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Abstract

The thesis consists of two parts. In the first part (Chapters 3 and 4), we study the universal

enveloping algebra U(sl2 n V2) of the semi-direct product Lie algebra sl2 n V2 and its subalge-

bra U(b n V2). In the second part (Chapters 5 and 6), we introduce and study the quantum

analogues of these two algebras, i.e, the smash product algebra Kq[X,Y ] o Uq(sl2) and its sub-

algebra Kq[X,Y ] o U>0
q (sl2). The prime, completely prime, primitive and maximal ideals of

these algebras are classified, the generators and inclusions of prime ideals are given explicitly.

We also give classifications of all the simple weight modules over the algebras U(sl2 n V2) and

Kq[X,Y ] oUq(sl2). In Chapter 4, a central extension of the Lie algebra sl2 n V2 is also studied,

which is called in the literature the Schrödinger algebra. It is conjectured that there is no simple

singular Whittaker module for the Schrödinger algebra. We construct a family of such modules.

We also proved that the conjecture holds ‘generically’.
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Chapter 1

Introduction

The thesis consists of two parts. In the first part (Chapters 3 and 4), we study the universal

enveloping algebra U(sl2 n V2) of the semi-direct product Lie algebra sl2 n V2 and its subalge-

bra U(b n V2). In the second part (Chapters 5 and 6), we introduce and study the quantum

analogues of these two algebras, i.e, the smash product algebra Kq[X,Y ] o Uq(sl2) and its sub-

algebra Kq[X,Y ] o U>0
q (sl2). The prime, completely prime, primitive and maximal ideals of

these algebras are classified, the generators and inclusions of prime ideals are given explicitly.

We also give classifications of all the simple weight modules over the algebras U(sl2 n V2) and

Kq[X,Y ] o Uq(sl2).

The generalized Weyl algebras, introduced by V. V. Bavula [5], are a powerful tool in study

of the above mentioned algebras. Almost all algebras considered in the thesis contain a chain

of subalgebras that are generalized Weyl algebras, or their localizations are generalized Weyl

algebras. Moreover, the problem of classification of the weight/torsion simple modules can be

reduced to a problem of classification of all simple modules but over smaller subalgebras that

have close connections with generalized Weyl algebras. These facts enable us to give complete

classifications of various classes of simple modules.

Recall that a prime ideal in a ring R is any ideal P such that P 6= R and whenever I and J

are ideals of R with IJ ⊆ P , either I ⊆ P or J ⊆ P . The prime spectrum Spec (R) of a ring R

is the set of all its prime ideals. The set of (left) primitive ideals of an algebra A is the set of

annihilators of simple (left) A-modules and is denoted by Prim (A). Every primitive ideal is a

prime ideal but the reverse does not hold, in general. For universal enveloping algebras, the set

of left and right primitive ideals coincide and every prime ideal is an intersection of primitive

ideals. The classification of prime and primitive ideals is a central theme in this thesis. Our

approach is based on using localizations and generalized Weyl algebras.

The classification of simple modules for non-abelian Lie algebras is a very difficult (intractable)

problem. The same is true for noncommutative algebras of Gelfand-Kirillov dimension > 3. A

reasonable approach is to classify certain families of simple modules such as the weight modules,

Whittaker modules, etc. Even so, the problem, in general, is still too difficult, one needs to

add more finiteness conditions. In this thesis, we give classifications of all the simple weight

1



Introduction 2

modules over the algebras U(sl2 n V2) and Kq[X,Y ] o Uq(sl2). Both algebras have Gelfand-

Kirillov dimension 5. It seems that it is the first instance where such complete classifications of

weight modules are given for algebras of Gelfand-Kirillov dimension larger than or equal to 5.

Let us give a description of the main results of the thesis.

1.1 The universal enveloping algebra U(sl2 n V2)

Let K is a field of characteristic zero and K∗ := K \ {0}. Recall that the Lie algebra sl2 =

KF ⊕ KH ⊕ KE is a simple Lie algebra over K where the Lie bracket is given by the rule:

[H,E] = 2E, [H,F ] = −2F and [E,F ] = H. Let V2 = KX ⊕ KY be the 2-dimensional simple

sl2-module with basis X and Y . Let a := sl2 n V2 be the semi-direct product of Lie algebras

where V2 is viewed as an abelian Lie algebra. In more detail, the Lie algebra a admits the basis

{H,E, F,X, Y } and the Lie bracket is defined as follows

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, [E,X] = 0, [E, Y ] = X,

[F,X] = Y, [F, Y ] = 0, [H,X] = X, [H,Y ] = −Y, [X,Y ] = 0.

Let A = U(a) be the enveloping algebra of the Lie algebra a. Briefly,

(i) in Chapter 4, we give a complete classification of all simple weight A-modules,

(ii) explicit descriptions of the prime, primitive, completely prime and maximal spectra of A

are given,

(iii) explicit generators and defining relations for the centralizer CA(H) are found and simple

CA(H)-modules are classified.

The centre of the algebra A is a polynomial algebra, Z(A) = K[C] where C = FX2−HXY −EY 2

(Lemma 4.1). Let us give some more details.

We give an explicit description of the set Spec (A) of prime ideals of the algebra A. The universal

enveloping algebra U := U(sl2) is a factor algebra A/(X). Hence, Spec (U) ⊆ Spec (A) is an

inclusion of partially ordered sets (with respect to ⊆).

Theorem 1.1. (Theorem 4.6) The prime spectrum of the algebra A is a disjoint union Spec(A) =

{(X, p) | p ∈ Spec(U)}t{Aq | q ∈ Spec(K[C])} where U = U(sl2). Furthermore, all the inclusions

of prime ideals are given in the following diagram (lines represent inclusions of primes).

Spec (U) \ {0}

(X)

(C)

0

{
Aq | q ∈ Max (K[C]) \ {(C)}

}
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The annihilator of a simple module is called a primitive ideal. The next theorem is a description

of the set Prim (A) of primitive ideals of the algebra A.

Theorem 1.2. (Theorem 4.8) Prim (A) =
{

(X, p) | p ∈ Spec (U)\{0}
}
t
{
Aq | q ∈ SpecK[C]\

{0}
}
.

In the second part of Chapter 4, we give a classification of simple weight A-modules. An A-

module M is called a weight module if M = ⊕µ∈KMµ where Mµ = {m ∈ M |Hm = µm}.
Let CA(H) := {a ∈ A | aH = Ha} be the centralizer of the element H in A. Each nonzero

weight component Mµ of M is a CA(H)-module. If, in addition, the weight A-module M is

simple then all nonzero weight components Mµ are simple CA(H)-modules. So, the problem

of classification of simple weight A-modules is closely related to the problem of classification

of all simple CA(H)-modules, which can be seen as the first, the more difficult, of two steps.

The second one is about how ‘to assemble’ some of the simple CA(H)-modules into a simple

A-module. The difficulty of the first step stems from the fact that the algebra CA(H) is of

comparable size to the algebra A itself (GK (CA(H)) = 4 and GK (A) = 5 where GK stands for

the Gelfand-Kirillov dimension) and the defining relations of the algebra CA(H) are much more

complex than the defining relations of the algebra A, as the following theorem shows.

Theorem 1.3. (Corollary 4.15) Let t := Y X, φ := EY 2 and Θ := FE. Then the algebra

CA(H) is generated by the elements C,H, t, φ and Θ subject to the defining relations (where C

and H are central in the algebra CA(H)):

[φ, t] = t2,

[Θ, t] = 2φ+ (H − 2)t+ C,

[Θ, φ] = 2Θt+ (−φ+ 2t)H,

Θt2 = (φ+Ht+ C)φ.

Furthermore, Z
(
CA(H)

)
= K[C,H].

For an algebraically closed field K, the problem of classification of simple CA(H)-modules is

equivalent to the same problem but for all the factor algebras Cλ,µ := CA(H)/(C − λ,H − µ)

where λ, µ ∈ K. We assume that the field K is algebraically closed. There are two distinct

cases: λ 6= 0 and λ = 0. They require different approaches. The common feature is a discovery

of the fact that in order to study simple modules over the algebras Cλ,µ we embed them into

larger algebras for which classifications of simple modules are known. A surprise is that the

sets of simple modules of the algebras Cλ,µ and their over-algebras are tightly connected. In

the case λ 6= 0, such an algebra is the first Weyl algebra, but in the second case when λ = 0,

it is a skew polynomial algebra K[h][t;σ] where σ(h) = h − 1. For λ 6= 0, a classification of

simple Cλ,µ-modules is given in Theorem 4.26. A classification of simple C0,µ-modules is given

in Theorem 4.29.

Using the classification of simple CA(H)-modules (Section 4.4), we give a classification of simple

weight A-modules in Section 4.5. A typical simple weight A-module depends on an arbitrarily

large number of independent parameters. The set of simple A-modules is partitioned into 5
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classes each of them is dealt separately with different techniques. This is too technical to explain

in the introduction.

In Section 4.6, a central extension of the Lie algebra a = sl2 n V2 is studied, which is called in

the literature the Schrödinger algebra. The Schrödinger algebra s is a 6-dimensional Lie algebra

that admits a K-basis {F,H,E, Y,X,Z} elements of which satisfy the defining relations:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, [H,X] = X,

[H,Y ] = −Y, [E, Y ] = X, [E,X] = 0, [F,X] = Y,

[F, Y ] = 0, [X,Y ] = Z, [Z, s] = 0.

Let S := U(s) be the universal enveloping algebra of the Schrödinger algebra s, then, clearly,

S/(Z) ' A. The localization SZ of the algebra S at the powers of the central element Z is

isomorphic to the tensor product of algebras K[Z±1] ⊗ U(sl2) ⊗ A1, see (4.53). The tensor

component U(sl2) is called the hidden U(sl2). Its explicit canonical generators are described in

Lemma 4.37:

E′ := E − 1

2
Z−1X2, F ′ := F +

1

2
Z−1Y 2, H ′ := H + Z−1XY − 1

2
,

and [H ′, E′] = 2E′, [H ′, F ′] = −2F ′ and [E′, F ′] = H ′. Using this fact, a short proof has

been given of the fact that the centre of the algebra S is a polynomial algebra in two explicit

generators (Proposition 4.39). The fact that the centre Z(S) of S is a polynomial algebra K[Z, c]

was proved in [24] by using the Harish-Chandra homomorphism where

c = Z
(

4FE +H2 +H
)

+ 2
(
EY 2 +HXY − FX2

)
.

In the above paper, it was not clear how this element was found. We clarify the ‘origin’ of

c which is the (classical) Casimir element of the ‘hidden’ U(sl2) in the decomposition (4.53).

It is conjectured that there is no simple singular Whittaker module for the algebra S [44,

Conjecture 4.2]. We construct a family of such S-modules (Proposition 4.44). We also prove

that the conjecture holds ‘generically’ (Proposition 4.43). A classification of the simple singular

Whittaker S-module is given in [13].

1.2 The spatial ageing algebra U(bn V2)

Let b = KH ⊕ KE be the Borel subalgebra of the Lie algebra sl2. Then b n V2 is a solvable

Lie algebra which is a subalgebra of a = sl2 n V2. Let A be the universal enveloping algebra

U(bnV2) of the Lie algebra bnV2. It is called the spatial ageing algebra. Then A is a subalgebra

of the universal enveloping algebra U(sl2 n V2) generated by the elements H,E,X and Y . We

study the algebra A in Chapter 3. The main result is Theorem 3.4 where we give classifications

of prime, primitive and maximal ideals of A, the generators and inclusions of prime ideals are

given explicitly, we also give an explicit description of prime factor algebras.
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Theorem 1.4. (Theorem 3.4) The prime spectrum Spec (A) of the algebra A is given below and

all the inclusions of prime ideals are given (lines represent inclusions of primes):

{
(Y,E, p) | p ∈ Max (K[H])

}
(Y,E)

(Y ) (E)
{
(X, q) | q ∈ Max (K[Z]) \ {(Z)}

}
(X)

0

where Z := EY 2.

Generators and defining relations of the centralizers of the elements X,Y and E in the algebra A
are given in Section 3.3. These results are used in classifications of K[X]-, K[Y ]- and K[E]-torsion

A-modules [16].

1.3 The smash product algebra Kq[X, Y ]o Uq(sl2)

Fix an element q ∈ K∗ such that q is not a root of unity. Recall that the quantized enveloping

algebra of sl2 is the K-algebra Uq(sl2) with generators E,F,K and K−1 subject to the defining

relations (see [29]):

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

There is a Hopf algebra structure on Uq(sl2) defined by

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = E ⊗ 1 +K ⊗ E, ε(E) = 0, S(E) = −K−1E,

∆(F ) = F ⊗K−1 + 1⊗ F, ε(F ) = 0, S(F ) = −FK,

where ∆ is the comultiplication on Uq(sl2), ε is the counit and S is the antipode of Uq(sl2).

We can make the quantum plane Kq[X,Y ] := K〈X,Y |XY = qY X〉 a Uq(sl2)-module algebra

by defining,

K ·X = qX, E ·X = 0, F ·X = Y,

K · Y = q−1Y, E · Y = X, F · Y = 0.

Then one can form the smash product algebra A := Kq[X,Y ]oUq(sl2), which is the main object

of study in Chapter 6. As an abstract algebra, the generators and defining relations of the

algebra A are given below.
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Definition. The algebra A is an algebra generated over K by the elements E, F, K, K−1, X and

Y that satisfy the following defining relations (where K−1 is the inverse of K):

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
,

EX = qXE, EY = X + q−1Y E,

FX = Y K−1 +XF, FY = Y F,

KXK−1 = qX, KY K−1 = q−1Y, qY X = XY.

Our aim is to study the prime spectrum of this algebra and to give a classification of simple

weight A-modules. The smash product algebra A can be seen as a quantum analogue of the

universal enveloping algebra U(sl2 n V2) studied in Chapter 4. For example, the prime spectra

of these two algebras have similar structure (compare Theorem 6.15 with Theorem 4.6); the

representation theory of A has many parallels with that of U(sl2 n V2); the centre of A is a

polynomial algebra K[C] where

C = (FE − q2EF )Y X + q2FX2 −K−1EY 2.

The study of quantum algebras usually requires more computations.

Recall that a quantum Weyl field over K is the skew field of fractions of a quantum affine space.

We say that a K-algebra A admitting a skew field of fractions Frac(A) satisfies the quantum

Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl field over a purely

transcendental field extension of K; see [19, II.10, p. 230].

Theorem 1.5. (Theorem 6.9) The quantum Gelfand-Kirillov conjecture holds for the algebra

A.

The next theorem gives generators and defining relations for the centralizer CA(K) of the element

K in the algebra A.

Theorem 1.6. (Theorem 6.29) Let ϕ := (q−1 − q)Y E + X, t := Y X, u := K−1Y ϕ and Θ :=

(1−q2)FE+ q2(qK+q−1K−1)
1−q2 . Then the algebra CA(K) is generated by the elements K±1, C, Θ, t

and u subject to the following defining relations:

t · u = q2u · t,

Θ · t = q2t ·Θ + (q + q−1)u+ (1− q2)C,

Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)K−1C,

Θ · t · u− 1

q(1− q2)
u2 − C · u =

q7

1− q2
t2 − q4K−1C · t,

[K±1, ·] = 0, and [C, ·] = 0.

Furthermore, Z(CA(K)) = K[C,K±1].

The defining relations of the algebra C := CA(K) are complex. From the outset, it is not obvious

how to classify simple C -modules. The key idea is based on the observation that this algebra
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has close connections with generalized Weyl algebras. Let Ct be the localization of the algebra

C at the powers of the element t. We show that Ct is a generalized Weyl algebra (Proposition

6.32). For λ ∈ K and µ ∈ K∗, we prove that the factor algebra

C λ,µ := CA(K)/(C − λ,K − µ)

is a simple algebra if and only if λ 6= 0 (Theorem 6.34). Moreover, for any λ ∈ K and µ ∈ K∗,
the localization C λ,µ

t of the algebra C λ,µ at the powers of the element t is a central, simple

generalized Weyl algebra (Proposition 6.32). Another key observation is that, for any λ ∈ K and

µ ∈ K∗, we can embed the algebra C λ,µ into a generalized Weyl algebra A (it is a central simple

algebra, which plays the role of ‘the quantum Weyl algebra’), see Proposition 6.38. Using these

facts, a complete classification of simple CA(K)-modules in given in Section 6.6. The problem

of classifying simple C λ,µ-modules splits into two distinct cases when λ = 0 and λ 6= 0. In the

case λ = 0, we embed the algebra C 0,µ into a skew polynomial algebra R = K[h±1][t;σ] where

σ(h) = q2h (it is a subalgebra of the algebra A ) for which the classifications of simple modules

are known. In the case λ 6= 0, we use the close relation of the algebra C λ,µ with its localization

C λ,µ
t , and the arguments are more complicated.

An A-module M is called a weight module if M =
⊕

µ∈K∗Mµ where Mµ = {m ∈M |Km = µm}.
Using the classification of simple CA(K)-modules (Section 6.6), we give a classification of simple

weight A-modules in Section 6.7.

1.4 The quantum spatial ageing algebra

The subalgebra A of Kq[X,Y ]oUq(sl2) generated by the elements E, K, K−1, X and Y is called

the quantum spatial ageing algebra, which is studied in Chapter 5. For the algebra A,

(i) its prime, completely prime, primitive and maximal spectra are classified,

(ii) the generators of prime ideals and their inclusions are given explicitly,

(iii) generators and defining relations are given for all prime factor algebras A,

(iv) the group of automorphisms of the algebra A is found (Theorem 5.14). In finding the

group of automorphisms of the algebra A, we use an explicit description of prime ideals of

the algebra A and their inclusions.
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Theorem 1.7. (Theorem 5.8) The prime spectrum Spec (A) of the algebra A is given below and

all the inclusions of prime ideals are given (lines represent inclusions of primes):

{
(Y,E, p) | p ∈ Max (K[K,K−1])

}
(Y,E)

(Y )
{
(X, q) | q ∈ Max (K[Z]) \ {(Z)}

}
(E)

{
(ϕ, r) | r ∈ Max (K[c]) \ {(c)}

}
(X) (ϕ)

0

where Z := ϕY K−1 and c := XYK.

The maximal and primitive ideals of the algebra A are classified.

Theorem 1.8. (Corollary 5.9 and Proposition 5.11)

1. Max (A) =
{

(Y,E, p) | p ∈ Max (K[K,K−1])
}
t
{

(X, q) | q ∈ Max (K[Z]) \ {(Z)}
}

t
{

(ϕ, r) | r ∈ Max (K[c]) \ {(c)}
}
.

2. Prim(A) = Max(A) t {(Y ), (E), 0}.

The group of automorphisms of A is determined.

Theorem 1.9. (Theorem 5.14) AutK(A) = {σλ,µ,γ,i |λ, µ, γ ∈ K∗, i ∈ Z} ' (K∗)3 o Z where

σλ,µ,γ,i : X 7→ λKiX, Y 7→ µK−iY, K 7→ γK, E 7→ λµ−1q−2iK2iE (and σλ,µ,γ,i(ϕ) = λKiϕ).

Furthermore, σλ,µ,γ,iσλ′,µ′,γ′,j = σλλ′γj ,µµ′γ−j ,γγ′,i+j and σ−1
λ,µ,γ,i = σλ−1γi,µ−1γ−i,γ−1,−i.

In general, to find centralizers is a challenging problem, especially to determine their defining

relations as algebras. In section 5.4, we describe the centralizers of the elements K,X,ϕ, Y and

E in the algebra A. All the centralizers turned out to be generalized Weyl algebras. These

facts are key ones for obtaining classifications of simple K[X]-, K[ϕ]-, K[Y ]- and K[E]-torsion

modules, see [11, 15] for details.



Chapter 2

Preliminaries

Ore extensions. Let α be an automorphism of a ring R. Recall that an α-derivation of R

is any additive map δ : R → R such that δ(rs) = α(r)δ(s) + δ(r)s for all r, s ∈ R. If α is the

identity map, then α-derivations are just the ordinary derivations.

Definition. Let R be a ring, α an automorphism of R, and δ an α-derivation of R. We define

S = R[x;α, δ] such that

1. S is a ring, containing R as a subring;

2. x is an element of S;

3. S is a free left R-module with basis {1, x, x2, . . .};
4. xr = α(r)x+ δ(r) for all r ∈ R.

Such a ring S is called an Ore extension of R. Any nonzero element u ∈ S can be uniquely

written in the form u = rnx
n+rn−1x

n−1 + · · ·+r1x+r0 where ri ∈ R (i = 0, 1, . . . , n). If rn 6= 0

then the integer n is called the degree of u and rn is called the leading coefficient of u.

Lemma 2.1. Let S = R[x;α, δ] be an Ore extension of R.

1. If R is a domain, then S is a domain.

2. If R is a prime ring, then S is a prime ring.

Proof. See, [37, Theorem 1.2.9(i), (iii)].

The following theorem is a noncommutative version of the Hilbert Basis Theorem.

Theorem 2.2. If R is a left (right) Noetherian ring, then so is the Ore extension S = R[x;α, δ].

Proof. See [37, Theorem 1.2.9].

Filtered and graded rings. A filtered ring is a ring R with a family {Fn |n ∈ Z} of additive

subgroups of R such that

1. FiFj ⊆ Fi+j for all i, j;

9



Chapter 1. Preliminaries 10

2. 1 ∈ F0;

3. Fi ⊆ Fj for i < j;

4.
⋃
n∈Z Fn = R.

The family {Fn} is called a filtration of R.

A Z-graded ring is a ring R with a family {Rn, n ∈ Z} of additive subgroups of R such that

1. RiRj ⊆ Ri+j , and

2. R =
⊕

nRn as an abelian group.

The family {Rn} is called a grading of R. A nonzero element of Rn is said to be homogeneous

of degree n. For any filtered ring S one can construct a graded ring. We set

grnS = Fn/Fn−1 and grS =
⊕

grnS.

To define multiplication in grS it suffices to consider multiplication of homogeneous elements.

If a ∈ Fn \ Fn−1, then a is said to have degree n and ā = a + Fn−1 ∈ Fn/Fn−1 is the leading

term of a. Suppose c has degree m then we define

āc̄ = ac+ Fm+n−1 ∈ grm+nS.

This well-defined multiplication makes grS into a ring. It is called the associated graded ring

of S. In general, the associated graded ring of a filtered ring S has somewhat simpler structure

than the ring S. In this case, one would like to transfer information from grS back to S. Some

connection between properties of a filtered ring S and its associated graded ring grS is given in

the following proposition.

Proposition 2.3. 1. If grS is a domain, then S is a domain.

2. If grS is a prime ring, then S is a prime ring.

3. If grS is right Noetherian, then S is right Noetherian.

Proof. See [37, Proposition 1.6.6] and [37, Theorem 1.6.9].

Here we note that the converses are not true, in general.

Prime ideals. A prime ideal in a ring R is any ideal P of R such that P 6= R whenever I and

J are ideals of R with IJ ⊆ P , either I ⊆ P or J ⊆ P. The set of prime ideals of R is denoted

by Spec (R). A minimal prime ideal of a ring R is any prime ideal of R which does not contain

any other prime ideals. We have the following equivalent description of prime ideals.

Proposition 2.4. For an ideal P of a ring R such that P 6= R, the following conditions are

equivalent:

1. P is a prime ideal.

2. If I, J / R and I, J % P , then IJ * P.

3. R/P is a prime ring.

4. If I and J are right ideals of R such that IJ ⊆ P , then either I ⊆ P or J ⊆ P.



Chapter 1. Preliminaries 11

5. If x, y ∈ R such that xRy ⊆ P , then either x ∈ P or y ∈ P.

Proof. See [28, Proposition 3.1].

Theorem 2.5. Let R be a right or left Noetherian ring.

1. Any ideal in R contains a finite product of prime ideals.

2. R has only finitely many minimal prime ideals.

Proof. See [28, Theorem 3.4] and its proof.

A semiprime ideal in a ring R is any ideal of R which is an intersection of prime ideals.

Theorem 2.6. An ideal in a ring R is semiprime if and only if whenever x ∈ R with xRx ⊆ I
then x ∈ I.

Proof. See [28, Theorem 3.7].

Let I be a two-sided ideal of a ring R. The ideal I is said to be completely prime if the factor

ring R/I is a domain. The ideal I is said to be primitive if it is the annihilator of a simple left

R-module. The set of primitive ideals of R is denoted by Prim (R). The ideal I is said to be a

maximal ideal if it is maximal in the set of ideals of R distinct from R. We have the following

implications (see [28, Proposition 2.15]):

I maximal ⇒ I primitive ⇒ I prime ⇒ I semiprime.

Localization. The technique of localization is a powerful tool in study of algebras. Let X be

a multiplicative set in a ring R (i.e., X is multiplicative submonoid of (R \ {0}, ·) and 1 ∈ X).

Then X is said to satisfy the right Ore condition if, for each x ∈ X and r ∈ R, there exist y ∈ X
and s ∈ R such that ry = xs, that is, rX ∩ xR 6= ∅. X is said to be right reversible if

xr = 0 for some x ∈ X, r ∈ R implies rx′ = 0 for some x′ ∈ X.

A right denominator set is any right reversible right Ore set. In a right Noetherian ring every

right Ore set is right reversible; [28, Proposition 10.7].

Definition. Let X be a multiplicative set of a ring R. A right quotient ring (or right Ore

localization) of R with respect to X is a ring Q together with a homomorphism φ : R −→ Q

such that:

1. φ(x) is a unit of Q for all x ∈ X,

2. for all q ∈ Q, q = φ(r)φ(x)−1 for some r ∈ R and x ∈ X, and

3. kerφ = {r ∈ R | rx = 0 for some x ∈ X}.

By abuse of notation, we will write elements of Q in the form rx−1 for r ∈ R, x ∈ X.
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Theorem 2.7. Let X be a multiplicative set in a ring R. Then there exists a right quotient ring

of R with respect to X if and only if X is a right denominator set.

Proof. See [28, Theorem 10.3].

Lemma 2.8. Let X be a multiplicative set in a ring R.

1. If there exists a right quotient ring Q of R with respect to X, then it is unique up to

isomorphism.

2. If R also has a left quotient ring Q′ with respect to X then Q ' Q′.

Proof. See [28, Corollary 10.5, Proposition 10.6].

Because of the uniqueness, we shall denote Q by RX−1 or RX . The next result is useful in

handling the passage between a ring R and its localization RX .

Proposition 2.9. Let X be a right denominator set in a ring R, and Q = RX . If R is a

Noetherian ring then there is a bijection

{
P ∈ Spec(R) |P ∩X = ∅

}
−→

{
P ′ ∈ Spec(Q)

}
,

P 7→ PQ,

with the inverse P ′ 7→ P ′ ∩R.

Proof. See [37, Proposition 2.1.16.(vii)].

Let X be a right Ore set in a ring R and M be a right R-module. The set

torX(M) := {m ∈M |mx = 0 for some x ∈ X}

is a submodule of M [28, Lemma 4.21]. It is called the X-torsion submodule of M .

Definition. Let X be a right denominator set in a ring R and M be a right R-module. A

module of fraction for M with respect to X consists of a right RX -module N together with a

R-module homomorphism ψ : M −→ N such that:

1. for all n ∈ N , n = ψ(m)x−1 for some m ∈M,x ∈ X, and

2. kerψ = torX(M).

It can be shown that such a module of fraction exits and unique up to isomorphism; [28, Theorem

10.8, Corollary 10.10]. We denote this module by MX or MX−1.

Proposition 2.10. Let X be a right denominator set in a ring R and M a right R-module.

1. M ⊗R RX 'MX .

2. torX(M) = ker (M −→M ⊗R RX , m 7→ m⊗ 1).

3. torX(M) = M ⇔M ⊗R RX = 0.
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Proof. See [37, Proposition 2.1.17].

Gelfand-Kirillov dimension of algebras and modules. Throughout this thesis K is a field.

Let A be a finitely generated K-algebra and let V be a K-vector subspace of A spanned by

{a1, . . . , am}. If A is generated by {a1, . . . , am}, or equivalently by the vector space V , then V

is called a generating subspace of A. For n > 1, we will denote by V n the subspace of A spanned

by all monomials in a1, . . . , am of length n. We also define V 0 = K. Then A has a standard finite

dimensional filtration:

A =

∞⋃
n=0

Vn, where Vn := K + V + V 2 + · · ·+ V n.

Definition. Let A be a finitely generated K-algebra and let V be a generating subspace of A.

The Gelfand-Kirillov dimension, or GK dimension for short, of A is defined by

GK (A) = lim
n→∞

logn(dimVn).

An equivalent definition of Gelfand-Kirillov dimension is

GK (A) := inf{γ ∈ R |dimVn 6 n
γ , n >> 0}.

Remarks.

1. Let A be a finitely generated K-algebra and suppose that V and W are two generating

subspaces of A. Then lim
n→∞

logn(dimVn) = lim
n→∞

logn(dimWn). Thus the GK dimension of

A does not depend on the choice of generating subspaces.

2. If V contains 1, then Vn = V n.

Let A be a finitely generated K-algebra with a finite dimensional generating subspace V con-

taining 1. If M is a finitely generated left A-module with a finite dimensional vector space F

that generates M as an A-module, then

M =

∞⋃
n=0

V nF.

The Gelfand-Kirillov dimension of the module M is defined by

GK (M) := lim
n→∞

logn(dimV nF ).

We note that the Gelfand-Kirillov dimension GK (M) does not depend on the choice of the

spaces V and F .

Gelfand-Kirillov dimension is a useful and important tool in the study of noncommutative alge-

bras. We recall some basic properties of GK dimension in the following lemma. Further details

concerning the GK dimension can be found in [35]. A non-zero-divisor of a ring is called a regular

element. A derivation δ of a ring R is called a locally nilpotent derivation if R =
⋃
n>1 ker(δn).
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Each element x of a ring R determines a derivation δx : R → R, r 7→ [x, r] := xr − rx which is

called the inner derivation associated to x.

Lemma 2.11. Let x be a regular element of the K-algebra A such that the derivation δx : a 7→
ax− xa is locally nilpotent. Then the set X = {1, x, x2, · · · } is an Ore set in A and

GK (X−1A) = GK (AX−1) = GK (A).

Proof. See [35, Lemma 4.7].

An element r of ring R is called a left regular element (resp., a right regular element) if the map

·r : R→ R, s 7→ sr (resp., r· : R 7→ R, s 7→ rs) is an injection.

Proposition 2.12. Let I be an ideal of a K-algebra A, and assume that I contains a right

regular element or a left regular element of A. Then

GK (A/I) + 1 6 GK (A).

Proof. See [35, Proposition 3.15].

Proposition 2.13. Let A be a right Noetherian K-algebra and suppose that GK (A) < ∞. If

P0 ⊂ P1 ⊂ · · · ⊂ Pm is a chain of distinct prime ideals of A then

GK (A) > GK (A/P0) > GK (A/Pm) +m.

Proof. See [37, Corollary 8.3.6(iv)].

Proposition 2.14. Let A be a K-algebra, and let M be a left A-module.

1. If IM = 0 for an ideal I of A, then GK (AM) = GK (A/IM).

2. GK (AM) 6 GK (A).

3. If M is finitely generated and α ∈ EndA(M) is injective, then

GK (M/α(M)) 6 GK (M)− 1.

Proof. See [35, Proposition 5.1].

A K-algebra A is almost commutative if there exists a filtration

K = A0 ⊆ A1 ⊆ · · · ⊆ Ai ⊆ · · · ⊆
∞⋃
i=0

Ai = A

such that (i) A1 is finite dimensional and Ai = Ai1 for all i > 1; (ii) the associated graded algebra

grA =
⊕∞

i=0Ai/Ai−1 is commutative.
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Proposition 2.15. Let A be an almost commutative algebra, and let M be a finitely generated

A-module with GK (M) = d and multiplicity e(M). Let

M = M0 ⊃M1 ⊃ · · · ⊃Mi ⊃Mi+1 ⊃ · · · ⊃Mn

be a strictly descending chain of submodules with GK (Mi/Mi+1) = d for all 0 6 i 6 n−1. Then

1. e(M/Mi) =
∑i−1
j=0 e(Mj/Mj+1).

2. n 6 e(M).

Proof. See [35, Corollary 7.8].

Generalized Weyl algebras. We only consider generalized Weyl algebra of degree 1.

Definition. Let D be a ring, σ ∈ Aut(D) and a ∈ Z(D) where Z(D) is the centre of D. The

generalized Weyl algebra A = D(σ, a) = D[X,Y ;σ, a] is generated by D and two indeterminates

X and Y subject to the defining relations

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D,

Y X = a and XY = σ(a).

The algebra A =
⊕

n∈ZAn is Z-graded, where An = Dvn = vnD, vn = Xn (n > 0), vn =

Y −n (n < 0), v0 = 1. It follows from the defining relations that

XnY m =

{
σn(a) · · ·σn−m+1(a)Xn−m, if n > m,

σn(a) · · ·σ(a)Y m−n, if n 6 m.

Y nXm =

{
σ−n+1(a) · · ·σ−n+m(a)Y n−m, if n > m,

σ−n+1(a) · · · aXm−n, if n 6 m.

The following theorem gives a criterion of simplicity of generalized Weyl algebras of degree 1.

Theorem 2.16. Let A = D(σ, a) be a generalized Weyl algebra of degree 1. Then A is simple if

and only if

1. D has no proper σ-invariant ideals;

2. no power of σ is an inner automorphism of D;

3. for each natural integer n ∈ N, elements a and σn(a) generate D as a left (or right)

D-module;

4. a is not a zero divisor in D.

Proof. See [6, Theorem 4.2].

Deleting derivations. The n-th Weyl algebra An = An(K) is an associative algebra which is

generated by elements x1, . . . , xn, y1, . . . , yn subject to the defining relations: [xi, xj ] = 0, [yi, yj ] =

0 and [yi, xj ] = δij where [a, b] := ab − ba and δij is the Kronecker delta function. The Weyl
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algebra An is a simple Noetherian domain of Gefand-Kirillov dimension 2n with Z(An) = K.

The next result is very useful.

Lemma 2.17. [37, Lemma 14.6.5] Let B be a K-algebra, δ be a K-derivation on S = B⊗KAn(K)

and T = S[t; δ]. There exists s ∈ S such that the derivation δ′ = δ+ads of S satisfies the following

conditions,

1. δ′(B) ⊆ B,

2. δ′
(
An(K)

)
= 0, and

3. the algebra T = B[t′; δ′]⊗K An(K) is a tensor product of algebras where t′ = t+ s.

Proof. By writing S = B⊗An−1(K)⊗A1(K) and using induction on n, it sufficient to prove the

result for n = 1. Now, δ(x) =
∑
i,j bijx

iyj for some elements bij ∈ B. Let

s1 =
∑
i,j

1

j + 1
bijx

iyj+1 and δ1 = δ + ads1 .

Then [x, s1] = δ(x), and δ1(x) = 0. Similarly, [x, y] = 1 implies [δ1(x), y] + [x, δ1(y)] = 0 and

therefore [x, δ1(y)] = 0. It follows that δ1(y) ∈ B[x], with δ1(y) =
∑
bjx

j say. Let

s2 = −
∑ 1

j + 1
bjx

j+1, s = s1 + s2, and δ′ = δ + ads.

Then δ′(x) = δ1(x) = 0, and δ′(y) = 0. Thus δ′(A1(K)) = 0. Now let b ∈ B, a ∈ A1, then

[b, a] = 0 and so 0 = δ′([b, a]) = [δ′(b), a] + [b, δ′(a)] = [δ′(b), a]. Hence δ′(b) centralizes A1(K), so

δ′(b) ∈ B. Then statement 3 is clear.

The Diamond Lemma. For details and applications of the Diamond Lemma, see [19, I.11].

Suppose that A is a K-algebra presented by generators and relations. Then A can be given as

A = K〈X〉/(wσ − fσ |σ ∈ Σ),

where K〈X〉 is the free algebra on a set X, fσ ∈ K〈X〉 and the wσ are words (products of

elements from X). Let W be the free monoid on X, then wσ ∈W . Since W is a basis for K〈X〉
the cosets w̄ for w ∈W span A. The set

S = {(wσ, fσ) |σ ∈ Σ} ⊆W × F

is called a reduction system.

For σ ∈ Σ and a, b ∈ W , let ra,σ,b : K〈X〉 → K〈X〉 be the linear map sending awσb 7→ afσb and

fix all other words. We call ra,σ,b an elementary reduction. A reduction is a finite composition

of elementary reductions. An element f ∈ K〈X〉 is irreducible if r(f) = f for all reductions.

A semigroup ordering on W is a partial order 6 such that

b < b′ ⇒ abc < ab′c
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for all a, b, b′, c ∈ W . We say that the semigroup ordering 6 is compatible with the reduction

system S if for each σ ∈ Σ, the element fσ is a linear combination of words w < wσ.

We will require a semigroup ordering which satisfies the descending chain condition (the DCC).

The typical example is the length-lexicographic ordering. The length-lexicographic ordering 6lex

on W is defined by

a 6lex b⇔ a = b or a <lex b,

where a <lex b is given as

xi(1)xi(2) · · ·xi(s) <lex xj(1)xj(2) · · ·xj(t)

if and only if either s < t, or s = t and there is some u 6 s such that i(l) = j(l) for all l < u and

i(u) < j(u). Therefore, to compare two different words, we first compare their lengths, if they

have the same length, then we look at the leftmost place where they differ.

There are two kinds of ambiguities can arise in the reduction process. An overlap ambiguity is

a 5-tuple (a, b, c, σ, τ) ∈W 3×Σ2 such that ab = wσ and bc = wτ . The ambiguity lies in the fact

that abc can be reduced in two ways:

r1,σ,c(abc) = fσc and ra,τ,1(abc) = afτ .

An inclusion ambiguity is a 5-tuple (a, b, c, σ, τ) ∈ W 3 × Σ2 such that abc = wσ and b = wτ .

Again abc has two reductions:

r(abc) = fσ and ra,τ,c(abc) = afτ c.

We say that the overlap (resp. inclusion) ambiguity (a, b, c, σ, τ) is resolvable if and only if there

are reductions r, r′ such that r(fσc) = r′(afτ ) (resp. r(fτ ) = r′(afτ c)).

Theorem 2.18. (Diamond Lemma). Let F = K〈X〉 be a free algebra on a set X and W be

the free monoid on X. Let S = {(wσ, fσ) |σ ∈ Σ} be a reduction system and 6 be a semigroup

ordering on W which is compatible with S and satisfies the DCC. Assume that all overlap and

inclusion ambiguities are resolvable. Then the cosets w̄, for irreducible words w ∈ W , form a

basis for the factor algebra F/(wσ − fσ |σ ∈ Σ).

Smash product. Now, we recall the definition of smash product algebra, for details and

examples see [38, 4.1].

Definition. If H is a Hopf algebra with comultiplication ∆, and A is an algebra which is an

H-module such that

1. h ·(ab) = (h1 ·a)(h2 ·b) for all h ∈ H, a, b ∈ A, where ∆(h) = h1⊗h2 (Sweedler’s notation),

and

2. h · 1 = ε(h)1 for all h ∈ H, where 1 ∈ A is the identity,
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then A is called a (left) H-module algebra. Note that H is naturally a left H-module via the left

multiplication. This yields a left H-adjoint action on H given by the rule

h · l = h1lS(h2) for h, l ∈ H.

Definition. Let A be a left H-module algebra. The smash product algebra AoH is defined as

follows, for all a, b ∈ A and h, k ∈ H:

1. as vector spaces, AoH = A⊗H. To avoid confusion we write a#h for the element a⊗ h.
2. Multiplication is given by the rule

(a#h)(b#k) = a(h1 · b)#h2k. (2.1)

It is easy to see that A ' A⊗1 and H ' 1⊗H, so A and H can be naturally seen as subalgebras

of A o H. For this reason we abbreviate the element a#h by ah. In this notation, we write

ha = (h1 · a)h2 using (2.1).

In this thesis, a K-algebra A is called a central simple algebra if A is a simple algebra and

Z(A) = K.

Lemma 2.19. Let A be a central simple algebra with unity, B an algebra with unity, I the set

of two-sided ideals of B, and J the set of two-sided ideals of A⊗B.

1. The map I →J , I 7→ A⊗ I, is a bijection.

2. Let I ∈ I . Then I is a maximal (or prime) ideal of B if and only if A⊗ I is a maximal

(or prime) ideal of A⊗B.

Proof. See [21, Lemma 4.5.1].

Lemma 2.20. Let A and B be K-algebras. Then Z(A⊗K B) = Z(A)⊗K Z(B).

Proof. See [39, Corollary 1.7.24].
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The spatial ageing algebra

U(bn V2)

3.1 Introduction

In this thesis, module means a left module, K is a field of characteristic zero and K∗ := K \ {0}.

Recall that the Lie algebra sl2 = KF ⊕KH ⊕KE is a simple Lie algebra over K where the Lie

bracket is given by the rule: [H,E] = 2E, [H,F ] = −2F and [E,F ] = H. Let V2 = KX ⊕ KY
be the 2-dimensional simple sl2-module with basis X and Y : H ·X = X, H · Y = −Y, E ·X =

0, E · Y = X, F · X = Y and F · Y = 0. Let a := sl2 n V2 be the semi-direct product of Lie

algebras, where V2 is viewed as an abelian Lie algebra. In more detail, the Lie algebra a admits

the basis {H,E, F,X, Y } and the Lie bracket is as follows

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, [E,X] = 0, [E, Y ] = X,

[F,X] = Y, [F, Y ] = 0, [H,X] = X, [H,Y ] = −Y, [X,Y ] = 0.

Let b = KH ⊕KE be the Borel subalgebra of the Lie algebra sl2. Then bn V2 is a solvable Lie

subalgebra of a. It admits a basis {H,E,X, Y } and the Lie bracket on bn V2 is given as follows

[H,E] = 2E, [H,X] = X, [H,Y ] = −Y,

[E,X] = 0, [E, Y ] = X, [X,Y ] = 0.

The universal enveloping algebra A := U(b n V2) of the Lie algebra b n V2 is called the spatial

ageing algebra. The algebra A is a subalgebra of the universal enveloping algebra U(sl2nV2). In

this chapter, we study the prime spectrum and centralizers of some elements of the algebra A,

the algebra U(sl2 n V2) will be studied in the next chapter. Let us describe the content of this

chapter. In Section 3.2, an explicit description of the prime spectrum of the algebra A is given

(Theorem 3.4). An explicit description of all the prime factor algebras of A is given in Theorem

3.4. All the possible inclusions of primes are given in (3.9). The sets of maximal, completely

19
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prime and primitive ideals of A are described (Corollary 3.5, Corollary 3.6 and Proposition 3.7,

respectively). The centralizers of the elements X, Y and E are described in Section 3.3.

Much of this chapter is extracted from the joint paper with V. Bavula [16].

3.2 The prime ideals of A

The aim of this section is to describe the prime ideals of the enveloping algebra A (Theorem 3.4).

As a result, the sets of maximal, completely prime and primitive ideals are described (Corollary

3.5, Corollary 3.6 and Proposition 3.7). Theorem 3.4 also gives an explicit description of all

prime factor algebras of A.

For an algebra R, we denote by Z(R) its centre. An element r of a ring R is called a normal

element if Rr = rR.

The subalgebra E of A. Let E be the subalgebra of A generated by the elements E, X and

Y . The generators of the algebra E satisfy the defining relations

EY − Y E = X, EX = XE and Y X = XY.

Clearly, X is a central element of the algebra E. The algebra E is isomorphic to the universal

enveloping algebra of the 3-dimensional Heisenberg Lie algebra. In particular, the algebra E is

a Noetherian domain of Gelfand-Kirillov dimension 3. Let EX be the localization of the algebra

E at the powers of the element X. Then the algebra EX is the tensor product of two algebras

EX = K[X±1]⊗A+
1

where the algebra A+
1 := K〈EX−1, Y 〉 is the (first) Weyl algebra since [EX−1, Y ] = 1. Since

the algebra A+
1 is a central algebra, i.e., Z(A+

1 ) = K, we have Z(EX) = K[X±1]. Then Z(E) =

Z(EX) ∩ E = K[X].

The algebra A. By the defining relations of the algebra A,

A = E[H; δ] (3.1)

is an Ore extension where the K-derivation δ of the algebra E is given by the rule: δ(E) =

2E, δ(X) = X and δ(Y ) = −Y . Notice that X is a normal element of the algebra A since X is

central in E and XH = (H − 1)X. The localization AX of the algebra A at the powers of the

element X is an Ore extension

AX = EX [H; δ] = (K[X±1]⊗A+
1 )[H; δ] (3.2)

where δ(E) = 2E, δ(X) = X and δ(Y ) = −Y . The element s = EX−1Y ∈ EX satisfies the

conditions of Lemma 2.17. In more detail, the element H+ := H + s = H +EX−1Y commutes
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with the elements of A+
1 and

AX = K[X±1][H+; δ′]⊗A+
1 where δ′(X) = X. (3.3)

Notice that the algebra K[X±1][H+; δ′] can be presented as a skew Laurent polynomial algebra

K[H+][X±1;σ] where σ(H+) = H+ − 1. This is a central simple algebra of Gelfand-Kirillov

dimension 2. Let ∂ := H+X−1. Then [∂,X] = 1 and so the subalgebra A1 = K〈∂,X〉 of AX
is the (first) Weyl algebra. Moreover, the algebra A1 is a subalgebra of K[X±1][H+; δ′] and the

algebra K[X±1][H+; δ′] = A1,X is the localization of the Weyl algebra A1 at the powers of the

element X. Now,

AX = A1,X ⊗A+
1 . (3.4)

So AX is a localization of the second Weyl algebra.

Lemma 3.1. 1. The algebra AX is a central simple algebra of Gelfand-Kirillov dimension 4.

2. Z(A) = K.

Proof. 1. Since both the algebras K[X±1][H+; δ′] and A+
1 are central simple algebras of Gelfand-

Kirillov dimension 2, statement 1 then follows from (3.3).

2. Since K ⊆ Z(A) ⊆ Z(AX) = K, we have Z(A) = K.

The factor algebra B := A/(X). We still denote by H,E and Y the images of these elements

in the factor algebra B := A/(X). Then the algebra B is generated by the elements H,E and Y

that satisfy the defining relations

[H,E] = 2E, [H,Y ] = −Y, [E, Y ] = 0.

