stone → BoolAlgop and S : BoolAlgop → Stone yielding an equivalence of

categories.

This duality allows statements about Boolean algebras to be translated into the

language of Stone spaces, and vice versa. For example, quotient algebras correspond

to subspaces, and products of algebras correspond to disjoint unions of spaces. In

order to state another such correspondence, we require the following notion.

Definition. Let B be a Boolean algebra.

We say that a ∈ B is an atom to mean that a is a minimal element of B \ {0}.
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We say that B is superatomic to mean that every non-trivial quotient of B has

an atom.

Mostowski and Tarski [MT39] gave several equivalent conditions for a Boolean

algebra B to be superatomic, for example that every non-trivial subalgebra of B

has an atom. See [Roi89] for further details.

Here are some particular correspondences of interest in the context of Stone

duality. We say that a topological space X is second-countable to mean that X has

a countable base.

Lemma 2.5.2. Let X be a Stone space.

1. C (X) is countable if and only if X is second-countable.

2. C (X) is superatomic if and only if X is scattered.

Proof. 1. If C (X) is countable then certainly X has a countable base since C (X)

is a base for X. Conversely, suppose that X has a countable base B. We show

that each member of C (X) can be written as a finite union of members of B,

which suffices. To see this, let Y ∈ C (X). Then for each x ∈ Y there exists

Ux ∈ B with x ∈ Ux ⊆ Y . Then {Ux : x ∈ Y } is an open cover of Y . But Y

is a closed subset of a compact space and is therefore compact, so there is a

finite subset S ⊆ Y such that Y =
⋃
x∈S Ux, as required.

2. First note that under Stone duality, the non-empty subspaces of a Stone space

correspond to the non-trivial quotients of its Boolean algebra. Hence it is

sufficient to prove that C (X) has an atom if and only if X has an isolated

point. Now if a ∈ C (X) is an atom, then {b ∈ C (X) : a ≤ b} is an isolated

point of S (C (X)) ∼= X. Conversely, if U is an isolated point of X, then {U}
is an atom of C (X).

The reason that this result is relevant is of course that by Lemma 2.2.1, if X is

a compact set of ordinals under the subspace topology, then X is a scattered Stone

space.

Note that there are scattered Stone spaces that are not homeomorphic to compact

sets of ordinals under the subspace topology. For example, let X = ω1 + 1 + ω∗

endowed with the order topology, where ω∗ is order-isomorphic to the negative

integers and + denotes the ordered sum operation. Then X is a scattered Stone

space, but as observed by Baker [Bak72, p. 25], it is not homeomorphic to any set

of ordinals under the subspace topology. We will prove this fact in the next chapter

(in Proposition 3.4.4).
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2.6 Countable compact ordinal topologies

We conclude this chapter with some known characterisations of the countable

compact ordinal topologies, since these are a major focus of much of our work.

Theorem 2.6.1. Let X be a non-empty topological space. The following are

equivalent.

1. X is countable, compact and Hausdorff.

2. X is the Stone space of a countable superatomic Boolean algebra.

3. X is homeomorphic to a countable compact set of ordinals under the subspace

topology.

4. X ∼= ω [γ,m] for some countable ordinal γ and some positive integer m.

Note that by Lemma 2.5.2, condition 2 is equivalent to saying that X is a

scattered, second-countable Stone space. Note also that by Lemma 2.2.3 and

Proposition 2.2.4, condition 3 is equivalent to saying that X is homeomorphic to a

countable successor ordinal.

The equivalence of conditions 1, 3 and 4 was proved by Sierpiński and

Mazurkiewicz [MS20], and condition 2 was later added by Day [Day67, p. 489].

Here we sketch a short proof of the equivalence of all 4 conditions, using ideas from

[Ket78, Section 0].

Our proof has two main ingredients. The first ingredient is the Cantor–Bendixson

theorem, which was originally intended as the “continuum hypothesis for closed

sets”. We say that a topological space is perfect to mean that it has no isolated

points.

Theorem 2.6.2 (Cantor–Bendixson). Let X be a closed subset of a Polish space.

Then we may write X as a disjoint union X = S∪P with S scattered and P perfect

in a unique way. Moreover, S is at most countable and P either is empty or has

cardinality 2ℵ0.

This theorem may be proved using Cantor–Bendixson derivatives, and was in

fact the original result for which the tool was invented. All we will need from it

is the fact that a Polish space is countable if and only if it is scattered. Note in

particular that any second-countable compact Hausdorff space is a Polish space by

Urysohn’s metrisation theorem.

The second ingredient of our proof is Vaught’s criterion, which may be stated as

follows [Pie89, Section 1.2].

Theorem 2.6.3 (Vaught). Let R be a symmetric binary relation defined on the

class of second-countable Stone spaces. Suppose that for all such spaces X and Y ,
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� if XR∅ then X = ∅, and

� if XRY and X = A∪B with A,B ⊆ X disjoint open subsets, then there exist

disjoint open subsets C,D ⊆ Y such that ARC and BRD.

Then for all such spaces X and Y , if XRY then X ∼= Y .

Sketch of proof of Theorem 2.6.1. The implications 4 =⇒ 3 =⇒ 1 are given by

Lemmas 2.2.3 and 2.2.1, so it is enough to prove that 1 =⇒ 2 =⇒ 4.

To see that 1 =⇒ 2, let X be countable, compact and Hausdorff. One may show

directly that X has a countable base [KT07, Theorem 2.2]. Then X is a Polish

space by Urysohn’s metrisation theorem, and so X is scattered by the Cantor–

Bendixson theorem. This suffices, since any space that is Hausdorff and scattered

is automatically totally disconnected.

To see that 2 =⇒ 4, let X be a scattered, second-countable Stone space. Then

X is a Polish space by Urysohn’s metrisation theorem, and so X is countable by

the Cantor–Bendixson theorem. Let γX be the least ordinal γ such that X(γ) = ∅,
which exists since X is scattered and is countable since X is countable. Then since

X is compact, γX is a successor ordinal, say γX = δ + 1, and X(δ) is finite, say∣∣X(δ)
∣∣ = mX . Now define a symmetric binary relation R on second-countable Stone

spaces by XRY if and only if X and Y are both scattered, γX = γY and mX = mY .

One may easily check that this relation satisfies Vaught’s criterion, and the result

follows.

Note that the equivalence of conditions 3 and 4 is simply the countable compact

case of Theorem 2.4.1, though we have provided an independent proof of this

equivalence.
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Chapter 3

Subspaces of countable ordinals

In this chapter we define the “one-point cofinite extension” operation on topological

spaces and prove our topological analogue of Hausdorff’s theorem on scattered total

orderings. From this we obtain a characterisation of the countable subspaces of

ordinals as the order topologies of countable scattered total orderings. Afterwards

we use these ideas to compute the number of subspaces of an ordinal up to

homeomorphism.

3.1 Linearly ordered topological spaces

We begin by reviewing some basic ideas from the theory of linearly ordered

topological spaces. First recall the following pieces of terminology.

Definition. A linearly ordered topological space (LOTS) is a totally ordered set

under the order topology.

A generalised ordered space (GO-space) is any subset of a LOTS under the

induced ordering and the subspace topology.

An order-homeomorphism is a bijective function that is both an order-

isomorphism and a homeomorphism.

Let X be a totally ordered set. We say that a subset Y ⊆ X is order-convex to

mean that if x, y ∈ Y and z ∈ X with x < z < y, then z ∈ Y .

Many basic properties of ordinal topologies follow from results in the general

theory of linearly ordered topological spaces, such as the fact that every LOTS is

Hausdorff and hereditarily normal (i.e., T5) [Ste70]. Indeed, several of the results

in the previous chapter, such as Lemmas 2.2.2 and 2.2.3, may be viewed as special

cases of such results.

Of particular relevance to subspaces of ordinals is the following basic result of

Cech [CFK66, 17 Theorem A.23], which provides an equivalent definition for a GO-

space.

Proposition 3.1.1 (Cech). Let X be a totally ordered set endowed with some

23
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topology. Then X is a GO-space if and only if the topology on X contains the

order topology and is generated by a base of order-convex sets.

We omit the general proof of this result and instead prove the special case in

which X is well-ordered.

Theorem 3.1.2 (Cech). Let X be a well-ordered set endowed with some topology.

The following are equivalent.

1. X is order-homeomorphic to a set of ordinals under the subspace topology.

2. The topology on X has a base of the form

B ∪ {{y} : y ∈ Y } ,

where B is the usual base for the order topology on X and Y ⊆ X.

In particular, if X is a set of ordinals under the subspace topology and f : X →
[0, α) is an order-isomorphism, then f is continuous. Of course, f need not be a

homeomorphism.

The proof we provide was shown to the author by Robert Leek.

Proof. First let X be a set of ordinals under the subspace topology, say X ⊆ [0, α).

Let Y = {y ∈ X : {y} is open} and let B∗ = B∪{{y} : y ∈ Y } where B is the usual

base for the order topology on X. To see that B∗ is a base for the topology on X,

let a ∈ [0, α) ∪ {−∞}, b ∈ [0, α) ∪ {∞} and x ∈ (a, b). If x ∈ Y , then {x} ∈ B∗

with x ∈ {x} ⊆ (a, b). Otherwise x must be a limit ordinal such that X is cofinal

in [0, x), in which case there exists c ∈ X with a < c < x, whence (c, x] ∈ B∗ with

x ∈ (c, x] ⊆ (a, b).

Conversely, suppose the topology on X has a base of the given form for some

Y ⊆ X. Let f : X → [0, α) be an order-isomorphism for some ordinal α. We show

that X is order-homeomorphic to a subspace of [0, 2 · α). Define g : X → [0, 2 · α)

by

g (x) =

2 · f (x) + 1, if x ∈ Y

2 · f (x) , if x /∈ Y .

Let the image of X under g be Z. As a function X → Z, certainly g is an

order-isomorphism, and the image of any basic open set is open. To see that g

is continuous, let a ∈ [0, 2 · α) ∪ {−∞} and b ∈ [0, 2 · α) ∪ {∞}. We show that

g−1 (Z ∩ (a, b)) is open. First let

d =

∞, if z < b for all z ∈ Z

g−1 (min [Z ∩ [b,∞)]) , otherwise.

Next let W = Z ∩ [0, a]. If W is empty, then let c = −∞, and if W has a maximal

element w then let c = g−1 (w). In both cases g−1 (Z ∩ (a, b)) = (c, d) and we are
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done. Otherwise by definition of g we must have a+ 1 = g (c) for some c ∈ Y . But

then g−1 (Z ∩ (a, b)) = (c, d) ∪ {c}, and we are done.

This proof also shows that if X is a set of ordinals of order type α under

the subspace topology, then X is homeomorphic to a subspace of [0, 2 · α). In

particular, X is homeomorphic to a countable subspace of an ordinal if and only if

X is homeomorphic to a subspace of a countable ordinal.

3.2 Hausdorff’s theorem on scattered total

orderings

In this section we review some basic ideas from the theory of total orderings,

following Rosenstein [Ros82, Chapter 5].

First recall some basic terminology.

Definition. Let X be a totally ordered set.

We say that X is dense to mean that for all x, y ∈ X with x < y, (x, y) 6= ∅.
We say that X is scattered to mean that X has no densely-ordered subset with

more than one point.

Equivalently, X is scattered if and only if no subset of X is order-isomorphic to

Q.

Dense and scattered linear orderings play an important role in analysing arbitrary

total orderings. For instance, Hausdorff proved that any total ordering may be

written as a densely-ordered sum (a notion we shall define shortly) of scattered

total orderings [Ros82, Theorem 4.9].

The key tools in the analysis of scattered total orderings are condensation maps,

which may be thought of as order-homomorphisms.

Definition. Let X be a totally ordered set.

A condensation of X is a partition of X into disjoint non-empty order-convex

sets, which we endow with the induced ordering defined by A < B if and only if

a < b for all a ∈ A and all b ∈ B.

A condensation map on X is a function c : X → X̃ such that X̃ is a condensation

of X and x ∈ c (x) for all x ∈ X.

The finite condensation map cF is the condensation map defined by cF (x) =

{y ∈ X : (x, y) is finite}.

For example, the image of [0, ω2] under cF is order-isomorphic to [0, ω].

Note that cF (x) is always order-isomorphic to a finite total ordering, Z, Z>0 or

Z<0.

The notion of the finite condensation map immediately allows us to make the

following simple but useful observation.
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Proposition 3.2.1. Let X be a non-empty scattered totally ordered set. Then there

exists x ∈ X such that (−∞, x) is either empty or has a maximal element and (x,∞)

is either empty or has a minimal element.

Proof. Suppose for contradiction that there is no such x ∈ X. Then |cF (x)| ≤ 2 for

all x ∈ X, and X is certainly infinite. But then it is easy to see that for instance

{min (cF (x)) : x ∈ X}

is a densely-ordered subset of X with more than one element.

This observation will be easier to use in the following form.

Corollary 3.2.2. Let X be a scattered totally ordered set with |X| ≥ 3. Then there

exists x ∈ X such that (−∞, x) has a maximal element and (x,∞) has a minimal

element.

Proof. Let Y = {x ∈ X : x is neither minimal nor maximal in X}. Then Y 6= ∅
since |X| ≥ 3, so Y is a non-empty scattered totally ordered set, so by Proposition

3.2.1 there exists x ∈ Y such that Y ∩ (−∞, x) is either empty or has a maximal

element and Y ∩ (x,∞) is either empty or has a minimal element. Then x is as

required.

Here is an easy consequence of our observation, which relates the order-theoretic

notion of “scattered” to the topological notion.

Corollary 3.2.3. Let X be a totally ordered set, and suppose X is scattered. Then

the order topology on X is scattered.

Proof. Suppose Y ⊆ X is non-empty. Then Y is a non-empty scattered totally

ordered set, so by Proposition 3.2.1 there exists y ∈ Y such that Y ∩ (−∞, y) is

either empty or has a maximal element and Y ∩ (y,∞) is either empty or has a

minimal element. Hence {y} is a basic open subset of Y .

Note that the converse does not hold, in the sense that there is a non-scattered

totally ordered set whose order topology is scattered. For example, let X = Q× Z
under the lexicographic ordering. Then the order topology on X is discrete.

Let us now state and prove Hausdorff’s classical theorem. The precise statement

requires the following notions.

Definition. If X is a totally ordered set, then the backwards ordering X∗ is defined

to be X under the relation ≥.

If X is a totally ordered set and Yx is a totally ordered set for all x ∈ X, then

the ordered sum is defined by∑
x∈X

Yx = {(x, y) : x ∈ X, y ∈ Yx}
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under the lexicographic ordering. For each x ∈ X we identify the subset

{(x, y) : y ∈ Yx} with Yx. We also denote
∑

x∈{0,1} Yx by Y0 + Y1, which defines

an associative binary operation.

Define S to be the smallest class of totally ordered sets subject to the following

conditions. Here, 1 is a totally ordered set with exactly one element.

� S is closed under isomorphism.

� 1 ∈ S.

� If X ∈ S then X∗ ∈ S.

� If β is a non-zero ordinal and Xi ∈ S for all i ∈ β, then
∑

i∈βXi ∈ S.

Here is Hausdorff’s theorem.

Theorem 3.2.4 (Hausdorff). S is the class of non-empty scattered totally ordered

sets.

We use the proof from Rosenstein [Ros82, Theorem 5.26], which requires the

finite condensation map to be iterated, in much the same fashion as the Cantor–

Bendixson derivative.

Definition. Given a condensation map c defined for every totally ordered set, its

iterations are defined for γ an ordinal and x ∈ X by

1. c0 (x) = {x},

2. cγ+1 (x) = {y ∈ X : c (cγ (x)) = c (cγ (y))}, and

3. cγ (x) =
⋃
δ<γ c

δ (x) when γ is a non-zero limit.

For example if X =
[
0, ωβ

)
for some ordinal β, then cγF (0) = [0, ωγ) for all

ordinals γ ≤ β. Thus the finite condensation map is in some sense analogous to the

Cantor–Bendixson derivative.

Here is the proof of Hausdorff’s theorem.

Proof of Theorem 3.2.4. First we show by induction on the definition of S that if

X ∈ S then X is scattered. Certainly 1 is scattered, and if X is scattered then so

is X∗. So suppose β is a non-zero ordinal and Xi is scattered for all i ∈ β, and

suppose for contradiction that Y ⊆
∑

i∈βXi is a dense subordering with more than

one element. Then Y ∩ Xi is a dense subordering of Xi and so has at most one

element. Let Z = {i ∈ β : |Y ∩Xi| = 1}, so Z is order-isomorphic to Y . Then Z is

a dense subordering of β with more than one element, which is absurd since β has

no infinite strictly descending sequence.

Conversely, suppose X is a non-empty scattered totally ordered set. Let η be

the least ordinal such that cη+1
F (x) = cηF (x) for all x ∈ X, which exists since
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cδF (x) ⊆ cγF (x) for all x ∈ X whenever δ and γ are all ordinals with δ < γ. (η

is known as the F -rank of X.) Then the condensation {cηF (x) : x ∈ X} must be

dense, so since X is scattered it must consist of a single order-convex set, and thus

cηF (x) = X for all x ∈ X. We now show by induction on γ ≤ η that cγF (x) ∈ S for

all x ∈ X, which suffices.

Certainly c0
F (x) = {x} ∈ S for all x ∈ X. If γ = δ + 1, then cγF (x) is order-

isomorphic to an ordered sum of sets of the form cδF (y) with y ∈ cγF (x) over either

a finite totally ordered set, Z, ω or ω∗. Either way it follows by the inductive

hypothesis that cγF (x) ∈ S, noting that Z is order-isomorphic to ω∗ + ω. Finally,

suppose γ is a non-zero limit ordinal. Observe that for all y ∈ cγF (x), the least

ordinal δ such that y ∈ cδF (x) cannot be limit ordinal. Hence

cγF (x) =
⋃
δ<γ

cδF (x) =
⋃
δ<γ

(
cδ+1
F (x) \ cδF (x)

)
=
⋃
δ<γ

C−δ ∪
⋃
δ<γ

C+
δ ,

where

C−δ =
(
cδ+1
F (x) \ cδF (x)

)
∩ (−∞, x)

and

C+
δ =

(
cδ+1
F (x) \ cδF (x)

)
∩ (x,∞)

for each ordinal δ < γ. Since
(
cδF (x)

)
δ<γ

forms a nested collection of order-convex

sets, it follows that cγF (x) is order-isomorphic to(∑
δ∈γ

(
C−δ
)∗)∗

+
∑
δ∈γ

C+
δ .

Now by the inductive hypothesis, for each ordinal δ < γ both C−δ and C+
δ are

suborderings of members of S, which are easily seen by induction to lie in S. Hence

cγF (x) ∈ S, as required.

Since our topological analogue of this result will concern countable spaces, we

will only need the special case of this result in which X is countable. We now observe

that in this case we in fact do not require ordinals any larger than ω.

Definition. Define Sω to be the smallest class of totally ordered sets subject to the

following conditions.

� Sω is closed under isomorphism.

� 1 ∈ Sω.

� If X ∈ Sω then X∗ ∈ Sω.

� If β ≤ ω is a non-zero ordinal and Xi ∈ Sω for all i ∈ β, then
∑

i∈βXi ∈ Sω.
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Corollary 3.2.5. Sω is the class of countable non-empty scattered totally ordered

sets.

We deduce this from Hausdorff’s theorem, but it may also be proved directly

[Ros82, Theorem 5.24].

Proof. Trivially every member of Sω is countable and Sω ⊆ S, so by Hausdorff’s

theorem every member of Sω is a countable non-empty scattered totally ordered set.

Conversely, if X is a countable non-empty scattered totally ordered set, then

by Hausdorff’s theorem X ∈ S. Since X is countable, all the ordinals used in its

construction may be assumed countable. But it is easy to see that every countable

ordinal lies in Sω, and hence using the same sequence of steps that witnesses this

we see that X ∈ Sω.

3.3 One-point cofinite extensions

In this section we state and prove our topological analogue of Hausdorff’s theorem.

First we introduce some notation.

Definition. Let κ be a cardinal and let Xi be a topological space for all i ∈ κ. We

use ⊕
i∈κ

Xi

to denote the topological disjoint union. We also denote
⊕

i∈{0,1}Xi by X0 ⊕ X1,

which defines an associative binary operation. When there is no confusion we

identify Xi with the corresponding subspace of the disjoint union.

We now introduce the other operation on topological spaces used in our result.

Definition. Let κ be an infinite cardinal and let Xi be topological spaces for all

i ∈ κ. Assume for simplicity that the Xi are pairwise disjoint and ∗ /∈
⋃
i∈κXi. We

define the one-point cofinite extension of (Xi)i∈κ by

æ

i∈κ
Xi =

⋃
i∈κ

Xi ∪ {∗}

endowed with the topology generated by the base

⋃
i∈κ

{U ⊆ Xi : U is open} ∪

{⋃
i∈A

Xi ∪ {∗} : A ⊆ κ is cofinite

}
.

(The symbol
Æ

may be pronounced “starred sum”.)

That this set is a base is an easy exercise.

The aim of this definition is to generalise the way in which ordinals are built up

topologically. For example,
Æ

i∈ω {0} ∼= [0, ω] and
Æ

i∈ω [0, ω] ∼= [0, ω2].
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Here is our topological analogue of Sω, which we have chosen in this way in order

for Theorem 3.3.1 to hold. Here, 1 is a one-element topological space.

Definition. Define Aω to be the smallest class of topological spaces subject to the

following conditions.

� Aω is closed under homeomorphism.

� 1 ∈ Aω.

� If κ ≤ ω is a non-zero cardinal and Xi ∈ Aω for all i ∈ κ, then
⊕

i∈κXi ∈ Aω.

� If Xi ∈ Aω for all i ∈ ω, then
Æ

i∈ωXi ∈ Aω.

Here is our topological analogue of Hausdorff’s theorem, which is ultimately much

easier to prove than Hausdorff’s theorem once it has been formulated appropriately.

Theorem 3.3.1. Let X be a topological space. The following are equivalent.

1. X is homeomorphic to a countable non-empty set of ordinals under the

subspace topology.

2. X ∈ Aω.

Proof. First let X be a countable non-empty set of ordinals under the subspace

topology. We show by induction on the order type of X that X ∈ Aω. Let f :

X → [0, α) be an order-isomorphism for some countable ordinal α. Clearly every

finite discrete space lies in Aω, so assume α ≥ ω. Write α = ωγ · m + ζ with γ a

non-zero ordinal, m a positive integer and ζ < ωγ. If m > 1 or ζ > 1 then both

f−1 ([0, ωγ]) and f−1 ([ωγ + 1, α)) have order type less than α, and by Theorem

3.1.2 X is homeomorphic to their topological disjoint union, so we are done by the

inductive hypothesis. So we may assume that m = 1 and ζ ∈ {0, 1}. Let (ηi)i∈ω be

a strictly increasing cofinal sequence of ordinals less than ωγ, and write η−1 = −1.

By Theorem 3.1.2, if ζ = 0 then X ∼=
⊕

i∈ω f
−1 ([ηi−1 + 1, ηi]), whereas if ζ = 1 then

either X ∼=
⊕

i∈ω f
−1 ([ηi−1 + 1, ηi])⊕ {∗} or X ∼=

Æ
i∈ω f

−1 ([ηi−1 + 1, ηi]). In each

case we are done by the inductive hypothesis.

Conversely, we show by induction on the definition of Aω that if X ∈ Aω then

X is homeomorphic to a countable non-empty set of ordinals under the subspace

topology. Certainly this is true of 1. Let κ ≤ ω be a non-zero cardinal and suppose

that for all i ∈ κ, Xi is homeomorphic to a countable non-empty set of ordinals

under the subspace topology. As we remarked earlier, by the proof of Theorem

3.1.2 we may assume that in fact Xi ⊆ [0, αi) with αi a countable ordinal for each

i ∈ κ. But then
⊕

i∈κXi is immediately seen to be homeomorphic to a subspace

of
⊕

i∈κ [0, αi] ∼=
[
0,
∑

i∈κ (αi + 1)
)
. Finally suppose that κ = ω. Then

Æ
i∈ωXi is

likewise homeomorphic to a subspace of
Æ

i∈ω [0, αi] ∼=
[
0,
∑

i∈ω (αi + 1)
]
.
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3.4 A characterisation of countable subspaces of

ordinals

In this section we prove our main result of this chapter.

Theorem 3.4.1. A topological space X is homeomorphic to a countable set of

ordinals under the subspace topology if and only if X is homeomorphic to a countable

scattered totally ordered set under the order topology.

This result itself does not seem to appear in the literature, though there are

several more general results that almost imply it. In the “only if” direction, Purisch

[Pur85] showed that any GO-space whose topology is scattered is homeomorphic to

a LOTS. A shorter proof for the special case of subspaces of ordinals was given

by Gutev [Gut14], and contains some similar ideas to our proof. In the “if”

direction, Telgarsky [Tel68, Theorem 9] showed that any scattered metrisable space

is homeomorphic to a subspace of an ordinal.

Since the class of spaces homeomorphic to a countable set of ordinals under the

subspace topology is itself closed under taking subspaces, we immediately obtain

the following.

Corollary 3.4.2. Every subspace of the order topology on a countable scattered

totally ordered set is itself homeomorphic to the order topology on some countable

scattered totally ordered set.

In fact, the proof of Purisch’s result [Pur85] should show that the class of

scattered spaces homeomorphic to a LOTS is closed under taking subspaces, which

would generalise this result.

By Corollary 3.2.5 and Theorem 3.3.1, we may restate Theorem 3.4.1 as follows.

Theorem 3.4.3. Let X be a topological space. The following are equivalent.

1. X is homeomorphic to some member of Sω endowed with the order topology.

2. X ∈ Aω.

We prove this result, and thereby Theorem 3.4.1 and Corollary 3.4.2, by showing

that there is a correspondence between the definitions of Sω and Aω.

Proof of Theorem 3.4.3. We show by induction on the definition of Sω that ifX ∈ Sω
is endowed with the order topology, thenX ∈ Aω. Clearly 1 ∈ Aω and ifX ∈ Sω∩Aω
then X∗ ∈ Aω. We claim that if X, Y ∈ Sω∩Aω then X+Y ∈ Aω. Given the claim,

suppose β ≤ ω is a non-zero ordinal and Xi ∈ Sω∩Aω for all i ∈ β. If β < ω, then by

the claim
∑

i∈βXi ∈ Aω by induction. If β = ω, then by the claim we may assume

|Xi| ≥ 3 for all i ∈ ω by replacing Xi with X3i + X3i+1 + X3i+2 for all i ∈ ω. Then
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for each i ∈ ω, pick xi ∈ Xi as in Corollary 3.2.2 and let X−i = {x ∈ Xi : x ≤ xi}
and X+

i = {x ∈ Xi : x > xi}. Then

X ∼= X−0 ⊕
⊕
i∈ω

(
X+
i +X−i+1

)
and we are done.

To prove the claim, suppose X, Y ∈ Sω ∩ Aω. If neither X has a maximal

element nor Y has a minimal element, or both X has a maximal element and Y

has a minimal element, then X + Y ∼= X ⊕ Y and we are done. So by symmetry,

we may assume without loss of generality that X has a maximal element z and Y

has no minimal element. Let X̃ = {x ∈ X : x < z}. If X̃ has a maximal element,

then let X0 = X̃ and Xn = ∅ for all n ∈ ω \ {0}. Otherwise by repeatedly applying

Corollary 3.2.2 we can find a strictly increasing cofinal sequence (xn)n∈ω from X̃

such that (−∞, xn) has a maximal element for all n ∈ ω. Then let X0 = (−∞, x0)

and Xn = [xn−1, xn) for all n ∈ ω \ {0}. Likewise we can find a strictly decreasing

coinitial sequence (yn)y∈ω from Y such that (yn,∞) has a minimal element for all

n ∈ ω. Then let Y0 = (y0,∞) and Yn = (yn, yn−1] for all n ∈ ω \ {0}. Finally let

Z2n = Xn and Z2n+1 = Yn for all n ∈ ω. Then X + Y ∼=
Æ

n∈ω Zn and we are done.

Conversely, we show by induction on the definition of Aω that if X ∈ Aω then X

is homeomorphic to some member of Sω endowed with the order topology. Certainly

this is true of 1. Suppose κ ≤ ω is a non-zero cardinal and Xi ∈ Aω is homeomorphic

to some member of Sω for all i ∈ κ. We claim that for all i ∈ κ, Xi is homeomorphic

to some member of Sω with a minimal element. Given the claim, we may assume

that Xi ∈ Sω has a minimal element for all i ∈ κ. It remains to “match up the ends”

of these orderings in such a way as to avoid placing a maximal element before an

ordering with no minimal element or a minimal element after an ordering with no

maximal element. To do this, write {Xi : i ∈ κ} = {Vi : i ∈ λ} ∪ {Wi : i ∈ µ} where

Vi has a maximal element for all i ∈ λ and Wi has no maximal element for all i ∈ µ.

If λ is finite, then let

Zi =


Vi, if i < λ

Wj, if i = λ+ j for some even j < µ

W ∗
j , if i = λ+ j for some odd j < µ

for all i ∈ κ. Otherwise, if µ is finite then let

Zi =


Wi, if i < µ and µ− i is even

W ∗
i , if i < µ and µ− i is odd

Vj, if i = µ+ j for some j < λ
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for all i ∈ κ. Finally, if λ = µ = ω then let

Zi =


Vj, if i = 3j for some j < ω

Wj, if i = 3j + 1 for some j < ω

W ∗
j , if i = 3j + 2 for some j < ω

for all i ∈ ω. Then in each case,
∑

i∈κ Zi
∼=
⊕

i∈κ Zi
∼=
⊕

i∈κXi, and if κ = ω then(∑
i∈ω Zi

)
+ 1 ∼=

Æ
i∈ω Zi

∼=
Æ

i∈ωXi. Thus we are done.

To prove the claim, let X ∈ Sω and suppose that X has no minimal element.

If X has a maximal element, then X ∼= X∗ and we are done. Otherwise X has

neither a minimal element nor a maximal element. Certainly |X| ≥ 3, so pick

x ∈ X as in Corollary 3.2.2 and let X− = (−∞, x) and X+ = [x,∞). Then

X = X− +X+ ∼= X− ⊕X+ ∼= X+ +X− and we are done.

We conclude this section with the following observation, which was previously

made by Baker [Bak72, p. 25]. This demonstrates that there is a scattered total

ordering whose order topology is not homeomorphic to a set of ordinals under the

subspace topology. Thus in spite of the results of Purisch and others that apply to

spaces of arbitrary cardinality, it appears that our techniques are confined to the

countable.

Proposition 3.4.4. ω1 + 1 +ω∗ is not homeomorphic to a set of ordinals under the

subspace topology.

Proof. Observe that in ω1 + {∗} + ω∗, ∗ does not have a countable neighbourhood

base but does lie in the closure of a disjoint countable set. On the other hand, if

X is a set of ordinals and x ∈ X does not have a countable neighbourhood base

then x has uncountable cofinality and hence does not lie in the closure of a disjoint

countable set.

3.5 Subspaces of ordinals less than ωω

In this section we use ideas from our topological analogue of Hausdorff’s theorem

to prove the following result.

Theorem 3.5.1. Let n be a positive integer. Then there are countably many

subspaces of [0, ωn] up to homeomorphism.

This result is slightly less trivial than it first appears, and ultimately boils

down to the fact that for each positive integer n, there is a finite set of “building

blocks”, namely a finite set of topological spaces such that any subspace of [0, ωn]

is homeomorphic to a finite topological disjoint union of spaces from that set. Our

formulation of Aω provides us with the language to describe such a set of topological
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spaces somewhat explicitly. In order to do this, let us introduce the finitary special

cases of the infinitary operations used to define Aω.

Definition. Given a finite sequence X0, X2, . . . , Xk−1 of topological spaces, we write

[X0, X1, . . . , Xk−1]ω for the sequence (Yi)i∈ω defined by

Yi = Xi mod k

for all i ∈ ω, where i mod k denotes the reduction of i modulo k. We then write⊕
[X0, X1, . . . , Xk−1]ω for

⊕
i∈ω Yi and

Æ
[X0, X1, . . . , Xk−1]ω for

Æ
i∈ω Yi.

For example,
Æ

[[0, ω]]ω
∼= [0, ω2] and

Æ
[[0, ω) , [0, ω]]ω

∼= [0, ω2] \
{ω · (2m+ 1) : m ∈ ω}.

By replacing the infinitary operations in the definition of Aω by their finitary

special cases, we obtain a subclass of Aω. We will soon see that this subclass

corresponds to the subspaces of ordinals less than ωω.

Definition. Define A<ω to be the smallest class of topological spaces subject to the

following conditions.

� A<ω is closed under homeomorphism.

� 1 ∈ A<ω.

� If X0, . . . , Xk−1 ∈ A<ω, then
⊕

i∈{0,1,...,k−1}Xi ∈ A<ω.

� If X0, . . . , Xk−1 ∈ A<ω, then
⊕

[X0, . . . , Xk−1]ω ∈ A<ω and
Æ

[X0, . . . , Xk−1]ω ∈ A<ω.

We will also use the following closely-related subclass of Aω.

Definition. Define Â<ω in the same way as A<ω but without non-empty finite

topological disjoint unions. In other words, define Â<ω =
⋃
n∈ω Ân, where Â0 =

{X : X ∼= 1}, and for n ∈ ω,

Ân+1 = Ân ∪
{
X : X ∼=

⊕
[X0, . . . , Xk−1]ω or

X ∼=
æ

[X0, . . . , Xk−1]ω for some X0, . . . , Xk−1 ∈ Ân
}
.

Note that no transfinite recursion is required in this definition, since if

X0, . . . , Xk−1 ∈ Â<ω then X0, . . . , Xk−1 ∈ Ân for some fixed n ∈ ω.

For each positive integer n, the ∼=-equivalence classes of Ân will correspond to

our “building blocks”. We now make the simple observation that there are only

finitely many such equivalence classes.

Lemma 3.5.2. Let n be a positive integer. Then Ân has only finitely many ∼=-

equivalence classes.
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Proof. Observe that if X0, X1, . . . , Xk−1 are topological spaces, then the

homeomorphism types of
⊕

[X0, X1, . . . , Xk−1]ω and
Æ

[X0, X1, . . . , Xk−1]ω depend

only on which homeomorphism types are among X0, X1, . . . , Xk−1. The result is

then clear by induction on n, since if S is a finite set then the set of subsets of S is

also finite.

The following result effectively shows that any subspace of [0, ωn] is

homeomorphic to a finite topological disjoint union of “building blocks”.

Proposition 3.5.3. Let X be a non-empty topological space. The following are

equivalent.

1. X is homeomorphic to a finite topological disjoint union of members of Â<ω.

2. X ∈ A<ω.

3. X is homeomorphic to a subspace of [0, ωn] for some positive integer n.

Proof. That 1 =⇒ 2 is trivial.

To prove that 2 =⇒ 3, we show by induction on the definition of A<ω that

if X ∈ A<ω then X is homeomorphic to a subspace of [0, ωn] for some positive

integer n. Certainly this is true of 1, so suppose X0, X1, . . . , Xk−1 ∈ A<ω are

such that Xi is homeomorphic to a subspace of [0, ωn] for some positive integer

n for all i ∈ {0, 1, . . . , k − 1}. Then there is some fixed positive integer n such

that Xi is homeomorphic to a subspace of [0, ωn] for all i ∈ {0, 1, . . . , k − 1}.
Hence as in Theorem 3.3.1,

⊕
i∈{0,1,...,k−1}Xi is homeomorphic to a subspace of

[0, ωn · k),
⊕

[X0, . . . , Xk−1]ω is homeomorphic to a subspace of [0, ωn+1) and
Æ

[X0, . . . , Xk−1]ω is homeomorphic to a subspace of [0, ωn+1].

To prove that 3 =⇒ 1, we show that for a fixed positive integer n, if X is a non-

empty subspace of [0, ωn], then X is homeomorphic to a finite topological disjoint

union of members of Ân. The proof is by induction on n. For the case n = 1, simply

observe that every subspace of [0, ω] is homeomorphic to [0, ω), [0, ω] or a finite

discrete space. For the inductive step, suppose n > 1 and let X be a non-empty

subspace of [1, ωn] ∼= [0, ωn]. For each i ∈ ω let Yi = X ∩ [ωn−1 · i+ 1, ωn−1 · (i+ 1)].

