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Abstract

Proteins perform a vast number of functional roles. The remolb protein structures
available for analysis continues to grow and, with the dgwedent of methods to predict
protein structure directly from genetic sequence withmaging technology, the number
of structures with unknown function is likely to increase. ngmutational methods for
predicting the function of protein structures are therefdesirable.

There are several existing systems for attempting to agsigrtion but their use is in-
advisable without human intervention. Methods for searglproteins with shared func-
tion for a shared structural feature are often limited in svihat are counterproductive to
a general discovery solution. Assigning accurate scorsgjtoficant sub-structures also
remains an area of development.

A method is presented that can find common sub-structuresebatmultiple proteins,
without the size or structural limitations of existing disery methods. A novel measure
of assigning statistical significance is also presenteegs&methods are tested on artifi-
cially generated and real protein data to demonstrate dlbdity to successfully discover
statistically significant sub-structures. With a databafssuch sub-structures, it is then
shown that prediction of function for a new protein is poksitased on the presence of
the discovered significant patterns.
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Chapter 1

Introduction

Proteins are large, biological molecules that perform amasber of diverse roles in the
cellular and biological functions of every organism. Praganay be antibodies in the im-
mune system, enzymes for catalysing chemical reactioms)dmees, transport molecules,
structural building blocks or may perform contractile ftions in muscle tissue. They
vary from simple, almost spherical forms up to more comptexcsures that may exhibit

basic mechanical behaviour.

Each protein within an organism is created from the code inglesgene. The struc-
ture and functional role of the protein is determined by the@ecwithin its gene sequence.
The Swiss-Prot database [7] contains protein sequence$\wave been manually anno-
tated with their function. This database contains almo8t@WD entries as of 2005, 10,000
more than in 2004. The Protein Data Bank [25] is a databasaicamg protein atomic
structures. The PDB contains nearly 30,000 entries as d,200increase of 5,000 over
the previous year and the rate at which new structures aredagdalso increasing, as
illustrated in Figure 1.1. As well as new examples of stregtthere is much optimism
that the number of unique structures dissimilar to othestang examples will continue to
be discovered [95] for some time. The rate at which new serpgeare discovered has re-
sulted in the development of computational methods to s diochemist in assigning
a functional annotation to a new protein. Currently, the edtevhich new structures are
determined is sufficiently low for the function to have ofteeen determined before the
molecular structure. As methods for determining struciomgrove in speed, the number
of submitted protein structures will also increase furtl@mputational methods for as-
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Figure 1.1: Total number of protein structures depositéaltine PDB, by year.
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Figure 1.2: The Van der Waals radii of sulphur, carbon, gigm oxygen and hydrogen

sisting the biochemist in predicting the function of a pnoteom its molecular structure
are therefore desirable both for improving knowledge amdsfecific applications such
as drug discovery [106] and attempting to predict which tabmry experiments are most
likely to give positive results(e.qg., [55]).

1.1 Proteins

Protein molecules are primarily composed of carbon, ngm@xygen, sulphur and hy-
drogen atoms. They are arranged in chains of recurring galtlsd amino acids. There
are twenty amino acids that commonly occur in animals,digteTable 1.1, plus approx-
imately one hundred rare variations found in plants [45].st&ices at this low level are
measured in Angstromsﬁ]{, where one Angstrom is equal to ¥ metres. Figure 1.2
illustrates the radii of each of the most common atoms foargtoteins.

The structure of a protein is determined by the gene sequemsa within a molecule
of DNA. DNA (deoxyribonucleic acid) molecules are composexin a series of bases:
adenosine (A), thyamine (T), cytosine (C) and guanine (Gg Jdguence of A, T, C and
G bases codes for all the genes within an organism. Each gratinpee bases, a codon,
represents an amino acid or a stop codon. A protein is matmét by the following
process:

1. DNA within a cell is transcribed onto a molecule of messsriRNA.
2. Messenger RNA exits the cell nucleus.

3. Messenger RNA is loaded onto a ribosome, with each codochmeto the relevent
amino acid on the transfer RNA molecule.

4. Amino acids arrange in the sequence coded for by the mgssRINA.
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Alanine ALA | A
Arginine ARG | R
Aspartic Acid | ASP | D
Asparagine ASN | N
Cysteine CYys | C
Glutamic Acid| GLU | E
Glutamine GLN | Q
Glycine GLY | G
Histidine HIS | H
Isoleucine ILE | |
Leucine LEU | L
Lysine LYS | K
Methionine MET | M
Phenylalanine| PHE | F
Proline PRO| P
Serine SER| S
Threonine THR | T
Tryptophan TRP | W
Tyrosine TYR | Y
Valine VAL |V

Table 1.1: Amino acids with 3-letter codes and 1-letter sode

5. When a stop sequence in the messenger RNA is reached, thasbamplete.

This process is fully documented in standard text books. [48]e chain of amino
acids that results from this process folds into a compauatsire, the shape of which is
determined by the amino acid sequence. This resultingtaneidetermines how the pro-
tein interacts with its environment. The sequence of amandsavhich make up a protein
are called itgorimary structure When folded, a backbone of amino acids arranges itself
into distinctive, repeating patterns calleehelices(Figure 1.3) angB-sheetgFigure 1.4).
These are connected by flexible regiondamps The arrangement of these elements is
termed thesecondary structuref the protein. The position of atoms that make up the
protein structure are called thertiary structure Finally, a number of chains may ex-
ist within a single protein and the arrangement of these fivequaternary structure

Figure 1.5 shows separately coloured chains, arrangedisiogle compact structure.
Figure 1.6 illustrates the folded path of a single chainmfithe N-terminus (red) to the
C-terminus (yellow). The interior of a water-soluble, gltdu protein tends to feature
amino acids that repel water and these are cdiligtiophobic residueg-igure 1.7 illus-
trates the hydrophobic core of a protein (marked in yellomg ather amino acids which
attract water, termelydrophilic residuegmarked blue).
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Figure 1.3: Artistic impression of a kinked-helix portion of a protein backbone, overlaid
on the constituent atoms of the attached amino acid sidenghaihere are repetitive
patterns in protein structure which should be considereghvaeveloping algorithms that
analyse structure at this level.

1.2 X-Ray Crystallography

Structures within the Protein Data Bank are most often detexdnusing X-ray crystal-
lography or solution NMR (nuclear magnetic resonance) oaghwith a small percent-
age determined using theoretical modelling. Approxinyag% of structures within
the PDB have been determined using X-ray crystallographyis process involves crys-
tallising samples of a protein and using concentrated besdnAsirradiation plus some
empirical interpretation to determine the most probabtaragement of atoms within the
test protein. The crystals used in these experiments ¢aigisotein structures contained
within individual cells arranged periodically in three dinsions to produce a crystal lat-
tice. The crystal used must be a perfect sample to obtairraectesults. A concentrated
beam of X-irradiation is then fired through the crystal stuoe and is diffracted onto a
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Figure 1.4: AB-sheet portion of a protein backbone, overlaid on the ctugsit atoms of
the attached amino acid side chains.

detection screen positioned behind the crystal. The elestof each atom within the
protein molecule deflect the incoming X-rays and a diff@aepattern appears on the de-
tection screen. With this raw data and information on thesplad the X-rays, an electron
density map can be produced - a 3D image of the electron clbtlteanolecule. With
this information, a crystallographer then builds a modekgn that will fit the electron
density map. This process is made easier with prior knovdexfghe sequence of the
amino acid chain (derived from the nucleotide sequencesoftiresponding source gene
or sequenced directly), and constraints on the possiblesumgwhich adjacent residues
may be rotated relative to one another. This process caehably distinguish between
nitrogen, carbon and oxygen atoms present in the structireith expert knowledge and
amino acid sequence data, it is usually possible to labeitgpan the final structure with
a reasonable degree of probability based on the limited eurabpossible side-chain
conformations likely to be found, though this depends ooltg®n. The final result of
this process is an estimate of the position of each nitrogaron, oxygen and sulphur
atom within the protein structure which acts as the inpua datt any algorithm used for
structural analysis.
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Figure 1.5: PDB entry 1JBO0 consists of multiple amino acidrchavhich join together
to form a complete protein molecule.

1.3 Structure Prediction

As illustrated earlier in this chapter, the number of knowwot@in sequences is larger than
the number of known structures as the experimental methmddettermining the latter
are more time consuming. However, the structure of a protedetermined solely by
its amino acid sequence and so it would seem reasonabletogtprediction of protein
structure given the sequence as input. This is a major clgglen the field of bioinfor-
matics and, although the problem remains unsolved, corabeprogress has been made
in the study of how and why proteins fold [81] and numeroushods for structure pre-
diction exist and are in development [53] [51] [19] [58] [49B] [40] [63]. CASP experi-
ments [3] [60] are designed to determine the current stateecdirt in structure prediction
by comparing the accuracy of various methods for predictngcture with past methods.
CASP4 and CASPS5 are the most recent annual analyses. On tasereleCASP5, Aloy
et al. note that “...the community is moving toward generakpdures to predict accu-
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Figure 1.6: The tertiary structure of a single protein chaia complex fold of the orig-
inal amino acid chain. This is illustrated here by PDB entBEB with one end of the
chain labelled red (the N-terminus), gradually changingdtiow at the other end (the
C-terminus).

rate structures for proteins showing no resemblance tchangyseen before” [3]. Their
assessment suggests that structure prediction will sooaliable enough for large scale
prediction of structure from sequence to take place. Onisaglpossible, the need for
automated methods to predict function from structure vattdime increasingly important
as the hundreds of thousands of sequences currently dealaxconverted into structural
data.

1.4 Thesis Overview

In Chapter 2, this thesis will continue with an overview of twerent state of the art
in predicting protein function from genetic sequence andemdar structure. Chapter
3 begins describing the methods used in a novel system faligbreg function from
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Figure 1.7: Animage generated by the author of this thesiaguthe ray-tracing software
Povray, of a Serpin protein (PDB code 1PSI). The internatdgiobic core of the protein
is coloured yellow with the hydrophilic exterior in blue.

structure and an algorithm for discovering common patteets/een protein structures
Is presented. Chapter 4 contains an evaluation of the methtetms of performance
and accuracy using artificially generated structural daith, a wide variety of algorithm
parameters tested, and real protein data. Chapter 5 ingsduenethod for assigning
statistical significance to discovered sub-structures @edents results from using the
progressive discovery algorithm to find statistically siigant sub-structures. Chapter 6
builds on the results from Chapter 5 by using the sub-strastiound to attempt predic-
tion of function in proteins of unknown function. Chapter fictudes with a summary of
this thesis.
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Figure 1.8: An illustration of the X-ray Diffraction proces
(http://fig.cox.miami.edu/ cmallery/150/gene/), expkad further in Section 1.2.




Chapter 2

Background

2.1 Protein Function

The term ‘function’ in relation to proteins has no single deifon in bioinformatics liter-
ature, a problem that is referred to several times in a reestdéw of function prediction
methods [77]. This lack of clarity may be because the tereifits misleading to begin
with. Proteins do not have functions in the same way a dinoir dr a jet engine has a
function. The latter have been designed to specificallysagsperforming a task whereas
the former have not. Proteins can be observed to performineattivities within an
organism, but they have arrived at this behaviour througlptiocess of evolution. If pro-
teins were not designed to perform specific functions thente¢hm ‘function’ can only
mean the observed behaviour of that protein within a speeirfisronment. There are
several examples of proteins that perform one function ia situation and a different
function in another situation This is sometimes due to tlvation of the protein within
the cell, which is information not available from structiotata alone. This does not mean
that predicting function from structure alone is any lessfuis it just requires that any ref-
erence to a functional role includes an indication of tharemment in which that role is
performed, or at least an annotation that represents reuftypes for different situations.
Despite these various difficulties, several classificafipstems exist to describe various
aspects of protein function and to group proteins by angestr

11
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2.2 Classification Systems

Any method for predicting protein function must be consistend machine readable,
both for training a system to classify proteins into funeibgroups and for evaluating
such systems. This is a non-trivial task, even for defininvg-lievel molecular function
such as the chemical reaction an enzyme catalyses [101ptainons on protein function
determined experimentally are most frequently given irfoinen of plain text, which is not
easily machine readable. As there is considerable evideatsimilar structural fold is a
good indicator of shared function (an idea explored furth&ection 2.4), one method for
describing the function of a protein is to describe the fgmilsimilar structures it belongs
to with the assumption that their similarities are due toretiaancestry and, therefore,
function. Another, more challenging, alternative is t@atpt a thorough classification of
every aspect of protein function. Good overviews of suchesys already exist [73] [94]
and a smaller selection of current systems using both appesas given here.

2.2.1 CATH Hierarchy

The CATH hierarchy [74] is a classification of proteins consted using sequence simi-
larity. At the lowest level, proteins are grouped if they @aequence identity of at least
35%. Higher levels are grouped based on significant sequstraetural or functional
similarity, then higher still, based on structural topgloghe next level up is grouped
based on general secondary structure arrangement andfithedly, grouped based on
percentage ofi-helices ang3-sheets present.

2.2.2 SCOP Hierarchy

The SCOP hierarchy [34] is divided at four levels: class, felgperfamily and family.
Family members tend to have significant sequence similéitperfamily members have
less sequence similarity but still sufficient for it to beelik for them to have come from
the same evolutionary ancestor. Fold members have coabidestructural similarity but
are not necessarily from the same evolutionary origin.

2.2.3 EC Classification

Enzymes, a subset of proteins, have a popular classificayistem which appears well
suited to classifying their function. This is known as the EEhzyme Classification)
number [8], which has four levels of hierarchy. Enzymeslgatareactions and the EC
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Monosaccharide Carbohydrate Alcohol
Metabolism Biosynthesis Biosynthesis
Hexose Monosaccharide
Metabolism Biosynthesis
Glucose Hexose
Metabolism Biosynthesis

Figure 2.1: A portion of the Gene Ontology. Arrows indicatberitance from each term
to a broader term.

classification system annotates which chemical reactisneatalysed by a given protein,
with classifications becoming more specific for each levieanlenzyme catalyses more
than one reaction then it may have more than one EC annatation

2.2.4 Gene Ontology

There are cases where proteins with vastly different sirecinay have similar func-
tion and where proteins with similar structure have difféfeinction. Proteins may also
frequently perform multiple functions, as illustrated by tdevelopment of the Gene On-
tology Consortium’s directed acyclic graph, rather tharctyr hierarchical annotation
system [14], which is rapidly gaining acceptance as a usgftem for defining function
in new bioinformatics applications. Figure 2.1 shows aisadaif the Gene Ontology. The
ontology is not a hierarchy as each term may not only haveipheiithildren but multiple
parents as well. The GO is a set of terms, including thosedtinithg biological function,
and a graph connecting the terms to one another. A number thfoahe for predicting
function use the GO, some without reference to any sequarsteucture information at
all. The method presented in [55] uses the idea that, if a G@tation frequently occurs
with another then, if a gene has one of them, it is likely thahiould have the other as
well. An increasing number of prediction methods are ushrgg®&O to classify protein
function.
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2.3 Evolution and Ancestry

As discussed earlier in this chapter, a protein does not hdwmction in the sense of
a designed purpose. Instead, a protein’s behaviour in axgiwgironment will be the
result of evolutionary pressure over a period of time. If ¢@metic code of an organ-
ism mutates during reproduction, so does the amino acides®guof the protein whose
gene was affected due to the mutation. When enough sequeangeshoccur to affect
the interactions of a protein with its environment, the vétar of that protein changes.
Natural selection will then determine which mutations stevto replicate in further or-
ganisms and which will not. Numerous methods for predicfirgein function do so by
measuring a protein’s overall similarity to another protef known function and so it
is essential to understand the ways in which evolution léadsructural and, therefore,
functional change. There are two forms of evolution whickiehan effect on studying
structure and functiordivergent evolutiomndconvergent evolutian

Divergent evolution occurs when highly similar, lmomologougproteins mutate, re-
sulting in a slightly different sequence to one another. Wsech proteins are found
in different organisms, the diverged proteins often penfdhe same function but will
have slightly different sequence. The sequences havealigtarutated and drifted apart
in similarity over time but their functions often stay thensadue to selective pressure.
This suggests that the function of one protein may be prediiitit is found to be very
similar to another protein of known function in another ongan and we can assume
that both proteins have undergone divergent evolution btisa much as to alter their
function. When divergent evolution is observed within thensaorganism, this usually
indicates that the proteins have separated in function &istl ender separate selective
pressures [66]. In this case, correctly predicting the tionoof one protein through simi-
larity to another is much less reliable.

Convergent evolution describes the situation where twoepistdo not have a com-
mon ancestor but have both evolved independently to artitreeassame function through
selective pressure. Such proteins are likely to have sirsitactures within them, to per-
form the function they both share, but are highly unlikelyheove arrived at exactly the
same sequence overall by chance alone. Convergent evoisitibe most likely expla-
nation when two proteins share a small, common structuaalife but it is also possible
that they have undergone extensive divergent evolution may mutations, with only
the key functional site conserved through selective prestesidues not key to function
are under no selective pressure and so may freely mutatemdayndbut such extensive
difference in structure is unlikely to be due to divergentlation alone. Harrison et
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al. [41] used the GRATH algorithm to demonstrate their idest firotein folds should
not be considered discrete groups of separate families btialrather, a continuum of
structures with many features shared between and acrospggrespite these issues,
it is more likely that two proteins with similar structure sgquence do have a common
ancestor than not and so this idea is the basis for a numbeettfots that attempt to
automatically classify proteins into families (e.g. [28f)der the assumption that they are
also likely to have similar function. The following sectionvers the specific method of
transferring a functional annotation from one protein totaer based on shared similar-

ity.

2.4 Homology Transfer

The termhomology transferefers to the idea of transferring an annotation from one pro
tein of known function to another of unknown function if thase homologous (i.e. they
are almost identical). The method of assigning function ®ans of sequence similarity
is a popular method in the field. The GeneQuiz system [10]example, is reported to
be able to correctly assign functions for 30%—-80% of genesgiven genome where se-
guences share a significant level of similarity. Lord et@b][also provide positive results
which suggest a strong correlation between common molefuuiational annotation and
sequence similarity. Hennig et al [44] report that theiteys GOblet, will give a correct
result “in the majority of cases” though this is not furthelagtified.

desJardins et al. [20] used unnamed machine learning tpodsito predict Enzyme
Commission classifications, correctly predicting the topsslof EC number for 74%
of enzymes tested. They could predict the second level w8#b @ccuracy. Todd et
al. [96] investigated the level of functional similarity theeen proteins within the same
superfamilies and at varying levels of sequence similaaigo using the EC classification
as the definition for function. They conclude,

“For single and multi-domain proteins, variation in EC nwanks rare above 40% se-
quence identity, and above 30%, the first three digits may&eigted with an accuracy of
at least 90%. For more distantly related proteins sharisgtlean 30% sequence identity,
functional variation is significant...”

However, this level of predictive success may be limitedrity some classes of en-
zyme. An experiment conducted by Shah et al. [84] used BLA§Td4letermine the
similarity between sequences within the same EC class.r Tésults suggest that 94%
of protein sequences can be classified correctly by sequemdarity but that approxi-
mately 60% of EC classes could not be discriminated by thihateat all and several
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Allowed transfer errort Proteins transferable
40% 70%
10% 60%
5% 35%

Table 2.1: Allowed levels of error in annotation transfergahe estimated proportion of
database transferable (using data from [77])

EC classes shared sequence similarity between them,ingsultseveral false positives.
This suggests that the predictive success may be biase@ lvatiation in the number of
proteins in each EC class.

For sequences with approximately 30%—40% or higher seguigienitity, it is gen-
erally considered highly likely that they perform the samedtion [1] [105]. However,
this is not always the case, and sometimes sequences wipelarap have significant
similarity can have functional differences. Good exampliethis situation are the nearly
900 known TIM barrel structures which share a great dealroflaiity and yet perform
a wide variety of functions, some of which are documented®j.[ Todd et al. [98] note
one case of two proteins with 35% sequence identity wherésmreenzyme but the other
is not and Gerlt et al. [36] also observed specific examplesrgvenzymes with similar
sequences performed different functions, including a piplant enzymes sharing 81%
sequence similarity but which catalyse different readiott is well known that a pro-
tein’s functions may be distributed across its domains and would be expected that
overall matches are not the only way to transfer annotatBuhug et al. [83] found that
separating a protein into separate domains and then penfgisequence alignments can
produce better prediction results than by a global aligrtratame. There are also situa-
tions where proteins may have a very low sequence similautghare the same function
(e.g., [43)).