Hence, the algebra B is an Ore extension,

B = K[E, Y ][H; δ] where δ(E) = 2E and δ(Y ) = −Y. (3.5)

It is clear that the element Z := EY 2 belongs to the centre of the algebra B. The elements Y

and E are normal elements in B. Let BY be the localization of the algebra B at the powers of

element Y . Then

BY = K[Z]⊗K[H][Y ±1;σ] := K[Z]⊗ Y (3.6)

where the skew polynomial algebra Y = K[H][Y ±1;σ] is a central simple algebra where the K-

automorphism σ of K[H] is defined as follows: σ(H) = H + 1. Hence, the centre of the algebra

BY is K[Z]. The algebras B and BY are Noetherian domains of Gelfand-Kirillov dimension 3.

Lemma 3.2. Z(B) = Z(BY ) = K[Z] where Z = EY 2.

Proof. Since K[Z] ⊆ Z(B) ⊆ Z(BY ) = K[Z], we have Z(B) = K[Z].
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The prime spectrum of the algebra A. Recall that for an algebra R, we denote by Spec (R)

the set of its prime ideals. The set (Spec (R),⊆) is a partially ordered set (poset) with respect

to inclusion of prime ideals. Each element r ∈ R determines two maps from R to R, r· : x 7→ rx

and ·r : x 7→ xr where x ∈ R. For an element r ∈ R, we denote by (r) the ideal of R generated

by the element r.

Proposition 3.3. Let R be a Noetherian ring and s be an element of R such that Ss := {si | i ∈
N} is a left denominator set of the ring R and (si) = (s)i for all i > 1 (e.g., s is a normal element

such that ker(·sR) ⊆ ker(sR·)). Then Spec (R) = Spec(R, s) t Specs(R) where Spec (R, s) :=

{p ∈ Spec (R) | s ∈ p}, Specs(R) := {q ∈ Spec (R) | s /∈ q} and

(a) the map Spec (R, s)→ Spec (R/(s)), p 7→ p/(s), is a bijection with the inverse q 7→ π−1(q)

where π : R→ R/(s), r 7→ r + (s),

(b) the map Specs(R) → Spec (Rs), p 7→ S−1
s p, is a bijection with the inverse q 7→ σ−1(q)

where σ : R→ Rs := S−1
s R, r 7→ r

1 .

(c) For all p ∈ Spec (R, s) and q ∈ Specs(R), p 6⊆ q.

Proof. Clearly, Spec (R) = S1 t S0 is a disjoint union where S1 and S0 are the subsets of Spec (R)

that consist of prime ideals p of R such that p ∩ Ss 6= ∅ and p ∩ Ss = ∅, respectively. If p ∈ S1

then si ∈ p for some i > 1, and so p ⊇ (si) = (s)i, by the assumption. Therefore, p ⊇ (s) (since

p is a prime ideal), i.e., p 3 s. This means that S1 = Spec (R, s). We have shown that s ∈ p iff

si ∈ p for some i > 1. By the very definition, S0 = Spec (R) \S1 = Spec (R) \ {p ∈ Spec (R) | s ∈
p} = {p ∈ Spec (A) | s /∈ p} = Specs(R).

The statement (a) is obvious since s ∈ p iff (s) ⊆ p. The ring R is Noetherian, by [37, Proposition

2.1.16.(vii)], the map Specs(R) = {p ∈ Spec (R) | p∩Ss = ∅} → Spec (Rs), p 7→ S−1
s p is a bijection

with the inverse q 7→ σ−1(q) and the statement (b) follows. The statement (c) is obvious.

Remark. In the statements (a) and (b) of Proposition 3.3, we identify the sets via the bijections.

Let U := U(sl2) and U+ be the ‘positive part’ of U , i.e., U+ is the subalgebra of U generated by

the elements H and E. Then U+ = K[H][E;σ] is a skew polynomial algebra where σ(H) = H−2.

The localized algebra U+
E = K[H][E±1;σ] is a central simple domain. The following diagram

explains the idea of finding the prime spectrum of the algebra A by repeated application of

Proposition 3.3,

A AX

B = A/(X) (A/(X))Y = BY

U+ = A/(X,Y ) U+
E

K[H] = U+/(E).
(3.7)
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Using (3.7) and Proposition 3.3, we can represent the prime spectrum Spec (A) of the algebra

A as the disjoint union of its subsets

Spec (A) = Spec (K[H]) t Spec (U+
E ) t Spec (BY ) t Spec (AX) (3.8)

where we identify the sets of prime ideals in (3.8) via the bijections given in the statements (a)

and (b) of Proposition 3.3.

The next theorem gives an explicit description of the poset (Spec (A), ⊆) and of all the prime

factor algebras of A. It also shows that every prime ideal is a completely prime ideal.

Theorem 3.4. The prime spectrum Spec (A) of the algebra A is the disjoint union of the sets

in (3.8). More precisely,

{
(Y,E, p) | p ∈ Max (K[H])

}
(Y,E)

(Y ) (E)
{
(X, q) | q ∈ Max (K[Z]) \ {(Z)}

}
(X)

0 (3.9)

where

1. Spec (K[H]) = {(Y,E, p) | p ∈ Spec (K[H])} = {(Y,E)} t {(Y,E, p) | p ∈ Max (K[H])} and

A/(Y,E, p) ' K[H]/p.

2. Spec (U+
E ) = {(Y )}, (Y ) = (X,Y ) and A/(Y ) ' U+ = K[H][E;σ] is a skew polynomial

algebra which is a domain where σ(H) = H − 2.

3. Spec (BY ) = {(X), (E), (X, q) | q ∈ Max(K[Z]) \ {(Z)}} and

(a) A/(X) = B = K[E, Y ][H; δ] is an Ore domain (see 3.5) where δ(E) = 2E and

δ(Y ) = −Y ,

(b) A/(E) ' K[H][Y ;σ] is a skew polynomial algebra which is a domain where σ(H) =

H + 1, and

(c) A/(X, q) ' B/(q) ' BY /(q)Y ' Lq ⊗Y is a simple domain which is a tensor product

of algebras where Lq := K[Z]/q is a finite field extension of K.
4. Spec (AX) = {0}.

Proof. Recall that X is a normal element in the algebra A. By Proposition 3.3,

Spec (A) = Spec
(
A/(X)

)
t Spec (AX). (3.10)

(i) Statement 4 holds: By Lemma 3.1.(1), the algebraAX is a simple algebra. Hence, Spec (AX) =

{0}, as required.
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Recall that Y is a normal element of the algebra B = A/(X). By Proposition 3.3,

Spec (A/(X)) = Spec (A/(X,Y )) t Spec
((
A/(X)

)
Y

)
= Spec (U+) t Spec (BY ). (3.11)

(ii) (Y ) = (X,Y ) and (E) = (X,E): Both equalities follow from the relation X = [E, Y ].

(iii) Statements 1 and 2 hold : The element E is a normal element of the algebra U+. By

Proposition 3.3,

Spec (U+) = Spec (U+/(E)) t Spec (U+
E ). (3.12)

Since K[H] ' U+/(E), statement 1 follows. Now, (3.8) holds by (3.10), (3.11) and (3.12). The

algebra U+
E ' K[H][E±1;σ] is a central simple domain where σ(H) = H − 2. By the statement

(ii), A/(Y ) = A/(X,Y ) = U+ is a domain. The set Spec (U+
E ), as a subset of Spec (A), consists

of the single ideal (Y ), and statement 2 follows.

(iv) Statement 3 holds: By (3.6), BY = K[Z] ⊗ Y where Y is a central simple algebra. Then,

by Lemma 2.19, Spec (BY ) = Spec (K[Z]). The set Spec (BY ), as a subset of Spec (A), is equal

to {A ∩ (X)Y , A ∩ (X,Z)Y , A ∩ (X, q)Y | q ∈ Max (K[Z]) \ {(Z)}}. We have to show that

A ∩ (X)Y = (X), A ∩ (X,Z)Y = (E) and A ∩ (X, q)Y = (X, q).

A ∩ (X)Y = (X): Let u ∈ A ∩ (X)Y , then Y iu ∈ (X) for some i ∈ N. Since A/(X) = B is

domain and Y 6∈ (X), we must have u ∈ (X). Hence, A ∩ (X)Y = (X).

A ∩ (X,Z)Y = (E): By the statement (ii), (E) = (X,E). So, (E)Y = (X,E)Y = (X,Z)Y . Let

u ∈ A ∩ (X,Z)Y = A ∩ (E)Y , then Y iu ∈ (E) for some i ∈ N. Since A/(E) = A/(X,E) '
K[H][Y ;σ] is a domain where σ(H) = H + 1 and Y 6∈ (E), we have u ∈ (E). Therefore,

A ∩ (X,Z)Y = (E). So, statement (b) holds and (E) is a completely prime ideal of the algebra

A.

A ∩ (X, q)Y = (X, q) for q ∈ Max (K[Z]) \ {(Z)}: Let us first show that the statement (c)

holds. It is clear that A/(X, q) ' B/(q). Since q 6= (Z), the nonzero element Z = EY 2 of Lq is

invertible in the field Lq. Hence, the element Y is invertible in the algebra B/(q). Now, B/(q) '
BY /(q)Y ' Lq ⊗Y, see (3.6). This proves the statement (c). Since A/(X, q) is a simple algebra

(by the statement (c)), the ideal (X, q) of A is a maximal ideal and (X, q) ⊆ A ∩ (X, q)Y $ A,

we must have A ∩ (X, q)Y = (X, q).

(v) Clearly, we have the inclusions as in the diagram (3.9) (see the statement (ii)). It remains to

show that there is no other inclusions. Recall that Z = EY 2. Hence, (Z) ⊆ (E) and (Z) ⊆ (Y ).

The ideals {(X, q) | q ∈ Max (K[Z]) \ {(Z)}} are maximal in A and (q) + (Z) = (1). Therefore,

none of the maximal ideals (X, q) contains (Y ) or (E). Therefore, picture (3.9) represents the

poset (Spec (A),⊆).

For an algebra R, let Max (R) be the set of its maximal ideals. The next corollary is an explicit

description of the set Max(A).

Corollary 3.5. Max (A) = P t Q where P :=
{

(Y,E, p) | p ∈ Max (K[H])
}

and Q :=
{

(X, q) | q ∈
Max (K[Z]) \ {(Z)}

}
.
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Proof. The corollary follows from (3.9).

If g is a solvable Lie algebra then every prime ideal of the universal enveloping algebra U(g) is

completely prime, see [21, Theorem 3.7.2]. Since the spatial ageing algebra A is the enveloping

algebra of a solvable Lie algebra, we have the following corollary (this corollary also follows from

Theorem 3.4).

Corollary 3.6. Every prime ideal of the algebra A is completely prime, i.e., Specc(A) =

Spec (A).

Let R be an algebra and M be an R-module. For a ∈ R, let aM · : M → M, m 7→ am. The

ideal of R, annR(M) := {a ∈ R | aM = 0}, is called the annihilator of the R-module M . An

R-module is called faithful if it has zero annihilator. The annihilator of each simple R-module is

a prime ideal. Such prime ideals are called primitive and the set Prim (R) of all primitive ideals

is called the primitive spectrum of R. The next proposition gives an explicit description of the

set Prim (A).

Proposition 3.7. Prim(A) = Max(A) t {(Y ), (E), 0}.

Proof. Clearly, Prim (A) ⊇ Max (A). The ideals (X) and (Y,E) are not primitive ideals as the

corresponding factor algebras contain the central elements Z and H, respectively.

(i) (Y ) ∈ Prim (A): For λ ∈ K∗, let I(λ) = (Y ) + A(E − λ). Since A/(Y ) ' U+ (see The-

orem 3.4.(2)), the left A-module M(λ) := A/I(λ) ' U+/U+(E − λ) ' K[H]1̄ is a simple

A-module/U+-module where 1̄ = 1 + I(λ). By the definition of the module M(λ), its anni-

hilator p := annA
(
M(λ)

)
contains the ideal (Y ) but does not contain the ideal (Y,E), since

otherwise we would have 0 = E1̄ = λ1̄ 6= 0, a contradiction. By (3.9), we have p = (Y ).

(ii) (E) ∈ Prim (A): For λ ∈ K∗, let Jλ = (E) + A(Y − λ). Since A/(E) ' K[H][Y ;σ] where

σ(H) = H + 1 (see Theorem 3.4.(3b)), the left A-module T (λ) := A/Jλ ' K[H]1̄ is a simple

module where 1̄ = 1 + Jλ. Clearly, the prime ideal q := annA
(
T (λ)

)
contains the ideal (E)

but does not contain the ideal (Y,E) since otherwise we would have 0 = Y 1̄ = λ1̄ 6= 0, a

contradiction. By (3.9), we have q = (E).

(iii) 0 is a primitive ideal of A: For λ ∈ K∗, we define the A-module S(λ) := A/A(X − λ, Y ).

Then S(λ) =
⊕

i>0 K[H]Ei1̄ where 1̄ = 1 + A(X − λ, Y ). Let t = Y X then Ht = tH and

[t, Ei] = −iX2Ei−1. The fact that S(λ) is a simple A-module follows from the equality: tEi1̄ =

(Eit− iX2Ei−1)1̄ = −iλ2Ei−11̄. Since X /∈ annA(S(λ)), by (3.9), annA(S(λ)) = 0. Thus 0 is a

primitive ideal of the algebra A.

The next lemma is a faithfulness criterion for simple A-modules.

Lemma 3.8. Let M be a simple A-module. Then M is a faithful A-module iff ker(XM ·) = 0.

Proof. The A-module M is simple, so annA(M) ∈ Prim (A). Recall that the element X is a

normal element of the algebra A. So, ker(XM ·) is a submodule of M . Then either ker(XM ·) = 0

or ker(XM ·) = M , and in the second case annA(M) ⊇ (X). If ker(XM ·) = 0 then annA(M) = 0

since otherwise, by (3.9), (X) ⊆ annA(M), a contradiction.
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3.3 Centralizers of some elements of the algebra A

Let R be an algebra and S be a non-empty subset of R. The algebra CR(S) := {r ∈ R | rs =

sr for all s ∈ S} is called the centralizer of S in R. The next lemma describes the centralizer of

the element X in A.

Lemma 3.9. CA(X) = E.

Proof. Clearly, E ⊆ CA(X) and XHi = (H − 1)iX for all i > 0. So, the result follows from the

equality A = E[H; δ], see (3.1).

Let h := H+X = HX +EY . Then the Ore extension A1,X = K[X±1][H+; δ′] where δ′(X) = X

(see (3.4)) can be written as the Ore extension

A1,X = K[X±1][h; δ] where δ(X) = X2 ([h,X] = X2). (3.13)

The next lemma describes the centralizers of the element Y in the algebras AX and A.

Lemma 3.10. 1. CAX (Y ) = A1,X ⊗K[Y ].

2. The centralizer of the element Y in A, CA(Y ) = K[Y ]⊗R, is a tensor product of algebras

where R := K[X][h; δ] is an Ore extension, h = H+X = HX + EY and δ(X) = X2.

3. The centre of the algebra CA(Y ) is K[Y ].

Proof. 1. By (3.4), AX = A1,X ⊗ A+
1 and Y ∈ A+

1 . Then CAX (Y ) = A1,X ⊗ CA+
1

(Y ) =

A1,X ⊗K[Y ].

2. Now, CA(Y ) = A∩CAX (Y ) = A∩A1,X ⊗K[Y ]
(3.13)

= A∩K[X±1][h; δ]⊗K[Y ] = K[X][h; δ]⊗
K[Y ] (since h = HX + EY and X is a normal element of A) and so the result.

3. By statement 2, Z
(
CA(Y )

)
= K[Y ]⊗ Z(R) = K[Y ]⊗K = K[Y ].

Using the equality [E, Y X−1] = 1, we see that the subalgebra A′1 := K〈E, Y X−1〉 of AX is the

(first) Weyl algebra. Then EX = K[X±1]⊗A+
1 = K[X±1]⊗A′1 is the tensor product of algebras.

By (3.2), AX = (K[X±1]⊗A′1)[H; δ] where δ is as in (3.2). By Lemma 2.17, the algebra

AX = R′ ⊗A′1 (3.14)

is a tensor product of algebras where R′ := K[X±1][H ′; δ′] is an Ore extension, H ′ := H +

2Y X−1E and δ′(X) = X. Then h′ := H ′X = HX + 2Y E ∈ A and

R′ = K[X±1][h′; δ] where δ(X) = X2. (3.15)

Notice that the elements H ′X−1 = h′X−2 and X of R′ satisfy the commutation relation

[H ′X−1, X] = 1. Therefore, the subalgebra A1 := K〈H ′X−1, X〉 of R′ is the (first) Weyl

algebra and the algebra R′ = A1,X is the localization of the Weyl algebra A1 at the powers of

the element X. In particular, the algebra R′ is a central simple domain.
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The next lemma describes the centralizers of the element E in the algebras AX and A.

Lemma 3.11. 1. CAX (E) = R′ ⊗K[E].

2. The centralizer of the element E in A, CA(E) = K[E]⊗R, is a tensor product of algebras

where R := K[X][h′; δ] is an Ore extension, h′ = H ′X = HX + 2Y E and δ(X) = X2.

3. The centre of the algebra CA(E) is K[E].

Proof. 1. By (3.14), AX = R′ ⊗A′1 and E ∈ A′1. Then CAX (E) = R′ ⊗ CA′1(E) = R′ ⊗K[E].

2. Now, CA(E) = A∩CAX (E) = A∩R′⊗K[E]
(3.15)

= A∩K[X±1][h′; δ]⊗K[E] = K[X][h′; δ]⊗K[E]

(since h′ = HX + 2EY and X is a normal element of A) and so the result.

3. By statement 2, Z
(
CA(E)

)
= K[E]⊗ Z(R) = K[E]⊗K = K[E].



Chapter 4

The universal enveloping algebra

U(sl2 n V2)

4.1 Introduction

In this chapter we focus on the study of the universal enveloping algebra A := U(sl2 nV2) of the

Lie algebra sl2 n V2. We give explicit descriptions of the prime, maximal, primitive, completely

prime and characteristic prime ideals of the algebra A. We investigate the centralizer CA(H) of

the element H in the algebra A. In particular, the generators and defining relations of CA(H)

are determined, a classification of simple CA(H)-modules is given. We also give a classification

of simple weight A-modules. The algebra A has a close relation with the infinitesimal Hecke

algebras of sl2, [41]. The first Hochschild cohomology of A was obtained in [41], which is a rank

one free module over the center. The description of primitive ideals of the algebra A given in

[41, Theorem 6.2] is not correct (for z = 0 in that paper). The Lie algebra sl2 n V2 admits

a 1-dimensional central extension which is called the Schrödinger algebra s. Let U(s) be the

universal enveloping algebra of the Schrödinger algebra s. We determine the primitive ideals of

U(s). It is conjectured that there is no simple singular Whittaker module for the algebra A [44,

Conjecture 4.2]. We construct a family of such A-modules (Proposition 4.44).

Spectra of the algebra A. In Section 4.2, an explicit description of the set of prime ideals of

the algebra A together with their inclusions is given (Theorem 4.6). Using the classification of

prime ideals of A, explicit descriptions of the sets of maximal, primitive and completely prime

ideals are obtained (Corollary 4.7, Theorem 4.8 and Corollary 4.9, respectively). The group

AutK(A) of automorphisms of the algebra A is large as it contains plenty of locally nilpotent

elements (an element a ∈ A is called a locally nilpotent element if the inner derivation ada :

A → A, x 7→ ax − xa is a locally nilpotent derivation, i.e., A =
⋃
i>1 ker(adia)). An ideal of

an algebra is called a characteristic ideal if it is invariant under all the automorphisms of the

algebra. Corollary 4.10 is an explicit description of the characteristic prime ideals of A. It says

that almost all prime ideals apart from an obvious set are characteristic ones.

28
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The algebras CA(H), Cλ,µ and their spectra. Let h = KH be the Cartan subalgebra of the

Lie algebra sl2 and CA(H) be the centralizer of the element H in A. The aim of Section 4.3 is to

find explicit generators and defining relations for the algebra CA(H) (Theorem 4.14), to prove

that the centre of the algebra CA(H) is a polynomial algebra K[C,H] (Theorem 4.14) and the

algebra CA(H) is a free module over its centre (Proposition 4.16), to realize the algebra CA(H)

as an algebra of differential operators, to prove various properties of the factor algebras Cλ,µ of

CA(H). Results of this section are used in many proofs of this chapter. One of the important

moments is a realization of the algebras CA(H) and Cλ,µ as algebras of differential operators

(Proposition 4.17). The algebras Cλ,µ are simple iff λ 6= 0 (Theorem 4.23 and Proposition

4.27). For every λ 6= 0, the algebra Cλ,µ is a subalgebra of the first Weyl algebra A′1. Theorem

4.26 classifies all simple Cλ,µ-modules, it shows that the algebra Cλ,µ has exactly one more

simple module than the Weyl algebra A′1. A similar result holds for the algebras C0,µ (Theorem

4.29) but the Weyl algebra A′1 is replaced by the skew polynomial algebra R = K[h][t;σ] where

σ(h) = h − 1. In this case, all simple t-torsionfree R-modules are also simple t-torsionfree

C0,µ-modules, and vice versa (Theorem 4.29.(2)).

Classification of simple weight A-modules. An A-module M is called a weight module if

M = ⊕µ∈KMµ where Mµ = {m ∈ M |Hm = µm}. Each nonzero component Mµ is a CA(H)-

module. If, in addition, the weight A-module M is simple then all nonzero components Mµ are

simple CA(H)-modules. So, the problem of classification of simple weight A-modules is closely

related to the problem of classification of all simple CA(H)-modules, which can be seen as the

first, the more difficult, of two steps. The second one is about how ‘to assemble’ simple CA(H)-

modules in order to have a simple A-module. The difficulty of the first step stems from the

fact that the algebra CA(H) is of comparable size to the algebra A itself (GK (CA(H)) = 4 and

GK (A) = 5 where GK stands for the Gelfand-Kirillov dimension) and the defining relations

of the algebra CA(H) are much more complex than the defining relations of the algebra A

(see, (4.12)–(4.15)). An advantage is that the algebra CA(H) has an additional central element

H. Moreover, the centre of CA(H) is a polynomial algebra K[C,H] (Theorem 4.14) where

C = FX2 −HXY − EY 2 is a central element of the algebra A. The problem of classification

of simple CA(H)-modules is equivalent to the same problem but for all the factor algebras

Cλ,µ := CA(H)/(C − λ,H − µ) where λ, µ ∈ K. We assume that the field K is algebraically

closed. There are two distinct cases: λ 6= 0 and λ = 0. They require different approaches.

The common feature is a discovery of the fact that in order to study simple modules over the

algebras Cλ,µ we embed them into algebras for which classifications of simple modules are known.

A surprise is that the sets of simple modules of the algebras Cλ,µ and their over-algebras are

tightly connected. In the case λ 6= 0, such an algebra is the first Weyl algebra, but in the second

case when λ = 0, it is a skew polynomial algebra K[h][t;σ] where σ(h) = h − 1. Classifications

of simple Cλ,µ-modules is given in Section 4.4 (Theorem 4.26 and Theorem 4.29). Using it a

classification of simple weight A-modules is given in Section 4.5. A typical simple weight A-

module depends on an arbitrarily large number of independent parameters. The set of simple

A-modules is partitioned into 5 classes each of them is dealt separately with different techniques

(Lemma 4.30, Proposition 4.33, Theorem 4.35 and Theorem 4.36).

Much of this chapter is extracted from the joint paper with V. Bavula [14].
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4.2 The prime ideals of A

The aim of this section is to describe the prime ideals of the algebra A (Theorem 4.6). As

a result, the sets of maximal, primitive, completely prime and prime characteristic ideals are

described (Corollary 4.7, Theorem 4.8, Corollary 4.9 and Corollary 4.10, respectively). An

explicit classification of prime ideals that are invariant under all automorphisms of the algebra

A is given (Corollary 4.10).

Recall that the Lie algebra a = sl2 n V2 admits the basis {H,E, F,X, Y } and the Lie bracket is

defined as follows

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, [E,X] = 0, [E, Y ] = X,

[F,X] = Y, [F, Y ] = 0, [H,X] = X, [H,Y ] = −Y, [X,Y ] = 0.

Recall that A = U(a) is the enveloping algebra of the Lie algebra a.

An involution ∗ of A. Let Λ be an algebra. An anti-isomorphism τ of the algebra Λ (i.e., a

linear map τ such that τ(ab) = τ(b)τ(a) for all a, b ∈ Λ) is called an involution if τ2 = idΛ. The

algebra A admits the following involution ∗:

F ∗ = −E, H∗ = H, E∗ = −F, Y ∗ = X, X∗ = Y. (4.1)

There is an automorphism S of the algebra A such that

S(F ) = E, S(H) = −H, S(E) = F, S(Y ) = −X, S(X) = −Y, (4.2)

and S2 = idA.

The spatial ageing algebra A. Let A be the subalgebra of A generated by the elements

H, E, X and Y . The algebra A is the spatial ageing algebra which is studied in the previous

chapter. Let AX be the localization of A at the powers of X. Let ∂ := HX−1 +EYX−2 ∈ AX .

Then [∂,X] = 1 and so the subalgebra A1 := K〈∂,X〉 of AX is the first Weyl algebra. Recall

that, the algebra AX is a central simple algebra of Gelfand-Kirillov dimension 4 (see Lemma

3.1.(1)), and AX is a tensor product of two central simple algebras

AX = A1,X ⊗A+
1 (4.3)

where A1,X is the localization of A1 at the powers of X and A+
1 := K〈EX−1, Y 〉 is the first Weyl

algebra since [EX−1, Y ] = 1 (see (3.4)).

The centre of the algebra A. Using the defining relations of the algebra A, the algebra A is

a skew polynomial algebra

A = A[F ;σ, δ] (4.4)

where σ is an automorphism of A such that σ(H) = H+2, σ(E) = E, σ(Y ) = Y , σ(X) = X; and

δ is a σ-derivation of the algebra A such that δ(H) = 0, δ(E) = −H, δ(Y ) = 0 and δ(X) = Y .
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Then the localization AX of A at the powers of X is a skew polynomial algebra

AX = AX [F ;σ, δ] (4.5)

where σ and δ are defined as in (4.4). The key idea of finding the centre of A is by ‘deleting the

automorphism’ σ first and then using Lemma 2.17 ‘deleting the derivation’. In more detail, let

Φ := FX2, then by (4.5) and (4.3),

AX = AX [Φ; δ′] = (A1,X ⊗A+
1 )[Φ; δ′] (4.6)

is an Ore extension where δ′ is a derivation of the algebra AX given by the rule: δ′(∂) =

−2∂Y X, δ′(X) = Y X2, δ′(EX−1) = −∂X2 and δ′(Y ) = 0. The element s = −∂X2Y satisfies

the conditions of Lemma 2.17. Specifically, the element C := Φ + s = FX2 − HXY − EY 2

commutes with the elements of A+
1 , moreover, the element C commutes with the elements of

A1,X and hence,

AX = K[C]⊗A1,X ⊗A+
1 = K[C]⊗AX (4.7)

is a tensor product of algebras. By (4.7), the skew field Frac (A) is isomorphic to the skew

field of fractions of the second Weyl algebra A2

(
K(C)

)
over the field K(C) of rational functions.

Moreover, Z
(
Frac(A)

)
= K(C).

Lemma 4.1. 1. Z(A) = Z(AX) = K[C] where C = FX2 −HXY − EY 2.

2. S(C) = −C where S is the automorphism (4.2) of A.

Proof. 1. By (4.7), Z(AX) = Z(K[C]) ⊗ Z(A1,X) ⊗ Z(A+
1 ) = K[C]. Since K[C] ⊆ Z(A) ⊆

A ∩ Z(AX) = K[C], we have Z(A) = K[C].

2. Statement 2 is obvious.

Lemma 4.2. 1. In the algebra A, (X) = (Y ) = AX +AY = XA+ Y A.

2. Let U := U(sl2). Then A/(X) ' U .

Proof. 1. The equality (X) = (Y ) follows from the equalities FX−XF = Y and EY −Y E = X.

So, (X) = (Y ) = (X,Y ). Let us show that XA ⊆ AX + AY and Y A ⊆ AX + AY . Recall that

A = A[F ;σ, δ] (see (4.4)) and X is a normal element of A, XA = X
∑
i>0AF i =

∑
i>0AXF i =

AX +
∑
i>1AXF i = AX +

∑
i>1A(F iX − iF i−1Y ) ⊆ AX +AY . The second inclusion follows

from the first one by applying the automorphism S (see (4.2)). So, (X,Y ) = AX + AY . By

applying the involution ∗ to this equality we obtain that (X,Y ) = XA+ Y A.

2. By statement 1, A/(X) = A/(X,Y ) ' U.

Lemma 4.3. For all i > 1, (Xi) = (X)i.

Proof. To prove the statement we use induction on i. The case i = 1 is obvious. Suppose

that i > 1 and the equality (Xj) = (X)j holds for all 1 6 j 6 i − 1. By Lemma 4.2.(1),

AX ⊆ XA+Y A. It follows from the equality FXi = XiF + iXi−1Y that Xi−1Y ∈ (Xi). Now,
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(X)i = (X)i−1(X) = (Xi−1)(X) = AXi−1AXA ⊆ AXi−1(XA + Y A) ⊆ (Xi) + AXi−1Y A ⊆
(Xi). Therefore, (X)i = (Xi).

Proposition 4.4. Let q ∈ Max(K[C]) \ {(C)}. Then

1. The ideal (q) := Aq of A is a maximal, completely prime ideal.

2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q where q = q(C) ∈ K[C] is an irreducible polynomial such that

q(0) ∈ K∗.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a maximal ideal of A: By (4.7),

AX/(q)X ' Lq ⊗ A1,X ⊗ A+
1 is a central simple algebra where Lq := K[C]/q is a finite field

extension of K. Hence, the algebra A/(q) is a simple algebra iff (Xi, q) = A for all i > 1.

By Lemma 4.3, (Xi) = (X)i for all i > 1. Therefore, (Xi, q) = (Xi) + (q) = (X)i + (q)

for all i > 1. It remains to show that (X)i + (q) = A for all i > 1. By Lemma 4.2.(1),

(X) = (X,Y ). If i = 1 then (X) + (q) = (X,Y, q) =
(
X,Y, q(0)

)
= A, since q(0) ∈ K∗. Now,

A = Ai =
(
(X) + (q)

)i ⊆ (X)i + (q) ⊆ A, i.e., (X)i + (q) = A, as required.

(ii) (q) is a completely prime ideal of A: Since AX/(q)X ' Lq ⊗ A1,X ⊗ A+
1 is a domain, the

ideal A ∩ (q)X is a completely prime ideal of A. Now, it suffices to show that (q) = A ∩ (q)X .

But this is obvious since by statement (i), the ideal (q) is a maximal ideal of A.

(iii) Z
(
A/(q)

)
= Lq: Since Lq ⊆ Z

(
A/(q)

)
⊆ Z

(
AX/(q)X

)
= Lq, we have Z

(
A/(q)

)
= Lq.

Proposition 4.5. A ∩ (C)X = (C) and the ideal (C) of A is a completely prime ideal.

Proof. Recall that A = A[F ;σ, δ] (see (4.4)), X is a normal element in A and the central element

C can be written as C = X2F + s′ where s′ = −X(H − 1)Y − EY 2.

(i) If Xf ∈ (C) for some f ∈ A then f ∈ (C): Notice that Xf = Cg for some g ∈ A. To prove

the statement (i) we use induction on the degree m = degF (f) of the element f ∈ A. Since

A is a domain, degF (fg) = degF (f) + degF (g) for all f, g ∈ A. The case when m 6 0 (i.e.,

f ∈ A) is obvious since the equality Xf = Cg holds iff f = g = 0 (since degF (Xf) 6 0 and

degF (Cg) > 1 providing g 6= 0). So, we may assume that m > 1. We can write the element f

as a sum f = f0 + f1F + · · ·+ fmF
m where fi ∈ A and fm 6= 0. The equality Xf = Cg implies

that degF (g) = degF (Xf)− degF (C) = m− 1. Therefore, g = g0 + g1F + · · ·+ gm−1F
m−1 for

some gi ∈ A and gm−1 6= 0. Then

Xf0 +Xf1F + · · ·+XfmF
m = (X2F + s′)

(
g0 + g1F + · · ·+ gm−1F

m−1
)

= X2
(
σ(g0)F + δ(g0)

)
+X2

(
σ(g1)F + δ(g1)

)
F + · · ·+X2

(
σ(gm−1)F + δ(gm−1)

)
Fm−1

+ s′g0 + s′g1F + · · ·+ s′gm−1F
m−1

= X2δ(g0) + s′g0 +
(
X2σ(g0) +X2δ(g1) + s′g1

)
F + · · ·+X2σ(gm−1)Fm.

Comparing the terms of degree zero we have the equality Xf0 = X2δ(g0) + s′g0 = X2δ(g0) −(
X(H−1)Y +EY 2

)
g0, i.e., X

(
f0−Xδ(g0) + (H−1)Y g0

)
= −EY 2g0. All terms in the equality
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belong to the subalgebra A. Since X is a normal element of A such that A/AX is a domain and

the element EY 2 does not belong to the ideal AX (see (3.5)), we have g0 ∈ AX, i.e., g0 = Xh0

for some h0 ∈ A. Now, the element g can be written as g = Xh0 + g′F where g′ = 0 if m = 1,

and degF (g′) = m− 2 if m > 2. Then Xf = C(Xh0 + g′F ) and so X(f −Ch0) = Cg′F . Notice

that Cg′F has zero constant term as a noncommutative polynomial in F (where the coefficients

are written on the left). Therefore, the element f −Ch0 has zero constant term, and hence can

be written as f − Ch0 = f ′F for some f ′ ∈ A with degF (f ′) < degF (f). Now, Xf ′F = Cg′F ,

hence Xf ′ = Cg′ ∈ (C) (by deleting F ). By induction, f ′ ∈ (C), and then f = Ch0 +f ′F ∈ (C),

as required.

(ii) A ∩ (C)X = (C): Let u ∈ A ∩ (C)X . Then Xiu ∈ (C) for some i ∈ N. By statement (i),

u ∈ (C).

(iii) The ideal (C) of A is a completely prime ideal : By (4.7), AX/(C)X ' A1,X⊗A+
1 is a domain.

By statement (ii), the algebra A/(C) is a subalgebra of AX/(C)X , so A/(C) is a domain. This

means that the ideal (C) is a completely prime ideal of A.

The next theorem gives an explicit description of the poset (Spec (A),⊆).

Theorem 4.6. Let U := U(sl2). The prime spectrum of the algebra A is a disjoint union

Spec(A) = Spec(U) t Spec(AX) = {(X, p) | p ∈ Spec(U)} t {Aq | q ∈ Spec(K[C])}. (4.8)

Furthermore,

Spec (U) \ {0}

(X)

(C)

0

{
Aq | q ∈ Max (K[C]) \ {(C)}

}
(4.9)

Proof. By Lemma 4.2.(2), A/(X) ' U . By Lemma 4.3 and Proposition 3.3,

Spec (A) = Spec (A,X) t Spec (AX).

Therefore, Spec (A) = {(X, p) | p ∈ Spec (U)} t {A ∩ AXq | q ∈ Spec (K[C])}. By Proposition

4.4.(1), A ∩ AXq = (q) for all q ∈ Max (K[C]) \ {(C)}. By Proposition 4.5, A ∩ AXC = (C).

Therefore, (4.8) holds. For all q ∈ Max (K[C]) \ {(C)}, the ideals Aq of A are maximal. Notice

that (C) ⊆ (X). Therefore, (4.9) holds.

For a list of prime ideals of U , see [3, Section 4] or [20, Theorem 4.5]. We note that any nonzero

prime ideal of U is primitive, i.e., Prim (U) = Spec (U) \ {0}. For any ideal I of U and any

automorphism σ ∈ AutK(U), σ(I) = I, see [3] for details.

The next result is an explicit description of the set of maximal ideals of the algebra A.
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Corollary 4.7. Max (A) = Max (U) t
{
Aq | q ∈ Max (K[C]) \ {(C)}

}
.

Proof. It is clear by (4.9).

A ring R is called a Jacobson ring if every prime ideal of R is an intersection of primitive ideals.

The enveloping algebras of finite dimensional Lie algebras are Jacobson rings, [37, Corollary

9.1.8]. The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 4.8. Prim (A) = Prim (U) t
{
Aq | q ∈ SpecK[C] \ {0}

}
.

Proof. Clearly, Prim (U) ⊆ Prim (A) and {Aq | q ∈ Max (K[C]) \ {(C)}} ⊆ Prim (A) since Aq is

a maximal ideal (Corollary 4.7). The ideal (X) is not a primitive ideal, since the factor algebra

A/(X) ' U contains central elements. 0 is not a primitive ideal since the centre of A is non-

trivial. In view of (4.9) it suffices to show that (C) ∈ Prim (A). The algebra A is a Jacobson

algebra since it is a universal enveloping algebra of a finite dimensional Lie algebra [37, Corollary

9.1.8]. Therefore, any prime ideal of A is an intersection of primitive ideals lying over it. Clearly,

(X) =
⋂

(X)⊆P,P∈Spec (U)\{0} P . Since (C) is a prime ideal it must be primitive, by the diagram

(4.9).

The next corollary is a description of the set Specc(A) of completely prime ideals of the algebra

A.

Corollary 4.9. The set Specc(A) of completely prime ideals of A is equal to

Specc(A) = Specc(U) t
{
Aq | q ∈ Spec (K[C])

}
=
{

(X, p) | p ∈ Spec (U), p 6= annU (M) for some simple finite dimensional

U -module M of dimK(M) > 2
}
t
{
Aq | q ∈ Spec (K[C])

}
.

Proof. The result follows from Proposition 4.4.(1) and Proposition 4.5.

By Theorem 4.6 and Corollary 4.9, the set of prime ideals that are not completely prime is equal

to {(X, p) | p = annU (M) for some simple finite dimensional U -module M of dimK(M) > 2
}

.

Let A be a K-algebra and AutK(A) be its group of automorphisms. An ideal a of the algebra

A is called a characteristic ideal if σ(a) = a for all σ ∈ AutK(A). Let Specch(A) be the set of

prime characteristic ideals of A, the, so-called, characteristic prime spectrum of A.

For each element (λ, µ) ∈ (K∗)2, there is an automorphism tλ,µ of the algebra A given by the

rule

tλ,µ : A→ A, E 7→ λE, F 7→ λ−1F, H 7→ H, X 7→ µX, Y 7→ λ−1µY. (4.10)

Clearly, tλ,µtλ′,µ′ = tλλ′,µµ′ and t−1
λ,µ = tλ−1,µ−1 . So, the 2-dimensional algebraic torus T2 :={

tλ,µ | (λ, µ) ∈ (K∗)2
}
' (K∗)2 is a subgroup of AutK(A). We note that tλ,µ(C) = λ−1µ2C.

Corollary 4.10. Let G := AutK(A) and Q :=
{
Aq | q ∈ Max (K[C]) \ {(C)}

}
. Then the set Q

is G-invariant and Specch(A) = Spec(A) \ Q.
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Proof. By the diagram (4.9), the ideals 0, (C) and (X) are characteristic. Then, for each σ ∈ G,

σ(C) = λσC for some λσ ∈ K∗. Hence, the subset Q of Spec(A) is G-invariant. Since (X) is a

characteristic ideal of A, there is a group homomorphism

AutK(A)→ AutK(U), σ 7→ σ̄ : a+ (X) 7→ σ(a) + (X).

All ideals of U are characteristic ideals, [3]. To finish the proof notice that none of the ideals in

Q is T2-invariant (since tλ,µ(C) = λ−1µ2C).

4.3 The centralizer CA(H) and its defining relations

The aim of this section is to find explicit generators and defining relations for the centralizer

CA(H) of the element H in A (Theorem 4.14), to prove that the centre of the algebra CA(H)

is a polynomial algebra K[C,H] (Theorem 4.14) and the algebra CA(H) is a free module over

its centre (Proposition 4.16), to realize the algebra CA(H) as an algebra of differential operators

and to prove various properties of the factor algebras Cλ,µ of CA(H). Results of this section is

used in many proofs of this chapter.

The centralizer of the element H. The next lemma describes the structure of the algebras

AX and CAX (H).

Lemma 4.11. 1. CAX (H) = K[H]⊗ A′1 is a tensor product of algebras where A′1 := K〈e, t〉
is the (first) Weyl algebra with canonical generators e := EX−2 and t := XY (where

[e, t] = 1).

2. CAX (H) = K[C,H]⊗A′1 and Z
(
CAX (H)

)
= K[C,H].

3. AX = CAX (H)[X±1;σ] is a skew polynomial algebra where σ(C) = C, σ(H) = H−1, σ(e) =

e and σ(t) = t. In particular, the algebra AX = K[C] ⊗ A′1 ⊗ B1 is a tensor product of

algebras where B1 = K[H][X±1;σ] is a central simple algebra and σ(H) = H − 1.

Proof. 1. By (3.2), AX = EX [H; δ]. So, CAX (H) = EδX [H] where EδX = {a ∈ EX | δ(a) = 0}.
Let us show that EδX = A′1. By the explicit nature of the derivation δ,

EδX =
⊕

i,k∈N;j∈Z
{KEiXjY k | δ(EiXjY k) = 0}.

Now, δ(EiXjY k) = (2i + j − k)EiXjY k = 0, i.e., j = k − 2i. So, EiXjY k = EiXk−2iY k =

(EX−2)i · (XY )k. Therefore, EδX = A′1.

2. By (4.7), AX = K[C] ⊗ AX . So, CAX (H) = K[C] ⊗ CAX (H) = K[C,H] ⊗ A′1, by statement

1. The Weyl algebra A′1 is a central algebra, hence Z
(
CAX (H)

)
= K[C,H].

3. Statement 3 follows from statement 2.

Lemma 4.12. Let t := XY . For i > 1, the following identities hold in the algebra A.

1. F iX2i = FX2
(
FX2 + 2t

)(
FX2 + 4t

)
· · ·
(
FX2 + 2(i− 1)t

)
.



Chapter 4. The universal enveloping algebra U(sl2 n V2) 36

2. EiY 2i = EY 2
(
EY 2 + 2t

)(
EY 2 + 4t

)
· · ·
(
EY 2 + 2(i− 1)t

)
.

Proof. 1. We use induction on i > 1. The initial case when i = 1 is obvious. So, let i > 1 and

suppose that the identity holds for all integers < i. Then

F iX2i = F · FX2
(
FX2 + 2t

)(
FX2 + 4t

)
· · ·
(
FX2 + 2(i− 2)t

)
·X2

= FX2
(
FX2 + 2t

)(
FX2 + 4t

)
· · ·
(
FX2 + 2(i− 1)t

)
since FX2 ·X2 = X2 ·

(
FX2 + 2t

)
.

2. Statement 2 follows from statement 1 by applying the automorphism S, see (4.2).

The algebra U is a generalized Weyl algebra,

U ' K[H,∆]
(
σ, a =

1

4

(
∆−H(H + 2)

))
(4.11)

where ∆ := 4FE + H(H + 2) is the Casimir element of the enveloping algebra U and σ is the

automorphism of the algebra K[H,∆] defined by σ(H) = H−2 and σ(∆) = ∆, [1]. In particular,

U is a Z-graded algebra U =
⊕

i∈ZDvi where D := K[H,∆] = K[H,FE], vi = Ei if i > 1,

v0 = 1 and vi = F |i| if i 6 −1. The polynomial algebra K[X,Y ] ⊂ A is also a Z-graded algebra

K[X,Y ] =
⊕

j∈Z K[t]wj where t = XY , wj = Xj if j > 1, w0 = 1 and wj = Y |j| if j 6 −1.

Note that the algebra A is a Z-graded algebra A =
⊕

i∈ZAi where Ai := {a ∈ A | [H, a] = ia}.
Clearly, CA(H) = A0. The following lemma gives the generators of the algebra CA(H).

Lemma 4.13. The algebra CA(H) = K〈H,FE,XY, FX2, EY 2〉 = K〈C,H,FE,XY, FX2〉 is a

Noetherian algebra.

Proof. Since A = ⊕i∈ZAi is a Z-graded Noetherian algebra, the algebra A0 = CA(H) is a

Noetherian algebra. The algebra A = U ⊗ K[X,Y ] is a tensor product of vector spaces. Hence

A =
⊕

i∈ZDvi⊗
⊕

j∈Z K[t]wj where D, vi, t and wj are as above. Using the relations [E, t] = X2

and [F, t] = Y 2, we see that A =
∑
i,j∈ZD[t]viwj where D[t] =

⊕
i>0Dt

i is a vector space.

Notice that Ak =
∑
{D[t]viwj | i, j ∈ Z; 2i+ j = k}. In particular,

CA(H) = A0 =
∑
i,j∈Z;
2i+j=0

D[t]viwj =
∑
i∈Z

D[t]viw−2i =
∑
i>1

D[t]F iX2i +D[t] +
∑
i>1

D[t]EiY 2i.

Now, using Lemma 4.12 and the equalities [FX2, t] = t2 and [EY 2, t] = t2, we see that

CA(H) =
∑
i>1

D[t]
(
FX2

)i
+D[t] +

∑
i>1

D[t]
(
EY 2

)i
.

Hence, CA(H) = K〈H,FE,XY, FX2, EY 2〉. Since C = FX2−HXY −EY 2, the second equality

in the lemma follows.

The next theorem describes defining relations of the algebra CA(H) and shows that its centre is

a polynomial algebra K[H,C].
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Theorem 4.14. Let Φ := FX2 and Θ := FE. Then the algebra CA(H) is of Gelfand-Kirillov

dimension 4 and generated by the elements C,H, t,Φ and Θ subject to the following defining

relations (where C and H are central in the algebra CA(H)):

[Φ, t] = t2, (4.12)

[Θ, t] = 2Φ− (H + 2)t− C, (4.13)

[Θ,Φ] = 2Θt+HΦ, (4.14)

Θt2 = Φ(Φ−Ht− C). (4.15)

Furthermore, Z
(
CA(H)

)
= K[C,H].