Then by the inductive hypothesis either Yi = ∅ or Yi is homeomorphic to a finite

topological disjoint union of members of Ân−1 for all i ∈ ω. If Yi = ∅ for all but

finitely many i ∈ ω, then X is homeomorphic to a finite topological disjoint union

of a finite topological disjoint union of members of Ân−1 (and possibly the point

ωn), and we are done. Otherwise by dividing up those non-empty Yi for i ∈ ω into

members of Ân−1 and relabelling if necessary, we may assume Yi ∈ Ân−1 for all

i ∈ ω. Then by Lemma 3.5.2 there exist finitely many pairwise non-homeomorphic

topological spaces X0, X1, . . . , Xl−1 ∈ Ân−1 such that for all i ∈ ω, Yi ∼= Xj for some

j ∈ {0, 1, . . . , l − 1}. Without loss of generality the spaces that are homeomorphic
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to infinitely many of the Yi are X0, X1, . . . , Xk−1 for some k ∈ {1, 2, . . . , l}. Finally

let m be maximal such that Ym−1 is not homeomorphic to any of Xk, . . . , Xl−1. Then

X ∼=

Y0 ⊕ · · · ⊕ Ym−1 ⊕
⊕

[X0, X1, . . . , Xk−1]ω , if ωn /∈ X

Y0 ⊕ · · · ⊕ Ym−1 ⊕
Æ

[X0, X1, . . . , Xk−1]ω , if ωn ∈ X

and we are done.

Theorem 3.5.1 now follows immediately.

Proof of Theorem 3.5.1. By the equivalence of 1 and 3 of Proposition 3.5.3, it is

enough to prove that Â<ω has countably many ∼=-equivalence classes. But this is

immediate from Lemma 3.5.2 by definition of Â<ω.

Note that the proof of Lemma 3.5.2 provides us with an explicit finite

upper bound on the number of ∼=-equivalence classes of Ân. However, our

proof makes no attempt to optimise this upper bound. Indeed there are

various homeomorphisms between spaces whose explicit definitions differ, such as⊕
[[0, ω)]ω

∼= [0, ω) and
Æ

[{0} , [0, ω]]ω
∼=
Æ

[[0, ω]]ω. More generally, for any

X0, X1, . . . , Xk−1, Y0, Y1, . . . , Yl−1 ∈ Â<ω:

�
⊕

[
⊕

[Y0, Y1, . . . , Yl−1]ω , X1, . . . , Xk−1]ω
∼=
⊕

[Y0, Y1, . . . , Yl−1, X1, . . . , Xk−1]ω;

and

� if Y0 is used in the explicit definition of X0, then
⊕

[Y0, X0, X1, . . . , Xk−1]ω
∼=⊕

[X0, X1, . . . , Xk−1]ω and
Æ

[Y0, X0, X1, . . . , Xk−1]ω
∼=

Æ
[X0, X1, . . . , Xk−1]ω.

It may be an interesting problem to determine the exact number of ∼=-equivalence

classes of Ân. We conjecture that the only homeomorphisms between spaces whose

explicit definitions differ are consequences of the above identities.

Note also that we showed in the proof of Proposition 3.5.3 that every subspace

of [0, ωn] is homeomorphic to a finite topological disjoint union of members of Ân.

Thus Lemma 3.5.2 does indeed provide us with a finite set of “building blocks”,

though there seems to be no reason to think that it is the smallest such set. We

therefore propose the related problem of determining the smallest size of such a set

of “building blocks”.

Question 3.5.4. Let n be a positive integer. What is the smallest size of a set A

of topological spaces such that every subspace of [0, ωn] is homeomorphic to a finite

topological disjoint union of members of A?
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3.6 The number of subspaces of an ordinal up to

homeomorphism

In this section we will see that, in contrast to Theorem 3.5.1, the number of subspaces

of an ordinal greater than or equal to ωω up to homeomorphism is as large as it could

have been.

Let us illustrate how one may go about constructing non-homeomorphic

subspaces of ordinals with a simple example. Let X = [0, ω2] \ {ω ·m : m ∈ ω}.
We show that X is not homeomorphic to [0, α) for any ordinal α. Recall that we

say a topological space is locally compact to mean that every point has a compact

neighbourhood. By Lemma 2.2.3, [0, α) is locally compact for any ordinal α. On

the other hand, X is not locally compact, since if U is any neighbourhood of X

containing the point ω2, then [ω ·m,ω · (m+ 1)) is a closed subset of U for some

m ∈ ω, but it is not compact.

Putting this idea together with the Cantor–Bendixson derivative gives us a simple

way to construct large numbers of pairwise non-homeomorphic subspaces of ordinals.

Theorem 3.6.1. There is a collection of 2ℵ0 pairwise non-homeomorphic subspaces

of [0, ωω).

Proof. For each I ⊆ ω, let

AI =
⋃
i∈I

{3i, 3i+ 1} ∪
⋃
i∈ω\I

{3i, 3i+ 2} ,

and let

XI = {x ∈ [0, ωω) : CB (x) ∈ AI} .

Observe that for all i ∈ ω,

X
(2i)
I \X(2i+2)

I =

{x ∈ [0, ωω) : CB (x) ∈ {3i, 3i+ 1}} , if i ∈ I

{x ∈ [0, ωω) : CB (x) ∈ {3i, 3i+ 2}} , if i /∈ I.

Thus i ∈ I if and only if X
(2i)
I \X(2i+2)

I is locally compact. It follows that (XI)I⊆ω
is as required.

A similar argument works for every uncountable cardinal, which in this context

should be thought of as an initial ordinal.

Theorem 3.6.2. Let κ be an uncountable cardinal. Then there is a collection of 2κ

pairwise non-homeomorphic subspaces of [0, κ).

Proof. First note that since κ is uncountable, κ = ωω·κ (using ordinal arithmetic).
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Now for each S ⊆ κ, let

AS =
⋃
α∈S

[ω · α, ω · (α + 1)) ∪
⋃

α∈κ\S

([ω · α, ω · (α + 1)) \ {ω · α + 1}) ,

and let

XS = {x ∈ [0, κ) : CB (x) ∈ AS} .

Observe that for all α ∈ κ,

X
(ω·α)
S \X(ω·α+2)

S =

{x ∈ [0, κ) : CB (x) ∈ {ω · α, ω · α + 1}} , if α ∈ S

{x ∈ [0, κ) : CB (x) ∈ {ω · α, ω · α + 2}} , if α /∈ S.

Thus α ∈ S if and only if X
(ω·α)
S \X(ω·α+2)

S is locally compact. It follows that (XS)S⊆κ
is as required.

With these constructions we have completed the calculation of the number of

subspaces of an arbitrary ordinal up to homeomorphism.

Theorem 3.6.3. Let α be an ordinal. Then the number of ∼=-equivalence classes of

subspaces of [0, α) is

α + 1, if α < ω

ℵ0, if ω ≤ α < ωω

2ℵ0 , if ωω ≤ α < ω1

2κ, if |α| = κ for some uncountable cardinal κ.

Proof. The case α < ω is trivial, and the remaining cases are Theorems 3.5.1, 3.6.1

and 3.6.2 respectively.

3.7 One-point F -extensions

We conclude this chapter by generalising the one-point cofinite extension operation

on topological spaces to arbitrary filters, as indicated by the following observation.

We adopt the convention that a filter on a set is allowed to contain ∅, and say that

a filter F is proper to mean that ∅ /∈ F .

Lemma 3.7.1. Let κ be a cardinal and let (Xi)i∈κ be a collection of pairwise disjoint

topological spaces with ∗ /∈
⋃
i∈κXi. Let X =

⋃
i∈κXi ∪ {∗}. Let F be a collection

of subsets of κ and let

τ = {U ⊆ X : U ∩Xi is open in Xi and if ∗ ∈ U then {i ∈ κ : U ∩Xi = Xi} ∈ F} .

Then τ is a topology on X if and only if F is a (not necessarily proper) filter on κ.
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Proof. The following easily-checked observations are sufficient.

� ∅ ∈ τ .

� X ∈ τ if and only if κ ∈ F .

� τ is closed under binary intersections if and only if F is closed under binary

intersections.

� τ is closed under arbitrary unions if and only if F is upward-closed.

Out of this this result comes the following definition.

Definition. Let κ be a cardinal and F be a filter on κ.

Given (Xi)i∈κ as in the above result, we define the one-point F -extension of

(Xi)i∈κ by
Fæ

i∈κ
Xi =

⋃
i∈κ

Xi ∪ {∗}

endowed with the topology τ from Lemma 3.7.1.

Thus the one-point cofinite extension
Æ

i∈ωXi is the one-point F -extension
ÆF

i∈ωXi where F is taken to be the cofinite filter on ω.

One-point F -extensions allow for the construction of some unusual topological

spaces. We do not have much to say about one-point F -extensions in general, but

we do make the curious observation that various properties of topological spaces

correspond to properties of filters, in the following sense.

Definition. Given a property P of topological spaces, we say that F preserves P

to mean that if Xi has property P for all i ∈ κ then
ÆF

i∈κXi has property P .

We say that a topological space is extremally disconnected to mean that the

closure of every open set is open.

Proposition 3.7.2. Let κ be a cardinal and F be a filter on κ.

1. F preserves Hausdorffness if and only if F contains the cofinite filter.

2. F preserves compactness if and only if F is contained in the cofinite filter.

3. F preserves extremal disconnectedness if and only if F is either improper or

an ultrafilter.

4. F preserves second-countability if and only if κ is countable and F has a

countable base.

5. F preserves regularity if and only if F contains the cofinite filter.

6. F preserves discreteness if and only if F is the improper filter.
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7. F preserves total disconnectedness if and only if F contains the cofinite filter.

8. F preserves scatteredness.

It is straightforward to extend this list to other properties of topological spaces.

We omit the proof of this result since it is a routine rearrangement of definitions.



Chapter 4

The topological pigeonhole

principle for ordinals

In this chapter we re-introduce the topological and closed partition relations for

ordinals, explore the relationship between them, and discuss other generalities.

We then compute the topological and closed pigeonhole numbers of an arbitrary

sequence of ordinals.

4.1 Partition relation notation

Let us briefly recap the classical, topological and closed partition relations for

ordinals. Recall that we say a subspace X of an ordinal is order-homeomorphic

to an ordinal α to mean that there is a bijection X → α that is both an order-

isomorphism and a homeomorphism. By Proposition 2.2.4, this is equivalent to

saying that X is both order-isomorphic to α and internally closed, justifying our use

of the term “closed”.

Definition. Let κ be a cardinal, let n be a positive integer, and let β and all αi be

ordinals for i ∈ κ.

We write

β → (αi)
n
i∈κ

to mean that for every function c : [β]n → κ there exists some subset X ⊆ β and

some i ∈ κ such that X is an i-homogeneous copy of αi, i.e., [X]n ⊆ c−1({i}) and X

is order-isomorphic to αi.

We write

β →top (αi)
n
i∈κ

to mean that for every function c : [β]n → κ there exists some subspace X ⊆ β

and some i ∈ κ such that X is an i-homogeneous topological copy of αi, i.e., [X]n ⊆
c−1({i}) and X ∼= αi.

We write

β →cl (αi)
n
i∈κ

41
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to mean that for every function c : [β]n → κ there exists some subset X ⊆ β and

some i ∈ κ such that X is an i-homogeneous closed copy of αi, i.e., [X]n ⊆ c−1({i})
and X is order-homeomorphic to αi.

The function c in these definitions will often be referred to as a colouring, and we

may say that x is coloured with i simply to mean that c (x) = i. We write β → (α)nκ

for β → (αi)
n
i∈κ when αi = α for all i ∈ κ, and similarly for the topological and

closed relations.

Although the closed relation may appear more natural than the topological

relation, it is the topological one that has been considered historically, since it can

be defined for arbitrary topological spaces. Moreover, the two relations are closely

related, as we shall see in Section 4.4.

In this chapter we will be concerned exclusively with the case n = 1. In this case

we work with β rather than [β]1 for simplicity. Clearly if β → (αi)
n
i∈κ and γ > β

then γ → (αi)
n
i∈κ, and similarly for the other relations. Thus it is sensible to make

the following definition.

Definition. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ.

We define the (classical) pigeonhole number P (αi)i∈κ to be the least ordinal β

such that β → (αi)
1
i∈κ, the topological pigeonhole number P top (αi)i∈κ to be the least

ordinal β such that β →top (αi)
1
i∈κ, and the closed pigeonhole number P cl (αi)i∈κ to

be the least ordinal β such that β →cl (αi)
1
i∈κ.

We extend the usual ordering on the ordinals to include ∞ as a maximum. If

there is no ordinal β such that β → (αi)
1
i∈κ, then we say that P (αi)i∈κ does not exist

and write P (αi)i∈κ = ∞, and similarly for the topological and closed pigeonhole

numbers.

Thus for example if n1, n2, . . . , nk are positive integers, then

P (n1, n2, . . . , nk) = P top (n1, n2, . . . , nk) = P cl (n1, n2, . . . , nk) =
k∑
i=1

(ni − 1) + 1.

Note that P
(
(αi)i∈κ , (1)λ

)
= P (αi)i∈κ for any cardinal λ, and that for fixed κ,

P (αi)i∈κ is a monotonically increasing function of (αi)i∈κ (pointwise), and similarly

for the topological and closed pigeonhole numbers. Note also that the closed

partition relation implies the other two, and hence P (αi)i∈κ ≤ P cl (αi)i∈κ and

P top (αi)i∈κ ≤ P cl (αi)i∈κ.

4.2 The classical pigeonhole principle for ordinals

The classical pigeonhole numbers were computed by Milner and Rado [MR65]. In

our calculation of the topological and closed pigeonhole numbers, we will use the

special case of their result for a finite sequence of countable ordinals. This uses the
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natural sum, due to Hessenberg, which may be thought of as the base-ω sum of

ordinals in Cantor normal form.

Definition. Let α and β be ordinals. Then we may choose a sequence of ordinals

γ1 > γ2 > · · · > γn and l1, l2, . . . , ln,m1,m2, . . . ,mn ∈ ω such that

α = ωγ1 · l1 + ωγ2 · l2 + · · ·+ ωγn · ln

and

β = ωγ1 ·m1 + ωγ2 ·m2 + · · ·+ ωγn ·mn.

We define the natural sum of α and β by

α#β = ωγ1 · (l1 +m1) + ωγ2 · (l2 +m2) + · · ·+ ωγn · (ln +mn) .

As part of their computation of the classical pigeonhole numbers, Milner and

Rado introduced a related binary operation on ordinals.

Definition. Let α and β be ordinals. Then we define the Milner–Rado sum of α

and β, denoted by α � β, to be the least ordinal δ such that if α̃ < α and β̃ < β

then δ 6= α̃#β̃.

Milner and Rado [MR65] observed that if ζ > α � β, α̃ < α and β̃ < β, then

ζ 6= α̃#β̃. They also observed that both # and � are commutative and associative,

and so brackets may be omitted when three or more ordinals are summed. Notice

that if α1, α2, . . . , αk are ordinals, then α1�α2� · · ·�αk is simply the least ordinal

δ such that if α̃i < αi for all i ∈ {1, 2, . . . , k} then δ 6= α̃1#α̃2# · · ·#α̃k.
The relevance of this operation is given by the following result [MR65, Theorem

8].

Theorem 4.2.1 (Milner–Rado). Let α1, α2, . . . , αk be non-zero ordinals. Then

P (α1, α2, . . . , αk) = α1 � α2 � · · · � αk.

We omit the proof of this result, but it is essentially the statement that

α1#α2# · · ·#αk is the largest ordinal that may be written as a disjoint union of

k sets of order types α1, α2, . . . , αk respectively. This follows from the fact that

ωγ → (ωγ)1
k for all ordinals γ, which may be proved by induction on γ.

Milner and Rado also computed the Milner–Rado sum of an arbitrary finite

sequence of ordinals in terms of Cantor normal forms [MR65, Theorem 9].

Theorem 4.2.2 (Milner–Rado). Let α1, α2, . . . , αk be non-zero ordinals. We may

choose a sequence of ordinals γ1 > γ2 > · · · > γN and, for each i ∈ {1, 2, . . . , k},
mi1,mi2, . . . ,mini ∈ ω such that for each i ∈ {1, 2, . . . , k}, mini > 0 and

αi = ωγ1 ·mi1 + ωγ2 ·mi2 + · · ·+ ωγni ·mini .
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Let n = min {n1, n2, . . . , nk} and let sj =
∑k

i=1 mij for each j ∈ {1, 2, . . . , n}.
Finally let t = |{i ∈ {1, 2, . . . , k} : ni = n}|. Then

α1 � α2 � · · · � αk = ωγ1 · s1 + ωγ2 · s2 + · · ·+ ωγn−1 · sn−1 + ωγn · (sn − t+ 1) .

Together, these results determine the classical pigeonhole number of an arbitrary

finite sequence of ordinals in terms of Cantor normal forms. In our calculation of

the topological pigeonhole number of a finite sequence of countable ordinals, we

will take advantage of this by making the following link between the classical and

topological pigeonhole numbers (see Theorems 4.7.4 and 4.7.5).

Theorem 4.2.3. Let α1, α2, . . . , αk ∈ ω1 \ {0}.

1. P top (ωα1 + 1, ωα2 + 1, . . . , ωαk + 1) = ωα1#α2#···#αk + 1.

2. P top (ωα1 , ωα2 , . . . , ωαk) = ωP (α1,α2,...,αk).

As we will see in Section 4.4, the corresponding closed pigeonhole numbers are

the same in these cases.

4.3 Biembeddability of ordinals

The notion of biembeddability is a weakening of the notion of homeomorphism that

is useful for simplifying the calculation of topological pigeonhole numbers.

Definition. Let X and Y be topological spaces. We say that X and Y are

biembeddable, and write X u Y , if and only if X is homeomorphic to a subspace of

Y and Y is homeomorphic to a subspace of X.

Clearly u is an equivalence relation. Moreover, biembeddable ordinals may be

substituted in topological (but not in closed) partition relations, in the sense that if

β u β̃ and αi u α̃i for all i ∈ κ, then β →top (αi)
n
i∈κ if and only if β̃ →top (α̃i)

n
i∈κ.

We will now classify the ordinals up to biembeddability, beginning with a positive

result.

Lemma 4.3.1. Let γ, m and δ be non-zero ordinals with m ∈ ω and δ < ωγ. Then

ωγ ·m+ 1 u ωγ ·m+ δ.

Proof. Clearly ωγ ·m+1 is homeomorphic to a subspace of ωγ ·m+δ, so it is enough

to show that ωγ ·m + δ is homeomorphic to a subspace of ωγ ·m + 1. In fact, we

show that ωγ ·m+ 1 + δ + 1 is homeomorphic to ωγ ·m+ 1, which is sufficient.

Now if α and β are successor ordinals, then α + β ∼= β + α by Lemma 2.4.2.

Hence ωγ ·m+ 1 + δ + 1 ∼= δ + 1 + ωγ ·m+ 1 = ωγ ·m+ 1 since δ < ωγ.
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Because of the substitution property of biembeddable ordinals, this has following

immediate consequence, which will be useful.

Proposition 4.3.2. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ.

Suppose that for some non-zero ordinal γ and some positive integer m we have

ωγ ·m+ 1 ≤ P top (αi)i∈κ < ωγ · (m+ 1) .

Then in fact

P top (αi)i∈κ = ωγ ·m+ 1.

We now show that Lemma 4.3.1 is best possible.

Proposition 4.3.3. Let γ, m and δ be non-zero ordinals with m ∈ ω and δ < ωγ.

Then

1. ωγ ·m+ 1 6u ωγ ·m;

2. ωγ 6u δ; and

3. ωγ · (m+ 1) 6u ωγ ·m+ 1.

Proof. 1. By Proposition 2.3.3, we have
∣∣∣(ωγ ·m+ 1)(γ)

∣∣∣ = m while∣∣∣(ωγ ·m)(γ)
∣∣∣ = m− 1. Therefore no subspace of ωγ ·m can be homeomorphic

to ωγ ·m+ 1.

2. If γ = η+ 1, then by Proposition 2.3.3, (ωγ)(η) is infinite while δ(η) is finite (or

empty). If γ is a limit ordinal, then by Proposition 2.3.3, (ωγ)(η) 6= ∅ for all

η < γ while δ(η) = ∅ for some η < γ. In either case no subspace of δ can be

homeomorphic to ωγ.

3. Let X = ωγ ·(m+ 1). By Proposition 2.3.3, X has the following two properties:

firstly,
∣∣X(γ)

∣∣ = m; and secondly, X has a closed subset Z with Z ∩X(γ) = ∅
and Z ∼= ωγ, namely Z = [ωγ ·m+ 1, ωγ · (m+ 1)).

Suppose then that Y is a subspace of ωγ · m + 1 with
∣∣Y (γ)

∣∣ = m, and that

W is a closed subset of Y with W ∩ Y (γ) = ∅. We show that W � ωγ,

which suffices. Since
∣∣Y (γ)

∣∣ = m =
∣∣∣(ωγ ·m+ 1)(γ)

∣∣∣, we must have Y (γ) =

(ωγ ·m+ 1)(γ) = {ωγ, ωγ · 2, . . . , ωγ ·m}. Therefore since W is closed, for

each i ∈ {0, . . . ,m− 1} there exists xi ∈ [ωγ · i+ 1, ωγ · (i+ 1)) such that

W ∩ (xi, ω
γ · (i+ 1)) = ∅. It follows that W is homeomorphic to the disjoint

union of a finite number of subspaces of ζ for some ζ < ωγ. The argument of

part 2 then shows that W � ωγ.

Lemma 4.3.1 and Proposition 4.3.3 may be together restated as follows.



46 4. The topological pigeonhole principle for ordinals

Corollary 4.3.4 (Classification of ordinals up to biembeddability). Two ordinals

α ≤ β are biembeddable if and only if either α = β = ωγ ·m for some ordinal γ and

some m ∈ ω, or ωγ ·m+ 1 ≤ α ≤ β < ωγ · (m+ 1) for some non-zero ordinal γ and

some positive integer m.

4.4 Order-reinforcing ordinals

The topological and closed partition relations are closely related, thanks to the

following notion.

Definition. Let α be an ordinal. We say that α is order-reinforcing if and only if,

whenever X is a set of ordinals under the subspace topology with X ∼= α, there is

a subset Y ⊆ X such that Y is order-homeomorphic to α.

Clearly if αi is order-reinforcing for all i ∈ κ, then P top (αi)i∈κ = P cl (αi)i∈κ.

Baumgartner [Bau86, Theorem 0.2] showed that every countable ordinal of the

form ωγ + 1 or ωγ is order-reinforcing. We now extend this result.

Theorem 4.4.1. Let γ be a non-zero ordinal and let m be a positive integer. Then

1. ωγ ·m+ 1 is order-reinforcing; and

2. ωγ is order-reinforcing.

Baumgartner’s proof for ordinals of the form ωγ + 1 is also valid for uncountable

ordinals of this form, and our proof of part 1 is almost identical. Baumgartner’s proof

for ordinals of the form ωγ is valid for uncountable ordinals of this form providing

they have countable cofinality, so we provide a new proof to cover the remaining

case.

In the proof, given a topological space A and a subset B ⊆ A, we write clA (B)

for the closure of B in A.

Proof. 1. Let α = ωγ ·m + 1 and let X be a set of ordinals with X ∼= α. Then

X is compact and therefore internally closed, so by Proposition 2.2.4, X is

order-homeomorphic to its order type. This order type must be at least α in

order for
∣∣X(γ)

∣∣ = m. Hence we may take Y to be the initial segment of X of

order type α.

2. Let α = ωγ. Baumgartner’s proof covers the case in which α has countable

cofinality, so assume that α has uncountable cofinality.

Let X be a set of ordinals with X ∼= α, and let η be the least ordinal with

X ⊆ η. Then X is not compact and is therefore not a closed subset of the

compact space η+1. So we may let x be the minimal element of clη+1 (X)\X.

Let Z = X ∩ [0, x), so that Z is a closed cofinal subset of [0, x). Then by



4.5. The ordinal ω + 1 47

Proposition 2.2.4, Z is order-homeomorphic to its order type, say the ordinal β.

Observe now that Z is a closed open subset of X but is not compact. We claim

that any closed open subset of α that is not compact must be homeomorphic

to α. From this it follows that β ∼= α and hence β ≥ α by Proposition 4.3.3

part 2. Hence we may take Y to be the initial segment of Z of order type α.

To prove the claim, suppose W is a closed open subset of α that is not compact.

Then W and α \W are both closed subsets of α, but they are disjoint and so

cannot both be club in α. Now any closed bounded subset of α is compact,

so it must be that W is unbounded in α while α \W is bounded. It follows

that W has order type α, and so W ∼= α by Proposition 2.2.4. This proves

the claim, which completes the proof.

Thus the topological and closed pigeonhole numbers coincide for ordinals of the

form ωγ or ωγ ·m+ 1 with m a positive integer.

We now show that this result is best possible for infinite ordinals.

Corollary 4.4.2 (Classification of order-reinforcing ordinals). An ordinal α is order-

reinforcing if and only if either α is finite, or α = ωγ · m + 1 for some non-zero

ordinal γ and some positive integer m, or α = ωγ for some non-zero ordinal γ.

Proof. The “if” statement follows from Theorem 4.4.1 and the fact that every finite

ordinal is order-reinforcing.

For the “only if” statement, if α is infinite then we may write α = ωγ · m + δ

with γ a non-zero ordinal, m a positive integer and δ < ωγ. Assume that α does

not have one of the given forms, so that either δ > 1, or δ = 0 and m > 1. If δ > 1,

then by Lemma 4.3.1 we may take X to be a subspace of ωγ ·m+ 1 with X ∼= α. If

δ = 0 and m > 1, then we may take X = (ωγ ·m+ 1) \ {ωγ}. In either case X is a

witness to the fact that α is not order-reinforcing.

4.5 The ordinal ω + 1

Before stating the topological pigeonhole principle for ordinals in general, we first

prove the following very special case of Theorem 4.2.3 for illustrative purposes.

Proposition 4.5.1. Let k be a positive integer. Then

P top (ω + 1)k = ωk + 1.

This result may be proved directly by induction on k, much as in our proof

of Theorem 5.2.1, which is stronger. We provide an alternative proof in order to

illustrate the character of many later proofs. The main idea is the following result,

which says that any finite colouring of ωn is in some sense similar to a colouring

which is constant on ordinals of the same Cantor–Bendixson rank.
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Lemma 4.5.2. Let k and n be positive integers and let c : ωn → k. Then there is

some subset X ⊆ ωn such that X ∼= ωn and c is constant on X(i) \X(i+1) for each

i ∈ n.

Proof. The proof is by induction on n. The case n = 1 is simply the ordinary

pigeonhole principle ω →top (ω)1
k, so assume n > 1. Consider first the restriction of

c to {ω · α : α ∈ ωn−1}. By the inductive hypothesis, passing to a subset we may

assume that c is constant on (ωn)(i) \ (ωn)(i+1) for each i ∈ n \ {0}. By considering

the restriction of c to [ωn−1 ·m+ 1, ωn−1 · (m+ 1)] for each m ∈ ω, we may likewise

assume that c is constant on
(
ωn \ (ωn)′

)
∩ [ωn−1 ·m+ 1, ωn−1 · (m+ 1)] for each

m ∈ ω, taking the value cm, say. To finish, simply choose an infinite subset S ⊆ ω

such that cl = cm for all l,m ∈ S, and take X to be⋃
m∈S

[
ωn−1 ·m+ 1, ωn−1 · (m+ 1)

]
.

Proof of Proposition 4.5.1. To see that ωk 9top (ω + 1)1
k, simply colour each x ∈ ωk

with colour CB (x), and observe that each colour class is discrete.

To see that ωk+1→top (ω + 1)1
k, let c : ωk+1→ k. Choose X ⊆ ωk as in Lemma

4.5.2, and let Y = X ∪
{
ωk
}

. Since Y (k) is simply the singleton
{
ωk
}

, we in fact

have that c is constant on Y (i) \ Y (i+1) for each i ∈ k + 1. By the finite pigeonhole

principle k+1→ (2)1
k, it follows that c is constant on

(
Y (i) \ Y (i+1)

)
∪
(
Y (j) \ Y (j+1)

)
for some distinct i, j ∈ k+ 1, a set which is easily seen to contain a topological copy

of ω + 1.

The key idea to take from this proof is the importance of colourings of the form

c̃◦CB for some c̃ : k → k. The negative relation was proved using a counterexample

of this form. The positive relation was proved by showing in the Lemma that any

colouring must be similar to some colouring of this form, and applying the pigeonhole

principle to k + 1. The proof of Theorem 4.2.3 will be similar, with this use of the

Lemma and the pigeonhole principle replaced by a result of Weiss.

4.6 Statement of the principle

We now state the topological pigeonhole principle for ordinals in full. Although it

may not be necessary to go through the details of every case at this stage, they

are included here for completeness. Our main breakthrough is given in case 6, and

includes Theorem 4.2.3 as a special case. Later we will describe the modifications

required to obtain the closed pigeonhole principle for ordinals.

Observe first that if αr = 0 for some r ∈ κ, then P top (αi)i∈κ = 0, and if I ⊆ κ

with αi = 1 for all i ∈ I, then P top (αi)i∈κ = P top (αi)i∈κ\I . Thus it is sufficient to

consider the cases in which αi ≥ 2 for all i ∈ κ.
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Theorem 4.6.1 (The topological pigeonhole principle for ordinals). Let κ be a

cardinal, and let αi be an ordinal with αi ≥ 2 for all i ∈ κ.

1. If αr ≥ ω1 +1 and αs ≥ ω+1 for some distinct r, s ∈ κ, then P top (αi)i∈κ =∞.

2. If αr ≥ ω1 + 1 for some r ∈ κ and αi ≤ ω for all i ∈ κ \ {r}:

(a) if κ ≥ ℵ0:

i. if αr is a not a power of ω, then P top (αi)i∈κ = αr · κ+;

ii. if αr is a power of ω:

A. if cf (αr) > κ, then P top (αi)i∈κ = αr;

B. if ℵ0 < cf (αr) ≤ κ, then P top (αi)i∈κ = αr · κ+;

C. if cf (αr) = ℵ0, then we may write αr = ωβ and β = γ + ωδ with

δ not a limit ordinal of uncountable cofinality; then

� if δ < κ+, then P top (αi)i∈κ = αr · κ+;

� if δ > κ+, then P top (αi)i∈κ = αr;

(b) if κ < ℵ0 and αs = ω for some s ∈ κ \ {r}:

i. if αr is a power of ω, then P top (αi)i∈κ = αr;

ii. if αr is not a power of ω, then P top (αi)i∈κ = αr · ω;

(c) if κ < ℵ0 and αi < ω for all i ∈ κ \ {r}:

i. if αr is a power of ω or κ = 1, then P top (αi)i∈κ = αr;

ii. if κ > 1 and αr is not a power of ω, then ωβ ·m+1 ≤ αr ≤ ωβ ·(m+ 1)

for some ordinal β and some positive integer m; then

P top (αi)i∈κ = ωβ ·

 ∑
i∈κ\{r}

(αi − 1) +m

+ 1.

3. If αi ≤ ω1 for all i ∈ κ and αr, αs = ω1 for some distinct r, s ∈ κ, then the

value of P top (αi)i∈κ is independent of ZFC in the following sense.

Write “Pκ = x” for the statement, “κ is a cardinal, and for all sequences

(αi)i∈κ of ordinals, if 2 ≤ αi ≤ ω1 for all i ∈ κ and αr, αs = ω1 for some

distinct r, s ∈ κ, then P top (αi)i∈κ = x”. Likewise for “Pκ ≥ x”.

Firstly,

“for all cardinals κ ≥ 2, Pκ ≥ max
{
ω2, κ

+
}

”

is a theorem of ZFC. Secondly, if ZFC is consistent, then so is

ZFC + “for all cardinals κ ≥ 2, Pκ =∞”.

Thirdly, if ZFC+“there exists a supercompact cardinal” is consistent, then so

is

ZFC + “for all cardinals κ ≥ 2, Pκ = max
{
ω2, κ

+
}

”.
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Moreover, some large cardinal assumption is required, since ZFC+“there exists

a Mahlo cardinal” is consistent if and only if

ZFC + “ω2 →top (ω1)1
2”

is consistent.

4. If αr = ω1 for some r ∈ κ and αi < ω1 for all i ∈ κ \ {r}, then P top (αi)i∈κ =

max {ω1, κ
+}.

5. If αi < ω1 for all i ∈ κ and κ ≥ ℵ0, then P top (αi)i∈κ = κ+.

6. If αi < ω1 for all i ∈ κ and κ < ℵ0:

(a) if αi < ω for all i ∈ κ, then

P top (αi)i∈κ =
∑
i∈κ

(αi − 1) + 1;

(b) if αr is a power of ω for some r ∈ κ, then

P top (αi)i∈κ = ωβ0�β1�···�βκ−1 ,

where for each i ∈ κ, βi is minimal subject to the condition that αi ≤ ωβi;

(c) if αi is not a power of ω for any i ∈ κ and αr ≥ ω for some r ∈ κ, then

for each i ∈ κ we can find an ordinal βi and a positive integer mi such

that either αi = mi and βi = 0, or ωβi ·mi + 1 ≤ αi ≤ ωβi · (mi + 1) and

βi > 0; then:

i. if there exists s ∈ κ such that αs = ωβs · (ms + 1), CB (βs) ≤ CB (βi)

for all i ∈ κ, and mi = 1 for all i ∈ κ \ {s}, then

P top (αi)i∈κ = ωβ0#β1#···#βκ−1 · (ms + 1) ;

ii. otherwise,

P top (αi)i∈κ = ωβ0#β1#···#βκ−1 ·

(∑
i∈κ

(mi − 1) + 1

)
+ 1.

We prove this result in a case-by-case fashion, as follows. Case 1 has a simple

proof, which we give in Proposition 4.10.1. Case 2 has many subcases, each of

which has a relatively straightforward proof; we reformulate these subcases using

an elementary argument in Lemma 4.10.2, before proving each one individually

in Section 4.11. Case 3 is easy to deduce from results of others, which we do in

Section 4.9. Cases 4 and 5 have simple proofs involving stationary sets, which we

give in Section 4.8. Finally, case 6 has the most new ideas. We provide the main
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ingredients for the proof in Section 4.7, before combining them to complete the proof

in Section 4.11. We describe the key ideas first, including the proof of Theorem 4.2.3

in Theorems 4.7.4 and 4.7.5.

4.7 Finite sequences of countable ordinals

We will now go through the cases of the principle in roughly reverse order, providing

the key ingredients for the proof, before combining them to complete the proof. We

begin with case 6 of the principle, including the proof of Theorem 4.2.3. First of all

we state Weiss’s result, which requires us to introduce some notation.

Definition. Let γ1 ≥ γ2 ≥ · · · ≥ γn be ordinals and S ⊆ {1, 2, . . . , n}, say S =

{s1, s2, . . . , sl} with s1 < s2 < · · · < sl. Then we write∑
i∈S

ωγi = ωγs1 + ωγs2 + · · ·+ ωγsl

and (
ωω

γ1+ωγ2+···+ωγn)
S

=

ω
∑
i∈S ω

γi , if S 6= ∅

0, if S = ∅.

Weiss’s result is our key tool for proving positive relations in this section, and

was first published by Baumgartner [Bau86, Theorem 2.3].

Theorem 4.7.1 (Weiss). Let γ1 ≥ γ2 ≥ · · · ≥ γn be countable ordinals, let

β = ωω
γ1+ωγ2+···+ωγn ,

and let c : β → 2. Then there exists S ⊆ {1, 2, . . . , n}, X ⊆ c−1 ({0}) and Y ⊆
c−1 ({1}) such that X ∼= βS, Y ∼= β({1,2,...,n}\S) and X and Y are both either empty

or cofinal in β.

A careful reading of Baumgartner’s proof reveals that “homeomorphic” can in

fact be strengthened to “order-homeomorphic”. Furthermore, we will be interested

in colourings using more than 2 colours. It will therefore be more convenient to use

this result in the following form.

Corollary 4.7.2. Let β be as in Weiss’s theorem, let k be a positive integer and let

c : β → k. Then there exists a partition of {1, 2, . . . , n} into k pieces S0, S1, . . . , Sk−1

and for each i ∈ k a subset Xi ⊆ c−1 ({i}) such that for all i ∈ k, Xi is order-

homeomorphic to βSi and Xi is either empty or cofinal in β.

Proof. This follows immediately from the “order-homeomorphic” version of Weiss’s

theorem by induction on k.
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To prove negative relations we will frequently consider colourings based on those

of the form c̃ ◦CB for some c̃ : β → κ, where β is a non-zero ordinal. The following

result is our key tool for analysing these colourings.

Proposition 4.7.3. Let α and η be ordinals. Let Y be a set of ordinals of order

type α, and let X = {x ∈ η : CB (x) ∈ Y }. Then X(α) = ∅.

Proof. For each ζ ≤ α, let Yζ be the initial segment of Y of order type ζ and

let Xζ = {x ∈ η : CB (x) ∈ Yζ}. It is easy to prove by induction on ζ ≤ α that

X(ζ) = X \Xζ . Hence X(α) = X \Xα = ∅.

We can now apply these two tools to prove Theorem 4.2.3, beginning with part

1.

Theorem 4.7.4. Let α0, α1, . . . , αk−1 ∈ ω1 \ {0}. Then

P top (ωα0 + 1, ωα1 + 1, . . . , ωαk−1 + 1) = ωα0#α1#···#αk−1 + 1.

