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Abstract 

The aim of this thesis is to evaluate the use of microscopic volcanic ash (‘cryptotephra’) 

layers for providing information on the timing, characteristics and spatial extent of past 

volcanic ash clouds. The fine ash produced by explosive eruptions can travel long 

distances and even in low concentrations represents a hazard for aviation. 

Understanding the frequency and nature of ash clouds is important if economic and 

social losses are to be mitigated.  

This thesis is split into two research compartments. Compartment 1 focusses on 

understanding the limits of tephrochronology and investigates cryptotephra preservation 

and reworking bias in lakes and peatlands. Compartment 2 focusses on applying 

cryptotephras as records of ash cloud events. In addition to the objectives which fit into 

the two research compartments, two overarching objectives were outlined. These 

objectives focus on conducting new field campaigns in order to fill spatial gaps in 

existing cryptotephra records through the development of new, high quality 

tephrostratigraphies.  

I examine tephra layers from 13 new sites and contribute toward filling spatial gaps in 

northern European tephra records in northern Sweden, Poland, Wales and Southern 

England. Three new tephra layers are identified as part of this study, two in northern 

Europe: a basaltic tephra, CLA-L1 most likely derived from an eruption of the Iceland’s 

Grímsvötn volcano and SN-1, from the Icelandic Snæfellsjökull volcano - identified for 

the first time in mainland Europe. Finally, the AUC-1 tephra traced to a probable 

Ecuadorian source, represents the first discovery of a Holocene cryptotephra in the 

Amazon basin and highlights the opportunities for extending tephrochronology to 

tropical peatlands.  

In this study I present a number of methodological advances which are important for the 

design of future tephra studies, including: the replicability of tephrostratigraphies from a 

mid-latitude peatland; differences in lake and peatland records even at sites in close 

proximity; and the robustness of tephra glass shard geochemistry to acidic conditions 

and acid extraction. Beyond methodological advances, this study demonstrates how 

cryptotephra records can be utilised in new ways to compliment proximal records of 
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volcanism; includes the first comprehensive analysis of distal tephra shard size (9500 

shards); and presents a new recurrence estimate for the frequency of ash cloud events 

over northern Europe (44 ± 7 years). 
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TSC Total shard count per unit area, the total number of tephra shards 

relating to a given eruption per unit area. 

VAAC Volcanic Ash Advisory Centre 

VSWIR Visible to shortwave infrared spectroscopy 

WDS Wavelength Dispersive Spectroscopy 
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Chapter 1: Introduction  

1.1 Introduction  

This thesis will examine microscopic volcanic ash (‘cryptotephra’) layers with 

particular reference to their use as records of the source, frequency and nature of 

volcanic eruptions and the resulting ash clouds. This work represents a key step toward 

using cryptotephra layers, not only as a tool for the correlation of sedimentary 

sequences, but also as a record of volcanic eruptions which occurred in the past. 

Understanding past volcanic ash deposition may help in predicting the frequency and 

characteristics of future volcanic eruptions.  

1.2 Context of research and rationale  

The invention of passenger jet aircraft has led to a large increase in global air transport 

of both people and freight over the last 70 years. The global economy is increasingly 

dependent on reliable air transportation; any disruption to air traffic can result in large 

economic losses. Thankfully, modern aircraft can operate in the majority of 

meteorological conditions and widespread disruption to flights is rare. However, despite 

technological advances, the passage of modern jet aircraft through volcanic ash can 

result in substantial damage to the fuselage and even complete engine failure (Folch, 

2012). Given the safety risk of engine failure when flying through volcanic ash, and in 

line with recommendations from the International Civil Aviation Organisation, the 

British Civil Aviation Authority began implementing no fly zones where volcanic ash 

was present. This policy was subsequently reviewed, during the eruption of 

Eyjafjallajӧkull, 2010, allowing flights to continue where the ash concentration is below 

0.2 mg m-3 (Marks, 2010). Any decision regarding the closure of airspace by the Civil 

Aviation Authority is based on information provided by the relevant Volcanic Ash 

Advisory Centre (VAAC). There are nine VAACs, each responsible for a different 

geographic area. The London VAAC covers Iceland, and the north-east sector of the 

north Atlantic. The centre provides information on volcanic ash presence/absence and 

concentration during a volcanic eruption based on forecasts from dispersion models, 

satellite data and aircraft observation data. 
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The impact of volcanic ash clouds on aviation is a problem of global relevance. The fine 

ash produced during explosive volcanic eruptions can be transported long distances 

(1000s of km) from the volcanic source and cause flight disruption across a wide area. 

The first reported encounter between a modern jet aircraft and volcanic ash was during 

the eruption of Mount St Helens, USA in 1980. Since then, similar events have occurred 

in Indonesia, Alaska and the Philippines (Miller and Casadevall, 2000). Australia, 

which itself has no active volcanoes, was affected by ash from the eruption of the 

Chilean volcano, Cordón del Caulle, which grounded flights from Melbourne (>10,000 

km distant) in 2011 (Pistolesi et al., 2015).  

Evidence of past ash clouds is recorded by fine volcanic ash particles. These 

microscopic shards have been identified thousands of kilometres from their volcanic 

source, where they form invisible (‘cryptotephra’) layers in records such as peatlands, 

ice cores and marine and lake sediments (Jensen et al., 2014; Pyne-O'Donnell et al., 

2012). These cryptotephra layers can often be traced to a volcanic source and eruption 

based on the uniqueness of the particle chemistry linked back to the magmatic source 

(Swindles et al., 2011). They can also be assigned an age, either through correlation 

with an eruption of a known age, or through dating the host material (e.g. peat or lake 

sediment). As cryptotephra layers are spatially widespread and deposited over a short 

space of time, they are predominantly used in the dating and correlation of sedimentary 

sequences (‘tephrochronology’) (Lowe, 2011). 

The majority of cryptotephra research has been conducted in northern Europe, where 

the main source of cryptotephra is Icelandic volcanism. Iceland’s position in the north 

Atlantic puts it in a prime location for causing disruption to trans-Atlantic and European 

air traffic. Iceland is also one of the most active volcanic regions in the world, with the 

last 10 ka recording an average of 20 eruptions per century (Thordarson and 

Hoskuldsson, 2008). However, prior to AD 2010 there had been no significant 

explosive eruptions since that of Hekla in AD 1947, at a time when there were no 

passenger jet aircraft. Therefore it came as a surprise to many European governments, 

insurers and the general public when the ash cloud produced during the eruption of the 

Icelandic volcano Eyjafjallajӧkull in 2010 triggered two months of intermittent travel 

disruption (Gudmundsson et al., 2012). The estimated cost to airlines for the first six 

days of disruption was in excess of €900 million (Hooper, 2012). In order to mitigate 
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such economic losses and inconvenience to the travelling public in the future, 

understanding the frequency and nature of ash dispersal events from Icelandic eruptions 

is vital. 

Swindles et al. (2011) identified an opportunity to use cryptotephra layers in a novel 

way to estimate the reoccurrence of ash clouds. Cryptotephra layers and details of 

observations in historical records provide information on the frequency of ash clouds 

reaching northern Europe in the past. Assuming that the rate of ash clouds is stationary, 

and does not change significantly over time, information on past volcanic ash cloud 

frequency can be used to understand and model the frequency of future Icelandic 

eruptions. The reoccurrence model of Swindles et al. (2011) is based on a new database 

of tephra records in northern Europe, compiled from online databases and published 

literature and represents the first attempt to estimate ash cloud reoccurrence based on 

observed ash fall and cryptotephra records. 

In addition to recording volcanic ash cloud frequency, cryptotephra layers may offer 

additional insights into the volcanic eruption from which they are derived. The 

geochemistry of the glass shards in cryptotephra layers reflects the magma composition 

at the time of eruption (Ponomareva et al., 2015). Furthermore, cryptotephra shard 

morphology reflects the magma properties, the degree of magma vesiculation 

(degassing state), fragmentation and explosivity of the eruption (Liu et al., 2015). 

Tephra transport distance is influenced by meteorology (mostly wind direction), plume 

heights and particle morphology (Carey and Sparks, 1986; Stevenson et al., 2015).  

Growing interest in volcanic ash clouds globally, and in northern Europe in particular, 

has led to increased collaboration between atmospheric scientists and 

tephrochronologists (Stevenson et al., 2015). The value of cryptotephra layers, not only 

as dating isochrons, but also as records of the frequency and nature of volcanic activity 

is being recognised (Ponomareva et al., 2015). This research project will examine the 

extent to which cryptotephra layers in northern Europe and further afield can be applied 

as records of the frequency and nature of volcanic ash falls, and the extent to which they 

are confounded the issues of re-deposition, preservation and reworking in terrestrial 

environments. The results are likely to be of interest to a wide range of scientists 

including tephrochronologists, paleo-environmental scientists and atmospheric and 
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climate modellers. Furthermore, the findings of this thesis have the potential to impact 

on the model of ash cloud reoccurrence over northern Europe, which is of relevance to 

the travelling public, as well as to the insurance and aviation industries.  

1.3 Research aim  

The aim of this thesis is to evaluate the use of microscopic volcanic ash (‘cryptotephra’) 

layers for providing information on the timing, characteristics and spatial extent of past 

volcanic ash clouds.  

1.4 Objectives  

The main aim outlined above (Section 1.2) will be met through the following research 

objectives. The objectives of this research project are in two main compartments: 

Compartment 1: The limits of tephrochronology 

1. To examine the spatial complexity of tephra shard concentrations in a single 

peatland, in order to evaluate the level of sampling bias in studies which analyse a 

single core from a site (Chapter 3).  

2. To evaluate the preservation of cryptotephra shards in extreme conditions and assess 

the opportunities for extending the spatial coverage of tephrochronology by carrying 

out the first tephra investigation in a South American tropical peatland (Chapter 4).  

3. To identify possible preservation bias in lake and peatland records by investigating 

the tephrostratigraphies recorded in lake and peatland sites in close proximity to one 

another (Chapter 5).  

4. Using the above objectives, to assess the level of bias in models of volcanic ash 

reoccurrence over northern Europe such as that developed by Swindles et al. (2011) 

(Chapter 8). 
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Compartment 2: The application of tephra layers as records of volcanic ash 

5. To report tephra shard size and characteristics (colour and morphology) at all sites 

and to evaluate the extent to which these properties can further understanding of 

volcanic ash clouds (Chapter 6).  

6. To compare distal ash cloud records with records of Icelandic volcanism over the 

last 7000 years (Chapter 7, Chapter 8). 

7. To develop a new model for ash cloud reoccurrence over northern Europe using new 

modelling techniques and including additional data based on new tephra layers 

(Chapter 8).  

General  

8. To conduct field campaigns in order to assess whether spatial and temporal gaps in 

tephra records in northern Europe reflect the true margins of the spatial distribution 

of Icelandic volcanic ash, or whether they are an artefact of research intensity 

(Chapters 1, 2, 3, 4).  

9. To produce new high quality tephra profiles, prepared and geochemically 

characterised following standard protocols (Chapters 1, 2, 3, 4).   

1.5 Thesis structure   

This thesis is structured in nine Chapters. Chapter one provides an introduction to the 

research context and rationale for this project. Chapter two contains a literature review 

which offers a critical analysis of existing literature and methods relevant to this 

research project. During the literature review I identify and highlight key gaps in the 

existing body of literature which form the basis for the aims and objectives outlined in 

Chapter one.  

This thesis is presented in an ‘alternative format’, following the guidelines outlined by 

the University of Leeds, whereby each results chapter is in the form of a manuscript for 

publication. There are six results chapters, each with its own abstract, introduction, 

methods, results and discussion and conclusion section. Each is accompanied by a 

reference list. At the time of submission results chapters 3, 4 and 5 are published.  
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The results chapters fit into two main compartments, in line with those outlined in the 

objectives in Chapter 1 (Fig. 1). Chapters three, four and five fit into Compartment 1: 

The limits of tephrochronology. These chapters examine the robustness of 

tephrochronology, specifically the use of cryptotephra layers in lakes and peatlands as a 

technique for understanding past ash clouds (Objectives 1-4, 8-9). During these chapters 

I critically examine the influence of deposition, redistribution and reworking processes 

on tephra records in peatlands and lakes. Chapters six, seven and eight fit into 

Compartment 2: The application of tephra layers as records of volcanic ash, and focus 

on identifying opportunities for the application of cryptotephra layers as records of 

volcanic ash clouds (Objectives 5-9).  

Finally, Chapter 9 offers a synthesis of the preceding results chapters bringing together 

the two research compartments and offering overall conclusions. The implications of the 

findings of this research project are discussed, together with limitations and ideas for 

future directions.  
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Figure 1. Conceptual model of this research project. Research is split into two main compartments. Blue circles indicate Chapter numbers for results chapters, each results chapter is 

related to one main objective. 
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Chapter 2: Literature review 

2.1 Introduction  

This review is focussed on cryptotephra layers with particular reference to their use as 

records of ash-cloud distribution and frequency. I critically examine existing literature 

and methods relevant to this research project and highlight key questions and gaps in 

existing research. 

2.1.1 Tephra  

The word ‘tephra’ is used to describe a wide range of pyroclastic debris released during 

volcanic eruptions (Thorarinsson, 1944). This review will focus on volcanic ash (tephra) 

which has been transported in the atmosphere and deposited in areas far (>500 km) 

from the volcanic source. These distal tephra layers are often referred to as 

cryptotephras or ‘hidden tephras’ as they are not visible to the naked eye. Cryptotephras 

contain low concentrations of small shards (typically <125 µm) (Lowe, 2011). 

During a tephra-producing volcanic eruption, shards of tephra are ejected from the vent 

into the atmosphere. The direction and distance of transport are affected by the height of 

the eruption column, wind speed and direction, as well as particle terminal velocity 

(Fig. 11). As the terminal velocity of a tephra shard or aggregate is reached, it will fall-

out and be deposited. Eruption style and shard characteristics are predominantly 

controlled by magma composition and volatile content. The height of the eruption 

column, which can be maintained or variable, exerts a strong control on tephra transport 

distance. Plume height is controlled in part by the gas content of the magma, where 

higher gas content results in a higher plume (Wilson et al., 1978). Plinian eruptions 

which are characterised by high plumes (> 20 km) (Mader, 2006) can produce widely 

dispersed tephra isochrones.  

Tephra shard characteristics include the shape, size and density of shards, all of which 

impact on settling velocity. Larger, more dense shards are deposited closer to the vent 

than smaller less dense shards (Folch, 2012). Generally basaltic tephra shards have a 
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higher density (c. 2400-3200 kg m-3) than rhyolitic shards (c.2150-2600 kg m-3) (Schön, 

2011). Models suggest that basaltic tephra shards fall out more rapidly than rhyolitic 

shards due to their higher density (Stevenson et al., 2015). Shard shape, size and density 

characteristics are controlled partly by magma type and volatile content (Mader, 2006) 

which affect bubble formation and brittle fragmentation (Cashman, 2000).  

2.1.2 Tephrochronology  

Tephrochronology is the use of tephra layers as a dating and correlation method. The 

technique was developed using visible tephra layers in Iceland (Thorarinsson, 1944; 

Thórarinsson, 1981). Tephrochronology is based on two fundamental assumptions: 

1) That tephra deposition (from a single eruption) over a wide area can be considered to 

be simultaneous in geological time. This claim is supported by the short duration of 

most explosive eruptive phases (Lowe, 2011) and the rapid fallout of tephra even when 

transported long distances (Stevenson et al., 2012);  

2) That the geochemistry of tephra shards reflects magma geochemistry during a given 

eruption and therefore, tephra layers from different eruptions can have different 

geochemistries (Baker, 1983).  

The assumption of simultaneous deposition allows for the use of tephra records as 

isochrones. If a tephra layer can be assigned a date, using stratigraphy, and either 

historical or radiometric dating methods, that age can be inferred at other sites where an 

identical tephra layer is present (Fig. 1). As I discuss in detail later, recently, it has 

become increasingly apparent that the assumption of an individual geochemical 

fingerprint for each eruption is a simplification and event stratigraphy and independent 

dating are important when assigning tephra layers to an eruptive event. 
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Figure 1. Diagram illustrating the theory behind tephrochronology, based on the assumptions of simultaneous deposition and geochemical ‘fingerprinting’ tephra layers can be used 

as a precise method of dating and correlation for proximal and distal sequences in lakes, marine cores, ice cores and peatlands.
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The discovery of Icelandic tephra layers in the Faroe islands and Scandinavia provided 

an opportunity to extend tephrochronology into regions further from their volcanic 

sources (Persson, 1966, 1968, 1971). The promise of distal tephrochronology was 

further advanced by the discovery of cryptotephra layers in peatlands (e.g. Hall and 

Pilcher, 2002; Plunkett, 2006), lakes (e.g. Davies et al., 2007; Stanton et al., 2010), ice 

(e.g. Gronvold et al., 1995) and marine (e.g. Gudmundsdóttir et al., 2011) cores. The 

first cryptotephra found on the UK mainland, at Altnabreac in Caithness, Scotland, was 

geochemically correlated to the eruption of Hekla 4 (4287 BP) (Dugmore, 1989). Since 

these early discoveries, numerous cryptotephras from many volcanic source regions 

have been identified across northern Europe and in other regions of the world including 

Russia (Wastegård et al., 2000), New Zealand (Gehrels et al., 2006a), Africa (Lane et 

al., 2013b), South America (Wastegård et al., 2013) and China (Zhao and Hall, 2015). 

Cryptotephras which transcend continental or even hemispheric boundaries are 

particularly useful for the dating and correlation of palaeoenvironmental records from 

different regions in different depositional environments (Jensen et al., 2014; Lane et al., 

2013a; Pyne-O'Donnell et al., 2012). 

Tephrochronology is now widely applied as a dating and correlation method in 

palaeoenvironmental studies (e.g. Cole and Mitchell, 2003; Lawson et al., 2008). Where 

adequate tephra layers allow, tephrochronology provides a cost-effective, accurate and 

precise technique to complement other dating methods. Accurately dated tephra layers 

can provide tie points in radiocarbon-based age-depth models, which can be particularly 

important during plateaux in the radiocarbon calibration curve (Plunkett, 2006). Tephras 

are also of particular value in dating records where radiocarbon or other dating methods 

are confounded by errors (Lowe et al., 2007). More recently deposited tephras such as 

Hekla 1947 are likely to become increasingly important as 210Pb dating which has a 

half-life of just 22 years becomes less effective (Rea et al., 2012). Cryptotephra layers, 

being deposited far from the volcano are also valuable for the reconstruction of volcanic 

activity in regions where there has been abundant Quaternary volcanism. Proximal 

deposits are often confounded by reworking or buried by new deposits, whereas 

cryptotephra layers are typically far away enough from the volcanic source not to be 

subject to these complications. Therefore, in some instances cryptotephra layers present 

a more complete record of volcanic activity than proximal records.  
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Despite the advantages offered by tephrochronology there are a number of 

complications which must be considered when applying this technique. Cryptotephra 

layer identification to a source volcano, or another cryptotephra layer is often based on 

analysis of major element data. Major elements form a major component (>0.1%) of the 

material, in this instance glass and the following species are typically analysed: SiO2, 

FeO, TiO2, K2O, Al2O3, Na2O, CaO, MgO and MnO. The analysis of major elemental 

composition is routinely conducted in the majority of tephra studies. Trace elements are 

present at concentrations of below 1000 ppm and in tephra samples must be analysed 

separately to major elements, the analysis of trace elements is not yet routine in tephra 

studies.  

One of the principals of tephrochronology is the assumption that a tephra layer has a 

distinctive geochemical fingerprint. However, magma and thus tephra geochemistry can 

be heterogeneous (Hunt and Hill, 1993). Therefore tephra erupted during the early 

stages of an eruption can be different in geochemical composition to the main bulk of 

tephra, due to contamination with (pre-existing) material from previous eruptions 

(Larsen and Eiriksson, 2008b). Some volcanoes show indications of magma mixing and 

evolving tephra geochemistry throughout an eruption, meaning tephra from one 

eruption can have a range of different geochemistries. These complex geochemical 

signatures are caused by magma chamber zonation (Hodder et al., 1991) or alternatively 

by the fluctuation of the composition of deeply sourced magmas feeding the magma 

storage region under the volcanic source. Conversely, multiple tephra layers from 

different eruptions have been identified with overlapping geochemistry, demonstrating 

that the assumption that every tephra has a unique geochemical fingerprint is not always 

valid.  

A recent focus on late-glacial European tephra layers has led to the discovery of 

multiple tephra layers attributed to the Katla volcano with very similar major element 

geochemistry (MacLeod et al., 2015): the Vedde ash (c. 12 cal ka BP), Dimna Ash (c. 

15 cal ka BP), Suđurøy (c. 8 cal ka BP), AF555 (c.11.5 cal ka BP) and Abernethy (11.7-

11.2 cal ka BP). There are approaches to mitigate issues where tephra layers have 

overlapping geochemistry. The analysis of trace elements can be used to try and aid 

discrimination. However, trace elemental composition can also be similar between 

eruptions, and the Dimna ash and Vedde ash have geochemically indistinguishable 
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major and trace element geochemistry (Lane et al., 2012). Other methods such as 

Raman spectroscopy are being developed and show early promise for distinguishing 

between tephras of similar major elemental composition (Surtees et al., 2016). 

Stratigraphy, independent dating (e.g. 14C or varve counting) and stratigraphic markers 

such as spheroidal carbonaceous particles can also be used to discriminate between 

geochemically indistinguishable tephra layers, for example the tephras of Hekla 1510 

and 1947 (Swindles and Roe, 2006).  

Although tephra layers can be a useful dating tool, they are only as good as the date 

assigned to the eruption (or tephra layer). Where tephra layers can be historically dated 

and the geochemistry of a tephra is well known, the dates can be assumed to be well 

defined, providing that documents are reliable. For pre-historic tephras where no written 

record exists, assigning a date is more complex. Due to the poor preservation of 

volcanic ash on some surfaces, and the active geology of volcanic regions, it is 

sometimes not possible to obtain a date for a tephra from the region proximal to the 

volcano. Instead, tephras can be dated with respect to their position in the distal 

stratigraphy (Lowe, 2011). The detection of tephra in high-resolution records such as 

ice-cores and varved lake sediments provides the most precise means for dating a 

tephra, sometimes to sub-annual (seasonal) resolution (Coulter et al., 2012; Lane et al., 

2013a; Zolitschka et al., 2015). However, not all tephras are present in high resolution 

records, and the detailed examination of annually accumulated ice or sediment for 

cryptotephra layers is time consuming. Current research focusses on specific core 

sections, and scanning for cryptotephra has not been conducted continuously in many 

records (e.g. Greenland ice cores). Therefore, the majority of pre-historic tephras have 

been assigned dates based on a 14C derived chronology (Fig. 2). This may be achieved 

through interpolation from an age-depth model, direct radiocarbon dating or, more 

recently, wiggle-match dating (Plunkett et al., 2004).  
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Figure 2. Pie chart indicating the dating methods for cryptotephras identified in northern Europe. The 

majority of tephras have been dated using radiocarbon dating on surrounding organic material. Tephras 

dated by association with another tephra layer have been identified alongside (mixed with) tephras of a 

known age. Data source: European cryptotephra database of Swindles et al. (2011) and references therein. 

2.2 Cryptotephra research: a global view  

The first cryptotephra layers were identified in northern Europe and were of Icelandic 

source (Dugmore, 1989; Hall and Pilcher, 2002). The majority of cryptotephra research 

is focused on northern Europe and the north Atlantic where multiple well dated and 

widespread tephra layers have been identified. However, increasingly there are a 

number of studies which explore visible tephra records and cryptotephra records from 

other regions (Davies, 2015) (Table 1). Expanding cryptotephra research into new 

regions, including the tropics, may offer opportunities to further our understanding of 

the preservation of cryptotephra layers in different environments and to understand the 

past dynamics of nearby active volcanic systems as well as offering a chronological tool 

for palaeoenvironmental reconstructions. However, as the majority of cryptotephra 

research has so far been conducted in the cooler northern latitudes the preservation of 

cryptotephra shards in tropical environments has not been studied. Understanding the 

potential for the preservation of cryptotephras in tropical environments is important in 

establishing whether cryptotephra studies in these regions could aid our understanding 

of past volcanism and potential impacts on ecosystems.  
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Country or region Example References 

Greenland ice cores Davies et al. (2002); Davies et al. (2004); Fiacco et al. (1993); 

Mortensen et al. (2005); Zielinski et al. (1995) 

North Atlantic and 

adjacent seas 

Andrews et al. (2006); Austin et al. (2004); Bond et al. (2001); 

Haflidason et al. (2000); Jennings et al. (2002); Lacasse et al. (1998); 

Sjøholm et al. (1991) 

Faroe Islands, Iceland Dugmore and Newton (1998); Gehrels et al. (2006b); Larsen et al. 

(2001); Rasmussen et al. (2003); Wastegård (2002); Wastegård et al. 

(2001) 

Great Britain and Ireland Barber et al. (2008); Dugmore (1989); Dugmore et al. (1995); Dugmore 

et al. (1996); Hall and Pilcher (2002); Langdon and Barber (2001); 

Pilcher and Hall (1992); Pilcher and Hall (1996); Pilcher et al. (1995); 

Wastegard et al. (2000) 

Norway, Sweden, 

Svalbard 

(Finland), Russia 

Bergman et al. (2004); Boygle (2004); Davies et al. (2007); Oldfield et 

al. (1997); Persson (1971); Pilcher et al. (2005); Wastegård (2005); 

Wastegard et al. (2000) Ponomareva et al. (2013); Vorren et al. (2007) 

Denmark, The Netherlands Blockley et al. (2007); Davies et al. (2005); Turney et al. (2006) 

Germany, Austria, Poland Housley et al. (2013); Juvigne et al. (1995); Merkt et al. (1993); Schmidt 

et al. (2002); Van Den Bogaard and Schmincke (2002) 

Estonia, Albania, 

Macedonia, 

Adriatic Sea, central 

Mediterranean area 

Bescoby et al. (2008); Calanchi and Dinelli (2008); Hang et al. (2006); 

Siani et al. (2004); Wagner et al. (2008) 

 

British Columbia, Alaska, 

North America 

Payne and Blackford (2008); Pyne-O'Donnell et al. (2012) 

 

China, Japan Eden et al. (1996); Lim et al. (2008); Suzuki et al. (2005); Takemura and 

Danhara (1994); Zhao and Hall (2015) 

Chile, Patagonia, Falkland 

Islands 

(Islas Malvinas), Peru 

Haberle and Lumley (1998); Holmes et al. (1999); Wastegård et al. 

(2013); Watson et al. (2015) 

New Zealand Gehrels et al. (2006a); Gehrels et al. (2008) 

Antarctica de Angelis et al. (1985); Dunbar (2005); Kurbatov et al. (2006) 

East Africa Lane et al. (2013b) 

Table 1. Table indicating the locations of tephra studies, updated from Pyne-O’Donnell et al. (2008). The 

majority of cryptotephra research has focused on northern Europe and the north Atlantic where multiple 

well dated and widespread tephra layers have been identified. However, increasingly there are a number 

of studies which explore visible tephra records and cryptotephra records from other regions (Davies, 

2015).  
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2.2.1 Cryptotephra records in northern Europe 

As afore mentioned the majority of cryptotephra studies have focused on northern 

Europe. This makes northern Europe the ideal location for using cryptotephra layers as 

records of volcanic ash clouds as there are numerous studies across different 

depositional environments which have examined cryptotephra layers primarily for the 

purpose of chronological control on paleoenvironmental reconstructions.  

2.2.1.1 Icelandic volcanism  

The majority of cryptotephra layers in northern Europe are of Icelandic source. Iceland 

is one of the most volcanically active regions in the world (Thordarson and 

Hoskuldsson, 2008). The island is located on the Mid-Atlantic Ridge, along which the 

North American and Eurasian plates are diverging at an average rate of 1.8 cm yr-1 

(Gudmundsson, 2000). Iceland also sits above a mantle plume, leading to frequent 

effusive and explosive volcanism (Wolfe et al., 1997). There have been an estimated 

2400 volcanic eruptions on Iceland during the Holocene; mafic (effusive) volcanism 

dominates (Thordarson and Hoskuldsson, 2008).  

Volcanoes in Iceland exhibit a wide range of magma compositions. Magma 

composition is a key control on explosivity and thus the propensity for the production of 

fine ash. Eruptions of rhyolitic and mixed geochemical compositions are often 

associated with the production of large quantities of fine tephra. Silicic magmas are 

more viscous and contain a higher volatile content than their mafic counterparts. As a 

result, eruptions of silicic magmas are often more explosive with increased magma 

fragmentation and the production of more tephra, when compared to eruptions of mafic 

compositions which are less viscous and escape the vent as lava. A recent example of 

effusive activity was the eruption of the Bárðarbunga-Veiðivötn volcanic system 

between August 2014 and February 2015 which produced approximately 1.5 km3 of 

lava (Schmidt et al., 2015). Effusive eruptions pose hazards such as the emission of 

toxic gases and physical damage to property. However, the interaction of magma with 

ice/water from glaciers during sub-glacial eruptions frequently results in explosive 

phreatomagmatic phases (Gudmundsson et al., 2008). The fragmentation of magma 

during explosive phreatomagmatic phases can result in the production of large volumes 



~ 24 ~ 

 

of fine tephra. Eruptions of silicic magma are less common on Iceland than mafic 

eruptions, although still more frequent than in many other volcanic regions (Thordarson 

and Hoskuldsson, 2008). The Hekla volcano has been the most prolific producer of 

silicic tephra in Iceland during the Holocene, depositing 50 proximal tephra layers in 

the last ~8000 years (Larsen and Eiriksson, 2008a) (Fig. 3).  

 

Figure 3. Map of Iceland indicating volcanoes which have been active during the Holocene and 

approximate boundaries of large ice masses (blue shading). Data on Holocene volcanoes from the 

Smithsonian Database (Global Volcanism Program, 2013). Volcanoes are indicated as follows: white 

triangle = Caldera, white circle = Fissure vent, white circle with point = Pyroclastic cone, black circle = 

Shield volcano, black triangle = Stratovolcano, grey triangle = sub-glacial, grey circle = Crater.  
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2.2.1.2 Icelandic volcanism and climate 

Icelandic volcanism is controlled not only by internal factors such as the rate of plate 

boundary rifting and pulses of the magma plume, but also by external factors such as 

climate. The position of Iceland at 64º latitude results in a cold climate capable of 

sustaining glaciers throughout much of the mid- to late- Holocene and a large ice cap 

during the last glacial maximum. In addition to increasing the explosivity of eruptions 

through ice/water interaction, there is evidence that the degree of ice overlying Icelandic 

volcanoes has effected the frequency of volcanism in the past (Sigvaldason et al., 1992). 

A 30% increase in eruption frequency during the period 10-8 ka BP has been attributed 

to rapid glacial unloading at the start of the Holocene which led to depressurisation, 

increased melt production and a subsequent increase in volcanism (Jull and McKenzie, 

1996; Maclennan et al., 2002). Ice caps on Iceland are currently retreating, but current 

glacial unloading is on a much smaller scale than during the last glacial-interglacial 

transition and appears to be resulting, at least in the short term, in increased intrusive 

activity and thus increased magma storage capacity, as opposed to increasing the risk of 

an eruption (Hooper et al., 2011).  

Modelling and observations suggest that even small seasonal changes in ice volume can 

increase the probability of, or even trigger volcanic eruptions (Albino et al., 2010). 

There has been a limited amount of research, focussed on modelling increases in melt 

generation due to the relatively small (compared to glacial-interglacial unloading) 

declines in ice volume since the Little Ice Age (~AD 1890), these studies suggest that 

reducing ice volume is resulting in significant increases in melt generation rates (Pagli 

and Sigmundsson, 2008; Schmidt et al., 2013). However, there are no observational 

studies which indicate an increase or decrease in volcanic frequency during the current 

interglacial with changes in ice volume, with which to support models. Proximal 

records of past volcanic frequency are often confounded by the erosion of deposits in 

areas proximal to volcanoes. Some distal cryptotephra records are not confounded by 

the same reworking issues. Therefore, examining the past record of ash clouds 

(cryptotephra) alongside proximal records can aid confidence in the identification of 

periods of change in the frequency of Icelandic volcanism in the past. When used 

alongside climate records such as study may allow for further assessment of a potential 

link between the frequency of Icelandic volcanism and climate (Thesis Objective 6).  
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2.2.1.3 Spatial distribution of existing Holocene tephra records  

This section will focus on records of tephra in peatlands and lakes across northern 

Europe and is limited to the last 7000 years, the period for which climatic conditions 

have been largely similar to the modern era. This temporal limitation has been applied 

because of the increase in frequency of Icelandic volcanism prior to 7000 years BP 

during the transition from the last glacial period to the Holocene (Section 2.2.1.2). This 

review was conducted prior to the commencement of fieldwork for this PhD project and 

was updated last in autumn 2012. Tephra has also been identified in ice cores (e.g. 

Gronvold et al., 1995) and marine sediments (e.g. Gudmundsdóttir et al., 2011) in the 

north Atlantic. However, here we are primarily concerned with ash clouds which 

travelled toward northern Europe. Ice core evidence from Greenland is therefore beyond 

the spatial remit of this study. Furthermore, no complete records of tephra fall from 

Greenland are currently available. Due to the high resolution of the Greenland record, 

only small sections of ice cores have been examined, usually targeted at identifying a 

particular tephra or time interval (Coulter et al., 2012). 

The current database of cryptotephras referred to in this section was compiled and 

reported by Swindles et al. (2011) and updated by the author of this review. The number 

of tephra layers recorded in northern European peatlands and lakes is 84, of which the 

majority, 44 have been identified at only one site (Fig. 4, Fig. 5) The database contains 

data from cryptotephras in the geological record (n = 77) and those observed to fall-out 

over northern Europe in historical times (n = 7). A thorough analysis of the spatial 

distribution of northern European cryptotephras was conducted by Lawson et al. (2012). 
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Figure 4. Diagram indicating the outline tephrostratigraphy for northern Europe. The diagram includes 

only tephras which have been identified at more than one site. Error bars indicate uncertainty in age 

estimate. *Suggested to be from the eruption of Grímsvötn in 1619 
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Figure 5. Map showing the distribution of sites where Holocene cryptotephras have been identified, based 

on the Holocene cryptotephra database of Swindles et al. (2011) (updated as of Autumn 2012). Filled 

circles indicate lake and peatland sites where cryptotephras have been geochemically analysed. The grey 

triangle shows the location of the Hekla volcano. The source of the majority of Holocene tephra layers in 

Northern Europe. 

The database contains tephra records from 100 peatlands and 20 lakes. The dominance 

of peatland sites is most likely related to a combination of: firstly, the abundance of 

peatlands in northern Europe, some of which date to the early Holocene and secondly, 

the ease of extracting tephra from peat when compared to lake sediments, which contain 

more mineral material necessitating the use of additional extraction steps. No site has a 

complete record containing every tephra layer; this is due to differences in topography 

and meteorological conditions which affect tephra transport and fallout. Meteorological 

conditions, particularly wind strength and direction are a major control on tephra 

distribution. As evidenced by infrared satellite images, discrete air masses often 
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maintain their integrity rather than mixing, resulting in a patchy distribution of tephra 

rather than a uniform dusting (Cooke et al., 2014). Furthermore, radionuclides fall out 

preferentially during periods of rainfall (Mattsson and Vesanen, 1988). Langdon and 

Barber (2004) suggest that a similar wash-out effect may affect tephra deposition, 

depositing more tephra from the atmosphere during rainfall events and resulting in 

patchy tephra distributions.  

Tephra layers from Hekla volcano dominate the geological record of cryptotephra layers 

for Northern Europe in the mid- to late- Holocene. Hekla is the source for just under 

half of the cryptotephra layers found at five or more sites (Fig. 6, Table 2). The most 

spatially widespread tephra layer is Hekla 4 which has been identified at 45 sites 

spanning much of Europe and which provides a valuable isochron for dating the period 

c. 4287 BP (Pilcher et al., 1995) (Fig. 7). In contrast, the Glen Garry tephra c. 2176 BP 

(Dugmore et al., 1995), although identified at 26 sites (Fig. 8) has a narrower spatial 

distribution toward South and East Europe and has not been identified in Scandinavia.   

 

Figure 6. The distribution of eruptions among volcanic systems. A total of 17 explosive eruptions over the 

last 7000 years have resulted in tephra found at ≥5 European sites. Question marks indicate eruptions 

where attribution to source volcano is tentative. 
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Name Sites (n) Source Date Geochemistry Dating Method 

Hekla 4 45 Hekla 2395-2279 BC Rhyolitic Wiggle-match 14C 

Glen Garry 26 Unknown 16-260 BC Dacitic-Rhyolitic Wiggle-match 14C 

Hekla 1104 21 Hekla AD 1104 Rhyolitic Historical  

Hekla 1947 20 Hekla AD 1947 Dacitic-Andesitic Historical  

AD 860 B 19 Alaska AD 776-887 Rhyolitic Wiggle-match 14C 

Hekla-S/Kebister 19 Hekla 1800-1750 BC Dacitic-Rhyolitic Wiggle-match 14C 

Microlite 15 Snaefellsjökull? 755-680 BC Rhyolitic Wiggle-match 14C 

Askja 1875 13 Askja AD 1875 Rhyolitic Historical  

Hekla 1510 13 Hekla AD 1510 Dacitic-Andesitic Historical  

Hekla 3 13 Hekla 1087-1006 BC Dacitic-Rhyolitic Wiggle-match 14C 

Lairg A/Hekla 5 13 Hekla 4997-4902 BC Rhyolitic Wiggle-match 14C 

Lairg B 10 Torfajökull 4774-4677 BC Rhyolitic Wiggle-match 14C 

Öræfajökull 1362 9 Öræfajökull AD 1362 Rhyolitic Historical 

GB4-150 (~SILK-
UN) 

8 Katla 800-758 BC Dacitic-
Trachydacitic 

Wiggle-match 14C 

BMR-190 7 Hekla 705-585 BC Dacitic Wiggle-match 14C 

AD 860 A 5 Grímsvötn? AD 776-887 Rhyolitic Wiggle-match 14C 

Hoy 5 Torfajökull 4620-4230 BC Rhyolitic Directly 14C dated 

Table 2. Characteristics of cryptotephra layers which occur at ≥5 sites in northern Europe. The majority 

of widespread tephra layers in northern Europe have been dated using either historical records or Wiggle-

match 14C. Data from this study (thesis) is not included.  
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Figure 7. Diagram from Lawson et al. (2012) indicating widespread nature of Hekla 4, black dots indicate 

sites where the Hekla 4 tephra has been identified, white dots indicate sites where tephra has been 

investigated and Hekla 4 has not been found, grey dots indicate all sites in the European tephra database. 

 

Figure 8. Diagram from Lawson et al. (2012) indicating the distribution of Glen Garry tephra, black dots 

indicate sites where the Glen Garry tephra has been identified, white dots indicate sites where tephra has 

been investigated and Glen Garry has not been found, grey dots indicate all sites in the European tephra 

database. 
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2.2.1.4 Geochemistry of existing Holocene tephra records   

Fig. 9 indicates the geochemistry of tephras found at more than five sites in northern 

Europe. The record is dominated by tephra layers of silicic composition. Despite the 

dominance of basaltic volcanism in Iceland and the potential for explosive 

phreatomagmatic eruptions which have been shown to distribute fine ash over long 

distances (Stevenson et al., 2012; Thordarson and Hoskuldsson, 2008), only five 

basaltic cryptotephra layers have been identified in Holocene records in northern 

Europe: the Landnám (1079 ± 2 BP) tephra thought to be from either the Veiðivötn or 

Torfajökull volcanic system (Cage et al., 2011; Hannon et al., 2001; Wastegård, 2002), 

the Mjáuvøtn A (6668-6533 BP) tephra of unknown source (Olsen et al., 2010; 

Wastegård et al., 2001), Veiðivötn 473 BP (Chambers et al., 2004; Davies et al., 2007), 

and the Hov (6190-5720 BP) and BRACSH-1 (222-70 BP) tephra layers thought to be 

from Grímsvötn (Reilly and Mitchell, 2015; Wastegård, 2002).  
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Figure 9. The number of sites where a tephra layer is found in Northern Europe. Tephra layers found at 

fewer than five sites are excluded (n = 267). More information on the characteristics these eruptions are 

given in Table 2.  