A large number of proteins exist close to cutoff boundarié®ng a pair of struc-
tures are barely similar and yet share a clear common fun¢80] — sometimes only
four to six residue changes out of hundreds are needed t@elare protein function
into another. This is strong evidence that some residuerdifices are more important
than others and suggests that an overall sequence signifaegsure can miss small but
important changes. But are such errors in transferring fon¢hrough homology rare?

A study by Rost et al. [77] notes that, when transferring ereattivity by homol-
ogy, at least 75% sequence homology is required to corrgeihgfer annotation 90% of
the time. Of the 250,000 known protein sequences from overhmmdred organisms,
only 60% of known sequences can have that level of similanity, therefore, a reason-
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able confidence in annotation transfer. Table 2.1 gives ¢énegmtage sequence database
which can be annotated at differing allowable levels of eivdith even a 40% error rate
in annotation transfer allowed, 30% of known sequencdglstihot share enough similar-
ity for reliable annotation by homology. King et al. [56] uls@ecision trees and Bayesian
networks to explore the prediction of function through hémgy and found that such an-
notation transfer only succeeded in a correct annotatiéf @8the time, when evaluated
against a manual analysis.

Function transfer by homology can work well in many casepgeilly when the
level of sequence similarity is high, but there can be pnoisievhen considering distant
homologues or when predicting function for proteins whemals differences can result
in large functional changes. It is also noteworthy that éhare systems that can pre-
dict function even without strict sequence similarity bytrbeasuring a small number of
broad, overall chemical properties [52]. A review by Rostleff7&] suggests that the best
automated methods for predicting function should invohembination of sources, in-
cluding multiple sequence alignments and structural mfdron, but that the best method
currently remains a transfer of annotation through homglbgcked up by input from a
human expert. Completely automated methods, without huntarnvention, are consid-
ered inadvisable using homology alone. A selection of suethods is now given in the
following section.

2.5 Structural Alignment Methods

When taking two protein structures and attempting to deteenifi they are similar or
not, the general process for mapping one onto the other lsdcaignment There are
generally two approaches to structural alignment: by sgé&gnstructure or by tertiary
structure. There is often a considerable blurring of thedegories as methods combine
aspects of both features.

2.5.1 Secondary Structure Alignment

Secondary structure matching involves creating a reptasen of protein structure in

terms of secondary structure elements sucti-helices,3-sheets and their relationships
to one another within the structure. If a secondary strectoatch is made then the two
proteins have an overall similarity in structure, thouggytimay differ at the residue level.
Methods for secondary structure matching have been alailabseveral years [68] and
many continue to be developed (e.g. [38]) so only a sele@rercovered in detail here
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for reference.

The VAST [27] method is a pairwise matching method used tgnaditructures for
classification within the Entrez database and uses grapinythe align secondary struc-
ture elements. Graph nodes represent pairs of secondagiust elements and edges
exist if the two elements represented by the connected nualesa close distance and
angle. The maximal clique subgraph of this graph is founddweide an initial alignment
before being extended to a residue-level alignment. VASSigas a statistical signifi-
cance to any found matches in the form of a P-value, whicheptbbability that a given
score would occur by chance when aligning random structaiirs.p

The PROTEP [68] [39] algorithm was the precursor to VAST amel GRATH [42]
method is an extension of the approach used in PROTEP, wditi@thl added constraints
and an improved scoring function. GRATH matches a structgainat a database of do-
main structures to find those with overall similarity butitended to be used as a pre-filter
for a tertiary structure comparison, in this case SSAP [fi2]use with the CATH classi-
fication database. CATH requires a method for determininghdéa structure has similar
structures already in the database, so residue-level mgtalone can be computation-
ally expensive if a large number of comparisons have to besmi&d secondary structure
alignment can demonstrate a likely non-match then lowesi leethods do not have to be
used when a non-match occurs and so performance can be mdprousiderably.

There are also methods for discovering common folds giveslecgon of proteins
from the same functional classification, such as the metbbdarcotte et al. [100] [99]
which use inductive logic programming to discover specifites to describe the sec-
ondary structure of proteins in a shared class.

As tertiary structure alignments become more computalfipniable, secondary struc-
ture matching remains useful as a first step alignment, dytfonfinding overall struc-
tural similarity. Tertiary structure analysis can be irgi®e and so indexing is useful to cut
down the search space. Methods for summarising proteintateidata for the purposes
of pre-filtering (e.g. [54]) have proved successful and gerfilg by secondary structure
may help in this regard [11]. As discussed earlier in thigatéig any attempt at predicting
function from overall similarity alone will not provide didiently accurate results with-
out human analysis as well to confirm. If more accuracy in aateponal methods is
desired then matching at a lower level than secondary steieione is necessary.
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2.5.2 Tertiary Structure Alignment

Tertiary structure alignments take into account the pas#i information of atoms within
a protein structure in comparisons. There are generallyamaoaches to this level of
alignment: sequence-dependent methods or sequencesimtkat methods. A sequence-
dependent method is like a structural extension to a segueratch. A single point is
usually taken to represent an entire amino acid (often tlme @rd a match between two
structures occurs if continuous, unbroken, segments dftbhebackbone from each can
be superimposed onto one another under a rigid transfaymaii sequence-independent
method may represent amino acids in a similar way but will fivetches purely based on
their spatial information, without considering their gasn in the amino acid sequence.
These methods will likely be more computationally expeasiut can allow the matching
of structures on the protein surface which do not come tayatintil the protein has
folded, such as active sites.

There are several examples of methods that concentratetohingpactive site residues
inisolation [76] [57] [50]. The work of Pickering et al. haadhsome success in matching
proteins of similar function using Bron Kerbosch graph matghmethods [9] by look-
ing at localised surface features instead of complete lmaeklalignments. This work
suggests that small regions on protein surfaces are oftéimadlis necessary to identify
functional similarity, though they do not explore how to fisgich regions automatically,
beyond using existing annotations on the position of adites. Algorithms from com-
puter vision and graph theory are used in the comparisonsesitts show some success
in matching, as illustrated in Figure 2.2 which shows a comrfeature found when
matching two protein surfaces. Some methods for descripintein shape require the
structure to be approximately spherical, which is not akvthe case. Pickering et al.
use the surface shape properties of convexity and radiuareéiure, mapped onto the
points of a Connolly surface (Figure 2.3). A maximal commohgsaph algorithm is
used to match the resulting point sets. The resulting comi@atures are aligned with
matrix algebra. Binding sites were found for this applicatiy using human annotations
within the structure files, and by identifying atoms closéw#®recorded positions of bind-
ing chemicals. The method matches very similar surfacagcily and suggests future
additions could include the use of charge and hydrophopadibrmation. Most struc-
tural matching methods focus on the protein structure as@eyhather than focusing
on one location and some of these methods are now given imllbeving sections, both
sequence-dependent and sequence-independent.
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Figure 2.2: Common active site, surface residues may be fbatwleen two structures
with graph matching techniques, as in this example of a neatslirface portion discov-
ered using Bron-Kerbosch graph matching techniques [76].



Chapter 2 21 Background

~~“,—'----.~.~ Surface

Figure 2.3: Connolly surfaces are described by the path dflagoatom rolling across the
atoms withing the target molecule.

2.5.2.1 Sequence-dependent Methods

Early attempts at tertiary structure alignment includeSA&UCTAL [61], MINAREA [35]
and LOCK [88] algorithms. STRUCTAL uses iterative dynamicgramming to find the
alignment that produces a minimal RMSD between two protegkibanes and is an ex-
tension of the ALIGN [37] method. Using inter-atomicdCdistances, it is given an initial
alignment based on six possible key positions in sequenaehvidthen further refined.
MINAREA triangulates the Gx atoms of two proteins and minimises the surface area
between their overlay. Dynamic programming is used itegatiafter an initial alignment
based on some sequence position information. The LOCK #hgoriinds the minimal
superposition of two protein structures such that the RMStvéen the aligned @
atoms is minimised. An initial superposition is required floe main algorithm to run,
which is obtained using dynamic programming with the seaopdtructure elements of
the two proteins. This initial alignment is then refinedat@rely. The final step involves
aligning the largest sequence of matched residues from réh@opis step. The result
is an alignment ranked on the number of residues matchedh &ahese three meth-
ods are successful in finding overall structural similabigtween proteins, but assume
rigid protein structures. As noted by Shatsky et al. [85]nynalgorithms designed to
perform pair-wise rigid structural comparisons do not taite account the inherent flex-
ibility within protein structures and so find it difficult toach those with large regions in
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common but with differences in overall structure. This s®e@comes especially impor-
tant for proteins that adopt different structural confotioras depending on their current
state or environment. Searching for overall rigid aligniséretween two proteins, where
one or both have movable hinged regions, becomes difficidtssrboth structures are
in the same conformation by chance. Shatsky et al. went oreveldp the FlexProt
algorithm [87], a variation on existing rigid structuralggdment methods which allows
hinged regions to connect matching subsections of the lomekbtructure. This method
allows the identification of proteins sharing a common folithaut requiring a single,
rigid, overall match but the method should still be consdieto be sequence-dependent
as continuous segments of backbone are required to qualdynaatch.

2.5.2.2 Sequence-independent Methods

Singh et al. [90] developed a structural comparison usirty Becondary structure and
atom-level matching. Their algorithm detects global samiles and also small, local fea-
tures as well using a method similar to the LOCK algorithm tdquen the final alignment
refinement.

Cook and Holder applied their generic graph-based algori8luBDUE [15] [46] [16],
to protein data and found some success in identifying comsoadstructures [18] [48].
Their algorithm finds common patterns in primary, secondany tertiary structure and
generates scores based on how well any found structureogpress the data given as
input. SUBDUE is constrained to run in polynomial time as thderlying algorithm is
too complex for finding patterns in tertiary structure withemposed limitations on pat-
tern size. They have since began developing methods tal@epert knowledge in their
algorithms to cut down search space [17] [21] and have maahe gwogress in allowing
less restrictive matches [47].

Independence from sequence requires an increase in thdeadgtypf algorithms, so
methods to reduce the size of a structure search are esshfililaet al. [67] suggest that
certain atoms in a structure are more important than otlrersrious situations. Polar
atoms may be useful when looking for catalytic function ar-lwnding sites, whereas
surface residues may be more beneficial when looking at lspyogeins, receptors and
membrane proteins. Milik et al. use only polar atoms in thegthod, which are used in
the catalytic function of enzymes. Their algorithm is grdyased, with labels represent-
ing atom properties and edges representing inter-atorstiarties. Further limitations are
placed on the search by requiring that at least 5 atoms argattarn, from at least 3
residues. They also make the assumption that groups of foorsaor less are too small
to be able to distinguish between interesting matches aiseé no
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An experiment by Singh et al. [89] compared a number of stinattalignment tech-
niques to determine their effectiveness in classifyingidoby overall structural simi-
larity. From a comparison of DALI [49], STRUCTAL, VAST, MINARE, LOCK and
3dSEARCH [32], their tests determined that DALI and LOCK werestraxcurate in re-
producing classifications from the SCOP hierarchy, with LO@kng the most efficient
in terms of speed.

With low-level, sequence-independent methods becomipglda of mapping one
protein onto another using even the smallest of similaritee new possibility becomes
available - rather than using a small, single similarity &tedmine an overall match,
computational methods can also be used to take a group ofigtes and determine which
regions of the protein structure are common between them.n€kt section illustrates a
number of methods used for performing such multiple aligmisie

2.6 Multiple Alignment Methods

A multiple alignment takes as input a set of proteins and niiag® to one another based
on some shared similarity — methods exist to perform thegehma both in sequence and
in structure. The OntoBlast [107] system is reported to haesl BLAST [4] searches to
identify common sequence patterns between proteins waheshGO annotations. The
resulting database may be searched via a web interface wamano acid sequence and
will return a list of annotations associated with that seupge The author claims a “clear
and correct correlation” between the annotations of a &gstfsequences and those found
by the system, but it is unclear how the performance of Ont&tRBlampares quantitatively
over other alternatives.

MASS [22] is a multiple structural alignment algorithm, mgisecondary structure
features. It is not sequence order dependant, but doesreecpgions of consecutive
residues to make secondary structure elements. This mea#esithe reasoning that re-
gions of secondary structure are highly conserved, withenfi@quent mutations occur-
ring at loops, and therefore segments can be aligned asesemgities. To reduce the
search, MASS assumes that an alignment is only significéintohtains at least two sec-
ondary structure elements. MUSTA [86], developed by Shyagslal., is another multiple
structural alignment of protein structures and is an extensf the FlexProt algorithm.
The MUSTA algorithm is reported to only be practical for sgft$0—15 molecules but can
detect partial solutions: patterns present in only a sulifste input structures. MUSTA
reduces the search space by making the assumption thatcéusttitalignment should
align fragments of at least 3 points in size. The algorithrddiall structural similari-
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ties between each pair of proteins then takes these resuttsetk for a multiple align-
ment. This method uses a bottleneck metric as an alternatiRd1SD, demanding that
each aligned point is within a given distance as opposedsiolimited the root-mean-
square distance of all point differences. Residue pointdadneled as being hydropho-
bic, polar/charged, aromatic or glycine. The complexitytte algorithm is reported as
beingO(n?n3) wherem s the number of input molecules ands the size of the longest
molecule. Shatsky et al. present several successful aligterior globins, superhelices,
supersandwiches, concanavalin a-like lectins/glucanasd a selection of 18 proteins
from various sources. The algorithm correctly returnirgutes which divided the set into
its constituent related sub-sets. A parallel implemeaoiatif this algorithm is reportedly
planned.

Traditionally, structural matches, both pairwise aligmiseand multiple alignments,
are scored by overall fold similarity, making it difficultiftocalised common features to
be identified as significant. Prediction of protein functiay therefore be better achieved
by searching a structure for key sub-structures assocmtadpecific protein functions,
rather than simply hoping to find a single, overall strudtamatch with another protein
that performs the exact same set of functions as the targ&tipr Searching for such
key sub-structures would aid in annotating a protein of wmkmfunction with individual
functional concepts, even if the combination of functiorithim the unknown structure
does not currently exist in the application’s database.isou$sing this type of method,
Watson et al. note that ‘A genuine match to one of these fanatitemplates is par-
ticularly rewarding, as it immediately identifies the piate function’ [104]. Searching
a database of protein structures to determine which comtajiven small, key pattern
is less computationally intensive than making overall&tice comparisons and several
graph-theoretic methods have been adapted to achievedhisfpthe process [6] [59].
Difficulties exist in attempting to discover key motifs inetlsame position on different
proteins. Even when two structures perform the same fumctiwe key residues for that
shared process may be found at different locations on theiprf97]. Methods for dis-
covering common patterns between multiple protein strestmay therefore set aside the
idea of searching an existing database for a protein to nvatbha new structure and can,
instead, be used to analyse a whole database of proteitusgsién an attempt to deter-
mine exactly which parts of a structure are responsible fuckvfunction. Prediction of
function is then a matter of searching a new structure faetey patterns and predicting
function, even in the absence of overall similarity to arseRg structure.

Pennec et al. [75] developed a method to find small simiéritising geometric hash-
ing and provide strong support for the idea that finding keyilarities is best approached
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by ignoring primary and secondary structure and just comagng on the 3D configu-
ration of residue locations, ignoring any sequence-degecel or backbone connection.
Wang et al. [102] have also had some success in finding smigdirpa using geomet-
ric hashing. Nussinov and Wolfson also used geometric hgghil], using reference
frames of translation and rotation of residues instead siftjoeir Ca positions. Using
residue atom configuration in this way is justified as, altitothe backbone protein chain
is flexible and changeable, the arrangement of atoms in essitiue is fixed and rigid.
Using geometric hashing can be computationally intengitbe initial generation of the
hash table. To counter this, the described method limitehestto being less than 20
in diameter, and typically searches for patterns of at IBgstints. Graph-theoretic ap-
proaches have also been used for pattern discovery in the PRIESgorithm [103] with
some success in finding motifs that do not share the samerssglozation. Significance
in DRESPAT is measured according to the size of the patternd@nd is compared
against a sample of background matches found in randomdgteel protein structures.
The need to combine existing methods for structural aligrtmath systems for identify-
ing smaller common sub-structure elements is acknowletlg&tark et al. in describing
their server, PINTS [91], which allows a user to both seacetstich similarities between
protein structures and to use a database of found struagtumesler to help identify the
function of a protein with otherwise unknown function. PISI'Bffers the discovery of
common patterns between two protein structures and alsohs=afor existing small pat-
terns across a database of protein structures. The orgg@dithm used for PINTS [78]
is a recursive, depth-first search algorithm for finding goaf amino acids common to
two protein structures, independent of sequence ordermiEtieod only considers certain
amino acids and limits pattern size. Any amino acids whickeleade chains containing
only carbon and hydrogen atoms (Ala, Phe, Gly, lle, Leu, fPib\éal) are ignored. The
overall diameter constraints on found patterns imposecdisymethod usually result in
patterns of less than five or six amino acids in size beingdourhe RMSD on found
patterns is used to provide a statistical measure of signifie but small common fea-
tures are difficult to find in a pairwise match due to the backgd noise in the form of
matches of the same size occurring by chance. A more rigomaisod for measuring
significance has since been developed [92], using the eaéxlistatistical significance
of RMSD between atoms in matched patterns along with the ditleeopattern found
too. Patterns of up to 10 residues may be searched for in thelete PINTS database
and search parameters are limited to a maximum pattern siz6Aodiameter, with a
maximum 3 tolerance in matching.
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2.7 Chapter Review

If one has a new protein structure of unknown function theoralmer of methods exist to
analyse the molecule. First, by attempting to find a simiftatgin in an existing database
of protein structures with known functions. If a similarisfound then the biochemist can
use that information to guide further investigation inte thue function with the initial
classification as a guide. These tools tend to use either aralbwnatch of secondary
structure features or a comparison of tertiary structucketermine a similarity score - the
more in common, the higher the score. The second approadsitting the biochemist
is by attempting to find a common sub-structure between plelfiroteins and assuming
that the found motif is directly connected to the shared tioncof the searched proteins
- the biochemist may search their new protein for these matid then directly assume
that the presence of the motif implies that function.

There is currently no unified method for the computationatjstion of protein func-
tion without many problematic assumptions - for example,absumption that an overall
match with another protein or the presence of a certain matiflogically imply similar
function when there are a great number of exceptions to sa@pproach. When used
as tools for the biochemist, these assumptions can be skt asiexpert knowledge is
always the final decision maker in assigning function. Thesés may be useful aids
in the human annotation of proteins but they are a long wayn foeing a computational
solution to predicting function and most do not aspire todaefsscore of structural simi-
larity between a new protein and those in a known databas# th@ same as calculating
the probability that the new protein shares the same fum@sothose proteins. Without
a reasonable measure of the latter, human interventioraiwtys be required at some
stage of the annotation process. If methods for predictimgire directly from sequence
continue developing in accuracy then the number of strestuithout annotation will be
vast. Computational methods for predicting function, notikirity, and with a measure
of probability attached will become increasingly necegs$arrthe biochemist to prioritise
where human annotation is needed.

The next chapter will continue with an overview of the chadles in producing a
computational method to predict protein function usingare with scores that reflect
the probability of a protein performing a function as the fim@asure of accuracy.
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Sub-Structure Discovery

The following chapters describe a novel method for the ptexhi of protein function
using statistically significant sub-structure discovdiye goal of this process is to take a
protein structure of unknown function, identify featureshis structure that are associated
with given functions and then to use this evidence to eséntla¢ probability that the
protein performs various possible functions. To achievg the following methods are
required:

1. Grouping proteins by function
2. Discovering common sub-structures within each group

3. Measuring the significance of each sub-structure in ptiedi membership of that
functional group.

4. Grouping evidence to estimate the probability that a nestein structure should
be a member of each functional group.

Once a database of sub-structures has been created, aldnthevisignificance of
each in predicting a function, it will be possible to atterppediction of function in a
new protein by searching for these sub-structures, theaebgtating the protein with the
associated function or functions.

