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Abstract

The thesis consists of two parts. In the first part (Chapters 3 and 4), we study the universal
enveloping algebra U(sly x V3) of the semi-direct product Lie algebra sl x Vo and its subalge-
bra U(b x V3). In the second part (Chapters 5 and 6), we introduce and study the quantum
analogues of these two algebras, i.e, the smash product algebra K,[X,Y] x U,(slz) and its sub-
algebra Ky [X,Y] x Ufo(s[g). The prime, completely prime, primitive and maximal ideals of
these algebras are classified, the generators and inclusions of prime ideals are given explicitly.
We also give classifications of all the simple weight modules over the algebras Ul(sly x V3) and
K4[X,Y] x Uy(slz). In Chapter 4, a central extension of the Lie algebra sly x V5 is also studied,
which is called in the literature the Schrddinger algebra. It is conjectured that there is no simple
singular Whittaker module for the Schrédinger algebra. We construct a family of such modules.

We also proved that the conjecture holds ‘generically’.
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Chapter 1

Introduction

The thesis consists of two parts. In the first part (Chapters 3 and 4), we study the universal
enveloping algebra U (sly x V3) of the semi-direct product Lie algebra sl x Vo and its subalge-
bra U(b x V3). In the second part (Chapters 5 and 6), we introduce and study the quantum
analogues of these two algebras, i.e, the smash product algebra K,[X,Y] x U,(slz) and its sub-
algebra K,[X,Y] x Uq>0(5[2). The prime, completely prime, primitive and maximal ideals of
these algebras are classified, the generators and inclusions of prime ideals are given explicitly.
We also give classifications of all the simple weight modules over the algebras U (sl x V) and
Ky [X, Y] x Uy(sls).

The generalized Weyl algebras, introduced by V. V. Bavula [5], are a powerful tool in study
of the above mentioned algebras. Almost all algebras considered in the thesis contain a chain
of subalgebras that are generalized Weyl algebras, or their localizations are generalized Weyl
algebras. Moreover, the problem of classification of the weight/torsion simple modules can be
reduced to a problem of classification of all simple modules but over smaller subalgebras that
have close connections with generalized Weyl algebras. These facts enable us to give complete

classifications of various classes of simple modules.

Recall that a prime ideal in a ring R is any ideal P such that P # R and whenever I and J
are ideals of R with IJ C P, either I C P or J C P. The prime spectrum Spec (R) of a ring R
is the set of all its prime ideals. The set of (left) primitive ideals of an algebra A is the set of
annihilators of simple (left) A-modules and is denoted by Prim (A). Every primitive ideal is a
prime ideal but the reverse does not hold, in general. For universal enveloping algebras, the set
of left and right primitive ideals coincide and every prime ideal is an intersection of primitive
ideals. The classification of prime and primitive ideals is a central theme in this thesis. Our

approach is based on using localizations and generalized Weyl algebras.

The classification of simple modules for non-abelian Lie algebras is a very difficult (intractable)
problem. The same is true for noncommutative algebras of Gelfand-Kirillov dimension > 3. A
reasonable approach is to classify certain families of simple modules such as the weight modules,
Whittaker modules, etc. Even so, the problem, in general, is still too difficult, one needs to

add more finiteness conditions. In this thesis, we give classifications of all the simple weight
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modules over the algebras U(sle x V2) and K,[X,Y] x U,(slz). Both algebras have Gelfand-
Kirillov dimension 5. It seems that it is the first instance where such complete classifications of

weight modules are given for algebras of Gelfand-Kirillov dimension larger than or equal to 5.

Let us give a description of the main results of the thesis.

1.1 The universal enveloping algebra U(sly, x V%)

Let K is a field of characteristic zero and K* := K\ {0}. Recall that the Lie algebra slo =
KF & KH & KFE is a simple Lie algebra over K where the Lie bracket is given by the rule:
[H,E] =2E, [H,F] = —2F and [E,F] = H. Let V, = KX & KY be the 2-dimensional simple
sla-module with basis X and Y. Let a := sly x V5 be the semi-direct product of Lie algebras
where V; is viewed as an abelian Lie algebra. In more detail, the Lie algebra a admits the basis
{H,E,F,X,Y} and the Lie bracket is defined as follows

[H,E] =2F, [H,F] = —2F, [E,F]=H

)

[F.X]=Y, [F,Y] =0, [H,X]=X

=&
it
[l
| o
=

B
= =
[
S o=

Let A = U(a) be the enveloping algebra of the Lie algebra a. Briefly,

(i) in Chapter 4, we give a complete classification of all simple weight A-modules,
(ii) explicit descriptions of the prime, primitive, completely prime and maximal spectra of A
are given,
(iii) explicit generators and defining relations for the centralizer C4(H) are found and simple
C4(H)-modules are classified.

The centre of the algebra A is a polynomial algebra, Z(A) = K[C] where C = FX?~HXY —EY?

(Lemma 4.1). Let us give some more details.

We give an explicit description of the set Spec (A4) of prime ideals of the algebra A. The universal
enveloping algebra U := U(sly) is a factor algebra A/(X). Hence, Spec (U) C Spec(A) is an

inclusion of partially ordered sets (with respect to C).

Theorem 1.1. (Theorem 4.6) The prime spectrum of the algebra A is a disjoint union Spec(A) =
{(X,p)|p € Spec(U)}U{Aq|q € Spec(K[C])} where U = Ul(sly). Furthermore, all the inclusions

of prime ideals are given in the following diagram (lines represent inclusions of primes).

Spec (U) \ {0}
AN
(X)
AN

(©)  {Aala e Max(KC)\ {(O)}}

N/

0
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The annihilator of a simple module is called a primitive ideal. The next theorem is a description
of the set Prim (A) of primitive ideals of the algebra A.

Theorem 1.2. (Theorem 4.8) Prim (A) = {(X,p) |p € Spec (U)\{0}} U {Aq|q € SpecK[C]\
{04}

In the second part of Chapter 4, we give a classification of simple weight A-modules. An A-
module M is called a weight module if M = @&,cxM, where M, = {m € M|Hm = pm}.
Let Cao(H) := {a € AlaH = Ha} be the centralizer of the element H in A. Each nonzero
weight component M, of M is a Ca(H)-module. If, in addition, the weight A-module M is
simple then all nonzero weight components M, are simple Ca(H)-modules. So, the problem
of classification of simple weight A-modules is closely related to the problem of classification
of all simple Ca(H)-modules, which can be seen as the first, the more difficult, of two steps.
The second one is about how ‘to assemble’ some of the simple C4(H)-modules into a simple
A-module. The difficulty of the first step stems from the fact that the algebra C4(H) is of
comparable size to the algebra A itself (GK (C'4(H)) = 4 and GK (4) = 5 where GK stands for
the Gelfand-Kirillov dimension) and the defining relations of the algebra C4(H) are much more

complex than the defining relations of the algebra A, as the following theorem shows.

Theorem 1.3. (Corollary 4.15) Let t == YX, ¢ :== EY? and © := FE. Then the algebra
Ca(H) is generated by the elements C, H,t, ¢ and © subject to the defining relations (where C
and H are central in the algebra C4(H)):

[¢,t] = 7,
[©,t] =2¢+ (H —2)t+C,
[©,¢] =20t + (—¢ + 2t)H,

Ot = (¢ + Ht + C)¢.

Furthermore, Z(Ca(H)) = KI[C, H].

For an algebraically closed field K, the problem of classification of simple C4(H)-modules is
equivalent to the same problem but for all the factor algebras CM* := C4(H)/(C — A\, H — p)
where A\, u € K. We assume that the field K is algebraically closed. There are two distinct
cases: A # 0 and A = 0. They require different approaches. The common feature is a discovery
of the fact that in order to study simple modules over the algebras C** we embed them into
larger algebras for which classifications of simple modules are known. A surprise is that the
sets of simple modules of the algebras C** and their over-algebras are tightly connected. In
the case A # 0, such an algebra is the first Weyl algebra, but in the second case when A = 0,
it is a skew polynomial algebra K[h][t; o] where o(h) = h — 1. For A # 0, a classification of
simple CM*-modules is given in Theorem 4.26. A classification of simple C%#-modules is given
in Theorem 4.29.

Using the classification of simple C'4 (H )-modules (Section 4.4), we give a classification of simple
weight A-modules in Section 4.5. A typical simple weight A-module depends on an arbitrarily

large number of independent parameters. The set of simple A-modules is partitioned into 5
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classes each of them is dealt separately with different techniques. This is too technical to explain

in the introduction.

In Section 4.6, a central extension of the Lie algebra a = sly x V5 is studied, which is called in
the literature the Schrddinger algebra. The Schridinger algebra s is a 6-dimensional Lie algebra
that admits a K-basis {F, H, E,Y, X, Z} elements of which satisfy the defining relations:

[H,E] = 2E, [H,F] = —2F, [E,F]=H, [H,X] =X,
[H,Y]=-Y, [E,Y] =X, [E,X] =0, [F,X] =Y,
[F,Y] =0, [X,Y] = Z, [Z,5] = 0.

Let S := U(s) be the universal enveloping algebra of the Schrodinger algebra s, then, clearly,
S§/(Z) ~ A. The localization Sz of the algebra S at the powers of the central element Z is
isomorphic to the tensor product of algebras K[Z*1] @ U(sly) ® Ay, see (4.53). The tensor
component U (sly) is called the hidden U(slz). Its explicit canonical generators are described in
Lemma 4.37:

1 1 1
E' :=F — 5Z*1X2, F':=F+ 52*11/2, H :=H+Z'XY — 3
and [H',E'| = 2FE', [H',F'] = —2F" and [E',F'] = H'. Using this fact, a short proof has

been given of the fact that the centre of the algebra S is a polynomial algebra in two explicit
generators (Proposition 4.39). The fact that the centre Z(S) of S is a polynomial algebra K[Z, c]

was proved in [24] by using the Harish-Chandra homomorphism where
c=Z(4FE+ H? + 1) +2(BY? + HXY - FX?).

In the above paper, it was not clear how this element was found. We clarify the ‘origin’ of
¢ which is the (classical) Casimir element of the ‘hidden’ U(sly) in the decomposition (4.53).
It is conjectured that there is no simple singular Whittaker module for the algebra S [44,
Conjecture 4.2]. We construct a family of such S-modules (Proposition 4.44). We also prove
that the conjecture holds ‘generically’ (Proposition 4.43). A classification of the simple singular
Whittaker S-module is given in [13].

1.2 The spatial ageing algebra U(b x 1)

Let b = KH & KFE be the Borel subalgebra of the Lie algebra sl;. Then b x V5 is a solvable
Lie algebra which is a subalgebra of a = sl x V5. Let A be the universal enveloping algebra
U(bx V3) of the Lie algebra b x V5. It is called the spatial ageing algebra. Then A is a subalgebra
of the universal enveloping algebra U (sly x V3) generated by the elements H, E, X and Y. We
study the algebra A in Chapter 3. The main result is Theorem 3.4 where we give classifications
of prime, primitive and maximal ideals of A, the generators and inclusions of prime ideals are

given explicitly, we also give an explicit description of prime factor algebras.
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Theorem 1.4. (Theorem 3.4) The prime spectrum Spec (A) of the algebra A is given below and

all the inclusions of prime ideals are given (lines represent inclusions of primes):

where Z = EY?2.

Generators and defining relations of the centralizers of the elements X,Y and E in the algebra A
are given in Section 3.3. These results are used in classifications of K[X]-, K[Y]- and K[E]-torsion
A-modules [16].

1.3 The smash product algebra K,[X,Y] x U,(sly)

Fix an element ¢ € K* such that ¢ is not a root of unity. Recall that the quantized enveloping
algebra of sly is the K-algebra Uy(sly) with generators E, F, K and K~ subject to the defining

relations (see [29]):

K- K1
KK '=K'K=1, KEK'=¢E, KFK ' =¢*F, EF-FE=————.
qa—q
There is a Hopf algebra structure on U, (sly) defined by
A(K)=K®K, e(K) =1, S(K>:K_1a
A(E)=E®1+KQE, e(E) =0, S(E)=-K'E,
A(F)=FK '+1®F, e(F) =0, S(F) = —FK,

where A is the comultiplication on Uy(sl2), € is the counit and S is the antipode of U, (sl2).

We can make the quantum plane K [X,Y] := K(X,Y | XY = ¢V X) a Uy(slz)-module algebra
by defining,

K- X =¢X, E-X =0, F-X=Y,
K.Y =q'Y, E.Y =X, F.Y =0.

Then one can form the smash product algebra A := K,[X, Y] x Uy(slz), which is the main object
of study in Chapter 6. As an abstract algebra, the generators and defining relations of the

algebra A are given below.
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Definition. The algebra A is an algebra generated over K by the elements E, F, K, K~!, X and
Y that satisfy the following defining relations (where K~ is the inverse of K):

KEK™ ' =¢E, KFK~!'=¢72F, [E,F] = 12:5_—117
EX = ¢XE, EY =X +q¢ 'YE,
FX =YK '4+XF, FY =YF,

KXK' =¢X, KYK™'=q'Y, gV X = XY.

Our aim is to study the prime spectrum of this algebra and to give a classification of simple
weight A-modules. The smash product algebra A can be seen as a quantum analogue of the
universal enveloping algebra U (sls x V3) studied in Chapter 4. For example, the prime spectra
of these two algebras have similar structure (compare Theorem 6.15 with Theorem 4.6); the
representation theory of A has many parallels with that of U(sly x V3); the centre of A is a
polynomial algebra K[C] where

C=(FE—-@EF)YX +¢@FX? - K 'EY?

The study of quantum algebras usually requires more computations.

Recall that a quantum Weyl field over K is the skew field of fractions of a quantum affine space.
We say that a K-algebra A admitting a skew field of fractions Frac(A) satisfies the quantum
Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl field over a purely

transcendental field extension of K; see [19, 11.10, p. 230].

Theorem 1.5. (Theorem 6.9) The quantum Gelfand-Kirillov conjecture holds for the algebra
A.

The next theorem gives generators and defining relations for the centralizer C'4 (K) of the element
K in the algebra A.

Theorem 1.6. (Theorem 6.29) Let ¢ := (¢! —q)YE+ X, t:=YX, u:= K 'Yy and © :=
(l—qQ)FE—i-%F. Then the algebra C4(K) is generated by the elements K**, C, O, t

and u subject to the following defining relations:

t~u:q2u't,

O-t=¢* 0+ (¢g+qg Hu+(1-¢C,

O u=q%u-0—-—ql+t+1-FAK'C,
7

1 q
Ot u———u?—C-u=
q(1—q?) 1—¢?

[K*1,]=0, and [C,]=0.

2 —¢*K~1C - t,

Furthermore, Z(C4(K)) = K[C, K*1].

The defining relations of the algebra € := C 4 (K) are complex. From the outset, it is not obvious

how to classify simple ¥-modules. The key idea is based on the observation that this algebra
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has close connections with generalized Weyl algebras. Let %; be the localization of the algebra
% at the powers of the element t. We show that %; is a generalized Weyl algebra (Proposition
6.32). For A € K and pu € K*, we prove that the factor algebra

G = Ca(K)/(C = MK — p)

is a simple algebra if and only if A # 0 (Theorem 6.34). Moreover, for any A € K and p € K*,
the localization Cft)"“ of the algebra €M* at the powers of the element ¢ is a central, simple
generalized Weyl algebra (Proposition 6.32). Another key observation is that, for any A € K and
p € K*, we can embed the algebra €** into a generalized Weyl algebra .« (it is a central simple
algebra, which plays the role of ‘the quantum Weyl algebra’), see Proposition 6.38. Using these
facts, a complete classification of simple C 4 (K )-modules in given in Section 6.6. The problem
of classifying simple ¥**-modules splits into two distinct cases when A = 0 and A # 0. In the
case A = 0, we embed the algebra €%* into a skew polynomial algebra R = K[h*!][t; 5] where
o(h) = ¢h (it is a subalgebra of the algebra «7) for which the classifications of simple modules
are known. In the case \ # 0, we use the close relation of the algebra €** with its localization

A .
€,", and the arguments are more complicated.

An A-module M is called a weight module if M = @, cx- M, where M, = {m € M | Km = pm}.
Using the classification of simple C'4 (K)-modules (Section 6.6), we give a classification of simple

weight A-modules in Section 6.7.

1.4 The quantum spatial ageing algebra

The subalgebra A of K,[X, Y] x U, (sl2) generated by the elements F, K, K~!, X and Y is called
the quantum spatial ageing algebra, which is studied in Chapter 5. For the algebra A,

(i) its prime, completely prime, primitive and maximal spectra are classified,
(ii) the generators of prime ideals and their inclusions are given explicitly,
iii) generators and defining relations are given for all prime factor algebras A,
g g g
(iv) the group of automorphisms of the algebra A is found (Theorem 5.14). In finding the
group of automorphisms of the algebra A, we use an explicit description of prime ideals of

the algebra A and their inclusions.
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Theorem 1.7. (Theorem 5.8) The prime spectrum Spec (A) of the algebra A is given below and

all the inclusions of prime ideals are given (lines represent inclusions of primes):

{(Y,E,p)|p € Max (K[K,K"'])}

(Y, E)
/\
{(X,9) |a € Max (K[Z]) \ {(2)}} Y)  (B) {(p,0)|v € Max (K[c]) \ {(c)}}
N LN S
(X) ()
N

where Z := oYK~ ! and c:= XYK.

The maximal and primitive ideals of the algebra A are classified.
Theorem 1.8. (Corollary 5.9 and Proposition 5.11)

1. Max (A) = {(Y, E,p) |p € Max (K[K, K~])} U {(X,q)|q € Max (K[Z]) \ {(Z)}}

U {(p, ) [v € Max (K[e]) \ {(c)}}-
2. Prim(A) = Max(A) U {(V), (E), 0}.

The group of automorphisms of A is determined.

Theorem 1.9. (Theorem 5.1/) Autg(A) = {or il Ay € K*, i € Z} ~ (K*)? x Z where
Oy i X 2 AKX, Y = uK™Y, K — K, E — A\ tq 2 K% E (and 0y p4,:(p) = AK'p).

_ ) ) o -1 _ ) ) )
Furthermore, ox .y iON p' v’ 5 = OaN iy =3 iy O Oy o5 = Oty iyt e

In general, to find centralizers is a challenging problem, especially to determine their defining
relations as algebras. In section 5.4, we describe the centralizers of the elements K, X, ¢, Y and
E in the algebra A. All the centralizers turned out to be generalized Weyl algebras. These
facts are key ones for obtaining classifications of simple K[X]-, K[¢]-, K[Y]- and K[E]-torsion

modules, see [11, 15] for details.



Chapter 2

Preliminaries

Ore extensions. Let a be an automorphism of a ring R. Recall that an a-derivation of R
is any additive map ¢ : R — R such that §(rs) = a(r)dé(s) + §(r)s for all r,s € R. If « is the

identity map, then a-derivations are just the ordinary derivations.

Definition. Let R be a ring, a an automorphism of R, and § an a-derivation of R. We define
S = R[x; «, d] such that

1. S is a ring, containing R as a subring;

2. x is an element of S;

3. S is a free left R-module with basis {1,z,22,...};
4. zr = a(r)z+46(r) for all r € R.

Such a ring S is called an Ore extension of R. Any nonzero element u € S can be uniquely
written in the form u = r,a" +7, 12" '+ -+ riz+ro wherer; € R (i =0,1,...,n). If r, #0

then the integer n is called the degree of w and 7, is called the leading coefficient of w.
Lemma 2.1. Let S = R[z;«,0] be an Ore extension of R.

1. If R is a domain, then S is a domain.

2. If R is a prime ring, then S is a prime ring.
Proof. See, [37, Theorem 1.2.9(i), (iii)]. O

The following theorem is a noncommutative version of the Hilbert Basis Theorem.

Theorem 2.2. If R is a left (right) Noetherian ring, then so is the Ore extension S = R[z; «, ¢].
Proof. See [37, Theorem 1.2.9]. O

Filtered and graded rings. A filtered ring is a ring R with a family {F,, |n € Z} of additive
subgroups of R such that

1. FzF] g FiJrj for all i,j;
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2. 1€ Fy;
3. FlgF] fOI‘i<j;
4. Upep Fn = R.

The family {F,} is called a filtration of R.
A Z-graded ring is a ring R with a family {R,,,n € Z} of additive subgroups of R such that

1. RZRJ Q Ri+j7 and
2. R=@,, R, as an abelian group.

The family {R,,} is called a grading of R. A nonzero element of R,, is said to be homogeneous

of degree n. For any filtered ring S one can construct a graded ring. We set
gr,S=F,/F,_1 and grS= @grnS.

To define multiplication in gr S it suffices to consider multiplication of homogeneous elements.
If a € F,, \ F,—1, then a is said to have degree n and @ = a+ F,,_; € F,,/F,_1 is the leading

term of a. Suppose ¢ has degree m then we define
ac = ac+ Frpin_1 € gy, S

This well-defined multiplication makes gr S into a ring. It is called the associated graded ring
of S. In general, the associated graded ring of a filtered ring S has somewhat simpler structure
than the ring S. In this case, one would like to transfer information from gr.S back to S. Some
connection between properties of a filtered ring S and its associated graded ring gr S is given in

the following proposition.

Proposition 2.3. 1. Ifgr S is a domain, then S is a domain.
2. IfgrS is a prime ring, then S is a prime ring.
3. If gr S is right Noetherian, then S is right Noetherian.

Proof. See [37, Proposition 1.6.6] and [37, Theorem 1.6.9]. O

Here we note that the converses are not true, in general.

Prime ideals. A prime ideal in a ring R is any ideal P of R such that P # R whenever I and
J are ideals of R with I.J C P, either I C P or J C P. The set of prime ideals of R is denoted
by Spec (R). A minimal prime ideal of a ring R is any prime ideal of R which does not contain

any other prime ideals. We have the following equivalent description of prime ideals.

Proposition 2.4. For an ideal P of a ring R such that P # R, the following conditions are

equivalent:

1. P is a prime ideal.

2. IfI,J<R and I,J 2 P, then IJ € P.

3. R/P is a prime ring.

4. If I and J are right ideals of R such that IJ C P, then either I C P or J C P.
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5. Ifx,y € R such that xRy C P, then either x € P ory € P.

Proof. See [28, Proposition 3.1]. O
Theorem 2.5. Let R be a right or left Noetherian ring.

1. Any ideal in R contains a finite product of prime ideals.

2. R has only finitely many minimal prime ideals.

Proof. See [28, Theorem 3.4] and its proof. O

A semiprime ideal in a ring R is any ideal of R which is an intersection of prime ideals.

Theorem 2.6. An ideal in a ring R is semiprime if and only if whenever x € R with xRx C I

then x € 1.

Proof. See [28, Theorem 3.7]. O

Let I be a two-sided ideal of a ring R. The ideal I is said to be completely prime if the factor
ring R/I is a domain. The ideal I is said to be primitive if it is the annihilator of a simple left
R-module. The set of primitive ideals of R is denoted by Prim (R). The ideal I is said to be a
mazimal ideal if it is maximal in the set of ideals of R distinct from R. We have the following

implications (see [28, Proposition 2.15]):

I maximal =- [ primitive = [ prime = I semiprime.

Localization. The technique of localization is a powerful tool in study of algebras. Let X be
a multiplicative set in a ring R (i.e., X is multiplicative submonoid of (R \ {0},) and 1 € X).
Then X is said to satisfy the right Ore condition if, for each € X and r € R, there exist y € X
and s € R such that ry = xs, that is, rX NaxR # 0. X is said to be right reversible if

xzr = 0 for some = € X,r € R implies rz’ = 0 for some 2’ € X.

A right denominator set is any right reversible right Ore set. In a right Noetherian ring every

right Ore set is right reversible; [28, Proposition 10.7].

Definition. Let X be a multiplicative set of a ring R. A right quotient ring (or right Ore
localization) of R with respect to X is a ring @ together with a homomorphism ¢ : R — Q
such that:

1. ¢(x) is a unit of @ for all z € X,
2. for all g € Q, q = ¢(r)pp(xz)~! for some r € R and = € X, and
3. ker¢ = {r € R|rz =0 for some z € X}.

By abuse of notation, we will write elements of @ in the form ra~—! for r € R,z € X.
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Theorem 2.7. Let X be a multiplicative set in a ring R. Then there exists a right quotient ring
of R with respect to X if and only if X is a right denominator set.

Proof. See [28, Theorem 10.3]. O
Lemma 2.8. Let X be a multiplicative set in a ring R.

1. If there exists a right quotient ring Q@ of R with respect to X, then it is unique up to
isomorphism.
2. If R also has a left quotient ring Q' with respect to X then Q ~ Q.

Proof. See [28, Corollary 10.5, Proposition 10.6]. O
Because of the uniqueness, we shall denote @ by RX~! or Rx. The next result is useful in

handling the passage between a ring R and its localization Rx.

Proposition 2.9. Let X be a right denominator set in a ming R, and @ = Rx. If R is a

Noetherian ring then there is a bijection

{P € Spec(R)|PNX =0} — {P" € Spec(Q)},
P— PQ,

with the inverse P' — P' N R.
Proof. See [37, Proposition 2.1.16.(vii)]. O

Let X be a right Ore set in a ring R and M be a right R-module. The set
torx (M) := {m € M |mz = 0 for some z € X'}

is a submodule of M [28, Lemma 4.21]. Tt is called the X -torsion submodule of M.

Definition. Let X be a right denominator set in a ring R and M be a right R-module. A
module of fraction for M with respect to X consists of a right Rx-module N together with a
R-module homomorphism ¢ : M — N such that:

1. for allm € N, n = y(m)xz~! for some m € M,z € X, and
2. kerv) = torx (M).

It can be shown that such a module of fraction exits and unique up to isomorphism; [28, Theorem
10.8, Corollary 10.10]. We denote this module by Mx or M X 1.

Proposition 2.10. Let X be a right denominator set in a ring R and M a right R-module.

1. M@RRxﬁMx.
2. torx (M) =ker(M — M ®g Rx, m—m®1).
3. torx(M) = M < M ®5 Rx = 0.
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Proof. See [37, Proposition 2.1.17]. O

Gelfand-Kirillov dimension of algebras and modules. Throughout this thesis K is a field.
Let A be a finitely generated K-algebra and let V' be a K-vector subspace of A spanned by
{a1,...,an}. If Ais generated by {ai,...,an}, or equivalently by the vector space V', then V
is called a generating subspace of A. For n > 1, we will denote by V"™ the subspace of A spanned
by all monomials in ay, ..., a,, of length n. We also define V = K. Then A has a standard finite

dimensional filtration:

o0

A:UVn, where V,, =K+ V +VZ2+...4V"
n=0

Definition. Let A be a finitely generated K-algebra and let V' be a generating subspace of A.
The Gelfand-Kirillov dimension, or GK dimension for short, of A is defined by

GK (A) = lim log, (dim V;,).

n—oo

An equivalent definition of Gelfand-Kirillov dimension is

GK (A) :=inf{y e R|dimV,, < n”, n > 0}.

Remarks.

1. Let A be a finitely generated K-algebra and suppose that V and W are two generating
subspaces of A. Then n@@ log,, (dimV},) = n@o log,, (dimW,,). Thus the GK dimension of
A does not depend on the choice of generating subspaces.

2. If V contains 1, then V,, = V™.

Let A be a finitely generated K-algebra with a finite dimensional generating subspace V' con-
taining 1. If M is a finitely generated left A-module with a finite dimensional vector space F'

that generates M as an A-module, then
M=|]JV"F.
n=0

The Gelfand-Kirillov dimension of the module M is defined by
GK (M) := lim log,,(dim V"F).
n—oo

We note that the Gelfand-Kirillov dimension GK (M) does not depend on the choice of the
spaces V and F'.

Gelfand-Kirillov dimension is a useful and important tool in the study of noncommutative alge-
bras. We recall some basic properties of GK dimension in the following lemma. Further details
concerning the GK dimension can be found in [35]. A non-zero-divisor of a ring is called a regular

element. A derivation § of a ring R is called a locally nilpotent derivation if R = Un>1 ker(4™).
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Each element z of a ring R determines a derivation ¢, : R — R, r — [z,7] := 2r — rz which is

called the inner derivation associated to x.

Lemma 2.11. Let = be a regular element of the K-algebra A such that the derivation d, : a —

ax — xa is locally nilpotent. Then the set X = {1,x,22,---} is an Ore set in A and

GK (X 'A) = GK (AX ') = GK (A).
Proof. See [35, Lemma 4.7]. O
An element r of ring R is called a left reqular element (resp., a right regular element) if the map

r:R— R, s+ sr (resp., - : R+ R, s+ rs) is an injection.

Proposition 2.12. Let I be an ideal of a K-algebra A, and assume that I contains a right

reqular element or a left reqular element of A. Then

GK (A/I) +1 < GK (A).

Proof. See [35, Proposition 3.15]. O

Proposition 2.13. Let A be a right Noetherian K-algebra and suppose that GK (A) < oo. If
Py C Py C--- C Py, is a chain of distinct prime ideals of A then

GK(A) > GK(A/Py) > GK (A/Py,) +m.

Proof. See [37, Corollary 8.3.6(iv)]. O
Proposition 2.14. Let A be a K-algebra, and let M be a left A-module.

1. If IM =0 for an ideal I of A, then GK(4M) = GK (4/1M).
2. GK (4M) < GK (A).
3. If M is finitely generated and « € End s (M) is injective, then

GK (M/a(M)) < GK (M) — 1.
Proof. See [35, Proposition 5.1]. O

A K-algebra A is almost commutative if there exists a filtration

K=4CAC-CAC-ClJa=4
=0

such that (i) A; is finite dimensional and A; = A% for all i > 1; (ii) the associated graded algebra
grAd=@;2,A;/A;_1 is commutative.
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Proposition 2.15. Let A be an almost commutative algebra, and let M be a finitely generated
A-module with GK (M) = d and multiplicity e(M). Let

M:MoDMlD"'DMZ'DMZ‘JAD"'DM”

be a strictly descending chain of submodules with GK (M;/M;11) = d for all0 < i <n—1. Then
1. e(M/M;) = Y~y e(M;/Mj1).
2. n<e(M).

Proof. See [35, Corollary 7.8]. O

Generalized Weyl algebras. We only consider generalized Weyl algebra of degree 1.

Definition. Let D be a ring, 0 € Aut(D) and a € Z(D) where Z(D) is the centre of D. The
generalized Weyl algebra A = D(0,a) = D[X,Y;0,a] is generated by D and two indeterminates
X and Y subject to the defining relations

Xa=0(a)X and Ya=o0'a)Y forallac D,
YX=a and XY =o(a).

The algebra A = P, ., A, is Z-graded, where A, = Dv, = v,D, v, = X" (n > 0), v, =
Y~ (n <0), vg = 1. It follows from the defining relations that

Xny™m — o"(a)--- o (@)X ™ ifn > m,
o"(a)---ola)Y™ ™, if n < m.

g [ o @) e @Y i m,
o~ " a) - aX™m ", if n < m.

The following theorem gives a criterion of simplicity of generalized Weyl algebras of degree 1.

Theorem 2.16. Let A = D(o,a) be a generalized Weyl algebra of degree 1. Then A is simple if
and only if

1. D has no proper o-invariant ideals;

2. no power of o is an inner automorphism of D;

3. for each natural integer n € N, elements a and o™(a) generate D as a left (or right)
D-module;

4. a is not a zero divisor in D.

Proof. See [6, Theorem 4.2]. O

Deleting derivations. The n-th Weyl algebra A, = A, (K) is an associative algebra which is
generated by elements z1, ..., Zn, Y1, - . . , Yn subject to the defining relations: [z;,x;] =0, [y;,y;] =

0 and [y;,z;] = J;; where [a,b] := ab — ba and J;; is the Kronecker delta function. The Weyl
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algebra A, is a simple Noetherian domain of Gefand-Kirillov dimension 2n with Z(A4,) = K.

The next result is very useful.

Lemma 2.17. [37, Lemma 14.6.5] Let B be a K-algebra, § be a K-derivation on S = Bk A, (K)
and T = S[t; ). There exists s € S such that the derivation §' = d+ads of S satisfies the following

conditions,

1. §'(B) C B,
2. §(A,(K)) =0, and
3. the algebra T = B[t';§'] ®k A, (K) is a tensor product of algebras where t' =t + s.

Proof. By writing S = B® A,,—1(K) ® 4;(K) and using induction on n, it sufficient to prove the

result for n = 1. Now, §(z) =3, ; b;jz'y’ for some elements b;; € B. Let

1 .
$1 = Z %lbijxlyﬁ'l and d; =0+ ady,.
i +

Then [z, $1] = 0(z), and 61(z) = 0. Similarly, [z,y] = 1 implies [§1(z),y] + [z,d1(y)] = 0 and
therefore [z, 61 (y)] = 0. It follows that &;(y) € Blz], with 61(y) = >_ b;x’ say. Let

1 ,
52:72‘7‘4_71()”]“7 s=s1+52, and ¢ =4+ ad,.

Then ¢'(z) = §1(z) = 0, and 6'(y) = 0. Thus §(A1(K)) = 0. Now let b € B, a € Ay, then

[b,a] = 0 and so 0 = §([b,a]) = [6'(b),a] + [b,d"(a)] = [0'(D), a]. Hence &' (b) centralizes A;(K), so
§’(b) € B. Then statement 3 is clear. O

The Diamond Lemma. For details and applications of the Diamond Lemma, see [19, I.11].

Suppose that A is a K-algebra presented by generators and relations. Then A can be given as
A=K(X)/(w, — fo|o €X),

where K(X) is the free algebra on a set X, f, € K(X) and the w, are words (products of
elements from X). Let W be the free monoid on X, then w, € W. Since W is a basis for K(X)
the cosets w for w € W span A. The set

S ={(wo, fs) |0 ES}CW x F

is called a reduction system.

For 0 € ¥ and a,b € W, let 740 : K(X) — K(X) be the linear map sending aw,b — af,b and
fix all other words. We call r, 5 an elementary reduction. A reduction is a finite composition

of elementary reductions. An element f € K(X) is irreducible if r(f) = f for all reductions.

A semigroup ordering on W is a partial order < such that

b<b = abc < abc
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for all a,b,b',c € W. We say that the semigroup ordering < is compatible with the reduction

system S if for each o € X, the element f, is a linear combination of words w < w,-.

We will require a semigroup ordering which satisfies the descending chain condition (the DCC).
The typical example is the length-lexicographic ordering. The length-lexicographic ordering <ies
on W is defined by

a<jez b a=bora <pb,

where a <j¢, b is given as
Ti(1)Ti(2) " Tis) <lex Tj(1)Tj(2) """ Lj(t)

if and only if either s < ¢, or s = ¢ and there is some u < s such that i(l) = j(I) for all | < v and
i(u) < j(u). Therefore, to compare two different words, we first compare their lengths, if they

have the same length, then we look at the leftmost place where they differ.

There are two kinds of ambiguities can arise in the reduction process. An overlap ambiguity is
a 5-tuple (a,b,c,0,7) € W3 x ¥2 such that ab = w, and bc = w,. The ambiguity lies in the fact

that abc can be reduced in two ways:
T,0,c(abc) = foc and 14 - 1(abc) = af;.

An inclusion ambiguity is a 5-tuple (a,b,c,0,7) € W3 x £2 such that abc = w, and b = w,.

Again abc has two reductions:
r(abc) = f and 74 - c(abe) = af;c.

We say that the overlap (resp. inclusion) ambiguity (a, b, ¢, o, 7) is resolvable if and only if there

are reductions 7,7’ such that r(f,c) = r'(af;) (resp. r(f;) =7'(afrc)).

Theorem 2.18. (Diamond Lemma). Let F' = K(X) be a free algebra on a set X and W be
the free monoid on X. Let S = {(w,, f5) |0 € X} be a reduction system and < be a semigroup
ordering on W which is compatible with S and satisfies the DCC. Assume that all overlap and
inclusion ambiguities are resolvable. Then the cosets w, for irreducible words w € W, form a

basis for the factor algebra F/(w, — fy |0 € X).

Smash product. Now, we recall the definition of smash product algebra, for details and

examples see [38, 4.1].

Definition. If H is a Hopf algebra with comultiplication A, and A is an algebra which is an
H-module such that

1. h-(ab) = (hy-a)(hz-b) forall h € H,a,b € A, where A(h) = h; ® he (Sweedler’s notation),
and
2. h-1=¢(h)l forall h € H, where 1 € A is the identity,
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then A is called a (left) H-module algebra. Note that H is naturally a left H-module via the left
multiplication. This yields a left H-adjoint action on H given by the rule

h-l=mliS(hy) for h,l€ H.

Definition. Let A be a left H-module algebra. The smash product algebra A x H is defined as
follows, for all a, b€ A and h, k € H:

1. as vector spaces, A x H = A® H. To avoid confusion we write a#h for the element a ® h.

2. Multiplication is given by the rule
(a#h)(b#E) = a(hy - b)#hak. (2.1)

It is easy to see that A ¥~ A®1 and H ~ 1® H, so A and H can be naturally seen as subalgebras
of A x H. For this reason we abbreviate the element a#h by ah. In this notation, we write
ha = (hy - a)hy using (2.1).

In this thesis, a K-algebra A is called a central simple algebra if A is a simple algebra and
Z(A) =K.

Lemma 2.19. Let A be a central simple algebra with unity, B an algebra with unity, .% the set
of two-sided ideals of B, and _# the set of two-sided ideals of A® B.

1. The map S — 7, 1 — A®1I, is a bijection.
2. Let I € .Z. Then I is a mazimal (or prime) ideal of B if and only if A® I is a maximal
(or prime) ideal of A® B.

Proof. See [21, Lemma 4.5.1]. O

Lemma 2.20. Let A and B be K-algebras. Then Z(A®k B) = Z(A) ®x Z(B).

Proof. See [39, Corollary 1.7.24]. O



Chapter 3

The spatial ageing algebra
U(b X VQ>

3.1 Introduction

In this thesis, module means a left module, K is a field of characteristic zero and K* := K\ {0}.

Recall that the Lie algebra slo = KF & KH @& KE is a simple Lie algebra over K where the Lie
bracket is given by the rule: [H, E] = 2FE, [H,F] = —2F and [E,F] = H. Let V, = KX ¢ KY
be the 2-dimensional simple sl;-module with basis X and Y: H- X =X H -Y=-Y E- X =
0,F-Y=X F-X=Yand F-Y =0. Let a := sl, x V5 be the semi-direct product of Lie
algebras, where V5 is viewed as an abelian Lie algebra. In more detail, the Lie algebra a admits
the basis {H, E, F, X,Y} and the Lie bracket is as follows

[H,E| =2E,  [H,F]=—2F, [E, F]

H, [EaX]:Oa [E,Y]:X,
[F, X] =Y, [F,Y] =0, [H,X]=X

, [H,Y]=-Y, [X,Y]=0.

Let b = KH @ KE be the Borel subalgebra of the Lie algebra sls. Then b x V5 is a solvable Lie
subalgebra of a. It admits a basis {H, F, X, Y} and the Lie bracket on b x V5 is given as follows

[H,E] = 2E, [H, X]
[E,X] =0, [E,Y]

9

X
X, [X,Y] = 0.

The universal enveloping algebra A := U(b x V3) of the Lie algebra b x V5 is called the spatial
ageing algebra. The algebra A is a subalgebra of the universal enveloping algebra U (sly x V3). In
this chapter, we study the prime spectrum and centralizers of some elements of the algebra A,
the algebra U(sly x V) will be studied in the next chapter. Let us describe the content of this
chapter. In Section 3.2, an explicit description of the prime spectrum of the algebra A is given
(Theorem 3.4). An explicit description of all the prime factor algebras of A is given in Theorem

3.4. All the possible inclusions of primes are given in (3.9). The sets of maximal, completely

19
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prime and primitive ideals of A are described (Corollary 3.5, Corollary 3.6 and Proposition 3.7,

respectively). The centralizers of the elements X, Y and E are described in Section 3.3.

Much of this chapter is extracted from the joint paper with V. Bavula [16].

3.2 The prime ideals of A

The aim of this section is to describe the prime ideals of the enveloping algebra A (Theorem 3.4).
As a result, the sets of maximal, completely prime and primitive ideals are described (Corollary
3.5, Corollary 3.6 and Proposition 3.7). Theorem 3.4 also gives an explicit description of all

prime factor algebras of A.