The majority of basaltic cryptotephras have been identified in sites on the Faroe Islands, 

although basaltic tephras have also been identified in Ireland (Chambers et al., 2004; 

Reilly and Mitchell, 2015) and Scandinavia (Davies et al., 2007). A number of possible 

reasons for the lack of basaltic cryptotephras in Holocene European cryptotephra 

records have been suggested:  

1) There is experimental evidence that basaltic glass is more prone to hydration, 

alteration and even completely dissolving in acidic environments (pH 4), than rhyolitic 

glass (Pollard et al., 2003; Wolff-Boenisch et al., 2004). Prolonged exposure to the 

acidic and wet environments in peatlands may result in the dissolution of glasses of 

mafic composition. 

2) Basaltic tephra shards have a higher density than silicic shards (2.5-3.0 and 2.3 g cm-

3 respectively). Models suggest that basaltic tephra shards fallout of the atmosphere 

earlier than silicic shards of the same size and arrive over northern Europe in lower 

concentrations in the air (Stevenson et al., 2015).  



~ 34 ~ 

 

3) Density separation extraction methods might result in the under-detection of basaltic 

tephra layers, especially in lake sediments (density separation is rarely required in 

peats).  

The work of Swindles et al. (2011) and Lawson et al. (2012) has gathered data from 

many cryptotephra studies in northern Europe and highlighted the low number of 

basaltic tephras in the distal record. However, although many theories have been put 

forward to explain these observations these rely on experimental or modelled evidence. 

More research is required in order to assess the possible reasons for the 

underrepresentation of basaltic tephras in the distal cryptotephra record. An examination 

of naturally deposited tephra layers, in order to better understand the reason or reasons 

for the underrepresentation of basaltic tephras in the distal tephra record is an objective 

of this thesis (Thesis Objective 3).  

2.3 Spatial gaps in European tephra records 

Satellite monitoring of the ash clouds produced during recent Icelandic eruptions 

indicate that volcanic ash does not travel evenly across northern Europe and fall as a 

blanket across all sites (Folch et al., 2012). Therefore a full spatial coverage of sites 

across the continent is important if all cryptotephra layers and to be recorded. Spatial 

analysis of cryptotephra distribution by Lawson et al. (2012) indicates a number of gaps 

in the spatial distribution of terrestrial tephra records (Fig. 10). Lawson et al. (2012) 

strive to include an analysis of sites where a tephra has been looked for, but not found in 

order to map the margins of tephra distribution. However, this is often not possible as 

searches for tephra with a negative outcome are not routinely reported. Therefore, the 

spatial gaps in European cryptotephra distribution maps may be considered to represent 

either: the ‘true’ margins of the spatial distribution of a tephra or, they may be an 

artefact of sampling. Establishing the presence or absence of tephra horizons in these 

‘gap’ regions will allow for the assessment of the extent to which current distribution 

maps are confounded by sampling bias. Identification of tephra in these regions would 

suggest that, rather than reflecting areas of no tephra fallout, these regions are areas 

where cryptotephra have not been sought. Should they be an artefact of sampling bias, 

these ‘gap’ regions also offer the most promise for identifying new, previously 

undiscovered tephra layers.  
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Figure 10. A map of all European cryptotephra sites (autumn 2012) (filled circles). Spatial gaps in tephra 

records referred to in the text have been shaded blue. Triangle indicates the location of the Hekla volcano. 

I focus on three spatial gaps in tephra records which offer the most promise for 

identifying previously undiscovered cryptotephras. These regions contain peatlands 

and/or lakes, some of which have not been subject to anthropogenic disturbance and 

should provide records for the mid- to late- Holocene.  

2.3.1 Poland  

A recent investigation has identified two Late Glacial tephras thought to be of Icelandic 

origin in the South West of Poland (Housley et al., 2013), this suggests that there is no 

reason why Holocene Icelandic tephras should not also have reached Poland. Prior to 

the commencement of this research project there were no published records of Holocene 

Icelandic tephras in Poland. More recently, Wulf et al. (2016) identified a number of 

tephra layers including Askja 1875, and two other tephra layers of suggested Icelandic 

origin in a varved lake sequence in central northern Poland. Low shard concentrations 

suggest that some of the tephras identified were close to the edge of their detectable 
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range. Further research in this region might identify the margins for the spatial 

distribution of these tephras.  

2.3.2 Northern Scandinavia  

Scandinavia, lies in the path of the dominant lower stratospheric winds from Iceland 

(Wastegård, 2005). A number of tephra isochrones including: Hekla 4, Hekla 3, Hekla-

Selsund and Askja 1875 have been identified in Holocene records (Wastegård, 2005). 

However, records are clustered toward southern and central areas, which are closer to 

major population centres, and contain ombrotrophic peatlands. There has been a limited 

amount of work in the northern regions, including the examination of a site on the 

Lofoten Islands (northern Norway) which identified a number of previously 

unrecognised cryptotephra layers (Pilcher et al., 2005). There is only one published 

tephra record from the north-east coast of Sweden, which has a temporal extent of 700 

years and where the Askja 1875 tephra has been identified (Oldfield et al., 1997). This 

leaves a major spatial and temporal gap in tephra records from northern Sweden prior to 

AD 1875.  

2.3.3 Wales and southern England  

Multiple cryptotephra layers have been identified across northern Britain (Lawson et al., 

2012). However, only one tephrostratigraphy exists for the South of Britain, from 

Exmoor (Matthews, 2008). The data which is published in a technical report for English 

Heritage, spans only the last 2700 years. Cryptotephras have been observed in cores 

from peatlands in Wales (Buckley and Walker, 2002; Hall and Pilcher, 2002), but the 

lack of geochemical data prevents their use as chronological markers.  

2.3.4 Addressing spatial gaps  

Spatial gaps in current tephra records may reflect regions where no tephra has fallen, 

and thus be useful for mapping the margins of tephra fallout. However, they may also 

represent regions where research intensity has been low and therefore cryptotephras 

have not been identified. An examination of the literature, suggests that the latter is 
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more likely. The identification of late-glacial Icelandic tephra layers in Poland, and 

reports of tephra layers in Wales, suggests that these regions are within the distal fallout 

range of Holocene Icelandic tephra and therefore the lack of cryptotephras in these 

regions in the Swindles et al. (2011) database is an artefact of research intensity rather 

than a reflection of the distribution of tephras. During this research project we will test 

this hypothesis further by examining material from sites in areas identified above as 

‘spatial gaps’ for cryptotephra layers (Thesis Objectives 8 and 9).  

2.4 Cryptotephras as records of volcanic ash  

Until recently cryptotephras were predominantly used as dating isochrons. However, 

they also represent a record of fall-out from ash clouds and can be used to understand 

the frequency of ash cloud events and other details, such as geochemistry, of the 

eruptions from which they are derived.  

2.4.1 Statistical modelling of the recurrence intervals of volcanic ash cloud events 

Given the social and economic cost of disruption caused by volcanic ash cloud events, 

understanding the frequency of future events is important, particularly for the insurance 

and aviation industries. The probabilistic assessment of volcanic hazards typically 

involves estimating the number of events (eruptions or in this case ash cloud coverage) 

that have occurred in a given time interval in the past. With the assumption that the 

volcanic system will continue to behave in a similar way, this information can be used 

to forecast a recurrence rate for future events (Kiyosugi, 2012). Probabilistic modelling 

allows for the quantification of uncertainties associated with hazard assessments 

(Rymer et al., 2009; Sandri et al., 2012). 

Owing to the popularity of tephra for chronological control in northern Europe a large 

amount of data on past Icelandic ash events is available. Swindles et al. (2011) 

compiled tephra records from northern Europe into a database spanning the last 7000 

years. For the period with the best records (the last 1000 years) they calculated the 

average recurrence interval of ash clouds over Northern Europe to be 56 ± 9 yr. Repose 

intervals ranged from 6 to 115 years. In a given 10 year period there is a 16% chance of 

an ash cloud occurring.  
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Swindles et al. (2011) calculated the chance of future eruptions in a given time period 

using survival analysis. Survival analysis focuses on a failure point (Cox and Oakes, 

1984). In the case of medical research this may be a patient fatality; in the case of 

volcanology this would be an ash cloud producing eruption. The time between a 

specific starting point and the failure event is termed ‘survival time’, in this instance the 

survival time is the repose interval between events (Banerjee, 2003). The empirical 

survivor function is calculated and analysed using the observed repose intervals, where 

the repose interval is taken as the time between the start times of two successive ash 

clouds. In this instance the survivor function S(t) gives the probability that T (repose 

interval) exceeds a given time interval (t) (Cox and Oakes, 1984):  

𝑆𝑇(𝑡) = 𝑃[𝑇 > 𝑡] 

The use of non-parametric methods is necessitated as distribution for the repose 

intervals is not assumed (Connor et al., 2006). The survivor function at each repose 

(time between eruption) is calculated as below (where ti is a given repose interval from 

1…N and N is the total number of events): 

𝑆(𝑡𝑖) =  
𝑁 − 𝑖

𝑁
 

An appropriate model for survival time for which parameters have been assessed will 

assist the precision of prediction of survival. This is commonly and easily achieved 

using graphical comparison whereby a parametric survival function is chosen which 

best aligns with the empirical survival time data (Lee, 1992). Examples of commonly 

utilised distributions for natural hazard modelling include the exponential (Swindles et 

al., 2011); Weibull (Dzierma and Wehrmann, 2012) and log logistic distributions 

(Connor et al., 2006). The exponential distribution suggests the rate of eruptions is 

constant over time and approximates toward a Poisson distribution. Weibull 

distributions allow for a change in the rate of a hazard over time, for example an 

increase in the rate of eruptions (or clustering). Finally, log logistic distributions allow 

competing factors to be taken into account (Dzierma and Wehrmann, 2012).  
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There are a number of assumptions which must be considered when utilising survival 

analysis to forecast the probability of future events. These are:  

1) The forecast will always represent a minimum probability because there is the 

possibility that some events have not been preserved, or yet identified in the 

geological record and are therefore not included in the calculations.  

2) The geological record probably contains some (unquantified) noise due to, for 

example, incorrect tephra source identifications or unreliable dating.  

3) The rate of volcanism can change over time, therefore the input parameters of start 

time and end time for a given period of past activity are important and must be 

justified (Connor et al., 2015) . 

4) Changes in the rate of volcanism are also complicated by an increase in the 

reporting of volcanic events over the last 1000 years. This is due to: the expansion 

of the human population and an increase in the quantity and quality of written 

records; as well as better preservation of more recent events in the geological record.  

5) One major source of error in many estimates of volcanic hazard recurrence is errors 

in the date assigned to individual events/eruptions. Although some events can be 

dated historically with a negligible temporal uncertainty, events in the geological 

record may be dated by other methods with various degrees of accuracy. The 

recurrence model for northern Europe used by Swindles et al. (2011) uses the 

midpoint of each age estimate as the date for each interpolated event and therefore 

does not account for uncertainties in the estimated ages of these units.  

Assessing the reoccurrence of volcanic ash clouds over northern Europe using 

geological and observed records represents the only available means of estimating 

future hazard. However, there are a number of assumptions and limitations involved 

when applying this sort of model. The unpredictability of volcanic eruptions means that 

even models based on an idealised (complete) history of past volcanic ash cloud data 

can only offer an estimate of reoccurrence. The extent to which geological records are 

incomplete is unknown, but bias in the geological record makes any estimate of 

reoccurrence a minimum estimate. The reoccurrence estimate of  Swindles et al. (2011) 

was 56 ± 9 yr. Repose intervals ranged from 6 to 115 years. In 2011, just one year after 

the eruption of Eyjafjallajӧkull, Grímsvӧtn erupted, the explosive eruption resulted in 

transport of volcanic ash over northern Europe (Stevenson et al., 2013). The repose 
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interval between these two events (1 year) was much less than any previously identified 

in the geological record and underlines the extent to which estimates of volcanic ash 

reoccurrence based on past eruption frequency are complex.  

Despite the challenges and limitations of modelling the reoccurrence of ash cloud 

events, the past is often the only way to establish what might occur in the future. In this 

thesis I will aim to further assess the bias in the northern European tephra database on 

which the Swindles et al. (2011) model is based (Thesis Objectives 1-4). I will also 

assess spatial gaps in northern European tephra records, with the aim of identifying new 

tephras and thus increasing the completeness of the northern European tephra database 

(Thesis Objectives 8-9). Finally I will use the new database to outline a new 

reoccurrence estimate for volcanic ash over northern Europe and compare this with the 

reoccurrence of Icelandic eruptions (Thesis Objective 7).   

2.4.2 Beyond frequency: Other information about past ash cloud events  

In addition to information on the frequency of past ash cloud events, cryptotephra layers 

may offer further insights into previous ash cloud characteristics. For example, variation 

in the geochemistry of cryptotephra from the Hekla 4 eruption has been suggested to 

reflect changes in magmatic SiO2 content during the eruption (Langdon and Barber, 

2004). It has been suggested that the examination of the geochemistry of distal tephra, 

can inform understanding of the physiochemical conditions under which the melt was 

formed (Ponomareva et al., 2015).  

Shard concentrations (total numbers of shards or ‘tephra loading’) have also been 

examined at a large scale for Glen Garry and Hekla tephras at sites in Scotland and for 

the Hekla 1947 tephra across northern Ireland (Langdon and Barber, 2004; Rea et al., 

2012). Both studies identify differences in tephra loading at different sites on a regional 

scale. Hypotheses to explain the regional variation in shard concentrations include: 

periods of wet and dry deposition; differences in site altitude; and the location of a site 

with reference to the position of the ash cloud. However, both of these studies are based 

on one or two cores at a peatland. As of the commencement of this thesis, no research 

has been conducted regarding the degree of within site variation in tephra 

concentrations. This thesis will examine multiple peat cores within one site (Thesis 
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Objective 1). Such research is of methodological interest (are multiple cores needed to 

identify all the tephra layers in one site?). Furthermore, if tephra is being redistributed at 

a site scale, any regional scale inferences based on shard counts from one or two cores 

may be invalid.  

Although tephra shard count totals are often reported, the shard size and morphology of 

distal cryptotephras is rarely described. However, there are a small number of studies 

which have begun to report distal tephra shard size and morphology data. Information 

on shard characteristics, in particular particle size distributions, has proved useful in 

evaluating current methods for monitoring ash clouds using satellites (Stevenson et al., 

2015). Furthermore, although scanning electron microscope observations indicate the 

irregular (non-spherical) shape of cryptotephra, which is often characterised by 

fractured bubble walls, models of tephra fallout predominantly simplify tephra shards to  

spheres (Carey and Sigurdsson, 1982; Sparks et al., 1992). Increasingly it is being 

recognised that particle shape has a significant impact on predicted transport distances 

in tephra fallout models (Beckett et al., 2015). Dellino et al. (2012) identified a 400% 

difference in the settling velocities of spherical and irregularly shaped shards of equal 

mass, with irregularly shaped shards travelling further. There is a need to build on this 

pioneering work with a comprehensive analysis of cryptotephra shard sizes from 

multiple sites across northern Europe (Thesis Objective 5). Further work is required to 

understand the extent to which cryptotephra shard size and morphology can inform 

understanding of source eruption parameters and to establish standard protocols for the 

reporting for cryptotephra size and morphology. Information on the shard size and 

shape of cryptotephras will be of interest to modellers, satellite monitoring specialists 

and tephrochronologists.   

2.5 To what extent do tephra records represent past ash cloud events?  

In order to use cryptotephra records as records of ash cloud events it is necessary to 

understand the extent to which they might be confounded by issues of preservation and 

reworking following deposition. Following the deposition of tephra onto peat or a 

lake/lake catchment, a number of factors can affect preservation and thus the 

tephrostratigraphy at any given point (or coring location). Reworking is here defined as 

the movement of tephra following initial deposition. The degree of reworking is 
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affected by: meteorological conditions such as wind and rain; vegetation; human 

impact; and hydrological factors (e.g. peatland water-table movements) (Fig. 11). 

Identifying reworking presents a key challenge in tephrochronology (Dugmore et al., 

2011). In this section we discuss the reworking of tephras in peatlands, and then in 

lakes.  
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Figure 11. A summary diagram of the factors influencing tephra deposition. Key references (1) Mattsson 

and Vesanen (1988); (2) Pouget et al. (2014b); (3) Bergman et al. (2004); (4) Payne and Gehrels (2010); 

(5) Hodder et al. (1991); (6) Techer et al. (2001); (7) Thorseth et al. (1995) (8) Swindles et al. (2013). 

Published in Watson et al., (2015). 



~ 44 ~ 

 

The movement of tephra laterally, across the surface of a peatland is important, as the 

degree of lateral movement will determine the extent to which tephra is above/ below 

levels of detection. Tephra fallout onto snow and subsequent reworking has been 

invoked as a cause of fragmented or ‘patchy’ tephra deposits in northern peatlands 

(Bergman et al., 2004). Tephra that has been deposited onto snow may be trapped until 

a subsequent melt, causing a lag which might be seasonal or cover many years, between 

deposition and incorporation into lake sediments (Davies et al., 2007). Whether tephra 

is deposited onto snow or directly onto the peat or lake catchment, localised aeolian 

redistribution can also occur. The type and coverage of vegetation have been identified 

as important factors in determining the impact of aeolian redistribution processes on 

proximal tephra layers (Boygle, 1999). Peatlands and lakes are often particularly 

exposed, with few trees to reduce the reworking of tephra shards by wind (Bergman et 

al., 2004).  

There is limited experimental evidence for the redistribution of thin (1 mm) tephra 

layers on peatlands during overland flow generated by precipitation. Such redistribution 

of shards across the peatland surface may cause tephra layers to become spatially patchy 

or to be washed from the peatland entirely (Payne and Gehrels, 2010). A study of the 

tephrostratigraphy of proximal upland and lowland sites on the Shetland islands 

concluded that landscape scale changes, in this instance an increase in burning, can 

result in the remobilisation and redistribution of already deposited cryptotephra layers 

(Swindles et al., 2013).   

As well as moving across the surface of the landscape, tephra can also move vertically 

through the peat profile or lake sediment. It is common to identify a peak in the shard 

concentration within a stratigraphic record, with lower shard concentrations above and 

below. There has been some debate regarding the horizon which should be identified as 

representing the event date (Davies et al., 2007). This is particularly a problem in lake 

sediments, where shards can continue to wash in from the catchment for a number of 

years following the initial event. Experimental work on peatlands indicates that the 

majority of shards remain at the palaeo-surface and the peak in tephra shard 

concentration can be considered to represent the timing of the eruption or dating 

isochron (Payne and Gehrels, 2010). 
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Tephra may be reworked in a number of ways in lake sediments including: downward 

migration through soft sediment (Davies et al., 2007); bioturbation; within-basin 

focussing; and movement by plant roots (Davies et al., 2007; Davies et al., 2005). Pyne-

O'Donnell (2011) investigated tephra layers in small Scottish lakes and identified 

catchment size and the number of stream inlets as having a significant impact on the 

within-basin concentrations and locations of microscopic tephra layers.  

Alongside physical redistribution and reworking, there is evidence that tephra might be 

subject to chemical attack in some depositional environments. Tephrochronology is 

dependent on matching the geochemistry of a cryptotephra with a well dated tephra. 

However, distal tephra layers recorded in lake and especially peat sediments have 

potentially been subject to extended periods of exposure to low pH (bogs are typically < 

pH 4: (Holden et al., 2004)) and microbial activity. Distal tephra layers are especially 

vulnerable to geochemical attack given their large surface area (Pollard et al., 2003). At 

low pH conditions rhyolitic tephras, which contain more silica, appear to be more stable 

than basaltic tephras (Pollard et al., 2003; Wolff-Boenisch et al., 2004). There is some 

visual evidence for damage to tephra shards in peatlands (Hodder et al. (1991), 

examination of tephra shards in a range of depositional environments in Iceland and 

Scotland has indicated that the chemical integrity of shards is maintained for at least 

4000 years (Dugmore et al., 1992). However, the rate of chemical attack is governed by 

temperature (Wolff-Boenisch et al., 2004), research into the preservation of tephra 

shards in warm tropical environments, where lab based experiments suggest the rate of 

chemical attack will be highest, may offer observational evidence to build on previous 

lab based experiments (Thesis Objective 2).  

In this section I have discussed previous research on tephra reworking and redistribution 

in lakes and peatlands. Although there have been a number of studies which look at 

lakes and peatlands in isolation, there have been no studies which look at the 

tephrostratigraphy in a lake and peatland which are proximal to one another and 

therefore would have been expected to receive the same air fall tephras and to record the 

same tephrostratigraphy. A study of this type would allow for the assessment of whether 

peatland or lake sites contain the most complete tephrostratigraphy (Thesis Objective 

3).   
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2.6 Methods 

In this section we critically examine the methods used to detect, extract and 

geochemically analyse cryptotephra layers in lake sediments and peat as these are the 

two terrestrial environments which form the focus of this thesis. Samples are usually 

extracted from peatlands and lakes as sediment/peat cores. Coring protocols for 

peatlands are reviewed by De Vleeschouwer et al. (2011). The limitations of extracting 

single cores to represent tephra fallout from peatland and lake sites has been discussed 

previously (Section 2.5) 

2.6.1 Detection/ Extraction   

Various methods have been developed in order to determine the presence and/or 

geochemistry of cryptotephra in peat and lake sediments. Some methods of detection 

are destructive, leading to the loss of the peat or sediment matrix, while others are non-

destructive and allow for the detection of tephra layers ‘in-situ’. The tephra 

identification process is typically conducted in two phases: 

1) Initial scans: Contiguous samples are extracted along the length of a core and 

tephra shards are counted under a high power microscope to identify the depth 

of peak tephra shard concentration. Typically the number of shards is reported 

per cm3 of substrate (Gehrels et al., 2008). Shards can be characterised based on 

morphology and colour during the microscopy process (Heiken, 1972; Schmid, 

1981). This step is often conducted at a coarse resolution (5-10 cm continuous 

samples) and then core depths found to contain tephra are re-sampled at a finer 

resolution (typically 1 cm) (Swindles et al., 2010). 

2) Geochemical analysis: New samples are extracted from the core at the depths 

containing the peak in tephra shard concentration. These samples are subject to 

geochemical analysis.  

  



~ 47 ~ 

 

2.6.1.1 The ‘quick burn’ method 

The most established method for conducting initial scans on peat samples is the “quick 

burn method” (Hall and Pilcher, 2002). Samples are ashed in a furnace at 600°C before 

being washed in 10% HCl to remove carbonates (Pilcher and Hall, 1992). Where 

diatoms or quartz (SiO2) are present- additional treatment with dilute sodium hydroxide 

(NaOH) may be required; this is particularly common for lake sediments (Hall and 

Pilcher, 2002). Samples are then mounted onto slides and shards are counted at 100-

400x magnification (Swindles et al., 2010). Tephra shards extracted using this method 

are not suitable for geochemical analysis as chemical alteration of alkalis occurs at 

temperatures in excess of 350°C (Dugmore et al., 1995).  

2.6.1.2 Density separation  

Density separation using heavy liquids was originally developed for lake samples. This 

method is particularly valuable for samples which contain large amounts of mineral 

material or biogenic silica (Lowe and Turney, 1997; Turney, 1998). Density separation 

for initial identification can be conducted as an additional step to the ‘quick burn 

method’ following the ashing and HCl treatment steps thus avoiding the use of NaOH, 

which has been shown to reduce the shard count numbers for rhyolitic tephra (Blockley 

et al., 2005). Density separation (without ashing) can also be used to extract samples for 

geochemical analysis and is discussed further below.  

2.6.1.3 Extraction for geochemistry: acid digestion and density separation  

There are two main methods of extraction for tephra suitable for geochemical analysis: 

acid digestion and density separation. Acid digestion is the most established method 

(Lawson et al., 2012). Samples are subject to treatment with concentrated HNO3 and 

H2SO4 to digest the peat substrate before washing through a fine Teflon sieve (typically 

between 6-10 µm) and rinsing thoroughly with water to remove any remaining acid 

(Dugmore et al., 1992; Hall and Pilcher, 2002). Samples containing biogenic silica may 

require further washing with dilute NaOH (Rose et al., 1996).  
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There is experimental evidence that exposure to acids and especially alkalis can result in 

the leaching of cations from the surface of the tephra shards (Blockley et al., 2005). 

However, there is some debate as to whether tephra geochemistry is altered significantly 

during acid extraction, especially when alkali treatment, which has been shown to be 

more damaging, is not necessary (e.g. in ombrotrophic peatlands). Roland et al. (2015) 

identify no difference in the major element geochemistry of rhyolitic tephra extracted 

using density separation and acid extraction. The majority of data in geochemical 

databases (e.g. Tephrabase) has been obtained from shards extracted by acid digestion.    

Density separation offers an alternative to acid digestion for the extraction of tephra 

from the surrounding substrate and was advocated by Blockley et al. (2005) following 

their critique of the acid digestion method. Density separation involves using a medium 

of controlled density, usually a solution of sodium polytungstate (aka SPT and with 

chemical formula Na6[H2W12O40]). Various contaminants are removed in a stepwise 

process by varying the specific gravity of the liquid. Although density separation is 

often necessary for samples containing biogenic silica or mineral material, the process is 

time consuming and care must be taken to monitor the density of float to avoid shard 

loss. Basaltic shards do not always float at the commonly used recovery float density of 

2.5 g cm-3 and are often only detected through magnetic separation (Davies et al., 2001; 

Mackie et al., 2002). Furthermore, the process of density separation can be challenging 

when working on organic-rich samples (e.g. peat) where shards become trapped in 

organic material, and extra steps must be applied to prevent the loss of shards in 

cleaning floats (Pyne-O'Donnell et al., 2012).  

2.6.1.4 Non-destructive tephra detection methods  

A number of tephra identification (and geochemical analysis) methods which do not 

destroy the peat or lake sediment have been developed. Methods include: X-ray 

fluorescence; magnetic susceptibility; X-ray photography; and spectrophotometry.  

Although non-destructive methods provide continuous data without the need to damage 

the matrix, they work best on visible tephras where layers are more dense. These 

methods are, however, not always reliable when detecting cryptotephra layers (Gehrels 

et al., 2008). For example, X-ray fluorescence does not detect tephra layers with low 

shard concentrations (<850 shards cm-3) and has difficulty detecting lighter elements 
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such as silica, a major component of felsic tephras (Kylander et al., 2012). Similarly, 

magnetic susceptibility is only sensitive to ferromagnetic materials, which do not 

represent a major constituent of felsic (rhyolitic) tephra shards (McCanta et al., 2015). 

Combining a number of different tephra detection methods (e.g. magnetic susceptibility, 

visible to short wave infrared spectroscopy (VSWIR) and XRF core scanning or 

reflectance and luminescence) increases the possibility of detecting cryptotephra layers. 

However, this is expensive and time consuming and necessitates access to multiple 

pieces of equipment (Caseldine et al., 1999; McCanta et al., 2015). More recently, 

hyperspectral imaging has shown promise in detecting macro- and potentially 

cryptotephra layers, although the analysis of cores for cryptotephra layers was not 

compared to an analysis conducted by traditional methods, so it is difficult to assess 

whether all cryptotephra layers were detected by hyperspectral imagining (Aymerich et 

al., 2016). Due to inconsistencies in these different methods and the need for access to 

equipment, at present the majority of cryptotephra studies utilise the destructive 

detection methods outlined in sections 2.6.1.1 and 2.6.1.2.    

2.6.2 Major elements  

Electron Probe Micro-Analysis (EPMA) is the most widely used procedure for 

determining the major element geochemistry of cryptotephra glass shards. There are two 

types of EPMA analysis: Wavelength Dispersive Spectroscopy (WDS) and Energy 

Dispersive Spectroscopy (EDS). EDS allows the analysis of exceptionally small grains 

present in low concentrations, such as those found in ice cores. However, due to limited 

use of standards and potential influence of grain morphology, EDS is semi-quantitative 

and thus not widely used (Haflidason et al., 2000).  

The process of WDS involves firing an electron beam at the sample (an individual glass 

shard), which has been mounted in a hard-setting resin, exposed and polished (c.f. 

Dugmore et al., 1992; Hall and Hayward, 2014), and measuring the intensity and 

wavelength of resulting X-rays. The electron bombardment of each element results in 

the emission of a different X-ray wavelength. The abundance of each element is related 

to the intensity of the resulting X-ray (Hunt and Hill, 1996). The EPMA contains 

crystals of precisely known composition which are used for internal calibrations 



~ 50 ~ 

 

allowing for the quantification of X-rays emitted from unknown samples. ZAF, PAP or 

X-PHI algorithms are usually applied automatically by probe software to convert the 

intensity of the X-ray into the concentration for a given element (Merlet, 1994). 

Percentage abundances by mass (wt %) of around ten species (typically FeO(total), TiO2, 

SiO2, K2O, Al2O3, Na2O, CaO, MgO and MnO) are determined by the analysis (Lowe, 

2011).  

EPMA offers the ability to analyse small shards (beam sizes down to 3 µm), a necessity 

for cryptotephra work where shard sizes are commonly <100 µm (Hunt and Hill, 2001). 

Although there is no universally agreed standard for the number of shards to be 

analysed from one tephra layer, typically around 15 shards is considered a suitable 

minimum (Lowe, 2011; Shane, 2000; Swindles et al., 2010). Where layers are 

particularly sparse an analysis based on fewer shards may be necessary, although larger 

sample sizes are preferable to help reduce the impact of heterogeneity due to chemical 

variation of the magmas during the eruption, hydration, and shard surface roughness 

(Hunt and Hill, 2001)  

Alkali migration (loss of mobile elements presumably deeper into the material during 

exposure to the electron beam) can lead to certain chemical species being under or over 

represented in the % total oxides (Haflidason et al., 2000; Nielsen and Sigurdsson, 

1981). Alkali migration is related to the intensity, duration and diameter of the electron 

beam. Altering the focus of the beam or ‘rastering’ to beam coverage of 10-20 µm 

reduces the intensity of the bombardment and thus alkali migration (Hunt and Hill, 

2001). However, wider beams, which cover a larger area of the sample provide less 

precise analysis (Coulter et al., 2010) and are not practical for smaller vesicular shards. 

Hayward (2012) proposed and tested an analysis set up using low beam currents for 

alkalis (<0.1 nA/ µm2) to minimise Na mobilisation while using a beam size as small as 

3 µm. The beam current is then increased to analyse the remaining elements. This 

method avoids the need for corrections post analysis and requires no hardware or 

software modification. 

It should also be noted that following EPMA the analytical total is nearly always below 

100%. This can be a result of the inability of the probe to detect hydrogen and thus 

water dissolved in the glass (Hunt and Hill, 1993). The range of H2O contents for felsic 
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glasses can reach 5-6% (Wallace, 2005). Tephras can become hydrated during the 

eruption, if magmatic water is not sufficiently outgassed from the magma before an 

eruption, or in the post-depositional environment (Pearce et al., 2004; Pollard et al., 

2006; Shane, 2000). Although the level at which an EPMA analysis is accepted is 

debated, generally sums of all oxides in excess of 95% are considered acceptable 

(Pearce et al., 2007; Swindles et al., 2010).  

2.6.3 Trace elements  

The major element composition of magma (and thus tephra) can be similar for different 

eruptions, especially those from the same volcanic system. This can lead to false 

correlation and incorrect stratigraphy (Pearce et al., 2007; Tomlinson et al., 2012). 

Trace elements are present in minute amounts in the glass samples. Trace elements can 

enable the user to distinguish between magmas of similar major element composition, 

particularly useful trace elements in tephrochronology include: Rb, Sr, Zr and Nb 

(Lowe, 2011). Trace elements differ from major elements in that they are controlled not 

only by the major magma evolution processes (such as fractional crystallization), but 

also by details in the composition of the source region of each individual eruption. 

Therefore some magmas with a similar major elemental composition can contain 

differences in trace elemental composition (Allan et al., 2008). Processes such as 

fractional crystallisation can alter the trace elemental composition of magma so that 

even magmas with highly similar major element compositions may be distinguished 

through the application of trace element analysis (Allan et al., 2008).  

Analysis of trace elements is a relatively new development in distal tephrochronology. 

Only in the past 15 years have instruments been developed with the capacity to analyse 

shards in the distal tephra size range (Pearce et al., 2011). Developments in hardware 

are increasingly enabling the analysis of smaller shards. Analysis of shards with beam 

diameters of between 10-20 µm using Laser Ablation Inductively Coupled Plasma Mass 

Spectrometry (LA-ICP-MS) is now possible (Pearce et al., 2007; Tomlinson et al., 

2010). Fractionation effects caused by the formation of a thin melt film increase with 

decreasing beam diameters (Pearce et al., 2011).  
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An alternative technique for the analysis of the trace elemental composition of glass 

shards is secondary ion mass spectrometry (SIMS) analysis. Although more expensive, 

slower, and less widely available than LA-ICP-MS (Pearce et al., 2011), rather than 

ablation, SIMS uses ‘sputtering’ to remove sample material. The process of sputtering is 

less damaging to small and thin shards (5-10 µm) which are too small or thin to undergo 

analysis using LA-ICP-MS (Lowe, 2011).  

The utility of trace elements to provide information which would allow two tephras with 

similar major element glass geochemistry to be distinguished has been questioned as the 

substitution of major elements for trace elements can follow systematic pathways 

(Pollard et al., 2006). However, trace elements have been successfully employed to 

discriminate between eruptions of similar major elemental composition such as those 

from the Yellowstone Caldera tephras (Pearce et al., 2008) and Mexican tephras (Luhr 

et al., 2010). Despite the promise of trace elemental analysis, there is little work on the 

trace elements of Holocene Icelandic tephras, the majority of which can be 

distinguished based on major element glass geochemistry. As a result there is a lack of 

trace element comparison data from dated eruptions (Hall and Pilcher, 2002).  

Further work on the trace elemental composition might allow cryptotephra layers 

containing glass shards with a very similar major elemental composition e.g. those from 

Hekla 1947 and Hekla 1510 to be differentiated based on geochemistry. However, the 

value of trace elemental analysis is limited for distal Icelandic Holocene cryptotephra 

layers in northern Europe, the majority of which can be distinguished based on the 

analysis of major elements. 

2.6.4 Statistical analysis of tephra geochemistry  

The standard method for comparing the geochemistry of a known and unknown tephra 

is through the use of bi-plots/tri-plots of major elements. Bi-variate oxide plots such as 

FeO vs.TiO2 and TAS plots (SiO2 vs Na2O+K2O) allow for an informed but ultimately 

subjective decision on the similarity of a known and unknown tephra (Charman and 

Grattan, 1999; Stokes et al., 1992). Another simple means of assessing the similarity 

between two sets of geochemical data is the use of similarity coefficients and the 

coefficient of variation (Froggatt, 1992).  
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Although these numerical manipulations can allow for a more informed decision on the 

similarity of two sets of data, the decision to attribute an unknown tephra to a source 

eruption is still ultimately subjective (Stokes et al., 1992). Similarity coefficient (SC) 

analysis will produce a ‘score’ of similarity, whereby a score of 1.00 indicates that two 

samples are identical across all elements (Lowe, 2011). However, the point at which 

two samples are considered to be ‘dissimilar’ is debated with cut off points varying 

from 0.92 (e.g. Froggatt, 1992) to 0.96 (Lowe, 2011). As with the use of bi-plots, the 

number of elements included in coefficients of variation (CV) and similarity 

coefficients can affect the outcome (Charman and Grattan, 1999). No consensus exists 

on the best combination of element oxide concentrations for these analyses (Lowe, 

2011).  

Cluster analysis works by grouping entities which are similar. Although cluster analysis 

takes account of the entire dataset and can be more objective than SC and CV 

calculations (Froggatt, 1992), uncertainties are not always stated (Pouget et al., 2014b). 

One method of assessing the uncertainties associated with the clustering of objects is the 

use of bootstrap resampling (Suzuki and Shimodaira, 2006). This allows for a 

quantitative estimation of the error associated with any particular cluster and thus a 

decision can be made to accept only clusters which are statistically significant, 

removing some of the subjectivity of assignments. More recent developments in the 

statistical analysis of tephra data have centred on ordination. Both principal components 

analysis and discriminant analysis have been applied with some success to assess 

underlying trends in tephra geochemical data (Pouget et al., 2014a; Tryon et al., 2010).  

2.6.5 Radiocarbon dating  

Radiocarbon dating is the most common means by which a date is assigned to pre-

historic cryptotephra layers. Therefore it is reviewed (only briefly) here, and in 

particular with reference to tephrochronology and the dating of cryptotephra layers. The 

expense and time involved in 14C sample preparation and analysis necessitates the 

development of age-depth models, whereby a number of radiocarbon dates are dispersed 

within a profile and the ages between these points are inferred (Blaauw and Christen, 

2005). Many age depth models for peat and lake sequences are based on the mid-point 
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ages of individually calibrated radiocarbon dates. Between midpoints interpolation, 

either linear, polynomial and/or spline interpolation (considering not only the two 

adjoining dates but also other information in order to obtain a smooth overall curve) is 

usually conducted (Bennett, 1994). Ages for cryptotephra layers derived from these 

traditional age-depth models may have large uncertainty depending on the spacing of 

14C dates above and below the tephra.  

Wiggle-match dating can go some way to addressing the problems with traditional age-

depth models, especially where they are confounded by plateau in the calibration curve.  

Wiggle-matching takes advantage of the ‘wiggles’ in the 14C curve due to short term 

atmospheric 14C fluctuations (Kilian et al., 1995). Therefore wiggle match dating is 

most effective where there are excursions in the 14C curve and when many closely 

spaced 14C measurements are available (Blaauw et al., 2003). All wiggle-matching 

variations consider un-calibrated radiocarbon dates (Blaauw et al., 2003). Using a 

Monte Carlo process, the depth (or age) axis is then stretched or compressed in order to 

align best with the 14C calibration curve (Blaauw et al., 2004). Developments on these 

models have drawn upon Bayes theorem. By incorporating information from past 

evidence e.g. accumulation rates (not the radiocarbon data) (the prior) with the 

information from our radiocarbon data (the likelihood) we can assess the probability of 

a particular set of parameters (the posterior) (Blaauw and Christen, 2011; Ramsey, 

2009). Given the errors associated with radiocarbon measurements, and the non-

monotonic nature of the 14C calibration curve, it is possible that models whereby age 

does not increase with depth could be computed. Incorporating information about 

accumulation rate (the prior) allows for the dismissal of age-depth models which appear 

to be ecologically unlikely, thus reducing the model uncertainty (Blaauw and Christen, 

2011).  

2.6.5.1 Examples of wiggle-matching in tephra studies  

Wiggle-match dating has been used to refine the accuracy of dating for the Hekla 4 

eruption in distal peat records. Although radiocarbon dated samples were precise 

(replicated across laboratories), assigning a calendar date was made difficult by a hiatus 

at this time in the radiocarbon calibration curve. Using wiggle-match techniques Pilcher 

et al. (1995) refined the date of the Hekla 4 eruption from 4230-4450 BP to 4260 +/- 10 



~ 55 ~ 

 

BP. Similar research has refined the dates of the first millennium BC tephras in Ireland 

(Plunkett et al., 2004) and the Glen Garry tephra in Scotland (Barber et al., 2008).   

2.7 Conclusion  

In this chapter, I have reviewed the use of cryptotephra layers, not only for 

tephrochronology but with a focus on their usefulness as records of volcanic ash cloud 

events. I have also reviewed methods relevant to cryptotephra research.  

Our increasing economic and social dependence on aviation makes understanding the 

threat from volcanic ash cloud events desirable, around the world and in the congested 

airspace of northern Europe. There are a number of questions which remain, 

surrounding the use of tephra layers as records of volcanic ash fall events, these include:  

1) How robust is tephrochronology in terrestrial environments? 

i. There is currently a lack of cryptotephra studies in tropical peatlands. 

