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Abstract

Proteins perform a vast number of functional roles. The number of protein structures

available for analysis continues to grow and, with the development of methods to predict

protein structure directly from genetic sequence without imaging technology, the number

of structures with unknown function is likely to increase. Computational methods for

predicting the function of protein structures are therefore desirable.

There are several existing systems for attempting to assignfunction but their use is in-

advisable without human intervention. Methods for searching proteins with shared func-

tion for a shared structural feature are often limited in ways that are counterproductive to

a general discovery solution. Assigning accurate scores tosignificant sub-structures also

remains an area of development.

A method is presented that can find common sub-structures between multiple proteins,

without the size or structural limitations of existing discovery methods. A novel measure

of assigning statistical significance is also presented. These methods are tested on artifi-

cially generated and real protein data to demonstrate theirability to successfully discover

statistically significant sub-structures. With a databaseof such sub-structures, it is then

shown that prediction of function for a new protein is possible based on the presence of

the discovered significant patterns.
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Chapter 1

Introduction

Proteins are large, biological molecules that perform a vast number of diverse roles in the

cellular and biological functions of every organism. Proteins may be antibodies in the im-

mune system, enzymes for catalysing chemical reactions, hormones, transport molecules,

structural building blocks or may perform contractile functions in muscle tissue. They

vary from simple, almost spherical forms up to more complex structures that may exhibit

basic mechanical behaviour.

Each protein within an organism is created from the code in a single gene. The struc-

ture and functional role of the protein is determined by the code within its gene sequence.

The Swiss-Prot database [7] contains protein sequences which have been manually anno-

tated with their function. This database contains almost 200,000 entries as of 2005, 10,000

more than in 2004. The Protein Data Bank [25] is a database containing protein atomic

structures. The PDB contains nearly 30,000 entries as of 2005, an increase of 5,000 over

the previous year and the rate at which new structures are added is also increasing, as

illustrated in Figure 1.1. As well as new examples of structure, there is much optimism

that the number of unique structures dissimilar to other existing examples will continue to

be discovered [95] for some time. The rate at which new sequences are discovered has re-

sulted in the development of computational methods to assist the biochemist in assigning

a functional annotation to a new protein. Currently, the rateat which new structures are

determined is sufficiently low for the function to have oftenbeen determined before the

molecular structure. As methods for determining structureimprove in speed, the number

of submitted protein structures will also increase further. Computational methods for as-

1



Chapter 1 2 Introduction

Figure 1.1: Total number of protein structures deposited into the PDB, by year.
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Figure 1.2: The Van der Waals radii of sulphur, carbon, nitrogen, oxygen and hydrogen

sisting the biochemist in predicting the function of a protein from its molecular structure

are therefore desirable both for improving knowledge and for specific applications such

as drug discovery [106] and attempting to predict which laboratory experiments are most

likely to give positive results(e.g., [55]).

1.1 Proteins

Protein molecules are primarily composed of carbon, nitrogen, oxygen, sulphur and hy-

drogen atoms. They are arranged in chains of recurring unitscalled amino acids. There

are twenty amino acids that commonly occur in animals, listed in Table 1.1, plus approx-

imately one hundred rare variations found in plants [45]. Distances at this low level are

measured in Angstroms (Å), where one Angstrom is equal to 10−10 metres. Figure 1.2

illustrates the radii of each of the most common atoms found in proteins.

The structure of a protein is determined by the gene sequencecoded within a molecule

of DNA. DNA (deoxyribonucleic acid) molecules are composedfrom a series of bases:

adenosine (A), thyamine (T), cytosine (C) and guanine (G). The sequence of A, T, C and

G bases codes for all the genes within an organism. Each groupof three bases, a codon,

represents an amino acid or a stop codon. A protein is manufactured by the following

process:

1. DNA within a cell is transcribed onto a molecule of messenger RNA.

2. Messenger RNA exits the cell nucleus.

3. Messenger RNA is loaded onto a ribosome, with each codon matched to the relevent

amino acid on the transfer RNA molecule.

4. Amino acids arrange in the sequence coded for by the messenger RNA.
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Alanine ALA A
Arginine ARG R
Aspartic Acid ASP D
Asparagine ASN N
Cysteine CYS C
Glutamic Acid GLU E
Glutamine GLN Q
Glycine GLY G
Histidine HIS H
Isoleucine ILE I
Leucine LEU L
Lysine LYS K
Methionine MET M
Phenylalanine PHE F
Proline PRO P
Serine SER S
Threonine THR T
Tryptophan TRP W
Tyrosine TYR Y
Valine VAL V

Table 1.1: Amino acids with 3-letter codes and 1-letter codes

5. When a stop sequence in the messenger RNA is reached, the chain is complete.

This process is fully documented in standard text books [45]. The chain of amino

acids that results from this process folds into a compact structure, the shape of which is

determined by the amino acid sequence. This resulting structure determines how the pro-

tein interacts with its environment. The sequence of amino acids which make up a protein

are called itsprimary structure. When folded, a backbone of amino acids arranges itself

into distinctive, repeating patterns calledα-helices(Figure 1.3) andβ -sheets(Figure 1.4).

These are connected by flexible regions orloops. The arrangement of these elements is

termed thesecondary structureof the protein. The position of atoms that make up the

protein structure are called thetertiary structure. Finally, a number of chains may ex-

ist within a single protein and the arrangement of these formthe quaternary structure.

Figure 1.5 shows separately coloured chains, arranged intoa single compact structure.

Figure 1.6 illustrates the folded path of a single chain, from the N-terminus (red) to the

C-terminus (yellow). The interior of a water-soluble, globular, protein tends to feature

amino acids that repel water and these are calledhydrophobic residues. Figure 1.7 illus-

trates the hydrophobic core of a protein (marked in yellow) and other amino acids which

attract water, termedhydrophilic residues(marked blue).
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Figure 1.3: Artistic impression of a kinkedα-helix portion of a protein backbone, overlaid
on the constituent atoms of the attached amino acid side chains. There are repetitive
patterns in protein structure which should be considered when developing algorithms that
analyse structure at this level.

1.2 X-Ray Crystallography

Structures within the Protein Data Bank are most often determined using X-ray crystal-

lography or solution NMR (nuclear magnetic resonance) methods, with a small percent-

age determined using theoretical modelling. Approximately 80% of structures within

the PDB have been determined using X-ray crystallography. This process involves crys-

tallising samples of a protein and using concentrated beamsof X-irradiation plus some

empirical interpretation to determine the most probable arrangement of atoms within the

test protein. The crystals used in these experiments consist of protein structures contained

within individual cells arranged periodically in three dimensions to produce a crystal lat-

tice. The crystal used must be a perfect sample to obtain accurate results. A concentrated

beam of X-irradiation is then fired through the crystal structure and is diffracted onto a
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Figure 1.4: Aβ -sheet portion of a protein backbone, overlaid on the constituent atoms of
the attached amino acid side chains.

detection screen positioned behind the crystal. The electrons of each atom within the

protein molecule deflect the incoming X-rays and a diffraction pattern appears on the de-

tection screen. With this raw data and information on the phase of the X-rays, an electron

density map can be produced - a 3D image of the electron cloud of the molecule. With

this information, a crystallographer then builds a model protein that will fit the electron

density map. This process is made easier with prior knowledge of the sequence of the

amino acid chain (derived from the nucleotide sequence of the corresponding source gene

or sequenced directly), and constraints on the possible angles in which adjacent residues

may be rotated relative to one another. This process cannot reliably distinguish between

nitrogen, carbon and oxygen atoms present in the structure but with expert knowledge and

amino acid sequence data, it is usually possible to label points in the final structure with

a reasonable degree of probability based on the limited number of possible side-chain

conformations likely to be found, though this depends on resolution. The final result of

this process is an estimate of the position of each nitrogen,carbon, oxygen and sulphur

atom within the protein structure which acts as the input data for any algorithm used for

structural analysis.
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Figure 1.5: PDB entry 1JB0 consists of multiple amino acid chains which join together
to form a complete protein molecule.

1.3 Structure Prediction

As illustrated earlier in this chapter, the number of known protein sequences is larger than

the number of known structures as the experimental methods for determining the latter

are more time consuming. However, the structure of a proteinis determined solely by

its amino acid sequence and so it would seem reasonable to attempt prediction of protein

structure given the sequence as input. This is a major challenge in the field of bioinfor-

matics and, although the problem remains unsolved, considerable progress has been made

in the study of how and why proteins fold [81] and numerous methods for structure pre-

diction exist and are in development [53] [51] [19] [58] [24][93] [40] [63]. CASP experi-

ments [3] [60] are designed to determine the current state ofthe art in structure prediction

by comparing the accuracy of various methods for predictingstructure with past methods.

CASP4 and CASP5 are the most recent annual analyses. On the release of CASP5, Aloy

et al. note that “...the community is moving toward general procedures to predict accu-
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Figure 1.6: The tertiary structure of a single protein chainis a complex fold of the orig-
inal amino acid chain. This is illustrated here by PDB entry 1BE3 with one end of the
chain labelled red (the N-terminus), gradually changing toyellow at the other end (the
C-terminus).

rate structures for proteins showing no resemblance to anything seen before” [3]. Their

assessment suggests that structure prediction will soon bereliable enough for large scale

prediction of structure from sequence to take place. Once this is possible, the need for

automated methods to predict function from structure will become increasingly important

as the hundreds of thousands of sequences currently available are converted into structural

data.

1.4 Thesis Overview

In Chapter 2, this thesis will continue with an overview of thecurrent state of the art

in predicting protein function from genetic sequence and molecular structure. Chapter

3 begins describing the methods used in a novel system for predicting function from
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Figure 1.7: An image generated by the author of this thesis, using the ray-tracing software
Povray, of a Serpin protein (PDB code 1PSI). The internal hydrophobic core of the protein
is coloured yellow with the hydrophilic exterior in blue.

structure and an algorithm for discovering common patternsbetween protein structures

is presented. Chapter 4 contains an evaluation of the method in terms of performance

and accuracy using artificially generated structural data,with a wide variety of algorithm

parameters tested, and real protein data. Chapter 5 introduces a method for assigning

statistical significance to discovered sub-structures andpresents results from using the

progressive discovery algorithm to find statistically significant sub-structures. Chapter 6

builds on the results from Chapter 5 by using the sub-structures found to attempt predic-

tion of function in proteins of unknown function. Chapter 7 concludes with a summary of

this thesis.
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Figure 1.8: An illustration of the X-ray Diffraction process
(http://fig.cox.miami.edu/ cmallery/150/gene/), explained further in Section 1.2.



Chapter 2

Background

2.1 Protein Function

The term ‘function’ in relation to proteins has no single definition in bioinformatics liter-

ature, a problem that is referred to several times in a recentreview of function prediction

methods [77]. This lack of clarity may be because the term itself is misleading to begin

with. Proteins do not have functions in the same way a dinner fork or a jet engine has a

function. The latter have been designed to specifically assist in performing a task whereas

the former have not. Proteins can be observed to perform certain activities within an

organism, but they have arrived at this behaviour through the process of evolution. If pro-

teins were not designed to perform specific functions then the term ‘function’ can only

mean the observed behaviour of that protein within a specificenvironment. There are

several examples of proteins that perform one function in one situation and a different

function in another situation This is sometimes due to the location of the protein within

the cell, which is information not available from structural data alone. This does not mean

that predicting function from structure alone is any less useful, it just requires that any ref-

erence to a functional role includes an indication of the environment in which that role is

performed, or at least an annotation that represents multiple roles for different situations.

Despite these various difficulties, several classificationsystems exist to describe various

aspects of protein function and to group proteins by ancestry.

11
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2.2 Classification Systems

Any method for predicting protein function must be consistent and machine readable,

both for training a system to classify proteins into functional groups and for evaluating

such systems. This is a non-trivial task, even for defining low-level molecular function

such as the chemical reaction an enzyme catalyses [101]. Annotations on protein function

determined experimentally are most frequently given in theform of plain text, which is not

easily machine readable. As there is considerable evidencethat similar structural fold is a

good indicator of shared function (an idea explored furtherin Section 2.4), one method for

describing the function of a protein is to describe the family of similar structures it belongs

to with the assumption that their similarities are due to shared ancestry and, therefore,

function. Another, more challenging, alternative is to attempt a thorough classification of

every aspect of protein function. Good overviews of such systems already exist [73] [94]

and a smaller selection of current systems using both approaches is given here.

2.2.1 CATH Hierarchy

The CATH hierarchy [74] is a classification of proteins constructed using sequence simi-

larity. At the lowest level, proteins are grouped if they have sequence identity of at least

35%. Higher levels are grouped based on significant sequence, structural or functional

similarity, then higher still, based on structural topology. The next level up is grouped

based on general secondary structure arrangement and then,finally, grouped based on

percentage ofα-helices andβ -sheets present.

2.2.2 SCOP Hierarchy

The SCOP hierarchy [34] is divided at four levels: class, fold, superfamily and family.

Family members tend to have significant sequence similarity. Superfamily members have

less sequence similarity but still sufficient for it to be likely for them to have come from

the same evolutionary ancestor. Fold members have considerable structural similarity but

are not necessarily from the same evolutionary origin.

2.2.3 EC Classification

Enzymes, a subset of proteins, have a popular classificationsystem which appears well

suited to classifying their function. This is known as the EC(Enzyme Classification)

number [8], which has four levels of hierarchy. Enzymes catalyse reactions and the EC
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Figure 2.1: A portion of the Gene Ontology. Arrows indicate inheritance from each term
to a broader term.

classification system annotates which chemical reactions are catalysed by a given protein,

with classifications becoming more specific for each level. If an enzyme catalyses more

than one reaction then it may have more than one EC annotation.

2.2.4 Gene Ontology

There are cases where proteins with vastly different structure may have similar func-

tion and where proteins with similar structure have different function. Proteins may also

frequently perform multiple functions, as illustrated by the development of the Gene On-

tology Consortium’s directed acyclic graph, rather than strictly hierarchical annotation

system [14], which is rapidly gaining acceptance as a usefulsystem for defining function

in new bioinformatics applications. Figure 2.1 shows a section of the Gene Ontology. The

ontology is not a hierarchy as each term may not only have multiple children but multiple

parents as well. The GO is a set of terms, including those for defining biological function,

and a graph connecting the terms to one another. A number of methods for predicting

function use the GO, some without reference to any sequence or structure information at

all. The method presented in [55] uses the idea that, if a GO annotation frequently occurs

with another then, if a gene has one of them, it is likely that it should have the other as

well. An increasing number of prediction methods are using the GO to classify protein

function.
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2.3 Evolution and Ancestry

As discussed earlier in this chapter, a protein does not havea function in the sense of

a designed purpose. Instead, a protein’s behaviour in a given environment will be the

result of evolutionary pressure over a period of time. If thegenetic code of an organ-

ism mutates during reproduction, so does the amino acid sequence of the protein whose

gene was affected due to the mutation. When enough sequence changes occur to affect

the interactions of a protein with its environment, the behaviour of that protein changes.

Natural selection will then determine which mutations survive to replicate in further or-

ganisms and which will not. Numerous methods for predictingprotein function do so by

measuring a protein’s overall similarity to another protein of known function and so it

is essential to understand the ways in which evolution leadsto structural and, therefore,

functional change. There are two forms of evolution which have an effect on studying

structure and function:divergent evolutionandconvergent evolution.

Divergent evolution occurs when highly similar, orhomologousproteins mutate, re-

sulting in a slightly different sequence to one another. Whensuch proteins are found

in different organisms, the diverged proteins often perform the same function but will

have slightly different sequence. The sequences have naturally mutated and drifted apart

in similarity over time but their functions often stay the same due to selective pressure.

This suggests that the function of one protein may be predicted if it is found to be very

similar to another protein of known function in another organism and we can assume

that both proteins have undergone divergent evolution but not so much as to alter their

function. When divergent evolution is observed within the same organism, this usually

indicates that the proteins have separated in function and exist under separate selective

pressures [66]. In this case, correctly predicting the function of one protein through simi-

larity to another is much less reliable.

Convergent evolution describes the situation where two proteins do not have a com-

mon ancestor but have both evolved independently to arrive at the same function through

selective pressure. Such proteins are likely to have similar structures within them, to per-

form the function they both share, but are highly unlikely tohave arrived at exactly the

same sequence overall by chance alone. Convergent evolutionis the most likely expla-

nation when two proteins share a small, common structural feature but it is also possible

that they have undergone extensive divergent evolution over many mutations, with only

the key functional site conserved through selective pressure. Residues not key to function

are under no selective pressure and so may freely mutate randomly but such extensive

difference in structure is unlikely to be due to divergent evolution alone. Harrison et
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al. [41] used the GRATH algorithm to demonstrate their idea that protein folds should

not be considered discrete groups of separate families at all but, rather, a continuum of

structures with many features shared between and across groups. Despite these issues,

it is more likely that two proteins with similar structure orsequence do have a common

ancestor than not and so this idea is the basis for a number of methods that attempt to

automatically classify proteins into families (e.g. [23])under the assumption that they are

also likely to have similar function. The following sectioncovers the specific method of

transferring a functional annotation from one protein to another based on shared similar-

ity.

2.4 Homology Transfer

The termhomology transferrefers to the idea of transferring an annotation from one pro-

tein of known function to another of unknown function if theyare homologous (i.e. they

are almost identical). The method of assigning function by means of sequence similarity

is a popular method in the field. The GeneQuiz system [10], forexample, is reported to

be able to correctly assign functions for 30%–80% of genes ina given genome where se-

quences share a significant level of similarity. Lord et al. [65] also provide positive results

which suggest a strong correlation between common molecular functional annotation and

sequence similarity. Hennig et al [44] report that their system, GOblet, will give a correct

result “in the majority of cases” though this is not further quantified.

desJardins et al. [20] used unnamed machine learning techniques to predict Enzyme

Commission classifications, correctly predicting the top class of EC number for 74%

of enzymes tested. They could predict the second level with 68% accuracy. Todd et

al. [96] investigated the level of functional similarity between proteins within the same

superfamilies and at varying levels of sequence similarity, also using the EC classification

as the definition for function. They conclude,

“For single and multi-domain proteins, variation in EC number is rare above 40% se-

quence identity, and above 30%, the first three digits may be predicted with an accuracy of

at least 90%. For more distantly related proteins sharing less than 30% sequence identity,

functional variation is significant...”

However, this level of predictive success may be limited to only some classes of en-

zyme. An experiment conducted by Shah et al. [84] used BLAST [4] to determine the

similarity between sequences within the same EC class. Their results suggest that 94%

of protein sequences can be classified correctly by sequencesimilarity but that approxi-

mately 60% of EC classes could not be discriminated by this method at all and several
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Allowed transfer error Proteins transferable
40% 70%
10% 60%
5% 35%

Table 2.1: Allowed levels of error in annotation transfer, and the estimated proportion of
database transferable (using data from [77])

EC classes shared sequence similarity between them, resulting in several false positives.

This suggests that the predictive success may be biased by the variation in the number of

proteins in each EC class.

For sequences with approximately 30%–40% or higher sequence identity, it is gen-

erally considered highly likely that they perform the same function [1] [105]. However,

this is not always the case, and sometimes sequences which appear to have significant

similarity can have functional differences. Good examplesof this situation are the nearly

900 known TIM barrel structures which share a great deal of similarity and yet perform

a wide variety of functions, some of which are documented in [70]. Todd et al. [98] note

one case of two proteins with 35% sequence identity where oneis an enzyme but the other

is not and Gerlt et al. [36] also observed specific examples where enzymes with similar

sequences performed different functions, including a pairof plant enzymes sharing 81%

sequence similarity but which catalyse different reactions. It is well known that a pro-

tein’s functions may be distributed across its domains and so it would be expected that

overall matches are not the only way to transfer annotation.Schug et al. [83] found that

separating a protein into separate domains and then performing sequence alignments can

produce better prediction results than by a global alignment alone. There are also situa-

tions where proteins may have a very low sequence similaritybut share the same function

(e.g., [43]).