Proof. Write α0#α1# · · ·#αk−1 = δ = ωγ1 +ωγ2 +· · ·+ωγn with γ1 ≥ γ2 ≥ · · · ≥ γn,

and write β = ωδ.

To see that β 9top (ωα0 + 1, ωα1 + 1, . . . , ωαk−1 + 1)1, first observe that by

definition of the natural sum, there is a partition of {1, 2, . . . , n} into k pieces

S0, S1, . . . , Sk−1 such that for all i ∈ k, αi =
∑

j∈Si ω
γj . Now define a colouring

c : β → k as follows. For each i ∈ k, set c (x) = i if and only if

ωγ1 + ωγ2 + · · ·+ ωγj−1 ≤ CB (x) < ωγ1 + ωγ2 + · · ·+ ωγj

for some j ∈ Si. Observe that c−1 ({i}) = {x ∈ β : CB (x) ∈ Yi} for some set Yi

of ordinals of order type αi. Thus by Proposition 4.7.3, c−1 ({i})(αi) = ∅, whereas

(ωαi + 1)(αi) = {ωαi}. Hence c−1 ({i}) cannot contain a topological copy of ωαi + 1.

To see that β + 1 →top (ωα0 + 1, ωα1 + 1, . . . , ωαk−1 + 1)1, let c : β + 1 → k.

Choose S0, S1, . . . , Sk−1 ⊆ {1, 2, . . . , n} and X0, X1, . . . , Xk−1 ⊆ β as in Corollary

4.7.2. If βSi > ωαi for some i ∈ k, then we are done. So we may assume βSi ≤ ωαi

for all i ∈ k. But then we must in fact have βSi = ωαi for all i ∈ k, or else

β < ωα0#α1#···#αk−1 . To finish, suppose c (β) = j. Then since Xj is cofinal in β,

Xj ∪ {β} is a topological copy of ωαj + 1 in colour j.

The proof of part 2 of Theorem 4.2.3 is similar but a little more complicated

as it makes use of the Milner–Rado sum. We make use of the fact that

P (α0, α1, . . . , αk−1) = α0�α1�· · ·�αk−1 by using the first expression to prove the

negative relation and the second expression to prove the positive relation.

Theorem 4.7.5. Let α0, α1, . . . , αk−1 ∈ ω1 \ {0}. Then

P top (ωα0 , ωα1 , . . . , ωαk−1) = ωα0�α1�···�αk−1 .
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Proof. First recall from Theorem 4.2.1 that P (α0, α1, . . . , αk−1) = α0 � α1 � · · · �
αk−1. Write δ for their common value, write δ = ωγ1 + ωγ2 + · · · + ωγn with γ1 ≥
γ2 ≥ · · · ≥ γn, and write β = ωδ.

Suppose ζ < β. To see that ζ 9top (ωα0 , ωα1 , . . . , ωαk−1)1, first observe that

ζ ≤ ωη ·m+1 for some η < δ and some m ∈ ω, so it is sufficient to consider the case

in which ζ = ωη ·m+1. Since η < P (α0, α1, . . . , αk−1), there is a colouring c̃ : η → k

such that for all i ∈ k, the order type of c̃−1 ({i}) is α̃i < αi. Let c : ζ → k be a

colouring with c (x) = c̃ (CB (x)) for all x ∈ ζ \ {ωη, ωη · 2, . . . , ωη ·m} (it doesn’t

matter how the points ωη, ωη · 2, . . . , ωη · m are coloured). By Proposition 4.7.3,

c−1 ({i})(α̃i) ⊆ {ωη, ωη · 2, . . . , ωη ·m} for all i ∈ k, whereas (ωαi)(α̃i) is infinite since

α̃i < αi. Hence c−1 ({i}) cannot contain a topological copy of ωαi .

To see that β →top (ωα0 , ωα1 , . . . , ωαk−1)1, let c : β → k. Choose

S0, S1, . . . , Sk−1 ⊆ {1, 2, . . . , n} and X0, X1, . . . , Xk−1 ⊆ β as in Corollary 4.7.2. If

βSi ≥ ωαi for some i ∈ k, then we are done, so suppose for contradiction that βSi <

ωαi for all i ∈ k. Write α̃i =
∑

j∈Si ω
γi , so that ωα̃i = βSi and α̃0#α̃1# · · ·#α̃k−1 = β

by definition. Then since βSi < ωαi for all i ∈ k and β = α0 � α1 � · · · � αk−1, we

have α̃i < αi for all i ∈ k while α̃0#α̃1# · · ·#α̃k−1 = α0 � α1 � · · · � αk−1, contrary

to the definition of the Milner–Rado sum.

This completes the proof of Theorem 4.2.3, which provides us with the topological

pigeonhole numbers for finite sequences of countable ordinals when either each

ordinal is a power of ω or each ordinal is a power of ω plus 1.

Our next result generalises Theorem 4.7.5 by considering mixtures of such

ordinals including at least one power of ω. Using monotonicity, this will provide

us with the topological pigeonhole numbers for all finite sequences of countable

ordinals in which one of the ordinals is a power of ω, thereby completing case 6b of

the principle. The result essentially says that in this case, the topological pigeonhole

number is the same as if the other ordinals were “rounded up” to the next largest

power of ω.

The proof involves proving two negative relations, the first of which uses ideas

from Theorem 4.7.4 and the second of which uses ideas from Theorem 4.7.5.

Theorem 4.7.6. Let α0, α1, . . . , αl, δl+1, δl+2, . . . , δk−1 ∈ ω1 \ {0}, where 0 ≤ l < k.

Then

P top
(
ωα0 , ωα1 , . . . , ωαl , ωδl+1 + 1, ωδl+2 + 1, . . . , ωδk−1 + 1

)
= ωα0�α1�···αl�(δl+1+1)�(δl+2+1)�···�(δk−1+1).

Proof. Write P for the left-hand side and β for the right-hand side. Clearly P ≤ β

by Theorem 4.7.5 and monotonicity, so we prove that P ≥ β.

Suppose first that αi is a successor ordinal for all i ∈ {0, 1, . . . , l}, say αi = δi+1.
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Then by Theorem 4.2.2, β = ωδ0#δ1#···#δk−1+1. Suppose ζ < β. We will show that

ζ 9top

(
ωδ0+1, ωδ1 + 1, ωδ2 + 1, . . . , ωδk−1 + 1

)1
,

which suffices. Write δ = δ0#δ1# · · ·#δk−1, and observe first that ζ ≤ ωδ ·m + 1

for some m ∈ ω, so it is sufficient to consider the case in which ζ = ωδ ·m+ 1. Next

recall from the proof of Theorem 4.7.4 that there is a colouring d : ωδ → k with the

property that d−1 ({i})(δi) = ∅ for all i ∈ k. Now define a colouring c : ζ → k by

c (x) =

d (y) , if x = ωδ · l + y with l ∈ ω and 0 < y < ωδ

0, if x ∈
{

0, ωδ, ωδ · 2, . . . , ωδ ·m
}
.

Then for all i ∈ {1, 2, . . . , k − 1}, c−1 ({i})(δi) = ∅, whereas
(
ωδi + 1

)(δi) =
{
ωδi
}

,

so c−1 ({i}) cannot contain a topological copy of ωδi + 1. On the other hand,

c−1 ({0})(δ0) ⊆
{
ωδ, ωδ · 2, . . . , ωδ ·m

}
, whereas

(
ωδ0+1

)(δ0)
is infinite, so c−1 ({0})

cannot contain a topological copy of ωδ0+1. This completes the proof for this case.

Suppose instead that αj is a limit ordinal for some j ∈ {0, 1, . . . , l}. Write

β = ωδ. Then by Theorem 4.2.2, δ is a limit ordinal. This observation enables us

to complete the proof using simpler version of the argument from Theorem 4.7.5.

Suppose ζ < β. We will show that

ζ 9top

(
ωα0 , ωα1 , . . . , ωαl , ωδl+1 + 1, ωδl+2 + 1, . . . , ωδk−1 + 1

)1
.

Observe first that since δ is a limit ordinal, ζ ≤ ωη for some η < δ, so

it is sufficient to consider the case in which ζ = ωη. Write αi = δi + 1

for all i ∈ {l + 1, l + 2, . . . , k − 1}, and recall from Theorem 4.2.1 that δ =

P (α0, α1, . . . , αk−1). Since η < δ, there is a colouring c̃ : η → k such that for

all i ∈ k, the order type of c̃−1 ({i}) is α̃i < αi. Define a colouring c : ζ → k

by c = c̃ ◦ CB. By Proposition 4.7.3, c−1 ({i})(α̃i) = ∅ for all i ∈ k. However,

(ωαi)(α̃i) is infinite for all i ∈ {0, 1, . . . , l}, and
(
ωδi + 1

)(α̃i) ⊇
{
ωδi
}

for all

i ∈ {l + 1, l + 2, . . . , k − 1}. Hence c−1 ({i}) cannot contain a topological copy of

ωαi (if i ∈ {0, 1, . . . , l}) or ωδi + 1 (if i ∈ {l + 1, l + 2, . . . , k − 1}).

Next we move beyond powers of ω and powers of ω plus 1 to consider ordinals

of the form ωα · m + 1 with α ∈ ω1 \ {0} and m a positive integer. At this point

considerations from the finite pigeonhole principle come into play.

At the same time we will also consider finite ordinals, since they behave in a

similar fashion: just as ωα ·m+ 1 is homeomorphic to the topological disjoint union

of m copies of ωα + 1, so m ∈ ω is homeomorphic to the topological disjoint union

of m copies of 1. In order to consider both forms of ordinal at the same time we

therefore recall the following definition.
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Definition. Let α be an ordinal and m be a positive integer. We define

ω [α,m] =

ωα ·m+ 1, if α > 0

m, if α = 0.

The following result deals with finite sequences of countable ordinals of the form

ω [α,m]. It generalises both Theorem 4.7.4 and the finite pigeonhole principle, and

the proof essentially combines these two theorems.

Theorem 4.7.7. Let α0, α1, . . . , αk−1 ∈ ω1 and m1,m2, . . . ,mk−1 be positive

integers. Then

P top (ω [α0,m0] , ω [α1,m1] , . . . , ω [αk−1,mk−1]) = ω [α,m] ,

where α = α0#α1# · · ·#αk−1 and m =
∑k−1

i=0 (mi − 1) + 1.

Proof. We assume for simplicity that αi > 0 for all i ∈ k, the other case being no

harder. Thus ω [αi,mi] = ωαi ·mi + 1 for all i ∈ k and ω [α,m] = ωα ·m+ 1.

To see that

ωα ·m9top (ωα0 ·m0 + 1, ωα1 ·m1 + 1, . . . , ωαk−1 ·mk−1 + 1)1 ,

recall from the proof of Theorem 4.7.4 that there is a colouring d : ωα → k with

the property that d−1 ({i})(αi) = ∅ for all i ∈ k. Additionally observe that since

m−1 9 (m0,m1, . . . ,mk−1)1, there is a colouring e : {1, 2, . . . ,m− 1} → k with the

property that |e−1 ({i})| ≤ mi−1 for all i ∈ k. Now define a colouring c : ωα ·m→ k

by

c (x) =


d (y) , if x = ωα · l + y with l ∈ ω and 0 < y < ωα

e (l) , if x = ωα · l with l ∈ {1, 2, . . . ,m− 1}

0, if x = 0.

Then for all i ∈ k, ∣∣∣c−1 ({i})(αi)
∣∣∣ ≤ mi − 1

by construction, whereas ∣∣∣(ωαi ·mi + 1)(αi)
∣∣∣ = mi.

Hence c−1 ({i}) cannot contain a topological copy of ωαi ·mi + 1.

To see that

ωα ·m+ 1→top (ωα0 ·m0 + 1, ωα1 ·m1 + 1, . . . , ωαk−1 ·mk−1 + 1)1 ,

let c : ωα · m + 1 → k. Observe that for each j ∈ m, [ωα · j + 1, ωα · (j + 1)] ∼=
ωα + 1. Therefore by Theorem 4.7.4 there exists ij ∈ k and Xj ⊆ c−1 ({ij}) ∩
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[ωα · j + 1, ωα · (j + 1)] with Xj
∼= ωαij + 1. Next observe that by the finite

pigeonhole principle, m → (m0,m1, . . . ,mk−1)1. Hence there exists i ∈ k such

that |{j ∈ m : ij = i}| ≥ mi, say S ⊆ {j ∈ m : ij = i} satisfies |S| = mi. But then⋃
j∈S Xj is a topological copy of ωαi ·mi + 1 in colour i.

We conclude this section by considering at last ordinals of the form ωα · (m+ 1)

with α ∈ ω1 \{0} and m a positive integer. Such an ordinal is homeomorphic to the

topological disjoint union of ωα ·m+ 1 and ωα and behaves similarly to ωα ·m+ 1,

but there are additional complications.

The following simple consequence of Theorem 4.7.5 will be useful for finding

extra homeomorphic copies of ωα in the required colour.

Lemma 4.7.8. Let α0, α1, . . . , αk−1 ∈ ω1 \ {0}, let α = α0#α1# · · ·#αk−1 and let

c : ωα → k be a colouring. Then either c−1 ({j}) contains a topological copy of ωαj+1

for some j ∈ k, or c−1 ({i}) contains a topological copy of ωαi for all i ∈ k.

Proof. Fix i ∈ k. It is sufficient to prove that either c−1 ({i}) contains a topological

copy of ωαi , or c−1 ({j}) contains a topological copy of ωαj+1 for some j ∈ k \ {i}.
To see this, simply observe that by Theorem 4.2.2 (or by inspection),

(α0 + 1)� · · · � (αi−1 + 1)� αi � (αi+1 + 1)� · · · � (αk−1 + 1) ≤ α

and hence by Theorem 4.7.5,

ωα →top

(
ωα0+1, . . . , ωαi−1+1, ωαi , ωαi+1+1, . . . , ωαk−1+1

)1
.

In our next result we use this to narrow the topological pigeonhole number down

to one of two possibilities.

Theorem 4.7.9. Let α0, α1, . . . , αl ∈ ω1 \ {0}, αl+1, αl+2, . . . , αk−1 ∈ ω1 and

m0,m1, . . . ,mk−1 be positive integers, where 0 ≤ l < k. Then

P top (ωα0 · (m0 + 1) , . . . , ωαl · (ml + 1) , ω [αl+1,ml+1] , . . . , ω [αk−1,mk−1])

is equal to either ωα · m + 1 or ωα · (m+ 1), where α = α0#α1# · · ·#αk−1 and

m =
∑k−1

i=0 (mi − 1) + 1.

Proof. Write P for the topological pigeonhole number in the statement of the

theorem. Recall that by Proposition 4.3.2, it is sufficient to prove that ωα ·m+ 1 ≤
P ≤ ωα · (m+ 1). The first inequality follows immediately from Theorem 4.7.7 and

monotonicity since ωαi · (m0 + 1) > ω [αi,mi] for all i ∈ {0, 1, . . . , l}. The second

inequality states that

ωα·(m+ 1)→top (ωα0 · (m0 + 1) , . . . , ωαl · (ml + 1) , ω [αl+1,ml+1] , . . . , ω [αk−1,mk−1])1 .



4.7. Finite sequences of countable ordinals 57

To see this, let c : ωα · (m+ 1) → k. First note that for i ∈ {0, 1, . . . , l}, ωαi ·
(mi + 1) is homeomorphic to the topological disjoint union of ω [αi,mi] = ωαi ·mi+1

and ωαi . Now by Theorem 4.7.7, there exists i ∈ k and X ⊆ c−1 ({i})∩ (ωα ·m+ 1)

with X ∼= ω [αi,mi]. If i ∈ {l + 1, l + 2, . . . , k − 1}, then we are done, so assume i ∈
{0, 1, . . . , l}. Next consider the restriction of c to [ωα ·m+ 1, ωα · (m+ 1)), which is

homeomorphic to ωα. By Lemma 4.7.8, either c−1 ({j}) ∩ [ωα ·m+ 1, ωα · (m+ 1))

contains a topological copy of ωαj+1 for some j ∈ k, in which case we are done, or

there exists Y ⊆ c−1 ({i}) ∩ [ωα ·m+ 1, ωα · (m+ 1)) with Y ∼= ωαi , in which case

X ∪ Y is a topological copy of ωαi · (mi + 1) in colour i.

Recall that by Lemma 4.3.1 it is enough to consider ordinals of the form ωα ·m
and ωα ·m + 1 with m a positive integer. It follows that Theorems 4.7.7 and 4.7.9

together cover case 6c of the principle. Thus to complete case 6 it remains only to

distinguish between the two possibilities presented by Theorem 4.7.9.

In our final result of this section we do this for the case in which mi = 1 for

all i ∈ k \ {0}. In particular this completes case 6(c)i. At this point the Cantor–

Bendixson ranks of ordinal exponents come into play. They essentially determine

whether or not the negative relation can be proved using the type of colouring given

in the first half of the proof of Theorem 4.7.4.

Theorem 4.7.10. Let α0, α1, . . . , αk−1 ∈ ω1\{0}, let m0 be a positive integer and let

0 ≤ l < k. Assume without loss of generality that if m0 = 1 then CB (α0) ≤ CB (αi)

for all i ∈ {1, 2, . . . , l}. Then

ωα ·m0 + 1→top (ωα0 · (m0 + 1) , ωα1 · 2, . . . , ωαl · 2, ωαl+1 + 1, . . . , ωαk−1 + 1)1

if and only if CB (αh) < CB (α0) for some h ∈ k, where α = α0#α1# · · ·#αk−1.

We will prove the “if” part by combining Lemma 4.7.8 with the following result.

Lemma 4.7.11. Let α0, α1, . . . , αk−1 ∈ ω1 \ {0}, let α = α0#α1# · · ·#αk−1 and let

c : ωα + 1 → k be a colouring. Then there exists j ∈ k such that either c−1 ({j})
contains a topological copy of ωαj · 2, or c−1 ({j}) contains a topological copy of

ωαj + 1 and CB (αj) ≤ CB (αi) for all i ∈ k.

The proof of this lemma uses ideas from the proof of Weiss’s theorem [Bau86,

Theorem 2.3]. In particular we will make use of the following result, which was also

published by Baumgartner [Bau86, Lemma 2.6].

Lemma 4.7.12 (Weiss). Let α ∈ ω1 not be a power of ω. Write α = ωγ1 +ωγ2 +· · ·+
ωγn with γ1 ≥ γ2 ≥ · · · ≥ γn and n > 1, and let δ = ωω

γ1+ωγ2+···+ωγn−1
and ε = ωω

γn
.

Suppose Z ⊆ {δ · x : x ∈ ε} is order-homeomorphic to ε, say Z = {zη : η ∈ ε}. Then

for each η ∈ ε there exists Yη ⊆ (zη, zη+1) such that Yη is order-homeomorphic to δ

and Yη is cofinal in (zη, zη+1).
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Proof of Lemma 4.7.11. Write α = ωγ1 + ωγ2 + · · · + ωγn with γ1 ≥ γ2 ≥ · · · ≥ γn,

and observe that for j ∈ k, the condition that CB (αj) ≤ CB (αi) for all i ∈ k is

equivalent to the condition that CB (αj) = γn. The case k = 1 is trivial, so assume

k > 1 (and hence n > 1) and let δ = ωω
γ1+ωγ2+···+ωγn−1

and ε = ωω
γn

as in Weiss’s

lemma.

First let c (ωα) = j0. Next, by Corollary 4.7.2 there exists j1 ∈ k and Z ⊆
c−1 ({j1})∩ {δ · x : x ∈ ε} such that Z is cofinal in {δ · x : x ∈ ε} (and hence in ωα)

and Z is order-homeomorphic to ε, say Z = {zη : η ∈ ε}. For each η ∈ ε choose

Yη as in Weiss’s lemma. Then for each η ∈ ε, by Corollary 4.7.2 there exists a

partition of {1, 2, . . . , n− 1} into k pieces Sη0 , S
η
1 , . . . , S

η
k−1 and for each i ∈ k a

subset Xη
i ⊆ c−1 ({i})∩ Yη such that for all i ∈ k, Xη

i is order-homeomorphic to δSηi
and Xη

i is either empty or cofinal in Yη (and hence in (zη, zη+1)). Moreover since

ε → (ε)1
r for all positive integers r (either using Theorem 4.7.5 or simply from the

fact that ε is a power of ω), there exists T ⊆ ε of order type ε and a single partition

of {1, 2, . . . , n− 1} into k pieces S0, S1, . . . , Sk−1 such that Sηi = Si for all η ∈ T and

all i ∈ k.

Now if δSj > ωαj for some j ∈ k, then we are done. So we may assume δSi ≤ ωαi

for all i ∈ k. But then there must exist j2 ∈ k with CB (αj2) = γn such that in fact

δSi = ωαi for all i ∈ k \ {j2} and δSj2∪{n} = ωαj2 .

There are now three possibilities.

� If j1 6= j2, then take j = j1. Pick η1, η2 ∈ T and take

X = Xη1
j ∪ {zη1+1} ∪Xη2

j .

Then X is a topological copy of ωαj · 2 in colour j.

� If j0 6= j2, then take j = j0. We now use an argument from the proof of

Weiss’s theorem. Let (ηr)r∈ω be a strictly increasing cofinal sequence from

T and let (ζr)r∈ω\{0} be a strictly increasing cofinal sequence from ωαj , so

that ωαj is homeomorphic to the topological disjoint union of the collection

(ζr + 1)r∈ω\{0}. For each r ∈ ω \ {0}, choose Wr ⊆ Xηr
j with Wr

∼= ζr + 1, and

take

X = Xη0
j ∪

⋃
r∈ω\{0}

Wr ∪ {ωα} .

Then X is a topological copy of ωαj · 2 in colour j.

� If j0 = j1 = j2, then take j to be their common value. We now use

another argument from the proof of Weiss’s theorem. Let Z1 be the closure of

{zη+1 : η ∈ T} in Z and take

X =
⋃
η∈T

Xη
j ∪ Z1 ∪ {ωα} .
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Then X is a topological copy of ωαj + 1 in colour j, and since j = j2 we have

CB (αj) = γn.

Proof of Theorem 4.7.10. Write α = ωγ1 + ωγ2 + · · ·+ ωγn with γ1 ≥ γ2 ≥ · · · ≥ γn,

and let β = ωα ·m0 + 1.

Suppose first that CB (α0) ≤ CB (αi) for all i ∈ k. As in the proof of

Theorem 4.7.4, observe that by definition of the natural sum, there is a partition of

{1, 2, . . . , n} into k pieces S0, S1, . . . , Sk−1 such that for all i ∈ k, αi =
∑

j∈Si ω
γj .

Moreover, since CB (α0) ≤ CB (αi) for all i ∈ k we may assume that n ∈ S0.

Now define a colouring c : β → k as follows. If CB (x) < α (i.e., x /∈
{ωα, ωα · 2, . . . , ωα ·m0}), then as in Theorem 4.7.4, for each i ∈ k set c (x) = i

if and only if

ωγ1 + ωγ2 + · · ·+ ωγj−1 ≤ CB (x) < ωγ1 + ωγ2 + · · ·+ ωγj

for some j ∈ Si. If CB (x) = α, then set c (x) = 0. If i ∈ k \{0}, then as in Theorem

4.7.4 c−1 ({i}) cannot contain a topological copy of ωαi + 1. To deal with the case

i = 0, let η =
∑

j∈S0\{n} ω
γj . By the proof of Proposition 4.7.3,

c−1 ({0})(η) = {x ∈ β : CB (x) ≥ ωγ1 + ωγ2 + · · ·+ ωγn−1} ∼= ωω
γn ·m0 + 1,

whereas (ωα0 · (m0 + 1))(η) ∼= ωω
γn · (m0 + 1). It follows by part 3 of Proposition

4.3.3 that c−1 ({0}) cannot contain a topological copy of ωα0 · (m0 + 1).

Suppose instead that CB (αh) < CB (α0) for some h ∈ k. If m0 = 1, then by

assumption CB (α0) ≤ CB (αi) for all i ∈ {1, 2, . . . , l}, so CB (αh) < CB (αi) for

all i ∈ {1, 2, . . . , l} and we are done by Lemma 4.7.11. So assume m0 > 1. Then

for each p ∈ m0 apply Lemma 4.7.11 to obtain jp ∈ k and Xp ⊆ c−1 ({jp}) ∩
[ωα · p+ 1, ωα · (p+ 1)] such that either Xp

∼= ωαjp · 2, or Xp
∼= ωαjp + 1 and

CB
(
αjp
)
≤ CB (αi) for all i ∈ k. If jp = 0 for all p ∈ m0, then Xp

∼= ωα0 · 2
for all p ∈ m0 and so

⋃m0−1
p=0 Xp contains a topological copy of ωα0 · (m0 + 1), and

we are done. So assume jq 6= 0 for some q ∈ m0. Now pick any r ∈ m0 \ {q} and

apply Lemma 4.7.8 to [ωα · r + 1, ωα · (r + 1)). Since we would be done if c−1 ({j})
contained a topological copy of ωαj+1 for some j ∈ k, we may assume that there

exists Y ⊆ c−1 ({jq}) ∩ [ωα · r + 1, ωα · (r + 1)) with Y ∼= ωαjq . Then Xq ∪ Y is a

topological copy of ωαjq · 2 in colour jq, which suffices.

We leave the final few considerations pertaining to case 6(c)ii for later.

4.8 Arbitrary sequences of ordinals at most ω1

We now move on to cases 3, 4 and 5 of the principle, in which no ordinal exceeds ω1

but either there are infinitely many ordinals or there is at least one ordinal equal to
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ω1. Here the arguments are less combinatorial and more set-theoretical than in the

previous section, and stationary sets are ubiquitous.

We will cover cases 4 and 5 in this section and leave the independence results of

case 3 to the next section.

To understand the relevance of club sets, recall Proposition 2.2.4. From that

result and the fact that ω1 is order-reinforcing, it follows that given X ⊆ ω1, X is

club if and only if X ∼= ω1.

The essential reason for the ubiquity of stationary sets in this section is the

following result of Friedman [Fri74].

Theorem 4.8.1 (Friedman). Let S ⊆ ω1 be a stationary set, and let α ∈ ω1. Then

S has a subset order-homeomorphic to α.

We will need a slightly more general version of this result. In order to state it

we make the following definition.

Definition. Let λ be an uncountable regular cardinal. Define

Eλ
ω = {x ∈ λ : cf (x) = ω} .

Note that Eλ
ω is stationary in λ.

Here is our generalisation of Friedman’s theorem.

Theorem 4.8.2. Let λ be an uncountable regular cardinal, let S ⊆ Eλ
ω be stationary

in λ, and let α ∈ ω1. Then S has a subset order-homeomorphic to α.

Proof. The proof is essentially identical to the proof of Friedman’s theorem [Fri74].

Our final introductory result is a well-known property of stationary sets.

Lemma 4.8.3. Let λ be an uncountable regular cardinal, let S ⊆ λ be stationary,

and let c : S → κ for some cardinal κ < λ. Then c−1 ({i}) is stationary in λ for

some i ∈ κ.

Proof. This follows easily from the fact that if Ci ⊆ λ is club for all i ∈ κ then⋂
i∈κCi is also club.

We are now ready to deal with cases 4 and 5 of the principle. The result for case

5 is an easy consequence of Theorem 4.8.2 and Lemma 4.8.3.

Theorem 4.8.4. Let κ ≥ ℵ0 be a cardinal, and let αi be an ordinal with 2 ≤ αi < ω1

for all i ∈ κ. Then

P top (αi)i∈κ = κ+.
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Proof. Clearly if ζ < κ+ then ζ 9top (αi)
1
i∈κ by considering an injection ζ → κ.

To see that κ+ →top (αi)
1
i∈κ, let c : κ+ → κ. Then by Lemma 4.8.3 there exists

i ∈ κ such that c−1 ({i})∩Eκ+

ω is stationary in κ+, which by Theorem 4.8.2 contains

a topological copy of αi.

The proof for case 4 is a little trickier.

Theorem 4.8.5. Let κ be a cardinal, let αr = ω1 for some r ∈ κ, and let αi be an

ordinal with 2 ≤ αi < ω1 for all i ∈ κ \ {r}. Then

P top (αi)i∈κ = max
{
ω1, κ

+
}
.

Proof. As in the proof of Theorem 4.8.4, if ζ < κ+ then ζ 9top (αi)
1
i∈κ. Additionally,

if ζ < ω1 then ζ 9top (αi)
1
i∈κ by considering the constant colouring with colour r.

To see that max {ω1, κ
+} →top (αi)

1
i∈κ, first observe that the case κ < ℵ0 follows

from the case κ = ℵ0. So we may assume κ ≥ ℵ0, implying that max {ω1, κ
+} = κ+.

So let c : κ+ → κ. Then let

Z =
(
c−1 ({r}) ∩ Eκ+

ω

)
∪
(
κ+ \ Eκ+

ω

)
.

Suppose first that Z has a subset C that is club in κ+. Then C∩{ω · x : x ∈ κ+}
is also club. Let the initial segment of this set of order type ω1 be Y , and let

X = Y ′. Then X ∼= ω1 by Proposition 2.2.4, but in addition X ⊆ Eκ+

ω and hence

X ⊆ c−1 ({r}) by definition of Z.

Suppose instead that Z has no subset that is club in κ+. Then κ+\Z is stationary

in κ+. But by definition of Z,

κ+ \ Z =
⋃

i∈κ\{r}

(
c−1 ({i}) ∩ Eκ+

ω

)
.

Hence by Lemma 4.8.3 there exists i ∈ κ\{r} such that c−1 ({i})∩Eκ+

ω is stationary

in κ+, which by Theorem 4.8.2 contains a topological copy of αi.

4.9 Independence results

We now move on to case 3 of the principle, in which no ordinal exceeds ω1 and two

or more ordinals are equal to ω1. To begin with we quote the following result, a

proof of which can be found in Weiss’s article [Wei90, Theorem 2.8]. This follows

easily from the fact that ω1 may be written as a disjoint union of two stationary

sets.

Proposition 4.9.1. If β ∈ ω2 then β 9top (ω1)1
2.



62 4. The topological pigeonhole principle for ordinals

Corollary 4.9.2. Let κ be a cardinal, and let αi be an ordinal with 2 ≤ αi ≤ ω1 for

all i ∈ κ. Suppose αr, αs = ω1 for some distinct r, s ∈ κ. Then

P top (αi)i∈κ ≥ max
{
ω2, κ

+
}
.

Proof. Clearly if ζ < κ+ then ζ 9top (αi)
1
i∈κ, and if ζ < ω2 then ζ 9top (ω1)1

2 by

Proposition 4.9.1 and hence ζ 9top (αi)
1
i∈κ.

We shall now see that, modulo a large cardinal assumption, this is the strongest

ZFC-provable statement applicable to case 3. Recall from the statement of the

principle that we write “Pκ = x” for the statement, “κ is a cardinal, and for all

sequences (αi)i∈κ of ordinals, if 2 ≤ αi ≤ ω1 for all i ∈ κ and αr, αs = ω1 for some

distinct r, s ∈ κ, then P top (αi)i∈κ = x”, and likewise for “Pκ ≥ x”.

In one direction, we use the following result of Prikry and Solovay [PS75].

Theorem 4.9.3 (Prikry–Solovay). Suppose V = L and let β be any ordinal. Then

β 9top (ω1)1
2 .

Corollary 4.9.4. If ZFC is consistent, then so is

ZFC + “for all cardinals κ ≥ 2, Pκ =∞”.

Proof. This follows immediately from the Prikry–Solovay theorem and monotonicity

of pigeonhole numbers.

In the other direction, we use a result of Shelah, who introduced the following

notation [She98, Chapter X, §7].

Definition (Shelah). Let λ be an uncountable regular cardinal. Write Fr+ (λ)

to mean that every subset of Eλ
ω that is stationary in λ has a subset order-

homeomorphic to ω1.

Note the similarity between this notion and Theorem 4.8.2. In fact the letters

“Fr” here refer to Friedman, who first asked whether or not there exists an ordinal

β with β →top (ω1)1
2 [Fri74].

Here is the result of Shelah [She98, Chapter XI, Theorem 7.6].

Theorem 4.9.5 (Shelah). If ZFC+“there exists a supercompact cardinal” is

consistent, then so is

ZFC + “Fr+ (λ) holds for every regular cardinal λ ≥ ℵ2”.

In order to apply Shelah’s result to case 3 we make the following observation.



4.10. Sequences including an ordinal larger than ω1 63

Lemma 4.9.6. Let κ ≥ ℵ1 be a cardinal. If Fr+ (κ+) holds, then

κ+ →top (ω1)1
κ .

Proof. Simply apply Lemma 4.8.3.

Corollary 4.9.7. If ZFC+“there exists a supercompact cardinal” is consistent, then

so is

ZFC + “for all cardinals κ ≥ 2, Pκ = max
{
ω2, κ

+
}

”.

Proof. Observe that by Corollary 4.9.2, the following is a theorem of ZFC: “for all

cardinals κ ≥ 2, Pκ ≥ max {ω2, κ
+}”. To finish, simply combine Theorem 4.9.5 with

Lemma 4.9.6.

To conclude this section, we address the question of whether a large cardinal

assumption is required. To this end we give an equiconsistency result essentially

due to Silver and Shelah.

Silver proved the following result by showing that if ω2 →top (ω1)1
2 then �ω1 does

not hold, a proof of which can be found in Weiss’s article [Wei90, Theorem 2.10].

Theorem 4.9.8 (Silver). If ω2 →top (ω1)1
2 then ω2 is Mahlo in L.

Here is the result of Shelah [She98, Chapter XI, Theorem 7.1].

Theorem 4.9.9 (Shelah). If ZFC+“there exists a Mahlo cardinal” is consistent,

then so is ZFC + “Fr+ (ℵ2)”.

Corollary 4.9.10. ZFC+“there exists a Mahlo cardinal” is consistent if and only if

ZFC + “ω2 →top (ω1)1
2”

is consistent.

Proof. Theorem 4.9.8 gives the “if” statement. The “only if” statement follows by

combining Theorem 4.9.9 with Lemma 4.9.6.

4.10 Sequences including an ordinal larger than ω1

It remains to cover cases 1 and 2 of the principle, in which one of the ordinals

exceeds ω1. Although this appears to be a very large class of cases, the situation

is dramatically simplified by the following elementary argument covering case 1. It

is our only result in which the topological pigeonhole number (ZFC-provably) does

not exist.

Proposition 4.10.1. P top (ω1 + 1, ω + 1) =∞.
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Proof. Let β be any ordinal. We show that β 9top (ω1 + 1, ω + 1)1. First observe

that a topological copy of ω1 + 1 must contain a point of cofinality ω1, while a

topological copy of ω + 1 must contain a point of cofinality ω. The result is then

witnessed by the colouring c : β → 2 given by

c (x) =

1, if cf (x) ≥ ω1

0, otherwise.

We conclude this section by simplifying case 2 using another elementary

argument. We leave the rest of the proof for this case for the next section.

Lemma 4.10.2. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ. Suppose

αr ≥ ω1 + 1 for some r ∈ κ and 2 ≤ αi ≤ ω for all i ∈ κ \ {r}, and let

λ =


κ+, if κ ≥ ℵ0

ℵ0, if κ < ℵ0 and αs = ω for some s ∈ κ \ {r}∑
i∈κ\{r} (αi − 1) + 1, if κ < ℵ0 and αi < ω for all i ∈ κ \ {r}.

Let β be any ordinal. Then

β →top (αi)
1
i∈κ

if and only if for every subset A ⊆ β with |A| < λ there exists X ⊆ β \ A with

X ∼= αr.

Proof. First suppose that β →top (αi)
1
i∈κ and let A ⊆ β with |A| < λ. If κ ≥ ℵ0,

then take f : A → κ \ {r} to be any injection; if κ < ℵ0 and αs = ω for some

s ∈ κ \ {r}, then take f : A → {s} to be the constant function; and if κ < ℵ0

and αi < ω for all i ∈ κ \ {r}, then take f : A → κ \ {r} to be any function with

|f−1 ({i})| ≤ αi − 1 for all i ∈ κ \ {r}. Now define a colouring c : β → κ by

c (x) =

r, if x /∈ A

f (x) , if x ∈ A.

Then by construction |c−1 ({i})| < αi for all i ∈ κ\{r}, so since β →top (αi)
1
i∈κ there

exists X ⊆ c−1 ({r}) = β \ A with X ∼= αr.