Proof. (i) Generators of CA(H): By Lemma 4.13, the algebra CA(H) is generated by the ele-

ments C,H, t,Φ and Θ. It is clear that C and H are central in CA(H) and the elements satisfy

the relations (4.12)–(4.15). It remains to show that these relations are defining relations.

(ii) GK
(
CA(H)

)
= 4: Let D be the subalgebra of CA(H) generated by the elements C,H, t and

Φ. Then D = K[C,H] ⊗ K[t][Φ; δ] is a tensor product of algebras where δ is the K-derivation

of the algebra K[t] defined by δ(t) = t2. Clearly, D is a Noetherian domain of Gelfand-Kirillov

dimension 4. Now, the inclusions D ⊆ CA(H) ⊆ CAX (H) yield the inequalities 4 = GK (D) 6

GK
(
CA(H)

)
6 GK

(
CAX (H)

)
= 4 (see Lemma 4.11.(2)). Hence, GK

(
CA(H)

)
= 4.

Let C be the K-algebra generated by the symbols C,H, t,Φ and Θ subject to the defining relations

(4.12)–(4.15) with C and H central in C.

(iii) GK (C) = 4: There is a natural epimorphism of algebras f : C −� CA(H). Our aim is to show

that f is an algebra isomorphism. Let Ct be the localization of C at the powers of the element t.

Then by (4.15), we see that Ct ' Dt = K[C,H]⊗K[t±1][Φ; δ] where D = K[C,H]⊗K[t][Φ; δ] is a

subalgebra of C. Hence, GK (Ct) = 4. Now, the inclusions D ⊆ C ⊆ Ct yield that 4 = GK (D) 6

GK (C) 6 GK (Ct) = 4. Hence, GK (C) = 4.

(iv) The algebra C is a domain: Let E be the algebra generated by the symbols C,H, t,Φ and

Θ subject to the defining relations (4.12)–(4.14) with C and H central in E . Then E is an Ore

extension

E = K[C,H, t][Φ; δ][Θ;σ, δ′] = D[Θ;σ, δ′] (4.16)

where σ is the automorphism of the algebra D defined by σ(C) = C, σ(H) = H,σ(t) = t and

σ(Φ) = Φ + 2t; δ′ is the σ-derivation of the algebra D given by the rule: δ′(C) = δ′(H) = 0,

δ′(t) = 2Φ−(H+2)t−C and δ′(Φ) = (H+4)Φ−2(H+2)t−2C. In particular, E is a Noetherian

domain. Let Z := Θt2 −Φ(Φ−Ht−C). Then Z is a central element of the algebra E . Clearly,

C ' E/(Z). To prove that C is a domain, it suffices to show that the ideal (Z) of E is a completely

prime ideal. Let Et be the localization of the algebra E at the powers of the element t. Then

Et ' K[C,H,Z, t±1][Φ; δ] = K[C,H,Z]⊗K[t±1][Φ; δ] is a tensor product of algebras where δ is a

derivation of the algebra K[t±1] such that δ(t) = t2. Hence, Et/(Z)t ' K[C,H]⊗K[t±1][Φ; δ] is

a domain.
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Claim 1: If tu ∈ (Z) for some u ∈ E, then u ∈ (Z).

Proof of Claim 1: Recall that E = D[Θ;σ, δ′] (see (4.16)), t is a normal element of the algebra

D, Z = t2Θ + ξ is a central element of E where ξ := (H+ 4)tΦ− (H+ 2)t2−2Ct+CΦ−Φ2 ∈ D.

Notice that tu = Zv for some element v ∈ E . To prove Claim 1, we use induction on the

degree m = degΘ(u) of the element u ∈ E . Since E is a domain, degΘ(fg) = degΘ(f) + degΘ(g)

for all f, g ∈ E . The case when m 6 0, i.e., u ∈ D is obvious. So, we may assume that

m > 1. The element u can be written as u = u0 + u1Θ + · · · + umΘm where ui ∈ D and

um 6= 0. The equality tu = Zv implies that degΘ(v) = m − 1, since degΘ(Z) = 1. Therefore,

v = v0 + v1Θ + · · ·+ vm−1Θm−1 for some vi ∈ D and vm−1 6= 0. Then

tu0 + tu1Θ + · · ·+ tumΘm = (t2Θ + ξ)(v0 + v1Θ + · · ·+ vm−1Θm−1)

= t2
(
σ(v0)Θ + δ′(v0)

)
+ t2

(
σ(v1)Θ + δ′(v1)

)
Θ + · · ·+ t2

(
σ(vm−1)Θ + δ′(vm−1)

)
Θm−1

+ ξv0 + ξv1Θ + · · ·+ ξvm−1Θm−1

= t2δ′(v0) + ξv0 +
(
t2σ(v0) + t2δ′(v1) + ξv1

)
Θ + · · ·+ t2σ(vm−1)Θm.

Comparing the terms of degree zero we have the equality tu0 = t2δ′(v0) + ξv0, i.e.,

t
(
u0 − tδ′(v0)− (H + 4)Φv0 + (H + 2)tv0 + 2Cv0

)
= Φ(C − Φ)v0.

All terms in the equality belong to the algebra D. Since t is a normal element of the algebra D
such that D/Dt ' K[C,H,Φ] is a domain and the elements Φ and C − Φ do not belong to the

ideal Dt, we have v0 ∈ Dt, i.e., v0 = tw0 for some w0 ∈ D. Now, the element v can be written as

v = tw0 + v′Θ where v′ = 0 if m = 1, and degΘ(v′) = m− 2 if m > 2. Then tu = Z(tw0 + v′Θ)

and so t(u − Zw0) = Zv′Θ. Hence, u − Zw0 = u′Θ for some u′ ∈ E with degΘ(u′) < degΘ(u).

Now, tu′Θ = Zv′Θ, hence tu′ = Zv′ ∈ (Z) (by deleting Θ). By induction, u′ ∈ (Z), and then

u = Zw0 + u′Θ ∈ (Z). This completes the proof of the Claim 1.

Claim 2: E ∩ (Z)t = (Z).

Proof of Claim 2: Clearly, (Z) ⊆ E ∩ (Z)t. It remains to establish the reverse inclusion. Let

u ∈ E ∩ (Z)t. Then tiu ∈ (Z) for some i ∈ N. Then by the Claim 1, u ∈ (Z). Hence,

E ∩ (Z)t = (Z).

By Claim 2, the algebra E/(Z) is a subalgebra of Et/(Z)t. So, E/(Z) is a domain. In particular,

the algebra C ' E/(Z) is a Noetherian domain.

(v) C ' CA(H): Since GK (C) = GK
(
CA(H)

)
= 4 and the algebra C is a domain. The algebra

epimorphism f : C −� CA(H) must be an isomorphism, i.e., C ' CA(H), by Proposition 2.12.

This means that the relations (4.12)–(4.15) (together with the condition that C and H are

central elements) are defining relations of the algebra CA(H). By Lemma 4.11.(2), Z
(
CA(H)

)
=

K[C,H].

The Weyl algebra A′1 = K[h][t, e;σ, a = h] is a GWA where σ(h) = h− 1 and h := et. So, A′1 =⊕
i∈ZA

′
1,i is a Z-graded algebra where A′1,0 = K[h] is a polynomial algebra in h and, for i > 1,
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A′1,±i = K[h]v±i where vi = ti, v−i = ei and v0 = 1. The algebra CAX (H) =
⊕

i∈Z CAX (H)i is

a Z-graded algebra where CAX (H)i = K[C,H]⊗A′1,i.

By Lemma 4.11, the algebra CA(H) is a subalgebra of CAX (H) = K[C,H]⊗A′1 where

Φ = C +Ht+ et2 = C + (h+H)t, (4.17)

Θ = FE = FX2 · EX−2 = Φe = Ce+ (h+H)(h− 1), (4.18)

since et = h and te = h− 1.

In order to prove Proposition 4.16, we need to change the generators of the algebra (we replace

Φ by φ = ht).

Corollary 4.15. Let φ := EY 2. Then φ = et2 = ht and the algebra CA(H) is generated by the

elements C,H, t, φ and Θ subject to the defining relations

[φ, t] = t2, (4.19)

[Θ, t] = 2φ+ (H − 2)t+ C, (4.20)

[Θ, φ] = 2Θt+ (−φ+ 2t)H, (4.21)

Θt2 = (φ+Ht+ C)φ. (4.22)

Proof. Since φ = EX−2X2Y 2 = et2 = ht = Φ−C −Ht, the algebra CA(H) is generated by the

elements C,H, t, φ and Θ. It is routine to check that the defining relations (4.12)–(4.15) can be

written as (4.19)–(4.22), respectively.

By (4.18), for all n > 1, Θn =
∑n
i=0 Θn,ie

i for some Θn,i ∈ K[C,H, h] with degh Θn,i = 2(n− i).
Moreover, Θn,n = Cn and Θn,0 = (h+H)n(h− 1)n. For all n > 1,

φn = φnt
n where φn := h(h− 1) · · · (h− n+ 1). (4.23)

For all i > 1 and j > 0,

Θiφj =

i∑
s=0

Θi,sσ
−s(φj)e

stj =

i∑
s=0

Θi,sσ
−s(φj)(−s, j)v−s+j =

i∑
s=0

Pi,j,sv−s+j

where (−s, j) = h(h+ 1) · · · (h+ s− 1) for 1 6 s 6 j; (−s, j) = (h+ s− 1) · · · (h+ s− j) for all

s > j; and (0, j) := 1; Pi,j,s ∈ K[C,H, h] with

degh Pi,j,s = 2(i− s) + j + min(s, j) = (2i+ j)− 2s+ min(s, j) 6 2i+ j

and degh Pi,j,s = 2i+ j iff s = 0. For all i > 1 and j > 0,

Θiφjt =

i∑
s=0

Θi,sσ
−s(φj)e

stj+1 =

i∑
s=0

Θi,sσ
−s(φj)(−s, j + 1)v−s+j+1 =

i∑
s=0

Qi,j,sv−s+j+1
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where Qi,j,s ∈ K[C,H, h] with

deghQi,j,s = 2(i− s) + j + min(s, j + 1) = 2i+ j − 2s+ min(s, j + 1) 6 2i+ j

and deghQi,j,s = 2i+ j iff s = 0.

Proposition 4.16. The algebra CA(H) is a free module over its centre. Furthermore, the set

B(H) := {Θiφjtk, φltm | i > 1, k = 0, 1 and j, l,m ∈ N} is a free basis of the Z
(
CA(H)

)
-module

CA(H).

Proof. Let M be a free semigroup generated by the symbols Θ and φ, i.e., M is the set of all

words in letters Θ and φ. Let a be an element of CA(H). By (4.19) and (4.20), the element

a is a linear combination of the elements m′tkClHm where m′ ∈ M and k, l,m ∈ N. By

(4.21), the element a is a linear combination of the elements φiΘjtkClHm where i, j, k, l,m ∈ N.

Using the induction on the degree degΘ with respect to the variable Θ (i.e., degΘ(Θ) = 1 and

degΘ(φ) = degΘ(t) = degΘ(C) = degΘ(H) = 0) and the relation (4.22), i.e., Θt2 = (φ+Ht+C)φ,

and the relations (4.19)–(4.21), it follows that the element a is a linear combination of the

elements bClHm where b ∈ B(H).

To finish the proof of the proposition it suffices to show that the elements of the set B(H) are

K(C,H)-linearly independent in the algebra K(C,H) ⊗ A′1 (since CA(H) ⊆ K[C,H] ⊗ A′1 ⊆
K(C,H) ⊗ A′1 where K(C,H) is the field of fractions of the polynomial algebra K[C,H]). Let

F := K(C,H). Then the algebra F ⊗ A′1 is the Weyl algebra A′1(F) over the field F . By

(4.19) and the equality φ = ht (Corollary 4.15), the F-subalgebra of A′1(F) generated by the

elements t and φ is equal to F [t][φ; t2 d
dt ]. Therefore, the elements {φltm | l,m ∈ N} are F-linearly

independent.

Suppose that the elements of the set B(H) are linearly dependent over the field F . Fix a

non-trivial linear combinations,

L :=
∑

i>1,j>0

Θiφj(λij + µijt) +
∑
k,l>0

γklφ
ktl

where λij , µij , γkl ∈ F . Then necessarily one of the elements λij + µijt is nonzero. We seek a

contradiction. Let N := max{2i + j |λij + µijt 6= 0}. Then N > 2. Let j0 = min{j | 2i + j =

N,λij + µijt 6= 0}. Then either λi0,j0 6= 0 or µi0,j0 6= 0 (or both) where i0 = 1
2 (N − j0).

Notice that L =
∑
Livi for some elements Li ∈ F [h]. Suppose that λi0,j0 6= 0. Then Lj0 =

λi0,j0Pi0,j0,0 + α where α ∈ F [h] with degh α < N (since φktl = h(h − 1) · · · (h − k + 1)tk+l

and degh h(h − 1) · · · (h − k + 1) = k 6 k + l, degh Pi0,j0,0 = 2i0 + j0 = N > j0 as i0 > 1).

Therefore, λi0,j0 = 0, a contradiction. Similarly, if µi0,j0 6= 0. Then Lj0+1 = µi0,j0Qi0,j0,0 + β

where β ∈ F [h] with degh β < N (since deghQi0,j0,0 = 2i0 + j0 = N > j0 + 1 as i0 > 1).

Therefore, µi0,j0 = 0, a contradiction. The proof of the proposition is complete.

The algebras Cλ,µ. For elements λ, µ ∈ K, let Cλ,µ := Cλ,µA (H) := CA(H)/(C−λ,H −µ). By

Theorem 4.14 and Corollary 4.15, the algebra Cλ,µ is generated by the images of the elements
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{Φ,Θ, t} or {φ,Θ, t} in Cλ,µ. For reasons of simplicity, we denote their images by the same

letters. By Lemma 4.11.(2),

Cλ,µAX := Cλ,µAX (H) := CAX (H)/(C − λ,H − µ) ' A′1.

So, there is a natural algebra homomorphism Cλ,µ → Cλ,µAX = A′1. The following proposition

shows that the homomorphism is a monomorphism. We will identify the algebra Cλ,µ with its

image in the Weyl algebra A′1. This observation enable us to give a complete classification of

simple Cλ,µ-modules for all λ and µ ∈ K.

Proposition 4.17. Let λ, µ ∈ K. Then

1. The algebra Cλ,µ is generated by the elements φ,Θ and t subject to the defining relations

[φ, t] = t2, (4.24)

[Θ, t] = 2φ+ (µ− 2)t+ λ, (4.25)

[Θ, φ] = 2Θt+ (−φ+ 2t)µ, (4.26)

Θt2 = (φ+ µt+ λ)φ. (4.27)

2. The set Bλ,µ = {Θiφjtk, φltm | i > 1, k = 0, 1 and j, l,m ∈ N} is a K-basis for the algebra

Cλ,µ.

3. The algebra homomorphism

Cλ,µ −→ Cλ,µAX = A′1, t 7→ t, φ 7→ ht, Θ 7→ λe+ (h+ µ)(h− 1),

is a monomorphism.

4. The ideal (C − λ,H − µ) of the algebra CA(H) is equal to the intersection of CA(H) and

the ideal (C − λ,H − µ) of the algebra CAX (H).

5. GK (Cλ,µ) = 2 and Z(Cλ,µ) = K.

Proof. 1. Statement 1 follows from Corollary 4.15.

2 and 3. By repeating the proof of Proposition 4.16 (where the elements C and H are replaced

by λ and µ, respectively), we have that the elements of Bλ,µ span the vector space Cλ,µ. Let

C
λ,µ

be the image of the algebra Cλ,µ in A′1 and B
λ,µ

be the image of the set Bλ,µ in A′1. The

set B
λ,µ

spans C
λ,µ

. By repeating the proof of Proposition 4.16 (where the elements C and H

are replaced by λ and µ, respectively), we have that the set B
λ,µ

is a K-basis for the algebra

C
λ,µ

. Now, statements 2 and 3 follows.

4. Statement 4 follows from statement 3.

5. By statement 3, the subalgebra J of Cλ,µ generated by the elements t and φ is isomorphic

to the algebra K[t][φ; t2 d
dt ]. The inclusions J ⊆ Cλ,µ ⊆ A′1 yield the inequalities 2 = GK (J) 6

GK (Cλ,µ) 6 GK (A′1) = 2, i.e., GK (Cλ,µ) = 2. Notice that the centralizers of the elements t

and φ = ht in the Weyl algebra A′1 are K[t] and K[φ], respectively. Therefore, K ⊆ Z(Cλ,µ) =

K[t] ∩K[φ] = K, i.e., Z(Cλ,µ) = K.
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By Proposition 4.17.(1,3), we have the inclusions of algebras

Cλ,µ ⊂ A′1 ⊂ A′1,t = Cλ,µt (4.28)

where A′1,t and Cλ,µt are localizations of the algebras A′1 and Cλ,µ at the powers of the element

t.

The Weyl algebra A′1 has a standard ascending filtration {A′1,i}i∈N by the total degree of the

variables e and t (deg(eitj) = i + j for all i, j > 0). The associated graded algebra grA′1

is a polynomial algebra K[e, t], by abusing the notation. The subalgebra Cλ,µ of A′1 has the

induced filtration {Cλ,µ ∩ A′1,i}i∈N. Therefore, the associated graded algebra gr(Cλ,µ) is a

subalgebra of the polynomial algebra gr(A′1). The elements t, φ and Θ have total degrees 1, 3

and 4, respectively; and their images in gr(Cλ,µ) are t, et2 and e2t2, respectively.

Now, let us consider Cλ,µ as an abstract algebra and equip it with the degree filtration F =

{Fi}i∈N where deg(t) = 1,deg(φ) = 3 and deg(Θ) = 4. By (4.24)–(4.27), the associated graded

algebra grF (Cλ,µ) is a commutative algebra which is an epimorphic image of the factor algebra

K[t, φ,Θ]/(Θt2 − φ2). So, by abusing the notation, the algebra grF (Cλ,µ) is generated by (the

images of) the elements t, φ and Θ that commute (see (4.24)–(4.26)) and satisfy the relation

Θt2 = φ2, see (4.27).

Lemma 4.18. 1. For all i ∈ N, Fi = Cλ,µ ∩A′1,i.
2. grF (Cλ,µ) = K[t, φ,Θ]/(Θt2−φ2), grF (Cλ,µ) = gr(Cλ,µ) ⊂ gr(A′1) = K[t, e] where φ = et2

and Θ = e2t2 as elements of K[e, t].

3. The algebra gr(A′1) is not a finitely generated gr(Cλ,µ)-module.

4. The algebra A′1 is not a finitely generated left/right Cλ,µ-module.

Proof. 1. By Proposition 4.17.(2), the set Bλ,µ is a K-basis of the algebra Cλ,µ. We keep the

notation as above. Since grF (Cλ,µ) is a commutative algebra, each vector space Fn is a linear

span of elements of Bλ,µ with degrees 6 n (deg(Θiφjtk) = 4i+ 3j + k and deg(φltm) = 3l+m).

Then, also each vector space Cλ,µ ∩A′1,n is a linear space of elements of Bλ,µ with total degree

6 n (deg(Θiφjtk) = 4i + 3j + k and deg(φltm) = 3l + m). Therefore, Fn = Cλ,µ ∩ A′1,n for all

n > 0.

2. The set Bλ,µ is a K-basis of the factor algebra Λ = K[t, φ,Θ]/(Θt2−φ2). Therefore, the algebra

epimorphism Λ→ grF (Cλ,µ) is an isomorphism. Now, statement 2 follows from statement 1.

3. By statement 2, gr(Cλ,µ) ⊆ D = K[t, et]. Since the polynomial algebra K[t, e] is not a finitely

generated D-module, it is not a finitely generated gr(Cλ,µ)-module.

4. Statement 4 follows from statement 3.

4.4 Classification of simple CA(H)-modules

In this section, K is an algebraically closed field. A classification of simple CA(H)-modules is

given. This classification is used in a classification of simple weight A-modules which is obtained
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in Section 4.5. Two cases where the element C acts as zero or nonzero are very different cases,

they are dealt with separately with different techniques. For an algebra A, we denote by Â the

set of isomorphism classes of its simple modules. Clearly,

ĈA(H) =
⊔

λ,µ∈K
Ĉλ,µ. (4.29)

The simple Cλ,µ-module Mλ,µ (where λ 6= 0). Suppose that λ 6= 0 and µ is arbitrary.

By Proposition 4.17.(3), Cλ,µ is a subalgebra of the Weyl algebra A′1 where φ = ht and Θ =

λe+ (h+µ)(h− 1). The A′1-module M := A′1/A
′
1t = K[e]1̄ is a free K[e]-module of rank 1 where

1̄ := 1+A′1t. The A′1-module M is simple and can be identified with the algebra K[e] as a vector

space. Then the element t acts on M as − d
de . The concept of dege is well-defined for M ' K[e].

Since Θ · ei1̄ = λei+11̄ + · · · for all i > 0 (where the three dots denote a polynomial of degree

< i+ 1) and t acts on M as − d
de , the Cλ,µ-module M is simple. We denote it by Mλ,µ.

Lemma 4.19. Let λ ∈ K∗ and µ ∈ K. Then

1. The Cλ,µ-module Mλ,µ is a simple module of GK dimension 1, Mλ,µ ' Cλ,µ/Cλ,µ(t, φ)

and the map t : Mλ,µ →Mλ,µ, m 7→ tm, is a surjection.

2. Cλ,µ = K[Θ]⊕ Cλ,µ(t, φ) and Cλ,µ(t, φ) = K[Θ]φ⊕ Cλ,µt.

Proof. We have shown already that the Cλ,µ-module Mλ,µ is simple. It follows from Proposition

4.17.(3) that

1 = GK K[Θ](M
λ,µ) 6 GKCλ,µ(Mλ,µ) 6 GKA′1

(Mλ,µ) = 1,

i.e., GKCλ,µ(Mλ,µ) = 1. The map t· = − d
de : Mλ,µ ' K[e]→Mλ,µ ' K[e] is a surjection. Since

t1̄ = 0 and φ1̄ = ht· 1̄ = 0, there is a natural Cλ,µ-module epimorphism Cλ,µ/Cλ,µ(t, φ)−�Mλ,µ

which is necessarily an isomorphism, by Proposition 4.16. In particular, Cλ,µ = K[Θ]⊕Cλ,µ(t, φ).

Then Cλ,µ(t, φ) = K[Θ]φ⊕ Cλ,µt (by Proposition 4.16, (4.24) and (4.27)).

The simple Cλ,µ-module Nλ,µ (where λ 6= 0). By Lemma 4.19, there is a short exact

sequence of Cλ,µ-modules

0 −→ Nλ,µ −→ Cλ,µ/Cλ,µt −→Mλ,µ −→ 0 (4.30)

where Nλ,µ := Cλ,µ(t, φ)/Cλ,µt = K[Θ]φ1̃ and 1̃ = 1 +Cλ,µt. Clearly, K[Θ]N
λ,µ ' K[Θ] (Lemma

4.19.(2)), tφ1̃ = 0 and (φ+ λ)φ1̃ = 0 (by (4.27)).

Lemma 4.20. Let λ ∈ K∗ and µ ∈ K. Then the Cλ,µ-module Nλ,µ is a simple module of GK

dimension 1, Nλ,µ ' Cλ,µ/Cλ,µ(t, φ+λ) and the map t· : Nλ,µ → Nλ,µ, n 7→ tn, is a surjection.

Proof. Since K[Θ]N
λ,µ ' K[Θ], the concept of degΘ of the elements of Nλ,µ is well-defined

(degΘ(Θiφ1̃) := i for all i > 0). Let us show that, for all n > 0,

t ·Θnφ1̃ = λnΘn−1φ1̃ + · · · , (4.31)

(φ+ λ) ·Θnφ1̃ = −λn(µ+ n− 1)Θn−1φ1̃ + · · · , (4.32)
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where the three dots means a term of degΘ < n − 1. We use induction on n. The case n = 0

was proved above (tφ1̃ = 0 and (φ+ λ)φ1̃ = 0). Suppose that n > 0 and the equalities are true

for all n′ < n. Then

t ·Θn+1φ1̃ =
(
[t,Θ] + Θt

)
Θnφ1̃

= −
(

2φ+ (µ− 2)t+ λ
)

Θnφ1̃ + λnΘnφ1̃ + · · ·

= −
(
− λ+ 2(φ+ λ)

)
Θnφ1̃ + λnΘnφ1̃ + · · ·

= λ(n+ 1)Θnφ1̃ + · · · ,

(φ+ λ) ·Θn+1φ1̃ =
(

[φ+ λ,Θ] + Θ(φ+ λ)
)

Θnφ1̃

= −
(

2Θt+ (−φ+ 2t)µ
)

Θnφ1̃− λn(µ+ n− 1)Θnφ1̃ + · · ·

= −
(
2λn+ λµ

)
Θnφ1̃− λn(µ+ n− 1)Θnφ1̃ + · · ·

= −λ(n+ 1)(µ+ n)Θnφ1̃ + · · · .

By (4.31), the Cλ,µ-module Nλ,µ is simple. By (4.31) and (4.32), GK (Nλ,µ) = 1. By (4.31),

the map t· : Nλ,µ → Nλ,µ is a surjection. Finally, by Lemma 4.19.(2),

Cλ,µ = K[Θ]⊕K[Θ]φ⊕ Cλ,µt = K[Θ]⊕K[Θ](φ+ λ)⊕ Cλ,µt.

Therefore, the canonical Cλ,µ-module epimorphism Cλ,µ/Cλ,µ(t, φ + λ) → Nλ,µ must be an

isomorphism.

Corollary 4.21. The map t· : Cλ,µ/Cλ,µt→ Cλ,µ/Cλ,µt, a+Cλ,µt 7→ ta+Cλ,µt, is a surjection

provided λ 6= 0.

Proof. By Lemma 4.19.(1) and Lemma 4.20, the maps t· : Nλ,µ → Nλ,µ and t· : Mλ,µ → Mλ,µ

are surjections, hence so is the map t· in the lemma, in view of the short exact sequence (4.30).

Lemma 4.22. Let R be a ring, s, r ∈ R and sm,n : R/Rrn → R/Rrn, a+ Rrn 7→ sma+ Rrn,

for m,n > 1. If the map s1,1 is a surjection then all the maps sm,n are surjections and R =

smR+Rrn for all m,n > 1.

Proof. If the map sm,n is a surjection then R = smR + Rrn. For each i > 1, consider the map

si := s· : Rri/Rri+1 → Rri/Rri+1, ari +Rri+1 7→ sari +Rri+1. In the commutative diagram

R/Rr
s1,1 //

·ri
��

R/Rr

·ri
��

Rri/Rri+1
si
// Rri/Rri+1

the vertical maps are surjection. Since the map s1,1 is surjective, the map si is also surjective.

By considering the finite filtration of the abelian group R/Rrn,

0 ⊆ Rrn−1/Rrn ⊆ Rrn−2/Rrn ⊆ . . . ⊆ R/Rrn,
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we see that the map s1,n is a surjection. Then so is its powers (s1,n)m = sm,n.

Theorem 4.23. For all λ ∈ K∗ and µ ∈ K, the algebra Cλ,µ is a central simple algebra of

Gelfand-Kirillov dimension 2.

Proof. In view of Proposition 4.17.(5), it remains to show that the algebra Cλ,µ is simple (where

λ ∈ K∗ and µ ∈ K). By Corollary 4.21 and Lemma 4.22 (where s = r = t), Cλ,µ = tnCλ,µ +

Cλ,µtn. In particular, Cλ,µ = (tn) for all n > 1. Let a be a nonzero ideal of the algebra Cλ,µ.

We have to show that a = Cλ,µ. By (4.28), the algebra Cλ,µt = A′1,t is a simple Noetherian

algebra. Therefore, tn ∈ a for some n > 1, and so a = Cλ,µ, as required.

Proposition 4.24. Let λ ∈ K∗ and µ ∈ K. Then, for all nonzero elements a ∈ A′1, the

Cλ,µ-module A′1/A
′
1a has finite length but the Cλ,µ-module A′1 has infinite length.

Proof. The A′1-module M = A′1/A
′
1a = A′11̄ (where 1̄ = 1 +A′1a) admits the standard filtration

{Mi := A′1,i1̄}. Then dim(Mi) = e(M)i+s for all i� 0 where e(M) ∈ N\{0} is the multiplicity

of the A′1-module M and s ∈ Z. The algebra Cλ,µ is simple (since λ 6= 0). Hence, every simple

Cλ,µ-module has GK dimension 1. Then using a concept of multiplicity of a finitely generated

Cλ,µ-module (see Lemma 4.18.(2)), we must have that the Cλ,µ-module M has finite length. By

Lemma 4.18.(4), the Cλ,µ-module A′1 has infinite length.

Classification of simple Cλ,µ-modules where λ 6= 0. The Weyl algebra A′1 is a subalgebra

of the skew Laurent polynomial algebra B = K(h)[t, t−1;σ] where σ(h) = h − 1. The algebra

B is the localization S−1A′1 of the Weyl algebra A′1 at S := K[h] \ {0}. The algebra B is a

Euclidean ring with left and right division algorithms. In particular, the algebra B is a principle

left and right ideal domain. An element b ∈ B is irreducible (or indecomposable) if b = cd implies

that c or d is invertible. Each simple B-module is isomorphic to B/Bb where b is an irreducible

(indecomposable) element of B. B-modules B/Bb and B/Bc are isomorphic iff the elements b

and c are similar, i.e., there exists an element d ∈ B such that 1 is the greatest common right

divisor of c and d, and bd is the least common left multiple.

Let α, β ∈ S = K[h] \ {0}. We write α < β if there are no roots λ and µ of the polynomials α

and β, respectively, such that λ− µ ∈ N.

Definition. [5]. An element b = emβm + em−1βm−1 + · · · + β0, where m > 0, βi ∈ K[h] and

β0, βm 6= 0, is called normal if β0 < βm and β0 < h.

The simple modules over the (first) Weyl algebra were classified by Block [18] and later using

a different approach with a short proof by Bavula [2, 5]. For a simple A′1-module M there are

two options either S−1M = 0 or S−1M 6= 0. Accordingly, we say that the simple module is

K[h]-torsion or K[h]-torsionfree, respectively.

Theorem 4.25. [2, 5]. Â′1 = Â′1 (K[h]-torsion) t Â′1 (K[h]-torsionfree) where

1. Â′1 (K[h]-torsion) = {A′1/A′1t, A′1/A′1e, A′1/A′1(h− λO) | O ∈ K/Z \ {Z}} where λO is any

fixed element of O = λO + Z.
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2. Each simple K[h]-torsionfree A′1-module is isomorphic to Mb := A′1/A
′
1 ∩Bb for a normal,

irreducible element b. Simple A′1-modules Mb and Mb′ are isomorphic iff the elements b

and b′ are similar.

The following theorem gives a classification of simple Cλ,µ-modules where λ 6= 0. It shows

that there is a tight connection between the sets of simple Cλ,µ-modules and A′1-modules. The

theorem gives an explicit construction for each simple Cλ,µ-module as a factor module Cλ,µ/I

where I is a left maximal ideal of Cλ,µ. LetM be an A-module. The sum of all simple submodules

of the A-module M is called the socle of M , denoted by socA(M). A submodule M ′ of M is

called essential if its intersection with any nonzero submodule of M is nonzero. For Cλ,µ-module

M , we denote by lCλ,µ(M) its length.

Theorem 4.26. Let λ ∈ K∗ and µ ∈ K. Then

1. The map soc = socCλ,µ : Â′1 → Ĉλ,µ, [M ] 7→ [socCλ,µ(M)], is not a bijection, and Ĉλ,µ =

soc(Â′1) t {Nλ,µ}. Furthermore,

(a) the map soctf : Â′1 (t-torsionfree) −→ Ĉλ,µ (t-torsionfree), [M ] 7→ [socCλ,µ(M)], is a

bijection, but

(b) the map soctt : Â′1 (t-torsion) = {A′1/A′1t} −→ Ĉλ,µ (t-torsion) = {Mλ,µ, Nλ,µ},
[A′1/A

′
1t] 7→ [Mλ,µ], is an injection which is not a bijection. In particular, the simple

Cλ,µ-module Mλ,µ and Nλ,µ are not isomorphic and the short exact sequence (4.30)

splits.

2. For each [M ] ∈ Â′1 (K[h]-torsion), the Cλ,µ-module M is simple, i.e., socCλ,µ(M) = M .

3. For each [M ] ∈ Â′1 (K[h]-torsionfree), i.e., M = Mb = A′1/A
′
1 ∩ Bb where b ∈ B is as in

Theorem 4.25.(2), Nb := Cλ,µ/Cλ,µ ∩ Bb ⊆ Mb and socCλ,µ(Mb) = socCλ,µ(Nb) ' Nbt−n

for all n� 0.

Proof. 1. Let M be a simple A′1-module. By Proposition 4.24, the Cλ,µ-module M has finite

length. In particular, socCλ,µ(M) 6= 0. Let us show that socCλ,µ(M) is a simple Cλ,µ-module.

Let Mt be the localization of the A′1-module M at the powers of the element t. If Mt = 0, i.e.,

M ' A′1/A′1t, then socCλ,µ(A′1/A
′
1t) = A′1/A

′
1t since the Cλ,µ-module A′1/A

′
1t = Mλ,µ is simple,

as we have seen above. If Mt 6= 0, then the A′1-module M is an essential submodule of Mt. By

(4.28), the Cλ,µ-module M is also an essential Cλ,µ-submodule of Mt. Therefore, socCλ,µ(M) is a

simple Cλ,µ-module. This implies that the map soc is an injection (if simple A′1-modules M and

M ′ are isomorphic they are also isomorphic as Cλ,µ-module, and so socCλ,µ(M) ' socCλ,µ(M ′)).

(a) The map soctf is a bijection: It remains to show that the map soctf is a surjection. Let N be

a simple t-torsionfree Cλ,µ-module. Then Nt is a simple Cλ,µt -module which is automatically a

simple A′1,t-module, by (4.28). Then N = socCλ,µ(Nt) ⊆ M := socA′1(Nt) ⊆ Nt and M 6= 0 (by

Proposition 4.24), and therefore M is a simple t-torsionfree A′1-module (since M is an essential

A′1-submodule of Mt = Nt). Now, N = socCλ,µ(M), as we have seen above. So, the map soctf

is a bijection.

(b) The A′1-module A′1/A
′
1t is a simple t-torsion A′1-module. Hence, Â′1 (t-torsion) = {A′1/A′1t}.

Let us show that Ĉλ,µ (t-torsion) = {Mλ,µ, Nλ,µ}. By Lemma 4.19.(1), the Cλ,µ-module Mλ,µ =

A′1/A
′
1t is simple and t-torsion. By Lemma 4.20 and (4.31), the Cλ,µ-module Nλ,µ is simple and
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t-torsion. The Cλ,µ-modules Mλ,µ and Nλ,µ are not isomorphic since Mλ,µ =
⋃
n>1 ker(φn·) and

Nλ,µ =
⋃
n>1 ker((φ + λ)n·) (by (4.32)). Let M be a simple t-torsion Cλ,µ-module. It remains

to show that either M ' Mλ,µ or M ' Nλ,µ. The Cλ,µ-module M is an epimorphic image of

the Cλ,µ-module Cλ,µ/Cλ,µt. By (4.30), either M 'Mλ,µ or, otherwise, M ' Nλ,µ. Since both

cases do occur the short exact sequence (4.30) splits otherwise the only first case (M ' Mλ,µ)

would occur. Now, the statement (b) is obvious. Then, Ĉλ,µ = soc(Â′1) t {Nλ,µ}.

2. By Theorem 4.25.(1), there are 3 cases to consider. The first case, i.e., A′1/A
′
1t = Mλ,µ, is

obvious. Let M = A′1/A
′
1e. Then M = K[t]1̄ where 1̄ := 1 + A′1e. If N is a nonzero Cλ,µ-

submodule of M then necessarily N = fK[t]1̄ for some nonzero polynomial f ∈ K[t]. Since

dimK(M/N) <∞ and the algebra Cλ,µ is a simple infinite dimensional algebra (Theorem 4.23)

we must have N = M , i.e., the Cλ,µ-module A′1/A
′
1e is simple.

Finally, letM = A′1/A
′
1(h−ν) where ν = νO 6∈ Z. ThenM =

⊕
i∈Z Kvi1̄ where 1̄ := 1+A′1(h−ν),

v0 := 1 and, for all i > 1, vi = ti and v−i = ei. For all i > 1 and j ∈ Z, tivj 1̄ = λijvi+j for some

λij ∈ K∗. Therefore, the element t acts as a bijection on the module M and M = K[t, t−1]1̄ '
K[t, t−1], as K[t, t−1]-modules. If N is a nonzero submodule of M then N = gM for some

nonzero element g of K[t, t−1]. Since dimK(M/N) <∞ and the algebra Cλ,µ is a simple infinite

dimensional algebra (Theorem 4.23) we must have N = M . This means that the Cλ,µ-module

M is simple.

3. Let M = Mb = A′11̄ where 1̄ = 1 +A′1 ∩Bb. Recall that the Cλ,µ-module M has finite length

and let N be a simple Cλ,µ-submodule of M (statement 1). Since h = et, the A′1-module M is

t-torsionfree, and so 0 6= Nt ⊆Mt. The Cλ,µt -module Nt is also an A′1,t-module since Cλ,µt = A′1,t

(see (4.28)). Therefore, Nt = Mt, since the A′1,t-module Mt is simple and Nt is its nonzero A′1,t-

submodule. Notice that Nt = Mt = A′1,t/A
′
1,t∩Bb = Cλ,µt /Cλ,µt ∩Bb ⊇ Cλ,µ/Cλ,µ∩Bb = Nb 6= 0

and (Nb)t = Mt. Hence, N = socCλ,µ(Nb). Clearly, Nb = Cλ,µ1̃ where 1̃ := 1 + Cλ,µ ∩ Bb. For

each n ∈ N, let Nn = Cλ,µtn1̃. Then Nn 6= 0 since (Nn)t = (Nb)t 6= 0. Since the Cλ,µ-module

Nb has finite length the descending chain of Cλ,µ-submodules of Nb, Nb = N0 ⊇ N1 ⊇ · · · ,
stabilizes, say, at m’th step, i.e., Nb = N0 ⊇ N1 ⊇ · · · ⊇ Nm = Nm+1 = . . . and Nm 6= 0.

Since (M/N)t = Mt/Nt = Mt/Mt = 0, we must have tn1̄ ∈ N , i.e., N = Nn for some n. Then

necessarily n > m and Nm = N . Now, for all n > m,

N = Cλ,µtn1̃ ' Cλ,µtn + Cλ,µ ∩Bb
Cλ,µ ∩Bb

' Cλ,µtn

Cλ,µtn ∩Bb
' Cλ,µ/Cλ,µ∩Bbt−n. �

The algebras C0,µ. The subalgebra R of the Weyl algebra A′1 which is generated by the

elements t and h = et is a skew polynomial algebra R = K[h][t;σ] where σ(h) = h − 1. The

algebra R is a homogeneous subalgebra of the Z-graded algebra A′1, it is the non-negative part of

the Z-grading of A′1. By Proposition 4.17.(3), for all µ ∈ K, C0,µ ⊂ R ⊂ A′1 and the subalgebra

C0,µ of R is generated by the elements t, φ = ht and Θ = (h+µ)(h−1). Clearly, K[Θ] ⊆ K[h] and

K[h] = K[Θ]⊕K[Θ]h. The element t is a normal element of the algebra R and (t) =
⊕

i>1 K[h]ti.

Proposition 4.27. Let µ ∈ K.

1. C0,µ = K[Θ]⊕
⊕

i>1 K[h]ti and C0,µ∩Rt = Rt =
⊕

i>1 K[h]ti = (t, φ) = (t) where (t, φ) is

the ideal of C0,µ generated by the elements t and φ. Furthermore, (t, φ) = C0,µt+ C0,µφ.
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2. C0,µ ⊂ R ⊂ Rt = C0,µ
t = A′1,t.

3. Spec(C0,µ) = {0, (t), (t,m) |m ∈ Max(K[Θ])}, C0,µ/(t) ' K[Θ], and C0,µ/(t,m) ' K[Θ]/m.

In particular, all prime ideals of C0,µ are completely prime.

4. Max(C0,µ) = {(t,m) |m ∈ Max(K[Θ])}.

Proof. 1. The equality (t, φ) = (t) follows from (4.25). Multiplying the equality K[h] = K[Θ]⊕
K[Θ]h by the element t on the right yields K[h]t = K[Θ]t ⊕ K[Θ]φ ⊆ C0,µ. For all i > 1,

C0,µ ⊇ (K[h]t)i = K[h]ti, and so C0,µ = K[Θ]⊕
⊕

i>1 K[h]ti (since C0,µ ⊆ R). Then C0,µ∩Rt =

Rt =
⊕

i>1 K[h]ti = (t, φ). By Proposition 4.16, (t, φ) = C0,µt+ C0,µφ.

2. Statement 2 follows from statement 1 and (4.28).

3 and 4. The ideal (t) of C0,µ is a completely prime ideal since C0,µ/(t) ' K[Θ], by statement 1.

Therefore, the set of prime ideals that properly contain the ideal (t) is {(t,m) |m ∈ Max(K[Θ])}.
Each such an ideal is a completely prime, maximal ideal of C0,µ. The algebra C0,µ is a domain,

so 0 is the completely prime ideal of C0,µ. To finish the proof of statements 3 and 4 it suffices to

show that if p is a nonzero prime ideal of C0,µ then (t) ⊆ p. Recall that Rt = (t), by statement

1. By statement 2, C0,µ
t = A′1,t is a simple Noetherian domain. Therefore, tn ∈ p. Hence,

p ⊇ Rtn · t = Rtn+1 = (Rt)n+1, and so p ⊇ Rt since p is a prime ideal and Rt = (t).

Classification of simple C0,µ-modules. The set S = K[h] \ {0} is a (left and right) Ore

set of the domain C0,µ and B := S−1C0,µ = K(h)[t;σ] is a skew polynomial algebra where

σ(h) = h− 1. The algebra B is a principle (left and right) ideal domain. Let Irr (B) be the set

of irreducible elements of B.

In [10], simple modules for an arbitrary Ore extension D[X;σ, δ] are classified where D is a

commutative Dedekind domain, σ is an automorphism of D and δ is a σ-derivation of D. The

ring R = K[h][t;σ] is a very special case of such an Ore extension.

Theorem 4.28. 1. R̂ (K[h]-torsion) = R̂ (t-torsion) = R̂/(t) =
{

[R/R(h− ν, t)] | ν ∈ K
}

.

2. R̂ (K[h]-torsionfree) = R̂ (t-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt + R ∩ Bb} where

Mb := R/R ∩ Bb; Mb ' Mb′ iff the elements b and b′ are similar (iff B/Bb ' B/Bb′ as

B-modules).

Proof. 1. The last two equalities in statement 1 follow from the fact that t is a normal element

of R. Then, clearly, R̂ (K[h]-torsion) ⊇ R̂/(t). It remains to show that the reverse inclusion

holds. Let M be a simple K[h]-torsion R-module. The field K is algebraically closed, so the

R-module M is an epimorphic image of the R-module R/R(h−ν) = K[t]1̄ for some ν ∈ K where

1̄ = 1 + R(h− ν). It follows from the equalities hti1̄ = (ν + i)ti1̄ for all i > 0 that tK[t]1̄ is the

only maximal R-submodule of R/R(h− ν). So, M ' R/R(h− ν, t) ∈ R̂/(t), as required.

2. The first equality in statement 1 implies (in fact, is equivalent to) the first equality in

statement 2. By [10, Theorem 1.3] R̂ (K[h]-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt+R ∩Bb}
(the condition (LO) of [10, Theorem 1.3] is equivalent to the condition R = Rt+R ∩Bb).

Theorem 4.29 gives a classification of simple C0,µ-modules. It shows a close connection between

the sets Ĉ0,µ and R̂, they are almost identical, i.e., Ĉ0,µ (t-torsionfree) = R̂ (t-torsionfree).
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Theorem 4.29.

1. Ĉ0,µ (t-torsion) = {[M ] ∈ Ĉ0,µ | (t)M = 0} = ̂C0,µ/(t) = {[C0,µ/C0,µ(Θ− ν, t, φ)] | ν ∈ K}.
2. Ĉ0,µ (t-torsionfree) = R̂ (t-torsionfree) = R̂ (K[h]-torsionfree) = {[Mb = R/R ∩ Bb] | b ∈

Irr(B), R = Rt+R ∩Bb} (see Theorem 4.28).

Proof. 1. The last two equalities are obvious. Clearly, Ĉ0,µ (t-torsion) ⊇ ̂C0,µ/(t). It remains

to show that the reverse inclusion holds. If M is a simple t-torsion C0,µ-module that either

(t)M = 0 or, otherwise, (t)M = M . The second case is impossible since otherwise, M = (t)M =

RtM ∈ R̂ (t-torsionfree), a contradiction (t is a normal element of R). So, (t)M = 0, as required.

2. In view of Theorem 4.28.(2), it remains to show that the first equality holds. Let [M ] ∈
Ĉ0,µ (t-torsionfree). By statement 1, M = (t)M = RtM ∈ R̂ (t-torsionfree). Given [N ] ∈
R̂ (t-torsionfree). To finish the proof of statement 2, it suffices to show that N is a simple C0,µ-

module. If L is a nonzero C0,µ-submodule of N then N ⊇ L ⊇ (t)L 6= 0, since N is t-torsionfree.

Then (t)L = RtL = N , since N is a simple R-module. Hence, L = N , i.e., N is a simple

C0,µ-module, as required.