Further research is required as to whether cryptotephra studies in tropical 

peatlands can offer opportunities to further understand past volcanic ash 

clouds and the potential impacts of these events (Section 2.2).   

ii. There is experimental and (limited) field evidence for the remobilisation and 

reworking of tephra in both peatlands and lakes. These findings have led to 

calls for multiple core studies and concerns about the ‘patchiness’ of 

cryptotephra records (Section 2.5). However, there has been no 

comprehensive study of naturally deposited tephra layers across multiple 

cores from the same site.   

iii. Despite research which suggests that tephra layers in lakes and peatlands are 

subject to different preservation conditions and processes of reworking, there 

has been no comprehensive study looking at peatland and lake sites in close 

proximity. Such a study might identify whether peatlands or lakes preserve 

the most detailed tephrostratigraphy. Furthermore, despite experimental and 

visual evidence for tephra geochemical damage in peatlands a study 

comparing the geochemistry of the same tephra in different environments 

has not been conducted (Section 2.5).  



~ 56 ~ 

 

Although cryptotephra layers are commonly used as dating isochrons, the use of 

cryptotephras as records of volcanic ash cloud fallout is relatively new and therefore 

very little literature is available. There are also a number of spatial and temporal gaps in 

northern European tephra records. Spatial gaps in northern European tephra records may 

reflect the true margins of Icelandic ash cloud distribution in northern Europe, or may 

be an artefact of bias in regional research focus. Examining sites in these spatial and 

temporal gaps, may confirm the extent of cryptotephra deposits from Iceland, or lead to 

the development of new tephrostratigraphies possibly extending the known distribution 

of existing cryptotephra layers, and leading to the discovery of cryptotephra layers 

representing ash clouds from eruptions which were not previously identified in northern 

Europe.  

2) Can distal cryptotephra records be used to support proximal records of volcanism  

i. The frequency of Icelandic volcanism increased at the end of the last glacial 

period due to the unloading of ice from the lithosphere (Section 2.2.1.2). 

However, there has been no research into the potential impact of smaller 

magnitude changes in surface loading (ice mass), such as those which have 

occurred during the Holocene, on the frequency of volcanic eruptions. One 

problem with examining past records of eruption frequency is that the 

proximal geological record can be confounded by the erosion of deposits by 

subsequent events. No previous research has utilised both distal records of 

ash clouds and proximal records of Icelandic volcanism to examine eruption 

frequency.  

 

3) Can cryptotephra shard size inform our understanding of past volcanic events?  

i. There is a need for a comprehensive analysis of cryptotephra shard sizes 

from multiple sites across northern Europe. Information on the shard size of 

cryptotephras is of interest to atmospheric modellers, satellite monitoring 

specialists and tephrochronologists (Section 2.4.2). Current research on 

cryptotephra shard size is based on the analysis of a small number of shards 

from a handful of sites across northern Europe.  
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Abstract  

Microscopic tephra layers (‘cryptotephras’) represent important age-equivalent 

stratigraphic markers utilised in many palaeoenvironmental reconstructions. When used 

in conjunction with proximal records of volcanic activity they can also provide 

information about volcanic ash cloud fallout and frequency. However, the spatial 

distributions of tephra layers can be discontinuous even within the same region. 

Understanding the deposition and post-depositional redistribution of tephra is vital if we 

are to use cryptotephras as records of ash cloud occurrence and chronostratigraphic 

markers. The discrete nature of tephra layers also allows for detailed study into 

processes of deposition and reworking which affect many palaeoenvironmental proxy 

records. 

We undertook a multi-core study in order to examine the historical tephrostratigraphy of 

a raised peatland in Northern Ireland. Three tephra layers originating from Iceland 

(Hekla 1947, Hekla 1845 and Hekla 1510) are present in 14 of the 15 cores analysed. 

This suggests that in areas not influenced by snowfall or anthropogenic disturbance at 

the time of tephra delivery, the presence or absence of a tephra layer is generally 

consistent across a peatland of this type. However, tephra shard counts (per unit area) 

vary by an order of magnitude between cores. These intra-site differences may 

confound the interpretation of shard counts from single cores as records of regional ash 
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cloud mass/density. Bootstrap resampling analysis suggests that total shard counts from 

multiple cores are required in order to make a reliable estimate of median shard counts 

for a site. The presence of three historical tephras in 14 cores enables a spatio-temporal 

analysis of the long-term apparent rate of carbon accumulation (LARCA) in the 

peatland. Substantial spatial and temporal variations in LARCA are identified over the 

last ~450 years. This high variability needs to be taken into account when designing 

studies of peatland carbon accumulation.   

Highlights  

 Three tephra layers were detected in 14 out of 15 cores from the same peatland 

 Tephra shard counts (per unit area) varied by an order of magnitude between cores 

 Several cores are required to reliably estimate the shard concentrations at a given 

site 

 Tephra shard counts differed significantly between the three ash fallout events  

 Carbon accumulation rates within the peatland varied spatially and temporally  
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3.1 Introduction 

Tephra layers preserved in European peatlands provide both a valuable 

geochronological tool (e.g. Davies, 2015; Dugmore et al., 1995; Lane et al., 2013) and a 

record of past volcanic activity and ash dispersal events (Swindles et al., 2011b). 

Tephra deposited onto a peat surface far from the volcanic source is typically fine-

grained (<125 µm in size) and accordingly called ‘cryptotephra’. It is mostly considered 

to be primary air fall material (Davies et al., 2007; contra Swindles et al., 2013a) and is 

not thought to be subject to the vigorous reworking processes in the water column 

and/or the soft sediment which may distort tephra records in lacustrine and marine 

sediments (Davies et al., 2007; Griggs et al., 2014; Pyne-O'Donnell, 2011). Although 

tephra layers in peatlands can occasionally span a depth of a few centimetres, the peak 

is most often confined to a narrow horizon in thickness (Swindles and Plunkett, 2011). 

These factors suggest that peatlands should act as an excellent archive of past volcanic 

ash fallout, and that peat records can be used to map the spatial distribution of past 

fallout events on a continental scale (Swindles et al., 2011; Lawson et al., 2012).  

One major issue with this approach is that cryptotephra layers in peatlands can be 

discontinuous even over small distances (hundreds of metres to kilometres: (Bergman et 

al., 2004; Langdon and Barber, 2004)), which requires an explanation. At a regional 

scale some spatial variation in tephra horizons can be attributed to fluctuation of the 

volcanic plume heights during the eruption, wind speed and direction variability, 

atmospheric processes (e.g. clouds and ice) and precipitation (Fig. 1), which can 

influence ash cloud density (Schumann et al., 2011), alter ash cloud trajectory and in the 

case of rainfall, increase the fallout of particles (Mattsson and Vesanen, 1988). At a 

local scale, the interaction of wind and vegetation may produce localised airflow 

patterns which result in the uneven delivery of tephra to the ground surface (Boygle, 

1999; Pouget et al., 2014).  
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Fig. 1. Flow chart indicating the main factors which might be expected to (or have been shown to) have 

an effect on tephra distribution, deposition, reworking and preservation in peatland environments. This 

study will focus on the influence of local factors. Key references (1) Mattsson et al., 1988; (2) Pouget et 

al., 2014; (3) Bergman et al., 2004; (4) Payne and Gehrels, 2010; (5) Hodder et al., 1991; (6) Techer et 

al., 2001; (7) Thorseth et al., 1995; (8) Swindles et al., 2013a.  
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Even once the tephra has been deposited on the peat surface, the peat is unlikely to act 

as a straightforward, passive archive. Peatlands are complex ecosystems with dynamic 

topography, hydrological regimes, accumulation rate and vegetation composition 

(Swindles et al., 2012). Therefore peatland processes are likely to exert some control 

over the redistribution of tephra (and other paleoenvironmental proxies) both vertically 

and laterally, across the peatland surface (Fig. 1) – albeit probably to a lesser extent than 

in lacustrine or marine environments.  

Previous studies of regional tephra occurrence have focused predominantly on single 

cores from different sites (Langdon and Barber, 2004). Inconsistent tephra records in 

two cores from Klocka bog, Sweden, suggest that tephra occurrence may vary at much 

smaller scales. In this instance tephra fell onto a prolonged snowpack (ca. 7 months) 

and was subsequently re-dispersed by wind and meltwater, leading to intra-site variation 

(Bergman et al., 2004). The majority of Holocene European tephra studies have been 

carried out in mid-latitude peatlands (Lawson et al., 2012), which are less likely to have 

been affected by prolonged snow cover. A study of two cores from Fallahogy bog in 

Northern Ireland comparable to the study by Bergman et al. (2004) found much less 

within-site dissimilarity, raising the possibility that, where prolonged snow cover is 

rare, tephra stratigraphies may be more consistent (Rea et al., 2012).  

Tephra shards are commonly counted in order to determine the depth of peak shard 

concentration in the vertical profile. Recently, these counts have been used to infer ash 

cloud fallout over a region (Rea et al., 2012). Understanding the spatial variation in 

tephra shard concentrations in peatlands is important if it is to be assumed that they 

represent a record of ash density during an eruption event (Davies et al., 2010). The 

assumption that reworking has a negligible impact on total tephra shard counts within a 

given layer, and therefore that tephra shard counts represent a record of ash cloud 

density, is fundamental when attempting to use counts from one core per site to 

compare ash cloud fallout across many sites in a region (e.g. Langdon and Barber, 2004; 

Rea et al., 2012). 
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The main aim of this study is to assess the spatial variability in the total number of 

tephra shards relating to a given eruption and carbon accumulation across multiple cores 

from one site and to consider the implications for the interpretation of results from 

single core studies.  

3.1.1 Tephra preservation in peatlands  

Much of our current understanding of tephra preservation in peatlands is based on 

experimental evidence rather than detailed study of naturally-deposited tephra. 

Laboratory and artificial field experiments indicate that although the majority of tephra 

shards remain at the palaeo-surface during incorporation into the peat matrix, some 

migrate vertically (both upward and downward) (Payne and Gehrels, 2010; Payne et al., 

2005). This would support the common assumption that the peak in tephra shard 

concentrations, rather than the first occurrence of shards, coincides with the timing of 

the ash fall event.  

Shards are also likely to move laterally across a peatland on a variety of scales. Tephra 

shards may be deposited differently and/or moved to such an extent that the number of 

shards in some areas of the peatland becomes too low to be detected and analysed using 

current methods (Payne and Gehrels, 2010). Our understanding of cryptotephra 

redistribution on peatlands extends only to the lateral movement of tephra by wind at 

microtopographical scales. Experiments suggest that only a small proportion of tephra is 

transported over the short distance (<3 m) from hummock to hollow (Payne and 

Gehrels, 2010). There is evidence that tephra may move at even smaller scales (a few 

centimetres or less). Simulated rainfall onto thin (1 mm) tephra layers has been shown 

to generate patches of high and low tephra concentration across a peat surface (Payne 

and Gehrels, 2010). These experiments suggest that reworking does occur at small 

scales, but they do not address the possibility of tephra shard movement at larger scales 

(metres, to hundreds of metres).  

Although these studies offer valuable information on the reworking on tephra in 

peatlands, they are experimental and represent both a simplification of reality and a 

compression of time. Evidence from naturally-deposited tephras which have been 

subject to peatland processes over a period of hundreds of years is needed to understand 
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the interaction and overall impact of these processes on tephra redistribution in ‘real 

world’ scenarios.  

Research into the spatial variation of other palaeoenvironmental proxies found in 

peatlands, specifically pollen and charcoal, suggests that two or more cores taken in 

close proximity usually display the same general trends in reconstructions but show 

minor differences which might affect detailed interpretation (cf. Edwards, 1983; Innes 

et al., 2004; Lawson et al., 2005; Turner et al., 1989). The resolution of these studies is 

restricted by the dating methods available. In a more recent study, Blaauw and 

Mauquoy (2012) used wiggle-match radiocarbon dating, which offers a more precise 

chronological framework, and identified variation in arboreal pollen records from four 

cores across the same peatland over centennial timescales, although trends were more 

consistent over millennial timescales. Within-site variation in peatland proxy records 

over centennial timescales may limit the temporal resolution of palaeoenvironmental 

studies.  

Unlike palaeoecological proxies, historical tephra layers are unique in representing a 

discrete depositional event rather than a continuous influx, allowing for easier 

identification of reworking processes (Housley et al., 2013). By improving our 

understanding of the deposition and redistribution of tephra layers, we will also gain 

insights into how other palaeoenvironmental proxies may be reworked as they enter the 

stratigraphic record (cf. Irwin, 1989; Turner et al., 1989). 

3.1.2 Carbon storage in European peatlands  

Peatlands represent an important global carbon store and as such the accumulation of 

carbon in peat has been the focus of large-scale studies (e.g. Charman et al., 2013; 

Turunen et al., 2004; van der Linden et al., 2014). Although regional climate is often 

the major control on carbon accumulation rates (Magnan and Garneau, 2014), internal 

peatland processes can also exert an influence. Spatial differences in carbon 

accumulation within a peatland could lead to unrepresentative estimates based on one 

core being extrapolated over a large area.  
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There has been only limited investigation into variation in long-term apparent rate of 

carbon accumulation (LARCA) within one peatland site, the majority of studies 

focusing on high-latitude peatlands (e.g. Belyea and Clymo, 2001; Ohlson and Økland, 

1998; Turunen et al., 2004). For example, Turunen et al. (2004) identified spatial 

variation in carbon accumulation within Canadian peatlands dated using 210Pb and 14C: 

hummocks had significantly higher carbon accumulation rates than hollows over the last 

150 years. However, the large uncertainty in radiometric age estimates, and their cost, is 

a limitation to this approach. Another line of research has used the ‘pine method’ of 

Ohlson and Dahlberg (1991) to estimate peat LARCA: young pine trees growing on a 

peatland are removed, their age is calculated by counting annual rings, and the original 

growing point (depth at which the stem meets the root) and the thickness of peat 

subsequently accumulated are determined. Peat LARCA estimated using this approach 

varied by a factor of five (over 125 years of peat growth) in 151 different cores from the 

same 20 m2 area of a boreal bog (Ohlson and Økland, 1998). However, this technique 

can only be used on forested peatlands. The presence of three historical tephra layers at 

our study site (see below for description) offers the opportunity to examine spatial 

variation in carbon accumulation rates in a mid-latitude, unforested peatland within a 

secure chronological framework. The same approach could be applied at many other 

peatlands where there is a well-resolved cryptotephra record. 

3.1.3 Hypotheses  

Using data from 15 cores from an ombrotrophic bog, we tested the following null 

hypotheses:  

 Tephra layers show no spatial variation within the peatland in terms of:  

 Presence/absence 

 Total shard counts relating to a given eruption (TSCs, defined as the total 

number of shards > 10 μm associated with each tephra layer in a column of 

peat with surface area 1 cm2) 

 Tephra layers from different eruptions recorded in the same peatland do not have 

significantly different TSCs. 

 LARCA shows no spatial variation.  
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3.2 Study site  

Fallahogy peatland is an ombrotrophic lowland raised bog located north of Portglenone, 

Northern Ireland (54. 912°N, 6.562°W). The peatland is located in the Lower Bann 

valley, a low-lying area with a mean annual rainfall of ~1000 mm (average from 1941 

to 1970) (MetOffice, 1976). The main dome of the peatland is intact, although there has 

been a limited amount of cutting on the lagg. Plant communities range from Sphagnum 

magellanicum and Sphagnum rubellum dominated hollows, to hummocks dominated by 

Ericaceae and Eriophorum sp. The site has been the focus of several palaeoecological 

studies (e.g.Barber et al., 2000; Rea et al., 2012; Roland et al., 2014). 

3.3 Methods  

3.3.1 Field sampling 

A Russian-type corer (Jowsey, 1966) with a 50 cm-long barrel was used to retrieve 15 

short cores. Random sampling locations were selected using a random number 

generator, entered into a handheld GPS, and located in the field (Fig. 2). Samples were 

taken as close to the pre-selected point as possible (maximum 5 m distant), whilst 

accounting for the need to extract from areas of similar micro-topography; in this 

instance Sphagnum lawns were sampled (De Vleeschouwer et al., 2011). 

To investigate movement of shards on a microtopographical scale three transects from 

hummock to hollow were investigated. Each transect was surveyed, the dominant 

vegetation was described and three 50 cm-long cores were extracted from different 

microtopographical zones. Only the FAL_1 tephra (later identified as Hekla 1947 tephra 

see section 4.3) was investigated in these cores. 
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Fig. 2. Map indicating a) the location of the 15 core sampling sites in Fallahogy peatland b) the location 

of Fallahogy and Dead Island peatlands within Northern Ireland. Some evidence of peat cutting and 

drainage is evident around the edges of Fallahogy peatland as illustrated. 

3.3.2 Tephra analysis 

In the laboratory, samples were prepared using the ‘quick burn’ method (Pilcher and 

Hall, 1992; Swindles et al., 2011a). 1 cm³ contiguous samples were ashed at 550°C and 

treated with 10% HCl. To aid shard identification, samples were gently sieved at 6 µm 

to remove finer silt and clay fractions, and the coarse fraction mounted onto slides. 

Absolute tephra counts (shards >10 µm cm-3) were conducted at 200x magnification on 

a standard Leica binocular microscope. Spheroidal carbonaceous particles (SCPs) were 

counted in the tephra slides and are reported as counts cm-³. Total shard counts (TSCs) 

for each tephra layer cm-2 (total deposition per square centimetre of peatland surface) 

were calculated by summing the absolute tephra counts for all the depth samples within 

that layer.  

Samples for geochemical analysis were extracted from core A which showed three 

distinct peaks of tephra (Fig. 3). An additional sample was extracted from FAL_3 in 

core K in order to confirm the high accumulation rate which was later identified in this 

core (see section 4.9.1.). Due to the abundance of roots in the top of the peat profile and 

low shard concentration in the second peak (14-15 cm), density separation following the 
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method of Blockley et al. (2005) was unsuccessful. Instead, extraction for geochemical 

analysis for all samples followed the acid digestion method (Dugmore et al., 1992). 

Samples were treated with hot conc. HNO3 and H2SO4 acids, diluted with water and 

sieved at 10 µm. The coarse residue was rinsed thoroughly with clean water. There is 

experimental evidence that exposure to acidic and particularly alkaline treatments for 

the removal of diatoms can alter tephra geochemistry (Blockley et al., 2005). In this 

instance the risk of geochemical alteration was reduced as alkaline treatment was not 

necessary and acid treatment was short (<2 hours). Recent work has shown that 

rhyolitic shards extracted using the acid digestion method and then analysed using 

Electron probe micro analysis (EPMA) are geochemically indistinguishable from shards 

extracted using density separation (Roland et al., 2015). This suggests that chemical 

alteration during the acid digestion method is minor and unlikely to affect the 

assignment of a tephra to an eruption event.  

Samples were mounted onto glass slides using EpoThin resin, ground to expose the 

shards (cf. Dugmore et al., 1992) and polished to a 0.25 µm finish. EPMA was 

conducted at the Tephra Analytical Unit, University of Edinburgh. All analyses were 

conducted with a beam diameter of 5 μm, 15 kV and beam currents of 2 nÅ (Na, Mg, 

Al, Si, K, Ca, Fe) or 80 nÅ (P, Ti, Mn) (Hayward, 2012). Secondary glass standards, 

basalt (BCR-2G) and rhyolite (Lipari) were analysed before and after EPMA runs of 

unknown glass shard analyses.  

3.3.3 Carbon accumulation  

It was assumed that the peak of each tephra layer represented the year of the eruption 

(cf. Payne and Gehrels, 2010). Bulk density was calculated on 1 cm3 samples taken 

contiguously between the tephra peaks of layers which were subsequently identified as 

those from the eruptions of Hekla in 1510 and 1947 (see section 4.3). Samples were 

oven dried at 105°C and dry weight was divided by volume to determine bulk density.  

Carbon content was estimated using loss-on-ignition (LOI) which offers an 

approximation of organic matter content. The equation of Bol et al. (1999) was used to 

convert LOI into % Carbon. This equation was developed from UK moorland soils and 

has been successfully applied in studies of carbon content on blanket peatlands in the 
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UK (Garnett et al., 2001; Parry and Charman, 2013). Furthermore, % Carbon results 

obtained for Fallahogy using this equation were in line with typical organic carbon 

contents in northern peatlands (Charman et al., 2013). LARCA (g C m-2 y-1) was 

calculated by dividing the cumulative carbon mass over a given period by the number of 

years (Clymo et al., 1998). Apparent total carbon accumulated (ATCA) was calculated 

as the sum of the total carbon accumulated in each 1 cm3 interval between the peak 

shard concentrations of the FAL_1 and FAL_3 tephras.  

3.3.4 Plant macrofossils  

In order to reconstruct the microtopography at the coring location at the time of tephra 

deposition, plant macrofossil analysis was conducted on samples corresponding to peak 

tephra shard concentrations for the 1510 and 1947 eruptions of Hekla (see section 4.3). 

Samples of c. 3 cm3 of peat were sieved at 125 µm, floated in a petri-dish and examined 

at 10-50x magnification using a standard binocular microscope. Volume percentages 

were assigned using a modified version of the quadrat leaf count method of Barber et al. 

(1994). Moss leaves and epidermal tissues were picked and mounted onto slides for 

identification at higher magnification. Sphagnum was identified to section or species 

when possible.  

3.3.5 Statistical methods  

Cluster analysis with bootstrap resampling (Suzuki and Shimodaira, 2006) and PCA 

were applied, but did not help greatly to discriminate between the three tephras 

(supplementary file, Fig.S1, S2). 
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3.4 Results and Discussion  

3.4.1 Stratigraphy  

The tephrostratigraphic and SCP profiles for 15 cores (named A-O) are displayed in 

Fig. 3. Although there is some variation in the depth of the tephra layers, all but one of 

the cores contain three peaks in tephra abundance. The three tephra layers are more 

distinct in some cores than others. This is most likely due to differences in local 

accumulation rate and vegetation composition. In some instances the FAL_1 and 

FAL_2 tephras show a degree of merging toward the tails of their vertical distribution. 

This suggests that the time between these two events may represent the minimum 

temporal resolution of eruption events which can be recorded, at least in areas of this 

peatland where peat accumulation is slower.  
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Fig. 3. (2 Panels) Diagrams showing tephrostratigraphy and Spheroidal Carbonaceous Particle (SCP) 

profiles for the 15 peat profiles. Note horizontal scales for SCP profiles vary. Labels indicating the source 

event (Hekla 1947, Hekla 1845 and Hekla 1510) have been placed next to peaks in tephra shard 

concentration. Core C contains a peak of colourless tephra shards which have not been geochemically 

analysed (UNK-1). Geochemical samples were obtained from tephra peaks in Cores A and K (labelled 

FAL_1, FAL_2 and FAL_3). 

Some cores (D and G) show slight deviations from the majority of profiles. In core G, 

the top of the FAL_1 tephra peak was not recovered, and there is also a rise in SCPs in 

the uppermost sample indicating that the true SCP peak in this profile may be missing. 

Therefore we suggest that the top of core G is absent; this is taken into account in 

subsequent analyses. 
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Core D appears to have experienced a high rate of accumulation between FAL_1 and 

the present surface when compared to other cores. However, the assignment of the 

FAL_1 tephra is supported by its position in line with the rapid increase in SCPs c. 1950 

and the FAL_1 and FAL_2 are separated by a sample containing no tephra shards. Plant 

macrofossil analysis indicates that core D may have been a pool or low hollow in the 

past. There is abundant Menyanthes trifoliata ‘bog bean’ epidermis corresponding with 

the FAL_3 tephra layer and Sphagnum section Cuspidata corresponding with the 

FAL_1 tephra. All cores were extracted from lawn microforms at the time of coring, 

therefore a transition between pool or low hollow and lawn microform appears to have 

occurred in this core between the FAL_1 tephra and the time of coring. The high 

accumulation rate post FAL_1 in this core might be attributed to a rapid increase in the 

rate of peat accumulation related to the temperature rise during the twentieth century.  

Unlike the majority of cores, core C shows only two peaks in tephra shard 

concentration. Furthermore, the tephra in core C at a depth of 48-50 cm is distinct from 

those detected in other cores both in terms of colour and morphology. The anomalous 

tephrostratigraphy of core C might be attributed to a post-depositional disturbance in 

peat accumulation. Disturbance events, such as fire and bog bursts, can occur naturally 

(e.g. Caseldine and Gearey, 2005). However, core C is in close proximity to an area of 

drainage and peat extraction (Fig. 2). This is likely to be the cause of the anomaly in 

peat accumulation. For this reason core C was excluded from subsequent analyses.  

3.4.2 Shard morphology  

Shards from all three tephras are predominantly light brown and morphologically 

similar (Fig. 4). Shard size ranges from 15 to 155 µm indicating that relatively large 

shards can be transported long distances, particularly if shard terminal velocity is low 

due to a high degree of vesicularity (Stevenson et al., 2015). 
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Fig. 4. Scanning electron microscope images of typical tephra shards exposed for geochemical analysis 

(a) Hekla 1510 (b) Hekla 1845 (c) Hekla 1947. White scale bars are 10 µm. 

 3.4.3 Shard geochemistry and assignment to eruptive event  

The major element geochemistry of the three tephra layers detected at Fallahogy is 

similar. They have bimodal character and include a minor rhyolitic component, as well 

as dominance of the dacite-andesite composition (Fig. 5; full geochemical dataset is 

provided in the supplementary file, table S1). The geochemistries closely resemble 

those of tephra from the Hekla (H) eruptions in 1510 and 1947 (Dugmore et al., 1995; 

Hall and Pilcher, 2002; Larsen et al., 1999; Pilcher et al., 1996; Swindles, 2006). There 

is good evidence, supported by 14C dating, as well as geochemistry, that the tephras of 

H1510 and H1947 reached the UK and have been found in many peatlands in Northern 

Ireland (Lawson et al., 2012). Distinguishing between FAL_1 and FAL_3 based on co-

variation major element diagrams proved difficult (Fig. 6), although some 

discrimination can be observed between the geochemistry of FAL_2 and the other 

tephras (Fig. 6c, d). FAL_2 also has a generally higher TiO2, FeOt and P2O5 content than 

FAL_1 and FAL_3.  
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Fig. 5. Total Alkali Silica (TAS) Diagram showing the three tephras detected in core A at Fallahogy (raw 

data). Shards are mainly of andesitic-dacitic geochemistry. Annotations follow standard terminology e.g. 

RHY = Rhyolite, D = Dacite, A = Andesite (Le Maitre et al., 1989). 

 

Fig. 6. Tephra geochemistry co-variation diagrams for (a-b) full range of FeOt(wt%), TiO2(wt%), 

CaO(wt%), MgO(wt%) values for the three tephra horizons in core A at Fallahogy plotted against type 

data for the Hekla eruptions of 1510, 1845 and 1947 from Tephrabase (Newton et al., 2007). (c-d) a 

restricted range of FeOt(wt%), TiO2(wt%), CaO(wt%), MgO(wt%) values for the three tephra horizons in 

core A at Fallahogy to show in more detail the overlap between the geochemical distributions, all values 

are normalised. 
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3.4.4 SCPs as a method of distinguishing between historically-deposited tephras  

Where shards from different tephras are not easily distinguished by their geochemistry, 

in some instances SCP profiles can be used to complement geochemical data (Swindles 

and Roe, 2006). SCPs provide a chronological marker for the last ~150 years (Renberg 

and Wik, 1984), appearing in this region c. AD 1850 and reaching peak abundance AD 

1978 ± 6 years (Rose and Appleby, 2005). The FAL_3 tephra occurs before SCPs 

appear in the profiles at Fallahogy suggesting a date prior to 1850. The increase in 

abundance of SCPs corresponding with the FAL_1 tephra in the majority of cores 

suggests a date around AD 1950. In the majority cores from Fallahogy, FAL_2 occurs 

just after the appearance of SCPs in the peat profile, suggesting a date around the time 

of the first appearance of SCPs in this region (c. 1850 AD).  

Although SCP profiles offer further information for the dating on peat profiles, they 

must be interpreted with caution because SCPs are themselves subject to movement in 

the peat matrix. In some instances it appears that the peak in SCPs (AD 1978 ± 6 years) 

coincides with the peak in tephra concentration for the FAL_1 event. Given that there 

were no large eruptions of silicic tephra in Iceland in the 1970s or 1980s (Larsen et al., 

1999) and given that no claims of cryptotephra layers in Irish peatlands later than Hekla 

1947 tephra have ever been made in the literature, we infer that the apparent 

coincidence of the SCP and tephra peaks is an artefact of either: i) slow rates of peat 

accumulation between 1947 and c. 1978, or ii) the differential vertical movement of 

tephra and SCPs. Such differential movement might result from differences in the 

deposition (continuous vs. one event), morphology, density or size of SCPs and tephra.  

3.4.5 Possible sources for FAL_2  

Although FAL_2 has a slightly different major element geochemistry (e.g. slightly 

higher TiO2 and FeOt) to FAL_1 and FAL_3, it shows some similarity and therefore 

may be derived from the same volcanic system. Furthermore, the Hekla volcano has 

produced the majority of widespread mid to late Holocene cryptotephras, many of 

which are of a bi-modal composition. There were five recorded eruptions from Hekla 

between 1510 and 1947 which produced silicic tephra. Many eruptions produced low 

tephra volumes or had dominant fallout pathways toward the north of Iceland (Larsen et 
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al., 1999; Larsen et al., 2014). Apart from H1845 there is no solid documentary or 

geochemical evidence that any of these tephras reached northwest Europe. However, 

there is documentary evidence for the fallout of tephra on the Faroe Islands during AD 

1845, suggesting that tephra from the H1845 eruption travelled some distance in a 

south-easterly direction (Connell, 1846). A report of tephra on the Orkney Islands, dated 

by interpolation to ca. AD 1800 and with a similar geochemistry to that of H1947 and 

H1510, has been tentatively linked to the eruption of H1845 (Wastegård, 2002). To 

further support assignment to H1845, FAL_2 was plotted against the major element 

geochemistry of all tephras dated to between 1510 and 1947 AD in the Tephrabase 

geochemical database (supplementary file, Fig. S3). There was no clear match with any 

of these tephras. We therefore correlate the FAL_2 tephra to the eruption of Hekla 1845.  

It appears that H1845 may be an under-recognized tephra in N. Ireland. The shard count 

totals for this tephra at Fallahogy are generally low (<40 shards cm-3). Low shard 

concentration and a similar geochemistry to other historical Hekla tephras may have 

prevented detection in some previous research, particularly in peatlands with lower 

accumulation rates where the tephra peaks for H1947 and H1845 may be challenging to 

distinguish. The H1845 tephra corresponds to, and provides a dating isochron for 

palaeoenvironmental studies concerned with the end of the Little Ice Age as well as the 

Irish famine of 1845-1849, which was a period of great hardship, economic and social 

importance in Irish history (O'Rourke, 1994).  

Based on the SCP profiles, information about tephras previously identified in this region 

and geochemical data the tephra layers are assigned to the Hekla eruptions of 1947 

(FAL_1), 1845 (FAL_2) and 1510 (FAL_3). We suggest that SCP stratigraphies may be 

valuable for distinguishing tephra shards from the eruption of H1845 (FAL_2) which 

occur at the beginning of the SCP profile in this region.  
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3.4.6 Do cryptotephra layers in peatlands reflect fallout concentrations? 

3.4.6.1 Within-site variation  

The same sequence of three tephras was found in 14 of the 15 cores at Fallahogy (Fig. 

3). The presence of three peaks indicates three distinct historical ash fallout events. This 

suggests that in small, unforested, undisturbed peatlands like Fallahogy, where there is a 

low chance of snow cover at the time of tephra deposition, the presence or absence of 

tephra from a given eruption can be highly consistent from one core site to another. The 

extraction of almost any single core from an undisturbed area of the Fallahogy peatland 

would have been sufficient to determine the presence or absence of all three tephras. 

However, total shard counts for each tephra layer differ between the cores. The total 

number of shards for H1510 (total deposition per square centimetre of peatland surface) 

ranges from 97 to 508 shards cm-2 (median 143). Shard counts for H1947 and H1845 

also show an order-of-magnitude variation in different cores, with counts of 21–236 cm-

2 and 10–156 shards cm-2 respectively (Fig. 7). Some small variation in TSCs might be 

expected as a result of analytical uncertainty. However, differences of this magnitude 

between cores are most likely due to real spatial variation. A Mantel test of the null 

hypothesis that there is no spatial autocorrelation in the TSCs for the H1510 tephra 

indicated that, over scales of tens to hundreds of metres, there is no spatial 

autocorrelation in shard counts (p=0.82). This suggests that any systematic sorting of 

shards is predominantly occurring at smaller or larger scales. Variation in the total 

number of tephra shards relating to a given eruption across different cores in a peatland 

may plausibly be due to three sets of processes: i) uneven deposition from the 

atmosphere; ii) lateral movement of tephra over the surface of the peatland prior to its 

incorporation in the peat; iii) loss of tephra through processes such as hydrolysis and 

dissolution to different extents in different places.  
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Fig. 7. Maps showing the spatial distribution of cores alongside total shard counts (cm-2) for Hekla 1510, 

1845 and 1947 eruptions. Apparent total carbon accumulated between 1510 and 1947 is also shown. 

Circle sizes are proportional to total shard counts per unit area or apparent total carbon accumulated. 

The latter appears unlikely, as although it has been suggested that tephra may dissolve 

in acidic environments, dissolution is slow, and based on the results of laboratory 

experiments, rhyolitic shards are predicted to survive for more than 4500 years at a pH 

of 4 (conversely, mafic tephras deteriorate more rapidly) (Wolff-Boenisch et al., 2004). 

The tephras detected at Fallahogy are of intermediate composition and have been 

deposited in the last 450 years, therefore although loss of shards due to dissolution 

cannot be ruled out, it is unlikely. No visible signs of damage to tephra (e.g. silica gel 

layer formation or pitting: cf. Blockley et al., 2005) were identified during microscope 

analysis.  

Following deposition, any lateral transport of tephra is likely to occur relatively quickly 

because there is evidence that tephra is rapidly incorporated into the peat matrix. 

Experiments indicate that tephra deposited onto a peatland can percolate downward by 

up to 6 cm in less than 2 years (Payne et al., 2005). Even allowing for subsequent 

decomposition, long term peat accumulation at Fallahogy over the last c. 5000 years has 

been relatively rapid in comparison to northern peatlands in general (11 years cm-1; 
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(Roland et al., 2014)). Therefore tephra is likely to be incorporated into the peat more 

quickly than in peatlands where accumulation rates are lower, which is typically the 

case at higher latitudes. Variation in TSC across the peat surface at the peatland (macro) 

scale might be facilitated during periods when the water-table is at or above the surface, 

resulting in surface flow and therefore the transport of shards from higher to lower areas 

of the peatland by water, or by preferential deposition of tephra on areas of higher 

ground, where the dominance of relatively tall vascular plants might encourage 

interception of airborne shards. However, there is no correlation between the elevation 

of the core location (at time of coring) and the total number of shards for any of the 

three eruptions.  

Similarly, there is no relationship between total shard count for the H1510 and H1845 

tephras and distance from the edge of the peatland (Spearman’s rank correlation (SRC) 

supplementary file, Table S2). However, for the most recent eruption (H1947) there is a 

weak relationship between TSC and distance from the edge of the peatland (SRC r = 

0.65, p = 0.016). Shard counts are higher toward the centre of the peatland, suggesting 

that tephra was either preferentially deposited onto the cupola or preferentially lost from 

the rand slope.  

Either a change in peatland topography or in the processes operating at the macro scale 

over time might explain why the most recent tephra layer shows a weak non-random 

pattern of distribution, whilst the earlier two tephras do not. There is no evidence at 

Fallahogy that the peatland topography at the macro-scale has changed substantially 

over the last 500 years. However, there is some evidence of a change in water-table 

depth. Fig. 8b shows the reconstructed water-table depth at Dead Island bog, just 1.2 km 

south of Fallahogy (Swindles et al., 2010). During the Little Ice Age (LIA, c. 1400 – 

1850 AD), a period characterised by wet and cold conditions which has been identified 

across multiple sites in Europe (Blundell and Barber, 2005; De Vleeschouwer et al., 

2009; Turner et al., 2014) and Ireland (Swindles et al., 2013b), the Dead Island Bog 

reconstruction suggests the water-table was at or above the peat surface (Swindles et al., 

2010). Between 1845 and 1947 the water-table dropped considerably, which could have 

reduced the potential for redistribution of tephra from the middle of the peatland 

towards the edges by surface flow.  
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Fig. 8. (a) Graph showing the apparent cumulative carbon accumulation between AD 1510 and AD 1947 

in 14 cores at Fallahogy. The peak shard concentrations for tephra from the eruptions of Hekla 1510, 

Hekla 1845 and Hekla 1947 are used as chronological tie points. (b) Water-table depth reconstruction 

data from Dead Island bog (~1.2km from Fallahogy) (Swindles et al., 2010) based on the transfer 

function of Charman et al., (2006). Red lines indicate tephra horizons identified in both sites and used as 

chronological tie points.  

Given that systematic differences in the total shard count per unit area only appear for 

one tephra layer, evidence for movement of tephra at a macro scale is inconclusive. Our 

results also indicate that the movement of tephra shards over the peat surface is variable 

between events. There are no cores which consistently show higher or lower than 

average counts for each event. This may reflect the differences in water-table (at or 

below the peatland surface) during each tephra fall, or the complex interactions of 

different reworking processes under slightly different environmental conditions.  

Hummock and hollow microforms are common on many peatlands. Fallahogy has a 

well-defined hummock, hollow and lawn microtopography (see section 2). Hummocks 



~ 81 ~ 

 

represent raised features where vascular vegetation types dominate and might therefore 

be expected to preferentially trap airborne particles; however, tephra might also be 

delivered to hollows during periods of surface water flow. Previous research into pollen 

concentrations across hummock and hollow microforms identified higher pollen 

concentrations in hollows (Irwin, 1989). However, the continuous deposition of pollen 

can make it difficult to decipher whether the differences in concentration are attributable 

to differential deposition, post-depositional redistribution or dissimilarities in 

accumulation rates.  

All cores in this study were extracted from lawn microforms. However, peatland 

microforms have been shown to migrate or alter over time (Kettridge et al., 2012). A 

different microtopography at the coring location at the time of tephra deposition might 

explain the differences in shard counts. It was initially suggested that the cyclic 

regeneration of hollows into hummocks was self-regulating, driven by faster rates of 

peat accumulation in hollows (Osvald, 1923; Von Post, 1910). Following increasing 

evidence that hummocks are long-term features controlled mainly by changes in bog 

surface wetness, the theory of cyclic regeneration has largely been disregarded (Barber, 

1981; Svensson, 1988; Walker and Walker, 1961). Hummocks are now considered 

long-term features linked to climate, rather than the product of autogenic peatland 

processes. However, there is no simple sequential or transitional relationship of 

hummock to hollow microforms with time (Ohlson and Økland, 1998). 

Plant macrofossil analysis was conducted on the 14 randomly distributed cores at depths 

corresponding to the peak shard concentration in the FAL_1, FAL_2 and FAL_3 tephra 

layers to assess whether the microtopography at each coring location had changed 

significantly since the FAL_3 tephra layer. The results suggest that the majority of cores 

had been extracted from areas where the microtopography had not changed dramatically 

(from a lawn community) in the last 450 years. Core D contained some unambiguous 

indicators of very wet conditions corresponding with the H1510 tephra layer (see 

section 4.1). However, there does not seem to be an exceptionally large or small TSC 

for the H1510 tephra in this core.  

On the three hummock-to-hollow transects (labelled HH 1, 2 and 3), tephra was more 

abundant in cores where the surface vegetation type at the time of coring was at least 
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partly composed of Sphagnum (Fig. 9). The vegetation appears to be more important 

than the downslope movement, in that, where Sphagnum appears in the vegetation 

community on the mid-slope (e.g. HH3), the presence of Sphagnum deters further 

downslope movement. Our results are in agreement with those of an experimental study 

into the trapping of SCPs in Sphagnum peat (Punning and Alliksaar (1997), which 

found that the majority (>99%) of SCPs were trapped by the Sphagnum.  
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Fig. 9. Diagram indicating shard counts and surface vegetation at time of coring at various points along 

three transects taken from hummock to hollow on Fallahogy peatland. 