Conversely, suppose that for every subset A ⊆ β with |A| < λ there exists

X ⊆ β \A with X ∼= αr. Let c : β → κ be a colouring, and let A = c−1 (κ \ {r}). If

|A| < λ then by assumption there exists X ⊆ β \A = c−1 ({r}) with X ∼= αr and we

are done, so assume |A| ≥ λ. If κ ≥ ℵ0, then |c−1 ({j})| ≥ κ+ for some j ∈ κ\{r}; if

κ < ℵ0 and αs = ω for some s ∈ κ \ {r}, then |c−1 ({j})| ≥ ℵ0 for some j ∈ κ \ {r};
and if κ < ℵ0 and αi < ω for all i ∈ κ \ {r}, then by the finite pigeonhole principle

|c−1 ({j})| ≥ αj for some j ∈ κ \ {r}. In every case |c−1 ({j})| ≥ |αj| and we are

done.
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4.11 Proof of the principle

Having provided the key ingredients, we now complete the proof of the principle.

Proof of Theorem 4.6.1. We split into the same cases as in the statement of the

theorem.

1. This follows from Proposition 4.10.1.

2. Let λ be as in Lemma 4.10.2, and note first of all that if αr is a power of ω

then P top (αi)i∈κ ≥ αr by part 2 of Proposition 4.3.3.

(a) In this case λ = κ+.

i. Write ωβ · m + 1 ≤ αr ≤ ωβ · (m+ 1) with β an ordinal and m a

positive integer, and note that αr · κ+ = ωβ · κ+.

Suppose ζ < ωβ · κ+. To see that ζ 9top (αi)
1
i∈κ, let A = ζ ∩{

ωβ · η : η ∈ κ+ \ {0}
}

, so |A| < κ+. Then (ζ \ A)(β) = ∅ whereas∣∣∣α(β)
r

∣∣∣ = m, so ζ \ A cannot contain a topological copy of αr.

To see that ωβ ·κ+ →top (αi)
1
i∈κ, let A ⊆ ωβ ·κ+ with |A| < κ+. Then

A ⊆

(⋃
η∈S

[
ωβ · η + 1, ωβ · (η + 1)

])
∪
{
ωβ+1 · η : η ∈ κ+

}
for some S ⊆ κ+ with |S| < κ+. Let T ⊆ κ+ \ S with |T | = m + 1.

Then ⋃
η∈T

[
ωβ · η + 1, ωβ · (η + 1)

]
is a topological copy of ωβ ·(m+ 1)+1 disjoint from A, which suffices.

ii. Write αr = ωβ. To see that αr · κ+ →top (αi)
1
i∈κ, simply observe that

αr ·κ+ = (αr + 1)·κ+ →top

(
αr + 1, (αi)i∈κ\{r}

)1

by the previous case

and use monotonicity. It remains to show either that αr →top (αi)
1
i∈κ,

or that if ζ < αr · κ+ then ζ 9top (αi)
1
i∈κ.

A. To see that αr →top (αi)
1
i∈κ, simply observe that if A ⊆ αr with

|A| < κ+, then supA < αr since cf (αr) ≥ κ+, and so αr \
[0, supA] ∼= αr since αr is a power of ω.

B. Suppose ζ < αr · κ+. To see that ζ 9top (αi)
1
i∈κ, let B ⊆ αr be

club with |B| = cf (αr), and let

A = ζ ∩
{
αr · η + x : η ∈ κ+, x ∈ B ∪ {0}

}
.

Then |A| < κ+ since cf (αr) < κ+. Suppose for contradiction

X ⊆ ζ \A with X ∼= αr. Since αr is a power of ω, using Theorem

4.4.1 and passing to a subspace if necessary, we may assume that
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X is order-homeomorphic to αr. Let Y = X ∪{supX} ∼= αr + 1.

Then Y (β) = {supX}, so by Proposition 2.3.3 supX = αr · η for

some η ∈ κ+ \ {0}. It follows using Proposition 2.2.4 that X is

club in αr · η. But then cf (αr · η) = cf (αr) > ℵ0 and A is also

club in αr · η, so X ∩ A 6= ∅, contrary to the definition of X.

C. � Suppose ζ < αr · κ+. To see that ζ 9top (αi)
1
i∈κ, let

A = ζ ∩
{
αr · η + ωγ · x : η ∈ κ+, x ∈ ωωδ

}
,

so |A| < κ+ since δ < κ+. Then (ζ \ A)(γ) = ∅ whereas α
(γ)
r
∼=

ωω
δ
, so ζ \ A cannot contain a topological copy of αr.

� First note that since δ > 0, either δ is a successor ordinal or

cf (δ) = ℵ0. To see that αr →top (αi)
1
i∈κ, let A ⊆ αr with

|A| < κ+. Using the fact that δ > κ+, we now choose a strictly

increasing cofinal sequence (βn)n∈ω from β with cf
(
ωβn
)

=

cf (βn) = κ+ for all n ∈ ω. If δ = ε + 1, then take βn =

γ + ωε · n + κ+ for all n ∈ ω. If cf (δ) = ℵ0, then let (δn)n∈ω
be a strictly increasing cofinal sequence from δ with δn > κ+

for all n ∈ ω, and take βn = γ + ωδn + κ+ for all n ∈ ω. Then

for each n ∈ ω, let xn = max
{
ωβn , sup

(
A ∩ ωβn+1

)}
and let

Xn =
(
xn, ω

βn+1
)
. Then Xn

∼= ωβn+1 , so there exists Yn ⊆ Xn

with Yn ∼= ωβn + 1. Then
⋃
n∈ω Yn is a topological copy of αr

disjoint from A.

(b) In this case λ = ℵ0.

i. To see that αr →top (αi)
1
i∈κ, simply observe that if A ⊆ αr with

|A| < ℵ0 then αr \ [0,maxA] ∼= αr.

ii. Write ωβ · m + 1 ≤ αr ≤ ωβ · (m+ 1) with β an ordinal and m a

positive integer, and note that αr · ω = ωβ+1.

Suppose ζ < ωβ+1. To see that ζ 9top (αi)
1
i∈κ, let A = ζ ∩{

ωβ · n : n ∈ ω \ {0}
}

, which is finite. Then (ζ \ A)(β) = ∅ whereas∣∣∣α(β)
r

∣∣∣ = m, so ζ \ A cannot contain a topological copy of αr.

To see that ωβ+1 →top (αi)
1
i∈κ, simply observe that ωβ+1 →top(

ωβ+1, (αi)i∈κ\{r}

)1

by the previous case and use monotonicity.

(c) In this case λ =
∑

i∈κ\{r} (αi − 1) + 1.

i. The result is trivial if κ = 1, and if αr is a power of ω then the

argument of case 2(b)i suffices.

ii. Suppose ζ < ωβ · (λ− 1 +m) + 1. To see that ζ 9top (αi)
1
i∈κ, let

A = ζ∩
{
ωβ, ωβ · 2, . . . , ωβ · (λ− 1)

}
, so |A| < λ. Then

∣∣∣(ζ \ A)(β)
∣∣∣ ≤

m−1 whereas
∣∣∣α(β)

r

∣∣∣ = m, so ζ \A cannot contain a topological copy
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of αr.

To see that ωβ · (λ− 1 +m) + 1 →top (αi)
1
i∈κ, suppose A ⊆ ωβ ·

(λ− 1 +m)+1 with |A| < λ. Then by the argument of case 2(b)i we

may assumeA =
{
ωβ · n : n ∈ S

}
for some S ⊆ {1, 2, . . . , λ− 1 +m}

with S ≤ λ. Since κ > 1 we have S 6= ∅, say s ∈ S. Then ⋃
n∈{1,2,...,λ−1+m}\S

[
ωβ · n+ 1, ωβ · (n+ 1)

]∪[ωβ · s+ 1, ωβ · (s+ 1)
)

is a topological copy of ωβ · (m+ 1) disjoint from A, which suffices.

3. This is Corollaries 4.9.2, 4.9.4, 4.9.7 and 4.9.10.

4. This is Theorem 4.8.5.

5. This is Theorem 4.8.4.

6. (a) This is the finite pigeonhole principle.

(b) This follows from Theorems 4.7.5 and 4.7.6 using monotonicity of

pigeonhole numbers.

(c) By Lemma 4.3.1, we may assume that for each i ∈ κ, either αi = ω [βi,mi]

or αi = ωβi · (mi + 1) and βi > 0. It follows that one of Theorems 4.7.7

and 4.7.9 applies, and thus P top (αi)i∈κ is equal to either ωβ · m + 1 or

ωβ · (m+ 1), where β = β0#β1# · · ·#βκ−1 and m =
∑

i∈κ (mi − 1) + 1.

It remains to determine whether or not ωβ ·m+ 1→top (αi)
1
i∈κ.

i. This is the “only if” part of Theorem 4.7.10.

ii. � If there is no s ∈ κ such that αs = ωβs · (ms + 1), then αi =

ω [βi,mi] for all i ∈ κ and the result is given by Theorem 4.7.7.

� If there exists s ∈ κ with αs = ωβs · (ms + 1) and mi = 1 for all

i ∈ κ \ {s}, then assume without loss of generality that CB (βs)

is minimal among any s ∈ κ with these properties. By definition

of case 6(c)ii, there must still exist t ∈ κ such that CB (βt) <

CB (βs), and so the result is given by the “if” part of Theorem

4.7.10.

� Otherwise, let c : ωβ · m + 1 → κ be a colouring, and assume

for simplicity that βi > 0 for all i ∈ κ, the other case being no

harder. First note that if c−1 ({j}) contains a topological copy

of ωβj+1 for some j ∈ κ, then we are done. Therefore by Lemma

4.7.8 we may assume that for each l ∈ m and each i ∈ κ, there

exists Yi,l ⊆ c−1 ({i}) ∩
[
ωβ · l + 1, ωβ · (l + 1)

)
with Yi,l ∼= ωβi .

Now by Theorem 4.7.7, there exists j ∈ κ and X ⊆ c−1 ({j}) with
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X ∼= ωβj ·mj + 1, and moreover by the proof of that theorem we

may assume that

X ⊆
⋃
l∈S

[
ωβ · l + 1, ωβ · (l + 1)

]
for some S ⊆ m with |S| = mj. Two possibilities now remain.

– If there exist distinct s, t ∈ κ with ms,mt ≥ 2, then m > mi

for all i ∈ κ.

– If there exists s ∈ κ with αs = ω [βs,ms], ms ≥ 2 and mi = 1

for all i ∈ κ \ {s}, then m > mi for all i ∈ κ \ {s}. If j = s

then we are done, so we may assume that j 6= s.

In either case we have m > mj. Therefore there exists l ∈ m \S,

whence X ∪ Yj,l is a topological copy of ωβj · (mj + 1) in colour

j, which suffices.

4.12 The closed pigeonhole principle for ordinals

We have now completed the proof of the topological pigeonhole principle for ordinals.

Using order-reinforcing ordinals and monotonicity, we automatically obtain from

this many cases of the closed pigeonhole principle for ordinals. We now examine the

remaining cases. This section is joint work with Andrés Caicedo.

Theorem 4.12.1 (The closed pigeonhole principle for ordinals). Given a cardinal

κ and an ordinal αi ≥ 2 for each i ∈ κ, there is an algorithm to compute P cl(αi)i∈κ.

We use the word “algorithm” here merely as a shorthand for the full statement

of the result. Rather than providing this explicitly, as we did for the topological

principle, we merely explain within the proof the modifications required to obtain

the closed principle from the topological principle.

While the topological principle gave in each case an explicit expression for

the topological pigeonhole number in terms of Cantor normal forms, the closed

pigeonhole principle will use a recursive expression. However, it will be seen that

this yields an explicit expression after a finite number of applications.

Proof. The proof of the topological pigeonhole principle for ordinals shows that

P cl(αi)i∈κ = P top(αi)i∈κ except in two cases, which we now examine.

The first case is when κ is finite and greater than 1, αr ≥ ω1 + 1 for some r ∈ κ,

αi is finite for all i ∈ κ \ {r}, and αr is not a power of ω, say αr = ωβ ·m + 1 + γ

for some ordinal β, some positive integer m and some ordinal γ ≤ ωβ (case 2(c)ii).

Then

P top(αi)i∈κ = ωβ ·

 ∑
i∈κ\{r}

(αi − 1) +m

+ 1,
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whereas a very similar argument shows that

P cl(αi)i∈κ = ωβ ·

 ∑
i∈κ\{r}

(αi − 1) +m

+ 1 + γ.

The second case is when (αi)i∈κ is a finite sequence of countable ordinals (case

6). In this case the following results carry across for β1, β2, . . . , βk ∈ ω1 \ {0}.

� P cl(ωβ1 + 1, ωβ2 + 1, . . . , ωβk + 1) = ωβ1#β2#···#βk + 1, where # denotes the

natural sum (Theorem 4.7.4).

� P cl(ωβ1 , ωβ2 , . . . , ωβk) = ωβ1�β2�···�βk , where � denotes the Milner–Rado sum

(Theorem 4.7.5).

� Let α1, α2, . . . , αk ∈ ω1 with αr = ωβr for some r ∈ {1, 2, . . . , k}. Suppose

βi is minimal subject to the condition that αi ≤ ωβi for all i ∈ {1, 2, . . . , k}.
We then have that P cl(α1, α2, . . . , αk) = P cl(ωβ1 , ωβ2 , . . . , ωβk) (by Theorem

4.7.6).

Thus it remains to compute P cl(α1, α2, . . . , αk) when αi ∈ ω1 is not a power

of ω for any i ∈ {1, 2, . . . , k}. In that case, for all i ∈ {1, 2, . . . , k} we may write

αi = ωβi + 1 + γi for some βi ∈ ω1 \ {0} and some ordinal γi < ωβi+1 (or αi = 1 + γi

for some ordinal γi < ω if αi is finite).

Let Qi = P cl(α1, . . . , αi−1, γi, αi+1, . . . , αk) for each i ∈ {1, 2, . . . , k}. We claim

that

P cl(α1, α2, . . . , αk) = P cl(ωβ1 + 1, ωβ2 + 1, . . . , ωβk + 1) + max{Q1, Q2, . . . , Qk} (∗)

(replacing ωβi + 1 with 1 if αi is finite). That this is large enough is clear. That no

smaller ordinal is large enough follows from the existence for each r ∈ {1, 2, . . . , k}
of a colouring cr : ωβ1#β2#···#βk + 1 → {1, 2, . . . , k} with the property that for each

i ∈ {1, 2, . . . , k}, there is a closed copy of ωβi+1 in colour i if and only if i = r, and no

closed copy of any ordinal larger than ωβr +1 in colour r. To obtain such a colouring,

simply extend the colouring given in Theorem 4.7.4 by setting cr(ω
β1#β2#···#βk) = r.

This equation allows P cl(α1, α2, . . . , αk) to be computed recursively, since it will be

reduced to the three cases above after a finite number of steps.

Let us conclude by illustrating with a simple example of how the recursive

expression (∗) may be used to compute a closed pigeonhole number. Reusing the
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definition of ω [α,m] from Section 4.7 for clarity, we have

P cl(ω2 · 2 + 2, ω + 2)

= P cl(ω[2, 2] + ω[0, 1], ω[1, 1] + ω[0, 1])

= P cl(ω[2, 1], ω[1, 1])

+ max{P cl(ω[2, 1] + ω[0, 1], ω[1, 1] + ω[0, 1]), P cl(ω[2, 2] + ω[0, 1], ω[0, 1])}

= ω[3, 1] + P cl(ω[2, 1] + ω[0, 1], ω[1, 1] + ω[0, 1])

= ω[3, 1] + ω[3, 1] + P cl(ω[2, 1] + ω[0, 1], ω[0, 1])

= ω[3, 2] + ω[2, 1] + ω[0, 1]

= ω3 · 2 + ω2 + 2.



Chapter 5

Topological Ramsey theory of

countable ordinals

In this chapter we study topological and closed partition relations with superscript

2. We look primarily at upper bounds for topological and closed ordinal Ramsey

numbers of countable ordinals, and prove a topological version of the Erdős–Milner

theorem, namely that Rtop(α, k) and Rcl(α, k) are countable whenever α is countable

and k is finite. The entire chapter is joint work with Andrés Caicedo.

5.1 Ordinal Ramsey numbers

Recall once again the classical, topological and closed partition relations for ordinals.

In the previous chapter we solved the case n = 1, so we now move on to the case

n = 2. We therefore make the following definition, which is analogous to definition

of the pigeonhole numbers.

Definition. Let κ be a cardinal and let αi be an ordinal for each i ∈ κ.

We define the (classical) Ramsey number R (αi)i∈κ to be the least ordinal β such

that β → (αi)
2
i∈κ, the topological Ramsey number Rtop (αi)i∈κ to be the least ordinal

β such that β →top (αi)
2
i∈κ, and the closed Ramsey number Rcl (αi)i∈κ to be the least

ordinal β such that β →cl (αi)
2
i∈κ.

For example, R(ω, ω) = Rtop(ω, ω) = Rcl(ω, ω) = ω by Ramsey’s theorem.

As with the pigeonhole numbers, if there is no ordinal β such that β → (αi)
2
i∈κ,

then we say that R (αi)i∈κ does not exist, and similarly for the topological and

closed Ramsey numbers. Furthermore, R(αi)i∈κ, R
top(αi)i∈κ and Rcl(αi)i∈κ are also

monotonically increasing functions of (αi)i∈κ (pointwise), and R(αi)i∈κ ≤ Rcl(αi)i∈κ

and Rtop(αi)i∈κ ≤ Rcl(αi)i∈κ since the closed partition relation implies the other

two. Note also that R((αi)i∈κ, (2)λ) = R(αi)i∈κ for any cardinal λ, similarly for the

topological and closed Ramsey numbers.

Since our interest is with countable Ramsey numbers, we are restricted by the

following simple argument of Specker [Spe56, Theorem 4]. Here and throughout the

71
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chapter we identify 0 with the colour red and 1 with the colour blue.

Theorem 5.1.1 (Specker). Let β be a countable ordinal. Then

β 6→ (ω + 1, ω)2.

Proof. Since β is countable, we may let 4 be an ordering on β of order type ω.

Define a colouring c : [β]2 → {red,blue} as follows. Given x, y ∈ β with x < y, set

c({x, y}) = red if and only if x 4 y. Thus if X ⊆ β is red-homogeneous, then the

4-order type of X is the same as the ≤-order type of X, and if X ⊆ β is blue-

homogeneous, then the 4-order type of X is the same as the ≥-order type of X.

Hence there is no red-homogeneous copy of ω+ 1, or else we obtain a set of 4-order

type ω + 1, and there is no blue-homogeneous copy of ω, or else we obtain a set of

4-order type ω∗.

Note that this implies β 6→cl (ω + 1, ω)2 and β 6→top (ω + 1, ω)2 for all countable

β. It follows that if α > ω and R(α, γ) is countable, then γ must be finite, and

similarly for the topological and closed Ramsey numbers. Thus if we wish to work

with countable ordinals while avoiding considerations of purely finitary Ramsey

theory, then we must look at R(α, k), Rtop(α, k) and Rcl(α, k) with α countable and

k finite.

Erdős and Milner [EM72] proved that R(α, k) is indeed countable for all

countable α and all finite k. More precisely, they proved the following result, from

which it follows by induction on k that R(ω1+α, 2k) ≤ ω1+α·k.

Theorem 5.1.2 (Erdos–Milner). Let α and β be countable non-zero ordinals, and

let k > 1 be a positive integer. If

ωα → (ω1+β, k)2,

then

ωα+β → (ω1+β, 2k)2.

We will provide a simplified proof of a weak version of this result later, followed

by a topological version of this result, which tells us that Rtop(α, k) and Rcl(α, k)

are countable for all countable α and all finite k.

Beforehand we study the topological and closed ordinal Ramsey numbers

Rtop(α, k) and Rcl(α, k) for certain small values of α. Note that these are closely

related, since if α is order-reinforcing then Rtop(α, k) = Rcl(α, k) for all finite k.

Let us conclude this section with a lower bound for Ramsey numbers in terms of

pigeonhole numbers, which is obtained by considering a k-partite graph. Although

it is very simple, it remains our best lower bound with the exception of a couple of

special cases (Lemmas 5.3.3 and 5.6.4), both of which rely on finite combinatorial

arguments.
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Proposition 5.1.3. If α ≥ 2 is an ordinal and k is a positive integer, then

R(α, k + 1) ≥ P (α)k,

and similarly for the topological and closed relations.

Proof. Suppose β < P (α)k. By definition of the pigeonhole number, it follows that

there exists a colouring c : β → k such that for all i ∈ k, no subset of c−1({i}) is

order-isomorphic to α. To see that β 6→ (α, k + 1)2, simply consider the colouring

d : [β]2 → {red,blue} given by

d({x, y}) =

red, if c(x) = c(y)

blue, if c(x) 6= c(y).

It is straightforward to verify that d does indeed witness β 6→ (α, k + 1)2.

For the topological and closed relations, simply replace “order-isomorphic” with

“homeomorphic” or “order-homeomorphic” as necessary.

5.2 The ordinal ω + 1

We begin with the simplest non-trivial case of an infinite topological Ramsey

number. It may be viewed as a strengthening of Proposition 4.5.1. Later, we will

provide a second proof of this result (in Section 5.6).

Theorem 5.2.1. If k is a positive integer, then

Rtop(ω + 1, k + 1) = Rcl(ω + 1, k + 1) = ωk + 1.

Proof. The first equality is immediate from the fact that ω + 1 is order-reinforcing,

and the fact that Rtop(ω + 1, k + 1) ≥ ωk + 1 follows from Propositions 5.1.3 and

4.5.1.

It remains to prove that ωk + 1 →top (ω + 1, k + 1)2, which we do by induction

on k. The case k = 1 is trivial. For the inductive step, suppose k ≥ 2

and let c : [ωk + 1]2 → {red, blue} be a colouring. For each m ∈ ω, let

Xm =
[
ωk−1 ·m+ 1, ωk−1 · (m+ 1)

] ∼= ωk−1 + 1. For each m ∈ ω, we may assume

by the inductive hypothesis that Xm has a blue-homogeneous set Bm of size k, or

else it has a red-homogeneous closed copy of ω + 1 and we are done. If for any

m ∈ ω it is the case that c({x, ωk}) = blue for all x ∈ Bm, then Bm ∪ {ωk} is a

blue-homogeneous set of size k + 1 and we are done. Otherwise for each m ∈ ω we

may choose xm ∈ Bm with c({xm, ωk}) = red. Finally, by Ramsey’s theorem, within

the set {xm : m ∈ ω} there is either a blue-homogeneous set of size k + 1, in which

case we are done, or an infinite red-homogeneous set H, in which case H ∪ {ωk} is

a red-homogeneous closed copy of ω + 1, and we are done as well.
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It is somewhat surprising that we are able to obtain an exact equality here using

the lower bound from Proposition 5.1.3. As we shall see, for ordinals larger than

ω + 1 there is typically a large gap between our upper and lower bounds, and we

expect that improvement will usually be possible on both sides.

5.3 Stepping up by one

In this section we consider how to obtain an upper bound for Rcl(α+1, k+1), given

upper bounds for Rcl(α, k + 1) and Rcl(α + 1, k) for a successor ordinal α and a

positive integer k. Note that if α is an infinite successor ordinal, then α+ 1 ∼= α, so

trivially Rtop(α + 1, k + 1) = Rtop(α, k + 1), which is why we study Rcl instead.

First we give two simple upper bounds. The first comes from considering the

edges incident to the largest point, as in a standard proof of the existence of the finite

Ramsey numbers. The second typically gives worse bounds, but is more similar to

the technique we will consider next.

Proposition 5.3.1. Let α be a successor ordinal, and let k ≥ 2 be a positive integer.

1. Rcl(α + 1, k + 1) ≤ P cl(Rcl(α, k + 1), Rcl(α + 1, k)) + 1.

2. Rcl(α + 1, k + 1) ≤ P cl(Rcl(α, k + 1))k +Rcl(α + 1, k).

Proof. First note that since α is a successor ordinal, a closed copy of α+1 is obtained

from any closed copy of α together with any larger point.

1. Let β = P cl(Rcl(α, k + 1), Rcl(α + 1, k)) and let c : [β + 1]2 → {red, blue} be

a colouring. This induces a colouring d : β → {red, blue} given by d(x) =

c({x, β}). By definition of P cl, there exists X ⊆ β such that either X ⊆
d−1({red}) and X is a closed copy of Rcl(α, k + 1), or X ⊆ d−1({blue}) and

X is a closed copy of Rcl(α + 1, k). In the first case, by definition of Rcl, we

are either done immediately, or we obtain a red-homogeneous closed copy Y

of α, in which case Y ∪ {β} is a red-homogeneous closed copy of α + 1. The

second case is similar.

2. Let β = P cl(Rcl(α, k + 1))k and let c : [β + Rcl(α + 1, k)]2 → {red, blue}
be a colouring. By definition of Rcl, either we are done or there is a blue-

homogeneous set of k points among those ≥ β, say {x1, x2, . . . , xk}. If for any

y < β we have c({y, xi}) = blue for all i ∈ {1, 2, . . . , k}, then we are done.

Otherwise define a colouring d : β → k by taking d(y) to be some i such

that c({y, xi}) = red. Then by definition of P cl, there exists i ∈ {1, 2, . . . , k}
and X ⊆ β such that X ⊆ d−1({i}) and X is a closed copy of Rcl(α, k + 1).

But then X either contains a blue-homogeneous set of k + 1 points, or a red-

homogeneous closed copy Y of α, in which case Y ∪{xi} is a red-homogeneous

closed copy of α + 1, as required.
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Note that Rcl(α, 2) = α for any ordinal α. Hence if α is a successor ordinal

and we have an upper bound on Rcl(α, k) for every positive integer k, then we may

easily apply either of these two inequalities recursively to obtain upper bounds on

Rcl(α + n, k) for all positive integers n and k.

Unfortunately, neither of these techniques appears to generalise well to limit

ordinals, since they are “backward-looking” in some sense. Our “forward-looking”

technique is a little more complicated and, in the form presented here, only works

below ω2. Before we state the general result, here is an illustrative special case.

Lemma 5.3.2. Rcl(ω + 2, 3) ≤ Rcl(ω + 1, 3) + P cl(ω + 2)2 = ω2 · 2 + ω + 2.

Proof. First note that Rcl(ω + 1, 3) + P cl(ω + 2)2 = (ω2 + 1) + (ω2 + ω + 2) =

ω2 · 2 + ω + 2 by Theorem 5.2.1 and Theorem 4.12.1. It remains to prove that

Rcl(ω + 1, 3) + P cl(ω + 2)2 →cl (ω + 2, 3)2.

Let β = Rcl(ω+ 1, 3), let c : [β+P cl(ω+ 2)2]2 → {red, blue} be a colouring, and

suppose for contradiction that there is no red-homogeneous closed copy of ω+2 and

no blue triangle.

By definition of Rcl, either there is a blue triangle, in which case we are done, or

there exists X ⊆ β such that X is a red-homogeneous closed copy of ω + 1. Let x

be the largest point in X and let H = X \ {x}.
Let A1 = {y ≥ β : c({x, y}) = blue} and let A2 = {y ≥ β : c({h, y}) = blue for

all but finitely many h ∈ H}.
First of all, we claim that A1 is red-homogeneous. This is because if y, z ∈ A1

and c({y, z}) = blue, then {x, y, z} is a blue triangle.

Next, we claim that A2 is red-homogeneous. This is because if y, z ∈ A2 and

c({y, z}) = blue, then c({h, y}) = c({h, z}) = blue for all but finitely many h ∈ H,

and so {h, y, z} is a blue triangle for any such h.

Finally, we claim that if y ≥ β, then y ∈ A1 ∪ A2. For otherwise we would have

y ≥ β with c({x, y}) = red and c({h, y}) = red for all h in some infinite subset

K ⊆ H, whence K ∪ {x, y} is a red-homogeneous closed copy of ω + 2. Hence by

definition of P cl, either A1 or A2 contains a closed copy of ω+2, which by the above

claims must be red-homogeneous, and we are done.

Digressing briefly, we show that in this particular case the upper bound is

optimal, and thus Rcl(ω + 2, 3) = ω2 · 2 + ω + 2. The colouring we present was

found by Omer Mermelstein.

Lemma 5.3.3. Rcl(ω + 2, 3) ≥ ω2 · 2 + ω + 2.

Proof. We provide a colouring witnessing ω2 · 2 + ω + 1 6→cl (ω + 2, 3)2. In order to

define it, let G be the graph represented by the following diagram.
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{0} ∪ {x+ 1 : x ∈ ω2}

{ω · (n+ 1) : n ∈ ω}

{ω2}

{ω2 + x+ 1 : x ∈ ω2}

{ω2 + ω · (n+ 1) : n ∈ ω}

{ω2 · 2}

{ω2 · 2 + x+ 1 : x ∈ ω}

{ω2 · 2 + ω}

Define a colouring c : [ω2 ·2+ω+1]2 → {red, blue} by setting c({x, y}) = blue if and

only if x and y lie in distinct, adjacent vertices of G. First note that there is no blue

triangle since G is triangle-free. Now suppose X is a closed copy of ω+ 2, and write

X = Z ∪ {x} ∪ {y} with z < x < y for all z ∈ Z. If Z ∪ {x} is red-homogeneous,

then either x = ω2 and Z ⊆ {0} ∪ {x+ 1 : x ∈ ω2}, or x = ω2 · 2 and (discarding a

finite initial segment of Z if necessary) we may assume Z ⊆ {ω2 + x + 1 : x ∈ ω2}.
In each case either c({x, y}) = blue or c({z, y}) = blue for all z ∈ Z. Hence X

cannot be red-homogeneous, and we are done.

Here is the general formulation of our “forward-looking” technique.

Proposition 5.3.4. Let k, m and n be positive integers with k ≥ 2. Then

Rcl(ω ·m+ n+ 1, k + 1) ≤ Rcl(ω ·m+ n, k + 1) + P cl(Rcl(ω ·m+ n+ 1, k))2m+n−1.

Proof. Let β = Rcl(ω ·m+n, k+1) and let c : [β+P cl(Rcl(ω ·m+n+1, k))2m+n−1]2 →
{red, blue} be a colouring.

By definition of Rcl, either there is a blue-homogeneous set of k + 1 points, in

which case we are done, or there exists X ⊆ β such that X is a red-homogeneous

closed copy of ω ·m+ n. In that case, write

X = H1 ∪ {x1} ∪H2 ∪ {x2} ∪ · · · ∪ {xm−1} ∪Hm ∪ {y1, y2, . . . , yn}

with H1, H2, . . . , Hm each of order type ω and h1 < x1 < h2 < x2 < · · · < xm−1 <

hm < y1 < y2 < · · · < yn whenever hi ∈ Hi for all i ∈ {1, 2, . . . ,m}.
For each z ≥ β, if every single one of the following 2m+ n− 1 conditions holds,

then X ∪ {z} contains a closed copy of ω ·m+ n+ 1, and we are done.

� c({h, z}) = red for infinitely many h ∈ Hi (one condition for each i ∈
{1, 2, . . . ,m})

� c({xi, z}) = red (one condition for each i ∈ {1, 2, . . . ,m− 1})

� c({yi, z}) = red (one condition for each i ∈ {1, 2, . . . , n})

Thus we may assume that one of these conditions fails for each z ≥ β. This

induces a 2m + n − 1-colouring of these points, so by definition of P cl there is
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a closed copy X of Rcl(ω · m + n + 1, k) among these points such that the same

condition fails for each z ∈ X.

Finally, by definition of Rcl, X contains either a red-homogeneous closed copy

of ω ·m+ n+ 1, in which case we are done, or a blue-homogeneous set of k points,

in which case using the failed condition we can find a final point with which to

construct a blue-homogeneous set of k + 1 points.

Because of Theorem 5.2.1, any one of the inequalities from Propositions 5.3.1

and 5.3.4 is enough for us to obtain upper bounds for Rcl(ω+n, k) for all finite n, k.

We conclude this section with an explicit statement of a few of these upper bounds.

Curiously, in the second part, we require both Propositions 5.3.1 and 5.3.4 in order

to obtain the best bound.

Corollary 5.3.5. 1. Rcl(ω + 2, 4) ≤ ω4 · 3 + ω3 + ω2 + ω + 2.

2. If k ≥ 4 is a positive integer, then

Rcl(ω+2, k+1) ≤ ωr·3+ωr−1+ωr−2+ωr−3+ωr−4+ωr−8+ωr−13+ωr−19+· · ·+ωk+2,

where r = k2+k−4
2

.

3. If n ≥ 3 is a positive integer, then

Rcl(ω+n, 3) ≤ P cl(ω+n)n = ωn+ωn−1(n−1)+ωn−2(n−1)+· · ·+ω ·(n−1)+n.

Proof. 1. By Proposition 5.3.4 and Lemma 5.3.2, Rcl(ω + 2, 4) ≤ Rcl(ω + 1, 4) +

P cl(Rcl(ω + 2, 3))2 = ω3 + 1 + P cl(ω2 · 2 + ω + 2)2 = ω4 · 3 + ω3 + ω2 + ω + 2.

2. This can be obtained from part 1 by recursively applying the first inequality

from Proposition 5.3.1.

3. By Proposition 5.3.4, Rcl(ω + n, 3) ≤ Rcl(ω + (n− 1), 3) + P cl(ω + n)n. Using

Lemma 5.3.2 for the base case, it is easy to see by induction that the second

term here has the largest power of ω, since n ≥ 3. Hence Rcl(ω + n, 3) ≤
P cl(ω + n)n, and the equality with the right-hand side is a simple induction

exercise.

Remark 5.3.6. The inequality in part 3 of this result is improved upon by Lemma

5.4.5 from the following section for all n ≥ 9.

For comparison, the corresponding lower bounds given by Proposition 5.1.3 are

as follows. If k, n ≥ 3 are positive integers, then

Rcl(ω + 2, k + 1) ≥ P (ω + 2)k = ωk + ωk−1 + · · ·+ ω + 2
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and

Rcl(ω + n, 3) ≥ P (ω + n)2 = ω2 + ω · (n− 1) + n,

but note the latter is already far behind Rcl(ω+n, 3) ≥ Rcl(ω+2, 3) = ω2 ·2+ω+2.

5.4 Ordinals less than ω2

So far we only have upper bounds on Rcl(α, k) for α < ω · 2. In this section we

extend this to α < ω2 with the following result.

Theorem 5.4.1. If k and m are positive integers, then

Rcl(ω ·m+ 1, k + 1) < ωω.

In fact, in each case the proof gives an explicit upper bound below ωω.

Our proof builds upon the stepping up technique from Proposition 5.3.4. We

also make use of some classical ordinal Ramsey theory in the form of the following

result.

Theorem 5.4.2 (Erdős–Rado). If k and m are positive integers, then R(ω ·m, k) <

ω2.

In fact, Erdős and Rado computed the exact values of these Ramsey numbers

in terms of a combinatorial property of finite digraphs. More precisely, we consider

digraphs for which loops are not allowed, but edges between two vertices pointing in

both directions are allowed. The complete digraph on m vertices is denoted by K∗m.

Recall that a tournament of order k is a digraph obtained by assigning directions to

the edges of the complete (undirected) graph on k vertices, and that a tournament

is transitive if and only if these assignments are compatible, that is, if and only if

whenever x, y and z are distinct vertices with an edge from x to y and an edge from

y to z, then there is also an edge from x to z. The class of transitive tournaments

of order k is denoted by Lk.

Using this terminology, Theorem 5.4.2 can be deduced from the following two

results of Erdős and Rado (who stated them in a slightly different manner). See

[ER56, Theorem 25] and [ER67].

Lemma 5.4.3 (Erdős–Rado). If k and m are positive integers, then there is a

positive integer p such that any digraph on p or more vertices admits either an

independent set of size m, or a transitive tournament of order k. We denote the

least such p by R(K∗m, Lk).

Theorem 5.4.4 (Erdős–Rado). If k,m > 1 are positive integers, then R(ω ·m, k) =

ω ·R(K∗m, Lk).
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Before indicating how to prove Theorem 5.4.1 in general, we first illustrate the

key ideas with the following special case. We use the special case of Theorem 5.4.4

that R(ω · 2, 3) = ω · 4.

Lemma 5.4.5. Rcl(ω · 2 + 1, 3) ≤ ω8 · 7 + 1.

The proof uses a non-principal ultrafilter on ω. This use is superfluous, but

makes the idea more transparent, since in some sense the ultrafilter makes many

choices for us. The result is actually provable in (a weak sub-theory of) ZF (see

Remark 5.4.7).

Proof. To make explicit the reason for using the ordinal ω8 · 7 + 1, let

� β1 = P cl(ω · 2 + 1, ω · 2 + 1, ω2 + 1) = ω4 · 3 + 1,

� β2 = P cl(ω · 2 + 1, ω · 2 + 1, ω2 + 1 + β1) = ω6 · 5 + 1,

� β3 = P cl(ω · 2 + 1, ω · 2 + 1, ω2 + 1 + β2) = ω8 · 7 + 1 and

� β = ω2 + 1 + β3 = ω8 · 7 + 1.

Fix a non-principal ultrafilter U on ω and let c : [β]2 → {red, blue} be a colouring.

Among the first ω2 + 1 elements of β, we may assume that we have a red-

homogeneous closed copy of ω+ 1. Let x be its largest point and let H be its subset

of order type ω. Write H = {hn : n ∈ ω} with h0 < h1 < . . . .

