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Abstract 

Pancreatic cancer is one of the most fatal malignancies in the world with an 

overall 5-year survival rate of less than 5%. Diagnosing pancreatic cancer is 

not always straightforward. Clinical imaging of the pancreas can be 

misleading and currently available clinical biomarkers are few and lack 

sensitivity and specificity. Obtaining tissue or cytology from the 

pancreaticobiliary system to confirm a diagnosis is clinically invasive and 

may be inconclusive. Further non-invasive diagnostic biomarkers are clearly 

required. I describe the feasibility of nuclear magnetic resonance (NMR) 

spectroscopy as a modality for novel plasma and urine pancreaticobiliary 

biomarker discovery 

Plasma and urine samples from 44 patients undergoing pancreatic resection 

for pancreaticobiliary malignancy along with a benign cohort of 45 patients 

were acquired. Spectra were obtained on a Varian NMR 500 MHz 

spectrometer. Unsupervised and supervised multivariate pattern recognition 

techniques were used for chemometric analysis. Model validation was 

assessed through permutation and cross validation techniques 

Plasma metabonomic profiling identified clear separation between malignant 

and benign pancreaticobiliary disease with an overall sensitivity and 

specificity of 64.9 and 73.5% respectively. Sensitivity and specificity among 

non-jaundiced patients rose to 75 and 75.8% respectively. Suppressed 

metabolites among cancer patients included VLDL, valine and acetate. Up-

regulated metabolites included isobutyrate, 3-hydroxybutyrate, lactate, 

acetoacetate, pyruvate, glucose and taurine. Urinary metabonomic profiling 

failed to satisfactorily discriminate between benign and malignant disease.  

Plasma nuclear magnetic resonance metabonomic profiling has significant 

potential for future pancreaticobiliary biomarker development. Plasma 

bilirubin is an important confounding factor, which must be accounted for in 

all future pancreaticobiliry metabonomic studies 
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1 Introduction 

1.1 Pancreatic cancer 

1.1.1 Disease burden on society 

Pancreatic cancer (PC) is one of the most fatal malignancies in the world. 

The overall 5-year survival rate of less than 5% is the lowest of the 21 most-

common malignancies in the UK. Around 70,000 new cases of PC are 

diagnosed each year in the European Union with around 8000 occurring in 

the UK. PC is the fourth most common cause of cancer related death in men 

(after lung, prostate and colorectal) and women (after lung, breast and 

colorectal) within the UK (1). The lifetime risk of developing PC is 1 in 77 for 

men and 1 in 79 for women (2). The incidence of PC increases with age with 

around three-quarters of cases occurring in the over 65 (3). The poor 

prognosis is due to several factors including delayed presentation, high 

metastatic potential and resistance to chemoradiotherapy. The early 

presenting features of PC are difficult to recognize and are vague and non-

specific. As such 80% of cases are advanced and non-operable at 

presentation (4). Although surgical resection offers the only chance for long-

term survival patients rarely survive beyond five-years. The median survival 

following surgery is 11-20 months with five-year survival ranging from 7-25% 

(5, 6). Patients with irresectable locally advanced disease have a median 

survival of 6-11 months. Patients who have metastatic disease have a 

median survival of only 2 - 6 months (7, 8).  

1.1.2 Pancreatic cancer current diagnostic limitations 

Following the clinical suspicion of PC, imaging modalities such as trans-

abdominal ultrasound (TA USS), endoscopic ultrasound (EUS), computed 

tomography (CT) or endoscopic retrograde cholangiopancreatography 

(ERCP) may be deployed. TA USS is often the first investigation in a 

jaundiced patient in the UK. Common bile duct dilation (> 7mm, 10mm in 

patients post cholecystectomy) together with pancreatic duct dilation (> 

2mm) is an indirect sign of a pancreatic head lesion (double-duct sign). TA 

USS is however operator dependent and limited by overlying bowel gas and 
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patient habitus (9). CT is the most widely available and best-validated 

imaging modality for diagnosing and staging patients with pancreatic cancer. 

A pancreas CT protocol involves triphasic (arterial phase, late arterial phase, 

and venous phase) cross-sectional imaging. The triphasic CT protocol allows 

for selective visualization of important arterial (celiac axis, superior 

mesenteric and peri-pancreatic arteries) and venous structures (superior 

mesenteric, splenic, and portal vein), thereby providing an assessment of 

vascular invasion by the tumour (10). Positron emission computered 

tomography (PET/CT) may be used to assess for metastatic disease. In a 

retrospective study the sensitivity of detecting metastatic disease for PET/CT 

alone, standard CT alone, and the combination of PET/CT and standard CT 

was 61%, 57%, and 87%, respectively (11). EUS was introduced in the 

1980‟s to overcome difficulties in visualization of the pancreas on TA USS. 

EUS may also be used to guide tissue collection for cytological or histological 

analysis (12). The diagnostic accuracy of fine needle aspiration at EUS is 

around 71%. The diagnostic yield of cytology from common bile duct 

brushings at ERCP lies between 23 and 41% (13, 14).  

Although pancreatic ductal adenocarcinoma (PDA) accounts for 90% of 

exocrine PC additional cell lines include adenosquamous, colloid, hepatoid, 

medullary, signet ring and undifferentiated carcinoma. Identifying these cell 

lines pre-operatively is difficult but potentially advantageous due to their 

varying clinical characteristics (prognosis and chemosensitivity). Colloid 

carcinomas often arise within type 1 intra-ductal papillary-mucinous 

neoplasms and have an improved five year survival of 57% following 

resection (15, 16). The prognosis from adenosquamous, hepatoid, medullary 

and undifferentiated tumors is worse than that of PDA (17-21).  

1.1.3 Chemotherapy for pancreatic cancer 

PC is highly desmoplastic with prominent stroma (22). The stromal 

compartment plays an active role in promoting invasion and growth of PC 

and is a physical barrier for drug delivery and chemoresistance (23). As such 

adjuvant chemotherapy following surgery is associated with only a modest 
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improvement in overall survival. In the European Study Group for Pancreatic 

Cancer-1 (ESPAC-1) trial adjuvant chemotherapy improved survival from a 

median of 14 with observation alone to only 19.7 months (p = 0.0005) (24). It 

has been suggested that neoadjuvant therapy has no added advantage in 

terms of surgical resectability or survival among patients presenting with 

resectable tumours (25). Advantages of neoadjuvant therapy include 

facilitating negative margin resection among those with borderline resectable 

disease. Neoadjuvant therapy may in addition highlight aggressive tumour 

types (with disease progression during chemotherapy) for which surgery is 

avoided (25, 26). For metastatic disease gemcitabine has historically been 

the agent of choice. In 2010 the phase II/III PRODIGE 4/ACCORD 11 trial 

was instrumental in changing perceptions towards palliative chemotherapy. 

Patients were randomly assigned to FOLFIRINOX (oxaliplatin, leucovorin, 

irinotecan and fluorouracil bolus followed by infusional fluorouracil) or 

gemcitabine alone. Median overall survival was substantially longer on the 

FOLFIRINOX arm (11.1 month vs. 6.8 months; p < 0.001) (27).  

1.2 Precursors to pancreatic cancer 

PDA is believed to arise from precursor lesions that develop into invasive 

carcinoma through a multistep carcinogenic process. This process is known 

to take at least 10-years (28). This provides a large window of opportunity for 

screening among the high-risk population.  In a study by Biankin et al. an 

average of 26 mutations per-patient were identified among a cohort of 142 

PC patients who collectively displayed 2,016 non-silent mutations (29).  

 

The most common pre-neoplastic lesion seen histologically among 80% of 

patients with PDA is pancreatic intraepithelial neoplasia (PanIN) (30). PanIN 

may arise within regions of acinar-to-ductal metaplasia (31). PanIN may be 

classified as PanIN1A, PanIN1B, PanIN2 and PanIN3 depending on the 

grade of architectural and nuclear atypia (32). PanIN3 lesions represent 

carcinoma in-situ and may harbour mitotic figures and exhibit local invasion.  
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1.3 Pancreatic cancer screening & the high risk population 

There is no current evidence to support screening the population as a whole 

as the overall risks (in terms of diagnostic intervention) would out-weigh the 

potential benefits (33). Screening is however of potential benefit to a higher 

risk population with a lifetime risk of over 5% and/or relative risk greater than 

five-fold of developing PC (34).  The international cancer of the pancreas 

screening (CAPS) group has defined „„successful screening” as the detection 

and treatment of T1N0M0 margin negative pancreatic cancer and high-grade 

dysplastic precursor lesions including pancreatic intraepithelial neoplasia-3 

(PanIN-3), intraductal papillary mucinous neoplasm (IPMN) with high-grade 

dysplasia, and mucinous cystic neoplasm (MCN) with high-grade dysplasia 

(34).  

1.3.1 Risk factors for pancreatic cancer 

1.3.1.1 Generic risk 

Smoking is estimated to be the cause of 25-30% of PC cases in the UK (35). 

Current cigarette smokers and former smokers who have quit for less than 5-

years have a higher risk of pancreatic cancer than non-smokers (odds ratio: 

1:71 and 1:78 respectively) (36). Overweight and obese individuals have an 

increased risk (odds ratio: 1.8 and 1.22 for males and females, respectively) 

(37). Patients with diabetes are at higher risk for PC (odds ratio: 1:76) (38) . 

New onset of diabetes may also be an early indicator of PC (39). Diets rich in 

red meat and dairy are associated with an increased cancer risk (40) along 

with exposure to ionizing radiation, insecticides, nickel, acrylamide, 

halogenated hydrocarbons and chlorinated hydrocarbon solvents (41-43). 

Chronic pancreatitis is associated with a 7.2 fold increased risk (44).  

1.3.1.2 Genetic risk 

It is estimated that 10% of patients suffering from PC have a hereditary 

component to their disease (45, 46). Peutz-Jager‟s (PJ), familial atypical 

multiple mole melanoma (FAMMM), familial breast and ovarian cancer 

syndrome, hereditary non-polyposis colorectal cancer (HNPCC), hereditary 
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pancreatitis and familial pancreatic cancer (FPC) are all syndromes which 

are known to predispose to PC. PJ is an autosomal dominant syndrome 

characterised by a STK11 gene mutation (47). The cumulative lifetime risk of 

PC among these patients is 36% (48). FAMMM is an autosomal dominant 

syndrome with variable penetrance developing following p16/CDKN2A gene 

mutation (49). Patients with FAMMM suffer from multiple benign melanocytic 

nevi, dysplastic nevi and melanoma (50). The lifetime risk of developing PC 

is increased 13-22 fold among these patients (51, 52).  Familial breast and 

ovarian cancer syndrome is an autosomal dominant syndrome due to 

germline mutation in either the BRCA1 and/or BRCA2 gene. Mutation 

carriers are at a higher risk of developing breast, ovarian, gastrointestinal 

and prostatic cancer (53, 54). The risk of developing PC is increased 3-10 

fold among BRCA2 and 2.3-3.6 fold among those carrying the BRACA1 

mutation (54). HNPCC occurring due to mismatch repair gene (MLH1, MSH2, 

MSH6 and PMS2) mutation is characterized by early-onset colorectal and 

extra-colonic malignancy (55) including an 8.6 fold increase in the risk of 

developing PC (56). Hereditary pancreatitis is a rare inherited autosomal 

dominant disorder with incomplete penetrance (57). The lifetime risk of 

developing PC is 40% among these patients (58). (58). FPC describes 

families with at least two first-degree relatives with confirmed exocrine PC 

that do not fulfil the criteria of other inherited tumour syndromes (59, 60).  

1.3.1.3 Pancreatic cystic lesions 

As a result of the widespread use of cross-sectional imaging, pancreatic 

cystic lesions are being discovered in increasing frequency (61). In an Italian 

study pancreatic cystic lesions were identified on 1.2% of 24,039 MRI or CT 

scans arranged for alternative pathology (62). The vast majority of lesions 

are asymptomatic. Pancreatic cystic lesions may rarely present with pain, 

exocrine insufficiency or obstructive jaundice (63). Accurate classification of 

the cystic lesion is imperative due to the potential for malignant change 

among specific lesions. This is often challenging and may be incorrect in up-

to a third of cases (64). The most commonly recognised lesions are serous 
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cystic neoplasms, mucinous cystic neoplasms and intraductal papillary 

mucinous neoplasms.  

1.3.1.3.1 Serous cystic neoplasms (SCN’s)  

SCN‟s account for 20-30% of all diagnosed pancreatic cystic tumours. SCN‟s 

occur most commonly in women with a peak incidence in those over 70 

years old (65). Malignant transformation is rare (66). SCN‟s may be micro or 

macrocystic. Macrocystic lesions consist of unilocular or bilocular cysts 

greater than 2 cm in diameter, which can be difficult to differentiate from 

either mucinous cystic neoplasms or pancreatic pseudocysts. SCN‟s do not 

communicate with the pancreatic duct and have a honeycomb appearance 

on CT with a central area of calcification (65). Although the presence of 

glycogen containing cells on cytological examination of EUS cyst fluid is 

diagnostic, negative cytology does not exclude a diagnosis. Cytology alone 

correctly identifies only 38% of SCN‟s (67). A fluid amylase level of <250 U/L 

along with an absent history of pancreatitis may be used to distinguish 

pseudocysts and non-pseudocysts with a sensitivity and specificity of 44% 

and 98% respectively (67). Due to the low risk of malignant potential SCN‟s 

are often managed non-operatively (68) . Up to 10% of SCN‟s are mistaken 

for solid tumours such as neuroendocrine or solid pseudopapillary (69). 

1.3.1.3.2 Mucinous cystic neoplasms (MCN’S)  

MCN‟s occur mainly in women with a peak incidence in the fifth decade of life 

(65). Up-to 17.5% of MCN‟s (in contrast to SCN‟s) undergo malignant 

transformation (70). Findings on cross sectional imaging are that of a large 

unilocular cyst with peripheral calcification.  MCN‟s do not communicate with 

the main pancreatic duct and occur predominantly within the body or tail of 

the pancreas. One pathogenic feature of MCN‟s along with IPMN‟s (also 

potentially pre-malignant) is the presence of mucin containing goblet cells at 

cytological examination. To improve diagnostic accuracy cyst 

carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) 

may be measured. CEA glycoprotein is secreted by the epithelium of 

mucinous but not serous pancreatic cysts (71). CEA however is of little use 
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in differentiating a mucinous lesion with dysplastic or malignant change from 

a benign mucinous cyst (72, 73). Due to the high incidence of invasive 

carcinoma within MCN‟s surgical resection for all patients who are medically 

fit is recommended (74).  

1.3.1.3.3 Intraductal papillary mucinous neoplasms (IPMN’s)  

IPMN‟s occur predominantly in males most commonly in their seventh 

decade of life (75). In contrast to MCN‟s they communicate with either the 

main pancreatic duct or its side branch (76). Invasive carcinoma occurs in 

up-to 50% of main duct IPMN‟s versus 11% of branch duct IPMN‟s (77). On 

cross sectional imaging dilatation of either the main pancreatic duct or its 

side branch is typically seen (76). Surgical resection is recommended for all 

otherwise fit patients with main duct IPMN‟s (74). The 2012 consensus 

guidelines only recommended surgical treatment in patients with branch duct 

IPMN when one of the following are present: lesion >3 cm, mural nodules, 

main pancreatic duct dilatation  >6 mm, symptomatic lesions or positive 

cytology (74).  

1.4 Biomarkers & pancreatic cancer 

For the reasons described above biomarkers are of crucial importance in the 

recognition and treatment of patients with suspected PC. A biomarker 

(biological marker), as defined by the National Institutes of Health Biomarker 

Working Group is a characteristic that is objectively measured and evaluated 

as an indicator of a normal biological process, pathogenic processes, or a 

pharmacologic response to a therapeutic intervention (15). A biomarker may 

be diagnostic, prognostic or predictive. The ideal diagnostic biomarker would 

be non-invasive, inexpensive, and potentially an effective screening test to 

identify high-risk premalignant lesions or early invasive cancers at a curable 

stage. Effective tests require a high degree of sensitivity and specificity to 

minimize unnecessary interventions for false positive results. Prognostic 

markers predict the natural history of disease. Predictive markers facilitate 

personalized treatment as they may be used to predict a response to a 

particular therapy such as chemotherapy (78). 
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1.4.1 Currently available biomarkers 

1.4.1.1 Carcinoembryonic antigen 

The glycoprotein carcinoembryonic antigen (CEA) which is used clinically as 

a biomarker for colorectal cancer was discovered in 1965 and was the first 

biomarker for PC (79). CEA has a sensitivity and specificity of 54% and 79% 

respectively for detecting PC. Low sensitivity along with known elevation in 

breast, gastric and colorectal cancer limit its use for PC diagnosis (80).  

1.4.1.2 Carbohydrate antigen 19-9 

The serum carbohydrate antigen 19-9 (CA 19-9) is the only biomarker for PC 

in routine clinical use today. CA 19-9 was first described in the colorectal 

cancer cell line SW1116 in 1979 (81). CA 19-9, also known as sialyl Lewis-a 

is a glycolipid expressed on the surface of cancer cells. CA 19-9 is derived 

during aberrant production of disialyl Lewis-a, which acts as a ligand for 

monocytes and macrophages (82).  

1.4.1.2.1 Serum CA 19-9 as a diagnostic marker 

In order to evaluate the utility of CA 19-9 in screening an asymptomatic 

population Kim et al. assessed CA 19-9 serum levels among 70,940 

asymptomatic individuals. Among 1,063 individuals with an elevated CA 19-9 

(> 37 U/ml) only 4 patients with PC were identified. Although sensitivity and 

specificity were 100 and 98.5% respectively, the positive predictive value of 

the test was only 0.9% (83). Routine serum CA 19-9 is therefore a poor test 

for screening an asymptomatic population. 

 

The utility of serum CA 19-9 as a diagnostic biomarker significantly improves 

when deployed among a symptomatic patient cohort or a cohort presenting 

with a pancreatic mass. In a systematic review of 26 case-series (including a 

total of 2,283 symptomatic patients) Goonentilleke et al. described a 

sensitivity and specificity of 79 and 82% respectively along with positive and 

negative predictive values of 72 and 81% respectively (84). 
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1.4.1.2.2 Serum CA 19-9 to assess pancreatic cancer stage and 

resectability 

Pre-operative serum CA 19-9 is known to vary with disease stage. Kim et al. 

studied 114 PC patients who underwent either pancreatic resection (n=72) or 

palliative bypass (n=42). Mean pre-operative serum CA 19-9 was 40.05 

U/mL for patients with stage IA, 469.64 U/mL stage IIA, 747.79 U/mL stage 

IIB, 709 U/mL stage III and 3239 U/mL stage IV pancreatic cancer (85). A 

pre-operative CA 19-9 greater than 150 U/mL is known to correlate with an 

88% positive predictive value for surgical irrresectability (86) 

1.4.1.2.3 Serum CA 19-9 as a marker of prognosis and disease 

recurrence 

In a study of 129 surgically resected PC patients Berger et al. stratified 

patients into four groups based on pre-operative CA 19-9 (undetectable, 

normal < 37 U/mL, 38-200 U/mL and > 200 U/mL). Patients with 

undetectable or levels < 37 U/mL had an improved median survival (32 and 

35 months resepectively) compared to those with levels between 38-200 

U/mL (22 months) and greater than 200 U/mL (16 months) (87).  Smith et al. 

in 2008 similarly described significant survival variation with pre-operative CA 

19-9. Among a cohort of 109 patients with surgically resected tumours 

median survival was found to be 10.4 versus 22.1 months among patients 

with a pre-operative serum CA 19-9 of less than or greater than 150 U/mL, 

respectively (88).  