The redistribution of tephra shards may also be occurring at even smaller scales (sub-

micro-topographical). Surface water flow is likely to be affected at these scales by the 

interplay between vegetation composition and small changes in gradient.  
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3.4.6.2 Within site vs. between site variation 

In order to make valid inferences about regional ash cloud fallout based on TSC 

measurements in single cores, the variation in the total number of tephra shards relating 

to a given eruption within a site must be lower than the variation between sites. Tephra 

from the eruption of H1947 has been identified in 12 peatlands across Northern Ireland 

(Rea et al., 2012), with TSCs appearing to vary along a West to East gradient. Higher 

concentrations in western sites were interpreted as reflecting higher ash fallout in this 

region (Rea et al., 2012). The range of TSCs was smaller in the 15 cores at Fallahogy 

than the range of TSCs across the 12 different peatlands in Northern Ireland (Fig. 10). 

This suggests that, in this instance, regional-scale factors such as precipitation and ash 

cloud density had a greater influence on the spatial distribution of TSCs than local 

(within-site) processes.  

 

Fig. 10. Histograms showing the total shard counts for the a) Hekla 1947 eruption in 15 cores at 

Fallahogy (13 cores from this study and 2 cores examined by (Rea et al., 2012)) and b) at 12 other sites 

across Northern Ireland (Rea et al., 2012). 

Nevertheless, using the TSCs from one core to infer ash fallout concentration over the 

entire peatland is not advisable due to a large degree of internal variation in TSCs 

within a site. In order to estimate how many cores would be required to establish a 

reliable median value we conducted a bootstrap analysis (10,000 iterations, random 

sampling with replacement) of shard counts for each of the tephra layers (Fig. 11). The 
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number of cores required to estimate the median value adequately is subjective. 

However, multiple cores would have been advisable for any of the three tephra layers 

detected at Fallahogy peatland.  

 

Fig. 11. Results of a bootstrap analysis (10,000 simulations) estimating median shard concentration with 

different amounts of cores for the three Hekla eruptions. The 0.025 and 0.975 boundaries are indicated by 

light grey lines. Although the number of cores required for a robust estimate of median shard 

concentration is subjective, this analysis suggests that multiple cores are required to adequately assess 

median total shard counts for these three events. 
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3.4.7 Variation in shard counts for different events  

Shard counts vary in different tephra layers within a single core as well as the same 

event from multiple cores. Mann-Whitney tests indicated a significant difference 

between each pair of events (p < 0.05, n=14 [n =13 for H1947]). H1510 has the highest 

shard counts, followed by H1947 and H1845 (Fig. 12). The same pattern of relative 

abundance has been found in many other Northern Irish peatlands (Rea et al., 2012; 

Swindles, 2006).  

 

Fig. 12. Boxplots showing the total shard counts for Hekla 1947, Hekla 1845 and Hekla 1510 eruptions in 

13 cores at Fallahogy. Boxplot convention is as follows: boxes indicate the interquartile range; the central 

line through each box indicates the median. The far extent of the upper and lower lines from each quartile 

indicate the maximum and minimum. 

The higher TSCs for H1510 may reflect the nature of the eruption which had a much 

larger recorded tephra volume (0.32 km3) when compared with H1947 (0.18 km3) and 

H1845 (0.23 km3) (Larsen et al., 1999; Larsen et al., 2014). The eruption of H1510 is 

also inferred (on the basis of its deposits in Iceland) to have had a more intense Plinian 

phase than H1947 (Larsen et al., 2014), perhaps resulting in more distal tephra 

transport. Less information is available about the nature of the eruption of Hekla in 

1845, although it is described as having wide tephra dispersal within Iceland (Larsen et 
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al., 2014). The estimated tephra volume for H1845 is similar to (within error) that of 

H1947, which is not reflected in the TSC for these eruptions at the Fallahogy site. This 

suggests that there is no simple relationship between tephra volume and the total 

number of tephra shards relating to a given eruption in cores from distal peatlands.  

3.4.8 Spatial trends in spheroidal carbonaceous particle (SCP) concentration  

Tephra is not the only palaeoenvironmental proxy to be deposited onto a peatland from 

the atmosphere. SCPs, which are a product of the combustion of fossil fuels, are often 

used as a proxy for atmospheric pollution, with an assumption that the concentration or 

accumulation rate of SCPs is related to the magnitude of pollution (i.e. the concentration 

of SCPs in the atmosphere) at the time of deposition. For example, the concentrations of 

SCPs in lakes have been used to infer differences in the degree of atmospheric pollution 

in different regions (Rose and Harlock, 1998; Rose et al., 1999). Our results suggest 

that SCP concentrations within a peatland can be highly spatially variable (the total 

number of SCPs in our cores range from 97 to 2268 (summing all samples containing 

SCPs)). Therefore any inference of pollution levels based on SCP counts from one core 

in a peatland should be undertaken with caution.  

To determine whether different microparticles are reworked in the same way we tested 

the hypothesis: Tephra shard concentrations are positively correlated with SCP 

concentrations across a peatland. If the two different types of microparticle are 

deposited and reworked in the same way, we might expect cores with higher than 

average tephra shard concentrations to also contain higher than average SCP 

concentrations. Two tests for correlation were conducted: i) between total tephra shard 

counts and total SCP counts in the whole core; ii) between total shard counts at one 

point in the core and total SCP counts at the same depth (1947 tephra peak). In both 

cases there was no significant relationship between the counts of SCPs and tephra 

shards at the 5% level. 

Although this suggests that tephra shards and SCPs are reworked differently on a 

peatland it is not conclusive. It is difficult to compare microparticles which have been 

continuously deposited (SCPs) with microparticles which are the result of a single event 

and have been deposited over a number of days or weeks (tephra). However, it is 
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possible that the microparticles are reworked differently due to differences in their 

morphology, density or size. Different weather conditions and water table depth at the 

time of deposition may also affect reworking. 

3.4.9 Implications for studies of carbon accumulation 

3.4.9.1 Spatial trends in apparent carbon accumulation  

Carbon accumulation in peatlands is controlled by the balance between organic matter 

production and decay (Clymo, 1984). Rates of production and decay vary according to 

peatland microtopography due to differences in vegetation community and water-table 

position (Belyea and Clymo, 2001).  

The average peat accumulation rate at Fallahogy between 1510 and 1947 (20 years cm-

1) was in the range of 10–40 years cm-1, which is typical for peatlands in Northern 

Ireland (Swindles and Plunkett, 2010). Peat accumulation rate and apparent total carbon 

accumulation (ATCA) varied spatially (Fig. 7). The ATCA between 1947 and 1510 

ranged from 4.0 to 17.8 kg C m-2, although ATCA in the majority of cores was around 

the average of 8.6 kg C m-2.  

These results indicate that ATCA in this peatland is spatially variable over scales of tens 

to hundreds of metres. There is no spatial autocorrelation in ATCA at these scales, 

suggesting that any spatial trends are occurring over larger or smaller scales (Mantel 

test, p-value 0.60). There is also no relationship between ATCA and elevation or 

distance from the peatland edge (SRC, supplementary file, Table S2). Instead, 

differences in accumulation might be occurring on a microform scale.  

Plant macrofossil analysis suggests that there has been no significant change in the 

microform (lawn) at the majority of the core locations over the last 450 years. However, 

core D contains indicators of wet conditions, symptomatic of the LIA, corresponding 

with the H1510 tephra (see section 4.1). Core D has the lowest ATCA of all the cores 

between 1510 and 1947 (4.0 kg C m-2), although the accumulation rate increases post 

1947. The low ATCA in Core D in the period between 1510 and 1845 might be 

attributed at least in part to localised very wet conditions during the LIA.  
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Core K is of particular interest as it shows a much higher LARCA than the other cores. 

As a check, the FAL_3 tephra in core K was analysed to exclude the possibility that the 

shards are from a different tephra. Geochemical analysis and SCP chronology confirm 

assignment to H1510 eruption (supplementary file, Fig. S4) and therefore we can be 

confident in the high rate of peat accumulation between 1510 and 1845 (0.094 cm year-

1). It would appear the cause is localised as other cores located nearby do not show 

elevated peat accumulation rates. Large proportions of unidentifiable organic material in 

plant macrofossil samples from core K suggest high levels of decay. High rates of peat 

accumulation have been shown to occur where the balance between production and 

decay is optimal (Belyea and Clymo, 2001). We suggest that a high rate of litter 

productivity by vascular plants (Calluna vulgaris roots were abundant in plant 

macrofossil samples) has resulted in high peat accumulation at this coring location, 

despite a relatively high rate of decay.  

3.4.9.2 Temporal trends in apparent carbon accumulation rate  

When considering recent temporal changes in the rate of carbon accumulation, it is 

important to note that apparent carbon accumulation rates would be expected to increase 

towards the surface, because younger peats have undergone relatively less 

decomposition than older peats. Consideration must also be given to the position of the 

oxic zone (or active layer), where decay rates are higher than in the anoxic zone below. 

Although none of our cores display a clear boundary, recent carbon accumulation 

(between 1947 and present) is not included in our analysis as the peat is likely to be 

undergoing particularly rapid decomposition in the oxygenated zone.  

As would be expected, the majority of cores (11 out of 14) show lower peat 

accumulation rates between 1510 and 1845 when contrasted against the period between 

1845 and 1947, with average peat accumulation rates of 0.04 cm yr-1 and 0.06 cm year-1, 

respectively (Fig. 8). The difference in peat accumulation is reflected in LARCA values 

of 16.6 (1510–1845) and 28.9 g C m-2 y-1 (1845-1947). The slower peat accumulation 

during the period 1510 to 1845 might be attributed to a reduction in primary 

productivity due to the LIA (Charman et al., 2013), however it is difficult to untangle 

the possible climatic link from the impact of increased time for decomposition to occur 

in the deeper peats. Three cores show (slightly) higher rates of accumulation during 
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1510–1845 than during 1845–1947, perhaps indicating some degree of autogenic 

variation in the balance of primary production and decay. 

3.5 Conclusions 

1. Using geochemistry and SCP profiles we have detected 3 tephra layers that correlate 

to the Hekla eruptions of 1510, 1845 and 1947 in 14 cores from the same peatland. 

Suggesting that in small, largely undisturbed, mid-latitude peatlands, the presence or 

absence of tephra from a given eruption can be determined, with a high degree of 

certainty, by analysing a single core.  

2. Shard counts for a given eruption showed an order-of-magnitude variation between 

cores from the same site, suggesting differential deposition or lateral post-

depositional movement of tephra. No spatial autocorrelation was identified over the 

scale investigated (tens to hundreds of metres), indicating that any differential 

deposition or reworking occurs at different scales.  

3. Studies comparing tephra shard concentration across multiple sites must consider 

the differences in shard concentration within a single site. Bootstrap analysis 

suggests that multiple cores are required in order to ascertain a reasonably reliable 

median shard count for a site.  

4. There was a significant difference in the TSCs for the tephras from the 3 Hekla 

eruptions, suggesting that in some cases shard counts might be a useful proxy for 

ash cloud density. However, owing to the influence of meteorological conditions, 

results must be interpreted with caution. 

5. The three historical tephra layers detected in the 14 cores at Fallahogy allowed us to 

establish a chronological framework within which to examine spatial differences in 

carbon accumulation within a site. We find differences in the apparent total carbon 

accumulation between 1510 and 1947 AD.  

6. Further work is required on (i) the impact of microtopography on tephra 

distribution, and (ii) tephra dissolution processes and rates in acidic low pH 

environments.  

  



~ 91 ~ 

 

Acknowledgements 

This research was undertaken while Elizabeth Watson was in possession of a NERC 

funded Doctoral Training Grant NE/K500847/1. We thank Thomas Kelly for help in the 

field, Chris Hayward for help with tephra geochemical analysis and Anthony Blundell 

for guidance on plant macrofossil analysis.  

References 

Barber, K., 1981. Peat stratigraphy and climatic change: a palaeoecological test of the 

theory of cyclic peat bog regeneration. Balkema, Rotterdam. 

Barber, K.E., Chambers, F.M., Maddy, D., Stoneman, R., Brew, J.S., 1994. A sensitive 

high-resolution record of late Holocene climatic change from a raised bog in northern 

England. The Holocene 4, 198-205. 

Barber, K.E., Maddy, D., Rose, N., Stevenson, A.C., Stoneman, R., Thompson, R., 

2000. Replicated proxy-climate signals over the last 2000 yr from two distant UK peat 

bogs: new evidence for regional palaeoclimate teleconnections. Quat. Sci. Rev. 19, 481-

487. 

Belyea, L.R., Clymo, R., 2001. Feedback control of the rate of peat formation. Proc. R. 

Soc Lond. B 268, 1315-1321. 

Bergman, J., Wastegård, S., Hammarlund, D., Wohlfarth, B., Roberts, S.J., 2004. 

Holocene tephra horizons at Klocka Bog, west-central Sweden: aspects of 

reproducibility in subarctic peat deposits. J. Quat. Sci. 19, 241-249. 

Blaauw, M., Mauquoy, D., 2012. Signal and variability within a Holocene peat bog — 

Chronological uncertainties of pollen, macrofossil and fungal proxies. Rev. Palaeobot. 

Palynol. 186, 5-15. 

Blockley, S.P.E., Pyne-O'Donnell, S.D.F., Lowe, J.J., Matthews, I.P., Stone, A., Pollard, 

A.M., Turney, C.S.M., Molyneux, E.G., 2005. A new and less destructive laboratory 

procedure for the physical separation of distal glass tephra shards from sediments. Quat. 

Sci. Rev. 24, 1952-1960. 

Blundell, A., Barber, K., 2005. A 2800-year palaeoclimatic record from Tore Hill Moss, 

Strathspey, Scotland: the need for a multi-proxy approach to peat-based climate 

reconstructions. Quat. Sci. Rev. 24, 1261-1277. 

Bol, R., Harkness, D., Huang, Y., Howard, D., 1999. The influence of soil processes on 

carbon isotope distribution and turnover in the British uplands. Eur. J. Soil Sci. 50, 41-

51. 

Boygle, J., 1999. Variability of tephra in lake and catchment sediments, Svínavatn, 

Iceland. Glob. Planet. Change 21, 129-149. 

Caseldine, C., Gearey, B., 2005. A multiproxy approach to reconstructing surface 

wetness changes and prehistoric bog bursts in a raised mire system at Derryville Bog, 

Co. Tipperary, Ireland. The Holocene 15, 585-601. 



~ 92 ~ 

 

Charman, D.J., Beilman, D.W., Blaauw, M., Booth, R.K., Brewer, S., Chambers, F.M., 

Christen, J.A., Gallego-Sala, A., Harrison, S.P., Hughes, P.D.M., Jackson, S.T., 

Korhola, A., Mauquoy, D., Mitchell, F.J.G., Prentice, I.C., van der Linden, M., De 

Vleeschouwer, F., Yu, Z.C., Alm, J., Bauer, I.E., Corish, Y.M.C., Garneau, M., Hohl, 

V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J.E., 

Nieminen, T.M., MacDonald, G.M., Phadtare, N.R., Rausch, N., Sillasoo, U., Swindles, 

G.T., Tuittila, E.S., Ukonmaanaho, L., Valiranta, M., van Bellen, S., van Geel, B., Vitt, 

D.H., Zhao, Y., 2013. Climate-related changes in peatland carbon accumulation during 

the last millennium. Biogeosciences 10, 929-944. 

Charman, D.J., Blundell, A., Chiverrell, R.C., Hendon, D., Langdon, P.G., 2006. 

Compilation of non-annually resolved Holocene proxy climate records: stacked 

Holocene peatland palaeo-water table reconstructions from northern Britain. Quat. Sci. 

Rev. 25, 336-350. 

Clymo, R., 1984. The limits to peat bog growth. Philos.Trans. of the R. Soc. Lond. B. 

303, 605-654. 

Clymo, R., Turunen, J., Tolonen, K., 1998. Carbon accumulation in peatland. Oikos. 81, 

368-388. 

Connell, A., 1846. Analysis of the volcanic dust which fell on the Orkney Islands on 

2nd September 1845. New Edinb. Philos. J. 40, 217-219. 

Davies, S.M., 2015. Cryptotephras: the revolution in correlation and precision dating. J. 

Quat. Sci. 30, 114-130. 

Davies, S.M., Elmquist, M., Bergman, J., Wohlfarth, B., Hammarlund, D., 2007. 

Cryptotephra sedimentation processes within two lacustrine sequences from west 

central Sweden. The Holocene 17, 319-330. 

Davies, S.M., Larsen, G., Wastegård, S., Turney, C.S.M., Hall, V.A., Coyle, L., 

Thordarson, T., 2010. Widespread dispersal of Icelandic tephra: how does the Eyjafjöll 

eruption of 2010 compare to past Icelandic events? J. Quat. Sci. 25, 605-611. 

De Vleeschouwer, F., Chambers, F.M., Swindles, G.T., 2011. Coring and sub-sampling 

of peatlands for palaeoenvironmental research. Mires and Peat 7 1-10. 

De Vleeschouwer, F., Piotrowska, N., Sikorski, J., Pawlyta, J., Cheburkin, A., Le Roux, 

G., Lamentowicz, M., Fagel, N., Mauquoy, D., 2009. Multiproxy evidence of 'Little Ice 

Age' palaeoenvironmental changes in a peat bog from northern Poland. The Holocene. 

19, 625-637. 

Dugmore, A.J., Larsen, G., Newton, A.J., 1995. 7 Tephra isochrones in Scotland. The 

Holocene 5, 257-266. 

Dugmore, A.J., Newton, A.J., Sugden, D.E., Larsen, G., 1992. Geochemical stability of 

fine-grained silicic Holocene tephra in Iceland and Scotland. J. Quat. Sci. 7, 173-183. 

Edwards, K.J., 1983. Quaternary palynology: multiple profile studies and pollen 

variability. Prog. Phys. Geogr. 7, 587-609. 

Garnett, M., Ineson, P., Stevenson, A.C., Howard, D.C., 2001. Terrestrial organic 

carbon storage in a British moorland. Glob. Change Biol. 7, 375-388. 

Griggs, A.J., Davies, S.M., Abbott, P.M., Rasmussen, T.L., Palmer, A.P., 2014. 

Optimising the use of marine tephrochronology in the North Atlantic: a detailed 



~ 93 ~ 

 

investigation of the Faroe Marine Ash Zones II, III and IV. Quat. Sci. Rev. 106, 122-

139. 

Hall, V.A. and Pilcher, J.R., 2002. Late-Quaternary Icelandic tephras in Ireland and 

Great Britain: detection, characterization and usefulness. The Holocene, 12 (2), 223-

230. 

Hayward, C., 2012. High spatial resolution electron probe microanalysis of tephras and 

melt inclusions without beam-induced chemical modification. The Holocene 22, 119-

125. 

Hodder, A. P. W., De Lange, P. J., Lowe, D. J. 1991. Dissolution and depletion of 

ferromagnesian minerals from Holocene tephra layers in an acid bog, New Zealand, and 

implications for tephra correlation. J. Quat. Sci., 6, 195-208. 

Housley, R.A., MacLeod, A., Nalepka, D., Jurochnik, A., Masojć, M., Davies, L., 

Lincoln, P.C., Bronk Ramsey, C., Gamble, C.S., Lowe, J.J., 2013. Tephrostratigraphy of 

a Lateglacial lake sediment sequence at Węgliny, southwest Poland. Quat. Sci. Rev. 77, 

4-18. 

Innes, J.B., Blackford, J., Simmons, I.G., 2004. Testing the integrity of fine spatial 

resolution palaeoecological records: microcharcoal data from near-duplicate peat 

profiles from the North York Moors, UK. Palaeogeogr. Palaeoclimatol., Palaeoecol. 

214, 295-307. 

Irwin, T.E., 1989. Pollen percentage, concentration and influx to a mire hummock and 

hollow. Pollen et Spores 31, 317-328. 

Jowsey, P., 1966. An improved peat sampler. New Phytol. 65, 245-248. 

Kettridge, N., Binley, A., Comas, X., Cassidy, N.J., Baird, A.J., Harris, A., Kruk, J., 

Strack, M., Milner, A.M., Waddington, J.M., 2012. Do peatland microforms move 

through time? Examining the developmental history of a patterned peatland using 

ground‐penetrating radar. J. Geophys. Res. Biogeosci., 117. DOI: 

10.1029/2011JG001876 

Lane, C.S., Brauer, A., Blockley, S.P.E., Dulski, P., 2013. Volcanic ash reveals time-

transgressive abrupt climate change during the Younger Dryas. Geol. 41, 1251-1254. 

Langdon, P.G., Barber, K.E., 2004. Snapshots in time: precise correlations of peat-

based proxy climate records in Scotland using mid-Holocene tephras. The Holocene 14, 

21-33. 

Larsen, G., Dugmore, A., Newton, A., 1999. Geochemistry of historical-age silicic 

tephras in Iceland. The Holocene 9, 463-471. 

Larsen, G., Eiríksson, J., Gudmundsdóttir, E.R., 2014. Last millennium dispersal of air-

fall tephra and ocean-rafted pumice towards the north Icelandic shelf and the Nordic 

seas. Geol. Soc. Lond. Spec. Pub. 398, SP398. 394. 

Lawson, I.T., Al-Omari, S., Tzedakis, P.C., Bryant, C.L., Christaniss, K., 2005. 

Lateglacial and Holocene vegetation history at Nisi Fen and the Boras mountains, 

northern Greece. The Holocene 15, 873-887. 

Lawson, I.T., Swindles, G.T., Plunkett, G., Greenberg, D., 2012. The spatial distribution 

of Holocene cryptotephras in north-west Europe since 7 ka: implications for 

understanding ash fall events from Icelandic eruptions. Quat. Sci. Rev. 41, 57-66. 



~ 94 ~ 

 

Le Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M., Sabine, 

P., Schmid, R., Sorensen, H., Streckeisen, A., 1989. A classification of igneous rocks 

and glossary of terms: Recommendations of the International Union of Geological 

Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Oxford. 

Magnan, G., Garneau, M., 2014. Climatic and autogenic control on Holocene carbon 

sequestration in ombrotrophic peatlands of maritime Quebec, eastern Canada. The 

Holocene. 24, 1054-1062. 

Mattsson, S., Vesanen, R., 1988. Patterns of Chernobyl fallout in relation to local 

weather conditions. Env. Int. 14, 177-180. 

MetOffice, 1976. Average Annual Rainfall (in mm), International Standard Period 

(1941-1970). Met. 0886 (NI). HMSO: London. 

Newton, A.J., Dugmore, A.J., Gittings, B.M., 2007. Tephrabase: tephrochronology and 

the development of a centralised European database. J. Quat. Sci. 22, 737-743. 

O'Rourke, K., 1994. The Economic Impact of the Famine in the Short and Long Run. 

Am. Econ. Rev. 84, 309-313. 

Ohlson, M., Økland, R.H., 1998. Spatial variation in rates of carbon and nitrogen 

accumulation in a boreal bog. Ecology 79, 2745-2758. 

Osvald, H., 1923. Die Vegetation des Hochmoores Komosse. Sven. Växtsociol. Sällsk. 

Handl. 1. Handl. 1., 266. 

Parry, L.E., Charman, D.J., 2013. Modelling soil organic carbon distribution in blanket 

peatlands at a landscape scale. Geoderma 211, 75-84. 

Payne, R., Gehrels, M., 2010. The formation of tephra layers in peatlands: An 

experimental approach. Catena 81, 12-23. 

Payne, R.J., Kilfeather, A.A., Van der Meer, J.J.M., Blackford, J.J., 2005. Experiments 

on the taphonomy of tephra in peat. Suoseura Finn. Peatl. Soc. 56, 147-156. 

Pilcher, J.R., Hall, V.A., 1992. Towards a tephrochronology for the Holocene in the 

north of Ireland The Holocene 2 255-259  

Pilcher, J.R., Hall, V.A. and McCormac, F.G., 1996 An outline tephrochronology for 

the Holocene of the north of Ireland. J. Quat. Sci. 11 (6), 485-494 

Pouget, S., Bursik, M., Rogova, G., 2014. Tephra redeposition and mixing in a Late-

glacial hillside basin determined by fusion of clustering analyses of glass-shard 

geochemistry. J. Quat. Sci. 29, 789-802. 

Punning, J.M., Alliksaar, T., 1997. The trapping of fly-ash particles in the surface layers 

of Sphagnum-dominated peat. Water, air, and soil pollut. 94, 59-69. 

Pyne-O'Donnell, S., 2011. The taphonomy of Last Glacial-Interglacial Transition 

(LGIT) distal volcanic ash in small Scottish lakes. Boreas 40, 131-145. 

Rea, H.A., Swindles, G.T., Roe, H.M., 2012. The Hekla 1947 tephra in the north of 

Ireland: regional distribution, concentration and geochemistry. J. Quat. Sci. 27, 425-

431. 

Renberg, I., Wik, M., 1984. Dating recent lake sediments by soot particle counting. 

Verh Internat Verein. Limnol. 22, 712-718. 



~ 95 ~ 

 

Roland, T., Mackay, H., Hughes, P., 2015. Tephra analysis in ombrotrophic peatlands: 

A geochemical comparison of acid digestion and density separation techniques. J. Quat. 

Sci. 30, 3-8. 

Roland, T.P., Caseldine, C.J., Charman, D.J., Turney, C.S.M., Amesbury, M.J., 2014. 

Was there a ‘4.2 ka event’ in Great Britain and Ireland? Evidence from the peatland 

record. Quat. Sci. Rev. 83, 11-27. 

Rose, N., Appleby, P., 2005. Regional applications of lake sediment dating by 

spheroidal carbonaceous particle analysis I: United Kingdom. J. Paleolimn. 34, 349-

361. 

Rose, N.L., Harlock, S., Appleby, P.G., 1999. The Spatial and Temporal Distributions 

of Spheroidal Carbonaceous Fly-Ash Particles (SCP) in the Sediment Records of 

European Mountain Lakes. Water, Air, and Soil Pollution 113, 1-32. 

Rose, N.L., Harlock, S., 1998. The Spatial Distribution of Characterised Fly-Ash 

Particles and Trace Metals in Lake Sediments and Catchment Mosses in the United 

Kingdom. Water, Air, and Soil Pollution 106, 287-308. 

Schumann, U., Weinzierl, B., Reitebuch, O., Schlager, H., Minikin, A., Forster, C., 

Baumann, R., Sailer, T., Graf, K., Mannstein, H., Voigt, C., Rahm, S., Simmet, R., 

Scheibe, M., Lichtenstern, M., Stock, P., Rüba, H., Schäuble, D., Tafferner, A., 

Rautenhaus, M., Gerz, T., Ziereis, H., Krautstrunk, M., Mallaun, C., Gayet, J.F., Lieke, 

K., Kandler, K., Ebert, M., Weinbruch, S., Stohl, A., Gasteiger, J., Groß, S., 

Freudenthaler, V., Wiegner, M., Ansmann, A., Tesche, M., Olafsson, H., Sturm, K., 

2011. Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air 

space closure in April and May 2010. Atmos. Chem. and Phys. 11, 2245-2279. 

Stevenson, J., Millington, S., Beckett, F., Swindles, G., Thordarson, T., 2015. Big 

grains go far: reconciling tephrochronology with atmospheric measurements of volcanic 

ash. Atmos. Meas. Tech. Discuss., 8, 65-120. 

Suzuki, R., Shimodaira, H., 2006. Pvclust: an R package for assessing the uncertainty in 

hierarchical clustering. Bioinformatics 22, 1540-1542. 

Svensson, G., 1988. Fossil plant communities and regeneration patterns on a raised bog 

in South Sweden. J. of Ecol. 76, 41-59. 

Swindles, G.T., 2006. Reconstruction of Holocene climate change from peatlands in the 

north of Ireland. Thesis for the degree of Doctor of Philosophy. Queens University 

Belfast.  

Swindles, G.T., Blundell, A., Roe, H.M., Hall, V.A., 2010. A 4500-year proxy climate 

record from peatlands in the North of Ireland: the identification of widespread summer 

'drought phases'? Quat. Sci. Rev. 29, 1577-1589. 

Swindles, G.T., De Vleeschouwer, F., Plunkett, G., 2011a. Dating peat profiles using 

tephra: stratigraphy, geochemistry and chronology Mires and Peat 7, 1-9. 

Swindles, G.T., Galloway, J., Outram, Z., Turner, K., Schofield, J.E., Newton, A.J., 

Dugmore, A.J., Church, M.J., Watson, E.J., Batt, C., Bond, J., Edwards, K.J., Turner, 

V., Bashford, D., 2013a. Re-deposited cryptotephra layers in Holocene peats linked to 

anthropogenic activity. The Holocene 23, 1493-1501. 



~ 96 ~ 

 

Swindles, G.T., Lawson, I.T., Matthews, I.P., Blaauw, M., Daley, T.J., Charman, D.J., 

Roland, T.P., Plunkett, G., Schettler, G., Gearey, B.R., 2013b. Centennial-scale climate 

change in Ireland during the Holocene. Earth Sci. Rev. 126, 300-320. 

Swindles, G.T., Morris, P.J., Baird, A.J., Blaauw, M., Plunkett, G., 2012. 

Ecohydrological feedbacks confound peat‐based climate reconstructions. Geophys. Res. 

Lett. 39, L11401, doi:10.1029/2012GL051500. 

Swindles, G.T., Lawson, I.T., Savov, I.P., Connor, C.B., Plunkett, G., 2011b. A 7000 yr 

perspective on volcanic ash clouds affecting northern Europe. Geol. 39, 887-890. 

Swindles, G.T., Plunkett, G., 2011. ‘The methodological basis for fine-resolution, multi-

proxy reconstructions of ombrotrophic peat bog surface wetness’: Comments. Boreas 

40, 379-381. 

Swindles, G.T., Roe, H.M., 2006. Constraining the age of spheroidal carbonaceous 

particle (SCP) stratigraphies in peats using tephrochronology. Quat. Newsl. 110, 2-9. 

Techer, I., Advocat, T., Lancelot, J. & Liotard, J. M. 2001. Dissolution kinetics of 

basaltic glasses: control by solution chemistry and protective effect of the alteration 

film. Chem.Geol. 176, 235-263. 

Thorseth, I. H., Fumes, H. & Tumyr, O. 1995. Textural and chemical effects of 

bacterial-activity on basaltic glass – an experimental approach. Chem.Geol. 119, 139-

160. 

Turner, J., Innes, J.B., Simmons, I.G., 1989. Two pollen diagrams from the same site. 

New Phytol. 113, 409-416. 

Turner, T.E., Swindles, G.T., Roucoux, K.H., 2014. Late Holocene ecohydrological and 

carbon dynamics of a UK raised bog: impact of human activity and climate change. 

Quat. Sci. Rev. 84, 65-85. 

Turunen, J., Roulet, N.T., Moore, T.R., Richard, P.J., 2004. Nitrogen deposition and 

increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. 

Biogeochem. Cycles 18. DOI: 10.1029/2003GB002154. 

van der Linden, M., Heijmans, M.M., van Geel, B., 2014. Carbon accumulation in peat 

deposits from northern Sweden to northern Germany during the last millennium. The 

Holocene 24. 

Von Post, L., 1910. Das Skagershultmoor, In: Von Post, L., Sernander, L. (Eds.), 

Pflanzen-physiognomische Studien auf Torfmoores in Narke, 1–24. Livretguide des 

exursions en Suede du XI Congres Geologique Internationale, Excursion A 7, No 14, 

Stockholm. 

Walker, D., Walker, P.M., 1961. Stratigraphic Evidence of Regeneration in Some Irish 

Bogs. Journal of Ecol. 49, 169-185. 

Wastegård, S., 2002. Early to middle Holocene silicic tephra horizons from the Katla 

volcanic system, Iceland: new results from the Faroe Islands. J. Quat. Sci. 17, 723-730. 

Wolff-Boenisch, D., Gislason, S.R., Oelkers, E.H., Putnis, C.V., 2004. The dissolution 

rates of natural glasses as a function of their composition at pH 4 and 10.6, and 

temperatures from 25 to 74°C. Geochim. Cosmochim. Acta 68, 4843-4858. 

  



~ 97 ~ 

 

Chapter 4: First discovery of Holocene cryptotephra in 

Amazonia 

Elizabeth J. Watson*1, Graeme T. Swindles1, Ivan P. Savov2, Karen L. Bacon1 

1School of Geography, University of Leeds, Leeds, LS2 9JT, UK  
2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 

*Corresponding author  

Manuscript for Nature Scientific Reports 

Keywords: Tephra; Tropical Peatlands; Vegetation; South America; 

Abstract 

The use of volcanic ash layers for dating and correlation (tephrochronology) is widely 

applied in the study of past environmental changes. We describe the first cryptotephra 

(non-visible volcanic ash horizon) to be identified in the Amazon basin, which is 

tentatively attributed to a source in the Ecuadorian Eastern Cordillera (0–1°S, 78-

79°W), some 500-600 km away from our field site in the Peruvian Amazon. Our 

discovery 1) indicates that the Amazon basin has been subject to volcanic ash fallout 

during the recent past; 2) highlights the opportunities for using cryptotephras to date 

palaeoenvironmental records in the Amazon basin and 3) indicates that cryptotephra 

layers are preserved in a dynamic Amazonian peatland, suggesting that similar layers 

are likely to be present in other peat sequences that are important for 

palaeoenvironmental reconstruction. The discovery of cryptotephra in an Amazonian 

peatland provides a baseline for further investigation of Amazonian tephrochronology 

and the potential impacts of volcanism on vegetation.  

4.1 Introduction  

Tephrochronology (dating sedimentary sequences using volcanic ash layers) is a 

particularly useful method for dating and correlating records of past environmental 

change 1-3. Although the majority of volcanic ash (tephra) falls out close to the volcanic 

source, fine ash (<1 mm) can have an atmospheric residence time in the region of hours 

to months, during which tephra may be transported thousands of kilometres 4. In high 

concentrations fine ash is a hazard for the health of humans and animals 5 and even far 
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from the volcanic source ash can be present in concentrations which can induce engine 

failure in modern jet aircraft 6.  

Following the initial discovery of microscopic tephra shards from Icelandic volcanoes 

in distal lakes and peatlands of Ireland and Scotland 7,8, such invisible isochrons, 

commonly referred to as ‘cryptotephras’ have been identified in ice cores, terrestrial and 

marine sediments 9-11. Cryptotephras can often be linked to a source region or even 

specific eruption(s) based on their glass geochemistry. Advances in geochemical 

analysis techniques, predominantly through Electron Probe Micro Analysis (EPMA) 

now allow for precise and accurate analysis with beam sizes as small as 3 µm 12. 

Cryptotephra layers in distal archives are predominantly used as correlation and dating 

tools; however they can also provide insights into past volcanic activity otherwise 

buried by younger deposits or eroded in the proximal (near vent) area. Tephra layers 

which transgress continental boundaries 13,14 provide the opportunity for the correlation 

of palaeoenvironmental records over large distances. Cryptotephra studies have 

focussed predominantly on northern latitudes of Europe, although cryptotephras have 

also been identified in many other regions for example China 15, North America 16, New 

Zealand 17 and Far East Russia 18. There have been several studies of macroscopic 

tephra layers in South America e.g. 19,20, but cryptotephra studies have been confined to 

the regions of Argentina and Patagonia 21,22. To the authors’ knowledge there have been 

no previous published studies of cryptotephra occurrence in the Amazon basin.  

There has been much recent interest in tropical peatlands as they represent globally-

important carbon sinks, support important ecosystems and are currently threatened by 

climate change and human activities 23. It has been estimated that tropical peatlands 

contain approximately 88.6 Gt of carbon, equivalent to up to 19 % of the global 

peatland carbon pool 23,24 and can be found in both lowland and upland areas in SE 

Asia, Africa and Central and South America 25-27. A variety of peatlands have recently 

been discovered in the subsiding Pastaza-Marañon basin in Western (Peruvian) 

Amazonia including minerotrophic palm swamps and ombrotrophic domed bogs 27-29. 

The Pastaza-Marañon basin was recently identified as the most carbon-dense landscape 

in Amazonia, storing 892 ± 535 Mg C ha−1 30. There have been a small number of 

studies of the ecology and paleoecology of Amazonia peatlands owing to their potential 

as archives of past environmental change 28,31-33. Such studies are rare and thus 
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important as they can provide a long-term baseline for recent climate changes in tropical 

Amazonia and globally. However, tropical peats are notoriously difficult to date due to 

the presence of large roots leading to deep biological alteration 32.  

Here we present a new discovery of a historic cryptotephra layer from a domed peatland 

in the Peruvian Amazon. The presence of this tephra has important implications for 

dating and correlating very recent peats and lake sediments in western Amazonia, and 

provides unambiguous evidence that Amazonia has been affected by volcanic ash fall in 

the very recent past. 

Aucayacu (“water of the natives” or “water of the warriors”) is a domed peatland in 

western Peru that currently operates as an ombrotrophic 'raised bog' system 28. It is 

situated on alluvial fan sediments between a stream of the Pastaza fan and the Tigre 

River (Figure 1). The peatland began as a nutrient rich minerotrophic system that 

gradually became an ombrotrophic raised bog through its developmental history 28. 

Aucayacu represents the deepest and oldest peatland that has been discovered in the 

Amazon basin (~7.5 m thick) and peat initiation at the site has been dated to c. 8870 cal. 

yr BP 28. The vegetation of Aucayacu is characterised by 'pole' and 'dwarf' forest 

communities 33. 
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Fig 1. Maps showing the location of Aucayacu peatland, Loreto region, Peruvian Amazonia, a) overview 

map of the approximate location of Aucayacu (red box) and the locations of volcanoes with known 

Holocene eruptions, the Chacana volcano, which is within the Eastern Cordillera is indicated in red, 

gridlines are at 10° intervals, b) False colour Landsat TM RGB image (Orthorectified, WRS-2, Path 007, 

Row 063). Band 4 was assigned to red, band 5 was assigned to green and band 7 was assigned to blue. c) 

Map indicating location of the field site in South America, again Holocene volcanoes are shown, shaded 

region indicates approximate forest cover. Maps were constructed using Arc Map 10.2.2. Landsat Data 

are free to download and available from the U.S. Geological Survey. Locations of Holocene locations 

downloaded from the Smithsonian Global Volcanism Program 

(http://www.volcano.si.edu/list_volcano_holocene.cfm#) 
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4.2 Methods 

A peat core of length 1 m was extracted from the interior of Aucayacu peatland using a 

Russian D-section corer with a 50-cm-long chamber 34,35. Peat moisture content and 

loss-on-ignition were calculated at 2 cm intervals following 36 and peat humification 

was determined following 37. The core was dated using AMS 14C dating of extracted 

wood and macrofossils. 14C dates were calibrated using IntCal13 38 in Clam v.2.2 39. 

Age-depth models using linear interpolation were constructed. 

The core was analysed for tephra using the quick-burn technique 1,3. After burning, the 

residue was sieved at 15 µm in an ultrasonic bath for 20 minutes to remove fine 

siliceous material, rinsed with deionised water, and the coarse fraction mounted onto 

slides. Tephra shard counts were conducted at 200x magnification on a standard Leica 

binocular microscope. Following detection of the peak tephra shard concentration, 

tephra was extracted for geochemical analysis following the density separation method 

of 40. The peat sample was sieved between 80 and 15 µm. Further extraction was 

conducted using various densities of LST heavy liquid. A cleaning float of 2.0 g cm-3 

was used to remove organic material a further float at of 2.2 g cm-3 was also required to 

remove abundant phytoliths. Finally tephra was floated off at 2.5 g cm-3 and rinsed 

thoroughly with deionised water. Samples were mounted onto glass slides using 

EpoThin resin, ground to expose the shards c.f. 41 and polished to a 0.25 µm finish. 

Analysis was conducted by EPMA at the Tephra Analytical Unit, University of 

Edinburgh. Analysis setup followed the method of 12, beam diameter was 5 µm with 15 

kV and variable beam current 2 nÅ (Na, Mg, Al, Si, K, Ca, Fe) to 80 nÅ (P, Ti, Mn). 