For an algebra R, we denote by Z(R) its centre. An element r of a ring R is called a normal

element if Rr = rR.

The subalgebra E of A. Let E be the subalgebra of A generated by the elements E, X and
Y. The generators of the algebra E satisfy the defining relations

EFY -YE=X, EX=XFE and YX =XY.

Clearly, X is a central element of the algebra E. The algebra E is isomorphic to the universal
enveloping algebra of the 3-dimensional Heisenberg Lie algebra. In particular, the algebra E is
a Noetherian domain of Gelfand-Kirillov dimension 3. Let Ex be the localization of the algebra

E at the powers of the element X. Then the algebra Eyx is the tensor product of two algebras
Ex = K[X* ® AF

where the algebra A7 := K(EX ™!, Y) is the (first) Weyl algebra since [EX !, Y] = 1. Since
the algebra A is a central algebra, i.e., Z(A]) = K, we have Z(Ex) = K[X*!]. Then Z(E) =
Z(Ex)NE = K[X].

The algebra A. By the defining relations of the algebra A,
A =E[H;] (3.1)

is an Ore extension where the K-derivation § of the algebra E is given by the rule: 6(F) =
2F, §(X) = X and §(Y) = —Y. Notice that X is a normal element of the algebra A since X is
central in E and XH = (H — 1)X. The localization Ax of the algebra A at the powers of the

element X is an Ore extension
Ax =Ex[H;0] = (K[X*'] @ Af)[H; ] (3.2)

where §(E) = 2F, §(X) = X and §(Y) = —Y. The element s = EX~1Y € Ex satisfies the
conditions of Lemma 2.17. In more detail, the element Ht := H +s = H + EX 'Y commutes
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with the elements of A7 and
Ax = K[XTY[H"; 6| @ A}  where §'(X) = X. (3.3)

Notice that the algebra K[X*!][HT;d’] can be presented as a skew Laurent polynomial algebra
K[H*][X*!; 0] where o(H*) = H* — 1. This is a central simple algebra of Gelfand-Kirillov
dimension 2. Let d := HTX~!. Then [0, X] = 1 and so the subalgebra A4; = K(9, X) of Ax
is the (first) Weyl algebra. Moreover, the algebra A; is a subalgebra of K[X*!|[H*;§'] and the
algebra K[X*1|[HT;d'] = A; x is the localization of the Weyl algebra A; at the powers of the

element X. Now,
Ax = AI,X & Air (3.4)

So Ax is a localization of the second Weyl algebra.

Lemma 3.1. 1. The algebra Ax is a central simple algebra of Gelfand-Kirillov dimension 4.
2. Z(A) =K.

Proof. 1. Since both the algebras K[X*!][H*; '] and A] are central simple algebras of Gelfand-

Kirillov dimension 2, statement 1 then follows from (3.3).

2. Since K C Z(A) C Z(Ax) =K, we have Z(A) =K. O

The factor algebra B := A/(X). We still denote by H, E and Y the images of these elements

in the factor algebra B := A/(X). Then the algebra B is generated by the elements H, E and Y
that satisfy the defining relations

[H,E]=2E, [H)Y]=-Y, [EY]=0.
Hence, the algebra B is an Ore extension,
B=K[E,Y][H;d] where §(F)=2F and §(Y)=-Y. (3.5)

It is clear that the element Z := EY? belongs to the centre of the algebra B. The elements Y’
and E are normal elements in B. Let By be the localization of the algebra B at the powers of
element Y. Then

By =K[Z| @ K[H|[Y*!; 0] :=K[Z]® Y (3.6)

where the skew polynomial algebra Y = K[H][Y*'; 0] is a central simple algebra where the K-
automorphism o of K[H] is defined as follows: o(H) = H + 1. Hence, the centre of the algebra
By is K[Z]. The algebras B and By are Noetherian domains of Gelfand-Kirillov dimension 3.

Lemma 3.2. Z(B) = Z(By) = K[Z] where Z = EY?.

Proof. Since K[Z] C Z(B) C Z(By) = K[Z], we have Z(B) = K[Z]. O
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The prime spectrum of the algebra A. Recall that for an algebra R, we denote by Spec (R)
the set of its prime ideals. The set (Spec (R),C) is a partially ordered set (poset) with respect
to inclusion of prime ideals. Each element r € R determines two maps from R to R, r- : x +— rx
and -7 : x + xr where € R. For an element r € R, we denote by (r) the ideal of R generated

by the element 7.

Proposition 3.3. Let R be a Noetherian ring and s be an element of R such that Sg := {s*|i €
N} is a left denominator set of the ring R and (s*) = (s) for alli > 1 (e.g., s is a normal element
such that ker(-sg) C ker(sg-)). Then Spec (R) = Spec(R, s) U Spec,(R) where Spec (R, s) :=
{p € Spec (R)|s € p}, Spec,(R) := {q € Spec(R) | s ¢ q} and

(a) the map Spec (R, s) — Spec (R/(s)), p = p/(8), is a bijection with the inverse q — m*(q)
where m: R — R/(s),r — 1+ (s),

(b) the map Spec,(R) — Spec (Rs), p — S, 1p, is a bijection with the inverse q — o~ 1(q)
where 0 : R — Ry :=S;'R, r— %.

(c) For all p € Spec (R, s) and q € Spec,(R),p Z q.

Proof. Clearly, Spec (R) = 51 U Sy is a disjoint union where S; and Sy are the subsets of Spec (R)
that consist of prime ideals p of R such that pNS, # 0 and p NS, = 0, respectively. If p € S;
then s’ € p for some i > 1, and so p D (s%) = (s)?, by the assumption. Therefore, p D (s) (since
p is a prime ideal), i.e., p 3 s. This means that S; = Spec (R, s). We have shown that s € p iff
st € p for some i > 1. By the very definition, Sy = Spec (R) \ S; = Spec (R) \ {p € Spec (R)|s €
p} = {p € Spec(A)[s & p} = Spec,(R).

The statement (a) is obvious since s € p iff (s) C p. The ring R is Noetherian, by [37, Proposition
2.1.16.(vii)], the map Spec,(R) = {p € Spec (R) | pNSs = 0} — Spec (Ry),p — S 'p is a bijection

with the inverse q — o~ !(g) and the statement (b) follows. The statement (c) is obvious. O

Remark. In the statements (a) and (b) of Proposition 3.3, we identify the sets via the bijections.

Let U := U(sly) and U™ be the ‘positive part’ of U, i.e., UT is the subalgebra of U generated by
the elements H and E. Then Ut = K[H][E; 0] is a skew polynomial algebra where o(H) = H —2.
The localized algebra Uf, = K[H]|[E*!;0] is a central simple domain. The following diagram
explains the idea of finding the prime spectrum of the algebra A by repeated application of
Proposition 3.3,

A— Ax

|

B=A/(X) —— (A/(X))y = By

l

Ut =A/(X,)Y) —— U}

l

K[H] = U*/(E).
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Using (3.7) and Proposition 3.3, we can represent the prime spectrum Spec (A) of the algebra

A as the disjoint union of its subsets
Spec (A) = Spec (K[H]) U Spec (Uf) U Spec(By) U Spec(Ax) (3.8)

where we identify the sets of prime ideals in (3.8) via the bijections given in the statements (a)

and (b) of Proposition 3.3.

The next theorem gives an explicit description of the poset (Spec (A), C) and of all the prime

factor algebras of A. It also shows that every prime ideal is a completely prime ideal.

Theorem 3.4. The prime spectrum Spec (A) of the algebra A is the disjoint union of the sets
in (3.8). More precisely,

where

1. Spec (K[H)) = {(Y, E,p) | p € Spec (KIH))} = {(¥, E)} U {(Y, E,p) | p € Max (K[H])} and
A/(Y, B,p) ~ K[H]/p.
2. Spec (Uf) = {(Y)}, (V) = (X,Y) and A/(Y) ~ Ut = K[H]|[E;0] is a skew polynomial
algebra which is a domain where o(H) = H — 2.
3. Spec (By) = {(X), (E), (X,q)[q € Max(K[Z])\ {(Z)}} and
(a) A/(X) = B = K[E,Y][H;0] is an Ore domain (see 3.5) where 6(E) = 2F and
oY) =-Y,
(b) A/(E) ~K[H]|[Y; 0] is a skew polynomial algebra which is a domain where o(H) =
H+1, and
(c) A/(X,q) ~B/(q) ~By/(q)y ~ Ly ®Y is a simple domain which is a tensor product
of algebras where Ly := K[Z]/q is a finite field extension of K.
4. Spec (Ax) = {0}.

Proof. Recall that X is a normal element in the algebra A. By Proposition 3.3,

Spec (A) = Spec (A/(X)) U Spec (Ax). (3.10)

(i) Statement 4 holds: By Lemma 3.1.(1), the algebra Ax is a simple algebra. Hence, Spec (Ax) =
{0}, as required.
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Recall that Y is a normal element of the algebra B = A/(X). By Proposition 3.3,

Spec (A/(X)) = Spec (A/(X,Y)) U Spec ((.A/(X))Y> = Spec (U") U Spec (By). (3.11)

(i) (V) = (X,Y) and (F) = (X, E): Both equalities follow from the relation X = [E,Y].

(iii) Statements 1 and 2 hold: The element E is a normal element of the algebra UT. By
Proposition 3.3,

Spec (U") = Spec (U1 /(E)) U Spec (U}). (3.12)

Since K[H] ~ U*/(E), statement 1 follows. Now, (3.8) holds by (3.10), (3.11) and (3.12). The
algebra U7, ~ K[H]|[E*!;0] is a central simple domain where o(H) = H — 2. By the statement
(ii), A/(Y) = A/(X,Y) = U™ is a domain. The set Spec (U}), as a subset of Spec (A), consists
of the single ideal (Y'), and statement 2 follows.

(iv) Statement 3 holds: By (3.6), By = K[Z] ® Y where Y is a central simple algebra. Then,
by Lemma 2.19, Spec (By) = Spec (K[Z]). The set Spec (By), as a subset of Spec (A), is equal
to {AN (X)y, AN(X,2)y, AN (X,q)y|q € Max(K[Z]) \ {(Z)}}. We have to show that
AN (X)y = (X), AN (X, Z)y = (E) and AN (X,q)y = (X,q).

AN(X)y = (X): Let u € AN (X)y, then Yiu € (X) for some i € N. Since A/(X) = B is
domain and Y ¢ (X), we must have u € (X). Hence, AN (X)y = (X).

AN(X,Z)y = (E): By the statement (ii), (E) = (X, E). So, (E)y = (X,E)y = (X, Z)y. Let
ue AN (X,Z)y = AN (E)y, then Yiu € (E) for some i € N. Since A/(E) = A/(X,E) ~
K[H][Y ;o] is a domain where o(H) = H+ 1 and Y ¢ (FE), we have u € (E). Therefore,
AN(X,Z)y = (E). So, statement (b) holds and (E) is a completely prime ideal of the algebra
A.

AN(X,q)y = (X,q) for ¢ € Max (K[Z]) \ {(Z)}: Let us first show that the statement (c)
holds. It is clear that A/(X,q) ~ B/(q). Since q # (Z), the nonzero element Z = EY? of L, is
invertible in the field Lq. Hence, the element Y is invertible in the algebra B/(q). Now, B/(q) ~
By /(q)y ~ Ly ®Y, see (3.6). This proves the statement (c). Since A/(X, q) is a simple algebra
(by the statement (c)), the ideal (X, q) of A is a maximal ideal and (X,q) € AN (X,q)y S A,
we must have AN (X, q)y = (X, q).

(v) Clearly, we have the inclusions as in the diagram (3.9) (see the statement (ii)). It remains to
show that there is no other inclusions. Recall that Z = EY?. Hence, (Z) C (E) and (Z) C (Y).
The ideals {(X,q)|q € Max (K[Z]) \ {(Z)}} are maximal in A and (q) + (Z) = (1). Therefore,
none of the maximal ideals (X, q) contains (Y') or (E). Therefore, picture (3.9) represents the
poset (Spec (A), C). O

For an algebra R, let Max (R) be the set of its maximal ideals. The next corollary is an explicit

description of the set Max(.A).

Corollary 3.5. Max (A) = P U Q where P := {(Y, E,p)|p € Max (K[H])} and Q := {(X,q)|q €
Max (K(Z]) \ {(2)}}.
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Proof. The corollary follows from (3.9). O

If g is a solvable Lie algebra then every prime ideal of the universal enveloping algebra U(g) is
completely prime, see [21, Theorem 3.7.2]. Since the spatial ageing algebra A is the enveloping
algebra of a solvable Lie algebra, we have the following corollary (this corollary also follows from
Theorem 3.4).

Corollary 3.6. FEvery prime ideal of the algebra A is completely prime, i.e., Spec.(A) =
Spec (A).

Let R be an algebra and M be an R-module. For a € R, let ap- : M — M, m — am. The
ideal of R, anng(M) := {a € R|aM = 0}, is called the annihilator of the R-module M. An
R-module is called faithful if it has zero annihilator. The annihilator of each simple R-module is
a prime ideal. Such prime ideals are called primitive and the set Prim (R) of all primitive ideals
is called the primitive spectrum of R. The next proposition gives an explicit description of the
set Prim (A).

Proposition 3.7. Prim(A) = Max(A) U {(Y), (E), 0}.

Proof. Clearly, Prim (A) D Max (A). The ideals (X) and (Y, E) are not primitive ideals as the

corresponding factor algebras contain the central elements Z and H, respectively.

(i) (Y) € Prim (A): For A € K*, let I(\) = (Y) + A(E — \). Since A/(Y) ~ U™" (see The-
orem 3.4.(2)), the left A-module M()\) := A/I(\) ~ UT/UT(E — \) ~ K[H]|1 is a simple
A-module/U*-module where 1 = 1 + I()\). By the definition of the module M (), its anni-
hilator p := ann4(M())) contains the ideal (Y') but does not contain the ideal (Y, E), since
otherwise we would have 0 = E1 = A1 # 0, a contradiction. By (3.9), we have p = (V).

(ii) (F) € Prim (A): For A € K*, let Jy = (E) + A(Y — \). Since A/(E) ~ K[H|[Y; 0] where
o(H) = H + 1 (see Theorem 3.4.(3b)), the left A-module T'(\) := A/J\ ~ K[H]1 is a simple
module where 1 = 1+ J,. Clearly, the prime ideal q := ann4(7(\)) contains the ideal (E)
but does not contain the ideal (Y, E) since otherwise we would have 0 = Y1 = A\l # 0, a
contradiction. By (3.9), we have q = (E).

(iii) 0 is a primitive ideal of A: For A € K*, we define the A-module S(\) := A/A(X — \,Y).
Then S(A) = D> K[H]E1 where 1 = 1+ A(X — \,Y). Let t = YX then Ht = tH and
[t, '] = —iX2?E""!. The fact that S()) is a simple A-module follows from the equality: tE‘1 =
(Bt —iX?E"1)1 = —iA2E*~ 1. Since X ¢ anny(S(N)), by (3.9), ann4(S(A)) = 0. Thus 0 is a
primitive ideal of the algebra A. O

The next lemma is a faithfulness criterion for simple A-modules.

Lemma 3.8. Let M be a simple A-module. Then M is a faithful A-module iff ker(Xps-) = 0.

Proof. The A-module M is simple, so ann4(M) € Prim (A). Recall that the element X is a
normal element of the algebra A. So, ker(X ) is a submodule of M. Then either ker(Xps-) =0
or ker(Xps-) = M, and in the second case ann4 (M) D (X). If ker(Xps-) = 0 then anny (M) =0
since otherwise, by (3.9), (X) C ann4(M), a contradiction. O
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3.3 Centralizers of some elements of the algebra A

Let R be an algebra and S be a non-empty subset of R. The algebra Cr(S) := {r € R|rs =
sr for all s € S} is called the centralizer of S in R. The next lemma describes the centralizer of
the element X in A.

Lemma 3.9. C4(X) =E.

Proof. Clearly, E C C4(X) and XH® = (H — 1)*X for all i > 0. So, the result follows from the
equality A = E[H;d], see (3.1). O

Let h:= HTX = HX + EY. Then the Ore extension A; x = K[X*[H*;4'] where §'(X) = X

(see (3.4)) can be written as the Ore extension

Ay x = K[X*[h;8] where §(X) = X2 (Jh, X] = X?). (3.13)

The next lemma describes the centralizers of the element Y in the algebras Ax and A.

Lemma 3.10. 1. C4, (V) =41 x @ K[Y].
2. The centralizer of the elementY in A, C4(Y) = K[Y]® R, is a tensor product of algebras
where R := K[X][h; 8] is an Ore extension, h= H*X = HX + EY and §(X) = X2,
3. The centre of the algebra C4(Y) is K[Y].

Proof. 1. By (34), Ax = A1 x ® Al and Y € Af. Then C4, (V) = A1 x ® CAT(Y) =
A1 x @ K[Y].

2. Now, CA(Y) = ANCa, (V) = AN Ay @ K[Y] "2 ANK[X*[h; 6] @ K[Y] = K[X][h;0] ©
K[Y] (since h = HX + EY and X is a normal element of .A) and so the result.

3. By statement 2, Z(C(Y)) = K[Y] ® Z(R) = K[Y] ® K = K[Y]. 0
Using the equality [E,Y X~1] = 1, we see that the subalgebra A} := K(E,Y X~!) of Ax is the

(first) Weyl algebra. Then Ex = K[X*1]® AT = K[X*!]® A] is the tensor product of algebras.
By (3.2), Ax = (K[X*'] ® A})[H; ] where § is as in (3.2). By Lemma 2.17, the algebra

Ax =R @ A (3.14)

is a tensor product of algebras where R’ := K[X*!][H’;§'] is an Ore extension, H' := H +
2YX 'F and §'(X) = X. Then b := H'X = HX + 2YFE € A and

R =K[X*[n';6] where §(X) = X2 (3.15)

Notice that the elements H'X ! = A’X~2 and X of R’ satisfy the commutation relation
[H'X~1,X] = 1. Therefore, the subalgebra A; := K(H'X ! X) of R’ is the (first) Weyl
algebra and the algebra R’ = A; x is the localization of the Weyl algebra A; at the powers of

the element X. In particular, the algebra R’ is a central simple domain.
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The next lemma describes the centralizers of the element F in the algebras Ax and A.

Lemma 3.11. 1. C4,(F) = R @ K[E].
2. The centralizer of the element E in A, C4(E) = K[E] ® R, is a tensor product of algebras
where R := K[X][h'; 8] is an Ore extension, h' = H'X = HX + 2YE and §(X) = X2.
3. The centre of the algebra C4(E) is K[E].

Proof. 1. By (3.14), Ax = R'® A} and E € A}. Then C 4, (E) = R’ ® Cy;(E) = R @ K[E].
2. Now, C4(E) = ANC.a, (E) = ANR'@K[E] “2” ANK[X*!)[1; §|0K([E] = K[ X][I; 6| KIE]
(since h' = HX 4+ 2EY and X is a normal element of .4) and so the result.

3. By statement 2, Z(C4(E)) = K[E] ® Z(R) = K[E] ® K = K[E]. O



Chapter 4

The universal enveloping algebra

Ul(sly x V5)

4.1 Introduction

In this chapter we focus on the study of the universal enveloping algebra A := U(sly X V3) of the
Lie algebra sly x Va. We give explicit descriptions of the prime, maximal, primitive, completely
prime and characteristic prime ideals of the algebra A. We investigate the centralizer C'4(H) of
the element H in the algebra A. In particular, the generators and defining relations of Cy(H)
are determined, a classification of simple C'4(H)-modules is given. We also give a classification
of simple weight A-modules. The algebra A has a close relation with the infinitesimal Hecke
algebras of sly, [41]. The first Hochschild cohomology of A was obtained in [41], which is a rank
one free module over the center. The description of primitive ideals of the algebra A given in
[41, Theorem 6.2] is not correct (for z = 0 in that paper). The Lie algebra sly x V2 admits
a l-dimensional central extension which is called the Schridinger algebra s. Let U(s) be the
universal enveloping algebra of the Schrodinger algebra s. We determine the primitive ideals of
U(s). It is conjectured that there is no simple singular Whittaker module for the algebra A [44,
Conjecture 4.2]. We construct a family of such A-modules (Proposition 4.44).

Spectra of the algebra A. In Section 4.2, an explicit description of the set of prime ideals of
the algebra A together with their inclusions is given (Theorem 4.6). Using the classification of
prime ideals of A, explicit descriptions of the sets of maximal, primitive and completely prime
ideals are obtained (Corollary 4.7, Theorem 4.8 and Corollary 4.9, respectively). The group
Autg (A) of automorphisms of the algebra A is large as it contains plenty of locally nilpotent
elements (an element a € A is called a locally nilpotent element if the inner derivation ad, :
A — A,z — axr — za is a locally nilpotent derivation, i.e., A = Ui21 ker(adfl)). An ideal of
an algebra is called a characteristic ideal if it is invariant under all the automorphisms of the
algebra. Corollary 4.10 is an explicit description of the characteristic prime ideals of A. It says

that almost all prime ideals apart from an obvious set are characteristic ones.

28
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The algebras C4(H),CM and their spectra. Let h = KH be the Cartan subalgebra of the
Lie algebra sly and C4(H) be the centralizer of the element H in A. The aim of Section 4.3 is to
find explicit generators and defining relations for the algebra C4(H) (Theorem 4.14), to prove
that the centre of the algebra C4(H) is a polynomial algebra K[C, H] (Theorem 4.14) and the
algebra C4(H) is a free module over its centre (Proposition 4.16), to realize the algebra Cx(H)
as an algebra of differential operators, to prove various properties of the factor algebras C** of
Ca(H). Results of this section are used in many proofs of this chapter. One of the important
moments is a realization of the algebras C4(H) and C*M* as algebras of differential operators
(Proposition 4.17). The algebras C** are simple iff A # 0 (Theorem 4.23 and Proposition
4.27). For every A # 0, the algebra C** is a subalgebra of the first Weyl algebra A}. Theorem
4.26 classifies all simple CM*-modules, it shows that the algebra CM* has ezxactly one more
simple module than the Weyl algebra A). A similar result holds for the algebras C%* (Theorem
4.29) but the Weyl algebra A is replaced by the skew polynomial algebra R = K[h][t; o] where
o(h) = h — 1. In this case, all simple t-torsionfree R-modules are also simple t-torsionfree

C%#-modules, and vice versa (Theorem 4.29.(2)).

Classification of simple weight A-modules. An A-module M is called a weight module if
M = ®,exM,, where M,, = {m € M |Hm = pm}. Each nonzero component M, is a Ca(H)-
module. If, in addition, the weight A-module M is simple then all nonzero components M, are
stimple C4(H)-modules. So, the problem of classification of simple weight A-modules is closely
related to the problem of classification of all simple C4(H)-modules, which can be seen as the
first, the more difficult, of two steps. The second one is about how ‘to assemble’ simple C4(H)-
modules in order to have a simple A-module. The difficulty of the first step stems from the
fact that the algebra C4(H) is of comparable size to the algebra A itself (GK (C4(H)) =4 and
GK (A) = 5 where GK stands for the Gelfand-Kirillov dimension) and the defining relations
of the algebra C4(H) are much more complex than the defining relations of the algebra A
(see, (4.12)—(4.15)). An advantage is that the algebra C'4(H) has an additional central element
H. Moreover, the centre of C4(H) is a polynomial algebra K[C, H] (Theorem 4.14) where
C =FX? - HXY — EY? is a central element of the algebra A. The problem of classification
of simple Cy4(H)-modules is equivalent to the same problem but for all the factor algebras
CMH = Ca(H)/(C — X\, H — p1) where \, u € K. We assume that the field K is algebraically
closed. There are two distinct cases: A # 0 and A = 0. They require different approaches.
The common feature is a discovery of the fact that in order to study simple modules over the
algebras C** we embed them into algebras for which classifications of simple modules are known.
A surprise is that the sets of simple modules of the algebras C** and their over-algebras are
tightly connected. In the case A # 0, such an algebra is the first Weyl algebra, but in the second
case when A = 0, it is a skew polynomial algebra K[h][t; o] where o(h) = h — 1. Classifications
of simple C**-modules is given in Section 4.4 (Theorem 4.26 and Theorem 4.29). Using it a
classification of simple weight A-modules is given in Section 4.5. A typical simple weight A-
module depends on an arbitrarily large number of independent parameters. The set of simple
A-modules is partitioned into 5 classes each of them is dealt separately with different techniques
(Lemma 4.30, Proposition 4.33, Theorem 4.35 and Theorem 4.36).

Much of this chapter is extracted from the joint paper with V. Bavula [14].
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4.2 The prime ideals of A

The aim of this section is to describe the prime ideals of the algebra A (Theorem 4.6). As
a result, the sets of maximal, primitive, completely prime and prime characteristic ideals are
described (Corollary 4.7, Theorem 4.8, Corollary 4.9 and Corollary 4.10, respectively). An
explicit classification of prime ideals that are invariant under all automorphisms of the algebra
A is given (Corollary 4.10).

Recall that the Lie algebra a = sly x V5 admits the basis {H, E, F, X, Y} and the Lie bracket is

defined as follows

[H,E|=2E, [H,F]=—2F, [E, F]
[F,X]=Y, [F,Y] =0, [H, X]

, [E,X] =0, [E,Y] =X,

H
X, [HY]=-Y, [X,Y]=0.

Recall that A = U(a) is the enveloping algebra of the Lie algebra a.

An involution * of A. Let A be an algebra. An anti-isomorphism 7 of the algebra A (i.e., a
linear map 7 such that 7(ab) = 7(b)7(a) for all a,b € A) is called an involution if 72 = id,. The

algebra A admits the following involution x:
F*=-FE, H*=H, E'=-F Y'=X, X*=Y (4.1)
There is an automorphism S of the algebra A such that
S(F)=E, SH)=-H, SFE)=F SY)=-X, SX)=-Y, (4.2)

and 52 = idA.

The spatial ageing algebra A. Let A be the subalgebra of A generated by the elements
H, E, X and Y. The algebra A is the spatial ageing algebra which is studied in the previous
chapter. Let Ax be the localization of A at the powers of X. Let 9 := HX 1+ EY X2 € Ax.
Then [0, X] = 1 and so the subalgebra A; := K(9, X) of Ax is the first Weyl algebra. Recall
that, the algebra Ax is a central simple algebra of Gelfand-Kirillov dimension 4 (see Lemma

3.1.(1)), and Ay is a tensor product of two central simple algebras
Ax = A1 x ® AT (4.3)

where A; x is the localization of A; at the powers of X and Af := K(EX 1Y) is the first Weyl
algebra since [EX 1 Y] =1 (see (3.4)).

The centre of the algebra A. Using the defining relations of the algebra A, the algebra A is

a skew polynomial algebra
A= A[F;0,0] (4.4)

where o is an automorphism of A such that o(H) = H+2,0(E) =E,oc(Y) =Y, 0(X) = X; and
d is a o-derivation of the algebra A such that §(H) = 0,0(FE) = —H,§(Y) =0 and §(X) =Y.
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Then the localization Ax of A at the powers of X is a skew polynomial algebra
Ax = Ax[Fi0,0 (4.5)

where o and ¢ are defined as in (4.4). The key idea of finding the centre of A is by ‘deleting the
automorphism’ o first and then using Lemma 2.17 ‘deleting the derivation’. In more detail, let
® := FX? then by (4.5) and (4.3),

AX = .Ax[q); 5/] = (ALX X AT)[(I), (S/] (46)

is an Ore extension where ¢’ is a derivation of the algebra Ax given by the rule: §'(9) =
—20Y X, §'(X) =YX? §(EX"') = —90X? and §'(Y) = 0. The element s = —9X2Y satisfies
the conditions of Lemma 2.17. Specifically, the element C := ® + s = FX?2 — HXY — EY?
commutes with the elements of AT, moreover, the element C' commutes with the elements of

A; x and hence,
Ax =K[O]® A, x ® AT =K[C]® Ax (4.7)

is a tensor product of algebras. By (4.7), the skew field Frac (A) is isomorphic to the skew
field of fractions of the second Weyl algebra A5 (K(C)) over the field K(C) of rational functions.
Moreover, Z (Frac(A4)) = K(C).

Lemma 4.1. 1. Z(A) = Z(Ax) = K[C] where C = FX? - HXY — EY?2.
2. S(C) = —C where S is the automorphism (4.2) of A.

Proof. 1. By (4.7), Z(Ax) = Z(K[C]) ® Z(A1.x) ® Z(A{) = K[C]. Since K[C] C Z(A) C
AN Z(Ax) = K[C], we have Z(A) = K[C].

2. Statement 2 is obvious. O

Lemma 4.2. 1. In the algebra A, (X) = (Y)=AX + AY = XA+ YA
2. Let U :=U(sly). Then A/(X)~U.

Proof. 1. The equality (X) = (V) follows from the equalities FX —XF =Y and EY —YE = X.
So, (X) = (Y) = (X,Y). Let us show that XA C AX + AY and YA C AX + AY. Recall that
A = A[F;0,0] (see (4.4)) and X is a normal element of A, XA = XY, AF' =3, AXF' =
AX +3 5 AXF = AX + 30,5 A(F'X —iF''Y) C AX + AY. The second inclusion follows
from the first one by applying the automorphism S (see (4.2)). So, (X,Y) = AX + AY. By
applying the involution * to this equality we obtain that (X,Y) = XA+ Y A.

2. By statement 1, A/(X) = A/(X,Y) ~U. O
Lemma 4.3. Foralli>1, (X*) = (X)".
Proof. To prove the statement we use induction on ¢. The case ¢ = 1 is obvious. Suppose

that i > 1 and the equality (X7) = (X)’ holds for all 1 < j < i — 1. By Lemma 4.2.(1),
AX C XA+YA. It follows from the equality FX* = X‘F +iX*~'Y that X'~V € (X*). Now,



Chapter 4. The universal enveloping algebra U (sly X V53) 32

(X) = (X)"HX) = (X" (X) = AXTIAXA C AXTHXA+YA) C (X)) +AXIYAC
(X%). Therefore, (X)* = (X*). O

Proposition 4.4. Let q € Max(K[C]) \ {(C)}. Then

1. The ideal (q) := Aq of A is a mazimal, completely prime ideal.
2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q where ¢ = ¢(C) € K[C] is an irreducible polynomial such that
q(0) € K*.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a mazimal ideal of A: By (4.7),
Ax/(q@)x ~ Ly ® A; x ® AT is a central simple algebra where L, := K[C]/q is a finite field
extension of K. Hence, the algebra A/(q) is a simple algebra iff (X% q) = A for all i > 1
By Lemma 4.3, (X?) = (X)? for all i > 1. Therefore, (X%,q) = (X%) + (q) = (X)* + (q)
for all i > 1. It remains to show that (X)® + (q) = A for all i > 1. By Lemma 4.2.(1),
(X) = (X,Y). If i = 1 then (X) + (q) = (X,Y,q) = (X,Y,q(0)) = A, since ¢(0) € K*. Now,
A=A = ((X)+ () C(X) +(q) C A, ic, (X)+(q) = A as required.

(ii) (q) is a completely prime ideal of A: Since Ax/(q)x ~ Ly ® A1 x ® Af is a domain, the

ideal AN (q)x is a completely prime ideal of A. Now, it suffices to show that (q) = AN (q)x

But this is obvious since by statement (i), the ideal (q) is a maximal ideal of A.
(iii) Z(A/(q)) = Lq: Since Ly € Z(A/(q)) € Z(Ax/(q)x) = Lq, we have Z(A/(q)) = Ly. O

Proposition 4.5. AN (C)x = (C) and the ideal (C) of A is a completely prime ideal.

Proof. Recall that A = A[F;0,0] (see (4.4)), X is a normal element in A and the central element
C can be written as C = X?F + s’ where s’ = —X(H —1)Y — EY2.

(i) If Xf € (C) for some f € A then f € (C): Notice that X f = Cg for some g € A. To prove
the statement (i) we use induction on the degree m = degp(f) of the element f € A. Since
A is a domain, degpr(fg) = degp(f) + degp(g) for all f,g € A. The case when m < 0 (i.e.,
f € A) is obvious since the equality X f = Cg holds iff f = g = 0 (since degp(Xf) < 0 and
degr(Cg) > 1 providing g # 0). So, we may assume that m > 1. We can write the element f
asasum f = fo+ fiF' + -+ fn F'™ where f; € A and f,,, # 0. The equality X f = Cg implies
that degp(g) = degp(X f) — degr(C) = m — 1. Therefore, g = go + 1 F + -+ + gm_1 F™ ! for
some ¢g; € A and g,,—1 # 0. Then

Xfot+ XAF+ 4+ XfuF™ = (X?F+5)(90+ g1 F+ -+ gm1 F™ )
= X((go)F +0(g0) ) + X2(0(91)F +8(91) ) F + -+ + X2 (g1 ) F + 8{gm—1) ) F"
+5'go+ g F 4+ 48 gp  F™1
= X26(go) + 5" g0 + (X2O'(g()) + X26(g1) + s'gl)F 4+ X2%0(gm1 ) F™.

Comparing the terms of degree zero we have the equality X fo = X28(go) + s'g0 = X28(go) —
(X(H—-1)Y +EY?)gy, ie., X(fo—X8(g0)+ (H—1)Ygo) = —EY?go. All terms in the equality
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belong to the subalgebra A. Since X is a normal element of A such that A4/A4X is a domain and
the element EY? does not belong to the ideal AX (see (3.5)), we have go € AX, i.e., go = Xhg
for some hy € A. Now, the element g can be written as g = Xhg + ¢'F where ¢’ =0 if m = 1,
and degp(¢') =m —2if m > 2. Then Xf = C(Xho+¢'F) and so X(f — Chg) = C¢'F. Notice
that C¢’F has zero constant term as a noncommutative polynomial in F' (where the coefficients
are written on the left). Therefore, the element f — Chgy has zero constant term, and hence can
be written as f — Chg = f'F for some f' € A with degp(f’) < degpr(f). Now, X f'F = Cg'F,
hence X f' = C¢' € (C) (by deleting F'). By induction, f’ € (C), and then f = Cho+ f'F € (C),

as required.

(ii) AN (C)x = (C): Let u € AN (C)x. Then X'u € (C) for some i € N. By statement (i),
u e (O).

(iii) The ideal (C) of A is a completely prime ideal: By (4.7), Ax/(C)x ~ A; x®A] is a domain.
By statement (ii), the algebra A/(C) is a subalgebra of Ax/(C)x, so A/(C) is a domain. This
means that the ideal (C) is a completely prime ideal of A. O

The next theorem gives an explicit description of the poset (Spec (4), C).

Theorem 4.6. Let U := U(sly). The prime spectrum of the algebra A is a disjoint union
Spec(A) = Spec(U) U Spec(Ax) = {(X,p) | p € Spec(U)} U {Aq|q € Spec(K[C])}.  (4.8)

Furthermore,

(©)  {4qla e Max(K[C])\{(C)}}

N

0 (4.9)
Proof. By Lemma 4.2.(2), A/(X) ~ U. By Lemma 4.3 and Proposition 3.3,
Spec (A) = Spec (A, X) U Spec (Ax).

Therefore, Spec (A) = {(X,p)|p € Spec(U)} U {AN Axq|q € Spec(K[C])}. By Proposition
4.4.(1), AN Axq = (q) for all ¢ € Max (K[C]) \ {(C)}. By Proposition 4.5, AN AxC = (C).
Therefore, (4.8) holds. For all ¢ € Max (K[C]) \ {(C)}, the ideals Aq of A are maximal. Notice
that (C) C (X). Therefore, (4.9) holds. O

For a list of prime ideals of U, see [3, Section 4] or [20, Theorem 4.5]. We note that any nonzero
prime ideal of U is primitive, i.e., Prim (U) = Spec (U) \ {0}. For any ideal I of U and any
automorphism o € Autg(U), o(I) = I, see [3] for details.

The next result is an explicit description of the set of maximal ideals of the algebra A.
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Corollary 4.7. Max (A) = Max (U) U {Aq|q € Max (K[C]) \ {(C)}}.
Proof. Tt is clear by (4.9). O

A ring R is called a Jacobson ring if every prime ideal of R is an intersection of primitive ideals.
The enveloping algebras of finite dimensional Lie algebras are Jacobson rings, [37, Corollary

9.1.8]. The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 4.8. Prim (4) = Prim (U) U {Aq|q € SpecK[C]\ {0}}.

Proof. Clearly, Prim (U) C Prim (4) and {Aq|q € Max (K[C]) \ {(C)}} C Prim (A) since Aq is
a maximal ideal (Corollary 4.7). The ideal (X)) is not a primitive ideal, since the factor algebra
A/(X) ~ U contains central elements. 0 is not a primitive ideal since the centre of A is non-
trivial. In view of (4.9) it suffices to show that (C) € Prim (A). The algebra A is a Jacobson
algebra since it is a universal enveloping algebra of a finite dimensional Lie algebra [37, Corollary
9.1.8]. Therefore, any prime ideal of A is an intersection of primitive ideals lying over it. Clearly,
(X) = N(x)cp, pespec ({0} L+ Since (C) is a prime ideal it must be primitive, by the diagram
(4.9). O

The next corollary is a description of the set Spec,(A) of completely prime ideals of the algebra
A.

Corollary 4.9. The set Spec.(A) of completely prime ideals of A is equal to
Spec,(A) = Spec,(U) U {Aq]|q € Spec (K[C])}

= {(X,p) |p € Spec (U), p # anny (M) for some simple finite dimensional
U-module M of dimg (M) >2} U {Aq|q € Spec (K[C])}.

Proof. The result follows from Proposition 4.4.(1) and Proposition 4.5. O
By Theorem 4.6 and Corollary 4.9, the set of prime ideals that are not completely prime is equal

to {(X,p) |p = anny (M) for some simple finite dimensional U-module M of dimg (M) > 2}.

Let A be a K-algebra and Autg(A) be its group of automorphisms. An ideal a of the algebra
A is called a characteristic ideal if o(a) = a for all o € Autg(A). Let Spec,,(A) be the set of

prime characteristic ideals of A, the, so-called, characteristic prime spectrum of A.

For each element (), ) € (K*)2, there is an automorphism tx,. of the algebra A given by the

rule
bpuy:A—A E—XE, F— ANIF, H—H, X—uX, Y= \1uy. (4.10)

Clearly, tx uta = tan, e and t;\i = ty-1,-1. So, the 2-dimensional algebraic torus T2 :=
{taul (A p) € (K*)?} ~ (K*)? is a subgroup of Autg(A). We note that ¢, ,(C) = A™1p2C.

Corollary 4.10. Let G := Autg(A) and Q := {Aq | g € Max (K[C]) \ {(C)}} Then the set Q
is G-invariant and Spec,, (A) = Spec(A) \ Q.
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Proof. By the diagram (4.9), the ideals 0, (C') and (X)) are characteristic. Then, for each o € G,
o(C) = A\,C for some A\, € K*. Hence, the subset Q of Spec(A) is G-invariant. Since (X) is a

characteristic ideal of A, there is a group homomorphism
Autg(A) = Autg(U), o—3d:a+ (X)— o(a)+ (X).

All ideals of U are characteristic ideals, [3]. To finish the proof notice that none of the ideals in
Q is T?-invariant (since ty ,(C) = A1 p2C). O

4.3 The centralizer C4(H) and its defining relations

The aim of this section is to find explicit generators and defining relations for the centralizer
Ca(H) of the element H in A (Theorem 4.14), to prove that the centre of the algebra C4(H)
is a polynomial algebra K[C, H| (Theorem 4.14) and the algebra C4(H) is a free module over
its centre (Proposition 4.16), to realize the algebra C4(H) as an algebra of differential operators
and to prove various properties of the factor algebras C** of C4(H). Results of this section is

used in many proofs of this chapter.

The centralizer of the element H. The next lemma describes the structure of the algebras
44X'and(7AX(I{)

Lemma 4.11. 1. C4, (H) = K[H] ® A} is a tensor product of algebras where A} := K(e,t)
is the (first) Weyl algebra with canonical generators e := EX~2 and t :== XY (where
[e,t] =1).
2. Cay (H) =K[C,H @ A} and Z(Cay (H)) = K[C, H].
3. Ax = Ca, (H)[X*; 0] is a skew polynomial algebra where o(C) = C,o0(H) = H—1,0(e) =
e and o(t) = t. In particular, the algebra Ax = K[C] ® A} ® By is a tensor product of
algebras where By = K[H|[X*'; 0] is a central simple algebra and o(H) = H — 1.