 

Post-operative CA 19-9 may also be similarly used to predict survival. Kondo 

et al. in a study including 109 surgically resected patients described that a 

CA 19-9 of <37 U/mL, < 200 U/mL and >500 U/mL measured 2-4 weeks 

post-operatively were associated with a 49%, 38% and 0% three-year 

survival rate respectively (89). 

1.4.1.2.4 Limitations of serum CA 19-9 

Serum CA 19-9 as a biomarker has several drawbacks. Firstly serum CA 19-

9 is only elevated in 80-85% of pancreatic cancer patients (84) and may 
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often fail to detect early stage malignancies (90). CA 19-9 is in addition 

related to the Lewis blood group antigen, and only patients belonging to the 

Le (α-β+) or (α+β-) blood groups will express CA 19-9. CA 19-9 as a 

biomarker is as such ineffective among the 5-10% of the population who are 

Lewis blood group antigen negative (82, 84). 

 

Serum CA 19-9 may also be elevated in non-malignant conditions such as 

pancreatitis, cirrhosis and cholangitis. Elevation may also occur in other 

gastrointestinal cancers such as gastric, oesophageal and 

cholangiocarcinoma (84, 91). 

 

One significant confounding factor is up-regulation of CA 19-9 among 

patients with hyperbilirubinemia due to either benign or malignant disease. 

This is clearly an important issue as painless obstructive jaundice is the most 

common presentation of pancreatic cancer (84, 92). In order to differentiate 

malignancy from benign disease it has been suggested that the upper limit 

(or cut-off level) for CA 19-9 be increased beyond 37 U/mL. Alternative 

strategies include to re-assess serum CA 19-9 post biliary drainage. Re-

assessing CA 19-9 however may lead to diagnostic delay. Marrelli et al. 

(among a cohort of 87 patients with pancreatico-biliary malignancy and 41 

benign controls) through increasing the upper cut-off limit of CA 19-9 to 90 

U/mL was able to describe an increase in CA 19-9 specificity for the 

diagnosis of malignant disease to 95%. Sensitivity however declined to 61%. 

In the same study serum CA 19-9 levels were elevated (>37 U/mL) among 

61% of benign cases and 86% malignant cases. Following biliary drainage 

CA 19-9 levels decreased in nearly all benign cases (41 of 42, 98%) but only 

in 19 of 38 (50%) patients with malignant biliary obstruction (93). 

1.4.2 Novel biomarkers for pancretic cancer  

Many novel biomarkers have been described through the use of various 

analytical techniques. I will describe a broad overview of such markers 

present within tissue and/or body fluid. A further detailed review of novel 
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biomarker discovery through NMR and metabonomic techniques are 

described within section 1.8. 

1.4.2.1 Novel biomarker markers in tissue 

1.4.2.1.1 Kirsten rat sarcoma viral oncogene homolog (KRAS) 

The KRAS gene resides within the Ras family of oncogenes. Proteins 

produced from these genes are GTPases, which play an important role in 

cell division, cell differentiation and apoptosis. The KRAS mutation can be 

identified in up-to 90% of PC cases (94). PanIN-I, PanIN-II and PanIN-III 

lesions are also known to harbour this mutation in 36%, 44% and 87% of 

cases respectively (95). The diagnostic utility of KRAS is limited by its lack of 

sensitivity and specificity. Similar mutations have also been seen in chronic 

pancreatitis, gastric and colorectal cancer (96).  

1.4.2.1.2 Cyclin-dependent kinase inhibitor P16INK4A 

The loss of tumour suppressor p16INK4A function has been documented in up-

to 95% of PC cases (97, 98). P16INK4A mutations are however not specific for 

PC and have been observed in familial cases of malignant melanoma and 

breast carcinoma (97). Loss of p16INK4A however occurs at earlier stages of 

PC development along with PanIN (98, 99).  

1.4.2.1.3 Tumour suppressor p53  

The tumour suppressor p53 is the most frequently mutated gene in human 

cancers. The p53 mutation has been identified in up-to 70% of PC‟s (100). 

The p53 mutation appears late in PC development which limits it‟s 

usefulness for early disease detection (101).  

1.4.2.1.4 Smad4 gene 

The Smad4 protein mediates transforming growth factor beta (TGF-β) 

signalling to regulate cell growth and differentiation. SMAD4 is inactivated in 

55% of pancreatic cancers. Deletion of this protein correlates with a poor 

prognosis which is often due to metastatic disease (102). 
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1.4.2.2 Novel biomarkers in body fluid 

1.4.2.2.1 Macrophage inhibitory cytokine-1 (MIC-1) 

MIC-1 is a member of the transforming growth factor-β super-family (103). 

Macrophages are one of the sentinel cells of the innate immune system and 

provide a defense mechanism against cancer cells (104). MIC-1 presence in 

the tumor microenvironment limits the secretion of tumor necrosis factor-α 

(by activated macrophages) thereby reducing macrophage tumour killing 

activity (103). Koopmann et al. in 2006 identified serum MIC-1 as being 

significantly superior to CA19-9 in differentiating patient‟s with pancreatic 

cancer from healthy controls. 50 patients with resectable pancreatic cancer, 

50 patients with chronic pancreatitis and 50 age/sex matched healthy 

controls were included in the study. It was however not possible to 

distinguish pancreatic cancer from those patients suffering from chronic 

pancreatitis (105). 

1.4.2.2.2 Carcinoembryonic antigen-related cell adhesion molecule 1 

(CEACAM1)  

CEACAM1 is a cell-cell adhesion molecule found on leukocytes, epithelia, 

and endothelia. Multiple cellular activities have been attributed to CEACAM1 

including differentiation and arrangement of tissue structure, angiogenesis, 

apoptosis, tumor suppression and modulation of the innate and adaptive 

immune responses. CEACAM1 lacks sensitivity and specificity to be used as 

a diagnostic biomarker alone. Simeone et al. in 2007 described CEACAM1 

expression in the serum of 91% (74/81) of PC patients, 24% (15/61) of 

normal controls, and 66% (35/53) of patients with chronic pancreatitis (106). 

1.4.2.2.3 Micro ribonucleic acids (miRNAs) 

miRNAs were first discovered in 1993 and comprise of a class of highly 

conserved short (17-25 nucleotide) non-coding RNA products that regulate 

gene expression at the post-transcriptional level (107). miRNAs have shown 

promise for use as a biomarker for PC diagnosis, prognosis and 

chemosensitivity. Ma et al. (108) in a meta-analysis review (including 538 

cancerous and 206 non-cancerous controls) described varying tissue miRNA 
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expression including seven up-regulated (including miR-21, miR-155, and 

miR-221) and three down-regulated (miR-217, miR-148a, and miR-375) 

miRNAs. High levels of tissue miR-21, miR-23a, and miR-27a have more 

recently being associated with shorter survival times after surgical resection 

(109). 

Wang et al. in 2009 first described the detection of miRNAs within circulating 

blood plasma (110). Through profiling 28 pancreatic cancer and 19 control 

samples for miR-21, miR-210, miR-155 and miR-196, a sensitivity and 

specificity of 64% and 89% respectively was achieved for differentiating 

benign from neoplastic disease (110). Li et al. profiled sera from patients with 

pancreatic cancer (n=41), chronic pancreatitis (n=35), neuroendocrine 

tumours (n=18) and 19 healthy controls. Serum miR-1290 facilitated the 

detection of low stage pancreatic cancer from controls. Higher levels of miR-

1290 in addition correlated with poorer outcome among patients undergoing 

pancreaticoduodenectomy (111) .  

1.4.2.2.4 Glypican-1 

Melo et al. in 2015 through the use of mass spectrometry described 

identification of the cell surface proteoglycan glypican-1 (GPCI), specifically 

enriched on circulating cancer cell derived exosomes (crExos). Exosomes 

are lipid-bilayer-enclosed extracellular vesicles (containing proteins and 

nucleic acids) which are secreted by all cells and circulated within the 

bloodstream. Significantly higher levels of GPCI positive crExos from the 

serum of all 190 patients suffering from pancreatic adenocarcinoma when 

compared to 100 healthy donors (p<0.0001) were described (112). These 

findings are clearly very significant, however it must also be noted that levels 

were also significantly raised in 75% of a separate patient cohort of 32 

patients suffering from breast carcinoma within the same study. This clearly 

raises potential limitations with biomarker specificity.  

Through comparing patients with stage I-IV pancreatic cancer to healthy 

donors and to those with benign pancreatic disease (n=26), the receiver-
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operating characteristic curves revealed near perfect classification with an 

area under the curve of 1.0 exhibiting a sensitivity and specificity of 100%. 

Identical results were achieved through validation on an independent patient 

cohort composing of six patients suffering from chronic pancreatitis, 56 

PDAC and 20 healthy donors. In addition GPCI positive crExos levels were 

also described to correlate with disease burden. Levels were significantly 

raised among patients with distal metastatic disease over nodal disease over 

localised disease. Levels of GPCI positive crExos were also interestingly 

significantly raised among a cohort of patients suffering from pancreatic 

cancer precursor diseases (IPMNs). Patient numbers among this cohort 

were however small (n=5) (112). 

1.4.2.3 Novel biomarkers in stool 

Bone morphogenetic proteins (BMP) constitute a large subgroup within the 

transforming growth factor beta (TGF- β) super-family. BMP‟s are involved in 

a variety of developmental processes including tumour suppression (113). 

Kisiel et al. described elevated methylated BMP3 (mBMP3) in stool from 

PDA versus controls (non-neoplastic colonic epithelial controls) with a 

sensitivity and specificity of 51% and 90% respectively (113).  

1.5 Metabonomics & metabolomics 

Metabolomics is a newly emerging field of „omics‟ research concerned with 

the high-throughput identification, quantification and characterization of small 

molecule (<1500 Da) metabolites in the metabolome (114). Metabonomics is 

"the quantitative measurement of the dynamic multi-parametric metabolic 

response of living systems to pathophysiological stimuli or genetic 

modification" (115). 'Metabolomics' places emphasis on metabolic profiling at 

a cellular or organ level and is primarily concerned with normal endogenous 

metabolism, whereas 'Metabonomics' extends metabolic profiling to include 

information about perturbations of metabolism caused by environmental 

factors (including diet and toxins) and disease processes. These terms are 

often however used interchangeably. The metabolome can be defined as the 

complete complement of all small molecule (<1500 Da) metabolites found in 
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a specific cell, organ or organism. It is a close counterpart to the genome, the 

transcriptome and the proteome. Together these four „omes‟ constitute the 

building blocks of systems biology with the study of metabolites being the 

final downstream product of biological systems and hence closest to the 

phenotype. Thanks to the Human Genome Project most of the human 

genome, transcriptome and proteome are now know. Unfortunately the same 

cannot be said of the human metabolome. The Human Metabolome Project 

(HMP) was launched in 2004 as part of an effort to identify and quantify all 

detectable metabolites (>1 μM) in the human body (116). Over time 

metabolomics has evolved from a little-known branch of analytical chemistry 

to a mainstream enterprise.  

Metabolomics can be used in a variety of applications including biomarker 

identification, drug discovery or development and clinical toxicology (117). 

The two main technologies deployed for metabolome analysis are mass 

spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). 

NMR has the advantage of being fast with minimal sample preparation and is 

cost-effective. Bio-fluid samples may be kept close to their native state and 

variability due to sample preparation (which is not labour intensive) is kept to 

a minimum. NMR samples are never in direct contact with the equipment and 

contamination between samples is minimal. NMR is highly reproducible and 

each sample may be re-run with only minor changes in results (118). MS is 

however widely used and is the standard technique in the pharmaceutical 

industry. MS is more sensitive than NMR but usually requires more extensive 

sample preparation, which unlike NMR can result in metabolite loss (119).   

Sensitivity is the largest weakness of NMR spectroscopy, which presents 

itself as a detection limit in the micromolar range rather than the nanomolar 

range as for MS. In addition a large water peak signal is always encountered 

during bio-fluid analysis, which may obscure metabolites. Low molecular 

weight metabolites can also be obscured by the broad envelope of high 

molecular weight resonances of proteins encountered during NMR 

acquisition. Both problems can be substantially addressed by application of 

appropriate pulse sequences (120). 



 

 

16 

 

1.6 NMR spectroscopy 

1.6.1 Classical and Quantum NMR Model 

The nuclear magnetic resonance (NMR) phenomenon was first reported in 

1946 (121). NMR exploits the behaviour of atomic nuclei in an externally 

applied magnetic field. Magnetic resonance occurs because of the quantum 

mechanical property of „spin‟, a source of angular momentum intrinsic to 

nuclei with an odd mass number. Examples of such nuclei include hydrogen-

1 (1H), carbon-13 (13C), fluorine-19 (19F) and phosphorous-31 (31P). The 

spinning nucleus like an electric current creates a tiny magnetic field. When 

placed in a strong magnetic field (B0) the magnetic nucleus tries to align like 

a compass needle in the Earth‟s magnetic field.  As the nucleus is spinning 

and has angular momentum the torque exerted by the external field results in 

a circular motion called precession (analogous to a spinning top in the 

Earth‟s gravitational field). The rate of precession is proportional to the 

external magnetic and nuclear magnetic field strength  (Figure 1.1) and is 

termed the Lamor frequency (v0) (122).    

 

Figure 1.1 Classical NMR model 
 

For “spin ½” nuclei there are two quantum states, which can be visualised as 

having the spin axis directed “up” or “down”. In the absence of an external 

magnetic field these two states possess equal energy and at thermal 

equilibrium exactly half of a population of nuclei will be in the “up” state and 

the remainder in the “down” state. In the presence of an external magnetic 

field the “up” state is aligned with the magnetic field and is lower in energy 

than the “down” state which opposes the external magnetic field (122). 
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Among a population of nuclei in thermal equilibrium, slightly more than half 

will reside in the lower “up” energy state.  

When a perpendicular radiofrequency (rf) pulse is applied the populations of 

the nuclear spins are disturbed and the bulk magnetisation is rotated from 

the z-axis (aligned with B0) towards the x-y plane (Figure 1.2).  

 

Figure 1.2 Effect of a 90° RF pulse on bulk magnetisation 
 

The spins subsequently return back to equilibrium, thus allowing energy 

levels to return back to the Boltzmann distribution, with a slight excess in the 

lower energy state (122, 123). This resonant frequency can be measured by 

applying a radio frequency signal to the sample and varying the frequency 

until absorbance of energy is detected (122). 

1.6.2 NMR pulsed Fourier transformation 

Early NMR spectrometers (continuous wave spectrometry) recorded a 

spectrum by slowly changing the radio frequency signal fed into a coil near 

the sample. When the frequency passed through a resonant frequency for a 

given nucleus a “peak” in the spectrum was recorded. Modern NMR 

spectrometers operate in “pulsed Fourier-transformation” mode. The 

collection of nuclei in a sample, are exposed to a strong radiofrequency 

pulse to stimulate precession in unison. Over time individual nuclei get out of 

synch and the signal dies down. This “echo” of the pulse is called the free 

induction decay (FID). Fourier transformation of the FID (Figure 1.3) converts 
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if from a signal as a function of time to a plot of intensity as a function of 

frequency (123).   

 

Figure 1.3 Fourier transformation of the FID 

 

1.6.3 NMR chemical shift 

The resonant frequency varies not only according to the type of nucleus but 

also on the position of that atom within a molecule (chemical environment). 

Bonding electrons create their own small magnetic field, which modifies the 

external magnetic field in the vicinity of the nucleus. This variation is called 

chemical shift and is measured in parts per million (ppm) (122, 123).  

1.6.4 NMR pulse sequences 

To visualise metabolites within bio-fluids with high water content the large 

dominant water signal must be suppressed (Figure 1.4). This is done through 

NMR pulse sequencing (which is also useful to suppress high molecular 

weight molecules such as protein). An understanding of longitudinal and 

transverse relaxation is fundamental to the understanding of NMR pulse 

sequencing and is described in section 1.6.5. 
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Figure 1.4 Suppression of the dominant water peak (a) through pulse 
sequencing (b) 
 

1.6.5 NMR longitudinal & transverse relaxation 

The dissipation of energy from the spins to the surrounding lattice and return 

of bulk magnetisation to the z-axis is known as longitudinal relaxation. The 

longitudinal relaxation time constant is defined as T1 (123).  If all spins 

experience an identical magnetic field, precession at the same frequency 

would occur. However, each spin will experience a different magnetic field 

due to the inhomogeneity of B0 along with local magnetic field variation 

existing within the sample (123).  Each sample can be thought of as being 

divided into several small regions (isochromats). Within each isochromat the 

magnetic field is uniform and the addition of these fields give rise to the total 

magnetisation. Unlike longitudinal relaxation, transverse relaxation is an 

entropic process as energy is transferred between spins rather than lost to 

the surrounding lattice (Figure 1.5). Given time the isochromats fan out as 

the bulk magnetisation reduces. Transverse relaxation is characterised by 

the time constant T2 (122, 123).  

(a) (b) 
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Figure 1.5 Fanning out of individual spins resulting in net zero magnetisation 
in the x-y plane (transverse relaxation) 
 

1.6.6 NMR spin-echo pulse sequence 

The different relaxation pathways for spins mean that T2 is always less than 

or equal to T1. The spin echo pulse sequence was devised to measure an 

accurate T2 value of a sample through attempting to reduce the effect of field 

inhomogeneity (122, 123). The initial 900
x pulse pushes the magnetisation 

onto the y-axis where inhomogeneity of the static field causes isochromats to 

fan-out during the time period τ.  A second pulse rotates all the isochromats 

by 1800 to the –y-axis. This allows precessing isochromats to catch up with 

the average magnetisation vector, which is refocused (Figure 1.6). The 

second echo after 2τ is an exponential decay and is Fourier transformed to 

produce a spectrum.  
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Figure 1.6 Magnetisation during the spin-echo pulse sequence and 
refocusing of the magnetic vectors 

 
NMR spectra can be edited according to molecular size due to differences in 

T2 duration. Pulse sequences take advantage of this to suppress or enhance 

various molecules. To suppress large molecules such as protein, which have 

short T2 times a short τ delay is selected. The Carr-Purcell-Meiboom-Gill 

(CPMG) pulse sequence uses many repetitions of short τ delays and 1800
x 

pulses. This technique removes signals from high molecular weight 

molecules (such as proteins) enabling those for small molecules to be 

resolved and quantified (Figure 1.7) (122, 123). 

 

Figure 1.7 CPMG spectrum of plasma 

т 

т 

α-glucose 

β-glucose 
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For urine data acquisition the 1D Nuclear Overhauser effect spectroscopy 

(NOESY) sequence is commonly used. This applies a pre-saturation pulse to 

the water signal to saturate the spins prior to acquisition and analysis (123).  

1.7 NMR Data analysis 

1.7.1 Chemometrics 

The science of metabonomics generates huge complex data tables that are 

hard to summarize with conventional statistics. Chemometrics utilises robust 

methods of modelling and analysis which take complicated 

chemical/biological data tables and produce interpretable and reliable 

statistical models (124). Principle component analysis (PCA) and partial least 

squares (PLS) analysis techniques are commonly used and will be discussed 

further. Prior to chemometric analysis NMR spectral data must be reduced, 

normalised and scaled (Figure 1.8). 

1.7.2 Data reduction 

Data reduction is commonly achieved through a process known as “binning”. 

Spectra are divided into smaller regions known as “bins” (125). Each of the 

“bins” are then integrated to achieve a numerical value that reflects the 

concentration of the species giving rise to the signal in that bin.   

1.7.3 Normalisation 

In metabonomic studies there will be samples where the total metabolite 

concentration will vary due to factors unrelated to the parameters being 

investigated. This is a feature of urine, which varies greatly in concentration. 

In the constant sum method the integral values of bins are summed to give a 

total value and then each bin integral is divided by this value. This allows 

signal intensities to be compared between samples (125). 

1.7.4 Scaling 

Metabolites of high concentration are not always the most informative. 