Secondary glass standards, rhyolite (Lipari) and basalt (BCR-2G) were analysed before 

and after the unknown samples. The tephra geochemical data was compared with the 

Smithsonian’s Global Volcanism Program (2013) "Volcanoes of the World" database 

and the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database, which is 

part of VOGRIPA Project 42. This resource and other published literature were searched 

for tephra geochemical data to identify a source volcano and/or eruption. Total Alkali-

Silica (TAS) and geochemical bi-plots were constructed for comparison of the 

published tephra geochemical data with geochemical data from the AUC1 tephra.  
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4.3 Results  

Figure 1 shows the location of Aucayacu peatland in Amazonia and volcanoes 

discussed in the text. In the 1-m core from Aucayacu there were no visible tephra layers; 

however, two microscopic tephra layers were encountered at 10-15 cm and 75-80 cm 

(Figure 2). No tephra shards were identified in samples outside of these depths. The 

tephra layer at 10-15 cm (AUC1) had a sufficient concentration for analysis (44 shards 5 

cm-3); however the lower layer only contained 2 shards and was not suitable for further 

analysis. The shards of AUC1 were all transparent and vesicular, with a mean size of 53 

m, median = 50 m, maximum = 125 m, and minimum 25 m or less (n = 40). There 

is no clear event in the core properties (moisture content, loss-on-ignition or peat 

humification) that corresponds with the tephra layer. This (layer) is merely a trace of 

(volcanic) material and would not have been detected through visual means or analysis 

of basic core properties. 
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Fig 2. Core properties and tephrostratigraphy, n = number of tephra shards counted in the 5 cm3 sample, 

AUC1 is the tephra layer described in this study, a second tephra layer was detected but was not suitable 

for geochemical analysis due to a sparse number of tephra shards.  

Age modelling, based on linear interpolation between the current surface (date of 

sampling = 2012) and two 14C dates, suggests a date range of AD 1769-1970 for the 

AUC1 tephra (Figure 3). We note that the date at 21 cm runs to the modern period; 

however, the 14C date at 50 cm provides a solid constraint to the tephra being dated to 

within the last ~800 years.  
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Fig 3. Age-depth model based on linear interpolation between the current surface and 14C dates at 21 and 

50 cm. Based on our age depth model the peat depth containing the tephra is dated to between AD 1769 

and 1970.  

4.4 Discussion  

Our discovery represents the first report of cryptotephra layers from Amazonia. Based 

on the distances travelled by other cryptotephras 13,14 Aucayacu peatland is within 

cryptotephra fallout range for a moderate to large eruption from volcanoes in Peru, 

Ecuador and Colombia. The prevailing wind directions in the region of our study site 

are S/SE in the summer and N/NE in the winter 43. However, there are no active 

Holocene volcanoes to the East of Aucayacu peatland. We therefore suggest that the 

tephra layers deposited at Aucayacu result from the eruptions of volcanoes along the 

Nazca and South American plate boundary which occurred during atypical (Westerly) 

wind conditions. 

In an attempt to identify a source region and/or volcano for the AUC1 tephra we 

searched the Smithsonian Global Volcanism Database 44 for volcanoes in Colombia, 
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Ecuador or Peru, which had recorded eruptive activity around the time of the AUC1 

tephra deposition. A total of 20 volcanoes have observed or dated eruptions during this 

time period (6 in Colombia, 9 in Ecuador and 5 in Peru). Geochemical analysis of the 

AUC1 tephra illustrates that it is rhyolitic with silica content >75%. Geochemical data 

is provided in supplementary table 1. Only one of these volcanoes, Chacana (Ecuador) 

is described as having a rhyolitic dominant rock type. However, there is evidence that 

volcanoes with a bulk rock geochemistry in the andesite range (as determined by XRF) 

can erupt rhyolitic glass which is the dominant constituent of distal cryptotephras45.  

We examined the magnitude of eruptions around the time of the AUC1 tephra 

deposition. 16 of the volcanoes had no eruptions which were estimated to be larger than 

VEI 3, of the remaining volcanoes, 1 was in Ecuador (Cotopaxi), 1 in South Peru 

(Tutupaca erupted between AD 1787 and 180246) and 1 in Colombia (Doña Juana 

erupted AD 1897-1906). There is evidence of distal ash deposition from Tutupaca at 

multiple locations including Arica (165 km from the vent)46 suggesting ash from this 

eruption was carried toward the South, the opposite direction to Aucayacu peatland. 

Although Doña Juana was active between 1897 and 1906 and activity peaked during 

1899, contemporary reports do not indicate significant ash clouds 47.  

Following this initial search we focussed on the volcanoes of Ecuadorian Eastern 

Cordillera as: 1) They are closer to Aucayacu peatland than Colombian and Peruvian 

volcanoes (c. 5-600km vs. 1500 km to Tutupaca and 700 km to Dona Juana); 2) 

Volcanoes in the Ecuadorian Eastern Cordillera have been highly active during the late 

Holocene, in particular Cotopaxi volcano which has three recorded eruptions with a 

magnitude of VEI 4 (AD 1744, 1768 and 187744); 3) There is geochemical evidence to 

support the eruption of rhyolitic compositions from these volcanic systems in the past 

(Fig. 4).  

Holocene Ecuadorian volcanism can be described by an East to West split with 

volcanoes in Eastern Cordillera generally more active than those in the West 48. For this 

reason we focused our search to the East and specifically three large rhyolitic centres: 

Chalupas, Cotopaxi and Chacana (0–1°S, 78-79°W). Eruptions of Cotopaxi show 

characteristic rhyolitic and andesitic bimodal magmatism during the Holocene 48 and 

multiple effusive and explosive eruptions of the volcano have been recorded in 
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chronicles since 1534, with the largest historical event occurring in AD 1768 (VEI =4) 

49. These eruptions were of andesitic bulk rock geochemistry. Less information is 

available about historical eruptive activity at the Chalupas volcano, which is adjacent 

Cotopaxi. The Chacana caldera complex is an eroded caldera complex of Pliocene-

Holocene age 44. Chacana stratovolcano (0.37°S, 78.25°W, elev. 4643 m) has been the 

source of multiple lava flows during the 18th century 50.  

Unfortunately only XRF bulk rock geochemical data is available for previous eruptions 

of Chalupas and Chacana 51. Although XRF data indicates that these volcanoes have 

previously erupted bulk rock of rhyolite composition, due to the contamination of 

phenocrystals and microcrystals, the XRF data cannot be directly compared with the 

AUC 1 glass geochemistry (determined using EPMA), the data are plotted on Figures 4 

and 5 for illustration only. There is an urgent need for the collection of representative 

proximal historical samples from Ecuador, Colombia and Peru which could be analysed 

via EPMA. There is some geochemical data based on EPMA of glass for Holocene and 

Late Pleistocene glasses from Cotopaxi 52 . Although this is similar to our AUC 1 data 

for some elements (Figure 5), Cotopaxi rhyolites typically have a lower K2O value than 

the AUC 1 tephra (Figure 4).  
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Fig 4. Total Alkali Silica (TAS) plot indicating the geochemistry of the Aucayacu tephra shards as 

determined by EPMA plotted against the whole rock geochemistry of volcanic rocks from the Chacana-

Chalupas caldera region determined by XRF (X-ray fluorescence) 51 and glass geochemical data for 

Cotopaxi determined by EPMA (Cotopaxi IIA and IIB sequences from the Holocene and late Pleistocene) 

52. Major element totals are normalised to 100%. Annotations follow standard terminology e.g. RHY = 

Rhyolite, D = Dacite, TD = Trachydacite 53. 

 

Fig 5. Co-variant plots of (a) CaO (%), MgO (%) (b) FeO (%), TiO2 (%) values of the Aucayacu tephra 

glass shards as determined by EPMA plotted against the whole rock major values of volcanic rocks from 

the Chacana-Chalupas caldera region determined by X-ray fluorescence 51 and glass geochemical data for 

Cotopaxi determined by EPMA (Cotopaxi IIA and IIB sequences from the Holocene and late Pleistocene) 

52. Major element totals are normalised to 100%.  
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Our work shows that volcanic ash has been deposited more than once in Amazonia in 

the recent past. Given the close proximity of Amazonia to major volcanic chains of the 

Andes, the basin is likely to have been affected by volcanic ash fall throughout the 

Holocene. Analysis of the deeper peats (~7.5 m) at Aucayacu, for example, is likely to 

reveal a tephra record spanning a considerable proportion of the Holocene (peat 

initiation at c. 8870 cal. BP 28). However, further work on a network of peatlands and 

lakes of Amazonia is needed to understand the long-term tephra record across the 

region. One problem is the current lack of a tephra geochemical database (e.g. 

Tephrabase for Europe 54) for northern South America, making geochemical cross 

correlations difficult. Our work indicates that tephra glass shards are preserved for long 

periods of time and show no indication of either visible damage e.g. silica gel layer 

formation or pitting (cf.40) or geochemical changes (e.g. low total oxide values, 

fluctuation in alkaline elements) even in dynamic Amazonian peatlands with a pH of <4 

and where the temperature (and thus rate of chemical and biological attack 55) is likely 

to be higher than in northern peatlands.   

Tephras may provide an important tool for correlating and dating palaeoenvironmental 

records from Amazonia and enable the determination of spatio-temporal variability in 

ecological dynamics and responses of ecosystems to changing climate. Furthermore, the 

AUC1 tephra may form an important isochron for dating and correlation of the recent 

part of tropical peatlands in western Amazonia which has implications for 

understanding recent changes, from the Little Ice Age to present. Tropical peatlands are 

highly dynamic in terms of biological activity (bioturbation) and hydrological regime. 

Amazonian peatlands are also affected by river flooding that is a significant factor for 

the reworking of microfossils. Tephra layers represent a discrete event in time; analysis 

of the structure of tephra layers in peat cores can offer a powerful tool to detect 

reworking with important implications for palaeoecological studies. 

Tephra layers represent unequivocal evidence of deposition from ash clouds. As a result 

of the remote nature of much of Amazonia, written records of volcanic activity are 

unlikely to span more than a few centuries. In addition, proximal tephra records are 

often eroded or overlain by material from subsequent eruptions and therefore provide 

incomplete records of past volcanic activity. In these situations cryptotephras offer a 

complimentary approach to understanding the frequency of past explosive volcanic 
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eruptions and the spatial extents of ash clouds 9,56. Further research into cryptotephra 

deposits in the Amazon basin may provide some information on volcanic activity in this 

region.  

Ash fall from volcanic eruptions is known to have significant impacts on vegetation that 

vary from short- to long-term 57,58.The unequivocal evidence of ash clouds over 

Amazonia presented here highlights that the region has experienced the fallout products 

of volcanism. This raises the question of how much volcanic activity has impacted plant 

communities and plant function within this important ecosystem over time. 

Investigating the peat record could help to gain a further understanding of both the 

impact of volcanic activity on the plants of the Amazon basin and also of how wide-

spread these impacts may be. When combined with palaeoecological records, 

cryptotephra layers offer the opportunity to consider plant community responses to 

volcanic events 59,60.   

As well as highlighting the opportunities for the development of tephrochronology for 

the dating of peatlands and lakes in Amazonia, this first discovery of cryptotephra in 

Amazonia indicates that volcanism has deposited volcanic ash and possibly volcanic 

gases over Amazonia. We suggest that this paper highlights the potential for future 

research into the tephrochronology and past ecology of this important region.  

4.5 Conclusions 

We present information on the first microscopic tephra layer found in a peatland in 

western (Peruvian) Amazonia. Electron probe microanalysis provides geochemical data 

for the tephra that indicates a rhyolitic major element geochemistry. Radiocarbon dating 

suggests the AUC1 tephra fell between AD 1769 and 1970.  

We suggest, based on the proximity to the Aucayacu peatland, geochemistry, and 

records of late Holocene volcanic activity that the most likely source for the AUC1 

tephra is a volcano in the Ecuadorian Eastern Cordillera (0–1°S, 78-79°W).   

This represents the first discovery of a historic microscopic tephra (cryptotephra) from 

Amazonia. The tephra layer may provide a new isochron for precise dating and 



~ 110 ~ 

 

correlation of palaeoenvironmental records from peatlands and lakes in western 

Amazonia.  

The discovery of two tephra layers in the top 1 m of peat at Aucayacu demonstrates that 

cryptotephra layers can be preserved in the aggressive environments of Amazonian 

peatlands (low pH and high temperatures) and presents an opportunity for further 

research into the tephrochronology of this region. 

Distal tephra layers in Amazonia may also provide much needed information on the 

frequency of volcanic activity and the characteristics of ash clouds in this region. 

Further research is required; the presence of cryptotephra layers in Amazonian 

peatlands has important implications for understanding the influence of volcanic 

activity on the functioning of Amazonian vegetation communities. The possible impact 

of volcanic ash and gas fallout on the functioning of these communities is yet to be 

assessed.  
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Abstract  

Despite the widespread application of tephra studies for dating and correlation of 

stratigraphic sequences (‘tephrochronology’), questions remain over the reliability and 

replicability of tephra records from lake sediments and peats, particularly in sites >1000 

km from source volcanoes. To address this, we examine the tephrostratigraphy of four 

pairs of lake and peatland sites in close proximity to one another (<10 km), and evaluate 

the extent to which the microscopic (crypto-) tephra records in lakes and peatlands 

differ. The peatlands typically record more cryptotephra layers than nearby lakes, but 

cryptotephra records from high-latitude peatlands can be incomplete, possibly due to 

tephra fallout onto snow and subsequent redistribution across the peatland surface by 

wind and during snowmelt. We find no evidence for chemical alteration of glass shards 

in peatland or lake environments over the time scale of this study (mid- to late- 

Holocene). Instead, the low number of basaltic cryptotephra layers identified in distal 

peatlands reflects the capture of only primary tephra-fall, whereas lakes concentrate 

tephra falling across their catchments which subsequently washes into the lake, adding 

to the primary tephra fallout received in the lake. A combination of records from both 

lakes and peatlands must be used to establish the most comprehensive and complete 

regional tephrostratigraphies. We also describe two previously unreported late Holocene 

cryptotephras and demonstrate, for the first time, that Holocene Icelandic ash clouds 

frequently reached Arctic Sweden.  
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5.1 Introduction  

Tephrochronology can be defined as the use of tephra (volcanic ash) layers for the 

dating and correlation of stratigraphic profiles. The technique was initially developed 

using visible tephra layers in Iceland (Thorarinsson, 1944), but the discovery of 

Icelandic tephra layers on the Faroe Islands and in Scandinavia allowed the extension of 

tephrochronology into regions further away from source volcanoes (e.g. Persson, 1966; 

1968). The potential of distal tephrochronology was further advanced by the discovery 

of microscopic layers of volcanic ash (‘cryptotephras’) in peatlands, lakes, ice and 

marine cores across the North Atlantic and northern Europe (Dugmore et al., 1995; 

Gudmundsdóttir et al., 2011). Widespread tephra and cryptotephra layers can now be 

used to correlate stratigraphic sequences in different depositional environments and 

provide tie points for climate reconstructions across regions (Davies et al., 2012; Lane 

et al., 2013).   

Despite the widespread application of cryptotephras for the dating and correlation of 

stratigraphic sequences, and more recently as a record of ash cloud frequency (Swindles 

et al., 2011, 2013b), there remain a number of questions over the chronostratigraphic 

reliability of cryptotephra layers in terrestrial archives. There is evidence for the gradual 

in-washing, within-basin focussing and re-deposition of cryptotephra layers in lakes 

(Davies et al., 2007; Pyne-O'Donnell, 2011). In peatlands, which have been proposed to 

record primary tephra-fall material, patchy tephra distribution patterns can occur due to 

fallout onto snow (Bergman et al., 2004), and there is evidence for the movement of 

tephra-derived glass shards across the peat surface by wind or water (Payne and 

Gehrels, 2010; Swindles et al., 2013a; Watson et al., 2015). Furthermore, despite the 

dominance of basaltic over silicic volcanism in Iceland and the potential for 

phreatomagmatic eruptions which have been shown to distribute fine ash over long 

distances, only five cryptotephras of basaltic composition have been detected in N. 

European sites over the last 7000 years, mostly in lake sediments (Lawson et al., 2012). 

This is in contrast to ~80 silicic cryptotephras which have been widely identified in both 

peatlands and lakes (silicic > 63% SiO2: Dugmore et al., (1995)).  

In this paper we investigate Holocene tephra records from lakes and peatlands in close 

proximity to one another (<10 km apart). Based on the assumption that both lake and 
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peatland have received the same primary tephra-fall deposits, we aim to evaluate 

whether they record the same or different tephrostratigraphies. In addition, we evaluate 

the differential preservation of glass (tephra) shards in lakes versus peatlands.     

5.2 Site description 

Four pairs of sites in northern Europe (each comprised of one lake and one peatland) 

were identified using the following criteria: 1) close proximity (< 10 km apart); 2) 

coverage of a range of meteorological conditions (e.g. high-latitude sites where tephra 

might be more likely to fall out onto snow, see Fig. 1); and 3) coverage of a range of 

different peatland and lake types (spanning a range of preservation conditions including 

acidic peatlands and alkaline lakes). Sites were favoured if prior information on basal 

age or outline chronology was available. A brief description of each site is given below; 

sites are listed according to their location on a south-west to north-east transect. 

Detailed information on site characteristics can be found in Table 1 and photos of each 

site can be found in Fig. S1.  
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Site 

 

Lake or 

peatland 

(L/P) 

Location 

(decimal degrees) 

Elevation 

(m a.s.l.) 
Site type 

pH  

(at time of 

sampling) 

Mean annual 

precipitation 

(mm y-1) 

Mean annual 

Temperature 

 

Water 

depth 

(cm) 

Length 

of core 

(cm) 

Distance 

between 

lake and 

peatland 

Claraghmore Lake L 54.631°N, 7.450°W 

78  

Small lake 6.5 

1000-12004 
4°C in January 

15°C in July4 

350 450 0.3 km 

Bearing of 

310° Claraghmore Bog P 54.633°N, 7.454°W Raised bog N/A NA 910 

Malham Tarn Lake L 54.096°N, 2.165°W 

380 

Small marl lake  8.2 

15022 6.9°C3 

250 310 0.5 km 

Bearing of 

282° Malham Tarn Moss P 54.097°N, 2.173°W Raised bog N/A NA 640 

Lake Svartkälsjärn L 
64.264°N, 

19.552°E 
260 Small lake  

6.7 

520 

2°C with 

average 

temperatures 

of -12°C in 

January and 

15°C in July1 

312 203 

~9 km 

Bearing of 

176° 
Degerö Stormyr P 

64.181°N, 

19.564°E 
270 

Acid bog 

complex 
4.3 NA 440 

Sammakovuoma 

Lake 
L 

66.992°N, 

21.500°E 
237 

Small lake 7.0 

4805 
-2 to -3 °C6 

-1.5 °C5 

350 240 1.9 km 

Bearing of 

280° Sammakovuoma 

Bog 
P 

66.995°N, 

21.457°E 

Acid bog 

complex 
5.9 NA 440 

Table 1. Location and characteristics of each of the lake and peatland sites included in this study. Shading indicates the pairing of peatland and lake sites. The climatic data refer to 

the following periods and sources: 1 = 1951-1980 (Sweeney, 1997); 2 = 1961-2000 (Burt and Horton, 2003); 3 = 1959-2000 (Burt and Horton, 2003); 4 = 1961-1990 (Alexandersson 

et al., 1991); 5 = (1961-1990) (Norwegian Meteorological Institute, 2015) 6 = 1961-1990 (Tveito et al., 2000).
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Fig. 1. Map showing the location of lake (grey square) and peatland (white circle) sites sampled in this 

study. The black triangle indicates the location of the Hekla volcano, the source for the majority of 

widespread late Holocene tephras in northern Europe.  

5.2.1 Site 1: Claraghmore, Northern Ireland 

Claraghmore bog is an intact raised bog. Previous palaeoecological studies suggest the 

site contains a peat record spanning much of the Holocene (Plunkett, 2006; 2009). 

Claraghmore Lake is one of two small lakes which lie at the bottom of a shallow slope 

immediately adjacent to the peatland. The lake is approximately 100 metres in length, 

with a maximum water depth of 3.5 m at the time of sampling, and is bordered by 

Quercus and Corylus woodland. The lake margins are characterised by fens containing 

Cyperaceae and Poaceae. Lake sediments are composed of gyttja. To the best of our 

knowledge this study represents the first palaeoenvironmental investigation of this lake.   
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5.2.2 Site 2: Malham, England   

Malham Moss is an ombrotrophic raised bog adjacent to Malham Tarn (lake). Over the 

last c. 8000 years Sphagnum peat has accumulated in Malham Moss up to a depth of up 

to 6 m (Pigott and Pigott, 1963). Malham Tarn is ~600 meters in length and the lake 

sediments, which span more than 6 m, are composed mainly of Chara marls. The 

average water depth is ~2.5 m. The lake is fed by springs and its waters are alkaline (pH 

= 8.2: Pentecost, (2009)). Previous palaeoecological research suggests a basal age for 

the lake sediments of c.12 000 cal yr BP (Nuñez et al., 2002). 

5.2.3 Site 3: Lake Svartkälsjärn and Degerö Stormyr, Sweden 

Degerö Stormyr and Lake Svartkälsjärn are located in the Västerbotten region of 

northern Sweden. Degerö Stormyr is an acid peatland complex with an area of 6.5 km2 

and peat depth of 3–8 m. The deepest peat has an age of c. 8000 cal yr BP (Nilsson et 

al., 2008). Lake Svartkälsjärn is a small lake with a total area of c. 0.05 km2, catchment 

area of c. 2.5 km2 and a water depth of 3.1 m at the time of sampling. Lake sediments 

are composed mainly of gyttja. Previous paleoecological research suggests the 

lacustrine sediment record (2.2 m) spans the period from 10,000 cal yr BP to present 

(Barnekow et al., 2008).  

5.2.4 Site 4: Sammakovuoma, Sweden 

The Sammakovuoma sites in northern Sweden represent the most northerly locations in 

this study. Radiocarbon dating suggests a peatland age of 9260 cal yr BP (depth 4.6 m) 

(Matts Nilsson, personal comm.). Lake Sammakovuoma is a small lake (c. 400 m in 

length) with a water depth of 3.5 m at the time of sampling. Lake sediments are 

composed mainly of gyttja. The catchment vegetation comprises forest dominated by 

Pinus. The lake catchment also contains areas of bog and fen. To the best of our 

knowledge this study represents the first palaeoenvironmental investigation of this lake.   
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5.3 Methods  

5.3.1 Field sampling  

Where possible, cores from peatlands were extracted from areas containing the deepest 

peat. Lake cores were extracted from the middle of each lake in an attempt to minimise 

the risk of obtaining sediments exposed to reworking during previous lake level 

fluctuations. Samples were taken either from the peatland surface or from a small boat 

using a Russian D-section corer with either a 50 or 100 cm barrel length (sample 

diameter 5 cm and 9 cm respectively) following the parallel hole method (De 

Vleeschouwer et al., 2011). 

5.3.2 Organic matter content 

Organic matter content was determined through loss-on-ignition (LOI) which was 

conducted on adjacent 5-10 cm intervals on all cores. Samples were oven dried at 105°C 

for 24 hours, weighed and combusted in a furnace at 550°C for 4 hours following 

procedures described in detail in Chambers et al. (2010).  

5.3.3 Tephra analysis  

All cores were sub-sampled at 5–10 cm intervals, then combusted at 550°C and treated 

with 10% HCl (Hall and Pilcher, 2002; Swindles et al., 2010). Samples containing 

mineralogical material or biogenic silica required sieving at 10 µm in an ultrasonic bath 

(no coarse sieving e.g. 125 µm required) and, in some instances (all lake sites and the 

Swedish peatlands), separation using heavy liquid floatation (Blockley et al., 2005). All 

residues (including heavy fractions) were examined to ensure extraction had been 

successful. Residues were rinsed thoroughly in deionised water, mounted onto glass 

slides using Histomount and examined on a Leica binocular microscope at x200 and 

x400 magnification. Where glass shards were identified, subsampling was repeated at 1 

cm intervals. Comparing the number of shards (n shards g-1) in the peak sample 

identified in a lake and peatland is not possible due to the difference in dry bulk density 

between peat and lake sediments. However, in order to give some indication of the 
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relative concentrations of glass shards in peatlands and lakes, the total shard counts for 

each cryptotephra layer per cm2 (total tephra deposited per square centimetre of 

peatland/sediment surface) were calculated by summing the numerical glass shard 

counts for all the depth samples within that layer (Table 2). 

Tephra shards from peatlands with low minerogenic content were extracted for 

geochemical analysis using the acid digestion method (Dugmore et al., 1992). Samples 

were treated with conc. HNO3 and H2SO4 before sieving the residue at 10 µm and 

rinsing with deionised water. Samples containing minerogenic material were extracted 

using heavy density liquids (cleaning float 2.25 g cm-3, retaining float 2.50 g cm-3) 

(Blockley et al., 2005). Information on the extraction method and ID code for each 

tephra sample is given in Table 2.  
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Site Depth in 

sediment/ 

peat (cm) 

Sample 

ID 

Tephra(s) Age Geochemical 

composition 

Total 

shards 

(cm-2)  

Total  

shards 

analysed 

(n)  

References 

Claraghmore 

bog 

44-48 CLA-

B1
†
 

Öræfajökull 

1362 
Hekla 1510? 

c. AD 1362 Rhyolitic 

1 Basaltic shard 

30 7 Dugmore et al., (1995); Hall and Pilcher,(2002); Larsen et al., (1999); 

Pilcher et al., (2005); Pilcher et al., (1995, 1996) 

58-61 CLA-

B2
†
 

Unknown #4 

Mix? 

721-726 cal yr BP (724 BP) Mixed composition 75 20 n/a 

73-77 CLA-

B2a
†
 

Hekla 1104 AD 1104 Rhyolitic 21 4 Hall and Pilcher, (2002); Larsen et al., (1999); Pilcher et al., (2005); 

Pilcher et al., (1995, 1996) 

87-90 CLA-

B3
†
 

MOR-T4 c. AD 1000 Rhyolitic-Dacitic 20 20 Chambers et al., (2004) 

108-110 CLA-

B4
†
 

AD860B AD 846-848 Rhyolitic 51 12 Hall and Pilcher, (2002); Pilcher et al., (1995); Swindles, (2006) 

241-244 CLA-

B5
†
 

Microlite 

GB4-150 

2705 - 2630 cal yr BP 

2750 - 2708 cal yr BP 

Rhyolitic 

Dacitic-Trachydacitic 

13 17 Hall and Pilcher, (2002); Swindles, (2006) 

415-418 CLA-

B6-B7
†
 

Hekla 4 

Silk N2 

4345 - 4229 cal yr BP 

4345 - 4229 cal yr BP 

Rhyolitic-Dacitic 

Dacitic-Trachydacitic 

73 29 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 

(1996); Plunkett et al., (2004); Zillen et al., (2002) 

868-870 CLA-

B8
†
 

Lairg A 6947- 6852 cal yr BP Rhyolitic 79 4 Dugmore et al., (1995); Hall and Pilcher, (2002); Pilcher et al., (2005); 

Pilcher et al., (1996) 

Claraghmore 
lake 

110-113 CLA-L1 Unknown #3 Post AD 1000 Basaltic 141 19 n/a 

145-149 CLA-L2 MOR-T4 c. AD 1000 Rhyolitic-Dacitic 42 2 Chambers et al., (2004) 

206-208 CLA-L3 Hekla 4 4345 - 4229 cal yr BP Rhyolitic-Dacitic 26 1 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 
(1996); Zillen et al., (2002) 

328-331 CLA-L4 Lairg B 6724 - 6627 cal yr BP Rhyolitic 275 21 Dugmore et al., (1995); Pilcher et al., (1996) 

332-338 CLA-L5 Lairg A 6947 - 6852 cal yr BP Rhyolitic 723 20 Dugmore et al., (1995); Hall and Pilcher, (2002); Pilcher et al., (1996) 

Malham Moss 123-125 MM-1
†
 Glen Garry 2210 - 1966 cal yr BP Dacitic-Rhyolitic 131 12 Dugmore et al., (1995); Dugmore and Newton, (1992); Pilcher and 

Hall, (1996) 

323-328 MM-2
†
 Hekla 4 4345 - 4229 cal yr BP Rhyolitic-Dacitic 221 10 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 

(1996); Zillen et al., (2002) 

577-580 MM-3
†
 Lairg B 6724 - 6627 cal yr BP Rhyolitic 23 4 Dugmore et al., (1995); Pilcher et al., (1996) 

595-598 MM-4
†
 Lairg A 6947- 6852 cal yr BP Rhyolitic 152 10 Dugmore et al., (1995); Hall and Pilcher, (2002); Pilcher et al., (1996) 

Malham Tarn 135-145 MT-1 Glen Garry 2210 - 1966 cal yr BP Dacitic-Rhyolitic 85 15 Dugmore et al., (1995); Dugmore and Newton, (1992); Pilcher and 

Hall, (1996) 

Degerö Stormyr 

 

42-44 SV-B1
†
 Askja 1875 AD 1875 Rhyolitic 103 16 Larsen et al., (1999); Oldfield et al., (1997); Pilcher et al., (2005) 
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71-74 SV-B2
†
 Hekla 1158 

Hekla 1104 

AD 1158 

AD 1104 

Dacitic 

Rhyolitic 

186 15 Hall and Pilcher, (2002); Larsen et al., (1999); Pilcher et al., (2005); 

Pilcher et al., (1995, 1996) 

152-154 SV-B3
†
 Hekla 3 3037 - 2956 cal yr BP Dacitic-Rhyolitic 51 21 Lawson et al., (2007); Zillen et al., (2002) 

180-183 SV-B4
†
 Hekla-

S/Kebister 
4053 – 3886 cal yr BP (3968 

BP) 
Dacitic-Rhyolitic 42 5 Dugmore et al., (1992); Wastegård et al., (2001); Zillen et al., (2002) 

190-193 SV-B5
†
 Hekla 4 4345 - 4229 cal yr BP Rhyolitic-Dacitic 35 16 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 

(1996); Zillen et al., (2002) 

237-240 SV-B6
†
 Lairg A 6947- 6852 cal yr BP Rhyolitic 50 23 Dugmore et al., (1995); Hall and Pilcher, (2002); Pilcher et al., (2005); 

Pilcher et al., (1996) 

Svartkälsjärn 

lake 

11-18 SV-L1 Hekla 1104 

Hekla 1158 

AD 1104 

AD 1158 

Rhyolitic 

Dacitic 

246 21 Hall and Pilcher, (2002); Larsen et al., (1999); Pilcher et al., (2005); 

Pilcher et al., (1995, 1996) 

41-44 SV-L2 QUB 570 

Group 2 (c. 

AD 650)? 
(Unknown 

#2) 

c. 2500- 2000cal yr BP* Dacite-Andesite 147 20 Pilcher et al., (2005) 

79-82 SV-L3 Hekla 4 4345 - 4229 cal yr BP Rhyolitic-Dacitic 303 21 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 
(1996); Zillen et al., (2002) 

108-113 SV-L4 Unknown #5 c. 6000-5000 cal yr BP* Rhyolitic-Dacitic 16 7 n/a 

123-128 SV-L5 Lairg A? c. 6500-6000 cal yr BP* Rhyolitic 40 10 Dugmore et al., (1995); Hall and Pilcher, (2002); Pilcher et al., (2005); 

Pilcher et al., (1996) 

Sammakovuoma 

peatland 

46-49 SB-1
†
 Hekla 1104 AD 1104 Rhyolitic 109 20 Hall and Pilcher, (2002); Larsen et al., (1999); Pilcher et al., (2005); 

Pilcher et al., (1995, 1996) 

67-70 SB-2
†
 

SN-1 
(Unknown 

#1) 

1232-1226 cal yr BP (1229 BP) Trachydacite 193 26 Larsen et al., (2002); Holmes et al., (2016) 

Sammakovuoma 

lake 

15-17 SL-1 Hekla 1104 AD 1104 Rhyolitic 539 8 Hall and Pilcher, (2002); Larsen et al., (1999); Pilcher et al., (2005); 

Pilcher et al., (1995, 1996) 

39-42 SL-2 SN-1 

(Unknown 

#1) 

1781-1721 cal yr BP (1752 BP) Trachydacite 285 19 Larsen et al., (2002); Holmes et al., (2016)  

109-113 SL-3 Hekla 4 4345 - 4229 cal yr BP Rhyolitic-Dacitic 828 35 Dugmore and Newton, (1992); Pilcher et al., (2005); Pilcher and Hall, 
(1996); Zillen et al., (2002) 

Table 2. Cryptotephra layers detected in peatland and lake sites as part of this study. *= based on the age-depth model of Barnekow et al. (2008). Ages shown in Italics are based on 

age depth model (linear interpolation) from other dated tephras, median probability age given in brackets. †= Tephras extracted for geochemical analysis by the acid extraction 

method alone (c.f. Dugmore et al., 1992), or acid extraction followed by density separation. All other tephras were extracted using density separation only, following Blockley et al., 

(2005).   
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Glass shards were mounted onto glass slides (Dugmore et al., 1992) or into blocks (Hall 

and Hayward, 2014). All samples were polished to a 0.25 µm finish. Major element 

geochemistry for all samples excluding those from Malham Moss was analysed using a 

Cameca SX100 electron probe micro analyser (EPMA) at the University of Edinburgh. 

Small shard sizes necessitated the use of narrow beam sizes (3-5 µm) and the beam 

current was varied during each analysis to limit volatile element (Na and K) loss 

(Hayward, 2012). Glass shards from cryptotephra layers identified in Malham Moss 

were analysed using a 10 µm beam on the JEOL JXA8230 EPMA housed at the 

University of Leeds. In both locations, analyses were conducted at 15 kV (full analytical 

conditions are listed in Table S1). Secondary glass standards (Lipari obsidian and BCR-

2G: Jochum et al., (2005)) were analysed before and after EPMA runs of unknown 

glass shard analyses. Assignments to specific eruptions were based on stratigraphy and 

visual comparison of tephra geochemistry with the Tephrabase database (Newton et al., 

2007) and published literature using bi-plots of oxides.   

5.3.4 Radiocarbon dates  

Five radiocarbon dates were obtained for peatland sites on above-ground vegetation 

macrofossils which were picked from sieved samples (>125 µm) under a low power 

microscope. One radiocarbon date was obtained for Claraghmore lake. In this instance 

the lack of plant macrofossils in the lake sediment necessitated the extraction of a bulk 

sample. Samples of lake sediment and peat were pre-treated using the standard acid-

alkali-acid treatment, digested in hot (80˚C) 1M HCl for 2 hours, hot (80˚C) 0.5M KOH 

for a further 2 hours and then re-treated with 1M HCl. Samples were rinsed thoroughly 

with de-ionised water between each acid/alkali stage and were submitted to Direct 

AMS, Seattle, USA for 14C dating. All dates were calibrated using Calib 7.1 (Stuiver 

and Reimer, 1993) and the IntCal13 atmospheric curve (Reimer et al., 2013).  
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5.4 Results and discussion  

5.4.1 Tephra correlations  

Site 1: Claraghmore  

Claraghmore bog contains tephra from nine eruptions in the form of eight cryptotephra 

layers (CLA-B6-B7 contains tephra from two eruptions) (Figs. 2 and 3). The majority of 

the cryptotephra layers identified at Claraghmore bog are silicic, of Icelandic 

provenance, and have previously been documented at other sites across Ireland. A small 

number of light brown shards in the top few centimetres of peat at Claraghmore bog 

were too sparse for geochemical analysis (3 shards cm-3). These shards are similar in 

morphology and colour to shards from the eruption of Hekla 1947, which have 

previously been identified at multiple sites across Northern Ireland (Rea et al., 2012). 

Spheroidal carbonaceous particles (SCPs) were identified alongside these shards, 

suggesting that they were deposited after the Industrial Revolution which supports 

tentative assignment to the AD 1947 eruption of the Hekla volcano (Swindles and Roe, 

2006; Swindles et al., 2015). 
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Fig. 2. Diagram showing the tephrostratigraphy and loss-on-ignition values at Claraghmore a) lake and b) bog. Tephra codes are indicated in black. Where assignments to a known 

tephra isochron have been made based on glass geochemistry and stratigraphy, these are indicated in red beside the tephra code. Tephras which could not be assigned to a known 

tephra isochron are marked as ‘Unknown’ and numbered. Samples containing traces of shards (<5 shards) are indicated by an asterisk. An area of increased mineral input has been 

highlighted at the top of the lake profile. Radiocarbon dates are reported as the calibrated 2σ range. 
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Fig. 3. Diagram summarising the tephras identified at each lake and peatland pair. [P] and [L] mark peatland and lake sites, respectively. Tephras identified in both the 

lake and the peatland are enclosed in dashed lines. The style of the point reflects the SiO2 content (wt %). Ages plotted are midpoint ages. Where the basal age of the 

core has been ascertained using 14C dating this has been marked by a dashed line. One basal date was estimated using less secure methods (sedimentation rate/pollen 

analysis) and is indicated with a question mark. The most common tephra deposits in this study have been named.
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CLA-B1 contains glass shards which show geochemical similarity to those from a 

mixture of different Icelandic eruptions including Öræfajökull 1362 and Hekla 1510. 

CLA-B2 could not be matched to previously recognised cryptotephra layers based on 

glass geochemistry. The age of CLA-B2 (~720 cal yr BP) is constrained by bracketing 

cryptotephra layers CLA-B1 and CLA-B2A (=Hekla 1104) to between AD 1104 and 

AD 1362. The glass major element analyses for CLA-B2 are not a complete 

geochemical match to any of the five northern European cryptotephras identified during 

this period, although some individual analyses show similar geochemistry to the 

analyses of shards from Hekla 1158, BGMT1, GB4-57 and QUB-385 (Fig. 4 (a-b)). It is 

possible that CLA-B2 is a previously undiscovered tephra; however, given the diversity 

in glass geochemistry and the low resolution of the peatland record, CLA-B2 may 

represent a mixture of shards from two or more of the tephras listed above.  
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Fig. 4. Geochemical bi-plots of major elements of glass from Claraghmore sites plotted against envelopes 

for the glass geochemistry of known tephras based on type data from the Tephrabase database (type data 

references in Table 2). All data have been normalised. (a-b) Claraghmore bog sample CLA-B2 is an 

unidentified tephra or mix of tephras dating between AD 1104 and AD 1362 plotted against northern 
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European cryptotephras from this period. (c-d) Claraghmore bog cryptotephra layers prior to AD 860; 

inset plots show the full range of the data. (e-f) Claraghmore lake cryptotephra layers and suggested 

sources. (g-h) Claraghmore bog cryptotephra layers from AD 860 to present. The main plots illustrate the 

geochemical variation among silicic to intermediate shards; inset plots show the full range of the data, 

including basaltic shards. (j-k) Claraghmore lake tephra ClA-L1, which contains glass shards of a basaltic 

composition; also shown are geochemical envelopes of glass data for eruptives from the Veiðivötn (dark 

grey) and Grímsvötn (light grey) volcanoes. Envelopes are based on geochemical data from Streeter and 

Dugmore, (2014); Lawson et al., (2007); Chambers et al., (2004); Wastegård, (2002); Wastegård et al., 

(2001); Haflidason et al., (2000); Dugmore and Newton, (1998); Thordarson et al., (1996); Mangerud et 

al., (1986) and references therein. TSK11_B1u_137_e142_T tephra data from Wulf et al., (2016).  

_____________________________________________________________________________________ 

Analyses of glass shards in sample CLA-B3 indicate a rhyolitic-dacitic major element 

geochemistry similar to that of glass shards from the MOR-T4 tephra layer (c. AD 

1000) previously identified at one site in Ireland (Chambers et al., 2004). The position 

of CLA-B3 above CLA-B4 (=AD 860 B) supports correlation to the MOR-T4 tephra. 

CLA-B4 contains shards matching the geochemistry of glass shards from the AD 860 B 

tephra, recently correlated to a volcano in Alaska (Jensen et al., 2014). The 17 analyses 

on glass shards from the CLA-B5 tephra indicate that this cryptotephra layer contains 

shards with major element glass geochemistry matching analyses on glass from both the 

Microlite and GB4-150 tephras.  