A large number of proteins exist close to cutoff boundaries where a pair of struc-

tures are barely similar and yet share a clear common function [80] — sometimes only

four to six residue changes out of hundreds are needed to change one protein function

into another. This is strong evidence that some residue differences are more important

than others and suggests that an overall sequence similarity measure can miss small but

important changes. But are such errors in transferring function through homology rare?

A study by Rost et al. [77] notes that, when transferring enzyme activity by homol-

ogy, at least 75% sequence homology is required to correctlytransfer annotation 90% of

the time. Of the 250,000 known protein sequences from over one hundred organisms,

only 60% of known sequences can have that level of similarityand, therefore, a reason-
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able confidence in annotation transfer. Table 2.1 gives the percentage sequence database

which can be annotated at differing allowable levels of error. With even a 40% error rate

in annotation transfer allowed, 30% of known sequences still do not share enough similar-

ity for reliable annotation by homology. King et al. [56] used decision trees and Bayesian

networks to explore the prediction of function through homology and found that such an-

notation transfer only succeeded in a correct annotation 38% of the time, when evaluated

against a manual analysis.

Function transfer by homology can work well in many cases, especially when the

level of sequence similarity is high, but there can be problems when considering distant

homologues or when predicting function for proteins where small differences can result

in large functional changes. It is also noteworthy that there are systems that can pre-

dict function even without strict sequence similarity but by measuring a small number of

broad, overall chemical properties [52]. A review by Rost et al. [77] suggests that the best

automated methods for predicting function should involve acombination of sources, in-

cluding multiple sequence alignments and structural information, but that the best method

currently remains a transfer of annotation through homology, backed up by input from a

human expert. Completely automated methods, without human intervention, are consid-

ered inadvisable using homology alone. A selection of such methods is now given in the

following section.

2.5 Structural Alignment Methods

When taking two protein structures and attempting to determine if they are similar or

not, the general process for mapping one onto the other is called alignment. There are

generally two approaches to structural alignment: by secondary structure or by tertiary

structure. There is often a considerable blurring of these categories as methods combine

aspects of both features.

2.5.1 Secondary Structure Alignment

Secondary structure matching involves creating a representation of protein structure in

terms of secondary structure elements such asα-helices,β -sheets and their relationships

to one another within the structure. If a secondary structure match is made then the two

proteins have an overall similarity in structure, though they may differ at the residue level.

Methods for secondary structure matching have been available for several years [68] and

many continue to be developed (e.g. [38]) so only a selectionare covered in detail here
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for reference.

The VAST [27] method is a pairwise matching method used to align structures for

classification within the Entrez database and uses graph theory to align secondary struc-

ture elements. Graph nodes represent pairs of secondary structure elements and edges

exist if the two elements represented by the connected nodeshave a close distance and

angle. The maximal clique subgraph of this graph is found to provide an initial alignment

before being extended to a residue-level alignment. VAST assigns a statistical signifi-

cance to any found matches in the form of a P-value, which is the probability that a given

score would occur by chance when aligning random structure pairs.

The PROTEP [68] [39] algorithm was the precursor to VAST and the GRATH [42]

method is an extension of the approach used in PROTEP, with additional added constraints

and an improved scoring function. GRATH matches a structure against a database of do-

main structures to find those with overall similarity but is intended to be used as a pre-filter

for a tertiary structure comparison, in this case SSAP [72],for use with the CATH classi-

fication database. CATH requires a method for determining if anew structure has similar

structures already in the database, so residue-level matching alone can be computation-

ally expensive if a large number of comparisons have to be made. If a secondary structure

alignment can demonstrate a likely non-match then lower level methods do not have to be

used when a non-match occurs and so performance can be improved considerably.

There are also methods for discovering common folds given a selection of proteins

from the same functional classification, such as the methodsof Turcotte et al. [100] [99]

which use inductive logic programming to discover specific rules to describe the sec-

ondary structure of proteins in a shared class.

As tertiary structure alignments become more computationally viable, secondary struc-

ture matching remains useful as a first step alignment, but only for finding overall struc-

tural similarity. Tertiary structure analysis can be intensive and so indexing is useful to cut

down the search space. Methods for summarising protein structure data for the purposes

of pre-filtering (e.g. [54]) have proved successful and so filtering by secondary structure

may help in this regard [11]. As discussed earlier in this chapter, any attempt at predicting

function from overall similarity alone will not provide sufficiently accurate results with-

out human analysis as well to confirm. If more accuracy in computational methods is

desired then matching at a lower level than secondary structure alone is necessary.
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2.5.2 Tertiary Structure Alignment

Tertiary structure alignments take into account the positional information of atoms within

a protein structure in comparisons. There are generally twoapproaches to this level of

alignment: sequence-dependent methods or sequence-independent methods. A sequence-

dependent method is like a structural extension to a sequence match. A single point is

usually taken to represent an entire amino acid (often the C-α) and a match between two

structures occurs if continuous, unbroken, segments of theC-α backbone from each can

be superimposed onto one another under a rigid transformation. A sequence-independent

method may represent amino acids in a similar way but will findmatches purely based on

their spatial information, without considering their position in the amino acid sequence.

These methods will likely be more computationally expensive but can allow the matching

of structures on the protein surface which do not come together until the protein has

folded, such as active sites.

There are several examples of methods that concentrate on matching active site residues

in isolation [76] [57] [50]. The work of Pickering et al. has had some success in matching

proteins of similar function using Bron Kerbosch graph matching methods [9] by look-

ing at localised surface features instead of complete backbone alignments. This work

suggests that small regions on protein surfaces are often all that is necessary to identify

functional similarity, though they do not explore how to findsuch regions automatically,

beyond using existing annotations on the position of activesites. Algorithms from com-

puter vision and graph theory are used in the comparisons andresults show some success

in matching, as illustrated in Figure 2.2 which shows a common feature found when

matching two protein surfaces. Some methods for describingprotein shape require the

structure to be approximately spherical, which is not always the case. Pickering et al.

use the surface shape properties of convexity and radius of curvature, mapped onto the

points of a Connolly surface (Figure 2.3). A maximal common subgraph algorithm is

used to match the resulting point sets. The resulting commonfeatures are aligned with

matrix algebra. Binding sites were found for this application by using human annotations

within the structure files, and by identifying atoms close tothe recorded positions of bind-

ing chemicals. The method matches very similar surfaces correctly and suggests future

additions could include the use of charge and hydrophobocity information. Most struc-

tural matching methods focus on the protein structure as a whole, rather than focusing

on one location and some of these methods are now given in the following sections, both

sequence-dependent and sequence-independent.
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Figure 2.2: Common active site, surface residues may be foundbetween two structures
with graph matching techniques, as in this example of a matched surface portion discov-
ered using Bron-Kerbosch graph matching techniques [76].
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Probe

Surface

Figure 2.3: Connolly surfaces are described by the path of a probe atom rolling across the
atoms withing the target molecule.

2.5.2.1 Sequence-dependent Methods

Early attempts at tertiary structure alignment include theSTRUCTAL [61], MINAREA [35]

and LOCK [88] algorithms. STRUCTAL uses iterative dynamic programming to find the

alignment that produces a minimal RMSD between two protein backbones and is an ex-

tension of the ALIGN [37] method. Using inter-atomic C-α distances, it is given an initial

alignment based on six possible key positions in sequence which is then further refined.

MINAREA triangulates the C-α atoms of two proteins and minimises the surface area

between their overlay. Dynamic programming is used iteratively after an initial alignment

based on some sequence position information. The LOCK algorithm finds the minimal

superposition of two protein structures such that the RMSD between the aligned C-α
atoms is minimised. An initial superposition is required for the main algorithm to run,

which is obtained using dynamic programming with the secondary structure elements of

the two proteins. This initial alignment is then refined iteratively. The final step involves

aligning the largest sequence of matched residues from the previous step. The result

is an alignment ranked on the number of residues matched. Each of these three meth-

ods are successful in finding overall structural similaritybetween proteins, but assume

rigid protein structures. As noted by Shatsky et al. [85], many algorithms designed to

perform pair-wise rigid structural comparisons do not takeinto account the inherent flex-

ibility within protein structures and so find it difficult to match those with large regions in
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common but with differences in overall structure. This issue becomes especially impor-

tant for proteins that adopt different structural conformations depending on their current

state or environment. Searching for overall rigid alignments between two proteins, where

one or both have movable hinged regions, becomes difficult unless both structures are

in the same conformation by chance. Shatsky et al. went on to develop the FlexProt

algorithm [87], a variation on existing rigid structural alignment methods which allows

hinged regions to connect matching subsections of the backbone structure. This method

allows the identification of proteins sharing a common fold without requiring a single,

rigid, overall match but the method should still be considered to be sequence-dependent

as continuous segments of backbone are required to qualify as a match.

2.5.2.2 Sequence-independent Methods

Singh et al. [90] developed a structural comparison using both secondary structure and

atom-level matching. Their algorithm detects global similarities and also small, local fea-

tures as well using a method similar to the LOCK algorithm to perform the final alignment

refinement.

Cook and Holder applied their generic graph-based algorithm, SUBDUE [15] [46] [16],

to protein data and found some success in identifying commonsubstructures [18] [48].

Their algorithm finds common patterns in primary, secondaryand tertiary structure and

generates scores based on how well any found structures can compress the data given as

input. SUBDUE is constrained to run in polynomial time as the underlying algorithm is

too complex for finding patterns in tertiary structure without imposed limitations on pat-

tern size. They have since began developing methods to include expert knowledge in their

algorithms to cut down search space [17] [21] and have made some progress in allowing

less restrictive matches [47].

Independence from sequence requires an increase in the complexity of algorithms, so

methods to reduce the size of a structure search are essential. Milik et al. [67] suggest that

certain atoms in a structure are more important than others,in various situations. Polar

atoms may be useful when looking for catalytic function or ion-binding sites, whereas

surface residues may be more beneficial when looking at signal proteins, receptors and

membrane proteins. Milik et al. use only polar atoms in theirmethod, which are used in

the catalytic function of enzymes. Their algorithm is graph-based, with labels represent-

ing atom properties and edges representing inter-atomic distances. Further limitations are

placed on the search by requiring that at least 5 atoms are in apattern, from at least 3

residues. They also make the assumption that groups of four atoms or less are too small

to be able to distinguish between interesting matches and noise.
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An experiment by Singh et al. [89] compared a number of structural alignment tech-

niques to determine their effectiveness in classifying folds by overall structural simi-

larity. From a comparison of DALI [49], STRUCTAL, VAST, MINAREA, LOCK and

3dSEARCH [32], their tests determined that DALI and LOCK were most accurate in re-

producing classifications from the SCOP hierarchy, with LOCK being the most efficient

in terms of speed.

With low-level, sequence-independent methods becoming capable of mapping one

protein onto another using even the smallest of similarities, a new possibility becomes

available - rather than using a small, single similarity to determine an overall match,

computational methods can also be used to take a group of structures and determine which

regions of the protein structure are common between them. The next section illustrates a

number of methods used for performing such multiple alignments.

2.6 Multiple Alignment Methods

A multiple alignment takes as input a set of proteins and mapsthem to one another based

on some shared similarity – methods exist to perform these matches both in sequence and

in structure. The OntoBlast [107] system is reported to have used BLAST [4] searches to

identify common sequence patterns between proteins with shared GO annotations. The

resulting database may be searched via a web interface with an amino acid sequence and

will return a list of annotations associated with that sequence. The author claims a “clear

and correct correlation” between the annotations of a test set of sequences and those found

by the system, but it is unclear how the performance of OntoBlast compares quantitatively

over other alternatives.

MASS [22] is a multiple structural alignment algorithm, using secondary structure

features. It is not sequence order dependant, but does require regions of consecutive

residues to make secondary structure elements. This methoduses the reasoning that re-

gions of secondary structure are highly conserved, with more frequent mutations occur-

ring at loops, and therefore segments can be aligned as single entities. To reduce the

search, MASS assumes that an alignment is only significant ifit contains at least two sec-

ondary structure elements. MUSTA [86], developed by Shatsky et al., is another multiple

structural alignment of protein structures and is an extension of the FlexProt algorithm.

The MUSTA algorithm is reported to only be practical for setsof 10–15 molecules but can

detect partial solutions: patterns present in only a subsetof the input structures. MUSTA

reduces the search space by making the assumption that a structural alignment should

align fragments of at least 3 points in size. The algorithm finds all structural similari-
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ties between each pair of proteins then takes these results to check for a multiple align-

ment. This method uses a bottleneck metric as an alternativeto RMSD, demanding that

each aligned point is within a given distance as opposed to just limited the root-mean-

square distance of all point differences. Residue points arelabelled as being hydropho-

bic, polar/charged, aromatic or glycine. The complexity ofthe algorithm is reported as

beingO(m2n3) wherem is the number of input molecules andn is the size of the longest

molecule. Shatsky et al. present several successful alignments for globins, superhelices,

supersandwiches, concanavalin a-like lectins/glucanases and a selection of 18 proteins

from various sources. The algorithm correctly returning results which divided the set into

its constituent related sub-sets. A parallel implementation of this algorithm is reportedly

planned.

Traditionally, structural matches, both pairwise alignments and multiple alignments,

are scored by overall fold similarity, making it difficult for localised common features to

be identified as significant. Prediction of protein functionmay therefore be better achieved

by searching a structure for key sub-structures associatedwith specific protein functions,

rather than simply hoping to find a single, overall structural match with another protein

that performs the exact same set of functions as the target protein. Searching for such

key sub-structures would aid in annotating a protein of unknown function with individual

functional concepts, even if the combination of functions within the unknown structure

does not currently exist in the application’s database. In discussing this type of method,

Watson et al. note that ‘A genuine match to one of these functional templates is par-

ticularly rewarding, as it immediately identifies the protein’s function’ [104]. Searching

a database of protein structures to determine which containa given small, key pattern

is less computationally intensive than making overall structure comparisons and several

graph-theoretic methods have been adapted to achieve this part of the process [6] [59].

Difficulties exist in attempting to discover key motifs in the same position on different

proteins. Even when two structures perform the same function, the key residues for that

shared process may be found at different locations on the protein [97]. Methods for dis-

covering common patterns between multiple protein structures may therefore set aside the

idea of searching an existing database for a protein to matchwith a new structure and can,

instead, be used to analyse a whole database of protein structures in an attempt to deter-

mine exactly which parts of a structure are responsible for which function. Prediction of

function is then a matter of searching a new structure for these key patterns and predicting

function, even in the absence of overall similarity to an existing structure.

Pennec et al. [75] developed a method to find small similarities using geometric hash-

ing and provide strong support for the idea that finding key similarities is best approached
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by ignoring primary and secondary structure and just concentrating on the 3D configu-

ration of residue locations, ignoring any sequence-dependence or backbone connection.

Wang et al. [102] have also had some success in finding small patterns using geomet-

ric hashing. Nussinov and Wolfson also used geometric hashing [71], using reference

frames of translation and rotation of residues instead of just their C-α positions. Using

residue atom configuration in this way is justified as, although the backbone protein chain

is flexible and changeable, the arrangement of atoms in each residue is fixed and rigid.

Using geometric hashing can be computationally intensive in the initial generation of the

hash table. To counter this, the described method limits matches to being less than 20Å

in diameter, and typically searches for patterns of at least5 points. Graph-theoretic ap-

proaches have also been used for pattern discovery in the DRESPAT algorithm [103] with

some success in finding motifs that do not share the same sequence location. Significance

in DRESPAT is measured according to the size of the pattern found and is compared

against a sample of background matches found in randomly selected protein structures.

The need to combine existing methods for structural alignment with systems for identify-

ing smaller common sub-structure elements is acknowledgedby Stark et al. in describing

their server, PINTS [91], which allows a user to both search for such similarities between

protein structures and to use a database of found structuresin order to help identify the

function of a protein with otherwise unknown function. PINTS offers the discovery of

common patterns between two protein structures and also searches for existing small pat-

terns across a database of protein structures. The originalalgorithm used for PINTS [78]

is a recursive, depth-first search algorithm for finding groups of amino acids common to

two protein structures, independent of sequence order. Themethod only considers certain

amino acids and limits pattern size. Any amino acids which have side chains containing

only carbon and hydrogen atoms (Ala, Phe, Gly, Ile, Leu, Pro and Val) are ignored. The

overall diameter constraints on found patterns imposed by this method usually result in

patterns of less than five or six amino acids in size being found. The RMSD on found

patterns is used to provide a statistical measure of significance but small common fea-

tures are difficult to find in a pairwise match due to the background noise in the form of

matches of the same size occurring by chance. A more rigorousmethod for measuring

significance has since been developed [92], using the calculated statistical significance

of RMSD between atoms in matched patterns along with the size of the pattern found

too. Patterns of up to 10 residues may be searched for in the complete PINTS database

and search parameters are limited to a maximum pattern size of 15Å diameter, with a

maximum 3̊A tolerance in matching.
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2.7 Chapter Review

If one has a new protein structure of unknown function then a number of methods exist to

analyse the molecule. First, by attempting to find a similar protein in an existing database

of protein structures with known functions. If a similarityis found then the biochemist can

use that information to guide further investigation into the true function with the initial

classification as a guide. These tools tend to use either an overall match of secondary

structure features or a comparison of tertiary structure todetermine a similarity score - the

more in common, the higher the score. The second approach to assisting the biochemist

is by attempting to find a common sub-structure between multiple proteins and assuming

that the found motif is directly connected to the shared function of the searched proteins

- the biochemist may search their new protein for these motifs and then directly assume

that the presence of the motif implies that function.

There is currently no unified method for the computational prediction of protein func-

tion without many problematic assumptions - for example, the assumption that an overall

match with another protein or the presence of a certain motifcan logically imply similar

function when there are a great number of exceptions to such an approach. When used

as tools for the biochemist, these assumptions can be set aside as expert knowledge is

always the final decision maker in assigning function. Thesetools may be useful aids

in the human annotation of proteins but they are a long way from being a computational

solution to predicting function and most do not aspire to be so. A score of structural simi-

larity between a new protein and those in a known database is not the same as calculating

the probability that the new protein shares the same function as those proteins. Without

a reasonable measure of the latter, human intervention willalways be required at some

stage of the annotation process. If methods for predicting structure directly from sequence

continue developing in accuracy then the number of structures without annotation will be

vast. Computational methods for predicting function, not similarity, and with a measure

of probability attached will become increasingly necessary for the biochemist to prioritise

where human annotation is needed.

The next chapter will continue with an overview of the challenges in producing a

computational method to predict protein function using structure with scores that reflect

the probability of a protein performing a function as the final measure of accuracy.
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Sub-Structure Discovery

The following chapters describe a novel method for the prediction of protein function

using statistically significant sub-structure discovery.The goal of this process is to take a

protein structure of unknown function, identify features in this structure that are associated

with given functions and then to use this evidence to estimate the probability that the

protein performs various possible functions. To achieve this, the following methods are

required:

1. Grouping proteins by function

2. Discovering common sub-structures within each group

3. Measuring the significance of each sub-structure in predicting membership of that

functional group.

4. Grouping evidence to estimate the probability that a new protein structure should

be a member of each functional group.