Scaling regulates the importance of each variable to avoid overlooking 

variation in lower concentration metabolites (126). Through subtracting the 
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mean from the entire sample set from each normalised variable the data may 

be mean centred (127). Division of centred data by the standard deviation of 

the whole sample set is known as Unit Variance and ensures all variables 

have the potential to influence the model (126, 127). To reduce the influence 

of spectra noise Pareto Scaling may be used whereby centred data is 

divided by the square root of the standard deviation of the whole sample 

(126, 127).  

1.7.5 Principle component analysis (PCA) 

PCA forms the basis for multivariate data analysis. PCA‟s main function is to 

reduce dimensions of a large unmanageable multivariate dataset (X) into a 

few manageable dimensions. The approximated data facilitates the 

identification of any clustering of samples within the overall dataset as well 

as outliers.  The PCA process starts with the transformation of a multivariate 

table of data into multidimensional co-ordinate space. For n observations 

(samples), a k dimensional space is constructed, where k is the number of 

variables. Each sample is represented as a single point co-ordinate 

according to each variable point within the k dimensional space. The first 

principle component, the linear combination of the original variables 

represents the largest variation in the swarm of points. The second 

component represents the second largest variation and so on (124).  The 

number of principle components in a model is determined by the difference in 

degree of fit and predictive ability of a model. The goodness of it is estimated 

by R2. When the number of components increases, R2 tends towards 1 as 

every value is predicted.  

Any two principle components can form a plane, onto which observation can 

be projected as a scores plot.  Observations that lie close to each other have 

similar multivariate hence metabonomic profiles. Strong outliers can be 

visualised by Hotelling‟s distribution which provides a tolerance region for the 

data (95% confidence interval) represented by an ellipse on the scores plot 

(124). Analogous to the scores plot, a loading plot may be generated which 

displays the weight or influence of individual variables in the model (124). 
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The loadings plot facilitates the identification of areas of the NMR spectrum 

accounting for maximum metabolic variation between samples (Figure 1.8).  

1.7.6 Partial least squares discriminant analysis (PLS-DA) 

Unlike PCA, partial least squares-discriminant analysis (PLS-DA) is a 

supervised method for multivariate analysis, which incorporates class 

membership to improve data separation. In addition to an X-matrix of 

observations (samples) and variables (bins), a Y-matrix consisting of class 

membership (case/control) is created. Orthogonal PLS (OPLS) may be used 

to enhance the interpretation of PLS by displaying all information into a 

single component for visual display (128). 

For validation purposes PLS-DA may be used to predict class membership of 

samples from the X-matrix data. One-third of samples can be randomly 

excluded followed by generation of a new model. This model is then used to 

predict class allocation of the excluded samples. Permutation testing is an 

alternative method. In a permutation test the class labels of case and control 

are permuted or randomly assigned to different classes. With incorrect class 

labelling a new classification model is calculated. Permutation testing 

demonstrates how models in which the Y-variables (class membership) are 

randomised compare to the original PLS-DA model. An R2 Y intercept value 

below 0.3-0.4 and a Q2 Y less than 0.05 indicates a valid model (128) . 
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Figure 1.8 Chemometric analysis through data reduction (“binning”) with 
subsequent scores and loadings plot 

    

1.8 Prior NMR metabonomic studies of pancreatic cancer 

1.8.1 Literature search 

A literature search (title and abstract) of Ovid Medline (R) (1948–2014), 

Embase (1974-2014), PubMed, Web of Science and Sci-Finder electronic 

databases was performed up to and including 11th October 2014. The search 

was conducted using the MeSH terms: nuclear magnetic resonance 

spectroscopy, metabolomic, metabonomic, metabolic profiling (AND) 

pancreatic cancer.  Studies comparing the metabolomic profile of human 

biological samples of pancreatic cancer with a control arm by NMR 

spectroscopy were included. Studies analysing the proteome, in-vivo imaging 

studies, animal studies, studies without a control arm and studies that 

reported the same patient population were excluded. Extracted data included 

primary author, date of publication, sample modality and number, the 

analytical platform used and statistically different metabolites between 

cancer and control arms of the study. The primary outcome measure was the 
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identification of metabolites found to have statistically different abundances 

between cancer and control samples.  

1.8.2 Study identification and review 

Eight studies met the inclusion criteria for systematic review. The biological 

samples used for analysis among the eight pancreatic cancer studies 

included serum (n=3), plasma (n=1), urine (n=2), bile (n=1) and pancreatic 

fluid (n=1). 1H NMR was the metabolic platform used in all studies (Table 

1-1). The metabolites identified to be either up or down regulated 

respectively are highlighted in Table 1-2. 



 

 

27 

 

Table 1-1 Prior metabonomic studies of pancreatic cancer utilising 1H NMR 

 

Author & 

Year 

Sample Pathology Cancer 

(n) 

Control Control 

(n) 

Up-regulated Down regulated Other findings/comments  Ref. 

Bezabeh T, 

2009 

Bile PC 4 BB 10  D-glucuronic acid    (129) 

CP 3   

Zhang L, 2012 Plasma PC 19 HV 20 PC vs controls: N-acetyl 

glycoprotein, VLDL, lipid 

glyceryl, dimethylamine, 

acetone 

PC vs. controls: 3-

hydroxybutyrate, citrate, 

lactate, LDL, HDL, valine, 

lysine, leucine, 

isoleucine, histidine, glutamine, 

glutamate and alanine 

 (130) 

CP 20 CP vs. controls:glucose, 

lactate, creatine, formate, lipid 

glyceryls, tyrosine, 

phenylalanine, lysine, 

histidine, glutamine, 

glutamate, alanine 

CP vs. controls:LDL, VLDL, 3-

hydroxybutyrate and acetone 

PC vs. CP: NAG, VLDL, 

dimethylamine, acetone 

PC vs. CP: 3-hydroxybutyrate, 

creatine, lactate, citrate, 

LDL, HDL, lipid glyceryl, 

formate, valine, tyrosine, 

phenylalanine, lysine, 

isoleucine, histidine, glutamine, 

glutamate, and alanine 

Bathe OF, 

2010 

Serum PC 43 BB 41 Glutamate, glucose Creatine, glutamine  (131) 

OuYang D, 

2011 

Serum  PC 17 HV 23 Isoleucine, triglyceride, 

leucine, creatinine 

3-hydroxybutyrate, 3-

hydroxyisovalerate, lactate, 

trimethylamine-N-oxide 

 (132) 

Tesiram YA, 

2012 

Serum  PC 14 HV 12 Choline, taurine, glucose, 

triglycerides 

  (133) 
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Author & 

Year 

Sample Pathology Cancer 

(n) 

Control Control 

(n) 

Up-regulated Down regulated Other findings/comments  Ref. 

Davis VW, 

2012 

Urine PDA 32 HV 32 Acetone, hypoxanthine, O-

acetylcarnitine, 

dimethylamine, choline, 1-

methylnicotinamide, threonine, 

fucose, cis-aconitate, 4-

pyridoxate, glucose, 

trimethylamine-N-oxide, 

aminobutyrate, tryptophan, 

xylose, trans-aconitate, 4-

hydroxyisobutyrate, taurine 

Trigonelline, methanol 11 metabolites no longer significantly 

raised in post-op period 

(134) 

Napoli C, 2012 Urine PDA 33 HV 54 Acetoacetate, acetylated 

compounds, glucose, leucine, 

2-phenylacetamide 

Citrate, creatinine, glycine, 

hippurate, 3-hydroxyisovalerate 

 (135) 

Wang J, 2011 Pancreatic 

fluid 

PC 10 HV 5   Triplet peak of the methyl ethoxy group 

(CH3CH2O-) at chemical shift of 1.19 

ppm in alcoholic chronic pancreatitis 

(136) 

CP 5 

Cirrhosis 15 
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Table 1-2 Prior metabonomic studies of pancreatic cancer and metabolite 
identification through 1H NMR analysis 
 

Metabolite 

Study (ref) 

Zhang L 

(130) 

Bathe OF 

(131) 

OuYang D 

(132) 

Tesiram YA 

(133) 

Davis VW 

(134) 

Napoli C 

(135) 

Glucose 

 

↑ 

 

↑ ↑ ↑ 

Citric Acid/Citrate ↓ 

     
Lactate ↓ 

 

↓ 

   
Acetone ↑ 

   

↑ 

 
Isoleucine ↓ 

 

↑ 

   
Leucine ↓ 

 

↑ 

  

↑ 

Lysine ↓ 

     
Threonine 

    

↑ 

 
Tryptophan 

    

↑ 

 
Valine ↓ 

     
Alanine ↓ 

     
Glutamine ↓ ↓ 

    
Glutamate ↓ ↑ 

    
Taurine 

   

↑ ↑ 

 
VLDL ↑ 

     
LDL ↓ 

     
HDL ↓ 

     
Triglyceride 

  

↑ ↑ 

  
Choline 

   

↑ ↑ 

 
N-acetyl glycoprotein ↑ 

     
Dimethylamine ↑ 

   

↑ 

 
1-methylnicotinamide 

    

↑ 

 
2-phenylacetamide 

     

↑ 

Trimethylamine-N-oxide 

  

↓ 

 

↑ 

 
Aminobutyrate 

    

↑ 

 
3-hydroxybutyrate ↓ 

 

↓ 

   
4-hydroxyisobutyrate 

    

↑ 

 
3-hydroxyisovalerate 

  

↓ 

   
Acetoacetate 

     

↑ 

O-acetylcarnitine 

    

↑ 

 
Cis-aconitate 

    

↑ 

 
4-pyridoxate 

    

↑ 

 
Creatine 

 

↓ 

    
Creatinine 

  

↑ 

   
Hypoxanthine 

    

↑ 

 
Xylose 

    

↑ 
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Metabolite 

Study (ref) 

Zhang L 

(130) 

Bathe OF 

(131) 

OuYang D 

(132) 

Tesiram YA 

(133) 

Davis VW 

(134) 

Napoli C 

(135) 

Trans-aconitate 

    

↑ 

 
Ttigonelline 

    

↓ 

 
Methanol 

    

↓ 

 

 

As displayed in Table 1-1 and Table 1-2 it is clear that metabolite variation 

exists between pancreatic cancer and control patients. The most commonly 

identified metabolites (in two or more studies) are glucose, lactate, acetone, 

isoleucine, leucine, glutamine, glutamate, taurine, triglyceride, choline, 

dimethylamine, trimethylamine-N-oxide and 3-hydroxybutyrate (Table 1-2). 

Concordant findings are described for glucose (up-regulated), lactate (down 

regulated), acetone (up-regulated), glutamine (down-regulated), taurine (up-

regulated), triglyceride (up-regulated), choline (up-regulated), dimethylamine 

(up-regulated) and 3-hydroxybutyrate (down-regulated) in cancer states. 

Contradictory findings are however apparent for isoleucine, leucine, 

glutamate and trimethlamine-N-oxide (Table 1-2). Contradictory results may 

be due to differences in sample collection, poor documentation of histology 

or control patient recruitment, the biological medium investigated or specific 

1H NMR technique (Table 1-3).  
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Table 1-3 Prior metabonomic study design and patient enrolment 
 

 
Bezabeth T (129) Zhang L (130) Bathe OF (131) OuYang D (132) 

Tesiram YA 

(133) 
Davis VW (134) Napoli C 127) 

Wang J 

(136) 

Benign/controls 

Cohort 
CBD calculi (6), CP (3), 

post-liver transplant (1) 
Healthy controls (20), CP (20) Benign PB (43)  

Healthy controls 

(23) 

Healthy 

controls (12) Healthy controls (32) 

age/sex matched 

Healthy controls 

(54) age matched 
CP (5) 

Exclusions - Any PMH Acute or sepsis 
No PMH or recent 

illness 
- 

Infection, renal failure, 

breast feeding, 

pregnancy 

No PMH 
 

Age 
Y Y Y Y Y Y Y Y 

Sex 
Y Y Y Y Y Y Male only Y 

Ethnicity 
- - - - - - - - 

BMI 
- Y - - - - Yes - 

PMH 
- Y Y Y Y Y Y - 

Drug History 
- - - Y - Y Y - 

Bilirubin 
Y Y Y Y - Y - - 

Cancer cohort 

Cell-line 

PC (4), papillary cancer 

(1), cholangiocarcinoma 

(1), myeloma (1) 

PC (19) PDA (56) PC (17) PDA (14) PDA (32) PDA (33) PC (10) 

Exclusion 

- - Acute inflammation or sepsis 
No PMH or recent 

illness 
- 

Infection, renal failure, 

pregnancy   

Grade 
- - - - - Y Y - 

Staging 
- - - - Y Y Y - 

Age 
Y Y Y Yes Y Y Y Yes 

Sex 
Y Y Y Yes Y Y Male only Yes 
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Ethnicity 
- - - - - - - - 

BMI 
- Y - - - - - - 

PMH 
- - Y Y - - Y - 

Drug History 
- - - Y - - Y - 

Bilirubin 
Y - Y - - - - - 

Resectability 
- - Y - - Yes - - 

Survival 
- - - - - - - - 
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1.9 Plan of investigation 

The main aim of this work is to determine any variation in the metabolic 

profile among patients with pancreatic carcinoma for potential diagnostic 

purposes. Through the use of 1H NMR spectroscopy both plasma and urine 

will be profiled. Clear attention will be made to document the histological cell 

type, staging and grading among pancreatic cancer patients along with 

known confounders such as sex and race. In contrast to previous studies the 

metabolic profiles of patients with pre-malignant conditions will be compared 

against those with both confirmed malignancy and benign disease.   

1.9.1 Hypothesis testing 

A hypothesis is a statement about a population to be tested. The hypothesis 

of “no difference” within a population is called the null hypothesis(137). 

Within the context of this work a null hypothesis would be that there is no 

statistical difference between the mean integral peak in the NMR spectrum 

among patients with, versus those without PC. Acceptance or rejection of the 

null hypothesis is determined by a p-value, which is related to the means of 

two groups. The p-value is the probability of obtaining a test statistic test 

result at least as extreme as the one that was actually observed, assuming 

that the null hypothesis is true. A p-value of ≤0.05 is taken as statistically 

significant (137).   

1.9.2 Biomarker model generation 

We describe wherever possible any generated metabolic model for 

pancreatic cancer in terms of sensitivity, specificity, positive and negative 

predictive values through internal model validity testing.  

 

 

 

 



 

 

34 

 

2 Experimental methods 

2.1 Ethical approval for study 

This study was approved by the National Research Ethics Service (REC 

GS11/10064). The study conformed to the ethical guidelines outlined in the 

1975 Declaration of Helsinki. Written informed consent was obtained for all 

patients.  

2.2 Patient selection 

2.2.1 Patient enrolment 

Fifty-five patients undergoing pancreatic resection for presumed malignancy 

were enrolled into the study. Only patients undergoing surgery were 

approached for inclusion due to availability of post-operative histology. To act 

as a control arm for the study patients undergoing surgery for benign 

pancreaticobiliary disease were enrolled. Exclusion criteria included 

paediatric pancreatic resections, patients with a history of known diabetes 

mellitus and those with evidence of recent (within one week) or active 

infection at the time of surgery. A total of 34 patients with known benign 

disease and 55 with presumed malignant disease were recruited. Among 

those with presumed malignant disease only 10 patients were cytology or 

biopsy proven pre-operatively with a further two displaying highly suspicious 

cytology for malignancy (cellular atypia and pleomorphic nuclei). Eleven 

patients who underwent surgery for presumed malignant disease were 

shown on post-operative histology review to have either benign or pre-

malignant disease. As such two initial groups of confirmed malignancy (n=44) 

and confirmed benign/pre-malignant (n=45) were formed. Each plasma 

sample was coded by the prefix “C” for confirmed cancer versus “B” for 

confirmed benign followed by “R” for plasma or “U” for urine followed by the 

subsequent sample number.  

2.2.2 Confirmed malignancy patient cohort 

A total of 44 patients with confirmed malignancy were recruited into the study. 

27/44 (61%) of patients were male with an overall median age of 66 (40-81) 
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years. Among the cancer resection cohort twenty-eight patients underwent 

surgical resection (19 pylorus-preserving pancreaticoduodenectomy (PPPD), 

6 distal pancreatectomy, one enucleation for early neuroendocrine tumour, 

one total pancreatectomy and one wide excision of gallbladder fossa and 

common bile duct excision for gallbladder carcinoma). Sixteen patients at 

time of laparotomy were found to have either locally advanced (n=11) or 

metastatic (n=5) disease. Of these thirteen underwent palliative single (n=3) 

or double bypass (n=8).  Data regarding patient demographics, clinical 

presentation, pre-operative serum bilirubin, operative intervention, histology, 

chemotherapy and recurrence were collected (Table 2-1). Past-medical and 

prescription history is displayed in Table 2-2. 

2.2.3 Confirmed benign patient cohort 

A total of 45 patients with confirmed benign disease were recruited. 19/45 

(42%) of patients were male with an overall median age of 53 (20-85) years. 

Thirty-one underwent cholecystectomy for gallstone disease. Among 

pancreatic resections performed for presumed pre-malignant or malignant 

change four had histology confirming dysplastic change whereas six had 

benign histology. Two patients underwent pancreaticojejunostomy for chronic 

pancreatitis, a further patient duodenal resection for low-grade gastro-

intestinal stromal tumour and one patient open local excision of a 

retroperitoneal paraganglionoma. Patient demographics are displayed in 

Table 2-3 and patient past medical and prescription history in Table 2-4. 

2.2.4 Cancer versus benign cohort age and sex variation 

Patients among the confirmed cancer cohort were older than those with 

benign disease. A greater proportion of the benign cohort were female 

although statistical significance was not reached (Table 2-5) 

2.2.5 CA 19-9 

Among 55 patients undergoing surgery for potential malignancy, pre-

operative serum CA 19-9 levels were available at the time of patient 

recruitment in 70.9% (n=39) patients. Among 55 patients undergoing surgery 
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44 (80%) were for histologically proven neoplastic disease and 11 (20%) for 

benign disease. Among 44 patients with neoplastic disease pre-operative 

serum CA 19-9 levels were available in 28 patients. Using an upper limit CA 

19-9 of 37 u/mL, levels were raised pre-operatively in 20 (71.4%) of patients. 

Pre-operative CA 19-9 levels were within the normal range among all eleven 

patients who underwent surgery for histologically benign disease. Among this 

small cohort sensitivity and specificity of 71.4% and 100% respectively with 

positive and negative predictive values of 71.4% and 57.9% respectively 

were achieved for CA 19-9 as a diagnostic pre-operative biomarker.  

Among the 28 patients with available pre-operative CA 19-9, 17 (60.7%) 

underwent pancreatic resection with 11 (39.3%) having irresectable disease. 