4.5 A classification of simple weight A-modules

The aim of this section is to give a classification of simple weight A-modules. They are partitioned

into several classes of modules which are classified separately using different techniques. The

key idea is to use the classification of simple CA(H)-modules. In this section, we assume that

K is an algebraically closed field of characteristic zero. For each coset O ∈ K/Z, we fix a

representative µO ∈ O = µO + Z. An A-module M is called a weight module provided that

M =
⊕

µ∈KMµ where Mµ = {m ∈ M |Hm = µm}. An element µ ∈ K such that Mµ 6= 0 is

called a weight of M . Let Wt (M) be the set of all weights of the A-module M . For an algebra

A, let Â be the set of isomorphism classes of simple A-modules and Â (weight) be the set of

isomorphism classes of simple weight A-modules. Let M be an A-module and x ∈ A. We say

that M is x-torsion provided that for each element m ∈M there exists a natural number i ∈ N
such that xim = 0, and that M is x-torsionfree if the only element of M annihilated by the

element x is 0. Since the set {Xi | i ∈ N} is an Ore set in A,

Â (weight) = Â (weight, X-torsion) t Â (weight, X-torsionfree). (4.33)

Description of the set Â (weight, X-torsion).An explicit description of the set Â (weight, X-torsion)

is given in Theorem 4.34. Clearly,

Â (weight, X-torsion) = Â (weight, X-torsion, Y -torsion) t Â (weight, X-torsion, Y -torsionfree).

(4.34)

Lemma 4.30. Let M ∈ Â (weight, X-torsion, Y -torsion). Then XM = YM = 0, i.e.,

Â (weight, X-torsion, Y -torsion) = Û (weight).
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Proof. Let M ∈ Â (weight, X-torsion, Y -torsion). There exists a nonzero weight vector m ∈ M
such that Xm = 0 and Y m = 0, since XY = Y X. Notice that M = Am (since M is a simple

A-module). So, the A-module M is an epimorphic image of the A-module A/(AX + AY ) =

A/(X,Y ) = U , by Lemma 4.2.

Lemma 4.31. 1. Let M ∈ Â (weight, X-torsion, Y -torsionfree). Then the central element C

acts on M as a nonzero scalar CM .

2. Let M ∈ Â (weight, Y -torsion, X-torsionfree). Then the central element C acts on M as a

nonzero scalar CM .

Proof. 1. Since M is a simple A-module, the central element C acts on M as a scalar CM . It

remains to show that CM 6= 0. Suppose this is not the case, then there is a nonzero weight

vector m ∈ M such that Xm = 0 and Cm = 0. Since C = FX2 − (H + 2)Y X − Y 2E, we

have Y 2Em = 0 and so Em = 0, since M is Y -torsionfree. Let m′ = Y m then m′ 6= 0 and

Xm′ = Em′ = 0. So, the A-module M ′ := Am′ =
∑
i,j>0 KF iY jm′ is a proper submodule of

the A-module M (since m /∈M ′). This contradicts to the fact that M is a simple module.

2. Statement 2 follows from statement 1 by applying the automorphism S of A, see (4.2).

For λ, µ ∈ K, we define the left A-modules X µ := A/A(H − µ,X) and Xλ,µ := A/A(C −
λ,H − µ,X). Clearly, Xλ,µ ' X µ/(C − λ)X µ. Since XH = (H − 2)X, using the PBW

Theorem we see that X µ =
⊕

i,j,k>0 KF iY jEk1̃ = K[F ]⊗ V 1̃ where 1̃ := 1 +A(H − µ,X) and

V =
⊕

j,k>0 KY jEk. It follows from the equalities [E, Y ] = X and X 1̃ = 0 and the fact that

the element X commutes with E and Y that Y jEk1̃ = EkY j 1̃. Hence, abusing the notation we

can write V 1̃ = K[Y,E]1̃ where K[Y,E] is a polynomial algebra in letters Y and E. Therefore,

V 1̃ = Σ ⊗ K[EY 2]1̃ where Σ := K[Y ]Y 2 ⊕ K[E] ⊕ YK[E] and K[EY 2] is a polynomial in EY 2.

Now,

X µ = K[F ]⊗ Σ⊗K[EY 2]1̃ ' K[F ]⊗ Σ⊗K[EY 2]

is an isomorphism of vector spaces. Since C = FX2 −HYX − EY 2, (C − λ)1̃ = −(EY 2 + λ)1̃,

(C − λ)X µ = K[F ]⊗ Σ⊗K[EY 2](−EY 2 − λ)1̃.

Therefore,

Xλ,µ 'X µ/(C − λ)X µ ' K[F ]⊗ Σ1̄

where 1̄ = 1 +A(C − λ,H − µ,X), and the equality of statement 1 of the following proposition

follows. Furthermore, the proposition shows that for all λ ∈ K∗, the modules Xλ,µ are simple,

weight, X-torsion, Y -torsionfree A-modules. Later in Proposition 4.33.(1), we will see that the

set Â (weight, X-torsion, Y -torsionfree) consists precisely of the modules Xλ,µ. Moreover, the

K-bases, weight space decompositions and annihilators of Xλ,µ are given.

Proposition 4.32. Let λ ∈ K∗ and µ ∈ K. Then

1. The A-module Xλ,µ =
⊕

i>0,j>2

KF iY j 1̄⊕
⊕
i,k>0

KF iEk1̄⊕
⊕
i,k>0

KY F iEk1̄ is a simple module

where 1̄ = 1 +A(C − λ,H − µ,X).
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2. Recall that Θ = FE. Then

Xλ,µ =
⊕

i>0,j>2

KF iY j 1̄⊕
( ⊕
i>1,k>0

KF iΘk1̄⊕
⊕
k>0

KΘk1̄⊕
⊕

i>1,k>0

KEiΘk1̄
)

⊕
( ⊕
i>1,k>0

KY F iΘk1̄⊕
⊕
k>0

KYΘk1̄⊕
⊕

i>1,k>0

KY EiΘk1̄
)
.

3. The weight space
(
Xλ,µ

)
µ+i

of Xλ,µ that corresponds to the weight µ+ i (where i ∈ Z) is

(
Xλ,µ

)
µ+i

=



K[Θ]1̄, i = 0,

ErK[Θ]1̄, i = 2r, r > 1,

Y ErK[Θ]1̄, i = 2r − 1, r > 1,

F rK[Θ]1̄⊕
r−1⊕
j=0

KF jY 2(r−j)1̄, i = −2r, r > 1,

YK[Θ]1̄, i = −1,

Y F r−1K[Θ]1̄⊕
r−2⊕
j=0

KF jY 2(r−j)−11̄, i = −2(r − 1)− 1, r > 2.

In particular, Wt(Xλ,µ) = {µ+ i | i ∈ Z} and each weight space is infinite dimensional.

4. annA
(
Xλ,µ

)
= (C − λ).

5. Xλ,µ is an X-torsion, Y -torsionfree weight A-module.

Proof. 1. It remains to show that the A-module Xλ,µ is simple. We use notation as above. Using

the definition of C, we have the equality EY 21̄ = −λ1̄. Then, for all k > 1, Y 2kEk1̄ = (EY 2)k1̄ =

(−λ)k1̄ (since V 1̃ = K[Y,E]1̃). Since EY 21̄ = −λ1̄ 6= 0, the map Y · : Σ1̄ → Σ1̄, s1̄ 7→ Y s1̄, is

an injection. Let u be a nonzero element of Xλ,µ. To prove that the A-module Xλ,µ is simple it

suffices to show that au = 1̄ for some a ∈ A. It follows from the equalities XF i = F iX−iF i−1Y ,

X 1̄ = 0 and Xλ,µ = K[F ]⊗Σ1̄, that the map X· : Xλ,µ → Xλ,µ, u 7→ Xu, acts as d
dF ⊗ (−Y ·)Σ.

So, we can assume that u = s1̄ where 0 6= s ∈ Σ.

Notice that s = pY 2 +
∑m
i=0(λi + µiY )Ei for some p ∈ K[Y ] and λi, µi ∈ K. Then

Y 2mu = Y 2ms1̄ =
(
pY 2m+2 +

m∑
i=0

(λi + µiY )Y 2(m−i)Y 2iEi
)

1̄

=
(
pY 2m+2 +

m∑
i=0

(λi + µiY )Y 2(m−i)(−λ)i
)

1̄ = f 1̄

where f ∈ K[Y ] \ {0} (since s 6= 0). So, we may assume that u = f 1̄ where 0 6= f ∈ K[Y ].

Let f =
∑l
i=0 γiY

i where γi ∈ K and γl 6= 0. Since HY i1̄ = (µ − i)Y i1̄ for all i and all the

eigenvalues {µ − i | i > 0} are distinct, there is a polynomial g ∈ K[H] such that gf 1̄ = Y l1̄. If

l = 0, we are done. We may assume that l > 1. Multiplying (if necessary) the equality above

by Y we may assume that l = 2k for some natural number k ∈ N. Then (−λ)−kEkY 2k1̄ = 1̄, as

required.

2. Using the fact that the algebra U is a generalized Weyl algebra U = K[Θ, H][E,F ;σ, a = Θ]

where σ(Θ) = Θ + H, σ(H) = H − 2 and the equality F iEi = Θσ−1(Θ) · · ·σ−i+1(Θ), we see
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that ⊕
i,k>0

KF iEk1̄ =
⊕

i>1,k>0

KF iΘk1̄⊕
⊕
k>0

KΘk1̄⊕
⊕

i>1,k>0

KEiΘk1̄.

Then statement 2 follows from statement 1.

3. Statement 3 follows from statement 2.

4. It is clear that (C − λ) ⊆ annA
(
Xλ,µ

)
. By Proposition 4.4.(1), the ideal (C − λ) of A is a

maximal ideal, hence (C − λ) = annA
(
Xλ,µ

)
.

5. Clearly, Xλ,µ is an X-torsion, weight A-module. By statement 1, Xλ,µ is a simple module, it

must be Y -torsionfree (since, otherwise, by Lemma 4.30, CXλ,µ = 0, a contradiction).

The sets Â (weight, X-torsion) and Â (weight, Y -torsion). For λ, µ ∈ K, let us consider the A-

module Yλ,µ := A/A(C − λ,H − µ, Y ). Then Yλ,µ ' SX−λ,−µ where SX−λ,−µ is the A-module

X−λ,−µ twisted by the automorphism S of the algebra A (S(H) = −H, S(C) = −C, S(Y ) =

−X). The subgroup Z of (K,+) acts on K in the obvious way. For each λ ∈ K, O(λ) := λ+Z is

the orbit of λ under the action of Z. The set of all Z-orbits can be identified with the elements

of the factor group K/Z. For each orbit O ∈ K/Z, we fix an element µO ∈ O.

Proposition 4.33. 1. Â (weight, X-torsion, Y -torsionfree) =
{

[Xλ,µO ] |λ ∈ K∗,O ∈ K/Z
}

and the A-modules Xλ,µO and Xλ′,µO′ are isomorphic iff λ = λ′ and O = O′.
2. Â (weight, X-torsionfree, Y -torsion) =

{
[Yλ,µO ] |λ ∈ K∗,O ∈ K/Z

}
and the A-modules

Yλ,µO and Yλ′,µO′ are isomorphic iff λ = λ′ and O = O′.

Proof. 1. Let M ∈ Â (weight, X-torsion, Y -torsionfree). By Lemma 4.31, CM = λ 6= 0 for some

λ ∈ K∗. Then M is a factor module of Xλ,µ for some µ ∈ K. By Proposition 4.32.(1), the module

Xλ,µ is a simple module, hence M ' Xλ,µ. Clearly, Xλ,µ ' Xλ′,µ′ iff λ = λ′ and µ = µ′ + i for

some i ∈ Z.

2. Since Yλ,µ ' SX−λ,−µ, statement 2 follows from statement 1.

The next theorem gives a complete description of simple, weight, X-torsion A-modules and of

simple, weight, Y -torsion A-modules.

Theorem 4.34. 1. Â (weight, X-torsion) = Û (weight) t
{

[Xλ,µO ] |λ ∈ K∗,O ∈ K/Z
}
.

2. Â (weight, Y -torsion) = Û (weight) t
{

[Yλ,µO ] |λ ∈ K∗,O ∈ K/Z
}
.

Proof. 1. The theorem follows from the equality (4.34), Lemma 4.30 and Proposition 4.33.

2. Statement 2 follows from statement 1.

Description of the set Â (weight, X-torsionfree). Since the element C belongs to the centre

of the algebra A and the field K is algebraically closed,

Â (weight) =
⊔
λ∈K

Â(λ) (weight) (4.35)
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where A(λ) := A/(C − λ). Moreover,

Â(λ) (weight, X-torsionfree) = Â(λ) (weight,X-torsionfree, Y -torsionfree)⊔
Â(λ) (weight, X-torsionfree, Y -torsion). (4.36)

The simple modules in the set Â(λ) (weight, X-torsionfree, Y -torsion) are classified by Proposi-

tion 4.33.(2). So, in order to finish the classification of simple weight A-modules it remains to

describe the set Â(λ) (weight, X-torsionfree, Y -torsionfree).

The set Â(0) (weight, X-torsionfree, Y -torsionfree). Let Ct := CA(H)t be the localization of

the algebra CA(H) at the powers of the element t. Then by Corollary 4.15, Ct = K[C,H]⊗A′1,t.
Clearly, Ct = CAt(H). Let [M ] ∈ Ĉ0,µ (t-torsionfree). By Theorem 4.29.(2), the element t acts

bijectively on M (since t is a normal element of R and (t) = Rt). Therefore, the CA(H)-module

M is also a Ct-module. Using the equality At = Ct[X
±1;σ], let us define an At-module

M̃ := At ⊗Ct M =
⊕
i∈Z

Xi ⊗M =
⊕
i>1

Y i ⊗M ⊕
⊕
i>0

Xi ⊗M. (4.37)

Clearly, M̃ is a weight A-module with Wt(M̃) = O(µ) = µ + Z and M̃µ+i = Xi ⊗M for all

i ∈ Z. The A-module M̃ is X- and Y -torsionfree. Moreover, the A-module M̃ is simple since if

N is a nonzero submodule of M̃ then it contains a nonzero element Xi ⊗m for some i ∈ Z and

m ∈M . If i = 0 then N = Am = M̃ . If i < 0 then N 3 X |i|Xi⊗m = 1⊗m, and so N = M̃ . If

i > 0 then N 3 Y iXi ⊗m = 1⊗ tim 6= 0, and so N = M̃ . If M ′ ∈ Ĉ0,µ′ (t-torsionfree) then the

A-modules M̃ and M̃ ′ are isomorphic iff O(µ) = O(µ′) and the C0,µ-modules M and Xi ⊗M ′

are isomorphic where µ = µ′+ i for a unique i ∈ Z. Clearly, GK (M̃) = 2. The following theorem

is an explicit description of the set Â(0) (weight, X-torsionfree, Y -torsionfree).

Theorem 4.35. Â(0) (weight, X-torsionfree, Y -torsionfree) = {[M̃ ] | [M ] ∈ Ĉ0,µO (t-torsionfree), O ∈
K/Z} and GK (M̃) = 2 for all M̃ .

Proof. It suffices to show that if M ∈ Â(0) (weight, X-torsionfree, Y -torsionfree) then M ' M̃

for some [M ] ∈ Ĉ0,µO (t-torsionfree). Fix µ ∈ Wt(M). Since the elements X and Y act

injectively on M, we have that O(µ) ⊆ Wt(M). So, we may assume that µ = µO where

O = O(µ). Then M :=Mµ ∈ Ĉ0,µO (t-torsionfree), and soM⊇
⊕

i>1 Y
iM⊕

⊕
i>0X

iM = M̃ ,

by (4.37) and simplicity of M̃ . So, M = M̃ , as required.

The set Â(λ) (weight, X-torsionfree, Y -torsionfree) where λ 6= 0. Recall that At = Ct[X
±1;σ].

Let [M ] ∈ Ĉλ,µ (t-torsionfree). Then [Mt] ∈ Ĉλ,µt . The At-module

M� := At ⊗Ct Mt =
⊕
i∈Z

Xi ⊗Mt (4.38)

is a simple, weight At-module with Wt(M�) = O(µ) = µ+Z and M�µ+i = Xi ⊗Mt for all i ∈ Z
(if N is a nonzero submodule of M� then it contains a nonzero element Xi ⊗m for some i ∈ Z
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and m ∈Mt. Then N 3 X−iXi ⊗m = 1⊗m, and so N = M�). For all i ∈ Z,

M�i = Xi ⊗Mt 'Mσ−i

t (4.39)

where Mσ−i

t is the Ct-module twisted by the automorphism σ−i of the algebra Ct. (Recall that

At = Ct[X
±1;σ]). By Theorem 4.26 and Theorem 4.25,

Ĉλ,µ (t-torsionfree) =
{

[
A′1
A′1e

], [
A′1

A′1(h− νO)
] | O ∈ K/Z \ {Z}

}
t
{

[soc(Nb)] | b ∈ Irr(B)/ ∼, b is normal
}

where Irr(B)/ ∼ is the set of equivalence classes of irreducible elements of the algebra B =

K(h)[t±1;σ] and Nb = Cλ,µ/Cλ,µ ∩Bb. Moreover, by Theorem 4.26.(3), soc(Nb) ' Nbt−n for all

n� 0.

For all λ ∈ K∗ and µ ∈ K, the module mλ,µ := Cλ,µt /Cλ,µt e is a simple CA(H)-module. Hence,

socCA(H)(m
λ,µ) = mλ,µ. Notice that

( A′1
A′1e

)�
=
⊕
i∈Z

Xi ⊗
A′1,t
A′1,te

'
⊕
i∈Z

Xi ⊗ Cλ,µt

Cλ,µt e
=
⊕
i∈Z

Xi ⊗mλ,µ

and Xi ⊗mλ,µ ' mλ,µ+i as CA(H)-modules. Then there are equalities of A-modules

socA

(( A′1
A′1e

)�)
=
⊕
i∈Z

socCA(H)(X
i ⊗mλ,µ) =

⊕
i∈Z

mλ,µ+i. (4.40)

For all λ ∈ K∗, µ ∈ K and O ∈ K/Z \ {Z}, the module Mλ,µ,O := Cλ,µt /Cλ,µt (h− νO) is a simple

CA(H)-module. Hence, socCA(H)(M
λ,µ,O) = Mλ,µ,O. Since

( A′1
A′1(h− νO)

)�
=
⊕
i∈Z

Xi ⊗
A′1,t

A′1,t(h− νO)
'
⊕
i∈Z

Xi ⊗ Cλ,µt

Cλ,µt (h− νO)
=
⊕
i∈Z

Xi ⊗Mλ,µ,O

and Xi ⊗Mλ,µ,O ' Mλ,µ+i,O as CA(H)-modules. Then there are equalities of A-modules

socA

(( A′1
A′1(h− νO)

)�)
=
⊕
i∈Z

socCA(H)(X
i ⊗Mλ,µ,O) =

⊕
i∈Z

Mλ,µ+i,O. (4.41)

If M ' Nb = Cλ,µ/Cλ,µ ∩Bb for an irreducible element b of B = K(h)[t±1;σ]. For all i ∈ Z,

Mσ−i

t ⊇ Cλ,µ+i
t

Cλ,µ+i
t ∩Bσi(b)

=: Nσi(b).

By Theorem 4.26.(3),

socCA(H)(M
σ−i

t ) = socCA(H)(Nσi(b)) = Nσi(b)t−ni
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for all ni � 0. Then the A-module

socA(M�) =
⊕
i∈Z

socCA(H)(X
i ⊗Mt) '

⊕
i∈Z

Nσi(b)t−ni (4.42)

belongs to the set Â(λ) (weight, X-torsionfree, Y -torsionfree). The next theorem shows that all

elements of the set Â(λ) (weight, X-torsionfree, Y -torsionfree) are precisely of this kind.

Theorem 4.36. Let λ ∈ K∗ and µ ∈ K. Then Â(λ) (weight, X-torsionfree, Y -torsionfree) =

{[socA(M�)] | [M ] ∈ Ĉλ,µO (t-torsionfree), O ∈ K/Z} and socA(M�) is explicitly described in

(4.40), (4.41) and (4.42), the A-modules socA(M�) and socA(M ′�) are isomorphic iff λ = λ′,

O = O′ and M 'M ′; GK (socA(M�)) = 2.

Proof. Let [M] ∈ Â(λ) (weight, X-torsionfree, Y -torsionfree). Then Wt(M) = O ∈ K/Z. Let

µ = µO. Then M := Mµ ∈ Ĉλ,µ (t-torsionfree) and Mt ∈ Ĉλ,µt . Clearly, M ⊆ Mt = M�,

and so M = socA(M�). Given [M ′] ∈ Ĉλ′,µO′ (t-torsionfree). If socA(M�) ' socA(M ′�) then

M� = socA(M�)t ' socA(M ′�)t = M ′� as At-modules, and so λ = λ′, O = O′ and Mt ' M ′t as

Cλ,µOt -modules. Then M = socCA(H)(Mt) ' socCA(H)(M
′
t) = M ′ as CA(H)-modules. Clearly,

GK (socA(M�)) = 2.

By (4.33), (4.35) and (4.36), Theorem 4.34, Theorem 4.35 and Theorem 4.36 give a complete

classification of simple weight A-modules.

4.6 The Schrödinger algebra

The Schrödinger algebra is a non-semisimple Lie algebra, which plays an important role in

mathematical physics. A classification of simple lowest weight modules for the Schrödinger

algebra is given in [22]. The fact that all the weight spaces of a simple weight module have the

same dimension is proved in [43]. By using Mathieu’s twisting functor, a classification of simple

weight modules with finite dimensional weight spaces over the Schrödinger algebra is given in

[23]. In [42], the author studied the finite dimensional indecomposable modules for Schrödinger

algebra. Quite recently, [24] studied the category O for the Schrödinger algebra and described

primitive ideals with nonzero central charge.

The Schrödinger algebra s is a 6-dimensional Lie algebra that admits a K-basis {F,H,E, Y,X,Z}
elements of which satisfy the defining relations:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H, [H,X] = X,

[H,Y ] = −Y, [E, Y ] = X, [E,X] = 0, [F,X] = Y,

[F, Y ] = 0, [X,Y ] = Z, [Z, s] = 0.

The Lie algebra s is not semisimple and can be viewed as the semidirect product s = sl2 nH of

Lie algebras where sl2 = KF ⊕ KH ⊕ KE and H = KX ⊕ KY ⊕ KZ is the three dimensional

Heisenberg Lie algebra. Let S := U(s) be the universal enveloping algebra of the Schrödinger
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algebra s. The primitive ideals of U(s) with non-zero central charge were described by Dubsky,

Lü, Mazorchuk and Zhao, [24]. In [24], they wrote that “the problem of classification of primitive

ideals in U(s) for zero central charge might be very difficult”. Using the classification of prime

ideals of A (Theorem 4.6) we give a complete classification of the primitive ideals of U(s). It is

conjectured that there is no simple singular Whittaker module for the algebra S [44, Conjecture

4.2]. We construct a family of such S-modules (Proposition 4.44).

The centre of S and some related algebras. In this section, we show that the localization

SZ of the algebra S at the powers of the central element Z is isomorphic to the tensor product

of algebras K[Z±1] ⊗ U(sl2) ⊗ A1, see (4.53). Using this fact, a short proof is given of the fact

that the centre of the algebra S is a polynomial algebra in two explicit generators (Proposition

4.39). The fact that the centre Z(S) of S is a polynomial algebra was proved in [24] by using the

Harish-Chandra homomorphism. In the above papers, it was not clear how the nontrivial central

element c was found. In this paper, we clarify the ‘origin’ of c which is the Casimir element of

the ‘hidden’ tensor component U(sl2) in the decomposition (4.53).

Let U := U(sl2) be the enveloping algebra of the Lie algebra sl2. Then the centre of the algebra

U is a polynomial algebra, Z(U) = K[∆], where ∆ := 4FE + H2 + 2H is called the Casimir

element of U .

An automorphism γ of S. The algebra S admits an automorphism γ defined by

γ(F ) = E, γ(H) = −H, γ(E) = F, γ(Y ) = −X, γ(X) = −Y, and γ(Z) = −Z. (4.43)

Clearly, γ2 = idS .

The subalgebra H of S. Let H be the subalgebra of S generated by the elements X,Y and

Z. Then the generators of the algebra H satisfy the defining relations

XY − Y X = Z, ZX = XZ, and ZY = Y Z.

So, H = U(H) is the universal enveloping algebra of the three dimensional Heisenberg algebra

H. In particular, H is a Noetherian domain of Gefand-Kirillov dimension 3. Let HZ be the

localization of H at the powers of the element Z and X := Z−1X ∈ HZ . Then the algebra

HZ is a tensor product of algebras

HZ = K[Z±1]⊗A1 (4.44)

where A1 := K〈X , Y 〉 is the (first) Weyl algebra since [X , Y ] = 1.

The subalgebra E of S. Let E be the subalgebra of S generated by the elements X,Y, Z and

E. Then

E = H [E; δ] (4.45)
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is an Ore extension where δ is the K-derivation of the algebra H defined by δ(Y ) = X, δ(X) = 0

and δ(Z) = 0. Let EZ be the localization of E at the powers of the element Z. Then

EZ = HZ [E; δ] =
(
K[Z±1]⊗A1

)
[E; δ] (4.46)

where δ is defined as in (4.45), in particular, δ(X ) = 0. Now, the element s = − 1
2ZX 2 satisfies

the conditions of Lemma 2.17. Specifically, the element E′ := E + s = E − 1
2Z
−1X2 commutes

with the elements of A1. Hence, EZ is a tensor product of algebras

EZ = K[E′, Z±1]⊗A1 = K[E′]⊗HZ . (4.47)

In particular, E and EZ are Noetherian domains of Gelfand-Kirillov dimension 4.

The subalgebra F of S. Let F := γ(E ). Then F is the subalgebra of S generated by the

elements X,Y, Z and F . Notice that the automorphism γ (see (4.43)) can be naturally extended

to an automorphism of SZ by setting γ(Z−1) = −Z−1 where SZ is the localization of the algebra

S at the powers of the element Z. Let FZ be the localization of F at the powers of the central

element Z and F ′ := γ(E′) = F + 1
2Z
−1Y 2 ∈ FZ . Then FZ is a tensor product of algebras

FZ = K[F ′, Z±1]⊗A1 = K[F ′]⊗HZ (4.48)

where A1 is as above, see (4.44).

The algebra A . Let A be the subalgebra of S generated by the elements H,E, Y,X and Z.

The algebra A is the enveloping algebra U(a) of the solvable Lie subalgebra a of s with basis

elements H,E, Y,X and Z. The algebra A is an Ore extension

A = E [H; δ] (4.49)

where δ is a K-derivation of the algebra E defined by δ(E) = 2E, δ(Y ) = −Y, δ(X) = X and

δ(Z) = 0. Let AZ be the localization of the algebra A at the powers of the central element Z.

Then

AZ = EZ [H; δ] =
(
K[E′, Z±1]⊗A1

)
[H; δ] (4.50)

where δ is defined as in (4.49), in particular, δ(X ) = X . The element s = X Y − 1
2 = Z−1XY − 1

2

satisfies the conditions of Lemma 2.17. In particular, the element H ′ := H+s = H+Z−1XY − 1
2

commutes with the elements of A1 and [H ′, E′] = 2E′. Hence, AZ is a tensor product of algebras

AZ = K[Z±1]⊗K[H ′][E′;σ]⊗A1 (4.51)

where σ is the automorphism of the algebra K[H ′] such that σ(H ′) = H ′ − 2. In particular, AZ

is a Noetherian domain of Gelfand-Kirillov dimension 5.

The factor algebra S/(Z). The set KZ is an ideal of the Lie algebra s and s/KZ ' sl2 n V2

is a semidirect product of Lie algebras where V2 = KX ⊕ KY is a 2-dimensional abelian Lie
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algebra. So,

S/(Z) ' U(s/KZ) ' U(sl2 n V2).

Recall that the centre of A = U(sl2 n V2) is a polynomial algebra Z(A) = K[C] where C =

FX2 −HXY − EY 2, see Lemma 4.1.

Lemma 4.37. 1. Let E′ := E − 1
2Z
−1X2, F ′ := F + 1

2Z
−1Y 2 and H ′ := H +Z−1XY − 1

2 .

Then the following commutation relations hold in the algebra SZ :

[H ′, E′] = 2E′, [H ′, F ′] = −2F ′, [E′, F ′] = H ′,

i.e., the Lie algebra KF ′⊕KH ′⊕KE′ is isomorphic to sl2. Moreover, the subalgebra U ′ of

SZ generated by H ′, E′ and F ′ is isomorphic to the enveloping algebra U(sl2). Furthermore,

the elements E′, F ′ and H ′ commute with X and Y .

2. The localization SZ of the algebra S at the powers of Z is SZ = K[Z±1]⊗ U ′ ⊗A1.

Proof. 1. It is straightforward to verify that the commutation relations in the lemma hold. The

fact that the elements E′, F ′ and H ′ commute with the elements X and Y follows from (4.47),

(4.48) and (4.51), respectively. Let U be the universal enveloping algebra of the Lie algebra

sl2 = 〈F ′, H ′, E′〉. The algebra U ′ is an epimorphic image of the algebra U under a natural

epimorphism f : U → U ′. The kernel of f , say p, is a (completely) prime ideal of U since U ′

is a domain. Suppose that p 6= 0, we seek a contradiction. Then p ∩ K[∆] 6= 0 (it is known

fact) where ∆ is the Casimir element of U . In particular, there is a non-scalar monic polynomial

P (t) = tn+λn−1t
n−1 + · · ·+λ0 ∈ K[t] such that P (∆′) = 0 in SZ where ∆′ = 4F ′E′+H ′2 +2H ′.

Then ZnP (∆′) ∈ S and necessarily ZnP (∆′) ≡ 0 mod SZ, i.e., (EY 2 + HXY − FX2)n ≡ 0

mod SZ, a contradiction since S/SZ ' U(sl2 n V2).

2. Using the defining relations of the algebra S, we see that the algebra S is a skew polynomial

algebra

S = A [F ;σ, δ] (4.52)

where σ is the automorphism of the algebra A defined by σ(H) = H + 2, σ(E) = E, σ(Y ) =

Y, σ(X) = X and σ(Z) = Z; and δ is the σ-derivation of A given by the rule: δ(H) = δ(Y ) =

δ(Z) = 0, δ(E) = −H and δ(X) = Y. Then, by (4.51) and statement 1,

SZ = AZ [F ′;σ′, δ′] =
(
K[Z±1]⊗K[H ′][E′;σ]⊗A1

)
[F ′;σ′, δ′] = K[Z±1]⊗ U ′ ⊗A1 (4.53)

is a tensor product of algebras where σ′ is an automorphism of AZ such that σ′(Z) = Z, σ′(H ′) =

H ′+ 2, σ′(E′) = E′, σ′(X) = X and σ′(Y ) = Y ; and δ′ is a σ′-derivation of the algebra AZ such

that δ′(Z) = δ′(H ′) = δ′(X) = δ′(Y ) = 0 and δ′(E′) = −H ′. In particular, SZ is a Noetherian

domain of Gelfand-Kirillov dimension 6.

The centre of the algebra S. Let ∆′ := 4F ′E′ + H ′2 + 2H ′ be the Casimir element of U ′,

then the centre Z(U ′) = K[∆′] is a polynomial algebra. Using the explicit expressions of the
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elements F ′, E′ and H ′ (see Lemma 4.37.(1)), the element ∆′ can be written as

∆′ =
(
4FE +H2 +H

)
+ 2Z−1

(
EY 2 +HXY − FX2

)
− 3

4
. (4.54)

Let

c := Z∆′ +
3

4
Z = Z

(
4FE +H2 +H

)
+ 2
(
EY 2 +HXY − FX2

)
. (4.55)

Lemma 4.38. Z
(
SZ
)

= K[Z±1, c].

Proof. By (4.53) and Lemma 2.20, Z
(
SZ
)

= Z
(
K[Z±1]

)
⊗ Z

(
U ′
)
⊗ Z

(
A1

)
= K[Z±1]⊗K[∆′] =

K[Z±1,∆′] = K[Z±1, c].

The next proposition shows that the centre of S is a polynomial algebra in two variables.

Proposition 4.39. Z
(
S
)

= K[Z, c].

Proof. By Lemma 4.38, Z(S) = S ∩ Z(SZ) = S ∩ K[Z±1, c] ⊇ K[Z, c]. It remains to show that

Z(S) = K[Z, c]. Suppose that this is not the case, we seek a contradiction. Then Z−1f(c) ∈ Z(S)

for some non-scalar polynomial f(c) ∈ K[c] (since Z−1 /∈ S). Hence, by (4.55),

0 ≡ f(c) ≡ f(−2C) mod SZ,

i.e., the element C is algebraic in U(sl2 n V2), a contradiction.

The primitive ideals and existence of singular Whittaker modules over the Schrödinger

algebra. In this subsection, K is an algebraically closed field. Our aim is to give a classifica-

tion of primitive ideals of the algebra S and to prove existence of simple singular Whittaker

S-modules.

For λ ∈ K, let S(λ) := S/S(Z − λ). Then S(0) ' A. If λ 6= 0 then, by (4.53),

S(λ) = SZ/SZ(Z − λ) = U ′λ ⊗A1 (4.56)

is a tensor product of algebras. The algebra U ′λ, which is isomorphic to the enveloping algebra

U(sl2), is generated by the elements

Hλ = H + λ−1XY − 1

2
, Eλ = E − 1

2
λ−1X2, , Fλ = F +

1

2
λ−1Y 2

and the elements Hλ, Eλ and Fλ are canonical generators of the Lie algebra sl2 ([Hλ, Eλ] = 2Eλ,

[Hλ, Fλ] = −2Fλ and [Eλ, Fλ] = Hλ, see Lemma 4.37 for details). The algebra A1 is the Weyl

algebra generated by the elements λ−1X and Y . In particular, S(λ) is a Noetherian domain

of Gelfand-Kirillov dimension 5, and the ideal of S generated by Z − λ is completely prime.

Furthermore, Z(S(λ)) = K[cλ] where cλ = λ(4FE+H2 +H)+2(EY 2 +HXY −FX2) is a non-

standard Casimir element of the algebra U ′λ written via the new canonical generators Hλ, Eλ

and Fλ, i.e., 4EλFλ +H2
λ − 2Hλ = λ−1cλ − 3

4 .
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For λ, µ ∈ K, let S(λ, µ) := S/(Z − λ, c− µ) ' S(λ)/S(λ)(cλ − µ). The following lemma gives

the condition for the factor algebra S(λ, µ) to be a simple algebra.

Lemma 4.40. Let λ ∈ K∗ and µ ∈ K.

1. Z(S(λ, µ)) = K.

2. The algebra S(λ, µ) is a simple algebra iff µ 6= λ(n2 + 2n+ 3
4 ) for all n ∈ N.

3. If µ = λ(n2 + 2n + 3
4 ) for some n ∈ N then S(λ, µ) has a unique proper two-sided ideal

which is the tensor product of the annihilator of the unique simple (n + 1)-dimensional

sl2-module and the Weyl algebra A1.

Proof. Statement 1 follows from (4.56). Statements 2 and 3 follows from [21, 4.9.22] and the

fact that 4EλFλ +H2
λ − 2Hλ = λ−1cλ − 3

4 .

Primitive ideals of the algebra S. The next proposition gives a classification of prime,

maximal and primitive ideals of the algebra S(λ) where λ 6= 0. By (4.56), the map Spec (U ′λ)→
Spec (S(λ)), p 7→ p⊗A1, is an injection, and we identify Spec (U ′λ) with its image in Spec (S(λ)).

Proposition 4.41. Let λ ∈ K∗. Then Spec (S(λ)) = Spec (U ′λ), Max (S(λ)) = Max (U ′λ) and

Prim (S(λ)) = Prim (U ′λ).

Proof. The first two equalities are obvious, by applying [21, Lemma 4.5.1]. Clearly, Prim (U ′λ) ⊆
Prim (S(λ)) and Prim (U ′λ) = Spec (U ′λ)\{0} = Spec (S(λ))\{0}. Since Spec (S(λ)) = Spec (U ′λ)

and 0 is not a primitive ideal of S(λ) (since Z(S(λ)) = K[cλ]), we must have Prim (U ′λ) =

Prim (S(λ)).

Remark. The primitive ideals of S(λ) for λ 6= 0 were described in [24, Corollary 30] as annihi-

lators of Verma modules.

The next theorem together with Theorem 4.8 , gives an explicit description of the set of primitive

ideals of S.

Theorem 4.42. Suppose that K is an algebraically closed field. Then

Prim(S) =
{

(Z − λ, p) |λ ∈ K∗, p ∈ Spec (U ′λ) \ {0}
}
t
{

(Z, q) | q ∈ Prim(A)
}
.

Proof. Since Z is a central element of S and K is algebraically closed, any primitive ideal of

S contains Z − λ for some λ ∈ K. Hence, Prim(S) = tλ∈K∗Prim(S(λ)) t Prim(A) =
{

(Z −
λ, p) |λ ∈ K∗, p ∈ Prim(U ′λ)

}
t
{

(Z, q) | q ∈ Prim(A)
}

, as required. Notice that Prim (U ′λ) =

Spec (U ′λ) \ {0}.

Singular Whittaker S-modules. Simple, non-singular, Whittaker modules of the Schrödinger

algebra were classified in [44]. They conjectured that there is no simple singular Whittaker

module for the Schrödinger algebra [44, Conjecture 4.2]. Proposition 4.44 shows that there

exists simple singular Whittaker A-modules (these are Whittaker Schrödinger modules of zero
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level), hence the conjecture is not true, in general. But we prove that the conjecture is true for

Whittaker Schrödinger modules of non-zero level.

Let R = S or S(λ) for some λ ∈ K and let V be an R-module. A non-zero element w ∈ V is

called a Whittaker vector of type (µ, δ) if Ew = µw and Xw = δw where µ, δ ∈ K. An R-module

V is called a Whittaker module of type (µ, δ) if V is generated by a Whittaker vector of type

(µ, δ). An R-module V is called a singular Whittaker module if V is generated by a Whittaker

vector w ∈ V of type (0, 0) and Hw /∈ Kw.

Using the decomposition (4.56), we can give a classification of simple Whittaker S-modules of

non-zero level easily (i.e., the simple Whittaker S(λ)-modules where λ 6= 0).

Whittaker S(λ)-modules where λ 6= 0. Let µ, δ ∈ K. The universal Whittaker S(λ)-module

of type (µ, δ) is W := W (µ, δ) := S(λ)/S(λ)
(
E − µ,X − δ

)
. So, any Whittaker S(λ)-module of

type (µ, δ) is a homomorphic image of W . By (4.56),

W =
S(λ)

S(λ)
(
Eλ + 1/2λ−1X2 − µ, X − δ

) =
S(λ)

S(λ)
(
Eλ + 1/2λ−1δ2 − µ, X − δ

)
= U ′λ/U

′
λ

(
Eλ + 1/2λ−1δ2 − µ

)
⊗A1/A1

(
X − δ

)
(4.57)

The module WU ′λ
:= U ′λ/U

′
λ

(
Eλ+1/2λ−1δ2−µ

)
is a Whittaker U ′λ-module of type (−1/2λ−1δ2 +

µ). The simple Whittaker U ′λ-modules are easily classified, see [18, Proposition 5.3]. Note that

A1/A1(X−δ) is a simple A1-module with EndA1(A1/A1(X−δ)) = K. Thus we have the following

conclusion (which recovers the results of [44, Theorem 6.11]):

Ŝ(λ)
(
Whittaker module of type (µ, δ)

)
= Û ′λ

(
Whittaker module of type (µ− 1/2λ−1δ2)

)
⊗A1/A1(X − δ).

The next proposition shows that there is no simple singular Whittaker S-module of nonzero

level, i.e., all the simple Whittaker S(λ)-modules of type (0, 0) are weight modules where λ 6= 0.

Proposition 4.43. If λ ∈ K∗ then there is no simple singular Whittaker S(λ)-module.

Proof. By (4.57), the universal singular Whittaker S(λ)-module W = U ′λ/U
′
λEλ ⊗ A1/A1X.

Notice that A1/A1X is a simple A1-module and EndA1(A1/A1X) = K. Hence, each simple

factor module L of W is equal to M ⊗ A1/A1X where M is a simple factor module of the U ′λ-

module U ′λ/U
′
λEλ. Then by [44, Theorem 6.10.(i)], M is a (highest) Hλ-weight U ′λ-module, i.e.,

M is a simple factor module of U ′λ/U
′
λ(Hλ − µ,Eλ) for some µ ∈ K. Then L is a simple factor

module of U ′λ/U
′
λ(Hλ − µ,Eλ)⊗A1/A1X ' S(λ)/S(λ)(H + 1

2 − µ,E,X). Hence, L is a weight

module. This completes the proof.

Recall that S(0) = A. Let W := A/A(X,E), a left A-module. Then any singular Whittaker

A-module is an epimorphic image of W. For any λ ∈ K∗, we define the A-module

V (λ) := A/A(X,E, Y − λ) =
∑
i,j∈N

KHiF j 1̄ where 1̄ = 1 +A(X,E, Y − λ).
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Clearly, V (λ) is a singular Whittaker A-module. Then next proposition shows that V (λ) is a

simple A-module. Hence, the conjecture [44, Conjecture 4.2] does not hold in this case.

Proposition 4.44. For any λ ∈ K∗, the module V (λ) is a simple A-module.

Proof. We have to show that for any 0 6= v =
∑
i,j∈N αi,jH

iF j 1̄ ∈ V (λ) where αi,j ∈ K, there

exists an element a ∈ A such that av ∈ K∗1̄. If j > 0 then Xv =
∑
i,j∈N αi,j(−λ)j(H−1)iF j−11̄.

By considering the leading term we see that Xv 6= 0. Therefore, 0 6= Xnv ∈ K[H]1̄ for some

n ∈ N. So, we may assume that v =
∑m
i=0 αiH

i1̄ where αi ∈ K,m ∈ N and αm 6= 0. Then

0 6= (Y − λ)v =
∑m
i=0 αiλ

(
(H + 1)i −Hi

)
1̄. By induction on m, we have (Y − λ)mv ∈ K∗1̄, as

required.



Chapter 5

The quantum spatial ageing

algebra

5.1 Introduction

Let K be a field and an element q ∈ K∗ := K \ {0} which is not a root of unity. The algebra

Kq[X,Y ] := K〈X,Y |XY = qY X〉 is called the quantum plane. A classification of simple

modules over the quantum plane is given in [9]. The quantized enveloping algebra Uq(sl2) of sl2

is generated over K by elements E,F,K and K−1 subject to the defining relations:

KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

For basic properties and representation theory of the algebra Uq(sl2) the reader is referred to

[29, 33]. The simple Uq(sl2)-modules were classified in [2], see also [8], [9] and [17]. The quantum

plane and the quantized enveloping algebra Uq(sl2) are important examples of generalized Weyl

algebras and ambiskew polynomial rings, see e.g., [5] and [32]. Let U>0
q (sl2) be the (positive)

Borel part of Uq(sl2). It is the subalgebra of Uq(sl2) generated by K±1 and E. There is a Hopf

algebra structure on U>0
q (sl2) defined by

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = E ⊗ 1 +K ⊗ E, ε(E) = 0, S(E) = −K−1E.

The notion of smash product has proved to be very useful in studying Hopf algebra actions [38].

For example, the enveloping algebra of a semi-direct product of Lie algebras can naturally be

seen as a smash product algebra. The smash product is constructed from a module algebra, see

[38, 4.1] for details and examples. We can make the quantum plane a U>0
q (sl2)-module algebra

by defining

K ·X = qX, E ·X = 0, K · Y = q−1Y, E · Y = X,

63
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and introduce the smash product algebra A := Kq[X,Y ] o U>0
q (sl2). We call this algebra the

quantum spatial ageing algebra. The defining relations for the algebra A are given explicitly in

the following definition.

Definition. The quantum spatial ageing algebra A = Kq[X,Y ]oU>0
q (sl2) is an algebra generated

over K by the elements E, K, K−1, X and Y subject to the defining relations:

EK = q−2KE, XK = q−1KX, Y K = qKY,

EX = qXE, EY = X + q−1Y E, qY X = XY.

The algebra A can be seen as the quantum analogue of the spatial ageing algebra. This chapter is

organized as follows. In Section 5.2, we describe the partially ordered sets of the prime, maximal

and primitive ideals of the algebra A. Using this description the prime factor algebras of A
are given explicitly via generators and relations (Theorem 5.8). There are nine types of prime

factor algebras of A. For two of them, ‘additional’ non-obvious units appear under factorization

at prime ideals. It is proved that every prime ideal of A is completely prime (Corollary 5.12).

In Section 5.3, the automorphism group of A is determined, which turns out to be a ‘small’

non-commutative group that contains an infinite discrete subgroup (Theorem 5.14). The orbits

of the prime spectrum under the action of the automorphism group are described. In Section

5.4, the centralizers of the elements K, X, ϕ, Y and E in the algebra A are determined.

Much of this chapter is extracted from the joint paper with V. Bavula [11].

5.2 Prime spectrum of the algebra A

The aim of this section is to describe the prime, maximal and primitive spectra of the algebra A
(Theorem 5.8, Corollary 5.9 and Proposition 5.11). Every prime ideal of A is completely prime

(Corollary 5.12). For all prime ideals P of A, the factor algebras A/P are given by generators

and defining relations (Theorem 5.8).

Definition, [7]. Let D be an ring and σ be its automorphism. Suppose that elements b and

ρ belong to the centre of the ring D, ρ is invertible and σ(ρ) = ρ. Then E := D〈σ; b, ρ〉 :=

D[X,Y ;σ, b, ρ] is a ring generated by D, X and Y subject to the defining relations:

Xα = σ(α)X and Y α = σ−1(α)Y for all α ∈ D, and XY − ρY X = b.

If D is commutative domain, ρ = 1 and b = u−σ(u) for some u ∈ D (resp., if D is a commutative

finitely generated domain over a field K and ρ ∈ K∗) the algebras E were considered in [30] (resp.,

[31]).

The ring E is the iterated skew polynomial ring E = D[Y ;σ−1][X;σ, ∂] where ∂ is the σ-derivation

of D[Y ;σ−1] such that ∂D = 0 and ∂Y = b (here the automorphism σ is extended from D to

D[Y ;σ−1] by the rule σ(Y ) = ρY ).
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Recall that an element d of a ring D is normal if dD = Dd. The next proposition shows that the

rings E are GWAs and under a certain (mild) conditions they have a ‘canonical’ normal element.