This chapter presents solutions to items 1 and 2 in thisiigtlese discovery methods
are tested in Chapter 4. Chapter 5 will build on this by intradg@ method for assigning

27
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statistical significance to discovered patterns and Ch&ptencludes with the final step
of the overall method — prediction of function using stateily significant sub-structures.

The following sections describe a method for finding commuaio+structures within
multiple input proteins. The next section begins by disitgsiow function will be de-
fined. This is followed by an example of some typical thremehsional structural input
data along with some observations on the consequencesapidtiey and other character-
istics of the data available to any structural matching @lgon. Continuing, a definition
is given for what it means for two structures to be similar hod similar they should be
to be considered a match for the purposes of this algorithns i$ accompanied by a de-
scription of a fast algorithm that may be used to fulfil thistoméng definition. With this
underlying match defined, an algorithm for finding such mesctvithin multiple input
structures is presented, along with a description of thewaruser-defined parameters
that may affect the accuracy and run-time of the sub-straaiscovery process.

3.1 Function Grouping

To discover common sub-structures within proteins of @milinction, there must be a
consistent method for defining which proteins perform wtiatction. As seen in Sec-
tion 2.2, there are several options available but, as it dvook be sensible to search for
common structure in proteins grouped by ancestry (as thigyhwidefinition, have com-
mon structure), this leaves EC number or GO annotation asttier possible options.
Grouping by EC number provides a useful system for definirayme function but there
are also broader functional concepts that it may be usefgtdaap by. The Gene On-
tology system of classification provides a common languageléfining function, both
general and specific. The GO features entries that reprgsemps also represented in
the EC hierarchy but also includes terms to describe broamterepts, such as “hormone
activity”. As seen in Section 2.4, small structural featunsay imply shared function.
The disulphide bridge, for example, consists of two cygte®sidues, with the sulphur
atoms between them bonding to provide stability in smaltgarns. Other small structures
appear in proteins due to convergent evolution (e.g. the BERASP catalytic triad in
serine proteases). If broad concepts can have small, spstifictures associated with
them then it would appear reasonable to search for commaeerpsthat may similarly
be associated with broader concepts too. It is unlikely aiidtroad concepts in protein
function will have a single, small, structural feature thdly characterises them but it is
possible that the presence of several such structuregj ®multaneously, could indicate
a probability of that function. Each small structure may t&uificient evidence alone to
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predict function but combining several items of evidencg pravide a higher probability
of correlation. The method used in this section for definingred function is therefore
to use Gene Ontology annotations.

3.2 Input Data

(Al [Bl [C[DI[E [F] (q (H 1] [J] [K]
ATOM 289 N ALA A 201 78.652 15.203 1.234 1.00 50.00 N
ATOM 290 CA ALA A 201 77.273 15.104 1.686 1.00 53.23 C
ATOM 291 C ALA A 201 76.802 16.518 2.118 1.00 50.81 C
ATOM 292 O ALA A 201 75.662 16.902 1.844 1.00 41.23 (6]
ATOM 293 CB ALA A 201 77.153 14.087 2.830 1.00 27.61 C
ATOM 294 N LEU A 202 77.709 17.295 2.733 1.00 28.58 N
ATOM 295 CA LEU A 202 77.430 18.666 3.196 1.00 29.23 C
ATOM 296 C LEU A 202 77.247 19.607 2.021 1.00 32.18 C
ATOM 297 O LEU A 202 76.558 20. 627 2.118 1.00 33.74 O
ATOM 298 CB LEU A 202 78.593 19. 209 4.028 1.00 20.77 C
ATOM 299 CG LEU A 202 78.876 18.749 5.456 1.00 19.57 C
ATOM 300 CD1 LEU A 202 77.814 19.273 6.407 1.00 16.42 C
ATOM 301 CD2 LEU A 202 78.969 17.237 5.512 1.00 25.45 C

Figure 3.1: ATOM fields within a PDB file

The source of input data for any protein structural comparis the RCSB Protein
Data Bank. It is the single, worldwide repository of proteirustures and therefore rep-
resents all publicly available data. Each protein strectuithin the PDB is stored in
an individual file. An example section of the file for a singteusture is given in Fig-
ure 3.1. Columr A] assigns an index to each atom. Colupi8] indicates the atom
type C, N, O H or S)with additional labelling to distinguish between the was
atoms present within the same amino acid. An atom labélkeid the carbora of a given
residue, commonly used to represent the position of a residuthe protein backbone.
Column[ C] is the three letter code corresponding to the residue thim & a member
of. The full list of codes is given in Table 1.1. ColurhiD] indicates the chain that the
atom is a part of, with each chain within a protein assigneifferdnt letter. Columrj E]
assigns an index to each residue. Colufnik, [ G and[ H] are theX,Y,Z coordinates
of the atom centre position in space. Colufrin is the proportion of molecule samples
in which the atom was found. This is rarely a value other th&@®.1 Column[ J] is
the temperature factor of the atom, described in more det&éction 3.3. ColumpK]
gives the atom type, as in Columii8] , but this format is not consistent, with some files
placing other information at the same location. The methegisd in this section take
PDB files as the initial source of data, extracting enougbrmftion to produce a set of
labelled point clouds (sets of points) as input. Each pdoua represents a single struc-
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ture, typically the contents of a single PDB file. Each pomtdpresented by ax,Y,Z
coordinate, a label indicating atom type or residue typengr@ther label to match by,
and a reference string for human readability. The referstrieg may be any identifier,
but is most often used as a combination of the chain idenafier residue number the
atom is a member of. The structural information held in a PDBigiusually the result of
an X-ray crystallography process, combined with human eefient. It is sometimes the
case that the structure determination process may ress#tations of structure missing
from a file — if this has occurred then a human-readable atinaté given to explain
the absence in the file header. As well as this source of expetal error, it is also im-
portant to consider the ways in which the accuracy ofXh¥,Z positional coordinates
may vary, if they vary due to error or flexibility and how thianation should be handled
in a structural matching process.

3.3 Disorder, Error and Flexibility

A single PDB file represents the result of effectively supgosing many protein struc-
tures atop one another. With multiple examples of a protgurcgire going into each
result, thetemperature factobecomes an important consideration. The temperature fac-
tor is a measure of the degree of disorder or thermal motiesgmt during the attempt
to define an individual atom’s position in the X-ray crystaltaphy process. The temper-
ature factor may be high due to thermal motion, when an atowesaoaturally within
each molecule, or it may be due to disorder, where there a&gkement in the position
of the atom between different samples of the molecular stracFigure 3.2 shows vary-
ing temperature factors within the protein structure wibBPrcode 1BE3. Red indicates
high temperature and blue, low. A high temperature fact@ tudisorder often occurs
where there is flexibility within the structure, so makinglificult to pinpoint a common
location between multiple samples of the same protein. A heégel of disorder presents
a problem for X-ray diffraction as such atoms will present arendiffuse electron den-
sity and therefore provide a much greater difficulty in asgig position to the atom.
Figure 3.3 illustrates the natural flexibility of proteimsttures in the form of a superpo-
sition of several nuclear magnetic resonance images ofgéesunotein, aplysia attractin.
The C-a backbone shown reveals some variability in the rigid parobthe structure, to
the left of the image. To the right of the image is a single bacle region but with a great
deal of flexibility and variability between each image tak@werall structural matches
will find it difficult to match proteins with such large varidiby in overall shape. There
are many structures that have so little rigid structure withem that they are termed
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Figure 3.2: The atomic structure of PDB entry 1BE3, with blegions indicating atoms
with a low temperature factor and red regions indicatinggh hémperature factor.

“Intrinsically Disordered Proteins” or IDPs [64]. IDPs gribtecome structurally ordered
when bound to certain molecules or placed in a certain emwient, allowing each to
interact with many different structures by changing shagmalingly. Predicting func-
tion using overall structural data from such proteins isasgble as it is very difficult
to establish the characteristics of a protein structur@out treating it as a rigid body.
Without further information on the specifics of how each pinotmay alter shape, it must
be accepted that largely disordered regions of proteinsatarasonably be matched by
any method that takes PDB files alone as input. A matchingaonte needs to be allowed
to discover features with some inherent flexibility but #hes no obvious maximum tol-
erance that will ensure every common feature is discoverttbut matching the entire
structure. The next section continues with a definition af fwo structural features can
be considered similar for the purpose of the broader disgavnethod.
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Figure 3.3: The NMR solution structure of PDB entry 1T50uslrating that several
images of the same protein backbone reveal some regionsvaugable than others.

3.4 Underlying Match

The most basic level of comparison in a pattern discovergrdtyn is the underlying

match between two patterns to determine if they are simildren searching through the
large volume of patterns generated by such a process, isengal that the most basic,
underlying match is as fast to compute as possible. For thgopas of this method, a
pattern will be defined as the distance between each poineaeny other point in the

pattern, with each distance coupled with the pair of labelsvben the two connected
points. To illustrate this, the patterns in Figure 3.4 wdudde the representations ((CC,
2.1), (CN, 3.3), (CN, 4.0), (CS, 3.2), (CS, 4.1), (NS, 4.3)) ai)(2.0), (CN, 3.2), (CN,

3.9), (CS, 3.3), (CS, 4.1), (NS, 4.2)). The pairs are ordergdaddetically by each node
label pair and then in order of increasing distance. Onceredlin this way, two patterns
are considered similar if each pair in the first pattern medalks equivalent pair in the
second pattern. To match, the pairs must have identical ladids and their distances
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Figure 3.4: Two patterns and their underlying represemati The patterns would match
with a tolerance of 0.1 or more.

must be within a set tolerance of each other. This representansures independence
from translation and rotation and, assuming a sort alguorittith complexity ofO(nlogn)
(wherenis the length of the list to be sorted), this underlying matdhhave complexity
O(N?logN), whereN is the number of nodes in each matching pattern. It shouldtesn
that this representation is also independent of refleckaise matches based on reflection
may have to be removed but this is trivial once a full matchldieen made.

The distance tolerance within which two node pairs are ctamed to be similar varies
depending on the situation. It is useful to distinguish eswthe matching tolerance nec-
essary to account for error in the experimental processabtoobtain data and the flex-
ibility in defining what it means for two molecular structar® be similar. Error varies
between each experiment conducted and so parameters ustedcitiral matching must
be included which change according to the original sourcthefinput data. Defining
what it means for two structures to be similar is a much morapiex task. The most
common method is to calculate the root-mean-square difteréRMSD) between com-
parable points in two structures and using this as a meagwgiendarity, allowing two
proteins with similar ancestry to be identified as matching.

When following the idea that two molecules with similar oves&ructure are likely to
have the same function, this appears a perfectly sensitienoput when finding match-
ing sub-patterns within structures that do not share aairaihcestry, using RMSD alone
may not be ideal. At the biochemical level, a small diffentfew atoms within a key
sub-structure has a far greater effect on what a biochenustdrdefine as the function
for that sub-structure than the effect of the same changduti protein. A mutation of
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a single amino acid may be considered to have a negligibéetetin protein function,

but when that single amino acid may be the key structure urmesideration, the change
becomes more important. Beyond simply reducing the RMSDaaolsr when matching

smaller structures at the atom level, expert knowledgeaibyreequired to define what the
term similar means when deciding if two small molecularctnees are likely to perform

the same function or not. Without an expert available to eramevery generated sub-
structure (of which there may be many millions in a full digery process), the choice
of tolerance can only be another method for trading off thalner of matches generated
and the time taken for the algorithm to run. The toleranceahdr matching parameters
are discussed later in this chapter, following an overviéthe pattern discovery process.

3.5 Progressive Match

The basic algorithm for the progressive match is illusttate Figure 3.5. First, a file
containing a set of structures is given as input, each streteing a set of labelled points.
Next, each structure is taken separately and the interiatdistances are calculated and
stored as a cache for future use. The use of these inter@iistances is the basis
for much of the algorithm so caching these provides a corslde performance benefit.
For each structure, every pair of atoms (“size 2 patternd} tepresent a valid pattern
are generated and stored together, with the source steustoired for each pattern. The
main loop of the algorithm then begins. The main loop firsedmines if any patterns
have been generated - if so, these are then grouped togethspded to make the next
match step easier. With the sorted list of every valid pattérthe current size from all
structures, the underlying match from the previous sedsiorow used to compare each
pattern with every other pattern within the local group. Tdtal number of matches for
each patternis then recorded. With this list of scored padtehose with matches below a
set minimum score are discarded and the remainder are exgpycbne node in size and
then input back into the main loop of the algorithm. Once rithier patterns remain from
this progressive expansion, the patterns from the pre\stes may be reported as final
matches, and the algorithm may exit. The progressive expansed in this algorithm
can result in combinatorial explosion as the number of jpbssiew patterns generated
from each match when expanded by one node could potentradlgase exponentially.
With this in mind, a number of parameters are also used toceedamplexity and these
are now described in the following sub-sections.
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Figure 3.5: Flow chart describing the progressive matcbrétym.



Chapter 3 36 Sub-Structure Discovery

3.5.1 Maximum Diameter

The progressive match is intended to find small, common petteetween multiple pro-
tein structures. It therefore would be reasonable to wgtre size of any patterns found
to reduce the algorithm complexity. A common method for ling pattern size is to
enforce a maximum number of points within a pattern but tipeegentation used in the
progressive match provides a convenient alternative asleding maximum diameter of
a structure is trivial. As illustrated in Figure 3.6, the nmaMm diameter is just the length
of the largest inter-atomic distance calculated for thégpat As each such distance must
be calculated in advance, it requires little extra efforsitoply check each of these dis-
tances to ensure they do not exceed a certain maximum.

3.5.2 Coherence

Although it may be a useful option to enforce a maximum diamehis is not always
convenient if itis not known in advance whether proteing stiare large or small patterns
of structure. The novel alternative used here to limit caxrpy without limiting size is
to use a measure that will be referred to as a coherence vakishown in Figure 3.7,
coherence defines the maximum distance that each point radigirn at least one other
point in the same pattern. This allows a pattern to be of apg but not split over a
large distance, therefore reducing the number of comlanatof points generating valid
patterns.

3.5.3 Consecutive Segments

The option to only consider patterns which have conseciiiiees can be useful when
attempting an overall match or a backbone-limited matctveen two protein structures.
The notion of points being consecutive would not make sernsenwnatching on the
atomic level but, if using amino acid @-atoms to represent a protein structure, matching
only consecutive segments may be used to find patterns whalr along the backbone.
This parameter, illustrated in Figure 3.8, is included ia #igorithm as an option, but
there are several existing methods for performing backboatches which are tailored
specifically for the task. This algorithm is designed for firgdsmaller common regions,
so comparing large sections of secondary structure (whiehilaely to dominate a back-
bone match) could become burdensome.
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Figure 3.6: Maximum Diameter
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Figure 3.8: Consecutive Segments
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3.5.4 Tolerance

Of the parameters available for reducing search complexitgrance presents the great-
est trade-off between run-time and number of results retiirifolerance is the greatest
difference between two inter-atomic distances for themeadnsidered similar and is
used at the underlying match stage of the algorithm. Refgback to Figure 3.4, for a
tolerance of 0.1, the two patterns shown will match and,atoee, the patterns will be
considered similar. Tolerance may be used to take into atcmmisy data but, in protein
structures, it is more useful in taking into account flexipiWithin a structure. The latter
becomes a greater problem when matching large regions secative Ca points but,
for the type of small patterns the progressive match is aedrio find, the tolerance will
not have to be too great to still find smaller structures.

3.5.5 Density

Limiting patterns by 'density’ is another method to reduearsh space. The measure
is defined as the number of points in a pattern per unit cubachetier of the sphere
the pattern is bound within. This offers similar benefitshe toherence limitation but
further ensures a degree of compactness of the shape. ngriyi density is most useful
when finding patterns on the atom level, where a matchedrpatdikely to contain a
continuous region of atoms. If the patterns to be discoveray be spaced out, as they
could be if a small number of key residues are matched, theedehsity parameter needs
to be more loosely defined.

3.6 Progressive Match Steps

Each step of the progressive match will now be describederidtowing subsections.

3.6.1 Distance and Coherence Tables

There are two cache tables used in the progressive discawettyod - one stores inter-
atomic distances for each node pair and the second is usexhjanction with the co-

herence factor. The distance table is a simple array, irttlbyehe pair of nodes under
consideration and contains the distance between the twiispdihe coherence table is a
jagged 2D array — each row may be of a different size. Each hadea list of all other

points in the structure within the coherence distance dfrtbde. Figure 3.9 illustrates
an example of how elements of a table would appear. The cotetable considerably
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Figure 3.9: An example graph and associated cache tabletefpaodes connected by
coherence. The first column of the table contains the indembau of the node in the
diagram. The second column contains the index number of eadé connected to that
node.

speeds up the process of expanding patterns to their ngeslasize, as will be explained
further in Section 3.6.5.

3.6.2 Pattern Generation

The first main stage of the algorithm is the generation ofallbvpatterns of size 2 within
the input structures. This process involves, for everycstme, iterating over every point
and then, for each point, iterating over every other poirgriuce a list of pairs. Each
pair generated is only valid if it is less than the maximuntgratdiameter and also less
than the coherence value. All valid pairs are grouped tagetiom all input structures
into a single list.

The next step is to determine which of the pairs match wittheztber. This can
be done exhaustively by comparing each pattern with evdrgrgiattern to determine a
match. This comparison may be performed faster, thougheipattern list is ordered or
grouped in some way so that each pattern does not have togssathe entire list to
find matches — only the portion of the list close to that patter
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3.6.3 Pattern Sorting

For two patterns to match, every inter-atomic pair must latbe inter-atomic distances
must be within the tolerance and their point labels must batidal. When comparing
a large list of patterns against one another, the procesbeamade faster by grouping
the list into patterns with the same point labels and by andethe list in some way. The
method used here to sort is to first define a sort operator ardtthuse the QuickSort
algorithm to order the list. The sort operator defines, fa plrposes of an arbitrary
grouping and ordering, what it means for one pattern to bes“tban” another pattern.
PatternP, is defined to be less than Patté&knif:

1. The sorted node labels Bf are less thais in terms of dictionary ordering.

2. The length of the shortest inter-atomic distancEas less than the shortest inter-
atomic distance ifs

With an ordered list, the process of filtering out which paisematch may be faster as
only patterns lying close together in the sorted list nedzktoompared to find all possible
matches.

3.6.4 Match Comparison

With a sorted list of patterns, each pattern is then compiaregery other pattern within
the range defined by match tolerance. A count is kept of howymaatches from each
protein structure have occurred. This part of the discopeogess is easiest to perform
in parallel as each pattern can be scored independently, seitres summed after the
comparisons are complete.

Once scored, any patterns with a score below a set minimuhmuatilbe examined
further in the following stages. The minimum score directlyresponds to the minimum
number of protein structures a pattern must be found in toobsidered a common sub-
structure.

3.6.5 Progressive Expansion

With a set of matching patterns from every input structure rtext stage of the algorithm
Is to take each pattern and generate a set of patterns ondamgeeby taking each node
in the input structure and adding it to the source pattemegaing a new pattern for each
node. This process can create computational explosiorerfyavode is added each time
and so the coherence value is used here to cut down the nuinbesble new patterns
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generated. By using the coherence cache table, it is podsilgjeickly identify which
new nodes may be added to the existing pattern to create nb@vrsaone size larger.
The smaller the coherence value, the fewer the possiblesrtbdé may be added to any
pattern.

The new patterns generated from this process are then fédifttacthe start of the
main loop for sorting and comparison. This loop continue#) matching patterns getting
progressively larger, until no more matches remain. Onisepbint of the algorithm is
reached, the largest matches found may be reported as output

3.6.6 Depth-First Recursion

Using this progressive discovery method on proteins withrgd overall similarity may
take a considerable amount of time as patterns are graduatished and expanded from
one size to the next. The algorithm uses its breadth-firstifea advantageously as, the
more protein structures used in a match, the more pattembiecaliminated early on for
not matching throughout all structures. Despite this, itldcstill be beneficial to detect
a large amount of structural match first to avoid running tigio the whole discovery
process. One useful addition to the basic discovery algoris therefore to include an
initial step that, upon finding a small match, expands onemanly to the next size and
if that matches, expand just one match again. If a large ptigpoof the structures is
in common then this process will very quickly detect a broaatah without having to
generate every possible combination of pattern expansioeach size.