Once a database of sub-structures has been created, along with the significance of

each in predicting a function, it will be possible to attemptprediction of function in a

new protein by searching for these sub-structures, therebyannotating the protein with the

associated function or functions.

This chapter presents solutions to items 1 and 2 in this list and these discovery methods

are tested in Chapter 4. Chapter 5 will build on this by introducing a method for assigning

27
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statistical significance to discovered patterns and Chapter6 concludes with the final step

of the overall method – prediction of function using statistically significant sub-structures.

The following sections describe a method for finding common sub-structures within

multiple input proteins. The next section begins by discussing how function will be de-

fined. This is followed by an example of some typical three-dimensional structural input

data along with some observations on the consequences of thequality and other character-

istics of the data available to any structural matching algorithm. Continuing, a definition

is given for what it means for two structures to be similar andhow similar they should be

to be considered a match for the purposes of this algorithm. This is accompanied by a de-

scription of a fast algorithm that may be used to fulfil this matching definition. With this

underlying match defined, an algorithm for finding such matches within multiple input

structures is presented, along with a description of the various user-defined parameters

that may affect the accuracy and run-time of the sub-structure discovery process.

3.1 Function Grouping

To discover common sub-structures within proteins of similar function, there must be a

consistent method for defining which proteins perform whichfunction. As seen in Sec-

tion 2.2, there are several options available but, as it would not be sensible to search for

common structure in proteins grouped by ancestry (as they will, by definition, have com-

mon structure), this leaves EC number or GO annotation as theother possible options.

Grouping by EC number provides a useful system for defining enzyme function but there

are also broader functional concepts that it may be useful togroup by. The Gene On-

tology system of classification provides a common language for defining function, both

general and specific. The GO features entries that representgroups also represented in

the EC hierarchy but also includes terms to describe broaderconcepts, such as “hormone

activity”. As seen in Section 2.4, small structural features may imply shared function.

The disulphide bridge, for example, consists of two cysteine residues, with the sulphur

atoms between them bonding to provide stability in small proteins. Other small structures

appear in proteins due to convergent evolution (e.g. the SER-HIS-ASP catalytic triad in

serine proteases). If broad concepts can have small, specific structures associated with

them then it would appear reasonable to search for common patterns that may similarly

be associated with broader concepts too. It is unlikely thatall broad concepts in protein

function will have a single, small, structural feature thatfully characterises them but it is

possible that the presence of several such structures, found simultaneously, could indicate

a probability of that function. Each small structure may be insufficient evidence alone to
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predict function but combining several items of evidence may provide a higher probability

of correlation. The method used in this section for defining shared function is therefore

to use Gene Ontology annotations.

3.2 Input Data

[A] [B] [C][D][E] [F] [G] [H] [I] [J] [K]
ATOM 289 N ALA A 201 78.652 15.203 1.234 1.00 50.00 N
ATOM 290 CA ALA A 201 77.273 15.104 1.686 1.00 53.23 C
ATOM 291 C ALA A 201 76.802 16.518 2.118 1.00 50.81 C
ATOM 292 O ALA A 201 75.662 16.902 1.844 1.00 41.23 O
ATOM 293 CB ALA A 201 77.153 14.087 2.830 1.00 27.61 C
ATOM 294 N LEU A 202 77.709 17.295 2.733 1.00 28.58 N
ATOM 295 CA LEU A 202 77.430 18.666 3.196 1.00 29.23 C
ATOM 296 C LEU A 202 77.247 19.607 2.021 1.00 32.18 C
ATOM 297 O LEU A 202 76.558 20.627 2.118 1.00 33.74 O
ATOM 298 CB LEU A 202 78.593 19.209 4.028 1.00 20.77 C
ATOM 299 CG LEU A 202 78.876 18.749 5.456 1.00 19.57 C
ATOM 300 CD1 LEU A 202 77.814 19.273 6.407 1.00 16.42 C
ATOM 301 CD2 LEU A 202 78.969 17.237 5.512 1.00 25.45 C

Figure 3.1: ATOM fields within a PDB file

The source of input data for any protein structural comparison is the RCSB Protein

Data Bank. It is the single, worldwide repository of protein structures and therefore rep-

resents all publicly available data. Each protein structure within the PDB is stored in

an individual file. An example section of the file for a single structure is given in Fig-

ure 3.1. Column[A] assigns an index to each atom. Column[B] indicates the atom

type (C, N, O, H or S) with additional labelling to distinguish between the various

atoms present within the same amino acid. An atom labelledCA is the carbon-α of a given

residue, commonly used to represent the position of a residue on the protein backbone.

Column[C] is the three letter code corresponding to the residue this atom is a member

of. The full list of codes is given in Table 1.1. Column[D] indicates the chain that the

atom is a part of, with each chain within a protein assigned a different letter. Column[E]

assigns an index to each residue. Columns[F], [G] and[H] are theX,Y,Z coordinates

of the atom centre position in space. Column[I] is the proportion of molecule samples

in which the atom was found. This is rarely a value other than 1.00. Column[J] is

the temperature factor of the atom, described in more detailin Section 3.3. Column[K]

gives the atom type, as in Column[B], but this format is not consistent, with some files

placing other information at the same location. The methodsused in this section take

PDB files as the initial source of data, extracting enough information to produce a set of

labelled point clouds (sets of points) as input. Each point cloud represents a single struc-
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ture, typically the contents of a single PDB file. Each point is represented by anX,Y,Z

coordinate, a label indicating atom type or residue type or any other label to match by,

and a reference string for human readability. The referencestring may be any identifier,

but is most often used as a combination of the chain identifierand residue number the

atom is a member of. The structural information held in a PDB file is usually the result of

an X-ray crystallography process, combined with human refinement. It is sometimes the

case that the structure determination process may result insections of structure missing

from a file — if this has occurred then a human-readable annotation is given to explain

the absence in the file header. As well as this source of experimental error, it is also im-

portant to consider the ways in which the accuracy of theX,Y,Z positional coordinates

may vary, if they vary due to error or flexibility and how this variation should be handled

in a structural matching process.

3.3 Disorder, Error and Flexibility

A single PDB file represents the result of effectively superimposing many protein struc-

tures atop one another. With multiple examples of a protein structure going into each

result, thetemperature factorbecomes an important consideration. The temperature fac-

tor is a measure of the degree of disorder or thermal motion present during the attempt

to define an individual atom’s position in the X-ray crystallography process. The temper-

ature factor may be high due to thermal motion, when an atom moves naturally within

each molecule, or it may be due to disorder, where there is disagreement in the position

of the atom between different samples of the molecular structure. Figure 3.2 shows vary-

ing temperature factors within the protein structure with PDB code 1BE3. Red indicates

high temperature and blue, low. A high temperature factor due to disorder often occurs

where there is flexibility within the structure, so making itdifficult to pinpoint a common

location between multiple samples of the same protein. A high level of disorder presents

a problem for X-ray diffraction as such atoms will present a more diffuse electron den-

sity and therefore provide a much greater difficulty in assigning position to the atom.

Figure 3.3 illustrates the natural flexibility of protein structures in the form of a superpo-

sition of several nuclear magnetic resonance images of a single protein, aplysia attractin.

The C-α backbone shown reveals some variability in the rigid portion of the structure, to

the left of the image. To the right of the image is a single backbone region but with a great

deal of flexibility and variability between each image taken. Overall structural matches

will find it difficult to match proteins with such large variability in overall shape. There

are many structures that have so little rigid structure within them that they are termed
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Figure 3.2: The atomic structure of PDB entry 1BE3, with blue regions indicating atoms
with a low temperature factor and red regions indicating a high temperature factor.

“Intrinsically Disordered Proteins” or IDPs [64]. IDPs only become structurally ordered

when bound to certain molecules or placed in a certain environment, allowing each to

interact with many different structures by changing shape accordingly. Predicting func-

tion using overall structural data from such proteins is impossible as it is very difficult

to establish the characteristics of a protein structure without treating it as a rigid body.

Without further information on the specifics of how each protein may alter shape, it must

be accepted that largely disordered regions of proteins cannot reasonably be matched by

any method that takes PDB files alone as input. A matching tolerance needs to be allowed

to discover features with some inherent flexibility but there is no obvious maximum tol-

erance that will ensure every common feature is discovered without matching the entire

structure. The next section continues with a definition of how two structural features can

be considered similar for the purpose of the broader discovery method.
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Figure 3.3: The NMR solution structure of PDB entry 1T50, illustrating that several
images of the same protein backbone reveal some regions morevariable than others.

3.4 Underlying Match

The most basic level of comparison in a pattern discovery algorithm is the underlying

match between two patterns to determine if they are similar.When searching through the

large volume of patterns generated by such a process, it is essential that the most basic,

underlying match is as fast to compute as possible. For the purposes of this method, a

pattern will be defined as the distance between each point andevery other point in the

pattern, with each distance coupled with the pair of labels between the two connected

points. To illustrate this, the patterns in Figure 3.4 wouldhave the representations ((CC,

2.1), (CN, 3.3), (CN, 4.0), (CS, 3.2), (CS, 4.1), (NS, 4.3)) and ((CC, 2.0), (CN, 3.2), (CN,

3.9), (CS, 3.3), (CS, 4.1), (NS, 4.2)). The pairs are ordered alphabetically by each node

label pair and then in order of increasing distance. Once ordered in this way, two patterns

are considered similar if each pair in the first pattern matches its equivalent pair in the

second pattern. To match, the pairs must have identical nodelabels and their distances
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Figure 3.4: Two patterns and their underlying representations. The patterns would match
with a tolerance of 0.1 or more.

must be within a set tolerance of each other. This representation ensures independence

from translation and rotation and, assuming a sort algorithm with complexity ofO(nlogn)

(wheren is the length of the list to be sorted), this underlying matchwill have complexity

O(N2logN), whereN is the number of nodes in each matching pattern. It should be noted

that this representation is also independent of reflection.False matches based on reflection

may have to be removed but this is trivial once a full match hasbeen made.

The distance tolerance within which two node pairs are considered to be similar varies

depending on the situation. It is useful to distinguish between the matching tolerance nec-

essary to account for error in the experimental processes used to obtain data and the flex-

ibility in defining what it means for two molecular structures to be similar. Error varies

between each experiment conducted and so parameters used instructural matching must

be included which change according to the original source ofthe input data. Defining

what it means for two structures to be similar is a much more complex task. The most

common method is to calculate the root-mean-square difference (RMSD) between com-

parable points in two structures and using this as a measure of similarity, allowing two

proteins with similar ancestry to be identified as matching.

When following the idea that two molecules with similar overall structure are likely to

have the same function, this appears a perfectly sensible option, but when finding match-

ing sub-patterns within structures that do not share a similar ancestry, using RMSD alone

may not be ideal. At the biochemical level, a small difference in few atoms within a key

sub-structure has a far greater effect on what a biochemist would define as the function

for that sub-structure than the effect of the same change in afull protein. A mutation of
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a single amino acid may be considered to have a negligible effect on protein function,

but when that single amino acid may be the key structure underconsideration, the change

becomes more important. Beyond simply reducing the RMSD tolerance when matching

smaller structures at the atom level, expert knowledge is really required to define what the

term similar means when deciding if two small molecular structures are likely to perform

the same function or not. Without an expert available to examine every generated sub-

structure (of which there may be many millions in a full discovery process), the choice

of tolerance can only be another method for trading off the number of matches generated

and the time taken for the algorithm to run. The tolerance andother matching parameters

are discussed later in this chapter, following an overview of the pattern discovery process.

3.5 Progressive Match

The basic algorithm for the progressive match is illustrated in Figure 3.5. First, a file

containing a set of structures is given as input, each structure being a set of labelled points.

Next, each structure is taken separately and the inter-atomic distances are calculated and

stored as a cache for future use. The use of these inter-atomic distances is the basis

for much of the algorithm so caching these provides a considerable performance benefit.

For each structure, every pair of atoms (“size 2 pattern”) that represent a valid pattern

are generated and stored together, with the source structure stored for each pattern. The

main loop of the algorithm then begins. The main loop first determines if any patterns

have been generated - if so, these are then grouped together and sorted to make the next

match step easier. With the sorted list of every valid pattern of the current size from all

structures, the underlying match from the previous sectionis now used to compare each

pattern with every other pattern within the local group. Thetotal number of matches for

each pattern is then recorded. With this list of scored patterns, those with matches below a

set minimum score are discarded and the remainder are expanded by one node in size and

then input back into the main loop of the algorithm. Once no further patterns remain from

this progressive expansion, the patterns from the previousstep may be reported as final

matches, and the algorithm may exit. The progressive expansion used in this algorithm

can result in combinatorial explosion as the number of possible new patterns generated

from each match when expanded by one node could potentially increase exponentially.

With this in mind, a number of parameters are also used to reduce complexity and these

are now described in the following sub-sections.
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Figure 3.5: Flow chart describing the progressive match algorithm.
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3.5.1 Maximum Diameter

The progressive match is intended to find small, common patterns between multiple pro-

tein structures. It therefore would be reasonable to restrict the size of any patterns found

to reduce the algorithm complexity. A common method for limiting pattern size is to

enforce a maximum number of points within a pattern but the representation used in the

progressive match provides a convenient alternative as calculating maximum diameter of

a structure is trivial. As illustrated in Figure 3.6, the maximum diameter is just the length

of the largest inter-atomic distance calculated for the pattern. As each such distance must

be calculated in advance, it requires little extra effort tosimply check each of these dis-

tances to ensure they do not exceed a certain maximum.

3.5.2 Coherence

Although it may be a useful option to enforce a maximum diameter, this is not always

convenient if it is not known in advance whether proteins will share large or small patterns

of structure. The novel alternative used here to limit complexity without limiting size is

to use a measure that will be referred to as a coherence value.As shown in Figure 3.7,

coherence defines the maximum distance that each point must be from at least one other

point in the same pattern. This allows a pattern to be of any size but not split over a

large distance, therefore reducing the number of combinations of points generating valid

patterns.

3.5.3 Consecutive Segments

The option to only consider patterns which have consecutiveindices can be useful when

attempting an overall match or a backbone-limited match between two protein structures.

The notion of points being consecutive would not make sense when matching on the

atomic level but, if using amino acid C-α atoms to represent a protein structure, matching

only consecutive segments may be used to find patterns which occur along the backbone.

This parameter, illustrated in Figure 3.8, is included in the algorithm as an option, but

there are several existing methods for performing backbonematches which are tailored

specifically for the task. This algorithm is designed for finding smaller common regions,

so comparing large sections of secondary structure (which are likely to dominate a back-

bone match) could become burdensome.
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Figure 3.6: Maximum Diameter

Figure 3.7: Coherence
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Figure 3.8: Consecutive Segments
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3.5.4 Tolerance

Of the parameters available for reducing search complexity, tolerance presents the great-

est trade-off between run-time and number of results returned. Tolerance is the greatest

difference between two inter-atomic distances for them to be considered similar and is

used at the underlying match stage of the algorithm. Referring back to Figure 3.4, for a

tolerance of 0.1, the two patterns shown will match and, therefore, the patterns will be

considered similar. Tolerance may be used to take into account noisy data but, in protein

structures, it is more useful in taking into account flexibility within a structure. The latter

becomes a greater problem when matching large regions of consecutive C-α points but,

for the type of small patterns the progressive match is intended to find, the tolerance will

not have to be too great to still find smaller structures.

3.5.5 Density

Limiting patterns by ’density’ is another method to reduce search space. The measure

is defined as the number of points in a pattern per unit cubed diameter of the sphere

the pattern is bound within. This offers similar benefits to the coherence limitation but

further ensures a degree of compactness of the shape. Limiting by density is most useful

when finding patterns on the atom level, where a matched pattern is likely to contain a

continuous region of atoms. If the patterns to be discoveredmay be spaced out, as they

could be if a small number of key residues are matched, then the density parameter needs

to be more loosely defined.

3.6 Progressive Match Steps

Each step of the progressive match will now be described in the following subsections.

3.6.1 Distance and Coherence Tables

There are two cache tables used in the progressive discoverymethod - one stores inter-

atomic distances for each node pair and the second is used in conjunction with the co-

herence factor. The distance table is a simple array, indexed by the pair of nodes under

consideration and contains the distance between the two points. The coherence table is a

jagged 2D array – each row may be of a different size. Each nodehas a list of all other

points in the structure within the coherence distance of that node. Figure 3.9 illustrates

an example of how elements of a table would appear. The coherence table considerably
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Figure 3.9: An example graph and associated cache table of pattern nodes connected by
coherence. The first column of the table contains the index number of the node in the
diagram. The second column contains the index number of eachnode connected to that
node.

speeds up the process of expanding patterns to their next largest size, as will be explained

further in Section 3.6.5.

3.6.2 Pattern Generation

The first main stage of the algorithm is the generation of all valid patterns of size 2 within

the input structures. This process involves, for every structure, iterating over every point

and then, for each point, iterating over every other point toproduce a list of pairs. Each

pair generated is only valid if it is less than the maximum pattern diameter and also less

than the coherence value. All valid pairs are grouped together from all input structures

into a single list.

The next step is to determine which of the pairs match with each other. This can

be done exhaustively by comparing each pattern with every other pattern to determine a

match. This comparison may be performed faster, though, if the pattern list is ordered or

grouped in some way so that each pattern does not have to test against the entire list to

find matches – only the portion of the list close to that pattern.
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3.6.3 Pattern Sorting

For two patterns to match, every inter-atomic pair must match - the inter-atomic distances

must be within the tolerance and their point labels must be identical. When comparing

a large list of patterns against one another, the process canbe made faster by grouping

the list into patterns with the same point labels and by ordering the list in some way. The

method used here to sort is to first define a sort operator and then to use the QuickSort

algorithm to order the list. The sort operator defines, for the purposes of an arbitrary

grouping and ordering, what it means for one pattern to be “less than” another pattern.

PatternPA is defined to be less than PatternPB if:

1. The sorted node labels ofPA are less thanPB in terms of dictionary ordering.

2. The length of the shortest inter-atomic distance inPA is less than the shortest inter-

atomic distance inPB

With an ordered list, the process of filtering out which patterns match may be faster as

only patterns lying close together in the sorted list need tobe compared to find all possible

matches.

3.6.4 Match Comparison

With a sorted list of patterns, each pattern is then comparedto every other pattern within

the range defined by match tolerance. A count is kept of how many matches from each

protein structure have occurred. This part of the discoveryprocess is easiest to perform

in parallel as each pattern can be scored independently, with scores summed after the

comparisons are complete.

Once scored, any patterns with a score below a set minimum will not be examined

further in the following stages. The minimum score directlycorresponds to the minimum

number of protein structures a pattern must be found in to be considered a common sub-

structure.

3.6.5 Progressive Expansion

With a set of matching patterns from every input structure, the next stage of the algorithm

is to take each pattern and generate a set of patterns one nodelarger by taking each node

in the input structure and adding it to the source pattern, generating a new pattern for each

node. This process can create computational explosion if every node is added each time

and so the coherence value is used here to cut down the number of possible new patterns
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generated. By using the coherence cache table, it is possibleto quickly identify which

new nodes may be added to the existing pattern to create new patterns one size larger.

The smaller the coherence value, the fewer the possible nodes that may be added to any

pattern.

The new patterns generated from this process are then fed back into the start of the

main loop for sorting and comparison. This loop continues, with matching patterns getting

progressively larger, until no more matches remain. Once this point of the algorithm is

reached, the largest matches found may be reported as output.