Proposition 5.1. Let E = D[X,Y ;σ, b, ρ]. Then

1. [7, Lemma 1.2] The ring E is the GWA D[H][X,Y ;σ,H] where σ(H) = ρH + b.

2. [7, Lemma 1.3] The following statements are equivalent:

(a) [7, Corollary 1.4] C = ρ(Y X + α) = XY + σ(α) is a normal element in E for some

central element α ∈ D,

(b) ρα− σ(α) = b for some central element α ∈ D.

3. [7, Corollary 1.4] If one of the equivalent conditions of statement 2 holds then the ring

E = D[C][X,Y ;σ, a = ρ−1C − α] is a GWA where σ(C) = ρC.

The algebra E is a GWA. Let E be the subalgebra of A generated by the elements X,E and

Y . The generators of the algebra E satisfy the defining relations

EX = qXE, Y X = q−1XY and EY − q−1Y E = X.

So, E = K[X][E, Y ;σ, b = X, ρ = q−1] where σ(X) = qX. The polynomial α = X
q−1−q is a solu-

tion to the equation q−1α−σ(α) = X. By Proposition 5.1, the algebra E = K[X,C][E, Y ;σ, a =

qC − α] is a GWA where σ(X) = qX, σ(C) = q−1C and C = q−1(Y E + X
q−1−q ) = EY + qX

q−1−q

is a normal element of the algebra E. Then the element ϕ = q(q−1 − q)C is a normal element of

the algebra E. Clearly, ϕ = (q−1 − q)Y E +X = (1− q2)EY + q2X. Then

E = K[X,ϕ][E, Y ;σ, a =
ϕ−X
q−1 − q

] (5.1)

is a GWA where σ(X) = qX and σ(ϕ) = q−1ϕ. So, the algebra

A = E[K±1; τ ] (5.2)

is a skew Laurent polynomial algebra where τ(E) = q2E, τ(X) = qX, τ(Y ) = q−1Y and τ(ϕ) =

qϕ. The algebra A is a Noetherian domain of Gelfand-Kirillov dimension GK (A) = 4.

Lemma 5.2. The following identities hold in the algebra A.

1. EY i = q−2i−1
q−2−1 XY

i−1 + q−iY iE.

2. Y Ei = qiEiY − q(1−q2i)
1−q2 XEi−1.

Proof. Both equalities can be proved by induction on i and using the relation EY = X +

q−1Y E.

For a left denominator set S of a ring R, we denote by S−1R = {s−1r | s ∈ S, r ∈ R} the left

localization of the ring R at S. If the left denominator set S is generated by elements X1, . . . , Xn,

we also use the notation RX1,...,Xn to denote the ring S−1R. If M is a left R-module then the

localization S−1M is also denoted by MX1,...,Xn .
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By Lemma 5.2, the set SY := {Y i | i > 0} is a left and right Ore set in the algebra A. Let AY
be the localization of A at the powers of Y . Recall that ϕ = EY − qY E = X + (q−1 − q)Y E,

we have

Xϕ = ϕX, Y ϕ = qϕY, Eϕ = q−1ϕE, Kϕ = qϕK.

So, the element ϕ is a normal element of the algebra A. By (5.1), the localization EY of

the algebra E at the powers of the element Y is the skew Laurent polynomial algebra EY =

K[X,ϕ][Y ±1;σ−1] where σ(X) = qX and σ(ϕ) = q−1ϕ. Similarly, EE = K[X,ϕ][E±1;σ] ' EY
where σ(X) = qX and σ(ϕ) = q−1ϕ. Then by (5.2),

AY = EY [K±1; τ ] = K[ϕ,X][Y ±1;σ][K±1; τ ] (5.3)

is an iterated skew polynomial ring where σ is the automorphism of K[ϕ,X] defined by σ(ϕ) = qϕ,

σ(X) = q−1X; and τ is the automorphism of the algebra K[ϕ,X][Y ±1;σ] defined by τ(ϕ) =

qϕ, τ(X) = qX, τ(Y ) = q−1Y . Let AY,X,ϕ be the localization of AY at the denominator set

{Xiϕj | i, j ∈ N}, then AY,X,ϕ = K[ϕ±1, X±1][Y ±1;σ][K±1; τ ] is a quantum torus. For an

algebra A we denote by Z(A) its centre. The next result shows that the algebra A and some of

its localizations have trivial centre.

Lemma 5.3. 1. Z(AY,X,ϕ) = K.
2. AY,X,ϕ is a simple algebra.

3. Z(AY ) = K.
4. Z(A) = K.

Proof. 1. Let u =
∑
αi,j,k,lϕ

iXjY kKl ∈ Z(AY,X,ϕ), where αi,j,k,l ∈ K and i, j, k, l ∈ Z. Since

Ku = uK, we have i + j − k = 0. The equality Xu = uX implies that k − l = 0. Similarly,

the equality Y u = uY implies that i − j + l = 0. Finally, using ϕu = uϕ we get −k − l = 0.

Therefore, we have i = j = k = l = 0, and so u ∈ K. Thus Z(AY,X,ϕ) = K.

2. By [27, Corollary 1.5.(a)], contraction and extension provide mutually inverse isomorphisms

between the lattices of ideals of a quantum torus and its centre. Then statement 2 follows from

statement 1.

3. Since K ⊆ Z(AY ) ⊆ Z(AY,X,ϕ) ∩ AY = K, we have Z(AY ) = K.

4. Since K ⊆ Z(A) ⊆ Z(AY ) ∩ A = K, we have Z(A) = K.

Lemma 5.4. The algebra AX,ϕ is a central simple algebra.

Proof. By Lemma 5.3.(1), the algebra AY,X,ϕ is central, hence so is the algebra AX,ϕ. By Lemma

5.3.(2), the algebra (AX,ϕ)Y = AY,X,ϕ is a simple Noetherian domain. So, if I is a nonzero ideal

of the algebra AX,ϕ then Y i ∈ I for some i > 0. To finish the proof it suffices to show that

(Y i) = AX,ϕ for all i > 1. (5.4)

To prove the equality we use induction on i. Let i = 1. Then X = EY − q−1Y E ∈ (Y ).

Since X is a unit of the algebra AX,ϕ, the equality (5.4) holds for i = 1. Suppose that i > 1
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and equality (5.4) holds for all i′ such that i′ < i. By Lemma 5.2.(1), Y i−1 ∈ (Y i). Hence,

(Y i) = (Y i−1) = AX,ϕ, by induction.

The element ϕ is a normal element of the algebras E and A. So, the localizations of the algebras

EY and AY at the powers of ϕ are as follows

EY,ϕ = K[X,ϕ±1][Y ±1;σ−1] and AY,ϕ = EY,ϕ[K±1; τ ]. (5.5)

Now, we introduce several factor algebras and localizations of A that play a key role in finding

the prime spectrum of the algebra A (Theorem 5.8) and all the prime factor algebras of A
(Theorem 5.8). In fact, explicit sets of generators and defining relations are found for all prime

factor algebras of A (Theorem 5.8). Furthermore, all these algebras are domains, i.e., all prime

ideals of A are completely prime (Corollary 5.12).

The algebra A/(X). The element X is a normal element in the algebras E and A. By (5.1),

the factor algebra

E/(X) = K[ϕ][E, Y ;σ, a =
ϕ

q−1 − q
], σ(ϕ) = q−1ϕ, (5.6)

is a GWA. Since Y E = ϕ
q−1−q , EY = q−1 ϕ

q−1−q = q−1Y E, the algebra

E/(X) ' K〈E, Y |EY = q−1Y E〉 (5.7)

is isomorphic to the quantum plane. It is a Noetherian domain of Gelfand-Kirillov dimension 2.

Now, the factor algebra

A/(X) ' E/(X)[K±1; τ ] (5.8)

is a skew Laurent polynomial algebra where τ(E) = q2E and τ(Y ) = q−1Y. It is a Noetherian

domain of Gelfand-Kirillov dimension 3. The element of the algebra A/(X), Z := ϕY K−1 =

(1− q2)EY 2K−1, belongs to the centre of the algebra A/(X). By (5.5), the localization of the

algebra A/(X) at the powers of the central element Z,

(
A/(X)

)
Z
' AY,ϕ

(X)Y,ϕ
' K[Z±1]⊗ Y, (5.9)

is the tensor product of algebras where the algebra Y := K[Y ±1][K±1; τ ] is a central simple

algebra since τ(Y ) = q−1Y and q is not a root of unity. Hence, the centre of the algebra (A/(X))Z

is K[Z±1]. The algebra (A/(X))Z is a Noetherian domain of Gelfand-Kirillov dimension 3.

Lemma 5.5. 1. Z
(
A/(X)

)
= K[Z].

2. Z
((
A/(X)

)
Z

)
= K[Z±1].

Proof. Z
(
A/(X)

)
= A/(X) ∩ Z

((
A/(X)

)
Z

)
= A/(X) ∩K[Z±1] = K[Z], by (5.8).
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The algebra A/(ϕ). The element ϕ is a normal element in the algebras E and A. By (5.1),

the factor algebra

E/(ϕ) = K[X][E, Y ;σ, a = − X

q−1 − q
], σ(X) = qX, (5.10)

is a GWA. Since Y E = − X
q−1−q and EY = q(− X

q−1−q ) = qY E, the algebra

E/(ϕ) ' K〈E, Y |EY = qY E〉 (5.11)

is isomorphic to the quantum plane. It is a Noetherian domain of Gelfand-Kirillov dimension 2.

Now, the factor algebra

A/(ϕ) ' E/(ϕ)[K±1; τ ] (5.12)

is a skew Laurent polynomial algebra where τ(E) = q2E and τ(Y ) = q−1Y . The algebra A/(ϕ)

is a Noetherian domain of Gelfand-Kirillov dimension 3. The element C := XYK ∈ A/(ϕ)

belongs to the centre of the algebra A/(ϕ).

The localization EX,Y of the algebra E at the Ore set S = {XiY j | i, j ∈ N},

EX,Y = K[X±1, ϕ][Y ±1;σ−1], σ(X) = qX, σ(ϕ) = q−1ϕ, (5.13)

is a skew Laurent polynomial algebra. Then the localization AX,Y of the algebra A at the Ore

set S is equal to AX,Y = EX,Y [K±1; τ ]. By (5.11) and (5.12), the localization of the algebra

A/(ϕ) at the powers of the element C,

( A
(ϕ)

)
C
' AX,Y

(ϕ)X,Y
'
( AX

(ϕ)X

)
Y
' K[C±1]⊗ Y (5.14)

is a tensor product of algebras where Y is the central simple algebra as in (5.9). Hence, the

centre of the algebra
(
A/(ϕ)

)
C

is K[C±1].

Lemma 5.6. 1. Z
(
A/(ϕ)

)
= K[C].

2. Z
((
A/(ϕ)

)
C

)
= K[C±1].

Proof. Z
(
A/(ϕ)

)
= A/(ϕ) ∩ Z

((
A/(ϕ)

)
C

)
= A/(ϕ) ∩K[C±1] = K[C], by (5.12).

Let f : A → B be an algebra epimorphism. Then Spec (B) can be seen as a subset of Spec (A)

via the injection Spec (B)→ Spec (A), p 7→ f−1(p). So, Spec (B) = {q ∈ Spec (A) | ker(f) ⊆ q}.
Given a left denominator set S of the algebra A. Then σ : A→ S−1A, a 7→ 1−1a, is an algebra

homomorphism. If the algebra A is a Noetherian algebra then Spec (S−1A) can be seen as a

subset of Spec (A) via the injection Spec (S−1A)→ Spec (A), q 7→ σ−1(q).

In the proof of Theorem 5.8 the following very useful lemma is used repeatedly.

Lemma 5.7. Let A be a ring, S be a left denominator set of A and σ : A→ S−1A, a 7→ a
1 . Let

q be a completely prime ideal of S−1A, p be an ideal of A such that p ⊆ σ−1(q) and S−1p = q.

Then p = σ−1(q) iff A/p is a domain.
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Proof. (⇒) Since A/σ−1(q) ⊆ S−1A/q and S−1A/q is a domain (since q is a completely prime

ideal), the algebra A/σ−1(q) is a domain.

(⇐) The left S−1A-module S−1(A/p) ' S−1A/S−1p ' S−1A/q is not equal to zero. In partic-

ular, S ∩ p = ∅. So, for all s ∈ S, the elements s+ p are nonzero in A/p. Since A/p is a domain,

torS(A/p) = 0. Clearly, σ−1(q)/p ⊆ torS(A/p). Hence, p = σ−1(q).

The prime spectrum of the algebra A. The key idea in finding the prime spectrum of the

algebra A is to use Proposition 3.3 repeatedly and the following diagram of algebra homomor-

phisms
A AX AX,ϕ

A/(X) AX/(ϕ)X

A/(X,Z)
(
A/(X)

)
Z

U = A/(X,Z, Y )
(
A/(X,Z)

)
Y
' Y

L = U/(E) UE (5.15)(
where L = K[K±1] and U := U>0

q (sl2)
)

that explains the choice of elements at which we localize. Using (5.15) and Proposition 3.3, we

represent the spectrum Spec (A) as the disjoint union of the following subsets where we identify

the sets of prime ideals via the bijections given in the statements (a) and (b) of Proposition 3.3:

Spec (A) = Spec (L) t Spec (UE) t Spec (Y)

t Spec
(
(A/(X))Z

)
t Spec

(
AX/(ϕ)X

)
t Spec (AX,ϕ). (5.16)

The theorem below gives an explicit description of the prime ideals of the algebra A together

with inclusions of prime ideals.

Theorem 5.8. The prime spectrum Spec (A) of the algebra A is the disjoint union of sets (5.16).

In the diagram (5.17), all the inclusions of prime ideals are given (lines represent inclusions of

primes). More precisely,

{
(Y,E, p) | p ∈ Max (K[K,K−1])

}
(Y,E)

(Y )
{
(X, q) | q ∈ Max (K[Z]) \ {(Z)}

}
(E)

{
(ϕ, r) | r ∈ Max (K[C]) \ {(C)}

}
(X) (ϕ)

0 (5.17)
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where

1. Spec (L) = {(Y,E, p) | p ∈ Spec (K[K±1])\{0}} and A/(Y,E, p) ' L/p where L = K[K±1].

2. Spec (UE) = {(Y )}, (Y ) = (X,Y ) = (X,Z, Y ) and A/(Y ) ' K[E][K±1; τ ] where τ(E) =

q2E.

3. Spec (Y) = {(E)}, (E) = (E,X) = (E,ϕ) and A/(E) ' K[Y ][K±1; τ ] where τ(Y ) = q−1Y.

4. Spec
(
(A/(X))Z

)
= {(X), (X, q) | q ∈ Max(K[Z]) \ {(Z)}}, Z = ϕY K−1,

(a) A/(X) ' E/(X)[K±1; τ ] is a domain (see (5.8)), and

(b) A/(X, q) ' Aϕ,Y
(X,q)ϕ,Y

' Lq⊗Y is a simple domain which is a tensor product of algebras

where Lq := K[Z]/q is a finite field extension of K.

5. Spec ( AX(ϕ)X
) = {(ϕ), (ϕ, r) | r ∈ Max(K[C])\{(C)}}, C = XYK, AX(ϕ)X

' AX,Y
(ϕ)X,Y

' K[C±1]⊗
Y,

(a) A/(ϕ) = E/(ϕ)[K±1; τ ] is a domain (see (5.12)).

(b) A/(ϕ, r) ' AX,Y
(ϕ,r)X,Y

' Lr⊗Y is a simple domain which is a tensor product of algebras

where Lr := K[C]/r is a finite field extension of K.

6. Spec (AX,ϕ) = {0}.

Proof. As it was already mentioned above, we identify the sets of prime ideals via the bijection

given in the statements (a) and (b) of Proposition 3.3. Recall that the set SX = {Xi | i ∈ N} is

a left and right denominator set of A and AX := S−1
X A ' AS

−1
X is a Noetherian domain (since

A is so). The element X is a normal element of A. By Proposition 3.3,

Spec (A) = Spec (A, X) t Spec (AX) (5.18)

and none of the ideals of the set Spec (A, X) is contained in an ideal of the set Spec (AX).

Similarly, the element ϕ is a normal element of AX and, by Proposition 3.3

Spec (AX) = Spec
((
A/(ϕ)

)
X

)
t Spec (AX,ϕ). (5.19)

By Lemma 5.4, the algebra AX,ϕ is a simple domain. Hence, Spec (AX,ϕ) = {0}, and statement

6 is proved.

(i) AX
(ϕ)X

' AX,Y
(ϕ)X,Y

' K[C±1]⊗Y: The second isomorphism holds, by (5.14). Using the equalities

ϕ = (q−1 − q)Y E +X = (1− q2)EY + q2X we see that the elements Y and E are invertible in

the algebra AX
(ϕ)X

, and so the first isomorphism holds.

(ii) A/(ϕ, r) ' AX,Y
(ϕ,r)X,Y

' Lr⊗Y for all prime ideals r ∈ Max (K[C]) \ {(C)}: Since r 6= (C), the

non-zero element C = XYK ∈ Lr is invertible in the field Lr. Hence, the elements X and Y are

invertible in the algebra A/(ϕ, r). Hence,

A/(ϕ, r) =
AX,Y

(ϕ, r)X,Y
. (5.20)

Now, the statement (ii) follows from (5.20) and the statement (i).

(iii) Statement 5 holds: Recall that the algebra Y is a central simple algebra. By the statement

(i), the set Spec (AX/(ϕ)X), as a subset of Spec (A), is equal to {A ∩ (ϕ)X , A ∩ (ϕ, r)X | r ∈
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Max(K[C]) \ {(C)}}. It remains to show that A ∩ (ϕ)X = (ϕ) and A ∩ (ϕ, r)X = (ϕ, r). The

second equality follows from the statement (ii) since (ϕ, r) ⊆ A∩(ϕ, r)X ⊆ A∩(ϕ, r)X,Y
(ii)
= (ϕ, r).

Since Y is a central simple algebra, the statement (b) of statement 5 follows. The statement (a)

of statement 5 is obvious (see (5.12)). Hence, (ϕ) = A ∩ (ϕ)X , by Lemma 5.7. So, statement 5

holds.

By Proposition 3.3,

Spec
(
A/(X)

)
= Spec

(
A/(X,Z)

)
t Spec

((
A/(X)

)
Z

)
(5.21)

and none of the ideals of the set Spec (A/(X,Z)) is contained in an ideal of the set Spec ((A/(X))Z).

(iv) A/(X, q) ' AY,ϕ
(X,q)Y,ϕ

' Lq⊗Y is a simple domain for all prime ideals q ∈ Max(K[Z])\{(Z)}:
Since q 6= (Z), the non-zero element Z = ϕY K−1 ∈ Lq is invertible in the field Lq. Hence, the

elements ϕ and Y are invertible in the algebra A/(X, q). Therefore,

A/(X, q) ' AY,ϕ
(X, q)Y,ϕ

. (5.22)

Now, by (5.9), the statement (iv) holds.

(v) Statement 4 holds: The algebra Y is a central simple algebra. By (5.9), the set Spec ((A/(X))Z),

as a subset of Spec (A), is equal to {A ∩ (X)Y,ϕ,A ∩ (X, q)Y,ϕ | q ∈ Max(K[Z]) \ {(Z)}}. We

have to show that A ∩ (X)Y,ϕ = (X) and A ∩ (X, q)Y,ϕ = (X, q). The last equality follows

from the statement (iv) (the algebra A/(X, q) is simple and (X, q) ⊆ A ∩ (X, q)Y,ϕ $ A, hence

(X, q) = A ∩ (X, q)Y,ϕ). Now, the statement (b) of statement 4 holds. The statement (a) is

obvious, see (5.8). Hence, (X) = A∩ (X)Y,ϕ, by Lemma 5.7. So, the proof of the statement (v)

is complete.

In the algebra A, using the equality ϕ = X + (q−1 − q)Y E we see that

Z ≡ ϕY K−1 ≡ (q−1 − q)Y EY K−1 ≡ (1− q2)EY 2K−1 mod (X). (5.23)

(vi) (Y ) = (X,Y ) = (X,Z, Y ): The first equality follows from the relation X = EY − q−1Y E.

Then the second equality follows from (5.23).

(vii) (E) = (E,X) = (E,ϕ): The first equality follows from the relation X = EY − q−1Y E.

Then the second equality follows from the definition of the element ϕ = X + (q−1 − q)Y E.

(viii) The elements Y and E are normal in A/(X): The statement follows from (5.7) and (5.8).

(ix)
(
A

(X,Z)

)
Y
'
(
A

(E)

)
Y
' Y is a simple domain: By (5.23), (X,Z) = (X,EY 2) ⊆ (X,E)

(vii)
=

(E), hence (X,EY 2)Y = (X,E)Y = (E)Y , by the statement (vii). Now, by (5.8),
(
A

(X,Z)

)
Y
'

AY
(X,Z)Y

' AY
(E)Y

'
(
A

(X,E)

)
Y
' Y.

By the statement (viii) and Proposition 3.3,

Spec
(
A/(X,Z)

)
= Spec

(
A/(X,Z, Y )

)
t Spec

((
A/(X,Z)

)
Y

)
. (5.24)
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By the statement (vi), A/(X,Z, Y ) ' A/(X,Y ) ' U := U>0
q (sl2). By the statement (ix),(

A/(X,Z)
)
Y
' AY /(E)Y ' Y is a simple domain. So, the set Spec

((
A/(X,Z)

)
Y

)
, as a subset

of Spec (A), consists of the ideal (E). In more details, since (X,Z) ⊆ (E), (X,Z)Y = (E)Y (see

the proof of the statement (ix)) and A/(E) = A/(E,X) = K[Y ][K±1; τ ] is a domain, the result

follows from Lemma 5.7. So, statement 3 holds.

The element E is a normal element of the algebra U . By Proposition 3.3,

Spec (U) = Spec (U/(E)) t Spec (UE). (5.25)

Since L = U/(E), statement 1 follows. The algebra UE ' K[E±1][K±1; τ ] is a central simple

domain. Since U = A/(Y ) = A/(X,Z, Y ) (the statement (vi)) is a domain, the set Spec (UE),

as a subset of Spec (A), consists of a single ideal (Y ), and statement 2 follows.

We proved that (5.16) holds. Clearly, we have the inclusions as on the diagram (5.17). It remains

to show that there are no other inclusions. The ideals (Y,E, p), (X, q) and (ϕ, r) are the maximal

ideals of the algebra A (see statement 1, 4, and 5). By (5.22) and the relations given in (5.17),

there are no additional lines leading to the maximal ideals (X, q). Similarly, by (5.20) and the

relations given in (5.17), there are no additional lines leading to the maximal ideals (ϕ, r). The

elements X and ϕ are normal elements of the algebra A such that (X) 6⊆ (ϕ) and (X) 6⊇ (ϕ), by

(5.2). The proof of the theorem is complete.

The next corollary is an explicit description of the set Max(A).

Corollary 5.9. Max (A) = P t Q t R where P :=
{

(Y,E, p) | p ∈ Max (K[K,K−1])
}
, Q :={

(X, q) | q ∈ Max (K[Z]) \ {(Z)}
}

and R :=
{

(ϕ, r) | r ∈ Max (K[C]) \ {(C)}
}
.

Proof. The corollary follows from (5.17).

The A-module is called faithful if it has zero annihilator. The next corollary is a faithfulness

criterion for simple A-modules.

Corollary 5.10. Let M be a simple A-module. Then M is a faithful A-module iff ker(XM ·) =

ker(ϕM ·) = 0 iff MX 6= 0 and Mϕ 6= 0 (where MX and Mϕ are the localizations of the A-module

M at the powers of the elements X and ϕ, respectively).

Proof. The A-module M is simple, so annA(M) ∈ Spec (A). The elements X and ϕ are normal

elements of the algebra A. So, ker(XM ·) and ker(ϕM ·) are submodules of M . Either ker(XM ·) =

0 or ker(XM ·) = M , and in the second case annA(M) ⊇ (X). Similarly, either ker(ϕM ·) = 0

or ker(ϕM ·) = M , and in the second case annA(M) ⊇ (ϕ). Conversely, if annA(M) = 0 then

ker(XM ·) = ker(ϕM ·) = 0. If ker(XM ·) = ker(ϕM ·) = 0 then annA(M) = 0, by (5.17). So, the

first ‘iff’ holds.

For a normal element u = X,ϕ, ker(uM ·) = 0 iff Mu 6= 0. Hence, the second ‘iff’ follows.

The next proposition gives an explicit description of primitive ideals of the algebra A.
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Proposition 5.11. Prim(A) = Max(A) t {(Y ), (E), 0}.

Proof. Clearly, Prim(A) ⊇ Max(A). The ideals (X), (ϕ) and (Y,E) are not primitive ideals as

the corresponding factor algebras contain the central elements Z,C and K, respectively.

(i) Let us show that (Y ) ∈ Prim(A). For λ ∈ K∗, let Iλ = (Y ) +A(E − λ). Since A/(Y ) ' U ,

the left A-module M(λ) := A/I(λ) ' U/U(E − λ) ' K[K±1]1̄ is a simple A-module/U -module

where 1̄ = 1 + I(λ). By the very definition, the prime ideal a := annA(M(λ)) contains the ideal

(Y ) but does not contain the ideal (Y,E) since otherwise we would have 0 = E1̄ = λ1̄ 6= 0, a

contradiction. By (5.17), a = (Y ).

(ii) Let us show that (E) ∈ Prim(A). By Theorem 5.8, (E) = (E,X) and Ā := A/(E) '
K[Y ][K±1;σ] where σ(Y ) = q−1Y. For λ ∈ K∗, the A-module T (λ) := Ā/Ā(Y − λ) ' K[K±1]1̄

is a simple module (since q is not a root of 1), where 1̄ = 1 + Ā(Y − λ). Clearly, the prime ideal

b := annA(T (λ)) contains the ideal (E) but does not contain the ideal (Y,E) since otherwise we

would have 0 = Y 1̄ = λ1̄ 6= 0, a contradiction. By (5.17), b = (E).

(iii) 0 is a primitive ideal of A: For λ ∈ K∗, we define the A-module S(λ) := A/A(KX − λ, Y ).

Then S(λ) =
⊕

i>0 K[K±1]Ei1̄ where 1̄ = 1 + A(KX − λ, Y ). Let t = Y X then Kt = tK

and tEi = Eit − 1−q2i
1−q2 X

2Ei−1. The fact that S(λ) is a simple A-module follows from the

equality: tEi1̄ = −q2i−1 1−q2i
1−q2 λ

2K−2Ei−11̄. Since X /∈ annA(S(λ)) and ϕ /∈ annA(S(λ)), by

(5.17), annA(S(λ)) = 0. Thus 0 is a primitive ideal of the algebra A.

Corollary 5.12. Every prime ideal of the algebra A is completely prime, i.e., Specc(A) =

Spec (A).

Proof. See Theorem 5.8.

Stratification and the Dixmier-Moeglin equivalence. The stratification theory of Good-

earl and Letzter can be applied to the study of prime and primitive ideals of the quantum spatial

ageing algebraA. We will show thatA satisfies the Dixmier-Moeglin equivalence (Theorem 5.13).

Let us recall the general strategy of Goodearl and Letzter briefly, for details see [19]. Let R

be a Noetherian K-algebra and H = (K∗)r be an algebraic torus acting rationally on R by

K-algebra automorphisms. We denote by H-Spec (R) the set of H-prime ideals of R (these

coincide with the H-invariant prime ideals of R by [19, Proposition II.2.9] ). Given an ideal I

in R, (I : H) :=
⋂
h∈H h · I is the largest H-invariant ideal of R contained in I. It is well-known

that (P : H) is an H-prime ideal if P is a prime ideal of R. For an H-prime ideal J of R, the

H-stratum of Spec (R) corresponding to J is defined by

SpecJ(R) := {P ∈ Spec (R) | (P : H) = J}.

These H-strata give a partition of Spec (R), namely

Spec (R) =
⊔

J∈H-Spec (R)

SpecJ(R),
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called the H-stratification of Spec (R). The stratum SpecJ(R) can be described by using the

Stratification Theorem [19, Thorem II.2.13].

Let H = (K∗)3 and let H act on the quantum spatial ageing algebra A by the K-algebra

automorphisms such that

(λ, µ, γ) ·X = λX, (λ, µ, γ) · Y = µY, (λ, µ, γ) ·K±1 = γ±1K±1, (λ, µ, γ) · E = λµ−1E.

In particular, (λ, µ, γ) · ϕ = λϕ, (λ, µ, γ) · Z = λµγ−1Z and (λ, µ, γ) · C = λµγC. Then the

algebra A has 6 H-prime ideals,

H-Spec (A) = {0, (X), (ϕ), (Y ), (E), (Y,E)}.

Consequently, there are 6 H-strata in Spec (A):

Spec0(A) = {0},

Spec(X)(A) = {(X)} t {(X, q) | q ∈ Max (K[Z]) \ {(Z)}},

Spec(ϕ)(A) = {(ϕ)} t {(ϕ, r) | r ∈ Max (K[C]) \ {(C)}},

Spec(Y )(A) = {(Y )}, (5.26)

Spec(E)(A) = {(E)},

Spec(Y,E)(A) = {(Y,E)} t {(Y,E, p) | p ∈ Max (K[K±1])}.

A prime ideal P of a ring R is said to be locally closed if {P} is locally closed in Spec (R) where

Spec (R) is equipped with the Zariski topology. By [19, Lemma II.7.7], a prime ideal P in a

ring R is locally closed iff the intersection of all prime ideals properly containing P is an ideal

properly containing P . A prime ideal P of a Noetherian K-algebra R is said to be rational if

the field Z(FracR/P ) is algebraic over K. The Dixmier-Moeglin equivalence states that if P is a

prime ideal of a Noetherian K-algebra then the following properties are equivalent:

P is locally closed ⇐⇒ P is primitive ⇐⇒ P is rational.

Theorem 5.13. The algebra A satisfies the Dixmier-Moeglin equivalence, and the primitive

ideals of A are precisely the prime ideals that are maximal in their H-strata.

Proof. The algebra A contains a sequence of subalgebras K ⊆ K[X] ⊆ Kq[X,Y ] ⊆ E ⊆ A
satisfying the hypotheses of [19, Proposition II.7.17], thus A satisfies the noncommutative Null-

stellensatz over K. Since A has finitely many H-prime ideals, the theorem follows from [19,

Theorem II.8.4]

Remark. Proposition 5.11 follows immediately from Theorem 5.13 and (5.26). This gives an

alternative proof of Proposition 5.11 without considering simple A-modules.
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5.3 The automorphism group of A

In this section, the group G := AutK(A) of automorphisms of the algebra A is found (Theorem

5.14). Corollary 5.15 describes the orbits of the action of the group G on Spec (A) and the set

of fixed points.

We introduce a degree filtration on the algebra A by setting deg(K) = deg(K−1) = 0 and

deg(E) = deg(X) = deg(Y ) = 1. So, A =
⋃
n∈NA[n] where A[n] =

∑
KXiY jEkKl with

deg(XiY jEkKl) := i + j + k 6 n. Let grA :=
⊕

i∈NA[i]/A[i − 1] (where A[−1] := 0) be

the associated graded algebra of A with respect to the filtration {A[n]}n>0. For an element

a ∈ A, we denote by gr a ∈ grA the image of a in grA. It is clear that grA is an iterated

Ore extension, grA ' K[X][Y ;α][E;β][K±1; γ] where α(X) = q−1X, β(X) = qX, β(Y ) =

q−1Y, γ(X) = qX, γ(Y ) = q−1Y and γ(E) = q2E. In particular, grA is a Noetherian domain

of Gelfand-Kirillov dimension GK (grA) = 4 and the elements X,Y and E are normal in grA.

The group of units A∗ of the algebra A is equal to {K∗Ki | i ∈ Z} = K∗ × 〈K〉 where 〈K〉 =

{Ki | i ∈ Z}. The next theorem is an explicit description of the group G.

Theorem 5.14. AutK(A) = {σλ,µ,γ,i |λ, µ, γ ∈ K∗, i ∈ Z} ' (K∗)3 o Z where σλ,µ,γ,i : X 7→
λKiX, Y 7→ µK−iY, K 7→ γK, E 7→ λµ−1q−2iK2iE (and σλ,µ,γ,i(ϕ) = λKiϕ). Furthermore,

σλ,µ,γ,iσλ′,µ′,γ′,j = σλλ′γj ,µµ′γ−j ,γγ′,i+j and σ−1
λ,µ,γ,i = σλ−1γi,µ−1γ−i,γ−1,−i.

Proof. Using the defining relations of the algebra A, one can verify that σλ,µ,γ,i ∈ G for all

λ, µ, γ ∈ K∗ and i ∈ Z. The subgroup G′ generated by these automorphisms is isomorphic to

the semi-direct product (K∗)3 oZ. It remains to show that G = G′. Recall that the elements X

and ϕ are normal in the algebra A. Let σ ∈ G, we have to show that σ ∈ G′.

By (5.17), there are two options either the ideals (X) and (ϕ) are σ-invariant or, otherwise, they

are interchanged. In more details, either, for some elements λ, λ′ ∈ K∗ and i, j ∈ Z,

(a) σ(X) = λKiX and σ(ϕ) = λ′Kjϕ, or, otherwise,

(b) σ(X) = λKiϕ and σ(ϕ) = λ′KjX.

(i) σ(K) = γK for some γ ∈ K∗: The group of units A∗ of the algebra A is equal to {γKs | γ ∈
K∗, s ∈ Z}. So, either σ(K) = γK or, otherwise, σ(K) = γK−1 for some γ ∈ K∗. Let us show

that the second case is not possible. Notice that KX = qXK and Kϕ = qϕK, i.e., the elements

X and ϕ have the same commutation relation with the element K. Because of that it suffices to

consider one of the cases (a) or (b) since then the other case can be treated similarly. Suppose

that the case (a) holds and that σ(K) = γK−1. Then the equality σ(K)σ(X) = qσ(X)σ(K)

yields the equality γK−1·λKiX = qλKiX ·γK−1 = qλγqKi−1X. Hence, q2 = 1, a contradiction.

(ii) deg σ(Y ) = deg σ(E) = 1: Recall that Y E = q′−1(ϕ−X) where q′ := q−1 − q. By applying

σ to this equality we obtain the equality σ(Y )σ(E) = q′−1σ(ϕ−X). Hence, deg
(
σ(Y )σ(E)

)
=

deg
(
q′−1σ(ϕ − X)

)
= 2, in both cases (a) and (b). Thus, there are three options for the pair(

deg σ(Y ),deg σ(E)
)
: (1, 1), (0, 2) or (2, 0). The last two options are not possible since otherwise

we would have σ(Y ) ∈ K[K±1] or σ(E) ∈ K[K±1], respectively. Hence, σ(Y )σ(K) = σ(K)σ(Y )
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or σ(E)σ(K) = σ(K)σ(E), respectively. But this is impossible since Y K 6= KY and EK 6= KE.

Therefore, deg σ(Y ) = deg σ(E) = 1.

(iii) σ(Y ) = aY and σ(E) = bE for some nonzero elements a, b ∈ K[K±1]: Applying σ to the

relation KEK−1 = q2E we obtain the equality Kσ(E)K−1 = q2σ(E). Since deg σ(E) = 1,

σ(E) = bE+uX+vY +w for some elements b, u, v, w ∈ K[K±1]. Using the relations KXK−1 =

qX and KYK−1 = q−1Y , we see that u = v = w = 0, i.e., σ(E) = bE. Similarly, applying

σ to the relation KYK−1 = q−1Y , we obtain the equality Kσ(Y )K−1 = q−1σ(Y ). Since

deg σ(Y ) = 1, σ(Y ) = aY + u′E + v′X + w′ for some elements a, u′, v′, w′ ∈ K[K±1]. Using the

relations KXK−1 = qX, KY K−1 = q−1Y and KEK−1 = q2E, we see that u′ = v′ = w′ = 0,

i.e., σ(Y ) = aY.

(iv) i = j (see the cases (a) and (b)): The elements X and ϕ commute, hence σ(X)σ(ϕ) =

σ(ϕ)σ(X). Substituting the values of σ(X) and σ(ϕ) into this equality yields q−i = q−j in both

cases (a) and (b), i.e., i = j (since q is not a root of unity).

(v) The case (b) is not possible: Suppose that the case (b) holds, i.e., σ(X) = λKiϕ and σ(ϕ) =

λ′KiX (see the statement (iv)), we seek a contradiction. To find the contradiction we use the

relations qY X = XY and Y ϕ = qϕY . Applying the automorphism σ to the first equality gives

σ(qY X) = qaY ·λKiϕ = qaλqiKiY ϕ and σ(XY ) = λKiϕ ·aY = λKiτ(a)ϕY = λKiτ(a)q−1Y ϕ

where τ is the automorphism of the algebra K[K±1] given by the rule τ(K) = q−1K. Hence,

τ(a) = qi+2a, i.e., a = ξK−i−2 for some ξ ∈ K∗. So, σ(Y ) = ξK−i−2Y . Now applying σ to the

second equality, Y ϕ = qϕY , we have the equalities σ(Y ϕ) = ξK−i−2Y · λ′KiX = ξλ′qiK−2Y X

and σ(qϕY ) = qλ′KiX · ξK−i−2Y = ξλ′qi+3K−2XY = ξλ′qi+4K−2Y X. Therefore, q4 = 1,

a contradiction (since q is not a root of unity). This means that the only case (a) holds.

Summarizing, we have σ(X) = λKiX, σ(K) = γK, σ(ϕ) = λ′Kiϕ, σ(Y ) = aY, and σ(E) =

bE.

(vi) a = µK−i for some µ ∈ K∗ (i.e., σ(Y ) = µK−iY ): Applying the automorphism σ to

the relation qY X = XY yields: σ(qY X) = qaY · λKiX = λaqiKiqY X = λaqiKiXY and

σ(XY ) = λKiX · aY = λKiτ(a)XY . Therefore, τ(a) = qia, i.e., a = µK−i for some element

µ ∈ K∗.

(vii) b = δK2i for some δ ∈ K∗ (i.e., σ(E) = δK2iE): Applying the automorphism σ to

the relation qXE = EX yields: σ(qXE) = qλKiX · bE = λKiτ(b)qXE = λKiτ(b)EX and

σ(EX) = bE · λKiX = λKibq−2iEX. Therefore, τ(b) = q−2ib, i.e., b = δK2i for some δ ∈ K∗.

(viii) δ = λµ−1q−2i: Applying the automorphism σ to the relation EY = X + q−1Y E gives:

σ(EY ) = δK2iE ·µK−iY = δµq2iKiEY = δµq2iKi(X+q−1Y E) and σ(X+q−1Y E) = λKiX+

q−1µK−iY · δK2iE = Ki(λX + δµq2iq−1Y E). Therefore, δµq2i = λ, and the statement (viii)

follows. The proof of the theorem is complete.

Corollary 5.15.

1. The prime ideals I := {0, (X), (ϕ), (Y ), (E), (Y,E)} are the only prime ideals of A that

are invariant under action of the group G of automorphisms of A (i.e., Gp = {p} for all

p ∈ I).
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2. If, in addition, K is an algebraically closed field, then each of the three series of prime

ideals in Spec(A) is a single G-orbit. In particular, there are 9 G-orbits in Spec(A).

Proof. By Theorem 5.14, Gp = {p} for all p ∈ I. Let σ = σλ,µ,γ,i, then σ(Z) = λµγ−1qiZ, σ(C) =

λµγqiC and σ(K) = γK. Now the corollary is obvious since p = (K − α), q = (Z − β) and

r = (C − γ) for some α, β, γ ∈ K∗ where the ideals p, q and r are as in Theorem 5.8.

5.4 Centralizers of some elements of the algebra A

The next proposition describes the centralizers of the elements K,X and ϕ in A. The centralizers

are large subalgebras of A. Furthermore, they are GWAs and the algebra A is a skew polynomial

algebra with coefficient ring CA(X) or CA(ϕ).

Proposition 5.16. 1. CA(K) = K[K±1] ⊗ Λ is a tensor product of algebras where Λ =

K〈t, u | tu = q2ut〉 is the quantum plane where t := Y X and u := Y ϕ. Moreover, AY =

CA(K)[Y ±1;σ′] where σ′(t) = q−1t, σ′(u) = qu and σ′(K) = qK.

2. CA(X) = K[X,ϕ][∂, y; γ, q ϕ−X
q−1−q ] is a GWA where γ(X) = X, γ(ϕ) = q−2ϕ, ∂ := EK−1

and y := KY .

(a) Z
(
CA(X)

)
= K[X].

(b) The algebra A = CA(X)[K±1; θ] is a skew polynomial ring where θ(X) = qX, θ(ϕ) =

qϕ, θ(∂) = q2∂ and θ(y) = q−1y.

3. CA(ϕ) = K[X,ϕ][∂′, y′; ν, q−1 ϕ−X
q−1−q ] is a GWA where ν(X) = q2X, ν(ϕ) = ϕ, ∂′ := EK

and y′ := K−1Y .

(a) Z
(
CA(ϕ)

)
= K[ϕ].

(b) The algebra A = CA(ϕ)[K±1; θ] is a skew polynomial ring where θ(X) = qX, θ(ϕ) =

qϕ, θ(∂′) = q2∂′ and θ(y′) = q−1y′.

Proof. 1. By (5.2), CA(K) = EωK [K±1; τ ] = K[K±1] ⊗ EωK , where ωK : a 7→ KaK−1 is the

inner automorphism of the algebra A determined by the element K. Notice that ωK = τ where

τ is defined in (5.2). Using the explicit action of the automorphism τ on the elements X,ϕ,E

and Y we see that Eτ = K〈Y X, Y ϕ〉 = Λ. Clearly, AY = CA(K)[Y ±1;σ′], by (5.3).

2. Clearly, ∂, y ∈ C := CA(X) and D := K[X,ϕ] ⊆ C. By (5.1) and (5.2), the subalgebra, say C′,
of A generated by the elements D, ∂ and y is the GWA D[∂, y; γ, q ϕ−X

q−1−q ] since

∂X = X∂, yX = Xy, ∂ϕ = q−2ϕ∂, yϕ = q2ϕy; y∂ = KY EK−1 = qY E = qa

where a = ϕ−X
q−1−q and ∂y = EY = q−1ϕ−qX

q−1−q = q q
−2ϕ−X
q−1−q = γ(qa). Since C′ ⊆ C, it remains to

show that C′ = C. By (5.1) and (5.2),

A =
⊕

i>0,j∈Z
DEiKj ⊕

⊕
i>1,j∈Z

DY iKj =
⊕

i>0,j∈Z
D∂iKj ⊕

⊕
i>1,j∈Z

DyiKj =
⊕
j∈Z
C′Kj ,

hence, C = C′, as required. Therefore, A = C[K±1; θ]. It is easy to show that Z(C) = K[X].
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3. Clearly, ∂′, y′ ∈ C := CA(ϕ) and D ⊆ C. By (5.1) and (5.2), the subalgebra, say C ′, of A
generated by the elements D, ∂′ and y′ is the GWA D[∂′, y′; γ′, q−1 ϕ−X

q−1−q ] since

∂′X = q2X∂′, y′X = q−2Xy′, ∂′ϕ = ϕ∂′, y′ϕ = ϕy′; y′∂′ = K−1Y EK = q−1a

where a = ϕ−X
q−1−q and ∂′y′ = EY = q−1ϕ−qX

q−1−q = q−1 ϕ−q2X
q−1−q = γ′(q−1a). Since C ′ ⊆ C, it remains

to show that C ′ = C. By (5.1) and (5.2),

A =
⊕

i>0,j∈Z
DEiKj ⊕

⊕
i>1,j∈Z

DY iKj =
⊕

i>0,j∈Z
D∂′iKj ⊕

⊕
i>1,j∈Z

Dy′iKj =
⊕
j∈Z

C ′Kj ,

hence, C = C ′, as required. Therefore, A = C[K±1; θ]. It is easy to show that Z(C) = K[ϕ].

The next lemma describes the centralizers of the element Y in A and AY .

Lemma 5.17. 1. CAY (Y ) = K[Y ±1] ⊗ R where R := K〈a, b | ab = q2ba〉 is the quantum

plane, a := KX and b := K−1ϕ.

2. CA(Y ) = K[Y ]⊗R.
3. AY = CAY (Y )[K±1; τ ] is a skew polynomial algebra where τ(Y ) = q−1Y , τ(a) = qa and

τ(b) = qb.

Proof. 1. Statement 1 follows from (5.3).

2. CA(Y ) = A ∩ CAY (Y ) = A ∩
(
K[Y ±1]⊗R

)
= K[Y ]⊗R.

3. Statement 3 follows from statement 1 and (5.3).

The next lemma describes the centralizers of the element E in A and AE .

Lemma 5.18. 1. The centralizer of E in AE, CAE (E) = K[E±1]⊗ P , is the tensor product

of algebras where P := K〈X1,X2 |X2X1 = q2X1X2〉 is the quantum plane, X1 := Xϕ

and X2 := KX2.

2. CA(E) = K[E]⊗ P.
3. CAE,X,ϕ(E) = K[E±1]⊗ PX1,X2

.

4. Let C := CAE,X,ϕ(E). Then AE,X,ϕ =
⊕

i∈Z(KiC ⊕ KiXC) and for all i ∈ Z and c ∈ C
E ·Kic = q−2iKic · E and E ·KiXc = q−2i+1KiXc · E.

Proof. 1. Let R = K[ϕ,X][K±1; θ] be the subalgebra of A where θ(X) = qX and θ(ϕ) = qϕ.

By (5.2), we see that the localization AE of A at the powers of the element E is a skew Laurent

polynomial algebra

AE = R[E±1;σ] (5.27)

where σ(ϕ) = q−1ϕ, σ(X) = qX and σ(K) = q−2K. Now, CAE (E) = Rσ[E±1] where Rσ = {r ∈
R |σ(r) = r}. Let us show that Rσ = P . In view of the explicit nature of the automorphism
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σ of R, Rσ =
⊕

i∈Z,j,k∈N{KKiϕjXk |σ(KiϕjXk) = KiϕjXk}. Notice that σ(KiϕjXk) =

q−2i−j+kKiϕjXk, we have k = 2i+ j (since q is not a root of unity), and so,

KiϕjX2i+j = qi(2j+i−1)(Xϕ)j(KX2)i = qi(2j+i−1)X j
1 X i

2 .