Proof. 1. By (3.2), Ax = Ex[H;d]. So, Ca,(H) = E&[H] where E% = {a € Ex |d(a) = 0}.
Let us show that Eg( = A}. By the explicit nature of the derivation 9,

Ey = @ {KE'X/VF|§(E'XIY*) =0}
i,keEN;JEZ

Now, §(E'XIY*) = (2i + j — k)B'XIY* = 0, ie., j = k — 2i. So, BIXIY* = pixk-2iyk —
(EX~2)"- (XY)*. Therefore, E§ = A}.

2. By (4.7), Ax =K[C]® Ax. So, Ca,(H) =K[C]® Ca,(H) = K[C, H] ® A}, by statement
1. The Weyl algebra A} is a central algebra, hence Z(Ca (H)) = K[C, H].

3. Statement 3 follows from statement 2. O
Lemma 4.12. Let t := XY . Fori > 1, the following identities hold in the algebra A.

1. FiX% = FX? (FX2 v 2t> (FX2 n 4t) . (FX2 2% — l)t).
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2. B = BY?(EY? +2t) (EY? + 4t) - (BY? 42 - 1)t).

Proof. 1. We use induction on ¢ > 1. The initial case when ¢ = 1 is obvious. So, let ¢ > 1 and
suppose that the identity holds for all integers < i. Then
Fix%—F.FX? (FX2 + Zt) (FX2 + 4t) . (FX2 2% — 2)t) . X?

= FX?(PX?+2t) (FX? 4+ 4t) - (FX? +2(i - 1)t)

since FX2. X2 = X2. (FX2 T 2t).

2. Statement 2 follows from statement 1 by applying the automorphism S, see (4.2). O

The algebra U is a generalized Weyl algebra,
1
U:K[H,A](a,a: Z(A-H(HH))) (4.11)

where A := 4FFE + H(H + 2) is the Casimir element of the enveloping algebra U and o is the
automorphism of the algebra K[H, A] defined by o(H) = H—2 and 0(A) = A, [1]. In particular,
U is a Z-graded algebra U = @, ., Dv; where D := K[H,A] = K[H,FE], v; = E" if i > 1,
vop = 1 and v; = FI!l if i < —1. The polynomial algebra K[X,Y] C A is also a Z-graded algebra
K[X,Y] = @, Kltlw; where t = XV, w; = X7 if j > 1, wo = 1 and w; = YV if j < —1.
Note that the algebra A is a Z-graded algebra A = ,_, A; where A; := {a € A|[H,a] = ia}.
Clearly, C4(H) = Ap. The following lemma gives the generators of the algebra C4(H).

i€

Lemma 4.13. The algebra C4(H) = K(H,FE, XY, FX? EY?) =K(C,H,FE,XY,FX?) is a

Noetherian algebra.

Proof. Since A = @;czA; is a Z-graded Noetherian algebra, the algebra Ay = C4(H) is a
Noetherian algebra. The algebra A = U ® K[X,Y] is a tensor product of vector spaces. Hence
A=,z Dvi®® ;7 KtJw; where D, v;, t and w; are as above. Using the relations [E, t] = X?
and [F,t] = Y?, we see that A = 37, .,
Notice that Ay = > {D[t]v,w; |4,j € Z;2i + j = k}. In particular,

Dlt]viw; where D[t] = @),, Dt' is a vector space.

Ca(H)=Ag= Y Dltlvw; = Dltljw_y; = Y _ D[JF'X* + D[t] + Y _ D}|E'Y*.

A i i> i>
2?_@:0 i€EZ i>1 iz1

Now, using Lemma 4.12 and the equalities [FX? t] = t? and [EY 2, t] = t2, we see that

Ca(H) =" DIt)(FX?)' + D[t] +>_ DIt)(EY?)".

i>1 i>1
Hence, C4(H) = K(H, FE, XY,FX? EY?). Since C = FX?—HXY —EY?, the second equality

in the lemma follows. ]

The next theorem describes defining relations of the algebra C4(H) and shows that its centre is

a polynomial algebra K[H, C.
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Theorem 4.14. Let ® := FX? and © := FE. Then the algebra C4(H) is of Gelfand-Kirillov
dimension 4 and generated by the elements C, H,t,® and © subject to the following defining

relations (where C and H are central in the algebra Cy(H)):

[®, 1] = 2, (4.12)

[0,t] =2® — (H +2)t — C, (4.13)

[0,] =20t + H®, (4.14)
ot* = &(® — Ht — C). (4.15)

Furthermore, Z(Ca(H)) = KI[C, H].

Proof. (i) Generators of C4(H): By Lemma 4.13, the algebra C4(H) is generated by the ele-
ments C, H,t,® and ©. It is clear that C' and H are central in C'4(H) and the elements satisfy

the relations (4.12)—(4.15). It remains to show that these relations are defining relations.

(ii) GK (Ca(H)) = 4: Let D be the subalgebra of C'4(H) generated by the elements C, H, ¢ and
®. Then D = K[C, H] @ K[t][®; 4] is a tensor product of algebras where § is the K-derivation
of the algebra K[t] defined by §(t) = 2. Clearly, D is a Noetherian domain of Gelfand-Kirillov
dimension 4. Now, the inclusions D C Cy(H) C Ca, (H) yield the inequalities 4 = GK (D) <
GK (Ca(H)) < GK (Cay (H)) = 4 (see Lemma 4.11.(2)). Hence, GK (C4(H)) = 4.

Let C be the K-algebra generated by the symbols C, H, t, ® and © subject to the defining relations
(4.12)—(4.15) with C and H central in C.

(iii) GK (C) = 4: There is a natural epimorphism of algebras f : C — C4(H). Our aim is to show
that f is an algebra isomorphism. Let C; be the localization of C at the powers of the element t.
Then by (4.15), we see that C; ~ D; = K[C, H] @ K[t!][®; §] where D = K[C, H] @ K[t][®; J] is a
subalgebra of C. Hence, GK (C;) = 4. Now, the inclusions D C C C C; yield that 4 = GK (D) <
GK (C) < GK(C;) = 4. Hence, GK (C) = 4.

(iv) The algebra C is a domain: Let £ be the algebra generated by the symbols C, H,t,® and
O subject to the defining relations (4.12)—(4.14) with C' and H central in €. Then £ is an Ore

extension
£ = K[C, H,1][®;5][0;0,8] = D[O; 0, 8] (4.16)

where o is the automorphism of the algebra D defined by ¢(C) = C,o(H) = H,o(t) = t and
o(®) = ® + 2t; ¢’ is the o-derivation of the algebra D given by the rule: §'(C) = ¢'(H) = 0,
§(t)=20—(H+2)t—C and §'(?) = (H+4)®—2(H +2)t—2C. In particular, £ is a Noetherian
domain. Let Z := ©t> — ®(® — Ht — C). Then Z is a central element of the algebra £. Clearly,
C ~ &/(Z). To prove that C is a domain, it suffices to show that the ideal (Z) of £ is a completely
prime ideal. Let & be the localization of the algebra £ at the powers of the element ¢. Then
& ~K[C, H, Z,t*][®; 8] = K[C, H, Z] ® K[tT1][®; §] is a tensor product of algebras where 6 is a
derivation of the algebra K[t*!] such that §(t) = t2. Hence, &/(Z); ~ K[C, H] ® K[t*!][®; ] is

a domain.
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Claim 1: If tu € (Z) for some u € &, then u € (Z).

Proof of Claim 1: Recall that &€ = D[O; 0, '] (see (4.16)), t is a normal element of the algebra
D, Z = 20O + ¢ is a central element of £ where & := (H +4)t® — (H +2)t*> —2Ct+ C® — &2 € D.
Notice that tu = Zv for some element v € £. To prove Claim 1, we use induction on the
degree m = degg(u) of the element u € £. Since £ is a domain, degg(fg) = degg(f) + degg(g)
for all f,g € £ The case when m < 0, i.e., u € D is obvious. So, we may assume that
m > 1. The element u can be written as u = ug + u10 + - + 4, ©™ where u; € D and
Um # 0. The equality tu = Zv implies that degg(v) = m — 1, since degg(Z) = 1. Therefore,
V=19 4+ 110+ +v,_10™ ! for some v; € D and v,,,_1 # 0. Then

tug 4+ tu1© + - - + tu, 0™ = (120 + &) (vo + 11O + - + v,y 10T
=2 (o(vo)@ + 5’(1}0)) + t? (0(1}1)9 + 5’(1)1))@ o 12 (a(vm_1)® + 5’(fum_1))@m*1
+&vo + Ev1O + -+ + vy O
= 125" (v) + Evo + (t%(vo) 126 (1) + fvl)@ 4ot 20 (Up1)O™.

Comparing the terms of degree zero we have the equality tug = t26'(vg) + vp, i.e.,
t(uo — 18/ (vo) — (H + 4)Buvg + (H + 2)tvy + zcvo) = B(C — )up.

All terms in the equality belong to the algebra D. Since t is a normal element of the algebra D
such that D/Dt ~ K[C, H, ®] is a domain and the elements ® and C' — ® do not belong to the
ideal Dt, we have vy € Dt, i.e., vg = twg for some wy € D. Now, the element v can be written as
v = twg + v'O where v/ =0 if m =1, and degg(v') =m — 2 if m > 2. Then tu = Z(twg + v'O)
and so t(u — Zwg) = Zv'6. Hence, u — Zwy = u'O for some v’ € & with degg(v') < degg(u).
Now, tu'© = Zv'©, hence tu' = Zv' € (Z) (by deleting ©). By induction, u’ € (Z), and then
u= Zwy+u'O € (Z). This completes the proof of the Claim 1.

Claim 2: EN(Z): = (2).

Proof of Claim 2: Clearly, (Z) C €N (Z);. It remains to establish the reverse inclusion. Let
u € EN(Z);. Then t'u € (Z) for some i € N. Then by the Claim 1, u € (Z). Hence,
EN(Z), = (Z).

By Claim 2, the algebra £/(Z) is a subalgebra of £:/(Z);. So, £/(Z) is a domain. In particular,
the algebra C ~ £/(Z) is a Noetherian domain.

(v) C = Ca(H): Since GK (C) = GK (Ca(H)) = 4 and the algebra C is a domain. The algebra
epimorphism f : C — C4(H) must be an isomorphism, i.e., C ~ C4(H), by Proposition 2.12.
This means that the relations (4.12)—(4.15) (together with the condition that C' and H are
central elements) are defining relations of the algebra C4(H). By Lemma 4.11.(2), Z(Ca(H)) =
K[C, H]. O

The Weyl algebra A} = KI[A|[t,e;0,a = h] is a GWA where o(h) = h — 1 and h := et. So, A} =
Dicz A1 is a Z-graded algebra where A} ; = K[h] is a polynomial algebra in h and, for i > 1,
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1.4i = K[h]vs; where v; = ', v_; = ¢’ and vg = 1. The algebra Cay (H) = @,z Cax (H); is
a Z-graded algebra where Ca, (H); = K[C, H] ® A! ;

By Lemma 4.11, the algebra C4(H) is a subalgebra of C4, (H) = K[C, H] ® A} where
®=C+Ht+et>?=C+ (h+ H), (4.17)
©=FE=FX? EX ?=®=Ce+ (h+H)h-1), (4.18)
since et = h and te = h — 1.

In order to prove Proposition 4.16, we need to change the generators of the algebra (we replace
® by ¢ = ht).

Corollary 4.15. Let ¢ := EY?. Then ¢ = et? = ht and the algebra Ca(H) is generated by the
elements C, H,t,¢ and © subject to the defining relations

[0, = t? (4.19)
[0,t] =2¢+ (H —2)t + C, (4.20)
[@,¢]_2@t+( ¢+ 2t)H (4.21)

2 = (¢ + Ht + C)¢. (4.22)

Proof. Since ¢ = EX2X2Y? = et? = ht = ® — C' — Ht, the algebra Ca(H) is generated by the
elements C, H,t, ¢ and O. It is routine to check that the defining relations (4.12)—(4.15) can be
written as (4.19)—(4.22), respectively. O

By (4.18), foralln > 1, ™ = """ 1 ©,, ;¢’ for some O,,; € K[C, H, h] with deg), ©,,; = 2(n —1).
Moreover, ©,,, = C" and ©, 0 = (h+ H)"(h—1)". For alln > 1,

@" = pnt™  where ¢, ;= h(h—1)---(h—n+1). (4.23)
Foralli>1and j >0,
O'¢1 = 0,07 %(8,)et =D 0,507 (¢;) (=5, §)v_ss; = ZPJ sU—s+j
s=0 s=0 s=0

where (—=s,j) =h(h+1)---(h+s—1)for 1 <s<j;(—=s,5)=(h+s—=1)---(h+s—j) for all
s> j;and (0,7) :==1; P, j s € K[C, H, h] with

degy, P; j.s = 2(i — s) 4+ j +min(s, j) = (20 + j) — 2s + min(s, j) < 20+

and deg;, P; ;s =2i+jiff s=0. Foralli>1and j >

A [
@’L(ﬁjt = Z ei,sais 6 tJJrl Z 61 sO —S .7 + ]-) —s+j+1 = ZQi,j,svfsnLjJrl

s=0 s=0
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where Q; ; s € K[C, H, h] with
degy, Qijs =2(i—s)+j+min(s,j+1) =2i+j—2s+min(s,j+1) <2i+j

and degy, Q; ;s =2t + j iff s = 0.

Proposition 4.16. The algebra C4(H) is a free module over its centre. Furthermore, the set
B(H) := {©'¢/t* ¢!t™|i > 1,k = 0,1 and j,1,m € N} is a free basis of the Z(CA(H))—module
Ca(H).

Proof. Let M be a free semigroup generated by the symbols © and ¢, i.e., M is the set of all
words in letters © and ¢. Let a be an element of C4(H). By (4.19) and (4.20), the element
a is a linear combination of the elements m/t*C'H™ where m’ € M and k,I,m € N. By
(4.21), the element a is a linear combination of the elements ¢*©7t*C!' H™ where i, j, k,1,m € N.
Using the induction on the degree degg with respect to the variable © (i.e., degg(0) = 1 and
degg(¢) = degg (t) = degg (C) = degg (H) = 0) and the relation (4.22), i.e., Ot = (¢p+Ht+C)g,
and the relations (4.19)—(4.21), it follows that the element a is a linear combination of the
elements bC' H™ where b € B(H).

To finish the proof of the proposition it suffices to show that the elements of the set B(H) are
K(C, H)-linearly independent in the algebra K(C,H) ® A} (since C4(H) C K[C,H] @ A} C
K(C, H) ® A} where K(C, H) is the field of fractions of the polynomial algebra K[C, H]). Let
F = K(C,H). Then the algebra F ® A} is the Weyl algebra A (F) over the field F. By
(4.19) and the equality ¢ = ht (Corollary 4.15), the F-subalgebra of A (F) generated by the
elements ¢ and ¢ is equal to F[t][¢; t2<L]. Therefore, the elements {¢'t™ | I, m € N} are F-linearly

independent.

Suppose that the elements of the set B(H) are linearly dependent over the field F. Fix a

non-trivial linear combinations,

L:= > ©¢\;+ut)+ Y okt
21,520 k,1>0

where A, pij, i € F. Then necessarily one of the elements A;; + ;¢ is nonzero. We seek a
contradiction. Let N := max{2i + j | X;; + pit # 0}. Then N > 2. Let jo = min{j|2i 4+ j =
N, A\ij + pijt # 0}. Then either A, j, # 0 or 4, # 0 (or both) where ig = (N — jo).

Notice that L = ) L;v; for some elements L; € F[h]. Suppose that A, ;, # 0. Then L;, =
Niojo Pio.jo.0 + & where a € F[h] with deg, o < N (since ¢t = h(h — 1)+ (h — k + 1)tF+
and deg, h(h —1)---(h—k+1) =k < k+1{, degy, Py jo,0 = 2io +jo = N > jo as ip > 1).
Therefore, A, j, = 0, a contradiction. Similarly, if 1, 5, 7 0. Then Lj 11 = iy, jo Qio,jo,0 + B
where § € F[h] with deg, 8 < N (since degj, Qiy.jo.0 = 2i0 + jo = N > jo + 1 as ig > 1).

Therefore, ji;,,5, = 0, a contradiction. The proof of the proposition is complete. O

The algebras C**. For elements A,y € K, let CMH := Ci’“(H) =Cu(H)/(C—X\ H—pu). By
Theorem 4.14 and Corollary 4.15, the algebra CM* is generated by the images of the elements
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{®,0,t} or {¢,0,t} in CM*. For reasons of simplicity, we denote their images by the same
letters. By Lemma 4.11.(2),

CA = CYM(H) = Cay (H)/(C — X\ H — ) ~ A},

So, there is a natural algebra homomorphism C** — CQ’)‘: = A}. The following proposition
shows that the homomorphism is a monomorphism. We will identify the algebra CM* with its
image in the Weyl algebra A}. This observation enable us to give a complete classification of

simple C**-modules for all A and p € K.
Proposition 4.17. Let A\, € K. Then

1. The algebra CM* is generated by the elements ¢,© and t subject to the defining relations

[p,t] = 2, (4.24)
[©,t] =20+ (1 —2)t + A, (4.25)
[©,¢] =20t + (—¢ + 2t)p, (4.26)

Ot = (¢ + ut + \)o. (4.27)

2. The set BM = {@'¢tF ¢'t™ |i > 1,k = 0,1 and j,1,m € N} is a K-basis for the algebra
CM e,

8. The algebra homomorphism
CM— Oyt = AL, t—t, ¢ ht, @ de+ (h+p)(h—1),

is a monomorphism.

4. The ideal (C — X\, H — ) of the algebra C4(H) is equal to the intersection of Ca(H) and
the ideal (C — A\, H — ) of the algebra Ca, (H).

5. GK (CM) =2 and Z(CM) =K.

Proof. 1. Statement 1 follows from Corollary 4.15.

2 and 3. By repeating the proof of Proposition 4.16 (where the elements C' and H are replaced
by A and pu, respectively), we have that the elements of BM* span the vector space CM*. Let
M be the image of the algebra C** in A} and BV be the image of the set BM* in A}. The
set BM spans 6/\’#. By repeating the proof of Proposition 4.16 (where the elements C' and H
are replaced by A and pu, respectively), we have that the set B is a K-basis for the algebra

C/\’M. Now, statements 2 and 3 follows.
4. Statement 4 follows from statement 3.

5. By statement 3, the subalgebra .J of C** generated by the elements ¢ and ¢ is isomorphic
to the algebra K[t][¢;t24]. The inclusions J C C** C A yield the inequalities 2 = GK (J) <
GK (C**) < GK (4}) = 2, i.e., GK(CM) = 2. Notice that the centralizers of the elements t
and ¢ = ht in the Weyl algebra A} are K[t] and K[¢], respectively. Therefore, K C Z(CMH*) =
K[t NK[¢] = K, i.e., Z(CM) =K. O
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By Proposition 4.17.(1,3), we have the inclusions of algebras
CMC Ap C Ay, = O (4.28)

where A} ; and C’tA # are localizations of the algebras A} and CM* at the powers of the element
t.

The Weyl algebra A7 has a standard ascending filtration {A] ;}ien by the total degree of the
variables e and t (deg(e‘t’) = i + j for all i,5 > 0). The associated graded algebra grA]
is a polynomial algebra Kle,t], by abusing the notation. The subalgebra CM* of A} has the
induced filtration {C** N A{ ;}ien. Therefore, the associated graded algebra gr(C*#) is a
subalgebra of the polynomial algebra gr(A}). The elements t,¢ and © have total degrees 1,3
242

and 4, respectively; and their images in gr(CM*) are t,et? and e%t?, respectively.

Now, let us consider C** as an abstract algebra and equip it with the degree filtration F =
{F:}ien where deg(t) = 1,deg(¢) = 3 and deg(©) = 4. By (4.24)—(4.27), the associated graded
algebra gr~(C**) is a commutative algebra which is an epimorphic image of the factor algebra
K[t, ¢,0]/(0t? — ¢?). So, by abusing the notation, the algebra gr-(C**) is generated by (the
images of) the elements ¢, ¢ and O that commute (see (4.24)—(4.26)) and satisfy the relation
Ot? = ¢?, see (4.27).

Lemma 4.18. 1. Forallie N, F; =CM"NA,,.
2. grp(CM) = K[t, 6, 0]/(OF — ¢?), grr(CM) = gr(CM) C gr(4]) = K[t,¢] where ¢ = ef?
and © = e*t? as elements of Kle, t].
3. The algebra gr(A}) is not a finitely generated gr(CM)-module.
4. The algebra A} is not a finitely generated left/right C**-module.

Proof. 1. By Proposition 4.17.(2), the set BM* is a K-basis of the algebra C**. We keep the
notation as above. Since gr-(C**) is a commutative algebra, each vector space JF,, is a linear
span of elements of BM* with degrees < n (deg(©'¢’t*) = 4i + 35 + k and deg(¢'t™) = 3l +m).
Then, also each vector space CM* N Af ,, is a linear space of elements of BM with total degree
< n (deg(0'¢7tF) = 4i + 3j + k and deg(¢'t™) = 31 + m). Therefore, F,, = C** N A}, for all
n > 0.

2. The set BM* is a K-basis of the factor algebra A = K[t, ¢, ©] /(02— ¢?). Therefore, the algebra

epimorphism A — gr-(C*M*) is an isomorphism. Now, statement 2 follows from statement 1.

3. By statement 2, gr(CM) C D = K[t, et]. Since the polynomial algebra K[t, ¢] is not a finitely

generated D-module, it is not a finitely generated gr(C**)-module.
4. Statement 4 follows from statement 3. O
4.4 Classification of simple C4(H)-modules

In this section, K is an algebraically closed field. A classification of simple C'4(H)-modules is

given. This classification is used in a classification of simple weight A-modules which is obtained
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in Section 4.5. Two cases where the element C' acts as zero or nonzero are very different cases,
they are dealt with separately with different techniques. For an algebra A, we denote by A the

set of isomorphism classes of its simple modules. Clearly,

Ca(H)= || O (4.29)

A peK

The simple C**-module M** (where )\ # 0). Suppose that A\ # 0 and p is arbitrary.
By Proposition 4.17.(3), C** is a subalgebra of the Weyl algebra A} where ¢ = ht and © =
Ae+ (h+p)(h—1). The Aj-module M := A /A|t = K[e]1 is a free K[e]-module of rank 1 where
1:= 1+ A/t. The Aj-module M is simple and can be identified with the algebra Kle] as a vector
space. Then the element ¢ acts on M as —%. The concept of deg, is well-defined for M ~ Ke].
Since O - €'l = Xe'*11 + --- for all 4 > 0 (where the three dots denote a polynomial of degree
<i+1) and t acts on M as —d%, the C*H-module M is simple. We denote it by M™M*,

Lemma 4.19. Let A € K* and p € K. Then

1. The CM-module M™* is a simple module of GK dimension 1, MM ~ CM/CMH(t, ¢)
and the map t : MM — MM m — tm, is a surjection.
2. CMH =K[O] @ CMH(t,¢) and CMH(t, ¢) = K[O]p @ CMit.

Proof. We have shown already that the C**-module M** is simple. It follows from Proposition
4.17.(3) that

1 = GK ko) (M) < GK can (M) < GK 4 (M) =1,
i.e., GK cru (M) = 1. The map t- = —L : MM ~ Kle] - MM ~ Kle] is a surjection. Since
t1 = 0 and ¢1 = ht-1 = 0, there is a natural C**-module epimorphism C*# /CMH(t, ) —» M
which is necessarily an isomorphism, by Proposition 4.16. In particular, CM* = K[@]®CMH(t, ¢).
Then CMH(t,¢) = K[B]¢p © CM#t (by Proposition 4.16, (4.24) and (4.27)). O

The simple C**#-module N** (where \ # 0). By Lemma 4.19, there is a short exact

sequence of C**-modules
0 — NM — CMF/CME — MM — 0 (4.30)

where NV := CMH(t, ¢) /CMHt = K[O]¢l and 1= 14 CM#t. Clearly, kg N** ~ K[©] (Lemma
4.19.(2)), t¢l = 0 and (¢ + \)¢1l = 0 (by (4.27)).

Lemma 4.20. Let A € K* and u € K. Then the CM*-module NM* is a simple module of GK
dimension 1, NM o~ CM1JCME(t, ¢+ N) and the map t- : NN — NN n—s tn, is a surjection.

Proof. Since K[@]NA’“ ~ K[O], the concept of degg of the elements of N** is well-defined
(dege (©'¢1) :=i for all i > 0). Let us show that, for all n > 0,

t-O"pl = O 1l + -, (4.31)
(p+N)-0"¢l = —An(p+n—1)0" 1ol +--- | (4.32)



Chapter 4. The universal enveloping algebra U (sly X V53) 44

where the three dots means a term of degg < n — 1. We use induction on n. The case n = 0
was proved above (t¢1 = 0 and (¢ + \)¢1 = 0). Suppose that n > 0 and the equalities are true
for all n’ < n. Then

t- 0"l = ([t,0] + Ot)0" ¢l

- —(2¢+ (u—2)t+)\>®"¢i+)\n@"¢i+~--
- 7(fA+2(¢+A))@"¢i+>\n®”¢i+m
=An+1)0"¢pl +---,

(6 +N) -0 1gl = ([(b +,0]+0(6+ A))@"qﬂ
- 7(2615 +(—o+ 2t),u) 0"¢1 — An(u+n—1)0"1 + - -
=—(2An + Ap)©"¢l — An(p+n—1)0"¢l + - -
= AXn+1)(p+n)O ¢l +--- .

By (4.31), the C**-module N*# is simple. By (4.31) and (4.32), GK (NM*) = 1. By (4.31),
the map t- : NM* — NMH is a surjection. Finally, by Lemma 4.19.(2),

CM = K[O] & K[B]¢ & CM't = K[O] & K[O](¢ + \) & CMH¢.

Therefore, the canonical C**-module epimorphism C*M*/C*H(t, ¢ + A) — NM* must be an

isomorphism. O

Corollary 4.21. The map t- : CM*/CMHE — CMJOMEE, a+CMHE s ta+CMHL, is a surjection
provided X\ # 0.

Proof. By Lemma 4.19.(1) and Lemma 4.20, the maps t- : NM* — NM# and ¢ : MM — MAMF

are surjections, hence so is the map ¢- in the lemma, in view of the short exact sequence (4.30). O

Lemma 4.22. Let R be a ring, s,r € R and $p, n : R/Rr™ — R/Rr™, a + Rr"™ — s™a + Rr™,
for m,n > 1. If the map s1,1 is a surjection then all the maps s, are surjections and R =
s"R+ Rr™ for all m,n > 1.

Proof. If the map s, is a surjection then R = s R 4+ Rr". For each ¢ > 1, consider the map
s; = s : Rrt/Rritt — Rrt/Rritl ar® + Rritl v sar® + Rrit!. In the commutative diagram

S1,1

R/Rr R/Rr

Rrt/Rrtt! — Rr'/Rrit!

the vertical maps are surjection. Since the map s1,; is surjective, the map s; is also surjective.

By considering the finite filtration of the abelian group R/Rr",

0C R /Rr" C RP"?/Rr™ C ... C R/Rr™,
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we see that the map sy, is a surjection. Then so is its powers (s1,,)™ = Spmn. O

Theorem 4.23. For all A € K* and p € K, the algebra CM* is a central simple algebra of

Gelfand-Kirillov dimension 2.

Proof. In view of Proposition 4.17.(5), it remains to show that the algebra C** is simple (where
A € K* and p € K). By Corollary 4.21 and Lemma 4.22 (where s = r = t), CM = t"CM* +
CMHt™. In particular, CM* = (") for all n > 1. Let a be a nonzero ideal of the algebra CM.
We have to show that a = CM*. By (4.28), the algebra C’t)"“ = A}, is a simple Noetherian

algebra. Therefore, t" € a for some n > 1, and so a = C*M*, as required. O

Proposition 4.24. Let A € K* and p € K. Then, for all nonzero elements a € Al, the
CMHomodule A} /ALa has finite length but the CMF-module A} has infinite length.

Proof. The Aj-module M = A} /Aa = A}1 (where 1 = 1+ Aja) admits the standard filtration
{M; := A} ;1}. Then dim(M;) = e(M)i+s for all i > 0 where e(M) € N\ {0} is the multiplicity
of the A}-module M and s € Z. The algebra C** is simple (since A # 0). Hence, every simple
CMF-module has GK dimension 1. Then using a concept of multiplicity of a finitely generated
CM#-module (see Lemma 4.18.(2)), we must have that the C**-module M has finite length. By
Lemma 4.18.(4), the C**-module A} has infinite length. O

Classification of simple C**-modules where \ # 0. The Weyl algebra A/ is a subalgebra
of the skew Laurent polynomial algebra B = K(h)[t,t~ ;0] where o(h) = h — 1. The algebra
B is the localization S~1A} of the Weyl algebra A} at S := K[h] \ {0}. The algebra B is a
Euclidean ring with left and right division algorithms. In particular, the algebra B is a principle
left and right ideal domain. An element b € B is irreducible (or indecomposable) if b = cd implies
that ¢ or d is invertible. Each simple B-module is isomorphic to B/Bb where b is an irreducible
(indecomposable) element of B. B-modules B/Bb and B/Bc are isomorphic iff the elements b
and c are similar, i.e., there exists an element d € B such that 1 is the greatest common right

divisor of ¢ and d, and bd is the least common left multiple.

Let o, 8 € S = K[h] \ {0}. We write o < 3 if there are no roots A and u of the polynomials «
and 3, respectively, such that A — u € N.

Definition. [5]. An element b = ¢, + ™ 'B,_1 + -+ + By, where m > 0, 5; € K[h] and
Bo, Bm # 0, is called normal if By < B, and By < h.

The simple modules over the (first) Weyl algebra were classified by Block [18] and later using
a different approach with a short proof by Bavula [2, 5]. For a simple A}-module M there are
two options either S™'M = 0 or S™'!M # 0. Accordingly, we say that the simple module is

K[h]-torsion or K[h]-torsionfree, respectively.
Theorem 4.25. [2, 5]. ;171 = ;171 (K[h]-torsion) U ;171 (K[h]-torsionfree) where

1. ;171 (K[h]-torsion) = {A}/At, A}/Ale, AJ/AL(h—Xo)| O € K/Z\ {Z}} where Ao is any
fixed element of O = Ao + Z.
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2. FEach simple K[h]-torsionfree A} -module is isomorphic to My, := A} /A] N Bb for a normal,
irreducible element b. Simple A}-modules My and My are isomorphic iff the elements b

and b’ are similar.

The following theorem gives a classification of simple CM#-modules where A # 0. It shows
that there is a tight connection between the sets of simple C**-modules and Aj-modules. The
theorem gives an explicit construction for each simple C**-module as a factor module C** /T
where I is a left maximal ideal of C**. Let M be an A-module. The sum of all simple submodules
of the A-module M is called the socle of M, denoted by soca(M). A submodule M’ of M is
called essential if its intersection with any nonzero submodule of M is nonzero. For C**-module
M, we denote by lox.u (M) its length.

Theorem 4.26. Let A € K* and p € K. Then

1. The map soc = soCgr.u : ;171 — @, [M] — [socgan (M)], is not a bijection, and Crn =
500(2171) U {NMH). Furthermore,

(a) the map soct/ : ;171 (t-torsionfree) —» Crn (t-torsionfree), [M] +— [socor.n(M)], is a
bijection, but
(b) the map soc™ : //171(t—torsion) = {4} /Aty — C’/)‘\vl‘(t—torsion) = {MMH N Y
[A] JALt] = [M™H], is an injection which is not a bijection. In particular, the simple
CM-module MM and N are not isomorphic and the short exact sequence (4.580)
splits.
2. For each [M] € ;171 (K[h]-torsion), the C*H-module M is simple, i.e., socca.u (M) = M.
3. For each [M] € ;171 (K[h]-torsionfree), i.e., M = M, = A} /A N Bb where b € B is as in
Theorem 4.25.(2), Ny := CMH/CM N Bb C My, and soceu(My) = soceau (Np) =~ Nyy—n
for allm > 0.

Proof. 1. Let M be a simple Aj-module. By Proposition 4.24, the C**#-module M has finite
length. In particular, socoa. (M) # 0. Let us show that soces. (M) is a simple CM-module.
Let M; be the localization of the Af-module M at the powers of the element ¢. If M; =0, i.e.,
M ~ A} JAt, then socoau (A] /AL t) = A} /ALt since the CM-module A} /Ajt = M+ is simple,
as we have seen above. If M; # 0, then the A|-module M is an essential submodule of M;. By
(4.28), the CM*-module M is also an essential C*#-submodule of M;. Therefore, socc,. (M) is a
simple C*#-module. This implies that the map soc is an injection (if simple A}-modules M and

M’ are isomorphic they are also isomorphic as C**-module, and so socca.u (M) =~ soce.. (M')).

(a) The map soct’ is a bijection: It remains to show that the map soc’/ is a surjection. Let N be
a simple t-torsionfree CM*-module. Then N, is a simple Ct’\ *_module which is automatically a
simple A’ ;-module, by (4.28). Then N = socca.n(Ny) € M :=soca; (Ny) € Ny and M # 0 (by
Proposition 4.24), and therefore M is a simple t-torsionfree Aj-module (since M is an essential
A}-submodule of M; = N;). Now, N = socoa.u (M), as we have seen above. So, the map soct/

is a bijection.

(b) The Aj-module A} /At is a simple t-torsion A}-module. Hence, ;171 (t-torsion) = { A} /Al t}.
Let us show that C*# (t-torsion) = {M*# NM#}. By Lemma 4.19.(1), the CM#-module M+ =
A} /Al t is simple and ¢-torsion. By Lemma 4.20 and (4.31), the C**-module N** is simple and



Chapter 4. The universal enveloping algebra U (sly X V53) 47

t-torsion. The C**-modules M** and N** are not isomorphic since M** = Un>1 ker(¢™-) and
NME = Uns1 ker((¢ +A)™) (by (4.32)). Let M be a simple t-torsion CM-module. Tt remains
to show that either M ~ M** or M ~ N™*. The C**-module M is an epimorphic image of
the CM-module CM* /CMt. By (4.30), either M ~ M>* or, otherwise, M ~ N**. Since both
cases do occur the short exact sequence (4.30) splits otherwise the only first case (M ~ M*H)

would occur. Now, the statement (b) is obvious. Then, C*M# = 500(271) U {NMH}

2. By Theorem 4.25.(1), there are 3 cases to consider. The first case, i.e., A} /At = MM, is
obvious. Let M = A}/Ale. Then M = K[t]1 where 1 := 1+ Aje. If N is a nonzero C*H-
submodule of M then necessarily N = fK[t]1 for some nonzero polynomial f € K[t]. Since
dimg (M/N) < oo and the algebra C*# is a simple infinite dimensional algebra (Theorem 4.23)

we must have N = M, i.e., the C**-module A} /A}e is simple.

Finally, let M = A’ /A (h—v) where v = vo & Z. Then M = @, _, Kv;1 where 1 := 14+ A} (h—v),
vo:=1and, foralli > 1, v; =t' and v_;, = ¢'. For alli > 1 and j € Z, t'v;1 = \;jv;4; for some
Aij € K*. Therefore, the element ¢ acts as a bijection on the module M and M = K[t t711 ~
K[t,t~Y], as K[t,t"!]-modules. If N is a nonzero submodule of M then N = gM for some
nonzero element g of K[t,#!]. Since dimg(M/N) < oo and the algebra C** is a simple infinite

dimensional algebra (Theorem 4.23) we must have N = M. This means that the C**-module

i€

M is simple.

3. Let M = M, = A}1 where 1 = 1+ A} N Bb. Recall that the C**#-module M has finite length
and let N be a simple C**-submodule of M (statement 1). Since h = et, the A}-module M is
t-torsionfree, and so 0 # N; C M;. The C;}"*-module N is also an A ;-module since oM = Aty
(see (4.28)). Therefore, Ny = Mj, since the A} ;-module M; is simple and Ny is its nonzero A1 ;-
submodule. Notice that Ny = M; = A}, /A1 ,NBb = C* /C}*NBb 2 C M /CAHNBb = Ny, # 0
and (Ny); = M;. Hence, N = socc.u(Ny). Clearly, Ny = CM*1 where 1 := 14 CM* N Bb. For
each n € N, let N,, = CM#t"1. Then N,, # 0 since (N,)e = (Ny)s # 0. Since the CM#-module
N, has finite length the descending chain of C**-submodules of Ny, Ny = Ng O Ny D ---,
stabilizes, say, at m’th step, i.e., Ny = N9 2 Ny D --- D Npy = Nppg1 = ... and N, # 0.
Since (M/N); = M;/N; = My/M; = 0, we must have t"1 € N, i.e., N = N,, for some n. Then

necessarily n > m and N,, = N. Now, for all n > m,

CMHEn 4+ CME N Bb N CMkgn

N = OV ~ ~
C™e N Bb Cr et N Bb

~ CMH/CMOBLE™, O

The algebras C%#. The subalgebra R of the Weyl algebra A} which is generated by the
elements ¢t and h = et is a skew polynomial algebra R = K[h][¢; o] where o(h) = h — 1. The
algebra R is a homogeneous subalgebra of the Z-graded algebra A/, it is the non-negative part of
the Z-grading of A}. By Proposition 4.17.(3), for all 4 € K, C%* C R C A} and the subalgebra
CY# of R is generated by the elements t, ¢ = ht and © = (h+p)(h—1). Clearly, K[©] C K[h] and
K[r] = K[©]©K[O]h. The element ¢ is a normal element of the algebra R and (t) = @, K[R]t!.

Proposition 4.27. Let y € K.

1. C¥* =K[O]® @, K[h]t" and CO¥* N Rt = Rt = @, K[]t' = (t,¢) = (t) where (t, ) is
the ideal of C%* generated by the elements t and ¢. Furthermore, (t,¢) = C%*t + CO+¢.
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2. COMC RC R, =C)" = Ay,

3. Spec(C%*) = {0, (t), (t,m) |m € Max(K[O])}, CY*/(t) ~ K[O], and C**/(t,m) ~ K[O]/m.
In particular, all prime ideals of CO* are completely prime.

4. Max(C%*) = {(t,m) | m € Max(K[O])}.

Proof. 1. The equality (¢, ¢) = (t) follows from (4.25). Multiplying the equality K[h] = K[O] &
K[O]h by the element t on the right yields K[h]t = K[O]t ® K[O]¢p C C%*. For all i > 1,
C%* D (K[h]t)" = K[h]t', and so C** = K[O] ®© @D, K[h]t* (since C** C R). Then C¥*NRt =
Rt = @, K[h]t' = (t,¢). By Proposition 4.16, (t, ¢) = C%#t 4+ CO+¢.

2. Statement 2 follows from statement 1 and (4.28).

3 and 4. The ideal (t) of C%* is a completely prime ideal since C%* /(t) ~ K[B], by statement 1.
Therefore, the set of prime ideals that properly contain the ideal (¢) is {(t,m) |m € Max(K[O])}.
Each such an ideal is a completely prime, maximal ideal of C%#. The algebra C%* is a domain,
so 0 is the completely prime ideal of C%#. To finish the proof of statements 3 and 4 it suffices to
show that if p is a nonzero prime ideal of C% then (¢) C p. Recall that Rt = (t), by statement
1. By statement 2, CY* = A}, is a simple Noetherian domain. Therefore, " € p. Hence,
pORt"-t=Rt"T = (Rt)"T! and so p D Rt since p is a prime ideal and Rt = (t). O

Classification of simple C”#-modules. The set S = K[h] \ {0} is a (left and right) Ore
set of the domain C%* and B := S71C% = K(h)[t;o] is a skew polynomial algebra where
o(h) = h — 1. The algebra B is a principle (left and right) ideal domain. Let Irr (B) be the set

of irreducible elements of B.

In [10], simple modules for an arbitrary Ore extension D[X;o,d] are classified where D is a
commutative Dedekind domain, o is an automorphism of D and ¢ is a o-derivation of D. The

ring R = K[h][t; o] is a very special case of such an Ore extension.