3.7 Chapter Review

This chapter has presented a method for discovering commioistsuctures between
multiple protein structures. The method uses the fact thétiphe proteins are input to its
advantage by performing a breadth-first search for matchles.more proteins that are
added, the less that can match by chance alone and so thegthelalgorithm can exit.
A number of parameters assist in reducing the complexithefsearch and a coherence
value was introduced as an alternative to imposing lingtegion pattern size. Coherence
allows patterns of any size to be found but limits the conetit atoms to exist within a
maximum distance of another atom in the same pattern.

The next chapter will take the progressive discovery atgoriintroduced here, eval-
uate its performance for varying combinations of paranseaed test the method on real
protein data.
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Algorithm Testing

This chapter evalutes the ability of the developed algoritb correctly match similar
patterns and to discover common sub-patterns betweertiseac As well as ensuring
that the algorithm operates correctly, the effect on exenuime of changing different
matching parameters such as tolerance and coherenceceistaaiso tested.

To test the underlying match, a wide selection of small, maty, patterns are required
that also represent the full range of parameters to be testesdmple selection of small
patterns could be taken from subsets of a real protein streittut finding patterns that
match each other for every value within the full range of taegmeters to be tested would
be excessively computationally intensive. In additiorevaluating the progressive match
and to test its ability to find common sub-patterns, a comnutmpattern must be known
to exist in advance. If the algorithm found a common pattextwieen a number of real
protein structures then their existence would have to b#iegry eye. When testing
thousands of structures, this would be excessively labdansive. There is also the
possible case where an incorrect algorithm does not find armmnpattern but where
one actually exists. Comparing real protein structures leyteydetermine if a common
structure exists is too complex a task for the number of sires to be examined and so
the existence of this case could not be shown to be adequatiely.

Instead of only using real data for testing the underlyindamand the progressive
match, artificially generated structures are used in theptdr to enable a number of
factors to be controlled and to ensure that the algorithrgteti more thoroughly. Artifi-
cially generated patterns can be guaranteed to match upeefisd parameter limits and

42
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it can also be guaranteed that two structures will have a camsub-pattern by starting
with one generated structure and only altering one parttofroduce another structure
to match against.

This chapter first explains the method used to generate thigial data and then
presents the results from a number of experiments designesbt the accuracy of the
test methods, their run-time and how this run-time can vayethding on a number of
variables. The underlying pattern match is first examineliowed by a similar analysis
of the progressive match algorithm for identifying commaib-structures. Finally, this
chapter concludes by testing the progressive discoverfadain real protein data.

4.1 Artificial Data Generation

Testing that the underlying match algorithm produces theeeted results requires the
generation of structure pairs that will match one anothéhiwithe matching tolerance.
To test the progressive match, the structure pairs do natteawmatch one another overall
but must contain a common substructure that does matchrvitiki matching tolerance.
Additionally, to ensure that the coherence distance ssdlegiil be successful in matching,
the common pattern must obey the rule that each point wittenpattern is within the

coherence distance of at least one other point within thaempa The method used to
generate these structure pairs is now given in the followexjion.

4.1.1 Generating the first structure

Each structure consists of a set of points, with the numberoaits to be generated
provided as an input to the generation algorithm.

The first point of the set is placed at a random position angjasd a random label
from a user-defined number of possible text labels. When usabprotein data, the
number of possible labels is often 20, one for each possibie@acid centred at that
point, but may also be 4, representing the atom at that poarb¢n, nitrogen, oxygen
or sulpher) or any other number depending on how the databs t@presented. Using
only hydrophobic residues could reduce the number of |airtsv 20 but adding charge
information could increase the number of possible labeleriig the number of possible
labels could change the performance of the algorithm andispérameter is reproduced
in the generation of artificial data. The second point is @t a random direction
away from the first point, but constrained to exist a usemaefidistance from the first
point. This constraint ensures that the coherence distaricbe sufficient to ensure a
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Figure 4.1: Frequency of varying inter-point distances sample of real data (top) and
artificial data (bottom). A peak exists in both graphs whendtstance is equal to 3.8.

match. Each additional point in the structure is placed endhme way, at a set distance
and in a random direction from the previous point. When thssatice is set to 3.8, the
resulting structure has characteristics similar to reatgin data which, when structure
points represent the centre points of amino acids, are alaaged in a chain with each
point approximately 38 from the previous point in the chain. Figure 4.1 illustsathis
through the distribution of inter-point distances withisaample of real protein data (from
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the structure with PDB code 1PIl) and a sample of artificiabgdgenerated with 200
points and a step size of 3.8. Each graph shows the frequeiticywiuich inter-point
distances occur in the overall structure. Both graphs shom@aease in the frequency
of distances up to a distance of approximately 25, followed decline, reaching zero at
a distance of approximately 70. There is also a peak in b&phg at a distance of 3.8,
indicating that there are visible similarities betweenctharacteristics of real data and of
the artificial data. Figure 4.2 illustrates an example of @ifical structure generated in

Figure 4.2: An artificially generated structure of 200 nqdesing a step size of 3.8.

the way described, with 200 points and a step size of 3.8 legtwach point in the chain.
One possible improvement to the generation of artificiahdaiuld be to restrict patterns
to be more globular in shape. The data generated resembienseaf a protein chain but
are not globular like many full protein structures. Thewmlsttion of distances in artificial
data and real data are similar but it is possible that makrtifjcéal data appear more
globular could improve the similarity further.

Now that the first structure has been generated, a secomtiusrus required that the
algorithm, if working correctly, will match.

4.1.2 Generating the second structure

The second structure is generated by taking an exact copedirst structure and then
altering it in a number of ways. First of all, the structuréraslated by a random amount
in each axis. This does not change the shape of the structdreaaa correct algorithm
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will identify the two structures as matching. Next, the wdagkructure is rotated by a
random angle around a random axis, resulting in a new otientaAgain, this does not
change the shape of the structure so the pair should stithm&Einally, each point is
shifted by a random amount in each axis. If the algorithm isemd, an appropriately
chosen value for the matching tolerence will ensure thap#ieof structures still match.
As this random amount increases, the distance tolerandeedgést method will have to
increase accordingly so that the pairs match.

This second structure can now be used with the first to testitigkerlying match
method. For the progressive match to be tested, anothegehanst be made to the sec-
ond structure to ensure that the two structures do not neglysmatch overall, but share a
common substructure. This is achieved by retaining a conootion of the chain from
the first structure and then generating a new random chathéaemainder of the second
structure. Common features may still occur between two narglgenerated structures
by chance alone but enforcing this common substructureresgiiat a common substruc-
ture of a specified size can be found. It is assumed that, anaheh is independent of
sequence order, the location of the common feature in theipreequence will not effect
the algorithm result. Figure 4.3 shows two artificially geted structures with a com-

Figure 4.3: Two artificially generated graphs, each of 20@asousing a step size of 3.8,
and with a common subpattern of 100 nodes in size, highlibimeed.

mon subpattern of 100 nodes. As described, the secondws®usta copy of the first but
with a new random chain to replace the portion of the firstcstne where a match is not
required. The matching section of the structures is higitdid in red.

With a method for generating artificial data now describkd,rtext section continues
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with a comparison of the underlying match with other graphamag methods, using
artificial data.

4.1.3 Underlying Match

The lowest level of the algorithm is in the comparison of twdividual patterns to deter-
mine if they match or not. This section presents results faamamber of experiments to
test the accuracy of the algorithm and to evaluate how igper$ compared to other graph
matching methods. The algorithms chosen for testing wer&tihmidt-Druffel [82] and
VF2 [30] algorithms.

4.1.3.1 Graph Size

The variable most likely to effect a change on the run timehef inderlying match is
the number of nodes in the graphs being matched. As this uatueases, the run time
should also increase. To compare the effect of this increlafiee selected graph matching
methods, 10,000 graph pairs were generated for each grapliram 5 to 40 nodes, in
5 node increments using the method described in Sectioné&.number of possible
labels was fixed at 4 and all points in the second graph wedoraly shifted by a value
between -1 and 1 in each axis. All methods correctly matchéupait graphs when using
a tolerance to take the random shift into account. The gnajpigure 4.4 shows the time
taken to match 200,000 graph pairs, with varying node stae clear from the graph that
the underlying match completes in less time than the alteeenethods at every graph
size tested.

4.1.3.2 Label Possibilities

Without node labels, any graph matching method would be magconly the distances
between each node. If node labels must correspond as weé{ totdetermine the effect
of enforcing this match is useful to improve efficiency. Thelarlying method uses this
strategy. If there are many possible labels for each nodettlfeeunderlying match should
perform better than if there are fewer possible labels &t @acle. To test this idea, an
experiment was conducted using 10,000 randomly generétpees of 20 nodes, using
the method described in Section 4.1. Each node was assigaedamly selected label.
The number of possible labels to be selected from was vamégden 5, 10, 15 and
20. The results from this test are shown in Table 4.1. The nyidg match showed no
change in the time taken to perform 10,000 comparisons asutmder of possible labels
increased. As will be shown in Section 4.1.4, the run timehef progressive pattern
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Figure 4.4: Time taken to compare 10,000 graph pairs of acpéat node size. Error
bars indicate the standard error of the data.

discovery used in the test method is affected by varying thelrer of possible labels at
each node.

4.1.3.3 Match Tolerance

In these experiments, the second of each pair of graphs lthevesy point shifted by

a random distanceD, in each axis. To allow these graphs to match one another, the
various algorithms need to increase the match tolerana@diogly. For this experiment,
10,000 graph pairs were generated using the method dedanilsection 4.1. Each graph
consisted of 20 nodes with one of 4 possible labels at each.ndde match tolerance
varied within the range 1 to 8, approximating the extremegaoiation in the resolution

of X-ray crystallography. The results from this test arevahan Table 4.2. All methods
showed no significant change in run times as the match talersaried. As will be
shown in Section 4.1.4, the progressive pattern discov&sy in the test method can take
advantage of match tolerance to affect the run time of therahgn.
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Method Time (milliseconds)
Test Method 1.8
Schmidt-Druffel 1.0
VF2 0.2

Table 4.1: Time taken to match 10,000 graph pairs with varyinmber of label choices
at each node. No change in run time occurred as the numbdveifdhoices varied.

Method Time (milliseconds)
Test Method 1.8
Schmidt-Druffel 1.0
VF2 0.2

Table 4.2: Time taken to match 10,000 graph pairs with vagrymatch tolerance. No
variation in time occurred as the match tolerance changed.

4.1.4 Progressive Match

The only significant variable in determining the run time oy @f the algorithms tested
IS the size of the graphs matched. As protein structures @atain hundreds of residues
and thousands of atoms, simply using such generic graphhimgtmethods would not
be feasible if the common patterns between proteins ceaksigtmore than a few points.
The number of combinations of twenty points, for exampleseis/ large within a graph
of hundreds of points and, if each comparison of a patterhisefdize takes several sec-
onds, any pattern discovery method based on an exhaustikghsgould not produce any
results within a reasonable time frame. As explained iniGe@.5, the search can be
reduced with the use of a number of limiting parameters. Eddhe parameters var-
ied in Section 4.1.3 should have a much more significant eéfieche run time of the
progressive match.

This section presents results from a number of experimemgucted to evaluate the
effect of varying input graph size, the number of possiblels at each node, the match
tolerance and the coherence value used to restrict thehsgaace of the test method.

4.1.4.1 Input Graph Size

The progressive match algorithm is intended to discovetlsramnmon features between
multiple proteins rather than to determine overall siniiyarAs an initial benchmark to

evaluate the performance of the progressive match on ptdéedata, Figure 4.5 illus-
trates the results from an experiment comparing the preyematch and the underlying
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Figure 4.5: Time taken to match 1,000 graph pairs with vargraph size.

match when applied to two, overall similar graphs of vansigg. 1,000 graph pairs were
generated for each graph size from 20 to 40 nodes, in 5 nodenrents in the same
manner as in Section 4.1.3.1. There were 4 label possasilét each node and each point
was randomly shifted by a distance of between -1 and 1 in esish &he progressive
match is several orders of magnitude slower than the undgripatch when comparing
two graphs that are similar overall. The progressive madctinerefore unsuitable for
determining an overall match between two proteins. Howeber progressive match is
intended to find common sub-patterns between multiple preteuctures rather than an

overall match and so the next section evaluates how eféetiier progressive match is at
this task.

4.1.4.2 Coherence

As shown in the previous section, reducing the search spabe @rogressive match is
vital to allow the algorithm to finish in a reasonable time wle®mparing large graphs
of several hundred nodes. As introduced in Section 3.5, aetad to reduce the search
space is by specifying that a sub-pattern is only to be censdlif every point within
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it is within a maximum distance from at least one other poiktgure 4.6 shows the
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Figure 4.6: Time taken to compare 1,000 graph pairs of vgrgoherence.

time taken to compare 1,000 graph pairs of 40 nodes in sizk,4Miabel possibilities at
each node and a random displacement of between -1 and 1 opeathn the second
graph from its position in the first graph. The coherenceadis was varied from 5 up
to 50, in increments of 5. The results show increase in the taken to compare graphs
as the coherence value increases. Setting an appropriz¢eecce value for the pattern
discovery therefore appears to have a positive effect opglfermance of the progressive
match algorithm.

4.1.4.3 Label Possibilities

In Section 4.1.3.2, it was shown that the underlying patteaich used to determine
similarity of two graphs shows little performance improwam by varying the number
of possible labels at each graph node. In the progressivehmtite more node labels
there are available, the less likely random backgrounastras are to match by chance
alone. To show this change, an experiment was conducted &0 randomly gener-
ated graphs of 40 nodes each, using the method describedtiors4.1. Each of the two
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graphs were randomly generated and so had no enforced copattem. Each node was
assigned a randomly selected label. The number of possibdd to be selected from
was varied between 5, 10, 15 and 20 possible labels. Thesdsuh this test are shown
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Figure 4.7: Time taken to compare 1,000 graph pairs withimgrgossible node labels.

in Figure 4.7. Unlike the underlying match, the progressnetch shows a significant
decrease in the time taken to find common patterns when thberwhlabel possibilities
are increased.

41.4.4 Match Tolerance

In Section 4.1.3.3, it was shown that the time taken for treedying match to match sim-
ilar graphs was unaffected by varying the distance tolexaric this experiment, 1,000
graph pairs were generated using the method described tiosdcl. Each graph con-
sisted of 40 nodes with one of 4 possible labels at each nduenmktch tolerance varied
within the range 1 to 6. The results from this test are showfiguire 4.8. As with vary-
ing label possibilities, varying match tolerance whilengsihe progressive match method
has an effect on the time taken to match graphs. For thiscatifiata, the relationship
appears to be linear.
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Figure 4.8: Time taken to match 1,000 graph pairs with vayyiratch tolerance.

4.1.45 Common Nodes

In Section 4.1.4, it was shown that the progressive matcihodet unlikely to perform
well when matching large graphs, as it is designed to findlso@mhmon features between
largely dissimilar structures. To test the effect of chagghe number of common nodes
between the graph pairs, 1,000 graph pairs were generaiegl th® same method as
previously. Each graph was 20 nodes in size, with 4 possdtilel$ at each node. The
match tolerance was fixed at a distance of 1 and the cohereaxamimited. The results
from the experiment are shown in Figure 4.9. The graph shosteady increase in
the time taken to find common features as the size of the confewinre increases.
When the size of the common feature reaches 16 nodes (80% of/énall structure),
the time taken to match rapidly falls. The time taken to maved, identical graphs is
higher than the time taken to match a common feature of 5 n(®&% of the overall
structure). This drop off in time taken occurs due to theatftd the depth recursion
method introduced in Section 3.5 which avoids computatierplosion when matching
largely similar structures.
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Figure 4.9: Time taken to match 1,000 graph pairs with vargiommon nodes.

4.1.5 Summary

This section has compared several basic graph matchingoadgetnd has demonstrated
that the matching used in the underlying match perform&b#tain the alternatives. The
progressive match algorithm does not perform as well as titeenlying match when
comparing structures that are similar overall but may ceteplvithin an acceptable time
for structures that are not similar overall.

The effects of varying a number of parameters used in therte#tod’s progressive
pattern discovery has also been shown to be significant apdrtant to consider when
applying the test method to real data. The next section dstradas how the algorithm
performs on real protein structures, taken from the Prddeita Bank and discusses ap-
propriate settings for the various parameters seen in ¢icisos.

4.2 Protein Data

The previous section has shown that the progressive majohithim may be used to find
common features between multiple structures and may betosglthis in a reasonable
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time-frame for well-chosen parameters. The way the parmm@iteract to jointly affect
the algorithm runtime is complex and dependent on featurégonput data - correct use
of the coherence value, for example, is connected direatllge sparsity of the pattern to
be found rather than any feature of the overall structure. ddmplexity of the algorithm
is affected more by the size of the common pattern than byi#eeds the entire input
structures, making run-time impossible to predict in adean

This section applies the progressive match algorithm tacsiral data taken from
the Protein Data Bank. As illustrated in Section 4.1, the megive match performs
best when the common feature to be found is either a smalloptiop of the overall
structures or a very large proportion of the overall streeetu Several algorithms already
exist for matching protein structures that are similar ailerthis test will focus on finding
common features among structures which are dissimilarativeFhis section begins by
discussing how to identify proteins of similar function llifferent fold, then discusses
appropriate parameters for the match and, finally, preseatgsults of matching multiple
protein structures.

4.2.1 Data Selection

In order to test the ability of the progressive match to detecnmon structures within
overall dissimilar proteins, an appropriate group of pratenust be found with this fea-
ture in advance. One of the more common reasons for proteareng a common, lo-
calised, feature is if they bind with the same, or similarmircal ligand. For a ligand
to react with the surface of a protein, it is highly likely thhere will be some structural
feature on the surface to allow this. The proteins seleatedieting in this section all
bind with ligands that contain adenine, though each ligantself different in each case.
This selection allows structures to be chosen which havéfereint fold but that are also
likely to contain some common feature at or near the binditeg s

4.2.2 Parameter Selection

To limit the complexity of the search in these experimerits, tblerance and coherence
parameters are used andaCatoms are taken as the input data points. Coherence, as ex-
plained in Section 3.5, is the maximum distance between gaich and at least one other
point in the pattern. Protein structures are compact with €&&a atom along a protein
chain rarely more thanffrom the next in the chain. @ atoms which are neighbouring

in space but not adjacent in the chain are also likely to beiwthis distance, assuming
the structure is compact,&Gs therefore used as the coherence value in this test.
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Figure 4.10: Matches found within PDB files 1HDX, 1JWA and 13O he blue regions
indicate matches, the red regions are an overlay of the bligentd positions.

-

To establish a reasonable value for the tolerance, theusferctors affecting why
positional values for atoms may vary must be considered. is&dsed in Section 3.3,
this may be due to error in the crystallography process gimpéerature factor of the atom
due to oscillation or from flexibility in the protein structuitself. A protein is less likely
to be flexible at its core than at the extremities [69] and isatikely to be compact in the
region close to the active site. For this test, thereforly, thre error in the crystallography
process is considered as a source of variation in the like@tyon sub-pattern. The value
for tolerance is set to8to exceed common B-factor (temperature factor) valueseén th
structural data files of each atom and therefore to take ata@dyositional variation due
to atomic oscillation. No limit was placed on the diametethaf pattern to be found. No
limitations were put on the regions of the input structuesdnsider, resulting in input
structures of 748 nodes, 485 nodes and 298 nodes.