Therefore, Rσ = P.

2. CA(E) = A ∩ CAE (E) = A ∩K[E±1]⊗ P = K[E]⊗ P.

3 and 4. The elements X and ϕ are normal elements of R = K[ϕ,X][K±1; θ] where θ(X) = qX

and θ(ϕ) = qϕ. The set SX,ϕ = {Xiϕj | i, j ∈ N} is an Ore set of the domain R. The localization

RX,ϕ := S−1
X,ϕR is equal to

RX,ϕ = K[X±1, ϕ±1][K±1; θ] = K[X±1,X ±1
1 ][K±1; θ] =

(
PX1,X2

⊕XPX1,X2

)
[K±1; θ] (5.28)

where PX1,X2
= S−1

X1,X2
P and SX1,X2

:= {X i
1 X j

2 | i, j ∈ N}. The elements X and ϕ are normal

elements of the algebras A and AE . Hence, SX,ϕ = {Xiϕj | i, j ∈ N} is an Ore set of A and AE .

By (5.27), the localization AE,X,ϕ := S−1
X,ϕAE of the algebra AE at SX,ϕ is equal to

AE,X,ϕ = RX,ϕ[E±1;σ]
(5.28)

=
(
PX1,X2

⊕XPX1,X2

)
[K±1; θ][E±1;σ] =

⊕
i∈Z

Ki(C ⊕XC) (5.29)

where, for a moment, C := K[E±1] ⊗ PX1,X2
=
(
CAE (E)

)
X1,X2

⊆ CAE,X,ϕ(E). By (5.29),

CAE,X,ϕ(E) = C, and so statement 3 holds. Now, by (5.29), statement 4 holds.



Chapter 6

The smash product algebra

Kq[X, Y ]o Uq(sl2)

6.1 Introduction

The quantum plane Kq[X,Y ] admits a well-known structure of Uq(sl2)-module algebra (see, e.g.,

[33, 40]). In fact, there exists an uncountable family of non-isomorphic Uq(sl2)-module algebra

structures on the quantum plane and a complete description of those structures was presented

in [25]. Given a module algebra over a Hopf algebra, one can form the smash product algebra

[38, 4.1.3], which is a useful method to construct new algebras. In this chapter, our main object

of study is the smash product algebra A := Kq[X,Y ] o Uq(sl2), where the quantum plane is

endowed with the well-known Uq(sl2)-module algebra structure, the precise definition is given

below.

Fix a field K of characteristic zero, and an element q ∈ K∗ such that q is not a root of unity.

Recall that the quantized enveloping algebra of sl2 is the K-algebra Uq(sl2) with generators

E,F,K,K−1 subject to the defining relations:

KEK−1 = q2E, KFK−1 = q−2F, EF − FE =
K −K−1

q − q−1
.

The centre of Uq(sl2) is a polynomial algebra Z(Uq(sl2)) = K[Ω] where Ω := FE + qK+q−1K−1

(q−q−1)2 .

There is a Hopf algebra structure on Uq(sl2) defined by

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1,

∆(E) = E ⊗ 1 +K ⊗ E, ε(E) = 0, S(E) = −K−1E,

∆(F ) = F ⊗K−1 + 1⊗ F, ε(F ) = 0, S(F ) = −FK,

where ∆ is the comultiplication on Uq(sl2), ε is the counit and S is the antipode of Uq(sl2).

Note that the Hopf algebra Uq(sl2) is neither cocommutative nor commutative. We can make

80
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the quantum plane Kq[X,Y ] := K〈X,Y |XY = qY X〉 a Uq(sl2)-module algebra by defining,

K ·X = qX, E ·X = 0, F ·X = Y,

K · Y = q−1Y, E · Y = X, F · Y = 0.

Then one can form the smash product algebra A := Kq[X,Y ] o Uq(sl2). The generators and

defining relations for this algebra are given below. Our aim is to study the prime spectrum of

this algebra and give a classification of simple weight A-modules.

Definition. The algebra A is the algebra generated over K by the elements E, F, K, K−1, X, Y

with defining relations

KEK−1 = q2E, KFK−1 = q−2F, [E,F ] =
K −K−1

q − q−1
,

EX = qXE, EY = X + q−1Y E,

FX = Y K−1 +XF, FY = Y F,

KXK−1 = qX, KY K−1 = q−1Y, qY X = XY.

A PBW deformation of this algebra, the quantized symplectic oscillator algebra of rank one, was

studied by Gan and Khare [26], where the PBW theorem was given and some basic representation

theory of this algebra was considered. They also determined the centre of the deformed algebra

(the centre is trivial), but for the algebra A, they did not give the central element. In this

chapter we show that the centre of A is a polynomial algebra K[C] (Theorem 6.7), and the

generator C is given explicitly, see (6.11)–(6.14). The method we use in finding the central

element of A can be summarized as follows. The algebra A is ‘covered’ by a chain of subalgebras.

These subalgebras are generalized Weyl algebras and the central elements can be determined by

applying Proposition 6.1. At each step elements are getting more complicated but the relations

are getting simpler. Finally, we find a central element in a large subalgebra A of A which turns

out to be a central element of the algebra A.

We are interested in the algebra A because it can reasonably be seen as the quantum analogue

of the enveloping algebra U(sl2 n V2) of the semidirect product Lie algebra sl2 n V2. These two

algebras are similar in many ways. For example, the prime spectra of these two algebras are the

same, the representation theory of A has many parallels with that of U(sl2 n V2), the Casimir

element of A degenerates to the Casimir element of U(sl2 nV2) as q → 1. The study of quantum

algebras usually requires more computations. Much work has been done on quantized enveloping

algebras of semisimple Lie algebras (see, e.g., [29, 33]). In the contrast, few examples can be

found on the quantized algebras of enveloping algebras of non-semisimple Lie algebras.

Let us briefly describe the contents of this chapter. In Section 6.2, we find the centre of the

algebra A, it is a polynomial algebra and the generator is given explicitly. We also show that

A satisfies the quantum Gelfand-Kirillov conjecture. An explicit description of the prime and

primitive ideals of A together with the inclusions are given in Section 6.3. As the Weyl algebras

play an important role in the study of enveloping algebras, in Section 6.4, we consider a quantum

analogue of the Weyl algebra. It plays a similar role the Weyl algebra does but in the study

of quantum algebras. The Weyl algebras and their quantum analogues are special examples of
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generalized Weyl algebras. An A-module M is called a weight module if M =
⊕

µ∈K∗Mµ where

Mµ = {m ∈M |Km = µm}. A classification of simple weight A-modules is given in Section 6.7.

In order to give a classification of simple weight A-modules, we need first study the centralizer

CA(K) of the element K in the algebra A, which is also interesting in its own right. In Section

6.5, we give the generators and defining relations of the algebra CA(K) (Theorem 6.29). We

have to choose the generators carefully to make the defining relations simpler. The centre of

CA(K) is K[C,K±1] (Theorem 6.29). For λ ∈ K and µ ∈ K∗, we prove that the factor algebra

C λ,µ := CA(K)/(C − λ,K − µ) is a simple algebra if and only if λ 6= 0 (Theorem 6.34). One

of the key observations is that the localization C λ,µ
t of the algebra C λ,µ at the powers of the

element t = Y X is a central, simple, generalized Weyl algebra (Proposition 6.32). The other

one is that, for any λ ∈ K and µ ∈ K∗, we can embed the algebra C λ,µ into a generalized Weyl

algebra A (which is also a central simple algebra), see Proposition 6.38. These two facts enable

us to give a complete classification of simple CA(K)-modules. The problem of classifying simple

C λ,µ-modules splits into two distinct cases, namely the case when λ = 0 and the case when λ 6= 0.

In the case λ = 0, we embed the algebra C 0,µ into a skew polynomial algebra R = K[h±1][t;σ]

where σ(h) = q2h (it is a subalgebra of the algebra A ) for which the classifications of simple

modules are known. In the case λ 6= 0, we use the close relation of C λ,µ with the localization

C λ,µ
t , and the argument is more complicated. A classification of simple CA(K)-modules is given

in Section 6.6.

Much of this chapter is extracted from the joint paper with V. Bavula [12].

6.2 The centre of the algebra Kq[X, Y ]o Uq(sl2)

The aim of this section is to determine the centre of the algebra A (Theorem 6.7). The next

proposition is a corollary of Proposition 5.1 when ρ = 1. The rings E with ρ = 1 admit a

‘canonical’ central element (under a mild condition). This proposition is a key one for this

section and is used on many occasions to produce central elements. In the present section a full

generality of the construction is needed, i.e. when the base ring D is noncommutative.

Proposition 6.1. Let E = D[X,Y ;σ, b, ρ = 1]. Then

1. [7, Lemma 1.5] The following statements are equivalent:

(a) C = Y X+α = XY +σ(α) is a central element in E for some central element α ∈ D,

(b) α− σ(α) = b for some central element α ∈ D.

2. [7, Corollary 1.6] If one of the equivalent conditions of statement 2 holds then the ring

E = D[C][X,Y ;σ, a = C − α] is a GWA where σ(C) = C.

If D is commutative the implication (b)⇒ (a) also appeared in [31].

An involution τ of A. The algebra A admits the following involution τ (see [26], p. 693):

τ(E) = −FK, τ(F ) = −K−1E, τ(K) = K, τ(K−1) = K−1, τ(X) = Y, τ(Y ) = X. (6.1)
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The algebra E is a GWA. Let E be the subalgebra of A which is generated by the elements

E, X and Y . The elements E, X and Y satisfy the defining relations

EX = qXE, Y X = q−1XY, and EY − q−1Y E = X.

Recall that the algebra E is a GWA E = K[ϕ,X][E, Y ;σ, a = ϕ−X
q−1−q ] (see (5.1)) where ϕ =

(q−1 − q)Y E + X = (1 − q2)EY + q2X, σ(ϕ) = q−1ϕ and σ(X) = qX. Using the defining

relations of the GWA E, we see that the set {Y i | i ∈ N} is a left and right Ore set in E. The

localization of the algebra E at this set, EY := K[ϕ,X][Y ±1;σ], is the skew Laurent polynomial

ring. Similarly, the set {Xi | i ∈ N} is a left and right Ore set in EY and the algebra

EY,X = K[ϕ,X±1][Y ±1;σ] = K[Φ]⊗K[X±1][Y ±1;σ] (6.2)

is the tensor product of the polynomial algebra K[Φ] where Φ = Xϕ and the skew Laurent

polynomial algebra K[X±1][Y ;σ] which is a central simple algebra. In particular, Z(EY,X) =

K[Φ]. So, we have the inclusion of algebras E ⊆ EY ⊆ EY,X . Recall that for any algebra A,

we denote by Z(A) its centre. The next lemma describes the centre of the algebras E, EY and

EY,X .

Lemma 6.2. Z(E) = Z(EY ) = Z(EY,X) = K[Φ] is a polynomial algebra where Φ := Xϕ.

Proof. By (6.2), K[Φ] ⊆ Z(E) ⊆ Z(EY ) ⊆ Z(EY,X) = K[Φ], and the result follows.

We have the following commutation relations

Xϕ = ϕX, Y ϕ = qϕY, Eϕ = q−1ϕE, Kϕ = qϕK. (6.3)

XΦ = ΦX, Y Φ = ΦY, EΦ = ΦE, KΦ = q2ΦK. (6.4)

Lemma 6.3. 1. [F,ϕ] = Y K.

2. The powers of ϕ form a left and right Ore set in A.

3. The powers of X form a left and right Ore set in A.

4. The powers of Y form a left and right Ore set in A.

Proof. 1. [F,ϕ] = [F,X + (q−1 − q)Y E] = Y K−1 + (q−1 − q)Y (−K−K
−1

q−q−1 ) = Y K.

2. Statement 2 follows at once from the equalities (6.3) and statement 1.

3. The statement follows at once from the defining relations of the algebra A where X is involved.

4. The statement follows at once from the defining relations of the algebra A where Y is

involved.

The algebra F is a GWA. Let F be the subalgebra of A which is generated by the elements

F,X and Y ′ := Y K−1. The elements F,X and Y ′ satisfy the defining relations

FY ′ = q−2Y ′F, XY ′ = q2Y ′X and FX −XF = Y ′.
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Therefore, the algebra F = K[Y ′][F,X;σ, b = Y ′, ρ = 1] where σ(Y ′) = q−2Y ′. The polynomial

α = 1
1−q−2Y

′ ∈ K[Y ′] is a solution to the equation α − σ(α) = Y ′. By Proposition 6.1, the

element C ′ := XF + 1
1−q−2Y

′ = FX + 1
q2−1Y

′ belongs to the centre of the GWA

F = K[C ′, Y ′][F,X;σ, a = C ′ − 1

1− q−2
Y ′].

Let ψ := (1− q2)C ′. Then ψ = (1− q2)FX − Y ′ = (1− q2)XF − q2Y ′ ∈ Z(F) and

F = K[ψ, Y ′][F,X;σ, a =
ψ + q2Y ′

1− q2
] (6.5)

where σ(ψ) = ψ and σ(Y ′) = q−2Y ′. Similar to the algebra E, the localization of the algebra F
at the powers of the element X is equal to

FX := K[ψ, Y ′][X±1;σ−1] = K[ψ]⊗K[Y ′][X±1;σ−1]

where σ is defined in (6.5). The centre of the algebra K[Y ′][X±1;σ−1] is K. Hence, Z(FX) =

K[ψ].

Lemma 6.4. Z(F) = Z(FX) = K[ψ].

Proof. The result follows from the inclusions K[ψ] ⊆ Z(F) ⊆ Z(FX) = K[ψ].

The GWA A. Let T be the subalgebra of A generated by the elements K±1, X and Y . Clearly,

T := Λ[K±1; τ ] where Λ := K〈X,Y |XY = qY X〉 and τ(X) = qX and τ(Y ) = q−1Y. (6.6)

It is easy to determine the centre of the algebra T .

Lemma 6.5. Z(T ) = K[z] where z := KYX.

Proof. Clearly, the element z = KYX belongs to the centre of the algebra T . The centralizer

CT (K) is equal to K[K±1, Y X]. Then the centralizer CT (K,X) is equal to K[z], hence Z(T ) =

K[z].

Let A be the subalgebra of A generated by the algebra T and the elements ϕ and ψ. The

generators K±1, X, Y, ϕ and ψ satisfy the following relations:

ϕX = Xϕ, ϕY = q−1Y ϕ, ϕK = q−1Kϕ,

ψX = Xψ, ψY = qY ψ, ψK = qKψ, ϕψ − ψϕ = −q(1− q2)z.

These relations together with the defining relations of the algebra T are defining relations of

the algebra A. In more detail, let, for a moment, A′ be the algebra generated by the defining

relations as above. We will see A′ = A. Then

A′ = T [ϕ,ψ;σ, b = −q(1− q2)z, ρ = 1].
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Hence, the set of elements {KiXjY kϕlψm | i ∈ Z, j, k, l,m ∈ N} is a basis of the algebra A′. This

set is also a basis for the algebra A. This follows from the explicit expressions for the elements

ϕ = (q−1 − q)Y E +X and ψ = (1− q2)XF − q2Y K−1. In particular, that the leading terms of

ϕ and ψ are equal to (q−1 − q)Y E and (1 − q2)XF , respectively (deg(K±1) = 0). So, A = A′,
i.e.,

A = T [ϕ,ψ;σ, b = −q(1− q2)z, ρ = 1]

where σ(X) = X,σ(Y ) = q−1Y and σ(K) = q−1K. Recall that the element b belongs to

the centre of the algebra T (Lemma 6.5). The element α = q3Z is a solution to the equation

α− σ(α) = b. Then, by Proposition 6.1, the algebra A is the GWA

A = T [C ′′][ϕ,ψ;σ, a = C ′′ − q3z]

where σ(C ′′) = C ′′, σ(X) = X,σ(Y ) = q−1Y, σ(K) = q−1K and C ′′ = ψϕ + q3z = ϕψ + qz

(since σ(z) = q−2z). Let C := C′′

1−q2 . Then

C = (1− q2)−1(ψϕ+ q3z) = (1− q2)−1(ϕψ + qz), (6.7)

is a central element of the GWA

A = T [C][ϕ,ψ;σ, a = (1− q2)C − q3z] ATC(6.8)

where σ(C) = C, σ(X) = X,σ(Y ) = q−1Y and σ(K) = q−1K. Since ϕ = (q−1 − 1)Y E +X and

ψ = (1− q2)XF − q2Y K−1, we see that

AX,Y = AX,Y . (6.9)

Hence, C ∈ Z(A). In fact, Z(A) = K[C] (Theorem 6.7). In order to show this fact we need to

consider the localization AX,Y,ϕ.

Let T := TX,Y = ΛX,Y [K±1; τ ] where τ is defined in (6.6) and ΛX,Y is the localization of the

algebra Λ at the powers of the elements X and Y . By (6.9) and (6.8),

AX,Y,ϕ = AX,Y,ϕ = TX,Y [C][ϕ±1;σ] = K[C]⊗ T[ϕ±1;σ] = K[C]⊗ Λ′ (6.10)

where Λ′ = T[ϕ±1;σ] and σ is as in (6.8). Notice that Λ′ is a quantum torus, it is easy to

compute its centre.

Lemma 6.6. 1. Z(Λ′) = K.
2. The algebra Λ′ is a simple algebra.

Proof. 1. Let u =
∑
λi,j,k,lK

iXjY kϕl ∈ Z(Λ), where λi,j,k,l ∈ K. Since [K,u] = 0, we have

j − k + l = 0. Similarly, since [X,u] = [Y, u] = [ϕ, u] = 0, we have the following equations:

−i+k = 0, i− j+ l = 0, −i−k = 0, respectively. These equations imply that i = j = k = l = 0.

Thus Z(Λ) = K.

2. Since the algebra Λ′ is central, it is a simple algebra, by [27, Corollary 1.5.(a)]
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Theorem 6.7. The centre Z(A) of the algebra A is the polynomial algebra in one variable K[C].

Proof. By (6.10) and Lemma 6.6.(1), Z(AX,Y,ϕ) = K[C]. Hence, Z(A) = K[C].

Using the defining relations of the algebra A, we can rewrite the central element C as follows

C = (1− q2)FY XE + FX2 − Y 2K−1E − 1

1− q2
Y K−1X +

q2

1− q2
Y KX. (6.11)

C = (FE − q2EF )Y X + q2FX2 −K−1EY 2. (6.12)

C = FX(EY − qY E)−K−1EY 2 +
q3

1− q2
(K −K−1)Y X. (6.13)

C = (1− q2)FEY X +
q3

1− q2
(K −K−1)Y X + q2FX2 −K−1EY 2. (6.14)

The subalgebra A of A. Let A be the subalgebra of A generated by the elements K±1, E,X

and Y . Then A is the quantum spatial ageing algebra. The properties of this algebra was studied

in the previous chapter. Recall that the algebra

A = E[K±1; τ ] (6.15)

is a skew Laurent polynomial algebra where τ(E) = q2E, τ(X) = qX and τ(Y ) = q−1Y . The

elements X,ϕ ∈ A are normal elements of the algebra A. The set SX,ϕ := {Xiϕj | i, j ∈ N} is a

left and right denominator set of the algebras A and A. Clearly AX,ϕ := S−1
X,ϕ ⊆ AX,ϕ := S−1

X,ϕA.

By Lemma 5.4, the algebra AX,ϕ is a central simple algebra.

For an element a ∈ A, let degF (a) be its F -degree. Since the algebra A is a domain, degF (ab) =

degF (a) + degF (b) for all elements a, b ∈ A. Using the defining relations of the algebra A, the

algebra A is a skew polynomial algebra

A = A[F ;σ, δ] (6.16)

where σ is an automorphism of A such that σ(K) = q2K,σ(E) = E, σ(X) = X,σ(Y ) = Y ; and

δ is a σ-derivation of the algebra A such that δ(K) = 0, δ(E) = K−K−1

q−q−1 , δ(X) = Y K−1 and

δ(Y ) = 0.

Lemma 6.8. The algebra AX,ϕ = K[C]⊗AX,ϕ is a tensor product of algebras.

Proof. Recall that ϕ = EY − qY E. Then the equality (6.13) can be written as C = FXϕ −
K−1EY 2 + q3

1−q2 (K −K−1)Y X. The element Xϕ is invertible in AX,ϕ. Now, using (6.16), we

see that AX,ϕ = AX,ϕ[F ;σ, δ] = AX,ϕ[C] = K[C]⊗AX,ϕ.

Summarizing, we have the following inclusions of algebras
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AX,ϕ,Y

AX,ϕ

AX Aϕ

A (6.17)

Quantum Gelfand-Kirillov conjecture for A. If we view A as the quantum analogue of the

enveloping algebra U(sl2 n V2), a natural question is whether A satisfies the quantum Gelfand-

Kirillov conjecture. Recall that a quantum Weyl skew field over K is the skew field of fractions of

a quantum affine space. We say that a K-algebra A admitting a skew field of fractions Frac (A)

satisfies the quantum Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl

skew field over a purely transcendental field extension of K; see [19, II.10, p. 230].

Theorem 6.9. The quantum Gelfand-Kirillov conjecture holds for the algebra A.

Proof. This follows immediately from (6.10).

6.3 Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal ideals of the

algebra A (Theorem 6.15, Theorem 6.19 and Corollary 6.17). It is proved that every nonzero

ideal of the algebra A has nonzero intersection with the centre of A (Corollary 6.16). The set of

completely prime ideals of the algebra A is described in Corollary 6.20. Our goal is a description

of the prime spectrum of the algebra A together with their inclusions. Next several results are

steps in this direction, they are interesting in their own right.

Lemma 6.10. The following identities hold in the algebra A.

1. FXi = XiF + 1−q2i
1−q2 Y K

−1Xi−1.

2. XF i = F iX − 1−q2i
1−q2 Y F

i−1K−1.

Proof. The equalities are proved by induction on i and using the defining relations of A.

Lemma 6.11. 1. In the algebra A, (X) = (Y ) = (ϕ) = AX +AY .

2. A/(X) ' U.

Proof. 1. The equality (X) = (Y ) follows from the equalities FX = Y K−1 +XF and EY = X+

q−1Y E. The inclusion (ϕ) ⊆ (Y ) follows from the equality ϕ = EY −qY E. The reverse inclusion

(ϕ) ⊇ (Y ) follows from Y = [F,ϕ]K−1 (Lemma 6.3). Let us show that XA ⊆ AX +AY . Recall

that X is a normal element of A. Then by (6.16), XA =
∑
k>0AXF k = AX +

∑
k>1AXF k ⊆
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AX + AY (the inclusion follows from Lemma 6.10.(2)). Then (X) = AXA ⊆ AX + AY ⊆
(X,Y ) = (X), i.e., (X) = AX +AY .

2. By statement 1, A/(X) = A/(X,Y ) ' U.

The next result shows that the elements X and ϕ are rather special.

Lemma 6.12. 1. For all i > 1, (Xi) = (X)i.

2. For all i > 1, (ϕi)X = (ϕ)iX = AX .

Proof. 1. To prove the statement we use induction on i. The case i = 1 is obvious. Suppose that

i > 1 and the equality (Xj) = (X)j holds for all 1 6 j 6 i− 1. By Lemma 6.10.(1), the element

Y Xi−1 ∈ (Xi). Now, (X)i = (X)(X)i−1 = (X)(Xi−1) = AXAXi−1A ⊆ (Xi) + AYXi−1A ⊆
(Xi). Therefore, (X)i = (Xi).

2. It suffices to show that (ϕi)X = AX for all i > 1. The case i = 1 follows from the equality

of ideals (ϕ) = (X) in the algebra A (Lemma 6.11). We use induction on i. Suppose that the

equality is true for all i′ < i. By Lemma 6.3.(1), [F,ϕi] = 1−q−2i

1−q−2 Y Kϕ
i−1, hence Y ϕi−1 ∈ (ϕi).

Using the equalities EY − q−1Y E = X and Eϕ = q−1ϕE, we see that EY ϕi−1 − q−iY ϕi−1E =

(EY − q−1Y E)ϕi−1 = Xϕi−1. Now, (ϕi)X ⊇ (ϕi−1)X = AX , by induction. Therefore, (ϕi)X =

AX for all i.

One of the most difficult steps in classification of prime ideals of the algebra A is to show that

each maximal ideal q of the centre Z(A) = K[C] generates the prime ideal Aq of the algebra A.

There are two distinct cases: q 6= (C) and q = (C). The next theorem deals with the first case.

Theorem 6.13. Let q ∈ Max(K[C]) \ {(C)}. Then

1. The ideal (q) := Aq of A is a maximal, completely prime ideal.

2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q where q = q(C) is an irreducible monic polynomial such that

q(0) ∈ K∗.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a maximal ideal of A: Consider the

chain of localizations

A/(q) −→ AX
(q)X

−→ AX,ϕ
(q)X,ϕ

.

By Lemma 6.8,
AX,ϕ
(q)X,ϕ

' Lq ⊗ AX,ϕ where Lq := K[C]/q is a finite field extension of K. By

Lemma 5.4, the algebra AX,ϕ is a central simple algebra. Hence, the algebra AX
(q)X

is simple iff

(ϕi, q)X = AX for all i > 1. By Lemma 6.12.(2), (ϕi)X = AX for all i > 1. Therefore, the

algebra AX
(q)X

is simple. Hence, the algebra A/(q) is simple iff (Xi, q) = A for all i > 1.

By Lemma 6.12.(1), (Xi) = (X)i for all i > 1. Therefore, (Xi, q) = (X)i + (q) for all i > 1.

It remains to show that (X)i + (q) = A for all i > 1. By Lemma 6.11.(1), (X) = (X,Y ).
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If i = 1 then (X) + (q) = (X,Y, q) =
(
X,Y, q(0)

)
= A, by (6.11) and q(0) ∈ K∗. Now,

A = Ai =
(
(X) + (q)

)i ⊆ (X)i + (q) ⊆ A, i.e., (X)i + (q) = A, as required.

(ii) (q) is a completely prime ideal of A: The set S = {Xiϕj | i, j ∈ N} is a denominator set of

the algebra A. Since
AX,ϕ
(q)X,ϕ

' S−1(A/(q)) is a (nonzero) algebra and (q) is a maximal ideal of

the algebra A, we have that torS(A/(q)) is an ideal of the algebra A/(q) distinct from A/(q),

hence torS(A/(q)) = 0. This means that the algebra A/(q) is a subalgebra of the algebra
AX,ϕ
(q)X,ϕ

' Lq⊗AX,ϕ which is a domain. Therefore, the ideal (q) of A is a completely prime ideal.

(iii) Z(A/(q)) = Lq: By Lemma 5.4, Z(AX,ϕ) = K, and A/(q) ⊆ AX,ϕ
(q)X,ϕ

' Lq ⊗ AX,ϕ, hence

Z(A/(q)) = Lq.

The case where q = (C) is dealt with in the next proposition.

Proposition 6.14. A ∩ (C)X,ϕ = (C) and the ideal (C) of A is a completely prime ideal.

Proof. Recall that A = A[F ;σ, δ] (see (6.16)), Φ = Xϕ ∈ A is a product of normal elements

X and ϕ in A and, by (6.13), the central element C can be written as C = ΦF + s where

s = −q2K−1EY 2 −Xỹ and ỹ := q4

1−q2Y K
−1 − 1

1−q2Y K.

(i) If Xf ∈ (C) for some f ∈ A then f ∈ (C): Notice that Xf = Cg for some g ∈ A. To prove

the statement (i), we use induction on the degree m = degF (f) of the element f ∈ A. Notice

that A is a domain and degF (fg) = degF (f) + degF (g) for all f, g ∈ A. The case when m 6 0

i.e., f ∈ A, is obvious since the equality Xf = Cg holds iff f = g = 0 (since degF (Xf) 6 0 and

degF (Cg) > 1 providing g 6= 0). So, we may assume that m > 1. We can write the element f

as a sum f = f0 + f1F + · · ·+ fmF
m where fi ∈ A and fm 6= 0. The equality Xf = Cg implies

that degF (g) = degF (Xf)− degF (C) = m− 1. Therefore, g = g0 + g1F + · · ·+ gm−1F
m−1 for

some gi ∈ A and gm−1 6= 0. Then

Xf0+Xf1F + · · ·+XfmF
m = (ΦF + s)(g0 + g1F + · · ·+ gm−1F

m−1)

= Φ
(
σ(g0)F + δ(g0)

)
+ Φ

(
σ(g1)F + δ(g1)

)
F + · · ·+ Φ

(
σ(gm−1)F + δ(gm−1)

)
Fm−1

+ sg0 + sg1F + · · ·+ sgm−1F
m−1

= Φδ(g0) + sg0 +
(
Φσ(g0) + Φδ(g1) + sg1

)
F + · · ·+ Φσ(gm−1)Fm. (6.18)

Comparing the terms of degree zero we have the equality Xf0 = Φδ(g0) + sg0 = Xϕδ(g0) +

(−q2K−1EY 2 − Xỹ)g0, i.e., X(f0 − ϕδ(g0) + ỹg0) = −q2K−1EY 2g0. All the terms in this

equality belong to the algebra A. Recall that X is a normal element in A such that A/AX is

domain (see (5.8)) and the element K−1EY 2 does not belong to the ideal AX. Hence we have

g0 ∈ AX, i.e., g0 = Xh0 for some h0 ∈ A. Now the element g can be written as g = Xh0 + g′F

where g′ = 0 if m = 1, and degF (g′) = m−2 = degF (g)−1 if m > 2. Now, Xf = C(Xh0 +g′F )

and so X(f − Ch0) = Cg′F . Notice that Cg′F has zero constant term as a noncommutative

polynomial in F (where the coefficients are written on the left). Therefore, the element f −Ch0
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has zero constant term, and hence can be written as f − Ch0 = f ′F for some f ′ ∈ A with

degF (f ′) + degF (F ) = degF (f ′F ) = degF (f ′) + 1

= degF (f − Ch0) 6 max
(

degF (f),degF (Ch0)
)

=

{
1, if m = 1,

m, if m > 1.

In both cases, degF (f ′) < degF (f). Now, Cg′F = X(f −Ch0) = Xf ′F , hence Xf ′ = Cg′ ∈ (C)

(by deleting F ). By induction, f ′ ∈ (C), and then f = Ch0 + f ′F ∈ (C), as required.

(ii) If ϕf ∈ (C) for some f ∈ A then f ∈ (C): Notice that ϕf = Cg for some g ∈ A. To prove the

statement (ii) we use similar arguments to the ones given in the proof of the statement (i). We

use induction on m = degF (f). The case where m 6 0, i.e., f ∈ A is obvious since the equality

ϕf = Cg holds iff f = g = 0 (since degF (ϕf) 6 0 and degF (Cg) > 1 providing g 6= 0). So we may

assume that m > 1. We can write the element f as a sum f = f0+f1F+· · ·+fmFm where fi ∈ A
and fm 6= 0. Then the equality ϕf = Cg implies that degF (g) = degF (ϕf)− degF (C) = m− 1.

Therefore, g = g0 + g1F + · · · + gm−1F
m−1 where gi ∈ A and gm−1 6= 0. Then replacing X by

ϕ in (6.18), we have the equality

ϕf0 + ϕf1F + · · ·+ ϕfmF
m = Φδ(g0) + sg0 + · · ·+ Φσ(gm−1)Fm. (6.19)

The element s can be written as a sum s = (− q
1−q2ϕK

−1 + 1
1−q2KX)Y . Then equating the

constant terms of the equality (6.19) and then collecting terms multiple of ϕ we obtain the

equality in the algebra A: ϕ(f0 −Xδ(g0) + q
1−q2K

−1Y g0) = 1
1−q2KXY g0. The element ϕ ∈ A

is a normal element such that the factor algebra A/Aϕ is a domain (see (5.12)) and the element

KXY does not belong to the ideal Aϕ. Therefore, g0 ∈ Aϕ, i.e., g0 = ϕh0 for some element

h0 ∈ A. Recall that degF (g) = m − 1. Now, g = ϕh0 + g′F where g′ ∈ A and g′ = 0 if

m = 1, and degF (g′) = m− 2 = degF (g)− 1 if m > 2. Now, ϕf = Cg = C(ϕh0 + g′F ). Hence,

ϕ(f − Ch0) = Cg′F , and so f − Ch0 = f ′F for some f ′ ∈ A with

degF (f ′) + degF (F ) = degF (f ′F ) = degF (f ′) + 1

= degF (f − Ch0) 6 max
(

degF (f),degF (Ch0)
)

=

{
1, if m = 1,

m, if m > 1.

In both cases, degF (f ′) < degF (f). Now, Cg′F = ϕ(f − Ch0) = ϕf ′F , hence ϕf ′ = Cg′ ∈ (C)

(by deleting F ). Now, by induction, f ′ ∈ (C), and then f = Ch0 + f ′F ∈ (C), as required.

(iii) A ∩ (C)X,ϕ = (C): Let u ∈ A ∩ (C)X,ϕ. Then Xiϕju ∈ (C) for some i, j ∈ N. It remains to

show that u ∈ (C). By the statement (i), ϕju ∈ (C), and then by the statement (ii), u ∈ (C).

(iv) The ideal (C) of A is a completely prime ideal : By Lemma 6.8, AX,ϕ/(C)X,ϕ ' AX,ϕ, in

particular, AX,ϕ/(C)X,ϕ is a domain. By the statement (iii), the algebra A/(C) is a subalgebra

of AX,ϕ/(C)X,ϕ, so A/(C) is a domain. This means that the ideal (C) is a completely prime

ideal of A.

The next theorem gives an explicit description of the poset (Spec (A),⊆).
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Theorem 6.15. Let U := Uq(sl2). The prime spectrum of the algebra A is a disjoint union

Spec(A) = Spec(U) t Spec(AX,ϕ) = {(X, p) | p ∈ Spec(U)} t {Aq | q ∈ Spec(K[C])}. (6.20)

Furthermore,

Spec (U) \ {0}

(X)

(C)

0

{
Aq | q ∈ Max (K[C]) \ {(C)}

}
(6.21)

Proof. By Lemma 6.11.(2), A/(X) ' U . By Lemma 6.12.(1) and Proposition 3.3,

Spec (A) = Spec (A,X) t Spec (AX). (6.22)

By Lemma 6.12.(2) and Proposition 3.3,

Spec (AX) = Spec (AX,ϕ). (6.23)

Therefore, Spec (A) = {(X, p) | p ∈ Spec (U)} t {A ∩ AX,ϕq | q ∈ Spec (K[C])}. Finally, by

Theorem 6.13.(1), A ∩ AX,ϕq = (q) for all q ∈ Max (K[C]) \ {(C)}. By Proposition 6.14,

A ∩ AX,ϕC = (C). Therefore, (6.20) holds. For all q ∈ Max (K[C]) \ {(C)}, the ideals Aq of A

are maximal. By (6.11), AC ⊆ (X). Therefore, (6.21) holds.

For a list of prime ideals of the algebra Uq(sl2) see [36, Theorem 4.6]. We note that every nonzero

prime ideal of Uq(sl2) is a primitive ideal.

The next corollary shows that every nonzero ideal of the algebra A meets the centre of A.

Corollary 6.16. If I is a nonzero ideal of the algebra A then I ∩K[C] 6= 0.

Proof. Suppose that the result is not true, let us choose an ideal J 6= 0 maximal such that

J ∩ K[C] = 0. We claim that J is a prime ideal. Otherwise, suppose that J is not prime,

then there exist ideals p and q such that J $ p, J $ q and pq ⊆ J. By the maximality of J ,

p∩K[C] 6= 0 and q∩K[C] 6= 0. Then J ∩K[C] ⊇ pq∩K[C] 6= 0, a contradiction. So, J is a prime

ideal, but by Theorem 6.15 for all nonzero primes P , P ∩K[C] 6= 0, a contradiction. Therefore,

for any nonzero ideal I, I ∩K[C] 6= 0.

The next result is an explicit description of the set of maximal ideals of the algebra A.

Corollary 6.17. Max (A) = Max (U) t
{
Aq | q ∈ Max (K[C]) \ {(C)}

}
.

Proof. The equality follows from (6.21).
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In the following lemma, we define a family of left A-modules. We will show that these modules

are simple A-modules and their annihilators are equal to (C).

Lemma 6.18. For λ ∈ K∗, we define the left A-module W (λ) := A/A(X − λ, Y, F ). Then

1. The module W (λ) is a simple A-module.

2. annA(W (λ)) = (C).

Proof. 1. Let 1̄ = 1 + A(X − λ, Y, F ) be the canonical generator of the A-module W (λ).

Then W (λ) =
∑
i∈NE

iK[K±1] 1̄. Suppose that V is a nonzero submodule of W (λ), we have

to show that V = W (λ). Let v =
∑n
i=0E

ifi1̄ be a nonzero element of the module V where

fi ∈ K[K±1] and fn 6= 0. By Lemma 5.2.(2), Y v =
∑n
i=1(qiEiY − q(1−q2i)

1−q2 XEi−1)fi1̄ =∑n
i=1−

q(1−q2i)
1−q2 XEi−1fi1̄. By induction, we see that Y nv = P 1̄ ∈ V where P is a nonzero

Laurent polynomial in K[K±1]. Then it follows that 1̄ ∈ V , and so V = W (λ).

2. It is clear that annA(W (λ)) ⊇ (C) and X /∈ annA(W (λ)). By (6.21), we must have

annA(W (λ)) = (C).

The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 6.19. Prim (A) = Prim (U) t
{
Aq | q ∈ SpecK[C] \ {0}

}
.

Proof. Clearly, Prim (U) ⊆ Prim (A) and {Aq | q ∈ Max (K[C]) \ {CK[C]}} ⊆ Prim (A) since Aq

is a maximal ideal (Corollary 6.17). By Corollary 6.16, 0 is not a primitive ideal. In view of

(6.21), it suffices to show that (C) ∈ Prim (A). But this follows from Lemma 6.18.

The next corollary is a description of the set Specc(A) of completely prime ideals of the algebra

A.

Corollary 6.20. The set Specc(A) of completely prime ideals of A is equal to

Specc(A) = Specc(U) t
{
Aq | q ∈ Spec (K[C])

}
=
{

(X, p) | p ∈ Spec (U), p 6= annU (M) for some simple finite dimensional

U -module M of dimK(M) > 2
}
t
{
Aq | q ∈ Spec (K[C])

}
.

Proof. The result follows from Theorem 6.13.(1) and Proposition 6.14.

6.4 Action of A on the polynomial algebra K[x, y]

In the study of universal enveloping algebras, the Weyl algebras play an important role as we

have seen in the previous chapters. In this section, we consider a q-analogue of the (first) Weyl

algebra, which is a central simple algebra of Gelfand-Kirillov dimension 2. It plays a role similar

to the one the Weyl algebra does but in the study of quantum algebras.
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Let σx and σy be the automorphisms of the polynomial algebra K[x, y] that are defined by the

rule

σx(x) = qx, σx(y) = y, σy(x) = x, σy(y) = qy.

The q-partial derivatives ∂qx and ∂qy on K[x, y] are defined by the rule

∂qx(xiyj) = [i]xi−1yj and ∂qy(xiyj) = [j]xiyj−1

where [n] := qn−q−n
q−q−1 is the ‘quantum integer’. We denote the operator of ‘multiplication by

x (resp. y)’ simply by x (resp. y). Nontrivial commutation relations between the elements

x, σx, ∂
q
x, y, σy and ∂qy are

σxx = qxσx, ∂qxσx = qσx∂
q
x, ∂qxx = q−1x∂qx + σx = qx∂qx + σ−1

x , (6.24)

σyy = qyσy, ∂qyσy = qσy∂
q
y , ∂qyy = q−1y∂qy + σy = qy∂qy + σ−1

y . (6.25)

Let W2 be the subalgebra of End (K[x, y]) generated by the elements x, σ±1
x , ∂qx, y, σ

±1
y and ∂qy .

Lemma 6.21. K[x, y] is a simple W2-module.

Proof. Let N be a non-zero submodule of K[x, y]. Let 0 6= f ∈ N . Notice that degx(∂qx(f)) =

degx(f) − 1 and degy(∂qy(f)) = degy(f) − 1. Thus there exist m,n ∈ N such that 0 6=
(∂qx)m(∂y)n(f) ∈ K. Therefore, N = K[x, y], and K[x, y] is a simple W2-module.

Proposition 6.22. There is an algebra homomorphism % : A→W2 defined by the rule

K 7→ (σ−1
x )2σ−1

y , K−1 7→ σyσ
2
x, E 7→ −σ−1

y x(∂qx)2 − σx∂qxy∂qy ,

F 7→ x, Y 7→ y, X 7→ −σx∂qxyσy.

Proof. Let M := A/A(K − 1, X,E), it is a left A-module. Then M ' K[F, Y ]1̃, where 1̃ =

1 +A(K − 1,K−1 − 1, X,E). The linear map K[x, y]→M, xiyj 7→ F iY j 1̃ is a bijection. Let %

be the representation of A in K[x, y] obtained via this bijection from representation of A in M .

Then we obtain the above correspondence. Let us show that %(E) = −σ−1
y x(∂qx)2 − σx∂qxy∂qy for

example. Notice that the following equality holds in the algebra A

EF i = F iE + [i]F i−1Kq
−i+1 −K−1qi−1

q − q−1
. (6.26)

Notice further that for all integers a and b, [a+ b] = q−b[a] + qa[b]. Then

EF iY j 1̃ =
(
F iE + [i]F i−1Kq

−i+1 −K−1qi−1

q − q−1

)
Y j 1̃ = [i]F i−1Kq

−i+1 −K−1qi−1

q − q−1
Y j 1̃

= −[i] [i+ j − 1]F i−1Y j 1̃ =
(
− q−j [i] [i− 1]− qi−1[i] [j]

)
F i−1Y j 1̃.

We can see from this that %(E) = −σ−1
y x(∂qx)2 − σx∂qxy∂qy .
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q-analogue of the Weyl algebra. Recall that the (first) Weyl algebra A1 is the subalgebra

of End (K[x]) generated by the operators x and ∂x where ∂x is the derivative with respect to x.

More precisely, A1 = K〈x, ∂x | ∂xx− x∂x = 1〉.

Let W1 be the subalgebra of End (K[x]) generated by the operators σx, σ
−1
x , x and ∂qx. In

particular, these generators of W1 satisfy the relations (6.24). The next proposition shows that

W1 is a central simple GWA and the relations (6.24) (together with σxσ
−1
x = σ−1

x σx = 1) are

the defining relations of W1. Notice that W2 ' W1 ⊗W1 is a tensor product of algebras, then

W2 is also a central simple algebra. The algebra W1 can be viewed as a q-analogue of the Weyl

algebra A1. Some ring theoretic properties of the algebra W1 were studied in [34].

Proposition 6.23. The algebra W1 is a central simple GWA.

Proof. Let U be the algebra generated by the symbols σx, σ
−1
x , x and ∂qx subject to the defining

relations (6.24) (together with the relation σxσ
−1
x = σ−1

x σx = 1). Notice that

x∂qx =
σx − σ−1

x

q − q−1
and ∂qxx =

qσx − q−1σ−1
x

q − q−1
.

Then U = K[σ±1
x ][x, ∂qx; τ, a =

qσx−q−1σ−1
x

q−q−1 ] is a GWA where τ is an automorphism of the algebra

K[σ±1
x ] defined by τ(σx) = q−1σx. Moreover, there is a natural epimorphism of algebras f : U −�

W1. Let Ux be the localization of U at the powers of the element x. Then Ux = Kq[σ±1
x , x±1]

where Kq[σ±1
x , x±1] := K〈σ±1

x , x±1 |σxx = qxσx〉 is the central simple quantum torus. The

inclusions K ⊆ Z(U) ⊆ U ∩ Z(Ux) = K yield that Z(U) = K. The simplicity of U follows

immediately from Theorem 2.16 ([6, Theorem 4.2]). Now, the epimorphism of algebras f : U −�
W1 must be an isomorphism. Hence, W1 is a central simple GWA.

6.5 The centralizer of K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer CA(K) of

the element K in the algebra A.

Proposition 6.24. The algebra CA(K) = K〈K±1, FE, Y X, EY 2, FX2 〉 is a Noetherian

domain.

Proof. Since A is a domain, then so is its subalgebra CA(K). Notice that the algebra A =⊕
i∈ZAi is a Z-graded Noetherian algebra where Ai = {a ∈ A |KaK−1 = qia}. Then the

algebra A0 = CA(K) is a Noetherian algebra.

The algebra Uq(sl2) is a GWA: Uq(sl2) ' K[K±1,Ω][E,F ;σ, a := Ω − qK+q−1K−1

(q−q−1)2 ] where Ω =

FE + qK+q−1K−1

(q−q−1)2 , σ(K) = q−2K and σ(Ω) = Ω. In particular, Uq(sl2) is a Z-graded algebra

Uq(sl2) =
⊕

i∈ZDvi where D := K[K±1,Ω] = K[K±1, FE], vi = Ei if i > 1, vi = F |i| if i 6 −1

and v0 = 1. The quantum plane Kq[X,Y ] is also a GWA: Kq[X,Y ] ' K[t][X,Y ;σ, t] where t :=

Y X and σ(t) = qt. Therefore, the quantum plane is a Z-graded algebra Kq[X,Y ] =
⊕

j∈Z K[t]wj
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where wj = Xj if j > 1, wj = Y |j| if j 6 −1 and w0 = 1. Since A = Uq(sl2)⊗Kq[X,Y ] (tensor

product of vector spaces), and notice that Et = tE +X2, F t = tF + q−2K−1Y 2, we have

A = Uq(sl2)⊗Kq[X,Y ] =
⊕
i∈Z

Dvi ⊗
⊕
j∈Z

K[t]wj =
⊕
i,j∈Z

D[t]viwj . (6.27)

By (6.27), for each k ∈ Z, Ak =
⊕

i,j∈Z, 2i+j=kD[t]viwj =
⊕

i∈ZD[t]viwk−2i. Then CA(K) =

A0 =
⊕

i>0D[t]EiY 2i⊕
⊕

j>1D[t]F jX2j . Notice that EY 2 · t = q−2t ·EY 2 + qt2 and FX2 · t =

q2t·FX2+q−1K−1t2. By induction, one sees that for all i, j > 0, EiY 2i ∈
⊕

n∈N K[t](EY 2)n and

F jX2j ∈
⊕

n∈N K[K±1, t](FX2)n. Hence, CA(K) = A0 =
⊕

i>0D[t](EY 2)i⊕
⊕

j>1D[t](FX2)j .