CA 19-9 was raised over and above 150 u/mL in 6 (35.3%) patients who 

underwent resection and was less than 150 u/mL among 3 (27.3%) patients 

with irresectable disease. Using CA 19-9 > 150 u/mL as a marker of 

irresectability failed to reach statistical significance among our patient cohort 

(p=0.1201). 
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Table 2-1 Cancer resection patient cohort 
 

Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
ERCP 
stent 
(y/n) 

Pre-op 
bilirubin 

(micromol/L) 

Ca 19-
9 

(u/ml) 
Operation Diagnosis Differentiation Histology/Cytology 

Adj 
Chemo 
(y/n) 

Recurrence 
DFS 

(mths) 
OS 

(mths) 
CR CU 

1 1 F 73 Caucasian y 10 156 PPPD PDA Mod-poor T3N1V1R1 y 12 12 15 

2 2 F 48 Caucasian y 40 ─ PPPD PDA Mod T3N1V1R1 y 9 9 14 

3 3 F 63 Caucasian y 55 196 PPPD PDA Mod-poor T3N1V1R1 y 13 13 17 

Spoiled 4 F 80 Caucasian y 60 240 Palliative PDA Mod Adenocarcinoma n Locally advanced 0 15 

5 5 M 65 Caucasian y 53 13711 Palliative PDA Mod Adenocarcinoma y Metastatic disease at surgery 0 6 

6 6 F 71 Caucasian y 129 100 PPPD Ampullary carcinoma Poor T4N1V1R1 y 9 9 18 

7 7 M 58 Caucasian y 14 436 PPPD PDA Mod-poor T3N1V1R1 y ─ 26 ─ 

8 8 M 73 Caucasian y 116 1069 Palliative PDA Mod Adenocarcinoma y Locally advanced 0 ─ 

9 9 M 65 Caucasian y 48 432 Palliative PDA Mod Adenocarcinoma n Metastatic disease at surgery 0 6 

10 10 F 78 Caucasian y 19 ─ PPPD Adenocarcinoma from side branch IPMN Mod-poor T3N1V1R1 n 16 16 23 

11 11 F 66 Caucasian y 86 2774 Palliative PDA Mod Adenocarcinoma 0 Metastatic disease at surgery 0 2 

12 12 M 65 Caucasian y 53 437 Palliative PDA Mod-poor Adenocarcinoma y Locally advanced 0 15 

13 13 M 76 Pakistani y 10 ─ PPPD Ampullary carcinoma Well T4N1V1R1 0 12 12 14 

14 14 M 67 Caucasian y 9 1271 Palliative PDA Well 
Adenocarcinoma 

n Locally advanced 0 18 

15 15 M 63 Caucasian n 132 ─ Palliative Duodenal Carcinoma Poor 
Adenocarcinoma 

y Locally advanced 0 10 

16 16 F 69 Caucasian y 9 164 PPPD PDA Mod T3N1V1R1 n ─ 24 ─ 

17 17 M 74 Caucasian y 28 ─ PPPD PDA Mod T3N1V1R1 y ─ 9 ─ 

18 18 F 70 Caucasian y 9 ─ Palliative Distal cholangiocarcinoma Mod Adenocarcinoma n Locally advanced 0 ─ 

19 19 M 68 Caucasian n 20 5 LDP + splen Neuroendocrine Well T2N0V0R0 n ─ 9 ─ 
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Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
ERCP 
stent 
(y/n) 

Pre-op 
bilirubin 

(micromol/L) 

Ca 19-
9 

(u/ml) 
Operation Diagnosis Differentiation Histology/Cytology 

Adj 
Chemo 
(y/n) 

Recurrence 
DFS 

(mths) 
OS 

(mths) 
CR CU 

20 20 M 80 Caucasian n 7 17 Palliative Duodenal Carcinoma Mod Adenocarcinoma y Locally advanced 0 8 

21 21 M 62 Caucasian n 10 171 PPPD Acinar cell carcinoma Mod T3NOR1 y ─ 9 ─ 

22 22 M 59 Caucasian y 7 62 Palliative PDA Poor Adenocarcinoma y Metastatic disease at surgery 0 ─ 

23 23 M 65 Caucasian y 41 ─ Palliative PDA Poor Adenocarcinoma y Locally advanced 0 ─ 

24 24 F 71 Caucasian n 5 ─ ODP + splen Adenosquamous carcinoma Poor T3N1V1R1 n ─ 8 ─ 

25 25 F 61 Caucasian n 9 ─ Enucleation Neuroendocrine Well T1NxV0R1 n ─ 8 ─ 

26 26 F 81 Caucasian y 13 26 
Wide excision 

GB, CBD 
resection 

Gallbladder carcinoma Poor T2N1R1 n ─ 8 ─ 

27 27 M 66 Caucasian y 9 91 PPPD PDA Mod T3N1V1R1 y ─ 7 ─ 

28 28 F 40 Caucasian y 37 ─ Palliative Neuroendocrine Poor Neuroendocrine y Metastatic disease at surgery 0 2 

29 29 M 72 Caucasian n  9 53 Palliative PDA Mod Adeno CA y Locally advanced 0 ─ 

30 30 M 45 Caucasian n 15 ─ LDP Neuroendocrine Well T2N0MxR0 n ─ 7 ─ 

31 31 M 62 Caucasian y 12 90 PPPD PDA Mod T3N1V1R1 y ─ 6 ─ 

32 32 M 66 Caucasian n 11 25 ODP Pancreatic adenosquamous Mod T3N1V1R1 y ─ 6 ─ 

33 33 F 66 Caucasian y 40 436 Palliative PDA Poor Adenocarcinoma y Locally advanced 0 ─ 

34 34 M 45 Caucasian n 12 11 PPPD PDA Mod T3N1V1R1 n ─ 5 ─ 

35 35 M 68 Caucasian y 29 ─ Palliative PDA Mod Adenocarcinoma y Locally advanced 0 5 

36 36 M 75 Caucasian y 14 ─ PPPD PDA Poor T3N1V1R1 n 4 5 ─ 

37 37 M 79 Caucasian n 9 5 PPPD Colloid carcinoma arising within main duct IPMN  Mod T3N1V0R1 y ─ 5 ─ 

38 38 F 59 Caucasian y 28 19 TP + splen Colloid carcinoma arising within main duct IPMN  Mod T3N1V0R0 y ─ 5 ─ 

39 39 M 73 Caucasian PTC 10 213 PPPD Ampullary carcinoma Mod T4N1V1R0 y ─ 5 ─ 

40 40 M 76 Caucasian y 6 66 PPPD Ampullary carcinoma Mod T3N1R1 y ─ 4 ─ 
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Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
ERCP 
stent 
(y/n) 

Pre-op 
bilirubin 

(micromol/L) 

Ca 19-
9 

(u/ml) 
Operation Diagnosis Differentiation Histology/Cytology 

Adj 
Chemo 
(y/n) 

Recurrence 
DFS 

(mths) 
OS 

(mths) 
CR CU 

41 41 M 50 Caucasian y 12 ─ PPPD Distal cholangiocarcinoma Mod T3N1V1R1 n ─ 4 ─ 

42 42 F 64 Caucasian n 7 ─ 

ODP + splen + 
gastrectomy + 

transverse 
colectomy 

PDA Poor T3N1V1R1 n ─ 4 ─ 

43 43 F 54 Caucasian y 24 ─ PPPD PDA Poor T3N0V1R1 y ─ 4 ─ 

44 44 M 69 Caucasian n 16 28 ODP + splen PDA Mod T3N1V1R1 y ─ 3 ─ 
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Table 2-2 Cancer resection patient cohort past medical and pharmaceutical history 
 

Sample Code 
Presenting features 

Pancreatic tumour 
site 

Tumour size (mm) Past medical history Drug history 

CR CU 

1 1 Jaundice Uncinate 20.0 HTN, IHD, Hypothyroid 
Lansoprazole, aspirin, biosprolol, nicorandil, 

levothyroxine, losaran 

2 2 Jaundice Head 24.0 Retinoblastoma, 1b malignant melanoma Lansoprazole 

3 3 Jaundice Head 25.0 T2N1 Breast Cancer ─ 

Spoiled 4 Abdo pain + jaundice Head 30.0 ─ ─ 

5 5 Jaundice Head 28.0 ─ Glicalzide, ramipril, amlodipine, omeprazole 

6 6 Abdo pain  Head 28.0 T1N0 Breast Cancer 
Anastrazole, aspirin, budesonide, carbocistine, 

omeprazole, simvastatin 

7 7 Jaundice Head/neck 40.0 Gastro-oesophageal reflux, HTN Loratidine, atenolol 

8 8 Jaundice Head 34.0 ─ ─ 

9 9 Jaundice Head 40.0 Epilepsy Tegretol 

10 10 Jaundice Head 50.0 HTN Atenolol, valsartan, methyldopa 

11 11 Jaundice Head 32.0 HTN Lisinopril 

12 12 Jaundice Head 30.0 ─ ─ 

13 13 Jaundice Ampulla 15.0 HTN, IHD Aspirin, biosoprolol, levothyroxine, ramipril 
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Sample Code 
Presenting features 

Pancreatic tumour 
site 

Tumour size (mm) Past medical history Drug history 

CR CU 

14 14 Jaundice Neck 35.0 ─ ─ 

15 15 Gastric outflow obst Head Undefined ─ ─ 

16 16 Jaundice Ampulla 17.0 Polymyalgia rheumatica Prednisolone, pantoprazole 

17 17 Jaundice Uncinate 35.0 HTN Bendroflumethiazide, enalapril 

18 18 Jaundice Uncinate 15.0 
 

─ 

19 19 Abdo pain Body/tail 28.0 HTN, IHD 
Salbutamol, ramipril, bisoprolol, simvastatin, aspirin, 

furosemide, naproxin 

20 20 GI bleed Duodenal 30.0 T4N0M1 mid-sigmoid & asc colon cancer (resected) 
Aspirin, ferrous sulphate, quinine, gabapentin, 

pantoprazole, lope amide, folic acid 

21 21 Abdo pain Head 33.0 ─ ─ 

22 22 Abdo pain Ampulla 15.0 ─ ─ 

23 23 Jaundice Head 20.0 Diffuse large B cell lymphoma (prior R CHOP) Gliclazide, metformin 

24 24 Abdo pain Tail 30.0 ─ ─ 

25 25 Hypoglycaemia Head 15.0 COPD Diazoxide, seretide, tiotropium 

26 26 Jaundice Gallbladder 10.0 HTN Bendroflumethiazide, doxazosin, simvastatin 

27 27 Jaundice Head 32.0 HTN Ranitidine, aspirin 

28 28 Jaundice Ampulla 16.0 ─ ─ 
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Sample Code 
Presenting features 

Pancreatic tumour 
site 

Tumour size (mm) Past medical history Drug history 

CR CU 

29 29 Abdo pain Uncinate 48.0 HTN, IHD 
Amlodipine, citirizine, citalopram , pravastatin, 

salbutamol, GTN 

30 30 Incidental  Tail 35.0 Multiple endocrine neoplasia 1 - parathyroidectomy ─ 

31 31 Jaundice Head 25.0 ─ ─ 

32 32 Incidental Tail 48.0 Chronic lymphocytic leukaemia, IHD Bisoprolol, simvastatin 

33 33 Jaundice Head 20.0 ─ ─ 

34 34 Incidental Head 13.0 Ulcerative colitis ─ 

35 35 Chang bowel habit Head 32.0 ─ ─ 

36 36 Jaundice Head 37.0 ─ ─ 

37 37 Panc Insuff Head 18.0 Asthma ─ 

38 38 Abdo pain and Jaundice Head 25.0 COPD, Peripheral vascular disease, hypothyroid Thyroxine 

39 39 Jaundice Ampulla 25.0 
Prostate cancer, monoclonal gammopathy of unknown 

significance 
Atorvastatin, bendroflumethiazide, amlodipine, 

omeprazole 

40 40 Gastric outflow obst Ampulla 25.0 Benign prostatic hypertrophy Tamsulosin, finasteride 

41 41 Jaundice Ampulla 10.0 ─ ─ 

42 42 Abdomial pain Body/tail 79.0 Squamous cell carcinoma of skin ─ 

43 43 Jaundice Uncinate 30.0 Hypothyroid, asthma Levothyroxine, seretide, salbutamol 

44 44 Incidental Neck 35.0 ─ ─ 
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Table 2-3 Benign patient cohort 
 

Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
Pre-op Bilirubin 

(micromol/L) 
Operation Pathology 

Benign (0)/Pre-malignant 
histology (1) 

BR BU 

1 1 F 23 Caucasian 13 Lap chole Gallstones/acute cholecystitis 0 

2 2 F 50 Pakistani 38 PPPD T2 AIP 0 

3 No urine F 25 Caucasian 8 Lap chole Gallstones/chronic cholecystitis 0 

4 No urine F 54 Caucasian 6 Lap chole Gallstones/chronic cholecystitis 0 

No plasma 5 F 62 Caucasian 5 LDP + splen Mixed type IPMN focal high grade dysplasia 1 

6 6 F 59 Caucasian 8 PPPD Side branch IPMN low and moderate dysplasia 1 

No plasma 7 M 48 Caucasian 3 Pancreaticojejunostomy Chronic pancreatitis 0 

8 8 F 72 Caucasian 9 LDP + splen Mixed type IPMN intermediate dysplasia 1 

9 9 F 62 Caucasian 9 Lap chole Gallstones/chronic cholecystitis 0 

10 10 F 37 Caucasian 11 Lap chole Gallstones/chronic cholecystitis 0 

11 11 F 55 Caucasian 3 Lap chole Gallstones/chronic cholecystitis 0 

12 12 M 78 Caucasian 6 Open chole Gallstones/chronic cholecystitis 0 

No plasma 13 F 34 Caucasian 14 Lap chole Gallstones/chronic cholecystitis 0 

14 14 M 84 Caucasian 11 Lap chole Gallstones/chronic cholecystitis 0 

15 15 F 34 Caucasian 8 Open chole Gallstones/chronic cholecystitis 0 

16 16 M 79 Caucasian 21 Open chole Gallstones/chronic cholecystitis 0 

17 17 M 71 Caucasian 23 Lap chole Gallstones/chronic cholecystitis 0 

18 18 F 46 Caucasian 5 Lap chole Gallstones/chronic cholecystitis 0 

19 19 M 47 Caucasian 7 Lap chole Gallstones/chronic cholecystitis 0 

20 20 M 72 Caucasian 9 PPPD Side branch IPMN no malignancy 0 
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Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
Pre-op Bilirubin 

(micromol/L) 
Operation Pathology 

Benign (0)/Pre-malignant 
histology (1) 

BR BU 

21 21 F 24 Caucasian 7 Lap chole Gallstones/chronic cholecystitis 0 

22 22 F 76 Caucasian 7 ODP + splen Serous cystadenoma 0 

23 23 M 65 Caucasian 7 Open chole Gallstones/chronic cholecystitis 0 

24 24 F 29 Polish 4 Lap chole Gallstones/chronic cholecystitis 0 

25 25 M 42 Caucasian 7 Lap chole Gallstones/chronic cholecystitis 0 

26 26 F 21 Caucasian 13 Lap chole Gallstones/chronic cholecystitis 0 

27 27 M 46 Caucasian 7 LDP + splen Benign cyst 0 

28 28 F 62 Caucasian 4 Duodenal resection Low grade GIST 1 

29 29 F 58 Caucasian 10 Open chole + splenectomy Gallstones/chronic cholecystitis 0 

30 30 F 42 Pakistani 9 Lap chole Gallstones/chronic cholecystitis 0 

31 31 M 57 Polish 10 Lap chole Gallstones/chronic cholecystitis 0 

32 32 M 62 Pakistani 11 Lap chole Gallstones/chronic cholecystitis 0 

33 33 M 42 Caucasian 15 PPPD IPMN  intermediate grade dysplasia 1 

34 34 M 20 Caucasian 15 Lap chole Gallstones/chronic cholecystitis 0 

35 35 F 67 Caucasian 9 Local excision Paraganglioma 0 

36 36 M 52 Caucasian 4 Hepaticojejunostomy Chronic pancreatitis 0 

37 37 M 42 Caucasian 14 Lap chole Gallstones/chronic cholecystitis 0 

38 38 F 68 Caucasian 7 ODP + splen Serous microcystic adenoma 0 

39 39 F 75 Caucasian 8 Lap chole Gallstones/chronic cholecystitis 0 

40 No urine F 85 Caucasian 5 Lap chole Gallstones/chronic cholecystitis 0 

41 41 M 38 Caucasian 20 Lap chole Gallstones/chronic cholecystitis 0 

42 42 M 44 Caucasian 6 Lap chole Gallstones/chronic cholecystitis 0 
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Sample Code 

Sex 
Age 
(yrs) 

Ethnicity 
Pre-op Bilirubin 

(micromol/L) 
Operation Pathology 

Benign (0)/Pre-malignant 
histology (1) 

BR BU 

43 43 F 22 Caucasian 13 Lap chole Gallstones/chronic cholecystitis 0 

44 44 M 53 Caucasian 5 ODP + splen Chronic pancreatitis 0 

45 45 F 70 Caucasian 7 Lap chole Gallstones/chronic cholecystitis 0 

 

Table 2-4 Benign patient cohort past-medical and drug history 
 

Sample Code 
Operative Indication Past medical history Drug history 

BR BU 

1 1 Biliary colic ─ ─ 

2 2 Presumed malignancy ─ ─ 

3 No urine Biliary colic ─ ─ 

4 No urine Biliary colic ─ ─ 

No plasma 5 Main duct IPMN pancreatitis HTN Co-tenidone 

6 6 Presumed malignancy ─ ─ 

No plasma 7 Chronic pancreatitis dilated pancreatic duct Chronic pancreatitis ─ 

8 8 Presumed malignancy 2013 Anterior resection (Dukes B rectal cancer) ─ 

9 9 Biliary colic Hiatus hernia Solifenacin, lansoprazole 

10 10 Biliary colic ─ ─ 

11 11 Biliary colic ─ ─ 

12 12 Prior cholecystitis IgA lambda myeloma 2009 ─ 
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Sample Code 
Operative Indication Past medical history Drug history 

BR BU 

No plasma 13 Acute pancreatitis ─ ─ 

14 14 Acute pancreatitis ─ ─ 

15 15 Biliary colic 
Breast ductal carcinoma in-situ  (Excision and 

radiotherapy) 2013 
─ 

16 16 Prior cholecystitis Right thoracoplasty 1963 (TB) ─ 

17 17 Prior cholecystitis CABG, atrial fibrillation 
Warfarin, biosprolol, diltiazem, ramipril, simvastatin, 

salbutamol, seretide 

18 18 Prior cholecystitis 
Lichen planus, gastro-oesophageal reflux, asthma, 

osteoarthritis 
Omeprazole, methotrexate, folic acid, amitriptyline, 

citalopram, MST, salbutamol 

19 19 Biliary colic ─ ─ 

20 20 Presumed malignancy Prostate cancer ( prostatectomy 2011) ─ 

21 21 Prior CBD calculi 2011 thyroidectmy Graves disease Thyroxine 

22 22 Presumed malignancy Aortic stenosis ─ 

23 23 Prior cholecystitis ─ ─ 

24 24 Biliary colic Segment 5 liver focal nodular hyperplasia ─ 

25 25 Biliary colic Laparotomy malrotation (child) ─ 

26 26 Biliary colic Narcolepsy, epilepsy Lamotrigine, Modafinil 

27 27 Presumed malignancy HTN, pancreatitis Simvastatin, lisinopril, desloratidine, aspirin, metformin 
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Sample Code 
Operative Indication Past medical history Drug history 

BR BU 

28 28 Duodenal tumour upper gastrointestinal bleed ─ ─ 

29 29 Prior cholecystitis (incidental splenic lesion) ─ ─ 

30 30 Biliary colic ─ ─ 

31 31 Biliary colic ─ ─ 

32 32 Biliary colic Hyperthyroid Carbimazole 

33 33 Presumed malignancy ─ ─ 

34 34 Acute pancreatitis ─ ─ 

35 35 Presumed malignancy Myocardial infarct, COPD ─ 

36 36 Chronic pancreatitis. CBD stricture recurrent cholangitis Chronic pancreatitis (ETOH) recurrent CBD stents ─ 

37 37 Prior cholecystitis HTN Amlodiopne, bisoprolol, ramipril 

38 38 Presumed malignancy ─ 
 

39 39 Prior cholecystitis HTN Atenolol, bendroflumethiazide 

40 No urine Prior cholecystitis ─ ─ 

41 41 Prior cholecystitis ─ ─ 

42 42 Biliary colic ─ ─ 

43 43 Biliary colic ─ ─ 

44 44 Presumed malignancy ─ Citalopram 

45 45 Prior CBD calculi ─ ─ 
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Table 2-5 Cancer versus benign cohort age and sex variation 
 

 
Cancer 
(n=44) 

Benign 
(n=45) 

Statistical Significance 
(p) 

Age (yrs) mean +/- SD 65.9 +/- 9.7 52.3 +/- 18.3 0.0001 

Sex M/F 27/17 19/26 0.0908 

 

2.3 Sample collection and processing 

A 5 ml blood sample was collected into a Lithium Heparinised tube via a 

venous cannula inserted for the purpose of general anaesthesia in each 

patient. A 5 ml urine sample was obtained from a urinary catheter placed for 

clinical need among major pancreatic resection patients. Patients managed 

without urinary catheter were asked to provide a sample pre-operatively.  