3.6.6 Depth-First Recursion

Using this progressive discovery method on proteins with a large overall similarity may

take a considerable amount of time as patterns are graduallymatched and expanded from

one size to the next. The algorithm uses its breadth-first features advantageously as, the

more protein structures used in a match, the more patterns can be eliminated early on for

not matching throughout all structures. Despite this, it would still be beneficial to detect

a large amount of structural match first to avoid running through the whole discovery

process. One useful addition to the basic discovery algorithm is therefore to include an

initial step that, upon finding a small match, expands one match only to the next size and

if that matches, expand just one match again. If a large proportion of the structures is

in common then this process will very quickly detect a broad match without having to

generate every possible combination of pattern expansionsat each size.

3.7 Chapter Review

This chapter has presented a method for discovering common sub-structures between

multiple protein structures. The method uses the fact that multiple proteins are input to its

advantage by performing a breadth-first search for matches.The more proteins that are

added, the less that can match by chance alone and so the quicker the algorithm can exit.

A number of parameters assist in reducing the complexity of the search and a coherence

value was introduced as an alternative to imposing limitations on pattern size. Coherence

allows patterns of any size to be found but limits the constituent atoms to exist within a

maximum distance of another atom in the same pattern.

The next chapter will take the progressive discovery algorithm introduced here, eval-

uate its performance for varying combinations of parameters and test the method on real

protein data.
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Algorithm Testing

This chapter evalutes the ability of the developed algorithm to correctly match similar

patterns and to discover common sub-patterns between structures. As well as ensuring

that the algorithm operates correctly, the effect on execution time of changing different

matching parameters such as tolerance and coherence distance is also tested.

To test the underlying match, a wide selection of small, matching, patterns are required

that also represent the full range of parameters to be tested. A sample selection of small

patterns could be taken from subsets of a real protein structure but finding patterns that

match each other for every value within the full range of the parameters to be tested would

be excessively computationally intensive. In addition, inevaluating the progressive match

and to test its ability to find common sub-patterns, a common sub-pattern must be known

to exist in advance. If the algorithm found a common pattern between a number of real

protein structures then their existence would have to be verified by eye. When testing

thousands of structures, this would be excessively labour-intensive. There is also the

possible case where an incorrect algorithm does not find a common pattern but where

one actually exists. Comparing real protein structures by eye to determine if a common

structure exists is too complex a task for the number of structures to be examined and so

the existence of this case could not be shown to be adequatelyunlikely.

Instead of only using real data for testing the underlying match and the progressive

match, artificially generated structures are used in this chapter to enable a number of

factors to be controlled and to ensure that the algorithm is tested more thoroughly. Artifi-

cially generated patterns can be guaranteed to match under specified parameter limits and

42
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it can also be guaranteed that two structures will have a common sub-pattern by starting

with one generated structure and only altering one part of itto produce another structure

to match against.

This chapter first explains the method used to generate the artificial data and then

presents the results from a number of experiments designed to test the accuracy of the

test methods, their run-time and how this run-time can vary depending on a number of

variables. The underlying pattern match is first examined, followed by a similar analysis

of the progressive match algorithm for identifying common sub-structures. Finally, this

chapter concludes by testing the progressive discovery method on real protein data.

4.1 Artificial Data Generation

Testing that the underlying match algorithm produces the expected results requires the

generation of structure pairs that will match one another within the matching tolerance.

To test the progressive match, the structure pairs do not have to match one another overall

but must contain a common substructure that does match within the matching tolerance.

Additionally, to ensure that the coherence distance selected will be successful in matching,

the common pattern must obey the rule that each point within the pattern is within the

coherence distance of at least one other point within that pattern. The method used to

generate these structure pairs is now given in the followingsection.

4.1.1 Generating the first structure

Each structure consists of a set of points, with the number ofpoints to be generated

provided as an input to the generation algorithm.

The first point of the set is placed at a random position and assigned a random label

from a user-defined number of possible text labels. When usingreal protein data, the

number of possible labels is often 20, one for each possible amino acid centred at that

point, but may also be 4, representing the atom at that point (carbon, nitrogen, oxygen

or sulpher) or any other number depending on how the data is tobe represented. Using

only hydrophobic residues could reduce the number of labelsbelow 20 but adding charge

information could increase the number of possible labels. Altering the number of possible

labels could change the performance of the algorithm and so this parameter is reproduced

in the generation of artificial data. The second point is placed in a random direction

away from the first point, but constrained to exist a user-defined distance from the first

point. This constraint ensures that the coherence distancewill be sufficient to ensure a
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Figure 4.1: Frequency of varying inter-point distances in asample of real data (top) and
artificial data (bottom). A peak exists in both graphs when the distance is equal to 3.8.

match. Each additional point in the structure is placed in the same way, at a set distance

and in a random direction from the previous point. When this distance is set to 3.8, the

resulting structure has characteristics similar to real protein data which, when structure

points represent the centre points of amino acids, are also arranged in a chain with each

point approximately 3.8̊A from the previous point in the chain. Figure 4.1 illustrates this

through the distribution of inter-point distances within asample of real protein data (from
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the structure with PDB code 1PII) and a sample of artificial data, generated with 200

points and a step size of 3.8. Each graph shows the frequency with which inter-point

distances occur in the overall structure. Both graphs show anincrease in the frequency

of distances up to a distance of approximately 25, followed by a decline, reaching zero at

a distance of approximately 70. There is also a peak in both graphs at a distance of 3.8,

indicating that there are visible similarities between thecharacteristics of real data and of

the artificial data. Figure 4.2 illustrates an example of an artificial structure generated in

Figure 4.2: An artificially generated structure of 200 nodes, using a step size of 3.8.

the way described, with 200 points and a step size of 3.8 between each point in the chain.

One possible improvement to the generation of artificial data could be to restrict patterns

to be more globular in shape. The data generated resemble sections of a protein chain but

are not globular like many full protein structures. The distribution of distances in artificial

data and real data are similar but it is possible that making artificial data appear more

globular could improve the similarity further.

Now that the first structure has been generated, a second structure is required that the

algorithm, if working correctly, will match.

4.1.2 Generating the second structure

The second structure is generated by taking an exact copy of the first structure and then

altering it in a number of ways. First of all, the structure istranslated by a random amount

in each axis. This does not change the shape of the structure and so a correct algorithm
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will identify the two structures as matching. Next, the whole structure is rotated by a

random angle around a random axis, resulting in a new orientation. Again, this does not

change the shape of the structure so the pair should still match. Finally, each point is

shifted by a random amount in each axis. If the algorithm is correct, an appropriately

chosen value for the matching tolerence will ensure that thepair of structures still match.

As this random amount increases, the distance tolerance of the test method will have to

increase accordingly so that the pairs match.

This second structure can now be used with the first to test theunderlying match

method. For the progressive match to be tested, another change must be made to the sec-

ond structure to ensure that the two structures do not necessarily match overall, but share a

common substructure. This is achieved by retaining a commonportion of the chain from

the first structure and then generating a new random chain forthe remainder of the second

structure. Common features may still occur between two randomly generated structures

by chance alone but enforcing this common substructure ensures that a common substruc-

ture of a specified size can be found. It is assumed that, as thematch is independent of

sequence order, the location of the common feature in the protein sequence will not effect

the algorithm result. Figure 4.3 shows two artificially generated structures with a com-

Figure 4.3: Two artificially generated graphs, each of 200 nodes, using a step size of 3.8,
and with a common subpattern of 100 nodes in size, highlighted in red.

mon subpattern of 100 nodes. As described, the second structure is a copy of the first but

with a new random chain to replace the portion of the first structure where a match is not

required. The matching section of the structures is highlighted in red.

With a method for generating artificial data now described, the next section continues
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with a comparison of the underlying match with other graph matching methods, using

artificial data.

4.1.3 Underlying Match

The lowest level of the algorithm is in the comparison of two individual patterns to deter-

mine if they match or not. This section presents results froma number of experiments to

test the accuracy of the algorithm and to evaluate how it performs compared to other graph

matching methods. The algorithms chosen for testing were the Schmidt-Druffel [82] and

VF2 [30] algorithms.

4.1.3.1 Graph Size

The variable most likely to effect a change on the run time of the underlying match is

the number of nodes in the graphs being matched. As this valueincreases, the run time

should also increase. To compare the effect of this increaseon the selected graph matching

methods, 10,000 graph pairs were generated for each graph size from 5 to 40 nodes, in

5 node increments using the method described in Section 4.1.The number of possible

labels was fixed at 4 and all points in the second graph were randomly shifted by a value

between -1 and 1 in each axis. All methods correctly matched all input graphs when using

a tolerance to take the random shift into account. The graph in Figure 4.4 shows the time

taken to match 200,000 graph pairs, with varying node size. It is clear from the graph that

the underlying match completes in less time than the alternative methods at every graph

size tested.

4.1.3.2 Label Possibilities

Without node labels, any graph matching method would be matching only the distances

between each node. If node labels must correspond as well, a test to determine the effect

of enforcing this match is useful to improve efficiency. The underlying method uses this

strategy. If there are many possible labels for each node then the underlying match should

perform better than if there are fewer possible labels at each node. To test this idea, an

experiment was conducted using 10,000 randomly generated cliques of 20 nodes, using

the method described in Section 4.1. Each node was assigned arandomly selected label.

The number of possible labels to be selected from was varied between 5, 10, 15 and

20. The results from this test are shown in Table 4.1. The underlying match showed no

change in the time taken to perform 10,000 comparisons as thenumber of possible labels

increased. As will be shown in Section 4.1.4, the run time of the progressive pattern
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Figure 4.4: Time taken to compare 10,000 graph pairs of a particular node size. Error
bars indicate the standard error of the data.

discovery used in the test method is affected by varying the number of possible labels at

each node.

4.1.3.3 Match Tolerance

In these experiments, the second of each pair of graphs has had every point shifted by

a random distance,D, in each axis. To allow these graphs to match one another, the

various algorithms need to increase the match tolerance accordingly. For this experiment,

10,000 graph pairs were generated using the method described in Section 4.1. Each graph

consisted of 20 nodes with one of 4 possible labels at each node. The match tolerance

varied within the range 1 to 8, approximating the extremes ofvariation in the resolution

of X-ray crystallography. The results from this test are shown in Table 4.2. All methods

showed no significant change in run times as the match tolerance varied. As will be

shown in Section 4.1.4, the progressive pattern discovery used in the test method can take

advantage of match tolerance to affect the run time of the algorithm.
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Method Time (milliseconds)
Test Method 1.8

Schmidt-Druffel 1.0
VF2 0.2

Table 4.1: Time taken to match 10,000 graph pairs with varying number of label choices
at each node. No change in run time occurred as the number of label choices varied.

Method Time (milliseconds)
Test Method 1.8

Schmidt-Druffel 1.0
VF2 0.2

Table 4.2: Time taken to match 10,000 graph pairs with varying match tolerance. No
variation in time occurred as the match tolerance changed.

4.1.4 Progressive Match

The only significant variable in determining the run time of any of the algorithms tested

is the size of the graphs matched. As protein structures can contain hundreds of residues

and thousands of atoms, simply using such generic graph matching methods would not

be feasible if the common patterns between proteins consisted of more than a few points.

The number of combinations of twenty points, for example, isvery large within a graph

of hundreds of points and, if each comparison of a pattern of this size takes several sec-

onds, any pattern discovery method based on an exhaustive search would not produce any

results within a reasonable time frame. As explained in Section 3.5, the search can be

reduced with the use of a number of limiting parameters. Eachof the parameters var-

ied in Section 4.1.3 should have a much more significant effect on the run time of the

progressive match.

This section presents results from a number of experiments conducted to evaluate the

effect of varying input graph size, the number of possible labels at each node, the match

tolerance and the coherence value used to restrict the search space of the test method.

4.1.4.1 Input Graph Size

The progressive match algorithm is intended to discover small common features between

multiple proteins rather than to determine overall similarity. As an initial benchmark to

evaluate the performance of the progressive match on preferable data, Figure 4.5 illus-

trates the results from an experiment comparing the progressive match and the underlying
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Figure 4.5: Time taken to match 1,000 graph pairs with varying graph size.

match when applied to two, overall similar graphs of varyingsize. 1,000 graph pairs were

generated for each graph size from 20 to 40 nodes, in 5 node increments in the same

manner as in Section 4.1.3.1. There were 4 label possibilities at each node and each point

was randomly shifted by a distance of between -1 and 1 in each axis. The progressive

match is several orders of magnitude slower than the underlying match when comparing

two graphs that are similar overall. The progressive match is therefore unsuitable for

determining an overall match between two proteins. However, the progressive match is

intended to find common sub-patterns between multiple protein structures rather than an

overall match and so the next section evaluates how effective the progressive match is at

this task.

4.1.4.2 Coherence

As shown in the previous section, reducing the search space of the progressive match is

vital to allow the algorithm to finish in a reasonable time when comparing large graphs

of several hundred nodes. As introduced in Section 3.5, one method to reduce the search

space is by specifying that a sub-pattern is only to be considered if every point within



Chapter 4 51 Algorithm Testing

it is within a maximum distance from at least one other point.Figure 4.6 shows the
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Figure 4.6: Time taken to compare 1,000 graph pairs of varying coherence.

time taken to compare 1,000 graph pairs of 40 nodes in size, with 4 label possibilities at

each node and a random displacement of between -1 and 1 of eachpoint in the second

graph from its position in the first graph. The coherence distance was varied from 5 up

to 50, in increments of 5. The results show increase in the time taken to compare graphs

as the coherence value increases. Setting an appropriate coherence value for the pattern

discovery therefore appears to have a positive effect on theperformance of the progressive

match algorithm.

4.1.4.3 Label Possibilities

In Section 4.1.3.2, it was shown that the underlying patternmatch used to determine

similarity of two graphs shows little performance improvement by varying the number

of possible labels at each graph node. In the progressive match, the more node labels

there are available, the less likely random background structures are to match by chance

alone. To show this change, an experiment was conducted using 1,000 randomly gener-

ated graphs of 40 nodes each, using the method described in Section 4.1. Each of the two
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graphs were randomly generated and so had no enforced commonpattern. Each node was

assigned a randomly selected label. The number of possible labels to be selected from

was varied between 5, 10, 15 and 20 possible labels. The results from this test are shown
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Figure 4.7: Time taken to compare 1,000 graph pairs with varying possible node labels.

in Figure 4.7. Unlike the underlying match, the progressivematch shows a significant

decrease in the time taken to find common patterns when the number of label possibilities

are increased.

4.1.4.4 Match Tolerance

In Section 4.1.3.3, it was shown that the time taken for the underlying match to match sim-

ilar graphs was unaffected by varying the distance tolerance. In this experiment, 1,000

graph pairs were generated using the method described in Section 4.1. Each graph con-

sisted of 40 nodes with one of 4 possible labels at each node. The match tolerance varied

within the range 1 to 6. The results from this test are shown inFigure 4.8. As with vary-

ing label possibilities, varying match tolerance while using the progressive match method

has an effect on the time taken to match graphs. For this artificial data, the relationship

appears to be linear.
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Figure 4.8: Time taken to match 1,000 graph pairs with varying match tolerance.

4.1.4.5 Common Nodes

In Section 4.1.4, it was shown that the progressive match method is unlikely to perform

well when matching large graphs, as it is designed to find small, common features between

largely dissimilar structures. To test the effect of changing the number of common nodes

between the graph pairs, 1,000 graph pairs were generated using the same method as

previously. Each graph was 20 nodes in size, with 4 possible labels at each node. The

match tolerance was fixed at a distance of 1 and the coherence was unlimited. The results

from the experiment are shown in Figure 4.9. The graph shows asteady increase in

the time taken to find common features as the size of the commonfeature increases.

When the size of the common feature reaches 16 nodes (80% of theoverall structure),

the time taken to match rapidly falls. The time taken to matchtwo, identical graphs is

higher than the time taken to match a common feature of 5 nodes(25% of the overall

structure). This drop off in time taken occurs due to the effect of the depth recursion

method introduced in Section 3.5 which avoids computational explosion when matching

largely similar structures.
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Figure 4.9: Time taken to match 1,000 graph pairs with varying common nodes.

4.1.5 Summary

This section has compared several basic graph matching methods and has demonstrated

that the matching used in the underlying match performs better than the alternatives. The

progressive match algorithm does not perform as well as the underlying match when

comparing structures that are similar overall but may complete within an acceptable time

for structures that are not similar overall.

The effects of varying a number of parameters used in the testmethod’s progressive

pattern discovery has also been shown to be significant and important to consider when

applying the test method to real data. The next section demonstrates how the algorithm

performs on real protein structures, taken from the ProteinData Bank and discusses ap-

propriate settings for the various parameters seen in this section.

4.2 Protein Data

The previous section has shown that the progressive match algorithm may be used to find

common features between multiple structures and may be usedto do this in a reasonable
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time-frame for well-chosen parameters. The way the parameters interact to jointly affect

the algorithm runtime is complex and dependent on features of the input data - correct use

of the coherence value, for example, is connected directly to the sparsity of the pattern to

be found rather than any feature of the overall structure. The complexity of the algorithm

is affected more by the size of the common pattern than by the size of the entire input

structures, making run-time impossible to predict in advance.

This section applies the progressive match algorithm to structural data taken from

the Protein Data Bank. As illustrated in Section 4.1, the progressive match performs

best when the common feature to be found is either a small proportion of the overall

structures or a very large proportion of the overall structures. Several algorithms already

exist for matching protein structures that are similar overall – this test will focus on finding

common features among structures which are dissimilar overall. This section begins by

discussing how to identify proteins of similar function butdifferent fold, then discusses

appropriate parameters for the match and, finally, presentsthe results of matching multiple

protein structures.

4.2.1 Data Selection

In order to test the ability of the progressive match to detect common structures within

overall dissimilar proteins, an appropriate group of proteins must be found with this fea-

ture in advance. One of the more common reasons for proteins sharing a common, lo-

calised, feature is if they bind with the same, or similar, chemical ligand. For a ligand

to react with the surface of a protein, it is highly likely that there will be some structural

feature on the surface to allow this. The proteins selected for testing in this section all

bind with ligands that contain adenine, though each ligand is itself different in each case.

This selection allows structures to be chosen which have a different fold but that are also

likely to contain some common feature at or near the binding site.

4.2.2 Parameter Selection

To limit the complexity of the search in these experiments, the tolerance and coherence

parameters are used and C-α atoms are taken as the input data points. Coherence, as ex-

plained in Section 3.5, is the maximum distance between eachpoint and at least one other

point in the pattern. Protein structures are compact with each C-α atom along a protein

chain rarely more than 6̊A from the next in the chain. C-α atoms which are neighbouring

in space but not adjacent in the chain are also likely to be within this distance, assuming

the structure is compact. 6Å is therefore used as the coherence value in this test.
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Figure 4.10: Matches found within PDB files 1HDX, 1JWA and 1AOG. The blue regions
indicate matches, the red regions are an overlay of the boundligand positions.

To establish a reasonable value for the tolerance, the various factors affecting why

positional values for atoms may vary must be considered. As discussed in Section 3.3,

this may be due to error in the crystallography process, the temperature factor of the atom

due to oscillation or from flexibility in the protein structure itself. A protein is less likely

to be flexible at its core than at the extremities [69] and is more likely to be compact in the

region close to the active site. For this test, therefore, only the error in the crystallography

process is considered as a source of variation in the likely common sub-pattern. The value

for tolerance is set to 3̊A to exceed common B-factor (temperature factor) values in the

structural data files of each atom and therefore to take account of positional variation due

to atomic oscillation. No limit was placed on the diameter ofthe pattern to be found. No

limitations were put on the regions of the input structures to consider, resulting in input

structures of 748 nodes, 485 nodes and 298 nodes.