Now the set of points ≥ ω2 + 1 forms a disjoint union A1 ∪ A2 ∪ A3, where

� A1 = {a ≥ ω2 + 1 : c({x, a}) = blue},

� A2 = {a ≥ ω2 + 1 : c({x, a}) = red but {n ∈ ω : c({hn, a}) = blue} ∈ U}} and

� A3 = {a ≥ ω2 + 1 : c({x, a}) = red and {n ∈ ω : c({hn, a}) = red} ∈ U}}.

If either A1 or A2 contains a closed copy of ω · 2 + 1, then we are done. (For A2,

we use the fact that if U, V ∈ U then U ∩ V ∈ U .) So by definition of β3, we may

assume that A3 contains a closed copy X of ω2 + 1 + β2.

Now we repeat the argument within X. Among the first ω2 + 1 members of X,

we may assume we that have a red-homogeneous closed copy of ω + 1. Let y be its

largest point, and let I be its subset of order type ω. Write I = {in : n ∈ ω . . . }
with i0 < i1 < . . . . (Note that at this stage, {n ∈ ω : c({hn, i}) = red} ∈ U for all

i ∈ I, yet we cannot conclude from this that there are infinite subsets H ′ ⊆ H and

I ′ ⊆ I such that H ′ ∪ I ′ is red-homogeneous.)

Just as before, write the subset of X lying above its first ω2 + 1 members as a

disjoint union B1 ∪ B2 ∪ B3, where b ∈ B1 if and only if c({y, b}) = blue, b ∈ B2 if

and only if c({y, b}) = red but {n ∈ ω : c({in, b}) = blue} ∈ U , and b ∈ B3 if and

only if c({y, b}) = red and {n ∈ ω : c({in, b}) = red} ∈ U . Again we may conclude

from the definition of β2 that B3 contains a closed copy Y of ω2 + 1 + β1.
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Repeat this argument once again within Y , and then pass to a final red-

homogeneous closed copy of ω + 1. We obtain a closed set

H ∪ {x} ∪ I ∪ {y} ∪ J ∪ {z} ∪K ∪ {w}

of order type ω · 4 + 1 (with J = {jn : n ∈ ω}, j0 < j1 < . . . and K = {kn : n ∈ ω},
k0 < k1 < . . . ) such that H∪{x}, I∪{y}, J∪{z} and K∪{w} are red-homogeneous,

{x, y, z, w} is red-homogeneous, c({x, in}) = c({x, jn}) = c({x, kn}) = c({y, jn}) =

c({y, kn}) = c({z, kn}) = red for all n ∈ ω, and finally for any a > x, b > y and c > z

in this set, we have {n ∈ ω : c({hn, a}) = red} ∈ U , {n ∈ ω : c({in, b}) = red} ∈ U
and {n ∈ ω : c({jn, c}) = red} ∈ U .

At last we use the ultrafilter, in which is the crucial step of the argument. Let

� H ′ = {h ∈ H : c({h, y}) = c({h, z}) = c({h,w}) = red},

� I ′ = {i ∈ I : c({i, z}) = c({i, w}) = red} and

� J ′ = {j ∈ J : c({j, w}) = red},

each of which corresponds to some U ∈ U and is therefore infinite. (Note that

if we had tried to argue directly, without using the ultrafilter or modifying the

construction in a substantial way, then we would have been able to deduce that J ′ is

infinite, but it would not have been apparent that H ′ or I ′ are.) This ensures that

c({a, b}) = red whenever a ∈ {x, y, z, w} and b ∈ H ′∪{x}∪I ′∪{y}∪J ′∪{z}∪K∪{w}.
To complete the proof, recall that that ω · 4 → (ω · 2, 3)2. It follows that there

is either a blue triangle, in which case we are done, or a red-homogeneous subset

M ⊆ H ′ ∪ I ′ ∪ J ′ ∪K of order type ω · 2. Let S be the initial segment of M of order

type ω and T = M\S, and let s = sup(S) and t = sup(T ) (so that s, t ∈ {x, y, z, w}).
Then S ∪ {s} ∪ T ∪ {t} is a red-homogeneous closed copy of ω · 2 + 1, and we are

done.

We now indicate the modifications required to obtain the general result.

Proof of Theorem 5.4.1. The proof is by induction on k. The case k = 1 is trivial.

For the inductive step, suppose k ≥ 2. We can now use the argument of Lemma

5.4.5 with just a couple of changes.

Firstly, we require ωk + 1 points in order to be able to assume that we have a

red-homogeneous closed copy of ω + 1.

Secondly, it is no longer enough for A1 or A2 to contain a closed copy of ω ·m+1,

but it is enough for one of them to contain a closed copy of Rcl(ω ·m+ 1, k), which

we have an upper bound on by the inductive hypothesis (and likewise for B1 and

B2, and so on).

Finally, in order to complete the proof using Theorem 5.4.4, we must iterate the

argument R(K∗m, Lk+1) times.
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This argument demonstrates that Rcl(ω ·m+ 1, k+ 1) ≤ ωk + 1 + βR(K∗m,Lk+1)−1,

where β0 = 0 and βi = P cl(Rcl(ω · m + 1, k), Rcl(ω · m + 1, k), ωk + 1 + βi−1) for

i ∈ {1, 2, . . . , R(K∗m, Lk+1)− 1}.

To obtain upper bounds for Rcl(ω ·m + n, k) for all finite k, m and n, one can

again use any of the three inequalities from Propositions 5.3.1 and 5.3.4, which may

give better bounds than simply using the bound on Rcl(ω · (m+ 1) + 1, k) given by

Theorem 5.4.1.

Remark 5.4.6. It is perhaps worth pointing out that the classical version of this

problem, the precise computation of the numbers R(ω ·m+n, k) for finite k, m and

n, was solved more than 40 years ago. It proceeds by reducing the problem to a

question about finite graphs that can be effectively, albeit unfeasibly, solved with a

computer. This was announced without proof in [HS69a] and [HS69b]. See [Cai15]

for further details.

Remark 5.4.7. At the cost of a somewhat more cumbersome approach, we may

eliminate the use of the non-principal ultrafilter and any appeal to the axiom of

choice throughout this and the next section. Rather than presenting this version

of the proof, we mention a simple and well-known absoluteness argument ensuring

that choice is indeed not needed.

We present the argument in the context of Lemma 5.4.5; the same approach

removes all other uses of choice in this and the next section. Work in ZF. With β as

in the proof of Lemma 5.4.5, consider a colouring c : [β]2 → 2, and note that L[c] is

a model of choice, and that the definitions of β and of homogeneous closed copies of

ω · 2 + 1 and 3 are absolute between the universe of sets and this inner model. Since

L[c] is a model of choice, the argument of Lemma 5.4.5 gives us a homogeneous set

as required, with the additional information that it belongs to L[c].

5.5 The ordinal ω2

In this section we adapt the argument from the previous section to prove the

following result.

Theorem 5.5.1. If k is a positive integer, then ωω →cl (ω2, k).

Since ω2 is order-reinforcing, it follows that Rtop(ω2, k) = Rcl(ω2, k) ≤ ωω.

The ordinal ωω appears essentially because P cl(ωω)m = ωω for all finite m,

allowing us to iterate the argument of Lemma 5.4.5 infinitely many times.

Again we require a classical ordinal Ramsey result. This one is due to Specker

[Spe56, Theorem 1] (see also [HS69b]).

Theorem 5.5.2 (Specker). If k is a positive integer, then ω2 → (ω2, k)2.
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Proof of Theorem 5.5.1. The proof is by induction on k. The cases k ≤ 2 are trivial.

For the inductive step, suppose k ≥ 3. Fix a non-principal ultrafilter U on ω and

let c : [ωω]2 → {red, blue} be a colouring.

We argue in much the same way as in the proof of Lemma 5.4.5. Among the first

ωk−1 + 1 elements of ωω, we may assume that we have a red-homogeneous closed

copy of ω + 1. Let x0 be its largest point and let H0 be its subset of order type ω.

Write the set of points ≥ ωk−1 + 1 as a disjoint union A1∪A2∪A3 as in the proof of

Lemma 5.4.5. If either A1 or A2 contains a closed copy of ωω, then by the inductive

hypothesis we may assume it contains a blue-homogeneous set of k − 1 points, and

we are done by the definitions of A1 and A2. But P cl(ωω)3 = ωω, so we may assume

that A3 contains a closed copy X1 of ωω.

We can now work within X1 and iterate this argument infinitely many times to

obtain a closed set

H0 ∪ {x0} ∪H1 ∪ {x1} ∪ . . .

of order type ω2. For each i ∈ ω, write Hi = {hi,n : n ∈ ω} with hi,0 < hi,1 < . . . .

By construction, for all i, j ∈ ω with i < j,

1. c({xi, xj}) = red,

2. c({xi, hj,n}) = red for all n ∈ ω and

3. {n ∈ ω : c({hi,n, xj}) = red} ∈ U .

We would like to be able to assume that condition 3 can be strengthened to

c({hi,n, xj}) = red for all n ∈ ω by using the ultrafilter to pass to a subset. However,

for each i there are infinitely many j > i, and we can only use the ultrafilter to deal

with finitely many of these.

In order to overcome this difficulty, we use two new ideas. The first new idea is

to modify our construction so as to ensure that for all i, j ∈ ω with i < j, we also

have

4. c({hi,n, xj}) = red for all n < j.

We can achieve this by modifying the construction of Xj (the closed copy of ωω

from which we extracted Hj ∪ {xj}). Explicitly, we now include in our disjoint

union one additional set for each pair (i, n) with i, n < j, which contains the points

y that remain with c({hi,n, y}) = blue. We then extract Xj using the fact that

P cl(ωω)j2+3 = ωω.

This extra condition is enough for us to continue. The second new idea is to

pass to a subset of the form

H ′ = {hi,n : i ∈ I, n ∈ N} ∪ {xi : i ∈ I}

for some infinite I,N ⊆ ω, and to build up I andN using a back-and-forth argument.

To do this, start with I = N = ∅ and add an element to I and an element to N
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alternately in such a way that c({hi,n, xj}) = red whenever n ∈ N and i, j ∈ I with

i < j. Condition 4 ensures that we can always add a new element to I simply by

taking it to be larger than all other members of I and all members of N so far.

Meanwhile, condition 3 ensures there is always some U ∈ U from which we may

choose any member to add to N : at each stage, there are only finitely many new

conditions and so our ultrafilter is enough.

Then c({a, b}) = red whenever a ∈ H ′ and b ∈ H ′ ∩ {xi : i ∈ ω}. Finally,

by Theorem 5.5.2 we may assume that there is a red-homogeneous subset M ⊆
H ′ \ {xi : i ∈ ω} of order type ω2, and then the topological closure of M in H ′ is a

red-homogeneous closed copy of ω2.

Remark 5.5.3. We have organised this argument in such a way that the reader

may readily verify the following. For any positive integer k and any colouring

c : [ωω]2 → {red,blue}, there is either a blue-homogeneous set of k points, or a

red-homogeneous closed copy of an ordinal larger than ω2, or a red-homogeneous

closed copy of ω2 that is moreover cofinal in ωω. This strengthening of Theorem

5.5.1 will be useful in Section 5.7.

5.6 The anti-tree partial ordering on ordinals

The techniques from the last few sections enable us to reach ω2, but do not seem

to get us any further without cumbersome machinery. In this section we introduce

a new approach, which does not directly help get us beyond ω2 but does provide a

helpful perspective. We use this approach to prove the following result.

Theorem 5.6.1. ω2 · 3 ≤ Rtop(ω · 2, 3) ≤ ω3 · 100.

It is more transparent to describe this new approach in terms of a new partial

ordering on ordinals. A variant of this ordering was independently considered by

Piña in [Pn14], who identified countable ordinals with families of finite sets. Readers

who are familiar with that work may find it helpful to note that for ordinals less

than ωω, our new relation ≤∗ coincides with the superset relation ⊇ under that

identification. (Note that none of the results we prove here are used outside this

section.)

Definition. Let α and β be ordinals. If β > 0, then write β = η + ωγ with η a

multiple of ωγ. Then we write α <∗ β to mean that β > 0 and α = η + ζ for some

0 < ζ < ωγ. We write α C∗ β to mean that α <∗ β and there is no ordinal δ with

α <∗ δ <∗ β.

Equivalently, α <∗ β if and only if β = α+ ωγ for some γ > CB(α), and αC∗ β

if and only if β = α+ωCB(α)+1. For example, ω3 +ω <∗ ω3 ·2 and ω3 ·2+1 <∗ ω3 ·3,

but ω3 + ω 6<∗ ω3 · 3 and ω3 · 2 + 1 6<∗ ω3 · 2.

Here are some simple properties of these relations.
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1. <∗ is a strict partial ordering.

2. If α <∗ β then α < β and CB(α) < CB(β).

3. If αC∗ β then CB(β) = CB(α) + 1.

4. The class of all ordinals forms an “anti-tree” under the relation <∗ in the sense

that for any ordinal α, the class of ordinals β with α <∗ β is well-ordered by

<∗.

By property 4, if k is a positive integer, then ωk + 1 forms a tree under the

relation >∗. It fact it is what we will call a perfect ℵ0-tree of height k.

Definition. Let k be a positive integer and let X be a single-rooted tree. We say

that x ∈ X has height k to mean that x has exactly k predecessors. We say that

x ∈ X is a leaf of X to mean that x has no immediate successors, and denote the

set of leaves of X by `(X). We say that X is a perfect ℵ0-tree of height k to mean

that every non-leaf of X has ℵ0 immediate successors and every leaf of X has height

k.

Let X be a perfect ℵ0-tree of height k. We say that a subset Y ⊆ X is a full

subtree of X to mean that Y is a perfect ℵ0-tree of height k under the induced

relation.

Note that if X is a full subtree of ωk + 1, then X ∼= ωk + 1. Note also that full

subtrees are determined by their leaves.

A perfect ℵ0-tree of height 2, corresponding to the ordinal ω2 + 1

Here is a simple result about colourings of perfect ℵ0-trees of height k. The proof

essentially amounts to k applications of the infinite pigeonhole principle.

Lemma 5.6.2. Let k be a positive integer, let X be a perfect ℵ0-tree of height k and

let c : `(X) → {red, blue} be a colouring. Then there exists a full subtree Y of X

such that `(Y ) is monochromatic.

Proof. The proof is by induction on k. The case k = 1 is simply the infinite

pigeonhole principle, so assume k > 1. Let Z be the set of elements of X of height

at most k − 1, so Z is a perfect ℵ0-tree of height k − 1. Then for each z ∈ `(Z), by

the infinite pigeonhole principle again there exists d(z) ∈ {red, blue} and an infinite

subset Yz of the successors of z such that c(x) = d(z) for all x ∈ Yz. This defines a
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colouring d : `(Z) → {red, blue}, so by the inductive hypothesis there exists a full

subtree W of Z such that `(W ) is monochromatic for d. Finally let

Y = W ∪
⋃

w∈`(W )

Yw.

Then Y is as required.

Recall Theorem 5.2.1, which states that if k is a positive integer, then Rtop(ω +

1, k+1) = Rcl(ω+1, k+1) ≥ ωk+1. To illustrate the relevance of these notions, we

now provide a second proof of this result. This is also the proof that we will mirror

when the result is generalised in Theorem 5.7.1.

The crux of the proof is the following result, which says that any {red, blue}-
colouring of ωk+1 avoiding both a red-homogeneous topological copy of ω+1 and a

blue-homogeneous topological copy of ω is in some sense similar to the k+ 1-partite

{red, blue}-colouring that falls out of the proofs of Propositions 5.1.3 and 4.5.1.

Lemma 5.6.3. Let k be a positive integer and let c : [ωk + 1]2 → {red, blue} be a

colouring. Suppose that

(a) there is no red-homogeneous topological copy of ω + 1, and

(b) there is no blue-homogeneous topological copy of ω.

Under these assumptions, there is a full subtree X of ωk+1 such that for all x, y, z ∈
X:

1. if xC∗ z and y C∗ z then c({x, y}) = red; and

2. if x <∗ y then c({x, y}) = blue.

The proof makes use of Lemma 5.6.2.

Proof. The proof is by induction on k.

For the base case, suppose k = 1. By the infinite Ramsey theorem there exists an

infinite homogeneous subset Y ⊆ ω. By condition (b) this must be red-homogeneous.

Now by the infinite pigeonhole principle there must exist i ∈ {red, blue} and an

infinite subset Z ⊆ Y such that c({x, ω}) = i for all x ∈ Z. By condition (a) we

must have i = blue. Then Z ∪ {ω} is a full subtree of ω + 1 with the required

properties.

For the inductive step, suppose k > 1. First apply the inductive hypothesis to

obtain a full subtree Ym of
[
ωk ·m+ 1, ωk · (m+ 1)

] ∼= ωk−1 + 1 for each m ∈ ω,

and let Y =
⋃
m∈ω Ym ∪ {ωk}. Then use the inductive hypothesis again to obtain a

full subtree Z of Y \ `(Y ) ∼= ωk−1 + 1, and let

W = Z ∪ {y ∈ `(Y ) : y C∗ z for some z ∈ Z}.
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By our uses of the inductive hypothesis, conditions 1 and 2 hold whenever x, y, z ∈
Ym for some m ∈ ω or x, y, z ∈ Z. Thus it is sufficient to find a full subtree X

of W such that c({x, ωk}) = blue for all x ∈ `(X). To do this, define a colouring

c̃ : `(W ) → {red, blue} by c̃(x) = c({x, ωk}). Then apply Lemma 5.6.2 to obtain

i ∈ {red, blue} and a full subtree X of W such that c({x, ωk}) = i for all x ∈ `(X).

Now let V be a cofinal subset of `(X) of order type ω. By the infinite Ramsey

theorem there exists an infinite homogeneous subset U ⊆ V , which by condition (b)

must be red-homogeneous. But then U ∪ {ωk} is a topological copy of ω + 1, so by

condition (a) we must have i = blue, and we are done.

Theorem 5.2.1 now follows easily.

Second proof of Theorem 5.2.1. As in the first proof, Rtop(ω + 1, k + 1) = Rcl(ω +

1, k + 1) ≥ ωk + 1.

To see that ωk + 1 →top (ω + 1, k + 1)2, let c : [ωk + 1]2 → {red, blue} be

a colouring. If there is a red-homogeneous topological copy of ω + 1 or a blue-

homogeneous topological copy of ω, then we are done. Otherwise, choose X ⊆ ωk+1

as in Lemma 5.6.3. Then any branch (i.e., any maximal chain under >∗) of X forms

a blue-homogeneous set of k + 1 points.

We conclude this section by proving our bounds on Rtop(ω · 2, 3). Before doing

this, we remark that it is crucial that we consider here the topological rather than

the closed Ramsey number. Since ω + n ∼= ω + 1 for every positive integer n,

from a topological perspective, ω · 2 is the simplest ordinal space larger than ω + 1.

Moreover, there are sets of ordinals containing a topological copy of ω · 2 but not

even a closed copy of ω+2, such as (ω ·2+1)\{ω}. Accordingly, we have only been

able to apply the technique we present here to this simplest of cases. Nonetheless,

it may still be possible to adapt this technique to obtain upper bounds on closed

(as well as topological) Ramsey numbers.

We begin by proving the lower bound. Recall from Theorem 4.12.1 that

P top(ω · 2)2 = ω2 · 2. Thus we have indeed improved upon the lower bound given

by Proposition 5.1.3. As with the lower bound of Lemma 5.3.3, we provide a simple

colouring based on a small finite graph.

Lemma 5.6.4. Rtop(ω · 2, 3) ≥ ω2 · 3.

Proof. Since any ordinal less than ω2 ·3 is homeomorphic to a subspace of ω2 ·2 + 1,

it is sufficient to prove that ω2 · 2 + 1 6→top (ω · 2, 3)2. To see this, let G be the graph

represented by the following diagram.
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{0} ∪ {x+ 1 : x ∈ ω2}

{ω · (n+ 1) : n ∈ ω}

{ω2}

{ω2 + x+ 1 : x ∈ ω2}

{ω2 + ω · (n+ 1) : n ∈ ω}

{ω2 · 2}

Now define a colouring c : [ω2 ·2+1]2 → {red, blue} by setting c({x, y}) = blue if and

only if x and y lie in distinct, adjacent vertices of G. First note that there is no blue

triangle since G is triangle-free. To see that there is no red-homogeneous topological

copy of ω · 2, first note that every vertex of G is discrete, and moreover the union of

any vertex from the left half of G and any vertex the right half of G is also discrete.

Therefore the only maximal red-homogeneous subspaces that are not discrete are

{ω · (n+ 1) : n ∈ ω}∪{ω2}∪{ω2 · 2} and {ω2 +ω · (n+ 1) : n ∈ ω}∪{ω2}∪{ω2 · 2},
neither of which contains a topological copy of ω · 2.

Our upper bound makes use of several classical ordinal Ramsey results.

Firstly, we use the special case of Theorem 5.5.2 that ω2 → (ω2, 3)2.

Secondly, we use Theorem 5.4.4. In fact, we essentially prove that Rtop(ω ·2, 3) ≤
ω3 · R(K∗10, L3). The best known upper bound on R(K∗10, L3) is due to Larson and

Mitchell [LM97].

Theorem 5.6.5 (Larson–Mitchell). If n > 1 is a positive integer, then R(K∗n, L3) ≤
n2.

In particular, R(K∗10, L3) ≤ 100 and hence ω · 100 → (ω · 10, 3)2 by Theorem

5.4.4.

Finally, we use the following result, which was claimed without proof by Haddad

and Sabbagh [HS69b] and has since been proved independently by Weinert [Wei14,

Theorem 2.14].

Theorem 5.6.6 (Haddad–Sabbagh; Weinert). R(ω2 · 2, 3) = ω2 · 10.

We are now ready to prove our upper bound. The first part of the proof is the

following analogue of Lemma 5.6.3. The proof uses in an essential manner that we

are looking for a topological rather than a closed copy of ω · 2.

Lemma 5.6.7. Let c : [ω2 + 1]2 → {red, blue} be a colouring. Suppose that

(a) there is no red-homogeneous topological copy of ω · 2, and

(b) there is no blue triangle.

Under these assumptions, there is a full subtree X of ω2+1 such that for all x, y ∈ X:

1. if CB(x) = CB(y) then c({x, y}) = red;
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2. if CB(x) = 0 then c({x, ω2}) = blue; and

3. if CB(x) = 1 then c({x, ω2}) = red.

Proof. First note that (ω2 + 1) \ (ω2 + 1)′ has order type ω2, so by condition (b) it

has a red-homogeneous subset W of order type ω2, since ω2 → (ω2, 3)2. Let Y0 be

a full subtree of ω2 + 1 with `(Y0) ⊆ W . By applying the infinite Ramsey theorem

to Y ′0 \ Y
(2)

0 , we may similarly pass to a full subtree Y1 of Y0 such that Y ′1 \ Y
(2)

1 is

red-homogeneous. Thus Y1 satisfies condition 1.

Next apply Lemma 5.6.2 to obtain i ∈ {red, blue} and a full subtree Z of Y1

such that c({x, ω2}) = i for all x ∈ `(Z). If i = red, then `(Z) ∪ {ω2} would be

red-homogeneous, so by condition (a) i = blue and Z satisfies condition 2.

Finally apply the infinite pigeonhole principle to Z ′\Z(2) to obtain j ∈ {red, blue}
and a full subtree X of Z such that c({x, ω2}) = j for all x ∈ X with CB(x) = 1. If

j = blue, then by condition (b) we would have c({x, y}) = red for all x, y ∈ X with

CB(x) = 0 and CB(y) = 1, whence X \ {ω2} would be red-homogeneous. Hence by

condition (a) j = red and X is as required.

We can now complete the proof of our upper bound and hence of Theorem 5.6.1.

Proof of Theorem 5.6.1. By Lemma 5.6.4, it remains only to prove that Rtop(ω ·
2, 3) ≤ ω3 · 100.

Let X = ω3 · 100, let c : [X]2 → {red, blue} be a colouring and suppose for

contradiction that there is no red-homogeneous topological copy of ω ·2 and no blue

triangle.

First note that X(2) \X(3) has order type ω · 100, so it has a red-homogeneous

subset U of order type ω · 10, since ω · 100 → (ω · 10, 3)2. Next let V = {x ∈ X :

x C∗ y for some y ∈ U}. Note that V has order type ω2 · 10, and so V has a red-

homogeneous subset W of order type ω2 · 2, since ω2 · 10→ (ω2 · 2, 3)2 by Theorem

5.6.6. Finally, let

Y = cl(W ) ∪ {x ∈ X : xC∗ y for some y ∈ W},

where cl denotes the topological closure operation. Replacing Y with Y \{maxY } if

necessary, we may then assume that Y ∼= ω3 ·2, and by construction both Y (2) \Y (3)

and Y ′ \ Y (2) are red-homogeneous.

Assume for notational convenience that Y = ω3 · 2. By applying Lemma 5.6.7

to the interval [ω2 · α + 1, ω2 · (α + 1)] for each α ∈ ω · 2, we may assume that

c({ω2 · α + ω · (n+ 1), ω2 · (α + 1)}) = red for all n ∈ ω. By applying Lemma 5.6.7

to (ω3 + 1)′, we may then assume that c({ω2 · (α+ 1), ω3}) = red and c({ω2 ·α+ω ·
(n+ 1), ω3}) = blue for all α, n ∈ ω.

Finally by applying the infinite pigeonhole principle to {ω2·(α+1) : α ∈ [ω, ω·2)},
we may assume that c({ω3, ω2·(α+1)}) = i for all α ∈ [ω, ω·2), where i ∈ {red, blue},
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and then by applying the infinite pigeonhole principle to {ω · (n + 1) : n ∈ ω}, we

may assume that c({ω · (n+1), ω3 +ω2}) = j, where j ∈ {red, blue}. Now if i = red,

then (ω3 · 2)(2) would be a red-homogeneous topological copy of ω · 2, and if j = red,

then {ω · (n+ 1) : n ∈ ω} ∪ {ω3 + ω · (n+ 1) : n ∈ ω} ∪ {ω3 + ω2} would be a red-

homogeneous topological copy of ω · 2. So i = j = blue. But then {ω, ω3, ω3 + ω2}
is a blue triangle.

5.7 The ordinal ω2 + 1

We now use our earlier result on ω2 together with some of the ideas from the previous

section to obtain upper bounds for ω2 + 1. We deduce these from Theorem 5.5.1

and the following general result.

Theorem 5.7.1. Let α and β be countable ordinals with β > 0, let k be a positive

integer, and suppose they satisfy a “cofinal version” of

ωω
α →cl (ωβ, k + 2)2.

Then

ωω
α·(k+1) + 1→cl (ωβ + 1, k + 2)2.

Moreover, if ωω
α
> ωβ, then in fact

ωω
α·k + 1→cl (ωβ + 1, k + 2)2.

The cofinal version of the partition relation requires that for every colouring c :[
ωω

α]2 → {red, blue},

� there is a blue-homogeneous set of k + 2 points, or

� there is a red-homogeneous closed copy of ωβ that is cofinal in ωω
α
, or

� there is already a red-homogeneous closed copy of ωβ + 1.

Before providing the proof, we first deduce our upper bounds for ω2 + 1. Since

ω2 + 1 is order-reinforcing, it follows that Rtop(ω2 + 1, k + 2) = Rcl(ω2 + 1, k + 2) ≤
ωω·k + 1.

Corollary 5.7.2. If k is a positive integer, then ωω·k + 1→cl (ω2 + 1, k + 2)2.

Proof. By Theorem 5.7.1, since ωω > ω2 it is enough to prove the cofinal version of

ωω →cl (ω2, k + 2)2. The usual version is precisely Theorem 5.5.1, and the cofinal

version is easily obtained from the same proof, as indicated in Remark 5.5.3.

Observe that by applying Ramsey’s theorem instead of Theorem 5.5.1, one

obtains yet another proof of Theorem 5.2.1 from the case α = 0. Indeed, our
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proof of Theorem 5.7.1 is similar to our second proof of that result, though we do

not explicitly use any of our results on the anti-tree partial ordering.

The bulk of the proof of Theorem 5.7.1 is in the following result, which is our

analogue of Lemma 5.6.3. The proof makes detailed use of the topological structure

of countable ordinals. In particular, we use two arguments due to Weiss from the

proof of [Bau86, Theorem 2.3]. It may be helpful for the reader to first study that

proof, and to recall Weiss’s lemma [Bau86, Lemma 2.6], which we stated earlier (in

Lemma 4.7.12).

Lemma 5.7.3. Let α, β and k be as in Theorem 5.7.1. Let l be a positive integer

and let c :
[
ωω

α·l + 1
]2 → {red, blue} be a colouring. Suppose that

1. there is no red-homogeneous closed copy of ωβ + 1, and

2. there is no blue-homogeneous set of k + 2 points.

Under these assumptions, there exists a cofinal subset X ⊆ ωω
α·l such that X is a

closed copy of ωω
α·l and c({x, ωωα·l}) = blue for all x ∈ X.

Proof. The proof is by induction on l.

For the case l = 1, since ωω
α →cl (ωω

α
)1
2, there existsX ⊆ ωω

α
and i ∈ {red, blue}

such that X is a closed copy of ωω
α

(and therefore X is cofinal in ωω
α
) and

c({x, ωωα}) = i for all x ∈ X. Suppose for contradiction that i = red. By our

assumptions together with the definition of the cofinal version of the partition

relation, there exists a cofinal subset Y ⊆ X such that Y is a closed copy of ωβ

and [Y ]2 ⊆ c−1({red}). But then Y ∪ {ωωα} is a red-homogeneous closed copy of

ωβ + 1, contrary to assumption 1. Hence i = blue and we are done.

For the inductive step, suppose l > 1. Let

Z =
{
ωω

α · γ : γ ∈ ωωα·(l−1) \ {0}
}
,

so Z is a closed copy of ωω
α·(l−1). By the inductive hypothesis, there exists a cofinal

subset Y ⊆ Z such that Y is a closed copy of ωω
α·(l−1) and c({x, ωωα·l}) = blue for

all x ∈ Y . Write Y = {yδ : δ ∈ ωω
α·(l−1)} in increasing order. Then by Weiss’s

lemma, for each δ ∈ ωωα·(l−1) there exists a cofinal subset Zδ ⊆ (yδ, yδ+1) such that

Zδ is a closed copy of ωω
α
.

Now since ωω
α →cl (ωω

α
)1
2, for each δ ∈ ωω

α·(l−1) there exists Xδ ⊆ Zδ and

iδ ∈ {red, blue} such that Xδ is a closed copy of ωω
α

(and therefore Xδ is cofinal in

Zδ) and c({x, ωωα·l}) = iδ for all x ∈ Xδ. Recall now that ωω
α·(l−1) → (ωω

α·(l−1))1
2

since ωω
α·(l−1) is a power of ω. It follows that there exists S ⊆ ωω

α·(l−1) of order type

ωω
α·(l−1) and i ∈ {red, blue} such that iδ = i for all δ ∈ S.

Suppose for contradiction that i = red. We now use an argument from the proof

of [Bau86, Theorem 2.3]. Let (δm)m∈ω be a strictly increasing cofinal sequence from

S, and let (ηm)m∈ω be a strictly increasing cofinal sequence from ωα (or let ηm = 0 for
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all m ∈ ω if α = 0). For each m ∈ ω, pick Wm ⊆ Xδm such that Wm is a closed copy

of ωηm + 1, and let W =
⋃
m∈ωWm. Note that W is cofinal in ωω

α·l, W is a closed

copy of ωω
α

and c({x, ωωα·l}) = red for all x ∈ W . By our assumptions together with

the definition of the cofinal version of the partition relation, there exists a cofinal

subset V ⊆ W such that V is a closed copy of ωβ and [V ]2 ⊆ c−1({red}). But then

V ∪ {ωωα·l} is a red-homogeneous closed copy of ωβ + 1, contrary to assumption 1.

Therefore i = blue. Finally, let

X =
⋃
δ∈S

Xδ ∪ cl({yδ+1 : δ ∈ S}),

where cl denotes the topological closure operation. Then the setX is as required.

We may now deduce Theorem 5.7.1 in the much same way that we deduced

Theorem 5.2.1 from Lemma 5.6.3.

Proof of Theorem 5.7.1. First assume that ωω
α
> ωβ. We prove by induction on l

that for all l ∈ {1, 2, . . . , k},

ωω
α·l + 1→cl (ωβ + 1, l + 2)2.

In every case, if either of the assumptions in Lemma 5.7.3 does not hold, then

we are done since l ≤ k. We may therefore choose X as in Lemma 5.7.3.

For the base case l = 1, to avoid a blue triangle, X must be red-homogeneous.

But X contains a closed copy of ωβ + 1 since ωω
α ≥ ωβ + 1, and so we are done.

For the inductive step, suppose l ≥ 2. Then X has a closed copy Y of ωω
α·(l−1)+1.

By the inductive hypothesis, either Y contains a red-homogeneous closed copy of

ωβ + 1, in which case we are done, or Y contains a blue-homogeneous set Z of l+ 1

points. But in that case Z ∪ {ωωα·l} is a blue-homogeneous set of l + 2 points, and

we are done.

Finally, if we cannot assume that ωω
α
> ωβ, then the base case breaks down.

However, we may instead use the base case ωω
α

+ 1→cl (ωβ + 1, 2)2, which follows

from the fact that ωω
α ≥ ωβ. The inductive step is then identical.

5.8 The weak topological Erdős–Milner theorem

Finally we reach our main result, which demonstrates that Rtop(α, k) and Rcl(α, k)

are countable for all countable α and all finite k.

This is a topological version of a classical result due to Erdős and Milner [EM72].

Before stating it, we first provide a simplified proof of the classical version.

Theorem 5.8.1 (Weak Erdős–Milner). Let α and β be countable non-zero ordinals,
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and let k > 1 be a positive integer. If

ωα → (ω1+β, k)2,

then

ωα+β → (ω1+β, k + 1)2.

Since trivially ω1+α → (ω1+α, 2)2, it follows by induction on k that R(ω1+α, k +

1) ≤ ω1+α·k for all countable α and finite k. In fact, Erdős and Milner proved a

stronger version of the above theorem, in which k + 1 is replaced by 2k, implying

that R(ω1+α, 2k) ≤ ω1+α·k. This is why we use the adjective weak here.

Our proof is essentially a simplified version of the original, which can be found

in [Wil77, Theorem 7.2.10]. The basic idea is to write ωα+β as a sequence of ωβ

intervals, each of order type ωα, to enumerate these intervals, and to recursively

build up a red-homogeneous copy of ωβ consisting of one element from each interval.

This would achieve the above theorem with 1 + β weakened to β. To obtain a copy

of ω1+β, we simply choose infinitely many elements from each interval instead of just

one. In the proof we use the fact that ωα → (ωα)1
m for all finite m.

Proof. Let c :
[
ωα+β

]2 → {red, blue} be a colouring.

For each x ∈ ωβ, let

Ix = [ωα · x, ωα · (x+ 1)) ,

so Ix has order type ωα. Let (xn)n∈ω be a sequence of points from ωβ in which every

member of ωβ appears infinitely many times. We attempt to inductively build a

red-homogeneous set A = {an : n ∈ ω} of order-type ω1+β with an ∈ Ixn for every

n ∈ ω.

Suppose that we have chosen a1, a2, . . . , am−1 for some m ∈ ω. Let

P = {an : n ∈ {1, 2, . . . ,m− 1}, an ∈ Ixm},

and let

J =

Ixm , if P = ∅

Ixm \ [0,maxP ], if P 6= ∅,

so J has order type ωα. For each n ∈ {1, 2, . . . ,m− 1} let

Jn = {a ∈ J : c({an, a}) = blue}.

If
⋃m−1
n=1 Jn = J , then since ωα → (ωα)1

m−1, Jn has order type ωα for some n ∈
{1, 2, . . . ,m − 1}. Then since ωα → (ω1+β, k)2, Jn either has a red-homogeneous

subset of order type ω1+β, in which case we are done, or a blue-homogeneous subset

B of k points, in which case B∪{an} is a blue-homogeneous set of k+ 1 points, and

we are done. Thus we may assume that J \
⋃m−1
n=1 Jn 6= ∅, and choose am to be any
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member of this set.

Clearly the resulting set A is red-homogeneous. To see that it has order type

ω1+β, simply observe that by choice of (xn)n∈ω, A∩ Ix is infinite for all x ∈ ωβ, and

that by choice of J , A ∩ Ix in fact has order type ω for all x ∈ ωβ.

Here is our topological version of the weak Erdős–Milner theorem.

Theorem 5.8.2 (The weak topological Erdős–Milner theorem). Let α and β be

countable non-zero ordinals, and let k > 1 be a positive integer. If

ωω
α →top (ωβ, k)2,

then

ωω
α·β →top (ωβ, k + 1)2.