In particular, CA(K) = K〈K±1, FE, Y X, EY 2, FX2 〉.

Lemma 6.25. 1. CAX,Y,ϕ(K) = K[C,K±1] ⊗ Kq2 [(Y X)±1, (Y ϕ)±1] is a tensor product of

algebras where Kq2 [(Y X)±1, (Y ϕ)±1] is a central, simple, quantum torus with Y X · Y ϕ =

q2Y ϕ · Y X.

2. GK
(
CAX,Y,ϕ(K)

)
= 4.

3. GK (CA(K)) = 4.

4. AX,Y,ϕ =
⊕

i∈Z CAX,ϕ,Y (K)Y i.

Proof. 1. By (6.10), AX,Y,ϕ = K[C]⊗Λ′ where Λ′ is a quantum torus. Then CAX,Y,ϕ(K) = K[C]⊗
CΛ′(K). Since Λ′ is a quantum torus, it is easy to see that CΛ′(K) =

⊕
i,j,k∈ZK

i(Y X)j(Y ϕ)k,

i.e., CΛ′(K) = K[K±1]⊗Kq2 [(Y X)±1, (Y ϕ)±1]. Then statement 1 follows.

2. Statement 2 follows from statement 1.

3. Let R be the subalgebra of CA(K) generated by the elements C, K±1, Y X and Y ϕ. Then

R = K[C,K±1] ⊗ Kq2 [Y X, Y ϕ] is a tensor product of algebras. Clearly, R is a Noetherian

algebra of Gelfand-Kirillov dimension 4. So GK (CA(K)) > GK (R) = 4. By statement 2,

GK (CA(K)) 6 GK (CAX,Y,ϕ(K)) = 4. Hence, GK (CA(K)) = 4.

4. Statement 4 follows from statement 1 and (6.10).

Proposition 6.26. Let h := ϕX−1, e := EX−2 and t := Y X. Then

1. CAX,ϕ(K) = K[C,K±1]⊗A is a tensor product of algebras where A := K[h±1][t, e;σ, a =
q−2h−1

1−q2 ] is a central simple GWA (where σ(h) = q2h).

2. GK (CAX,ϕ(K)) = 4.

3. AX,ϕ =
⊕

i∈Z CAX,ϕ(K)Xi.

Proof. 1. Let A be the subalgebra of CAX,ϕ(K) generated by the elements h±1, e and t.

(i) A is a central simple GWA: The elements h±1, e and t satisfy the following relations

hh−1 = h−1h = 1, th = q2ht, eh = q−2he, et =
q−2h− 1

1− q2
, te =

h− 1

1− q2
. (6.28)

Hence, A is an epimorphic image of the GWA A ′ = K[h±1][t, e;σ, a = q−2h−1
1−q2 ] where σ(h) = q2h.

Now, we prove that A ′ is a central simple algebra. Let A ′e be the localization of A ′ at the powers

of the element e. Then A ′e = K[h±1][e±1;σ′] where σ′(h) = q−2h. Clearly, Z(A ′e ) = K and A ′e
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is a simple algebra. So, Z(A ′) = Z(A ′e ) ∩ A ′ = K. To show that A ′ is simple, it suffices to

prove that A ′eiA ′ = A ′ for any i ∈ N. The case i = 1 is obvious, since 1 = q2et− te ∈ A ′eA ′.

By induction, for i > 1, it suffices to show that ei−1 ∈ A ′eiA ′. This follows from the equality

tei = q2ieit− 1−q2i
1−q2 e

i−1. So, A ′ is a simple algebra. Now, the epimorphism of algebras A ′−� A

is an isomorphism. Hence, A ' A ′ is a central simple GWA.

(ii) CAX,ϕ(K) = K[C,K±1] ⊗ A : By Lemma 6.8, AX,ϕ = K[C] ⊗ AX,ϕ. So, CAX,ϕ(K) =

K[C]⊗CAX,ϕ(K). By (5.2), AX,ϕ = EX,ϕ[K±1; τ ] where τ(E) = q2E, τ(X) = qX, τ(Y ) = q−1Y

and τ(ϕ) = qϕ. Then CAX,ϕ(K) = K[K±1] ⊗ EτX,ϕ. To finish the proof of statement (ii),

it suffices to show that EτX,ϕ = A . By (5.1), EX,ϕ = K[X±1, ϕ±1][E, Y ;σ, a = ϕ−X
q−1−q ] is a

GWA. Then EX,ϕ =
⊕

i>0 K[X±1, ϕ±1]Ei ⊕
⊕

j>1 K[X±1, ϕ±1]Y j =
⊕

i>0,k∈Z K[h±1]EiXk ⊕⊕
j>1,k∈Z K[h±1]Y jXk. Now, it is clear that EτX,ϕ =

⊕
i>0 K[h±1]ei ⊕

⊕
j>1 K[h±1]tj = A .

2. Notice that GK (A ) = 2, statement 2 follows from statement 1.

3. Notice that AX,ϕ =
⊕

i∈Z CAX,ϕ(K)Xi, statement 3 then follows from Lemma 6.8.

Defining relations of the algebra CA(K). We have to select carefully generators of the

algebra CA(K) in order to make the corresponding defining relations simpler. The next lemma

indicates how we choose the generators.

Lemma 6.27. We have the following relations.

1. Y X · Y ϕ = q2Y ϕ · Y X.
2. FE · Y X = q2Y X · FE + q+q−1

1−q2 K
−1Y ϕ− q2(qK+q−1K−1)

1−q2 Y X + C.

3. FE · Y ϕ = q−2Y ϕ · FE + qK+q−1K−1

1−q2 Y ϕ− q(1+q2)
1−q2 KYX + C.

Proof. 1. Obvious.

2. Using the defining relations of A, the expression (6.11) of C, and Y ϕ = q4Y X+q(1−q2)EY 2,

FE · Y X = F (X + q−1Y E)X = FX2 + Y FXE = FX2 + Y (Y K−1 +XF )E

= FX2 + q−2K−1Y 2E + Y XFE

= q2(Y X)(FE) + (1 + q2)K−1EY 2 − q3K + (q − q3 − q5)K−1

1− q2
Y X + C

= q2Y X · FE +
q + q−1

1− q2
K−1Y ϕ− q2(qK + q−1K−1)

1− q2
Y X + C.

3. FE · Y ϕ = F (X + q−1Y E)ϕ = FXϕ+ q−2Y FϕE = FXϕ+ q−2Y (ϕF + Y K)E

= q−2Y ϕFE + (q2K +K−1)EY 2 − (
q3(K −K−1)

1− q2
+ q(1 + q2)K)Y X + C

= q−2Y ϕ · FE +
qK + q−1K−1

1− q2
Y ϕ− q(1 + q2)

1− q2
KYX + C. �

Let Θ := (1− q2)Ω = (1− q2)FE + q2(qK+q−1K−1)
1−q2 ∈ Z(Uq(sl2)). By (6.12), We have

C = (Θ− qK−1

1− q2
)Y X + q2FX2 − 1

q(1− q2)
K−1Y ϕ. (6.29)
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By Lemma 6.27.(2), (3), we have

Θ · Y X = q2Y X ·Θ + (q + q−1)K−1Y ϕ+ (1− q2)C. (6.30)

Θ · Y ϕ = q−2Y ϕ ·Θ− q(1 + q2)KYX + (1− q2)C. (6.31)

Lemma 6.28. In the algebra CA(K), the following relation holds

Θ · Y X · Y ϕ− 1

q(1− q2)
K−1(Y ϕ)2 − C · Y ϕ =

q7

1− q2
K(Y X)2 − q4C · Y X.

Proof. By (6.29), Θ · Y X = C + q
1−q2K

−1Y X − q2FX2 + 1
q(1−q2)K

−1Y ϕ. So,

Θ · Y X · Y ϕ = C · Y ϕ+
q

1− q2
K−1Y X · Y ϕ− q2FX2 · Y ϕ+

1

q(1− q2)
K−1(Y ϕ)2.

Then Θ · Y X · Y ϕ − 1
q(1−q2)K

−1(Y ϕ)2 − C · Y ϕ = q
1−q2K

−1Y X · Y ϕ − q2FX2 · Y ϕ. Notice

that Y X · Y ϕ = q4(Y X)2 + q(1 − q2)Y X · EY 2, FX2 · Y ϕ = q2FXϕ · Y X and EY 2 · Y X =

q(Y X)2 + q−2Y X · EY 2. Then by (6.13) we obtain the identity as desired.

Theorem 6.29. Let u := K−1Y ϕ and recall that t = Y X, Θ = (1 − q2)FE + q2(qK+q−1K−1)
1−q2 .

Then the algebra CA(K) is generated by the elements K±1, C, Θ, t and u subject to the following

defining relations:

t · u = q2u · t, (6.32)

Θ · t = q2t ·Θ + (q + q−1)u+ (1− q2)C, (6.33)

Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)K−1C, (6.34)

Θ · t · u− 1

q(1− q2)
u2 − C · u =

q7

1− q2
t2 − q4K−1C · t, (6.35)

[K±1, ·] = 0, and [C, ·] = 0 (6.36)

where (6.36) means that the elements K±1 and C are central in CA(K). Furthermore, Z(CA(K)) =

K[C,K±1].

Proof. (i) Generators of CA(K): Notice that Y ϕ = q4Y X+ q(1− q2)EY 2. Then by Proposition

6.24 and (6.29), the algebra CA(K) is generated by the elements C, K±1, Θ, t and u. By (6.30),

(6.31) and Lemma 6.28, the elements C, K±1, Θ, t and u satisfy the relations (6.32)–(6.36). It

remains to show that these relations are defining relations.

Let C be the K-algebra generated by the symbols C, K±1, Θ, t and u subject to the defining

relations (6.32)–(6.36). Then there is a natural epimorphism of algebras f : C −� CA(K). Our

aim is to prove that f is an algebra isomorphism.

(ii) GK (C ) = 4 and Z(C ) = K[C,K±1]: Let R be the subalgebra of C generated by the

elements C, K±1, t and u. Then R = K[C,K±1] ⊗ Kq2 [t, u] is a tensor product of algebra

where Kq2 [t, u] := K〈t, u | tu = q2ut〉 is a quantum plane. Clearly, R is a Noetherian algebra of

Gelfand-Kirillov dimension 4. Let Ct,u be the localization of C at the powers of the elements t

and u. Then Ct,u = K[C,K±1] ⊗ Kq2 [t±1, u±1] = Rt,u. So, GK (Ct,u) = 4. Now, the inclusions
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R ⊆ C ⊆ Ct,u yield that 4 = GK (R) 6 GK (C ) 6 GK (Ct,u) = 4, i.e., GK (C ) = 4. Moreover,

since Kq2 [t±1, u±1] is a central simple algebra, Z(Ct,u) = K[C,K±1]. Hence, Z(C ) = K[C,K±1].

By Lemma 6.25.(3), GK (C ) = GK (CA(K)) = 4. In view of Proposition 2.12, to show that the

epimorphism f : C −� CA(K) is an isomorphism it suffices to prove that C is a domain.

Let D be the algebra generated by the symbols C, K±1, Θ, t and u subject to the defining

relations (6.32)–(6.34) and (6.36). Then D is an Ore extension

D = R[Θ;σ, δ]

where R = K[C,K±1]⊗Kq2 [t, u] is a Noetherian domain; σ(C) = C, σ(K±1) = K±1, σ(t) = q2t,

σ(u) = q−2u; δ is a σ-derivation of R given by the rule δ(C) = δ(K±1) = 0, δ(t) = (q + q−1)u+

(1 − q2)C and δ(u) = −q(1 + q2)t + (1 − q2)K−1C. In particular, D is a Noetherian domain.

Let Z := Θtu− 1
q(1−q2)u

2 − Cu− q7

1−q2 t
2 + q4K−1Ct = tuΘ− q̂(u2 + t2)− q2C(u−K−1t) ∈ D

where q̂ = q3

1−q2 . Then Z is a central element of D and C ' D/(Z). To prove that C is

a domain, it suffices to show that (Z) is a completely prime ideal of D . Notice that Dt,u =

K[C,K±1, Z]⊗Kq2 [t±1, u±1] is a tensor product of algebras. Then

Ct,u ' Dt,u/(Z)t,u ' K[C,K±1]⊗Kq2 [t±1, u±1] ' Rt,u.

In particular, Ct,u is a domain and (Z)t,u is a completely prime ideal of Dt,u.

(iii) If tx ∈ (Z) for some element x ∈ D then x ∈ (Z): Since Z is central in D , tx = Zd for some

element d ∈ D . We prove the statement (iii) by induction on the degree degΘ(x) of the element

x. Since D is a domain, degΘ(dd′) = degΘ(d) + degΘ(d′) for all elements d, d′ ∈ D . Notice that

degΘ(Z) = 1, the case x ∈ R is trivial. So, we may assume that m = degΘ(x) > 1 and then the

element x can be written as x = a0 +a1Θ + · · ·+amΘm where ai ∈ R and am 6= 0. The equality

tx = Zd yields degΘ(d) = m− 1 since degΘ(Z) = 1. Hence, d = d0 + d1Θ + · · ·+ dm−1Θm−1 for

some di ∈ R and dm−1 6= 0. Now, the equality tx = Zd can be written as follows t(a0 + a1Θ +

· · ·+amΘm) =
(
tuΘ− q̂(u2 + t2)−q2C(u−K−1t)

)(
d0 +d1Θ+ · · ·+dm−1Θm−1

)
. Comparing the

terms of degree zero in the equality we have ta0 = tuδ(d0)−
(
q̂(u2 + t2)+q2C(u−K−1t)

)
d0, i.e.,

t
(
a0−uδ(d0)+ q̂td0−q2CK−1d0

)
= −u(q̂u+q2C)d0. All terms in this equality are in the algebra

R. Notice that t is a normal element of R, the elements u /∈ tR and q̂u + q2C /∈ tR, we have

d0 ∈ tR. So d0 = tr for some element r ∈ R. Then d = tr+wΘ where w = d1 + · · ·+dm−1Θm−2

if m > 2 and w = 0 if m = 1. If m = 1 then d = tr and the equality tx = Zd yields that

tx = tZr, i.e., x = Zr ∈ (Z) (by deleting t), we are done. So we may assume that m > 2. Now,

the equality tx = Zd can be written as tx = Z(tr + wΘ), i.e., t(x − Zr) = ZwΘ. This implies

that x − Zr = x′Θ for some x′ ∈ D where degΘ(x′) < degΘ(x). Now, tx′Θ = ZwΘ and hence,

tx′ = Zw (by deleting Θ). By induction x′ ∈ (Z). Then x = x′ + Zr ∈ (Z).

(iv) If ux ∈ (Z) for some element x ∈ D then x ∈ (Z): Notice that the elements u and t are

‘symmetric’ in the algebra D , the statement (iv) can be proved similarly to the statement (iii).

(v) D ∩ (Z)t,u = (Z): The inclusion (Z) ⊆ D ∩ (Z)t,u is obvious. Let x ∈ D ∩ (Z)t,u. Then

tiujx ∈ (Z) for some i, j ∈ N. By the statement (iii) and the statement (iv), x ∈ (Z). Hence,

D ∩ (Z)t,u = (Z).



Chapter 6. The smash product algebra Kq[X,Y ] o Uq(sl2) 99

By the statement (v), the algebra D/(Z) is a subalgebra of Dt,u/(Z)t,u. Hence, D/(Z) is domain.

This completes the proof.

The next proposition gives a K-basis for the algebra C := CA(K).

Proposition 6.30.

C = K[C,K±1]⊗K

( ⊕
i,j>1

KΘitj ⊕
⊕
k>1

KΘk ⊕
⊕
l,m>1

KΘlum ⊕
⊕
a,b>0

Kuatb
)
.

Proof. The relations (6.32)-(6.35) can be written in the following equivalent form, respectively,

u · t = q−2t · u,

t ·Θ = q−2Θ · t− q−2(q + q−1)u− q−2(1− q2)C,

u ·Θ = q2Θ · u+ q3(1 + q2)t− q2(1− q2)K−1C,

Θ · t · u =
1

q(1− q2)
u2 + C · u+

q7

1− q2
t2 − q4K−1C · t.

On the free semigroup W generated by C, K, K ′, Θ, t and u (where K ′ play the role of K−1),

we introduce the length-lexicographic ordering such that

K ′ < K < C < Θ < t < u.

With respect to this ordering the Diamond Lemma can be applied to C as there is only one

ambiguity which is the overlap ambiguity utΘ and it is resolvable as the following computations

show:

(ut)Θ→ q−2tuΘ→ q−2t
(
q2Θu+ q3(1 + q2)t− q2(1− q2)K ′C

)
→ tΘu+ q(1 + q2)t2 − (1− q2)K ′Ct

→
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)C

)
u+ q(1 + q2)t2 − (1− q2)K ′Ct

→ q−2Θtu− q−2(q + q−1)u2 − q−2(1− q2)Cu+ q(1 + q2)t2 − (1− q2)K ′Ct

→ q

1− q2
u2 + Cu+

q

1− q2
t2 −K ′Ct,

u(tΘ)→ u
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)C

)
→ q−2uΘt− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ q−2
(
q2Θu+ q3(1 + q2)t− q2(1− q2)K ′C

)
t− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ Θut+ q(1 + q2)t2 − (1− q2)K ′Ct− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ q−2Θtu+ q(1 + q2)t2 − (1− q2)K ′Ct− q−2(q + q−1)u2 − q−2(1− q2)Cu

→ q

1− q2
u2 + Cu+

q

1− q2
t2 −K ′Ct.

So, by the Diamond Lemma, C = K[C,K±1]⊗K

(⊕
i,j>1 KΘitj⊕

⊕
k>1 KΘk⊕

⊕
l,m>1 KΘlum⊕⊕

a,b>0 Kuatb
)
.

The algebra C λ,µ. For elements λ ∈ K and µ ∈ K∗, let C λ,µ := C /(C − λ,K − µ). By

Theorem 6.29, the algebra C λ,µ is generated by the images of the elements Θ, t and u in C λ,µ.

For simplicity, we denote by the same letters their images.
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Corollary 6.31. Let λ ∈ K and µ ∈ K∗. Then

1. The algebra C λ,µ is generated by the elements Θ, t and u subject to the following defining

relations

t · u = q2u · t, (6.37)

Θ · t = q2t ·Θ + (q + q−1)u+ (1− q2)λ, (6.38)

Θ · u = q−2u ·Θ− q(1 + q2)t+ (1− q2)µ−1λ, (6.39)

Θ · t · u =
1

q(1− q2)
u2 + λu+

q7

1− q2
t2 − q4µ−1λt. (6.40)

2. C λ,µ =
⊕

i,j>1 KΘitj ⊕
⊕

k>1 KΘk ⊕
⊕

l,m>1 KΘlum ⊕
⊕

a,b>0 Kuatb.

Proof. 1. Statement 1 follows from Theorem 6.29.

2. Statement 2 follows from Proposition 6.30.

Let Ct (resp. C λ,µ
t ) be the localization of the algebra C (resp. C λ,µ) at the powers of the element

t = Y X. The next proposition shows that Ct and C λ,µ
t are GWAs.

Proposition 6.32. 1. Let v := Θt− 1
q(1−q2)u−C. The algebra Ct = K[C,K±1, t±1][u, v;σ, a]

is a GWA of Gelfand-Kirillov dimension 4 where a = q7

1−q2 t
2 − q4K−1Ct and σ is the

automorphism of the algebra K[C,K±1, t±1] defined by the rule: σ(C) = C, σ(K±1) = K±1

and σ(t) = q−2t.

2. Let λ ∈ K, µ ∈ K∗ and v := Θt− 1
q(1−q2)u− λ. Then the algebra C λ,µ

t = K[t±1][u, v;σ, a]

is a GWA of Gelfand-Kirillov dimension 2 where a = q7

1−q2 t
2 − q4µ−1λt and σ is the

automorphism of the algebra K[t±1] defined by σ(t) = q−2t.

3. For any λ ∈ K and µ ∈ K∗, the algebra C λ,µ
t is a central simple algebra.

4. Z(C λ,µ) = K and GK (C λ,µ) = 2.

Proof. 1. By Theorem 6.29, the algebra Ct is generated by the elements C, K±1, v, t±1 and u.

Note that the element v can be written as v = − q2

1−q2ψX = q
1−q2 τ(u) where τ is the involution

(6.1). It is straightforward to verify that the following relations hold in the algebra Ct

ut = q−2tu, vt = q2tv, vu =
q7

1− q2
t2 − q4K−1Ct, uv =

q3

1− q2
t2 − q2K−1Ct.

Then Ct is an epimorphic image of the GWA T := K[C,K±1, t±1][u, v;σ, a]. Notice that T is a

Noetherian domain of Gelfand-Kirillov dimension 4. The inclusions C ⊆ Ct ⊆ Ct,u yield that

4 = GK (C ) 6 GK (Ct) 6 Ct,u = 4 (see Lemma 6.25.(3)), i.e., GK (Ct) = 4. So, GK (T ) =

GK (Ct). By Proposition 2.12, the epimorphism of algebras T −� Ct is an isomorphism.

2. Statement 2 follows from statement 1.

3. Let C λ,µ
t,u be the localization of C λ,µ

t at the powers of the element u. Then, by statement 2,

C λ,µ
t,u = Kq2 [t±1, u±1] is a central simple quantum torus. So, Z(C λ,µ

t ) = Z(C λ,µ
t,u ) ∩ C λ,µ

t = K.

For any nonzero ideal a of the algebra C λ,µ
t , ui ∈ a for some i ∈ N since C λ,µ

t,u is a simple
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Noetherian algebra. Therefore, to prove that C λ,µ
t is a simple algebra, it suffices to show that

C λ,µ
t uiC λ,µ

t = C λ,µ
t for any i ∈ N. The case i = 1 follows from the equality vu = q2uv−q5t2. By

induction, for i > 1, it suffices to show that ui−1 ∈ C λ,µ
t uiC λ,µ

t . This follows from the equality

vui = q2iuiv + q7(1−q−2i)
1−q2 t2ui−1. Hence, C λ,µ

t is a simple algebra.

4. Since K ⊆ Z(C λ,µ) ⊆ Z(C λ,µ
t ) ∩ C λ,µ = K, we have Z(C λ,µ) = K. It is obvious that

GK (C λ,µ) = 2.

Lemma 6.33. In the algebra C λ,µ where λ ∈ K and µ ∈ K∗, the following equality holds

Θti = q2itiΘ +
q−2i+1 − q2i+1

1− q2
ti−1u+ (1− q2i)λti−1.

Proof. By induction on i and using the equality (6.38).

Theorem 6.34. Let λ ∈ K and µ ∈ K∗.

1. The algebra C λ,µ is a simple algebra iff λ 6= 0.

2. The algebra C λ,µ is a domain.

Proof. 1. If λ = 0 then the ideal (t) is a proper ideal of the algebra C 0,µ. Hence, C 0,µ is not a

simple algebra. Now, suppose that λ 6= 0, we have to prove that C λ,µ is a simple algebra. By

Proposition 6.32.(3), C λ,µ
t is a simple algebra. Hence, it suffices to show that C λ,µtiC λ,µ = C λ,µ

for all i ∈ N. We prove this by induction on i.

Firstly, we prove the case for i = 1, i.e., a := C λ,µtC λ,µ = C λ,µ. By (6.38), the element

(q + q−1)u + (1 − q2)λ ∈ a, so, u ≡ q2−1
q+q−1λ mod a. By (6.40), 1

q(1−q2)u
2 + λu ∈ a. Hence,

1
q(1−q2) ( q2−1

q+q−1λ)2 + λ( q2−1
q+q−1λ) ≡ 0 mod a, i.e., q

2(q2−1)λ2

q2+1 ≡ 0 mod a. Since λ 6= 0, this implies

that 1 ∈ a, thus, a = C λ,µ.

Let us now prove that b := C λ,µtiC λ,µ = C λ,µ for any i ∈ N. By induction, for i > 1, it suffices

to show that ti−1 ∈ b. By Lemma 6.33, the element u := q−2i+1−q2i+1

1−q2 ti−1u + (1 − q2i)λti−1 ∈
b. Then vu ∈ b where v = Θt − 1

q(1−q2)u − λ, see Proposition 6.32.(2). This implies that

(1− q2i)λvti−1 ∈ b and so, vti−1 ∈ b. But then the inclusion vti−1 = (Θt− 1
q(1−q2)u−λ)ti−1 ∈ b

yields that the element v := q−2i+1

1−q2 t
i−1u+ λti−1 ∈ b. By the expressions of the elements u and

v we see that ti−1 ∈ b, as required.

2. By Proposition 6.32.(2), the GWA C λ,µ
t ' Ct/Ct(C − λ,K − µ) is a domain. Let a =

C (C − λ,K − µ) and a′ = C ∩ Ct(C − λ,K − µ). To prove that C λ,µ is a domain, it suffices to

show that a = a′. The inclusion a ⊆ a′ is obvious. If λ 6= 0 then, by statement 1, the algebra

C λ,µ is a simple algebra, so the ideal a is a maximal ideal of C . Then we must have a = a′.

Suppose that λ = 0 and a ( a′, we seek a contradiction. Notice that the ideal a′ is a prime

ideal of C . Hence, a′/a is a nonzero prime ideal of the algebra C 0,µ. By Proposition 6.32.(3),

the algebra C 0,µ
t is a simple algebra, so, ti ∈ a′/a for some i ∈ N. Then (a′/a)t = C λ,µ

t . But

(a′/a)t = a′t/at = 0, a contradiction.

Proposition 6.35. 1. In the algebra C 0,µ, (t) = (u) = (t, u) = C 0,µt+ C 0,µu.

2. C 0,µ/(t) ' K[Θ].
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3. In the algebra C 0,µ, (ti) = (t)i for all i > 1.

4. Spec (C 0,µ) = {0, (t), (t, p) | p ∈ Max (K[Θ])}.

Proof. 1. The equality (t) = (u) follows from (6.38) and (6.39). The second equality then is

obvious. To prove the third equality let us first show that tC 0,µ ⊆ C 0,µt + C 0,µu: In view of

Corollary 6.31.(2), it suffices to prove that tΘi ∈ C 0,µt+ C 0,µu for all i > 1. This can be proved

by induction on i. The case i = 1 follows from (6.38). Suppose that the inclusion holds for all

i′ < i. Then tΘi = tΘi−1Θ ∈ (C 0,µt+ C 0,µu)Θ = C 0,µ
(
q−2Θt− q−2(q + q−1)u

)
+ C 0,µ

(
q2Θu+

q3(1+q2)t
)
⊆ C 0,µt+C 0,µu. Hence, we proved that tC 0,µ ⊆ C 0,µt+C 0,µu. Now, the inclusions

(t) ⊆ C 0,µt+ C 0,µu ⊆ (t, u) = (t) yield that (t) = C 0,µt+ C 0,µu.

2. By statement 1, C 0,µ/(t) = C 0,µ/(t, u) ' K[Θ].

3. The inclusion (ti) ⊆ (t)i is obvious. We prove the reverse inclusion (t)i ⊆ (ti) by induction on

i. The case i = 1 is trivial. Suppose that the inclusion holds for all i′ < i. Then (t)i = (t)(t)i−1 =

(t)(ti−1) = C 0,µtC 0,µti−1C 0,µ ⊆ (ti)+(ti−1u) since tC 0,µ ⊆ C 0,µt+C 0,µu (see statement 1). By

Lemma 6.33, the element ti−1u belongs to the ideal (ti) of C 0,µ. Hence, (t)i ⊆ (ti), as required.

4. By Proposition 3.3 and statement 3, Spec (C 0,µ) = Spec (C 0,µ, t) t Spect(C
0,µ). Notice that

C 0,µ
t is a simple algebra (see Proposition 6.32.(3)) and C 0,µ/(t) ' K[Θ] (see statement 2). Then

Spec (C 0,µ) = {0} t Spec (K[Θ]) = {0, (t), (t, p) | p ∈ Max (K[Θ])}.

6.6 Classification of simple CA(K)-modules

In this section, K is an algebraically closed field of characteristic zero. A classification of simple

CA(K)-modules is given in Theorem 6.37, Theorem 6.41 and Theorem 6.45. The set ĈA(K) of

isomorphism classes of simple CA(K)-modules are partitioned (according to the central charac-

ter) as follows

ĈA(K) =
⊔

λ∈K,µ∈K∗
Ĉ λ,µ. (6.41)

Given λ ∈ K and µ ∈ K∗, the set Ĉ λ,µ can be partitioned further into disjoint union of two

subsets consisting of t-torsion modules and t-torsionfree modules, respectively,

Ĉ λ,µ = Ĉ λ,µ (t-torsion) t Ĉ λ,µ (t-torsionfree). (6.42)

The set Ĉ λ,µ (t-torsion). An explicit description of the set Ĉ λ,µ (t-torsion) is given in Theorem

6.37. For λ and µ ∈ K∗, we define the left C λ,µ-modules

tλ,µ := C λ,µ/C λ,µ(t, u) and Tλ,µ := C λ,µ/C λ,µ
(
t, u− λ̂

)
where λ̂ := q(q2 − 1)λ. By Corollary 6.31.(2), tλ,µ = K[Θ] 1̄ ' K[Θ]K[Θ] is a free K[Θ]-module

where 1̄ = 1 + C λ,µ(t, u) and Tλ,µ = K[Θ] 1̃ ' K[Θ]K[Θ] is a free K[Θ]-module where 1̃ =

1 + C λ,µ
(
t, u− λ̂

)
. Clearly, the modules tλ,µ and Tλ,µ are of Gelfand-Kirillov dimension 1. The
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concept of degΘ of the elements of tλ,µ and Tλ,µ is well-defined (degΘ(Θi 1̄) = i and degΘ(Θi 1̃) =

i for all i > 0).

Lemma 6.36. Let λ and µ ∈ K∗. Then

1. The C λ,µ-module tλ,µ is a simple module.

2. The C λ,µ-module Tλ,µ is a simple module.

3. The modules tλ,µ and Tλ,µ are not isomorphic.

Proof. 1. Let us show that for all i > 1,

t ·Θi 1̄ = (1− q−2i)λ ·Θi−1 1̄ + · · · , (6.43)

u ·Θi 1̄ = −q2(1− q2i)µ−1λ ·Θi−1 1̄ + · · · (6.44)

where the three dots means terms of degΘ < i−1. We prove the equalities by induction on i. By

(6.38), tΘ 1̄ = (1 − q−2)λ 1̄, and by (6.39), uΘ 1̄ = −q2(1 − q2)µ−1λ 1̄. So, the equalities (6.43)

and (6.44) hold for i = 1. Suppose that the equalities hold for all integers i′ < i. Then

t ·Θi 1̄ =
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)λ

)
Θi−1 1̄

= q−2(1− q−2(i−1))λΘi−1 1̄− q−2(1− q2)λΘi−1 1̄ + · · ·

= (1− q−2i)λ ·Θi−1 1̄ + · · · ,

u ·Θi 1̄ =
(
q2Θu+ q3(1 + q2)t− q2(1− q2)µ−1λ

)
Θi−1 1̄

= −q4(1− q2(i−1))µ−1λΘi−1 1̄− q2(1− q2)µ−1λΘi−1 1̄ + · · ·

= −q2(1− q2i)µ−1λ ·Θi−1 1̄ + · · · .

The simplicity of the module tλ,µ follows from the equality (6.43) (or the equality (6.44)).

2. Let us show that for all i > 1,

t ·Θi 1̃ = (1− q2i)λ ·Θi−1 1̃ + · · · , (6.45)

u ·Θi 1̃ = q2iλ̂ ·Θi 1̃− q2(1− q2i)µ−1λ ·Θi−1 1̃ + · · · (6.46)

where the three dots means terms of smaller degrees. We prove the equalities by induction on

i. The case i = 1 follows from (6.38) and (6.39). Suppose that the equalities (6.45) and (6.46)

holds for all integers i′ < i. Then

t ·Θi 1̃ =
(
q−2Θt− q−2(q + q−1)u− q−2(1− q2)λ

)
Θi−1 1̃

= q−2(1− q2(i−1))λΘi−1 1̃− q−2(q + q−1)q2(i−1)λ̂Θi−1 1̃− q−2(1− q2)λΘi−11̃ + · · ·

= (1− q2i)λ ·Θi−1 1̃ + · · · ,

u ·Θi 1̃ =
(
q2Θu+ q3(1 + q2)t− q2(1− q2)µ−1λ

)
Θi−1 1̃

= q2
(
q2(i−1)λ̂Θi 1̃− q2(1− q2(i−1))µ−1λΘi−1 1̃

)
− q2(1− q2)µ−1λΘi−1 1̃ + · · ·

= q2iλ̂ ·Θi 1̃− q2(1− q2i)µ−1λ ·Θi−1 1̃ + · · · .
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The simplicity of the module Tλ,µ follows from the equality (6.45).

3. By (6.44), the element u acts locally nilpotently on the module tλ,µ . But, by (6.46), the

action of the element u on the module Tλ,µ is not locally nilpotent. Hence, the modules tλ,µ and

Tλ,µ are not isomorphic.

Theorem 6.37. 1. Ĉ 0,µ (t-torsion) =
{

[C 0,µ/C 0,µ(t, u,Θ− α) ' K[Θ]/(Θ− α)] |α ∈ K
}

.

2. Let λ and µ ∈ K∗. Then Ĉ λ,µ (t-torsion) =
{

[tλ,µ], [Tλ,µ]
}
.

Proof. 1. We claim that annC 0,µ(M) ⊇ (t) for all M ∈ Ĉ 0,µ (t-torsion): In view of Proposition

6.35.(1), it suffices to show that there exists a nonzero element m ∈ M such that tm = 0 and

um = 0. Since M is t-torsion, there exists a nonzero element m′ ∈M such that tm′ = 0. Then,

by the equality (6.40) (where λ = 0), we have u2m′ = 0. If um′ = 0, we are done. Otherwise,

the element m := um′ is a nonzero element of M such that tm = um = 0 (since tu = q2ut).

Now, statement 1 follows from the claim immediately.

2. Let M ∈ Ĉ λ,µ (t-torsion). Then there exists a nonzero element m ∈M such that tm = 0. By

(6.40), we have (u−λ̂)um = 0. Therefore, either um = 0 or otherwise the element m′ := um ∈M
is nonzero and (u− λ̂)m′ = 0.

If um = 0 then the module M is an epimorphic image of the module tλ,µ. By Lemma 6.36.(1),

tλ,µ is a simple C λ,µ-module. Hence, M ' tλ,µ. If m′ = um 6= 0 then tm′ = 0 and (u− λ̂)m′ = 0.

So, the C λ,µ-module M is an epimorphic image of the module Tλ,µ. By Lemma 6.36.(2), Tλ,µ

is a simple C λ,µ-module. Then M ' Tλ,µ. By Lemma 6.36.(3), the two modules tλ,µ and Tλ,µ

are not isomorphic, this completes the proof.

Recall that the algebra CAX,ϕ(K) = K[C,K±1] ⊗ A where A is a central simple GWA, see

Proposition 6.26. The algebra CA(K) is a subalgebra of the algebra CAX,ϕ(K) where

u = K−1Y ϕ = K−1 · Y X · ϕX−1 = K−1th, (6.47)

Θ = (1− q2)Ceh−1 +
qK−1

1− q2
h+

q3K

1− q2
h−1. (6.48)

In more detail: by (6.13), F =
(
C+K−1EY 2− q3

1−q2 (K−K−1)Y X
)
X−1ϕ−1. Then the element

FE can be written as

FE = CEX−1ϕ−1 +K−1EY 2EX−1ϕ−1 − q2

1− q2
(K −K−1)Y Eϕ−1

= C · EX−2 ·Xϕ−1 +K−1 · EX−2 · q3(Y X)2 · EX−2 ·Xϕ−1 − q3(K −K−1)

1− q2
· Y X · EX−2 ·Xϕ−1

= Ceh−1 + q3K−1et2eh−1 − q3(K −K−1)

1− q2
teh−1

= Ceh−1 +
qK−1

(1− q2)2
h+

q3K

(1− q2)2
h−1 − q2(qK + q−1K−1)

(1− q2)2

where the last equality follows from (6.28). Then the equality (6.48) follows immediately since

Θ = (1− q2)FE + q2(qK+q−1K−1)
1−q2 .
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For λ ∈ K and µ ∈ K∗, let C λ,µ
AX,ϕ

:= CAX,ϕ(K)/(C − λ,K − µ). Then by Proposition 6.26.(1),

C λ,µ
AX,ϕ

' A is a central simple GWA. So, there is a natural algebra homomorphism C λ,µ →
C λ,µ
AX,ϕ

' A . The next proposition shows that this homomorphism is a monomorphism.

Proposition 6.38. Let λ ∈ K and µ ∈ K∗. The following map is an algebra homomorphism

ρ : C λ,µ −→ C λ,µ
AX,ϕ

' A

t 7→ t

u 7→ µ−1th

Θ 7→ (1− q2)λeh−1 +
qµ−1

1− q2
h+

q3µ

1− q2
h−1

Moreover, the homomorphism ρ is a monomorphism.

Proof. The fact that the map ρ is an algebra homomorphism follows from (6.47) and (6.48).

Now, we prove that ρ is an injection. If λ 6= 0 then by Theorem 6.34.(1), the algebra C λ,µ is

a simple algebra. Hence, the kernel ker ρ of the homomorphism ρ must be zero, i.e., ρ is an

injection. If λ = 0 and suppose that ker ρ is nonzero, we seek a contradiction. Then ti ∈ ker ρ

for some i ∈ N. But ρ(ti) = ti 6= 0, a contradiction.

Let At be the localization of the algebra A at the powers of the element t. Then At =

K[h±1][t±1;σ] is a central simple quantum torus where σ(h) = q2h. It is clear that C λ,µ
t,u ' At.

Let B be the localization of A at the set S = K[h±1] \ {0}. Then B = S−1A = K(h)[t±1;σ]

is a skew Laurent polynomial algebra where K(h) is the field of rational functions in h and

σ(h) = q2h. The algebra B is a Euclidean ring with left and right division algorithms. In

particular, B is a principle left and right ideal domain. For all λ ∈ K and µ ∈ K∗, we have the

following inclusions of algebras

C λ,µ

C λ,µ
t

A

C λ,µ
t,u = At B.

ρ

The set Ĉ 0,µ (t-torsionfree). An explicit description of the set Ĉ 0,µ (t-torsionfree) is given in

Theorem 6.41. The idea is to embed the algebra C 0,µ in a skew polynomial algebra R for which

the simple modules are classified. The simple modules over these two algebras are closely related.

It will be shown that Ĉ 0,µ (t-torsionfree) = R̂ (t-torsionfree).

Let R be the subalgebra of A generated by the elements h±1 and t. Then R = K[h±1][t;σ]

is a skew polynomial algebra where σ(h) = q2h. By Proposition 6.38, the algebra C 0,µ is a

subalgebra of R. Hence, we have the inclusions of algebras

C 0,µ ⊂ R ⊂ A ⊂ Rt = At ⊂ B.

We identify the algebra C 0,µ with its image in the algebra R.
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Lemma 6.39. Let µ ∈ K∗. Then

1. C 0,µ =
⊕

i>1 K[h±1]ti ⊕K[Θ].

2. R = C 0,µ ⊕K[Θ]h.

3. (t) =
⊕

i>1 K[h±1]ti = Rt where (t) is the ideal of C 0,µ generated by the element t.

Proof. 1 and 2. Notice that K[Θ] ⊂ K[h±1] and K[h±1] = K[Θ] ⊕ K[Θ]h. Multiplying this

equality on the right by the element t yields that K[h±1]t = K[Θ]t⊕K[Θ]u ⊆ C 0,µ. Then for all

i > 1, K[h±1]ti = K[h±1]t · ti−1 ⊆ C 0,µti−1 ⊆ C 0,µ. Notice that

R =
⊕
i>0

K[h±1]ti =
⊕
i>1

K[h±1]ti ⊕K[h±1] =
⊕
i>1

K[h±1]ti ⊕K[Θ]⊕K[Θ]h. (6.49)

Then C 0,µ = C 0,µ ∩ R =
⊕

i>1 K[h±1]ti ⊕K[Θ] since C 0,µ ∩K[Θ]h = 0. The statement 2 then

follows from (6.49).

3. By Proposition 6.35.(1), (t) = C 0,µt+ C 0,µu. Then the first equality follows from statement

1. The second equality is obvious.

Proposition 6.40. Let Irr(B) be the set of irreducible elements of the algebra B.

1. R̂ (K[h±1]-torsion) = R̂ (t-torsion) = R̂/(t) =
{

[R/R(h− α, t)] |α ∈ K∗
}
.

2. R̂ (K[h±1]-torsionfree) = R̂ (t-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt+R ∩Bb} where

Mb := R/R∩Bb; Mb 'Mb′ iff the elements b and b′ are similar (iff B/Bb ' B/Bb′ as

B-modules).

Proof. 1. The last two equalities are obvious, since t is a normal element of the algebra R. Then

it is clear that R̂ (K[h±1]-torsion) ⊇ R̂ (t-torsion). Now, we show the reverse inclusion holds. Let

M ∈ R̂ (K[h±1]-torsion). Then M is an epimorphic image of the R-module R/R(h−α) = K[t]1̄

for some α ∈ K∗ where 1̄ = 1 +R(h− α). Notice that tK[t]1̄ is the only maximal R-submodule

of R/R(h− α). Then M ' R/R(h− α, t) ∈ R̂ (t-torsion), as required.

2. The first equality follows from the first equality in statement 1. By [10, Theorem 1.3]

R̂ (K[h±1]-torsionfree) = {[Mb] | b ∈ Irr(B), R = Rt + R ∩ Bb} (the condition (LO) of [10,

Theorem 1.3] is equivalent to the condition R = Rt+R∩Bb).

Theorem 6.41. Ĉ 0,µ (t-torsionfree) = R̂ (t-torsionfree) = R̂ (K[h±1]-torsionfree) = {[Mb =

R/R∩Bb] | b ∈ Irr(B), R = Rt+R∩Bb} (see Proposition 6.40).

Proof. In view of Proposition 6.40.(2), it remains to show that the first equality holds. Let [M ] ∈
Ĉ 0,µ (t-torsionfree). Then M = (t)M = RtM ∈ R̂ (t-torsionfree). Given [N ] ∈ R̂ (t-torsionfree).

To finish the proof of statement 2, it suffices to show that N is a simple C 0,µ-module. If L

is a nonzero C 0,µ-submodule of N then N ⊇ L ⊇ (t)L 6= 0, since N is t-torsionfree. Then

(t)L = RtL = N , since N is a simple R-module. Hence, L = N , i.e., N is a simple C 0,µ-module,

as required.
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The set Ĉ λ,µ (t-torsionfree) where λ ∈ K∗. An explicit description of the set Ĉ λ,µ (t-torsionfree)

where λ ∈ K∗ is given in Theorem 6.45.

Recall that the algebra C λ,µ
t = K[t±1][u, v;σ, a] is a GWA where a = q7

1−q2 t
2 − q4µ−1λt and σ is

the automorphism of the algebra K[t±1] defined by σ(t) = q−2t (Proposition 6.32.(2)). Clearly,

Ĉ λ,µ (t-torsionfree) = Ĉ λ,µ (t-torsionfree, K[t]-torsion) t Ĉ λ,µ (K[t]-torsionfree). (6.50)

Lemma 6.42. Let λ, µ ∈ K∗ and ν := q−3(1− q2)µ−1λ. Then

1. The module fλ,µ := C λ,µ/C λ,µ(t− ν, u) is a simple C λ,µ-module.

2. The module Fλ,µ := C λ,µ/C λ,µ(t− q2ν, v) is a simple C λ,µ-module.

3. Let γ ∈ K∗ \{q2iν | i ∈ Z}. The module Fλ,µγ := C λ,µ/C λ,µ(t−γ) is a simple C λ,µ-module.

The simple modules Fλ,µγ ' Fλ,µγ′ iff γ = q2iγ′ for some i ∈ Z where γ′ ∈ K∗\{q2iν | i ∈ Z}.

Proof. 1. Note that a = q7

1−q2 (t− ν)t and σ(a) = q3

1−q2 (t− q2ν)t. By Corollary 6.31.(2) and the

expression of the element v, fλ,µ = K[Θ]1̄ = K[v]1̄ where 1̄ = 1 + C λ,µ(t− ν, u). The simplicity

of the module fλ,µ follows from the equality: uvi1̄ = vi−1σi(a)1̄ ∈ K∗vi−11̄ for all i > 1.

2. Notice that Fλ,µ = K[u]1̄ where 1̄ = 1 + C λ,µ(t − q2ν, v). The simplicity of the module Fλ,µ

follows from the equality: vui1̄ = ui−1σ−i+1(a)1̄ ∈ K∗ui−11̄ for all i > 1.

3. Notice that Fλ,µγ =
∑
i,j>0 KuiΘj 1̃ =

∑
i,j>0 Kuivj 1̃ = K[u]1̃+K[v]1̃ where 1̃ = 1+C λ,µ(t−γ).

Since γ ∈ K∗ \ {q2iν | i ∈ Z}, σi(a)1̄ ∈ K∗1̄ for all i ∈ Z. Then the simplicity of the module Fλ,µγ

follows from the equalities in the proof of statements 1 and 2. The set of eigenvalues of the element

tFλ,µγ
is EvFλ,µγ

(t) = {q2iγ | i ∈ Z}. If Fλ,µγ ' Fλ,µγ′ then EvFλ,µγ
(t) = EvFλ,µ

γ′
(t), so γ = q2iγ′ for

some i ∈ Z. Conversely, suppose that γ = q2iγ′ for some i ∈ Z. Let 1̃ and 1̃′ be the canonical

generators of the modules Fλ,µγ and Fλ,µγ′ , respectively. The map Fλ,µγ → Fλ,µγ′ , 1̃ 7→ ui1̃′ defines

an isomorphism of C λ,µ-modules if i > 0, and the map Fλ,µγ → Fλ,µγ′ , 1̃ 7→ vi1̃′ defines an

isomorphism of C λ,µ-modules if i < 0.