Theorem 4.28. 1. R (K|[h]-torsion) = R (¢-torsion) = % = {[R/R(h —v,t)]|v € K}.
2. R (K[h]-torsionfree) = R (t-torsionfree) = {[M,]|b € Irr(B), R = Rt + R N Bb} where
My := R/RN Bb; My, ~ My iff the elements b and b’ are similar (iff B/Bb ~ B/BUV as
B-modules).

Proof. 1. The last two equalities in statement 1 follow from the fact that ¢ is a normal element
of R. Then, clearly, R (K[h]-torsion) D R//m It remains to show that the reverse inclusion
holds. Let M be a simple K[h]-torsion R-module. The field K is algebraically closed, so the
R-module M is an epimorphic image of the R-module R/R(h —v) = K[t|1 for some v € K where
1 =1+ R(h—v). It follows from the equalities ht'1 = (v + i)t'1 for all i > 0 that tK[t]1 is the

only maximal R-submodule of R/R(h —v). So, M ~ R/R(h —v,t) € %, as required.

2. The first equality in statement 1 implies (in fact, is equivalent to) the first equality in

statement 2. By [10, Theorem 1.3] R (K[h]-torsionfree) = {[My] |b € Irr(B), R = Rt + RN Bb}
(the condition (LO) of [10, Theorem 1.3] is equivalent to the condition R = Rt + RN Bb). O

Theorem 4.29 gives a classification of simple C%*-modules. It shows a close connection between

~

the sets CO# and R, they are almost identical, i.e., COn (t-torsionfree) = R (t-torsionfree).
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Theorem 4.29.

1. GO (t-torsion) = {[M] € COk | ()M = 0} = CO/(t) = {[CO+/CO#(O — v, t,¢)] | v € K}.

2. COn (t-torsionfree) = R (t-torsionfree) = R (K[h]-torsionfree) = {[M, = R/RN Bb]|b €
Irr(B), R = Rt+ RN Bb} (see Theorem 4.28).

Proof. 1. The last two equalities are obvious. Clearly, Con (t-torsion) 2 C’Wt). It remains
to show that the reverse inclusion holds. If M is a simple ¢-torsion C*#-module that either
(t)M = 0 or, otherwise, ()M = M. The second case is impossible since otherwise, M = (t)M =
RtM € R (t-torsionfree), a contradiction (¢ is a normal element of R). So, (¢)M = 0, as required.

2. In view of Theorem 4.28.(2), it remains to show that the first equality holds. Let [M] €
@(t—torsionfree). By statement 1, M = (t)M = RtM € R (i-torsionfree). Given [N] €
R (t-torsionfree). To finish the proof of statement 2, it suffices to show that N is a simple C%#-
module. If L is a nonzero C%#-submodule of N then N D L D (t)L # 0, since N is t-torsionfree.
Then (t)L = RtL = N, since N is a simple R-module. Hence, L = N, i.e., N is a simple

C%*-module, as required. O

4.5 A classification of simple weight A-modules

The aim of this section is to give a classification of simple weight A-modules. They are partitioned
into several classes of modules which are classified separately using different techniques. The
key idea is to use the classification of simple C'4 (H)-modules. In this section, we assume that
K is an algebraically closed field of characteristic zero. For each coset O € K/Z, we fix a
representative po € O = po + Z. An A-module M is called a weight module provided that
M=@,cx M, where M, ={m e M|Hm = pm}. An element p € K such that M, # 0 is
called a weight of M. Let Wt (M) be the set of all weights of the A-module M. For an algebra
A, let A be the set of isomorphism classes of simple A-modules and A (weight) be the set of
isomorphism classes of simple weight A-modules. Let M be an A-module and z € A. We say
that M is z-torsion provided that for each element m € M there exists a natural number i € N
such that z'm = 0, and that M is z-torsionfree if the only element of M annihilated by the
element z is 0. Since the set {X?|i € N} is an Ore set in A,

A (weight) = A (weight, X-torsion) LI A (weight, X-torsionfree). (4.33)

Description of the set A (weight, X-torsion). An explicit description of the set A (weight, X-torsion)
is given in Theorem 4.34. Clearly,

A (weight, X-torsion) = A (weight, X-torsion, Y-torsion) U A (weight, X-torsion, Y-torsionfree).
(4.34)

Lemma 4.30. Let M € A\(weight,X-torsion, Y -torsion). Then XM =Y M =0, i.e.,

A (weight, X -torsion, Y -torsion) = U (weight).
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Proof. Let M € A (weight, X-torsion, Y-torsion). There exists a nonzero weight vector m € M
such that Xm = 0 and Ym = 0, since XY = Y X. Notice that M = Am (since M is a simple
A-module). So, the A-module M is an epimorphic image of the A-module A/(AX + AY) =
A/(X,Y)=U, by Lemma 4.2. O

Lemma 4.31. 1. Let M € g(weight,X—torsion, Y -torsionfree). Then the central element C
acts on M as a nonzero scalar Cyy.
2. Let M € A(Weigh’c,Y-torsion7 X -torsionfree). Then the central element C acts on M as a

nonzero scalar Cyy.

Proof. 1. Since M is a simple A-module, the central element C acts on M as a scalar Cpy. It
remains to show that Cp; # 0. Suppose this is not the case, then there is a nonzero weight
vector m € M such that Xm = 0 and Cm = 0. Since C = FX? — (H +2)YX — Y?E, we
have Y?2Em = 0 and so Em = 0, since M is Y-torsionfree. Let m’ = Ym then m’ # 0 and
Xm/ = Em’ = 0. So, the A-module M’ := Am' = Zm;o KF*Y7m/ is a proper submodule of
the A-module M (since m ¢ M'). This contradicts to the fact that M is a simple module.

2. Statement 2 follows from statement 1 by applying the automorphism S of A, see (4.2). O

For A\, € K, we define the left A-modules 2* := AJA(H — p, X) and XM = A/A(C —
ANH — p, X). Clearly, XM ~ 2710 /(C — \)Z*. Since XH = (H — 2)X, using the PBW
Theorem we see that 2 = @, ; o KF'Y/EF1 = K[F] © V1 where 1:= 1+ A(H — p, X) and
V =@, 150 KYE*. Tt follows from the equalities [E,Y] = X and X1 = 0 and the fact that
the element X commutes with F and Y that Y7 E*1 = E*Y71. Hence, abusing the notation we
can write V1 = K[Y, E]1 where K[Y, E] is a polynomial algebra in letters Y and E. Therefore,
V1 = ¥ ® K[EY?]1 where ¥ := K[Y]Y? @ K[E] © YK[E] and K[EY?] is a polynomial in FY.
Now,
ZH=K[F]® 2 K[EY?1 ~K[F]® X @ K[EY?]

is an isomorphism of vector spaces. Since C = FX? — HY X — EY? (C — \)1 = —(EY? + )1,
(C-NZ*=K[F]® L@ K[EY?(-EY? - M]1.

Therefore,
XM 2R )(C = N2 H ~K[F]® %1

where 1 =1+ A(C — A\, H — u, X ), and the equality of statement 1 of the following proposition
follows. Furthermore, the proposition shows that for all A € K*, the modules X** are simple,
weight, X-torsion, Y-torsionfree A-modules. Later in Proposition 4.33.(1), we will see that the
set A\(Weight,X—torsion, Y-torsionfree) consists precisely of the modules X*#. Moreover, the

K-bases, weight space decompositions and annihilators of X*# are given.
Proposition 4.32. Let A € K* and pu € K. Then

1. The A-module XM = @ KFYi 1o @ KFEF® @ KYFEF is a simple module
20,532 i,k=0 i,k=0

where 1 =1+ A(C — A\, H — p, X).
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2. Recall that © = FE. Then

XM= B KFYla ( D krefio@PKretic @ KB )

i>0,5>2 i>1,k>0 k>0 i>1,k>0

P krreie@krerie P KYEi@’fi).

i>1,k20 k>0 i>1,k>0

3. The weight space (X’\’”)uﬂ, of XMH that corresponds to the weight u+1i (wherei € 7,) is

K[O]L, i=0,
E"K[O]1, i=o r>1,
YE"K[O]1, 1=2r—1,r>1,
(XM) =9 FrKO]l e 6_9 KFiy 201, i= -2, r>1,
YK[O1, i=—1,
YF1K[O]T & éa KFIY20r-D-1, j= 2> —1)—1, r > 2.

In particular, Wt(XM) = {u+1i|i € Z} and each weight space is infinite dimensional.
4. anny (XM) = (C = N).

5. XM s an X -torsion, Y -torsionfree weight A-module.

Proof. 1. It remains to show that the A-module X»* is simple. We use notation as above. Using
the definition of C, we have the equality EY 2?1 = —A1. Then, forallk > 1, Y?* E*1 = (EY?)F1 =
(=A\)*1 (since V1 = K[Y, E]1). Since EY?1 = —A1 # 0, the map V- : £1 — X1, s1 = Ysl, is
an injection. Let u be a nonzero element of X*#. To prove that the A-module X** is simple it
suffices to show that au = 1 for some a € A. It follows from the equalities X F* = F!X —iF"~lY,
X1=0and XM = K[F] ® %1, that the map X : X — XMy Xu, acts as /& ® (=Y )s.

So, we can assume that u = s1 where 0 # s € X.

Notice that s = pY? + 31" ((A\; 4+ p;Y)E" for some p € K[Y] and \;, p; € K. Then

Y2y = y2mgl = <py2m+2 +3 0+ MY)YQW*Z')Y%Ei)i
1=0
m

_ (py2m+2 +3 0+ MY)W(m—i)(_A)i) 1=f1
i=0
where f € K[Y]\ {0} (since s # 0). So, we may assume that u = f1 where 0 # f € K[Y].
Let f = Zi 07Y" where v; € K and v; # 0. Since HY'1 = (u — 4)Y"1 for all ¢ and all the
eigenvalues {4 —i|i > 0} are distinct, there is a polynomial g € K[H] such that gf1 = Y'1. If
[ =0, we are done. We may assume that [ > 1. Multiplying (if necessary) the equality above
by Y we may assume that [ = 2k for some natural number k € N. Then (—\)"*E*Y?*1 =1, as

required.

2. Using the fact that the algebra U is a generalized Weyl algebra U = K[©, H|[E, F;0,a = 0]
where 0(©) = © + H, o(H) = H — 2 and the equality F'E" = O~ }(0)---07"1(0), we see
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that
P kriefi= P KreofliePreia P KEO'L
i,k>0 i>1,k>0 k>0 i>1,k>0

Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.

4. Tt is clear that (C' — A) C anna (X**). By Proposition 4.4.(1), the ideal (C' — X) of A is a

maximal ideal, hence (C' — X) = ann 4 (X*).

5. Clearly, X** is an X-torsion, weight A-module. By statement 1, X™* is a simple module, it

must be Y-torsionfree (since, otherwise, by Lemma 4.30, CXM =0, a contradiction). O]

The sets A (weight, X-torsion) and A (weight, Y-torsion). For A, u € K, let us consider the A-
module Y M := A/A(C — X\, H — i1, Y). Then YM* ~ SX~ 7 where X~ # is the A-module
X~MH twisted by the automorphism S of the algebra A (S(H) = —H, S(C) = —C, S(Y) =
—X). The subgroup Z of (K, +) acts on K in the obvious way. For each A € K, O(\) := A+ Z is
the orbit of A under the action of Z. The set of all Z-orbits can be identified with the elements
of the factor group K/Z. For each orbit O € K/Z, we fix an element up € O.

Proposition 4.33. 1. A (weight, X -torsion, Y -torsionfree) = {[X*ro]|X € K*,0 € K/Z}
and the A-modules XMH0 and XN #o' are isomorphic iff X\ = X and O = O,
2. A (weight, X -torsionfree, Y -torsion) = {[y*+e]|X € K*,0 € K/Z} and the A-modules
Y Ho and YN 1o are isomorphic iff A =N and O = O'.

Proof. 1. Let M € g(weight, X-torsion, Y-torsionfree). By Lemma 4.31, Cpy = A # 0 for some
A € K*. Then M is a factor module of X** for some u € K. By Proposition 4.32.(1), the module
XM is a simple module, hence M ~ XM, Clearly, XM ~ XN A = N and w=p +ifor

some ¢ € Z.
2. Since YM* ~ SX—»—# statement 2 follows from statement 1. O
The next theorem gives a complete description of simple, weight, X-torsion A-modules and of
simple, weight, Y -torsion A-modules.
Theorem 4.34. 1. A (weight, X -torsion) = U (weight) L {[x*ro] X eK*, 0 € K/Z}.
2. A(weight, Y -torsion) = U (weight) L {[Y}re] X e K*, O € K/Z}.
Proof. 1. The theorem follows from the equality (4.34), Lemma 4.30 and Proposition 4.33.
2. Statement 2 follows from statement 1. O

Description of the set A (weight, X-torsionfree). Since the element C' belongs to the centre
of the algebra A and the field K is algebraically closed,

welght |_| A ) (weight) (4.35)
AeK
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where A(N) := A/(C — \). Moreover,

m (weight, X-torsionfree) = A/(}) (weight, X-torsionfree, Y-torsionfree)
|_| IX(T) (weight, X-torsionfree, Y-torsion). (4.36)

The simple modules in the set @ (weight, X-torsionfree, Y-torsion) are classified by Proposi-
tion 4.33.(2). So, in order to finish the classification of simple weight A-modules it remains to

—

describe the set A(\) (weight, X-torsionfree, Y-torsionfree).

—

The set A(0) (weight, X-torsionfree, Y-torsionfree). Let C; := C4(H); be the localization of
the algebra C'4(H) at the powers of the element ¢. Then by Corollary 4.15, Cy = K[C, H] ® A1 ,.
Clearly, Cty = C4,(H). Let [M] € Con (t-torsionfree). By Theorem 4.29.(2), the element ¢ acts
bijectively on M (since t is a normal element of R and (t) = Rt). Therefore, the C4 (H)-module
M is also a Cp-module. Using the equality A; = C¢[X +1. g, let us define an A;-module

M=Aoc,M=PXoM=FPyeMa@PxXx oM (4.37)

€L i>1 120

Clearly, M is a weight A-module with Wt(M) = O(u) = p + Z and MHH = X'® M for all
i € Z. The A-module M is X- and Y-torsionfree. Moreover, the A-module M is simple since if
N is a nonzero submodule of M then it contains a nonzero element X¢ ® m for some i € Z and
meM.Ifi=0then N=Am =M. Ifi <0then N3 X! X' ®@m =1®m, and so N = M. If
i>0then N3YXi@m=1®t'm#0,andso N =M. If M’ € C07 (t-torsionfree) then the
A-modules M and M’ are isomorphic iff O(y) = O(¢) and the C%*-modules M and X ® M’
are isomorphic where p = u' 44 for a unique i € Z. Clearly, GK (M ) = 2. The following theorem

is an explicit description of the set A(0) (weight, X-torsionfree, Y-torsionfree).

— —

Theorem 4.35. A(0) (weight, X -torsionfree, Y -torsionfree) = {[M] | [M] € COno (t-torsionfree), O €
K/Z} and GK (M) =2 for all M.

Proof. Tt suffices to show that if M € Z(F) (weight, X-torsionfree, Y-torsionfree) then M ~ M
for some [M] € Cono (t-torsionfree). Fix p € Wt(M). Since the elements X and Y act
injectively on M, we have that O(p) € Wt(M). So, we may assume that u = pe where
O =0(u). Then M :=M, € CO.ho (t-torsionfree), and so M 2 @5, Y'M O @, o X'M = M,
by (4.37) and simplicity of M. So, M = M, as required. O
The set A/(X) (weight, X -torsionfree, Y-torsionfree) where A # 0. Recall that A, = C;[X*!;0].
Let [M] € Cxn (t-torsionfree). Then [M;] € g'tm The A;-module

M° = Ay ®¢c, My = @X" ® M, (4.38)
€L

is a simple, weight A;-module with Wt(M®) = O(p) = p+2Z and Mg, ; = X' ® M, for all i € Z

(if N is a nonzero submodule of M?® then it contains a nonzero element X' @ m for some i € Z
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and m € My. Then N > X ‘X' ®@m =1®m, and so N = M?°). For all i € Z,
M =X'®@ M, ~ M (4.39)

where MY ' is the Ci-module twisted by the automorphism o~¢ of the algebra C;. (Recall that
= Cy[X*';0]). By Theorem 4.26 and Theorem 4.25,

—— Al A
CX# (t-torsionfree) = {[A’ 1, [ﬁ
1€

110 e K/Z\{Z}}

U {[soc(Ny)]|b € Irr(B)/ ~, b is normal }

where Irr(B)/ ~ is the set of equivalence classes of irreducible elements of the algebra B =
K(h)[t*; 0] and N, = C*#/CM* N Bb. Moreover, by Theorem 4.26.(3), soc(Ny) ~ Ny, —w for all
n > 0.

For all A € K* and p € K, the module m* := C*/Ce is a simple Cy (H)-module. Hence,

SOCC 4 (H) (m*#) = mM#. Notice that

Al e i AL Xi® o i
(&) ~Dxeg=@xe oo, ~ DXemt

I€EZL €L

and X' @ mM* ~ mMHi as Oy (H)-modules. Then there are equalities of A-modules

!

soc4 ((j,lle)o> = @soCcA(H)(Xi @mMH) = @m)”““. (4.40)

€L €L

For all A € K*, € K and O € K/Z\ {Z}, the module MM-© .= G} /CMH(h — vp) is a simple
Ca(H)-module. Hence, socc, ()(M**©) = MM, Since

( A/ ) @XZ All "t ~ @ C)‘ M _ @XZ ® M/\,/J,O
Ay (h = vo) i€L A 4(h —vo) i€L CA flh=vo) 2
and X' @ MM#O o MMHHLO a5 O 4 (H)-modules. Then there are equalities of A-modules

Al o . :
s0CA ((A(hl)) ) = @ soce, (1) (X* @ MM = G MA#HO, (4.41)
1

—v
o icZ icZ

If M ~ N, = CM/C** N Bb for an irreducible element b of B = K(h)[t*!;0]. For all i € Z,

—i Cf/\”qui
MO Dt N
bZ oM A Boi(h) ®
By Theorem 4.26.(3),
soco, () (M7 ) = soce, (i) (Noi ) = Nyt (5y1-n:
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for all n; > 0. Then the A-module

SOCA(]\4<> @SOCCA(H) X ®Mt @ ot (byt—mi (442)
1€EL i€EZ

belongs to the set /T(Y) (weight, X-torsionfree, Y-torsionfree). The next theorem shows that all
elements of the set A(\) (weight, X-torsionfree, Y-torsionfree) are precisely of this kind.

Theorem 4.36. Let A € K* and p € K. Then m (weight, X -torsionfree, Y -torsionfree) =
{[soca(M®)]|[M] € Chno (t-torsionfree), O € K/Z} and soca(M?®) is explicitly described in
(4.40), (4.41) and (4.42), the A-modules soca(M?®) and soca(M'®) are isomorphic iff A = N,
O=0" and M ~ M'; GK (socs(M?°)) = 2.

Proof. Let [M] € m (Weight X-torsionfree, Y-torsionfree). _Then Wt(M) = O € K/Z. Let
p = po. Then M := M, € C”\l‘(t torsionfree) and M, € C; “. Clearly, M C M; = M?,
and so M = soca(M°®). Given [M'] € O o (t-torsionfree). If soca(M?®) ~ socs(M'®) then
M?® =soca(M?®); ~ soca(M'®), = M'® as Ai-modules, and so A = X, O = O and M, ~ M| as
CMM0 -modules. Then M = soco, (i) (M) ~ soce, (m)(M{) = M" as Ca(H)-modules. Clearly,
GK (soca(M®)) = 2. O

By (4.33), (4.35) and (4.36), Theorem 4.34, Theorem 4.35 and Theorem 4.36 give a complete

classification of simple weight A-modules.

4.6 The Schrodinger algebra

The Schrédinger algebra is a non-semisimple Lie algebra, which plays an important role in
mathematical physics. A classification of simple lowest weight modules for the Schrédinger
algebra is given in [22]. The fact that all the weight spaces of a simple weight module have the
same dimension is proved in [43]. By using Mathieu’s twisting functor, a classification of simple
weight modules with finite dimensional weight spaces over the Schrodinger algebra is given in
[23]. In [42], the author studied the finite dimensional indecomposable modules for Schrédinger
algebra. Quite recently, [24] studied the category O for the Schrédinger algebra and described

primitive ideals with nonzero central charge.

The Schréodinger algebra s is a 6-dimensional Lie algebra that admits a K-basis {F, H, E,Y, X, Z}

elements of which satisfy the defining relations:

[HaE]:2E7 [HaF]:72F7 [E’F]:Hv [HvX}:X;
[H,Y] = -Y, [B,Y] = X, (B, X] =0, [F,X] =Y,
IF,Y] =0, IX,Y] = 2, Z.5] = 0.

The Lie algebra s is not semisimple and can be viewed as the semidirect product s = sly X H of
Lie algebras where sl = KF ¢ KH & KE and H = KX & KY @& K7 is the three dimensional
Heisenberg Lie algebra. Let S := U(s) be the universal enveloping algebra of the Schrodinger
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algebra s. The primitive ideals of U(s) with non-zero central charge were described by Dubsky,
Lii, Mazorchuk and Zhao, [24]. In [24], they wrote that “the problem of classification of primitive
ideals in U(s) for zero central charge might be very difficult”. Using the classification of prime
ideals of A (Theorem 4.6) we give a complete classification of the primitive ideals of U(s). It is
conjectured that there is no simple singular Whittaker module for the algebra S [44, Conjecture

4.2]. We construct a family of such S-modules (Proposition 4.44).

The centre of S and some related algebras. In this section, we show that the localization
Sz of the algebra S at the powers of the central element Z is isomorphic to the tensor product
of algebras K[Z*!] ® Ul(sly) ® Ay, see (4.53). Using this fact, a short proof is given of the fact
that the centre of the algebra S is a polynomial algebra in two explicit generators (Proposition
4.39). The fact that the centre Z(S) of S is a polynomial algebra was proved in [24] by using the
Harish-Chandra homomorphism. In the above papers, it was not clear how the nontrivial central
element ¢ was found. In this paper, we clarify the ‘origin’ of ¢ which is the Casimir element of

the ‘hidden’ tensor component U (sly) in the decomposition (4.53).

Let U := U(sly) be the enveloping algebra of the Lie algebra sly. Then the centre of the algebra
U is a polynomial algebra, Z(U) = K[A], where A := 4FE + H? + 2H is called the Casimir

element of U.

An automorphism 7 of S. The algebra S admits an automorphism - defined by
V) =E, y(H)=—-H, y(E) =F, y(Y) = -X, y(X) ==Y, and y(2) = -Z.  (4.43)

Clearly, 72 = ids.

The subalgebra JZ of S. Let JZ be the subalgebra of S generated by the elements X,Y and
Z. Then the generators of the algebra 57 satisfy the defining relations

XY -YX =17 ZX =XZ, and ZY =Y Z.

So, s = U(H) is the universal enveloping algebra of the three dimensional Heisenberg algebra
‘H. In particular, 5# is a Noetherian domain of Gefand-Kirillov dimension 3. Let %7 be the
localization of 7 at the powers of the element Z and 2" := Z~'X € 4#;. Then the algebra

H7 is a tensor product of algebras
Ay =K[ZT @ Ay (4.44)

where Ay :=K(Z,Y) is the (first) Weyl algebra since [2",Y] = 1.

The subalgebra & of S. Let & be the subalgebra of S generated by the elements X,Y, Z and
E. Then

& = H|E;6) (4.45)
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is an Ore extension where § is the K-derivation of the algebra J# defined by 6(Y) = X,6(X) =0
and §(Z) = 0. Let &7 be the localization of & at the powers of the element Z. Then

&y = Hy[E;0) = (K[zﬂ] ® A1> ;4] (4.46)

where § is defined as in (4.45), in particular, §(2°) = 0. Now, the element s = —1 722 satisfies
the conditions of Lemma 2.17. Specifically, the element E' := E +s=FE — %Z‘lX2 commutes

with the elements of A;. Hence, &7 is a tensor product of algebras
&z =K[E', ZF | ® A = K[E']| @ #5. (4.47)

In particular, & and &7 are Noetherian domains of Gelfand-Kirillov dimension 4.

The subalgebra % of S. Let # := v(&). Then Z is the subalgebra of S generated by the
elements X,Y, Z and F. Notice that the automorphism 7 (see (4.43)) can be naturally extended
to an automorphism of Sz by setting v(Z~!) = —Z~! where Sy is the localization of the algebra
S at the powers of the element Z. Let %z be the localization of . at the powers of the central
element Z and F' :=(E') = F + 3Z27'Y? € Z,. Then Z is a tensor product of algebras

Ty =K[F,ZH )@ A =K[F'| @ H#y (4.48)

where A; is as above, see (4.44).

The algebra o/. Let o/ be the subalgebra of S generated by the elements H, E,Y, X and Z.
The algebra o is the enveloping algebra U(a) of the solvable Lie subalgebra a of s with basis
elements H, F,Y, X and Z. The algebra 4/ is an Ore extension

o = E[H; 6] (4.49)

where ¢ is a K-derivation of the algebra & defined by §(F) = 2E,§(Y) = -Y,6(X) = X and
d(Z) = 0. Let @7z be the localization of the algebra <7 at the powers of the central element Z.
Then

dy = E[H; 6] = (K[E’, 7 g Al) [H; 0] (4.50)

where § is defined as in (4.49), in particular, §(2°) = 2. Theelement s = 2V -1 = 771Xy -1
satisfies the conditions of Lemma 2.17. In particular, the element H' := H+s = H+Z7'XY f%
commutes with the elements of A; and [H', E'] = 2E’. Hence, 477 is a tensor product of algebras

Ay =K[ZH @ K[H'|[E';0] ® A (4.51)

where o is the automorphism of the algebra K[H'] such that o(H') = H' — 2. In particular, 27

is a Noetherian domain of Gelfand-Kirillov dimension 5.

The factor algebra S/(Z). The set KZ is an ideal of the Lie algebra s and s/KZ ~ sly x V4

is a semidirect product of Lie algebras where Vo = KX & KY is a 2-dimensional abelian Lie
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algebra. So,
S/(Z2) = U(s/KZ) ~U(sly x Va).

Recall that the centre of A = U(sly x V3) is a polynomial algebra Z(A) = K[C] where C' =
FX? - HXY — EY?, see Lemma 4.1.

Lemma 4.37. 1. Let B :=E—177'X% F :=F+17'Y? and H' := H+ Z~'XY — L.

Then the following commutation relations hold in the algebra Syz:
[H',E'|=2FE', [H' F'|=-2F', [E F]|=H,

i.e., the Lie algebra KF' @ KH' @ KE' is isomorphic to sly. Moreover, the subalgebra U’ of
Sz generated by H', E' and F' is isomorphic to the enveloping algebra U (sly). Furthermore,
the elements E', F' and H' commute with X and Y .

2. The localization Sz of the algebra S at the powers of Z is Sz = K[ZT | @ U’ @ A;.

Proof. 1. 1t is straightforward to verify that the commutation relations in the lemma hold. The
fact that the elements E', F' and H' commute with the elements X and Y follows from (4.47),
(4.48) and (4.51), respectively. Let U be the universal enveloping algebra of the Lie algebra
sly = (F',H',E’). The algebra U’ is an epimorphic image of the algebra U under a natural
epimorphism f : U — U’. The kernel of f, say p, is a (completely) prime ideal of U since U’
is a domain. Suppose that p # 0, we seek a contradiction. Then p N K[A] # 0 (it is known
fact) where A is the Casimir element of U. In particular, there is a non-scalar monic polynomial
P(t) =t"+Xp_1t" 1+ -+ X € K[t] such that P(A’) = 0in Sz where A’ = AF'E'+ H? +2H'.
Then Z"P(A’) € S and necessarily Z"P(A’) =0 mod 8Z, i.e., (EY?+ HXY — FX?)" =0
mod §Z, a contradiction since §/SZ ~ U(sly x V3).

2. Using the defining relations of the algebra S, we see that the algebra S is a skew polynomial
algebra

S =d[F;0,0] (4.52)

where o is the automorphism of the algebra & defined by o(H) = H + 2,0(FE) = E,0(Y) =
Y,0(X) = X and o(Z) = Z; and § is the o-derivation of &/ given by the rule: §(H) = 6(Y) =
0(Z)=0,6(F)=—H and 6(X) =Y. Then, by (4.51) and statement 1,

Sz = dy[F';0',0] = (K[Zﬂ] @ K[H'][E';0] ® Al) [F';0', 6| =K[ZF' @ U ® Ay (4.53)

is a tensor product of algebras where ¢’ is an automorphism of &7 such that ¢'(Z) = Z,0'(H') =
H +2,0'(E')=FE' o' (X)=X and ¢/(Y) =Y; and ¢’ is a o’-derivation of the algebra </ such
that 6'(Z) = §'(H') = ¢'(X) = (Y) =0 and §'(E’) = —H'. In particular, Sz is a Noetherian

domain of Gelfand-Kirillov dimension 6. O

The centre of the algebra S. Let A’ := 4F'E’ + H'?> + 2H' be the Casimir element of U’,
then the centre Z(U’) = K[A'] is a polynomial algebra. Using the explicit expressions of the
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elements F', E' and H' (see Lemma 4.37.(1)), the element A’ can be written as

A = (4FE+ H?+H) +2Z " (EY?*+ HXY — FX?) — (4.54)

Y

Let
c:= ZA + %Z - Z(4FE +H? 4 H) + 2<EY2 +HXY — FXQ). (4.55)
Lemma 4.38. Z(Sz) = K[Z*!,d].

Proof. By (4.53) and Lemma 2.20, Z(Sz) = Z(K[Z*!]) ® Z(U') ® Z(A1) = K[ZH] @ K[A'] =
K[Z*!, A = K[Z#,q]. O

The next proposition shows that the centre of S is a polynomial algebra in two variables.

Proposition 4.39. Z(S) =K[Z,c].

Proof. By Lemma 4.38, Z(S) = SN Z(Sz) = SNK[Z*!,c] D K[Z,c]. It remains to show that
Z(8S) = K[Z,c]. Suppose that this is not the case, we seek a contradiction. Then Z=1f(c) € Z(S)
for some non-scalar polynomial f(c) € K[c] (since Z~! ¢ S). Hence, by (4.55),

0= f(c) = f(—-2C) mod S§Z,

i.e., the element C' is algebraic in U(sly x V3), a contradiction. O

The primitive ideals and existence of singular Whittaker modules over the Schrédinger
algebra. In this subsection, K is an algebraically closed field. Our aim is to give a classifica-
tion of primitive ideals of the algebra S and to prove existence of simple singular Whittaker

S-modules.

For A € K, let S(A) :=S/S(Z — A\). Then §(0) ~ A. If X # 0 then, by (4.53),
SN =82/Sz(Z - \)=U @ A (4.56)

is a tensor product of algebras. The algebra U}, which is isomorphic to the enveloping algebra

U(sly), is generated by the elements
-1 1 Ly 1o Ly iy2
Hy=H+X'XY =5, Ex=E- A'X° [ FB=F+ A7V

and the elements Hy, F and F) are canonical generators of the Lie algebra sly ([Hy, E)\| = 2E),
[Hy, F)\] = —2F) and [E), F)] = Hj, see Lemma 4.37 for details). The algebra A; is the Weyl
algebra generated by the elements A~!X and Y. In particular, S(\) is a Noetherian domain
of Gelfand-Kirillov dimension 5, and the ideal of S generated by Z — X is completely prime.
Furthermore, Z(S()\)) = K|cy] where ¢y = N4FE+H?+ H)+2(EY?+HXY — FX?) is a non-
standard Casimir element of the algebra Uj written via the new canonical generators Hy, E)

and Fy, i.e., 4E\F\ + H? —2H\ = A\"'c, — %-
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For A\, p € K, let S(A\, ) :=8/(Z — X\, c— p) = S(N)/S(A)(cx — p). The following lemma gives
the condition for the factor algebra S(A, i) to be a simple algebra.

Lemma 4.40. Let A € K* and p € K.

1. Z(S(\,p) =K.

2. The algebra S(, p) is a simple algebra iff p # A(n® +2n + 2) for alln € N.

3. If w = A(n?+2n+ 2) for some n € N then S(\, 1) has a unique proper two-sided ideal
which is the tensor product of the annihilator of the unique simple (n + 1)-dimensional

slo-module and the Weyl algebra A;.

Proof. Statement 1 follows from (4.56). Statements 2 and 3 follows from [21, 4.9.22] and the
fact that 4E\F\ + H} — 2H) = A"'cy — 2. O
Primitive ideals of the algebra S. The next proposition gives a classification of prime,
maximal and primitive ideals of the algebra S(\) where A # 0. By (4.56), the map Spec (U}) —
Spec (S(A)), p— p®A;, is an injection, and we identify Spec (Uy) with its image in Spec (S(X)).

Proposition 4.41. Let A € K*. Then Spec (S())) = Spec (Uy), Max (S()\)) = Max (U}) and
Prim (S(\)) = Prim (U}).

Proof. The first two equalities are obvious, by applying [21, Lemma 4.5.1]. Clearly, Prim (U}) C
Prim (S())) and Prim (UY) = Spec (U3 )\ {0} = Spec (S(A))\ {0}. Since Spec (S(X)) = Spec (U})
and 0 is not a primitive ideal of S(A) (since Z(S(\)) = Klca]), we must have Prim (U}) =
Prim (S())). O

Remark. The primitive ideals of S(A) for A # 0 were described in [24, Corollary 30] as annihi-

lators of Verma modules.

The next theorem together with Theorem 4.8 | gives an explicit description of the set of primitive
ideals of S.

Theorem 4.42. Suppose that K is an algebraically closed field. Then
Prim(S) = {(Z — A,p)| A € K*,p € Spec (U3) \ {0}} U {(Z,q)|q € Prim(4)}.

Proof. Since Z is a central element of S and K is algebraically closed, any primitive ideal of
S contains Z — X for some A € K. Hence, Prim(S) = Uyex~Prim(S()\)) U Prim(A) = {(Z —
Ap) A € K5 p e Prim(U})} U {(Z,q)|q € Prim(A)}, as required. Notice that Prim (U}) =
Spec (U}) \ {0}. O

Singular Whittaker S-modules. Simple, non-singular, Whittaker modules of the Schrédinger
algebra were classified in [44]. They conjectured that there is no simple singular Whittaker
module for the Schrédinger algebra [44, Conjecture 4.2]. Proposition 4.44 shows that there

exists simple singular Whittaker A-modules (these are Whittaker Schrédinger modules of zero
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level), hence the conjecture is not true, in general. But we prove that the conjecture is true for

Whittaker Schrodinger modules of non-zero level.

Let R = S or S(A) for some A € K and let V' be an R-module. A non-zero element w € V is
called a Whittaker vector of type (u,9) if Fw = pw and Xw = dw where p,§ € K. An R-module
V is called a Whittaker module of type (u,d) if V is generated by a Whittaker vector of type
(4,0). An R-module V is called a singular Whittaker module if V' is generated by a Whittaker
vector w € V of type (0,0) and Hw ¢ Kw.

Using the decomposition (4.56), we can give a classification of simple Whittaker S-modules of

non-zero level easily (i.e., the simple Whittaker S(\)-modules where X\ # 0).

Whittaker S(A)-modules where A # 0. Let u, 6 € K. The universal Whittaker S(A)-module
of type (i, 0) is W = W (u,0) :== S(A\)/S(A\)(E — p, X — ). So, any Whittaker S(A)-module of
type (i, d) is a homomorphic image of W. By (4.56),

_ S(\) _ S(A)
COSWN(BA+1/201X2 — i, X = 6) SN (Ex +1/20716% — p, X —6)
= Uy /UL (Ex +1/2X0716% — p) ® Ay /A (X = 6) (4.57)

The module Wy, := U} /U} (Ex+1/2A7'6° — ) is a Whittaker U§-module of type (—1/2A7"6%+
). The simple Whittaker Uj-modules are easily classified, see [18, Proposition 5.3]. Note that
Ay /A1 (X =6) is asimple Aj-module with End 4, (41/41(X —6)) = K. Thus we have the following

conclusion (which recovers the results of [44, Theorem 6.11]):

—

S(\) (Whittaker module of type (i, 6))
= (/]Z (Whittaker module of type (u— 1/2A76%)) ® A1 /A1(X —6).

The next proposition shows that there is no simple singular Whittaker S-module of nonzero
level, i.e., all the simple Whittaker S(A)-modules of type (0,0) are weight modules where A # 0.

Proposition 4.43. If A € K* then there is no simple singular Whittaker S(\)-module.

Proof. By (4.57), the universal singular Whittaker S(A)-module W = U{/ULE) ® A1/A:1X.
Notice that A;/A;X is a simple Aj;-module and Endy4, (4;/4:X) = K. Hence, each simple
factor module L of W is equal to M ® A1 /A1 X where M is a simple factor module of the Uj-
module U} /U Ex. Then by [44, Theorem 6.10.(i)], M is a (highest) Hx-weight U§-module, i.e.,
M is a simple factor module of U /Uj(Hx — p, Ey) for some p € K. Then L is a simple factor
module of U} /UL (Hx — pt, Ex) ® A1 /A1 X ~ S(A)/S(\)(H + 3 — 1, E, X). Hence, L is a weight
module. This completes the proof. O

Recall that S(0) = A. Let W := A/A(X,E), a left A-module. Then any singular Whittaker
A-module is an epimorphic image of W. For any A € K*, we define the A-module

V(N = A/AX,E,Y =\) = > KH'F/T where 1=1+A(X,E,Y - \).
i,jEN



Chapter 4. The universal enveloping algebra U (sly X V53) 62

Clearly, V()) is a singular Whittaker A-module. Then next proposition shows that V(\) is a

simple A-module. Hence, the conjecture [44, Conjecture 4.2] does not hold in this case.

Proposition 4.44. For any A € K*, the module V(\) is a simple A-module.

Proof. We have to show that for any 0 # v = 3, ;g a; ;H F/1 € V(X) where a;; € K, there
exists an element a € A such that av € K*1. Tf j > 0 then Xv = 37, ;o i j(=\)j(H—1)"F/~'1.
By considering the leading term we see that Xv # 0. Therefore, 0 # X"v € K[H]1 for some
n € N. So, we may assume that v = 7" a; H'1 where a; € K,m € N and a,, # 0. Then
0#£ (Y = Nv=3",0A((H+1)" — H))1. By induction on m, we have (Y — X\)™v € K*1, as
required. O



Chapter 5

The quantum spatial ageing

algebra

5.1 Introduction

Let K be a field and an element ¢ € K* := K\ {0} which is not a root of unity. The algebra
K¢ X, Y] := K(X,Y | XY = ¢YX) is called the quantum plane. A classification of simple
modules over the quantum plane is given in [9]. The quantized enveloping algebra U, (sl2) of sly

is generated over K by elements E, F, K and K ! subject to the defining relations:

K—-K!

KEK™'=¢°E, KFK ' =¢q*?F, EF - FE = —.
q9-4q-

For basic properties and representation theory of the algebra U,(sly) the reader is referred to
[29, 33]. The simple U, (sly)-modules were classified in [2], see also [8], [9] and [17]. The quantum
plane and the quantized enveloping algebra U, (sl2) are important examples of generalized Weyl
algebras and ambiskew polynomial rings, see e.g., [5] and [32]. Let UZ(sly) be the (positive)
Borel part of U, (slz). It is the subalgebra of U,(sly) generated by K*! and E. There is a Hopf
algebra structure on UZ%(sly) defined by

A(K)=K®K, e(K) =1, S(K)=K™*,
A(E)=E®1+KQ®FE, e(E) =0, S(F)=-K'E.
The notion of smash product has proved to be very useful in studying Hopf algebra actions [38].
For example, the enveloping algebra of a semi-direct product of Lie algebras can naturally be
seen as a smash product algebra. The smash product is constructed from a module algebra, see

38, 4.1] for details and examples. We can make the quantum plane a UZ°(sly)-module algebra
q

by defining

K- X=¢X,E-X=0, K-Y=q'Y, E-Y =X,

63
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and introduce the smash product algebra A := K,[X,Y] x Ufo(slg). We call this algebra the
quantum spatial ageing algebra. The defining relations for the algebra A are given explicitly in

the following definition.