4.2.3 Adenine-Binding Results

For this test, the structures used are an NAD-binding alcohol dehydrogenase (PDB code

1HDX), an FAD-binding trypanothione reductase (PDB code 1AOG) and an ATP-binding

moeb-moad protein complex (PDB code 1JWA). The PDB files for these proteins feature

the locations of the binding ligands. This information is not used in the matching process

but can be used as an indication of the success of the match - ifthe matching regions are at

the ligand binding sites then the match will have been successful. Figure 4.10 illustrates

the locations of the largest patterns found to match betweenboth structures. The largest

match is of size 14 and occurs directly adjacent to the location of the binding ligands. The

progressive match has correctly identified the location of the proteins’ active sites in this

case.
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4.3 Chapter Review

This chapter has taken the progressive match algorithm and its underlying match method

and evaluated the effects of varying a number of variables. Compared to graph isomor-

phism methods, the underlying match has a shorter runtime for any combination of param-

eters. It has also been seen that the progressive match run-time is greatly affected by vari-

ations in the coherence value and the number of label possibilities at each node. The main

effect on run-time is the number of nodes in common between the input structures. This

essentially means that the run-time of the algorithm is extremely difficult to determine

in advance. Using early detection of large degrees of similarity between the input struc-

tures, it has been shown that the run-time drops when the number of nodes in common

becomes large. The algorithm will perform best on structures which have small, common

features or on those which are largely homologous. It has also been demonstrated that

the algorithm works successfully on real protein data, finding significant structures within

proteins that bind similar ligands at their active sites.

The next chapter builds on this progressive match method by defining a measure of

significance that may be assigned to any common sub-structures found and presents re-

sults from this process.
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Statistical Significance

Chapter 4 illustrated that the progressive match algorithm can find common features be-

tween multiple structures in a reasonable time frame for well chosen combinations of

parameters and that, when real protein data is used, the discovered patterns may be con-

sidered ‘interesting’, but this has not yet been quantified.This chapter begins by review-

ing the methods used in similar applications to assign scores to results in order to quantify

what ‘interesting’ means in this context, continues by selecting a method suitable for scor-

ing patterns in this application and then concludes by applying these methods to a large

number of protein groups in order to further evaluate the progressive match algorithm.

5.1 Scoring Methods

Other pattern matching and pattern discovery algorithms assign a score to any matches

made or patterns discovered to indicate their significance.As noted by Hubbard et al. [26],

the terms ‘significance’ and ‘statistical significance’ areoften poorly defined in statisti-

cal literature; the Bioinformatics literature often abandons the term entirely in favour of

attempting to quantify how ‘interesting’ a discovered pattern is or how ‘surprising’ it is

that two structures match [28]. In Bioinformatics, these concepts are usually reduced to

one measure – whether the match occurred by chance or if it is significant (or surprising

or unexpected), and this is most often the basis for any scoring mechanism.

Three reasons for wanting to assign scores to patterns discovered by the progressive

58
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match algorithm are:

1. To distinguish between patterns that are significant and those that occur by chance

alone.

2. To evaluate the success of the algorithm in its ability to discover significant patterns.

3. To predict the function of a protein using the presence of significant patterns as

evidence for assigning functional annotations.

The first two reasons are in common with similar applicationsbut the third is not

clearly cited in the discussion of analogous algorithms. Itis therefore necessary to re-

evaluate the scoring methods used in other applications to determine if they are suitable

for this application. The most common scoring methods namedin the literature are the

E-value, the P-value and, to a lesser extent, the Z-score.

5.1.1 Existing Measures

The popular BLAST tool [4] uses E-values to indicate the strength of match between

two genetic sequences. The E-value or ‘expected’ value is anestimate of the number of

other sequences that would be expected to score at least as high as the query sequence. P-

values are related to E-values but they represent the probability of finding at least one other

sequence that would score at least as high as the query sequence and are also common in

the literature (e.g. [29]). The Z-score is less common in Bioinformatics but is sometimes

used (e.g. [49]). This score represents the number of standard deviations away the raw

score is from the mean raw score for the whole database.

Each of these scoring methods rely on an underlying, raw score for the algorithm

results which vary according to the specifics of the application. For BLAST, the raw score

is related to how many sequence positions must be substituted to move from one sequence

to the other, although this is often refined by, for example, scoring some substitutions

higher than others.

In structural applications, there are a limited number of factors that are used to produce

a raw score when aligning patterns or discovering common sub-structures. The variables

cited in the literature are often limited to the size of the alignment (the number of residue

points matched) and the root mean squared distance (RMSD) between each residue point

in one pattern and the corresponding point in the matched pattern. RMSD is used exten-

sively in assessing the quality of structural alignments [33] and the size of match is used

in both alignment applications and in pattern discovery algorithms, with the assumption
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being that a smaller match is more likely to occur by chance and is therefore less likely to

be ‘interesting’.

As has been shown in Chapter 2, the discovery of small, key motifs is a goal that is

gaining importance in the field and yet the scoring of patterns based on their size persists.

More recent research notes that using P-values from RMSD doesnot always perform

well [62] and that E-values based on characteristics of discovered patterns themselves

do not work well with smaller features [31]. Despite this increasing recognition, a clear

alternative to the existing methods is not apparant in the literature. For the purposes of this

project, an alternative to scoring based on features of the discovered patterns themselves

is desirable.

5.1.2 Scoring and Function

Finding common sub-structures between a set of proteins canbe useful in its own right in

order to better understand the proteins provided as input but, in addition, a library of key

patterns associated with certain protein groups would be useful in predicting the function

of a new protein.

As an alternative to existing methods for scoring protein structural matches, the scor-

ing method used here will be to score a pattern highly if it is associated with a known

protein function and low otherwise, regardless of the pattern’s size and shape. To achieve

this, information is needed as to how frequently a discovered pattern occurs in proteins

with a functional annotation of interest and how often it occurs in proteins without the

annotation. If the pattern occurs significantly more often in the former case then it should

recieve a higher score.

Two methods were chosen to find an appropriate method for scoring in this manner.

The first method uses Bayesian statistics and was chosen as such methods are often used

in other fields for estimating probabilities given items of evidence and have also been

used with success in some Bioinformatics applications [5]. The second method consid-

ered used the Chi-Squared test of statistical significance toproduce a score from the raw

contingency table data. This method was chosen as this test is often used in calculating

significance from bivariate tables in other fields [13].

The use of each method in this application will now be described.

5.1.3 Bayes Score

Bayes’ Theorem (Equation 5.1) allows the expression of a conditional probability,F given

S in terms of the probability ofSgivenF . If F represents the statement that “the protein
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performs a given function” andS represents the statement that “the protein contains a

given structure” for a chosen function and structure, the posterior,P(F |S) represents the

probability that a protein performs this function given that it contains the specified struc-

ture. This posterior may be used as a measure of significance.

P(F |S) =
P(S|F)P(F)

P(S)
(5.1)

The prior,P(F), is the probability that a protein performs the function. This term may

be estimated based on the proportion of protein structures in an annotated database that

carry the functional annotation of interest. This term willbe biased based on the content

or focus of the database. Equation 5.2 gives the prior whereN is the number of proteins

that perform the function andK is the total number of proteins in the database.

P(F) =
N
K

(5.2)

The normalising constant,P(S), is the probability that a protein contains the candidate

structure.P(S|F) is also the probability that a protein contains the candidate structure, but

only if it performs the chosen function. These two terms may be estimated by searching

for the candidate structure in a set of proteins,X, which perform the function and another

set,Y, which is representative of all known protein structures. Equations 5.3 and 5.4

illustrate this, whereCX andCY are the number of times the candidate structure occurs in

X andY respectively and|X| and|Y| are the number of proteins in setsX andY.

P(S|F) =
CX

|X|
(5.3)

P(S) =
CY

|Y|
(5.4)

From these equations it is straightforward to define the formula for calculating signifi-

cance,Ψ, as Equation 5.5.

Ψ =
CX|Y|N
CY|X|K

(5.5)

This measure of significance is useful as it may immediately be applied to the proba-

bilistic prediction of function.

Table 5.1 is an example contingency table of results for a fictional discovered pattern,
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Pattern Not Pattern Total
Function 40 10 50

Not Function 25 75 100
Total 65 85 150

Table 5.1: Example Contingency Table

broken down into categories for whether the proteins perform the function of interest or

not and if the proteins contain the pattern of interest or not. In this example, there are

150 protein structures. 50 of these proteins perform the function of interest and 100 do

not. 65 protein structures contain the pattern and 85 do not.The Bayes score may be

calculated from these results using Equation 5.5, whereCX = 40,CY = 25, |X| = 65 and

|Y|= 85. For this example,N andK will be given values of 1,000 and 50,000 respectively,

indicating that the fictional function occurs in 1,000 proteins from a database of 50,000.

With these inputs, the value ofΨ is 0.04.

5.1.4 Chi-Square Score

The Chi-Square score is based on the estimatation of statistical significance from a bi-

variate table. To produce the Chi-Square score, a table of expected values must first be

calculated from the sample results in Table 5.1, indicatingwhat the expected distribution

of values would be if there were no correlation between the presence of the pattern of

interest and the protein performing the function of interest. For each cell, the expected

value is calculated as the total for the cell column multipled by the total for the cell row,

divided by the table total. These values are shown in Table 5.2.

Pattern Not Pattern Total
Function 21.67 28.33 50

Not Function 43.33 56.67 100
Total 65 85 150

Table 5.2: Example Chi-squared expected values, calculatedfrom the information given
in Table 5.1.

With these two tables, the Chi-Square score can now be calculated. For each table

cell, the amount to which the expected value,E, differs from the observed value,O, is

calculated as(O−E)2

E . For example, the top left hand cell in Table 5.1 has a value for O

of 40. The same cell in the expected values of Table 5.2 has a value for E of 21.67. The

score for that cell is(40−21.67)2

21.67 or 15.5. When the same calculations are made for the other
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three cells,t he sum of those values is the Chi-square score for the whole table which, in

this example, is 41.08. Standard tables, which vary according to the number of degrees

of freedom in the data table, may be used to generate a p-valuefor the Chi-square test

which, in this example, exceeds 0.001.

With the two scoring methods described, the next section presents further evaluation

of the progressive match algorithm by analysing a large number of protein groups and

scoring the resulting common patterns.

5.2 Analysing Multiple Protein Groups

The strength of the progressive match is in finding small, common features within overall

dissimilar structures. This section evaluates the algorithm’s ability to achieve this by

selecting a wide range of functional groups by GO annotation, selecting those groups with

dissimilar structures, running the progressive match on each group and then assigning

scores to any discovered patterns in the manner previously described. In order to assign

a particular GO annotation to a new structure, that GO annotation must be a part of this

full discovery process. To assign the full range of functions, therefore, features must be

found for as many GO annotations as possible.

This process consists of three main steps:

1. Generating a list of GO term groups to be analysed.

2. For each GO term, identify common features among proteinswith that GO term.

3. Assess the statistical significance of each common feature found.

As discussed in Chapter 4, the progressive match performs best when finding small,

common features among structures which are not similar overall. Although a specific set

of proteins with this property were used in Section 4.2, an automated method for finding

such groups is required for larger scale testing. A measure of overall dissimilarity is

required and a measure of likely shared sub-structure is also needed. The first property is

considerably easier to measure quantitatively, though there are still alternatives.

5.2.1 Measuring Similarity

Chapter 2 covers various notions of similarity between proteins, including shared ancestry

and the number of amino acid changes between protein sequences. Selecting data sets

based on dissimilar ancestry creates a number of problems, not least a lack of available
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data. The number of functions shared across ancestral branches is small. The problem of

lack of data remains to some degree when measuring similarity by sequence differences

as two proteins of the same ancestry are highly likely to havea large amount of sequence

in common anyway. Although it may be unusual for two proteinsto have similar function

but largely dissimilar sequence, the progressive match performs a multiple alignment,

not pairwise, and adding more proteins to a data set will reduce the amount of sequence

similarity between the entire set compared to the similarity between any pair from that

set. Percentage sequence similarity is therefore used hereas the measure of dissimilarity

within a set.

5.2.2 Likely Common Sub-Structure

Measuring the likelihood that a set of proteins will have a shared sub-structure is difficult

to achieve quantitatively. There are many reasons why proteins may have the same struc-

ture within them as very small features may play vital roles in a wide range of proteins.

The Gene Ontology covers a broad range of functional roles and, therefore, grouping pro-

teins in this manner should give rise to common sub-structures. It is desirable to select

GO terms that are not too general as this is likely to reduce the probability of the asso-

ciated proteins having nothing in common, structurally. Itis also desirable to select GO

terms that are well represented in the available data. It is therefore necessary to combine

the two measures of dissimilar structure and similar function to select the final portion of

the GO to be used. The ASTRAL [12] database provides a link between sequence and

structural data. ASTRAL clusters PDB files based on either sequence similarity or ances-

try and then uses a unique scoring system to select the best representatives of each cluster

in terms of data quality - completeness and resolution. One of the most useful features of

ASTRAL for the experiments in this chapter is the selection ofdatasets grouped by de-

gree of sequence similarity. Data sets are available at a series of similarity levels, starting

at a maximum of 10% i.e. the best set of protein structures in the PDB, in terms of data

quality, none of which share more than 10% sequence similarity with any other structure

in the set. Putting together the features of the GO and of ASTRAL allows the selection

of the datasets required. Each GO term to be examined must have sufficient structural

examples to satisfy both the process of discovering common sub-patterns and the process

of evaluating any common patterns found. To assess the statistical significance of a pat-

tern, it must be searched for in both a positive set and a negative set. To allow a proper

evaluation of the discovery process, the initial match set and the positive evaluation set

should be different. For the discovery process, at least, the match set should also consist
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Figure 5.1: The number of GO annotations with a given minimumnumber of available
examples in ASTRAL.

of structurally dissimilar proteins, ideally selected from the ASTRAL 10% set. The Gene

Ontology contains 17727 terms (as of April 22, 2005), many ofwhich are only applied

to a small number of proteins in the PDB, so a method for reducing the selection of GO

terms is required. Ideally, the volume of available structural data would be such that a

large number of structures for each functional grouping could be used. Unfortunately,

this is not the case for the vast bulk of the GO. Figure 5.1 illustrates the distribution of

how many GO terms apply to a varying minimum number of PDB entries revealing that

there are a large number of GO terms that do not have many current structural examples at

all. Taking all these factors into account, the criteria forselecting GO term groups in this

experiment is that each set must contain at least 20 examplesfrom the ASTRAL 100%

set to allow 10 examples for the match set and another 10 for the positive evaluation set.

This size of selection will still allow a reasonable selection of GO annotations to be con-

sidered. Once this list has been generated, each GO term group can then be passed into

the next step - the pattern discovery process.
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5.2.3 Pattern Discovery

With the selection generated from the previous section, thepattern discovery stage will

take as input 10 protein structures from the ASTRAL 30% set, this being a typical figure

for transferring annotation via homology in the literature. If more than ten such struc-

tures are available then the match set will consist of any structures that are members of

ASTRAL 10% first, then 20% and then the remainder from the 30% set.

As shown in Chapter 4, the selection of match parameters is very important to ensure

a reasonable run-time. Both tolerance and coherence may be reduced to improve the

runtime but each also limit the type of match found. Increasing coherence allows more

sparsely distributed amino acids to be considered as a validpattern whereas increasing

tolerance allows more variation in the position of atoms within matching patterns. The

solution used here is to simply run the algorithm twice - oncewith a broader tolerance and

again with a broader coherence - with the other parameters reduced to allow a reasonable

run-time. The first set of parameters sets tolerance to 1Å and coherence to 8̊A, allowing

visibly similar patterns to be discovered. The second set ofparameters uses a tolerance of

12Å and a coherence of 6̊A allowing a cluster of adjacent amino acids to be considered.

The resulting two sets of patterns may then be evaluated using the statistical measures

discussed previously. C-α atoms were used as the input points for this process.

5.2.4 Evaluation

For the evaluation stage of this process two sets were constructed, a positive set of up to

50 protein structures (if that many were available) and a randomly selected negative set

of 50 structures, for each GO term group. The largest common sub-structures found in

the match set were then each searched for in each structure ofthe positive set and again

for the negative set. Using the methods described previously, each pattern could then be

assigned a Bayesian significance. The Chi-Square test was thenalso applied to obtain an

alternative measure of correlation significance. With the Chi-Square values, each pattern

scoring a value with an equivalent p-score of 0.01 or below could then be reported as

statistically significant, i.e. strongly correlated with the associated GO annotation. The

resulting significant patterns were then available for study based on other criteria, such as

the Bayesian significance score or the size of the match. Figure 5.2 is a graph showing

the number of GO annotations with at least one significant pattern, for varying levels of

significance. A total of 406 GO classes were tested and, of these, 400 contained at least

one significant common pattern with a Chi-Square raw value of 10.83 or more, corre-

sponding to a p-score of 0.005. 405 GO classes contained at least one pattern with a raw
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Figure 5.2: The number of GO annotations with at least one significant pattern, for varying
levels of Chi-squared score obtained.

Chi-Square value of 7.87, indicating a p-score of at least 0.01.

The next section presents a small selection of these resultsrepresenting various mea-

sures of significance within those already classified as significant from the Chi-Square

measure, along with other interesting patterns and some unexpected results.

5.3 Results

Table 5.3 lists the GO annotation groups selected for presentation in this section along

with the match parameters used wheret is the tolerance,k is coherence ands is minimum

score. The table also summarises the matches presented where ‘Size’ is the size of pat-

tern found, ‘ASTRAL’ is the number of representatives available for the annotation in the

ASTRAL 100% set, with the number available in the ASTRAL 30% setgiven in paren-

theses, ‘+’ and ‘-’ are the proportion of the positive and negative evaluation sets in which

the pattern was found and ‘Bayes’ and ‘Chi-Sq’ are the significance values with the Bayes

method and Chi-Square method. The following subsections explain each of these results
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GO Id GO Description t k s Size Time(s) ASTRAL + - Bayes Chi-Sq
0004181 Metallocarboxypeptidase Activity 1 8 6 41 2600 21(10) 0.65 0.00 1.000 72.9
0045012 MHC Class II Receptor Activity 1 8 6 25 1500 34(4) 0.91 0.00 1.000 122.5
0009975 Cyclase Activity 1 8 6 6 2800 13(6) 0.70 0.00 1.000 75.2
0003702 RNA Polymerase II Transcription Factor 1 8 6 2 2.6 79(41) 0.30 0.75 0.002 28.1
0004759 Serine Esterase Activity 1 8 6 6 150 70(10) 0.86 0.06 0.067 97.0
0004623 Phospholipase A2 Activity 1 8 6 6 9.9 77(4) 0.88 0.03 0.141 111.9
0016731 Ferredoxin Reductase Activity 1 8 6 8 83 33(5) 0.91 0.00 1.000 117.4
0005246 Calcium Channel Regulator Activity 12 6 9 4 0.33 25(8) 0.84 0.12 0.012 53.4
0019239 Deaminase Activity 12 6 9 2 2500 31(14) 0.23 0.93 0.001 65.0
0015666 Restriction Endodeoxyribonuclease Activity12 6 9 2 48 43(17) 0.23 0.89 0.001 61.0
0005267 Potassium Channel Activity 12 6 9 2 1500 47(11) 0.21 0.91 0.001 72.3
0016247 Channel Regulator Activity 12 6 9 3 0.36 114(33) 0.88 0.15 0.046 74.4

Table 5.3: Summary of the match parameters used and resulting scores obtained for each GO class presented. ‘Chi-Sq’ indicates the
Chi-squared score.
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Figure 5.3: A common pattern found within representative structures annotated with
GO:0004181. From left to right: front view of pattern within4CPA, front and top views
of pattern within 1DTD.

further, with tables detailing the matched residues included at the end of the chapter.