4.2.3 Adenine-Binding Results

For this test, the structures used are an NAD-binding alcodloydrogenase (PDB code
1HDX), an FAD-binding trypanothione reductase (PDB cod®TA and an ATP-binding
moeb-moad protein complex (PDB code 1JWA). The PDB filestfes¢ proteins feature
the locations of the binding ligands. This information i¢ nsed in the matching process
but can be used as an indication of the success of the matttre-riiatching regions are at
the ligand binding sites then the match will have been sistaks=igure 4.10 illustrates
the locations of the largest patterns found to match betvwed#mn structures. The largest
match is of size 14 and occurs directly adjacent to the lonaif the binding ligands. The
progressive match has correctly identified the locatiorhefgdroteins’ active sites in this
case.
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4.3 Chapter Review

This chapter has taken the progressive match algorithmtamhderlying match method
and evaluated the effects of varying a number of variablesng2med to graph isomor-
phism methods, the underlying match has a shorter runtimefpcombination of param-
eters. It has also been seen that the progressive matchnranstgreatly affected by vari-
ations in the coherence value and the number of label pbdgetat each node. The main
effect on run-time is the number of nodes in common betweernnghut structures. This
essentially means that the run-time of the algorithm iseswely difficult to determine
in advance. Using early detection of large degrees of siityilaetween the input struc-
tures, it has been shown that the run-time drops when the auoflmodes in common
becomes large. The algorithm will perform best on structuvkich have small, common
features or on those which are largely homologous. It has lzden demonstrated that
the algorithm works successfully on real protein data, figdiignificant structures within
proteins that bind similar ligands at their active sites.

The next chapter builds on this progressive match methodefipidg a measure of
significance that may be assigned to any common sub-stasctaund and presents re-
sults from this process.
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Statistical Significance

Chapter 4 illustrated that the progressive match algoritamfmnd common features be-
tween multiple structures in a reasonable time frame foll eledbsen combinations of
parameters and that, when real protein data is used, thevdisxd patterns may be con-
sidered ‘interesting’, but this has not yet been quantifidds chapter begins by review-
ing the methods used in similar applications to assign sdoreesults in order to quantify
what ‘interesting’ means in this context, continues by sthg a method suitable for scor-
ing patterns in this application and then concludes by apglthese methods to a large
number of protein groups in order to further evaluate thgmssive match algorithm.

5.1 Scoring Methods

Other pattern matching and pattern discovery algorithrsggasa score to any matches
made or patterns discovered to indicate their significaAsaoted by Hubbard et al. [26],
the terms ‘significance’ and ‘statistical significance’ afeen poorly defined in statisti-
cal literature; the Bioinformatics literature often abansléhe term entirely in favour of
attempting to quantify how ‘interesting’ a discovered pattis or how ‘surprising’ it is
that two structures match [28]. In Bioinformatics, theseaapts are usually reduced to
one measure — whether the match occurred by chance or ifigngisant (or surprising
or unexpected), and this is most often the basis for anyrsgonechanism.

Three reasons for wanting to assign scores to patternsveiissnb by the progressive

58
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match algorithm are:

1. To distinguish between patterns that are significant baget that occur by chance
alone.

2. To evaluate the success of the algorithm in its abilityisoalver significant patterns.

3. To predict the function of a protein using the presenceigifiicant patterns as
evidence for assigning functional annotations.

The first two reasons are in common with similar applicatibos the third is not
clearly cited in the discussion of analogous algorithmsis therefore necessary to re-
evaluate the scoring methods used in other applicationstermine if they are suitable
for this application. The most common scoring methods nameke literature are the
E-value, the P-value and, to a lesser extent, the Z-score.

5.1.1 Existing Measures

The popular BLAST tool [4] uses E-values to indicate the gjtlerof match between
two genetic sequences. The E-value or ‘expected’ value estimate of the number of
other sequences that would be expected to score at leagfreadiihe query sequence. P-
values are related to E-values but they represent the pititpabfinding at least one other
sequence that would score at least as high as the query secameth are also common in
the literature (e.g. [29]). The Z-score is less common indmimatics but is sometimes
used (e.g. [49]). This score represents the number of stdrdviations away the raw
score is from the mean raw score for the whole database.

Each of these scoring methods rely on an underlying, rawestmrthe algorithm
results which vary according to the specifics of the appbcat-or BLAST, the raw score
is related to how many sequence positions must be subsitimtaove from one sequence
to the other, although this is often refined by, for exampt®riag some substitutions
higher than others.

In structural applications, there are a limited number ofdes that are used to produce
a raw score when aligning patterns or discovering commorssuictures. The variables
cited in the literature are often limited to the size of thgmnent (the number of residue
points matched) and the root mean squared distance (RMSgbeteach residue point
in one pattern and the corresponding point in the matchddmpatRMSD is used exten-
sively in assessing the quality of structural alignmeng ghd the size of match is used
in both alignment applications and in pattern discoverpatgms, with the assumption
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being that a smaller match is more likely to occur by chanckisitherefore less likely to
be ‘interesting’.

As has been shown in Chapter 2, the discovery of small, keyfsnista goal that is
gaining importance in the field and yet the scoring of patiéxased on their size persists.
More recent research notes that using P-values from RMSD wloiealways perform
well [62] and that E-values based on characteristics ofodsed patterns themselves
do not work well with smaller features [31]. Despite thisre&sing recognition, a clear
alternative to the existing methods is not apparant in teediure. For the purposes of this
project, an alternative to scoring based on features of idedered patterns themselves
is desirable.

5.1.2 Scoring and Function

Finding common sub-structures between a set of proteinbeaiseful in its own right in
order to better understand the proteins provided as ingutrbaddition, a library of key
patterns associated with certain protein groups would b&ium predicting the function
of a new protein.

As an alternative to existing methods for scoring proteincttiral matches, the scor-
ing method used here will be to score a pattern highly if itdsaziated with a known
protein function and low otherwise, regardless of the patesize and shape. To achieve
this, information is needed as to how frequently a discalgr@tern occurs in proteins
with a functional annotation of interest and how often it wscin proteins without the
annotation. If the pattern occurs significantly more oftethie former case then it should
recieve a higher score.

Two methods were chosen to find an appropriate method foingcor this manner.
The first method uses Bayesian statistics and was chosentamsticods are often used
in other fields for estimating probabilities given items efdence and have also been
used with success in some Bioinformatics applications [$le $econd method consid-
ered used the Chi-Squared test of statistical significanpeaduce a score from the raw
contingency table data. This method was chosen as thisstefiien used in calculating
significance from bivariate tables in other fields [13].

The use of each method in this application will now be desctib

5.1.3 Bayes Score

Bayes’ Theorem (Equation 5.1) allows the expression of aitiondl probability,F given
Sin terms of the probability o§ givenF. If F represents the statement that “the protein
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performs a given function” an® represents the statement that “the protein contains a
given structure” for a chosen function and structure, thetgxior, P(F|S) represents the
probability that a protein performs this function giventthiaontains the specified struc-
ture. This posterior may be used as a measure of significance.

Pl = o8 ) (5.1)

The prior,P(F), is the probability that a protein performs the function.isTterm may
be estimated based on the proportion of protein structures iannotated database that
carry the functional annotation of interest. This term Wil biased based on the content
or focus of the database. Equation 5.2 gives the prior wNegethe number of proteins
that perform the function anld is the total number of proteins in the database.

P(F) :; (5.2)

The normalising constanB(S), is the probability that a protein contains the candidate
structure P(SF) is also the probability that a protein contains the candidaucture, but
only if it performs the chosen function. These two terms mayestimated by searching
for the candidate structure in a set of proteiiswhich perform the function and another
set,Y, which is representative of all known protein structuregju&tions 5.3 and 5.4
illustrate this, wher€x andCy are the number of times the candidate structure occurs in
X andy respectively andiX| and|Y| are the number of proteins in setsandy.

P(SF) = % (5.3)
P9 = (5.4)

From these equations it is straightforward to define the étdanfior calculating signifi-
cance ¥, as Equation 5.5.

~ Cx|YIN

Cy[X[K

This measure of significance is useful as it may immediatelgpiplied to the proba-
bilistic prediction of function.

Table 5.1 is an example contingency table of results for efiat discovered pattern,

(5.5)
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Pattern| Not Pattern| Total

Function 40 10 50
Not Function| 25 75 100
Total 65 85 150

Table 5.1: Example Contingency Table

broken down into categories for whether the proteins perftire function of interest or
not and if the proteins contain the pattern of interest or notthis example, there are
150 protein structures. 50 of these proteins perform thetfon of interest and 100 do
not. 65 protein structures contain the pattern and 85 do Tibe Bayes score may be
calculated from these results using Equation 5.5, wligre- 40,Cy = 25, |X| = 65 and

Y| = 85. For this examplé\l andK will be given values of 1,000 and 50,000 respectively,
indicating that the fictional function occurs in 1,000 pinogefrom a database of 50,000.
With these inputs, the value &t is 0.04.

5.1.4 Chi-Square Score

The Chi-Square score is based on the estimatation of statisignificance from a bi-
variate table. To produce the Chi-Square score, a table afotag values must first be
calculated from the sample results in Table 5.1, indicatihgt the expected distribution
of values would be if there were no correlation between tlesgmce of the pattern of
interest and the protein performing the function of interér each cell, the expected
value is calculated as the total for the cell column multigby the total for the cell row,
divided by the table total. These values are shown in Tale 5.

Pattern| Not Pattern| Total
Function 21.67 28.33 50
Not Function| 43.33 56.67 100
Total 65 85 150

Table 5.2: Example Chi-squared expected values, calculadigdthe information given
in Table 5.1.

With these two tables, the Chi-Square score can now be ctdduldor each table
cell, the amount to which the expected val&g,differs from the observed valu@, is
calculated aéo_?E)Z. For example, the top left hand cell in Table 5.1 has a valu®fo
of 40. The same cell in the expected values of Table 5.2 hakia far E of 21.67. The
score for that cell ié%%‘;mz or 15.5. When the same calculations are made for the other
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three cells,t he sum of those values is the Chi-square scotedavhole table which, in
this example, is 41.08. Standard tables, which vary acogrth the number of degrees
of freedom in the data table, may be used to generate a p-f@ldbe Chi-square test
which, in this example, exceeds 0.001.

With the two scoring methods described, the next sectiosgmts further evaluation
of the progressive match algorithm by analysing a large rermalb protein groups and
scoring the resulting common patterns.

5.2 Analysing Multiple Protein Groups

The strength of the progressive match is in finding small,roomfeatures within overall
dissimilar structures. This section evaluates the algarg ability to achieve this by
selecting a wide range of functional groups by GO annotasielecting those groups with
dissimilar structures, running the progressive match ai egoup and then assigning
scores to any discovered patterns in the manner previoesigribed. In order to assign
a particular GO annotation to a new structure, that GO atinatanust be a part of this
full discovery process. To assign the full range of functioimerefore, features must be
found for as many GO annotations as possible.
This process consists of three main steps:

1. Generating a list of GO term groups to be analysed.
2. For each GO term, identify common features among proteithsthat GO term.

3. Assess the statistical significance of each common eé&und.

As discussed in Chapter 4, the progressive match performisMbes finding small,
common features among structures which are not similaratlvéxithough a specific set
of proteins with this property were used in Section 4.2, aomated method for finding
such groups is required for larger scale testing. A meastimverall dissimilarity is
required and a measure of likely shared sub-structureaesresded. The first property is
considerably easier to measure quantitatively, thougtethee still alternatives.

5.2.1 Measuring Similarity

Chapter 2 covers various notions of similarity between pnstencluding shared ancestry
and the number of amino acid changes between protein sesgieelecting data sets
based on dissimilar ancestry creates a number of problemh$gamst a lack of available
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data. The number of functions shared across ancestralli@amesmall. The problem of
lack of data remains to some degree when measuring similarisequence differences
as two proteins of the same ancestry are highly likely to lzaka@ge amount of sequence
in common anyway. Although it may be unusual for two protémisave similar function
but largely dissimilar sequence, the progressive matcfopes a multiple alignment,
not pairwise, and adding more proteins to a data set willgedbe amount of sequence
similarity between the entire set compared to the simylasgtween any pair from that
set. Percentage sequence similarity is therefore usedabdhee measure of dissimilarity
within a set.

5.2.2 Likely Common Sub-Structure

Measuring the likelihood that a set of proteins will have arsll sub-structure is difficult
to achieve quantitatively. There are many reasons why ipteay have the same struc-
ture within them as very small features may play vital roles iwide range of proteins.
The Gene Ontology covers a broad range of functional roldstaerefore, grouping pro-
teins in this manner should give rise to common sub-strestutt is desirable to select
GO terms that are not too general as this is likely to redueeptibbability of the asso-
ciated proteins having nothing in common, structurallyis lalso desirable to select GO
terms that are well represented in the available data. hesefore necessary to combine
the two measures of dissimilar structure and similar fuamcto select the final portion of
the GO to be used. The ASTRAL [12] database provides a link &&tmsequence and
structural data. ASTRAL clusters PDB files based on eithensece similarity or ances-
try and then uses a unique scoring system to select the Ipessentatives of each cluster
in terms of data quality - completeness and resolution. @tleeomost useful features of
ASTRAL for the experiments in this chapter is the selectiodlatiasets grouped by de-
gree of sequence similarity. Data sets are available aiessarsimilarity levels, starting
at a maximum of 10% i.e. the best set of protein structureserPDB, in terms of data
guality, none of which share more than 10% sequence sityilaith any other structure
in the set. Putting together the features of the GO and of ASTRIfows the selection
of the datasets required. Each GO term to be examined mustshdficient structural
examples to satisfy both the process of discovering commb#patterns and the process
of evaluating any common patterns found. To assess thetatalisignificance of a pat-
tern, it must be searched for in both a positive set and a wegset. To allow a proper
evaluation of the discovery process, the initial match setthe positive evaluation set
should be different. For the discovery process, at leastntatch set should also consist
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Figure 5.1: The number of GO annotations with a given minimmumber of available
examples in ASTRAL.

of structurally dissimilar proteins, ideally selectedrfrthe ASTRAL 10% set. The Gene
Ontology contains 17727 terms (as of April 22, 2005), manybich are only applied
to a small number of proteins in the PDB, so a method for redyitia selection of GO
terms is required. ldeally, the volume of available streaitalata would be such that a
large number of structures for each functional groupingldde used. Unfortunately,
this is not the case for the vast bulk of the GO. Figure 5.Kitates the distribution of
how many GO terms apply to a varying minimum number of PDBiestrevealing that
there are a large number of GO terms that do not have manyntgtractural examples at
all. Taking all these factors into account, the criteriadelecting GO term groups in this
experiment is that each set must contain at least 20 exarfiplasthe ASTRAL 100%
set to allow 10 examples for the match set and another 10 égpakitive evaluation set.
This size of selection will still allow a reasonable selentof GO annotations to be con-
sidered. Once this list has been generated, each GO term gaouthen be passed into
the next step - the pattern discovery process.
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5.2.3 Pattern Discovery

With the selection generated from the previous sectionpditern discovery stage will
take as input 10 protein structures from the ASTRAL 30% s&t,libing a typical figure
for transferring annotation via homology in the literatuté more than ten such struc-
tures are available then the match set will consist of anycsires that are members of
ASTRAL 10% first, then 20% and then the remainder from the 306 se

As shown in Chapter 4, the selection of match parameters ysivgrortant to ensure
a reasonable run-time. Both tolerance and coherence maydbee® to improve the
runtime but each also limit the type of match found. Incnegsioherence allows more
sparsely distributed amino acids to be considered as a pati#rn whereas increasing
tolerance allows more variation in the position of atomshimitmatching patterns. The
solution used here is to simply run the algorithm twice - onié a broader tolerance and
again with a broader coherence - with the other parametduseel to allow a reasonable
run-time. The first set of parameters sets tolerancétarid coherence to/g allowing
visibly similar patterns to be discovered. The second spacdmeters uses a tolerance of
12A and a coherence ofﬁGaIIowing a cluster of adjacent amino acids to be considered
The resulting two sets of patterns may then be evaluated) uba statistical measures
discussed previously. @-atoms were used as the input points for this process.

5.2.4 Evaluation

For the evaluation stage of this process two sets were cmbstl, a positive set of up to
50 protein structures (if that many were available) and aoarly selected negative set
of 50 structures, for each GO term group. The largest commbrsguctures found in
the match set were then each searched for in each structthie pbsitive set and again
for the negative set. Using the methods described prewioeath pattern could then be
assigned a Bayesian significance. The Chi-Square test waaldweapplied to obtain an
alternative measure of correlation significance. With the &juare values, each pattern
scoring a value with an equivalent p-score of 0.01 or belowiccthen be reported as
statistically significant, i.e. strongly correlated withetassociated GO annotation. The
resulting significant patterns were then available forgtaised on other criteria, such as
the Bayesian significance score or the size of the match. &ig@ris a graph showing
the number of GO annotations with at least one significartepatfor varying levels of
significance. A total of 406 GO classes were tested and, set00 contained at least
one significant common pattern with a Chi-Square raw valueOd83 or more, corre-
sponding to a p-score of 0.005. 405 GO classes containedsitdae pattern with a raw
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Figure 5.2: The number of GO annotations with at least ongfggnt pattern, for varying
levels of Chi-squared score obtained.

Chi-Square value of 7.87, indicating a p-score of at least.0.0

The next section presents a small selection of these re@spitssenting various mea-
sures of significance within those already classified asifsignt from the Chi-Square
measure, along with other interesting patterns and somgented results.

5.3 Results

Table 5.3 lists the GO annotation groups selected for ptasen in this section along
with the match parameters used whei®the tolerancek is coherence anslis minimum
score. The table also summarises the matches presented \Bims’ is the size of pat-
tern found, ‘ASTRAL is the number of representatives ava#aor the annotation in the
ASTRAL 100% set, with the number available in the ASTRAL 30%geén in paren-
theses, '+ and ‘-’ are the proportion of the positive andatag evaluation sets in which
the pattern was found and ‘Bayes’ and ‘Chi-Sq’ are the sigmifieavalues with the Bayes
method and Chi-Square method. The following subsectionkgiexpach of these results



GOId GO Description t | k| s| Size| Time(s)| ASTRAL | + - | Bayes| Chi-Sq
0004181 Metallocarboxypeptidase Activity 1/8|6| 41 2600 21(10) | 0.65|0.00| 1.000| 72.9
0045012 MHC Class Il Receptor Activity 1/8|6| 25 | 1500 34(4) |0.91|0.00| 1.000| 122.5
0009975 Cyclase Activity 1/8|6| 6 2800 13(6) | 0.70| 0.00| 1.000| 75.2
0003702| RNA Polymerase Il Transcription Factor] 1 |8 | 6| 2 2.6 79(41) | 0.30| 0.75| 0.002| 28.1
0004759 Serine Esterase Activity 1/8/6| 6 150 70(10) | 0.86| 0.06| 0.067| 97.0
0004623 Phospholipase A2 Activity 1 /8|6 6 9.9 77(4) |0.88]0.03| 0.141| 111.9
0016731 Ferredoxin Reductase Activity 1/8/6| 8 83 33(5) | 0.91]0.00| 1.000| 117.4
0005246 Calcium Channel Regulator Activity 126 |9 | 4 0.33 25(8) 10.84|0.12| 0.012| 534
0019239 Deaminase Activity 12|16 (9| 2 2500 31(14) | 0.23|0.93| 0.001| 65.0
0015666| Restriction Endodeoxyribonuclease Activitl2 | 6 | 9| 2 48 43(17) | 0.23]0.89| 0.001| 61.0
0005267 Potassium Channel Activity 12|16 (9| 2 1500 47(11) | 0.21/0.91| 0.001| 72.3
0016247 Channel Regulator Activity 12|16 |9 3 0.36 114(33) | 0.88| 0.15| 0.046| 74.4

Table 5.3: Summary of the match parameters used and ragattores obtained for each GO class presented. ‘Chi-Sq'ateiche

Chi-squared score.

G Ja1deyd

89

8ourayIUBIS [eoNSieIS



Chapter 5 69 Statistical Significance

Figure 5.3: A common pattern found within representativeicttires annotated with
G0:0004181. From left to right: front view of pattern witrdCPA, front and top views
of pattern within 1DTD.

further, with tables detailing the matched residues inetudt the end of the chapter.