The CLA-B6-B7 tephra is correlated to Hekla 4 (4345-4229 cal yr BP), as the majority 

of shards show geochemical similarity to those of tephra from this eruption. However, 

the CLA-B6-B7 cryptotephra layer contains a number of glass shards which do not 

match the geochemistry of glass shards from the Hekla 4 eruption (Table 2) (Fig. 4 (c-

d)). These shards show geochemical similarity to glass shards most likely from an 

eruption of Katla volcano in Iceland (Silk-N2) which occurred at around the same time 

as Hekla 4 (Larsen et al., 2001, Plunkett et al., 2004).   

Only a small number of geochemical analyses were possible on glass shards from the 

CLA-B8 tephra. These analyses show some similarities to the glass geochemistry of the 

Lairg A tephra (6947-6852 cal yr BP). Assignment to the Lairg A tephra, a product of 

the Hekla volcano, is supported by a 14C age of 6432-6303 cal yr BP above the CLA-B8 

tephra. Previous research has also identified the Hekla 3 (3037-2956 cal yr BP) and 
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BMR 190 (2655-2535 cal yr BP) tephras in Claraghmore bog (Plunkett, 2009). We find 

no evidence for the presence of these cryptotephras in our core. Conversely, we identify 

cryptotephras in the Claraghmore bog that correlate with MOR-T4 (CLA-B3), 

Öræfajökull 1362 (CLA-B1) and Hekla 1104 (CLA-B2A), cryptotephra layers which 

were not identified in the previous study (Plunkett, 2009).  

The Claraghmore lake core contains five cryptotephra layers (Table 2, Fig. 4 (e-f)); 

most have previously been recorded in Ireland. Three of the cryptotephra layers (MOR-

T4 (=CLA-L2), Hekla 4 (=CLA-L3) and Lairg A (=CLA-L5)) are present in both the 

lake and peatland (Fig. 5). MOR-T4 and Hekla 4 form sparse glass shard horizons in the 

lake and therefore correlation is based on a small number of glass geochemical analyses 

combined with stratigraphic position. CLA-L4, correlated to the eruption of Lairg B 

(Torfajökull volcano) is present in the lake, but not in the peatland. CLA-L1 

predominantly contains glass shards of a basaltic geochemical composition, which do 

not match the geochemical composition of glass from any previously identified 

cryptotephra deposits (Table 3). Glass shards from this tephra are of a different 

geochemical composition to glass shards from two basaltic tephras identified in western 

Ireland: the Veiðivötn 1477 tephra found at An Loch Mór (Chambers et al., 2004) and 

the BRACSH-1 (c. AD 1800) tephra identified at Brackloon (Reilly and Mitchell, 

2015). They are also not a geochemical match with glass shards from the ‘Unknown 

Basaltic’ tephra (1060-1094 ± 75 cal yr BP) identified at Lake Tiefer See, Germany 

(Wulf et al., 2016) (Fig. 4j-k). CLA-L1 represents the third Holocene basaltic tephra 

horizon to be identified in Ireland and most closely matches the geochemistry of glass 

derived from the pyroclastic eruptives of the Grímsvötn volcano. Given the highly 

similar geochemistry of glass from cryptotephra layers from the Grímsvötn volcanic 

system, which can make attributing tephra to a specific eruption based on geochemistry 

difficult, 14C dating was conducted on a bulk lake sediment sample from below CLA-

L1. Analysis suggested that CLA-L1 is younger than 2517-2750 cal yr BP. However, 

there are no widespread tephra layers from the Grímsvötn volcanic system between 

6000 cal yr BP and 1800 cal yr BP. Furthermore, tephra from the eruption of Grímsvötn 

in AD 150 (1800 cal yr BP) has been found in only one lake in the north of Iceland, 

suggesting it was not widely distributed toward Europe (Haflidason et al., 2000). The 

14C age obtained also suggests an age reversal as it lies above the CLA-L2 cryptotephra 
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layer which has been geochemically assigned to the MOR-T4 tephra (c. AD 1000, 950 

cal yr BP). MOR-T4 was also identified in Claraghmore bog (CLA-B3) and contains 

glass with a distinct geochemical signature, not easily confused with other European 

cryptotephras. Given the problems with bulk sediment samples in lakes (e.g. carbonate 

contamination - Barnekow et al., 1998), and possible contamination of the lake with 

older carbon eroded from the catchment and washed into the lake, we suggest that the 

14C age below CLA-L1 is unreliable and indicates an age which is too old for the CLA-

L1 cryptotephra. For this reason it is not possible to assign CLA-L1 to a specific 

eruption, but this cryptotephra is most likely the product of an eruption of the 

Grímsvötn volcanic system after AD 1000. CLA-L1 does not match the geochemistry of 

glass from the most explosive eruption of the Grímsvötn volcano during this period (AD 

1783 - Reilly and Mitchell, 2015). The eruptions of AD 1354, 1659 and 1774 are all 

possible sources for this tephra based on geochemistry despite their relatively low 

explosivity (1659 and 1774 VEI 2, 1354 VEI unknown) (Global Volcanism Program, 

2013).  



~ 135 ~ 

 

  

Fig. 5. Geochemical bi-plots of major elements of glass found in both Claraghmore Lake and peatland 

plotted against envelopes for the glass geochemistry of known tephras based on type data from the 

Tephrabase database (type data references in Table 2). All data have been normalised. Inset plots show 

zoomed in view.  
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  SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L1 67.30 1.30 14.25 5.50 0.18 1.21 3.12 4.99 2.81 0.30 100.96 

Claraghmore 
Lake 63.78 0.92 14.96 7.42 0.18 1.24 4.46 4.53 1.87 0.33 99.70 

110-113 cm  50.71 2.34 14.85 11.70 0.19 5.54 10.92 3.02 0.38 0.28 99.92 

Unknown 

eruption of 

Grímsvötn 
volcano 

50.70 2.54 13.76 11.39 0.19 6.73 11.59 2.51 0.45 0.25 100.10 

50.69 2.52 13.12 12.83 0.20 6.18 10.66 2.68 0.41 0.27 99.56 

50.54 2.65 13.69 13.29 0.22 5.86 10.33 2.81 0.40 0.28 100.08 

 50.53 2.53 13.26 13.36 0.19 5.80 10.67 2.66 0.37 0.29 99.67 

 50.48 2.52 13.68 12.26 0.21 6.07 10.85 2.68 0.38 0.26 99.41 

 50.46 2.56 13.72 13.02 0.20 6.06 10.79 2.60 0.36 0.29 100.06 

 50.37 2.49 13.37 12.81 0.19 6.23 10.73 2.73 0.39 0.25 99.56 

 50.34 2.58 13.50 11.59 0.18 6.89 11.75 2.65 0.38 0.29 100.15 

 50.29 2.49 13.63 13.07 0.20 6.18 10.80 2.57 0.35 0.28 99.87 

 50.16 2.63 13.47 13.65 0.24 5.52 10.32 2.72 0.38 0.29 99.37 

 49.89 2.57 13.44 11.70 0.20 6.57 11.76 3.10 0.38 0.27 99.88 

 49.85 2.87 12.92 13.36 0.20 5.52 10.06 2.70 0.48 0.32 98.29 

 49.63 2.52 13.18 12.50 0.19 6.18 10.53 2.57 0.38 0.28 97.96 

 49.21 2.50 13.44 13.25 0.21 6.35 10.66 2.55 0.41 0.26 98.83 

 49.18 2.55 13.26 12.47 0.17 6.45 10.95 2.76 0.46 0.28 98.52 

 49.07 2.53 13.01 12.98 0.21 6.26 10.91 2.90 0.39 0.29 98.55 

            

SB-2 70.59 0.20 15.20 2.98 0.14 0.11 1.04 5.60 4.86 0.02 100.75 

Sammakovuom
a peatland 

67.75 0.38 15.75 4.46 0.16 0.27 1.81 6.16 4.19 0.07 100.98 

67.39 0.40 16.60 4.21 0.19 0.33 1.87 6.43 4.18 0.06 101.65 

67-70 cm 67.16 0.47 16.04 4.55 0.18 0.41 2.22 6.25 3.90 0.09 101.27 

SN-1 66.92 0.41 16.03 4.15 0.19 0.35 1.95 5.98 4.04 0.07 100.10 

 66.69 0.43 16.74 4.34 0.20 0.33 2.12 6.45 4.00 0.07 101.37 

 66.44 0.45 16.46 4.40 0.19 0.34 2.03 6.18 4.08 0.81 100.64 

 66.39 0.40 16.44 4.13 0.18 0.33 1.90 5.99 4.06 0.07 99.90 

 66.34 0.43 16.81 4.29 0.17 0.34 2.12 6.06 3.98 0.07 100.60 

 66.32 0.45 16.66 4.67 0.17 0.34 2.03 6.08 4.06 0.07 100.84 

 66.15 0.64 15.85 5.63 0.21 0.57 2.01 5.79 4.41 0.14 101.40 

 65.65 0.57 17.25 5.17 0.20 0.55 2.52 6.06 3.73 0.12 101.82 

 65.58 0.45 18.12 4.18 0.15 0.36 3.00 6.85 3.19 0.09 101.97 

 65.52 0.42 16.02 4.46 0.16 0.28 1.90 6.06 4.04 0.05 98.92 

 65.15 0.58 16.46 5.28 0.17 0.51 2.64 6.00 3.63 0.14 100.58 

 65.14 0.59 16.68 5.28 0.21 0.58 2.77 6.26 3.63 0.13 101.26 

 65.11 0.57 17.10 5.37 0.17 0.53 2.55 6.30 3.72 0.12 101.58 

 64.82 0.62 16.17 5.72 0.19 0.61 2.55 5.78 3.83 0.13 100.42 

 64.70 0.58 16.57 5.03 0.21 0.61 2.48 6.05 3.73 0.14 100.10 

 64.44 0.58 16.52 5.28 0.22 0.55 2.71 5.80 3.63 0.11 99.86 

 64.44 0.60 16.10 5.46 0.21 0.52 2.56 6.14 3.72 0.15 99.89 

 64.42 0.58 16.44 5.42 0.21 0.55 2.52 6.56 3.92 0.11 100.71 

 64.28 0.60 16.62 5.08 0.21 0.63 2.59 6.16 3.66 0.13 99.97 

 64.22 0.60 16.56 5.27 0.23 0.56 2.50 6.28 3.74 0.11 100.06 

 63.86 0.60 16.64 5.35 0.22 0.61 2.61 5.91 3.79 0.13 99.72 

 63.54 0.56 15.98 5.28 0.21 0.60 2.52 6.11 3.80 0.11 98.72 

            

SL-2 70.21 0.17 14.71 2.85 0.12 0.07 1.19 5.61 4.73 0.01 99.69 

Sammakovuom
a Lake 

66.44 0.40 15.08 4.26 0.17 0.33 1.88 5.57 4.04 0.06 98.22 

66.31 0.47 15.38 4.55 0.19 0.39 2.15 5.45 3.87 0.09 98.86 

39-42 cm 66.12 0.42 15.12 4.53 0.17 0.32 1.99 5.63 4.00 0.06 98.36 

SN-1 65.87 0.56 15.80 5.12 0.21 0.55 2.49 5.45 3.72 0.12 99.90 
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 65.81 0.57 16.15 5.45 0.21 0.56 2.62 5.67 3.52 0.13 100.69 

 65.61 0.58 15.69 5.06 0.19 0.58 2.61 5.47 3.97 0.12 99.88 

 65.54 0.59 15.68 5.54 0.22 0.63 2.48 5.38 3.86 0.14 100.06 

 65.47 0.57 15.90 5.42 0.20 0.62 2.47 5.64 3.72 0.11 100.13 

 65.43 0.59 15.77 5.29 0.23 0.61 2.61 5.40 3.68 0.13 99.73 

 65.25 0.45 15.68 4.61 0.16 0.46 2.80 5.81 3.44 0.11 98.78 

 65.18 0.54 15.92 5.18 0.21 0.53 2.63 5.47 3.80 0.12 99.57 

 65.15 0.60 15.33 5.16 0.21 0.62 2.53 5.46 3.86 0.13 99.05 

 65.10 0.55 15.98 5.35 0.22 0.58 2.62 5.73 3.85 0.12 100.11 

 64.95 0.57 15.84 5.18 0.20 0.57 2.62 5.65 3.78 0.13 99.49 

 64.89 0.57 15.78 5.40 0.22 0.52 2.42 5.51 3.89 0.12 99.32 

 64.24 0.60 15.26 5.22 0.20 0.64 2.58 5.28 3.71 0.14 97.87 

 63.73 0.50 15.30 4.98 0.19 0.60 2.38 5.49 3.55 0.10 96.83 

 61.97 0.56 15.20 5.08 0.21 0.57 2.55 5.61 3.61 0.14 95.50 

 

Table 3. Non-normalised major element geochemical analysis data for glass shards from the CLA-L1 and 

SB-2/SL-2 (=SN-1) cryptotephras identified at Claraghmore Lough (CLA-L1) and Sammakovuoma 

peatland and lake (SB-2/SL-2).  

Site 2: Malham  

There is evidence of four silicic tephra fallout events in the core taken from Malham 

Moss (Figs. 3 and 6). All four tephras, Glen Garry (MM-1), Hekla 4 (MM-2), Lairg B 

(MM-3) and Lairg A (MM-4), have previously been recorded at sites in Great Britain 

and Ireland. We identify the Lairg A and Lairg B tephras for the first time in England. 

Only one cryptotephra layer in Malham Tarn contained sufficient shards for 

geochemical analysis (MT-1) and was identified as the Glen Garry tephra (1966-2210 yr 

BP) (Fig. 7).  
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Fig. 6. Diagram showing the tephrostratigraphy and loss-on-ignition values at Malham a) Tarn, b) Moss. Tephra codes are indicated in black. Where assignments to a known tephra 

isochron have been made based on glass geochemistry and stratigraphy these are indicated in red beside the tephra code. An area of increased organic input has been highlighted at 

the top of lake profile. 
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Fig. 7. Geochemical bi-plots of major elements of glass from Malham Tarn and Malham Moss plotted 

against envelopes for the glass geochemistry of known tephras based on type data from the Tephrabase 

database (type data references in Table 2). All data have been normalised.  

It is likely that the Malham Tarn core does not extend far enough to ascertain whether 

the Hekla 4 (4345-4229 cal yr BP), Lairg B (6724-6627 cal yr BP) and Lairg A (6947-

6852 cal yr BP) cryptotephra layers were also deposited in the lake. Dating of marl 

sediment is extremely difficult and radiocarbon dating of charcoal and macrofossils 

from Malham Tarn has proved problematic in the past (Barber et al., 2013). Pollen 

analysis on a basal sample from our core (depth 315-320 cm) is consistent with an age 

no earlier than the Elm decline 6347-5281 cal yr BP (Parker et al., 2002) and perhaps 

much younger. The absence of the Hekla 4, Lairg A and Lairg B tephras may due to the 

length of the sediment core which was recovered.  

Site 3: Lake Svartkälsjärn and Degerö Stormyr 

The tephra record at Degerö Stormyr comprises six silicic cryptotephra layers including 

tephra from Askja 1875 (SV-B1), Hekla 1104 and Hekla 1158 (SV-B2), Hekla 3 (SV-

B3) and Hekla 4 (SV-B5) (Fig. 8). The SV-B4 cryptotephra layer was deposited 

between SV-B3 (Hekla 3 = 3037-2956 cal yr BP) and SV-B5 (Hekla 4 = 4345-4229 cal 

yr BP). The geochemical analyses of glass from SV-B4 suggest a match with the Hekla-

S/Kebister tephra (3750-3700 cal yr BP) which corresponds to the stratigraphic age 

interval for the SV-B4 cryptotephra and has been recorded widely across Scandinavia 

(Wastegård et al., 2008). SV-B6 is correlated to Lairg A (6947-6852 cal yr BP) based 

on glass geochemistry and its stratigraphic position above peat with a radiocarbon age 

of 7143-6806 cal yr BP.   
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 Fig. 8. Geochemical bi-plots of major elements of glass from Lake Svartkälsjärn (a-d) and Degerö 

Stormyr (e-k) plotted against envelopes for the glass geochemistry of known tephras based on type data 

from the Tephrabase database (type data references in Table 2). All data have been normalised.  
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Fig. 8. Cont.  

The sediment core recovered from Lake Svartkälsjärn contains five cryptotephra layers 

from six distinct Icelandic eruptions (Fig. 9). Three of these tephras can be linked based 

on glass geochemistry and stratigraphy to Hekla 1104/ Hekla 1158 (SV-L1) and Hekla 4 

(SV-L3) (Fig. 8). However, the lake core also contains two cryptotephra layers (SV-L2 

and SV-L4), the glass analyses from which do not match the glass compositions of 

established cryptotephras in northern Europe. Approximate ages for these cryptotephras 

can be ascertained according to their depth and the age-depth model on a core from a 

different study of the same lake. Although correlations to an existing profile must be 

made with caution, the core of Barnekow et al. (2008) was recovered from a similar 

location within the basin and the record between surface sediment and basal clay is 1.92 

m (similar to that of our core = ~1.9 m). Based on the age-depth model of Barnekow et 

al. (2008), the SV-L2 and SV-L4 tephras have approximate ages of 2500-2000 and 

6000-5000 cal yr BP, respectively. SV-L2, which is not present in the Degerö Stormyr 

peat sequence, is most similar in glass geochemistry to glass shards of the QUB 570 

Group 2 (~1300 cal yr BP) tephra, which has been identified at Lofoten, Norway 

(Pilcher et al., 2005). There is also some geochemical similarity with the glass of the 

BMR-190 tephra (~2595 cal yr BP), although this tephra has not been identified outside 
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Ireland. Given the uncertainty associated with the dating of SV-L2, we tentatively 

suggest a correlation with the QUB 570 Group 2 tephra. No geochemical match was 

identified for shards from SV-L4, which contains glass shards with a range of major 

element geochemistry and may represent a mixture of tephras deposited onto snow in 

the lake catchment and then washed into the lake during snowmelt events. Of the ten 

successful geochemical analyses conducted on glass shards from SV-L5, two indicate 

geochemical similarity to the glass composition of shards from Lairg A (6947-6852 cal 

yr BP), which was also identified in the Degerö Stormyr peat sequence. An approximate 

date of 6500-6000 BP for SV-L5 based on interpolation suggests that at least some of 

the shards in SV-L5 are from the Lairg A tephra. The eight remaining geochemical 

analyses do not match the geochemical analyses for any established cryptotephra layers 

of a similar age.  
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Fig. 9. Diagram showing the tephrostratigraphy and loss-on-ignition values at a) Lake Svartkälsjärn, b) Degerö Stormyr. Tephra codes are indicated in black. Where assignments to a 

known tephra isochron have been made based on glass geochemistry and stratigraphy these are indicated in red beside the tephra code. Radiocarbon dates shown are the calibrated 2σ 

range.
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Site 4: Sammakovuoma  

Cryptotephra layers (SL-1, SB-1) containing glass shards with major elemental 

geochemistry identical to glass shards from the eruption of Hekla AD 1104 were 

identified in both Sammakovuoma peatland and lake. A second cryptotephra layer (SL-

2, SB-2) containing glass shards of trachydacite geochemistry, was also present in both 

the peatland and lake at Sammakovuoma (Figs. 10 and 11). Glass geochemistry from 

the SL-2/SB-2 tephra does not match the geochemistry of glass from any published 

northern European cryptotephra layer (Fig. 10). However, the glass composition is 

highly similar to that of the SN-1 tephra from the Icelandic Snæfellsjökull volcano. The 

age of ‘peaty soil’ below the SN-1 tephra layer in Iceland indicates a maximum age for 

the SN-1 tephra of 1860-1520 cal yr BP (Larsen et al., 2002). Interpolation between two 

closely spaced radiocarbon dates in Sammakovuoma peatland suggests SB-2 has an age 

of between 1183-1147 cal yr BP, more recent than the previous age suggested for the 

SN-1 tephra (Table 4). However, given that there are no known explosive eruptions of 

Snæfellsjökull after SN-1, we correlate SL-2/SB-2 to the SN-1 tephra and conclude that 

a previous age of 1860-1520 cal yr BP for the SN-1 tephra should be considered a 

maximum age. The SN-1 tephra has been identified on the island of Svalbard (D'Andrea 

et al., 2012), but our identification in Sweden constitutes the first identification of this 

tephra in continental (northern) Europe. A third cryptotephra layer (SL-3), correlated to 

the Hekla 4 eruption, was also identified in the lake but was absent from the peatland. 
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Sample ID Laboratory ID Site 
Depth 

(cm) 

14C age BP 

± 1σ 

δ 13C 

per mil 
Calibrated range (2σ) 

Material 

SBRC1 D-AMS 012524 Sammakovuoma Peatland 64-68 1083 ± 24 -32.2 AD 895-1016 Sphagnum leaves/stems 

SBRC2 D-AMS 012525 Sammakovuoma Peatland 70-73 1449 ± 29 -27.2 AD 563-651 Sphagnum leaves/stems 

SBRC3 D-AMS 012526 Sammakovuoma Peatland 352-356 6692 ± 31 -37.6 7614-7505 cal yr BP Sphagnum leaves/stems Eriophorum spindles 

CLARC1 D-AMS 012527 Claraghmore Bog 855-860 5587 ± 29 -34.1 6432-6303 cal yr BP Sphagnum leaves/stems, seeds 

SVRC1 D-AMS 012528 Degerö Stormyr 240-243 6077 ± 29 -31.8 7143-6806 cal yr BP Sphagnum leaves/stems, seeds 

CLAL1 D-AMS 013414 Claraghmore Lake 113-116 2551 ± 22 -29.3 2517-2750 cal yr BP Bulk sediment 

Table 4. Radiocarbon dates obtained on samples from sites in this study. The CLA-L1 14C date indicated in italics would imply an age reversal with the (MOR-T4, c.AD 1000) 

cryptotephra from the same core. Given the problems with bulk sediment samples in lakes (carbonate contamination - Barnekow et al., 1998), and possible contamination of the lake 

with older carbon from the neighbouring peatland, we suggest that the 14C date below CLA-L1 is unreliable.
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Fig. 10. Geochemical bi-plots of major elements of glass from cryptotephra layers from Sammakovuoma 

peatland and lake plotted against envelopes for the glass geochemistry of known tephras based on type 

data from the Tephrabase database (type data references are listed in Table 2). All data have been 

normalised. (a-d) cryptotephra layers which were found in the lake and the peatland, inset plots show SL-

1 tephra which is obscured in the larger plot by SB-1. Both tephras are a geochemical match for the Hekla 

1104 tephra, type data for the SN-1 tephra from Larsen et al. (2002) and Holmes et al. (2016) (e-f) 

cryptotephra layer found in Sammakovuoma lake and identified as the Hekla 4 tephra. 
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Fig. 11. Diagram showing the tephrostratigraphy and loss-on-ignition values at Sammakovuoma, a) lake and b) peatland. Tephra codes are indicated in black. Where assignments to 

a known tephra isochron have been made based on glass geochemistry and stratigraphy these are indicated in red beside the tephra code; tephras which could not be assigned to a 

known tephra isochron are marked as ‘unknown’, and each unknown tephra is numbered. Radiocarbon dates shown are calibrated 2σ ranges.
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5.4.2 Peatland vs. lake archives  

Assuming that ash cloud occurrence is homogenous on scales of <10 km and that one 

core is representative of an entire peatland or lake, we would expect to find the same 

cryptotephra layers in peat and lake cores from two sites in close proximity. However, 

despite instances where the same cryptotephra layer was identified in both the peatland 

and lake records, the overall tephrostratigraphic records in peatlands and lakes differ 

considerably. There appears to be no consistent difference in the number of 

cryptotephra layers recorded in lakes and peatlands. In some records localised 

precipitation patterns or human disturbance (e.g. Claraghmore Lake or Malham Tarn) 

might account for differences in the tephrostratigraphic records. However, in other 

instances differences in the number of cryptotephra layers recorded in lakes and 

peatlands may have been caused by processes of reworking and redistribution (e.g. 

catchment erosion or intra-lacustrine reworking).  

5.4.2.1 Cryptotephra layers absent from peatland records  

Loss-on-ignition data can be used to indicate the influence of minerogenic inputs on 

peatlands. Decreases in loss-on-ignition (% loss) values indicate an increase in 

minerogenic content. The loss-on-ignition values for all our peatlands exceed 92 % 

(95 % in 3 out of 4 cases, excluding basal sections where no cryptotephra deposits were 

identified) (Figs. 2, 6, 9 and 11). Our results indicate that the peatlands in this study 

have a high organic content and have received very low mineral input. We therefore 

suggest that all of our peatland sites are ombrotrophic and thus have only received 

tephra from the air (direct fallout) and that there is no evidence for material being 

washed into the peatland.  

In three of our peatland-lake pairs, at least one of the cryptotephra layers identified in 

the lake was not present in the peatland. This might be expected as lakes receive tephra 

in-wash from a wide catchment area, as opposed to ombrotrophic peatlands which 

record only primary tephra-fall (Bramham-Law et al., 2013; Bertrand et al., 2014). The 

core at Sammakovuoma peatland has a basal age predating 7500 cal yr BP and peat 

would have been present at the site during tephra fallout from the Hekla 4 eruption 

(4345-4229 cal yr BP). Cryptotephra shards from the Hekla 4 eruption were identified 
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in Sammakovuoma Lake (SL-3). However, the Hekla 4 tephra was not identified at 

Sammakovuoma peatland. Cryptotephra layers in northern peatlands and lakes can be 

affected by tephra fall onto snow cover and subsequent redistribution (Bergman et al., 

2004; Davies et al., 2007). Sammakovuoma peatland and lake are covered in snow and 

ice for prolonged periods during the winter. It is conceivable that the Hekla 4 tephra 

might have been deposited onto snow and then reworked from the more exposed 

peatland by wind and water. Although tephra shards in the lake catchment would have 

been subject to reworking, they may have been washed into the lake from the wider 

catchment during snowmelt. In high-latitude regions the impact of tephra fallout onto 

snow and subsequent redistribution by wind and/or water might explain the absence of 

some cryptotephra layers from peatlands. However, prolonged snow cover is less likely 

at Claraghmore bog.  

At Claraghmore lake we identified two cryptotephra layers which are absent from the 

peatland (CLA-L1 = ‘Unknown’ and CLA-L4 = Lairg B). In this instance we suggest 

that the peatland has failed to capture sparse cryptotephra layers; glass shards from 

which have been focussed into the lake from the wider catchment, bringing them above 

levels of detection in lake sediments. The impact of catchment in-wash on increasing 

tephra concentrations in lakes is indicated by the total shard counts for some tephras 

found in both lakes and peatlands in this study. Total shard counts must be interpreted 

with caution, given the sensitivity to sample volume. However, in some instances total 

shard counts for the same cryptotephra layer differ greatly in lakes and peatlands. For 

example, the total shard number for the Lairg A tephra in Claraghmore Lake was 723, 

an order of magnitude more than identified in the peatland (79 shards). A similar order 

of magnitude difference was apparent in Hekla 4 shard counts in Degerö Stormyr 

peatland and Lake Svartkälsjärn (n = 35 and n = 303, respectively). Research on visible 

tephra layers at lake and bog sites in the Waikato area of North New Zealand identified 

more visible tephra layers in lakes, perhaps owing to in-wash of tephra from the 

catchment (Lowe, 1988a, b). Invisible cryptotephra layers containing low 

concentrations of shards have been identified in subsequent studies of the same bogs 

(Gehrels et al., 2006).  
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5.4.2.2 Cryptotephra layers absent from lake records  

At Malham Moss, Claraghmore and Degerö Stormyr, we identify more cryptotephra 

layers in the peatland than in the lake. A number of tephras identified toward the top of 

cores at peatland sites were not identified in nearby lake sites - at Claraghmore Lake 

and Lake Svartkälsjärn, for example. Possible reasons for the absence of tephras in the 

top of lake records include: 1) the top of the record was characterised by the soft 

sediment-water interface and was not recovered in its entire volume during sampling; 2) 

site specific factors: at Claraghmore and Malham there is sedimentological evidence 

(LOI) that land management and/or disturbance in the lake catchment (i.e. human 

factors) may have resulted in a large sediment influx, disturbing the lake sediments and 

‘diluting’ the tephra record in the upper part of these cores; and 3) the cryptotephra 

layers may have contained insufficient shards to be detected in the lake sediments. 

Some loss of shards during density separation extraction is inevitable and therefore 

cryptotephra layers which consist of low concentrations of shards may be under-

sampled in lake sediments.  

Although care was taken to capture the sediment-water interface at all sites, incomplete 

recovery of surface sediment cannot be discarded as the reason for missing cryptotephra 

layers at the top of lake cores. An alternative explanation for the missing cryptotephra 

layers in the top of Claraghmore Lake is the impact of humans on the recent sediment 

influx to the lake. LOI data for the lake sediments indicates increased mineral input in 

the top 50 cm of sediment at Claraghmore Lake. Conversely, there is no 

sedimentological evidence for human disturbance at Lake Svartkälsjärn. Instead the 

apparent absence of the Askja 1875 tephra identified in the nearby Degerö peatland 

(SV-B1) from the tephra record at Lake Svartkälsjärn might be explained by poor 

recovery of the water-sediment interface.  

Recent disturbance and problems with sampling soft sediments at the top of lake 

profiles cannot account for the missing tephras in the older lake records. Other tephras 

found in Degerö peatland but not identified in the nearby Lake Svartkälsjärn (SV-B4, 

SV-B3) lie between tephras which are identified in both lake and peatland records, 

suggesting that their absence from the lake record is not an artefact of sampling. 

Similarly, as both the MOR-T4 (CLA-B3/CLA-L2) and Hekla 4 (CLA-B6-B7/CLA-L3) 
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tephras are identified in Claraghmore lake and peatland, we might expect the Microlite 

and GB4-150 tephras (2705-2630 cal yr BP and 2750-2708 cal yr BP, respectively) 

which are present in the peatland between MOR-T4 and Hekla 4 to also to be present in 

the lake. However, there are no glass shards during this interval in the Claraghmore lake 

record. One possible explanation is that these tephras were present in lake sediments as 

very sparse concentrations of shards but were not identified because the shard 

concentrations were below detection levels. The concentration of shards for the 

Microlite tephra in Claraghmore bog is lower than the concentrations of glass shards of 

other tephras also identified in Claraghmore lake (e.g. Hekla 4 and MOR-T4 tephras), 

and therefore the lake sample may have contained insufficient shards for extraction by 

density separation.  

An alternative reason for the apparent lack of some cryptotephras from lake records is 

within-basin focussing and redistribution which might reduce shard counts below levels 

of detection in some areas of the lake. Relatively large with-in basin differences (e.g. 23 

cm – 5cm) in the thickness of visible tephra layers provide evidence of the degree to 

which tephra can be differentially deposited or moved within lake basins (Mangerud et 

al., 1984). In small shallow lakes such as those investigated in this study, small particles 

can be remobilised by wind-induced currents (Mackay et al., 2012). Once tephra has 

been delivered, within-basin focussing and preferential deposition near stream inlets 

might result in the concentration of shards from some cryptotephra layers into certain 

areas of the lake. Conversely, internal redistribution might also result in some tephras 

being reworked to below detection levels in some parts of the basin. Where shards are 

present in low concentrations, within-basin focussing in lakes provides a natural means 

of concentrating a small number of shards. However, this process does not appear to 

concentrate shards to the same location consistently over time resulting in a patchy 

distribution of different tephras deposited at different times in different areas of the lake 

basin. For example, the Lairg A and Hekla 4 tephras have very similar total numbers of 

shards in Claraghmore bog (79 and 73), but show very different total shard 

concentrations in the lake (723 and 26 shards). Although the peatland record is not 

unaffected by redistribution (Watson et al., 2015), such a difference in the 

concentrations of shards for these two cryptotephra layers in the same lake would 

appear to suggest internal reworking or redistribution. This hypothesis would also 
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appear to be supported by the range of ash concentrations identified in late glacial 

micro-tephra layers in Scottish lakes; proximity to catchment inlets was identified as an 

important factor in determining the concentration of tephra glass shards across the lake 

basin and spatial ash concentration maxima for different tephra layers varied over time 

(Pyne-O'Donnell, 2011). The ‘patchy’ nature of the black basaltic component of the 

Vedde ash, which varied from visible, to apparently absent (to the naked eye) in 

different cores from the same Scottish lake also suggests that processes within the 

catchment and lake can greatly impact on tephra shard concentrations within a lake 

basin (Davies et al., 2001). The consequences of within-basin redistribution are two-

fold: firstly the retrieval of one core from the centre of a lake may not result in the 

recovery of the complete record of tephra which has fallen out over that lake site. 

Secondly, the re-distribution of shards by within-basin processes might act to favour the 

detection of ash cloud events depositing only a small number of tephra glass shards by 

concentrating shards toward one area of the lake thus bringing them above detection 

levels of current extraction techniques. Our results support the suggestion of previous 

studies of proximal tephra layers in lakes and catchments (e.g. Boygle, 1999) that a 

combination of records from both lakes and peatlands must be used to establish the 

most comprehensive and complete regional (crypto-) tephrostratigraphies. 

5.4.3 Preservation of mafic tephras  

Prior to this study, tephra from only five basaltic eruptions had been identified in 

terrestrial Holocene records in northern Europe, the majority in lakes in the Faroe 

Islands or Ireland (Wastegård et al., 2001; Chambers et al., 2004). The apparent lack of 

basaltic tephras in peatlands cannot be easily explained by the different extraction 

methodologies used to conduct initial scans for tephra on samples from peatlands and 

lakes. The extraction method commonly applied to lake samples, density separation, can 

result in the loss of basaltic shards which are not always recovered at a standard float 

density of 2.5 g cm-3 (Davies et al., 2001). Conversely, peatland samples are commonly 

extracted by igniting the surrounding peat (Hall and Pilcher, 2002) a process which 

involves limited use of chemical treatment or handling and should result in the loss of 

very few shards of any chemical composition. Three explanations have been proposed 
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for the dominance of felsic tephras in the distal geological record, and in particular the 

apparent scarcity of basaltic tephras in peatlands:  

1) There is experimental evidence that basaltic glass is more prone than silicic glass to 

hydration, alteration and even complete dissolution in acidic environments (Pollard et 

al., 2003; Wolff-Boenisch et al., 2004);  

2) Basaltic glass shards are more dense than silicic shards (2.5-2.9 and 2.3 g cm-3, 

respectively), and therefore glass shards of basaltic composition are likely to fall out of 

the atmosphere earlier than silicic shards of the same size (Stevenson et al., 2015), and 

arrive over northern Europe in lower concentrations in the air.  

3) Eruptions of basaltic magma are typically less explosive and therefore generally 

produce less tephra, which is released at a lower height, than eruptions of more silicic 

magmas. Unlike raised peatlands, lakes concentrate shards from the wider catchment, 

perhaps increasing the probability of cryptotephra layer detection in lake sediments 

when fewer glass shards have been deposited at a distal location during an eruption.  

Claraghmore lake contains the only basaltic cryptotephra layer identified in this study 

(CLA-L1) which has a relatively high concentration of shards (n = 141) when compared 

with those of other cryptotephra layers identified in this lake. No basaltic cryptotephra 

layers were identified in Claraghmore bog. The presence of large concentrations of 

basaltic shards in Claraghmore Lake, while the layer was apparently completely absent 

from the adjacent peatland, suggests that basaltic cryptotephra layers are not recorded 

representatively when compared to silicic cryptotephra layers in peatlands. Our findings 

would appear to support the hypothesis that the low numbers of basaltic tephras in the 

European record may be partly due to the dominance of peatland records, which appear 

to provide unfavourable conditions for the preservation and/or concentration of basaltic 

glass shards. There have been many more cryptotephra studies on peatlands in Ireland 

than have been conducted on lakes. This is not reflected in the number of basaltic 

cryptotephra layers identified in lakes and peatlands in the region (n = 2 and n = 0, 

respectively).  

As no basaltic cryptotephra layers were identified in both peatland and lake sites it was 

not possible to compare geochemical data for tephra of mafic composition recovered 
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from peatlands and lakes. However, Hekla 1104 and SN-1 in Sammakovuoma peatland 

and lake are geochemically indistinguishable (Figs. 10 and 7) suggesting that rhyolitic 

(Hekla 1104) and trachydacitic (SN-1) tephras undergo either the same chemical 

alteration, or a negligible amount of chemical alteration in lake and peatland 

environments with different pH conditions (lake pH = 7.0, peatland pH = 5.9). 

Similarly, there is no discernible difference between the major element glass 

geochemistry of the Glen Garry tephra found in both Malham Tarn and Malham Moss 

(1966-2210 cal yr BP). This suggests that prolonged exposure to acid (Malham Moss) 

or alkaline conditions (Malham Tarn, pH = ~8) has not impacted on the tephra 

geochemistry as determined by EPMA. Samples from both Malham Tarn and 

Sammakovuoma Lake were extracted for geochemical analysis using density separation, 

whereas samples from Malham Moss and Sammakovuoma peatland were extracted 

using acid extraction. In this instance neither the depositional environment nor the 

method of extraction had a significant impact on the major element geochemistry of 

glass shards from the Hekla 1104, SN-1 or Glen Garry cryptotephra layers.  
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Fig. 12. Diagram indicating the age and geochemistry of glass from cryptotephra layers deposited in 

peatland and lake sites in northern Europe over the last 7000 years. Silica values (in wt %) are based on 

the TAS classification system. Age displayed is the mid-age estimate for each tephra. Basaltic tephras 

have been found in both lakes and peatlands. The two new tephras described in this paper are added in 

red. Ages of these new tephras are based on interpolation from radiocarbon dates or age depth models and 

are given in Table 2. The basaltic tephra indicated in green was identified by Reilly and Mitchell, (2015) 

in a woodland hollow but is included here in the ‘peatland’ category. References: Swindles et al. (2011) 

database and references therein and Wulf et al. (2016).    

Given that we only identified one basaltic cryptotephra layer in the lake and peatland 

sites examined in this study and therefore had only a small sample size, we reviewed 

tephra records from published literature over the last 7000 years (Fig. 12). There are 

some examples of basaltic tephras identified in peatlands. The Hov (6190-5720 cal yr 

BP) and Landnám (AD 871± 2) tephras have been identified in peatland records on the 

Faroe Islands (Hannon et al., 2001; Wastegård, 2002). Given the close proximity of the 

Faroe Islands to Iceland, the glass shards at these sites were most likely larger and more 

numerous than those delivered to peatlands further away from Iceland. Although larger 

shards have a smaller surface area to volume ratio and are therefore less prone to 

chemical alteration, we suggest that given the longevity of these shards in peatlands, 

and given that we identify no evidence of dissolution in tephras of rhyolitic and mixed 

composition; preservation alone is unlikely to explain the lack of Holocene basaltic 

tephras in peatlands. Instead, we suggest that, due to differences in eruption style and 

tephra density, basaltic tephra shards fall out more quickly than rhyolitic tephra shards; 
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therefore fewer shards reach sites far from the volcano. Raised peatlands record only 

primary tephra fall material and small concentrations of shards may be below detection 

levels, whereas lakes focus tephra from across the catchment into a small basin and 

concentrate the tephra, raising the numbers of shards above detection levels. As 

previously discussed, this process is complicated because tephras are then subject to 

additional within-basin redistribution, which can act to bring the number of shards 

above/below detection levels in areas of the lake basin. This idea is supported by the 

recent discovery of basaltic tephra from the Laki eruption of 1783 in a small (30 x 15 

m) woodland hollow in Ireland. We suggest that similar processes of runoff and the 

concentration of glass shards might operate in small woodland hollows as operate in 

small lakes.  

5.5 Conclusions  

We present evidence that lakes and peatlands provide contrasting records of volcanic 

ash deposition; the dominance of peatland records of ash fallout in northern Europe may 

bias our current understanding of ash cloud reoccurrence. 

In general, we identify more cryptotephra layers over the same time period in peatlands 

than lakes. However, there is evidence of incomplete tephra records in both peatlands 

and lakes. A combination of records from both lakes and peatlands must be used to 

establish the most comprehensive and complete regional tephrostratigraphies.  