5.3.1 Metallocarboxypeptidase Activity (GO:0004181)

This match took 2600 seconds to complete, making this one of the more complex algo-

rithm runs. The largest common structure found contained 41residues, the largest single

pattern found in this experiment. The matching residues arelisted in Table 5.4 and a vi-

sual representation of the match is also given in Figure 5.3.Although no two proteins in

the match set had more than 30% sequence similarity, and mosthad no more than 10%

similarity, this still amounts to a theoretical common sequence of 30 residues (10% of

308, the number of residues in the smallest structure - 1M4L)so it is not surprising that

this structural match appears. In terms of sequence position, the matches sometimes begin

at different positions on the chain but retain the same distribution along the sequence. The

match is also limited to the same chain in each case. 1KWM features two chains but this

is merely due to the same pattern appearing twice rather thanbeing a single pattern spread

across two chains. Predictably, due to the number of matchedresidues, this pattern is sta-

tistically significant. The Chi-Square test gives a value of 72.9, indicating significance at

the 99.9% level.
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Figure 5.4: A common pattern found within representative structures annotated with
GO:0045012. 1IAK pictured left, 1K8I pictured right.

5.3.2 MHC Class II Receptor Activity (GO:0045012)

This largest common pattern is also the most statistically significant pattern from the

experiment, with a Chi-Square score of 122.5. This represents a p-score indicating sig-

nificance at much greater than the 99.9% level. The pattern isvisually distinctive, as

illustrated in Figure 5.4 and appears as a common sequence aswell as a common struc-

ture between all input proteins. The sequence match is givenin Table 5.5. The high

statistical significance of this pattern is most likely to arise simply from the size of the

pattern. The structure contains 25 residues, making it one of the larger patterns found in

this experiment.
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Figure 5.5: A common pattern found within representative structures annotated with
GO:0009975. Pictured left, 1AB8. Pictured right, 1QMH.

5.3.3 Cyclase Activity (GO:0009975)

Using the Bayesian method for assigning significance, this example has the highest score

of all matches found in the experiment as it is both rare and the common pattern is distinc-

tive. The pattern is only six residues in size but appears in 70% of positive examples and

0% of the negative examples, resulting in a Bayes score of 1. For the proteins used in the

initial match, this pattern sometimes occurs as a sequence match, as shown in Table 5.6

but is also present in proteins of different fold (e.g. 1AB8 and 1QMH) as illustrated in

Figure 5.5. This result shows that the pattern discovery method correctly identifies struc-

tures which are adjacent in space but not necessarily in sequence order.

5.3.4 RNA Polymerase II Transcription Factor (GO:0003702)

This result, illustrated in Figure 5.6 and Table 5.7, demonstrates an interesting side-effect

of the large scale discovery process in that the pattern is inhibitory – presence of this

pattern is significant in the Chi-Square score but actually decreases the probability of the

annotation being present. As only 10 proteins are selected for the initial pattern discovery,

and a pattern only needs to appear in 6 proteins to be considered a match, it is only by
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Figure 5.6: A common pattern found within representative structures annotated with
GO:0003702. From left to right: 1DP7, 1DL6 and 1NH2.

chance that proteins containing this pattern were chosen. In the wider test of significance,

this pattern only occurs in 30% of the positive set but in 75% of the negative set (i.e.

presence of this pattern is actually evidence that the protein should not be annotated as

GO:0003702).

5.3.5 Serine Esterase Activity (GO:0004759)

The larger sized matches discussed in this chapter are predictably highly significant purely

as a result of the improbability of such large common patterns to occur by chance alone.

These larger results are also commonly associated with an underlying sequence similar-

ity. This result is chosen as an example of a small, significant, pattern. The pattern is 4

residues in size and occurs in various sequence positions, among proteins of varying over-

all structure, though the pattern tends to appear most frequently at the core of the protein.

This is illustrated in Figure 5.7 and in Table 5.8. Although small, this pattern occurs in

86% of positive examples and only 7% of negative examples, with a Chi-Square score of

97.0.

5.3.6 Phospholipase A2 Activity (GO:0004623)

This is another example of a small but highly statistically significant pattern. The common

pattern is only 3 residues in size but occurs in 88% of positive examples and in only 3% of

negative examples. It has a Chi-Sq score of 110. The pattern occurs in varying sequence

locations, sometimes overlapping and in a wide variety of different folds, as illustrated in

Figure 5.8 and in Table 5.9.
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Figure 5.7: A common pattern found within representative structures annotated with
GO:0004759. From left to right: 1DIN, 1MX1 and 1QE3.

5.3.7 Ferredoxin Reductase Activity (GO:0016731)

Of the small patterns identified in this experiment, this example is one of the most signif-

icant. The pattern is only 4 residues in size but occurs in 91%of positive examples and

0% of negative examples with a Chi-Square score is 117. The pattern is frequently found

in the core of the protein and often appears multiple times instructures with more than

one domain. The pattern is visually similar between different examples, as illustrated in

Figure 5.9. The sequence positions vary from example to example as shown in Table 5.9.

5.3.8 Calcium Channel Regulator Activity (GO:0005246)

This example resulted from running the pattern discovery method using a larger tolerance

and tighter coherence. The patterns found using these parameters are easier to discover

between more disordered structures but they are generally more localised. The pattern

here is 4 residues in size and occurs in a wide range of sequence positions, as listed in

Table 5.11. This pattern is generally found in smaller structures which appear largely

different to one another, as illustrated in Figure 5.10.

5.3.9 Deaminase Activity (GO:0019239)

This pattern consists of only two residues, a valine and a leucine, and is another example

of an inhibitory pattern. The pattern occurs in 23% of positive examples but in 93% of
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Figure 5.8: A common pattern found within representative structures annotated with
GO:0004623. 1MC2, 1POC, 1LE6 and 1OZ7

negative examples. The presence of this pattern is usually evidence that a protein should

not have the annotation GO:0019239 and only occurs in the sample used for the initial

pattern discovery by chance. When the pattern does occur in positive examples, it often

appears multiple times and in a broad range of folds, as illustrated in Figure 5.11 and in

Table 5.12.

5.3.10 Restriction Endodeoxyribonuclease Activity (GO:0015666)

This pattern is another example of an inhibitory pattern. Inthis case the pattern consists of

a glutamic acid and a leucine. This pattern occurs in 23% of positive examples and 89%

of negative examples. If this pattern is present in a structure then it is only 26% as likely

to be annotated with GO:0015666 as it would be by chance alone. In the examples used

for the initial pattern match, the pattern occurs multiple times, as illustrated in Figure 5.12

and in Table 5.13.



Chapter 5 75 Statistical Significance

Figure 5.9: A common pattern found within representative structures annotated with
GO:0016731.

Figure 5.10: A common pattern found within representative structures annotated with
GO:0005246. PDB structures 1BIK, 1BF0 and 1Q9P.

5.3.11 Potassium Channel Activity (GO:0005267)

Another inhibitory pattern, this example is another combination of two residues – leucine

and threonine. The pattern occurs in 21% of positive examples and in 91% of negative

examples. It has a Chi-Square significance of 72.3. As appearscommon with the in-

hibitory patterns found in this experiment, this pattern often occurs multiple times in the

few positive examples used for the initial pattern discovery. Examples are illustrated in

Figure 5.13 with the corresponding sequence positions listed in Table 5.14.
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Figure 5.11: A common pattern found within representative structures annotated with
GO:0019239. PDB codes 1J0D, 1K6W, 1QD1.

Figure 5.12: A common pattern found within representative structures annotated with
GO:0015666. PDB codes 1CKQ, 1KC6, 3PVI.

5.3.12 Channel Regulator Activity (GO:0016247)

The last result to be presented in this section is a small but significant feature consisting

of three cysteine residues. The pattern occurs in 88% of positive examples tested and in

only 15% of negative examples. This gives the pattern a Chi-Square score of 74. The

pattern is commonly found in shorter protein chains which often have different overall

structures, as shown in Figure 5.14. The three cysteines arenot adjacent in sequence and

occur in different positions between examples, as shown in Table 5.15.
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Figure 5.13: A common pattern found within representative structures annotated with
GO:0005267. PDB codes 1LNQ, 1ORS, 1P7B.

Figure 5.14: A common pattern found within representative structures annotated with
GO:0016247. PDB codes 1ACW, 1R1G, 2SN3.
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PDB ASTRAL Residues Aligned Residues

1DTD 10% 364

A395 A399 A401 A424 A426 A427 A467 A470 A481 A482
A483 A485 A492 A496 A498 A500 A501 A502 A513 A516
A521 A523 A526 A528 A531 A552 A554 A555 A561 A562
A564 A608 A612 A613 A615 A623 A625 A626 A630 A634
A635

1M4L 10% 308

A39 A43 A45 A69 A71 A72 A112 A115 A126 A127
A128 A130 A136 A140 A142 A144 A145 A146 A157 A160
A165 A167 A170 A172 A175 A196 A198 A199 A205 A206
A208 A252 A256 A257 A259 A267 A269 A270 A274 A278
A279

4CPA 10% 345

39 43 45 69 71 72 112 115 126 127
128 130 136 140 142 144 145 146 157 160
165 167 170 172 175 196 198 199 205 206
208 252 256 257 259 267 269 270 274 278
279

1AYE 10% 401

39 43 45 69 71 72 112 115 126 127
128 130 136 140 142 144 145 146 157 160
165 167 170 172 175 196 198 199 205 206
208 252 256 257 259 267 269 270 274 278
279

1KWM 10% 806

A39 A43 A45 A69 A71 A72 A39 A43 A45 A69
A71 A72 A112 A115 A126 A127 A128 A130 A136 A140
A142 A144 A144 A145 A146 A157 A160 A165 A167 A170
A172 A175 A196 A198 A199 A205 A206 A208 A252 A256
A257 A259 A267 A269 A270 A274 A278 A279
B39 B43 B45 B69 B71 B72 B39 B43 B45 B69
B71 B72 B112 B115 B126 B127 B128 B130 B136 B140
B142 B144 B144 B145 B146 B157 B160 B165 B167 B170
B172 B175 B196 B198 B199 B205 B206 B208 B252 B256
A257 B259 B267 B269 B270 B274 B278 B279

1OBR 30% 323

36 40 42 69 71 72 112 115 128 129
130 132 138 142 144 146 147 148 160 163
168 170 173 175 178 204 206 207 213 214
216 259 263 264 266 274 276 277 281 286
287

Table 5.4: Common pattern found within representatives fromGO:0004181.

PDB Astral Residues Aligned Residues

1KG0 10% 504
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

1D5M 70% 603
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

1K8I 70% 371
B96 B98 B114 B116 B118 B121 B122 B123 B133 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

1IAK 70% 367
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

1KLU 70% 608
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

1FV1 70% 737
E97 E99 E115 E117 E119 E122 E123 E124 E134 E150 E151
E152 E153 E154 E156 E161 E168 E170 E171 E172 E173 E175
E177 E183 E188

1J8H 70% 810
B97 B99 B115 B117 B119 B122 B123 B124 B134 B150 B151
B152 B153 B154 B156 B161 B168 B170 B171 B172 B173 B175
B177 B183 B188

Table 5.5: A common pattern found within representatives from GO:0045012.

PDB Astral Residues Aligned Residues
1AZS 10% 729 B889 B976 B998 B1021 B1023 B1027
1FX2 10% 235 A904 A965 A1023 A1045 A1047 A1051
1QMH 10% 671 A58 A60 A64 A91 A121 A169
1FX4 90% 231 A892 A953 A1011 A1033 A1035 A1039
1CJK 100% 721 B889 B976 B998 B1021 B1023 B1027
1CJU 100% 721 B889 B976 B998 B1021 B1023 B1027

1AB8 100% 402
A889 A976 A998 A1021 A1023 A1027
B889 B976 B998 B1021 B1023 B1027

Table 5.6: A common pattern found within representatives from GO:0009975.
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PDB ASTRAL Residues Aligned Residues
2BBY 10% 69 189 190
1DL6 10% 58 A2 A3
1DP7 10% 76 P41 P42
1H2K 10% 335 A94 A95 A96
1NH2 10% 402 A117 A118 A135 A136 B6 B7 D34 D35
2GLI 10% 155 A214 A215

1F3U 10% 1094
A34 A35 A73 A74 A76 A77 C34 C35 C73 C74
C76 C77 E34 E35 E73 E74 E76 E77 G34 G35
G73 G74 G76 G77

Table 5.7: A common pattern found within representatives from GO:0003702.

PDB ASTRAL Residues Aligned Residues
1CEX 10% 197 39 41 117 118 122 123
1R1D 10% 484 A90 A91 A95 A96 B90 B91 B95 B96
1GGV 10% 232 A121 A125 A126 A127 A143 A146
1UWC 10% 522 A67 A131 A135 A136 B67 B131 B135 B136
1DIN 20% 233 125 126 127 143 168 169 200 201
1ESC 20% 302 65 66 67 238 239 240

1MX1 20% 312
A1141 A1219 A1222 A1223 B2141 B2219 B2222 B2223 C3141 C3219
C3222 C3223 D4141 D4219 D4222 D4223 E5141 E5219 E5222 E5223
F6141 F6219 F6222 F6223

1QE3 25% 483 A105 A187 A190 A191
2BCE 30% 579 106 107 108 578

Table 5.8: A common pattern found within representatives from GO:0004759.

PDB ASTRAL Residues Aligned Residues
1MC2 10% 122 A1029 A1044 A1045 A1048 A1050 A1051 A1098
1POC 10% 134 9 30 31 34 37 63 105 113 115
1SZ8 30% 119 A29 A44 A45 A48 A51 A93
1POA 35% 118 28 43 44 47 50 92

1OZ7 35% 254
A30 A38 A77 A78 A125 B30 B38 B75 B95 B96
B111 B119

1LE6 35% 369
A25 A27 A32 A42 A43 A44 A46 A48 A49 A90
A115 B27 B42 B43 B44 B46 B48 B49 B90 C25
C27 C32 C42 C43 C44 C46 C48 C49 C90 C115

1BUN 40% 181
A29 A44 A45 A48 A51 A93 B4 B7 B51 B53
B55 B57

Table 5.9: A common pattern found within representatives from GO:0004623.

PDB ASTRAL Residues Aligned Residues
1FDR 10% 247 111 112 115 116 139 212 213 245
1A8P 10% 257 112 113 116 117 140 219 220 252

1KRH 10% 674
A215 A216 A219 A220 A243 A307 A308 A333 B215 B216
B219 B220 B243 B307 B308 B333

1LQT 10% 912
A91 A95 A331 A430 A434 A438 B91 B95 B331 B430
B434 B438

1DJ7 10% 182 A30 A33 A43 A54 A55 A74 A85 A89 A91
1OGI 50% 295 A152 A153 A156 A157 A189 A261 A262 A301
1FNC 50% 296 167 168 171 172 200 272 273 312

1QFZ 90% 231
A161 A162 A165 A166 A194 A266 A267 A306 B661 B662
B665 B666 B694 B766 B767 B806

1QGA 100% 603
A161 A162 A165 A166 A194 A266 A267 A306 B661 B662
B665 B666 B694 B766 B767 B806

Table 5.10: A common pattern found within representatives from GO:0016731.



Chapter 5 80 Statistical Significance

PDB ASTRAL Residues Aligned Residues
1G9P 10% 45 A17 A24 A25 A29
1AGG 10% 48 4 11 12 18 19 20 27 34
1OMC 10% 27 1 2 15 16 19 26
1AXH 10% 37 11 17 22 34 36
1LMR 10% 35 A5 A19 A20 A21
1CNN 10% 26 A1 A2 A4 A8 A10 A15 A16 A20 A25 A26

1IE6 10% 33
A3 A8 A10 A11 A16 A17 A19 A20 A21 A22
A30 A32

1BF0 30% 60 7 53 55 57
1F3K 35% 26 A1 A2 A15 A16 A20 A24
1BIK 40% 110 26 70 72 76

Table 5.11: A common pattern found within representatives from GO:0005246.

PDB ASTRAL Residues Aligned Residues

1PKH 10% 357
A66 A67 A91 A96 A97 A120 A123 A125 A147 A153
B66 B67 B91 B96 B97 B120 B123 B125 B153

1K6W 10% 424
A13 A52 A53 A119 A125 A130 A137 A139 A149 A179
A194 A197 A210 A229 A232 A277 A278 A282 A328 A330
A331 A335 A337 A376 A379 A394 A398

1J75 10% 57 A119 A121 A122 A134 A135 A145 A148 A149 A152 A158

1FSF 10% 266
A3 A36 A37 A52 A53 A75 A77 A133 A153 A190

A193 A199 A202 A203 A204 A238 A249 A252

1QD1 10% 650

A4 A4 A5 A34 A34 A35 A88 A90 A90 A96
A119 A121 A125 A175 A189 A216 A219 A238 A239 A246
A249 A264 A265 A269 A270 A272 A273 A302 A303 A303
A304 A307 A309 A325 A326 B2004 B2005 B2034 B2035 B2088
B2090 B2096 B2119 B2121 B2125 B2175 B2189 B2216 B2219 B2238
B2239 B2246 B2249 B2264 B2265 B2269 B2269 B2270 B2272 B2273
B2273 B2302 B2303 B2303 B2304 B2307 B2309 B2325 B2326

1J0D 10% 1364

A21 A34 A45 A55 A59 A70 A71 A84 A87 A96
A97 A129 A173 A176 A187 A189 A289 A290 A318 A319
B21 B34 B45 B55 B59 B70 B71 B84 B87 B96
B97 B129 B173 B176 B187 B189 B289 B290 B318 B319
B321 B323 C21 C34 C45 C55 C59 C70 C71 C84
C87 C96 C97 C129 C173 C176 C187 C189 C289 C290
C318 C319 C321 C323 D21 D34 D45 D55 D59 D70
D71 D84 D87 D96 D97 D129 D173 D176 D187 D189
D289 D290 D318 D319 D321 D323

1P6O 10% 483 A37 A45 A46 A88 A108 B237 B245 B246 B288 B308

1A4M 10% 1396

A18 A43 A46 A100 A129 A130 A132 A133 A163 A165
A166 A168 A182 A213 A228 A231 A261 A292 B514 B518
B543 B546 B598 B600 B629 B630 B632 B633 B663 B665
B666 B668 B682 B693 B698 B713 B728 B731 B761 B792
C1014 C1018 C1043 C1046 C1098 C1100 C1129 C1130 C1132 C1133
C1163 C1165 C1166 C1168 C1182 C1193 C1198 C1213 C1228 C1231
C1261 C1292 D1514 D1518 D1543 D1546 D1598 D1600 D1629 D1630
D1632 D1633 D1663 D1665 D1666 D1668 D1682 D1713 D1761 D1792

1JTK 10% 262
A30 A31 A37 A73 A75 A83 A103 A104 A105 A117
A120 B30 B31 B37 B73 B75 B83 B103 B104 B105
B117 B120

1OYI 10% 62 A47 A51

Table 5.12: A common pattern found within representatives from GO:0019239.
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PDB ASTRAL Residues Aligned Residues

1RIF 10% 564

A24 A25 A89 A90 A91 A98 A100 A103 A104 A124
A126 A153 A154 A233 A236 A258 B24 B25 B89 B90
B91 B98 B100 B103 B104 B124 B126 B153 B154 B233
B236 B258