In particular, as we shall deduce in Corollary 5.8.5, Rtop(α, k) and Rcl(α, k) are

countable whenever α is a countable ordinal and k is a positive integer.

Our proof follows the same outline as our proof of the classical version, except

that we use intervals in the sense of the anti-tree partial ordering rather than in

the usual sense. Furthermore, rather than constructing a closed copy of ωβ directly,

we instead construct a larger set and then thin it out. As in the previous section,

we make detailed use of the structure of countable ordinals, including an argument

from the proof of Weiss’s lemma [Bau86, Lemma 2.6]. Note that the proof does not

directly use any of our previous results.

Proof. Let c :
[
ωω

α·β]2 → {red, blue} be a colouring.

First of all, fix a strictly increasing cofinal sequence (γn)n∈ω from ωω
α
.

Define an indexing set of pairs

S =
{

(x, y) : x ∈ β, ωωα·(x+1) · y ∈ ωωα·β
}
,

and for each (x, y) ∈ S, let

X(x,y) =
{
ωω

α·(x+1) · y + ωω
α·x · z : z ∈ ωωα \ {0}

}
,

so X(x,y) is a closed copy of ωω
α
. Let (xn, yn)n∈ω be a sequence of pairs from S in

which every member of S appears infinitely many times. We attempt to inductively

build a red-homogeneous set A = {an : n ∈ ω}, which will contain a closed copy of

ωβ, with an ∈ X(xn,yn) for every n ∈ ω.

Suppose that we have chosen a1, a2, . . . , am−1 for some m ∈ ω. Let

P =
{
an : n ∈ {1, 2, . . . ,m− 1}, an ∈ X(xm,ym)

}
,

let

Q = P ∪
{
ωω

α·(xm+1) · ym + ωω
α·xm · γ|P |

}
,
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and let

Y = X(xm,ym) \ [0,maxQ],

so Y is a closed copy of ωω
α
. For each n ∈ {1, 2, . . . ,m− 1} let

Yn = {a ∈ Y : c({an, a}) = 1}.

If
⋃m−1
n=1 Yn = Y , then since ωω

α →cl (ωω
α
)1
m−1, Yn contains a closed copy of ωω

α
for

some n ∈ {1, 2, . . . ,m − 1}. Then since ωω
α →cl (ωβ, k)2, Yn either contains a red-

homogeneous closed copy of ωβ, in which case we are done, or a blue-homogeneous

set B of k points, in which case B ∪ {an} is a blue-homogeneous set of k+ 1 points,

and we are done. Thus we may assume that Y \
⋃m−1
n=1 Yn 6= ∅, and choose am to be

any member of this set.

Clearly the resulting set A is red-homogeneous. To complete the proof, observe

that by choice of (xn, yn)n∈ω, A ∩ X(x,y) is infinite for all (x, y) ∈ S, and that by

choice of Q, A∩X(x,y) is a cofinal subset of X(x,y) of order type ω for all (x, y) ∈ S.

We claim that this property is enough to ensure that A contains a closed copy of

ωβ.

To prove the claim, for each δ ∈ [1, β] and each ordinal y with ωω
α·δ · y ∈ ωωα·β

we find a cofinal subset Cδ,y ⊆
[
ωω

α·δ · y + 1, ωω
α·δ · (y + 1)

)
such that Cδ,y ⊆ A and

Cδ,y is a closed copy of ωδ; then Cβ,0 ⊆ A is a closed copy of ωβ, as required. We do

this by induction on δ.

First suppose δ ∈ [1, β] is a successor ordinal, say δ = x + 1. Fix an ordinal

y with ωω
α·δ · y ∈ ωω

α·β, and observe that (x, y) ∈ S and that X(x,y) is a cofinal

subset of the interval
[
ωω

α·δ · y + 1, ωω
α·δ · (y + 1)

)
. Recall now that A ∩ X(x,y) is

a cofinal subset of X(x,y) of order type ω. Thus if δ = 1 then we may simply take

C1,y = A∩X(0,y), so assume δ > 1, and write A∩X(x,y) = {bn : n ∈ ω} in increasing

order. For each n ∈ ω \ {0} we find a cofinal subset Dn ⊆ (bn−1, bn) such that

Dn ⊆ A and Dn is a closed copy of ωx; then we may take Cδ,y =
⋃
n∈ω\{0}Dn∪{bn}.

We do this using an argument essentially taken from the proof of Weiss’s lemma

[Bau86, Lemma 2.6]. Fix n ∈ ω \ {0} and write bn = ωω
α·(x+1) · y + ωω

α·x · z with

z ∈ ωωα \ {0}. Let v = ωω
α · y + z so that bn = ωω

α·x · v. If v is a successor ordinal,

say v = u + 1, then by the inductive hypothesis we may take Dn = Cx,u. If v is a

limit ordinal, then let (um)m∈ω be a strictly increasing cofinal sequence from v with

ωω
α·x · u0 ≥ bn−1 and let (ηm)m∈ω be a strictly increasing cofinal sequence from ωx.

By the inductive hypothesis, for each m ∈ ω we may choose a subset Em ⊆ Cx,um

such that Em is a closed copy of ηm + 1. Then take Dn =
⋃
m∈ω Em.

Suppose instead δ ∈ [1, β] is a limit ordinal. Fix an ordinal y with ωω
α·δ ·

y ∈ ωω
α·β. Let (xn)n∈ω be a strictly increasing cofinal sequence from δ. For

each n ∈ ω, let ζn be the ordinal such that δ = xn + 1 + ζn and let yn =

ωω
α·ζn · y + 1. Then ωω

α·(xn+1) · yn = ωω
α·δ · y + ωω

α·(xn+1) and so Cxn+1,yn ⊆[
ωω

α·δ · y + ωω
α·(xn+1) + 1, ωω

α·δ · y + ωω
α·(xn+1) · 2

)
. By the inductive hypothesis, for
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each n ∈ ω we may choose a subset Dn ⊆ Cxn+1,yn such that Dn is a closed copy of

ωxn + 1. Then take Cδ,y =
⋃
n∈ωDn.

Remark 5.8.3. We expect that as in the original Erdős–Milner theorem, it should

be possible to improve k + 1 to 2k in Theorem 5.8.2. Indeed, the basic argument

from [Wil77, Theorem 7.2.10] works in the topological setting. The key technical

difficulty appears to be in formulating and proving an appropriate topological version

of statement (1) in that account.

The weak topological Erdős–Milner theorem allows us to obtain upper bounds for

countable ordinals of the form ωβ. Before describing some of these, we first observe

that by very slightly adapting our argument, we may obtain improved bounds for

ordinals of other forms. Here is a version for ordinals of the form ωβ ·m+ 1.

Theorem 5.8.4. Let α and β be countable non-zero ordinals, and let k > 1 be a

positive integer. If

ωω
α →cl (ωβ ·m+ 1, k)2,

then

ωω
α·β ·R(m, k + 1) + 1→top (ωβ ·m+ 1, k + 1)2.

Proof. Write ωω
α·β ·R(m, k + 1) + 1 as a disjoint union M ∪N , where

N =
{
ωω

α·β · (y + 1) : y ∈ {0, 1, . . . , R(m, k + 1)− 1}
}
,

and let c : [M ∪N ]2 → {red, blue} be a colouring.

First of all, we may assume that N contains a red-homogeneous set of m

points, say a0, a1, . . . , am−1. Now continue as in the proof of Theorem 5.8.2 and

attempt to build a red-homogeneous set A = {an : n ∈ ω}, only start by including

a0, a1, . . . , am−1, and then work entirely within M .

If we succeed, then the same proof as the one in Theorem 5.8.2 shows that for

each y ∈ {0, 1, . . . , R(m, k+1)−1}, A\{a0, a1, . . . , am−1} contains a closed copy Cy

of ωβ that is a cofinal subset of the interval
[
ωω

α·β · y + 1, ωω
α·β · (y + 1)

]
. Writing

ai = ωω
α·β · (yi + 1) for each i ∈ {0, 1, . . . ,m− 1}, we see that

m−1⋃
i=0

Cyi ∪ {ai}

is a red-homogeneous closed copy of ωβ ·m+ 1, as required.

We conclude this section with some explicit upper bounds implied by our results.

It is easy to verify similar results for ordinals of other forms.

Corollary 5.8.5. Let α be a countable non-zero ordinal and let k, m and n be

positive integers.
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1. Rtop(ωω
α
, k + 1) = Rcl(ωω

α
, k + 1) ≤ ωω

α·k
.

2. Rtop(ωω
α
+1, k+1) = Rcl(ωω

α
+1, k+1) ≤

ωω
α·k

+ 1, if α is infinite

ωω
(n+1)·k−1

+ 1, if α = n is finite.

3. Rtop(ωn ·m+ 1, k + 2) = Rcl(ωn ·m+ 1, k + 2) ≤ ωω
k·n ·R(m, k + 2) + 1.

Proof. First note that all three equalities are immediate since all ordinals considered

are order-reinforcing. It remains to prove the inequalities.

1. This follows immediately from Theorem 5.8.2 by induction on k, the case k = 1

being trivial.

2. It follows from part 1 that ωω
(α+1)·(k−1) →cl (ωω

α+1
, k)2 (the case k = 1

again being trivial) and hence ωω
(α+1)·(k−1) →cl (ωω

α
+ 1, k)2. Therefore

ωω
(α+1)·(k−1)+α

+ 1→cl (ωω
α

+ 1, k+ 1)2 by Theorem 5.8.4. If α is infinite, then

(α+ 1) · (k− 1) + α = α · k, and if α = n is finite, then (α+ 1) · (k− 1) + α =

(n+ 1) · k − 1, as required.

3. It follows from part 1 that ωω
k →cl (ωω, k + 1)2 and hence ωω

k →cl (ωn ·m +

1, k + 1)2. The result then follows from Theorem 5.8.4.

Remark 5.8.6. For the case in which α = n is a positive integer, if a cofinal

version of part 1 holds, then we could use Theorem 5.7.1 to improve part 2 to

Rcl(ωω
n

+ 1, k + 2) ≤ ωω
n·(k+1)·k + 1.

5.9 Questions for further research

We close with a few questions. Firstly, there is typically a large gap between our

lower and upper bounds, leaving plenty of room for improvement. In particular,

our general lower bound in Proposition 5.1.3 is very simple and yet is still our best

bound with the exception of a couple of special cases.

Some further exact equalities could be informative. One of the key reasons

why the classical results detailed in [HS69a, HS69b, HS69c, Cai15, Mil71] are more

precise than our topological results in Sections 5.3–5.7 is that for various α < ωω,

the computation of R(α, k) reduces to a problem in finite combinatorics. Some hint

of a topological version of this appears in the proof of the lower bounds of Lemmas

5.3.3 and 5.6.4, though it is far from clear how to obtain an exact equality.

Question 5.9.1. Is it possible to reduce the computation of Rtop(α, k) or Rcl(α, k)

to finite combinatorial problems, even for α < ω2?

A partition ordinal is an ordinal α satisfying α → (α, 3)2. As we have seen, ω

and ω2 are partition ordinals. Other than these, every countable partition ordinal

has the form ωω
β
, and in the other direction, ωω

β
is a partition ordinal if β has the

form ωγ or ωγ + ωδ [Sch10].
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Question 5.9.2. Are there any countable “topological partition” ordinals, satisfying

α→top (α, 3)2, other than ω?

By our lower bound (Proposition 5.1.3), these must all have the form ωω
β
. Since

every power of ω is order-reinforcing, this question is equivalent if we replace the

topological partition relation by the closed partition relation.

We expect that a strong version of the topological Erdős–Milner theorem should

hold, that is, we expect that in Theorem 5.8.2 it should be possible to improve k+1

to 2k.

Question 5.9.3. Let α and β be countable non-zero ordinals, and let k > 1 be a

positive integer. Is it the case that if

ωα → (ω1+β, k)2,

then

ωα+β → (ω1+β, 2k)2?

See Remark 5.8.3 for further details.

Finally, it would be nice to determine whether the existing conjecture ω1 →
(α, k)3 holds, and also to discover something about the topological or closed version

of this relation.

Question 5.9.4. Is it the case that for all countable ordinals α and all finite k,

ω1 →top (α, k)3?

Again, since every power of ω is order-reinforcing, this question is equivalent

if we replace the topological partition relation by the closed partition relation. If

the answer to this question is yes, then the classical and closed relations are in fact

equivalent whenever the ordinal on the left-hand side is ω1 and the ordinals on the

right-hand side are countable.
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Chapter 6

Autohomeomorphism groups of

countable compact ordinals

We begin this chapter by studying the basic properties of autohomeomorphism

groups of compact ordinals in general. We then focus on finding the normal

subgroups of autohomeomorphism groups of ordinals of the form ωn · m + 1 for

finite n and m. We manage to find 22ℵ0 normal subgroups for all n ≥ 2, which is

somewhat surprising, since the condition of normality is rather strong in the infinite

context. Furthermore, we completely classify those normal subgroups contained in

the pointwise stabiliser of the set of topological limit points.

6.1 A criterion for continuity

First we briefly mention a useful way of checking whether or not a function between

ordinal topologies is continuous. This generalises the equivalence of the ε-δ definition

of continuity for functions from R to R.

Definition. Let Y and Z be totally ordered sets equipped with the order topology,

let f : Y → Z and let y ∈ Y . We say that f is continuous at y if and only if for

all c, d ∈ Z ∪ {±∞} with f (y) ∈ (c, d), there exist a, b ∈ Y ∪ {±∞} with y ∈ (a, b)

such that for all x ∈ Y , if x ∈ (a, b) then f (x) ∈ (c, d).

Lemma 6.1.1. Let Y and Z be totally ordered sets equipped with the order topology

and let f : Y → Z. Then f is continuous if and only if f is continuous at y for all

y ∈ Y .

We omit the proof since it is entirely analogous to the ε-δ definition of continuity

for functions from R to R.

Note that since we will be working with compact Hausdorff topological spaces,

it will be enough to check continuity to show that a bijection is a homeomorphism.

99
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6.2 The semidirect product decomposition

Let us introduce some notation for the objects of our study.

Definition. Given an ordinal δ, we write Xδ = [1, δ].

We then write Hδ for the group of autohomeomorphisms of Xδ, i.e., the group

of homeomorphisms Xδ → Xδ.

Given an ordinal β, we also write Hβ
δ for the group of autohomeomorphisms of

X
(β)
δ .

Excluding the point 0 from our definition of Xδ makes no essential difference,

but makes our results easier to state. Indeed, the notation ω [γ,m] was introduced

in Chapter 2 for related reasons, and for any ordinal γ and any positive integer m

we have Xωγ ·m ∼= ω [γ,m].

For the rest of this section, fix a non-zero ordinal δ. Recall that Xδ is compact

by Lemma 2.2.3, and so by Theorem 2.4.1 we may as well assume that δ = ωα ·m
for some ordinal α and some positive integer m.

We begin by introducing the normal subgroups of Hδ identified by Monk [Mon75,

Theorem 6], which are the pointwise stabilisers of X
(β)
δ for each β ≤ α. These are

normal because any autohomeomorphism of Xδ must fix X
(β)
δ setwise. We shall see

that in fact these normal subgroups yield inner semidirect products of Hδ. For the

rest of this section, fix an ordinal β ≤ α.

Definition. Define the map rβδ : Hδ → Hβ
δ to be restriction. This is well-defined

since any autohomeomorphism of Xδ must fix X
(β)
δ setwise.

Define the “block map” bβδ : Hβ
δ → Hδ as follows. Intuitively, bβδ (f) is obtained

from f by replacing each isolated point of X
(β)
δ by a copy of

[
1, ωβ

]
. Formally,

let f ∈ Hβ
δ and x ∈ Xδ. If x ∈ X

(β)
δ , then define bβδ (f) (x) = f (x). Otherwise

x = ωβ · η + ζ for some ordinals η and ζ with 0 < ζ < ωβ. Now f must preserve

Cantor–Bendixson ranks, and since β ≤ α, we have ωβ · η + ωβ ∈ X. Hence

f
(
ωβ · η + ωβ

)
= ωβ · θ + ωβ for some ordinal θ. Define bβδ (f) (x) = ωβ · θ + ζ.

It is easy to see that bβδ (f) is a bijection, and that bβδ (f) is continuous follows

easily from Lemma 6.1.1. Thus bβδ (f) ∈ Hδ, in other words, bβδ is well-defined.

The key properties of these maps are as follows.

Lemma 6.2.1. 1. rβδ and bβδ are group homomorphisms.

2. bβδ is an injection.

3. rβδ ◦ b
β
δ is the identity map on Hβ

δ .

Proof. Part 1 is straightforward, and parts 2 and 3 are immediate from the fact that

bβδ (f) (x) = f (x) whenever x ∈ X(β)
δ .
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From these properties we immediately obtain our semidirect product

decomposition of Hδ.

Definition. Define

Kβ
δ = Ker

(
rβδ

)
and

Bβ
δ = Im

(
bβδ

)
.

Thus Kβ
δ is the pointwise stabiliser of X

(β)
δ . Clearly Kβ

δ E Hδ and Bβ
δ ≤ Hδ.

We may now restate Lemma 6.2.1 as follows. Here o denotes an inner semidirect

product.

Proposition 6.2.2. Hδ = Kβ
δ oBβ

δ .

In particular, any f ∈ Hδ may be written uniquely as k ◦ b with k ∈ Kβ
δ and

b ∈ Bβ
δ . Note moreover that we obtain a distinct decomposition for each ordinal

β ≤ α. We will however mainly use this result in the case β = 1.

6.3 An explicit description of Hωn·m

Monk [Mon75, Theorem 7] gave an explicit description of which permutations of

Xω2 lie in Hω2 . (In fact, he worked with the corresponding Boolean algebra, but it

is easy to re-interpret his result in terms of ordinals.) In this section we generalise

this to a recursive description of Hωn·m for all finite m and n. We achieve this by

using the case β = 1 of Proposition 6.2.2 to describe Hωn·m in terms of Hωn−1·m for

all n > 0.

Our construction is valid in general, not only for ordinals of the form ωn · m,

so for the rest of this section fix a non-zero ordinal δ, and assume once again that

δ = ωα ·m with α an ordinal and m a positive integer. We may as well assume that

δ is infinite, i.e., α ≥ 1, for otherwise Hδ is simply a finite symmetric group.

Our description is based upon the following notion.

Definition. A cofinitary system on Xδ is a collection of sets (Ax)x∈X′δ\X′′δ
with the

following property. For each x ∈ X ′δ \X ′′δ , we may write x = η+ω with η a multiple

of ω. Then Ax is a subset of [η + 1, x) whose complement is finite and non-empty.

Given such a system, its complementary set is

Xδ \
⋃

x∈X′δ\X
′′
δ

Ax ∪ {x} .

A key property of cofinitary systems is the following.

Lemma 6.3.1. Let (Ax)x∈X′δ\X′′δ
be a cofinitary system on Xδ with complementary

set A∗. If α = 1, then A∗ is finite, and if α ≥ 2, then A∗ ∼= X ′δ.



102 6. Autohomeomorphism groups of countable compact ordinals

Proof. The case α = 1 is easy, so assume α ≥ 2. In this case, both A∗ and X ′δ
contain all of X ′′δ , so it is sufficient to show the following for each x ∈ X ′′δ \ X ′′′δ :

writing x = η + ω2 with η a multiple of ω2, we have that

A∗ ∩ [η + 1, x] ∼= X ′δ ∩ [η + 1, x] .

To see this, simply observe that the set on the right is homeomorphic to [1, ω2]
′ ∼=

[1, ω], while the set on the left is homeomorphic to [1, ω] by definition of a cofinitary

system (being infinite by the condition of non-emptiness).

In order to state our construction, let δ′ be the unique ordinal of the form ωα
′ ·m

such that X ′δ
∼= Xδ′ . For example, if δ = ωn ·m with n and m positive integers then

δ′ = ωn−1 ·m.

Proposition 6.3.2. Let f : Xδ → Xδ be any function. Then f ∈ K1
δ if and only if

there are two cofinitary systems (Ax)x∈X′δ\X′′δ
and (Bx)x∈X′δ\X′′δ

on Xδ, with respective

complementary sets A∗ and B∗, such that the following conditions hold.

1. f (x) = x for all x ∈ X ′δ \X ′′δ .

2. For each x ∈ X ′δ \ X ′′δ , the restriction of f to Ax is an injection with image

Bx.

3. The restriction of f to A∗ is an injection with image B∗.

4. If α ≥ 2, so that by Lemma 6.3.1 we may view the restriction of f to A∗ as a

function from Xδ′ to Xδ′, then this function lies in K1
δ′.

Note that the cofinitary systems in this result need not be unique. Indeed, for

each x ∈ X ′δ \ X ′′δ , one may remove any finite subset from Ax while removing its

image under f from Bx.

Proof. We again assume α ≥ 2 since the case α = 1 is similar but easier.

Suppose first that f ∈ K1
δ . Condition 1 is immediate. To extract the required

cofinitary systems, let x ∈ X ′δ \ X ′′δ , and write x = η + ω with η a multiple of ω.

By Lemma 6.1.1, there exist a, b ∈ Xδ with x ∈ (a, b) such that for all y ∈ Xδ, if

y ∈ (a, b) then f (y) ∈ (η, x+ 1). Certainly a ≥ η since f (η) = η if η > 0. Take

Ax = (a+ 1, x) and Bx = f (Ax). These are clearly both subsets of [η + 1, x) whose

complements are finite and non-empty.

Conditions 2 and 3 now follow immediately from the fact that f is a bijection.

For condition 4, first observe that f (x) = x for all x ∈ X ′′δ since f ∈ K1
δ . Finally,

the continuity of the restriction f to A∗ follows easily from the continuity of f using

Lemma 6.1.1.

Conversely, suppose (Ax)x∈X′δ\X′′δ
and (Bx)x∈X′δ\X′′δ

are cofinitary systems on Xδ,

with respective complementary sets A∗ and B∗, such that all 4 conditions hold. The
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first 3 conditions ensure that f is a bijection, and conditions 1 and 4 together imply

that f (x) = x for all x ∈ X ′δ. It remains only to check continuity, for which we use

Lemma 6.1.1.

Continuity at isolated points is trivial, and continuity at a point of X ′′δ follows

straightforwardly using the continuity of the restriction of f to A∗ at that point. To

complete the proof, let x ∈ X ′δ\X ′′δ , and let c, d ∈ Xδ∪{±∞} with x = f (x) ∈ (c, d).

Since Bx is cofinite, there exists e ∈ (c, x) such that (e, x) ⊆ Bx. By condition

2, f−1 ((e, x)) is a cofinite subset of Ax, so there exists a ∈ Ax such that (a, x) ⊆
f−1 ((e, x)). Then for all y ∈ Xδ, if y ∈ (a, x+ 1) then f (y) ∈ (e, x+ 1) ⊆ (c, d).

Thus we have described K1
δ in terms of K1

δ′ . We also know that B1
δ
∼= H1

δ
∼= Hδ′

by part 2 of Lemma 6.2.1. Since any f ∈ Hδ can be written uniquely as k ◦ b with

k ∈ K1
δ and b ∈ B1

δ by Proposition 6.2.2, we therefore have a complete description

of Hδ in terms of Hδ′ .

What is not clear, however, is that Hδ′ is any simpler than Hδ. Indeed, δ′ must

satisfy δ = ω · δ′, and hence

δ′ =

ωn−1 ·m, if α = n is finite

δ, otherwise.

Hence we obtain recursively a complete description of Hωn·m for all n ∈ ω and all

positive integers m, but only an infinite regress for Hδ in the case δ ≥ ωω.

6.4 A partial description of Hωω

From the next section onwards, we will focus exclusively on the first case from the

above dichotomy. But first, let us briefly examine some of the complexities that

arise in the second case. In this section, fix δ = ωω.

In this case X ′δ is order-homeomorphic Xδ, and hence by induction X
(n)
δ is order-

homeomorphic to Xδ for all n ∈ ω. We may therefore make the following definition.

Definition. Let n ∈ ω and let c̃n be the unique order-homeomorphism X
(n)
δ → Xδ.

Define a group homomorphism cn : Hδ → Hn
δ by cn (f) = c̃−1

n ◦ f ◦ c̃n. Then define

dn = bnδ ◦ cn, where bnδ : Hn
δ → Hδ is the block map.

Thus if f ∈ Hδ, then dn (f) ∈ Hδ is obtained by applying f to X
(n)
δ
∼= Xδ and

extending this to the whole of Xδ using the block map. One may check that in fact

dn = (d1)
n

for all n ∈ ω. This map enables us to iteratively decompose any f ∈ Hδ

using the case β = 1 of Proposition 6.2.2, as follows.

Definition. Given f ∈ Hδ, write f = f0 = h0 ◦ g0 with g0 ∈ K1
δ and h0 ∈ B1

δ . Since

B1
δ = Im (b1

δ), we may write h0 = d1 (f1) with f1 ∈ Hδ. Thus f = d1 (f1)◦g0. Iterate
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this procedure to obtain fn ∈ Hδ and gn ∈ K1
δ for each n ∈ ω such that

f = dn (fn) ◦ dn−1 (gn−1) ◦ dn−2 (gn−2) ◦ · · · ◦ d1 (g1) ◦ g0

for all n ∈ ω. We then define the block decomposition of f to be (gn)n∈ω.

The term “decomposition” here is justified by the following result.

Proposition 6.4.1. The map taking f ∈ Hδ to its block decomposition is an

injection.

Proof. Fix x ∈ Xδ and let f ∈ Hδ have block decomposition (gn)n∈ω. Write f (x) in

Cantor normal form as

f (x) = ωN ·mN + ωN−1 ·mN−1 + · · ·+ ω ·m1 +m0

with mn ∈ ω for all n ∈ {0, 1, . . . , N}, and define mn = 0 for all n > N . Thus we

may recover f (x) from the sequence (mn)n∈ω. We claim that for all n ∈ ω, we may

recover m0,m1, . . . ,mn−1 from g0, g1, . . . , gn−1 (without f). It follows that we may

recover f (x) from (gn)n∈ω, and since x is arbitrary the result follows.

To prove the claim, simply recall that for all n ∈ ω,

f = dn (fn) ◦ dn−1 (gn−1) ◦ dn−2 (gn−2) ◦ · · · ◦ d1 (g1) ◦ g0

for some fn ∈ Hδ. Observe that dn (fn) ∈ Bn
δ and so fn does not affect the values

of m0,m1, . . . ,mn−1.

Thus Hδ may in some sense be described entirely in terms of its subgroup K1
δ ,

though this description is somewhat complicated.

Note that not every sequence (gn)n∈ω with gn ∈ K1
δ for all n ∈ ω may be obtained

as the block decomposition of some f ∈ Hδ. For example, let gn be the transposition

(1 2) for all n ∈ ω. If we tried to recover (mn)n∈ω in the case x = 1 as in the above

proof, then we would obtain mn = 2 for all n ∈ ω, which is absurd. There are

nonetheless many sequences that may be obtained in this fashion. For example, it

is sufficient (but not necessary) for the support of gn to be subset of [2, ω) for all

n ∈ ω.

Note also that if f ∈ Hδ has block decomposition (gn)n∈ω, then for all m ∈ ω, f ∈
Km
δ if and only if gn is the identity function for all n ≥ m. In particular, the quotient

Hδ/
⋃
m∈ωK

m
δ is non-trivial. It may be interesting to study the normal subgroups

of this quotient, since many of the techniques we will present seem to break down in

that context. Moreover, the corresponding quotient defined for superatomic Boolean

algebras in general is an important notion in the study of uncountable superatomic

Boolean algebras [Roi89, Definition 1.7].
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6.5 The normal subgroups of Hωn·m

The remainder of the chapter is devoted to studying the normal subgroups of Hωn·m

for finite n and m. Fix positive integers n and m and let δ = ωn ·m.

We have seen the importance of the subgroup K1
δ , the pointwise stabiliser of

X ′δ. Because the more general problem appears to be somewhat harder, our results

concern only the normal subgroups of Hδ contained in K1
δ . After proving these, we

will briefly indicate how one may attempt to generalise these results and thereby

obtain a complete classification of the normal subgroups of Hδ.

In order to state our main result, we require the notions of the character and flow

of a function in K1
δ . Note that these are not related to characters in representation

theory or flows in topological dynamics. It will take some work to define these

precisely, so we begin with some examples in order to make these ideas more

transparent.

First let us introduce a useful abbreviation.

Definition. Given a topological space X and an ordinal γ, we write X [γ] = X(γ) \
X(γ+1).

For example, X
[0]
δ = {x ∈ X : x is isolated}.

The character of a function in K1
δ will be a function of its support, for which we

use the following notation.

Definition. Let f ∈ Hδ. Define the support of f by

supp (f) = {x ∈ Xδ : f (x) 6= x} .

For example, if f ∈ Hδ then f ∈ K1
δ if and only if supp (f) ⊆ X

[0]
δ .

In the very simplest special case, we have δ = ω. Then Xδ has exactly one limit

point, so K1
δ = Hδ. Moreover, by ignoring the trivial action of the group on this

limit point, we obtain the group S∞ of permutations of [1, ω). The Schreier–Ulam

theorem states that the normal subgroups of this group are exactly: the identity; the

group of alternating permutations of finite support; the group of all permutations

of finite support; and S∞.

Now consider the special case δ = ω2. Once again, the following are all normal

subgroups of Hδ contained in K1
δ : the identity; the group of alternating permutations

of X
[0]
δ of finite support; the group of all permutations X

[0]
δ of finite support; and

K1
δ . But we now have several new normal subgroups of Hδ contained in K1

δ , such

as:

� the group of all functions in K1
δ whose support is contained in a proper initial

segment of [1, ω2);

� the group of all functions in K1
δ whose support is finite on every proper initial

segment of [1, ω2); and
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� the group of all functions in K1
δ whose support is finite on every proper initial

segment of [x, ω2) for some x ∈ [1, ω2).

The notion of the character of a function in K1
δ for arbitrary δ < ωω will allow us

capture these sorts of characteristics of the support of a permutation that give rise

to normal subgroups.

The notion of the flow of a function in K1
δ captures the other properties of a

permutation that give rise to normal subgroups. To illustrate this, consider the

special case δ = ω · 2. Note that Xδ is homeomorphic to Z∪ {±∞} under the order

topology, and moreover the induced action of the group on ±∞ is determined by its

action on Z. We may therefore identify Hδ with the induced group of permutations

of Z, which we shall denote by HZ.

Let us now describe HZ more explicitly. Given f ∈ Sym (Z), say that f preserves

limits to mean that if xi ∈ Z for all i ∈ ω and limi→∞ xi = ±∞, then limi→∞ f (xi) =

limi→∞ xi, and say that f flips limits to mean that if xi ∈ Z for all i ∈ ω and

limi→∞ xi = ±∞, then limi→∞ f (xi) = − limi→∞ xi. We then have

HZ = {f ∈ Sym (Z) : f preserves limits or f flips limits} .

Furthermore, let us denote the the subgroup of HZ corresponding to K1
ω·2 under our

identification by KZ. Then

KZ = {f ∈ Sym (Z) : f preserves limits} .

The flow of f ∈ KZ is intended to capture the amount by which f moves

points away from −∞ and towards ∞. It may be defined using disjoint cycle

decompositions, so let us first define it for a single cycle. Note that if f =

(. . . x−1 x0 x1 . . . ) ∈ KZ is an infinite cycle, then limi→−∞ xi = ±∞ and limi→∞ xi =

±∞ since f preserves limits.

Definition. If f ∈ KZ is a finite cycle, then define flow (f) = 0. If f =

(. . . x−1 x0 x1 . . . ) ∈ KZ is an infinite cycle, then define

flow (f) =


0, if limi→∞ xi = limi→−∞ xi

1, if limi→−∞ xi = −∞ and limi→∞ xi =∞

−1, if limi→−∞ xi =∞ and limi→∞ xi = −∞.

Now if f ∈ KZ is written as a product of disjoint cycles, then only finitely many

of these cycles has non-zero flow, since f preserves limits. We may therefore make

the following definition.

Definition. Let f ∈ KZ. The flow of f , denoted by flow (f), is defined to be the sum

of the flows of each cycle in the disjoint cycle decomposition of f , which converges

absolutely.
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It is easy to check that an alternative definition of flow for f ∈ KZ is given by

flow (f) = |N \ f (N)| − |f (N) \ N| ,

where both cardinalities in this expression are finite because f preserves limits. We

will use a version of this definition later, since it is easier to work with.

It follows from this second definition that flow : KZ → Z is a surjective

homomorphism, and moreover flow (g−1 ◦ f ◦ g) = flow (f) for all f ∈ KZ and all

g ∈ HZ. Hence Ker (flow) E HZ (it is actually the commutator subgroup of both KZ

and HZ), and we obtain a normal subgroup of HZ contained in KZ for each subgroup

of Z. In fact, we shall see later that the normal subgroups of HZ contained in KZ are

exactly: the identity; the group of alternating permutations of Z of finite support;

the group of all permutations of Z of finite support; and the normal subgroups

containing Ker (flow) corresponding to the subgroups of Z.

Our classification result for arbitrary δ < ωω essentially says that the normal

subgroups of Hδ contained in K1
δ are exactly those that emerge via characters and

flows. We will give a precise statement of this result once we have fully developed

these notions.

6.6 Characters

From now until the end of the chapter, fix positive integers n and m and let δ =

ωn ·m.

In this section we introduce and develop the basic theory of characters. Here is

a crucial piece of notation we require.

Definition. Let l ∈ ω and suppose Y ⊆ X
[l]
δ . Given k ∈ ω with k > l, we define

Y [(k)] = cl (Y ) ∩X [k]
δ ,

where cl denotes the topological closure operation relative to Xδ.

Given k1, k2, . . . , kr ∈ ω with l < k1 < k2 < · · · < kr, we inductively define

Y [(k1, . . . , kr)] = (Y [(k1, . . . , kr−1)]) [(kr)]. By convention the sequence of length 0

is denoted by () and we take Y [()] = Y .

For example, suppose δ = ω2. If Y = {ω · i+ 1 : i ∈ ω}, then Y [(1)] = ∅,
Y [(2)] = {ω2} and Y [(1, 2)] = ∅. If Y = {ω · i+ j : i ∈ ω, j ∈ ω \ {0}}, then

Y [(1)] = {ω · (i+ 1) : i ∈ ω}, Y [(2)] = {ω2} and Y [(1, 2)] = {ω2}.
Here are the key properties of this piece of notation.

Lemma 6.6.1. Let l ∈ ω and suppose Y, Z ⊆ X
[l]
δ .

1. Let k ∈ ω with k > l. Then (Y ∪ Z) [(k)] = Y [(k)] ∪ Z [(k)]. In particular, if

Y ⊆ Z then Y [(k)] ⊆ Z [(k)].
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2. Let k1, k2 ∈ ω with l < k1 < k2. Then Y [(k1, k2)] ⊆ Y [(k2)].

3. Y is infinite if and only if Y [(k)] 6= ∅ for some k ∈ ω with k > l.

Proof. 1. This is immediate from the fact that cl (Y ∪ Z) = cl (Y ) ∪ cl (Z). To

see this, observe that the right-hand side is a closed set containing Y and Z.

2. Y [(k1, k2)] = cl
(

cl (Y ) ∩X [k1]
δ

)
∩X [k2]

δ ⊆ cl (cl (Y )) ∩X [k2]
δ = Y [(k2)].

3. Since Y ⊆ X
[l]
δ , Y is discrete in the subspace topology, so Y is compact if and

only if Y is finite. Since Xδ is compact and Hausdorff, it follows that Y is

closed if and only if Y is finite. But cl (Y ) \ Y ⊆ X
(l+1)
δ . Hence Y is infinite

if and only if cl (Y ) \ Y 6= ∅, if and only if Y [(k)] 6= ∅ for some k ∈ ω with

k > l.

We may now use square bracket notation to define characters.

Definition. Define

Γn = {(k1, k2, . . . , kr) : r ≥ 0, 1 ≤ k1 < k2 < · · · < kr ≤ n} .

Thus given Y ⊆ X
[0]
δ , Y [s] is defined for all s ∈ Γn.

We define the type of Y ⊆ X
[0]
δ by

tp (Y ) = {s ∈ Γn : Y [s] 6= ∅} .

We define the character of f ∈ K1
δ by

char (f) = tp (supp (f)) .

The following key property of types and hence of characters is inherited from the

corresponding property of square bracket notation.

Lemma 6.6.2. Let Y, Z ⊆ X
[0]
δ . Then tp (Y ∪ Z) = tp (Y ) ∪ tp (Z). In particular,

if Y ⊆ Z then tp (Y ) ⊆ tp (Z).

Proof. Let s ∈ Γn. Then (Y ∪ Z) [s] = Y [s] ∪ Z [s] by applying part 1 of Lemma

6.6.1 inductively. Hence s ∈ tp (Y ∪ Z) if and only if s ∈ tp (Y ) ∪ tp (Z).

From this result we immediately obtain several normal subgroups of Hδ contained

in K1
δ .