All samples were processed within one-hour of collection. Blood samples 

were centrifuged at 2000 rpm for ten-minutes. The plasma was removed 

from the sample and stored in eppendorf tubes at -80°C prior to NMR data 

acquisition.  Urine was transferred into eppendorf tubes and similarly stored 

at -80°C.   

2.3.1 NMR sample preparation 

Chemicals were purchased from Sigma-Aldrich Company Ltd. (Poole, Dorset, 

UK), unless otherwise stated. NMR tubes (S-5-500-7, Norell) were 

purchased from GPE Scientific Ltd. (Leighton Buzzard, Bedfordshire, UK). 

2.3.1.1 Plasma samples 

Individual samples were returned to room temperature (20°C) and 

centrifuged (Hettich Mikro 120 (C1204) centrifuge, angle rotor A1242) at 

3000 rpm (11,992g) for one-minute to remove any sediment. 300 µL of 

plasma was added to 350 µL of deuterium oxide (D2O). The mixture was 

vortexed for 8 seconds before transferring 600 µL into a 5 mm NMR tube. 

Samples were prepared individually to minimise any on-going metabolism 

prior to analysis.  
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2.3.1.2 Urine samples 

Individual samples were returned to room temperature (20°C) and 

centrifuged (Hettich Mikro 120 (C1204) centrifuge, angle rotor A1242) at 

11,992g for 5 minutes. 460 µl of urine supernatant was added to 230 µL of 

phosphate buffer solution. The urine/phosphate buffer mixture was vortexed 

for 8 seconds before transferring 600 µL to a 5 mm NMR tube. 

100 ml of phosphate buffer solution (pH 7.43) contained 2.885 g sodium 

phosphate dibasic (Na2HPO4), 0.525 g sodium phosphate monobasic 

(NaH2PO4), 0.0172 g (1 mM) trimethylsilyl propanoic acid (TSP) and 0.0195 

g (3 mM) sodium azide (NaN3) in 20 ml of D2O and 80 ml of ribonuclease 

(RNase) free water. The phosphate buffer was shaken thoroughly until salts 

dissolved.  

2.4 NMR data collection 

All 1H-NMR spectra were acquired on a Varian Unity Inova 500 spectrometer 

(Varian Inc, Palo Alto, California, USA) operating at 499.97 MHz proton 

frequency, at 20°C.  

2.4.1 Carr-Purcel-Meiboom-Gill (CPMG) experiment 

The CPMG pulse sequence [RD - 90° - (Ʈ  - 180° - Ʈ )n – acq] was used to 

obtain metabolic profiles of plasma samples. A relaxation delay (RD) of 2 s, Ʈ  

1.5 ms and n of 150 was used for data collection. For each spectrum 512 

transients were collected into 16,284 pairs of data points with a spectral 

width of 8,000.00 Hz.    

2.4.2 1D Nuclear Overhauser effect spectroscopy  (NOESY) experiment 

The one-dimensional (1D) NOESY pulse sequence [RD - 90° - t1 - 90° - tm - 

90° - acq] was used to obtain metabolic profiles for all urine samples. A RD 

of 2 s, tm of 1.5ms and t1 of 3 µs was used for data collection. For each 

spectrum 512 transients were collected into 16,284 pair of data points with a 

spectral width of 8,000.00 Hz. 
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2.4.3 NMR spectral processing 

All spectra were processed using ACD Labs software 12.01 (Advanced 

Chemistry Development, Inc., (ACD/Labs), Toronto, Canada). An 

exponential line broadening (1 Hz) was applied to each free induction decay 

(FID) prior to zero filling to 65,536 (plasma) and 131,072 points for urine. The 

resulting spectra were phased, baseline corrected and referenced. Plasma 

spectra were referenced to the α-glucose (1H chemical shift 5.23 ppm) and 

urine to TSP at 0.000 ppm.  

2.5 Chemometric analysis of plasma spectra  

2.5.1 Binning and dark regions 

Prior to binning over a spectral range, several dark regions were created 

within plasma spectra. Dark regions are areas with an integral set to zero to 

exclude specific variables from subsequent multivariate analysis. These 

included water (4.20-5.70 ppm) and glucose (3.18-3.94 ppm) within plasma 

and water (4.50 – 6.20 ppm) and creatinine (3.034-3.064, 4.043-4.073) within 

urine spectra. Spectral binning was performed using ACD Labs software 

12.01. All spectra were integrated into bins of 0.005 ppm using the intelligent 

bucketing process with a 50% looseness of width. The intelligent bucketing 

process limits spectra division between peaks and thus reduces the risk of 

metabolite loss. 

2.5.2 Multivariate analysis 

All spectra were mean centred and Pareto-scaled using SIMCA-P+ software 

version 12.0.1.0 (Umetrics, Umeå, Sweden).  PCA was performed to view 

any clustering or outliers in the scores plots. Loadings plots were used to 

identify regions of the spectra (bins) responsible for scores plot clustering. 

PLS-DA was performed to improve distinction of separation between groups 

of interest and produce models for validation purposes. The quality of each 

model was assessed by goodness of fit (R2 X) and the ability to predict class 

membership of a new sample (Q2 Y). Model predictive ability was assessed 

by permutation testing and leave-one-out cross validation.  
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3 Results of NMR analysis 

3.1 Analysis of plasma 

This chapter describes the 1H-NMR spectroscopic analysis of plasma 

obtained from 44 patients with confirmed pancreaticobiliary cancer and 45 

patients with benign pancreaticobiliary disease. Among those with confirmed 

cancer, one plasma specimen was spoiled during pre-processing (CR4) and 

ethical considerations and timing prohibited further sample collection. Among 

the benign cohort three patients (BR5, BR7 and BR13) failed to provide 

samples. A total of 43 and 42 confirmed cancer and benign patient samples 

respectively were analysed via 1H-NMR using the CPMG pulse sequence as 

described in section 2.4.1.  

Multivariate analysis was performed as described in section 2.5 in an attempt 

to identify possible biomarkers for pancreaticobiliary malignancy.  

3.1.1 Principle component analysis of the whole plasma dataset 

A PCA model for the whole sample cohort produced six PC‟s. The scores 

plot of PC 1 versus PC 2 is displayed in Figure 3.1. For visualisation 

purposes the CR samples are highlighted blue and the BR samples green. 

The goodness of fit (R2X(cum), the fraction of the sum of squares of all the 

X-variables that are explained by the model) is 0.83. The predictive ability 

(Q2Y(cum), the fraction of the total variation of the X-variables that can be 

predicted by the model) is 0.695. A difference of more than 0.3 between R2X 

and Q2Y is indicative of a poor model due to either noise or outlying data 

points. Five CR samples (CR1, CR12, CR13, CR20 and CR 38) lie outside of 

Hotelling‟s T2 confidence interval. Reviewing the medical records of these 

patients (Table 2-2 and Table 2-4) failed to identify any explanation for the 

outlying nature of sample CR12. Patient CR20 had however within one-

month undergone colorectal surgery (subtotal colectomy) for Duke‟s B 

sigmoid and ascending colon carcinoma which may well account for the 

variation in metabolome. Of interest patients CR1, CR13, and CR38 were all 

taking levothyroxine for hypothyroidism. Of note patients CR43 and BR21 
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were also taking levothyroxime however both are clustered with other BR 

and CR samples.  

 

Figure 3.1 PCA scores plot for all 43 cancer (blue) and 42 benign (green) 
plasma samples showing the first two model components. R2X = 0.406 and 
0.147, and Q2Y = 0.385 and 0.196 for PC 1 and PC 2, respectively 
 

Through focusing on samples lying within the 95% confidence interval the 

BR samples appear to be cluster together toward the left hand side of the 

scores plot. In contrast the CR samples appear to cluster within two discrete 

areas on the scores plot. CR clusters 1 and 2 are surrounded by black 

ellipses for ease of viewing alone (Figure 3.2). Three BR samples, BR2, BR6 

and potentially BR15, although within the 95% confidence interval appear 

separate from the main BR cluster. Upon further clinical review, BR6 

although simplistically classed as benign is actually pre-malignant with final 

histology that of IPMN with moderate dysplasia. Histology from patient BR2 

identified type 2 autoimmune pancreatitis, a rare form of pancreatitis which 

may mimic the clinical presentation of pancreatic cancer. Patient BR2 was 

also of Pakistani ethnicity as opposed to the predominantly Caucasian 

CR20 

CR38 

CR1 

CR13 

CR12 

BR15 

BR2 

BR6 
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patients recruited. Ethnicity is a known confounding factor in metabonomics 

and will be accounted for in subsequent analysis (138).  

 

Figure 3.2 PCA scores plot for all 43 cancer and 42 benign plasma samples 
displaying the first two PC and highlighting clustering of benign (green) and 
malignant (blue) samples 
 

3.1.2 Principle component analysis for potential confounding variables 

In further PCA scores plots there is an attempt to account for true separation 

between CR and BR samples through testing for potential variables such as 

sex, ethnicity, pre-operative serum bilirubin, tumour type, resectability, 

tumour aggressiveness (recurrence and survival data) and the potential 

effect of various subgroups within the “benign” patient cohort such as 

gallstones, chronic pancreatitis, autoimmune pancreatitis, benign and pre-

malignant pancreatic cystic lesions.  

3.1.2.1 Ethnicity as a potential confounding factor 

As displayed in Table 2-1 and Table 2-3 the majority of both the BR and CR 

patients are of Caucasian origin. Among the CR cohort one patient (CR13) is 

of Pakistani origin along with three patients in the benign cohort (BR2, BR30 

BR Cluster 

CR Cluster 1 

CR Cluster 2 
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and BR32). Sample BR2, as described in section 3.1, although within the 95% 

confidence interval is separated away from the main BR cohort. CR13 is 

located outside of the 95% confidence interval. In contrast BR30 and BR32 

appear within the main BR cluster on the scores plot. Options for subsequent 

analysis are to either exclude CR13 and BR2 alone (based on ethnicity and 

potential levothyroxine use for CR13 and ethnicity and histology for BR2) or 

to exclude all four patients. Given that the remainder of the study population 

were of European ethnicity a decision was made to restrict subsequent 

analysis to the European population given the known confounding factor of 

ethnicity in metabonomics (138). 

3.1.2.2 Benign cohort variation as a confounding factor 

As described in section 3.1.1 variation exists with respect to final histological 

diagnosis within the BR cohort. The majority of samples were collected from 

patients with gallstones disease (n=31). Other patients were however 

recruited following pancreatic cystic lesion excision for dysplasia (n=4), 

benign pancreatic lesion resection (n=6), pancreaticojejunostomy for chronic 

pancreatitis (n=2), duodenal resection for GIST (n=1) and open excision of 

retroperitoneal paraganglionoma (Table 2-1 and Table 2-3). This clearly adds 

potential confounding factors to comparative analysis with a heterogeneous 

control group. This is demonstrated, as described in section 3.1.1 by the two 

samples, BR6 and BR2, which are seen to be separate from the main cluster 

of BR samples. BR2 having type 2 AIP and BR6 IPMN with moderate 

dysplasia on final histology.  To assess for further potential variation within 

the BR cohort patients were further classified as either having pure benign or 

pre-malignant histology (Table 2-3). Of those with plasma available for 

analysis a total of five patients were classified as pre-malignant, four patients 

with IPMN (BR6, BR8, BR20 and BR33) and one who underwent duodenal 

resection for GIST (BR33). Interestingly upon constructing a PCA scores plot 

(Figure 3.3) highlighting benign BR (green), pre-malignant (blue) and cancer 

CR (red), despite marked heterogeneity in final histology only one sample 

(BR6), a PPPD for side branch IPMN with low and moderate dysplasia 

appeared markedly dissimilar to the main cluster of benign samples (green). 
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Options at this point are to either exclude sample BR6 alone or the 

remainder of the samples with pre-malignant histology. A decision was made 

to exclude all pre-malignant samples so as to compare true benign versus 

malignant patient metabolome. Insufficient patients were recruited into the 

study for meaningful subgroup analysis of pre-malignant plasma as a 

separate entity. Despite heterogenicity within the benign cohort a decision 

was made to include both patients with gallstone disease along with other 

benign pathology. This was to achieve comparable patient numbers, to 

reflect clinical practice (as patients rarely present with either gallstones or 

malignancy) and due to similar distribution on the scores plot.  

 

Figure 3.3 PCA scores plot of plasma data for 34 benign (green), 5 pre-
malignant (blue) and 42 cancer (red) samples showing the first two PC‟s 
among a European based population 
 

The resulting PCA scores plot for benign versus cancer plasma (excluding 

pre-malignant samples) among a European Population is shown in Figure 

3.4. A total of thirty-four benign and forty-two cancer plasma patients were 

included in each group for analysis. The benign samples remained clustered 

towards the left hand side of the scores plot (BR cluster) and the cancer 

BR6 
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plasmas separated into two clusters (CR cluster 1 and 2). Benign samples 

BR 1 and BR 15 appeared separated from the main benign cluster. Upon 

review no obvious past medical, operative or histological explanation could 

be found to explain this variation.   

 

Figure 3.4 PCA scores plot of plasma data for 42 cancer (blue) and 34 
benign (green) samples displaying the first two PC‟s among a European 
based population with pre-malignant condition exclusion. R2X = 0.379 and 
0.162, and Q2Y = 0.36 and 0.201 for PC 1 and PC 2, respectively 
 

The goodness of fit (R2X(cum), the fraction of the sum of squares of all the 

X-variables that are explained by the model) is 0.751. The predictive ability 

(Q2Y(cum), the fraction of the total variation of the X-variables that can be 

predicted by the model) is 0.609. A difference of more than 0.3 between R2X 

and Q2Y is indicative of a poor model due to either noise or outlying data 

points.   

3.1.2.3 Age and sex as confounding factors 

Among the European patient cohort patients with benign disease were 

younger with a mean age of 51.4 versus 65.3 years (Table 2-5). Variability in 

sex was found to be statistically insignificant (p=0.1657). 

BR Cluster CR Cluster 2 

CR Cluster 1 

BR15 

BR1 
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The PCA scores plot in Figure 3.5 demonstrates that the clustering of cancer 

patients between clusters 1 and 2 is not obviously due to sex.  

 

Figure 3.5 PCA scores plot of plasma data for 15 male (green) and 15 
female (blue) benign and 26 male (red) and 16 female (yellow) cancer 
samples among a European based population with pre-malignant condition 
exclusion. The first two PC‟s are displayed 
 

3.1.2.4 Cancer subtype and resectability as confounding factors 

Cancer resectability does not appear to account for the separation of cancer 

plasma between clusters 1 and 2 (Figure 3.6). For cancer subtype, patients 

with both PDA (n=24) or “other” (n=18) cancer subtypes were seen to reside 

within both CR cluster 1 and 2. There was however a trend towards greater 

separation among the PDA cohort (Figure 3.7).  

BR Cluster CR Cluster 2 

CR Cluster 1 
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Figure 3.6 PCA scores plot of plasma data for 34 benign (green), 27 
resected (blue) and 15 palliative (red) cancer patient samples among a 
European based population with pre-malignant condition exclusion. The first 
two PC‟s are displayed 

 

Figure 3.7 PCA scores plot of plasma data for 34 benign (green), 24 PDA 
(blue) and 18 “other” (red) cancer samples among a European based 
population with pre-malignant condition exclusion. The first two PC‟s are 
displayed 
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3.1.2.5 Plasma bilirubin as a confounding factor 

Patients among the benign cohort had significantly lower plasma bilirubin 

levels pre-operatively than those with malignant disease (Table 3-1). A PCA 

scores plot highlighting cancer sample pre-operative bilirubin (micromol/L) 

variation is displayed in Figure 3.8. All cancer patients with a pre-operative 

plasma bilirubin greater than 40 micromol/L can be found towards the right-

hand side of the scores plot whereas those with pre-operative bilirubin < 20 

micromol/L appear to more closely resemble patients within the benign 

cohort. Figure 3.9 displays a cohort of benign samples and cancer samples 

with a pre-operative bilirubin < 20 and Figure 3.10 a cohort of benign 

samples and cancer samples with a pre-operative bilirubin  > 40 micromol/L.  

 

Table 3-1 Pre-operative plasma bilirubin (micromol/L) for benign and 
malignant samples among a European population with pre-malignant 
condition exclusion 
 

 

Cancer (n=42) Benign (n=34) P 

Pre-op 
bilirubin 

(micromol/L) 
Mean +/- SD 

29.1 +/- 32.9 9.3 +/- 4.8 0.0007 
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Figure 3.8 PCA scores plot of plasma data for 34 benign (green) patients, 
cancer samples with pre-operative plasma bilirubin < 20 (dark-blue), bilirubin 
20-30 (red), 30-40 (yellow) and > 40 micromol/L (light-blue) among a 
European based population with pre-malignant condition exclusion 

 

Figure 3.9 PCA scores plot of plasma data for 34 benign (green) and 33 
cancer (blue) samples with a pre-operative bilirubin < 40 micromol/L among 
a European based population with pre-malignant condition exclusion. The 
first two PC‟s are displayed. R2X = 0.379 and 0.162, and Q2Y = 0.36 and 
0.201 for PC 1 and PC 2, respectively 
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Figure 3.10 PCA scores plot of plasma data for 34 benign (green) and 9 
cancer (blue) samples with a pre-operative bilirubin > 40 micromol/L among 
a European based population with pre-malignant condition exclusion. The 
first two PC‟s are displayed. R2X = 0.335 and 0.184, and Q2Y = 0.311 and 
0.2 for PC 1 and PC 2, respectively 

 

3.1.3 PLS-DA and OPLS plasma analysis 

Based on the findings from initial PCA analysis as described in section 3.1.2, 

subsequent PLS-DA and OPLS analysis will be performed on a sample 

cohort of benign and cancer plasma among the European population with 

pre-malignant sample exclusion. Further analysis will also be performed on 

separate cohorts of European patients with a pre-operative bilirubin of either 

less-than or greater than 40 micromol/L. The PCA scores plots are displayed 

in Figure 3.4, Figure 3.9 and Figure 3.10 respectively.   

3.1.3.1 PLS-DA analysis of benign and cancer plasma among the 

European population with pre-malignant sample exclusion 

A PLS-DA model for the benign and cancer European plasma cohort with 

pre-malignant exclusion is displayed in Figure 3.11 by a two-component 

model.  
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Figure 3.11 PLS-DA scores plot of plasma data for 34 benign and 42 cancer 
samples in a European population with pre-malignant exclusions. R2X (cum) 
= 0.516, R2Y (cum) = 0.44 and Q2Y (cum) = 0.319 
 

Five samples (CR1, CR8, CR12, CR20 and CR38) in Figure 3.11 lie at or 

beyond Hotelling‟s T2 confidence interval. As described in section 3.1.1 

patient numbers CR1 and CR38 were both taking prescription medication 

(levothyroxine) for hypothyroidism. Patient CR20 had within one month 

undergone subtotal colectomy for ascending and sigmoid colon 

adenocarcinoma. No obvious factor within the past medical or prescription 

history for patients CR8 and CR12 could be identified to account for 

significant metabolic variance. Following exclusion of extreme outliers (CR1, 

CR8, CR12, CR20 and CR38) a repeat PLS-DA model is generated and 

displayed in Figure 3.12 by a single component model.  