1FIU 10% 1144

A82 A84 A103 A104 A126 A127 A157 A159 A201 A203
A237 A246 A248 A249 A250 A253 A259 A262 B82 B84
B103 B104 B126 B127 B157 B159 B201 B203 B237 B246
B248 B249 B250 B253 B259 B262 C82 C84 C103 C104
C126 C127 C157 C159 C201 C203 C237 C246 C248 C249
C250 C253 C259 C262 D4 D8 D82 D84 D103 D104
D126 D127 D157 D159 D201 D203 D237 D246 D248 D249
D250 D253 D259 D262

1SX5 10% 488
A11 A14 A45 A46 A155 A156 A158 A211 A213 A220
A225 B11 B14 B45 B46 B155 B156 B158 B211 B213
B220 B225

3PVI 10% 312
A9 A10 A11 A12 A68 A69 A115 A116 A120 A121
B9 B10 B11 B12 B68 B69 B115 B116 B120 B121

1DC1 10% 639

A8 A11 A33 A34 A65 A66 A98 A100 A103 A104
A113 A114 A179 A180 A181 A240 A241 B8 B11 B33
B34 B65 B66 B98 B100 B103 B104 B113 B114 B179
B180 B181 B240 B241

1KC6 10% 1025

A38 A40 A45 A47 A49 A58 A60 A116 A117 A124
A125 A160 A163 A169 A170 A174 A175 A180 A189 A190
A197 A198 B38 B40 B45 B47 B49 B58 B60 B116
B117 B124 B125 B160 B163 B169 B170 B174 B175 B180
B189 B190 B197 B198 C38 C40 C45 C47 C58 C60
C116 C117 C124 C125 C126 C169 C170 C174 C175 C180
C189 C190 C197 C198 D38 D40 D45 D47 D49 D58
D60 D116 D117 D124 D125 D169 D170 D189 D190 D197
D198

1CFR 10% 283
71 73 80 83 84 110 112 145 146 147
166 170 179 180 181 201 204 207

1NA6 10% 790

A10 A11 A12 A48 A50 A59 A60 A66 A79 A133
A216 A218 A219 A230 A231 A233 A234 A235 A238 A270
A271 A272 A274 A275 A277 A280 A385 A386 A395 A396
B10 B11 B12 B48 B50 B59 B60 B66 B79 B133
B216 B218 B219 B230 B231 B233 B234 B235 B238 B270
B271 B272 B274 B275 B277 B280 B316 B318 B335 B337
B385 B386 B395 B396

1QOJ 10% 93
A638 A639 A640 A642 A650 A651 A665 A667 A668 B638
B639 B640 B642 B650 B651 B665 B667 B668

1CKQ 10% 261
A33 A37 A46 A49 A68 A70 A111 A158 A160 A167
A169 A170 A175 A177 A191 A192 A270 A272 A274

Table 5.13: A common pattern found within representatives from GO:0015666.
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PDB ASTRAL Residues Aligned Residues
1T1D 10% 100 A121 A122 A146 A151

1R3J 10% 534
A2 A3 A10 A11 A47 A48 A83 A104 C35 C36
C38 C40 C41 C59 C60

1G4Y 10% 229 B433 B434 B457 B460 B463

1PB7 10% 289
A11 A68 A70 A71 A72 A74 A86 A148 A149 A172
A218 A266 A268 A269

1JAK 10% 499
A82 A96 A105 A145 A189 A245 A296 A299 A384 A385
A386

1ORS 10% 567
A49 A55 B64 B68 B70 B81 B83 C37 C40 C63
C64 C65 C67 C68 C69 C91 C94 C97 C103 C105
C106 C125 C127 C128 C129 C130 C131 C138 C141

1LNQ 20% 2408

A23 A24 A25 A26 A28 A31 A79 A80 A82 A84
A192 A195 A196 A198 A217 A220 A293 A294 A302 A303
A318 A319 A327 A330 B23 B24 B25 B26 B28 B31
B79 B80 B82 B84 B192 B195 B196 B198 B217 B220
B293 B294 B302 B303 B318 B319 B327 B330 C23 C24
C25 C26 C28 C31 C79 C80 C82 C84 C192 C195
C196 C198 C217 C220 C293 C294 C302 C303 C318 C319
C327 C330 D23 D24 D25 D26 D28 D31 D79 D80
D82 D84 D192 D195 D196 D198 D217 D220 D293 D294
D302 D303 D318 D319 D327 D330 E23 E24 E25 E26
E28 E31 E79 E80 E82 E84 E192 E195 E196 E198
E217 E220 E293 E294 E302 E303 E318 E319 E327 E330
F23 F24 F25 F26 F28 F31 F79 F80 F82 F84
F192 F195 F196 F198 F217 F220 F293 F294 F302 F303
F318 F319 F327 F330 G23 G24 G25 G26 G28 G31
G79 G80 G82 G84 G192 G195 G196 G198 G217 G220
G293 G294 G302 G303 G318 G319 G327 G330 H23 H24
H25 H26 H28 H31 H79 H80 H82 H84 H192 H195
H196 H198 H217 H220 H293 H294 H302 H303 H318 H319
H327 H330

1Q3E 20% 483
A491 A492 A557 A583 A585 A586 A603 A630 A633 B491
B492 B557 B583 B585 B586 B603 B630 B633

1P7B 25% 548
A108 A126 A129 A131 A138 A140 A163 A173 A185 A221
A223 A288 A298 B108 B126 B129 B131 B138 B140 B163
B173 B185 B221 B223 B288 B298

1ID1 10% 305 A121 A122 A146 A151

Table 5.14: A common pattern found within representatives from GO:0005267.

PDB ASTRAL Residues Aligned Residues
1R1G 10% 60 A3 A8 A22 A27 B8 B22 B27
1G9P 10% 45 A4 A17 A18 A24 A29
1BDS 10% 43 6 32 39 40
1BIG 10% 37 7 13 17 28 33 35
1AXH 10% 37 4 11 17 18 22 36
2SN3 10% 65 25 41 46
1H5O 10% 42 A11 A36 A37
1MB6 10% 35 A2 A9 A16 A17 A24 A31
1QDP 10% 42 1 8 14 15 16 20 31
1ACW 10% 29 3 6 19 24

Table 5.15: A common pattern found within representatives from GO:0016247.
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5.4 Chapter Review

This chapter has defined a measure for assigning statisticalsignificance to common sub-

structures. The measure was tested on a wide variety of GO annotation groups, chosen

using measures of dissimilarity taken from the ASTRAL database. When run on 400

GO annotations, the vast majority of functional groups had at least one significant sub-

structure in common. It is important to note that none of the structures discovered are

contiguous in sequence and so would not have been found through a sequence analysis

alone. A variety of significant structures were found, at varying sizes, some of which

have been presented graphically. The test revealed that oneinteresting side effect of this

experiment and the significance measures used is that inhibitory patterns may sometimes

be found by the discovery process that are actually evidenceagainst a protein having the

specified function.

With the data collected from this experiment, the next chapter continues by attempting

the prediction of function in new protein structures based on the presence of the significant

sub-structures collected.



Chapter 6

Function Prediction

Chapter 5 showed results from applying the progressive matchalgorithm to a broad range

of GO categories. This experiment resulted in statistically significant patterns associated

with many GO terms. If a common pattern found between proteins of similar function is

found and this pattern tends not to occur in proteins withoutthe function then the pattern

will have a high Bayes score, as shown in Chapter 5. As the Bayes score of a structure is

the probability that a protein will perform a function giventhat it contains that structure,

this information can be used to predict the GO annotations for a protein of unknown

function.

This chapter first discusses the methods used to move from thedata gathered from

the experiment in Chapter 5 to assigning probabilities that aprotein will have a given GO

annotation, then continues to illustrate the process for a selection of protein structures

and, lastly, assesses the ability of this process to predictfunction in a larger set of protein

structures.

6.1 Combining Evidence

When attempting to annotate function based on the presence ofsmaller structures, it is

vital to consider what happens when multiple patterns occurat the same time. The re-

sults from the sub-structure discovery experiment are in the form of a set of significant

structures for each GO annotation along with their associated frequency of occurrence in
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a positive and negative test set. Some structures provide strong evidence that a protein

performs a function and some provide weaker, though still significant, evidence. A pro-

tein may have more then one GO annotation and so any prediction process cannot simply

exit early once compelling evidence of one annotation is found – each annotation must

be considered and assigned a probability, providing a ranked list of scores as a result.

This section discusses how to combine evidence from the presence of multiple, weakly

significant structures to provide stronger evidence when the structures are found together.

If two independent pieces of evidence occur at the same time then it is more likely that

a protein performs a function – if a protein needs to bind withtwo different ligands to

perform a certain function, for example, then the presence of each pattern associated with

those separate binding functions may be more significant when found together than when

found separately. If the pieces of evidence are not independent – two fragmented parts of

the same structure, for example – then as those patterns always appear together for that

function, little more evidence exists than before as to the function of the protein – the

presence of either structure indicates function alone.

There is no way of combining the separate probabilities associated with individual

patterns to produce a joint probability without further information as to how independent

the patterns are from one another. To solve this problem, more information needs to be

gathered from the sub-structure discovery experiment. From Equation 5.5 in Chapter

+ X1 X2 X3 X4 X5

S1 0 0 1 1 1
S2 1 1 1 1 1
S3 1 0 1 1 1

− Y1 Y2 Y3 Y4 Y5

S1 0 1 1 0 1
S2 1 0 1 1 0
S3 0 1 0 0 1

Table 6.1: Occurrence Tables

5, it can be seen that the two valuesCX andCY, the number of times the pattern occurs

in a positive and negative set, are necessary for assigning significance. These values are

recorded in the database along with each structure. When considering multiple structures,

CX andCY no longer represent the occurrences of one pattern but the occurrences of a

specific combination of patterns. The number of combinations of possible patterns will

often be too large for the statistics relating to each combination to be stored in advance.
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Figure 6.1: A portion of the GO ontology. Arrows indicate inheritance from each term to a
broader term. Example significance scores are given, with inherited scores in parentheses.

Instead, a table is needed that records which pattern occurred in which structure. Example

tables are given in Table 6.1 indicating how many times a pattern,S1, S2 or S3, occurs in

a positive set of examples and a negative set of examples.S1 appears in 60% of positive

examples and 60% of negative examples here, indicating no significance. WhenS1 and

S3 are considered together, the number of times they both appear in the positive examples

remains 60% but the number of times they appear together in the negative set is now

40%. When all three are considered, they appear in 60% of positive examples and 0%

of negative examples. Combining the evidence of all three patterns occurring together

improves their significance.

6.2 Inheriting Evidence

As illustrated in Section 2.2, the Gene Ontology has a notionof inheritance – each leaf

term inherits from a higher, more general term in the network. This structure may be used

to assist in automatic annotation. If any node in the ontology is assigned to a protein then

all parent nodes up to the root node must also be present. To incorporate this concept

into the prediction method used here, each node is assigned the maximum score of any

child nodes and itself, as illustrated in Figure 6.1 with example scores given at the top of

each box and the inherited score given in parentheses. The inheritance of evidence in this

way means that predictions for broad level GO terms can be made with greater accuracy,
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taking into account more information than from the results of the sub-structure discovery

experiment for the broad level term alone.

6.3 Prediction Examples

[A] [B] [C] [D] [E]
1 GO:0016614 106.35 1.00 oxidoreductase_activity,_acting_on_CH-OH_group_of_donors_(p) *
2 GO:0004024 106.35 1.00 alcohol_dehydrogenase_activity,_zinc-dependent *
3 GO:0003824 106.35 1.00 catalytic_activity_(p) *
4 GO:0004022 106.35 1.00 alcohol_dehydrogenase_activity_(p) *
5 GO:0003674 106.35 1.00 molecular_function_(p) *
6 GO:0016491 106.35 1.00 oxidoreductase_activity_(p) *
7 GO:0016616 106.35 1.00 oxidoreductase_activity,_acting_on_the_CH-OH_group_of_d...(p) *
8 GO:0015457 97.25 1.00 auxiliary_transport_protein_activity_(p)
9 GO:0005246 97.25 1.00 calcium_channel_regulator_activity

10 GO:0016247 97.25 1.00 channel_regulator_activity_(p)
11 GO:0005215 97.25 1.00 transporter_activity_(p) *
12 GO:0008200 91.93 1.00 ion_channel_inhibitor_activity
13 GO:0016248 91.93 1.00 channel_inhibitor_activity
14 GO:0016740 90.84 0.12 transferase_activity_(p)
15 GO:0016765 90.84 0.12 transferase_activity,_transferring_alkyl_or_aryl_(other_...(p)
16 GO:0004659 90.84 0.12 prenyltransferase_activity
17 GO:0019870 88.60 1.00 potassium_channel_inhibitor_activity
18 GO:0015459 88.60 1.00 potassium_channel_regulator_activity_(p)
19 GO:0019871 88.16 1.00 sodium_channel_inhibitor_activity
20 GO:0017080 88.16 1.00 sodium_channel_regulator_activity_(p)
21 GO:0019855 85.42 1.00 calcium_channel_inhibitor_activity
22 GO:0008937 83.90 1.00 ferredoxin_reductase_activity
23 GO:0016730 83.90 1.00 oxidoreductase_activity,_acting_on_iron-sulfur_proteins_...(p)
24 GO:0005489 83.90 1.00 electron_transporter_activity_(p) *
25 GO:0016731 83.90 1.00 oxidoreductase_activity,_acting_on_iron-sulfur_proteins_...

Figure 6.2: List of annotations and significance scores for 1HDX, where A=Rank, B=GO
Number, C=Chi-Square Score, D=Bayes Score, E=GO Annotation.

Figure 6.2 shows the results from searching the protein withPDB code 1HDX for

the significant sub-structures associated with 200 GO annotations. The top 25 results are

shown here with a raw Chi-Square value and Bayes score. Lines with an asterisk at the

end represent the annotations given to 1HDX from a human analysis of the structure. A

letter ‘p’ at the end of a line indicates scores inherited from lower GO annotations in

the hierarchy. This process has identified the protein as having the annotation ‘Alcohol

Dehydrogenase Activity’, with the highest score of any patterns found. The result also

matches the human annotation. Further down the list is ‘Electron Transporter Activity’

which, although in the top 25 results, is lower in the list than several annotations not given

by the operator. Figure 6.3 gives the results for protein 153L. The prediction annotates

this protein as having ‘Lysozyme Activity’, with the highest score of any annotation and

a match with the human annotation. Other GO annotations are correctly inherited as with

the previous example. There are several predicted annotations that were not given by
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1 GO:0003824 97.8052 1.0000 catalytic_activity_(p) *
2 GO:0004553 97.8052 1.0000 hydrolase_activity,_hydrolyzing_O-glycosyl_compounds_(p) *
3 GO:0016798 97.8052 1.0000 hydrolase_activity,_acting_on_glycosyl_bonds_(p) *
4 GO:0003674 97.8052 1.0000 molecular_function_(p) *
5 GO:0016787 97.8052 1.0000 hydrolase_activity_(p) *
6 GO:0003796 97.8052 1.0000 lysozyme_activity *
7 GO:0004437 85.4733 1.0000 inositol_or_phosphatidylinositol_phosphatase_activity
8 GO:0016788 85.4733 1.0000 hydrolase_activity,_acting_on_ester_bonds_(p)
9 GO:0016791 85.4733 1.0000 phosphoric_monoester_hydrolase_activity_(p)

10 GO:0042578 85.4733 1.0000 phosphoric_ester_hydrolase_activity_(p)
11 GO:0008937 83.9060 1.0000 ferredoxin_reductase_activity
12 GO:0005215 83.9060 1.0000 transporter_activity_(p)
13 GO:0016730 83.9060 1.0000 oxidoreductase_activity,_acting_on_iron-sulfur_proteins_...(p)
14 GO:0016491 83.9060 1.0000 oxidoreductase_activity_(p)
15 GO:0005489 83.9060 1.0000 electron_transporter_activity_(p)
16 GO:0016731 83.9060 1.0000 oxidoreductase_activity,_acting_on_iron-sulfur_proteins_...
17 GO:0015457 82.8129 1.0000 auxiliary_transport_protein_activity_(p)
18 GO:0016247 82.8129 1.0000 channel_regulator_activity_(p)
19 GO:0008200 82.8129 1.0000 ion_channel_inhibitor_activity
20 GO:0016248 82.8129 1.0000 channel_inhibitor_activity
21 GO:0003906 80.3534 1.0000 DNA-(apurinic_or_apyrimidinic_site)_lyase_activity
22 GO:0016829 80.3534 1.0000 lyase_activity_(p)
23 GO:0016835 80.3534 1.0000 carbon-oxygen_lyase_activity_(p)
24 GO:0016872 77.6471 1.0000 intramolecular_lyase_activity
25 GO:0016853 77.6471 1.0000 isomerase_activity_(p)

Figure 6.3: List of annotations and significance scores for 153L

human operator. It is assumed, here, that these are errors onthe part of the prediction

process but it is also possible that the method found annotations that the human operator

simply neglected to include.

6.4 Evaluation

In order to evaluate the accuracy of prediction of annotations by the presence of significant

sub-structures, this process should be repeated for a wide selection of protein structures

to obtain an overall measure of performance. This section covers the method used for this

evaluation, a metric for summarising the results of the predictions and, lastly, a discussion

of the implications of results found.

6.4.1 Method

As this predictive method produces ranked probabilities ofannotations as output, it is

not trivial to produce a simple overall measure of success rate of a given annotation. A

protein either has an annotation or it has not but this prediction method does not produce

an opinion either way, merely a score. Instead of producing asingle figure of success

rate, the alternative is to vary a cut-off point where results higher than a given score are

considered a prediction of annotation and results below areconsidered a prediction of
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no annotation. For any imperfect system, it would be expected that, as the cut-off is

decreased, more false positives would result but, also, more correct assignments would be

made. With a graph of the relationship between false positives and correct assignments,

an assessment can then be made of the method’s accuracy.

450 PDB files were selected at random from the ASTRAL 10% set to ensure a rea-

sonably diverse selection of protein examples. The prediction method was then run on

each of these files and the resulting ranked GO annotations with scores were stored. Each

predicted annotation was labelled to indicate whether or not it matched the human anno-

tation. A master list of all annotations across every PDB filewas created and ordered by

score. Running down the list from smallest score to largest, the rate of correct annotations

and false positives were recorded for each variation in score. The data from this process,

when plotted on a graph, reveals the relationship between allowing an increase in false

positive rate and the resulting increase in predictive accuracy.

6.4.2 Results
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Figure 6.4: Sensitivity vs Selectivity for function prediction.

The graph in Figure 6.4 illustrates the results from this process. The axes labelled
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Selectivityindicates the allowed false positive rate. The axes labelled Sensitivityindicates

the fraction of correct assignments made out of all possibleassignments that could be

made. The dashed line indicates the expected result for a system that predicted annota-

tions randomly with a 50% of having each annotation. The solid line indicates the results

from the predictive method presented here. If a false positive rate of 10% is allowed,

the method correctly predicts annotation over 50% of the time using only the statistically

significant sub-structures discovered using the progressive discovery algorithm. There

are several possible ways to improve annotation including improving the discovery algo-

rithm to allow for more forgiving parameter settings and using more data to calculate the

significance values of matches found. The current success rate of annotation is far from

sufficient to be used as anything more than an indicator of function but offers some hope

for future development.