Definition. The quantum spatial ageing algebra A =K, [X,Y]x U,?O(slg) is an algebra generated
over K by the elements E, K, K~!, X and Y subject to the defining relations:

EK = ¢ %KE, XK =q¢ KX, YK = ¢KY,
EX =¢XE, EY =X +q¢ 'YE, VY X = XY.

The algebra A can be seen as the quantum analogue of the spatial ageing algebra. This chapter is
organized as follows. In Section 5.2, we describe the partially ordered sets of the prime, maximal
and primitive ideals of the algebra 4. Using this description the prime factor algebras of A
are given explicitly via generators and relations (Theorem 5.8). There are nine types of prime
factor algebras of A. For two of them, ‘additional’ non-obvious units appear under factorization
at prime ideals. It is proved that every prime ideal of A is completely prime (Corollary 5.12).
In Section 5.3, the automorphism group of A is determined, which turns out to be a ‘small’
non-commutative group that contains an infinite discrete subgroup (Theorem 5.14). The orbits
of the prime spectrum under the action of the automorphism group are described. In Section

5.4, the centralizers of the elements K, X, ¢, Y and E in the algebra A are determined.

Much of this chapter is extracted from the joint paper with V. Bavula [11].

5.2 Prime spectrum of the algebra A

The aim of this section is to describe the prime, maximal and primitive spectra of the algebra A
(Theorem 5.8, Corollary 5.9 and Proposition 5.11). Every prime ideal of A is completely prime
(Corollary 5.12). For all prime ideals P of A, the factor algebras A/P are given by generators
and defining relations (Theorem 5.8).

Definition, [7]. Let D be an ring and o be its automorphism. Suppose that elements b and
p belong to the centre of the ring D, p is invertible and o(p) = p. Then E := D{(o;b,p) =
D[X,Y;0,b,p| is a ring generated by D, X and Y subject to the defining relations:

Xa=0(a)X and Ya=0"'(a)Y forall a € D, and XY —pY X =b.

If D is commutative domain, p = 1 and b = u—o(u) for some u € D (resp., if D is a commutative

finitely generated domain over a field K and p € K*) the algebras E were considered in [30] (resp.,

[31]).

The ring E is the iterated skew polynomial ring E = D[Y; 0~ ][X; 0, 8] where 0 is the o-derivation
of D[Y;071] such that D = 0 and Y = b (here the automorphism o is extended from D to
D[Y;071] by the rule o(Y) = pY).
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Recall that an element d of a ring D is normal if dD = Dd. The next proposition shows that the

rings E are GWAs and under a certain (mild) conditions they have a ‘canonical’ normal element.
Proposition 5.1. Let E = D[X,Y;0,b,p|. Then

1. [7, Lemma 1.2] The ring E is the GWA D[H][X,Y; 0, H] where c(H) = pH + .

2. [7, Lemma 1.3] The following statements are equivalent:

(a) [7, Corollary 1.4] C = p(YX + a) = XY + o(«a) is a normal element in E for some
central element o € D,
(b) pa—o(a) =b for some central element o € D.
3. [7, Corollary 1.4] If one of the equivalent conditions of statement 2 holds then the ring
E =D[C][X,Y;0,a =p tC — a] is a GWA where o(C) = pC.

The algebra E is a GWA. Let E be the subalgebra of A generated by the elements X, F and
Y. The generators of the algebra E satisfy the defining relations

EX =¢XE, YX=¢q XY and EY —¢ 'YE=X.

is a solu-

So, E =K[X][E,Y;0,b = X, p = q~!] where 0(X) = ¢X. The polynomial o = q_)f_q
tion to the equation ¢~ o — o(a) = X. By Proposition 5.1, the algebra E = K[X,C|[E,Y;0,a =
qC — a] is a GWA where 0(X) = ¢X,0(C) = ¢ 'C and C = ¢} (YE + q,)fifq) =FEY + qququ
is a normal element of the algebra E. Then the element ¢ = g(¢~* — ¢)C is a normal element of

the algebra E. Clearly, ¢ = (¢7* —q)YE+ X = (1 — ¢*)EY + ¢*X. Then

- X
E=K[X,gl[E.Yio.a= 2o ] (5.1)

)

is a GWA where o(X) = ¢X and o(¢) = ¢ '¢. So, the algebra
A =E[K*; 7] (5.2)

is a skew Laurent polynomial algebra where 7(E) = ¢?E,7(X) = ¢X,7(Y) = ¢~'Y and 7(p) =
qp. The algebra A is a Noetherian domain of Gelfand-Kirillov dimension GK (A) = 4.

Lemma 5.2. The following identities hold in the algebra A.

1 BY' = Lo=LXYil 4 YR,
2. YE = ¢EY — =) x i,

Proof. Both equalities can be proved by induction on i and using the relation EY = X +
¢ YE. O

For a left denominator set S of a ring R, we denote by SR = {s71r|s € S,r € R} the left
localization of the ring R at S. If the left denominator set S is generated by elements X1, ..., X,
we also use the notation Rx, . x, to denote the ring S7IR. If M is a left R-module then the
localization S™'M is also denoted by Mx,. . .x

n°
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By Lemma 5.2, the set Sy := {Y*|i > 0} is a left and right Ore set in the algebra A. Let Ay
be the localization of A at the powers of Y. Recall that o = EY —¢qYE = X + (¢! — q)YE,

we have
X=X, Yo = qpY, Ep=q '¢E, Ko = qpK.

So, the element ¢ is a normal element of the algebra A. By (5.1), the localization Ey of
the algebra E at the powers of the element Y is the skew Laurent polynomial algebra Ey =
K[X, p][Y*;071] where 0(X) = ¢X and o(¢) = ¢ . Similarly, Eg = K[X, ¢][E*!; 0] ~ Ey
where o(X) = ¢X and o(p) = ¢ 1. Then by (5.2),

Ay = Ey [KE 7] = K[p, X][Y £ o] [KE; 7] (5.3)

is an iterated skew polynomial ring where o is the automorphism of K[y, X| defined by o (¢) = gy,
0(X) = ¢"'X; and 7 is the automorphism of the algebra K[p, X][Y*'; o] defined by 7(p) =
qp,7(X) = ¢X,7(Y) = ¢7'Y. Let Ay x, be the localization of Ay at the denominator set
{Xip|i,j € N}, then Ay x,, = K[pT!, XF Y+ 0][K*!;7] is a quantum torus. For an
algebra A we denote by Z(A) its centre. The next result shows that the algebra A and some of

its localizations have trivial centre.

Lemma 5.3. 1. Z(Ayx,,) =K.
2. Ay x., is a simple algebra.
3. Z(Ay) =K.
4. Z(A) =K.

Proof. 1. Let u =Y j k' X' Y*K' € Z(Ay x,,), where o; j ., € K and 4,4, k,l € Z. Since
Ku = uK, we have i + j — k = 0. The equality Xu = uX implies that £k — [ = 0. Similarly,
the equality Yu = uY implies that ¢ — j +1 = 0. Finally, using pu = up we get —k — [ = 0.
Therefore, we have i = j =k =1=0, and so u € K. Thus Z(Ay,x,,) = K.

2. By [27, Corollary 1.5.(a)], contraction and extension provide mutually inverse isomorphisms
between the lattices of ideals of a quantum torus and its centre. Then statement 2 follows from

statement 1.

3. Since K C Z(Ay) C Z(Ay,x,,) N Ay =K, we have Z(Ay) =K.

4. Since K C Z(A) C Z(Ay) N A=K, we have Z(A) =K. O
Lemma 5.4. The algebra Ax , is a central simple algebra.

Proof. By Lemma 5.3.(1), the algebra Ay x , is central, hence so is the algebra Ax ,. By Lemma
5.3.(2), the algebra (Ax,,)y = Ay,x,, is a simple Noetherian domain. So, if I is a nonzero ideal
of the algebra Ax ., then Y? e I for some i > 0. To finish the proof it suffices to show that

(Y = Ax,, foralli>1. (5.4)

To prove the equality we use induction on i. Let i = 1. Then X = EY — ¢ 'YE € (Y).
Since X is a unit of the algebra Ax ., the equality (5.4) holds for ¢ = 1. Suppose that i > 1
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and equality (5.4) holds for all i’ such that i’ < i. By Lemma 5.2.(1), Y*~1 € (Y?). Hence,
(Y%) = (Y ') = Ax,,, by induction. O

The element ¢ is a normal element of the algebras E and A. So, the localizations of the algebras

Ey and Ay at the powers of ¢ are as follows

Ey, = KX, o[y ;07! and Ay, = Ey [K*; 7). (5.5)

Now, we introduce several factor algebras and localizations of A that play a key role in finding
the prime spectrum of the algebra A (Theorem 5.8) and all the prime factor algebras of A
(Theorem 5.8). In fact, explicit sets of generators and defining relations are found for all prime
factor algebras of A (Theorem 5.8). Furthermore, all these algebras are domains, i.e., all prime

ideals of A are completely prime (Corollary 5.12).

The algebra A/(X). The element X is a normal element in the algebras E and A. By (5.1),
the factor algebra

E/(X) = K[¢][E,Y;0,a = q_f”_ o) =a"e (5.6)

is a GWA. Since YE = —f— EY = g ' —=%— = ¢ 'YE, the algebra

E/(X)~K(E,Y |EY = ¢ 'YE) (5.7)

is isomorphic to the quantum plane. It is a Noetherian domain of Gelfand-Kirillov dimension 2.

Now, the factor algebra
A/(X) ~E/(X)[K*;7] (5.8)

is a skew Laurent polynomial algebra where 7(E) = ¢°E and 7(Y) = ¢~ Y. It is a Noetherian
domain of Gelfand-Kirillov dimension 3. The element of the algebra A/(X), Z := oYK~ =
(1 —¢?>)EY2K ™1, belongs to the centre of the algebra A/(X). By (5.5), the localization of the
algebra A/(X) at the powers of the central element Z,

AY, %

- +1
D = K[ZF ] ® Y, (5.9)

(A/(X)), ~

is the tensor product of algebras where the algebra Y := K[Y*![K*!;7] is a central simple
algebra since 7(Y') = ¢~'Y and ¢ is not a root of unity. Hence, the centre of the algebra (A/(X))z
is K[Z*1]. The algebra (A/(X))z is a Noetherian domain of Gelfand-Kirillov dimension 3.

Lemma 5.5. 1. Z(A/(X)) =K[Z].
2. 7((A/(X)),) = KIZ*].

Proof. Z(A/(X)) = A/(X) N Z((A/(X))Z) = A/(X) NK[Z*'] = K[Z], by (5.8). O
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The algebra A/(¢). The element ¢ is a normal element in the algebras E and A. By (5.1),
the factor algebra

E/(p) =K[X][E,Y;0,a = — ], o(X)=¢X, (5.10)

¢t —q

is a GWA. Since YFE = *q!i(_q and EY = q(fq;i(

—) = qY'E, the algebra

E/(p) ~K(E,Y |EY = qVE) (5.11)

is isomorphic to the quantum plane. It is a Noetherian domain of Gelfand-Kirillov dimension 2.

Now, the factor algebra
A/(p) = E/(p)[K*; 7] (5.12)

is a skew Laurent polynomial algebra where 7(E) = ¢°F and 7(Y) = ¢~'Y. The algebra A/(¢)
is a Noetherian domain of Gelfand-Kirillov dimension 3. The element C' := XY K € A/(y)
belongs to the centre of the algebra A/(p).

The localization Ex y of the algebra E at the Ore set S = {X'Y7 |4,j € N},
Exy =K[X* o[y 071, o(X)=qX, a(p) =q"e, (5.13)

is a skew Laurent polynomial algebra. Then the localization A x y of the algebra 4 at the Ore
set S is equal to Axy = Ex y[K*!;7]. By (5.11) and (5.12), the localization of the algebra
A/(p) at the powers of the element C,

(5)e= (ﬁ)x;fy = (ZL), =Ko (5149

is a tensor product of algebras where Y is the central simple algebra as in (5.9). Hence, the
centre of the algebra (A/(Lp))c is K[C*1].

Lemma 5.6. 1. Z(A/(p)) =K[C].
2. z((A/(@)C) — K[C*!].

Proof. Z(A/(¢)) = A/(¢) N Z((A/(¢)).) = A/(¢) NKICF!] = K[C], by (5.12). 0

Let f: A — B be an algebra epimorphism. Then Spec (B) can be seen as a subset of Spec (A)
via the injection Spec (B) — Spec (A4), p — f~1(p). So, Spec (B) = {q € Spec (A) | ker(f) C q}.
Given a left denominator set S of the algebra A. Then 0 : A — S™!'A, a+ 17 'q, is an algebra
homomorphism. If the algebra A is a Noetherian algebra then Spec (S™1A) can be seen as a

subset of Spec (A) via the injection Spec (S™1A) — Spec (A), q — o~ 1(q).
In the proof of Theorem 5.8 the following very useful lemma is used repeatedly.

Lemma 5.7. Let A be a ring, S be a left denominator set of A and o : A — S71A, a 1. Let
q be a completely prime ideal of S~A, p be an ideal of A such that p C o=1(q) and S~'p = q.
Then p = o~ 1(q) iff A/p is a domain.
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Proof. (=) Since A/o"1(q) C S~ 'A/q and S71A4/q is a domain (since q is a completely prime
1

ideal), the algebra A/c~'(q) is a domain.

(<) The left S~ A-module S71(A/p) ~ S1A/Sp ~ S~1A/q is not equal to zero. In partic-
ular, SNp = . So, for all s € S, the elements s+ p are nonzero in A/p. Since A/p is a domain,
tors(A/p) = 0. Clearly, 0~ 1(q)/p C tors(A4/p). Hence, p = o~ 1(q). O

The prime spectrum of the algebra 4. The key idea in finding the prime spectrum of the

algebra A is to use Proposition 3.3 repeatedly and the following diagram of algebra homomor-

phisms A s Ax > Ax o
A/\(,X) Ax/l(so)x
AJ(X, Z)\ (A/(x)),
U= AJ( Xf YQA/(X Z)y =Y

L=U/E (5.15)

(where L = K[K*'] and U := U7(sl»))

that explains the choice of elements at which we localize. Using (5.15) and Proposition 3.3, we
represent the spectrum Spec (A) as the disjoint union of the following subsets where we identify

the sets of prime ideals via the bijections given in the statements (a) and (b) of Proposition 3.3:

Spec (A) = Spec (L) U Spec (Ug) U Spec(Y)
U Spec ((A/(X))z) U Spec (Ax/(p)x) U Spec(Ax,p). (5.16)

The theorem below gives an explicit description of the prime ideals of the algebra A together

with inclusions of prime ideals.

Theorem 5.8. The prime spectrum Spec (A) of the algebra A is the disjoint union of sets (5.16).
In the diagram (5.17), all the inclusions of prime ideals are given (lines represent inclusions of

primes). More precisely,

{(Y,E,p)|p € Max (K[K,K'])}

(Y E)

/\

{(X,a) [a € Max (K[Z]) \ {(2)}} Y)  (B) {(,) |x € Max (K[C]) \ {(C)}}

N LN S

(X) ()

N

0 (5.17)
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where

1. Spec (L) = {(Y,E,p) |p € Spec (K[K*!])\{0}} and A/(Y,E,p) ~ L/p where L = K[K*!].
2. Spec (Ug) = {(V)}, (V) = (X,Y) = (X, Z,Y) and A/(Y) ~ K[E][K*'; 7] where 7(E) =
¢°E.

3. Spec (Y) = {(E)}, (E) = (E,X) = (E,¢) and A/(E) ~ K[Y][K*; 7] where 7(Y) = ¢~ Y.
4. Spec ((A/(X))z) = {(X), (X,q) |q € Max(K[Z]) \ {(2)}}, Z = ¢V K1,

(a) A/(X)~E/(X)[K*Y; 7] is a domain (see (5.8)), and

(b) A/(X,q) ~ ();4“") ~ Lq®Y is a simple domain which is a tensor product of algebras

where Lq :=K[Z ]/q is a finite field extension of K.

5. Spee (A5) = {(9), (,1) | v € Max(KICD\{(C)}},C = XY K, A% ~ A o glo# g
Y,

(a) A/(p) =E/()[KT; 7] is a domain (see (5.12)).
(b) A/(p,t) ~ (;‘:;;Y ~ L. ®Y is a simple domain which is a tensor product of algebras

where L, := K[C]/v is a finite field extension of K.
6. Spec (Ax,,) = {0}.

Proof. As it was already mentioned above, we identify the sets of prime ideals via the bijection
given in the statements (a) and (b) of Proposition 3.3. Recall that the set Sx = {X"|i € N} is
a left and right denominator set of A and Ax := Sy'A ~ ASy' is a Noetherian domain (since

A is so0). The element X is a normal element of A. By Proposition 3.3,
Spec (A) = Spec (A, X) U Spec (Ax) (5.18)

and none of the ideals of the set Spec (A, X) is contained in an ideal of the set Spec (Ax).

Similarly, the element ¢ is a normal element of Ax and, by Proposition 3.3

Spec (Ax) = Spec ((A/(@))X> U Spec (Ax ). (5.19)

By Lemma 5.4, the algebra Ax , is a simple domain. Hence, Spec (Ax ) = {0}, and statement

6 is proved.

(i) (“Sﬁ ~ (ﬁ)’;”; ~ K[C*!] ® Y: The second isomorphism holds, by (5.14). Using the equalities

o=(¢'— q)YE + X = (1 - ¢*)EY + ¢®>X we see that the elements Y and E are invertible in

the algebra 4 (O3 , and so the first isomorphism holds.

w)

(i) A/(p, ) =~ (;43’;"/ ~ L. ®Y for all prime ideals v € Max (K[C]) \ {(C)}: Since v # (C), the
non-zero element C' = XY K € L, is invertible in the field L.. Hence, the elements X and Y are
invertible in the algebra A/(¢,t). Hence,

Alfpre) = 23 (5.20)

Now, the statement (ii) follows from (5.20) and the statement (i).

(iii) Statement 5 holds: Recall that the algebra Y is a central simple algebra. By the statement
(i), the set Spec(Ax/(¢)x), as a subset of Spec (A), is equal to {AN (p)x, AN (p,t)x |t €
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Max(K[C]) \ {(C)}}. It remains to show that AN (p)x = (¢) and AN (p,t)x = (p,t). The
second equality follows from the statement (ii) since (p,t) € AN(p,t)x C AN(p,t)xy @ (p, ).
Since Y is a central simple algebra, the statement (b) of statement 5 follows. The statement (a)
of statement 5 is obvious (see (5.12)). Hence, (¢) = AN (¢)x, by Lemma 5.7. So, statement 5
holds.

By Proposition 3.3,
Spec (A/(X)) = Spec (A/(X, Z)) U Spec ((A/(X)) ) (5.21)

and none of the ideals of the set Spec (A/(X, Z)) is contained in an ideal of the set Spec ((A/(X))z).

(iv) A/(X,q) ~ (X“L}:)’;@ ~ La®Y is a simple domain for all prime ideals q € Max(K[Z])\{(2)}:

Since q # (Z), the non-zero element Z = pY K~ € L, is invertible in the field L,. Hence, the
elements ¢ and Y are invertible in the algebra A/(X,q). Therefore,

AY7 ®

A/(X,q) ~ Edro

(5.22)

Now, by (5.9), the statement (iv) holds.

(v) Statement 4 holds: The algebra Y is a central simple algebra. By (5.9), the set Spec ((A/(X))z),
as a subset of Spec(A), is equal to {AN (X)y,,, AN (X,q9)v,,|q € Max(K[Z]) \ {(Z2)}}. We
have to show that AN (X)y,, = (X) and AN (X,q)y,, = (X,q). The last equality follows
from the statement (iv) (the algebra A/(X,q) is simple and (X, q) € AN (X,q)y,, S A, hence
(X,q9) = An(X,q)v,,). Now, the statement (b) of statement 4 holds. The statement (a) is
obvious, see (5.8). Hence, (X) = AN (X)y,,, by Lemma 5.7. So, the proof of the statement (v)

is complete.

In the algebra A, using the equality ¢ = X + (¢~! — q)Y E we see that

Z=¢oYK '=(¢'—qYEYK'=(1-¢)EY?*K™' mod (X). (5.23)

(vi) (Y) = (X,Y) = (X, Z,Y): The first equality follows from the relation X = EY — ¢ 'Y E.
Then the second equality follows from (5.23).

(vii) (E) = (E,X) = (E,¢): The first equality follows from the relation X = EY — ¢ 'Y E.
Then the second equality follows from the definition of the element ¢ = X + (¢~! — q)Y E.

(viii) The elements Y and E are normal in A/(X): The statement follows from (5.7) and (5.8).

. . . (vii)
( (7()5\2))1/ ~ (%)Y ~Y is a simple domain: By (5.23), (X,Z) = (X,EY?) C (X,E) =

ix)
(E), hence (X, EY?)y = (X, E)y = (E)y, by the statement (vii). Now, by (5.8), ((XAZ)>Y ~
Ay

~ Ay N( A ) ~Y
X2y =By S \®p ), =

By the statement (viii) and Proposition 3.3,

Spec (A/(X, Z)) = Spec (A/(X, Z,Y)) U Spec ((A/(X,2)),)- (5.24)
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By the statement (vi), A/(X,Z,Y) ~ A/(X,Y) ~ U := UZ°sly). By the statement (ix),
(A/(X, Z))Y ~ Ay /(E)y ~Y is a simple domain. So, the set Spec ((A/(X, Z))Y)7 as a subset
of Spec (A), consists of the ideal (E). In more details, since (X, Z) C (E), (X, Z)y = (E)y (see
the proof of the statement (ix)) and A/(F) = A/(E, X) = K[Y][K*!; 7] is a domain, the result

follows from Lemma 5.7. So, statement 3 holds.

The element E is a normal element of the algebra U. By Proposition 3.3,
Spec (U) = Spec (U/(E)) U Spec (Ug). (5.25)

Since L = U/(E), statement 1 follows. The algebra Ugp ~ K[ET!][K*!;7] is a central simple
domain. Since U = A/(Y) = A/(X,Z,Y) (the statement (vi)) is a domain, the set Spec (Ug),

as a subset of Spec (\A), consists of a single ideal (Y'), and statement 2 follows.

We proved that (5.16) holds. Clearly, we have the inclusions as on the diagram (5.17). It remains
to show that there are no other inclusions. The ideals (Y, E,p), (X, q) and (¢, t) are the maximal
ideals of the algebra A (see statement 1, 4, and 5). By (5.22) and the relations given in (5.17),
there are no additional lines leading to the maximal ideals (X, q). Similarly, by (5.20) and the
relations given in (5.17), there are no additional lines leading to the maximal ideals (¢, t). The
elements X and ¢ are normal elements of the algebra A such that (X) Z (¢) and (X) 2 (p), by
(5.2). The proof of the theorem is complete. O

The next corollary is an explicit description of the set Max(.A).

Corollary 5.9. Max (A) =P U Q U R where P:= {(Y,E,p)|p € Max (K[K,K~'])}, Q:=
{(X;0)[q € Max (K[Z]) \ {(2)}} and R := {(p,7) | * € Max (K[C]) \ {(C)} }.

Proof. The corollary follows from (5.17). O

The A-module is called faithful if it has zero annihilator. The next corollary is a faithfulness

criterion for simple A-modules.

Corollary 5.10. Let M be a simple A-module. Then M is a faithful A-module iff ker(Xps+) =
ker(oar-) = 0 iff Mx # 0 and M, # 0 (where Mx and M, are the localizations of the A-module
M at the powers of the elements X and @, respectively).

Proof. The A-module M is simple, so ann4(M) € Spec (A). The elements X and ¢ are normal
elements of the algebra A. So, ker(Xs-) and ker(pys-) are submodules of M. Either ker(X ) =
0 or ker(Xys-) = M, and in the second case ann (M) D (X). Similarly, either ker(pa-) = 0
or ker(pps) = M, and in the second case ann4(M) D (). Conversely, if ann(M) = 0 then
ker(Xps-) = ker(pp+) = 0. If ker(Xpy-) = ker(oar-) = 0 then anny (M) = 0, by (5.17). So, the
first ‘iff” holds.

For a normal element u = X, ¢, ker(uys-) = 0 iff M, # 0. Hence, the second ‘iff’ follows. O

The next proposition gives an explicit description of primitive ideals of the algebra A.
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Proposition 5.11. Prim(A) = Max(A) U {(Y), (E), 0}.

Proof. Clearly, Prim(A) O Max(A). The ideals (X), (¢) and (Y, E) are not primitive ideals as

the corresponding factor algebras contain the central elements Z,C' and K, respectively.

(i) Let us show that (Y) € Prim(A). For A € K*, let I, = (Y) + A(E — A). Since A/(Y) ~ U,
the left A-module M (\) := A/I(\) ~ U/U(E — ) ~ K[K*!]1 is a simple .A-module/U-module
where 1 = 1+ I(\). By the very definition, the prime ideal a := ann_4(M (\)) contains the ideal
(Y) but does not contain the ideal (Y, E) since otherwise we would have 0 = E1 = A1 # 0, a
contradiction. By (5.17), a = (V).

(ii) Let us show that (E) € Prim(A). By Theorem 5.8, (E) = (E,X) and A := A/(E) ~
K[Y][K*Y; 0] where o(Y) = ¢~'Y. For A € K*, the A-module T()\) := A/A(Y — \) ~ K[K*!]1
is a simple module (since ¢ is not a root of 1), where 1 = 1+ A(Y — \). Clearly, the prime ideal
b :=ann4(7T(\)) contains the ideal (E) but does not contain the ideal (Y, E) since otherwise we
would have 0 = Y1 = A1 # 0, a contradiction. By (5.17), b = (F).

(iil) 0 4s a primitive ideal of A: For A € K*, we define the A-module S(A) := A/A(KX — A\, Y).
Then S(A\) = @D, K[K*YET where T = 1+ AKX — \,Y). Let t = YX then Kt = tK
and tE' = E't — %XQEZ'”. The fact that S()) is a simple A-module follows from the
equality: tE'1 = —q%‘“l:—q;)\QK‘QEi_li. Since X ¢ anny(S()\)) and ¢ ¢ anng(S())), by
(5.17), ann4(S(A)) = 0. Thus 0 is a primitive ideal of the algebra A. O

Corollary 5.12. FEvery prime ideal of the algebra A is completely prime, i.e., Spec.(A) =
Spec (A).

Proof. See Theorem 5.8. O

Stratification and the Dixmier-Moeglin equivalence. The stratification theory of Good-
earl and Letzter can be applied to the study of prime and primitive ideals of the quantum spatial

ageing algebra A. We will show that 4 satisfies the Dixmier-Moeglin equivalence (Theorem 5.13).

Let us recall the general strategy of Goodearl and Letzter briefly, for details see [19]. Let R
be a Noetherian K-algebra and H = (K*)” be an algebraic torus acting rationally on R by
K-algebra automorphisms. We denote by H-Spec (R) the set of H-prime ideals of R (these
coincide with the H-invariant prime ideals of R by [19, Proposition 11.2.9] ). Given an ideal I
in R, (I: H):= ey h-Iis the largest H-invariant ideal of R contained in I. It is well-known
that (P : H) is an H-prime ideal if P is a prime ideal of R. For an H-prime ideal J of R, the
H -stratum of Spec (R) corresponding to J is defined by

Spec;(R) := {P € Spec (R) | (P : H) = J}.
These H-strata give a partition of Spec (R), namely

Spec (R) = |_| Spec;(R),

JeH-Spec (R)
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called the H-stratification of Spec (R). The stratum Spec;(R) can be described by using the
Stratification Theorem [19, Thorem I1.2.13].

Let H = (K*)? and let H act on the quantum spatial ageing algebra A by the K-algebra

automorphisms such that
A7) - X =AX, (A7) Y =pY, (Apy) K =y K5 (A ) E=M\"'E.

In particular, (\, 1,7) - ¢ = Ao, (A, p,y) - Z = My~ 1Z and (\, p,7) - C = AuyC. Then the
algebra A4 has 6 H-prime ideals,

H—Spec (A) = {Oa (X)7 (QD)’ (Y)7 (E)7 (Y>E)}
Consequently, there are 6 H-strata in Spec (A):

A)
A)
A)
A)
)
)

2
)} U {(X.q)[q € Max (K[Z]) \ {(2)}},
@)} U {(e,v)|r € Max (K[C]) \ {(C)}},
)} (5.26)

E)},
Y,E)} U {(Y,E,p)|p € Max (K[K*])}.

Spec

SpeC(X)

Spec(ip

)-<

Spec(y,)
A
A

Spec g

{0
{
{
{
{
{

~~ o~ o~ o~ o~

(X
(
(
(
(

Spec(y, g)

A prime ideal P of a ring R is said to be locally closed if {P} is locally closed in Spec (R) where
Spec (R) is equipped with the Zariski topology. By [19, Lemma I1.7.7], a prime ideal P in a
ring R is locally closed iff the intersection of all prime ideals properly containing P is an ideal
properly containing P. A prime ideal P of a Noetherian K-algebra R is said to be rational if
the field Z(FracR/P) is algebraic over K. The Dizmier-Moeglin equivalence states that if P is a

prime ideal of a Noetherian K-algebra then the following properties are equivalent:
P is locally closed <= P is primitive <= P is rational.

Theorem 5.13. The algebra A satisfies the Dizmier-Moeglin equivalence, and the primitive

ideals of A are precisely the prime ideals that are mazimal in their H-strata.

Proof. The algebra A contains a sequence of subalgebras K C K[X] C K X, Y] CE C A
satisfying the hypotheses of [19, Proposition I1.7.17], thus A satisfies the noncommutative Null-
stellensatz over K. Since A has finitely many H-prime ideals, the theorem follows from [19,
Theorem I1.8.4] O

Remark. Proposition 5.11 follows immediately from Theorem 5.13 and (5.26). This gives an

alternative proof of Proposition 5.11 without considering simple 4-modules.
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5.3 The automorphism group of A

In this section, the group G := Autg(A) of automorphisms of the algebra A is found (Theorem
5.14). Corollary 5.15 describes the orbits of the action of the group G on Spec (A) and the set
of fixed points.

We introduce a degree filtration on the algebra A by setting deg(K) = deg(K~!) = 0 and
deg(E) = deg(X) = deg(Y) = 1. So, A = [, cyAln] where A[n] = Y KXY/E*K! with
deg(XYIEFK') := i+ j+k < n. Let grA = @,y Alil/Ali — 1] (where A[-1] := 0) be
the associated graded algebra of A with respect to the filtration {A[n]|},>0. For an element
a € A, we denote by gra € gr A the image of a in gr A. It is clear that gr.A4 is an iterated
Ore extension, gr.A ~ K[X][Y;a][E;B][K*!;4] where a(X) = ¢7'X, B(X) = ¢X, B(Y) =
¢ Y, y(X) = ¢X, v(Y) = ¢ 'Y and v(F) = ¢*E. In particular, gr A is a Noetherian domain
of Gelfand-Kirillov dimension GK (gr.A) = 4 and the elements X,Y and E are normal in gr.A.

The group of units A* of the algebra A is equal to {K*K*|i € Z} = K* x (K) where (K) =
{K'|i € Z}. The next theorem is an explicit description of the group G.

Theorem 5.14. Autg(A) = {0 q.i | i,y € K, i € Z} ~ (K*)? x Z where 0y 1 X —
AKX, Y = pK™'Y, K = vK, E — M~ 'q 2 K?E (and o ,.4,i(¢) = NK'p). Furthermore,

— . L -1 — . . .
TN AN ' G = OAN i up/ =3yt ikg O O3 = Ox 1 ity i g1

Proof. Using the defining relations of the algebra A, one can verify that oy, € G for all
A,y € K* and i € Z. The subgroup G’ generated by these automorphisms is isomorphic to
the semi-direct product (K*)3 x Z. It remains to show that G = G’. Recall that the elements X
and ¢ are normal in the algebra A. Let o € G, we have to show that o € G'.

By (5.17), there are two options either the ideals (X) and () are o-invariant or, otherwise, they

are interchanged. In more details, either, for some elements A, \' € K* and 4,5 € Z,

(a) o(X) = AKX and o(¢) = N K/, or, otherwise,
(b) 0(X) = AK%p and o(p) = VK’ X.

(i) o(K) = vK for some v € K*: The group of units A* of the algebra A is equal to {yK?®|~v €
K*, s € Z}. So, either 0(K) = vK or, otherwise, o(K) = yK ! for some v € K*. Let us show
that the second case is not possible. Notice that KX = ¢X K and Ky = qpK, i.e., the elements
X and ¢ have the same commutation relation with the element K. Because of that it suffices to
consider one of the cases (a) or (b) since then the other case can be treated similarly. Suppose
that the case (a) holds and that o(K) = yK~!. Then the equality o(K)o(X) = qo(X)o(K)
yields the equality YK 1 AKX = gAK' X -vK~! = gA\ygK'~'X. Hence, ¢°> = 1, a contradiction.

(i) dego(Y) = dego(E) = 1: Recall that YE = ¢~ 1(p — X) where ¢’ := ¢~! — ¢. By applying
o to this equality we obtain the equality o(Y)o(E) = ¢ 'o(¢ — X). Hence, deg (o(Y)o(E)) =
deg (q’_la(go - X)) = 2, in both cases (a) and (b). Thus, there are three options for the pair
(dego(Y),dego(E)): (1,1), (0,2) or (2,0). The last two options are not possible since otherwise
we would have o(Y) € K[K*!] or 0(F) € K[K*!], respectively. Hence, o(Y)o(K) = (K)o (Y)
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or o(E)o(K) = o(K)o(E), respectively. But this is impossible since YK # KY and EK # KE.
Therefore, dego(Y) = dego(E) = 1.

(iii) o(Y) = aY and o(E) = bE for some nonzero elements a,b € K[K*']: Applying o to the
relation KEK ! = ¢>F we obtain the equality Ko(E)K ! = ¢?0(FE). Since dego(E) = 1,
o(E) = bE+uX +vY +w for some elements b, u, v, w € K[K*!]. Using the relations K XK ! =
qX and KYK™! = ¢7'Y, we see that u = v = w = 0, i.e., 0(F) = bE. Similarly, applying
o to the relation KYK™! = ¢7'Y, we obtain the equality Ko(Y)K~! = ¢ lo(Y). Since
dega(Y)=1,0(Y) =aY +w'E +v'X +w' for some elements a,u’,v',w’ € K[K*!]. Using the
relations KXK' = ¢X, KYK™! = ¢ 'Y and KEK~! = ¢®?F, we see that ' =v' = w' =0,
ie, oY) =aY.

(iv) i = j (see the cases (a) and (b)): The elements X and ¢ commute, hence o(X)o(p) =
o(p)o(X). Substituting the values of o(X) and o (i) into this equality yields ¢=* = ¢~/ in both

cases (a) and (b), i.e., 7 = j (since ¢ is not a root of unity).

(v) The case (b) is not possible: Suppose that the case (b) holds, i.e., o(X) = MK’ and o(p) =
NEK'X (see the statement (iv)), we seek a contradiction. To find the contradiction we use the
relations ¢Y X = XY and Y = qpY. Applying the automorphism o to the first equality gives
o(qY X) = qaY -A\K'p = qa ¢’ K'Y p and 0(XY) = AK'p-aY = AK'7(a)pY = AK'1(a)q 'Y
where 7 is the automorphism of the algebra K[K*!] given by the rule 7(K) = ¢ ' K. Hence,
7(a) = ¢"*2a, ie., a = EK 12 for some ¢ € K*. So, o(Y) = EK~72Y. Now applying o to the
second equality, Y = q@Y, we have the equalities o(Y) = EK 772 - VKX = EN¢'K2Y X
and o(qpY) = gNK'X - EK7172Y = NG K2XY = ¢N¢H*K~2Y X. Therefore, ¢* = 1,
a contradiction (since ¢ is not a root of unity). This means that the only case (a) holds.
Summarizing, we have o0(X) = AK'X, 0(K) = 7K, a(p) = NK'p, o(Y) = aY, and o(E) =
bE.

(vi) a = pK=* for some p € K* (i.e., o(Y) = pK~'Y): Applying the automorphism o to
the relation ¢V X = XY yields: o(qYX) = qaY - A\K'X = Ma¢’K'qY X = \a¢'K'XY and
o(XY) = AKX - aY = AK'7(a)XY. Therefore, 7(a) = ¢‘a, i.e., a = pK ¢ for some element
we K

(vii) b = K% for some § € K* (i.e., o(E) = 6K*E): Applying the automorphism o to
the relation ¢XE = EX yields: 0(¢XE) = ¢\K'X - bE = AK'7(b)¢XE = AK'7(b)EX and
o(EX) =bE - AK'X = AK'bq~?*EX. Therefore, 7(b) = ¢~ b, i.e., b = §K?* for some § € K*.

(viii) 6 = Au~tq™2": Applying the automorphism o to the relation EY = X + ¢ 'Y E gives:
o(EY) =6K*E -uK=Y = §ug* K'EY = §ug* K (X +q¢ 'YE) and (X +¢ 'Y E) = AK'X +
¢ IuK=Y - SK?E = KY(AX + duq*'q 'Y E). Therefore, ug?* = ), and the statement (viii)

follows. The proof of the theorem is complete. O
Corollary 5.15.

1. The prime ideals T := {0, (X), (¢), (Y), (E), (Y, E)} are the only prime ideals of A that
are invariant under action of the group G of automorphisms of A (i.e., Gp = {p} for all
pel).
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2. If, in addition, K is an algebraically closed field, then each of the three series of prime
ideals in Spec(A) is a single G-orbit. In particular, there are 9 G-orbits in Spec(A).

Proof. By Theorem 5.14, Gp = {p} forallp € Z. Let 0 = 0 ,1.4.i, then 0(2) = A\uy'¢' Z, o(C) =
Ayq'C and o(K) = yK. Now the corollary is obvious since p = (K — «a), ¢ = (Z — ) and
t = (C — ) for some «, 8, € K* where the ideals p, q and v are as in Theorem 5.8. O

5.4 Centralizers of some elements of the algebra A

The next proposition describes the centralizers of the elements K, X and ¢ in .A. The centralizers
are large subalgebras of A. Furthermore, they are GWAs and the algebra A is a skew polynomial
algebra with coefficient ring C4(X) or C4(y).

Proposition 5.16. 1. C4(K) = K[K*']| ® A is a tensor product of algebras where A =
K{t,u|tu = q?ut) is the quantum plane where t := Y X and u := Y. Moreover, Ay
CA(K)[Y*; 0] where o' (t) = ¢~ 't,0'(u) = qu and o' (K) = qK.

2. Ca(X) = K[X, go}[a,y;'y,qq‘pji(q] is a GWA where v(X) = X,v(¢) = ¢ %p, 0 := EK !
and y:=KY.
(a) Z(CA(X)) = KIX]
(b) The algebra A = CA(X)[K*';0] is a skew polynomial ring where 0(X) = ¢X,0(p) =
q¢,0(0) = ¢°0 and 0(y) = ¢~ 'y.
3. Cale) = K[X, ][0, v/; v, qilq‘/:fq} is a GWA where v(X) = ¢*X,v(p) = ¢, & == EK
andy' == K~1Y.
(a) Z(Caly)) =Klg].
(b) The algebra A = C4(p)[K*;0] is a skew polynomial ring where 6(X) = qX,0(p) =
qp, 0(0') = ¢*0" and 0(y') = ¢y’

Proof. 1. By (5.2), C4(K) = E“x [K*1; 7] = K[K*!] ® E“%, where wx : a — KaK~! is the
inner automorphism of the algebra A determined by the element K. Notice that wgx = 7 where
7 is defined in (5.2). Using the explicit action of the automorphism 7 on the elements X, ¢, F
and Y we see that E™ = K(Y X, Y¢) = A. Clearly, Ay = C4(K)[Y*!;0'], by (5.3).