Definition. Given ∆ ⊆ Γn, we define

L∆ =
{
f ∈ K1

δ : char (f) ⊆ ∆
}
.

Proposition 6.6.3. Let ∆ ⊆ Γn. Then L∆ E Hδ.
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Proof. First note that the definition of types is entirely topological, so if Y ⊆ X
[0]
δ

and g ∈ Hδ then tp (g (Y )) = tp (Y ). Hence if f ∈ L∆ and g ∈ Hδ then

char (g ◦ f ◦ g−1) = tp (supp (g ◦ f ◦ g−1)) = tp (g (supp (f))) = char (f). So it is

sufficient to prove that L∆ is a group.

Clearly the identity function is a member of L∆, and if f ∈ L∆ then supp (f−1) =

supp (f) and so f−1 ∈ L∆. Finally, if f, h ∈ L∆ then supp (f ◦ h) ⊆ supp (f) ∪
supp (h) and so char (f ◦ h) ⊆ char (f) ∪ char (h) ⊆ ∆ by Lemma 6.6.2.

The other key property of types also follows from the key properties of square

bracket notation. This result shows that these normal subgroups need not all be

distinct.

Lemma 6.6.4. Let Y ⊆ X
[0]
δ , suppose (k1, k2, . . . , kr) ∈ tp (Y ) and let i ∈

{1, 2, . . . , r}. Then (k1, . . . , ki−1, ki+1, . . . , kr) ∈ tp (Y ).

Proof. If i = r then in fact Y [(k1, . . . , kr−1)] is infinite by part 3 of Lemma 6.6.1,

and we are done. Otherwise Y [(k1, . . . , ki+1)] ⊆ Y [(k1, . . . , ki−1, ki+1)] by part 2 of

Lemma 6.6.1 and hence Y [(k1, . . . , kr)] ⊆ Y [(k1, . . . , ki−1, ki+1, . . . , kr)] by part 1 of

Lemma 6.6.1, and we are done.

This result motivates the following definition. It may be helpful to note here

that there is a natural way to identify Γn with P ({1, 2, . . . , n}) in such a way that

subsequences correspond to subsets.

Definition. Let ∆, S ⊆ Γn. We say that ∆ is a lower set to mean that if s ∈ ∆

and t is a subsequence of s, then t ∈ ∆. We say that S is an antichain to mean that

if s, t ∈ S then t is not a subsequence of s.

Given S ⊆ Γn, let 〈S〉 = {t ∈ Γn : t is a subsequence of some s ∈ S}, or

equivalently, 〈S〉 is the smallest lower set of Γn containing S. Abbreviate

〈{s1, s2, . . . , sr}〉 as 〈s1, s2, . . . , sr〉.

Lemma 6.6.4 may now be restated as saying that if Y ⊆ X
[0]
δ , then tp (Y ) is a

lower set.

The main reason for introducing antichains is that the map

{antichains of Γn} → {lower sets of Γn}

S 7→ 〈S〉

is a bijection with inverse given by

∆ 7→ {t ∈ ∆ : t is not a subsequence of s for any s ∈ ∆ \ {t}} .

Thus antichains are simply another way of thinking about lower sets, but they

contain no redundant information in the sense that any subset of an antichain is

another antichain.
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We will show in Section 6.8 that Lemma 6.6.4 is in fact the only restriction

on which subsets of Γn may be obtained as the character of some f ∈ K1
δ . In

other words, for each lower set ∆ ⊆ Γn we will find a witness f∆ ∈ K1
δ with

char (f∆) = ∆, which we will call the canonical function with character ∆. It will

follow that Proposition 6.6.3 provides us with exactly one distinct normal subgroup

for each lower set ∆ ⊆ Γn. (The exact number of lower sets ∆ ⊆ Γn is called the

nth Dedekind number and is denoted by D (n).)

Let us conclude this section by illustrating our claim in the special case δ = ω2,

thereby demonstrating the expressive power of characters. In this case, there are six

possible characters of a function f ∈ K1
δ , whose corresponding normal subgroups

were identified in the previous section:

� ∅, the character of the identity function;

� {()}, the character of a function with non-empty finite support;

� {() , (1)} = 〈(1)〉, the character of a function whose support is infinite, but

contained in a proper initial segment of [1, ω2);

� {() , (2)} = 〈(2)〉, the character of a function whose support is infinite, but

finite on every proper initial segment of [1, ω2);

� {() , (1) , (2)} = 〈(1) , (2)〉, the character of a function whose support is neither

contained in a proper initial segment of [1, ω2) nor finite on every proper initial

segment of [1, ω2), but is finite on every proper initial segment of [x, ω2) for

some x ∈ [1, ω2); and

� {() , (1) , (2) , (1, 2)} = 〈(1, 2)〉, the character a function whose support is

infinite on some proper initial segment of [x, ω2) for every x ∈ [1, ω2).

6.7 Flows

In this section we introduce and develop the basic theory of flows, which will at last

allow us to state our main result.

Given f ∈ K1
δ and a subset C ⊆ Xδ, we would like to measure the amount by

which f moves points “into” C. The following simple result enables us to formalise

this when C is clopen (closed and open). Here C \ f (C) should be thought of as

the points “entering” C under f , and f (C) \ C should be thought of as the points

“leaving” C under f .

Lemma 6.7.1. Let f ∈ K1
δ and C ⊆ Xδ be clopen. Then C \ f (C) and f (C) \ C

are finite.

Proof. Let Y = C \ f (C). It is enough to show that Y is finite, since |f (C) \ C| =
|f−1 (f (C) \ C)| = |C \ f−1 (C)|. To see this, simply observe that Y ⊆ X

[0]
δ since
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f ∈ K1
δ , and that Y is closed since Y = C ∩ f (Xδ \ C) and C is clopen. Hence Y

is both discrete and compact and therefore finite.

This result enables us to make the following definition.

Definition. Let f ∈ K1
δ let C be a clopen subset of Xδ. We define the flow of f

into C by

flowC (f) = |C \ f (C)| − |f (C) \ C| .

Here are the basic properties of this definition. Let us introduce some standard

notation for conjugation: given f, g ∈ Hδ, write f g = g−1 ◦ f ◦ g.

Lemma 6.7.2. Let f ∈ K1
δ and let C and D be disjoint clopen subsets of Xδ.

1. flowC∪D (f) = flowC (f) + flowD (f).

2. flowXδ\C (f) = − flowC (f).

3. If g ∈ K1
δ , then flowC (f ◦ g) = flowC (f) + flowC (g).

4. If g ∈ Hδ, then flowC (f g) = flowg(C) (f).

Proof. These are all simple set-theoretic identities that we leave as exercises.

The most convenient clopen subsets to use are “blocks”, which are defined as

follows.

Definition. Let z ∈ X ′δ. Write z = η + ωk with η a multiple of ωk. Define

B (z) = [η + 1, z] .

Note that the image of the block map from Section 6.2 preserves these blocks in

the sense that if z ∈ X [k]
δ for some k ∈ {1, 2, . . . , n} and b ∈ Bk

δ , then b (B (z)) =

B (z′) for some z′ ∈ X [k]
δ .

Clearly B (z) is clopen for all z ∈ X ′δ. The collection of all such blocks has the

following useful property.

Lemma 6.7.3. Let C be a clopen subset of Xδ. Then C is a finite Boolean

combination of sets of the form {x} with x ∈ X [0]
δ and B (z) with z ∈ X ′δ.

Proof. Recall that δ = ωn ·m, and note first of all that the general case follows from

the case m = 1, since Xδ is a topological disjoint union of m copies of Xωn . So

assume m = 1, so B (ωn) = Xδ. The remainder of the proof is by induction on n.

For the base case, suppose n = 1. If ω ∈ C, then Xδ \ C is a finite subset of

X
[0]
δ = [1, ω), and if ω ∈ Xδ \ C, then C is a finite subset of X

[0]
δ . In either case the

result follows.

For the inductive step, suppose n > 1. Similarly to the case n = 1, either C or

Xδ \ C (whichever does not contain the point ωn) is a finite disjoint union
⋃r
i=1 Ci,
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where Ci is a clopen subset of B (zi) for some zi ∈ X [n−1]
δ for each i ∈ {1, 2, . . . , r}.

Now Xωn−1 is order-homeomorphic to B (zi) for all i ∈ {1, 2, . . . , r}, and moreover

this order-homeomorphism maps blocks of Xωn−1 to blocks of Xωn . Hence by the

inductive hypothesis, each of C1, C2, . . . , Cr is a finite Boolean combination of sets

of the required form, and the result follows.

We may now define the flow map.

Definition. We define a map flow : K1
δ → ZX′δ by

flow (f) =
(
flowB(z) (f)

)
z∈X′δ

.

The identity (0)z∈X′δ
of ZX′δ is denoted by 0.

It is possible to define this map in terms of disjoint cycles as in Section 6.5,

though it is unnecessary and somewhat cumbersome to do so.

We immediately obtain the following important fact from part 3 of Lemma 6.7.2.

Lemma 6.7.4. flow is a homomorphism.

We also obtain the following consequence of Lemma 6.7.3. This result may be

interpreted as saying that the flow map encapsulates every possible flow into a clopen

subset of Xδ.

Lemma 6.7.5. Let f ∈ K1
δ . Then flow (f) = 0 if and only if flowC (f) = 0 for

every clopen subset C ⊆ Xδ.

Proof. The “if” statement is clear from the fact that B (z) is clopen for all z ∈ X ′δ.
For the “only if” statement, suppose flow (f) = 0. First observe that flow{x} (f) = 0

for every x ∈ X
[0]
δ . It follows by combining Lemma 6.7.3 with parts 1 and 2 of

Lemma 6.7.2 that flowC (f) = 0 for every clopen subset C ⊆ Xδ.

Trivially Ker (flow) E K1
δ , but by combining the above result with part 4 of

Lemma 6.7.2 we obtain the following.

Lemma 6.7.6. Ker (flow) E Hδ.

Proof. Let f ∈ Ker (flow) and g ∈ Hδ. Then by Lemma 6.7.5 flowC (f) = 0 for every

clopen subset C ⊆ Xδ, so by part 4 of Lemma 6.7.2 flowC (f g) = flowg(C) (f) = 0

for every clopen subset C ⊆ Xδ, so by Lemma 6.7.5 f g ∈ Ker (flow).

Let us now introduce some notation for some of the relevant groups we have now

obtained.

Definition. Let ∆ ⊆ Γn be a lower set.

Define Z∆ to be the image of L∆ under flow.

Define L0
∆ = Ker (flow) ∩ L∆.
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Thus L0
∆ E Hδ for every lower set ∆ ⊆ Γn. In fact, it is not too hard to deduce

from the proofs of the results in Section 6.9 that L0
∆ is the commutator subgroup of

L∆ for every lower set ∆ ⊆ Γn.

We may at last state our main result of this chapter, a complete classification of

the normal subgroups of Hδ contained in K1
δ . Note that we obtain in particular our

claim about the special case δ = ω · 2 from Section 6.5.

Theorem 6.7.7. Let N be a normal subgroup of Hδ contained in K1
δ other than the

group of alternating permutations of finite support. Then

L0
∆ ≤ N ≤ L∆

for a unique lower set ∆ ⊆ Γn.

Moreover, given a lower set ∆ ⊆ Γn, the normal subgroups N E Hδ with L0
∆ ≤

N ≤ L∆ may be characterised in terms of the subgroups of Z∆ to which they

correspond. Specifically, since Hδ = K1
δ o B1

δ and the induced conjugation action

of K1
δ on Z∆ is trivial, a subgroup of Z∆ will correspond to a normal subgroup

of Hδ if and only if it is invariant under the induced conjugation action of B1
δ on

Z∆. We will come back and analyse these subgroups of Z∆ after proving our main

result. In particular, we will find 22ℵ0 such subgroups whenever (k1, k2) ∈ ∆ for

some k1, k2 ∈ {1, 2, . . . , n}.

6.8 Canonical functions

Recall that if f ∈ K1
δ , then char (f) is a lower set. The purpose of this section is

to find for each lower set ∆ ⊆ Γn a function f∆ ∈ K1
δ with char (f∆) = ∆, which

we will call the canonical function with character ∆. We will choose these functions

carefully, since they will be an important tool in the proof of Theorem 6.7.7. In

particular, they will all have zero flow.

Our basic construction uses a product of permutations whose supports are

pairwise disjoint, which is defined in the obvious way. Note that if fi ∈ Hδ for

all i ∈ ω and supp (fi)∩ supp (fj) = ∅ for all distinct i, j ∈ ω, then in general it need

not be the case that the infinite product
∏

i∈ω fi lies Hδ: for example, take fi to

be the transposition (i+ 1 ω + i+ 1) for all i ∈ ω. However, the infinite products

used in our construction will clearly satisfy the criterion of Proposition 6.3.2 and

therefore lie in K1
δ .

Here is our basic construction.

Definition. For each subset Z ⊆ X ′δ, we define fZ ∈ Hδ as follows.

Let z ∈ X ′δ. Write z = η + ωk with η a multiple of ωk. For each positive integer

i, let ai = η+ωk−1 · i+ 1. Then define f{z} to be the cycle (. . . a6 a4 a2 a1 a3 a5 . . . ).
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For an arbitrary subset Z ⊆ X ′δ, define fZ =
∏

z∈Z f{z}. It is easy to check that

this is a product of disjoint cycles.

The point of this definition is to obtain the following result.

Lemma 6.8.1. Let Z be a closed subset of X ′δ. Then

cl (supp (fZ)) ∩X ′δ = Z.

Note that by definition of the square bracket notation, if f ∈ K1
δ has non-empty

support, then char (f) depends only cl (supp (f))∩X ′δ, which must be a closed subset

of X ′δ. This result shows that in fact any closed subset of X ′δ may be realised in

this fashion, thereby reducing the problem of finding canonical functions to finding

certain closed subsets of X ′δ.

Proof. First note that by construction, supp
(
f{z}

)
⊆ X

[0]
δ and cl

(
supp

(
f{z}

))
=

supp
(
f{z}

)
∪ {z} for each z ∈ Z, and moreover supp (fZ) =

⋃
z∈Z supp

(
f{z}

)
.

We show that cl (supp (fZ)) = supp (fZ) ∪ Z, which suffices. First of all,

cl (supp (fZ)) ⊇
⋃
z∈Z cl

(
supp

(
f{z}

))
= supp (fZ) ∪ Z. Conversely, let z ∈

cl (supp (fZ)) \ supp (fZ), say z = sup (V ) for some V ⊆ supp (fZ), and suppose

for contradiction z /∈ Z. By definition of fZ , for all v ∈ V we may write

v = ηv+ωkv−1 ·iv+1 with iv a positive integer, ηv a multiple of ωkv and ηv+ωkv ∈ Z.

Now write z = ζ + ωl with ζ a multiple of ωl. We may assume without loss of

generality that v ∈ (ζ + 1, z) for all v ∈ V . But the only members of (ζ + 1, z)

that are multiples of ωl−1 plus one lie in supp
(
f{z}

)
, so since z /∈ Z it follows that

kv < l for all v ∈ V . But then ηv + ωkv < z for all v ∈ V , so z = sup (Y ) where

Y =
{
ηv + ωkv : v ∈ V

}
⊆ Z. Hence z ∈ Z since Z is closed, and we are done.

These functions also have the following convenient properties.

Lemma 6.8.2. Let Z1, Z2, . . . , Zr ⊆ X ′δ.

1. supp
(
f⋃r

i=1 Zi

)
=
⋃r
i=1 supp (fZi).

2. supp (fZ1 ◦ fZ2 ◦ · · · ◦ fZr) =
⋃r
i=1 supp (fZi).

Proof. 1. This is immediate from the fact that if Z ⊆ X ′δ, then supp (fZ) =⋃
z∈Z supp

(
f{z}

)
.

2. Let f = fZ1 ◦ fZ2 ◦ · · · ◦ fZr and Z =
⋃r
i=1 Zi. For each z ∈ Z,

let rz = |{i ∈ {1, 2, . . . , r} : z ∈ Zi}|. Then f =
∏

z∈Z f
rz
{z}, a product of

disjoint permutations. Moreover, for each z ∈ Z, since f{z} is an infinite

cycle, supp
(
f rz{z}

)
= supp

(
f{z}

)
. Hence supp (f) = supp

(∏
z∈Z f{z}

)
=⋃r

i=1 supp (fZi).

It will also be important for the proof of Theorem 6.7.7 that these functions have

zero flow.
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Lemma 6.8.3. Let Z be a closed subset of X ′δ. Then flow (fZ) = 0.

Proof. Let z ∈ Z and y ∈ X ′δ. Note that B (y) and B (z) are either nested or disjoint.

If z /∈ B (y), then supp
(
f{z}

)
∩ B (y) is either empty (if B (z) ∩ B (y) = ∅) or finite

(if B (y) ( B (z)). On the other hand if z ∈ B (y), then supp
(
f{z}

)
⊆ B (z) ⊆ B (y).

In either case we see that flowB(y)

(
f{z}

)
= 0. Moreover, there are at most finitely

many z ∈ Z with B (y) ( B (z), and hence flowB(y) (fZ) = 0 for all y ∈ X ′δ, as

required.

Suppose we were to extend the definition of the square bracket notation and of

types to include all subsets of Xδ, rather than only subsets of X
[0]
δ . Lemma 6.8.1

would then imply that Z [s] = supp (fZ) [s] whenever Z is a closed subset of X ′δ and

s ∈ Γn \ {()}. Hence if ∆ ⊆ Γn is a lower set, then in order to find f ∈ K1
δ with

char (f) = ∆, it is sufficient to find a closed subset Z ⊆ X ′δ with tp (Z) = ∆ in this

sense.

We now construct such closed subsets of X ′δ, beginning with the case in which

∆ has the form 〈s〉 with s ∈ Γn.

Definition. Define Z (〈s〉) for each s ∈ Γn inductively by Z (〈()〉) = ∅ and

Z (〈(k1, k2, . . . , kr)〉) =
{
ωkr−1 · 2i+ z : i ∈ ω, z ∈ Z (〈(k1, k2, . . . , kr−1)〉)

}
∪
{
ωkr
}

for r ≥ 1.

For example, when δ = ω3, Z (〈(1, 3)〉) = {ω2 · 2i+ ω : i ∈ ω} ∪ {ω3}.
We now give the key properties of these sets, showing in particular that they are

as we desired.

Lemma 6.8.4. Let (k1, k2, . . . , kr) ∈ Γn for some r ≥ 1.

1. Z (〈(k1, k2, . . . , kr)〉) is a closed subset of X ′δ ∩
[
1, ωkr

]
.

2. Z (〈(k1, . . . , ki−1, ki+1, . . . , kr)〉) ⊆ Z (〈(k1, k2, . . . , kr)〉) for all i ∈
{1, 2, . . . , r}.

3. char
(
fZ(〈(k1,k2,...,kr)〉)

)
= 〈(k1, k2, . . . , kr)〉.

Proof. 1. This is immediate by induction on r.

2. Let i ∈ {1, 2, . . . , r}. First note that Z (〈(k1, . . . , ki−1)〉) ⊆
Z (〈(k1, k2, . . . , ki)〉). It follows by induction on j that

Z (〈(k1, . . . , ki−1, ki+1, . . . , kj)〉) ⊆ Z (〈(k1, k2, . . . , kj)〉) for all j ∈
{i+ 1, i+ 2, . . . , r}, as required.

3. Let Z = Z (〈(k1, k2, . . . , kr)〉). Extend the definition of the square bracket

notation and of types to include all subsets of Xδ. As we remarked above, by

Lemma 6.8.1 it is sufficient to prove that tp (Z) = 〈(k1, k2, . . . , kr)〉.
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The proof is by induction on r. For the case r = 1, Z (〈(k1)〉) =
{
ωk1
}

and so tp (Z (〈(k1)〉)) = {() , (k1)}, as required. So assume that r > 1 and

let W = Z (〈(k1, k2, . . . , kr−1)〉). By Lemma 6.6.4 it is sufficient to prove

that (k1, k2, . . . , kr) ∈ tp (Z) and if k ∈ {1, 2, . . . , n} \ {k1, k2, . . . , kr} then

(k) /∈ tp (Z).

For the first part, let V = W [(k1, k2, . . . , kr−1)]. By the inductive

hypothesis, V 6= ∅, so let x ∈ V , and note that x ∈
[
1, ωkr−1

]
by

part 1. Then
{
ωkr−1 · 2i+ x : i ∈ ω

}
⊆ Z [(k1, k2, . . . , kr−1)] and so ωkr ∈

cl (Z [(k1, k2, . . . , kr−1)]) ∩ X [kr]
δ = Z [(k1, k2, . . . , kr)]. Hence (k1, k2, . . . , kr) ∈

tp (Z), as required.

For the second part, suppose k ∈ {1, 2, . . . , n} \ {k1, k2, . . . , kr}. Then

cl (W ) ∩ X
[k]
δ = ∅ by the inductive hypothesis. But cl (Z) ={

ωkr−1 · 2i+ z : i ∈ ω, z ∈ cl (W )
}
∪
{
ωkr
}

, and hence cl (Z) ∩ X [k]
δ = ∅. In

other words, (k) /∈ tp (Z), as required.

Our definition of Z (〈s〉) for s ∈ Γn may now be extended to a definition of Z (∆)

for every lower set ∆ ⊆ Γn. Part 2 of Lemma 6.8.4 ensures that our two definitions

agree when ∆ = 〈s〉 for some s ∈ Γn.

Definition. Let ∆ ⊆ Γn be a lower set. Define

Z (∆) =
⋃
s∈∆

Z (〈s〉) .

By part 2 of Lemma 6.8.4, we may equivalently define Z (∆) =
⋃
s∈S Z (〈s〉),

where S is the antichain of Γn with 〈S〉 = ∆.

We now have all the ingredients ready for us to define canonical functions. We

need to distinguish the case ∆ = {()} because Z ({()}) = Z (∅) = ∅. Indeed, if

f ∈ K1
δ has finite support, then cl (supp (f))∩X ′δ = ∅ whether or not char (f) = {()}

or char (f) = ∅.

Definition. Let ∆ ⊆ Γn be a lower set. We define the canonical function with

character ∆ by

f∆ =

(1 2) , if ∆ = {()}

fZ(∆), otherwise.

By convention, the empty product f∅ is the identity function.

It is now easy for us to check that these functions are as we desired.

Proposition 6.8.5. Let ∆ ⊆ Γn be a lower set. Then char (f∆) = ∆.

Proof. The result is clear if ∆ = {()}. Otherwise, char (f∆) =

tp
(⋃

s∈∆ supp
(
fZ(〈s〉)

))
=
⋃
s∈∆ char

(
fZ(〈s〉)

)
=
⋃
s∈∆ 〈s〉 = ∆ by, respectively, part

1 of Lemma 6.8.2, Lemma 6.6.2, part 3 of Lemma 6.8.4 and the fact that ∆ is a

lower set.
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Combined with Lemma 6.6.4, this result finally shows that if ∆ ⊆ Γn, then there

exists f ∈ K1
δ with char (f) = ∆ if and only if ∆ is a lower set.

Because of how we chose our canonical functions, we may use part 2 of Lemma

6.8.2 to generalise this result.

Proposition 6.8.6. Let ∆1,∆2, . . . ,∆r ⊆ Γn be lower sets with ∆i 6= {()} for all

i ∈ {1, 2, . . . , r}. Then

char (f∆1 ◦ f∆2 ◦ · · · ◦ f∆r) =
r⋃
i=1

∆i.

Proof. By definition f∆i
= fZ(∆i) for all i ∈ {1, 2, . . . , r}. Hence

char (f∆1 ◦ f∆2 ◦ · · · ◦ f∆r) = tp
(⋃r

i=1 supp
(
fZ(∆i)

))
=

⋃r
i=1 char

(
fZ(∆i)

)
=⋃r

i=1 ∆i by, respectively, part 2 of Lemma 6.8.2, Lemma 6.6.2 and Proposition

6.8.5.

We now use canonical functions to reduce our main result, Theorem 6.7.7, to

a pair of statements about conjugate closures, which may be viewed as roughly

converse to one another.

Theorem 6.8.7. Let h ∈ K1
δ have infinite support and let ∆ = char (h).

1. If {()} ( ∆′ ⊆ ∆ is a lower set, then f∆′ is the product of finitely many

conjugates of h or h−1.

2. If flow (h) = 0 then h is the product of finitely many conjugates of f∆ or f−1
∆ .

It is straightforward to deduce Theorem 6.7.7 from this result. The crucial claim

in our proof uses Proposition 6.8.6.

Proof of Theorem 6.7.7 from Theorem 6.8.7. Let N be a normal subgroup of Hδ

contained in K1
δ . If every member of N has finite support, then by the Schreier–

Ulam theorem, N is either the identity, or the group of alternating permutations of

X
[0]
δ of finite support, or the group of all permutations of X

[0]
δ of finite support, and

we are done. Assume instead that N has an element of infinite support. We show

that L0
∆ ≤ N ≤ L∆, where ∆ =

⋃
h∈N char (h). Uniqueness is then immediate from

the fact that f∆′ ∈ L0
∆′ and char (f∆′) = ∆′ for every lower set ∆′ ⊆ Γn.

Clearly N ≤ L∆. To see that L0
∆ ≤ N , let g ∈ L0

∆. It is sufficient to prove

that g is the product of finitely many conjugates of members of N . If g has finite

support, then this is immediate from the Schreier–Ulam theorem. Otherwise let

∆′ = char (g), so ∆′ is a lower set with {()} ( ∆′ ⊆ ∆. We claim that there is a

product h of finitely many conjugates of members of N with char (h) = ∆. Given

the claim, f∆′ is the product of finitely many conjugates of h or h−1 by part 1 of

Theorem 6.8.7, and g is the product of finitely many conjugates of f∆′ or f−1
∆′ by

part 2 of Theorem 6.8.7, which completes the proof.
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It remains to prove the claim. Since Γn is finite and () is a member of every

non-empty lower set, there exist h1, h2, . . . , hr ∈ N such that
⋃r
i=1 char (hi) =⋃

h∈N char (h) = ∆ and char (hi) ) {()} for all i ∈ {1, 2, . . . , r}. For each

i ∈ {1, 2, . . . , r}, let ∆i = char (hi). Then by part 1 of Theorem 6.8.7, f∆i
is

the product of finitely many conjugates of hi or h−1
i for all i ∈ {1, 2, . . . , r}. Take

h = f∆1 ◦ f∆2 ◦ · · · ◦ f∆r . Then char (h) = ∆ by Proposition 6.8.6, as required.

6.9 Proof of the classification

In this section we prove Theorem 6.8.7, thereby completing the proof of our main

result, Theorem 6.7.7.

A crucial ingredient in our proof is the following result of Bertram [Ber73]. It is

essentially the corresponding result for S∞, the group of permutations of [1, ω).

Theorem 6.9.1 (Bertram). Let g ∈ S∞ have infinite support and let h ∈ S∞. Then

h is the product of 4 conjugates of g.

The number 4 is best possible here in general, though this result may be further

refined using case distinctions [Dro83, Dro85, Dro87, Mor89]. However, we will not

be unduly concerned with careful numerical bounds, and so Bertram’s formulation

is the most convenient for our purposes.

As in the previous section, we make frequent use of infinite products of disjoint

permutations. In each case it will again be easy to check these products lie in Hδ,

either using Lemma 6.1.1, or using Proposition 6.3.2 for functions lying in K1
δ .

We begin by proving the first part of Theorem 6.8.7, which states that we may

obtain a canonical function as a product of finitely many conjugates of a suitable

given function and its inverse. Our proof has two steps. In the first step, we obtain

a function of the form fZ .

Proposition 6.9.2. Let h ∈ K1
δ and let Z ⊆ cl (supp (h)) ∩ X ′δ. Then fZ is the

product of 8 conjugates of h or h−1.

The first step in our proof of the first part of Theorem 6.8.7 essentially amounts

to the case Z = cl (supp (h))∩X ′δ. However, our more general statement makes this

result a useful tool at several other points in the proof of Theorem 6.8.7.

Proof. The idea of the proof is straightforward, though the details are somewhat

technical. Let Z̃ = cl (supp (h)) ∩ X ′δ. We aim to construct a product r ∈
K1
δ of 2 conjugates of h or h−1 such that r is an infinite product

∏
z∈Z̃ rz of

disjoint permutations with supp (rz) ⊆ supp
(
f{z}

)
for all z ∈ Z̃. We may then

simultaneously apply Bertram’s theorem to rz for each z ∈ Z̃ and obtain fZ as the

product of 4 conjugates of r. In order to obtain r, we first construct g ∈ K1
δ so

that the commutator p = g−1 ◦ h ◦ g ◦ h−1 may be written as an infinite product
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∏
z∈Z̃ pz of disjoint permutations with cl (supp (pz)) ∩X ′δ = {z} for all z ∈ Z̃ (note

that in particular, p has zero flow). We then construct q ∈ K1
δ and obtain r as the

conjugate q−1 ◦ p ◦ q.
First we construct g ∈ K1

δ as the product
∏

z∈Z̃ gz of disjoint permutations. For

each k ∈ {1, 2, . . . , n}, let us simultaneously define gz for each z ∈ Z̃ ∩ X [k]
δ by

backwards induction on k. Fix k ∈ {1, 2, . . . , n} and assume that we have defined gz

for each z ∈ Z̃ ∩ X(k+1)
δ in such a way that cl

(
supp

(∏
z∈Z̃∩X(k+1)

δ
gz

))
∩ X ′δ ⊆

X
(k+1)
δ . Now fix z ∈ Z̃ ∩ X [k]

δ and write z = η + ωk with η a multiple of

ωk. Then there is a strictly increasing sequence (bi)i∈ω with bi ∈ supp (h) for

all i ∈ ω and z = sup ({bi : i ∈ ω}). By passing to a subsequence if necessary,

we may assume (h (bi))i∈ω is monotonic and therefore strictly increasing. Then

z = sup ({h (bi) : i ∈ ω}) since h (z) = z and h is continuous at z, so by passing

to another subsequence if necessary we may assume both bi+1 and h (bi+1) are

larger than max ({bi, h (bi)}) for all i ∈ ω. Finally, by the inductive hypothesis,

supp
(∏

z∈Z̃∩X(k+1)
δ

gz

)
∩ [η + 1, z) is finite, so by passing to yet another subsequence

we may assume both bi and h (bi) are larger than every member of this set for

all i ∈ ω. Then take gz to be the product
∏

i∈ω (b2i b2i+1) of disjoint cycles.

Observe that g−1
z ◦ h ◦ gz ◦ h−1 =

∏
i∈ω (b2i b2i+1) (h (b2i) h (b2i+1)). Note also that

cl (supp (gz)) ∩ X ′δ = {z} ∈ X
[k]
δ as required for the inductive hypothesis. This

completes our construction of g.

Let p = g−1 ◦ h−1 ◦ g ◦ h and write pz = g−1
z ◦ h−1 ◦ gz ◦ h for each z ∈ Z̃,

so that p =
∏

z∈Z̃ pz. Next we construct q ∈ K1
δ as the product

∏
z∈Z̃ qz

of disjoint permutations. Fix z ∈ Z̃, write z = η + ωk with η a multiple

of ωk and write gz =
∏

i∈ω (b2i b2i+1) as above. For each positive integer i,

let ai = η + ωk−1 · i + 1 (so that f{z} is the cycle (. . . a6 a4 a2 a1 a3 a5 . . . )).

Pick a positive integer j such that aj ≥ b0, which ensures that {aj, aj+1, . . . }
is disjoint from supp (pz) for each z ∈ Z̃ ∩ X(k+1)

δ . Then take qz to be the

product
∏

i∈ω (aj+4i b2i) (aj+4i+1 b2i+1) (aj+4i+2 h (b2i)) (aj+4i+3 h (b2i+1)) of disjoint

permutations. Observe that q−1
z ◦ pz ◦ qz =

∏
i∈ω (aj+4i aj+4i+1) (aj+4i+2, aj+4i+3).

This completes our construction of q.

Finally let r = q−1 ◦ p ◦ q and write rz = q−1
z ◦ pz ◦ qz for each z ∈ Z̃, so that

r =
∏

z∈Z̃ rz. By Bertram’s theorem, f{z} is the product of 4 conjugates of rz for

each z ∈ Z̃, and the identity is the product of 4 conjugates of rz for each z ∈ Z \ Z̃.

By taking the infinite product of these conjugands in much the same way as above,

it follows that fZ =
∏

z∈Z f{z} is the product of 4 conjugates of r and hence 8

conjugates of h or h−1.

The second step of our proof of the first part Theorem 6.8.7 is to obtain a

canonical function from a function of the form fZ .

Proposition 6.9.3. Let Z be a closed subset of X ′δ and let ∆ = char (fZ). Then f∆

is the product of finitely many conjugates of fZ or f−1
Z .
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The basic idea of our proof is that by using Proposition 6.9.2, it is in some sense

sufficient to build up for each s ∈ ∆ a copy of Z (〈s〉) inside a conjugate of fZ . We

do this inductively by mirroring the definition of Z (〈s〉), which it may be helpful

to recall at this stage. The fact that we used even numbers in that definition makes

our construction cleaner. In order to build up the copy of Z (〈s〉), we conjugate

by functions obtained from block maps. This is to be contrasted with the proof of

Proposition 6.9.2, where we only conjugated by functions from K1
δ .

Proof. The result is trivial if ∆ = ∅, so assume ∆ 6= ∅ and note that ∆ 6= {()}.
Let S be the antichain of Γn with 〈S〉 = ∆. We claim that for all s ∈ S there is a

conjugate g of fZ such that Z (〈s〉) ⊆ cl (supp (g))∩X ′δ. Given the claim, it follows

from Proposition 6.9.2 that fZ(〈s〉) is the product of 8 conjugates of fZ or f−1
Z for

all s ∈ S. Now let S = {s1, s2, . . . , sr} and let h = fZ(〈s1〉) ◦ fZ(〈s2〉) ◦ · · · ◦ fZ(〈sr〉).

Then supp (h) =
⋃r
i=1 supp

(
fZ(〈si〉)

)
by part 2 of Lemma 6.8.2, so cl (supp (h)) ∩

X ′δ =
⋃r
i=1Z (〈si〉) = Z (∆) by Lemma 6.8.1. Hence f∆ = fZ(∆) is the product

of 8 conjugates of h or h−1 by Proposition 6.9.2, and therefore the product of 64r

conjugates of fZ or f−1
Z , as required.

It remains to prove the claim. To do this, fix s ∈ S and write s = (k1, k2, . . . , kr)

with r ≥ 1. We show that for all j ∈ {1, 2, . . . , r} there is a conjugate gj of fZ

such that supp (gj) [(k1, k2, . . . , kj)] = supp (fZ) [(k1, k2, . . . , kj)], and for all z ∈
supp (gj) [(k1, k2, . . . , kj)], writing z = η + ωkj with η a multiple of ωkj ,

{η + x : x ∈ Z (〈(k1, k2, . . . , kj)〉)} ⊆ cl (supp (gj)) ∩X ′δ.

Once we have done this, we may choose z ∈ supp (gr) [(k1, k2, . . . , kr)] and take g to

be the conjugate of gr by bkrδ
((
z ωkr

))
, where bkrδ is the block map and

(
z ωkr

)
∈ Hkr

δ

is a transposition. Then g is as required since Z (〈s〉) ⊆
[
1, ωkr

]
.

We prove this by induction on j. For the case j = 1 we may simply

take g1 to be fZ since Z (〈(k1)〉) =
{
ωk1
}

. So suppose j > 1. Fix z ∈
supp (gj−1) [(k1, k2, . . . , kj)] and write z = η + ωkj with η a multiple of ωkj . Then

there is a strictly increasing sequence (ai)i∈ω such that a0 > η, z = sup ({ai : i ∈ ω})
and ai ∈ supp (gj−1) [(k1, k2, . . . , kj−1)] for all i ∈ ω. For each i ∈ ω write

ai = η + ωkj−1 · ci + ζi + ωkj−1 with ci ∈ ω and ζi < ωkj−1 a multiple of ωkj−1

(it is possible that kj−1 = kj − 1, in which case ζi = 0). By passing to a

subsequence if necessary, we may assume ci+1 ≥ ci + 2 for all i ∈ ω. Then

there is a permutation σ of ω such that σ (ci) = 2i for all i ∈ ω, which induces

a function pz ∈ H
kj−1
δ such that pz

(
η + ωkj−1 · (ci + 1)

)
= η + ωkj−1 · (2i+ 1)

for all i ∈ ω. Let qz =
∏

i∈ω
(
ai η + ωkj−1 · ci + ωkj−1

)
, a product of disjoint

transpositions lying in H
kj−1

δ . Now let tz = b
kj−1
δ (pz) ◦ b

kj−1

δ (qz). Then tz (z) = z

and tz (ai) = η+ωkj−1 ·2i+ωkj−1 for all i ∈ ω. It follows by the inductive hypothesis

that {η + x : x ∈ Z (〈(k1, k2, . . . , kj)〉)} ⊆ cl (supp (tz ◦ gj−1 ◦ t−1
z )) ∩ X ′δ. Thus we

may let t = b
kj−1
δ

(∏
z∈Z pz

)
◦ bkj−1

δ

(∏
z∈Z qz

)
and take gj to be t ◦ gj−1 ◦ t−1. This
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completes the proof.