6.5 Chapter Review

This chapter used the data collected from the experiment described in the previous chapter

to attempt prediction of function in new protein structures. The first task was to define

how the presence of multiple significant structures should affect the final prediction score

and a process for achieving this was presented. The method for predicting function uses

the inheritance properties of GO to increase the accuracy ofprediction for broader level

function. Two specific examples of assigning annotations were given, illustrating how

the method is capable of predicting annotation correctly. Abroader test was conducted

to evaluate the ability of the algorithm to predict annotation for varying cut-off scores

and the results reported. The test reveals that prediction from the presence of significant

sub-structures can be successful even without other methods included.

The next chapter will now review the content presented so farin this thesis and draw

conclusions from the various results.
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Conclusions

This chapter will review the preceeding chapters, startingwith a summary of the con-

tent presented, continuing with criticism of the major decisons taken in the project and

concluding with possible future directions for the work.

7.1 Review

This thesis began by looking at methods for predicting protein function from sequence and

structure. Existing methods for transferring annotation through homology are adequate in

many cases but only with human supervision – using these methods alone is inadvisable

as most proteins simply do not have sufficient similarity to other examples in the PDB for

a reasonable transfer success rate.

It has been seen that there are methods that do not look for overall matches but, in-

stead, search for common structures between proteins of shared function. These methods

commonly either restrict searches to a backbone match or place a limit on the minimum

or maximum size of patterns to be found. It is known that thereare patterns indicative of

function that may consist of as few as two residues and that entire proteins may also match

so a size limitation is undesirable. As well as pattern discovery methods, several differ-

ent methods of scoring matches exist but they are fundamentally based on characteristics

of the pattern itself (such as size). However, a pattern may be significant in predicting

one function but less significant in predicting another and asmall pattern may be more
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indicative than a larger one in several cases.

A novel method has been presented that can discover significant sub-structures in

multiple input proteins without backbone limitation or anylimits on the size of the pattern.

An alternative method for reducing complexity was introduced in the form of a coherence

value to ensure that matches remain localised, though of anysize. A novel method for

assigning statistical significance to discovered protein sub-structure was also presented,

using correlation with GO annotation as the measure of significance. It has been shown

that these novel methods can find common patterns within multiple structures and that

statistically significant structures can be found across many different functional classes.

On its own, the progressive match provides novel features not available in other similar

algorithms. When looking at scoring methods for discovered patterns it became apparant

that a score connecting a discovered pattern to a functionalannotation could be used in a

method for predicting annotations on a protein of unknown function. When the coherence

measure was introduced, making the algorithm run-time shorter, it became more realistic

to run the progressive match unattended on a wide range of functionally-grouped proteins

and to make available enough data to attempt annotation prediction.

Given the number of GO annotations used and the number of algorithm runs required,

many patterns were predicted to match by chance alone with a probability of 0.005 and

are not good enough to reliably predict annotation from structures when considered in-

dividually. However, as noted in Chapter 6, prediction may beimproved by combining

evidence of the presence of multiple structures. As discussed in Section 6.1, even patterns

that do not have strong significance alone can be combined to produce stronger evidence

of annotations to inherit superior score of the child annotations. Chapter 6 concluded by

demonstrating that the data gathered from the progressive match algorithm can be used to

predict human annotation better than chance alone.

7.2 Project Decisions

A number of decisions affected the progress and outcome of the project. The major ones

are as follows:

• Implementing the algorithm using parallel methods and deciding the circumstances

under which to use this implementation.

• Using a coherence value as an alternative to methods used in similar applications.

• Selecting a graph matching method for identifying matchingpatterns or implement-

ing a custom method.
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• Using artificial data to test the behaviour of the algorithm and the method used to

generate the data.

• Choosing the annotation scheme for classifying proteins by their function.

• Selecting a method for scoring discovered patterns and whether to base the score

on properties of the pattern itself or its functional context.

These decisions and their consequences will now be reviewedin the following sub-

sections.

7.2.1 Match Algorithms

The progressive match algorithm went through many changes during development. The

complexity of the algorithm was initially too great for completion within a reasonable time

frame and parallel methods were investigated to improve run-time. These were ultimately

abandoned as the requirements of the project changed from being a user tool to a source of

data for a further, prediction stage. The parallel methods that were considered are included

in Appendix A and remain useful in some situations but, with hindsight, the decision to

persue parallel methods significantly delayed investigation into the latter stages of the

prediction process and better final results may have been achieved had more time been

spent on other tasks.

One of the developments that led to abandoning parallel methods was the use of a

‘coherence’ measure (Section 3.5.2) as a novel method to restrict candidate structures for

matching and to reduce search space. The decision to use thismethod was successful in

reducing algorithm run-time and using coherence allows a pattern to be of any size unlike

other, similar analysis methods which enforce limits on pattern size.

Section 4.1.1 looked at which method to select for the underlying pattern match by

comparing exisiting graph matching methods with a custom method that only makes ge-

ometric comparisons rather than having the ability to matchgeneral graphs. The tests

showed that the developed underlying match algorithm was faster than the alternatives

and so the decision was made to use this method in the progressive match algorithm.

Along with the use of the coherence limitation, this novel matching method assisted in

reducing the run-time of the progressive match algorithm tothe point where it could pro-

duce the results presented in this thesis.

The final section of Chapter 4 concluded by demonstrating thatthe progressive match

correctly identified the common feature between three adenine-binding proteins and that
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the discovered feature corresponded to the biologically significant binding sites of the pro-

teins. Also, Chapter 6 successfully used the results from theprogressive match algorithm

to predict function annotation and so, in summary, the decisions taken in the development

of the pattern discovery methods succeeded in producing useful results but the decision

to focus on parallel methods most likely drew focus away fromimproving other aspects

of the project.

7.2.2 Artificial Data

Chapter 4 showed the methods used to test both the underlying pattern match algorithm

and the progressive match algorithm. A decision was made to use artificially generated

data to verify that both algorithms returned correct results and to investigate useful ranges

of the various user-alterable parameters. Generating datain this way allowed patterns to

be cached that are known to contain a common pattern and are known to match within

defined parameters. One possible improvement to the generation of artificial data could be

to restrict patterns to be more globular in shape. As illustrated in Chapter 4, the samples of

data used resemble sections of a protein chain but are not globular like many full protein

structures. The distribution of distances in artificial data and real data are similar but it

is possible that making artificial data appear more globularcould improve the similarity

further. It may be the case that patterns with the same range of desired parameters could

be found in samples taken from real protein data and that suchsamples would be more

representative of the actual results to be expected from thealgorithm but this would have

been an excessively challenging choice considering that the results presented in Chapter

4 show that the artificial data used was adequate for the task.The decisions taken in

the use of artificial data may not have tested the algorithm asfully as if the alternatives

suggested had been implemented but, taken in context with the other results presented

in later chapters, the artificial data tests were adequate inidentifying the accuracy of the

algorithms and the range of useful parameters for use with real data.

7.2.3 Annotation Method

As noted in Chapter 3, to find key sub-structures associated with an annotation, a selec-

tion of proteins for each annotation was needed and a decision needed to be made as to

which annotations to consider. The GO annotation set was chosen as it included enzyme

classifications of low-level function plus higher-level functional concepts. Section 5.2.4

showed that 400 out of the 406 GO classes used contained at least one common pattern

with an estimated probability of occurring through chance alone of 0.005. The progressive
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match algorithm was successful in discering common sub-structures between proteins of

shared function when using GO annotations and so no better decision on the choice of

annotation scheme is apparant. There are several GO classesthat did not contain enough

annotated proteins for acceptable results to be obtained but this is likely to improve as

more structures are added to the Protein Data Bank.

7.2.4 Scoring Methods

The key decision taken with respect to assigning scores to patterns discovered by the

progressive discovery algorithm was to not assign a score based on any properties of the

patterns themselves but solely based on the presence or absence of the patterns in proteins

with or without a given functional annotation.

The decision to use Bayesian methods for scoring patterns wasmade as similar meth-

ods have been used in other fields for making predictions fromitems of evidence. With

hindsight, the use of Bayesian methods created a number of difficulties in reality. One of

the main difficulties in the testing and evaluation of the progressive discovery method was

the lack of available data and the quality of data. Measuringstatistical significance using

Bayesian methods is difficult without sufficient examples forboth training and testing.

This has problems not only for correctly assigning significance to a discovered pattern

but also in providing sufficiently diverse examples of a function for the discovery pro-

cess in the first place. Evaluating the algorithms developedalso required selecting protein

structures in separate groups, for the training set and evaluation set, which also reduced

the available data for each step.

As the output from the mass analysis of protein structures carried out in Chapter 5

consisted of a bivariate table for each discovered pattern,it seemed a reasonable decision

to estimate the significance of the results by using statistical methods traditionally used

in the literature for analysing bivariate tables. The method chosen was the Chi-Square

test. This decision provided a wider range of scores for discovered patterns and also

allowed a p-value to be calculated, assisting in evaluatingthe correctness of the algorithms

themselves.

In summary, the decision to use Bayesian methods created problems due to a lack of

data but the Chi-Square test produced more usable pattern scores which resulted in being

able to predict annotation better than chance alone. Given more time, it would have been

advantageous to investigate a broader range of possible scoring methods and this would

most likely have improved the final prediction results presented in Chapter 6.
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7.3 Future Work

This section considers possible future directions for the work presented, including aspects

of the work already presented that could be improved and alsopossible new areas that the

project could develop into.

7.3.1 Algorithm Improvements

There are several areas in which the algorithms presented could be improved. The pro-

gressive discovery algorithm produces interesting patterns as results but improving its

run-time would provide benefits by allowing a wider range of parameters to be used.

Ideally, the match should be able to use all atoms in the discovery process rather than

only amino acid centre points but currently the algorithm istoo complex to do this in a

reasonable time.

Section 3.3 introduced the various sources of error in the position of atoms in PDB

structural entries. When an atom oscillates around a centralposition, this error can be

accounted for by allowing a distance tolerence during matching, as seen in Section 3.5.4.

The temperature factor of each atom indicates the degree of disorder between different

samples and so the error can vary from atom to atom. Chapter 3 notes that there is no

standard definition of what makes two patterns ‘similar’ as this varies according to bio-

logical context. One possible improvement to the match algorithm could be to take this

variation into account from pattern to pattern. The tolerence allowed for a match could

vary according to the underlying disorder in the constituant atoms to increase the proba-

bility of two disordered patterns matching and to improve the accuracy when comparing

well-ordered patterns. The scoring method would not have tobe changed as it is not based

on geometric properties.

The other source of disorder in PDB files is where the positionof atoms varies due

to flexibility in the structure itself. Developing the presented algorithms highlighted an

issue that creates problems for all structural analysis algorithms - protein data is not three-

dimensional but four-dimensional. A protein can change structure through the normal

course of its function. Any method must take this into account. The only way to fully ex-

plore protein structure and function is to add information on the dynamics of the proteins

examined. The could be achieved by analysing a sample of eachprotein in its various

possible conformations or by using modelling techniques topredict how the protein is

likely to vary in shape.
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7.3.2 Prediction Method

There are some difficulties in predicting function from structure that may be universal for

any method that uses current data. The Protein Data Bank stores static, three-dimensional

images of proteins but the proteins themselves often have many moving sections and

sometimes some basic mechanical processes. There are also many proteins that change

shape depending on the presence of a binding ligand. This level of information about how

a protein behaves is simply not available from a still image alone.

Another difficulty in assigning a single notion of function annotation to a protein struc-

ture is that proteins do not exist in isolation, and some can interact with many others in

different ways. To fully understand their functional roles, the way in which proteins in-

teract with one another and their external environment mustbe studied. Many researchers

believe that examining entire complexes of protein interactions is an important next step

towards a full understanding of how cells and, ultimately, entire organisms work [2]. A

comprehensive review by Russell et al. [79] also emphasises the need to study the function

of protein complexes and covers the many various techniqueswhich must be combined to

most effectively achieve this. Already, low-resolution methods exist for determining the

relative position of domains to one another. Proteins whichdo work in complex with one

another must exist within the same cell region to interact. This means that any aspect of

protein structure which guides the protein into a specific sub-cellular region may be use-

ful as an indicator for predicting function (and some methods to achieve this are reviewed

in [77]) but these indicators are not as good as expert knowledge on the processes that

occur for a protein within different cell regions.

The GO annotation system has a number of complex relationships within it beyond

the existing connections between child terms and parent terms. It is highly likely that

some GO terms are more likely to occur together than others and it is also likely that

many GO terms are mutually exclusive. If these kinds of inhibitory evidence could be

incorporated into a prediction method then results should improve considerably. Adding

expert information such as this into an otherwise general pattern matching system is a

large task but most likely essential for an unsupervised computational process.

7.4 Chapter Review

This thesis has presented a novel method for discovering common sub-patterns between

multiple protein structures, without the size or structurual limitations of similar existing

methods, with the use of a coherence factor for limiting search space and a novel under-
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lying match for comparing individual patterns. A novel method in the field for scoring

discovered patterns has also been presented. These methodshave been tested on artifi-

cially generated and real protein data to demonstrate theirability to successfully discover

statistically significant sub-structures. With a databaseof such sub-structures, it has been

shown that prediction of function for a protein is possible based on the presence of the

discovered significant patterns. A number of improvements to the work presented in this

thesis have been suggested and possible future directions for the project have been con-

sidered.

The main difficulties encountered during this project couldbe overcome with more

time. Improvements to the final results given would be likelyto occur with a superior

scoring method, but it is most likely that the best method forpredicting protein function is

to use a variety of methods together – sequence, structure, interactions with other proteins

etc. The methods covered in this thesis for assigning statistical significance to discovered

sub-structures are applicable to any form of evidence of functional annotation and the

best method for prediction may be to group all of the diverse evidence available together

to form a more accurate measure of annotation probability. The most obvious way to

improve methods for predicting functional annotation fromstructure data is to increase

the volume of data available. Fortunately, this is one factor that will most likely improve

in the future.

As more data becomes available and more methods for prediction are developed, a

generic system for unsupervised prediction of protein function, incorporating sequence,

structure and expert information, will become increasingly realistic.
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Appendix A

Parallel Methods

The progressive match algorithm described in the main body of this thesis is the one

used to produce all the results given. This algorithm runs ona single processor and in a

reasonable time for the data used in the preceeding chapters, as the structures involved

were chosen for the low probability that they would share large amounts of common

sub-structure. However, for the algorithm to fully exploreall possible matching sub-

patterns in structures that are similar overall, a larger amount of computational resources

are required, both in terms of processing time and memory usage.

During development, earlier versions of the progressive match algorithm required con-

siderable resources and so the use of multi-processor hardware was essential to allow the

algorithm to complete within a reasonable time. Although the full algorithm now runs ac-

ceptably on a single processor, there is an increasing trendin consumer hardware towards

multiple processor cores in a single chip and so taking advantage of multiple processor

threads should be standard practice rather than just reserved for specialist hardware.

Two versions of the progressive match algorithm were produced, one to reduce the

storage requirements of the algorithm and the other to reduce the processor time used.

The remainder of this appendix describes each method used, the effect on computing

resources of using each method and then concludes with a discussion on the decisions

made in choosing the final algorithm used in the main body of the thesis.
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Figure A.1: The method used to reduce memory requirements across four processes.
First, illustrated above the line, each process compares patterns within its own data. Next,
processes are paired off in three different combinations, with their data swapped and
compared.

A.1 Method 1

The first method described here may be used to reduce the memory requirements of the

progressive match algorithm. During development, sixteenparallel processes where used,

each process using a single CPU and its own memory storage. Thepeak memory usage

when running the progressive match algorithm occurs duringthe generation of all possible

patterns for all-against-all matching and so this is the part of the algorithm that requires

the most optimisation.

During the expansion stage of the algorithm, where matchingpatterns of the cur-

rent size are expanded by one node, each process iterates through the list of previously

matching patterns but expands only everynth pattern in the list, wheren is the number

of processes. The end result of this stage is that each process has its own portion of the

full list of patterns to be compared. Figure A.1 illustratesthis using four processes for

brevity (labelledP0 throughP3), with each portion of patterns labelledA, B, C andD. The

all-against-all comparison is now performed in two steps. First, all processes compare

each pattern to every other pattern within the same process only. This stage can be per-
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Figure A.2: The method used to reduce processing time. Each process has identical copies
of the pattern list and compares the indented patterns with every other pattern in the list.

formed simultaneously and independently by all processes.Next, each process is paired

with every other process in turn and their portion of the pattern list is exchanged, with

comparisons being made between every pattern in the local portion and every pattern in

the portion from the paired process. With four processes, there are three combinations of

process pairings, as illustrated.

Each process requires sufficient memory to store the local portion of the pattern list

and also a portion from a paired process during comparison. The memory requirement for

analysing a list of sizeS, usingN processes is, therefore,2S
N . This means that this method

is beneficial in reducing memory requirements whereN > 2

A.2 Method 2

The second method does not reduce memory requirements but isdesigned to reduce pro-

cessing time.

In this method, the full list of potential patterns to be matched is not divided between

the processes. Each process has access to the full list but, rather than performing an

all-against-all search, each process performs a subset-against-all search where the subset
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consists of everynth pattern, starting at positionm in the list, wheren is the number of

processes andm is the index of the process, in the range 0 ton−1. This is illustrated in

Figure A.2, with the subset indented from the full list to be compared. During develop-

ment, sixteen processes were used rather than four and each had its own complete copy

of the full pattern list. This method would work just as well with a number of processes

using shared memory. The work is divided up in the way shown, rather than in single,

continuous, chunks because a sorted list only requires eachpattern to be compared with

patterns further down in the list to achieve an all-against-all series of comparisons. If the

patterns were divided as in Method 1, higher numbered processes would complete their

work earlier as they would only need to compare their assigned patterns with those at the

bottom of the list rather than the whole list. Dividing up thework in the way illustrated

here makes it more likely that the total amount of processingperformed by each process

is approximately equal. Figure A.3 illustrates the time taken to run this version of the pro-
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Figure A.3: Time taken to compare protein structures 1HDX, 1JWA and 1AOG with
varying numbers of processes. The reduction in run time doesnot scale well as the number
of processes increases.

gressive match algorithm on three protein structures. Thisshows that there is a reduction

in runtime for the algorithm as the number of processes increases.



Appendix A 113 Parallel Methods

A.3 Conclusions

Method 2 was used during intitial development in order to reduce the time taken to run

the algorithm each time a test run was required but two main changes occurred during

development that affected which aspects of the algorithm required optimisation.

Firstly, Section 3.6.6 described an optimisation to the algorithm that allows an element

of depth-first search to detect large regions of matching structure early on. Each branch of

this depth-first search tree requires independent phases ofmatching and expansion, mak-

ing this addition difficult to transfer into the parallel version of the early algorithm.When

only comparing proteins with relatively small structural regions in common, the depth-

first optimisation is still beneficial and therefore took priority over parallel processing.

Secondly, the progressive match algorithm was originally envisaged as being a user

tool for comparing a single group of proteins of interest. This required reducing the time

taken for a single run of the algorithm to the minimum possible. Later, the algorithm

became efficient enough to compare a large number of seperategroups of proteins and

analyse the results from many, independent, runs of the algorithm. Given that a single run

of the algorithm could occur within a single process, it would be more efficient to exe-

cute, for example, sixteen independent runs of the algorithm for sixteen different groups

of proteins than to execute each of the runs one at a time but inparallel. When using each

process to analyse an independent group of protein structures, the time taken for compar-

ison scales linearly for algorithm runs with equal resourcerequirements, thereby making

a parallel implementation redundent for this task.

It may be possible to translate the final progressive match algorithm into a parallel

environment but this has not yet been explored. Although parallel methods remain useful

for single runs of the algorithm, they are less useful for thelarge number of comparisons

used in the main body of the thesis.