5.3.1 Metallocarboxypeptidase Activity (GO:0004181)

This match took 2600 seconds to complete, making this onkeofrtore complex algo-
rithm runs. The largest common structure found containerkditiues, the largest single
pattern found in this experiment. The matching residuedistezl in Table 5.4 and a vi-
sual representation of the match is also given in Figure AltBough no two proteins in
the match set had more than 30% sequence similarity, andhmadsto more than 10%
similarity, this still amounts to a theoretical common sexee of 30 residues (10% of
308, the number of residues in the smallest structure - 1M4éLij is not surprising that
this structural match appears. In terms of sequence positie matches sometimes begin
at different positions on the chain but retain the sameildigion along the sequence. The
match is also limited to the same chain in each case. 1IKWM ifeatwo chains but this
is merely due to the same pattern appearing twice ratheidiag a single pattern spread
across two chains. Predictably, due to the number of matewdues, this pattern is sta-
tistically significant. The Chi-Square test gives a value2B7indicating significance at
the 99.9% level.
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Figure 5.4: A common pattern found within representativeicitires annotated with
G0:0045012. 11AK pictured left, 1K8I pictured right.

5.3.2 MHC Class Il Receptor Activity (GO:0045012)

This largest common pattern is also the most statisticadjgifscant pattern from the
experiment, with a Chi-Square score of 122.5. This represgiptscore indicating sig-
nificance at much greater than the 99.9% level. The pattewsiglly distinctive, as
illustrated in Figure 5.4 and appears as a common sequeneellaas a common struc-
ture between all input proteins. The sequence match is giv@iable 5.5. The high
statistical significance of this pattern is most likely tisarsimply from the size of the
pattern. The structure contains 25 residues, making it dileedarger patterns found in
this experiment.
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Figure 5.5: A common pattern found within representativeicitires annotated with
GO0:0009975. Pictured left, LAB8. Pictured right, 1QMH.

5.3.3 Cyclase Activity (GO:0009975)

Using the Bayesian method for assigning significance, thasgte has the highest score
of all matches found in the experiment as it is both rare aag¢ttimmon pattern is distinc-
tive. The pattern is only six residues in size but appear®# &f positive examples and
0% of the negative examples, resulting in a Bayes score ofithEgroteins used in the
initial match, this pattern sometimes occurs as a sequeatehimas shown in Table 5.6
but is also present in proteins of different fold (e.g. 1AB& d&®QMH) as illustrated in
Figure 5.5. This result shows that the pattern discoverjhaotketorrectly identifies struc-
tures which are adjacent in space but not necessarily iresegwrder.

5.3.4 RNA Polymerase Il Transcription Factor (GO:0003702)

This result, illustrated in Figure 5.6 and Table 5.7, denratss an interesting side-effect
of the large scale discovery process in that the patternhibibory — presence of this
pattern is significant in the Chi-Square score but actualtyeteses the probability of the
annotation being present. As only 10 proteins are seleotdtié initial pattern discovery,
and a pattern only needs to appear in 6 proteins to be coesidematch, it is only by
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Figure 5.6: A common pattern found within representativeicitires annotated with
G0:0003702. From left to right: 1DP7, 1DL6 and 1NH2.

chance that proteins containing this pattern were choseihelwider test of significance,
this pattern only occurs in 30% of the positive set but in 75%the negative set (i.e.

presence of this pattern is actually evidence that the preteould not be annotated as
G0:0003702).

5.3.5 Serine Esterase Activity (GO:0004759)

The larger sized matches discussed in this chapter arectablyi highly significant purely

as a result of the improbability of such large common past¢oroccur by chance alone.
These larger results are also commonly associated with éerlying sequence similar-
ity. This result is chosen as an example of a small, signifjqaattern. The pattern is 4
residues in size and occurs in various sequence positioms)@proteins of varying over-
all structure, though the pattern tends to appear most émttyuat the core of the protein.
This is illustrated in Figure 5.7 and in Table 5.8. Althoughadl, this pattern occurs in

86% of positive examples and only 7% of negative examples, a/Chi-Square score of
97.0.

5.3.6 Phospholipase A2 Activity (GO:0004623)

This is another example of a small but highly statisticaliydicant pattern. The common
pattern is only 3 residues in size but occurs in 88% of paseixamples and in only 3% of
negative examples. It has a Chi-Sq score of 110. The patteur®® varying sequence
locations, sometimes overlapping and in a wide variety fiédint folds, as illustrated in
Figure 5.8 and in Table 5.9.
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Figure 5.7: A common pattern found within representativecitires annotated with
GO0:0004759. From left to right: 1DIN, 1MX1 and 1QE3.

5.3.7 Ferredoxin Reductase Activity (GO:0016731)

Of the small patterns identified in this experiment, thisregke is one of the most signif-
icant. The pattern is only 4 residues in size but occurs in 81@ositive examples and
0% of negative examples with a Chi-Square score is 117. Therpas frequently found

in the core of the protein and often appears multiple timestrinctures with more than
one domain. The pattern is visually similar between difiéexamples, as illustrated in
Figure 5.9. The sequence positions vary from example to pbaas shown in Table 5.9.

5.3.8 Calcium Channel Regulator Activity (GO:0005246)

This example resulted from running the pattern discoverthogtusing a larger tolerance
and tighter coherence. The patterns found using these péeesrare easier to discover
between more disordered structures but they are generaltg focalised. The pattern
here is 4 residues in size and occurs in a wide range of sequmsitions, as listed in

Table 5.11. This pattern is generally found in smaller stmes which appear largely
different to one another, as illustrated in Figure 5.10.

5.3.9 Deaminase Activity (G0O:0019239)

This pattern consists of only two residues, a valine and @rey and is another example
of an inhibitory pattern. The pattern occurs in 23% of pusitexamples but in 93% of
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Figure 5.8: A common pattern found within representativecitires annotated with
G0:0004623. 1MC2, 1POC, 1LE6 and 10Z7

negative examples. The presence of this pattern is usuatigrce that a protein should
not have the annotation GO:0019239 and only occurs in thelgansed for the initial

pattern discovery by chance. When the pattern does occursitiygoexamples, it often
appears multiple times and in a broad range of folds, agnditesd in Figure 5.11 and in
Table 5.12.

5.3.10 Restriction Endodeoxyribonuclease Activity (GO:0015666)

This pattern is another example of an inhibitory patterrthls case the pattern consists of
a glutamic acid and a leucine. This pattern occurs in 23% sitpe examples and 89%
of negative examples. If this pattern is present in a stredten it is only 26% as likely
to be annotated with GO:0015666 as it would be by chance alonbe examples used
for the initial pattern match, the pattern occurs multijmests, as illustrated in Figure 5.12
and in Table 5.13.
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Figure 5.9: A common pattern found within representativecttres annotated with
G0:0016731.

Figure 5.10: A common pattern found within representativacsures annotated with
G0:0005246. PDB structures 1BIK, 1BF0 and 1Q9P.

5.3.11 Potassium Channel Activity (GO:0005267)

Another inhibitory pattern, this example is another comaliom of two residues — leucine
and threonine. The pattern occurs in 21% of positive exasnaiel in 91% of negative
examples. It has a Chi-Square significance of 72.3. As apmeansnon with the in-
hibitory patterns found in this experiment, this pattertenfoccurs multiple times in the
few positive examples used for the initial pattern discgvéixamples are illustrated in
Figure 5.13 with the corresponding sequence positioredist Table 5.14.
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Figure 5.11: A common pattern found within representativacsures annotated with
G0:0019239. PDB codes 1J0D, 1K6W, 1QD1.

Figure 5.12: A common pattern found within representativacsures annotated with
G0:0015666. PDB codes 1CKQ, 1KC6, 3PVI.

5.3.12 Channel Regulator Activity (GO:0016247)

The last result to be presented in this section is a smalligoifeant feature consisting
of three cysteine residues. The pattern occurs in 88% ofippsixamples tested and in
only 15% of negative examples. This gives the pattern a Cha&gscore of 74. The
pattern is commonly found in shorter protein chains whidemfhave different overall
structures, as shown in Figure 5.14. The three cysteinasod@djacent in sequence and
occur in different positions between examples, as showriers.15.
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Figure 5.13: A common pattern found within representativacsures annotated with
G0:0005267. PDB codes 1LNQ, 10RS, 1P7B.

Figure 5.14: A common pattern found within representativacsures annotated with
G0:0016247. PDB codes 1ACW, 1R1G, 2SN3.
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PDB ASTRAL Residues Aligned Residues
A395 A399 A401 Ad24 A426 A427 A467 A470 A481 A483
A483 A485 A492 A496 A498 A500 A501 A502 A513 A514

1DTD 10% 364 A521 A523 A526 A528 A531 A552 A554 A555 A561 A562
A564 AB08 AB12 A613 A615 A623 AB25 AB26 AB30 A634
AB35

A39 A43 A45 AB9 A71 AT72 Al12 A115 A126 A127
Al128 A130 Al136 Al40 Al142 Al44 Al145 Al46 A157 A16(Q

iM4L 10% 308 Al165 Al67 Al170 Al172 Al75 A196 A198 A199 A205 A204
A208 A252 A256 A257 A259 A267 A269 A270 A274 A27§
A279
39 43 45 69 71 72 112 115 126 127|
128 130 136 140 142 144 145 146 157 16
4CPA 10% 345 165 167 170 172 175 196 198 199 205 20
208 252 256 257 259 267 269 270 274 27
279
39 43 45 69 71 72 112 115 126 127|
128 130 136 140 142 144 145 146 157 16
1AYE 10% 401 165 167 170 172 175 196 198 199 205 20
208 252 256 257 259 267 269 270 274 27
279

A39 A43 A45 A69 A71 AT72 A39 A43 A45 AB9
A71 AT72 Al12 Al115 Al126 Al127 Al128 A130 Al136 Al140
Al42 Al44 Al44 Al145 Al46 A157 A160 Al165 Al167 A17q
Al172 Al75 A196 A198 A199 A205 A206 A208 A252 A254
A257 A259 A267 A269 A270 A274 A278 A279

1KWM 10% 806 B39 B43 B45 B69 B71 B72 B39 B43 B45 B69
B71 B72 B112 B115 B126 B127 B128 B130 B136 B14p
B142 B144 B144 B145 B146 B157 B160 B165 B167 B170
B172 B175 B196 B198 B199 B205 B206 B208 B252 B256
A257 B259 B267 B269 B270 B274 B278 B279
36 40 42 69 71 72 112 115 128 129
130 132 138 142 144 146 147 148 160 16

10BR 30% 323 168 170 173 175 178 204 206 207 213 214
216 259 263 264 266 274 276 277 281 28
287

Table 5.4: Common pattern found within representatives f@&@m0004181.

PDB Astral Residues Aligned Residues
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
1KGO 10% 504 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175

B177 B183 B188
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
1D5M 70% 603 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B1Y5
B177 B183 B188
B96 B98 B114 B116 B118 B121 B122 B123 B133 B150 B131
1KslI 70% 371 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B1Y5
B177 B183 B188
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B131
1IAK 70% 367 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B1Y5
B177 B183 B188
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B131
1KLU 70% 608 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B1Y5
B177 B183 B188
E97 E99 E115 E117 E119 E122 E123 E124 E134 E150 E151
1FV1 70% 737 E152 E153 E154 E156 E161 E168 E170 E171 E172 E173 E175
E177 E183 E188
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B131
1J8H 70% 810 B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B1Y5
B177 B183 B188

Table 5.5: A common pattern found within representativemfG0:0045012.

PDB Astral Residues Aligned Residues
1AZS 10% 729 B889 B976 B998 B1021 B1023 B1027
1FX2 10% 235 A904 A965 A1023 A1045 A1047 A1051
1QMH 10% 671 A58 A60 Ab4 A91 A121 A169
1FX4 90% 231 A892 A953 A1011 A1033 A1035 A1039
1CJK 100% 721 B889 B976 B998 B1021 B1023 B1027
1CJU 100% 721 B889 B976 B998 B1021 B1023 B1027
A889 A976 A998 A1021 A1023 A1027
1AB8 100% 402 B889 B976 B998 B1021 B1023 B1027

Table 5.6: A common pattern found within representativemftGO:0009975.
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PDB ASTRAL Residues Aligned Residues

2BBY 10% 69 189 190

1DL6 10% 58 A2 A3

1DP7 10% 76 P41 P42

1H2K 10% 335 A94 A95 A96

1INH2 10% 402 All7 Al18 Al135 A136 B6 B7 D34 D35

2GLI 10% 155 A214 A215
A34 A35 A73 A74 A76 ATT C34 C35 C73 C74

1F3U 10% 1094 C76 c77 E34 E35 E73 E74 E76 E77 G34 G35
G73 G74 G76 G77

Table 5.7: A common pattern found within representativemftGO:0003702.

PDB ASTRAL Residues Aligned Residues

1CEX 10% 197 39 41 117 118 122 123

1R1D 10% 484 A90 A91 A95 A96 B90O B91 B95 B96

1GGV 10% 232 Al21 A125 Al126 A127 A143 Al46

TUWC 10% 522 A67 A131 A135 A136 B67 B131 B135 B136

1DIN 20% 233 125 126 127 143 168 169 200 201

1ESC 20% 302 65 66 67 238 239 240
Al141  A1219  Al1222  A1223 B2141 B2219 B2222 B2223 C3141 C3219

1MX1 20% 312 C3222 C3223 D4141 D4219 D4222 D4223 E5141 E5219 E5222 E5p23
F6141 F6219 F6222 F6223

1QE3 25% 483 A105 A187 A190 A191

2BCE 30% 579 106 107 108 578

Table 5.8: A common pattern found within representativemfGO:0004759.

PDB ASTRAL Residues Aligned Residues
1IMC2 10% 122 A1029 A1044  A1045 A1048 A1050 Al1051 A1098
1POC 10% 134 9 30 31 34 37 63 105 113 115
1578 30% 119 A29 Ad4 A45 A48 A51 A93
1POA 35% 118 28 43 44 47 50 92
A30 A38 ATT A78 A125 B30 B38 B75 B95 B96
10z7 35% 254 B111 B119
A25 A27 A32 A42 A43 Ad4 A46 A48 A49 A90
1LE6 35% 369 Al115 B27 B42 B43 B44 B46 B48 B49 B90 C25
Cc27 C32 C42 C43 C44 C46 C48 C49 C90 C115
A29 Ad4 A45 A48 A51 A93 B4 B7 B51 B53
1BUN 40% 181 B55 B57

Table 5.9: A common pattern found within representativemfGO:0004623.

PDB ASTRAL Residues Aligned Residues
TFDR 0% 247 T 11z 15 116 139 212 213 245
TAGP 0% 757 112 113 16 117 140 219 220 752
A15  AZi6  A210  A220  A243  A307 A308  A333  B2i5  B2¢
0,
1KRH 10% 674 | B219 B220 B243 B307 B308 B333
AT AG5  A331 A430 A434  A438 B9l B95 B33 B43
1LQT 10% oz | [ PO
1537 0% 82 A30  A33 A4S ASA  AB5 A4 AB5  AB9  AGL
10GI 50% 205 | Al52 AI53 AIS6 AIS7 AL89  AZ61 A2  A30L
IENC | 50% 296 T67 168 171 172 200 272 273 312
AT61 Al62 AI65 AL66  AL94  A266  AZ67  A306  B661  B66:
1QFz 90% 231 B665 B666 B694 B766  B767  B806
AT61  AI62 AI65 AL66 AL94 AZ66  A2Z67  A306 D661  B66
1QGA | 100% 603 B665 B666 B694 B766  B767  B806

Table 5.10: A common pattern found within representativesfGO:0016731.
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PDB ASTRAL Residues Aligned Residues

1G9P 10% 45 A17 A24 A25 A29

1AGG 10% 48 4 11 12 18 19 20 27 34

10MC 10% 27 1 2 15 16 19 26

1AXH 10% 37 11 17 22 34 36

1LMR 10% 35 A5 A19 A20 A21

1CNN 10% 26 Al A2 A4 A8 A10 A15 Al6 A20 A25 A26

A3 A8 A10 All  Al6 Al7 A19 A20 A21 A2

1IE6 10% 33 A30 A32

1BFO 30% 60 7 53 55 57

1F3K 35% 26 Al A2 Al15 Al6 A20 A24

1BIK 40% 110 26 70 72 76

Table 5.11: A common pattern found within representativesfGO:0005246.

PDB ASTRAL Residues Aligned Residues
A66 A67 A91 A96 A97 A120 A123 A125 AT47 A153
1PKH 10% 357 B66 B67 Bo1 B96 B97  B120  B123  B125  BI53
A13 A52 A53 A119 A125 A130 A137 A139 A149 A179
1K6eW 10% 424 A194 A197 A210 A229 A232 A277 A278 A282 A328 A330]|
A331 A335 A337 A376 A379 A394 A398
1375 10% 57 AL19 A121 AL122 A134 A135 A145 A148 AT49 A152 A158
A3 A36 A37 A52 A53 AT5 ATT AL33 A153 A190
0,
1FSF 10% 266 A193 A199 A202 A203 A204 A238 A249 A252
A4 A4 A5 A34 A34 A35 A8 A90 A90 A96

Al19 Al121 Al125 A175 A189 A216 A219 A238 A239 A246
A249 A264 A265 A269 A270 A272 A273 A302 A303 A303|
1QD1 10% 650 A304 A307 A309 A325 A326 B2004 B2005 B2034 B2035 B2048
B2090 B2096 B2119 B2121 B2125 B2175 B2189 B2216 B2219 B2238
B2239 B2246 B2249 B2264 B2265 B2269 B2269 B2270 B2272 B22373
B2273 B2302 B2303 B2303 B2304 B2307 B2309 B2325 B2326

A21 A34 A45 A55 A59 A70 A71 A84 A87 A96
A97 A129 A173 Al76 A187 A189 A289 A290 A318 A319
B21 B34 B45 B55 B59 B70 B71 B84 B87 B96
B97 B129 B173 B176 B187 B189 B289 B290 B318 B319

1J0D 10% 1364 B321 B323 c21 C34 C45 C55 C59 C70 C71 Cc84
cs7 C96 c97 C129 C173 C176 Cc187 C189 C289 C290
C318 C319 C321 C323 D21 D34 D45 D55 D59 D7q
D71 D84 D87 D96 D97 D129 D173 D176 D187 D189
D289 D290 D318 D319 D321 D323

1P60O 10% 483 A37 A45 A46 A88 A108 B237 B245 B246 B288 B308
Al18 A43 A46 A100 A129 A130 A132 A133 A163 A165

Al166 Al168 A182 A213 A228 A231 A261 A292 B514 B518
B543 B546 B598 B600 B629 B630 B632 B633 B663 B66
1A4M 10% 1396 B666 B668 B682 B693 B698 B713 B728 B731 B761 B79.
C1014 C1018 C1043 C1046 C1098 C1100 C1129 C1130 C1132 C1133
C1163 C1165 C1166 C1168 C1182 C1193 C1198 C1213 C1228 C1231
C1261 C1292 D1514 D1518 D1543 D1546 D1598 D1600 D1629 D1630

D1632 D1633 D1663 D1665 D1666 D1668 D1682 D1713 D1761 D1792

oot

A30 A31 A37 A73 A75 A83 A103 A104 A105 Al117
1JTK 10% 262 A120 B30 B31 B37 B73 B75 B83 B103 B104 B105
B117 B120
10VI 10% 62 A47 A51

Table 5.12: A common pattern found within representativesfGO:00192309.