CR20 

CR38 

CR8 

CR12 CR1 
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Figure 3.12 PLS-DA single component model for benign n=34 (green) and 
cancer n=37 (blue) plasma samples among a European population with pre-
malignant and extreme outlier exclusion. R2X (cum) = 0.318, R2Y (cum) = 
0.354 and Q2Y (cum) = 0.308 

 

3.1.3.1.1 Permutation testing of PLS-DA model 

Permutation testing demonstrates how a model in which the Y-variables 

(class membership) are randomised compare to the original PLS-DA model. 

For the PLS-DA model displayed in Figure 3.12, all permutated R2 and Q2 

values to the left were lower than the original points to the right, and lower 

than the original values. This indicates model validity with respect to both 

benign (Figure 3.13) and cancer sample  (Figure 3.14) permutation.  
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Figure 3.13 Permutation testing plot for the PLS-DA model shown in Figure 
3.12. Thirty-six permutations selected with reference to thirty-four benign 
samples within the model. R2Y = 0.0977 and Q2Y -0.0842 
 

 

Figure 3.14 Permutation testing plot for the PLS-DA model shown in Figure 
3.12. Thirty-nine permutations selected with reference to thirty-seven cancer 
samples within the model. R2Y = 0.105 and Q2Y -0.109 
 

R2 

Q2 

R2 

Q2 
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3.1.3.1.2 Cross validation of PLS-DA models 

Cross validation of PLS-DA or OPLS models may be achieved in a number 

of ways, including by testing if new additional samples are correctly classified. 

As no further appropriate samples were available it was decided to internally 

validate by sequentially removing one-third of cancer and benign data sets - 

building a model on the remaining two-thirds of samples and testing how the 

“removed” one-third are classified when re-introduced (Table 3-2). The 

resulting model sensitivity, specificity and predictive values are displayed 

(Table 3-3). 
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Table 3-2 Cross validation of the model displayed in Figure 3.12 
 

*A sample was regarded as belonging to a class with a Y predicted value 

of >0.50. Green indicates correct and red incorrect classification respectively 

 

Sample 
Y Predicted* 

 
Sample 

Y Predicted* 
 

Sample 
Y Predicted* 

Benign Cancer 
 

Benign Cancer 
 

Benign Cancer 

BR1 0.91 0.09 
 

BR18 0.85 0.15 
 

BR34 0.93 0.07 

BR3 0.74 0.26 
 

BR19 0.88 0.12 
 

BR35 0.42 0.58 

BR4 0.67 0.33 
 

BR21 0.72 0.28 
 

BR36 0.31 0.69 

BR9 0.61 0.39 
 

BR22 0.58 0.42 
 

BR37 0.93 0.07 

BR10 0.49 0.51 
 

BR23 0.73 0.27 
 

BR38 0.45 0.55 

BR11 0.63 0.37 
 

BR24 0.83 0.17 
 

BR39 0.87 0.13 

BR12 0.30 0.70 
 

BR25 0.84 0.16 
 

BR40 0.78 0.22 

BR14 0.53 0.47 
 

BR26 0.92 0.08 
 

BR41 0.74 0.26 

BR15 -0.10 1.10 
 

BR27 0.44 0.56 
 

BR42 0.92 0.08 

BR16 0.68 0.32 
 

BR29 0.85 0.15 
 

BR43 0.92 0.08 

BR17 0.38 0.62 
 

BR31 0.90 0.10 
 

BR44 0.33 0.67 

CR2 0.37 0.63 
 

CR18 0.46 0.54 
 

BR45 0.85 0.15 

CR3 0.19 0.81 

 

CR19 0.30 0.70 
 

CR31 0.40 0.60 

CR5 0.15 0.85 
 

CR21 0.43 0.57 
 

CR32 -0.03 1.03 

CR6 0.55 0.45 
 

CR22 0.67 0.33 
 

CR33 0.46 0.54 

CR7 0.18 0.82 
 

CR23 0.28 0.72 
 

CR34 0.71 0.29 

CR9 0.06 0.94 
 

CR24 0.53 0.47 
 

CR35 0.37 0.63 

CR10 0.23 0.77 
 

CR25 0.87 0.13 
 

CR36 0.55 0.45 

CR11 0.26 0.74 
 

CR26 0.32 0.68 
 

CR37 0.34 0.66 

CR14 0.20 0.80 
 

CR27 0.51 0.49 
 

CR39 0.32 0.68 

CR15 0.09 0.91 
 

CR29 0.80 0.20 
 

CR40 0.64 0.36 

CR16 0.44 0.56 
 

CR28 0.57 0.43 
 

CR41 0.68 0.32 

CR17 0.38 0.62 
 

CR30 0.88 0.12 
 

CR42 0.62 0.38 

   
     

CR43 0.25 0.75 

        
CR44 0.34 0.66 
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Table 3-3 Model sensitivity, specificity, positive and negative predictive 
values 
 

Test Cancer 

 Present (37) Absent (34) Total 

Positive True positive (24) False positive (9) 33 

Negative False negative (13) True negative (25) 38 

 

 
% 95% C.I 

Sensitivity 64.9 47.5-79.8 

Specificity 73.5 55.64-87.1 

Positive predictive value 72.7 54.5-86.7 

Negative predictive value 65.8 48.6-80.3 

 

3.1.3.1.3 OPLS loading plot and metabolite identification 

A loading plot generated through OPLS from the model shown in Figure 3.12 

is displayed in Figure 3.15. The loadings pq plot is a superimposition of the p 

plot and the q plot, for the first component of the OPLS model. The loading 

vector p1 corresponds to the co-variances between the X-variables and the 

score vector t1, whereas the loading vector q1 expresses the importance of 

the variables in approximating Y variation correlated to X, in the first 

component. The X-axis on the loadings plot corresponds with the X-axis (in 

ppm) on the NMR spectrum. Variation in the loadings plot can therefore be 

directly related to the NMR spectrum and hence metabolite identification. 

Distribution above zero on the Y-axis in Figure 3.15 represents up-regulation 

of signal among cancer samples and vice versa.  

Due to the use of the intelligent bucketing process for spectral binning (to 

minimize metabolite loss) the resultant OPLS loadings plots fail to align 

perfectly with the original NMR spectra.  
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Figure 3.15 OPLS Loadings plot for the model displayed in Figure 3.12 
 

The loadings plot shown in Figure 3.15 is magnified to highlight chemical 

shift range 0.9 – 2.1 ppm (Figure 3.16). The corresponding region on a 

cancer NMR spectrum (CR16 as an example) is magnified in Figure 3.17. 

Example metabolites are highlighted in both Figure 3.16 and Figure 3.17 

through reference to a NMR database of plasma metabolite chemical shifts 

and peak multiplicity (139). 



 

 

69 

 

 

Figure 3.16 OPLS Loadings plot for the model displayed in Figure 3.12 with 
expansion of 0.8–2.0 ppm chemical shift 
 

 

Figure 3.17 NMR spectrum for sample CR16 with expansion of chemical 
shift 0-2.5 ppm 
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Figure 3.18 OPLS Loadings plot for the model displayed in Figure 3.12 with 
expansion of 1.8–3.0 ppm chemical shift 

 

 

Figure 3.19 OPLS Loadings plot for the model displayed in Figure 3.12 with 
expansion of 3.0–4.5 ppm chemical shift 

Acetate 1.91 ppm 
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Pyruvate 2.37 ppm 
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3.42 ppm  
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Β-Glucose 3.90 ppm 
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Figure 3.20 NMR spectrum for sample CR16 with expansion of chemical 
shift 1.9-4.5 ppm 

 
A summary of the assigned metabolites across the entire spectral range is 

displayed within Table 3-3. Region A as displayed in Figure 3.20 is 

particularly complex making it difficult to unambiguously assign metabolites 

by 1D-NMR.  
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Table 3-4 Metabolite identification for model displayed in Figure 3.12 

 

H chemical shift 
(ppm) 

Multiplicity Metabolite 
Metabolite 
change in 

cancer 

0.87 t Lipid (mainly VLDL) ↓ 

0.97 d Valine ↓ 

1.02 d Valine ↓ 

1.13 d Isobutyrate ↑ 

1.2 d 3-hydroxybutyrate ↑ 

1.29 m Lipid (mainly VLDL) ↓ 

1.33 d Lactate ↑ 

1.91 m Acetate ↓ 

2.22 s Acetoacetate ↑ 

2.37 s Pyruvate ↑ 

3.25/3.42 t Taurine/ α-glucose* ↑ 

3.40/3.41 t β-glucose/Taurine* ↑ 

3.9 dd β-glucose ↑ 

*2D-NMR required to confirm metabolite assignment 

 

3.1.3.2 PLS-DA analysis of benign and cancer plasma with a pre-

operative bilirubin less than 40 micromol/L 

A PLS-DA model for benign and cancer plasma samples among a European 

population with a pre-operative bilirubin of less-than 40 micromol/L with pre-

malignant exclusion is displayed below (Figure 3.21). One sample (CR1) was 

excluded as an extreme outlier. The PLS-DA model generated was 

explained by a single component (Figure 3.22).   
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Figure 3.21 PLS-DA scores plot of plasma data for 34 benign (green) and 33 
cancer (blue) samples with a pre-operative bilirubin of less-than 40 
micromol/L with pre-malignant exclusions. R2X (cum) = 0.311, R2Y (cum) = 
0.32 and Q2Y (cum) = 0.265 

 

Figure 3.22 PLS-DA scores plot of plasma data for 34 benign (green) and 32 
cancer (blue) samples with a pre-operative bilirubin of less than 40 
micromol/L with exclusions. R2X (cum) = 0.272, R2Y (cum) = 0.348 and Q2Y 
(cum) = 0.302 
 

CR1 
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3.1.3.2.1 Permutation testing of PLS-DA model 

Validity of the model displayed in Figure 3.22 was demonstrated through 

permutation of both benign (Figure 3.23) and cancer (Figure 3.24) sample 

class membership. 

  

Figure 3.23 Permutation testing plot for the PLS-DA model shown in Figure 
3.22. Thirty-six permutations selected with reference to thirty-four benign 
samples within the model. R2Y = 0.111 and Q2Y = -0.0954 
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Figure 3.24 Permutation testing plot for the PLS-DA model shown in Figure 
3.22. Thirty-four permutations selected with reference to thirty-two cancer 
samples within the model. R2Y = 0.108 and Q2Y = -0.111 
 

3.1.3.2.2 Cross section model validation 

Cross validation of the model is performed (Table 3-5) as described in 

section 3.1.3.1.2 for the PLS-DA model displayed in Figure 3.22. The 

resultant sensitivity and specificity of the model is displayed in Table 3-6. 
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Table 3-5 Cross validation of the model displayed in Figure 3.22 
 

*A sample was regarded as belonging to a class with a Y predicted value 

of >0.50. Green indicates correct and red incorrect classification respectively. 

Class allocation was not possible for sample BR10 (blue) 

 

Sample 

Y predict     Y predict     Y predict 

Benign Cancer   Sample Benign Cancer   Sample Benign Cancer 

BR1 0.95 0.05   BR19 0.97 0.03   BR35 0.41 0.59 

BR3 0.8 0.2   BR21 0.82 0.18   BR36 0.22 0.78 

BR4 0.7 0.3   BR22 0.55 0.45   BR37 0.95 0.05 

BR9 0.64 0.36   BR23 0.75 0.25   BR38 0.34 0.66 

BR10 0.5 0.5   BR24 0.9 0.1   BR39 0.92 0.08 

BR11 0.66 0.34   BR25 0.9 0.1   BR40 0.78 0.22 

BR12 0.33 0.67   BR26 0.98 0.02   BR41 0.72 0.28 

BR14 0.55 0.45   BR27 0.3 0.7   BR42 0.95 0.05 

BR15 -0.01 1.01   BR29 0.87 0.13   BR43 0.94 0.06 

BR16 0.7 0.3   BR31 0.87 0.13   BR44 0.19 0.81 

BR17 0.41 0.59   BR34 1.03 -0.03   BR45 0.93 0.07 

BR18 0.74 0.26   CR24 0.45 0.55   CR35 0.23 0.77 

CR10 0.27 0.73   CR25 0.95 0.05   CR36 0.44 0.56 

CR2 0.42 0.58   CR26 0.21 0.79   CR37 0.22 0.78 

CR7 0.28 0.72   CR27 0.4 0.6   CR38 0.27 0.73 

CR14 0.26 0.74   CR28 0.39 0.61   CR39 0.19 0.81 

CR16 0.48 0.52   CR29 0.85 0.15   CR40 0.54 0.46 

CR17 0.39 0.61   CR30 0.81 0.19   CR41 0.64 0.36 

CR18 0.16 0.84   CR31 0.31 0.69   CR42 0.67 0.33 

CR19 0.34 0.66   CR32 -0.2 1.2   CR43 0.14 0.86 

CR20 -0.1 1.1   CR33 0.47 0.53   CR44 0.19 0.81 

CR21 0.25 0.75   CR34 0.69 0.31 
    CR22 0.55 0.45 
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Table 3-6 Model sensitivity, specificity, positive and negative predictive 
values 
 

Test 
Cancer 

Total 
Present (32) Absent (34) 

Positive True positive (24) False positive (8) 32 

Negative False negative (8) True negative (25) 33 

 

  % 95% C.I 

Sensitivity 75 56.6-88.5 

Specificity 75.8 57.7-88.9 

Positive predictive value 75 56.6-88.5 

Negative predictive value 75.8 57.7-88.9 

 

3.1.3.2.3 OPLS loading plot and metabolite allocation 

A loadings plot generated through OPLS form the model shown in Figure 

3.22 is displayed below (Figure 3.25). Metabolite allocation for this model is 

described in section 3.1.4. 

 

Figure 3.25 OPLS loadings plot for the model displayed in Figure 3.22 
 



 

 

78 

 

3.1.3.3 PLS-DA analysis of benign and cancer plasma with a pre-

operative bilirubin greater than 40 micromol/L 

Nine patients with a bilirubin greater than 40 micromol/L were included into a 

cohort of nine patients with benign disease selected at random. The resulting 

PLS-DA scores plot was explained by a single component (Figure 3.26). 

 

Figure 3.26 PLS-DA scores plot of plasma data for 9 benign (green) and 9 
cancer (blue) samples with a pre-operative bilirubin of greater than 40 
micromol/L with exclusions. R2X (cum) = 0.498, R2Y (cum) = 0.814 and Q2Y 
(cum) = 0.763 
 

3.1.3.3.1 Permutation testing of PLS-DA model 

With an R2Y intercept values of 0.223 and 0.18 and Q2Yvalues of  -0.172 and 

-0.213 with respect to benign and cancer specimens respectively the model 

is valid. 

3.1.3.3.2 Cross section model validation 

Cross validation of the model is performed (Table 3-7) as described in 

section 3.1.3.1.2 for the PLS-DA model displayed in Figure 3.26. The 

resultant sensitivity and specificity of the model is displayed in Table 3-8. 
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Table 3-7 Cross validation of the model displayed in Figure 3.26 
 

*A sample was regarded as belonging to a class with a Y predicted value 

of >0.50. Green indicates correct and red incorrect classification respectively 

 

Sample 
Y predicted* 

 
Sample 

Y predicted* 

 
Sample 

Y predicted* 

Benign Cancer 
 

Benign Cancer 
 

Benign Cancer 

BR3 0.75 0.25 
 

BR11 0.88 0.12 
 

BR24 1.00 0.00 

BR9 0.80 0.20 
 

BR19 0.96 0.04 
 

BR43 1.09 -0.09 

BR10 0.79 0.21 
 

BR21 0.79 0.21 
 

BR45 0.95 0.05 

CR3 0.26 0.74 
 

CR8 -0.21 1.21 
 

CR12 -0.47 1.47 

CR5 0.18 0.82 
 

CR9 0.09 0.91 
 

CR15 0.20 0.80 

CR6 0.44 0.56 
 

CR11 0.20 0.80 
 

CR23 0.60 0.40 

 

Table 3-8 Model sensitivity, specificity, positive and negative predictive 
values 

 

Test 
Cancer 

Total 
Present (9) Absent (9) 

Positive True positive (8) False positive (0) 8 

Negative False negative (1) True negative (9) 10 

 

 

% 95% C.I 

Sensitivity 88.9 51.7-98.1 

Specificity 100 66.2-100 

Positive predictive value 100 62.9-100 

Negative predictive value 90 55.5-98.3 

 

3.1.3.3.3 OPLS loadings plot and metabolite allocation 

A loadings plot generated through OPLS form the model shown in Figure 

3.26 is displayed below (Figure 3.27). Metabolite allocation for this model is 

described in section 3.1.4. 
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Figure 3.27 OPLS loadings plot for the model displayed in Figure 3.26 
 

3.1.4 Metabolite comparison for overall benign and malignant samples 

(with exclusions) versus cancer patients with or without pre-

operative jaundice 

OPLS loading plots for overall benign and malignant samples, patients with a 

pre-operative bilirubin less than or equal to 40 micromol/L and patients with 

bilirubin greater than 40 micromol/L are displayed (Figure 3.28). Two regions 

of spectral variation (representing metabolite change) are highlighted (region 

one and two). Expansion of regions one and two along with metabolite 

assignment is displayed within Figure 3.29 and Figure 3.30, respectively. 
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Figure 3.28 OPLS loading plots for overall benign and cancer samples (A), 
jaundiced (B) and non-jaundiced patients (C) 
 

A 

B 

C 

Region 2 

Region 1 
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Figure 3.29 OPLS loading plots for overall benign and cancer samples (A), 
jaundiced (B) and non-jaundiced patients (C) with expansion of chemical 
shift 0.8-2.0 ppm (Region 1 Figure 3.28) 
 

Acetate 1.91 ppm VLDL 1.29 ppm 
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Figure 3.30 OPLS loading plots for overall benign and cancer samples (A), 
jaundiced (B) and non-jaundiced patients (C) with expansion of chemical 
shift 1.8-3.0 ppm (Region 2 Figure 3.28) 

Acetate 1.91 ppm 

Acetoacetate 2.22 ppm 

Pyruvate 2.37 ppm 
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Metabolite allocation in table format is displayed in Table 3-9. 

 

Table 3-9 Metabolite assignment for overall benign and cancer samples 
(with exclusions) and patients with or without pre-operative jaundice 
 

H chemical shift 
(ppm) 

Multiplicity Metabolite 
Metabolite change 

in cancer 
Bil < 

40micromol/L 
Bil > 40 

micromol/L 

0.87 t Lipid (mainly VLDL) ↓ ↓ ↓ 

0.97 d Valine ↓ ↓ NC 

1.02 d Valine ↓ ↓ NC 

1.13 d Isobutyrate ↑ ↑ ↑ 

1.2 d 3-hydroxybutyrate ↑ NC ↑ 

1.29 m Lipid (mainly VLDL) ↓ ↓ ↓ 

1.33 d Lactate ↑ ↑ ↑ 

1.91 m Acetate ↓ ↓ ↓ 

2.22 s Acetoacetate ↑ ↓ ↑ 

2.37 s Pyruvate ↑ ↑ ↑ 

3.25/3.42 t/dd Taurine/β-glucose* ↑ ↑ ↑ 

3.40/3.41 t β-glucose/Taurine* ↑ ↑ ↑ 

3.9 dd β-glucose ↑ ↑ ↑ 
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3.2 Analysis of Urine 

This chapter describes the 1H-NMR spectroscopic analysis of urine obtained 

from 44 patients with confirmed pancreaticobiliary cancer and 45 patients 

with benign pancreaticobiliary disease. Among those with benign disease, 

three patients (BU3, BU4 and BU40) failed to provide a urine sample. A total 

of 44 and 42 confirmed cancer and benign patient samples respectively were 

subsequently profiled via 1H-NMR using the 1D NOESY pulse sequence. 