2. Clearly, 0,y € C := C4(X) and D := K[X, ¢] C C. By (5.1) and (5.2), the subalgebra, say C’,
of A generated by the elements D, 0 and y is the GWA D[, y;7, q

pX | since
q —q

0X = X0, yX = Xy, 0p=q 290, yp =q*py; y0 = KYEK ' =¢YE = qa

where a = q“:fq and dy = EY = q;fl’j‘zX = qqq,‘f;‘lx = ~v(ga). Since C' C C, it remains to

show that C' =C. By (5.1) and (5.2),

A= P pPEK'e P DY'K' = @ DIK & P DyK =EHCK,

i>0,j€7Z i>1,j€ez i>0,j€Z i>1,j€EZ jEez

hence, C = C’, as required. Therefore, A = C[K*!;0]. It is easy to show that Z(C) = K[X].
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3. Clearly, 0,y € C := C4(p) and D C C. By (5.1) and (5.2), the subalgebra, say C’, of A

generated by the elements D, and ¢’ is the GWA D[, y';+', ¢ * q"o_fi(q] since

IX =¢X0, yX=q*Xy, 0p=00, yo=oy; yo =K 'YEK =q 'a

=X o _ g te—qX _  _19o—¢®X _ /-1 . / . .
where a = P and 9"y = EY = e =4 e = (¢~ ta). Since C’ C C, it remains

to show that C’ = C. By (5.1) and (5.2),

A= P pEKe P DYKI = (P DI'K'e @ DYK =PCK,

i>0,j€Z i>1,j€Z i>0,j€Z i>1,j€Z JEZ

hence, C' = C’, as required. Therefore, A = C[K*';0]. It is easy to show that Z(C) = K[p]. O

The next lemma describes the centralizers of the element Y in A and Ay .

Lemma 5.17. 1. C4, (V) = K[Y*']| ® R where R := K(a,b|ab = ¢?ba) is the quantum
plane, a := KX and b:= K lo.
2. CA(Y)=K[Y] ® R.
3. Ay = Cy, (Y)[KTY; 7] is a skew polynomial algebra where 7(Y) = ¢~'Y, 7(a) = qa and
7(b) = gb.

Proof. 1. Statement 1 follows from (5.3).
2. Ca(Y)=ANCu, (V) =AN (KY*] @ R) =K[Y] ® R.

3. Statement 3 follows from statement 1 and (5.3). O

The next lemma describes the centralizers of the element E in A and Apg.

Lemma 5.18. 1. The centralizer of E in Ap, Ca,(E) = K[E*'| ® P, is the tensor product
of algebras where P := K(21, 22| 2221 = ¢* 21 %23) is the quantum plane, 27 = X
and 25 = KX?2.

2. Cu(E) =K[E] ® P,

3. Cap ., (E)=K[EF|® Py, ,,.

4. Let C := Cyp  (E). Then Ap x,, = @, (KC® K'XC) and for alli € Z and ¢ € C
E-Kic=q¢?K'¢c-Eand E-K'Xc=q ?'K'Xc-E.

Proof. 1. Let Z = K[p, X][K*1;6] be the subalgebra of A where §(X) = ¢X and 0(p) = qp.
By (5.2), we see that the localization Ag of A at the powers of the element FE is a skew Laurent

polynomial algebra
Ap = Z|E*; 0] (5.27)

where o (p) = ¢ 1p,0(X) = ¢X and 0(K) = ¢ 2K. Now, C 4, (F) = Z°[E*'] where #7 = {r €
Z|o(r) =r}. Let us show that 9 = P. In view of the explicit nature of the automorphism
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o of #, #° = @iezyjykeN{KKiijk\U(Kigonk) = KipIX*}. Notice that (K’ X*) =
q 2tk KipI X* | we have k = 2i + j (since ¢ is not a root of unity), and so,
Kipi X2+ — qi(2j+i71)(X<p)j(KX2)i _ qi(2j+i71)%1j 2y
Therefore, #° = P.
2. CA(E)=ANCa,(E)=ANK[E* @ P=K[E]|® P.

3 and 4. The elements X and ¢ are normal elements of Z = K[y, X|[K*!; 0] where 0(X) = ¢X
and 0(¢) = gp. The set Sx,, = {X '’ |i,j € N} is an Ore set of the domain Z. The localization
KEx,p = S)_(,lsoz%" is equal to

Fxp = KIXFL @F K 0] = KIXH, 23 [K50) = (Pyy oy ® XPoy o, ) IKF50](5.28)

where Py, 5, = S8;', P and Sy, o, == {27 23 |i,j € N}. The elements X and ¢ are normal
elements of the algebras A and Ag. Hence, Sx,, = {X"¢’ |4,j € N} is an Ore set of A and Ag.
By (5.27), the localization Ag x o, := S)}}¢AE of the algebra Ag at Sx , is equal to

Apx.p = Ax ol B 0] 2 (P oy @ X P2, ) IR 0B+ 0] = D K (Co XC) (5.29)
€L

where, for a moment, C := K[E*| ® Py, ,, = (CAE(E)) C Capx.,(E). By (5.29),

X, X

2
Cup.x.,(E) = C, and so statement 3 holds. Now, by (5.29), statement 4 holds. O



Chapter 6

The smash product algebra

6.1 Introduction

The quantum plane K, [X, Y] admits a well-known structure of U, (slz)-module algebra (see, e.g.,
[33, 40]). In fact, there exists an uncountable family of non-isomorphic U, (sls)-module algebra
structures on the quantum plane and a complete description of those structures was presented
in [25]. Given a module algebra over a Hopf algebra, one can form the smash product algebra
[38, 4.1.3], which is a useful method to construct new algebras. In this chapter, our main object
of study is the smash product algebra A := K,[X,Y] x Uy(sly), where the quantum plane is
endowed with the well-known U, (sl;)-module algebra structure, the precise definition is given

below.

Fix a field K of characteristic zero, and an element ¢ € K* such that ¢ is not a root of unity.
Recall that the quantized enveloping algebra of sly is the K-algebra Ug(sly) with generators
E,F,K, K~ subject to the defining relations:

K- Kt
KEK '=¢E, KFK'=¢q °F, EF—-FE=———.
q—q
The centre of Uy(sly) is a polynomial algebra Z(Uy(slz)) = K[Q] where Q := FE + 7‘1}((;_‘1;11){;.
There is a Hopf algebra structure on Uy,(sly) defined by
A(K)=K®K, e(K) =1, S(K) =K,
AE)=E®1+K®E, e(E) =0, S(E)=-K'E,
AF)=F®K'+1®F, e(F) =0, S(F) = —FK,

where A is the comultiplication on Ug(slz), € is the counit and S is the antipode of U,(sls).

Note that the Hopf algebra U,(slz) is neither cocommutative nor commutative. We can make

80
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the quantum plane K (X, Y] :=K(X,Y | XY = ¢V X) a U,(sly)-module algebra by defining,

K. X =¢X, E-X =0, F.X =Y,
K.Y =q'Y, E.Y =X, F.Y=0.

Then one can form the smash product algebra A := K,[X,Y] x U,(slz). The generators and
defining relations for this algebra are given below. Our aim is to study the prime spectrum of

this algebra and give a classification of simple weight A-modules.

Definition. The algebra A is the algebra generated over K by the elements E, F, K, K, X, Y

with defining relations

K—-K!
KEK ' =¢*E, KFK—' =¢7?%F, [E,F] = ——,
q—q
EX =¢XE, EY =X +q¢ 'YE,
FX =YK '+ XF, FY =YF,
KXK' =¢X, KYK™!'=qlY, gV X = XY.

A PBW deformation of this algebra, the quantized symplectic oscillator algebra of rank one, was
studied by Gan and Khare [26], where the PBW theorem was given and some basic representation
theory of this algebra was considered. They also determined the centre of the deformed algebra
(the centre is trivial), but for the algebra A, they did not give the central element. In this
chapter we show that the centre of A is a polynomial algebra K[C] (Theorem 6.7), and the
generator C is given explicitly, see (6.11)—(6.14). The method we use in finding the central
element of A can be summarized as follows. The algebra A is ‘covered’ by a chain of subalgebras.
These subalgebras are generalized Weyl algebras and the central elements can be determined by
applying Proposition 6.1. At each step elements are getting more complicated but the relations
are getting simpler. Finally, we find a central element in a large subalgebra A of A which turns

out to be a central element of the algebra A.

We are interested in the algebra A because it can reasonably be seen as the quantum analogue
of the enveloping algebra U (sly x V3) of the semidirect product Lie algebra sl x V5. These two
algebras are similar in many ways. For example, the prime spectra of these two algebras are the
same, the representation theory of A has many parallels with that of U(sly x V3), the Casimir
element of A degenerates to the Casimir element of U(sly x V3) as ¢ — 1. The study of quantum
algebras usually requires more computations. Much work has been done on quantized enveloping
algebras of semisimple Lie algebras (see, e.g., [29, 33]). In the contrast, few examples can be

found on the quantized algebras of enveloping algebras of non-semisimple Lie algebras.

Let us briefly describe the contents of this chapter. In Section 6.2, we find the centre of the
algebra A, it is a polynomial algebra and the generator is given explicitly. We also show that
A satisfies the quantum Gelfand-Kirillov conjecture. An explicit description of the prime and
primitive ideals of A together with the inclusions are given in Section 6.3. As the Weyl algebras
play an important role in the study of enveloping algebras, in Section 6.4, we consider a quantum
analogue of the Weyl algebra. It plays a similar role the Weyl algebra does but in the study

of quantum algebras. The Weyl algebras and their quantum analogues are special examples of
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generalized Weyl algebras. An A-module M is called a weight module if M = pekr My where
M, ={m e M|Km = um}. A classification of simple weight A-modules is given in Section 6.7.
In order to give a classification of simple weight A-modules, we need first study the centralizer
Ca(K) of the element K in the algebra A, which is also interesting in its own right. In Section
6.5, we give the generators and defining relations of the algebra C4(K) (Theorem 6.29). We
have to choose the generators carefully to make the defining relations simpler. The centre of
Ca(K) is K[C, K*'] (Theorem 6.29). For A € K and p € K*, we prove that the factor algebra
EMH = Cx(K)/(C — X\, K — p) is a simple algebra if and only if A # 0 (Theorem 6.34). One
of the key observations is that the localization ‘Kt)"“ of the algebra € * at the powers of the
element ¢ = Y X is a central, simple, generalized Weyl algebra (Proposition 6.32). The other
one is that, for any A € K and p € K*, we can embed the algebra €** into a generalized Weyl
algebra 7 (which is also a central simple algebra), see Proposition 6.38. These two facts enable
us to give a complete classification of simple C4 (K)-modules. The problem of classifying simple
¢ M+-modules splits into two distinct cases, namely the case when A\ = 0 and the case when A # 0.
In the case A = 0, we embed the algebra ¥** into a skew polynomial algebra R = K[h*!][t; o]
where o(h) = ¢?h (it is a subalgebra of the algebra .«7) for which the classifications of simple
modules are known. In the case A # 0, we use the close relation of ¥** with the localization
‘5{\’“ , and the argument is more complicated. A classification of simple C4 (K')-modules is given

in Section 6.6.

Much of this chapter is extracted from the joint paper with V. Bavula [12].

6.2 The centre of the algebra K, [X,Y]| x U,(sly)

The aim of this section is to determine the centre of the algebra A (Theorem 6.7). The next
proposition is a corollary of Proposition 5.1 when p = 1. The rings E with p = 1 admit a
‘canonical’ central element (under a mild condition). This proposition is a key one for this
section and is used on many occasions to produce central elements. In the present section a full

generality of the construction is needed, i.e. when the base ring D is noncommutative.
Proposition 6.1. Let E = D[X,Y;0,b,p =1]. Then

1. [7, Lemma 1.5] The following statements are equivalent:
(a) C=YX+a=XY +o(a) is a central element in E for some central element oo € D,
(b) a—o(a) =0b for some central element o € D.
2. [7, Corollary 1.6] If one of the equivalent conditions of statement 2 holds then the ring
E =D[C][X,Y;0,a=C —qa] is a GWA where o(C) = C.

If D is commutative the implication (b) = (a) also appeared in [31].

An involution 7 of A. The algebra A admits the following involution 7 (see [26], p. 693):

7(E)=-FK, 7(F)=-K'E, 7(K) =K, f(K") =K', 7(X) =Y, 7(Y)=X. (6.1)
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The algebra E is a GWA. Let E be the subalgebra of A which is generated by the elements
E, X and Y. The elements E, X and Y satisfy the defining relations

EX =¢XE, YX=q 'XY, and EY —¢ 'YE=X.

Recall that the algebra E is a GWA E = K|p, X]|[E,Y;0,a = q“‘:i(q] (see (5.1)) where ¢ =
(' = qQYE+ X = (1 — ¢®)EY + ¢*X, o(p) = ¢ ¢ and o(X) = ¢X. Using the defining
relations of the GWA E, we see that the set {Y*|i € N} is a left and right Ore set in E. The
localization of the algebra E at this set, Ey := K[p, X|[Y*!; 0], is the skew Laurent polynomial
ring. Similarly, the set {X*|i € N} is a left and right Ore set in Ey and the algebra

Ey x = K[p, XT[Y*; 0] = K[@] @ K[ X[V £ 0] (6.2)

is the tensor product of the polynomial algebra K[®] where ® = X¢ and the skew Laurent
polynomial algebra K[X*!|[Y; o] which is a central simple algebra. In particular, Z(Ey x) =
K[®]. So, we have the inclusion of algebras E C Ey C Ey x. Recall that for any algebra A,
we denote by Z(A) its centre. The next lemma describes the centre of the algebras E, Ey and

Ey7x.

Lemma 6.2. Z(E) = Z(Ey) = Z(Ey,x) = K[®] is a polynomial algebra where ® := X .
Proof. By (6.2), K[®] C Z(E) C Z(Ey) C Z(Ey,x) = K[®], and the result follows. O

We have the following commutation relations

X=X, Yo = qpY, Ep=q ¢k, Ko = qpK. (6.3)
X® =X, Y® = a0, E® = OF, K® = ¢?OK. (6.4)

Lemma 6.3. 1. [F,¢] =YK.
2. The powers of ¢ form a left and right Ore set in A.
3. The powers of X form a left and right Ore set in A.
4. The powers of Y form a left and right Ore set in A.

Proof. 1. [F,o] = [F,X + (¢! = q)YE]| =YK+ (¢! — V(- E=£) = Y K.

q9—q

2. Statement 2 follows at once from the equalities (6.3) and statement 1.
3. The statement follows at once from the defining relations of the algebra A where X is involved.

4. The statement follows at once from the defining relations of the algebra A where Y is

involved. O

The algebra F is a GWA. Let F be the subalgebra of A which is generated by the elements
F,X and Y’ := YK~!. The elements F, X and Y’ satisfy the defining relations

FY'=q¢?Y'F, XY'=¢Y'X and FX - XF=Y'
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Therefore, the algebra F = K[Y'][F, X;0,b = Y',p = 1] where o(Y') = ¢~2Y”’. The polynomial

a = 17(11_2Y’ € K[Y'] is a solution to the equation oo — o(a) = Y’. By Proposition 6.1, the
element C' := XF + #Y’ =FX + qgl_lY’ belongs to the centre of the GWA
! / ! 1 !
F:K[C,Y][F,X;a,achl — Y.
—q

Let ¥ := (1 —¢*)C'". Then ¢y = (1 - ¢®>)FX —Y' = (1 - ¢*)XF — ¢*Y' € Z(F) and

2yl
F =K, Y[R, X0 = 20 0) (6.5)

where (1)) = ¢ and o(Y’) = ¢~2Y". Similar to the algebra E, the localization of the algebra F

at the powers of the element X is equal to
Fx = K[y, Y][X* 07 = K[y] o K[Y'][X 507 1]

where ¢ is defined in (6.5). The centre of the algebra K[Y'][X*!;071] is K. Hence, Z(Fx) =
K[y].

Lemma 6.4. Z(F) = Z(Fx) = K[¢].
Proof. The result follows from the inclusions K[¢)] C Z(F) C Z(Fx) = K[]. O

The GWA A. Let T be the subalgebra of A generated by the elements K, X and Y. Clearly,
T :=A[K*; 7] where A :=K(X,Y | XY = ¢V X) and 7(X) = ¢X and 7(Y) = ¢~ 'Y. (6.6)

It is easy to determine the centre of the algebra T
Lemma 6.5. Z(T) = K[z] where z := KY X.
Proof. Clearly, the element z = KY X belongs to the centre of the algebra 7. The centralizer

Cr(K) is equal to K[K*! Y X]. Then the centralizer Cr (K, X) is equal to K[z], hence Z(T) =
K][z]. O

Let A be the subalgebra of A generated by the algebra T' and the elements ¢ and . The
generators K1, XY, ¢ and 1 satisfy the following relations:

X = Xo, oY =q 'Y, oK =q 'Ko,
X = X, VY = qY, VK =qKvy, oy —vp=—q(l-¢*)z.

These relations together with the defining relations of the algebra T are defining relations of
the algebra A. In more detail, let, for a moment, A’ be the algebra generated by the defining

relations as above. We will see A’ = A. Then

A =T[p,p;0,b=—q(1 —¢*)z,p=1].
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Hence, the set of elements { K’ X7Y*plyy™ |i € Z,75,k,1,m € N} is a basis of the algebra A’. This
set is also a basis for the algebra A. This follows from the explicit expressions for the elements
0=('—qYE+ X and ¥ = (1 — ¢®*)XF — ¢°Y K. In particular, that the leading terms of
@ and 1) are equal to (¢! — ¢)YE and (1 — ¢®) X F, respectively (deg(K*!) =0). So, A = A/,
ie.,

A=Tlp¢;0,b=—q(1 - ¢*)z,p=1]

where 0(X) = X,0(Y) = ¢"'Y and o(K) = ¢ 'K. Recall that the element b belongs to
the centre of the algebra 7' (Lemma 6.5). The element o = ¢3Z is a solution to the equation
a — o(a) = b. Then, by Proposition 6.1, the algebra A is the GWA

A=T[C"[p,;0,a=C" - ¢*2]
where o(C") = C",0(X) = X,0(Y) = ¢V, 0(K) = ¢ 'K and C" = Yo+ ¢z = o + qz
(since o(2) = ¢22). Let C:= {Z. Then
C=01-¢")"We+d’2) =1 -¢*) " g +q2), (6.7)
is a central element of the GWA
A=T[Cllp,¢;0,a=(1-¢*)C - ¢’2] (6.8)

where o(C) = C,0(X) = X,0(Y) =¢ 'Y and 0(K) = ¢ 'K. Since p = (¢-! = 1)YE + X and
v=(1-¢)XF—¢YK™! we see that

AX,Y = AX7y. (69)

Hence, C € Z(A). In fact, Z(A) = K[C] (Theorem 6.7). In order to show this fact we need to
consider the localization Ax y,,.
Let T :=Txy = A)Qy[Kil;T] where 7 is defined in (6.6) and Ax y is the localization of the
algebra A at the powers of the elements X and Y. By (6.9) and (6.8),

Axye = Axy,e = Txy[CO][p™;0] =K[C] @ Tlp™; 0] = K[C] © A’ (6.10)
where A’ = T[p*!; 0] and o is as in (6.8). Notice that A’ is a quantum torus, it is easy to
compute its centre.

Lemma 6.6. 1. Z(A) =K.
2. The algebra A is a simple algebra.

Proof. 1. Let u = > N j k. K X7YkQl € Z(A), where \; ;1 € K. Since [K,u] = 0, we have
j— k41 = 0. Similarly, since [X,u] = [Y,u] = [p,u] = 0, we have the following equations:
—i+k=0,1—j5+1=0, —i—k = 0, respectively. These equations imply that i = j =k =1=0.
Thus Z(A) = K.

2. Since the algebra A’ is central, it is a simple algebra, by [27, Corollary 1.5.(a)] O

ATC
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Theorem 6.7. The centre Z(A) of the algebra A is the polynomial algebra in one variable K[C].

Proof. By (6.10) and Lemma 6.6.(1), Z(Ax y,,) = K[C]. Hence, Z(A) = K[C]. O

Using the defining relations of the algebra A, we can rewrite the central element C' as follows

2

C:qu%FYXE+FXQ—Y%(*E—1quUT{X+IEfYKX. (6.11)
C=(FE—-@EF)YX +¢FX? - K 'EY? (6.12)
cu:RmEY—qYEy-K*EY?+lff(K—KMUYX. (6.13)
Co (= @FEYX + —L (K~ K-Y)YX + FX? — K-1 Y2, (6.14)

1—¢g2

The subalgebra A of A. Let A be the subalgebra of A generated by the elements K*!, E, X
and Y. Then A is the quantum spatial ageing algebra. The properties of this algebra was studied
in the previous chapter. Recall that the algebra

A=E[K*!; 7] (6.15)

is a skew Laurent polynomial algebra where 7(E) = ¢*FE,7(X) = ¢X and 7(Y) = ¢~ 'Y. The
elements X, ¢ € A are normal elements of the algebra A. The set Sx , := {X"¢’ |4,j € N} is a
left and right denominator set of the algebras A and A. Clearly Ax , := S)_qu: CAx,:= S)_(,ISDA.

By Lemma 5.4, the algebra Ax , is a central simple algebra.

For an element a € A, let degp(a) be its F-degree. Since the algebra A is a domain, degp(ab) =
degp(a) 4+ degpr(b) for all elements a,b € A. Using the defining relations of the algebra A, the

algebra A is a skew polynomial algebra
A= A[F;0,] (6.16)

where ¢ is an automorphism of A such that 0(K) = ¢’K,0(E) = E,0(X) = X,0(Y) =Y; and
§ is a o-derivation of the algebra A such that §(K) = 0,6(E) = Ig:;{__ll,é(X) =YK~ ! and
5(Y)=0.

Lemma 6.8. The algebra Ax , = K[C]® Ax ., is a tensor product of algebras.

Proof. Recall that ¢ = EY — ¢Y E. Then the equality (6.13) can be written as C = FXyp —
K 'EY? + 1322 (K — K7')Y X. The element X¢ is invertible in Ax ,. Now, using (6.16), we

see that Ax , = Ax ,[F;0,0] = Ax [C] = K[C] ® Ax ;. -

Summarizing, we have the following inclusions of algebras
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AX,%Y

I

AX,@

N
Ax Ay
NS
A

(6.17)

Quantum Gelfand-Kirillov conjecture for A. If we view A as the quantum analogue of the
enveloping algebra U(sly x V), a natural question is whether A satisfies the quantum Gelfand-
Kirillov conjecture. Recall that a quantum Weyl skew field over K is the skew field of fractions of
a quantum affine space. We say that a K-algebra A admitting a skew field of fractions Frac (4)
satisfies the quantum Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl

skew field over a purely transcendental field extension of K; see [19, I1.10, p. 230].

Theorem 6.9. The quantum Gelfand-Kirillov conjecture holds for the algebra A.

Proof. This follows immediately from (6.10). O

6.3 Prime, primitive and maximal spectra of A

The aim of this section is to give classifications of prime, primitive and maximal ideals of the
algebra A (Theorem 6.15, Theorem 6.19 and Corollary 6.17). It is proved that every nonzero
ideal of the algebra A has nonzero intersection with the centre of A (Corollary 6.16). The set of
completely prime ideals of the algebra A is described in Corollary 6.20. Our goal is a description
of the prime spectrum of the algebra A together with their inclusions. Next several results are

steps in this direction, they are interesting in their own right.
Lemma 6.10. The following identities hold in the algebra A.

1. FXi= XiF+ =0 yK-1xi-1,

_q2.
2 XF' = FiX - S0 yF-IKL
Proof. The equalities are proved by induction on ¢ and using the defining relations of A. O

Lemma 6.11. 1. In the algebra A, (X) = (Y) = (p) = AX + AY.
2. A/(X)~U.

Proof. 1. The equality (X) = (V) follows from the equalities FX = YK !4+ XF and EY = X +
q 'Y E. The inclusion (¢) C (Y) follows from the equality ¢ = EY —qY E. The reverse inclusion
(p) 2 (Y) follows from Y = [F, p]K~! (Lemma 6.3). Let us show that XA C AX + AY. Recall
that X is a normal element of A. Then by (6.16), XA =3, AXFF = AX + D ks AXF* C
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AX 4+ AY (the inclusion follows from Lemma 6.10.(2)). Then (X) = AXA C AX + AY C
(X,Y) = (X), ie., (X) = AX + AY.

2. By statement 1, A/(X) = A/(X,Y) ~U. O

The next result shows that the elements X and ¢ are rather special.

Lemma 6.12. 1. Foralli>1, (X') = (X).
2. Foralli>1, (¢')x = (p) = Ax.

Proof. 1. To prove the statement we use induction on ¢. The case ¢ = 1 is obvious. Suppose that
i > 1 and the equality (X7) = (X)7 holds for all 1 < j < i — 1. By Lemma 6.10.(1), the element
YX= € (X7). Now, (X)! = (X)(X)! = (X)(X"7!) = AXAX"T1TA C (X)) + AYXT1A C
(X%). Therefore, (X)* = (X*).

2. Tt suffices to show that (¢%)x = Ax for all i > 1. The case i = 1 follows from the equality

of ideals (¢) = (X) in the algebra A (Lemma 6.11). We use induction on i. Suppose that the
equality is true for all i’ < i. By Lemma 6.3.(1), [F, '] = 117_‘31__2i Y K=t hence Yi=! € (o).
Using the equalities EY — ¢ 'Y E = X and Fg = ¢ 1¢FE, we see that EY p'™1 — ¢~ Yo' 1E =
(EY — ¢ 'YE)p'=! = X¢~1. Now, (¢%)x 2 (p'~1)x = Ax, by induction. Therefore, (¢*)x =

Ax for all 7. O

One of the most difficult steps in classification of prime ideals of the algebra A is to show that
each maximal ideal q of the centre Z(A) = K[C] generates the prime ideal Aq of the algebra A.
There are two distinct cases: q # (C) and q = (C'). The next theorem deals with the first case.

Theorem 6.13. Let q € Max(K[C]) \ {(C)}. Then

1. The ideal (q) := Aq of A is a mazimal, completely prime ideal.
2. The factor algebra A/(q) is a simple algebra.

Proof. Notice that q = K[C]q where ¢ = ¢(C) is an irreducible monic polynomial such that
q(0) € K*.

(i) The factor algebra A/(q) is a simple algebra, i.e., (q) is a mazimal ideal of A: Consider the

chain of localizations

Ax Ax o
A= 08 T @xy

By Lemma 6.8, (’3));’?‘; ~ Ly ® Ax,, where Ly := K[C]/q is a finite field extension of K. By
Ax

Lemma 5.4, the algebra Ax , is a central simple algebra. Hence, the algebra O3 is simple iff
(¢',q)x = Ax for all i > 1. By Lemma 6.12.(2), (¢*)x = Ax for all i > 1. Therefore, the

algebra éﬁ is simple. Hence, the algebra A/(q) is simple iff (X*,q) = A for all i > 1.

By Lemma 6.12.(1), (X%) = (X)? for all i > 1. Therefore, (X% q) = (X)* + (q) for all i > 1.
It remains to show that (X)" + (q) = A for all i > 1. By Lemma 6.11.(1), (X) = (X,Y).
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If i = 1 then (X) + (9) = (X,Y,q) = (X,Y,q(0)) = A4, by (6.11) and ¢(0) € K*. Now,
A=A = ((X)+(q))" € (X)" +(q) C 4, ie., (X)" + (q) = A, as required.

(ii) (q) s a completely prime ideal of A: The set S = {X'¢’ |i,j € N} is a denominator set of
the algebra A. Since (’:));‘ — S71(A/(q)) is a (nonzero) algebra and (q) is a maximal ideal of
the algebra A, we have that tors(A/(q)) is an ideal of the algebra A/(q) distinct from A/(q),

hence tors(A/(q)) = 0. This means that the algebra A/(q) is a subalgebra of the algebra

(‘:));'“; ~ Ly ® Ax,, which is a domain. Therefore, the ideal (q) of A is a completely prime ideal.
(i) Z(A/(q)) = Lq: By Lemma 5.4, Z(Ax,,) = K, and A/(q) C (’;‘)’;’i ~ Lq ® Ax,,, hence
Z(A/(a)) = Lq. O

The case where q = (C) is dealt with in the next proposition.

Proposition 6.14. AN (C)x,, = (C) and the ideal (C) of A is a completely prime ideal.

Proof. Recall that A = A[F;0,0] (see (6.16)), ® = X¢ € A is a product of normal elements
X and ¢ in A and, by (6.13), the central element C' can be written as C' = ®F + s where

s= K 'EY? — Xjand j:= {2 VEK ' — oYK

(i) If Xf € (C) for some f € A then f € (C): Notice that X f = Cg for some g € A. To prove
the statement (i), we use induction on the degree m = degp(f) of the element f € A. Notice
that A is a domain and degp(fg) = degp(f) + degpr(g) for all f,g € A. The case when m < 0
ie., f € A, is obvious since the equality X f = Cg holds iff f = g =0 (since degp(X f) < 0 and
degr(Cg) > 1 providing g # 0). So, we may assume that m > 1. We can write the element f
asasum f = fo+ fiF'+ -+ fn F'™ where f; € A and f,,, # 0. The equality X f = Cg implies
that degp(g) = degp (X f) — degp(C) = m — 1. Therefore, g = go + 1 F + - -+ + gm_1 F™ " for
some ¢g; € A and g,,—1 # 0. Then

Xfo+tXfrF+ - + X" =(PF +s)(go+ 1 F + -+ gm,lFm_l)
=®(a(go)F +6(g0)) + ®(c(g1)F + (1)) F + -+ + ®(0(gm—1)F + 8(gm—1)) F™ !
+ 590 + 891 F + -+ 8Gm_1 F™ 1
= ®3(go) + sgo + (Po(go) + ®(g1) + sg1) F + -+ + @0 (gm—1)F™. (6.18)

Comparing the terms of degree zero we have the equality X fo = ®d(g0) + sgo = X¢d(go) +
(—¢*K~'EY? — X§)go, ie., X(fo — ¢5(g0) + 590) = —¢* K 'EY?2gy. All the terms in this
equality belong to the algebra A. Recall that X is a normal element in 4 such that A/ AX is
domain (see (5.8)) and the element K ~*EY? does not belong to the ideal AX. Hence we have
go € AX, i.e., go = Xhg for some hg € A. Now the element g can be written as ¢ = Xhg + ¢'F
where ¢’ =0if m =1, and degp(g') =m—2=degp(g9) —1if m > 2. Now, Xf = C(Xho+¢'F)
and so X (f — Chy) = Cg¢’'F. Notice that C¢'F has zero constant term as a noncommutative

polynomial in F' (where the coefficients are written on the left). Therefore, the element f — Chg
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has zero constant term, and hence can be written as f — Chg = f'F for some [’ € A with

degp(f') + degp(F) = degp(f'F) = degp(f') + 1
1, ifm=1,

=degp(f — Chp) < max (degF(f),degF(Cho)) = { s 1

In both cases, degp(f') < degp(f). Now, Cg'F = X(f —Cho) = X f'F, hence X f' = Cq¢’ € (C)
(by deleting F'). By induction, f’ € (C), and then f = Chg + f'F € (C), as required.

(i) If of € (C) for some f € A then f € (C): Notice that ¢ f = Cg for some g € A. To prove the
statement (ii) we use similar arguments to the ones given in the proof of the statement (i). We
use induction on m = degp(f). The case where m < 0, i.e., f € A is obvious since the equality
pf =Cgholdsiff f =g =0 (since degp(¢f) < 0and degp(Cyg) > 1 providing g # 0). So we may
assume that m > 1. We can write the element f asasum f = fo+ f1F+-- -+ f, F'™ where f; € A
and f,, # 0. Then the equality ¢f = Cg implies that degp(g) = degp(pf) — degp(C) =m — 1.
Therefore, g = go + g1 F + -+ + gm_1F™ ! where g; € A and g,,_1 # 0. Then replacing X by
@ in (6.18), we have the equality

ofo+ofilF' + -+ @fmF™ = ®0(go) + 590 + - + Po(gm—1)F™. (6.19)

The element s can be written as a sum s = (-3 oK~ + 1_1q2 KX)Y. Then equating the

constant terms of the equality (6.19) and then collecting terms multiple of ¢ we obtain the
equality in the algebra A: o(fo — X6(g0) + %z K 'Y go) = ﬁKXYgO. The element ¢ € A

1—q?
is a normal element such that the factor algebra A/ Ay is a domain (see (5.12)) and the element

KXY does not belong to the ideal Agp. Therefore, g9 € Agp, i.e., go = @hg for some element
ho € A. Recall that degp(g) = m — 1. Now, g = pho + ¢'F where ¢ € A and ¢’ = 0 if
m =1, and degp(¢’) =m — 2 =degp(g9) — 1 if m > 2. Now, ¢of = Cg = C(pho + ¢'F). Hence,
o(f = Chg) =C¢g'F, and so f — Chyg = f'F for some f' € A with

degp(f') + degp(F) = degp(f'F) = degp(f') +1
1, ifm=1,

= degye(f — Cho) < max (degp (f), degp(Cho)) = { o

In both cases, degpr(f') < degp(f). Now, Cg'F = ¢o(f — Chg) = ¢f'F, hence pf' = Cq' € (C)
(by deleting F'). Now, by induction, f’ € (C), and then f = Chg + f'F € (C), as required.

(iii) AN (C)x,, = (C): Let u € AN(C)x,,. Then X'piu € (C) for some i, j € N. It remains to
show that u € (C). By the statement (i), ¢’u € (C), and then by the statement (ii), u € (C).

(iv) The ideal (C) of A is a completely prime ideal: By Lemma 6.8, Ax ,/(C)x,, ~ Ax,,, in
particular, Ax ,/(C)x . is a domain. By the statement (iii), the algebra A/(C) is a subalgebra
of Ax,,/(C)x,p, so A/(C) is a domain. This means that the ideal (C') is a completely prime
ideal of A. O

The next theorem gives an explicit description of the poset (Spec (4), Q).
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Theorem 6.15. Let U := U,(slz). The prime spectrum of the algebra A is a disjoint union
Spec(A) = Spec(U) U Spec(Ax.) = {(X.p) | p € Spec(U)} L {Aq|q € Spec(K[C])}.  (6.20)

Furthermore,

(©)  {AalaeMax(KC)\ {(O)}}

N/

0 (6.21)

Proof. By Lemma 6.11.(2), A/(X) ~ U. By Lemma 6.12.(1) and Proposition 3.3,
Spec (A) = Spec (A, X) U Spec (Ax). (6.22)
By Lemma 6.12.(2) and Proposition 3.3,
Spec (Ax) = Spec (Ax,,). (6.23)

Therefore, Spec(4) = {(X,p)|p € Spec(U)} U{A N Ax,q|q € Spec(K[C])}. Finally, by
Theorem 6.13.(1), AN Ax,,q = (q) for all ¢ € Max (K[C]) \ {(C)}. By Proposition 6.14,
AN Ax ,C = (C). Therefore, (6.20) holds. For all g € Max (K[C]) \ {(C)}, the ideals Aq of A
are maximal. By (6.11), AC C (X). Therefore, (6.21) holds. O

For a list of prime ideals of the algebra U, (sly) see [36, Theorem 4.6]. We note that every nonzero

prime ideal of U, (sly) is a primitive ideal.
The next corollary shows that every nonzero ideal of the algebra A meets the centre of A.

Corollary 6.16. If I is a nonzero ideal of the algebra A then I NK[C] # 0.

Proof. Suppose that the result is not true, let us choose an ideal J # 0 maximal such that
J NK[C] = 0. We claim that J is a prime ideal. Otherwise, suppose that J is not prime,
then there exist ideals p and q such that J g p, J ;Cé q and pg C J. By the maximality of J,
pNK[C] # 0 and gNK[C] # 0. Then JNK[C] D pgNK|[C] # 0, a contradiction. So, J is a prime
ideal, but by Theorem 6.15 for all nonzero primes P, P N K[C] # 0, a contradiction. Therefore,
for any nonzero ideal I, I NK[C] # 0. O

The next result is an explicit description of the set of maximal ideals of the algebra A.

Corollary 6.17. Max (A) = Max (U) U {Aq|q € Max (K[C]) \ {(C)}}.

Proof. The equality follows from (6.21). O
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In the following lemma, we define a family of left A-modules. We will show that these modules

are simple A-modules and their annihilators are equal to (C).
Lemma 6.18. For A € K*, we define the left A-module W (X)) := AJA(X — N\, Y, F). Then

1. The module W () is a simple A-module.
2. anny (W (X)) = (C).

Proof. 1. Let 1 = 1+ A(X — \,Y,F) be the canonical generator of the A-module W(\).
Then W(A) = >,y E'K[K*!] 1. Suppose that V is a nonzero submodule of W (X), we have
to show that V. = W(X). Let v = ", E*f;,1 be a nonzero element of the module V where
fi € KK and f, # 0. By Lemma 5.2.(2), Yo = Y0 (¢ EY — W)X B 1 =
> —"(ll%(‘gi)XEi_lfJ. By induction, we see that Y"v = P1 € V where P is a nonzero
Laurent polynomial in K[K*']. Then it follows that 1 € V', and so V = W (\).

2. Tt is clear that anna(W(A)) 2 (C) and X ¢ anng(W(A)). By (6.21), we must have
anng (W(N)) = (O). O
The next theorem is a description of the set of primitive ideals of the algebra A.

Theorem 6.19. Prim (A) = Prim (U) U {Aq|q € SpecK[C]\ {0} }.

Proof. Clearly, Prim (U) C Prim (A) and {Aq|q € Max (K[C]) \ {CK[C]}} C Prim (A) since Aq

is a maximal ideal (Corollary 6.17). By Corollary 6.16, 0 is not a primitive ideal. In view of
(6.21), it suffices to show that (C') € Prim (A). But this follows from Lemma 6.18. O

The next corollary is a description of the set Spec,(A) of completely prime ideals of the algebra
A.

Corollary 6.20. The set Spec.(A) of completely prime ideals of A is equal to
Spec,(A) = Spec,(U) U {Aq]|q € Spec (K[C])}

= {(X,p) |p € Spec (U), p # anny (M) for some simple finite dimensional
U-module M of dimg (M) >2} U {Aq|q € Spec(K[C])}.

Proof. The result follows from Theorem 6.13.(1) and Proposition 6.14. O

6.4 Action of A on the polynomial algebra K|z, y]

In the study of universal enveloping algebras, the Weyl algebras play an important role as we
have seen in the previous chapters. In this section, we consider a g-analogue of the (first) Weyl
algebra, which is a central simple algebra of Gelfand-Kirillov dimension 2. It plays a role similar

to the one the Weyl algebra does but in the study of quantum algebras.
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Let o, and o, be the automorphisms of the polynomial algebra K|z, y] that are defined by the

rule
0x (1) = qr, 0u(y) =y, oy(z) =2, 0oy(y) = qy.
The g-partial derivatives 0f and 9] on K[z,y]| are defined by the rule
oi(aty’) = [y and 9(siy’) = [f]aiyi !

where [n] := q;:qq_—ln is the ‘quantum integer’. We denote the operator of ‘multiplication by

x (resp. y) simply by x (resp. y). Nontrivial commutation relations between the elements

z, 0y, 0%, y, 0y and O are

Oz = qT0,, 0o, = qo 0%, 0z = q 20l + 0, = qrdl + o, (6.24)

oyy = qyoy, Aoy, = qo,0f, Oy = q 'ydi + 0y = qydi + o, " (6.25)

Let W, be the subalgebra of End (K[z,y]) generated by the elements x, o f!, 9, y, ayﬂ and 9.

Lemma 6.21. K[z,y] is a simple Wa-module.

Proof. Let N be a non-zero submodule of K[z, y]. Let 0 # f € N. Notice that deg, (9%(f))
deg,(f) — 1 and deg,(97(f)) = deg,(f) — 1. Thus there exist m,n € N such that 0
(01)™(9y)"(f) € K. Therefore, N = K|z, y|, and K[z, y| is a simple W,-module.

[N

Proposition 6.22. There is an algebra homomorphism o : A — Wy defined by the rule
K (0,0, K 'woyol, E v —o, ' w(09)? — 0,0yl

F Y —uy, X = —0,0%yoy.

Proof. Let M := AJA(K —1,X,E), it is a left A-module. Then M ~ K[F,Y]1, where 1 =
1+ A(K —1,K~' —1,X,E). The linear map K[z, y] — M, z'y/ — F'Y71 is a bijection. Let o
be the representation of A in K[z, y] obtained via this bijection from representation of A in M.
Then we obtain the above correspondence. Let us show that o(E) = —o,; L2 (09)2 — 0,03y0] for

example. Notice that the following equality holds in the algebra A

FiiqufiJrl _ Kflqifl'

EF' = F'E + i — (6.26)
q—4q
Notice further that for all integers a and b, [a + b] = ¢~°[a] + ¢*[b]. Then
L ) L Kot K11 » Kol g lgicl
EFYI = (FlE—i- [i] Fi-1 q — q )le = [i] Fi-1 q ~— q vii
a—q q—4q

=—[li+j-1FY1= ( — ¢ [i][i = 1] = ¢ '[d] [J']) FYIL

We can see from this that o(E) = —o, '2(9%)* — 0,0%yd2. O
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g-analogue of the Weyl algebra. Recall that the (first) Weyl algebra A; is the subalgebra
of End (K[z]) generated by the operators  and 9, where 9, is the derivative with respect to .
More precisely, A; = K(z, 0, | Opx — 20, = 1).