Definition. ([4], l-normal elements of the algebra C λ,µ
t .)

1. Let α and β be nonzero elements of the Laurent polynomial algebra K[t±1]. We say that

α < β if there are no roots λ and µ of the polynomials α and β, respectively, such that,

λ = q2iµ for some i > 0.

2. An element b = vmβm + vm−1βm−1 + · · · + β0 ∈ C λ,µ
t where m > 0, βi ∈ K[t±1] and

β0, βm 6= 0 is called l-normal if β0 < βm and β0 <
q7

1−q2 t
2 − q4µ−1λt.

Theorem 6.43. [2, 5]. Let λ, µ ∈ K∗. Then

Ĉ λ,µ
t (K[t]-torsionfree) = {[Nb := C λ,µ

t /C λ,µ
t ∩Bb] | b is l-normal, b ∈ Irr(B)}.

Simple C λ,µ
t -modules Nb and Nb′ are isomorphic iff the elements b and b′ are similar.

Recall that, the algebra C λ,µ is generated by the canonical generators t, u and Θ. Let F =

{Fn}n>0 be the standard filtration associated with the canonical generators. By Corollary 6.31,
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for n > 0,

Fn =
⊕
i,j>1,
i+j6n

KΘitj ⊕
⊕

16k6n

KΘk ⊕
⊕
l,m>1,
l+m6n

KΘlum ⊕
⊕
a,b>0,
a+b6n

Kuatb.

For all n > 1, dimFn = 3
2n

2+ 3
2n+1 = f(n) (where f(s) = 3

2s
2+ 3

2s+1 ∈ K[s]). For each nonzero

element a ∈ C λ,µ, the unique natural number n such that a ∈ Fn \Fn−1 is called the total degree

of the element a, denoted by deg(a). Set deg(0) := −∞. Then deg(ab) 6 deg(a) + deg(b) for all

elements a, b ∈ C λ,µ.

For an R-module M , we denote by lR(M) the length of the R-module M . The next proposition

shows that lCλ,µ(C λ,µ/I) <∞ for all left ideals I of the algebra C λ,µ.

Proposition 6.44. Let λ, µ ∈ K∗. For each element nonzero element a ∈ C λ,µ, the length of

the C λ,µ-module C λ,µ/C λ,µa is finite, more precisely, lCλ,µ(C λ,µ/C λ,µa) 6 3 deg(a).

Proof. Let M := C λ,µ/C λ,µa = C λ,µ1̄ =
⋃
i>0 Fi1̄ be the standard filtration on M where

1̄ = 1 + C λ,µa. Then Fi1̄ ' Fi+Cλ,µa
Cλ,µa

' Fi
Fi∩Cλ,µa

. Let d := deg(a). Since, for all i > 0,

Fi−da ⊆ Fi ∩ C λ,µa, we see that dim (Fi1̄) 6 f(i) − f(i − d) = 3di + 3
2d −

3
2d

2. Recall that

the algebra C λ,µ is a simple, infinite dimensional algebra since λ 6= 0 (Theorem 6.34.(1)). So, if

N = C λ,µn is a nonzero cyclic C λ,µ-module (where 0 6= n ∈ N) and {Fin}i>0 is the standard

filtration on N then dim (Fin) > i+ 1 for all i > 0. This implies that lCλ,µ(M) 6 3d.

The group q2Z = {q2i | i ∈ Z} acts on K∗ by multiplication. For each γ ∈ K∗, let O(γ) =

{q2iγ | i ∈ Z} be the orbit of the element γ ∈ K∗ under the action of the group q2Z. For each

orbit O ∈ K∗/q2Z, we fix an element γO ∈ O(γ).

Theorem 6.45. Let λ, µ ∈ K∗. Then

1. Ĉ λ,µ (t-torsionfree, K[t]-torsion) = {[fλ,µ], [Fλ,µ], [Fλ,µγO ] | O ∈ K∗/q2Z \ {O(ν)}}.

2. The map Ĉ λ,µ (K[t]-torsionfree)→ Ĉ λ,µ
t (K[t]-torsionfree), [M ] 7→ [Mt] is a bijection with

the inverse [N ] 7→ socCλ,µ(N).

3. Ĉ λ,µ (K[t]-torsionfree) = {[Mb := C λ,µ/C λ,µ ∩ Bbt−i] | b is l-normal, b ∈ Irr(B), i >

3 deg(b)}.

Proof. 1. Let M ∈ Ĉ λ,µ (t-torsionfree, K[t]-torsion). There exists a nonzero element m ∈M such

that tm = γm for some γ ∈ K∗. Then M is an epimorphic image of the module C λ,µ/C λ,µ(t−γ).

If γ /∈ O(ν) then M ' C λ,µ/C λ,µ(t− γ) = Fλ,µγ by Lemma 6.42.(3). It remains to consider the

case when γ ∈ O(ν), i.e., γ = q2iν for some i ∈ Z.

(i) If γ = q2iν where i > 1 then σi(a)m = 0. Notice that ui−1vi−1m = σi−1(a) · · ·σ(a)m 6= 0, the

element m′ := vi−1m is a nonzero element of M . If vm′ = 0, notice that tm′ = tvi−1m = q2νm′,

then M is an epimorphic image of the simple module Fλ,µ. Hence, M ' Fλ,µ. If m′′ := vm′ 6= 0,

notice that tm′′ = tvim = νm′′ and um′′ = uvim = vi−1σi(a)m = 0, then M is an epimorphic

image of the simple module fλ,µ. Hence, M ' fλ,µ.

(ii) If γ = q−2iν where i > 0 then σ−i(a)m = 0. The element e := uim is a nonzero element of M .

(The case i = 0 is trivial, for i > 1, it follows from the equality viuim = σ−i+1(a) · · ·σ−1(a)am 6=
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0). If ue = 0, notice that te = tuim = νe, then M is an epimorphic image of the simple

module fλ,µ. Hence, M ' fλ,µ. If e′ := ue 6= 0, notice that te′ = tui+1m = q2νe′ and

ve′ = vui+1m = uiσ−i(a)m = 0, then M is an epimorphic image of the simple module Fλ,µ.

Hence, M ' Fλ,µ. This proves statement 1.

2. The result follows from Proposition 6.44.

3. Let [M ] ∈ Ĉ λ,µ (K[t]-torsionfree). Then [Mt] ∈ Ĉ λ,µ
t (K[t]-torsionfree), and so Mt '

C λ,µ
t /C λ,µ

t ∩ Bb where b = vmβm + vm−1βm−1 + · · · + β0 ∈ C λ,µ (βi ∈ K[t], m > 0 and

βm, β0 6= 0) is an l-normal and irreducible in B. Clearly, 0 6= Mb := C λ,µ/C λ,µ ∩Bb ⊆Mt and

M = socCλ,µ(Mt) = socCλ,µ(Mb), by statement 2. Let Ib := C λ,µ ∩Bb, Jn = C λ,µtn + Ib for all

n > 0 and d = deg(a). By Proposition 6.44, the following descending chain of left ideals of the

algebra C λ,µ stabilizes:

C λ,µ = J0 ⊇ J1 ⊇ · · · ⊇ Jn = Jn+1 = · · · , n > 3d.

Hence, socCλ,µ(Mb) = Jn/Ib ' C λ,µ/C λ,µ ∩Bbt−n.

6.7 Simple weight A-modules

The aim of this section is to give a classification of simple weight A-module. The set Â (weight) of

isomorphism classes of simple weight A-modules is partitioned into disjoint union of four subsets,

see (6.51). We will describe each of them separately.

An A-module M is called a weight module provided that M =
⊕

µ∈K∗Mµ where Mµ = {m ∈
M |Km = µm}. We denote by Wt (M) the set of all weights of M , i.e., the set {µ ∈ K∗ |Mµ 6= 0}.

Verma modules and simple highest weight A-modules. For each λ ∈ K∗, we define the

Verma module M(λ) := A/A(K−λ,E,X). Then M(λ) = K[Y, F ]1̃ where 1̃ = 1+A(K−λ,E,X).

If M is an A-module, a highest weight vector is any 0 6= m ∈ M such that m is an eigenvector

of K and K−1 and Em = Xm = 0.

Lemma 6.46. The set of highest weight vectors of the Verma module M(λ) is H := { kY n1̃ | k ∈
K∗, n ∈ N }.

Proof. It is clearly that any element of H is a highest weight vector. Suppose that m =∑
αijY

iF j 1̃ ∈ M(λ) is a highest weight vector of weight µ where αij ∈ K. Then Km =∑
αijλq

−i−2jY iF j 1̃ = µm. This implies that i + 2j is a constant, say i + 2j = n. Then

m can be written as m =
∑
αjY

n−2jF j 1̃ for some αj ∈ K. By Lemma 6.10.(2), Xm =∑
−qn−2j 1−q2j

1−q2 αjλ
−1Y n−2j+1F j−11̃ = 0. Thus, αj = 0 for all j > 1 and hence, m ∈ H.

By Lemma 6.46, there are infinite number of linear independent highest weight vectors. Let

Nn := K[Y, F ]Y n1̃ where n ∈ N. Then Nn is a Verma A-module with highest weight q−nλ, i.e.,

Nn ' M(q−nλ). Furthermore, M(λ) is a submodule of M(qnλ) for all n ∈ N. Thus, for any
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λ ∈ K∗, there exists an infinite sequence of Verma modules

· · · ⊃M(q2λ) ⊃M(qλ) ⊃M(λ) ⊃M(q−1λ) ⊃M(q−2λ) ⊃ · · · .

The following result of Verma Uq(sl2)-modules is well-known; see [29, p. 20].

Lemma 6.47. [29] Suppose that q is not a root of unity. Let V (λ) be a Verma Uq(sl2)-module.

Then V (λ) is simple if and only if λ 6= ±qn for all integer n > 0. When λ = qn (resp. −qn)

there is a unique simple quotient L(n,+) (resp. L(n,−)) of V (λ). Each simple Uq(sl2)-module

of dimension n+ 1 is isomorphic to L(n,+) or L(n,−).

Let V (λ) := M(λ)/N1. Then V (λ) ' K[F ]1̄, where 1̄ := 1 +A(K − λ,E,X, Y ).

Theorem 6.48. Up to isomorphism, the simple highest weight A-module are as follows

(i) V (λ), when λ 6= ±qn for any n ∈ N.
(ii) L(n,+), when λ = qn for some n ∈ N.

(iii) L(n,−), when λ = −qn for some n ∈ N.

In each case, the elements X and Y act trivially on the modules, and these modules are in fact

simple highest weight Uq(sl2)-modules.

Proof. In view of Lemma 6.11.(1), annA(V (λ)) ⊇ (X). So, V (λ) ' U/U(K − λ,E) where

U = Uq(sl2). Then the theorem follows immediately from Lemma 6.47.

Simple weight modules that are neither highest nor lowest weight A-modules. Let

A be an algebra, we denote by Â the set of isomorphism classes of simple left A-modules.

Let N be the set of simple weight A-modules M such that XM 6= 0 or YM 6= 0. Then

Â (weight) = Ûq(sl2) (weight) t N .

Lemma 6.49. Let M be a simple A-module. If x ∈ {X,Y,E, F} annihilates a non-zero element

m ∈M , then x acts locally nilpotently on M .

Proof. For each element x ∈ {X,Y,E, F}, the set S = {xi | i ∈ N} is an Ore set in the algebra

A. Then torS(M) is a nonzero submodule of M . Since M is a simple module, M = torS(M),

i.e., the element x acts locally nilpotently on M .

Theorem 6.50. Let M ∈ N , then

1. dimMλ = dimMµ for any λ, µ ∈ Wt (M).

2. Wt (M) = {qnλ |n ∈ Z} for any λ ∈ Wt (M).

Proof. 1. Suppose that there exists λ ∈ Wt (M) such that dimMλ > dimMqλ. Then the map

X : Mλ →Mqλ is not injective. Hence Xm = 0 for some non-zero element m ∈Mλ. By Lemma

6.49, X acts locally nilpotently on M .

If dimMq−1λ > dimMqλ, then the linear map E : Mq−1λ → Mqλ is not injective. So Em′ = 0

for some non-zero element m′ ∈Mq−1λ. By Lemma 6.49, E acts on M locally nilpotently. Since
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EX = qXE, there exists a non-zero weight vector m′′ such that Xm′′ = Em′′ = 0. Therefore, M

is a highest weight module. By Theorem 6.48, XM = YM = 0, this contradicts our assumption

that M ∈ N .

If dimMq−1λ 6 dimMqλ, then dimMq−1λ < dimMλ. Hence the map Y : Mλ → Mq−1λ is not

injective. It follows that Y m1 = 0 for some non-zero element m1 ∈Mλ. By Lemma 6.49, Y acts

on M locally nilpotently. Since XY = qY X, there exists some non-zero weight vector m2 ∈ M
such that Xm2 = Y m2 = 0. By Lemma 6.11.(1), annA(M) ⊇ (X,Y ), a contradiction. Similarly,

one can show that there does not exist λ ∈Wt(M) such that dimMλ < dimMqλ.

2. Clearly, Wt(M) ⊆ {qnλ |n ∈ Z}. By the above argument we see that Wt(M) ⊇ {qnλ |n ∈ Z}.
Hence Wt(M) = {qnλ |n ∈ Z}.

Let M be an A-module and x ∈ A. We say that M is x-torsion provided that for each element

m ∈M there exists some i ∈ N such that xim = 0.

Lemma 6.51. Let M ∈ N .

1. If M is X-torsion, then M is (ϕ, Y )-torsionfree.

2. If M is Y -torsion, then M is (X,ϕ)-torsionfree.

3. If M is ϕ-torsion, then M is (X,Y )-torsionfree.

Proof. 1. Since M ∈ N is an X-torsion module, by the proof of Theorem 6.50, YM and EM

are injections. Let us show that ϕM is injective. Otherwise, there exists a nonzereo element

m ∈ M such that ϕm = 0, i.e., Xm = (q − q−1)Y Em. Since Xim = 0 for some i ∈ N and

X(Y E) = (Y E)X, we have Xim = (q − q−1)i(Y E)im = 0. This contradicts to the fact that Y

and E are injective maps on M .

2. Clearly, XM is an injection. Let us show that ϕM is an injective map. Otherwise, there exists

a nonzero element m ∈ M such that ϕm = Y m = 0 (since Y ϕ = qϕY ). Then Xm = 0 (since

ϕ = (1− q2)EY + q2X), a contradiction.

3. Statement 3 follows from statments 1 and 2.

By Lemma 6.51,

Â (weight) = Ûq(sl2) (weight) t N

=Ûq(sl2) (weight) t N (X-torsion) t N (Y -torsion) t N ((X,Y )-torsionfree). (6.51)

It is clear that N ((X,Y )-torsionfree) = Â (weight, (X,Y )-torsionfree).

Lemma 6.52. If M ∈ N (X-torsion) t N (ϕ-torsion) t N (Y -torsion) then CM 6= 0.

Proof. Suppose that M ∈ N (X-torsion), and let m be a weight vector such that Xm = 0. If

CM = 0, then, by (6.12), Cm = −K−1EY 2m = 0, i.e., EY 2m = 0. This implies that either EM

or YM is not injective. By the proof of Theorem 6.50, we have a contradiction. Similarly, one
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can prove that for M ∈ N (Y -torsion), CM 6= 0. Now, suppose that M ∈ N (ϕ-torsion), and let

m ∈Mµ be a weight vector such that ϕm = 0. Since Y ϕ = q(1− q2)EY 2 + q4Y X, we have

Y ϕm = q(1− q2)EY 2m+ q4Y Xm = 0. (6.52)

If CM = 0, then, by (6.13),

Cm = −µ−1EY 2m+
q3

1− q2
(µ− µ−1)Y Xm = 0. (6.53)

The equalities (6.52) and (6.53) yield that EY 2m = 0 and Y Xm = 0, a contradiction.

Theorem 6.53. Let M ∈ N . Then dimMµ =∞ for all µ ∈Wt(M).

Proof. Since M is a simple A-module, the weight space Mµ of M is a simple C λ,µ-module for

some λ ∈ K. If M ∈ N (X-torsion) t N (Y -torsion) then by Lemma 6.52, λ = CM 6= 0. By

Proposition 6.32.(4) and Theorem 6.34.(1), C λ,µ is an infinite dimensional central simple algebra.

Hence, dimMµ =∞. It remains to consider the case whereM ∈ N ((X,Y )-torsionfree). Suppose

that there exists a weight space Mν of M such that dimMν = n <∞, we seek a contradiction.

Then by Theorem 6.50, dimMµ = n for all µ ∈Wt(M) and Wt(M) = {qiν | i ∈ Z}. Notice that

the elements X and Y act injectively on M , then they act bijectively on M (since all the weight

spaces are finite dimensional and of the same dimension). In particular, the element t = Y X

acts bijectively on each weight space Mµ, and so, Mµ is a simple C λ,µ
t -module. By Proposition

6.32.(2,3), the algebra C λ,µ
t is an infinite dimensional central simple algebra for any λ ∈ K and

µ ∈ K∗. Then, dimMµ =∞, a contradiction.

Description of the set N (X-torsion). An explicit description of the set N (X-torsion) is given

in Theorem 6.55. It consists of a family of simple modules constructed below (see Proposition

6.54). For each µ ∈ K∗, we define the left A-module Xµ := A/A(K − µ, X). Then Xµ =⊕
i,j,k>0 KF iEjY k 1̄ where 1̄ = 1 + A(K − µ, X). Let λ ∈ K. By (6.12), we see that the

submodule of Xµ,

(C − λ)Xµ =
⊕
i,j,k>0

KF iEjY k
(
µ−1EY 2 + λ

)
1̄
L.5.2
=

⊕
i,j,k>0

KF i
(
µ−1qkEj+1Y k+2 + λEjY k

)
1̄,

(6.54)

is a proper submodule and the map (C − λ)· : Xµ −→ Xµ, v 7→ (C − λ)v, is an injection, which

is not a bijection. It is obvious that GK (Xµ) = 3.

For λ ∈ K and µ ∈ K∗, we define the left A-module Xλ,µ := A/A(C − λ, K − µ, X). Then,

Xλ,µ ' Xµ/(C − λ)Xµ 6= 0. (6.55)

We have a short exact sequence of A-modules: 0 −→ Xµ (C−λ)·−−−−−→ Xµ −→ Xλ,µ −→ 0. The

next proposition shows that the module Xλ,µ is a simple module if λ is nonzero. Moreover, the

K-basis, the weight space decomposition and the annihilator of the module Xλ,µ are given.

Proposition 6.54. For λ and µ ∈ K∗, consider the left A-module Xλ,µ = A/A(C−λ, K−µ, X).
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1. The A-module Xλ,µ =
⊕

i>0,j>2

KF iY j 1̄ ⊕
⊕
i,k>0

KF iEk 1̄ ⊕
⊕
i,k>0

KY F iEk 1̄ is a simple A-

module where 1̄ = 1 +A(C − λ, K − µ, X).

2. Xλ,µ =
⊕

i>0,j>2

KF iY j 1̄⊕
( ⊕
i>1,k>0

KF iΘk 1̄⊕
⊕
k>0

KΘk 1̄⊕
⊕

i>1,k>0

KEiΘk 1̄
)

⊕
( ⊕
i>1,k>0

KY F iΘk 1̄⊕
⊕
k>0

KYΘk 1̄⊕
⊕

i>1,k>0

KY EiΘk 1̄
)
.

3. The weight subspace Xλ,µqsµ of Xλ,µ that corresponds to the weight qsµ is

Xλ,µqsµ =



K[Θ] 1̄, s = 0,

ErK[Θ] 1̄, s = 2r, r > 1,

Y ErK[Θ] 1̄, s = 2r − 1, r > 1,

F rK[Θ] 1̄⊕
⊕

i+j=r,
j>1

KF iY 2j 1̄, s = −2r, r > 1,

YK[Θ] 1̄, s = −1,

Y F r−1K[Θ] 1̄⊕
⊕

2i+j=2r−1,
j>2

KF iY j 1̄, s = −2(r − 1)− 1, r > 2.

4. annA(Xλ,µ) = (C − λ).

5. Xλ,µ is an X-torsion and Y -torsionfree A-module.

6. Let (λ, µ), (λ′, µ′) ∈ K×K∗. Then Xλ,µ ' Xλ′,µ′ iff λ = λ′ and µ = qiµ′ for some i ∈ Z.

Proof. 1. By (6.55), Xλ,µ 6= 0 and 1̄ 6= 0. Using the PBW basis for the algebra A, we have

Xλ,µ =
∑
i,j,k>0 KF iY jEk 1̄. Using (6.12), we have λ 1̄ = C 1̄ = −µ−1EY 2 1̄. Hence EY 2 1̄ =

−µλ 1̄, and then Y 2E 1̄ = −q2µλ 1̄. By induction on k and using Lemma 5.2, we deduce that

EkY 2k 1̄ = (−µλ)kq−k(k−1) 1̄ and Y 2kEk 1̄ = (−q2µλ)kqk(k−1) 1̄. (6.56)

Therefore,
∑
j,k>0 KY jEk 1̄ = Y 2K[Y ] 1̄ + K[E] 1̄ + YK[E] 1̄, and then

Xλ,µ =
∑

i>0,j>2

KF iY j 1̄ +
∑
i,k>0

KF iEk 1̄ +
∑
i,k>0

KY F iEk 1̄ = K[F ]
(
K[Y ]Y 2 + K[E] + YK[E]

)
1̄.

So, any element u of Xλ,µ can be written as u = (
∑n
i=0 F

iai)1̄ where ai ∈ Σ := K[Y ]Y 2 +K[E]+

YK[E]. Statement 1 follows from the following claim: if an 6= 0, then there is an element a ∈ A
such that au = 1̄.

(i) Xnu = a′ 1̄ for some nonzero element a′ ∈ Σ: Using Lemma 6.10, we have Xu =
∑n−1
i=0 F

ibi 1̄

for some bi ∈ Σ and bn−1 6= 0. Repeating this step n − 1 times (or using induction on n), we

obtain the result as required. So, we may assume that u = a01̄ where 0 6= a0 ∈ Σ.

(ii) Notice that the element a0 ∈ Σ can be written as a0 = pY 2 +
∑m
i=0(λi + µiY )Ei where

p ∈ K[Y ], λi and µi ∈ K. Then, by (6.56), Y 2mu = Y 2ma0 1̄ =
(
pY 2m+2 +

∑m
i=0(λi +

µiY )Y 2(m−i)Y 2iEi
)

1̄ =
(
pY 2m+2 +

∑m
i=0(λi + µiY )Y 2(m−i)γi

)
1̄ = f 1̄ for some γi ∈ K∗ where

f is a nonzero polynomial in K[Y ] (since a0 6= 0). Hence, we may assume that u = f 1̄ where

0 6= f ∈ K[Y ].
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(iii) Let f =
∑l
i=0 γiY

i where γi ∈ K and γl 6= 0. Since KY i 1̄ = µq−iY i 1̄ and all eigenvalues

{µq−i | i > 0} are distinct, there is a polynomial g ∈ K[K] such that gf 1̄ = Y l 1̄. If l = 0, we are

done. We may assume that l > 1. By multiplying by Y (if necessary) on the equality above we

may assume that l = 2k for some natural number k. Then, by (6.56), ω−1
k EkY 2k 1̄ = 1̄ where

ωk = (−µλ)kq−k(k−1), as required.

2. Recall that that the algebra Uq(sl2) = K[Θ,K±1][E,F ;σ, a = (1− q2)−1Θ− q2(qK+q−1K−1)
(1−q2)2 ]

is a GWA where σ(Θ) = Θ and σ(K) = q−2K. Then for all i > 1, F iEi = aσ−1(a) · · ·σ−i+1(a).

Therefore, ⊕
i,k>0

KF iEk 1̄ =
⊕

i>1,k>0

KF iΘk 1̄⊕
⊕
k>0

KΘk 1̄⊕
⊕

i>1,k>0

KEiΘk 1̄.

Then statement 2 follows from statement 1.

3. Statement 3 follows from statement 2.

4. Clearly, (C − λ) ⊆ annA(Xλ,µ). Since λ ∈ K∗, by Corollary 6.17, the ideal (C − λ) is a

maximal ideal of A. Then we must have (C − λ) = annA(Xλ,µ).

5. Clearly, Xλ,µ is an X-torsion weight module. Since Xλ,µ is a simple module, then by Lemma

6.51, Xλ,µ is Y -torsionfree.

6. (⇒) Suppose that Xλ,µ ' Xλ′,µ′ . By statement 4, (C − λ) = annA(Xλ,µ) = annA(Xλ′,µ′) =

(C − λ′). Hence, λ = λ′. By Theorem 6.50 (or by statement 3), {qiµ | i ∈ Z} = Wt(Xλ,µ) =

Wt(Xλ′,µ′) = {qiµ′ | i ∈ Z}. Hence, µ = qiµ′ for some i ∈ Z.

(⇐) Suppose that λ = λ′ and µ = qiµ′ for some i ∈ Z. Let 1̄ and 1̄′ be the canonical generators

of the modules Xλ,µ and Xλ′,µ′ , respectively. If i 6 0 then the map Xλ,µ → Xλ′,µ′ 1̄ 7→ Y |i| 1̄′

defines an isomorphism of A-modules. If i > 1 then the map Xλ,µ → Xλ′,µ′ , 1̄ 7→ (Y E)i 1̄′

defines an isomorphism of A-modules.

We define an equivalent relation ∼ on the set K∗ as follows: for µ and ν ∈ K∗, µ ∼ ν iff µ = qiν

for some i ∈ Z. Then the set K∗ is a disjoint union of equivalent classes O(µ) = {qiµ | i ∈ Z}.
Let K∗/ ∼ be the set of equivalent classes. Clearly, K∗/ ∼ can be identified with the factor

group K∗/〈q〉 where 〈q〉 = {qi | i ∈ Z}. For each orbit O ∈ K∗/〈q〉, we fix an element µO ∈ O.

Theorem 6.55. N (X-torsion) =
{

[Xλ,µO ] |λ ∈ K∗, O ∈ K∗/〈q〉
}

.

Proof. Let M ∈ N (X-torsion). By Lemma 6.52, the central element C acts on M as a nonzero

scalar, say λ. Then M is an epimorphic image of the module Xλ,µ for some µ ∈ K∗. By

Proposition 6.54.(1), Xλ,µ is a simple A-module, hence M ' Xλ,µ. Then the theorem follows

from Proposition 6.54.(6).

Lemma 6.56. 1. For all λ ∈ K and µ ∈ K∗, GK (Xλ,µ) = 2.

2. A(C,K − µ,X) ( A(K − µ,X, Y,E) ( A.

3. For all µ ∈ K∗, the module X0,µ is not a simple A-module.

Proof. 1. By Proposition 2.14.(3), GK (Xλ,µ) 6 GK (Xµ) − 1 = 2. If λ 6= 0 then it follows

from Proposition 6.54.(1) that GK (Xλ,µ) = 2. If λ = 0 then consider the subspace V =
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⊕
i,j>0 KF iEj 1̄ of the A-module Xµ. By (6.54), we see that V ∩ CXµ = 0. Hence, the vector

space V can be seen as a subspace of the A-module X0,µ. In particular, GK (X0,µ) > 2. Therefore,

GK (X0,µ) = 2.

2. Let a = A(C,K − µ,X) and b = A(K − µ,X, Y,E). Since C ∈ b we have the equality

b = A(C,K−µ,X, Y,E). Clearly, a ⊆ b. Notice that A/b ' U/U(K−µ,E) where U = Uq(sl2).

Then GK (A/b) = 1, in particular, b ( A is a proper left ideal of A. It follows from statement 1

that, 2 = GK (A/a) > GK (A/b), hence the inclusion a ⊆ b is strict.

3. By statement 2, the left ideal A(C,K−µ,X) is not a maximal left ideal. Thus, the A-module

X0,µ is not a simple module.

Corollary 6.57. Let λ ∈ K and µ ∈ K∗. The A-module Xλ,µ is a simple module iff λ 6= 0.

Proof. The result follows from Proposition 6.54.(1) and Lemma 6.56.(3).

Description of the set N (Y -torsion). An explicit description of the set N (Y -torsion) is given

in Theorem 6.59. It consists of a family of simple modules constructed below (see Proposition

6.58). The results and arguments are similar to that of the case for X-torsion modules. But for

completeness, we present the results and their proof in detail. Let µ ∈ K∗, we define the left

A-module Yµ := A/A(K − µ, Y ). Then Yµ =
⊕

i,j,k>0 KEiF jXk1̄ where 1̄ = 1 +A(K − µ, Y ).

It is obvious that GK (Yµ) = 3. Let λ ∈ K. By (6.12), we have (C −λ) 1̄ = (q2FX2−λ) 1̄. Then

using Lemma 6.10, we see that the submodule of Yµ,

(C − λ)Yµ =
⊕
i,j,k>0

KEiF jXk(C − λ) 1̄ =
⊕
i,j,k>0

KEiF jXk
(
q2FX2 − λ

)
1̄

=
⊕
i,j,k>0

KEiF j
(
q2FXk+2 − λXk

)
1̄. (6.57)

Therefore, the submodule (C−λ)Yµ of Yµ is a proper submodule, and the map (C−λ)· : Yµ →
Yµ, v 7→ (C − λ)v, is an injection, which is not a bijection.

For λ ∈ K and µ ∈ K∗, we define the left A-module Yλ,µ := A/A(C − λ, K − µ, Y ). Then

Yλ,µ ' Yµ/(C − λ)Yµ 6= 0. (6.58)

We have a short exact sequence of A-modules: 0 −→ Yµ (C−λ)·−−−−−→ Yµ −→ Yλ,µ −→ 0. The

next proposition shows that the module Yλ,µ is a simple module if λ is nonzero. Moreover, the

K-basis, the weight space decomposition and the annihilator of the module Yλ,µ are given.

Proposition 6.58. For λ and µ ∈ K∗, consider the left A-module Yλ,µ = A/A(C−λ, K−µ, Y ).

1. The A-module Yλ,µ =
⊕

i>0,j>2

KEiXj 1̄ ⊕
⊕
i,k>0

KEiF k 1̄ ⊕
⊕
i,k>0

KEiF kX 1̄ is a simple A-

module where 1̄ = 1 +A(C − λ, K − µ, Y ).

2. Yλ,µ =
⊕

i>0,j>2

KEiXj 1̄⊕
( ⊕
i>1,k>0

KΘkEi1̄⊕
⊕
k>0

KΘk 1̄⊕
⊕

i>1,k>0

KΘkF i 1̄
)

⊕
( ⊕
i>1,k>0

KΘkEiX 1̄⊕
⊕
k>0

KΘkX 1̄⊕
⊕

i>1,k>0

KΘkF iX 1̄
)
.
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3. The weight subspace Yλ,µqsµ of Yλ,µ that corresponds to the weight qsµ is

Yλ,µqsµ =



K[Θ] 1̄, s = 0,

K[Θ]Er 1̄⊕
⊕

i+j=r,
j>1

KEiX2j 1̄, s = 2r, r > 1,

K[Θ]X 1̄, s = 1,

K[Θ]E2rX 1̄⊕
⊕

2i+j=2r+1,
j>2

KEiXj 1̄, s = 2r + 1, r > 1,

K[Θ]F r 1̄, s = −2r, r > 1,

K[Θ]F rX 1̄, s = −2r + 1, r > 1.

4. annA(Yλ,µ) = (C − λ).

5. Yλ,µ is a Y -torsion and X-torsionfree A-module.

6. Let (λ, µ), (λ′, µ′) ∈ K×K∗. Then Yλ,µ ' Yλ′,µ′ iff λ = λ′ and µ = qiµ′ for some i ∈ Z.

Proof. 1. Notice that Yλ,µ =
∑
i,j,k>0 KEiF jXk 1̄. By (6.12), we have λ 1̄ = C 1̄ = q2FX2 1̄,

i.e., FX2 1̄ = q−2λ 1̄. By induction on k and using Lemma 6.10.(1), we deduce that

F kX2k 1̄ = (FX2)k 1̄ = q−2kλk 1̄. (6.59)

Therefore,
∑
j,k>0 KF jXk 1̄ = K[X]X2 1̄ + K[F ] 1̄ + K[F ]X 1̄, and so

Yλ,µ =
∑

i>0,j>2

KEiXj 1̄ +
∑
i,k>0

KEiF k 1̄ +
∑
i,k>0

KEiF kX 1̄.

So, any element u of Yλ,µ can be written as u =
∑n
i=0E

iai1̄ where ai ∈ Γ := K[X]X2 + K[F ] +

K[F ]X. Statement 1 follows from the following claim: if an 6= 0, then there exists an element

a ∈ A such that au = 1̄.

(i) Y nu = a′ 1̄ for some nonzero element a′ ∈ Γ: By Lemma 5.2, we have Y u =
∑n−1
i=0 E

ibi for

some bi ∈ Γ and bn−1 6= 0. Repeating this step n− 1 times, we obtain the result as desired. So,

we may assume that u = a′ 1̄ for some nonzero a′ ∈ Γ.

(ii) Notice that the element a′ can be written as a′ = pX2 +
∑m
i=0 F

i(λi+µiX) where p ∈ K[X],

λi and µi ∈ K. By Lemma 6.10, we see that F iX 1̄ = XF i1̄. Then

X2mu = (pX2m+2 +

m∑
i=0

(λi + µiX)X2mF i) 1̄

= (pX2m+2 +

m∑
i=0

(λi + µiX)X2(m−i)X2iF i) 1̄

= (pX2m+2 +

m∑
i=0

(λi + µiX)X2(m−i)γi) 1̄ = f 1̄

for some γi ∈ K∗ (by (6.59)) and f is a nonzero element in K[Y ]. Hence, we may assume that

u = f 1̄ where f ∈ K[X] \ {0}.

(iii) Let f =
∑l
i=0 αiX

i where αi ∈ K and αl 6= 0. Since KXi1̄ = qiµXi1̄ and all eigenvalues

{qiµ | i ∈ N} are distinct, there is a polynomial g ∈ K[K] such that gf 1̄ = X l 1̄. If l = 0, we are
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done. We may assume that l > 1. By multiplying by X (if necessary) on the equality we may

assume that l = 2k for some natural number k. Then, by (6.59), we have q2kλ−kF kX2k 1̄ = 1̄,

as required.

2. Recall that Uq(sl2) is a generalized Weyl algebra, then EiF i = σi(a)σi−1(a) · · ·σ(a) holds for

all i > 1. Hence,

⊕
i,k>0

KF iEk 1̄ =
⊕

i>1,k>0

KΘkEi 1̄⊕
⊕
k>0

KΘk 1̄⊕
⊕

i>1,k>0

KΘkF i 1̄.

Then statement 2 follows from statement 1.

3. Statement 3 follows from statement 2.

4. Clearly, (C − λ) ⊆ annA(Yλ,µ). Then we must have (C − λ) = annA(Xλ,µ) since (C − λ) is a

maximal ideal of A.

5. Clearly, Yλ,µ is Y -torsion. Since Yλ,µ is a simple module, then by Lemma 6.51, Yλ,µ is

X-torsionfree.

6. (⇒) Suppose that Yλ,µ ' Yλ′,µ′ . By statement 4, (C − λ) = annA(Yλ,µ) = annA(Yλ′,µ′) =

(C − λ′). Hence, λ = λ′. By Theorem 6.50 (or by statement 3), {qiµ | i ∈ Z} = Wt(Yλ,µ) =

Wt(Yλ′,µ′) = {qiµ′ | i ∈ Z}. Hence, µ = qiµ′ for some i ∈ Z.

(⇐) Suppose that λ = λ′ and µ = qiµ′ for some i ∈ Z. Let 1̄ and 1̄′ be the canonical generators

of the modules Yλ,µ and Yλ′,µ′ , respectively. If i > 0 then the map Yλ,µ → Yλ′,µ′ 1̄ 7→ Xi 1̄′

defines an isomorphism of A-modules. If i 6 −1 then the map Yλ,µ → Yλ′,µ′ , 1̄ 7→ (FX)i 1̄′

defines an isomorphism of A-modules.

Theorem 6.59. N (Y -torsion) =
{

[Yλ,µO ] |λ ∈ K∗, O ∈ K∗/〈q〉
}

.

Proof. Let M ∈ N (Y -torsion). By Lemma 6.52, the central element C acts on M as a nonzero

scalar, say λ. Then M is an epimorphic image of the module Yλ,µ for some µ ∈ K∗. By

Proposition 6.58.(1), Yλ,µ is a simple A-module, hence M ' Yλ,µ. Then the theorem follows

from Proposition 6.58.(6).

Lemma 6.60. 1. For all λ ∈ K and µ ∈ K∗, GK (Yλ,µ) = 2.

2. A(C,K − µ, Y ) ( A(K − µ,X, Y,E) ( A.

3. For all µ ∈ K∗, the module Y0,µ is not a simple A-module.

Proof. 1. By Proposition 2.14.(3), GK (Yλ,µ) 6 GK (Yµ) − 1 = 2. If λ 6= 0 then it follows

from Proposition 6.58.(1) that GK (Yλ,µ) = 2. If λ = 0 then consider the subspace V =⊕
i,j>0 KEiF j 1̄ of the A-module Yµ. By (6.57), we see that V ∩ CYµ = 0. Hence, the vector

space V can be seen as a subspace of the A-module Y0,µ. In particular, GK (Y0,µ) > 2. Therefore,

GK (Y0,µ) = 2.

2. Let a′ = A(C,K − µ, Y ) and b = A(K − µ,X, Y,E). Since C ∈ b we have the equality

b = A(C,K − µ,X, Y,E). Clearly, a′ ⊆ b. By Lemma 6.56.(2) and its proof, b is a proper left
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ideal of A and GK (A/b) = 1. Then it follows from statement 1 that, 2 = GK (A/a′) > GK (A/b),

hence the inclusion a′ ⊆ b is strict.

3. By statement 2, the left ideal A(C,K−µ, Y ) is not a maximal left ideal. Thus, the A-module

Y0,µ is not a simple module.

Corollary 6.61. Let λ ∈ K and µ ∈ K∗. The A-module Yλ,µ is a simple module iff λ 6= 0.

Proof. The result follows from Proposition 6.58.(1) and Lemma 6.60.(3).

The set N ((X,Y )-torsionfree). Theorem 6.63 and Theorem 6.64 give explicit description of the

set N ((X,Y )-torsionfree). Recall that N ((X,Y )-torsionfree) = Â (weight, (X,Y )-torsionfree).

Then clearly,

N ((X,Y )-torsionfree) = Â(0)
(
weight, (X,Y )-torsionfree

)
t
⊔
λ∈K∗

Â(λ)
(
weight, (X,Y )-torsionfree

)
.

(6.60)

Let At be the localization of the algebra at the powers of the element t = Y X. Recall that the

algebra Ct is a GWA, see Proposition 6.32.(1).

Lemma 6.62. At = Ct[X±1; ι] is a skew polynomial algebra where ι is the automorphism of the

algebra Ct defined by ι(C) = C, ι(K±1) = q∓1K±1, ι(t) = qt, ι(u) = q2u and ι(v) = v.

Proof. Clearly, the algebra Ct[X±1; ι] is a subalgebra of At. Notice that all the generators of the

algebra At are contained in the algebra Ct[X±1; ι], then At ⊆ Ct[X±1; ι]. Hence, At = Ct[X±1; ι],

as required.

The set Â(0)
(
weight, (X,Y )-torsionfree

)
. Let [M ] ∈ Ĉ 0,µ (t-torsionfree). By Theorem 6.41,

the element t acts bijectively on the module M (since t is a normal element of R). Therefore,

the C -module M is also a Ct-module. Then by Lemma 6.62, we have the induced At-module

M̃ := At ⊗Ct M =
⊕
i∈Z

Xi ⊗M =
⊕
i>1

Y i ⊗M ⊕
⊕
i>0

Xi ⊗M.

Clearly, M̃ is an (X,Y )-torsionfree, weight A-module and Wt (M̃) = {qiµ | i ∈ Z} = O(µ).

We claim that M̃ is a simple A-module. Suppose that N is a nonzero A-submodule of M̃ then

Xi⊗m ∈ N for some i ∈ Z and m ∈M . If i = 0 then N = Am = M̃ . If i > 1, since Y i(Xi⊗m) ∈
K∗(1 ⊗ tim), then 1 ⊗ tm ∈ N and so N = M̃ . If i 6 −1 then X |i|Xi ⊗m = 1 ⊗m ∈ N , so

N = M̃ . If M ′ ∈ Ĉ 0,µ′ (t-torsionfree) then the A-modules M̃ and M̃ ′ are isomorphic iff the

C 0,µ-modules M and Xi ⊗M ′ are isomorphic where µ = qiµ′ for a unique i ∈ Z.

Theorem 6.63. Â(0)
(
weight, (X,Y )-torsionfree

)
=
{

[M̃ ] | [M ] ∈ Ĉ 0,µO (t-torsionfree), O ∈
K∗/qZ

}
.

Proof. Let V ∈ Â(0)
(
weight, (X,Y )-torsionfree

)
. Then the elements X and Y act injectively on

the module V . For any µ ∈Wt (V ), the weight space Vµ is a simple t-torsionfree C 0,µ-module.

Then V ⊇
⊕

i>1 Y
i ⊗ Vµ ⊕

⊕
i>0X

i ⊗ Vµ = Ṽµ. Hence, V = Ṽµ since V is a simple module.
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The set Â(λ)
(
weight, (X,Y )-torsionfree

)
where λ ∈ K∗. Let M ∈ Ĉ λ,µ (t-torsionfree). Then

Mt ∈ Ĉ λ,µ
t . By Lemma 6.62, we have the induced At-module

M� := At ⊗Ct Mt =
⊕
i∈Z

Xi ⊗Mt.

Clearly, M� is a simple weight At-module and Wt (M�) = {qiµ | i ∈ Z} = O(µ). For all

i ∈ Z, the weight space M�i := Xi ⊗Mt ' M ι−i

t as Ct-modules where M ι−i

t is the Ct-module

twisted by the automorphism ι−i of the algebra Ct (the automorphism ι is defined in Lemma

6.62). The set Ĉ λ,µ (t-torsionfree) is described explicitly in Theorem 6.45.(1,3). If M = fλ,µ

then Xi ⊗ fλ,µt ' (fλ,µt )ι
−i ' fλ,q

iµ
t as Ct-modules. It is clear that socC (fλ,µt ) = fλ,µ. Hence,

socC (Xi ⊗ fλ,µt ) = socC (fλ,q
iµ

t ) = fλ,q
iµ. Then the A-module

socA

((
fλ,µ
)�)

=
⊕
i∈Z

socC (Xi ⊗ fλ,µt ) '
⊕
i∈Z

fλ,q
iµ. (6.61)

Similarly, if M = Fλ,µ then Xi ⊗ Fλ,µt ' (Fλ,µt )ι
−i ' Fλ,q

iµ
t as Ct-modules. It is clear that

socC (Fλ,µt ) = Fλ,µ. Hence, socC (Xi ⊗ Fλ,µt ) = socC (Fλ,q
iµ

t ) = Fλ,q
iµ. Then the A-module

socA

((
Fλ,µ

)�)
=
⊕
i∈Z

socC (Xi ⊗ Fλ,µt ) '
⊕
i∈Z

Fλ,q
iµ. (6.62)

If M = Fλ,µγ where γ ∈ K∗\{q2iν | i ∈ Z}. Then Xi⊗Fλ,µγ,t ' (Fλ,µγ,t )ι
−i ' Fλ,q

iµ
q−iγ,t as Ct-modules.

It is cleat that socC (Fλ,µγ,t ) = Fλ,µγ . Hence, socC (Xi ⊗ Fλ,µγ,t ) = Fλ,q
iµ

q−iγ is a simple C -module.

Then the A-module

socA

((
Fλ,µγ

)�)
=
⊕
i∈Z

socC (Xi ⊗Fλ,µγ,t ) '
⊕
i∈Z
Fλ,q

iµ
q−iγ . (6.63)

If M ∈ Ĉ λ,µ (K[t]-torsionfree) then , by Theorem 6.45.(3), M ' C λ,µ/C λ,µ ∩Bbt−n for some

l-normal element b ∈ Irr (B) and for all n� 0. For all i ∈ Z,

M ι−i

t ⊇ C λ,qiµ
t

C λ,qiµ
t ∩Bιi(b)t−n

:=Mιi(b)t−n .

Then socC (M ι−i

t ) = socC (Mιi(b)t−n) =Mιi(b)t−ni for all ni � 0. Then the A-module

socA
(
M�

)
=
⊕
i∈Z

socC (Xi ⊗Mt) '
⊕
i∈Z
Mιi(b)t−ni . (6.64)

The next theorem describes the set Â(λ)
(
weight, (X,Y )-torsionfree

)
where λ ∈ K∗.

Theorem 6.64. Let λ, µ ∈ K∗. Then Â(λ)
(
weight, (X,Y )-torsionfree

)
= {[socA(M�)] | [M ] ∈

Ĉ λ,µO (t-torsionfree), O ∈ K∗/qZ} and socA(M�) is explicitly described in (6.61), (6.62), (6.63)

and (6.64).

Proof. Let M ∈ Â(λ)
(
weight, (X,Y )-torsionfree

)
. Then Wt (M) = O(µ) ∈ K∗/qZ for any µ ∈

Wt (M). Then M := Mµ ∈ Ĉ λ,µO (t-torsionfree) and Mt ∈ Ĉ λ,µO
t . Clearly, M� = Mt ⊇ M.

So, M = socA(M�).

By (6.51) and (6.60), Theorem 6.55, Theorem 6.59, Theorem 6.63 and Theorem 6.64 give a

complete classification of simple weight A-modules.
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Notations

We use the standard notations Z for the ring of integers, N for the natural numbers. Throughout

the thesis K is a field of characteristic zero.
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