Multivariate analysis was performed as described in section 2.5 in an attempt 

to identify potential novel biomarkers for pancreaticobiliary malignancy. 

3.2.1 Principle component analysis of the whole urine cohort 

A PCA model for the whole dataset produced six PC‟s (Figure 3.31). An 

R2X(cum) and Q2Y(cum) of 0.808 and 0.405 respectively is indicative of a 

poor model.   

 

Figure 3.31 PCA scores plot of urine data for all 43 cancer (blue) and 42 
benign (green) samples 
 

BU14 

BU39 
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CU39 
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CU28 



 

 

86 

 

A repeat PCA scores plot with outlier sample exclusion (BU14, BU32, BU39, 

CU18, CU28 and CU39) failed to show clear separation with a R2X(cum) and 

Q2Y(cum) of 0.744 and 0.389 respectively (Figure 3.32).  

 

Figure 3.32 PCA scores plot of urine data for 40 cancer (blue) and 39 benign 
samples 
 

3.2.2 Principle component analysis for potential confounding variables 

In further PCA models separation between samples according to variables 

such as sex, ethnicity, pre-operative serum bilirubin, tumour type and tumour 

respectability is tested. 

3.2.2.1 Ethnicity as a potential confounding factor 

Unlike plasma chemometric analysis as described in section 3.1.2.1, PCA 

modelling failed to highlight any separation of data according to ethnicity with 

an R2X (cum) and (Q2Y(cum) of 0.816 and 0.164 respectively (Figure 3.33). 

Samples BU14 and BU18 appeared as extreme outliers (Figure 3.33). 

Patient BU16 underwent laparoscopic cholecystectomy on a semi-urgent 

basis due to acute pancreatitis. Upon further review patient BU18 was found 
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to have an extensive prescription drug history. Further multivariate analysis 

of urine will include patients of all ethnicity. 

  

Figure 3.33 PCA scores plot of urine data for benign European (green) and 
non-European (blue) urine 
 

3.2.2.2 Benign cohort disease status as a confounding factor 

PCA modelling failed to identify any clear separation between benign or pre-

malignant benign samples with an R2X (cum) and Q2Y(cum) of 0.816 and 

0.164 respectively (Figure 3.34). For subsequent urine meta-analysis both 

benign and pre-malignant urine samples will be considered as a single 

cohort. BU14 and BU16 are obvious outliers for the potential reasons 

described in section 3.2.2.1. 

BU14 

BU18 
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Figure 3.34 PCA scores plot of urine data for benign (green) and pre-
malignant (blue) samples 
 

3.2.2.3 Age and sex as confounding factors 

The patients among the benign urine cohort are younger with a mean age of 

52.1 versus 65.9 years. No statistically significant sex variation was apparent 

(Table 3-12). 

3.2.2.4 Age and sex variation for 44 cancer and 34 benign patients 

 

 

Cancer 
(n=44) 

Benign 
(n=42) 

Statistical Significance 
(p) 

Age (yrs) mean +/- 
SD 

65.9 +/- 9.7 
52.1 +/- 

17.7 
0.0001 

Sex M/F 27/17 19/23 0.1942 

 

PCA modelling failed to highlight any obvious clustering of data within the 

benign cohort according to sex with an R2X (cum) and Q2Y(cum) of 0.816 

and 0.164 respectfully (Figure 3.35). 

BU18 

BU14 
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Figure 3.35 PCA scores plot of data for male (green) and female (blue) 
benign samples 
 

Potential clustering according to sex was identified among the cancer cohort 

on PCA modelling. As displayed in Figure 3.36, male samples appear 

predominantly within cluster 1 and females within cluster 2. With an R2X 

(cum) and Q2Y(cum) of 0.697 and 0.365 respectively, the model does not 

reach validity due to either noise or outlying data points. A repeat PCA model, 

following exclusion of outlying samples (CR15, CR26, CR28 and CR39) 

failed to display any clustering according to sex among the cancer cohort 

with an R2X(cum) and Q2Y(cum) of 0.715 and 0.326 respectively (Figure 

3.37).  

 



 

 

90 

 

 

Figure 3.36 PCA scores plot of urine data for male (green) and female (blue) 
cancer samples 

 

 

Figure 3.37 PCA scores plot of urine data for male (green) and female (blue) 
cancer samples with exclusions 

 

Cluster 1 

Cluster 2 

CU39 

CU28 

CU26 

CU15 
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3.2.2.5 Cancer subtype and resectability 

PCA modelling failed to identify any clustering of data according to cancer 

type (PDA versus other malignancy) with an R2X (cum) and Q2Y (cum) of 

0.808 and 0.405 respectively (Figure 3.38). A repeat model excluding 

outlying samples (BU14, BU32, BU39, CU15, CU28 and CU39) also failed to 

identify obvious clustering of data with an R2X (cum) and Q2Y (cum) of 0.756 

and 0.362 respectively.  

 

Figure 3.38 PCA scores plot of urine data for benign (green), PDA (blue) 
and other CU (red) 
 

PCA modelling failed to identify any obvious clustering of data according to 

cancer resection status (resected or palliative operation) with an R2X (cum) 

and Q2Y(cum) of 0.808 and 0.405 respectively (Figure 3.39). A repeat PCA 

model following extreme outlying sample exclusion also failed to identify any 

clustering of data with an R2X (cum) and Q2Y(cum) of 0.756 and 0.362 

respectively (Figure 3.40). Similarly a PCA scores plot for resectable versus 

irresectable cancer urine (without benign cohort inclusion) also failed to 

reveal any obvious clustering of data with an R2X (cum) and Q2Y(cum) of 

0.697 and 0.365 respectively (Figure 3.41).  

BU39 

BU14 

BU32 

CU39 

CU15 

CU28 
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Figure 3.39 PCA scores plot of urine data for benign (green), resectable 
(blue) and palliative cancer samples. Outlying samples labelled 
 

 

Figure 3.40 PCA scores plot of urine data for benign (green), resectable 
(blue) and palliative cancer samples with outlier exclusions 
 

BU14 

CU39 

CU14 

BU39 

BU32 

BU28 
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Figure 3.41 PCA scores plot of urine data for resectable (green) and 
palliative (blue) cancer samples 

 

3.2.2.6 Pre-operative bilirubin variation 

PCA modelling of benign samples, cancer samples with a pre-operative 

bilirubin of less than 40 or greater than 40 micromol/L failed to reveal any 

obvious clustering of data with an R2X (cum) and Q2Y(cum) of 0.808 and 

0.405 respectively (Figure 3.42). PCA modelling of cancer urine with a pre-

operative bilirubin less than or equal to 40 versus greater than 40 micromol/L 

(excluding benign cohort) also failed to highlight any separation with an R2X 

(cum) and Q2Y (cum) of 0.697 and 0.365 respectively (Figure 3.43).   

CU15 

CU28 

CU39 CU26 
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Figure 3.42 PCA scores plot of urine data for benign (green), cancer 
samples with pre-operative bilirubin < 40 (blue) and > 40 micromol/L (red) 
 

 

 

Figure 3.43 PCA scores plot of urine data for cancer samples with pre-
operative bilirubin < 40 (blue) and > 40 micromol/L (red) 
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PCA modelling for benign urine samples and cancer patients with a pre-

operative bilirubin less than or equal to 40 micromol/L failed to identify any 

obvious separation with a R2X (cum) and Q2Y(cum) of 0.789 and 0.402 

respectfully (Figure 3.44). A similar scores plot is displayed for urine samples 

with benign disease and cancer patients with a pre-operative bilirubin greater 

than 40 micromol/L with a resulting R2X (cum) and Q2Y(cum) of 0.779 and 

0.269 respectively (Figure 3.45). Given the large discrepancy in the number 

of benign patients (n=42) versus the number of cancer patients with a pre-

operative bilirubin greater than 40 micromol/L (n=10) a separate model with 

random benign sample reduction is shown (Figure 3.46). R2X (cum) and Q2Y 

(cum) for this model is 0.726 and 0.313 respectfully.   

 

Figure 3.44 PCA scores plot of urine data for urine samples with benign 
disease (green) and those with a pre-operative bilirubin of less than or equal 
to 40 micromol/L (blue) 
 

BU14 

BU18 

CU39 

BU39 

BU32 

CU28 
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Figure 3.45 PCA scores plot of urine data for urine samples with benign 
disease (green) and those with a pre-operative bilirubin of greater than 40 
micromol/L (blue) 
 

 

Figure 3.46 PCA scores plot of urine data for urine samples with benign 
disease (green) and those with a pre-operative bilirubin of greater than 40 
micromol/L (blue) with random benign reductions 

CU15 

BU32 
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3.2.3 PLS & OPLS-DA analysis of urine samples 

Unsupervised PCA analysis for urine, as described in section 3.2.2 failed to 

identify any potential clustering of either benign or malignant samples within 

principle components one and two. Supervised PLS and OPLS-DA analysis 

has thus been applied to selected cohorts to assess for any separation not 

revealed by PCA analysis alone. 

3.2.3.1 PLS analysis for overall urine data for benign and malignant 

samples 

It was not possible to generate a PLS-DA model using the cohort adopted for 

the PCA in either Figure 3.31 or Figure 3.32.  

3.2.3.2 PLS-DA analysis according to cancer subtype 

A PLS model comparing PDA urine versus “other” cancer urine within the 

cancer cohort is displayed below (Figure 3.47). 

 

Figure 3.47 PLS-DA scores plot of urine data for 25 PDA (green) and 19 
“other” cancer samples (blue). R2X (cum) = 0.31, R2Y (cum) = 0.257 and Q2Y 
(cum) = 0.169 
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The model displayed in Figure 3.47 is poorly fitted and not valid as several of 

the permutated R2Y values (to the left) lie at or above that of the original 

model with respect to both PDA (Figure 3.48) and “other” cancer (Figure 3.49) 

class permutation. 

 

Figure 3.48 Permutation testing plot for the PLS-DA model shown in Figure 
3.47. Twenty-seven permutations selected with reference to twenty-five PDA 
samples within the model. R2Y = 0.244 and Q2Y -0.0745 
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Figure 3.49 Permutation testing plot for the PLS-DA model shown in Figure 
3.47. Twenty-one permutations selected with reference to nineteen “other 
cancer” samples within the model. R2Y = 0.207 and Q2Y -0.0999 
 

The results of an attempt at cross validation through removing a third of 

samples in turn from both the PDA and “other” cancer cohort within the PLS-

DA model is displayed within Table 3-10. The resultant sensitivity and 

specificity of the model is displayed (Table 3-11). 
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Table 3-10 Cross validation of the model displayed in Figure 3.47 

 

Sample 

Y predict 

 Sample 

Y predict 

 Sample 

Y predict 

PDA 
Other 

CU  
PDA 

Other 
CU  

PDA 
Other 

CU 

CU1-PDA -0.11 1.11 
 

CU12-PDA 0.49 0.51 
 

CU31-PDA 0.62 0.38 

CU2-PDA 0.98 0.02 
 

CU14-PDA 0.63 0.37 
 

CU33-PDA 0.23 0.77 

CU3-PDA 0.96 0.04 
 

CU16-PDA 0.60 0.40 
 

CU34-PDA 0.69 0.31 

CU4-PDA 0.50 0.50 
 

CU17-PDA 0.67 0.33 
 

CU35-PDA 0.09 0.91 

CU5-PDA 0.96 0.04 
 

CU22-PDA 0.71 0.29 
 

CU36-PDA 1.10 -0.10 

CU7-PDA 1.24 -0.24 
 

CU23-PDA 0.83 0.17 
 

CU42-PDA 0.56 0.44 

CU8-PDA 0.87 0.13 
 

CU27-PDA 0.59 0.41 
 

CU43-PDA 0.96 0.04 

CU9-PDA 0.71 0.29 
 

CU29-PDA 0.57 0.43 
 

CU44-PDA 0.58 0.42 

CU11-PDA 0.51 0.49 
 

CU21 0.39 0.61 
 

CU32 0.27 0.73 

CU6 0.76 0.24 
 

CU24 0.69 0.31 
 

CU37 1.07 -0.07 

CU10 0.90 0.10 
 

CU25 0.57 0.43 
 

CU38 1.16 -0.16 

CU13 0.24 0.76 
 

CU26 0.41 0.59 
 

CU39 -0.78 1.78 

CU15 -0.04 1.04 
 

CU28 0.02 0.98 
 

CU40 0.62 0.38 

CU18 0.89 0.11 
 

CU30 0.45 0.55 
 

CU41 0.15 0.85 

CU19 0.81 0.19 
        

CU20 0.61 0.39 
        

 

*A sample was regarded as belonging to a class with a Y predicted value 
of >0.50. Green indicates correct and red incorrect classification respectively. 
Class membership could not be allocated for sample CU4 
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Table 3-11 Model sensitivity, specificity, positive and negative predictive 
values 
 

Test 
PDA 

Present (32) Absent* (38) 

Positive True positive (20) False positive (10) 

Negative False negative (4) True negative (9) 

 

 

% 95% C.I 

Sensitivity 83.3 
62.6-
95.2 

Specificity 47.4 
24.5-
71.1 

Positive predictive value 66.7 
47.2-
82.3 

Negative predictive value 69.2 
38.6-
90.7 

 

3.2.3.3 PLS-DA for cancer resectability 

It was not possible to generate a PLS-DA model using the cohort adopted for 

the PCA in Figure 3.41. 

3.2.3.4 PLS-DA for bilirubin variation 

A PLS-DA model for benign urine and cancer urine with a pre-operative 

bilirubin less than or equal to 40micromol/L was not possible without 

excluding the outlying samples (BU14, BU18, BU32, BU39, CU28 and CU39) 

which lie beyond the 95% confidence interval in the PCA model (Figure 3.44). 

The resulting PLS-DA model is expressed in a single component (Figure 

3.50). 
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Figure 3.50 PLS-DA scores plot of urine data for 38 benign (green) and 32 
cancer samples with a bilirubin less than or equal to 40micromol/L (blue) with 
outlier exclusions. R2X (cum) = 0.278, R2Y (cum) = 0.229 and Q2Y (cum) = 
0.131 
 

Validity of the model was not confirmed through permutation testing with 

several permuted R2Y values to the left lying above that of the original model 

with respect to both benign (Figure 3.51) and cancer (Figure 3.52) class 

permutation.  
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Figure 3.51 Permutation testing plot for the PLS-DA model shown in Figure 
3.50. Forty permutations selected with reference to thirty-eight benign 
samples within the model. R2Y = 0.171 and Q2Y -0.0846 
 

 

Figure 3.52 Permutation testing plot for the PLS-DA model shown in Figure 
3.50. Thirty-four permutations selected with reference to thirty-two cancer 
samples within the model. R2Y = 0.186 and Q2Y -0.0874 
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Cross validation of the model in Figure 3.50 performed as described 

previously produced the results displayed in Table 3-12. The resultant model 

sensitivity and specificity is shown (Table 3-13). 

Table 3-12 Cross validation of the model displayed in Figure 3.50 
 

*A sample was regarded as belonging to a class with a Y predicted value 

of >0.50. Green indicates correct and red incorrect classification respectively 

Sample 
Y predicted 

 
Sample 

Y predicted 
 

Sample 
Y predicted 

Benign Cancer 
 

Benign Cancer 
 

Benign Cancer 

BU1 0.47 0.53 

 
BU17 -1.99 2.99 

 
BU31 0.72 0.28 

BU2 0.45 0.55 

 
BU19 0.75 0.25 

 
BU33 0.66 0.34 

BU5 0.67 0.33 

 
BU20 0.89 0.11 

 
BU34 0.72 0.28 

BU6 0.61 0.39 

 
BU21 0.79 0.21 

 
BU35 -0.21 1.21 

BU7 0.56 0.44 

 
BU22 0.80 0.20 

 
BU36 0.58 0.42 

BU8 0.48 0.52 

 
BU23 0.73 0.27 

 
BU37 0.76 0.24 

BU9 0.24 0.76 

 
BU24 0.80 0.20 

 
BU38 1.11 -0.11 

BU10 0.65 0.35 

 
BU25 0.56 0.44 

 
BU41 0.61 0.39 

BU11 0.83 0.17 

 
BU26 0.81 0.19 

 
BU42 1.00 0.00 

BU12 0.36 0.64 

 
BU27 0.64 0.36 

 
BU43 0.92 0.08 

BU13 0.78 0.22 

 
BU28 0.77 0.23 

 
BU44 1.02 -0.02 

BU15 0.71 0.29 

 
BU29 0.74 0.26 

 
BU45 0.21 0.79 

BU16 0.64 0.36 

 
BU30 0.72 0.28 

 
CU34 0.58 0.42 

CU1 0.12 0.88 

 
CU21 0.35 0.65 

 
CU35 0.47 0.53 

CU2 0.59 0.41 

 
CU22 0.90 0.10 

 
CU36 0.96 0.04 

CU7 0.55 0.45 

 
CU24 0.86 0.14 

 
CU37 0.96 0.04 

CU10 0.26 0.74 

 
CU25 0.80 0.20 

 
CU38 1.60 -0.60 

CU13 0.16 0.84 

 
CU26 0.02 0.98 

 
CU40 0.61 0.39 

CU14 0.55 0.45 

 
CU27 0.60 0.40 

 
CU41 0.56 0.44 

CU16 0.49 0.51 

 
CU29 0.58 0.42 

 
CU42 0.34 0.66 

CU17 0.60 0.40 

 
CU30 0.38 0.62 

 
CU43 0.60 0.40 

CU18 0.08 0.92 

 
CU31 0.57 0.43 

 
CU44 0.49 0.51 

CU19 0.41 0.59 

 
CU32 0.36 0.64 

    CU20 0.35 0.65 

 
CU33 0.00 1.00 
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Table 3-13 Model sensitivity, specificity, positive and negative predictive 
values 

  

Test 
Cancer 

Total 
Present (32) Absent (38) 

Positive True positive (15) False positive (8) 23 

Negative 
False negative 

(17) 
True negative 

(30) 
36 

 

 

% 95% C.I 

Sensitivity 46.9 29.1-65.2 

Specificity 78.9 62.7-90.4 

Positive predictive value 65.2 42.7-83.6 

Negative predictive 
value 

63.8 48.5-77.3 

 

A PLS-DA model for benign urine and cancer urine with a pre-operative 

bilirubin of greater than 40micromol/L is displayed (Figure 3.53). 

 

Figure 3.53 PLS-DA scores plot of urine data for 10 benign (green) and 10 
cancer samples with a bilirubin greater than 40micromol/L (blue). R2X (cum) 
= 0.301, R2Y (cum) = 0.388 and Q2Y (cum) = 0.227 
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Validity of the model displayed in Figure 3.53 was not confirmed through 

permutation testing with several permuted R2Y and Q2Y values lying above 

that of the original model for benign (Figure 3.54) and cancer (Figure 3.55) 

class permutation. 

 

 

Figure 3.54 Permutation testing plot for the PLS-DA model shown in Figure 
3.53. Twelve permutations selected with reference to ten benign samples 
within the model. R2Y = 0.236 and Q2Y -0.0441 
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Figure 3.55 Permutation testing plot for the PLS-DA model shown in Figure 
3.53. Twelve permutations selected with reference to ten cancer samples 
within the model. R2Y = 0.264 and Q2Y = -0.0453 
 

Cross validation of the model was performed as before and the results 

displayed in Table 3-14 and Table 3-15. 