We will not keep any further track of how many conjugates we use, but in this

case we used 64 |S| conjugates, where S is the antichain of Γn with 〈S〉 = ∆. By

Sperner’s theorem, this is at most 64
(

n
bn/2c

)
. It may be interesting to determine

whether or not this upper bound may be reduced to a constant (independent of n).

Let us now put Propositions 6.9.2 and 6.9.3 together to complete the proof of

the first part of Theorem 6.8.7.

Proof of part 1 of Theorem 6.8.7. Recall that h ∈ K1
δ has infinite support and ∆ =

char (h). Let {()} ( ∆′ ⊆ ∆ be a lower set. We are required to prove that f∆′ is

the product of finitely many conjugates of h or h−1.

First we show that f∆ is the product of finitely many conjugates of h or h−1. To

see this, let Z = cl (supp (h)) ∩X ′δ. Then char (fZ) = ∆. Hence fZ is the product

of 8 conjugates of h or h−1 by Proposition 6.9.2, and f∆ is the product of finitely

many conjugates of fZ or f−1
Z by Proposition 6.9.3.

To complete the proof, simply observe that Z (∆′) ⊆ Z (∆) = cl
(
supp

(
fZ(∆)

))
∩

X ′δ, and so by Proposition 6.9.2, fZ(∆′) = f∆′ is the product of 8 conjugates of

fZ(∆) = f∆ or f−1
∆ .

We now prove the second part of Theorem 6.8.7, which states that we may obtain

an arbitrary function in K1
δ of zero flow as a product of finitely many conjugates of

an appropriate canonical function and its inverse. Like the first part, our proof has

two steps. In the first step, we obtain an appropriate function of the form fZ . This

may be viewed as the converse of Proposition 6.9.3.

Proposition 6.9.4. Let Z be a closed subset of X ′δ and let ∆ = char (fZ). Then fZ

is the product of finitely many conjugates of f∆ or f−1
∆ .

The proof of this result is the most technically challenging part of this chapter,

essentially because of the lack of control we have over Z. In order to address this,

we use the following notion.

Definition. Let Y ⊆ X
[0]
δ and ∆ = tp (Y ). We say that Y is primitive to mean that

∆ = 〈s〉 for some s ∈ Γn, and Y [(k1, k2, . . . , kj)] = Y [(kj)] for all j ∈ {1, 2, . . . , r},
where s = (k1, k2, . . . , kr).

For example, let n = 3, Z = Z (〈(2)〉) ∪ {ω2 + z : z ∈ Z (〈(1, 2)〉)} and Y =

supp (fZ). Then tp (Y ) = 〈(1, 2)〉 but Y is not primitive since Y [(2)] \ Y [(1, 2)] =

Z (〈(2)〉) 6= ∅.
Let Y ⊆ X

[0]
δ and ∆ = tp (Y ), and suppose ∆ = 〈s〉 with s = (k1, k2, . . . , kr).

By Lemma 6.6.1, if j ∈ {1, 2, . . . , r} and t is any subsequence of (k1, k2, . . . , kj) such

that the last term of t is kj, then Y [(k1, k2, . . . , kj)] ⊆ Y [t] ⊆ Y [(kj)], so if Y is

primitive then Y [t] = Y [(k1, k2, . . . , kj)].
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It is easy to check that if s ∈ Γn \ {()} then supp
(
fZ(〈s〉)

)
is primitive. Thus

by definition, sets of the form supp
(
fZ(∆)

)
with {()} 6= ∆ ⊆ Γn may be written

as a union of primitive sets. The following result shows that this in fact holds for

any subset of X
[0]
δ , and moreover that this union may be taken to be disjoint, as

we indicate here with the word “partition”. This powerful result will allow us to

prove Proposition 6.9.3, though strictly speaking the disjointness condition will not

be required when we apply this result.

Lemma 6.9.5. Let Y ⊆ X
[0]
δ and let ∆ = tp (Y ). Then there is a partition Y =⋃

s∈∆ Ys such that Ys is primitive with tp (Ys) = 〈s〉 for all s ∈ ∆.

Proof. If |∆| ≤ 1 then the result is trivial, so assume |∆| > 1, let S be the antichain

of Γn with 〈S〉 = ∆ and let s ∈ S. We show that there is a partition Y = A ∪ B
such that A is primitive with tp (A) = 〈s〉 and tp (B) = ∆ \ {s}. The result then

follows by induction on |∆|.
Let s = (k1, k2, . . . , kr). For each j ∈ {r, r − 1, . . . , 0} we construct a partition

Y [(k1, k2, . . . , kj)] = Aj∪Bj. First of all let Ar = Y [(k1, k2, . . . , kr)] and Br = ∅. For

each j ∈ {r, r − 1, . . . , 0}, let Dj =
⋃
t Y [t], with the union ranging over all t ∈ ∆

such that the last term of t is kj and (k1, k2, . . . , kj) is a proper subsequence of t.

Note that Dr = ∅ since s ∈ S. Now for each j ∈ {r − 1, r − 2, . . . , 0}, we construct

Aj and Bj inductively in such a way that for all k ∈ {kj + 1, kj + 2, . . . , n} (writing

k0 = 0):

1. Aj [(k)] =

Aj′ , if k = kj′ for some j′ ∈ {j + 1, j + 2, . . . , r}

∅, otherwise;

2. Bj [(k)] =

Bj+1, if k = kj+1

Y [(k1, . . . , kj, k)] , otherwise;

3. Aj ∩Dj = ∅; and

4. Br−1 6= ∅.

This is sufficient to complete the proof since we may then take A = A0 and B = B0.

To do this, suppose Aj+1 and Bj+1 have been defined for some j ∈
{r − 1, r − 2, . . . , 0}. Fix x ∈ Aj+1 and write x = η + ωkj+1 with η a multiple

of ωkj+1 . Then there is a strictly increasing sequence (ai)i∈ω such that a0 > η,

x = sup ({ai : i ∈ ω}) and ai ∈ Y [(k1, k2, . . . , kj)] for all i ∈ ω. Now by the

inductive hypothesis (or the fact that Dr = ∅), x /∈ Dj+1. Therefore we may

choose (ai)i∈ω in such a way that ai /∈ Dj for all i ∈ ω, and also in such a way

that Y [(k1, k2, . . . , kj)]∩ [a0, x) = {ai : i ∈ ω}, or else x ∈ Y [(k1, . . . , kj, k, kj+1)] for

some k ∈ {kj + 1, kj + 2, . . . , kj+1 − 1}. Let cx = a0 and Cx = {ai : i ∈ ω \ {0}}
(it is important that a0 is excluded here). Finally take Aj =

⋃
x∈Aj+1

Cx and

Bj = Y [(k1, k2, . . . , kj)] \ Aj. We now show that Aj and Bj are as claimed.
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1. Firstly let j′ ∈ {j + 1, j + 2, . . . , r}. Let x ∈ X
[kj′ ]
δ and write x = η + ωkj′

with η a multiple of ωkj′ . If x /∈ Aj′ , then it is clear inductively that

Aj′−1, Aj′−2, . . . , Aj must each be disjoint from [η + 1, x), and so x /∈ Aj [(kj′)].

Conversely, suppose x ∈ Aj′ . If j′ > j + 1 then Aj′ ⊆ Aj+1 [(kj′)] by the

inductive hypothesis and Aj [(kj+1, kj′)] ⊆ Aj [(kj′)] by part 2 of Lemma 6.6.1,

so it is sufficient to prove that Aj+1 ⊆ Aj [(kj+1)]. In other words, it is enough

to consider the case j′ = j+ 1. But then x ∈ cl (Cx), so x ∈ Aj [(kj+1)]. Hence

Aj [(kj′)] = Aj′ .

Suppose instead k ∈ {kj + 1, . . . , n} \ {kj+1, . . . , kr}. Let x ∈ X [k]
δ and write

x = η + ωk with η a multiple of ωk. If k < kj+1 then [η + 1, x) intersects

(cy, y) for at most one y ∈ Aj+1, so Aj ∩ [η + 1, x) is finite and x /∈ Aj [(k)].

So assume k > kj+1 and suppose for contradiction x ∈ Aj [(k)]. Then there

is a strictly increasing sequence (yi)i∈ω with yi ∈ Aj+1 for all i ∈ ω and for

each i ∈ ω a member ci ∈ Cyi such that x = sup ({ci : i ∈ ω}). But then

x = sup ({yi : i ∈ ω}), so x ∈ Aj+1 [(k)], contrary to the inductive hypothesis.

2. Firstly we show that Bj [(kj+1)] = Bj+1. Let x ∈ Y [(k1, k2, . . . , kj+1)] and

write x = η + ωkj+1 with η a multiple of ωkj+1 . If x ∈ Bj+1 then Aj is disjoint

from [η + 1, x), so x ∈ Bj [(kj+1)]. Conversely, if x ∈ Aj+1 then Bj is disjoint

from (cx, x), so x /∈ Bj [(kj+1)].

Suppose now k ∈ {kj + 1, . . . , n} \ {kj+1} and let x ∈ Y [(k1, . . . , kj, k)]. Then

there is a strictly increasing sequence (ci)i∈ω with ci ∈ Y [(k1, k2, . . . , kj)] for

all i ∈ ω and x = sup ({ci : i ∈ ω}). If ci ∈ Bj for infinitely many i ∈ ω then

we are done, so we may assume ci ∈ Aj for all i ∈ ω. But since k 6= kj+1 we

may also assume there is a strictly increasing sequence (yi)i∈ω with ci ∈ Cyi
for all i ∈ ω. But then cyi ∈ Bj for all i ∈ ω and x = sup ({cyi : i ∈ ω}), and

we are done.

3. This is clear by construction.

4. This is immediate from the fact that cx ∈ Br−1 for all x ∈ Ar.

We are now ready to prove Proposition 6.9.4, thereby completing the first step

in our proof of the second part of Theorem 6.8.7. We do this by using Lemma 6.9.5

to reduce to the case in which supp (fZ) is primitive. This makes Z simple enough

that we are almost able to build up a copy of Z (∆) inside it, in a similar sense to

the proof of Proposition 6.9.3. However, for technical reasons we need to take the

product of a pair of conjugates at each stage rather than using a single conjugate as

in the proof of Proposition 6.9.3.

Proof of Proposition 6.9.4. The result is trivial if Z = ∅, so assume Z 6= ∅ (and

hence {()} ( ∆).
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We claim that it is sufficient to prove the result for the case in which supp (fZ)

is primitive. To see this, suppose the result holds for this case. Let Y = supp (fZ)

and let (Ys)s∈∆ be as in Lemma 6.9.5. For each s ∈ ∆ \ {()}, let Zs = cl (Ys) ∩X ′δ,
so supp (fZs) is primitive, char (fZs) = 〈s〉 and Z =

⋃
s∈∆\{()} Zs. Then for each

s ∈ ∆ \ {()}, by assumption fZs is the product of finitely many conjugates of f〈s〉 or

f−1
〈s〉 , and furthermore f〈s〉 is the product of 8 conjugates of f∆ or f−1

∆ by Proposition

6.9.2, since Z (〈s〉) ⊆ Z (∆) = cl (supp (f∆)) ∩ X ′δ. Hence writing ∆ \ {()} =

{s1, s2, . . . , sr}, fZs1 ◦fZs2 ◦ · · · ◦fZsr is the product of finitely many conjugates of f∆

or f−1
∆ . But cl

(
supp

(
fZs1 ◦ fZs2 ◦ · · · ◦ fZsr

))
∩ X ′δ =

⋃r
i=1 cl

(
supp

(
fZsi

))
∩ X ′δ =⋃

s∈∆\{()} Zs = Z by Lemma 6.8.2, so using Proposition 6.9.2 again, fZ is the product

of finitely many conjugates of f∆ or f−1
∆ , as required.

So assume supp (fZ) is primitive and write ∆ = 〈(k1, k2, . . . , kr)〉. Let Y =

supp (fZ). We claim that it is sufficient to construct for each j ∈ {r, r − 1, . . . , 1} a

product fj of finitely many conjugates of f∆ in such a way that

supp (fj) [(k1, k2, . . . , kj)] = Y [(k1, k2, . . . , kj)]

and supp (fj) is primitive. To see this, suppose we have constructed such a collection.

Then for all j ∈ {1, 2, . . . , r}, supp (f1) [(kj)] = supp (f1) [(k1, k2, . . . , kj)] =

Y [(k1, k2, . . . , kj)] = Y [(kj)] since supp (f1) and Y are primitive. Furthermore,

supp (f1) [(k)] = ∅ for all k ∈ {1, 2, . . . , n} \ {k1, k2, . . . , kr} since f1 ∈ L∆. Thus

supp (f1) [(k)] = Y [(k)] for all k ∈ {1, 2, . . . , n} and so cl (supp (f1)) ∩ X ′δ =

cl (Y )∩X ′δ = Z. Hence fZ is the product of 8 conjugates of f1 and f−1
1 by Proposition

6.9.2, and we are done.

It remains to construct fj for each j ∈ {r, r − 1, . . . , 1}, which we do

inductively. First of all, since Y [(k1, k2, . . . , kr)] is finite, write Y [(k1, k2, . . . , kr)] =

{x1, x2, . . . , xl} and take fr = f
bkrδ ((ωkr x1))
∆ ◦ f b

kr
δ ((ωkr x2))

∆ ◦ · · · ◦ f b
kr
δ ((ωkr xl))

∆ ,

which is as required. Now suppose fj+1 has been constructed for some j ∈
{r − 1, r − 2, . . . , 0}. For each z ∈ Y [(k1, k2, . . . , kj+1)], write z = η + ωkj+1 with η

a multiple of ωkj+1 , and let

F (z) =

[sup (Y [(k1, k2, . . . , kj+1)]) , δ] ∪ [1, η] if z = min (Y [(k1, k2, . . . , kj+1)])

[sup (Y [(k1, k2, . . . , kj+1)] ∩ [1, z)) , η] , otherwise.

Thus F (z) is the “gap” between B (z) and the previous member of

Y [(k1, k2, . . . , kj+1)], and Xδ =
⋃
z∈Y [(k1,k2,...,kj+1)] B (z) ∪ F (z). Now fix z ∈

Y [(k1, k2, . . . , kj+1)]. Then Y [(k1, k2, . . . , kj)] ∩ F (z) is finite since Y is primitive,

say Y [(k1, k2, . . . , kj)]∩F (z) = {x0, x1, . . . , xl−1}, and Y [(k1, k2, . . . , kj)]∩B (z) is an

infinite set of order type ω, say Y [(k1, k2, . . . , kj)]∩B (z) = {xl, xl+1, . . . } with xl <

xl+1 < . . . . Also, supp (fj+1) [(k1, k2, . . . , kj)] ∩ B (z) =
{
η + ωkj · (2i+ 1) : i ∈ ω

}
because of how fj+1 was constructed from the canonical function f∆. Let G (z) =
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{x0, x1, x2, . . . , xl−1}∪
(
X

(kj)
δ ∩ B (z)

)
, a clopen subset of X

(kj)
δ . We would like to be

able to find an autohomeomorphism gz of G (z) such that gz (xi) = η+ωkj · (2i+ 1)

for all i ∈ ω. However, this may not be possible since if kj+1 = kj + 1,

then {xi : i ∈ ω} may be a cofinite subset of X
[kj ]
δ ∩ G (z) = {x0, x1, . . . , xl−1} ∪{

η + ωkj · (i+ 1) : i ∈ ω
}

. Instead, we construct two autohomeomorphisms gz and

hz of G (z) such that gz (x2i) = η + ωkj · (2i+ 1) for all i ∈ ω and hz (x2i+1) =

η + ωkj · (2i+ 1) for all i ∈ ω. To construct gz, observe that if kj+1 = kj + 1,

then both {x2i : i ∈ ω} and
{
η + ωkj · (2i+ 1) : i ∈ ω

}
are infinite-coinfinite subsets

of X
[kj ]
δ ∩ G (z) = {x0, x1, . . . , xl−1} ∪

{
η + ωkj · (i+ 1) : i ∈ ω

}
. Hence we can

simply take gz (x2i) = η + ωkj · (2i+ 1) for all i ∈ ω and extend gz using the

order-isomorphism G (z) \ {x2i : i ∈ ω} → G (z) \
{
η + ωkj · (2i+ 1) : i ∈ ω

}
(using

the usual ordering but with x0, x1, . . . , xl−1 considered less than everything else

if they are not already). hz may be constructed similarly. By extending them

to act as the identity, we may view gz and hz as members of H
kj
δ . Finally

define g =
∏

z∈Y [(k1,k2,...,kj+1)] b
kj
δ (gz) and h =

∏
z∈Y [(k1,k2,...,kj+1)] b

kj
δ (hz) and take

fj = f gj+1 ◦ fhj+1. Then supp (fj) [(k1, k2, . . . , kj)] = Y [(k1, k2, . . . , kj)] using the

argument from the proof of part 2 of Lemma 6.8.2, and supp (fj) is easily seen to

be primitive, as required.

The second and final step in our proof of the second part Theorem 6.8.7 is to

obtain an arbitrary function from K1
δ of zero flow from an appropriate function of

the form fZ .

Proposition 6.9.6. Let f ∈ Ker (flow) and let Z = cl (supp (f)) ∩ X ′δ. If Z 6= ∅
then f is the product of finitely many conjugates of fZ.

We prove this using an inductive argument, dealing with Z ∩X [i]
δ during the ith

stage for each i ∈ {1, 2, . . . , n}. For simplicity we include details only for the first

stage. The basic idea is to apply Proposition 6.3.2. Together with the fact that f

has zero flow, this allows us to make a small modification to f and to decompose the

result as a product of disjoint permutations. We may then apply Bertram’s theorem

to each of these permutations simultaneously, much as in the proof of Proposition

6.9.2.

Proof. First of all, let (Ax)x∈X′δ\X′′δ
and (Bx)x∈X′δ\X′′δ

be the cofinitary systems on

Xδ given by Proposition 6.3.2, with respective complementary sets A∗ and B∗. For

each x ∈ X ′δ \X ′′δ , write x = η + ω with η a multiple of ω. If x /∈ Z, then we may

assume without loss of generality that f fixes Ax pointwise. Suppose instead x ∈ Z,

and assume without loss of generality that η + 1 /∈ Ax ∪Bx. Since f (Ax) = Bx and

flowAx (f) = 0 by Lemma 6.7.5 we have |Ax \Bx| − |Bx \ Ax| = 0 and hence the

finite sets (η + 1, x) \ Ax and (η + 1, x) \ Bx have the same size. We may therefore

choose a bijection (η + 1, x) \ Ax → (η + 1, x) \ Bx and let tx be a permutation of

(η + 1, x) \ (Ax ∩Bx) extending this bijection. Now let t =
∏

x∈Z\X′′δ
tx, a product
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of disjoint permutations. Then f ◦ t−1 stabilises Ax setwise for all x ∈ Z \ X ′′δ , so

we may write f ◦ t−1 =
∏

x∈Z\X′′δ
gx ◦ g∗, where gx is a permutation of Ax for each

x ∈ Z \X ′′δ and g∗ is a permutation of A∗.

Take gz to be the identity function for all z ∈ Z∩X ′′δ so that f◦t−1 =
∏

z∈Z gz◦g∗.
Then by Bertram’s theorem, for each z ∈ Z we may write gz as a product of 4

conjugates of f{z}, and hence we may write
∏

z∈Z gz as a product of 4 conjugates of

fZ . Therefore it is sufficient to write g∗ ◦ t as a product of finitely many conjugates

of fZ .

Now flow (t) = flow
(∏

z∈Z gz
)

= 0 and hence flow (g∗) = flow (g∗ ◦ t) = 0.

Morevover, cl (supp (g∗ ◦ t)) ∩ X ′δ ⊆ Z ∩ X ′′δ by construction. Hence there exists

f1 ∈ Ker (flow) conjugate to g∗ ◦ t such that cl (supp (f1)) ∩X ′δ ⊆ Z ∩X ′′δ and, for

all x ∈ X [1]
δ , writing x = η + ω with η a multiple of ω, supp (f1) ∩ (η + 1, x) = ∅. It

is now sufficient to write f1 as a product of finitely many conjugates of fZ .

We may now repeat our entire argument so far with f replaced by f1 to obtain

some f2 ∈ Ker (flow) with cl (supp (f2)) ∩ X ′δ ⊆ X
(3)
δ and, for all x ∈ X [2]

δ , writing

x = η+ω2 with η a multiple of ω2, supp (f2)∩ (η + 1, x) = ∅. It is now sufficient to

write f2 as a product of finitely many conjugates of fZ .

Continuing in this fashion, we eventually obtain fn ∈ Ker (flow) with

cl (supp (fn)) ∩X ′δ ⊆ X
(n+1)
δ = ∅, such that it is sufficient to write fn as a product

of finitely many conjugates of fZ . But fn has finite support and may therefore be

written as a product of finitely many conjugates of fZ , either by Bertram’s theorem

or by writing fn as a product of transpositions and checking the result directly for

a single transposition.

Let us now put Propositions 6.9.4 and 6.9.6 together to complete the proof of

the second part of Theorem 6.8.7. This completes the proof of Theorem 6.8.7 and

hence of our main result, Theorem 6.7.7.

Proof of part 2 of Theorem 6.8.7. Recall that h ∈ K1
δ has infinite support and ∆ =

char (h). Assume that flow (h) = 0. We are required to prove that h is the product

of finitely many conjugates of f∆ and f−1
∆ . Let Z = cl (supp (h)) ∩ X ′δ. Then Z is

a non-empty closed subset of X ′δ and ∆ = char (fZ). Hence fZ is the product of

finitely many conjugates of f∆ or f−1
∆ by Proposition 6.9.4, and h is the product of

finitely many conjugates of fZ by Proposition 6.9.6.

6.10 The number of normal subgroups of Hωn·m

We have now completed the proof of our main result, which states that if N is

a normal subgroup of Hδ contained in K1
δ other than the group of alternating

permutations of finite support, then L0
∆ ≤ N ≤ L∆ for a unique lower set ∆ ⊆ Γn.

In this section we study which normal subgroups N E Hδ satisfying L0
∆ ≤ N ≤ L∆
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actually arise for each lower set ∆ ⊆ Γn. In particular, we show that if n ≥ 2 then

Hδ has 22ℵ0 normal subgroups.

We begin by describing which x ∈ ZX′δ arise as flow (f) for some f ∈ K1
δ . Let us

first introduce some coordinate notation.

Definition. Given x ∈ ZX′δ we write x = (x (z))z∈X′δ
.

The following result shows that there is just one simple restriction on which

x ∈ ZX′δ arise as flow (f) for some f ∈ K1
δ .

Proposition 6.10.1. The image of K1
δ under flow isx ∈ ZX′δ :
∑
z∈X[n]

δ

x (z) = 0

 .

Proof. First note that if f ∈ K1
δ then

∑
z∈X[n]

δ
flowB(z) (f) = flow⋃

z∈X[n]
δ

B(z) (f) =

flowXδ (f) = 0. Conversely, let x ∈ ZX′δ with
∑

z∈X[n]
δ

x (z) = 0. We construct

f ∈ K1
δ with flow (f) = x.

Our construction is analogous to our construction of fZ , which is defined in terms

of f{z} for z ∈ X ′δ. First we define fz1→z2 ∈ K1
δ for each z1, z2 ∈ X ′δ in such a way

that if C is a clopen subset of Xδ, then

flowC (fz1→z2) =


1, if z1 /∈ C and z2 ∈ C

−1, if z1 ∈ C and z2 /∈ C

0, otherwise.

To do this, given z1, z2 ∈ X ′δ, write z1 = η1 + ωk1 with η1 a multiple of ωk2 and z2 =

η2 +ωk2 with η2 a multiple of ωk2 . For each positive integer i, let ai = η1 +ωk1−1 ·i+1

and bi = η2 + ωk2−1 · i + 1. Then let fz1→z2 be the cycle (. . . a2 a1 b1 b2 . . . ). (This

should be compared with the definition of f{z} for z ∈ X ′δ.) It is easy to see that

fz1→z2 is as required.

We may now combine infinite sequences of such functions to obtain the desired

flow into B (z) for each z ∈ X ′δ \X
[n]
δ . To do this, given z ∈ X(2)

δ , write z = η + ωk

with η a multiple of ωk, let zi = η + ωk−1 · (i+ 1) for all i ∈ ω and define

fz = fx(z0)
z1→z0 ◦ f

x(z0)+x(z1)
z2→z1 ◦ fx(z0)+x(z1)+x(z2)

z3→z2 ◦ · · · .

This “infinite composition of functions” makes sense because each member of Xδ is

in the support of only finitely many of these functions, and it is easy to see that it

lies in K1
δ . Moreover flowB(zi) (fz) =

∑i
j=0 x (zj)−

∑i−1
j=0 x (zj) = x (zi) for all i ∈ ω.

To obtain the desired flow into B (z) for each z ∈ X [n]
δ , let yi = ωn · (i+ 1) for
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each i ∈ {0, 1, . . . ,m− 1} and define

g = fx(y0)
y1→y0 ◦ f

x(y0)+x(y1)
y2→y1 ◦ · · · ◦ f

∑m−2
i=0 x(yi)

ym−1→ym−2 .

Then flowB(yi) (g) = x (yi) for all i ∈ {0, 1, . . . ,m− 1} by a similar argument, using

the assumption that
∑m−1

i=0 x (yi) = 0.

Finally take

f = g
∏

z∈X(2)
δ

fz,

a product of disjoint permutations lying in K1
δ . Then f is as required.

Let ∆ ⊆ Γn be a lower set. Recall that Z∆ is defined to be the image of L∆

under flow. In order to find the normal subgroups N E Hδ with L0
∆ ≤ N ≤ L∆,

we must consider the conjugation action of Hδ on L∆, which induces an action of

Hδ on Z∆. Now the induced action of K1
δ on Z∆ is trivial. So since Hδ = K1

δ o B1
δ

by Proposition 6.2.2, it is enough to consider the induced action of B1
δ on Z∆. This

motivates the following definition.

Definition. Given x ∈ ZΓn and g ∈ H1
δ , define xg = flow

(
f b

1
δ(g)
)

, where f ∈ K1
δ

is any function with flow (f) = x. (Here b1
δ is the block map defined in Section

6.2, though by Lemma 6.7.4 we may equivalently replace b1
δ (g) by any h ∈ Hδ with

r1
δ (h) = g.) This is well-defined because if f1, f2 ∈ K1

δ with flow (f1) = flow (f2) and

h ∈ Hδ, then flow
(
fh1
)

= flow
(
fh2
)

by Lemma 6.7.6.

For example, it is easy to show using part 4 of Lemma 6.7.2 that if x ∈ ZΓn ,

g ∈ H1
δ and z ∈ X [1]

δ , then (xg) (z) = x (g (z)). Note that this simple formula need

not hold if we allow z ∈ X(2)
δ .

Let ∆ ⊆ Γn be a lower set, suppose L0
∆ ≤ N ≤ L∆ and let M be the image

of N/L0
∆ under the natural isomorphism L∆/L

0
∆ → Z∆. Clearly N is a normal

subgroup of Hδ if and only if whenever x ∈M and g ∈ H1
δ we have xg ∈M .

When δ = ω2 and ∆ = Γ2, Z∆ is isomorphic to the countable direct product Zω,

which is known as the Baer–Specker group. We now show that Hω2 has 22ℵ0 normal

subgroups lying between L0
Γ2

= Ker (flow) and LΓ2 = K1
δ , stating our result in terms

of Zω. Here, given x ∈ Zω and g ∈ Sym (ω), we write xg = (x (g (z)))z∈ω.

Proposition 6.10.2. There are 22ℵ0 subgroups M ≤ Zω with the property that

whenever x ∈M and g ∈ Sym (ω) we have xg ∈M .

Proof. Let P be the set of primes. By a standard argument we may let Q be

a collection of 2ℵ0 infinite subsets of P with the property that Q1 ∩ Q2 is finite

for all Q1, Q2 ∈ Q. Let QC = {P \Q : Q ∈ Q}. For each R ∈ QC , let eR =

(1, p0, p0p1, . . . ) ∈ Zω, where R = {pi : i ∈ ω} and p0 < p1 < . . . . Finally, for each
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subset A ⊆ QC , let

MA =

{
±

r∑
i=1

egiRi : r ∈ ω,R1, R2, . . . , Rr ∈ A, g1, g2, . . . , gr ∈ Sym (ω)

}
.

Certainly there are 22ℵ0 subsets of QC , and MA ≤ Zω is a subgroup such that

whenever x ∈MA and g ∈ Sym (ω) we have xg ∈MA for every subset A ⊆ QC . So

it is sufficient to prove that for all A1,A2 ⊆ QC , if A1 6= A2 then MA1 6= MA2 .

So suppose A1,A2 ⊆ QC with A1 6= A2. Without loss of generality there exists

R ∈ A1 \ A2. Then eR ∈ A1 has infinitely many non-zero entries modulo p for all

p ∈ P \ R. We claim that on the other hand, for all x ∈ A2 there exists p ∈ P \ R
such that x has only finitely many non-zero entries modulo p. To see this, let x ∈ A2

and write x = ±
∑r

i=1 egiRi with R1, R2, . . . , Rr ∈ A2 and g1, g2, . . . , gr ∈ Sym (ω).

Let Q =
⋃r
i=1 P \ Ri. Then Q ∩ (P \R) is finite by definition of Q, so there exists

p ∈ (P \Q)∩(P \R) since P \R is infinite. But then p ∈ Ri for all i ∈ {1, 2, . . . , r},
so eRi has only finitely many non-zero entries modulo p for all i ∈ {1, 2, . . . , r}, so

x has only finitely many non-zero entries modulo p, as required.

Essentially the same argument works for any lower set ∆ ⊆ Γn such that

(k1, k2) ∈ ∆ for some k1, k2 ∈ {1, 2, . . . , n}.

Corollary 6.10.3. Let ∆ ⊆ Γn be a lower set and suppose (k1, k2) ∈ ∆ for some

k1, k2 ∈ {1, 2, . . . , n}. Then there are 22ℵ0 subgroups M ≤ Z∆ with the property that

whenever x ∈M and g ∈ H1
δ we have xg ∈M .

Proof. Let z = ωk2 , let zi = ωk2−1 · i + ωk1 for each i ∈ ω and let N = {zi : i ∈ ω}.
Since (k1, k2) ∈ ∆, if f ∈ K1

δ is such that cl (supp (f))∩X ′δ = N ∪{z}, then f ∈ L∆.

Hence by the construction given in Proposition 6.10.1, ZN × (0)z∈X′δ\N
≤ Z∆.

Moreover, if g ∈ Bk1
δ and f ∈ L∆ then by part 4 of Lemma 6.7.2, flowB(z) (f g) =

flowg(B(z)) (f) = flowB(g(z)) (f) for all z ∈ X
[k1]
δ . Now copy the argument of

Proposition 6.10.2 with ω replaced by N and Sym (ω) replaced by r1
δ

(
Bk1
δ

)
to obtain

the result.

The assumption that (k1, k2) ∈ ∆ for some k1, k2 ∈ {1, 2, . . . , n} is necessary

here, because otherwise Z∆ is not large enough to have 22ℵ0 subgroups, as we now

observe.

Proposition 6.10.4. Let ∆ ⊆ Γn be a lower set such that every member of ∆ has

length at most 1. Then {z ∈ X ′δ : x (z) 6= 0} is finite for all x ∈ Z∆. In particular,

Z∆ is countable.

Proof. Let f ∈ L∆ and let x = flow (f). Since every member of ∆ has length at

most 1, it follows from part 3 of Lemma 6.6.1 that cl (supp (f))∩X ′δ is finite. But for

each y ∈ X ′δ, there are only finitely many z ∈ X ′δ such that y ∈ B (z). Hence there
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are only finitely many z ∈ X ′δ such that cl (supp (f))∩X ′δ∩B (z) 6= ∅. We claim that

for any clopen subset C ⊆ Xδ, if flowC (f) 6= 0 then cl (supp (f))∩X ′δ∩C 6= ∅. Given

the claim, there must be only finitely many z ∈ X ′δ with x (z) 6= 0, as required.

To prove the claim, let C be a clopen subset of Xδ. If cl (supp (f))∩X ′δ ∩C = ∅,
then supp (f)∩C is finite, so by part 1 of Lemma 6.7.2, flowC (f) = flowC\supp(f) (f)−∑

x∈supp(f) flow{x} (f) = flowC\supp(f) (f) = 0.

It is not much harder to show that if ∆ ⊆ Γn is a lower set such that every

member of ∆ has length at most 1, then in fact Z∆ is isomorphic to
Z<ω, if (k) ∈ ∆ for some k < n

Zm−1, if ∆ = {(n)}

{0} , if ∆ = ∅ or ∆ = {()},

where Z<ω = {x ∈ Zω : {z ∈ ω : x (z) 6= 0} is finite}.
Moreover, if Z∆ 6= {0}, then in this case there are exactly ℵ0 subgroups M ≤ Z∆

with the property that whenever x ∈M and g ∈ H1
δ we have xg ∈M . This may be

contrasted with Corollary 6.10.3. Rather than proving this claim in general, we deal

only with the special case in which δ = ω2 and ∆ = 〈(1) , (2)〉, stating our result in

terms of Z<ω. Again, given x ∈ Z<ω and g ∈ Sym (ω), we write xg = (x (g (z)))z∈ω.

The following result was discovered in discussion with Lovkush Agarwal.

Proposition 6.10.5. Suppose M ≤ Z<ω is a subgroup with the property that

whenever x ∈ M and g ∈ Sym (ω) we have xg ∈ M . Then there exist a, b ∈ Z≥0

such that either

M =

{
ax : x ∈ Z<ω,

∑
z∈ω

x (z) = 0

}
,

or b > 0 and

M =

{
ax : x ∈ Z<ω,

∑
z∈ω

x (z) is divisible by b

}
.

In particular, there are exactly ℵ0 such subgroups.

Proof. Assume M 6= {0}, since this is covered by the case a = 0. Let a be the

minimum absolute value of any non-zero coordinate of any member of M . Then

every coordinate of every member of M must be a multiple of a, else we could use the

Euclidean algorithm to contradict the minimality of a. Next, we may choose x ∈M
with x (0) = a and x (1) = 0, whence (−a, a, 0, 0, . . . ) = x(0 1) − x ∈ M . Taking

sums of permutations of this, we see that
{
ax : x ∈ Z<ω,

∑
z∈ω x (z) = 0

}
≤M .

If we have equality here, then take b = 0 and we are done. Otherwise, let ab =

min
({∑

z∈ω x (z) : x ∈M,
∑

z∈ω x (z) > 0
})

> 0. We show that for all y ∈ Z<ω,

ay ∈ M if and only if
∑

z∈ω y (z) is divisible by b, which suffices. The “only if”
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statement follows because otherwise we could use the Euclidean algorithm again

to contradict the minimality of b. For the “if” statement, let w ∈ M witness the

minimality of b. If y ∈ Z<ω and
∑

z∈ω y (z) = kb for some k ∈ Z, then kw − ay ∈{
ax : x ∈ Z<ω,

∑
z∈ω x (z) = 0

}
≤M , and hence ay ∈M , as required.

This completes our analysis of the normal subgroups of Hδ contained in K1
δ . Let

us now conclude this chapter by briefly indicating how one may attempt to generalise

our results and thereby obtain a complete classification of the normal subgroups of

Hδ.

First observe that by Proposition 6.2.2, Hδ/K
1
δ
∼= B1

δ
∼= H1

δ
∼= Hω(n−1)·m. Hence

the normal subgroups of Hδ containing K1
δ correspond to the normal subgroups

of Hω(n−1)·m, many of which we have already analysed. There may nonetheless be

many normal subgroups of Hδ that neither are contained in nor contain K1
δ . For

example, the group of all functions in Hω2 whose support is contained in a proper

initial segment of [1, ω2) is a normal subgroup of Hω2 that neither is contained in

nor contains K1
ω2 .

It may be possible to extend our analysis by generalising our notions of characters

and flows to the whole of Hδ. For example, one may define the generalised character

of an arbitrary function f ∈ Hδ to be(
tp
(

supp (f) ∩X [0]
δ

)
, tp
(

supp (f) ∩X [1]
δ

)
, . . . , tp

(
supp (f) ∩X [n−1]

δ

))
,

where we have extended the definition of types to allow subsets of X
[k]
δ for all k ∈

{0, 1, . . . , n− 1}. This generalised character must satisfy certain conditions. For

example, if (∆0,∆1) is the generalised character of a function in Hω2 and ∆1 6= ∅,
then (1) ∈ ∆0. Many other details remain to be checked, and there is certainly

plenty of room for further research.
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