Chapter 5 81 Statistical Significance

PDB ASTRAL Residues Aligned Residues
A24 A25 A89 A90 A91 A98 A100 A103 Al04 Al24
A126 A153 Al154 A233 A236 A258 B24 B25 B89 B90!
1RIF 10% 564
B91 B98 B100 B103 B104 B124 B126 B153 B154 B233
B236 B258

A82 AB4 A103 A104 Al126 A127 A157 A159 A201 A203
A237 A246 A248 A249 A250 A253 A259 A262 B82 B84
B103 B104 B126 B127 B157 B159 B201 B203 B237 B246

B248 B249 B250 B253 B259 B262 Cc82 Cc84 C103 C104
1FIU 10% 1144

C126 c127 C157 C159 Cc201 C203 Cc237 C246 C248 C249

C250 C253 C259 C262 D4 D8 D82 D84 D103 D104

D126 D127 D157 D159 D201 D203 D237 D246 D248 D249
D250 D253 D259 D262

All Al4 A45 A46 A155 A156 A158 A211 A213 A220

1SX5 10% 488 A225 B11 B14 B45 B46 B155 B156 B158 B211 B218
B220 B225
3pVI 10% 312 A9 A10 All Al12 A68 AG9 Al115 All6 A120 A121

B9 B0 Bl Bl2 B68 B69 BIl5 BI16 B120 BI12
A8 ALl A3 A4  A65  A66 A9 ALO0 AI03 Al04
Al13  All4 AL79 A180 AI81 A240 A241 B8  Bll B33
1bC1 10% 639 B34  B65  Be6  B9S  Bl0O0 B103 BlO4 BI13  Bl14  BL7D
B180 BI81 B240  B241
A8 A40 A4S A4T  AAD A58 A60  ALl6 ALl AL
AL25 AL160 AL63 AL69 AL70  Al74  AL75  A180  A189  AL9(
A197 A198 B33  B40  B45  B47  B49  BS8  B60  BIl4
B117 BI24 BI25 B160 BI163 B169 B170 Bl74 B175  BL40
1KC6 10% 1025 | B189 B190 B197 B198  C38  C40  C45  C47  C58  C6D
Cl16 C117 Cl24 Cl125 Cl26 C169 C170 Cl74 Ci75  C180
C189 C190 C197 C198 D38 D40 D45 D47 D49 D5
D60 D116 D117 D124 D125 D169 D170 D189 D190  DIg7
D198
71 73 80 83 84 110 11z 145 146 147
1CFR 10% 283 166 170 179 180 18l 201 204 207
AT0 ALl ALZ A48 AS0 A9 A60  A66 A9 AL
A216  A218  A219  A230 A231 A233  A234  A235  A238  A27(
A271  A272  A274  A2T5  A277  A280 A385 A386  A395  A398
INAG 10% 790 BIO Bll  Bl2 B48  BSO  B59  B60  B66  B79  B133
B216  B218 B219 B230 B231 B233  B234 B235 B238  B270
B271 B272 B274 B275 B277 B280  B316  B318 B335  B337
B385 B386 B3% B3

1003 10% 93 AG38 AB39 AB40 AB42 AB50 AB51 AB6S AB67 AG68 B63§
B639 B640 B642 B650 B651 B665 B667 B668
1CKQ 10% 261 A33 A37 A46 A49 A68 A70 Al1l A158 A160 A167

A169 Al70 Al75 AL77 A191 A192 A270 A272 A274

Table 5.13: A common pattern found within representativesifGO:0015666.
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PDB ASTRAL Residues Aligned Residues
171D 0% 100 | ALzl Al22  Ald6  AISL
" A2 A3 A0 ALl A47 A48 AS3 A0 C35  CH

1R3J 10% 534 C38 C40 C4l  C59  C6O

GaY | 10% 726 | B433  B434  B457  Ba60  B463
AL A68 A0 ATl A72 A4 AB6  AL4S AI49  ALTZ

1PB7 10% 289 | A218  A266 A268  A269

LK 0% ao | ABL RSG5 A0S AlSS RIS AN ANG AZS A%l A%
A49  AS5  B64  B6S  B/0 B8  B83  C37 CA0 63

10RS |  10% 567 ce64  C65  C67  C68  C6O  COL  C94  CO7  Cl03  Cl05
C106 CI25 Cl27 Cl28 C120 C130 C131 C138 Cl4l
A3 A4 A% A2 A28 A3l A9 AS0 A2 A%
Al92 AIS5 Al96 AL98  A217 A220 A203  A294  A302  A303
A318 A319 A327 A330 B23  B24  B25  B26  B28 B3l
B79 B8O  BS2 B84 Bl92 BI95 B196  B198  B217  B22p
B203  B204 B302 B303 B3l8 B3l B327 B33 C23  C2h
c25 C26 Cc28 C31 C79 C80  C82  Cs4 Clo2  Cl95
C196 C108 C217 C220 C293 C294 C302 C303 C318 C319
C327 330 D23 D24 D25 D26 D28 D31 D79 D8
D82 D84 D192 D195 D196 D198 D217 D220 D293 D24
D302 D303 D318 D319 D327 D330 E23  E24  E25  E26

1LNQ 20% 2408 | e E31  E79  ESO  E82  E84  EL92 EL95 E196  EI198
E217 E220 E203 E204 E302 E303 E318 E319  E327  E330
F23  F24  F25  F26  F28  F31  F79  F80  F82  Feh
F102  F195 F106  F198  F217  F220 F293  F294  F302  F303
F318  F319 F327 F330 G23 G244  G25 G266  G28 G4l
G79  G80  G82  G84 G192 G195 G196 G198 G217 G20
G293 G204 G302 G303 G318 G319 G327 G330  H23  H24
H25  H26  H28  H31  H79  H80  H82  H84  H192  H1of
H196  H198 H217  H220 H293  H294 H302 H303 H318  H3lo
H327  H330
A49T  A402  AB57  AGB3  AGS5  ABB6  AG03  AG30  AG33 B4

1Q3E | 20% 483 | B4gp Bos7  B583  B585  B586  B603  B630  B633
A0S AI26 AI29 AISL AI38 ALA0 AL63 AL73  AlSS Az

1P78B 25% 548 | A223 A288 A298 B108 BI26 B129 B131 BI138 B140  BI6B
B173 BI85 B221 B223 B288  B298

TI5T 0% 305 | A2l AL22 Al46  AlSL

Table 5.14: A common pattern found within representativesfGO:0005267.

Table 5.15: A common pattern found within representativesfGO:0016247.

PDB ASTRAL Residues Aligned Residues
1R1G 10% 60 A3 A8 A22 A27 B8 B22 B27
1G9P 10% 45 Ad Al7 A18 A24 A29
1BDS 10% 43 6 32 39 40
1BIG 10% 37 7 13 17 28 33 35
1AXH 10% 37 4 11 17 18 22 36
2SN3 10% 65 25 41 46
1H50 10% 42 All A36 A37
1MB6 10% 35 A2 A9 Al6 Al7 A24 A31
1QDP 10% 42 1 8 14 15 16 20 31
1ACW 10% 29 3 6 19 24
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5.4 Chapter Review

This chapter has defined a measure for assigning statisigraficance to common sub-
structures. The measure was tested on a wide variety of GGtation groups, chosen
using measures of dissimilarity taken from the ASTRAL dasaghaWhen run on 400
GO annotations, the vast majority of functional groups hialeéast one significant sub-
structure in common. It is important to note that none of ttnecsures discovered are
contiguous in sequence and so would not have been foundgihr@sequence analysis
alone. A variety of significant structures were found, atyirag sizes, some of which
have been presented graphically. The test revealed thahtamesting side effect of this
experiment and the significance measures used is thattotyifpatterns may sometimes
be found by the discovery process that are actually evidagaast a protein having the
specified function.

With the data collected from this experiment, the next chiapbntinues by attempting
the prediction of function in new protein structures basethe presence of the significant
sub-structures collected.



Chapter 6

Function Prediction

Chapter 5 showed results from applying the progressive naggitithm to a broad range
of GO categories. This experiment resulted in statisycgitjnificant patterns associated
with many GO terms. If a common pattern found between pretefrsimilar function is
found and this pattern tends not to occur in proteins withloatfunction then the pattern
will have a high Bayes score, as shown in Chapter 5. As the Bapes eta structure is
the probability that a protein will perform a function givérat it contains that structure,
this information can be used to predict the GO annotationsafprotein of unknown
function.

This chapter first discusses the methods used to move frordataegathered from
the experiment in Chapter 5 to assigning probabilities thabéein will have a given GO
annotation, then continues to illustrate the process faglecion of protein structures
and, lastly, assesses the ability of this process to prédiction in a larger set of protein
structures.

6.1 Combining Evidence

When attempting to annotate function based on the presensmalfer structures, it is
vital to consider what happens when multiple patterns oatuhe same time. The re-
sults from the sub-structure discovery experiment are enféhm of a set of significant
structures for each GO annotation along with their assedifiequency of occurrence in
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a positive and negative test set. Some structures providegsevidence that a protein
performs a function and some provide weaker, though sgjitificant, evidence. A pro-
tein may have more then one GO annotation and so any predmtazess cannot simply
exit early once compelling evidence of one annotation isitb4 each annotation must
be considered and assigned a probability, providing a ke of scores as a result.
This section discusses how to combine evidence from theepcesof multiple, weakly
significant structures to provide stronger evidence whersthuctures are found together.
If two independent pieces of evidence occur at the same twee it is more likely that
a protein performs a function — if a protein needs to bind with different ligands to
perform a certain function, for example, then the presefeach pattern associated with
those separate binding functions may be more significanbvdwend together than when
found separately. If the pieces of evidence are not indegr@netwo fragmented parts of
the same structure, for example — then as those patterngsabpgear together for that
function, little more evidence exists than before as to thecfion of the protein — the
presence of either structure indicates function alone.

There is no way of combining the separate probabilities @ated with individual
patterns to produce a joint probability without furtherarrhation as to how independent
the patterns are from one another. To solve this problemenméormation needs to be
gathered from the sub-structure discovery experiment. mAEguation 5.5 in Chapter

T X [ Xa [ Xa [ Xa | Xs
S|o0|ol1[1]1
S| 11111
S| 10111
T Y [ Y2l Vs Vs Ys
S|o|1[1]0]1
S|1]ol1]1]0
S(o[1[o0lo01

Table 6.1: Occurrence Tables

5, it can be seen that the two valugs andCy, the number of times the pattern occurs
in a positive and negative set, are necessary for assigigngicsance. These values are
recorded in the database along with each structure. Wheideoimg multiple structures,
Cx andCy no longer represent the occurrences of one pattern but thereaces of a
specific combination of patterns. The number of combinatiohpossible patterns will
often be too large for the statistics relating to each comtimn to be stored in advance.
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Monosaccharide 11.0 Carbohydrate 4.3 Alcohol 7.6
Metabolism (14.2) Biosynthesis (5.0) Biosynthesis (7.6)
Hexose 10.0 Monosaccharide 2.0
Metabolism (14.2) Biosynthesis (5.0)
Glucose 14.2 Hexose 0.1
Metabolism (1 4_2) Biosynthesis (O. 1 )

Figure 6.1: A portion of the GO ontology. Arrows indicate @mhance from each termto a
broader term. Example significance scores are given, whitérited scores in parentheses.

Instead, a table is needed that records which pattern extimrmhich structure. Example
tables are given in Table 6.1 indicating how many times aepaif;, S or Sg, occurs in
a positive set of examples and a negative set of exam§plegppears in 60% of positive
examples and 60% of negative examples here, indicatinggmifiseance. Wherg; and
S3 are considered together, the number of times they both appte positive examples
remains 60% but the number of times they appear togethereiméigative set is now
40%. When all three are considered, they appear in 60% ofiypskamples and 0%
of negative examples. Combining the evidence of all threeepa occurring together
improves their significance.

6.2 Inheriting Evidence

As illustrated in Section 2.2, the Gene Ontology has a natfoinheritance — each leaf
term inherits from a higher, more general term in the netw®hks structure may be used
to assist in automatic annotation. If any node in the ontpiegssigned to a protein then
all parent nodes up to the root node must also be present. cboporate this concept
into the prediction method used here, each node is assigeethdaximum score of any
child nodes and itself, as illustrated in Figure 6.1 withragpée scores given at the top of
each box and the inherited score given in parentheses. Tikdtence of evidence in this
way means that predictions for broad level GO terms can beemiiti greater accuracy,
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taking into account more information than from the resuttfhe sub-structure discovery
experiment for the broad level term alone.

6.3 Prediction Examples

[Al [ Bl (d [0 [H
G0 0016614 106.35 1.00 oxi doreductase_activity,_acting_on_CH OH _group_of _donors_(p) *
00 al cohol _dehydrogenase_activity, _zinc-dependent =
00 catalytic_activity (p) *
00 al cohol _dehydrogenase_activity_(p) *
00 nol ecul ar _function_(p) *
00 oxi doreductase_activity_(p) *
00 oxi doreductase_activity, acting_on_the_CH OH group_of _d...(p) =*
00 auxiliary_transport_protein_activity_(p)
00 cal ci um channel _regul ator _activity
00 channel _regul ator _activity_(p)
00 transporter_activity_(p) =
00 ion_channel _i nhibitor_activity
channel _i nhibitor_activity
12 transferase_activity_(p)
12 transferase_activity, _transferring_al kyl _or_aryl _(other_...(p)
12 prenyltransferase_activity
00 potassi um channel _i nhibitor_activity
00 potassi um channel _regul ator_activity_(p)
00 sodi um channel _i nhi bitor_activity
00 sodi um channel _regul ator _activity_(p)
00 cal ci um channel _i nhibitor_activity
00 ferredoxin_reductase_activity
00 oxi doreductase_activity, _acting_on_iron-sulfur_proteins_...(p)
00 el ectron_transporter_activity_(p) *
00 oxi doreductase_activity, _acting_on_iron-sulfur_proteins_...

1
2 GO 0004024 106. 35
3 G0 0003824 106. 35
4 GO 0004022 106. 35
5 G0 0003674 106. 35
6 GO 0016491 106. 35
7 G0 0016616 106. 35
8 GO 0015457 97.25
9 GO 0005246 97.25
10 GO 0016247 97.25
11 GO 0005215 97.25
12 GO 0008200 91.93
13 GO 0016248 91.93
14 GO 0016740 90.84
15 GO 0016765 90. 84
16 GO 0004659 90. 84
17 GO 0019870 88.60
18 GO 0015459 88. 60
19 GO 0019871 88.16
20 GO 0017080 88.16
21 GO 0019855 85.42
22 GO 0008937 83.90
23 G0 0016730 83.90
24 GO 0005489 83.90
25 G0 0016731 83.90

PRrRPPRRPRPPRPRPPOOCORRPRRRRRRERRERRRERE
o
S

Figure 6.2: List of annotations and significance scoresiftidX, where A=Rank, B=GO
Number, C=Chi-Square Score, D=Bayes Score, E=GO Annotation.

Figure 6.2 shows the results from searching the protein ®Rid8 code 1HDX for
the significant sub-structures associated with 200 GO atinas. The top 25 results are
shown here with a raw Chi-Square value and Bayes score. Lirtesawiasterisk at the
end represent the annotations given to 1HDX from a humarysisadf the structure. A
letter ‘p’ at the end of a line indicates scores inheritedrfriower GO annotations in
the hierarchy. This process has identified the protein amgadlie annotation ‘Alcohol
Dehydrogenase Activity’, with the highest score of any @ais found. The result also
matches the human annotation. Further down the list is tElacTransporter Activity’
which, although in the top 25 results, is lower in the listrtlsg@veral annotations not given
by the operator. Figure 6.3 gives the results for proteinL193e prediction annotates
this protein as having ‘Lysozyme Activity’, with the highescore of any annotation and
a match with the human annotation. Other GO annotationsaareatly inherited as with
the previous example. There are several predicted anoosathat were not given by
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1 GO 0003824 97.8052
2 GO 0004553 97. 8052
3 GO 0016798 97.8052

. 0000 catalytic_activity (p) *
. 0000 hydrol ase_activity,_hydrol yzi ng_O gl ycosyl _conpounds_(p) *
0000 hydrol ase_activity, _acting_on_glycosyl _bonds_(p) *

4 GO 0003674 97. 8052 0000 nol ecul ar_function_(p) =

5 GO 0016787 97. 8052 0000 hydrol ase_activity_(p) =

6 GO 0003796 97.8052 1.0000 |ysozyme_activity =*

7 GO 0004437 85.4733 0000 i nosi tol _or_phosphati dyl i nositol _phosphatase_activity
8 GO 0016788 85.4733 0000 hydrol ase_activity,_acting_on_ester_bonds_(p)

9 GO 0016791 85.4733 0000 phosphori c_nonoester _hydrol ase_activity_(p)

10 GO 0042578 85.4733
11 GO 0008937 83.9060
12 GO 0005215 83. 9060
13 GO 0016730 83.9060
14 GO 0016491 83. 9060
15 GO 0005489 83. 9060
16 GO 0016731 83. 9060
17 GO 0015457 82.8129
18 GO 0016247 82.8129
19 GO 0008200 82.8129
20 GO 0016248 82.8129
21 GO 0003906 80. 3534
22 G0 0016829 80. 3534
23 GO 0016835 80. 3534
24 G0 0016872 77.6471
25 G0 0016853 77.6471

0000 phosphoric_ester_hydrol ase_activity_(p)

0000 ferredoxi n_reductase_activity

0000 transporter_activity_(p)

0000 oxi doreduct ase_activity, _acting_on_iron-sulfur_proteins_...(p)
0000 oxi doreductase_activity_(p)

0000 el ectron_transporter_activity_(p)

0000 oxi doreductase_activity,_acting_on_iron-sul fur_proteins_..
0000 auxiliary_transport_protein_activity_(p)

0000 channel _regul ator _activity_(p)

0000 ion_channel _inhibitor_activity

0000 channel _inhibitor_activity

0000 DNA- (apurinic_or_apyrimdinic_site)_|lyase_ activity

0000 lyase_activity_(p)

0000 carbon-oxygen_|lyase_activity_(p)

. 0000 intranol ecul ar_| yase_activity

. 0000 isonerase_activity_(p)

FRrPRPRPRRRRERRRRRRRERRRRERRRRERE

Figure 6.3: List of annotations and significance scores 5311

human operator. It is assumed, here, that these are errdreqgrart of the prediction
process but it is also possible that the method found anoptathat the human operator
simply neglected to include.

6.4 Evaluation

In order to evaluate the accuracy of prediction of annottlny the presence of significant
sub-structures, this process should be repeated for a wideti®n of protein structures
to obtain an overall measure of performance. This sectigarsdhe method used for this
evaluation, a metric for summarising the results of the ijgtemhs and, lastly, a discussion
of the implications of results found.

6.4.1 Method

As this predictive method produces ranked probabilitiesirmiotations as output, it is
not trivial to produce a simple overall measure of successoha given annotation. A
protein either has an annotation or it has not but this ptiedienethod does not produce
an opinion either way, merely a score. Instead of producisggle figure of success
rate, the alternative is to vary a cut-off point where reshigher than a given score are
considered a prediction of annotation and results beloncansidered a prediction of
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no annotation. For any imperfect system, it would be exukettat, as the cut-off is
decreased, more false positives would result but, alsog iearect assignments would be
made. With a graph of the relationship between false pesitand correct assignments,
an assessment can then be made of the method’s accuracy.

450 PDB files were selected at random from the ASTRAL 10% sehsoire a rea-
sonably diverse selection of protein examples. The priedichethod was then run on
each of these files and the resulting ranked GO annotatidhssaores were stored. Each
predicted annotation was labelled to indicate whether ditmoatched the human anno-
tation. A master list of all annotations across every PDBMides created and ordered by
score. Running down the list from smallest score to largestrdte of correct annotations
and false positives were recorded for each variation inescbne data from this process,
when plotted on a graph, reveals the relationship betwdewialy an increase in false
positive rate and the resulting increase in predictive egu

6.4.2 Results

Sensitivity

0 -~ 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Selectivity

Figure 6.4: Sensitivity vs Selectivity for function pretian.

The graph in Figure 6.4 illustrates the results from thiscpes. The axes labelled
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Selectivityindicates the allowed false positive rate. The axes lath&ensitivityindicates
the fraction of correct assignments made out of all possabgnments that could be
made. The dashed line indicates the expected result fortamsythat predicted annota-
tions randomly with a 50% of having each annotation. Theddoie indicates the results
from the predictive method presented here. If a false pesitate of 10% is allowed,
the method correctly predicts annotation over 50% of the tising only the statistically
significant sub-structures discovered using the progrestiscovery algorithm. There
are several possible ways to improve annotation includimgroving the discovery algo-
rithm to allow for more forgiving parameter settings anchgsinore data to calculate the
significance values of matches found. The current succés®fannotation is far from
sufficient to be used as anything more than an indicator aftfon but offers some hope
for future development.