Table 3-14 Cross validation of the model displayed in Figure 3.53 
 

*A sample was regarded as belonging to a class with a Y predicted value 

of >0.50. Green indicates correct and red incorrect classification respectively 

 
Y predict* 

  
Y predict* 

  
Y predict* 

Sample Benign Cancer 
 

Sample Benign Cancer 
 

Sample Benign Cancer 

BU6 0.57 0.43 
 

BU16 0.69 0.31 
 

BU32 -0.80 1.80 

BU10 0.67 0.33 
 

BU21 0.71 0.29 
 

BU38 0.84 0.16 

BU13 0.74 0.26 
 

BU30 0.59 0.41 
 

BU42 1.06 -0.06 

BU15 0.47 0.53 
 

CU8 0.66 0.34 
 

CU12 -0.07 1.07 

CU3 0.23 0.77 
 

CU9 0.41 0.59 
 

CU15 -2.55 3.55 

CU4 0.13 0.87 
 

CU11 0.70 0.30 
 

CU23 0.60 0.40 

CU5 0.60 0.40 
        

CU6 0.24 0.76 
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Table 3-15 Model sensitivity, specificity, positive and negative predictive 
values 
 

Test 
PDA 

Total 
Present (32) Absent (38) 

Positive True positive (6) False positive (1) 7 

Negative False negative (4) True negative (8) 12 

 

 

% 95% C.I 

Sensitivity 60 26.4-87.6 

Specificity 88.9 51.7-98.2 

Positive predictive value 85.7 42.2-97.6 

Negative predictive value 66.7 34.9-89.9 

 

4 Discussion 

 

For the purpose of this study eighty-five plasma samples were analysed by 

1H-NMR using the CPMG pulse sequence. Initial PCA analysis was 

suggestive of plasma metabolome separation between benign and malignant 

disease cohorts (Figure 3.1). Several outlying samples (CR1, CR12, CR13, 

CR20 and CR38) were identified. Patients CR1, CR13 and CR38 were all 

prescribed levothyroxine for hypothyroidism. This may be a confounding 

factor for metabonomic variation among these patients. No clear 

discrimination in the metabolome was apparent with regards to sex (Figure 

3.5). In addition no clear metabonomic variation between benign and pre-

malignant disease cohorts was identified (Figure 3.3). This is a potential 

direct result of insufficient patient recruitment within the pre-malignant arm of 

the study. The current study was not designed to evaluate the metabolome 

of patients with known pre-malignant disease. As such only five patients with 

pre-malignant disease were included within the study (diagnosed only 

following pancreatic resection for presumed malignancy). Among the five 

patients with pre-malignant disease, one patient (BR6) laid outside of the 95% 

confidence interval as an outlying sample. In order to evaluate the 
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metabolome of patients with benign versus malignant disease alone patients 

with pre-malignant disease were excluded from further analysis.  

Pre-operative plasma bilirubin accounted for significant variability in the 

metabolome among cancer patients. A cut off bilirubin of 40 micromol/L 

appeared to be significant (Figure 3.8). It is important to emphasise that 

although the pre-operative plasma bilirubin was statistically dissimilar 

between benign and cancer cohorts respectively (p 0.0007), the mean 

bilirubin among the cancer cohort was only 29.1 versus 9.3 micromol/L 

among benign patients. From a clinical standpoint a bilirubin of 29 

micromol/L is only mildly elevated and is at the lower end of that which would 

be detectable upon clinical examination. Many patients included in the 

resection arm of the study had already undergone ERCP and biliary stent 

insertion.  This implies that pre-operative samples were collected from 

patients with a clearing plasma bilirubin. If plasma samples had been 

collected prior to ERCP and stenting, the effect of bilirubin on the 

metabolome may have been more pronounced. It is therefore imperative that 

future studies document and account for plasma bilirubin in chemometric 

analysis.     

PLS-DA analysis was subsequently performed on a cohort of 34 benign and 

42 cancer samples (Figure 3.11). Validity was assessed through both 

permutation testing and cross validation techniques (section 3.1.3). Model 

sensitivity, specificity, positive and negative predictive values of 64.9, 73.5, 

72.7 and 65.8% respectively were generated through internal cross 

validation techniques (Table 3-3). Similar PLS-DA models were generated 

for benign and malignant plasma samples among a European population 

with a pre-operative plasma bilirubin of less than 40 micromol/L (Figure 3.22) 

and greater than 40 micromol/L (Figure 3.26).  

OPLS loading plots facilitated metabolite identification (Table 3-9). Up-

regulated metabolites in a state of malignancy included isobutyrate, 3-

hydroxybutyrate, lactate, acetoacetate, pyruvate, taurine and β-glucose. 

Down-regulated metabolites included VLDL, valine and acetate. Upon 
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subgroup analysis valine appeared suppressed only among non-jaundiced 

cancer patients. 3-hydroxybutyrate appeared up-regulated only among 

cancer patients with a bilirubin > 40 micromol/L. Acetoacetate was up-

regulated among cancer patients with a bilirubin > 40 but suppressed in 

those with a bilirubin < 40 micromol/L (Table 3-9). 

To date one publication compares the 1H-NMR pancreatic cancer plasma 

metabolome to that of healthy volunteers or those with chronic pancreatitis 

(130). The study is relatively small in size and included only nineteen 

pancreatic cancer patients, twenty patients with chronic pancreatitis and 

twenty healthy volunteers. VLDL, valine, 3-hydroxybutyrate and lactate were 

metabolites identified in common with this current study. In contrast to the 

current study Zhang et al. described up-regulation of VLDL along with 

suppression of LDL and HDL among pancreatic cancer subjects (when 

compared against healthy controls). VLDL was also interestingly found to be 

up-regulated among patients with chronic pancreatitis when compared 

against healthy controls. This discrepancy with the current study may be 

accounted for by the recruitment of patients with benign pancreaticobiliary 

disease (including chronic pancreatitis) to comprise the control arm of the 

current study (rather than healthy volunteers). In common with the current 

study down-regulation of valine among cancer patients was described. In 

addition I however emphasise that down regulation was only apparent 

among patients with a plasma bilirubin < 40 micromol/L in the current study. 

The described up-regulation of taurine along with glucose among 

pancreaticobiliary cancer patients was similarly described by Tesiram et al. 

who evaluated the serum metabolome of patients with pancreatic cancer in 

comparison to that of healthy volunteers (133). Up-regulation of glucose was 

similarly described by Bathe et al. who studied the serum metabolome 

pancreatic cancer along with that of patients with benign biliary disease (131).  

In contrast to the current study OuYang et al. along with Zhang et al. 

described down regulation of 3-Hydroxybutyrate among pancreatic cancer 

subjects (130, 132). In the current study 3-hydroxybutyrate appeared up-
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regulated among patients with a pre-operative bilirubin > 40 micromol/L 

although unchanged among those with a pre-operative bilirubin of < 40 

micromol/L. 

1H-NMR analysis of urine using the 1D-NOESY pulse sequence failed to 

provide statistically significant evidence of urinary metabonomic variation 

between benign and malignant pancreaticobiliary disease cohorts (section 

3.2). These findings most likely reflect the known environmental influence 

over the urinary metabolome. Lenz et al. in 2003 performed H-NMR 

metabonomic analysis on both plasma and urine obtained from a group of 12 

healthy male subjects on two separate intervals 14-days apart. Despite 

standardization of diet there was considerable inter-subject (but not intra-

subject) variability of the urinary metabolome (140). 

In conclusion I report the feasibility of differentiating the plasma 

metabonomic profile of patients with pancreaticobiliary malignancy from 

those with benign disease. Subgroup analysis in the current study failed to 

identify significant separation according to cancer cell type, resectability or 

pre-malignant disease status. I believe this is likely a reflection of patient 

recruitment rather than a true finding. Pre-operative plasma bilirubin however 

appeared to have a significant effect on the metabolome. 

To facilitate biomarker discovery for pancreatic cancer future NMR studies 

require to carefully consider and describe techniques to counteract the 

confounding effect of bilirubin on the plasma metabolome. One potential 

solution is to describe varying metabonomic profiles for a neoplastic state 

based upon the presenting bilirubin range. This clearly adds complexity to 

future clinical biomarker utilization. A second option is to identify and zero fill 

a section of the metabolome directly confounded by plasma bilirubin prior to 

chemometric analysis. A third option is to deploy the novel biomarker 

following pre-operative biliary drainage procedures or among a non-

jaundiced patient cohort. This clearly delays and limits clinical utility of the 

biomarker and would preclude its use in surgical units who perform 

pancreatic resections in patients with an obstructed biliary system. 
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Larger studies are clearly required to further define the plasma metabolome 

of pancreaticobiliary malignancy. Although it may be possible to define 

histological cell type and predict resectability, chemosenstivity or indeed 

prognosis I believe the first step is to aid in the differentiation of a malignant 

pancreaticobiliary process from that of benign disease. A combination 

strategy along with other modalities such as clinical imaging and currently 

available biomarkers such as CA 19-9 would most likely be used. To verify 

the described plasma findings and to facilitate biomarker development it 

would be useful in future studies to evaluate the metabolome at diagnosis, 

following resection and at the time of potential disease recurrence. Any 

future metabonomic profile of disease or novel biomarker model would also 

require validation with an external dataset.  
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Patient Information Sheet 1 – 27/04/2012 – Version 2 

 

Part 1: 

 

Metabolomics & Novel Biomarkers for Pancreatic Cancer (Pancreatic resection 
group) 

 

You are invited to take part in a RESEARCH study. Before you decide, it is important 

you understand why the research is being done and what it will involve. Please take 

time to read the following information carefully. Ask us if there is anything that is not 
clear, or if you would like more information. Take time to decide whether you wish to 

take part. 

 

Part 1 tells you the purpose of this study and what will happen to you if you take part 

 
Part 2 gives you more information about the conduct of the study 

 

Thank you for reading this 

 

What is the purpose of the study? 
 

Cancer of the pancreas may be difficult to diagnose and often presents late. We aim to 

identify novel markers (biomarkers) to aid diagnosis and guide treatment. The 

markers of interest are small molecules which are released during metabolism. 

Metabolism is the set of chemical reactions that happen in the body to sustain life. We 
know that metabolism is altered in a disease state and that different products of 

metabolism are released. Our intent is to determine a signature that could be used to 

distinguish pancreatic cancer from non-cancerous conditions of the pancreas or biliary 

tree.   

 
Why have I been invited? 

 

You have been chosen for this study because you are about to undergo surgery for 

suspected pancreatic cancer. We plan to analyse a sample of your blood, bile, 

pancreatic fluid and urine for various small molecules or products of metabolism. We 
will then compare your metabolite levels with patients who have undergone an 

operation for a non-cancerous condition. We plan to include a total of 100 patients 

with cancer of the pancreas and 50 patients who have undergone an operation for a 

non-cancerous condition. 

 
Do I have to take part? 

 

It is entirely up to you if you wish to participate or not. We would like to reassure you 

that if you do not wish to participate this will not affect the standard of your care in 

any way. You are free to withdraw at any time, without giving a reason.	



 

 

123 

 

 

 

 

  

 

 

 

 

What will happen to me if I take part? 

 

If you agree to participate we will ask you to sign a consent form. During your 
operation we will withdraw 2 teaspoons of blood from a line that will have already 

been inserted for the purpose of your operation by your anaesthetist. In addition your 

operating surgeon will collect a sample of bile and pancreatic fluid, which is released 

but normally discarded during your operation. A sample of urine will be collected 

from your urine catheter bag. You will be involved in the study only on the operative 
day. 

 

What are the potential benefits of taking part? 

  

Although there are no direct benefits to you from participating in this study, it will 
provide us with important information which may be of great value to improve the 

care of future patients.  

 

What are the possible disadvantages and risks of taking part? 

 
There are no particular risks or disadvantages of taking part in this study. All your 

care will proceed as planned. Now new treatment will be added or withheld.  

 

Will my taking part be kept confidential? 

 
Yes. We follow ethical and legal practice and all the information about you will be 

handled in confidence. The details are included in Part 2. 

 

What if I have concerns? 

 
Any complaint about the way you have been dealt with during the study will be 

addressed. The detailed information on this is given in Part 2. 

 

This completes Part 1. If the information in Part 1 has interested you and you 

are considering participation, please read the additional information in Part 2 
before making any decision. 
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Part 2: 

 

What will happen if I don’t want to carry on with the study? 
 

You are free to withdraw from the study any time you want. It would be your decision 

to allow us or not to analyse any information which we may have already obtained 

from your samples. Any stored samples identifiable as yours could be destroyed if 

you wish. 
 

What if there is a problem? 

 

If you have any concerns about this study or the way it has been organised you should 

contact the principal investigator (Mr Andrew Smith) at the address or telephone 
number below. In the unlikely event that something goes wrong and you are harmed 

during the research the normal NHS complaints mechanism will still be available to 

you.  

 

 
Principal Investigator 

 

Mr Andrew Smith  

Consultant Pancreatic & General Surgeon  

St James Institute of Oncology 
St James Hospital 

Beckett Street 

Leeds 

LS9 7TF 

(0113) 2064719 
 

Alternatively you may contact the Patient Advice and Liaison Service (PALS) at the 

Leeds Teaching Hospitals on (0113) 2067168  

 

 
Will my taking part in this study be kept confidential? 

 

We will keep all of your data strictly confidential. All of your samples for the purpose 

of research will be coded immediately after collection. No identifying information 

other than the code will be attached to your samples. The deciphering of the code to 
identify your personal details can only be done on a dedicated secure computer within 

St James Hospital by members of the research team. Any publication of the results 

will be completely anonymous.  

 

Involvement of the General Practitioner (GP) 
 

It is not necessary to inform your GP about your participation in this study 
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What will happen to any samples I give? 

 

Your samples will be stored securely within The Leeds Teaching Hospitals NHS 
Trust. Analysis will take place within the School of Chemistry at the University of 

Leeds. The samples will not be used for any other future studies. At the end of the 

study, they will be disposed of securely. No samples will be transferred outside the 

UK. 

 
Will any genetic tests be done? 

 

No. There will not be any sort of genetic tests conducted using your blood samples.  

 

What will happen to the results of the research study? 
 

The results from this study may be presented at medical meetings or published in 

medical journals. We can assure you that you will not be identifiable in any of the 

results. We regret that we cannot inform you of your individual sample analysis 

results. However, upon request we are happy to provide an overview of the findings 
of the study once it is completed.  

 

Who is organising and funding the study? 

 

The study is organised and funded by the Department of Surgery within the Leeds 
Teaching Hospitals NHS Trust. The doctors involved in the study are not being paid 

for conducting the study 

 

Who has reviewed the study? 

 
This study has been reviewed by the Northampton Research Ethics Committee.  

  



 

 

126 

 

 

 

 

 

 

 
 

Patient Information Sheet 2 – 27/04/2012– Version 2 

 

Part 1: 

 
Metabolomics & Novel Biomarkers for Pancreatic Cancer 

 (Non-Cancer control group) 

 

You are invited to take part in a RESEARCH study. Before you decide, it is important 

you understand why the research is being done and what it will involve. Please take 
time to read the following information carefully. Ask us if there is anything that is not 

clear, or if you would like more information. Take time to decide whether you wish to 

take part. 

 

Part 1 tells you the purpose of this study and what will happen to you if you take part 
 

Part 2 gives you more information about the conduct of the study 

 

Thank you for reading this 

 
What is the purpose of the study? 

 

Cancer of the pancreas may be difficult to diagnose and often presents late. We aim to 

identify novel markers (biomarkers) to aid diagnosis and guide treatment. The 

markers of interest are small molecules which are released during metabolism. 
Metabolism is the set of chemical reactions that happen in the body to sustain life. We 

know that metabolism is altered in a disease state and that different products of 

metabolism are released. Our intent is to determine a signature that could be used to 

distinguish pancreatic cancer from non-cancerous conditions of the pancreas or biliary 

tree.   
 

Why have I been invited? 

 

You have been chosen for the study because you are about to undergo an operation 

for a non-cancerous condition of the biliary tree or pancreas. We plan to analyse a 
sample of your blood, bile and urine for various small molecules or products of 

metabolism. We will then compare your metabolite levels with patients who have 

undergone an operation for pancreatic cancer. We plan to include a total of 100 

patients with cancer of the pancreas and 50 patients who have undergone an operation 

for a non-cancerous condition. 
 

Do I have to take part? 

 

It is entirely up to you if you wish to participate or not. We would like to reassure you 

that if you do not wish to participate this will not affect the standard of your care in 
any way. You are free to withdraw at any time, without giving a reason.	
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What will happen to me if I take part? 

 

If you agree to participate we will ask you to sign a consent form. In the anaesthetic 
room we will withdraw 2 teaspoons of blood from a cannula or line that will be 

inserted for the purpose of your operation by your anaesthetist. A sample of bile will 

be aspirated from your gallbladder once it has been removed from your body. A 

sample of urine will also be collected from you prior to your operation. Your care will 

not be affected in any way by the collection of these samples. You will be involved in 
the study only on the operative day. 

 

What are the potential benefits of taking part? 

  

Although there are no direct benefits to you from participating in this study, it will 
provide us with important information which may be of great value to improve the 

care of future patients.  

 

What are the possible disadvantages and risks of taking part? 

 
There are no particular risks or disadvantages of taking part in this study. All your 

care will proceed as planned. Now new treatment will be added or withheld.  

 

Will my taking part be kept confidential? 

 
Yes. We follow ethical and legal practice and all the information about you will be 

handled in confidence. The details are included in Part 2. 

 

What if I have concerns? 

 
Any complaint about the way you have been dealt with during the study will be 

addressed. The detailed information on this is given in Part 2. 

 

This completes Part 1. If the information in Part 1 has interested you and you 

are considering participation, please read the additional information in Part 2 
before making any decision.	



 

 

128 

 

 

 

 

Part 2: 

 

What will happen if I don’t want to carry on with the study? 
 

You are free to withdraw from the study any time you want. It would be your decision 

to allow us or not to analyse any information which we may have already obtained 

from your samples. Any stored samples identifiable as yours could be destroyed if 

you wish. 
 

What if there is a problem? 

 

If you have any concerns about this study or the way it has been organised you should 

contact the principal investigator (Mr Andrew Smith) at the address or telephone 
number below. In the unlikely event that something goes wrong and you are harmed 

during the research the normal NHS complaints mechanism will still be available to 

you.  

 

 
Principal Investigator 

 

Mr Andrew Smith  

Consultant Pancreatic & General Surgeon  

St James Institute of Oncology 
St James Hospital 

Beckett Street 

Leeds 

LS9 7TF 

(0113) 2064719 
 

Alternatively you may contact the Patient Advice and Liaison Service (PALS) at the 

Leeds Teaching Hospitals on (0113) 2067168  

 

Will my taking part in this study be kept confidential? 
 

We will keep all of your data strictly confidential. All of your samples for the purpose 

of research will be coded immediately after collection. No identifying information 

other than the code will be attached to your samples. The deciphering of the code to 

identify your personal details can only be done on a dedicated secure computer within 
St James Hospital by members of the research team. Any publication of the results 

will be completely anonymous.  

 

Involvement of the General Practitioner (GP) 

 
It is not necessary to inform your GP about your participation in this study	
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What will happen to any samples I give? 

 

Your samples will be stored securely within The Leeds Teaching Hospitals NHS 
Trust. Analysis will take place within the School of Chemistry at the University of 

Leeds. The samples will not be used for any other future studies. At the end of the 

study, they will be disposed of securely. No samples will be transferred outside the 

UK. 

 
Will any genetic tests be done? 

 

No. There will not be any sort of genetic tests conducted using your blood samples.  

 

What will happen to the results of the research study? 
 

The results from this study may be presented at medical meetings or published in 

medical journals. We can assure you that you will not be identifiable in any of the 

results. We regret that we cannot inform you of your individual sample analysis 

results. However, upon request we are happy to provide an overview of the findings 
of the study once it is completed.  

 

Who is organising and funding the study? 

 

The study is organised and funded by the Department of Surgery within the Leeds 
Teaching Hospitals NHS Trust. The doctors involved in the study are not being paid 

for conducting the study 

 

Who has reviewed the study? 

 
This study has been reviewed by the Northampton Research Ethics Committee. 	
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