Let W, be the subalgebra of End (K[z]) generated by the operators o, oy !,z and 94. In
particular, these generators of W satisfy the relations (6.24). The next proposition shows that
W is a central simple GWA and the relations (6.24) (together with 0,0, ! = o t0, = 1) are
the defining relations of Wj. Notice that Wy >~ W; ® W is a tensor product of algebras, then
Ws is also a central simple algebra. The algebra W; can be viewed as a g-analogue of the Weyl

algebra A;. Some ring theoretic properties of the algebra W; were studied in [34].

Proposition 6.23. The algebra Wi is a central simple GWA.

—1
T

Proof. Let U be the algebra generated by the symbols o, o ",z and 94 subject to the defining

relations (6.24) (together with the relation 0,0, = 0,10, = 1). Notice that

-1 —1,-1
201 =22 "%  q gipg =279 %
= 9y =

Tog—qt q—qt

Then U = K[oF!][z,0%;7,a = %] is a GWA where 7 is an automorphism of the algebra

K[o1] defined by 7(0,) = ¢~ 10,. Moreover, there is a natural epimorphism of algebras f : U —»

T

Wi. Let U, be the localization of U at the powers of the element x. Then U, = K,[oF!, zF!]
where K,[of!, 2¥!] = K(oF!, 2% |02 = quo,) is the central simple quantum torus. The
inclusions K C Z(U) C U N Z(U,) = K yield that Z(U) = K. The simplicity of U follows
immediately from Theorem 2.16 ([6, Theorem 4.2]). Now, the epimorphism of algebras f : U —»

Wi must be an isomorphism. Hence, W is a central simple GWA. O

6.5 The centralizer of K in the algebra A

In this section, we find the explicit generators and defining relations of the centralizer C4 (K) of
the element K in the algebra A.

Proposition 6.24. The algebra C4(K) = K(K*', FE, YX, EY? FX?) is a Noetherian

domain.

Proof. Since A is a domain, then so is its subalgebra C4(K). Notice that the algebra A =
@,z Ai is a Z-graded Noetherian algebra where A; = {a € A|KaK~' = g'a}. Then the
algebra Ag = C4(K) is a Noetherian algebra.

The algebra U, (sly) is a GWA: U,(sly) ~ K[K*L, Q|[E, F;0,a := Q — %} where 2 =
FE + %, o(K) = ¢ 2K and o(Q2) = Q. In particular, U,(slz) is a Z-graded algebra
Uy(sly) = @,z Dvi where D := K[K*!, Q] = KK+ FE], v; = E'if i > 1, v; = Flil if i < -1
and vo = 1. The quantum plane K,[X, Y] is also a GWA: K, [X,Y] ~ K[t][X,Y"; 0, t] where ¢ :=
Y X and o(t) = gt. Therefore, the quantum plane is a Z-graded algebra Ky[X, Y] = @, K[t|w;
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where w; = X7 if j > 1, w; = YVl if j < —1 and wy = 1. Since A = U,(sls) ® K,[X, Y] (tensor
product of vector spaces), and notice that Bt = tE + X2, Ft =tF + ¢ 2K ~'Y?2, we have

A =U,(sly) @ Ky[X, Y] = ) Dvi © P K[tlw; = @ Dlt]viw;. (6.27)

i€z jez ijEL
By (6.27), for each k € Z, Ay, = D, jcz, 2i1 j1 DItlviw; = @,cz DltJviwg—2;. Then Ca(K) =
Ay =@, DIIEY? © @, D[t]F X% . Notice that EY?-t = ¢~ ?t- EY? 4 qt* and FX?-t =
¢*t-FX?4q ' K~1t*. By induction, one sees that for all i, j > 0, E‘Y* € @, . K[t](EY?)™ and
FiX% € @, KK+, t|(FX2)". Hence, Ca(K) = Ao = @5 DII(EY?) @ -, DI(FX2).
In particular, Cx(K) = K{(K*!, FE, YX, EY? FX?). O

Lemma 6.25. 1. Ca,, (K) = K[C,K*] @ Kp[(YX)*, (Yp)*!] is a tensor product of
algebras where K2 [(Y X)), (Yp)E] is a central, simple, quantum torus with YX - Y =
@Yy -YX.

2. GK (Cay, ,(K)) = 4.
3. GK(Cx(K)) =4.
4. Axye = Pz Cax, v (K)Y"

Proof. 1. By (6.10), Ax y,, = K[C]®A’ where A’ is a quantum torus. Then Cx, , (K) = K[C]®
Cu(K). Since A" is a quantum torus, it is easy to see that Ca/(K) = @, ; ez K (Y X)/ (Y)¥,
Le., On(K) =KIKF] @ Kp[(YX)*, (Ye)*!]. Then statement 1 follows.

2. Statement 2 follows from statement 1.

3. Let R be the subalgebra of C4(K) generated by the elements C, K*' Y X and Y. Then
R = K[C,K*] ® K2 [YX,Yy] is a tensor product of algebras. Clearly, R is a Noetherian
algebra of Gelfand-Kirillov dimension 4. So GK(C4(K)) > GK(R) = 4. By statement 2,
GK (Ca(K)) < GK (Cay.y., (K)) = 4. Hence, GK (Ca(K)) = 4.

4. Statement 4 follows from statement 1 and (6.10). O
Proposition 6.26. Let h:= pX ', e:= EX 2 andt:=YX. Then

1. Cay, (K) =K|[C, Kil] ® o is a tensor product of algebras where of := K[hil][t’ e 0,0 =
‘fz_f;;l] is a central simple GWA (where o(h) = ¢*h).

1

2. GK(Ca, (K)) = 4.
X = @iGZ CAx,w (K>XZ

Proof. 1. Let </ be the subalgebra of Ca, (K) generated by the elements h*!, e and t.

1 18 a central simple : e elements , e and t satisty the following relations
i) o i l simple GWA: The el h*! d isfy the followi lati

-2
1 _ -1y _ 2 _ -2 _qh-1 _h-1
hh =h h—l, th—q ht, eh—q h@, 6t71—7q2’ te = 1—q2 (628)
Hence, 7 is an epimorphic image of the GWA &' = K[h™!|[t,e;0,a = 17’2 1] where o(h) = ¢?h.

Now, we prove that o7’ is a central simple algebra. Let <7/ be the localization of &/’ at the powers
of the element e. Then &7/ = K[h*!][e*?!; 0] where o/ (h) = ¢~ 2h. Clearly, Z(</) = K and <7/
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is a simple algebra. So, Z(«’) = Z(&)) N &/’ = K. To show that &/’ is simple, it suffices to
prove that &/’e’e/’ = &/’ for any i € N. The case i = 1 is obvious, since 1 = ¢et — te € &'es/’.
By induction, for 7 > 1, it suffices to show that e’~! € .&/’e’.e7’. This follows from the equality

te! = ¢*e’t — 11__‘5; e'~1. So, &/’ is a simple algebra. Now, the epimorphism of algebras .27/ —» &/

is an isomorphism. Hence, & ~ &/’ is a central simple GWA.

(i) Cay,(K) = K[C,K*'] ® «/: By Lemma 6.8, Ax, = K[C] ® Ax,. So, Ca, (K) =
K[C]®Cay ,(K). By (5.2), Ax,, = EX#,[Kil;T] where 7(E) = ¢?E,7(X) = ¢X,7(Y) = ¢ 'Y
and 7(p) = qp. Then Ca, (K) = K[K*] ® E% ,- To finish the proof of statement (ii),
it suffices to show that Ex , = &. By (5.1), Ex, = K[X*, ot [E,Y;0,a = q“‘:i(q] is a
GWA. Then Ex, = @50 KIX*!, o*E' © @, KX, YT = @, e KIWEEXF @
PB;>1 rez KIWEYIXF. Now, it is clear that EY , = @, K[h*]e! & @5, KpH |t = 7.

2. Notice that GK (&) = 2, statement 2 follows from statement 1.

3. Notice that Ax , = @,z Cay., (K)X', statement 3 then follows from Lemma 6.8. O

Defining relations of the algebra C4(K). We have to select carefully generators of the
algebra C4 (K) in order to make the corresponding defining relations simpler. The next lemma

indicates how we choose the generators.
Lemma 6.27. We have the following relations.

1.YX Yo=¢*Yp -YX.
2. FE YX = @YX -FE+ S K-lyp - Wt Ky x 4 ¢

1—q2

5. FE-Yo=q Yo FE+ ®4 Ky, aQ+Dyx 1,

Proof. 1. Obvious.
2. Using the defining relations of A, the expression (6.11) of C, and Y = ¢*Y X +q(1—¢?)EY?,
FE-YX=FX+q¢'YE)YX=FX*+YFXE=FX*+Y(YK '+ XF)E

=FX?+ ¢ 2K YW?E+YXFE
PK+(q—¢ —¢")K!

= (YX)(FE)+(1+¢)K 'EY? - = YX+C
—q
—1 2 K —1K—1
:q2YX~FE+q+q2K_1Y<p—q(q +q2 yx tc
I—¢q I—q

3. FE-Yop=F(X+q 'YE)p=FX¢+q *YFpE=FXp+q ?Y(pF +YK)E

3 K — K—l
=q¢ YoFE+ (*°K + K"Y)EY? - (q(l_qQ) +q(1+PAK)YX +C
K+q'K! 1442
— Yy FE4+ 11 vo- WD) gy v o O
1—¢q2 1—¢g2

Let © == (1 - ¢*)Q = (1 - ¢)FE + TS0 ¢ 7(U,(shy)). By (6.12), We have

gK~!
1—¢2

C=(® WYX +¢@PFX? — K 'Ye. (6.29)

q(1—¢?)
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By Lemma 6.27.(2), (3), we have

O-YX=¢YX O+ (qg+q K Yo+ (1-¢*)C. (6.30)
O-Yo=qYp-0-q(1+KYX+(1-q¢%)C. (6.31)

Lemma 6.28. In the algebra C4(K), the following relation holds

7

q 2 4
2K(YX) —-¢C-YX.

1 _
TR

Proof. By (6.29),0 - YX =C+ 4, K~ 'YX — ¢®?FX? + 7

1
1—¢? (1-¢%)

K~Yp. So,

O YX-Yp=C-Ypit: a

KY%WX . Ypo—¢*FX? . Yo+ . K1 (Yp)2

_
(1—-4¢%)

Then ® - YX - Yo — (1(17;2)1(_1(}’@)2 —C-Yyp = 1_qq2K_1YX Yo — ¢?FX? - Y. Notice
that YX - Yo =¢*(YX)2 +q¢(1 - ¢®)YX -EY? FX? . Yp=¢’FXp-YX and EY? - YX =

q(YX)?+ ¢ 2Y X - EY2. Then by (6.13) we obtain the identity as desired. O

q2

Theorem 6.29. Let u:= K'Yy and recall that t =YX, © = (1 — ¢*)FE + %;KA).
Then the algebra Ca(K) is generated by the elements K1, C, ©, t and u subject to the following

defining relations:

t-u=q*u-t, (6.32)

O-t=¢0+(¢g+qg Hu+(1-4¢°)C, (6.33)

O - u=q%u-0—-—ql+t+1-FAK'C, (6.34)
1 q’ _

Ot u———u?—C-u= 2 —¢*K~1C ¢, 6.35

q(1—¢?) 1—¢? (6.35)

[K*',.]=0, and [C,]=0 (6.36)

where (6.36) means that the elements K*! and C are central in Ca(K). Furthermore, Z(Ca(K)) =
K[C, K*1].

Proof. (i) Generators of C4(K): Notice that Yo = ¢*Y X +¢(1 —¢?)EY?2. Then by Proposition
6.24 and (6.29), the algebra C4(K) is generated by the elements C, K*', ©, t and u. By (6.30),
(6.31) and Lemma 6.28, the elements C, K*!, ©, t and u satisfy the relations (6.32)(6.36). It

remains to show that these relations are defining relations.

Let € be the K-algebra generated by the symbols C', K=, O, t and u subject to the defining
relations (6.32)—(6.36). Then there is a natural epimorphism of algebras f : € — C4(K). Our

aim is to prove that f is an algebra isomorphism.

(ii) GK(%) = 4 and Z(¥¢) = K[C,K*']: Let R be the subalgebra of ¢ generated by the
elements C, K*! ¢ and u. Then R = K[C,K*!] ® Kg2[t,u] is a tensor product of algebra
where K2 [t,u] := K(¢,u|tu = ¢*ut) is a quantum plane. Clearly, R is a Noetherian algebra of
Gelfand-Kirillov dimension 4. Let %, be the localization of € at the powers of the elements ¢
and u. Then %;,, = K[C, K] ® K2 [tF!, u*!] = Ry . So, GK (%},,) = 4. Now, the inclusions
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R C % C 6, yield that 4 = GK(R) < GK (%) < GK (%..) =4, i.e., GK (%) = 4. Moreover,

since K,z [t*1, u*!] is a central simple algebra, Z(%;,) = K[C, K*!]. Hence, Z(%) = K[C, K*!].

By Lemma 6.25.(3), GK (¢) = GK (C4(K)) = 4. In view of Proposition 2.12, to show that the

epimorphism f : ¥ — C4(K) is an isomorphism it suffices to prove that % is a domain.

Let 2 be the algebra generated by the symbols C', K*', ©, t and u subject to the defining
relations (6.32)—(6.34) and (6.36). Then Z is an Ore extension

2 = R[O©;0,0]

where R = K[C, K*!]® K2 [t, u] is a Noetherian domain; o(C) = C, o(K*!) = K1, o(t) = ¢*,
o(u) = ¢ %u; § is a o-derivation of R given by the rule §(C) = 6(K*') =0, §(t) = (¢ +q u+
(1 —¢*C and §(u) = —q(1 + ¢*)t + (1 — ¢*) K~1C. In particular, Z is a Noetherian domain.
Let Z = Otu — srlmu® — Cu— 112 + ¢*K 710t = tu® — §(u? +12) — *Clu— K~'t) € 9
where ¢ = %. Then Z is a central element of 2 and ¥ ~ 2/(Z). To prove that € is
a domain, it suffices to show that (Z) is a completely prime ideal of . Notice that %, =
K[C, K*1, Z] @ K2 [tT1, w1 is a tensor product of algebras. Then

%7“‘ ~ -@t,u/(z)t,u ~ K[C, Kil] (24 qu [til,uil] ~ Rt,u-

In particular, €, is a domain and (Z);,, is a completely prime ideal of Z, .

(iil) If tx € (Z) for some element x € @ then x € (Z): Since Z is central in 2, tx = Zd for some
element d € 2. We prove the statement (iii) by induction on the degree degg(z) of the element
x. Since 2 is a domain, degg(dd') = degg(d) + degg(d') for all elements d, d' € 2. Notice that
degg(Z) = 1, the case © € R is trivial. So, we may assume that m = degg(z) > 1 and then the
element x can be written as x = ag+a10 + - - - + a,, 0" where a; € R and a,, # 0. The equality
tx = Zd yields degg(d) = m — 1 since degg(Z) = 1. Hence, d = dy + d1© + -+ - + dp,—1©™* for
some d; € R and d,;,—1 # 0. Now, the equality tx = Zd can be written as follows t(ag + a1© +

cFam0™) = (tu® —qu?+1?) — ¢*C(u— K1) (do+d1©+ - - -+ dy,.1©™ 7). Comparing the
terms of degree zero in the equality we have tag = tud(dp) — (Z]\(u2 +12) +¢*Cu— K‘lt))do, ie.,
t(ao—ud(do) +qtdo—q*CK ~1dy) = —u(qu—+¢*C)dy. All terms in this equality are in the algebra
R. Notice that t is a normal element of R, the elements u ¢ tR and qu + ¢>C ¢ tR, we have
do € tR. So dy = tr for some element 7 € R. Then d = tr +wO where w = dy + - - -+ dp_10™ 2
ifm>2and w=0ifm =1 1If m =1 then d = tr and the equality tx = Zd yields that
te =tZr, ie., x = Zr € (Z) (by deleting t), we are done. So we may assume that m > 2. Now,
the equality tx = Zd can be written as tx = Z(tr + w0), i.e., t(x — Zr) = ZwO. This implies
that © — Zr = 2’0O for some &’ € 2 where degg(z') < degg(x). Now, tz'® = ZwO and hence,
te' = Zw (by deleting ©). By induction z’ € (Z). Then x = 2’ + Zr € (2).

(iv) If uxz € (Z) for some element x € P then x € (Z): Notice that the elements v and t are

‘symmetric’ in the algebra 2, the statement (iv) can be proved similarly to the statement (iii).

(V) 20 (Z) = (Z): The inclusion (Z) € 2 N (Z)y,, is obvious. Let z € 2 N (Z);,,. Then

)

tiuwiz € (Z) for some i,j € N. By the statement (iii) and the statement (iv), z € (Z). Hence,
DN (2)eu=(2).



Chapter 6. The smash product algebra K,[X,Y] x Uy(sls) 99

By the statement (v), the algebra 2/(Z) is a subalgebra of 2 ,,/(Z); .. Hence, 2/(Z) is domain.
This completes the proof. O

The next proposition gives a K-basis for the algebra ¢ := C s (K).

Proposition 6.30.

¢ =K[C, Kt ® ( P ko't o Pre* & P Koo P Ku“tb)

4,5>1 k>1 Im>1 a,b>0

Proof. The relations (6.32)-(6.35) can be written in the following equivalent form, respectively,

u-t= qut -u,
t-0=q¢%0-t—q*(q+ q_l)u —q¢ 21 -4,
uw-0=¢0-ut+*(1+¢)t—¢*(1-¢)K'C,

O-t-u= 2 —¢*K71C -t

— 2 . q
a(1-¢q) 1—¢?

On the free semigroup W generated by C, K, K’, ©, t and u (where K’ play the role of K1),

we introduce the length-lexicographic ordering such that
K <K<C<O<t<u.

With respect to this ordering the Diamond Lemma can be applied to % as there is only one
ambiguity which is the overlap ambiguity «t© and it is resolvable as the following computations

show:

(ut)® — ¢~ *tu® — q_2t<q2®u + @1+ ¢t — (1 - qQ)K'C) — tOu+q(1+¢*)t* — (1 - A K'Ct
— (q*2®t - g+ q Nu—q (1 - qz)C)u +a(l+ ¢ = (1 - ¢*)K'Ct
= ¢ ?0tu—q (g+q ")’ —q (1 - ¢*)Cu+q(1+¢*)t* — (1 - ¢*)K'Ct

q 2 q /
— K'Ct,
1_q2 1— 2

u(t0) = u(q20t — g (q+q u—q (1= ¢*)C) = ¢ ubt — ¢ g+ ¢~ — g1 — ¢*)Cu

—

- q”(qz@u +¢1+ @)t —¢*(1 - qQ)K’C)t —q *(qg+q ' —q*(1-¢*)Cu
= Out+q(1+¢*)t* — (1 - *)K'Ct —q *(g+q " — ¢ (1 — ¢*)Cu
= ¢ *0tu+q(1+ @) — (1 - ¢@®)K'Ct—q *(q+q u* — ¢ *(1 = ¢*)Cu

q 2 q /
— K'Ct.
1— g2 12

%

So, by the Diamond Lemma, ¢ = K[C, K*!]|®k ( D1 KOt &5, K@’%}G}l’m>1 IR
@a,b)() Ku“tb) . O
The algebra ¢**. For elements A € K and u € K*, let €M = ¢/(C — \,K — u). By

Theorem 6.29, the algebra €** is generated by the images of the elements O, t and u in €M,

For simplicity, we denote by the same letters their images.
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Corollary 6.31. Let A € K and p € K*. Then

1. The algebra €™ is generated by the elements ©, t and u subject to the following defining

relations

t-u=qu-t, (6.37)

O t=q*-0+(qg+q Hu+(1—-g)A, (6.38)

O-u=q%u-0—ql+¢)t+ 01—t (6.39)
1 q _

Ot u=—u+Iu+ 2 — ¢*u A 6.40

q(1—q?%) 1—¢q? T (6.40)

2. €M =@, 51 KO © P, KO* & P, 5, KO'u™ & B, 5 Ku't’.

Proof. 1. Statement 1 follows from Theorem 6.29.

2. Statement 2 follows from Proposition 6.30. O

Let €, (resp. €,"") be the localization of the algebra € (resp. €**) at the powers of the element

t =Y X. The next proposition shows that €; and ‘Kt)"“ are GWAs.

Proposition 6.32. 1. Letv:=0Ot— ﬁu—C. The algebra €; = K[C, K+t [u, v; 0, a]
is a GWA of Gelfand-Kirillov dimension 4 where a = 13;2 t2 — ¢*K~'Ct and o is the
automorphism of the algebra K[C, K*',t*'] defined by the rule: o(C) = C, o(K*!) = K*!
and o(t) = ¢ %t.

2. Let A€ K, p € K* and v := Ot — ﬁu — \. Then the algebra 6" = K[t*][u, v; 0, a
is a GWA of Gelfand-Kirillov dimension 2 where a = 1322 t2 — ¢*u=tMt and o is the
automorphism of the algebra K[t*'] defined by o(t) = ¢~ %t.

3. For any A € K and p € K*, the algebra ‘ﬁt)"“ s a central simple algebra.

4. Z(€M*) =K and GK (€M) = 2.

Proof. 1. By Theorem 6.29, the algebra %, is generated by the elements C, K*!, v, t*1 and u.

q
1—q

(6.1). It is straightforward to verify that the following relations hold in the algebra %;

Note that the element v can be written as v = —%1/})( = —L>7(u) where 7 is the involution

ut = ¢ %tu, vt = ¢*tv, wvu=——=t>— K 'Ct, wv= 2 —?K1Ct.

Then %} is an epimorphic image of the GWA T := K[C, K*!,t*!][u, v; 0, a]. Notice that T is a
Noetherian domain of Gelfand-Kirillov dimension 4. The inclusions € C 4; C %, yield that
4 =GK(%) < GK (%) < 6,n = 4 (see Lemma 6.25.(3)), i.e., GK(%,) = 4. So, GK(T) =
GK (%;). By Proposition 2.12, the epimorphism of algebras T'—» %; is an isomorphism.

2. Statement 2 follows from statement 1.

3. Let ‘Kt)?‘;f be the localization of %t)"“ at the powers of the element u. Then, by statement 2,
%{’\11“ = K2 [t*!,u*!] is a central simple quantum torus. So, Z(EM") = Z(‘ff"&”) NEM = K.

For any nonzero ideal a of the algebra Cff"“ , u* € a for some i € N since ‘@f‘;ﬁ is a simple
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Noetherian algebra. Therefore, to prove that ‘K)"“ is a simple algebra, it suffices to show that
EHuIEM = €0 for any i € N. The case i = 1 follows from the equality vu = ¢2uv —¢5t2. By
induction, for i > 1, it suffices to show that u’~! € %ﬁ’“ u“ﬁ? #. This follows from the equality
7
(

, o g2 o N .
vut = ¢?utv + q7q2)t2ul L Hence, €* is a simple algebra.
1—q 9 t

4. Since K C Z(€ ) C Z(€)") N €M = K, we have Z(¢**) = K. It is obvious that
GK (¢M+) = 2. O

Lemma 6.33. In the algebra € " where A € K and u € K*, the following equality holds

‘ o S . o
ot = ¢?'t'e + — t T+ (1= @At
—q
Proof. By induction on ¢ and using the equality (6.38). O

Theorem 6.34. Let A € K and p € K*.

1. The algebra €™ is a simple algebra iff A # 0.
2. The algebra €M is a domain.

Proof. 1. If A = 0 then the ideal (¢) is a proper ideal of the algebra ¥%*. Hence, €% is not a
simple algebra. Now, suppose that A # 0, we have to prove that €** is a simple algebra. By
Proposition 6.32.(3), Cﬁt)"“ is a simple algebra. Hence, it suffices to show that €M HHIE M = G
for all ¢ € N. We prove this by induction on 1.

Firstly, we prove the case for i = 1, ie = EIEI = €M By (6.38), the element
(q+q Hu+(1—-¢*)A € a, so, u= e L'\ mod a. By (6.40), q(l 7 )u + Au € a. Hence,
ﬁ(ﬁ;l )2+ )\(qq+q_1 A) =0 mod a, ie. Q(qqziﬂ)’\ =0 mod a. Since A # 0, this implies

that 1 € a, thus, a = €M,

Let us now prove that b := €M i€ H = €M for any i € N. By induction, for i > 1, it suffices
to show that ¢*~! € b. By Lemma 6.33, the element u := qizyi::gmﬂti’lu + (1 =Yt e
b. Then vu € b where v = Ot — ﬁ — ), see Proposition 6.32.(2). This implies that
(1—¢*) vt =1 € b and so, vti~1 E b. But then the inclusion vt~ = (6t — pTeE q2)u Mti=teb

5 L1y + M~ € b. By the expressions of the elements u and

yields that the element v := ql_

v we see that t*~! € b, as required.

2. By Proposition 6.32.(2), the GWA € ~ €,/%,(C — \,K — p) is a domain. Let a =
C(C -\ K —p)and o/ =€ NE(C— N\ K — p). To prove that €** is a domain, it suffices to
show that a = a’. The inclusion a C a’ is obvious. If A # 0 then, by statement 1, the algebra
€M is a simple algebra, so the ideal a is a maximal ideal of €. Then we must have a = a’.
Suppose that A = 0 and a C o', we seek a contradiction. Notice that the ideal a’ is a prime
ideal of . Hence, a’/a is a nonzero prime ideal of the algebra €*#. By Proposition 6.32.(3),
the algebra €. is a simple algebra, so, t' € a/a for some i € N. Then (d'/a); = %", But
(¢//a)y = a}/a; = 0, a contradiction. O

Proposition 6.35. 1. In the algebra €%H, (t) = (u) = (t,u) = €O*t + €OHu.
2. €% /(t) ~ K[O].
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3. In the algebra €O+, (tV) = (t)* for all i > 1.
4. Spec (€)= {0, (t), (t,p)[p € Max (K[O)])}.

Proof. 1. The equality (¢) = (u) follows from (6.38) and (6.39). The second equality then is
obvious. To prove the third equality let us first show that t€%* C €%#t + €%*u: In view of
Corollary 6.31.(2), it suffices to prove that t©¢ € €+t + €+ for all i > 1. This can be proved
by induction on i. The case i = 1 follows from (6.38). Suppose that the inclusion holds for all
i’ <i. Then t0! =010 € (€0t + € u)O = €% (720t — ¢ (¢ + ¢ ")u) + € (¢*Ou +
(1 +q2)t) C €O#t 4+ € Hu. Hence, we proved that t€%* C €0#t + €% u. Now, the inclusions
(t) € €O1t + €1 u C (t,u) = (t) yield that (t) = €%+t + € u.

2. By statement 1, €%*/(t) = €%*/(t,u) ~ K[O].

3. The inclusion (¢*) C (¢)¢ is obvious. We prove the reverse inclusion (¢)* C (#') by induction on
i. The case i = 1 is trivial. Suppose that the inclusion holds for all i’ < i. Then (t)* = (¢)(t)""! =
() (1) = GOrtE 01t 1E0n C (1) + (7 Lu) since tE0#H C €O+t + €+ u (see statement 1). By
Lemma 6.33, the element ¢*~1u belongs to the ideal (') of €%#. Hence, (t)* C ('), as required.

4. By Proposition 3.3 and statement 3, Spec (6%*) = Spec (4", t) U Spec,(€%#). Notice that
%" is a simple algebra (see Proposition 6.32.(3)) and % /(t) ~ K[©)] (see statement 2). Then
Spec (¢°#) = {0} U Spec (K[B]) = {0, (¢), (t,p)[p € Max (K[O])}. O

6.6 Classification of simple C4(K)-modules

In this section, K is an algebraically closed field of characteristic zero. A classification of simple
Ca(K)-modules is given in Theorem 6.37, Theorem 6.41 and Theorem 6.45. The set C4(K) of
isomorphism classes of simple C4 (K )-modules are partitioned (according to the central charac-

ter) as follows
CuK)= || @& (6.41)

AEK, pek*

Given A € K and pu € K*, the set €»# can be partitioned further into disjoint union of two

subsets consisting of ¢-torsion modules and t-torsionfree modules, respectively,
EC 1 = €M1 (t-torsion) LI EMH (t-torsionfree). (6.42)

The set G\~ (t-torsion). An explicit description of the set €’*# (t-torsion) is given in Theorem
6.37. For A and u € K*, we define the left €**-modules

V= G EM(tu) and TV = @M /MK (t,u— 5\)
where \ := ¢(¢2 — 1)A\. By Corollary 6.31.(2), t# = K[O]1 ~ ke K[O] is a free K[O]-module

where T = 1 4+ €M(t,u) and TV = K[O]1 ~ ke K[O] is a free K[O]-module where 1 =
1+¢M (t, U — 5\) Clearly, the modules t** and T are of Gelfand-Kirillov dimension 1. The
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concept of degg of the elements of t** and T is well-defined (dege (©° 1) = i and degg (07 1) =
i for all ¢ > 0).

Lemma 6.36. Let A and p € K*. Then

1. The € M*-module t\* is a simple module.
2. The € *-module TM is a simple module.

3. The modules tN* and TN are not isomorphic.

Proof. 1. Let us show that for all 7 > 1,

-0 1=(1-q¢ 20" 1+, (6.43)
u-0'1T=—-?(1—¢*Hu N0 T 4. (6.44)
where the three dots means terms of degg < i —1. We prove the equalities by induction on . By

(6.38), tO01 = (1 — ¢~2?)A1, and by (6.39), u®1 = —¢*(1 — ¢*)p~*A1. So, the equalities (6.43)
and (6.44) hold for ¢ = 1. Suppose that the equalities hold for all integers i’ < i. Then

(q 0t —q 2 (qg+q l)ufq’z(l*qQ)/\)@i’11

¢ 21 —q 2NN T — g 21— )N T 4
=(1—-g N0 11+..

( 20u+ (14 ¢t q2(1 fqz)/fl)\)@ifli
—q (1 _ q2(z 1)),u—1>\9i—1 i— q2(1 _ q2)/L_1)\@i_1 T4
7q2(1 7q2i)’u71/\‘®i711+.“

The simplicity of the module t** follows from the equality (6.43) (or the equality (6.44)).
2. Let us show that for all 4 > 1

t-01=01-¢HY\- 0" 1+, (6.45)
w-0'T=¢"X- 01 -@Q - N0 4. (6.46)
where the three dots means terms of smaller degrees. We prove the equalities by induction on

i. The case i = 1 follows from (6.38) and (6.39). Suppose that the equalities (6.45) and (6.46)
holds for all integers i’ < i. Then

t-0'1 = (q’QGt - q*2(q +q Hu—q¢ (1 - q2)>\) o1
=q 2(1 o q ) (_)z 17 i_ (q+q71)q2(i71)5\®i71 I - q72(1 - q2)/\®i711 NI
(1—¢*H)\-0" 1 +-

?Ou+ > (1 + ¢*)t — q2(1 - quu) o-11

( 2(-1)3@i (1 — q2(i—1))u—1/\@i—l i) R Y= G I

q225\.®i1_q2(1_q2i)u—1)\_®i—1i+_._
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The simplicity of the module T follows from the equality (6.45).

3. By (6.44), the element u acts locally nilpotently on the module t** . But, by (6.46), the
action of the element u on the module TM# is not locally nilpotent. Hence, the modules t** and

TM are not isomorphic. O

Theorem 6.37. 1. €0k (t-torsion) = {[€% /€01 (t,u,© — o) ~ K[O]/(© — a)] | a € K}.
2. Let A and p € K*. Then €+ (t-torsion) = {[tM*], [TM#]}.

Proof. 1. We claim that anngo.. (M) D (t) for all M € Gon (t-torsion): In view of Proposition
6.35.(1), it suffices to show that there exists a nonzero element m € M such that tm = 0 and
um = 0. Since M is t-torsion, there exists a nonzero element m’ € M such that tm’ = 0. Then,
by the equality (6.40) (where A\ = 0), we have u?m’ = 0. If um’ = 0, we are done. Otherwise,
the element m := um’ is a nonzero element of M such that tm = um = 0 (since tu = qut).

Now, statement 1 follows from the claim immediately.

2. Let M € G0 (t-torsion). Then there exists a nonzero element m € M such that tm = 0. By
(6.40), we have (u—A)um = 0. Therefore, either um = 0 or otherwise the element m’ := um € M
is nonzero and (u — A)m’ = 0.

If wm = 0 then the module M is an epimorphic image of the module t**. By Lemma 6.36.(1),
V¢ is a simple ¥ #-module. Hence, M ~ tM#. If m' = um # 0 then tm/ = 0 and (u—\)m’ = 0.
So, the € *-module M is an epimorphic image of the module TM*. By Lemma 6.36.(2), TM*
is a simple €*#-module. Then M ~ TM*. By Lemma 6.36.(3), the two modules t** and T»#

are not isomorphic, this completes the proof. O

Recall that the algebra Ca, (K) = K[C,K*'] ® & where & is a central simple GWA, see
Proposition 6.26. The algebra C4(K) is a subalgebra of the algebra C, ,(K) where

u=K Yo=K 'YX pX'=K'th, (6.47)
K1 3K
q h+ q

— (12 -1
0= q°)Ceh +1—q2 =

ht. (6.48)

In more detail: by (6.13), F = (C+K*1EY2 S (KfK*I)YX>X*1g0*1. Then the element

1—q?
FFE can be written as

2

FE=CEX™'¢™ + KT EY?EX ™! - T _(K-K)YEp™
—q
3 —1

_ _ _ _ _ 1 K -K) _ _

=C-EX 2 Xo '+ K '"EX?.YX)?? EX? Xop 1—(1(12-YX-EX 2. Xp!
3 K_K—l
=Ceh ™'+ ¢* K tet?eh ! — ¢ 1 5 )teh_l
—q
—cen g Uy Ky C@Eta KT
(I—=¢?)? (1-¢?)? (1-4¢%)?

where the last equality follows from (6.28). Then the equality (6.48) follows immediately since
O = (1— ¢\ FE + ClaK+qa 'K
- ( —q ) + 1—q2 .
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For A € K and p € K*, let %}i‘fw = Cax,(K)/(C =\ K — p). Then by Proposition 6.26.(1),
‘Kﬁfw ~ o is a central simple GWA. So, there is a natural algebra homomorphism ¢** —

C@’;\;ﬁ‘w ~ &/ . The next proposition shows that this homomorphism is a monomorphism.
Proposition 6.38. Let A € K and p € K*. The following map is an algebra homomorphism
prEM — G >

t—t

u s o lth

—1 3
[e) 1—2)\11_1 qu h qp h—l
= (1—q”)Xe +1—q2 +1—q2

Moreover, the homomorphism p is a monomorphism.

Proof. The fact that the map p is an algebra homomorphism follows from (6.47) and (6.48).
Now, we prove that p is an injection. If A # 0 then by Theorem 6.34.(1), the algebra € * is
a simple algebra. Hence, the kernel ker p of the homomorphism p must be zero, i.e., p is an
injection. If A = 0 and suppose that ker p is nonzero, we seek a contradiction. Then #* € ker p

for some i € N. But p(t') = t* # 0, a contradiction. O

Let @ be the localization of the algebra 7 at the powers of the element t. Then & =
K[ [t*!; o] is a central simple quantum torus where o(h) = ¢?h. It is clear that ‘th‘&” ~ of.
Let % be the localization of & at the set S = K[h*!]\ {0}. Then & = S~'&/ = K(h)[t*!;0]
is a skew Laurent polynomial algebra where K(h) is the field of rational functions in h and
o(h) = ¢*h. The algebra % is a Euclidean ring with left and right division algorithms. In
particular, 4 is a principle left and right ideal domain. For all A € K and p € K*, we have the

following inclusions of algebras

(g)\,p, % JZ{

L]

A,
G —— G = o —— B,

The set €0 (t-torsionfree). An explicit description of the set m (t-torsionfree) is given in
Theorem 6.41. The idea is to embed the algebra ¢** in a skew polynomial algebra R for which
the simple modules are classified. The simple modules over these two algebras are closely related.

It will be shown that @0 (t-torsionfree) = R (t-torsionfrec).

Let R be the subalgebra of &/ generated by the elements h*! and t. Then R = K[h*!][t; 0]
is a skew polynomial algebra where o(h) = ¢?h. By Proposition 6.38, the algebra €%* is a

subalgebra of R. Hence, we have the inclusions of algebras
EF Cc R C o C Ri=s C B

We identify the algebra €%* with its image in the algebra R.
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Lemma 6.39. Let € K*. Then

1. 6" = @5, K[h*='t' @ K[O)].
2. R =%¢"" & K[O]h.
3. (1) =D K[hE1]t! = Rt where (t) is the ideal of €°" generated by the element t.

Proof. 1 and 2. Notice that K[©] C K[h*!] and K[h*!] = K[O] @ K[O]h. Multiplying this
equality on the right by the element ¢ yields that K[h*!]t = K[O]t © K[O]u C €%*. Then for all
i > 1, K[pTt = K[pH)t - 71 € ¢O0Hi—1 C €0+, Notice that

R =P KR = PKRHE o K] = P KR @ K[O] & K[O]h. (6.49)
>0 i>1 i>1
Then ¢%# = €°* NR = B3, K[t @ K[O] since €%* NK[O]h = 0. The statement 2 then
follows from (6.49).

3. By Proposition 6.35.(1), (t) = €%+t + €+ u. Then the first equality follows from statement

1. The second equality is obvious. O
Proposition 6.40. Let Irr(A) be the set of irreducible elements of the algebra A.

(K[h*!]-torsion) = R (¢-torsion) = //E ={[R/R(h — o, t)]|ox € K*}.
(K[h*!]-torsionfree) = R (¢-torsionfree) = {[M;]|b € Irr(#), R = Rt + R N Bb} where
My :=R/RNRBb; My, ~ My iff the elements b and b’ are similar (iff 2B/%Bb ~ B/ BY as
PB-modules).

1. R
2. R

Proof. 1. The last two equalities are obvious, since ¢ is a normal element of the algebra R. Then
it is clear that R (K[h*1]-torsion) D R (t-torsion). Now, we show the reverse inclusion holds. Let
M € R (K[h*!]-torsion). Then M is an epimorphic image of the R-module R/R(h —a) = K]
for some v € K* where 1 =1+ R(h — «). Notice that tK[¢]1 is the only maximal R-submodule
of R/R(h — ). Then M ~ R/R(h — a, t) € R (t-torsion), as required.

2. The first equality follows from the first equality in statement 1. By [10, Theorem 1.3]
ﬁ(K[hil]—torsionfree) = {[Mp]|b € Trr(B), R = Rt + R N ABb} (the condition (LO) of [10,
Theorem 1.3] is equivalent to the condition R = Rt + R N Ab). O

~

Theorem 6.41. €01 (t-torsionfree) = R (t-torsionfree) = R (K[h*1]-torsionfree) = {[M, =
R/RNABY]|ber(B), R=TRt+RNABb} (see Proposition 6.40).

Proof. In view of Proposition 6.40.(2), it remains to show that the first equality holds. Let [M] €
o (t-torsionfree). Then M = (t)M = RtM € R (t-torsionfree). Given [N] € R (t-torsionfree).
To finish the proof of statement 2, it suffices to show that N is a simple ¢*#-module. If L
is a nonzero €%#-submodule of N then N D L D (t)L # 0, since N is t-torsionfree. Then
(t)L = RtL = N, since N is a simple R-module. Hence, L = N, i.e., N is a simple ¢ *-module,

as required. 0
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The set €+ (t-torsionfree) where A € K*. An explicit description of the set €'*# (¢-torsionfree)

where A € K* is given in Theorem 6.45.