6.5 Chapter Review

This chapter used the data collected from the experimeuntitbesl in the previous chapter
to attempt prediction of function in new protein structurd$e first task was to define
how the presence of multiple significant structures shoffi&ttthe final prediction score
and a process for achieving this was presented. The metihguaddicting function uses
the inheritance properties of GO to increase the accurapyeafiction for broader level
function. Two specific examples of assigning annotationsevggven, illustrating how
the method is capable of predicting annotation correcthbrédader test was conducted
to evaluate the ability of the algorithm to predict annatatfor varying cut-off scores
and the results reported. The test reveals that prediatton the presence of significant
sub-structures can be successful even without other metholdided.

The next chapter will now review the content presented softhis thesis and draw
conclusions from the various results.
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Conclusions

This chapter will review the preceeding chapters, startuit) a summary of the con-
tent presented, continuing with criticism of the major deais taken in the project and
concluding with possible future directions for the work.

7.1 Review

This thesis began by looking at methods for predicting pndtenction from sequence and
structure. Existing methods for transferring annotationtgh homology are adequate in
many cases but only with human supervision — using theseadgtlone is inadvisable
as most proteins simply do not have sufficient similarity ttoes examples in the PDB for
a reasonable transfer success rate.

It has been seen that there are methods that do not look foalbugatches but, in-
stead, search for common structures between proteins mgéghanction. These methods
commonly either restrict searches to a backbone match oe aldimit on the minimum
or maximum size of patterns to be found. It is known that tleeepatterns indicative of
function that may consist of as few as two residues and thiaegoteins may also match
S0 a size limitation is undesirable. As well as pattern discgp methods, several differ-
ent methods of scoring matches exist but they are fundathebtsed on characteristics
of the pattern itself (such as size). However, a pattern neagidnificant in predicting
one function but less significant in predicting another arsnall pattern may be more
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indicative than a larger one in several cases.

A novel method has been presented that can discover signifstd-structures in
multiple input proteins without backbone limitation or dimgits on the size of the pattern.
An alternative method for reducing complexity was introeldiin the form of a coherence
value to ensure that matches remain localised, though otiaey A novel method for
assigning statistical significance to discovered protaimsructure was also presented,
using correlation with GO annotation as the measure of Bogmce. It has been shown
that these novel methods can find common patterns withinipreitructures and that
statistically significant structures can be found acrossyntéfferent functional classes.

Onits own, the progressive match provides novel featureavailable in other similar
algorithms. When looking at scoring methods for discoveratkpns it became apparant
that a score connecting a discovered pattern to a functanmadtation could be used in a
method for predicting annotations on a protein of unknowrcfion. When the coherence
measure was introduced, making the algorithm run-timetehat became more realistic
to run the progressive match unattended on a wide range diidumally-grouped proteins
and to make available enough data to attempt annotatiomcgiced

Given the number of GO annotations used and the number dfithigoruns required,
many patterns were predicted to match by chance alone witbkapility of 0.005 and
are not good enough to reliably predict annotation fromcstmes when considered in-
dividually. However, as noted in Chapter 6, prediction mayrbproved by combining
evidence of the presence of multiple structures. As diszligsSection 6.1, even patterns
that do not have strong significance alone can be combineatiupe stronger evidence
of annotations to inherit superior score of the child antiots. Chapter 6 concluded by
demonstrating that the data gathered from the progresstenalgorithm can be used to
predict human annotation better than chance alone.

7.2 Project Decisions

A number of decisions affected the progress and outcomeegribject. The major ones
are as follows:

e Implementing the algorithm using parallel methods anddiegithe circumstances
under which to use this implementation.

¢ Using a coherence value as an alternative to methods usediiarapplications.

e Selecting a graph matching method for identifying matclpatierns or implement-
ing a custom method.
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e Using artificial data to test the behaviour of the algorithml ¢he method used to
generate the data.

e Choosing the annotation scheme for classifying proteingibly function.

e Selecting a method for scoring discovered patterns andhghéd base the score
on properties of the pattern itself or its functional comtex

These decisions and their consequences will now be revigwdek following sub-
sections.

7.2.1 Match Algorithms

The progressive match algorithm went through many changesgidevelopment. The
complexity of the algorithm was initially too great for cofappon within a reasonable time
frame and parallel methods were investigated to improvdiraoa. These were ultimately
abandoned as the requirements of the project changed froi &eser tool to a source of
data for a further, prediction stage. The parallel methbdswere considered are included
in Appendix A and remain useful in some situations but, witidkight, the decision to
persue parallel methods significantly delayed investgainto the latter stages of the
prediction process and better final results may have beaevachhad more time been
spent on other tasks.

One of the developments that led to abandoning parallel edstiwas the use of a
‘coherence’ measure (Section 3.5.2) as a nhovel methodtractesandidate structures for
matching and to reduce search space. The decision to useeti®d was successful in
reducing algorithm run-time and using coherence allowsi@pato be of any size unlike
other, similar analysis methods which enforce limits origratsize.

Section 4.1.1 looked at which method to select for the ugdeylpattern match by
comparing exisiting graph matching methods with a custorthotethat only makes ge-
ometric comparisons rather than having the ability to mafeheral graphs. The tests
showed that the developed underlying match algorithm wsteifahan the alternatives
and so the decision was made to use this method in the progresatch algorithm.
Along with the use of the coherence limitation, this novekeching method assisted in
reducing the run-time of the progressive match algorithtimnéopoint where it could pro-
duce the results presented in this thesis.

The final section of Chapter 4 concluded by demonstratinghiggprogressive match
correctly identified the common feature between three adebinding proteins and that
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the discovered feature corresponded to the biologicailyicant binding sites of the pro-
teins. Also, Chapter 6 successfully used the results frorptbgressive match algorithm
to predict function annotation and so, in summary, the dausstaken in the development
of the pattern discovery methods succeeded in producinglussults but the decision
to focus on parallel methods most likely drew focus away fiorproving other aspects
of the project.

7.2.2 Artificial Data

Chapter 4 showed the methods used to test both the underlgtteyp match algorithm
and the progressive match algorithm. A decision was madseattificially generated
data to verify that both algorithms returned correct ressaiftd to investigate useful ranges
of the various user-alterable parameters. Generatinginlditigs way allowed patterns to
be cached that are known to contain a common pattern and avenkio match within
defined parameters. One possible improvement to the georeadtartificial data could be
to restrict patterns to be more globular in shape. As ilatstit in Chapter 4, the samples of
data used resemble sections of a protein chain but are rmilgldike many full protein
structures. The distribution of distances in artificialadanhd real data are similar but it
is possible that making artificial data appear more globcbard improve the similarity
further. It may be the case that patterns with the same rahgesored parameters could
be found in samples taken from real protein data and that sactples would be more
representative of the actual results to be expected froralgweithm but this would have
been an excessively challenging choice considering tleatetbults presented in Chapter
4 show that the artificial data used was adequate for the taklk. decisions taken in
the use of artificial data may not have tested the algorithfiulgsas if the alternatives
suggested had been implemented but, taken in context watlottier results presented
in later chapters, the artificial data tests were adequatkeimifying the accuracy of the
algorithms and the range of useful parameters for use wathdiaga.

7.2.3 Annotation Method

As noted in Chapter 3, to find key sub-structures associatddami annotation, a selec-
tion of proteins for each annotation was needed and a deaieded to be made as to
which annotations to consider. The GO annotation set wasechas it included enzyme
classifications of low-level function plus higher-levehtitional concepts. Section 5.2.4
showed that 400 out of the 406 GO classes used containedsablea common pattern

with an estimated probability of occurring through chanoae of 0.005. The progressive
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match algorithm was successful in discering common sulettres between proteins of
shared function when using GO annotations and so no bettgiole on the choice of
annotation scheme is apparant. There are several GO cthssetsd not contain enough
annotated proteins for acceptable results to be obtainethizuis likely to improve as
more structures are added to the Protein Data Bank.

7.2.4 Scoring Methods

The key decision taken with respect to assigning scores tterpa discovered by the
progressive discovery algorithm was to not assign a scaecban any properties of the
patterns themselves but solely based on the presence oicalisehe patterns in proteins
with or without a given functional annotation.

The decision to use Bayesian methods for scoring patternsnaeds as similar meth-
ods have been used in other fields for making predictions ftems of evidence. With
hindsight, the use of Bayesian methods created a numbefficLitties in reality. One of
the main difficulties in the testing and evaluation of thegressive discovery method was
the lack of available data and the quality of data. Measwstagstical significance using
Bayesian methods is difficult without sufficient exampleslfoth training and testing.
This has problems not only for correctly assigning signif@ato a discovered pattern
but also in providing sufficiently diverse examples of a fime for the discovery pro-
cess in the first place. Evaluating the algorithms devel@salrequired selecting protein
structures in separate groups, for the training set andiatiah set, which also reduced
the available data for each step.

As the output from the mass analysis of protein structuresechout in Chapter 5
consisted of a bivariate table for each discovered patiesegemed a reasonable decision
to estimate the significance of the results by using stedisthethods traditionally used
in the literature for analysing bivariate tables. The mdtbhosen was the Chi-Square
test. This decision provided a wider range of scores foradsed patterns and also
allowed a p-value to be calculated, assisting in evaludtiagorrectness of the algorithms
themselves.

In summary, the decision to use Bayesian methods createteprslolue to a lack of
data but the Chi-Square test produced more usable pattenessshich resulted in being
able to predict annotation better than chance alone. Givare time, it would have been
advantageous to investigate a broader range of possiblimgaoethods and this would
most likely have improved the final prediction results présd in Chapter 6.
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7.3 Future Work

This section considers possible future directions for thekpresented, including aspects
of the work already presented that could be improved andmssible new areas that the
project could develop into.

7.3.1 Algorithm Improvements

There are several areas in which the algorithms presentdd be improved. The pro-
gressive discovery algorithm produces interesting padgteis results but improving its
run-time would provide benefits by allowing a wider range afgmeters to be used.
Ideally, the match should be able to use all atoms in the d&goprocess rather than
only amino acid centre points but currently the algorithnois complex to do this in a
reasonable time.

Section 3.3 introduced the various sources of error in thsitipa of atoms in PDB
structural entries. When an atom oscillates around a cepstion, this error can be
accounted for by allowing a distance tolerence during matglas seen in Section 3.5.4.
The temperature factor of each atom indicates the degresofoér between different
samples and so the error can vary from atom to atom. Chaptete3 tat there is no
standard definition of what makes two patterns ‘similar’'tas varies according to bio-
logical context. One possible improvement to the matchrélygo could be to take this
variation into account from pattern to pattern. The toleeeallowed for a match could
vary according to the underlying disorder in the constiteoms to increase the proba-
bility of two disordered patterns matching and to improve #tcuracy when comparing
well-ordered patterns. The scoring method would not habetchanged as it is not based
on geometric properties.

The other source of disorder in PDB files is where the posibbatoms varies due
to flexibility in the structure itself. Developing the presed algorithms highlighted an
issue that creates problems for all structural analysisrailgns - protein data is not three-
dimensional but four-dimensional. A protein can changacsirre through the normal
course of its function. Any method must take this into ac¢olhe only way to fully ex-
plore protein structure and function is to add informatiortive dynamics of the proteins
examined. The could be achieved by analysing a sample of @abin in its various
possible conformations or by using modelling techniqueprealict how the protein is
likely to vary in shape.
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7.3.2 Prediction Method

There are some difficulties in predicting function from sture that may be universal for
any method that uses current data. The Protein Data Banls stiattéc, three-dimensional
images of proteins but the proteins themselves often havey mmoving sections and
sometimes some basic mechanical processes. There areatygonoteins that change
shape depending on the presence of a binding ligand. Thesdéinformation about how
a protein behaves is simply not available from a still imaigae.

Another difficulty in assigning a single notion of functionretation to a protein struc-
ture is that proteins do not exist in isolation, and some ogract with many others in
different ways. To fully understand their functional rgléise way in which proteins in-
teract with one another and their external environment ineistudied. Many researchers
believe that examining entire complexes of protein inteoas is an important next step
towards a full understanding of how cells and, ultimatehtire organisms work [2]. A
comprehensive review by Russell et al. [79] also emphadieasded to study the function
of protein complexes and covers the many various technaybesh must be combined to
most effectively achieve this. Already, low-resolutiontireds exist for determining the
relative position of domains to one another. Proteins whizkvork in complex with one
another must exist within the same cell region to interatiis means that any aspect of
protein structure which guides the protein into a specific-ceilular region may be use-
ful as an indicator for predicting function (and some methtwdachieve this are reviewed
in [77]) but these indicators are not as good as expert krdiyeleon the processes that
occur for a protein within different cell regions.

The GO annotation system has a number of complex relatipsstithin it beyond
the existing connections between child terms and parentstedt is highly likely that
some GO terms are more likely to occur together than othetsitais also likely that
many GO terms are mutually exclusive. If these kinds of iitbrlg evidence could be
incorporated into a prediction method then results shaujgrove considerably. Adding
expert information such as this into an otherwise generiépamatching system is a
large task but most likely essential for an unsupervisedpgational process.

7.4 Chapter Review

This thesis has presented a novel method for discoveringrmmnsub-patterns between
multiple protein structures, without the size or structirimitations of similar existing
methods, with the use of a coherence factor for limiting geapace and a novel under-
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lying match for comparing individual patterns. A novel madhin the field for scoring
discovered patterns has also been presented. These mathedbeen tested on artifi-
cially generated and real protein data to demonstrate délhdity to successfully discover
statistically significant sub-structures. With a datab@ssuch sub-structures, it has been
shown that prediction of function for a protein is possibéséd on the presence of the
discovered significant patterns. A number of improvememtié work presented in this
thesis have been suggested and possible future directiotisef project have been con-
sidered.

The main difficulties encountered during this project cooddovercome with more
time. Improvements to the final results given would be likilyoccur with a superior
scoring method, but it is most likely that the best methogfedicting protein function is
to use a variety of methods together — sequence, structiieeactions with other proteins
etc. The methods covered in this thesis for assigning statisignificance to discovered
sub-structures are applicable to any form of evidence oftfanal annotation and the
best method for prediction may be to group all of the diversdance available together
to form a more accurate measure of annotation probabilitye most obvious way to
improve methods for predicting functional annotation fretructure data is to increase
the volume of data available. Fortunately, this is one fatttat will most likely improve
in the future.

As more data becomes available and more methods for pradiate developed, a
generic system for unsupervised prediction of protein fiong incorporating sequence,
structure and expert information, will become increasinghlistic.
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Appendix A

Parallel Methods

The progressive match algorithm described in the main bddypis thesis is the one
used to produce all the results given. This algorithm runa emgle processor and in a
reasonable time for the data used in the preceeding chaptethe structures involved
were chosen for the low probability that they would shargdaamounts of common
sub-structure. However, for the algorithm to fully explak possible matching sub-
patterns in structures that are similar overall, a largeswamh of computational resources
are required, both in terms of processing time and memoryaisa

During development, earlier versions of the progressiviemalgorithm required con-
siderable resources and so the use of multi-processor hegdmas essential to allow the
algorithm to complete within a reasonable time. Althoughfilil algorithm now runs ac-
ceptably on a single processor, there is an increasing ines@hsumer hardware towards
multiple processor cores in a single chip and so taking adganof multiple processor
threads should be standard practice rather than just exbéwv specialist hardware.

Two versions of the progressive match algorithm were preduone to reduce the
storage requirements of the algorithm and the other to eetlue processor time used.
The remainder of this appendix describes each method usedffect on computing
resources of using each method and then concludes with asdisti on the decisions
made in choosing the final algorithm used in the main body ettiesis.
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Figure A.1: The method used to reduce memory requirememtsfadour processes.
First, illustrated above the line, each process compartgsrpa within its own data. Next,
processes are paired off in three different combinationt) their data swapped and
compared.

A.1 Method 1

The first method described here may be used to reduce the meetuirements of the
progressive match algorithm. During development, sixjfgaallel processes where used,
each process using a single CPU and its own memory storagepelkememory usage
when running the progressive match algorithm occurs duhegeneration of all possible
patterns for all-against-all matching and so this is the phthe algorithm that requires
the most optimisation.

During the expansion stage of the algorithm, where matcpiterns of the cur-
rent size are expanded by one node, each process iterataglthhe list of previously
matching patterns but expands only evatly pattern in the list, whera is the number
of processes. The end result of this stage is that each prbessits own portion of the
full list of patterns to be compared. Figure A.1 illustrates using four processes for
brevity (labelled?) throughPs), with each portion of patterns labellédB, C andD. The
all-against-all comparison is now performed in two stepsstfall processes compare
each pattern to every other pattern within the same proadgs dhis stage can be per-
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Figure A.2: The method used to reduce processing time. BHadesgs has identical copies
of the pattern list and compares the indented patterns wéhyether pattern in the list.

formed simultaneously and independently by all procesSest, each process is paired
with every other process in turn and their portion of the grattist is exchanged, with
comparisons being made between every pattern in the locabp@nd every pattern in
the portion from the paired process. With four processesethre three combinations of
process pairings, as illustrated.

Each process requires sufficient memory to store the loadilopoof the pattern list
and also a portion from a paired process during comparisbeniemory requirement for
analysing a list of siz&, usingN processes is, thereforﬁ?. This means that this method
is beneficial in reducing memory requirements whre 2

A.2 Method 2

The second method does not reduce memory requirementsdegigned to reduce pro-
cessing time.

In this method, the full list of potential patterns to be niegid is not divided between
the processes. Each process has access to the full listabogr than performing an
all-against-all search, each process performs a subaetstgll search where the subset
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consists of everyith pattern, starting at positiom in the list, wheren is the number of
processes anth is the index of the process, in the range hte 1. This is illustrated in
Figure A.2, with the subset indented from the full list to lwenpared. During develop-
ment, sixteen processes were used rather than four and addtslown complete copy
of the full pattern list. This method would work just as welthva number of processes
using shared memory. The work is divided up in the way shoather than in single,
continuous, chunks because a sorted list only requires gattérn to be compared with
patterns further down in the list to achieve an all-agaaikseries of comparisons. If the
patterns were divided as in Method 1, higher numbered psesesould complete their
work earlier as they would only need to compare their assigragterns with those at the
bottom of the list rather than the whole list. Dividing up therk in the way illustrated
here makes it more likely that the total amount of procesperormed by each process
is approximately equal. Figure A.3 illustrates the timestako run this version of the pro-
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Figure A.3: Time taken to compare protein structures IHDXWVA and 1AO0G with
varying numbers of processes. The reduction in run time doescale well as the number
of processes increases.

gressive match algorithm on three protein structures. Siindsvs that there is a reduction
in runtime for the algorithm as the number of processes asgs.
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A.3 Conclusions

Method 2 was used during intitial development in order taucedthe time taken to run
the algorithm each time a test run was required but two maamgés occurred during
development that affected which aspects of the algorithquired optimisation.

Firstly, Section 3.6.6 described an optimisation to thealgm that allows an element
of depth-first search to detect large regions of matchinggire early on. Each branch of
this depth-first search tree requires independent phaseatching and expansion, mak-
ing this addition difficult to transfer into the parallel g@wn of the early algorithm.When
only comparing proteins with relatively small structuragrons in common, the depth-
first optimisation is still beneficial and therefore tookagoity over parallel processing.

Secondly, the progressive match algorithm was originallyisaged as being a user
tool for comparing a single group of proteins of interestisTiequired reducing the time
taken for a single run of the algorithm to the minimum possibLater, the algorithm
became efficient enough to compare a large number of segg@ips of proteins and
analyse the results from many, independent, runs of theiddlgo Given that a single run
of the algorithm could occur within a single process, it vibbe more efficient to exe-
cute, for example, sixteen independent runs of the alguarftir sixteen different groups
of proteins than to execute each of the runs one at a time Ipatradlel. When using each
process to analyse an independent group of protein stag;ttire time taken for compar-
ison scales linearly for algorithm runs with equal resousgplirements, thereby making
a parallel implementation redundent for this task.

It may be possible to translate the final progressive matgarihm into a parallel
environment but this has not yet been explored. Althoughlfgmethods remain useful

for single runs of the algorithm, they are less useful forltige number of comparisons
used in the main body of the thesis.