We find no evidence for chemical alteration to any of the glass shards which were 

analysed in this study. We suggest that glass shards do not undergo significant chemical 

alteration in peatland or lake environments (pH range: 4.3 – 8.2) over the time scale of 

this study. Instead, we suggest that the low number of basaltic cryptotephra occurrences 

in peatlands is most likely related to peatlands capturing only primary tephra fall events. 

This is in contrast to lakes which concentrate tephra fallout from a wider area.  

We also find no evidence for the chemical alteration of shards extracted by different 

extraction processes (density separation vs. acid extraction). We clearly illustrate that 

acid digestion is a suitable extraction method for glass shards of rhyolitic and 

trachydacitic composition from ombrotrophic peatlands and does not result in a 

significant degree of chemical alteration.  
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We identify a new basaltic tephra at Claraghmore Lake in Ireland (CLA-L1). The 

geochemistry of glass from this tephra suggests it is derived from an eruption of the 

Grímsvötn volcano, Iceland, post AD 1000. This basaltic tephra is not present in the 

adjacent peatland.  

We identify a new trachydacitic cryptotephra (SN-1) and extend the existing spatial 

coverage of cryptotephras in northern Europe to sites in Arctic Sweden. SN-1 is tightly 

dated to 1183-1147 cal yr BP in one of our peatland sites suggesting an earlier age 

(1860-1520 cal yr BP: Larsen et al., (2002)) on peaty soil underlying SN-1 in Iceland 

should be considered a maximum estimate. The cryptotephra deposits we describe may 

provide important marker horizons for palaeoclimatological research in the vulnerable 

Arctic region.  
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Abstract  

Fine ash produced during explosive volcanic eruptions can remain in the atmosphere for 

long periods of time (hours to months) and undergo transport over long distances. We 

analyse the particle size distributions, geochemistry and shard morphology of distal 

volcanic ash layers distributed across northern Europe. We identify a total of 19 

microscopic (crypto-) tephra layers at sites across northern Europe, many geochemically 

linked to a specific volcanic eruption.  

The longest axis (Max A) of the microscopic glass shards in the cryptotephra layers 

ranges from 10 to 250 µm. Although the 95th percentile values for Max A generally 

indicate a loss of larger shards from the particle size distribution at sites further from the 

volcano, we identify no relationship between median Max A and transport distance. 

Despite their attribution to the same eruption, we find differences in the geochemistry of 

tephra shards in different regions, indicative of their deposition during different eruptive 

phases. In some instances the major controls on tephra fallout such as weather 

conditions, plume height, magma geochemistry and tephra shard morphology vary even 

during a single eruption. The dynamic nature of the controls on tephra transport, even 

during the course of one eruption, result in tephra shard size distributions which do not 

often show a simple relationship between shard size and distance from source.   
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We develop a probabilistic model of particle fallout and compare it with data from the 

geological record. However, our simple model, which does not account for transport in 

the buoyant plume, underestimates the transport distance of the largest shards. We 

conclude that the shard size information provided by glass shards in distal tephra layers 

may hold some promise for understanding the eruption parameters of ancient eruptions. 

However, reworking and redistribution in peatlands and lakes must be considered. The 

particle size dataset presented provides an important resource for testing more complex 

models of ash dispersal over northern Europe.   

6.1 Introduction  

During explosive volcanic eruptions (≥ VEI 3; (Newhall and Self, 1982)) ‘extremely 

fine’ ash (<64 µm) can be transported over long distances (Lane et al., 2013; Rose and 

Durant, 2011). In low concentrations volcanic ash poses a small risk to human health, 

but fine ash can be a hazard for modern aviation (Folch, 2012). Understanding the 

nature of past volcanic ash clouds can help us to understand more about the risk posed 

by future events.  

Volcanic eruptions which produce a significant amount of fine ash over northern Europe 

have occurred with a mean return interval of 56 ± 9 years over the last 1000 years 

(Swindles et al., 2011; Swindles et al., 2013b). However, there is a lack of data on the 

particle size distribution of volcanic ash reaching northern Europe. The geological 

record offers a source of information on distal (> 1000 km) ash fallout. Microscopic 

(crypto-) tephra layers from past ash clouds are stored in over 120 peatlands and lakes 

across northern Europe (Dugmore et al., 1995; Hall and Pilcher, 2002; Wastegård and 

Davies, 2009). As cryptotephra form spatially widespread, isochronous horizons they 

are predominantly used for the correlation of geological records (‘tephrochronology’) 

(Lowe, 2011). Cryptotephra layers in the geological record typically span a few 

centimetres in depth (Davies et al., 2007; Payne and Gehrels, 2010). Tephra shards are 

often counted for the purpose of identifying the depth of the peak shard concentration, 

which represents the isochron widely used in tephrochronology. However, the size and 

shape of shards are rarely reported.  
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Recent work has indicated that the particle size distributions of cryptotephra layers can 

be used to evaluate the satellite infra-red methods often used to monitor volcanic ash 

clouds (Stevenson et al., 2015). Furthermore, the particle size distributions of distal 

tephra occurrences can provide more realistic estimates of total erupted tephra volumes 

(Ponomareva et al., 2015) that are currently biased toward tephra which falls out closer 

to the volcanic source. However, there has been no study into how representative 

particle size distributions from cryptotephra layers in lakes and peatlands are of the ash 

cloud fallout over a region. Peatlands are commonly considered to be archives of 

primary fall out material, whereas tephra in lakes might have fallen elsewhere in the 

catchment and been subject to a greater amount of reworking (Davies et al., 2007). The 

movement of shards across the terrestrial surface following deposition, and vertical 

movement in peat and lake sediments might cause the sorting of tephra shards of 

different sizes, or even lead to the fragmentation of the glass shards before they enter 

the geological record: resulting in a particle size distribution in the geological record, 

which does not reflect the particle size distribution of ash fallout over the site. 

Furthermore, there is no indication as to how many tephra shards must be measured in 

order to ascertain the particle size distribution for a site. Before cryptotephra particle 

size distributions can be applied more widely as records of ash clouds, these 

methodological issues must be understood.  

In this paper we analyse the tephra particle size distribution and shard morphology of 

cryptotephra layers from 14 sites in northern Europe. This study represents the most 

spatially widespread analysis of cryptotephra particle size distributions across northern 

Europe. We examine whether cryptotephra particle size distributions in lakes and 

peatlands are likely to reflect cryptotephra fallout over the region, or whether they are 

confounded by the sorting of tephra shards in the catchment or across the peatland. The 

aim of this paper is to understand the extent to which the particle size distribution and 

shard morphology of cryptotephra layers can be used to provide information about the 

nature (e.g. plume height, magma geochemistry) of the eruptions which produced them. 

We also aim to assess whether simple probabilistic modelling can be used to estimate 

eruption parameters based on cryptotephra particle size distributions in the geological 

record.    
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Figure 1. Map showing the distribution of sites where Holocene cryptotephras have been identified. Grey 

circles indicate lake and peatland sites where cryptotephras have been geochemically analysed. Black 

circles indicate sites where cryptotephras have been geochemically analysed and where shard size 

analyses have been conducted. The grey triangle shows the location of the Hekla volcano, the source of 

the majority of the Holocene tephra layers in Northern Europe. 

We test the following hypotheses: 

1. The median shard size for the same cryptotephra layer will be significantly different 

in lakes and peatlands which have received the same primary air fall tephras.  

2. Tephra shards will be reworked on the peatland surface according to size, therefore, 

shard sizes will vary significantly between cores from the same peatland site.  

3. The analysis of shard size on just the sample of peak shard concentration might not 

capture the median shard size for a given cryptotephra because tephra particle size 

might control the movement of particles vertically through peat and lake sediments 

(Payne and Gehrels, 2010). 

4. The median tephra shard size will decrease with increased distance between the 

fallout site and the volcanic source.  
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6.2 Methods  

6.2.1The geological record  

6.2.1.1 Field sampling  

Sites were selected in order to span a range of distances from Iceland, the main source 

region for tephra layers in northern Europe (Fig. 1). For the purposes of this study the 

distances from Iceland to each site are the great circle distance between the Hekla 

volcano, the dominant source of Holocene cryptotephra layers in northern Europe, and 

the site location (Table 1). To examine possible differences in the particle size 

distribution of the same tephra in peatlands and lakes, we sampled both a lake and a 

peatland in close proximity (<10 km apart) at four sites (Sammakovuoma and Degerö 

Stormyr /Lake Svartkälsjärn in Sweden, Claraghmore in northern Ireland and Malham 

in England) (c.f. Watson et al., 2016). 

Cores were extracted using a Russian-type corer (Jowsey, 1966), following the parallel 

hole method (De Vleeschouwer et al., 2011). With the exception of Fallahogy, where 

multiple cores were retrieved (c.f. Watson et al., 2015), one core was extracted from 

each site. In addition to core samples, surface samples were obtained from the sites 

identified in Fig. 2. Surface vegetation and the upper ~7cm of peat were sampled, an 

upturned 2 ltr plastic box was placed onto the surface and with the help of knife the peat 

was cut around the edges of the box. Samples were subsampled into c. 125 cm3 blocks. 
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Figure 2. Map showing the distribution of locations where Eyjafjallajӧkull 2010 tephra was identified in 

rain gauge (white circles) and air monitoring (black circles) samples (Stevenson et al., 2012). Grey 

pentagons indicate the locations where moss surface samples were taken and examined for tephra, but 

none was found. The grey triangle shows the location of the Eyjafjallajӧkull volcano.
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 Shetland Underhoull, Unst [P] 60.719°N 0.948°W 1075 1 1 1                           1       
 

 Claraghmore bog [P] 54.633°N 7.454°W 1246 1     1     1             1 1           
 

 Claraghmore Lough [L] 54.631°N 7.450°W 1246                 1 1           1         
 

 Fallahogy [P] 54.911°N 6.557°W 1247                     1 1 1               
 

 Malham Tarn Moss [P] 54.097°N 2.173°W 1478 1         1     1 1                     
 

 Malham Tarn [L] 54.096°N 2.165°W 1478           1                             
 

 Cors Fochno [P] 52.504°N 4.012°W 1563             1       1 1             1   
 

 Bodmin [P] 50.589°N 4.625°W 1733       1                               1 
 

 Degerö Stormyr [P] 64.181°N 19.564°E 1878 1 1 1         1                   1     
 

 Lake Svartkälsjärn [L] 64.264°N 19.552°E 1878 1 1 1                                   
 

 Sammakovuoma lake [L] 66.992°N 21.500°E 1891 1 1     1                               
 

 Sammakovuoma bog [P] 66.995°N 21.457°E 1891   1     1                               
 

 Kusowskie Bagno [P] 53.816°N 16.588°E 2326                                        1 

 Linje [P] 53.187°N 18.309°E 2457               1                         
 

  Total sites 6 5 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 
 

Table 1. Table indicating the location of each site and the tephras identified. Lake and peatland pairs in close proximity are highlighted in grey. Sites are ordered by distance from the 

Hekla volcano, the source of the majority of Holocene tephra layers in Northern Europe. Tephras which have not been attributed to an Icelandic source eruption (Glen Garry, QUB 

384 G3-4), or which have been attributed to an alternative source region (e.g. Alaska) (AD 860 B) are shown in bold. Data from Shetland from (Stevenson et al., 2015; Swindles et 

al., 2013a).
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6.2.1.2 Tephra analysis  

Cores were initially examined in 5 cm3 contiguous samples. Where tephra was 

identified the cores were re-sampled at 1 cm intervals to identify the location of the 

peak shard concentration. Samples from ombrotrophic peatlands were prepared using 

the method outlined by Hall and Pilcher (2002); Swindles et al. (2010). Samples 

containing minerogenic material (all lake cores, surface samples and the samples from 

the Swedish peatlands) were extracted using heavy density liquid flotation (cleaning 

float 2.25 g cm-3, retaining float 2.5 g cm-3) (Blockley et al., 2005). During both 

methods, sieving of samples through a 10 µm mesh was necessary to remove detrital 

material. Therefore, excluding the samples from Unst which were sieved at 20 µm, the 

minimum particle size analysed in this study is that retained by a nominal 10 µm mesh. 

Shards were mounted onto slides using Histomount and examined at 200-400 x 

magnification. Shards from one eruption typically have a vertical span of a few 

centimetres in lake and peatland records (Davies et al., 2007). Therefore all samples 

within each vertical tephra spread were examined, not only the peak sample. The low 

shard count totals for each eruption (typically tens to hundreds of shards) in distal 

records provided insufficient quantities of shards for automated analysis of shard 

size/shape by Laser granulometer or Coulter counter (<1 g). Therefore, shards were 

identified and measured using an eye-piece graticule. Shard size was measured in two 

dimensions, i.) the length of the longest axis (Max A) and, ii.) the maximum width at 

90° to the first measurement (Max B). Aspect ratio was calculated as Max A over Max 

B. Bootstrap re-analysis of Max A measurements from different tephra layers identified 

at sites in this study suggests that in general < 100 shards must be measured from 

samples in either lake or peatland sites in order to assess the median shard size (Max A) 

(± 5 µm) for a sample with in a 95% confidence window (Fig. S1). Therefore a 

minimum of 100 shards were measured in each sample. Where samples contained <100 

shards the maximum number of shards possible was counted.  

Tephra shards were extracted for geochemistry using two established methods. In peat 

with little minerogenic material extraction was through acid digestion (Dugmore and 

Newton, 1992). Samples were treated with conc. HNO3 and H2SO4 acids before sieving 

the residue at 10 µm and rinsing thoroughly with distilled water. Samples with larger 
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amounts of minerogenic material were extracted by density separation as above with the 

exclusion of the ashing step.  

Samples were either mounted onto glass slides (Dugmore and Newton, 1992) or 

mounted into blocks (Hall and Hayward, 2014). All samples were polished to a 0.25 µm 

finish. The majority of geochemical data was obtained at the University of Edinburgh 

Tephra Analytical Unit. A beam size of 5 μm was used throughout and beam current 

was varied during each analysis to limit volatile losses (Hayward, 2012). All analyses 

were conducted at 15 kV with beam currents of 2 nÅ (Na, Mg, Al, Si, K, Ca, Fe) or 80 

nÅ (P, Ti, Mn). Secondary glass standards were analysed before and after EPMA runs 

of unknown glass shard analyses. Analyses for Malham Tarn Moss tephra and some of 

the Unst samples were conducted at the University of Leeds on a JEOL8230 electron 

microprobe using a 10 μm beam. Assignments to eruptive event were based on 

stratigraphy and comparison of tephra geochemistry with the European tephra 

geochemistry database ‘Tephrabase’ (Newton et al., 2007) and our own database 

constructed from published literature.   

6.2.2 Modelling cryptotephra fallout  

One of the major challenges in modelling tephra fallout from past volcanic eruptions is 

uncertainty in model input parameters. Basic model input parameters such as plume 

height and wind speed are often poorly constrained, or completely unknown for pre-

written record eruptions. In these instances a stochastic approach, whereby input 

parameters are sampled from probability density functions, allows for an assessment of 

various scenarios (Bonadonna et al., 2005). We developed a simple probabilistic model 

which calculates the terminal velocity and thus the distance travelled and fallout time 

for tephra shards released during a volcanic eruption. The model consists of two main 

parts, a physical sub-model which calculates the distance travelled by each particle 

based on input parameters including plume height, wind speed and particle size; and a 

stochastic sub-model which is used to sample input parameters for the physical model 

from probability density functions to forecast a variety of conceivable outcomes, full 

details of the model are given in supplementary file 1 (Fig. S2).  
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Probability density functions for plume height, sphericity and wind speed were 

constructed based on empirical observations and previous published literature (Alfano 

et al., 2011; Bonadonna and Phillips, 2003) (Table 2). Plume height is sampled from a 

log uniform distribution truncated at 4 km and 35 km. Although there is some evidence 

for the transport of fine tephra shards from plume heights < 4 km (Stevenson et al., 

2013b), shards released at such low altitudes are likely to represent a negligible 

proportion of the shards contained in northern European cryptotephra records. 

Explosive eruptions associated with plume heights exceeding 30 km do not occur 

frequently in Iceland. However, to account for eruptions such as that of Askja in 1875 

(VEI 5 plume height ~35 km) we set 35 km as the maximum plume height. The log 

distribution reflects the bias toward a higher frequency of low magnitude eruptions with 

lower plume heights (Simkin and Siebert, 1994). Wind speed is sampled from a normal 

distribution based on the average wind speed values between 0-48 km height as reported 

by Lacasse (2001) and maximum and minimum wind speed values of 10 – 30 ms-1. 

Examples of values sampled from each of the above PDFs are given in Fig. S3.  

Particle aggregation and precipitation can promote the early fallout of atmospheric 

particles (Durant et al., 2009; Mattsson and Vesanen, 1988). However, we do not 

account for aggregation or the impact of precipitation, as the processes controlling the 

aggregation of particles are not well parameterised (Brown et al., 2012). We also do not 

take into account the particle size distribution at source (Beckett et al., 2015), instead 

the model is run for a given tephra size. The model also does not include transport while 

suspended in the turbulent spreading plume.  
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Model parameter (units) Input value (or range) Reference 

Atmospheric properties  

 

Air viscosity (Pa s) 
Air density (kg m-3) 

 

 

 

1.78 x 10-5  
Varies with height  

 

 

Stevenson et al., (2015) 
Connor et al., (2013) 

Particle properties  

 

Size/diameter (µm) 
Density (kg m-3) 

Shape (sphericity, 

dimensionless) 
 

 
 

Specified by user (0-250 µm) 
Varies with particle size  

Sampled from probability density function. 

Normal distribution: mean = 0.8 Std Dev =0.1 
 

 
 

 
Bonadonna and Phillips, (2003) 

Alfano et al., (2011) 

Release properties 

 
Release height (km) 

 

 

 
Sampled from a probability density function. 

Log-uniform distribution: max = 35 km, min = 

4 km, smaller plume heights more likely.   
 

 

 
Connor et al., (2009) 

Meteorology 

 
Wind speed (m s-1) 

  

 

 
Sampled from a probability density function. 

Truncated Normal distribution mean = 17.4, Std 

Dev = 4, Min = 10, Max = 30 
 

 

 
Lacasse, (2001) 

Gravity (m s-2) 

 
 

9.81  

Table 2. Table outlining the model parameters and input values (or ranges) used in the simple tephra 

fallout model applied in this paper. 
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6.3 Results  

6.3.1 Maximum shard size  

The maximum length of the A and B axes of over 9500 shards from 19 different tephra 

layers was measured (Supplementary file 2). The geochemistry of the tephra layers 

ranged from basaltic to andesitic, dacitic, trachydacitic and rhyolitic (Fig. 3). The 

majority of tephra layers could be geochemically correlated to Icelandic eruptions. 

However, three tephra layers contain glass shards with a major element geochemistry 

which does not match the geochemistry of tephra from known Icelandic eruptions, for 

two of these tephras the source region remains unknown (Glen Garry- Dugmore et al. 

(1995) and QUB 384-G3-G4-Pilcher et al. (2005)). Glass shards from the third, match 

the major element geochemistry of glass shards from the AD 860 B tephra, correlated to 

the White River Ash (WRAe) from the Bona-Churchill massif, Alaska (Jensen et al., 

2014). Only the 15 tephras with a known or suggested source eruption in Iceland are 

included in subsequent analyses.  
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Figure 3. Total Alkali Silica (TAS) Diagram showing the geochemistry of tephras included in this study. 

Annotations follow standard terminology e.g. RHY = Rhyolite, D = Dacite, A = Andesite (Le Maitre et 

al., 1989). The geochemistry of the tephra layers identified ranged from basaltic to andesitic, dacitic, 

Trachydacitic and rhyolitic. O 1362 = Öræfajökull 1362. 

The median values of Max A for tephras varied between 35 and 75 µm (median = 51 

µm) (Fig. 4). The largest tephra shard had a Max A of 250 µm (identified 1878 km from 

Iceland) indicating that large shards can be transported long distances from their source 

volcano. However, large shards were relatively rare. Although 90% of particles were 30 

µm or larger and 40% were over 50 µm, only 3% of shards were over 100 µm, 

suggesting that the majority of shards with a Max A >100 µm fall out before reaching 

our sites (including the Shetland Islands, UK, Ireland and continental Europe). In 

agreement with Stevenson et al. (2015), in both lake and peatland records the majority 

of particle size distributions exhibit a log normal distribution, with a tail of larger 

shards. The only basaltic tephra included in this study (CLA-L1) does not display the 

same log normal shard size (Max A) distribution.  
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Figure 4. Histograms showing the distributions of shard size for tephras at sites in the study. Lake 

samples are dark grey, peatland samples are light grey. CLA-L1 is the only tephra of basaltic composition 

to be included in this study and is highlighted by a dashed box. Abbreviations are as follows, tephras: H = 

Hekla, HS = Hekla Selsund, OY = Öræfajökull, Unk = Unknown, Micro = Microlite/GB4-150, GG = 

Glen Garry, A = Askja, SN-1 = Snæfellsjökull SN-1 tephra, CLA-L1 basaltic tephra from an eruption of 

the Grímsvötn volcano (Watson et al., in review). Site names: Clara-B = Claraghmore peatland, Clara-L 
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= Claraghmore lake, Fal = Fallahogy, Mal-M = Malham Moss, Mal-T = Malham Tarn, Cors-F = Cors 

Fochno, Degerö = Degerö Stormyr, SV-L = Lake Svartkälsjärn, Sam-L = Lake Sammakovuoma, Sam-B 

= Sammakovuoma bog. Only tephras with over 20 shards are plotted. The number of shards counted in 

each sample is shown in italics. 

_____________________________________________________________________________________ 

6.3.2 Aspect ratio  

Aspect ratio is a simple descriptor for predicting the terminal velocity of volcanic ash 

(Riley et al., 2003). The cryptotephras in this study were predominantly non-spherical 

and measured aspect ratio ranged from 1.0 to 10.5 (1.0 being spherical). However, the 

majority of shards had a measured aspect ratio <3 (Fig. 5). Aspect ratio for all Icelandic 

eruptions had a mean of 1.5.  

 

Figure 5. Histogram showing the aspect ratios of the cryptotephras of Icelandic source a selected range of 

aspect ratio. Full range was 1.0 to 10.5 (1.0 being spherical), the majority of shards had an aspect ratio     

< 3. 
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6.3.3 Surface samples  

Figure 2 shows the locations where Grímsvötn 2011 and Eyjafjallajӧkull 2010 tephra 

were identified in rain gauge samples (Gudmundsson et al., 2012; Stevenson et al., 

2013b), alongside the locations of moss surface samples which were obtained and 

examined for the presence of Eyjafjallajӧkull 2010 and/or Grímsvötn 2011 tephra as 

part of this study. No tephra was identified in any of the moss surface samples. This 

suggests that events which are large enough to result in ash fallout into rain gauge 

samples might be missing from the geological record. 

6.4 Discussion 

6.4.1 Records of tephra shard size distributions in lakes and peatlands  

6.4.1.1 Hypothesis 1 

In one instance (Malham) the median shard size (Max A) is identical in the lake and 

peatland (Fig. 6). Where significant differences are identified in Max A between 

peatlands and lakes, median Max A is generally larger in the lake (Fig. 6, Table S1). 

The largest shards were always found in lakes, which generally also contain particle size 

distributions with a higher upper quartile shard size. The trend toward a higher amount 

of larger shards (Max A) in lakes might be due to the in-wash of shards from across the 

catchment, or within basin redistribution of glass shards. As lakes generally capture the 

largest shards to fall out over a region, tephra shard size data from small lakes may be 

more valuable to modellers, than that from peatlands. There was no significant 

difference in the aspect ratio for the tephras in lakes and peatlands, suggesting that 

fragmentation in the catchment has a negligible impact on tephra morphology.  
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Figure 6. Boxplots indicating shard size for the same tephra in peatland and lake sites which are in close 

proximity (<10 km apart). a) Hekla 1104 and 1158 tephra layer in Degerö Stormyr (peatland) and 

Svartkälsjärn lake, b) SN-1 tephra in Sammakovuoma lake and peatland, c) Hekla 1104 tephra layer in 

Sammakovuoma lake and peatland, d) Glen Garry tephra layer in Malham Moss and Malham Tarn. 

Boxplot convention is as follows: boxes indicate the interquartile range; the central line through each box 

indicates the median. The far extents of the upper and lower lines from each quartile indicate the 

maximum and minimum. 
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6.4.1.2 Hypothesis 2  

We examined the median Max A of shards from the Hekla 1510 tephra which were 

identified in 14 cores at Fallahogy peatland (Fig. 7). A minimum of 97 shards were 

examined in each core. There is a significant difference in the median Max A for 

different cores, with a range of values from 40-50 µm (Kruskal Wallis: H = 138.14, p = 

0.0001). Our results suggest that tephra shards are differentially deposited according to 

size, or reworked differentially according to size. The degree of within site variability in 

median Max A must be considered when making comparisons between sites (e.g. intra 

site differences must be smaller than between site differences). There are also 

differences in the 95th percentile values (Max A) which range from 62-100 µm.  

 

Figure 7. Max A measurements for the Hekla 1510 tephra taken from 14 cores from Fallahogy peatland 

(Watson et al., 2015), n as follows: A = 199, B = 101, D = 176, E = 508, F = 163, G = 123, H = 96, I = 

147, J = 145, K = 141, L = 119, M = 114, M = 204, O = 393.  
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6.4.2 Vertical movement of cryptotephra shards   

6.4.2.1 Hypothesis 3 

It has been suggested, that tephra shards might be subject to differential vertical 

movement through peat profiles according to size, with smaller shards penetrating 

further through the peat profile (Payne and Gehrels, 2010). However, we identify no 

significant difference between the median tephra size (Max A) in the sample of peak 

tephra concentration, and the overall median tephra size (Max A) of a tephra layer, in 

either peatlands or lakes, suggesting that substantial vertical sorting of cryptotephra by 

size in lake sediments or peats is not occurring (Table S2). Therefore conducting shard 

size analysis on at least 100 shards in the sample of peak shard concentration should be 

sufficient to identify the median shard size (Max A) for a given location.  

6.4.3 Information from particle size analysis  

6.4.3.1 Hypothesis 4 Maximum shard size  

The intra-site differences in Max A identified at Fallahogy (which ranged from 40-50 

µm) (Hypothesis 2) must be considered when using Max A values from multiple sites to 

examine possible differences in shard size with distance from Iceland. However, the 

range of median Max A shard size across all tephras at all sites in this study was 35-70 

µm, much greater than the intra-site differences identified at Fallahogy. Median shard 

size (Max A) might be expected to decrease with increased distance from Iceland as 

larger, heavier, shards reach terminal velocity sooner and fall out closer to the source. 

However, there was only a weak correlation between median shard size (Max A) and 

the distance from Iceland (Spearman’s rank correlation: r = -0.127, p < 0.0001) (Fig. 8) 

over the range of distances covered by our sites (1075 – 2457 km). A trend toward a 

lower amount of larger shards (lower 95th percentile values) is apparent with increased 

distance from Iceland. However, there are still outliers, such as the Askja 1875 tephra 

which was identified in Poland.   
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 Figure 8. Maximum shard size (Max A) for all tephra layers identified in this study, a) all data, b) median 

values for each distance, c) 95th percentile values for each distance 

Owing to the patchy nature of cryptotephra fallout, even cryptotephras which form the 

most widespread isochrons, for example the Hekla 4 tephra (2395-2279 BC; (Lawson et 

al., 2012)), are not present at every site. Therefore, sample sizes for analysis of shard 

size (Max A) with distance are reduced when focussing on tephra produced during one 

eruption. Two tephras, geochemically and stratigraphically correlated to the Hekla 4 and 

Hekla 1104 eruptions were identified at six sites and five sites, respectively. Despite the 

range of distances where Hekla 4 tephra was identified (~1000 – 1900 km) the median 

shard size (Max A) varied across a relatively small range (35-55 µm) (although still 

larger than the intra-site differences identified at Fallahogy). There is a significant 

positive correlation between shard size and distance from Iceland for the Hekla 4 tephra 

(SRC: r = 0.189, p = <0.0001). This is contrary to the expectation that shard size would 

decrease with increasing distance from the volcano. This correlation is weak and is 
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screwed by the most distal site (Sammakovuoma Lake) which has a relatively large 

median shard size of 50 µm (Fig. 9). The 95th percentile for the Max A size of the Hekla 

4 tephra is considerably higher (99 µm) at the site closest to Iceland (Unst, ~1000 km) 

than at sites in Ireland (57 µm, ~1200 km), England (75 µm, ~1500 km) and Sweden 

(70 µm, ~ 1900 km). Although there still appears to be no simple relationship between 

shard size and distance from source (Fig. 9).  

There is a significant difference between shard size values for the Hekla 1104 tephra 

from a site in Shetland (n = 102) and two sites in Sweden (Sammakovuoma lake and 

peatland combined (n = 422), Lake Svartkälsjärn and Dëgro Stormyr combined (n = 

290)), supporting the hypothesis that shard size decreases with increasing distance 

(Kruskal Wallis: H = 36.7, p = <0.0001, median Max A for Shetland and Swedish sites 

= 50 µm and 40 µm, respectively) (Fig. 10). The 95th percentile of Max A for Hekla 

1104 is considerably larger (110 µm) in Unst, Shetland (~1000 km from Iceland) than at 

sites in Sweden, 1900 km from Iceland (60-70 µm). Differences in the 95th percentile 

shard size with distance for both the Hekla 4 and Hekla 1104 eruptions indicate that 

larger shards are being lost as distance increases. Although this is not significantly 

impacting the median Max A size, it is evident when the very largest shards are 

considered.  
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Figure 9. Maximum shard size (Max A) of the Hekla 4 tephra identified at 5 sites across northern Europe, 

a) all data, b) median values for each distance, c) 95th percentile values for each distance 
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Figure 10. Boxplots (with overlain jitter plot) of Maximum shard size (Max A) of the Hekla 1104 tephra 

identified at sites in Sweden (1878 and 1891 km from the Hekla volcano) and Shetland (1075 km from 

the Hekla volcano). Please note: Unst samples were sieved at 20 µm. Boxplot convention is as follows: 

boxes indicate the interquartile range; the central line through each box indicates the median. The far 

extent of the upper and lower lines from each quartile indicate the maximum and minimum. Hollow 

circles indicate raw data values.  

There are a number of possible reasons for the strength and variety of correlations of 

median Max A observed in changes in shard size with distance, even in tephra from a 

single eruption. Firstly, the major controls on transport distance such as weather 

conditions, the height of the eruption column, mass eruption rate and degree of tephra 

fragmentation vary even during a single eruption (Carey et al., 2010; Gudmundsson et 

al., 2012), and in this instance the only true comparison would be between tephra shards 

released during the same phase of an eruption. The hypothesis that tephra at different 

sites may have been deposited during different phases of an eruption is supported by 

geochemical data. The geochemistry of the Hekla 4 tephra varies at different sites in this 

study, reflecting geochemical variation which has been identified in the proximal 

geological record where products of the Hekla 4 eruption show a range of geochemistry 

as the eruption progresses with SiO2 content decreasing from c. 74 % to 57% (Langdon 
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and Barber, 2004; Larsen and Thorarinsson, 1977) (Fig. S5). Some sites in this study 

(e.g. Sammakovuoma Lake) show two distinct groups of tephra geochemistry and may 

have received fallout on more than one occasion during the Hekla 4 eruption.  

Another possible reason for the lack of strong correlation between shard size and 

distance is that tephra shards may have aggregated and fallen out earlier than would be 

predicted based on their individual size (Durant et al., 2009). Aggregate grains close to 

the volcano can be relatively large and composed of component shards with shard 

lengths in the range of those examined in this study (63-250 µm) (Taddeucci et al., 

2011). However, the examination of aggregate grains which travelled further and fell 

over the UK during the eruption of Eyjafjallajӧkull 2010 shows they are smaller (mean 

size 85 µm) and made up predominantly of tephra shards <5 µm in diameter (Stevenson 

et al., 2012). Such aggregate grains would have most likely broken up (upon burial) in 

the geological record into constituent shards below the minimum sample size examined 

here (10 µm). Therefore premature fallout of tephra shards by aggregation would appear 

unlikely to be the primary reason for our observations.  

Finally, the ‘great circle distance’ used in this study represents a minimum travel 

distance between the source and site where the tephra was deposited. Detailed weather 

data is not available for many Holocene tephras. However, based on observations of 

recent Icelandic eruptions, it is likely that tephra was transported over longer distances 

than the great circle distance between source and fallout site (Cooke et al., 2014; 

Stevenson et al., 2013c; Thorarinsson, 1981).  

6.4.3.2 Aspect ratio  

There is a significant correlation between increasing shard size and increasing aspect 

ratio (Spearman’s rank correlation p = <0.0001, r = 0.293). This is in agreement with 

the principle that non-spherical objects travel further in the atmosphere before 

deposition than spherical objects of the same size (Rose et al., 2003).  

The distal cryptotephra record is dominated by events of a rhyolitic or intermediate 

composition (Lawson et al., 2012). We grouped tephras according to geochemistry into 

3 groups: basaltic (n shards = 126), rhyolitic (n shards = 2336), and intermediate 

(dacitic/andesitic n shards = 1627). The median aspect ratio of basaltic and rhyolitic 
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shards (1.22, 1.25 respectively) was slightly lower than that of intermediate shards 

(1.33). There was a significant difference between the aspect ratios for basaltic and 

intermediate tephra shards (Mann-Whitney test, p = 0.02), but no significant difference 

in aspect ratios of rhyolitic and basaltic shards (Mann-Whitney test, p = 0.42).  

Intermediate shards in our dataset are dominantly from the Hekla 1510, 1845 and 1947 

eruptions, which formed highly vesicular dacitic-andesitic shards (Watson et al., 2015). 

6.4.4 Comparing modelling output with the geological record  

Fig. 11 shows a summary of the model outputs for the set up detailed in Table 2. Data 

on shard size from geological records lies within the fallout transport range of our 

modelled eruption parameters for Iceland. As our model does not account for 

aggregation the fallout of individual small tephra shards could be expected at these sites 

without the need to invoke aggregation. The majority of the median Max A values from 

the geological record lie between the upper and lower quartile of the range of possible 

transport distances based on the range of model parameters outlined in Table 2.  
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Figure 11. Diagram showing model outputs for the set up detailed in Table 2 in comparison to 

cryptotephra in the geological record. Curved lines indicate a summary of model output (Dotted lines = 

minimum and maximum, dashed lines = lower and upper quartiles, solid line = median value). Points 

show cryptotephra layers (median shard length), horizontal bars on all plots indicate the upper quartile 

and lower quartile values for shard size at each site. a) range of possible travel distances plotted against 

those travelled by all cryptotephras identified at ≥2 sites in the geological record at sites in this study 

(excluding Hekla 4) key indicates tephra layer, b) limited range of possible travel distances plotted 

against those travelled by cryptotephra from the Hekla 4 eruption which was identified in the geological 

record at 6 sites in this study, c) limited range of possible travel distances plotted against those travelled 

by all cryptotephras collected from rain gauge samples by (Stevenson et al., 2013a; Stevenson et al., 

2012).  
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According to our model, the most likely range of wind speeds and plume height 

combinations which resulted in the deposition of the tephra shards in the geological 

record is a plume height of c.10 km and a wind speed of c.17 ms-1. However it is also 

possible (although less likely) that tephras in the geological record were deposited 

during an eruption with a plume height as low as 4 km but where wind speeds were high 

(>20 ms-1) (Fig. S6). This combination of input parameters is less likely to occur, as 

faster wind speeds are less common. Sphericity has less of an impact on modelled 

transport distance than plume height and wind speed. However, less spherical particles 

travel further, for example a 30 µm non-spherical particle (sphericity of 0.45) will travel 

35% further than a spherical particle of the same size.  

Tephra fallout from rain gauge samples (Eyjafjallajӧkull 2010 and Grímsvötn 2011) 

display smaller shard sizes than cryptotephras found in geological records (Stevenson et 

al., 2013a; Stevenson et al., 2012) (Fig.11). According to the model output, tephra of 

the shard size identified in rain gauge samples are likely to have come from eruptions 

with lower plume heights and slower wind speeds when compared to tephras we 

identify in the geological record. In accordance with our model output, air mass 

trajectories indicate that although plume heights during Grímsvötn 2011 reached 20 km, 

only tephra from the lowest 4 km of the plume was transported toward the UK 

(Stevenson et al., 2013b). No tephra was identified in the moss surface samples 

obtained during this study, suggesting that ash clouds produced during smaller eruptions 

may be missing from the geological record, suggesting that estimates of volcanic ash 

cloud reoccurrence based on the geological record e.g. Swindles et al. (2011) provide a 

minimum estimate. However, it cannot be completely disregarded that our failure to 

identify tephra shards in moss surface samples was due to sampling bias. The addition 

of more sites would improve spatial coverage and increase the probability of finding 

evidence for the Eyjafjallajӧkull 2010 or Grímsvötn 2011 tephras in the geological 

record. 

Although our model can account for the median shard size in geological records, in 

some instances it cannot account for the transport of the very largest shards over long 

distances. Below, we examine two examples.  
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6.4.5.1 Askja 1875 and the AD 860 B tephra  

Askja 1875 is of special interest as tephra shards identified in the geological record 

from this eruption are anomalously large when compared to tephra shards from other 

eruptions. In Linje mire, northern Poland, 2500 km from the Askja crater, the median 

Max A for this tephra is 75 µm (maximum 190 µm, n = 28). Under the set of eruption 

parameters in Table 2, our model does not predict the transport of tephra shards of 190 

µm beyond ~1074 km. However, the eruption parameters in Table 2 may not be suitable 

for the eruption of Askja 1875 which is estimated to have had a combination of high 

plume heights (26-37 km) and fast wind speeds (up to 43 ms-1) (Carey et al., 2010; 

Carey and Sparks, 1986). Using these input parameters, the maximum predicted travel 

distance for a shard of 190 µm is 1409 km, still much shorter than the 2500 km distance 

recorded in the geological record. In order to simulate the transport of particle of 190 

µm over 2500 km a plume height of >50 km would need to be combined with a wind 

speed of 43 ms-1. These eruption parameters would appear to be highly unlikely and are 

not supported by tephrostratigraphic data in Iceland.  

Increasingly cryptotephras are being linked to volcanoes further afield (Ponomareva et 

al., 2015). An example is the ‘AD 860 B’ tephra correlated to the White River Ash from 

the Bona-Churchill massif, Alaska (61.38ºN, 141.75ºW) (Jensen et al., 2014). The 

median Max A for ‘AD 860 B’ at Claraghmore peatland (6500 km distant) is 45 µm, 

similar to the overall median Max A for all eruptions of an Icelandic source (50 µm), 

despite the difference in transport distance of 5200 km. The Bona-Churchill massif 

eruption had a magnitude of VEI 6 based on an estimated eruptive volume of ~50 km3 

(Lerbekmo, 2008). The maximum distance travelled by a 75 µm shard (maximum shard 

size for AD 860 B, n = 51) based on a plume height of 40 km and a wind speed of 30 

ms-1 in our simple model is 4600 km. It is possible that tephra shards were transported 

in the Polar jet stream (10-15 km height) which can reach speeds in excess of 50 ms-1 

(Ahrens, 2012). However, a particle released from 40 km which travels at a wind speed 

of 30 ms-1 and enters the jet stream from 10-15 km at a wind speed of 50 ms-1 is still 

transported only 5200 km. In these instances our model does not reproduce the evidence 

(maximum Max A) from the geological record. This is most likely because larger shards 

are affected greatly by turbulence and buoyancy in the spreading plume, which are not 

represented in our model. 
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6.5 Conclusions  

We report the geochemistry and examine shard size distributions for distal cryptotephra 

layers at 14 sites across northern Europe, and confirm the lognormal distribution of 

particle size identified in a small number of cryptotephra records by Stevenson et al. 

(2015). Surprisingly, there is only a weak, but significant negative correlation between 

median tephra shard size and distance of the fallout site from Iceland. For the Hekla 4 

tephra shard size appears to increase with distance from Iceland, most likely due to the 

deposition of tephra over different regions during different eruptive phases.  