Recall that the algebra € = K[t*!][u, v; 0, a] is a GWA where a = %tQ —¢*pu~t )\t and o is
the automorphism of the algebra K[t*!] defined by o(t) = ¢~2t (Proposition 6.32.(2)). Clearly,

— —

M # (t-torsionfree) = 7z (t-torsionfree, K[t]-torsion) U &>+ (K[t]-torsionfree). (6.50)

Lemma 6.42. Let A\, u € K* and v := ¢ 3(1 — ¢*)p=*\. Then

1. The module fM := €XH |EM(t — v,u) is a simple € -module.

2. The module FM 1= G M1 /E 1 (t — q?v,v) is a simple € -module.

3. Lety € K*\{¢*v|i € Z}. The module }",i"“ = M JEN(t—) ds a simple €M -module.
The simple modules ]-2"” ~ .7-:?‘,’” iff v = q*«' for somei € Z wherey' € K*\{¢*v|i € Z}.

Proof. 1. Note that a = 13;2 (t —v)t and o(a) = 1322 (t — ¢*v)t. By Corollary 6.31.(2) and the
expression of the element v, f** = K[O]1 = K[v]1 where 1 = 1 + €**(t — v,u). The simplicity

of the module f*# follows from the equality: uv’l = v*~1o?(a)1 € K*v'~'1 for all i > 1.

2. Notice that FM* = K[u]1 where 1T = 1+ €*#(t — ¢?v,v). The simplicity of the module FAe

follows from the equality: vu'l = v~ lo~ 1 (a)1 € K*u'~ 1 for all i > 1.

3. Notice that ) = 250 Ku'®71 = 230 Ku'vi1 = K[u]I+K[v]1 where 1 = 14+EMH(t—).
Since v € K*\ {¢*v|i € Z}, 0'(a)1 € K*1 for all i € Z. Then the simplicity of the module F2#
follows from the equalities in the proof of statements 1 and 2. The set of eigenvalues of the element
Lo is EV]’?’“ (t) ={¢*y|iez}. If .Fi"” o~ }",j‘/” then EV}'?’“ (t) = Evfj/“(t)’ so v = ¢*'y/ for
some i € Z. Conversely, suppose that v = ¢*+' for some i € Z. Let 1 and 1’ be the canonical
generators of the modules ]—'{Y\’“ and ]-:j‘,’“, respectively. The map ]-',’Y\’“ — }"i‘,’“, 1 +— u'l’ defines
an isomorphism of ¥*#-modules if i > 0, and the map ]-2"” — .7-';\,’“, 1 +— v'1’ defines an

isomorphism of ¥**-modules if i < 0. O

Definition. ([4], l-normal elements of the algebra €.

1. Let a and 8 be nonzero elements of the Laurent polynomial algebra K[t*!]. We say that
a < B if there are no roots A and p of the polynomials « and 3, respectively, such that,
A\ = ¢*p for some i > 0.

2. An element b = v™B3,, + 0" B_1 4+ -+ Py € ‘Kt)"“ where m > 0, 3; € K[t*'] and

Bo, Bm # 0 is called l-normal if By < B, and By < 1322 2 —q*u At

Theorem 6.43. [2, 5]. Let \,u € K*. Then
&M (K[t]-torsionfree) = {[Ny := € /6" N 2b] | b is I-normal, b € Irr(A)}.
Simple %)"“—modules Ny and Ny are isomorphic iff the elements b and b’ are similar.

Recall that, the algebra ¢** is generated by the canonical generators ¢, u and ©. Let F =
{Fn}n>0 be the standard filtration associated with the canonical generators. By Corollary 6.31,
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forn >0,

Fo= P Koo P KoFo P Kouma P Ku't'.

0,521, 1<k<n Lm>1, a,b>0,
i+j<n +m<n a+b<n

Foralln > 1, dimF, = 3n’+3n+1 = f(n) (where f(s) = 2s+2s+1 € K[s]). For each nonzero
element a € €M*, the unique natural number n such that a € F,, \ F,,—1 is called the total degree
of the element a, denoted by deg(a). Set deg(0) := —oo. Then deg(ab) < deg(a) + deg(b) for all

elements a, b € €M .

For an R-module M, we denote by (M) the length of the R-module M. The next proposition
shows that lya,. (€M /1) < oo for all left ideals I of the algebra €.

Proposition 6.44. Let A\, u € K*. For each element nonzero element a € €»*, the length of
the €M -module € /€ M a is finite, more precisely, lyxu (€M /€M a) < 3deg(a).

Proof. Let M := €M [€ Ha = €M1 = (5, Fil be the standard filtration on M where
1 =1+ %»*a. Then F1 ~ }-(ngfa'“ ~ Fm;‘;m,a. Let d := deg(a). Since, for all i > 0,
Fi—aa C F; N €Mt a, we see that dim (F;1) < f(i) — f(i — d) = 3di + 3d — 3d?. Recall that
the algebra ¥ is a simple, infinite dimensional algebra since A # 0 (Theorem 6.34.(1)). So, if
N = €*Hn is a nonzero cyclic ¢ #-module (where 0 # n € N) and {F;n};>o is the standard

filtration on N then dim (F;n) > i+ 1 for all 4 > 0. This implies that lga.. (M) < 3d. O

The group ¢*2 = {¢*|i € Z} acts on K* by multiplication. For each v € K*, let O(y) =
{q®v|i € Z} be the orbit of the element v € K* under the action of the group ¢?2. For each
orbit O € K*/¢%*2, we fix an element vo € O(7).

Theorem 6.45. Let \,u € K*. Then

1. G (t-torsionfree, K[t]-torsion) = {[f*+], [FM*], [For]|O € K* /g2 \ {O(v)}}.

2. The map 7z (K[t]-torsionfree) — @ (K[¢t]-torsionfree), [M] — [My] is a bijection with
the inverse [N] + socgx.u(N).

3. G h (K[t]-torsionfree) = {[M;, := @ /€™ N Bbt=7]| bis l-normal, b € Irr(B), i >

3deg(b)}.

Proof. 1. Let M € €*# (t-torsionfree, K[t]-torsion). There exists a nonzero element m € M such
that tm = ym for some v € K*. Then M is an epimorphic image of the module €*# /€ H(t—~).
If v ¢ O(v) then M ~ G /G H(t — ) = F* by Lemma 6.42.(3). It remains to consider the

case when v € O(v), i.e., 7 = ¢*'v for some i € Z.

(i) If v = ¢*v where i > 1 then o%(a)m = 0. Notice that u'"*v*~'m = o'=!(a) - - - o(a)m # 0, the

i—1

element m’ := v*~!m is a nonzero element of M. If ym’ = 0, notice that tm’ = tv*"tm = ¢?vm/,

then M is an epimorphic image of the simple module FM*. Hence, M ~ FM*. If m" := vm/ # 0,

X2

notice that tm” = tvim = vm” and um” = uwv'm = v~1o?(a)m = 0, then M is an epimorphic

image of the simple module f»*. Hence, M ~ jM*.

(ii) If v = ¢~ %v where i > 0 then 0~%(a)m = 0. The element e := u’m is a nonzero element of M.

(The case i = 0 is trivial, for i > 1, it follows from the equality v'u‘m = o=*1(a)--- o~ (a)am #
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0). If ue = 0, notice that te = tu'm = ve, then M is an epimorphic image of the simple
module f**. Hence, M ~ §M. If € := ue # 0, notice that te’ = tu't'm = ¢?ve’ and

+1

ve! = vu'ttm = ulo~%(a)m = 0, then M is an epimorphic image of the simple module FA-,

Hence, M ~ FMH. This proves statement 1.
2. The result follows from Proposition 6.44.

3. Let [M] € 7z (K[t]-torsionfree). Then [M;] € ‘%;‘\“ (K[t]-torsionfree), and so M; =~
EMFJEM N B where b = v™ By, + 0™ By + - + By € M (B € K[t], m > 0 and
Bm, Bo # 0) is an l-normal and irreducible in %. Clearly, 0 # M, := €>* /€ N %Bb C My and
M = socg.u (M) = socgs.u (My), by statement 2. Let I := €M N Bb, J,, = €H" + I, for all
n > 0 and d = deg(a). By Proposition 6.44, the following descending chain of left ideals of the
algebra €M* stabilizes:

G =TJo2 2Dy =Jpp1 =, n>3d

Hence, socgx .. (M) = J, /Iy ~ €M )E M 0 Bbt—™. O

6.7 Simple weight A-modules

The aim of this section is to give a classification of simple weight A-module. The set A (weight) of
isomorphism classes of simple weight A-modules is partitioned into disjoint union of four subsets,

see (6.51). We will describe each of them separately.

An A-module M is called a weight module provided that M = €, cx. M, where M, = {m €
M | Km = pm}. We denote by Wt (M) the set of all weights of M, i.e., the set {u € K* | M, # 0}.

Verma modules and simple highest weight A-modules. For each A\ € K*, we define the
Verma module M(\) := A/A(K—\, E, X). Then M(\) = K[Y, F]1 where 1 = 1+ A(K -\, E, X).
If M is an A-module, a highest weight vector is any 0 # m € M such that m is an eigenvector
of K and K~! and Em = Xm = 0.

Lemma 6.46. The set of highest weight vectors of the Verma module M(X) is H := { kY"1 |k €
K*, neN}.

Proof. 1t is clearly that any element of H is a highest weight vector. Suppose that m =
S a;;Y'FI1T € M()) is a highest weight vector of weight p where a;; € K. Then Km =
Zaij)\q_i_%YiFji = pm. This implies that ¢ + 2j is a constant, say ¢ + 25 = n. Then
m can be written as m = Y a;Y" 2 FI1 for some o; € K. By Lemma 6.10.(2), Xm =

S "M A Y2 I = 0. Thus, o = 0 for all j > 1 and hence, m € H. 0

By Lemma 6.46, there are infinite number of linear independent highest weight vectors. Let
N,, :=K[Y, F]Y"1 where n € N. Then N,, is a Verma A-module with highest weight ¢~"\, i.e.,
N, ~ M(qg~™\). Furthermore, M()) is a submodule of M(¢"\) for all n € N. Thus, for any
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A € K*, there exists an infinite sequence of Verma modules
=D M(g*)\) D M(g)\) D M(\) D M(qg~*\) D M(g2\) D ---.

The following result of Verma U, (slz)-modules is well-known; see [29, p. 20].

Lemma 6.47. [29] Suppose that q is not a root of unity. Let V(X) be a Verma Uy(sly)-module.
Then V(X) is simple if and only if X # £q™ for all integer n > 0. When A = ¢" (resp. —q™)
there is a unique simple quotient L(n,+) (resp. L(n,—)) of V(X). Each simple U, (sl2)-module

of dimension n + 1 is isomorphic to L(n,+) or L(n,—).

Let V(A) := M(\)/Ny. Then V(\) ~ K[F|1, where 1 := 1+ A(K — \,E, X,Y).
Theorem 6.48. Up to isomorphism, the simple highest weight A-module are as follows

(i) V(X), when X\ # £q™ for any n € N.
(i) L(n,+), when A =q"™ for some n € N.
(i) L(n,—), when A= —q" for somen € N.

In each case, the elements X and Y act trivially on the modules, and these modules are in fact

simple highest weight U, (slz)-modules.

Proof. In view of Lemma 6.11.(1), anng(V())) 2 (X). So, V() ~ U/U(K — A\ E) where
U = U,(sl2). Then the theorem follows immediately from Lemma 6.47. O

Simple weight modules that are neither highest nor lowest weight A-modules. Let
A be an algebra, we denote by A the set of isomorphism classes of simple left A-modules.
Let N be the set of simple weight A-modules M such that XM # 0 or YM # 0. Then
A (weight) = U, (sly) (weight) LI A'.

Lemma 6.49. Let M be a simple A-module. If x € {X,Y, E, F} annihilates a non-zero element
m € M, then x acts locally nilpotently on M.

Proof. For each element z € {X,Y, E,F}, the set S = {z*|i € N} is an Ore set in the algebra
A. Then torg(M) is a nonzero submodule of M. Since M is a simple module, M = torg(M),

i.e., the element x acts locally nilpotently on M. O
Theorem 6.50. Let M € N, then

1. dim My = dim M, for any A, p € Wt (M).
2. Wt (M) = {q"A|n € Z} for any A € Wt (M).

Proof. 1. Suppose that there exists A € Wt (M) such that dim M, > dim M. Then the map
X : My — My, is not injective. Hence Xm = 0 for some non-zero element m € M. By Lemma

6.49, X acts locally nilpotently on M.

If dim M,-15 > dim My, then the linear map E : M,-1\, — My is not injective. So Em’ =0

for some non-zero element m’ € M,-1,. By Lemma 6.49, E acts on M locally nilpotently. Since
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EX = ¢XE, there exists a non-zero weight vector m’” such that Xm” = Em’ = 0. Therefore, M
is a highest weight module. By Theorem 6.48, XM =Y M = 0, this contradicts our assumption
that M € N.

If dim M,-15 < dim My, then dim M,-15 < dimM,. Hence the map Y : My — M -1, is not
injective. It follows that Ym; = 0 for some non-zero element m, € M. By Lemma 6.49, Y acts
on M locally nilpotently. Since XY = qY X, there exists some non-zero weight vector mo € M
such that Xmgy = Ymg = 0. By Lemma 6.11.(1), annsa (M) D (X,Y), a contradiction. Similarly,
one can show that there does not exist A € Wt(M) such that dim My < dim My.

2. Clearly, Wt(M) C {¢"X|n € Z}. By the above argument we see that Wt(M) 2 {¢"\|n € Z}.
Hence Wt(M) = {¢"\|n € Z}. O

Let M be an A-module and x € A. We say that M is a-torsion provided that for each element

m € M there exists some i € N such that z*m = 0.
Lemma 6.51. Let M € N

1. If M is X-torsion, then M is (¢,Y)-torsionfree.
2. If M is Y -torsion, then M is (X, ¢)-torsionfree.
3. If M is p-torsion, then M is (X,Y)-torsionfree.

Proof. 1. Since M € N is an X-torsion module, by the proof of Theorem 6.50, Y3, and Ej;
are injections. Let us show that (), is injective. Otherwise, there exists a nonzereo element
m € M such that om = 0, i.e., Xm = (¢ — ¢ )Y Em. Since X’m = 0 for some i € N and
X(YE) = (YE)X, we have X'm = (¢ — ¢ )" (Y E)'m = 0. This contradicts to the fact that ¥

and F are injective maps on M.

2. Clearly, Xy is an injection. Let us show that ¢j is an injective map. Otherwise, there exists
a nonzero element m € M such that ¢m = Ym = 0 (since Y = qpY). Then Xm = 0 (since
0= (1-¢*EY + ¢*X), a contradiction.

3. Statement 3 follows from statments 1 and 2. O

By Lemma 6.51,

-~

A (weight) = U, (sly) (weight) L A’
:Uq/(sTg) (weight) U N (X-torsion) U A (Y-torsion) U AN ((X,Y)-torsionfree). (6.51)
It is clear that A ((X,Y)-torsionfrec) = A (weight, (X, Y)-torsionfree).
Lemma 6.52. If M € N (X-torsion) U N (p-torsion) U N (Y -torsion) then Cps # 0.
Proof. Suppose that M € N (X-torsion), and let m be a weight vector such that Xm = 0. If

Cur = 0, then, by (6.12), Cm = —K~'EY?m = 0, i.e., EY?m = 0. This implies that either Ej;

or Yy, is not injective. By the proof of Theorem 6.50, we have a contradiction. Similarly, one
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can prove that for M € N (Y-torsion), Cps # 0. Now, suppose that M € N (¢-torsion), and let
m € M, be a weight vector such that ¢m = 0. Since Y = q(1 — ¢*)EY? + ¢*Y X, we have

Yom =q(1 - ¢*)EY?m +¢'YXm = 0. (6.52)

If Cp = 0, then, by (6.13),

3

Cm=—p*EY?m+ 1 1

" (p—p HYXm =0. (6.53)

The equalities (6.52) and (6.53) yield that EY?m = 0 and Y Xm = 0, a contradiction. O

Theorem 6.53. Let M € N. Then dim M,, = oo for all p € Wt(M).

Proof. Since M is a simple A-module, the weight space M, of M is a simple ¢ +-module for
some A € K. If M € N (X-torsion) L N (Y-torsion) then by Lemma 6.52, A = Cj; # 0. By
Proposition 6.32.(4) and Theorem 6.34.(1), €** is an infinite dimensional central simple algebra.
Hence, dim M), = co. It remains to consider the case where M € N ((X,Y)-torsionfree). Suppose
that there exists a weight space M, of M such that dim M, = n < oo, we seek a contradiction.
Then by Theorem 6.50, dim M,, = n for all u € Wt(M) and Wt(M) = {¢'v | € Z}. Notice that
the elements X and Y act injectively on M, then they act bijectively on M (since all the weight
spaces are finite dimensional and of the same dimension). In particular, the element ¢ = Y X
acts bijectively on each weight space M, and so, M, is a simple %{\’” -module. By Proposition
6.32.(2,3), the algebra ‘5{\’“ is an infinite dimensional central simple algebra for any A € K and
€ K*. Then, dim M,, = oo, a contradiction. O

Description of the set A/ (X-torsion). An explicit description of the set A/ (X-torsion) is given
in Theorem 6.55. It consists of a family of simple modules constructed below (see Proposition
6.54). For each p € K*, we define the left A-module X* := A/A(K — p, X). Then Xt =
@B s KF'EIYFT where T = 1+ A(K — p, X). Let A € K. By (6.12), we see that the

submodule of X*,

(C-NX = @ KFEY (u BY? + )12 @ KF (i B2 4 aBiy ) 1,
i,5,k>0 i,5,k>0

(6.54)

is a proper submodule and the map (C — A)- : X¥ — X, v — (C' — A)v, is an injection, which
is not a bijection. It is obvious that GK (X#) = 3.

For A € K and p € K*, we define the left A-module X := A/A(C — A\, K — y, X). Then,
XM X /(O — N)XH £ 0. (6.55)

OV iy XMy 0. The

next proposition shows that the module X** is a simple module if A is nonzero. Moreover, the

We have a short exact sequence of A-modules: 0 — XH

K-basis, the weight space decomposition and the annihilator of the module X** are given.

Proposition 6.54. For \ and p € K*, consider the left A-module X" = AJA(C—)\, K—pu, X).
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1. The A-module XM = @ KFYile @ KFEF1® @ KYF'E*T is a simple A-
B i20,j>2 i,k>0 i,k>0
module where 1 =1+ A(C — X\, K — pu, X).

o S KFiYJ‘i@( D xrietic@Pretiec @ KE@’“I)

20,2 i>1,k30 k>0 i>1,k30
@( @D xvretio@rretic @ KYE@’“T).
i>1,k>0 k>0 i>1,k>0

3. The weight subspace X;J;L of XM that corresponds to the weight ¢°p is

K[O] 1, s=0,
E"K[O]1, s=2r r=1,
YE'K[O]1, s=2%—1,1r>1,
X;‘;Z —J F'K[O]1 H@T’ KFiY?29 1, s=-2r, r>1,
i>1
YK[O]1, s =1,
YE KOl @ KFYI1, s=-20r—-1)—-1,r>2.
2itj=2r—1,
i>2

4. anng (XMH) = (C — )).
5. XM s an X -torsion and Y -torsionfree A-module.
6. Let (A p), (N, 1) € K x K*. Then XM ~ XMW Gff X = N and pn = ¢'y/ for some i € Z.

Proof. 1. By (6.55), X # 0 and 1 # 0. Using the PBW basis for the algebra A, we have
XMH = D k>0 KF'YIEF1. Using (6.12), we have A1 = C1 = —u 'EY?1. Hence EY?1 =
—uA 1, and then Y2E1 = —¢?uA 1. By induction on k and using Lemma 5.2, we deduce that

EFY2R T = (—p\)kFg* DT and YEFT = (—¢?u))FgPD T, (6.56)
Therefore, 33 5o KY/E* 1 = Y?K[Y]1 + K[E]1 + YK[E] 1, and then

XM = Z1@Wﬁ+2ﬁ@@ﬁ+ZKW@ﬁzmﬂ@mW+mmﬂﬁmﬁ.
i20,j>2 i,k>0 i,k>0

So, any element u of XM can be written as u = (3., F'a;)1 where a; € ¥ := K[Y]Y? +K[E] +

YK[E]. Statement 1 follows from the following claim: if a,, # 0, then there is an element a € A

such that au = 1.

(i) X™u = a’1 for some nonzero element o’ € ¥: Using Lemma 6.10, we have Xu = Y7 ' F'b; 1
for some b; € ¥ and b,—1 # 0. Repeating this step n — 1 times (or using induction on n), we

obtain the result as required. So, we may assume that u = agl where 0 # ag € X.

(ii) Notice that the element ag € ¥ can be written as ag = pY? + > i~ (N + ;Y)E? where
p € K[Y], \; and p; € K. Then, by (6.56), Y?™u = Y?"qy1 = (pY2m+2 + Yo +
uiY)Y2(m_i)Y2iEi> 1= (pYzm'"2 + 3N+ ,uiY)YQ(m_i)’yi) 1 = f1 for some v; € K* where
f is a nonzero polynomial in K[Y] (since ag # 0). Hence, we may assume that u = f1 where

0+ f € K[Y].
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(iii) Let f = Zli:o 7 Y? where v; € K and ; # 0. Since KY'1 = pg~'Y*1 and all eigenvalues
{ug=%|i > 0} are distinct, there is a polynomial g € K[K] such that gf1 = Y!1. If | = 0, we are
done. We may assume that [ > 1. By multiplying by Y (if necessary) on the equality above we
may assume that [ = 2k for some natural number k. Then, by (6.56), wk_lEkY%i = 1 where

Wi = (—p\)Eq=FF=1) " as required.

2. Recall that that the algebra U, (sl) = K[©, K*![E, F;0,a = (1 — ¢*)~'0 — %]
is a GWA where 0(0) = © and 0(K) = ¢ 2K. Then for all i > 1, F'E' = ac~(a) - -0~ (a).
Therefore,

P kreti= P kKretiePreric P KEO L

i,k>0 i>1,k>0 k>0 i>1,k>0

Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.

4. Clearly, (C — ) C anng(XM*). Since A € K*, by Corollary 6.17, the ideal (C — \) is a

maximal ideal of A. Then we must have (C' — \) = ann 4 (X*#).

5. Clearly, X** is an X-torsion weight module. Since X** is a simple module, then by Lemma
6.51, XM is Y-torsionfree.

6. (=) Suppose that XM ~ XN#' By statement 4, (C' — ) = anna (X ) = anny (XM ) =
(C — X). Hence, A = X. By Theorem 6.50 (or by statement 3), {qg'n|i € Z} = Wt(XMH) =
Wt(XN#') = {¢'y/ | i € Z}. Hence, u = 'y for some i € Z.

(<) Suppose that A = X and pu = ¢'u’ for some i € Z. Let 1 and 1’ be the canonical generators
of the modules XM* and X’\/’“/, respectively. If i < 0 then the map XM* — XN T s Yl
defines an isomorphism of A-modules. If i > 1 then the map X * — XN#' 1 (YE)'T/

defines an isomorphism of A-modules. O

We define an equivalent relation ~ on the set K* as follows: for u and v € K*, u ~ v iff yu = ¢'v
for some i € Z. Then the set K* is a disjoint union of equivalent classes O(u) = {q'n|i € Z}.
Let K*/ ~ be the set of equivalent classes. Clearly, K*/ ~ can be identified with the factor
group K*/(q) where (q) = {¢"|i € Z}. For each orbit O € K*/(g), we fix an element pp € O.

Theorem 6.55. N (X-torsion) = {[X}°]|X e K*, O € K*/(q)}.

Proof. Let M € N(X-torsion). By Lemma 6.52, the central element C' acts on M as a nonzero
scalar, say A\. Then M is an epimorphic image of the module X** for some p € K*. By
Proposition 6.54.(1), X** is a simple A-module, hence M ~ X*#. Then the theorem follows
from Proposition 6.54.(6). O

Lemma 6.56. 1. For all A € K and u € K*, GK (XM*) = 2.
2. A(CvK _ﬂaX) g A(K _/‘LvaYvE) g A.
3. For all i € K*, the module X%* is not a simple A-module.

Proof. 1. By Proposition 2.14.(3), GK (X**) < GK(X*) — 1 = 2. If A # 0 then it follows
from Proposition 6.54.(1) that GK (X*#) = 2. If A = 0 then consider the subspace V =
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D ;>0 KEF'E7 1 of the A-module X*. By (6.54), we see that V N CX* = 0. Hence, the vector
space V can be seen as a subspace of the A-module X®#. In particular, GK (X%#) > 2. Therefore,
GK (X0#) = 2.

2. Let a = A(C,K — pu,X) and b = A(K — 1, X, Y, E). Since C € b we have the equality
b=A(C,K—p,X,Y,E). Clearly, a C b. Notice that A/b ~ U/U(K — u, E) where U = U, (sls).
Then GK (A/b) = 1, in particular, b C A is a proper left ideal of A. It follows from statement 1
that, 2 = GK (A/a) > GK (A4/b), hence the inclusion a C b is strict.

3. By statement 2, the left ideal A(C, K — u, X) is not a maximal left ideal. Thus, the A-module

X%# is not a simple module. O

Corollary 6.57. Let A € K and p € K*. The A-module X" is a simple module iff X\ # 0.
Proof. The result follows from Proposition 6.54.(1) and Lemma 6.56.(3). O

Description of the set A/ (Y-torsion). An explicit description of the set A/ (Y-torsion) is given
in Theorem 6.59. It consists of a family of simple modules constructed below (see Proposition
6.58). The results and arguments are similar to that of the case for X-torsion modules. But for
completeness, we present the results and their proof in detail. Let p € K*, we define the left
A-module Y* := A/A(K — i, Y). Then Y¥* = @, , ;- KE'F/X*1 where 1 =1+ A(K — p1, Y).
It is obvious that GK (Y*) = 3. Let A € K. By (6.12), we have (C —\)1 = (¢ FX? — \) 1. Then

using Lemma 6.10, we see that the submodule of Y#,

(C-NY'= @ KEFXHC-Ni= @ KEFX*(PFX?-)\)1
i,5,k>=0 i,5,k>0

= P KEF/ (@PFX? - AX") 1. (6.57)
i,7,k>0

Therefore, the submodule (C'— \)Y* of Y* is a proper submodule, and the map (C' —\)- : Y* —

Y#, v (C — N)wv, is an injection, which is not a bijection.
For A € K and p € K*, we define the left A-module YV := A/A(C — A\, K — 1, Y). Then
YA~ YH /(O — N)YH #£ 0. (6.58)

Y* — YM* — 0. The

next proposition shows that the module Y** is a simple module if X is nonzero. Moreover, the

We have a short exact sequence of A-modules: 0 — Y#

K-basis, the weight space decomposition and the annihilator of the module YA* are given.
Proposition 6.58. For A and u € K*, consider the left A-module Y’ = AJA(C—\, K—u, Y).

1. The A-module Y’ = @ KE'X' 1o @ KEF1ae @ KEFFXT is a simple A-
B 20,522 i,k=0 ik>0
module where 1 =1+ A(C -\, K —p, Y).
yv= P kEXTe( P Ke'EToPret e @ KoFI)
i20,5>2 i21,k>0 k>0 i>1,k>0
o( P xe'Exia@Pro‘xie P KO'FXI).

i>1,k>0 k>0 i>1,k20
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3. The weight subspace Y;‘;’; of YN that corresponds to the weight ¢ is

K[O]1, s=0,
KOE"1a @ KE'X¥1, s=2r, r>1,
e
v ) KOIXL S s=
o KOE¥X1e @ KEXI1, s=2r+1,r>1,
2i4j=2r+1,
j=2

K[O]F" 1L, s=—2r, r =1,
K[O]F "X 1, s=-=2r+1, r>1.

4. anng (YMH) = (C — N).
5. YMH s a Y -torsion and X -torsionfree A-module.
6. Let (A, ), (N, ) € K x K*. Then Y * ~ YN iff X=X and p = ¢y for some i € Z.

Proof. 1. Notice that Y\* = D i k30 KE'FIX*k1. By (6.12), we have A1 = C'1 = ¢*FX?1,
ie., FX?1 = ¢ 2)\1. By induction on k and using Lemma 6.10.(1), we deduce that

FFXPT = (FX2)FT = ¢ 2N L (6.59)
Therefore, 3-; oo KF/X*T = K[X]X? 1+ K[F] 1+ K[F]X 1, and so

YM o= > KE'X'T+ Y KEFFI+ Y KE'F'XT
i20,5>2 i\k>0 i\k>0
So, any element u of YA can be written as u = > E'a;1 where a; € T := K[X]X? + K[F] +
K[F]X. Statement 1 follows from the following claim: if a,, # 0, then there exists an element
a € A such that au = 1.

(i) Y™u = a’ 1 for some nonzero element o’ € I': By Lemma 5.2, we have Yu = Z;:Ol E'b; for
some b; € I and b,,_1 # 0. Repeating this step n — 1 times, we obtain the result as desired. So,

we may assume that u = a’ 1 for some nonzero a’ € T'.

(ii) Notice that the element a’ can be written as o’ = pX2+ """ | F*(\; + p1; X)) where p € K[X],
i and y; € K. By Lemma, 6.10, we see that F?X1 = XF*1. Then

X2my, — (pX2m+2 + Z(}\l + /JzX)szFl) 1
=0

= (X4 (A 4 p X)X XH Y T

=0

= (X" 4 Y (X)X ) 1= f1
=0

for some 7; € K* (by (6.59)) and f is a nonzero element in K[Y]. Hence, we may assume that
u= f1 where f € K[X]\ {0}.

(iii) Let f = Zé:o a; X* where a; € K and oy # 0. Since KX*1 = ¢‘uX'1 and all eigenvalues
{¢'1t|i € N} are distinct, there is a polynomial g € K[K] such that gf 1 = X'1. If [ = 0, we are
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done. We may assume that { > 1. By multiplying by X (if necessary) on the equality we may
assume that [ = 2k for some natural number k. Then, by (6.59), we have ¢?*\"FFkX2* 1 = T,

as required.

2. Recall that U,(sl2) is a generalized Weyl algebra, then E*F' = o%(a)o*"!(a) - - o(a) holds for
all i > 1. Hence,

@KFiE’“T: @ K@’“Eﬁ@@ﬂ{@ki@ @ KO*F' 1.

i,k>0 i>1,k>0 k>0 i>1,k>0
Then statement 2 follows from statement 1.
3. Statement 3 follows from statement 2.

4. Clearly, (C — \) C anna(YM*). Then we must have (C' — \) = ann 4 (XM*) since (C — \) is a

maximal ideal of A.

5. Clearly, YV is Y-torsion. Since YM* is a simple module, then by Lemma 6.51, YM* is

X-torsionfree.

6. (=) Suppose that Y # ~ YY#' By statement 4, (C' — \) = anny (Y M) = anny (YN #) =
(C —X). Hence, A = X. By Theorem 6.50 (or by statement 3), {¢'n|i € Z} = Wt(YMH) =
Wt(YA ) = {¢'y/ | i € Z}. Hence, u = q'y/ for some i € Z.

(<) Suppose that A = X and p = ¢*’ for some i € Z. Let 1 and 1’ be the canonical generators
of the modules YA and Y)‘,’“', respectively. If i > 0 then the map YM* — YA T X
defines an isomorphism of A-modules. If i < —1 then the map Y " — YA+ 1 — (FX)'1

defines an isomorphism of A-modules. O

Theorem 6.59. N (Y -torsion) = {[Y*°]|X e K*, O € K*/(q)}.

Proof. Let M € N(Y-torsion). By Lemma 6.52, the central element C' acts on M as a nonzero
scalar, say A\. Then M is an epimorphic image of the module YM* for some u € K*. By
Proposition 6.58.(1), Y** is a simple A-module, hence M ~ Y*#. Then the theorem follows
from Proposition 6.58.(6). O

Lemma 6.60. 1. For all A € K and u € K*, GK (YM#) = 2.
3. For all i1 € K*, the module YO* is not a simple A-module.

Proof. 1. By Proposition 2.14.(3), GK (Y**) < GK(Y*) —1 = 2. If A # 0 then it follows
from Proposition 6.58.(1) that GK (Y*#) = 2. If A = 0 then consider the subspace V =
@D j>0 KE'F7 1 of the A-module Y*. By (6.57), we see that ¥V N CY* = 0. Hence, the vector
space V can be seen as a subspace of the A-module Y%#. In particular, GK (Y%#) > 2. Therefore,
GK (YOH) = 2.

2. Let o/ = A(C,K — p,Y) and b = A(K — , XY, E). Since C € b we have the equality
b=A(C,K — u,X,Y,E). Clearly, a’ C b. By Lemma 6.56.(2) and its proof, b is a proper left
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ideal of A and GK (A/b) = 1. Then it follows from statement 1 that, 2 = GK (4/a’) > GK (A/b),

hence the inclusion @’ C b is strict.

3. By statement 2, the left ideal A(C, K — p,Y) is not a maximal left ideal. Thus, the A-module

YO%# is not a simple module. O

Corollary 6.61. Let A € K and p € K*. The A-module Y M is a simple module iff A\ # 0.
Proof. The result follows from Proposition 6.58.(1) and Lemma 6.60.(3). O

The set NV ((X,Y)-torsionfree). Theorem 6.63 and Theorem 6.64 give explicit description of the

set N ((X,Y)-torsionfree). Recall that N ((X,Y)-torsionfree) = A (weight, (X, Y')-torsionfree).
Then clearly,

N ((X,Y)-torsionfree) = m (weight, (X,Y)-torsionfree) LI |_| m (weight, (X,Y)-torsionfree).
AeK*
(6.60)

Let A; be the localization of the algebra at the powers of the element t = Y X. Recall that the
algebra %; is a GWA, see Proposition 6.32.(1).

Lemma 6.62. A; = 6;[XT1;4] is a skew polynomial algebra where 1 is the automorphism of the
algebra €, defined by 1(C) = O, L(K*) = ¢F K+, 1(t) = qt, (u) = ¢*u and 1(v) = v.

Proof. Clearly, the algebra €;[X*!; ] is a subalgebra of A;. Notice that all the generators of the
algebra A; are contained in the algebra €;[X*1; 4], then A; C €;[X*1; ). Hence, A; = G;[X*;4],
as required. O
The set /T(a) (weight, (X,Y)-torsionfree). Let [M] € m (t-torsionfree). By Theorem 6.41,
the element ¢ acts bijectively on the module M (since ¢ is a normal element of R). Therefore,

the ¥-module M is also a %;-module. Then by Lemma 6.62, we have the induced A;-module

M=AosM=PXoM=FPyeMaPxXx oM
i€z i>1 i>0

Clearly, M is an (X,Y)-torsionfree, weight A-module and Wt (M) = {¢'u|i € Z} = O(n).
We claim that M is a simple A-module. Suppose that N is a nonzero A-submodule of M then
Xi®m € N for somei € Zandm € M. Ifi = 0 then N = Am = M. Ifi > 1, since Y(X‘®m) €
K*(1 ® t'm), then 1@ tm € N and so N = M. If i < —1 then X1 X @m =1®m € N, so
N =M. It M' € GO (t-torsionfree) then the A-modules M and M’ are isomorphic iff the
¢ #-modules M and X*® M’ are isomorphic where 1 = ¢y for a unique i € Z.

—

Theorem 6.63. A(0) (weight, (X,Y)-torsionfree) = {[M] |[M] € Gono (t-torsionfree), O €
K*/q"}.

Proof. Let V € Z@ (Weight, (X, Y)—torsionfree). Then the elements X and Y act injectively on
the module V. For any p € Wt (V'), the weight space V), is a simple t-torsionfree €Y *-module.
Then VO @i, V'OV, 0P X' @V, = V.. Hence, V =V, since V is a simple module. [J
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The set /T(-X) (weight, (X,Y)-torsionfree) where A € K*. Let M € 7z (t-torsionfree). Then
M, € ‘@A’“. By Lemma 6.62, we have the induced A;-module
¢ = At ®<gt Mt = @X7 ®Mt
i€l

Clearly, M* is a simple weight A;-module and Wt (M*) = {¢'u|i € Z} = O(u). For all
i € Z, the weight space M¥ := X' @ M, ~ Mtfi as €,-modules where Mfi is the %,-module
twisted by the automorphism (=% of the algebra %; (the automorphism ¢ is defined in Lemma
6.62). The set €+ (t-torsionfree) is described explicitly in Theorem 6.45.(1,3). If M = jM*
then X! @ fi* ~ (FPF) " ~ f7H as €-modules. It is clear that soce (f*) = f*. Hence,
socy (XT @) = soce (7 ) = f4'#. Then the A-module

SOCA<(f/\’”)’> = @SOC%&(XZ. @ M) ~ @f’\’qi“. (6.61)

€L €L

Similarly, if M = FM then X' @ F}* ~ (FMM) " ~ Fg\’qi“ as €;-modules. It is clear that
socg (FM) = FM . Hence, soce (X' @ F) = soce (FP7 ™) = FM'#. Then the A-module

soca ((FM)*) = @ soce (X' @ FM) = HF-. (6.62)

V€L i€Z

If M = F* where v € K*\{¢*v |i € Z}. Then X'® F}! Ml (]:;\ )~ .7:;\ qv“t as 6;-modules.
It is cleat that soc%(]-' /') = F*. Hence, socy (X' ® ]:%t ) = -7'—;‘,’37” is a simple €-module.
Then the A-module

socA( (F3) ) @socsg Xi®.7:,§‘ @}" Lk, (6.63)

€L 1E€EZ

It M € G i (K[t]-torsionfree) then , by Theorem 6.45.(3), M ~ € /€ H N Bbt~" for some
[-normal element b € Irr (#) and for all n > 0. For all i € Z,
. (gtk,qiu

Mi 2 —— ;
€Tt N B (b

= MLi(b)tfn .

Then soc%o(MtL_i) = socq (M,ipy-n) = M,ip)—n: for all n; > 0. Then the A-module

S0CA (M’) = @ soce (X' @ M) ~ @MLi(b)rn,i. (6.64)
= i€l

The next theorem describes the set m (weight, (X, Y)—torsionfree) where \ € K*.

Theorem 6.64. Let A\, u € K*. Then m (weight, (X,Y)-torsionfree) = {[soca(M*)]|[M] €
¢ 1o (t-torsionfree), O € K*/q”} and soca(M?*) is explicitly described in (6.61), (6.62), (6.63)
and (6.64).

Proof. Let M € IZ(T) (weight, (X,Y)-torsionfree). Then Wt (M) = O(n) € K*/¢* for any p €
Wt (M). Then M := M, € G ho (t-torsionfree) and M; € €. Clearly, M*® = M; D M.
So, M = soca(M*). O

By (6.51) and (6.60), Theorem 6.55, Theorem 6.59, Theorem 6.63 and Theorem 6.64 give a

complete classification of simple weight A-modules.
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Notations

We use the standard notations Z for the ring of integers, N for the natural numbers

the thesis K is a field of characteristic zero.

. Throughout

Sy X Vo oo 2,19,30 Frac(A) .ooooiiiiiii 31, 87
S 4,55 Spec,(A) oot 34
S 4,55 Specyp(A) oovi 34
B 4,58 CMH 40
o 4,58 CNF 41
H oo 4,58 AL 35, 38
e 4,59 A 43
Ko[X, Y] oo 5,63 MME 43
Ug(812) o 5,63, 80 NMH 43
Ky [X, Y] % Ug(sly) oo, 5,81 S0CA(M) oo 46
B 10 Iean(M) oo 46
O (M) oo 12 Trr(B) oo 48
GEK(A) oo 13 WE(M) oo 49, 109
GE (M) oo 13 2F 50
(M) 15 XMH 50, 112
D(0,Q) <o 15 YMM 52, 115
DIX,Y 0,a] oo 15 O oo 53
Ap e 15 M oo 53, 118
AXH oo 18 MO oo 53
O 19 A 56
Z(R) oo 20 A 58
AT 200 U/ o 58
SPEC(R) w vttt 22 S(A) 59
SPEC (R, 8) wveeii e 22 S(AJ) oo 60
SPEC (R) woeii i 22 Ul 59
U 22 Hy oot 59
Max (R) «oveiiiieni e 24 B o 59
Prim (R) .ooiiiiii i 25 BN 59
annp(M) oo 2D A 59
CR(S) oo 26 V(A) ©oee 61
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