We examined the replicability of shard size measurements within one core and within 

different cores from the same peatland. Our results indicate that median (Max A) shard 

size can vary within a site. In one instance (Malham) the shard size distributions from 

peatlands and lakes (in close proximity) displayed identical median sizes. However, 

lakes generally contained a higher number of larger shards than peatlands.  

Given the range of distances between Iceland and our fallout sites, the range of median 

shard sizes identified in this study is relatively low (35-75 µm). Furthermore, the shard 

size of tephra layers from eruptions further afield (e.g. Alaska, 45 µm) is not dissimilar 

to those from Icelandic tephras (50 µm), despite a difference of ~5200 km in transport 

distance. When combined with uncertainties about wind speed during ancient eruptions, 

this makes refining possible source regions based on shard size alone challenging.  

A lack of evidence of tephra from the eruptions of Eyjafjallajӧkull 2010 and Grímsvötn 

2011 in moss surface samples supports the argument that the calculation of reoccurrence 

intervals based on geological records provides an underestimate of ash cloud frequency.  

The particle size dataset presented here provides an important resource for testing more 

complex models of ash dispersal over northern Europe.  However, detailed analysis of 

shard size relies on identifying and measuring the same tephra at multiple sites across a 

range of distances. The current 'database' of shard sizes is limited to a small number of 

sites, an even smaller number contain the same tephras and therefore it is difficult to 

form well-founded conclusions on the utility of these records for palaeo-hazard 

research. Routine analysis of shard sizes is required, certainly for the most widespread 

tephras.   
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Abstract 

Glacial unloading can affect volcanic eruption rates on glacial-interglacial timescales1. 

Numerical models suggest that smaller changes in ice volume over shorter timescales 

may also influence rates of mantle melt generation2, but this effect has not been 

empirically demonstrated. Furthermore, the time between climatic forcing and a 

resulting change in the frequency of volcanic eruptions is unknown. We present the first 

empirical evidence that the frequency of volcanic eruptions in Iceland was affected by 

climate, modulated by glacial extent, on ~1000 year timescales during the Holocene.  

We compare the frequency of Icelandic eruptions with the frequency of volcanic ash 

clouds over Northern Europe and identify two periods of reduced volcanic activity (5.5-

4.5 and 2.6-1.6 ka BP). Both periods are preceded by global changes in circulation 

patterns and climate, expressed in the North Atlantic as a deepening of the Icelandic 

Low, favouring glacier advances on Iceland.  We identify a significant cross-correlation 

between ice core proxy data for a deepening of the Icelandic Low and a decreased 

frequency of Icelandic eruptions. There is a lag of 400-1500 years between a shift in 

climate and the resulting change in volcanic frequency. We conclude that the advance of 

glaciers on Iceland has reduced eruption frequency at least twice during the last 7000 

years. Given the time lags involved any increase in eruption rate due to ongoing 

deglaciation since the end of the Little Ice Age may not become apparent for hundreds 

of years. 
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Significance statement 

Human-induced climate change is causing the melting of ice in many volcanic regions. 

On glacial-interglacial timescales changes in surface loading exerted by large variations 

in glacier size affect mantle melt rates and thus the rate of volcanic activity. We provide 

empirical evidence for variations in the rate of Icelandic eruptions caused by much 

smaller ice volume changes, over shorter (Holocene) timescales. Reduced volcanic 

activity is preceded by a deepening of the Icelandic Low (a control on glacier extent). 

For the first time, we are able to estimate a lag time of 400-1500 years between climate 

forcing (deeper Icelandic Low) and a change in eruption frequency. The impact of 

current deglaciation on volcanism may not become apparent for hundreds of years. 

7.1 Main text 

The link between large-scale glacier ice mass decline and an increase in average 

volcanic eruption rates at the end of the last glacial period, ~ 12 ka BP, is well 

established1. However, a number of questions remain regarding the sensitivity and 

response time of volcanoes to smaller changes in ice mass, such as those which occur 

over shorter timescales (e.g. during the Holocene)3. The loading and unloading of 

glaciers changes surface pressure and stress relationships in the crust and upper mantle. 

Numerical models suggest that glacial unloading increases mantle melt generation at 

depth and alters storage capacity in the crust4. Even small changes in surface loading 

can alter the stress field around shallow magma chambers, increasing or decreasing the 

likelihood of eruptions at ice-covered volcanoes5.  

For the first time we examine records of Icelandic eruptions alongside records of distal 

ash cloud events from Northern Europe. Examining past trends in the frequency of 

eruptions using proximal records (e.g. tephra layers and lava flows) is often complicated 

by reworking or burial of evidence by more recent eruptions. However, evidence of past 

volcanic eruptions can also be recorded by small, far-travelled ‘cryptotephra’ shards, 

which eventually fall out from ash clouds, forming invisible layers in peatlands and 

lakes6. Cryptotephra layers provide a record of explosive volcanism unaffected by many 

of the reworking issues that can confound proximal records of volcanic activity.    
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Over the last 7000 years, the frequency of Icelandic eruptions and Northern European 

ash clouds generally display a positive correlation through time (Fig. S1). An apparent 

increase in the frequency of Icelandic eruptions over the last 1000-1500 years is most 

likely an artefact of increased observations, and preferential geological preservation of 

more recent events (Fig.1). Another feature of both proximal and distal records is the 

apparent decrease in the frequency of volcanic eruptions during the mid-Holocene (~5-2 

ka BP). Possible reasons for a low frequency of Icelandic eruptions during the mid-

Holocene at some volcanic systems have been discussed elsewhere7.  

We identify two marked ~1000 year periods of volcanic quiescence apparent in records 

of Icelandic eruptions during the Holocene (Fig. 1). The longest period without any 

evidence of ash clouds is between 5.5-4.5 ka BP. During this time period, there is a 

corresponding decrease in the frequency of Icelandic eruptions, in particular explosive 

eruptions (Volcanic explosivity index (VEI) ≥ 4). The repose interval for eruptions with 

a VEI ≥ 4 during this period (1800 years: 6.1-4.3 ka BP) represents a significant 

departure from the average return interval over the last 7000 years (149 years, 507 years 

if last 1000 years are excluded). Although less pronounced, a second period of 

quiescence is apparent, particularly in records of explosive (≥ VEI 4) Icelandic 

eruptions between 2.6-1.6 ka BP. This second time period corresponds with the second 

longest repose interval for Icelandic eruptions ≥ VEI 4 (2.7-1.1 ka BP, a period of 1520 

years). There is also a reduction in the volume of lava erupted between 5.5-4.5 and 2.6-

1.6 ka BP indicating a change in the rate of effusive volcanism. Identification of 

corresponding periods of quiescence in both Icelandic and Northern European records 

suggests that these periods reflect changes in the frequency of eruptions in Iceland 

rather than periods of poor preservation in the geological record. 
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Figure 1. The cumulative frequency of explosive (a, b) and effusive volcanic activity (c), a) Northern 

European ash clouds, b) Icelandic eruptions with a VEI ≥48, c) lava volume (km3) (lava flows with an 

area ≥1km29), d) Icelandic eruptions8. The Kolmogorov-Smirnov test indicates that all of these series 

deviate significantly from the steady state model over the last 7000 years (p < 0.05). The dense dashed 

line indicates a steady state model; loosely dashed lines indicate 95% confidence interval. Shaded areas 

indicate periods of quiescence (5.5-4.5 ka BP and 2.6-1.6 ka BP). Grey dashed lines indicate improved 

geological preservation and historical records over the last 1000 years.  

Icelandic volcanism is controlled by complex interactions between rifting, mantle plume 

activity and environmental factors such as ice loading. Plate boundary rifting in Iceland 

is not constant and previous work has attributed short-term (centennial) changes in 

eruption frequency to changes in the rate of rifting, although the underlying cause of 

periodic activity over these timescales remains unknown10. Pulses in mantle plume 

activity may be the cause of longer term (multi-millennial) decreases in eruption 

frequency at the Grímsvötn, Bárdarbunga and Kverkfjöll subglacial volcanic centres7. 

Although changes in the magma supply rate due to this effect cannot be completely 

discounted as a reason for the periods of reduced volcanic output we identify, it appears 
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highly unlikely that such pulses would result in simultaneous periods of quiescence of 

~1000 years across multiple volcanic systems in Iceland. A more plausible scenario is 

that an external driver, for example, changing ice load, might have impacted on eruption 

frequency during the two periods of quiescence we identify.  

 

Figure 2. a) Northern European ash clouds, white indicates eruptions where Iceland is the most probable 

source region; dark grey indicates ash clouds directly assigned to an Icelandic source, b) the frequency 



~ 202 ~ 

 

Icelandic eruptions8, c) the frequency of Icelandic eruptions VEI ≥ 3, eruptions of the Hekla volcano from 

the time period >1000 BP are highlighted with numbers corresponding to their VEI d) GISP2 (K+ ppb) 

200 year Gaussian smoothed11, e) GISP2 (Na+ ppb) 200 year Gaussian smoothed 11, f) ) Icelandic lake 

composite record12, g) Folgefonna glacier (Norway) reconstructed equilibrium line altitude (ELA)13, h) 

Glacial advances in Southern Iceland Kvíárjökull (grey)14, Sólheimajökull (outline)15, i) Glacial advances 

in Northern Iceland Tröllaskagi16 (blue), Tröllaskagi (black)17, j) Glacial advances central Iceland18. Light 

blue shading indicates global-scale rapid climate change events19. Dashed orange lines indicate periods of 

quiescence. 

_____________________________________________________________________________________ 

Icelandic glaciers are known to respond actively to climatic fluctuations20,21. During the 

Holocene Thermal Maximum (HTM ~ 8 to 5.5 ka BP12) Iceland was largely ice free. 

Although some ice caps may have persisted, albeit greatly reduced in volume when 

compared to their present state. Multiple paleoclimate records indicate changing 

conditions in Iceland and in the surrounding oceans prior to both periods of volcanic 

quiescence. Records from both the Icelandic shelf (c.7.4-6.2 ka BP22) and North Atlantic 

(post 6 ka BP; c. 3 ka BP23) indicate oceanic cooling. Furthermore, decreased 

productivity in lake records from Iceland suggests a cooling event ~6.4 ka BP, with the 

onset of long-term summer cooling from 5.7-5.5 ka BP12,24. Further cold perturbations 

occurred between 3.1 and 2.8 ka BP12 and in Northern Iceland at ~3.3 ka BP25. The 

concentration of Sodium (Na+) in the Greenland ice core, shows a major deviation in the 

periods 6-5 ka BP and 3.5-2.5 ka BP11 indicating a deeper Icelandic Low. The Icelandic 

Low influences both temperature and precipitation in the North Atlantic, two of the 

dominant controls on the size of glaciers in Iceland20,21. These climatic changes in 

Iceland correspond to the timing of two global-scale rapid climate change events at 6-5 

ka BP and 3.5-2.5 ka BP19.  

Coinciding with climatic changes, there is evidence of glacial advances in the south (7-

4.5 ka BP), centre (4.5-5 ka BP) and north (before 5 ka BP) of Iceland14,15,17,18. Some 

glaciers may have advanced to their maximum Holocene extent (exceeding LIA 

limits)14. Evidence for substantial expansion of the Langjökull ice cap prior to 5.5 ka is 

lacking26. It is likely that smaller glaciers, which respond rapidly to climate forcing 

accounted for the majority of glacial expansion following the HTM18. There is evidence 

for subsequent glacial advances c. 3.5-2.5 ka BP in the north (Vatnsdalur II, 3.2-3.0 ka 

BP); centre (3.5-3.0 ka BP); and south (Hólsárgil >3.1 ka BP) of Iceland14,16-18. There are 
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no estimates for the relative magnitude of glacial advances, but those during the 

Drangagil/Vatnsdalur I period (6-4.5 ka BP) and Vatnsdalur II/ Hólsárgil period (3.5-

2.8 ka BP) are spatially widespread14. 

Although there is evidence for the advance of glaciers in the periods preceding 

reductions in eruption frequency, there are no quantitative reconstructions of glacier 

volume that we can compare to volcanic frequency data. Therefore, we conducted cross 

correlation analysis on the GISP2 Na+ record (depth of Icelandic Low) and both the 

European ash cloud record and Icelandic eruption frequency over the last 7000 years. In 

both instances an increase in Na+ was followed by a significant (p < 0.05) decrease in 

volcanic eruptions (Icelandic eruptions strongest correlation -0.33 at a lag of 600 years; 

European ash clouds strongest correlation -0.35 at a lag of 700 years) (Fig. S2). Given 

the range of response times exhibited by Icelandic glaciers to changing climate (10-

1000 years27), and uncertainties involved in the time taken for new melt produced in the 

mantle to reach the surface1, a lag time of ~600-700 years between climate forcing and a 

reduction in the frequency of volcanic activity would support the argument for the 

modulation of climatic forcing by glacial expansion. The range of lag times most likely 

reflects differences in the magnitude and duration of climatic forcing (deviations the 

Icelandic Low) and the modulation of climate signal due to the differing response times 

of mountain glaciers and large ice caps (Fig. 3). 
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Figure 3. Conceptual diagram showing the impact of climatic forcing on the frequency of volcanic eruptions during interglacial periods and how this is modulated by changes in ice 

volume. Columns indicate how differences in the magnitude and duration of forcing impact on the lag time between the onset of climatic forcing and a change in the frequency of 

volcanic eruptions. 
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Schmidt, et al. 2 modelled a significant increase in mantle melt production (100-135 %) 

due to deglaciation between AD1890 and 2010. It is likely that the rate of ice 

accumulation between the HTM and 5 ka BP was of a similar magnitude to the current 

rate of ice loss since the LIA. If this was the case, the same model would predict 

extremely reduced, or even a complete shutdown of melting between the HTM and 5 ka 

BP, assuming that the spatial distribution of changes in ice mass between the HTM and 

5 ka BP was not significantly different to that between AD1890 and 2010. The 

reduction in volcanic frequency between 5.5-4.5 ka BP was greater in the geological 

record when compared to the period 2.6-1.6 ka BP. This is attributed to the larger 

magnitude of changes in ice volume between 6-5 ka BP when compared to 3.5-2.5 ka 

BP. The resumption of volcanic activity was most likely driven by a change in climate 

and subsequent glacier retreat. There is evidence for a weakening of the Icelandic Low 

and a reduction in ice rafting events in the North Atlantic preceding the resumption of 

greater volcanic activity following both periods of quiescence28.  

The most recent glacial advances in Iceland occurred during the LIA ~AD 1600 to AD 

1880. Although some glaciers reach their maximum Holocene extent during the LIA21, 

the magnitude of changes in the Icelandic Low is smaller than at 6-5 ka BP. Climate 

warming driven by human activity may also have curtailed ice expansion in the 20th 

century. Given the lag time between climate forcing and changes in eruption frequency 

(600-700 years) and the short duration of the LIA glacier expansions, any reduction in 

melt generation may not become apparent for hundreds of years.    

We conclude that climate forcing, modulated by the advance of glaciers on Iceland, 

reduced the frequency of volcanic eruptions at least twice over the last 7000 years. Our 

results support modelling efforts that suggest that moderate to small changes in ice 

volume, such as those that have occurred, and continue to occur during the Holocene, 

can affect the frequency of volcanic eruptions. Given the lag times we identify between 

climate forcing and changes in eruption frequency, the impact of anthropogenically-

induced deglaciation on volcanic eruption frequency may not be felt for hundreds of 

years.    
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7.2 Methods  

The Northern European ash cloud record originally compiled by Swindles, et al. 6 was 

updated as of autumn 2015. Data are based on historical records of observed ash clouds 

(which span only the last ~1000 years) and cryptotephra layers from sites in northern 

Europe, which have been geochemically analysed. Not all tephra layers recorded in 

Northern Europe are from an Icelandic source. Tephra layers with a known source 

eruption outside of Iceland such as those from: Alaska (AD 860 B c.f.29), potentially the 

Azores, and Jan Mayen were removed from the database (DCSH-2, MOR-T7, MOR-

T8, MOR-T9, PMG-5, MOR-T230,31). The glass major element geochemistry of shards 

from cryptotephra layers which have not been linked to a known source eruption was 

plotted against the glass major element geochemistry of shards from other distal tephra 

layers known to have originated from Icelandic volcanoes. All tephra layers with a 

major element geochemistry matching the geochemical envelope for tephra produced 

during eruptions of Icelandic volcanoes were retained. Data for Icelandic eruptions was 

taken from the Smithsonian Volcanoes of the World Database8. The database contains 

evidence of volcanic eruptions from both the proximal geological record and historical 

observations. In all instances the age of cryptotephra layers or Icelandic eruptions was 

the midpoint age. Unless otherwise stated all ages are reported as cal years BP 2000. 

The Kolmogorov-Smirnov test was used to determine whether the rate of eruptions or 

lava flows has been steady over the last 7000 years. A two sample test was conducted to 

compare a cumulative steady state model to the cumulative observed values. 95% 

confidence bounds were calculated for each series as follows: 
1.36

√𝑁𝑆,𝑇
  where S and T were 

the first and last event in the sequence32. Cross correlation analysis was conducted on Na+ 

data from the GISP2 ice core, a proxy for the depth of the Icelandic Low11. Both 

eruption frequency data and ash cloud data were split into 100 year bins. Na+ data was 

averaged into 100 year bins. Cross correlation was conducted using the ‘astsa’ package 

in R version 3.1.1.     
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Abstract  

Fine ash produced during explosive volcanic eruptions can be dispersed far from the 

volcanic source, where it poses a threat to aviation, human health and infrastructure. 

Here, we focus on northern Europe, which lies in the predominant transport direction 

for volcanic ash from Iceland, one of the most active volcanic regions in the world. We 

interrogate existing and newly produced geological and written records of past ash 

fallout over northern Europe in the last 1000 years and estimate the mean return 

(repose) interval of a volcanic ash cloud over the region to be 44 ± 7 years. Our results 

suggest that ash clouds are more common over northern Europe than previously 

proposed (56 ± 9 years; Swindles et al., 2011). We compare northern European tephra 

records with records of proximal Icelandic volcanism and suggest that an Icelandic 

eruption with a Volcanic explosivity index rating (VEI; Newhall and Self, 1982) ≥ 4 

and a silicic magma composition presents the greatest risk of producing volcanic ash 

that can reach northern Europe. None of the ash clouds in the European record which 

have a known source eruption are linked to a source eruption with VEI < 4. Our 

estimate for the reoccurrence of volcanic ash cloud events from distal tephra records is 



~ 212 ~ 

 

 

 

concurrent with our understanding of the type of eruptions which have deposited ash 

over northern Europe in the past as it lies between the of return interval for all VEI ≥ 4 

eruptions (25 years) (maximum estimate) and all VEI ≥ 4 eruptions of silicic 

geochemistry (90 years) (minimum estimate).  

8.1 Introduction  

Explosive volcanic eruptions can release large volumes of fine ash into the atmosphere. 

Fine ash particles may be transported long distances (1000s of kilometres) downwind of 

the volcano. Volcanic ash is a hazard for human health and even in moderate 

concentrations can cause engine failure in modern jet aircraft (Casadevall, 1994). The 

impact of volcanic ash clouds on aviation can be geographically extensive and air traffic 

can be affected even far from the volcano. For example, the eruption of the Cordón 

Caulle volcano in Chile (2011) led to the disruption of air traffic in Australia (Pistolesi 

et al., 2015). Reliable estimates of the frequency of such events would help society, 

governments and business to mitigate for the social and economic losses incurred 

during future ash clouds. One approach to understanding the frequency of future 

volcanic ash fallout in Europe is to examine the frequency of ash clouds in the past and 

use this information to forecast future hazard (Connor et al., 2015).  

Iceland is one of the most volcanically active regions of the planet, and lies in the North 

Atlantic close to the path of trans-Atlantic air traffic (Thordarson and Hoskuldsson, 

2008). The principal transport direction for volcanic ash from Iceland is easterly to 

south-easterly toward northern Europe, directly towards some of the busiest airports in 

the world (Wastegård and Davies, 2009). Over the last few centuries a number of ash 

clouds have been witnessed over northern Europe, such as those during the eruptions of 

Askja in 1875 and Hekla in 1947 (Mohn, 1878; Thorarinsson, 1954). The eruption of 

the Icelandic volcano Eyjafjallajӧkull in 2010 caused widespread disruption to travel 

and major financial losses. The eruption, which lasted 39 days led to the diversion and 

grounding of aircraft across northern Europe (Gudmundsson et al., 2012). In May 2011, 

another Icelandic volcano Grímsvötn, erupted and produced an ash cloud which led to 

minor travel disruption in Scotland (Stevenson et al., 2013a). Successful efforts have 
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been made to monitor ash fallout from these two most recent ash clouds using rain 

gauge samples and PM10 measurements (from air quality sampling equipment) 

(Stevenson et al., 2012; Stevenson et al., 2013b).   

However, observed events and historical records only extend over a short period of time 

(none before 1600) (Swindles et al., 2013). The only evidence of pre-historic ash clouds 

are traces of ash (‘tephra’) which are eventually deposited and incorporated into ice 

sheets, peatlands, marine and lake sediments (Lowe, 2011; Watson et al., 2016). In 

locations far from the volcano, tephra shards form horizons so sparse in concentration 

they are not visible to the human eye (‘cryptotephra’). The examination of peatlands and 

lake sediments spanning the last 7000 years across northern Europe has led to the 

identification of multiple cryptotephra layers, each representing ash fall from a different 

eruption (Lawson et al., 2012). The first estimate for the average return interval of 

volcanic ash fallout over northern Europe was made by Swindles et al. (2011). They 

combined data on the ages of cryptotephra layers with the ages of observed ash clouds 

recorded in historical documents and calculated an average return interval for volcanic 

ash clouds over northern Europe of 56 ± 9 years, which equates to a 16% chance of an 

ash cloud over northern Europe in any 10 year period.  

A forecast of reoccurrence based on geological records, such as cryptotephra layers, will 

always represent a minimum estimate because there is the possibility that some events 

have not been preserved (or yet identified) in the geological record. Satellite images of 

the ash clouds produced during recent Icelandic eruptions indicate that volcanic ash 

distribution in the atmosphere is patchy, and transport trajectories are dependent on 

wind direction (Folch et al., 2012). Cryptotephra deposits are equally patchy, with 

different cryptotephra layers displaying different spatial distributions throughout 

northern Europe (Lawson et al., 2012). The cryptotephra data utilised by Swindles et al. 

(2011) was not collected for the purpose of calculating the frequency of past ash clouds 

and contained temporal, and spatial gaps. Spatial gaps in European cryptotephra 

distribution may represent the true margins of the distribution of Icelandic tephra, or 

they may be an artefact of sampling density. Should they be the latter, these ‘gap’ 

regions offer the most promise for identifying new, previously undiscovered tephra 
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layers. As more research is conducted to address spatial and temporal gaps in 

cryptotephra records, there is a probability that evidence for more volcanic eruptions 

will be identified, directly affecting the model of Icelandic ash cloud frequency over 

northern Europe.  

The majority of cryptotephra layers in northern Europe are of Icelandic origin. 

However, there has been no detailed comparison of Icelandic eruption records and 

cryptotephra records of ash clouds in northern Europe. Understanding the characteristics 

of the Icelandic eruptions which have resulted in ash fall events over northern Europe 

during the last 7000 years may allow for the estimation of a range of estimates 

(minimum and maximum) for the frequency of ash clouds reaching northern Europe.  

In this paper we:  

 Report new data on tephra layers extending the coverage of cryptotephra layers 

across northern Europe and utilising these new data to present a new reoccurrence 

model for volcanic ash clouds over northern Europe. 

 Compare data from the European geological record and historical observations with 

data on Icelandic volcanism in order to refine our understanding of the type of 

Icelandic eruption which poses the greatest risk of producing an ash cloud reaching 

northern Europe.   

 Model the frequency of Icelandic eruptions with various geochemical compositions 

and explosivity. Using these models, and information on which Icelandic eruptions 

are most likely to produce ash clouds over northern Europe, we suggest a range of 

estimates for the return interval of volcanic ash clouds over northern Europe.  
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8.2 Methods  

8.2.1 Addressing spatial gaps in existing cryptotephra records  

We focussed our research on the spatial gaps in northern European tephra records which 

offered the most promise for identifying previously undiscovered cryptotephras: 

northern Sweden, Poland, Wales and southern England. These regions are far from 

existing cryptotephra finds, and contain peatlands and/or lakes with the potential to 

record cryptotephra fallout over the last 7000 years. We curtail our analysis at 7000 

years as there is evidence for an increase in the frequency of Icelandic volcanism 

following glacial unloading at the end of the last glacial (Jull and McKenzie, 1996). 

Therefore, records of ash cloud frequency from before 7000 yr BP may not reflect the 

frequency of ash clouds under current and future conditions.   

Details of sampling strategy and tephra identification for sites in northern Sweden have 

been published in detail elsewhere (Watson et al., 2016). Peatland sites in Poland, 

Wales and Southern England were sampled using a Russian-type peat corer (De 

Vleeschouwer et al., 2011). Samples were combusted to remove organic material and 

the residue rinsed in 10% HCl before mounting onto slides (Hall and Pilcher, 2002). 

Tephra shards were identified under a high power microscope. Samples which 

contained tephra were re-extracted for geochemical analysis following either the acid 

digestion method of Dugmore and Newton (1992) (excluding NaOH treatment) or, 

where large quantities of biogenic silica or minerals were present, following the density 

separation technique of Blockley et al. (2005). Tephra shards were mounted onto glass 

slides (Dugmore et al., 1992) or into blocks (Hall and Hayward, 2014). All samples 

were polished to a 0.25 µm finish. Major element geochemistry was analysed using an 

electron probe micro analyser (EPMA) at the University of Edinburgh (Hayward, 2012). 

Analyses were conducted at 15 kV. Secondary glass standards (Lipari obsidian and 

BCR-2G: Jochum et al. (2005)) were analysed before and after EPMA runs of unknown 

glass shard analyses. Assignments to specific eruptions were based on stratigraphy and 
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comparison of tephra geochemistry with the Tephrabase database (Newton et al., 2007) 

and published literature.  

8.2.2 Calculating reoccurrence rates  

The new northern European cryptotephra database includes new tephra layers from 

geological records and observations. Data on Icelandic eruptions, VEI and geochemistry 

were drawn from the Smithsonian Holocene Volcano Database (Global Volcanism 

Program, 2013). Eruptions were grouped according to geochemistry into mafic and 

silicic eruptions (silicic > 63% SiO2). Return intervals were calculated using the 

methods described by Connor et al. (2006). The empirical survivor function (in 

uncensored data as here = Kaplan-Meier estimate (Dzierma and Wehrmann, 2012)) was 

calculated using the repose intervals (taken as the time between the onset of two 

successive eruptions). In cases where the start time for an eruption had not been 

historically recorded, start time was assumed to be the mid-age. In this instance the 

survivor function S(t) gives the probability that T (repose interval) exceeds a given time 

interval (t) (Cox and Oakes, 1984):  

𝑆𝑇(𝑡) = 𝑃[𝑇 > 𝑡] 

The Kaplan-Meier survival function for each repose interval was calculated as below 

(where ti is a given repose interval from 1…N and N is the total number of events): 

𝑆(𝑡𝑖) =  
𝑁−𝑖 

𝑁
    𝑖 = 1, … . , 𝑁. 

In order to forecast survival with precision, a parametric model of survival function was 

fit to the empirical survival time data. We applied the Kolmogorov-Smirnov (KS) 

goodness-of-fit test to aid in the selection of the parametric model of best fit. Examples 

of commonly used parametric models of survival function for natural hazard modelling 

include the Exponential (Swindles et al., 2011); Weibull (Dzierma and Wehrmann, 

2012) and Log Logistic distributions (Connor et al., 2006). We fitted each of the above 

parametric models to our dataset using maximum likelihood (using package Flexsurv in 
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R version 3.1.0). For each dataset, the model which offered the best fit to the Kaplan-

Meier estimate was used to forecast the return interval of events.  

To examine the reoccurrence rate of both Icelandic eruptions and ash clouds over the 

last 7000 years, during which time the frequency of volcanic eruptions has not been 

stationary we apply the Volcanic Event Reoccurence Rate Model (VERRM) (Wilson, 

2016). Unlike the methods outlined above (e.g. Poisson distributions), VERRM can 

estimate the uncertainty in the reoccurrence rate over time.  

8.3 Results  

8.3.1 The new distal tephra record  

We identified evidence for volcanic ash fallout, in the form of at least one cryptotephra 

layer, at every new site studied, suggesting that spatial gaps in cryptotephra records are 

an artefact of research intensity and do not represent the margins of volcanic ash 

distribution in northern Europe (Figure 1). Additional cryptotephra layers and observed 

eruptions added to the database from this study and other research are listed in 

Supplementary file 1, and geochemical plots indicating assignments are provided in 

Supplementary file 2.  
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Figure 1. A) map indicating the location of sites in northern Europe where cryptotephra layers have been 

identified, grey circles indicate sites included in the original database compiled by Swindles et al. (2011), 

black circles indicate new sites added to the database, from this and other studies, see Supplementary 

Table 1 for references. Aeroplane symbols indicate the locations of airports which are included in a list of 

the thirty busiest European airports (2006), data from the Eurostat geographic databases GISCO 

(Eurostat, 2006). B) Map of Iceland indicating Holocene volcanoes and the location of large ice sheets 

(blue shading). Data on Holocene volcanoes from the Smithsonian Database (Global Volcanism Program, 

2013). Volcanoes are indicated as follows: white triangle = caldera, white circle = fissure vent, white 

circle with point = pyroclastic cone, black circle = shield volcano, black triangle = stratovolcano, grey 

triangle = sub-glacial, grey circle = crater. 

Cryptotephra layers identified at sites in northern Sweden, Poland, southern England 

and Wales have extended the known spatial distribution patterns of widely dispersed 

cryptotephra layers such as Hekla 4 and Hekla 1104 and less well established isochrons 

such as Hekla 1158 (previously identified at only one distal site (Pilcher et al., 2005)). 

Updated spatial maps of cryptotephra distributions in northern Europe are provided in 

Supplementary file 3.  

Six new cryptotephras, previously not identified in northern Europe, have been added to 

the database. Two new basaltic cryptotephra layers have been identified in Ireland 

(Reilly and Mitchell, 2015; Watson, 2016 in Press) and one in Germany (Wulf et al., 

2016). Glass tephra shards from all of these basaltic tephra layers show geochemical 
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similarity to glass from eruptions of the Grímsvötn volcano which is a subglacial 

volcano and is prone to phreatomagmatic eruptions, such as those during its most recent 

eruption in 2011. Historically (AD 1200-2004) Grímsvötn has been the most active 

volcano on Iceland (Thordarson and Hoskuldsson, 2008). The recent identification of 

more basaltic cryptotephra layers may reflect an increased focus on the analysis of 

sparse tephra layers (Lake Tiefer See, Unknown Grímsvötn tephra, contained just two 

shards (Wulf et al., 2016)), which has, in part been facilitated by new techniques for the 

mounting and EPMA analysis of fewer and smaller shards (Hall and Hayward, 2014; 

Hayward, 2012).  

8.3.2 Repose time distribution fits  

On the basis of KS tests, log likelihood and Akaike Information Criterion (Akaike, 

1998) we conclude that the majority of proximal Icelandic and distal European eruption 

frequency data over the last 1000 years are best described by Exponential and Weibull 

distributions (Table 1, Figure 2, Supplementary file 4). The Exponential model 

describes a simple stochastic point process (Poisson process), suggesting that the rate of 

eruptions is constant over time. The Weibull model also describes a model of simple 

failure, but allows for an increase or decrease in hazard over time. In datasets for which 

the Weibull model was the best fit, the data indicated an increasing hazard rate, perhaps 

indicating increased volcanic activity in recent times. Future eruption probabilities were 

calculated using the model of best fit for each dataset (Table 1).      

Dataset Model  
Average 

Repose 

% chance of 

event in any 

10 year 

period 

n of 

repose 

intervals 

Range of 

repose 

intervals 

(years) 

All Icelandic eruptions  Exponential  4.53 89 213 0-46 

European ash clouds Exponential  43.96 20 23 0-111 

All Icelandic Eruptions VEI ≥4 Weibull  25.91 21 35 0-63 

Silicic Icelandic Eruptions VEI ≥4  Weibull  90.63 <1 10 54-148 

Silicic Icelandic Eruptions VEI ≥3  Weibull  50.33 8 18 9-121 

Table 1. Table indicating the model used to predict reoccurrence, average repose interval and % chance of 

an event in any 10 year period. 
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Figure 2. Kaplan-Meier estimate of the survivor function (last 1000 years) with fits for the Exponential 

(red), Log logistic (blue) and Weibull (orange) distribution functions. Broken lines indicate 95% 

confidence interval on the Kaplan-Meier estimate. 
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8.4 Discussion  

The recurrence rate of both Icelandic volcanism and European ash clouds has varied 

over the last 7000 years (Figure 3). Variation in the frequency of Icelandic volcanism 

over time can be explained by periodic changes in rifting activity in Iceland and the 

influence of surface loading (glacier extent) on rates of volcanism (Larsen et al., 1998; 

Schmidt et al., 2013). The recurrence rate of European ash clouds and all Icelandic 

eruptions shows a general increase in the last 1500 years. This is due to the preferential 

preservation of more recent deposits over older deposits in the geological record, and 

the increased recording of observed historical events. 

The recurrence rate of northern European ash clouds is lower than that of Icelandic 

eruptions as recorded by tephra layers and historical records. A peak in European ash 

records is evident ~1000 BP, corresponding to a small increase in Icelandic eruption 

frequency around this time. However, the median recurrence rate for ash fallout does 

not exceed 0.11 eruptions year-1 (1150 BP), much lower than the recurrence rate for 

Icelandic eruptions (proximal record) which peaks at 2.2 (659 BP). Not every Icelandic 

eruption will result in an ash cloud over northern Europe. This is partly a reflection of 

the nature of Icelandic volcanism which is dominated by mafic magma compositions 

(91% of post-glacial eruptions) associated primarily with effusive eruptions which 

produce little or no fine ash, although phreatomagmatic mafic eruptions can produce 

large quantities of fine ash (Thordarson and Hoskuldsson, 2008). In addition to being 

sensitive to changes in the rate of Icelandic volcanism, the frequency of distal ash 

clouds reaching northern Europe is affected by wind direction, wind speed and rainfall, 

all of which affect the probability and trajectory of long range ash transport (Davies et 

al., 2010). 
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Figure 3. The Recurrence Rate of European ash clouds and all Icelandic eruptions for the last 7000 years. 

Black line indicates the median recurrence rate calculated using a moving average recurrence rate 

window size 4 (n = 2). Grey shading indicates 90% confidence interval. Output from the Volcanic Event 

Recurrence Rate Model (VERRM) (Wilson, 2016 personal comm.). 

Figure 4 indicates the volcanic source for ash as recorded in northern Europe over the 

last 7000 years. A total of 84 ash clouds have been either observed over northern 

Europe or identified as cryptotephra layers in the last 7000 years. The majority of the 

ash clouds for which a source volcano or region has been identified (n = 46) have an 

origin in the Eastern Volcanic Zone of Iceland (n = 35), which is also the source region 

for the majority of proximal Icelandic tephra deposits (Larsen et al., 1999). The Hekla 

volcano has been the most prolific volcano for the production of ash fallout over 

northern Europe during the Holocene (cryptotephra layers and observations, n = 9 and n 

= 6 respectively). Over half of the cryptotephra layers identified in northern Europe 

have not been assigned to a source volcano (n = 38), but contain glass shards with a 

major element geochemistry consistent with an Icelandic origin. A minority of 

cryptotephra layers (n = 6) contain glass shards which do not have a geochemical 

composition affinity toward glasses produced by Icelandic volcanoes and have been 

linked to eruptions of volcanoes further from northern Europe, in: Jan Mayen (71.0°N, 

8.5°W, n = 4) (Chambers et al., 2004), Alaska (61.4°N, 141.7°W, n = 1) (Jensen et al., 

2014) and perhaps even the Azores (39.0°N, 28.0°W, n = 1) (Reilly and Mitchell, 

2015). Although cryptotephra layers demonstrate that ash from distant eruptive centres 
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such as Alaska can reach northern Europe, based on past records, the greatest future risk 

of ash clouds is posed by eruptions of Icelandic volcanoes. In particular by eruptions of 

the volcanoes in the Eastern Volcanic Zone, the source region for >80% of Icelandic 

eruptions during the Holocene (Thordarson and Hoskuldsson, 2008).  

 

Figure 4. Diagram illustrating the frequency, source region and source volcano of cryptotephra layers 

identified in northern Europe over the last 7000 years based on the database of Swindles et al. (2011) 

which has been updated to include tephras mentioned in Supplementary file 1. The majority of ash clouds 

are from volcanoes in the Eastern Volcanic zone of Iceland. A small number of tephra layers have been 

linked to source regions in Jan Mayen (Chambers et al., 2004), Alaska (Jensen et al., 2014) and 

tentatively to volcanoes in the Azores (Reilly and Mitchell, 2015). 

Given the changes in the frequency of Icelandic volcanism over the last 7000 years, we 

focus the majority of our analysis on the last 1000 years, the period for which the most 

complete records of volcanic activity and ash clouds exist and for which the frequency 

of volcanism and ash clouds are most stationary (Supplementary file 5). All but one of 

the northern European ash clouds in the last 1000 years can be linked to a source in 

Iceland, or have a major element glass geochemistry in line with the known major 

element glass geochemistry of the products of Icelandic volcanoes (n = 22). The 

exception is the MOR-T2 (=PMG-5 (Hall and Mauquoy, 2005)) tephra identified at 
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three sites in Ireland and attributed, based on glass geochemistry, to an eruption on Jan 

Mayen (Chambers et al., 2004).  

The average repose interval for Icelandic eruptions over the past 1000 years is 4.5 years 

(Table 1). However, not all Icelandic eruptions result in ash fallout which reaches 

northern Europe. The magnitude of volcanic eruptions is commonly described 

according to a rating on the Volcanic Explosivity Index (VEI), a logarithmic scale with 

a higher rating indicating a more explosive eruption (Newhall and Self, 1982). We aim 

to identify the minimum VEI of an eruption which has resulted in an ash cloud over 

northern Europe in the last 1000 years. We identify ten cryptotephra layers and ten 

observed tephra fall-out events with known source eruptions (some eruptions e.g. Askja 

1875 were both observed and identified in the geological record). All of the observed 

and cryptotephra layers which can be linked to Icelandic eruptions with a known VEI 

over the last 1000 years have been from eruptions with a VEI ≥ 4 (Figure 5). This 

corresponds to a Plinian eruption style, with an estimated plume height ≥ 10 km, 

‘definite’ stratospheric injection, and a volume of ejected tephra ≥ 0.1 km3 (Newhall 

and Self, 1982). The average repose interval for Icelandic eruptions with a VEI ≥ 4 is 26 

± 3 years (standard error of the mean, range of repose intervals = 0-63 years) (Table 1, 

Supplementary File 6). The data best fit a Weibull model, suggesting that the 

probability of an eruption occurring increases exponentially as the time since the last 

eruption increases (Connor et al., 2003). Applying this model, in any 10 year period we 

calculate a 23% chance of an eruption VEI ≥ 4 occurring in Iceland. 
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Figure 5. Diagram showing data on Icelandic eruptions and European ash (cryptotephra layers) for the 

last 1000 years (Global Volcanism Program, 2013) and the European cryptotephra database of Swindles 

et al. (2011) updated as of March 2016. All eruptions and cryptotephra layers are grouped by 

geochemistry. Icelandic eruption data is grouped by VEI. European cryptotephra records are grouped by 

the number of sites at which they are found. Cryptotephras which have been linked to a source eruption 

have been indicated and the connections based on geochemistry, VEI and number of sites where a tephra 

is identified are highlighted. Pattern of connecting lines reflects VEI of the eruption. Note Y axes are 

different scales.  

The new model for northern European ash clouds indicates an average repose interval of 

43.9 years with a standard error of the mean of 7.2 years (range of repose intervals = 0-

111 years) (Table 1, Supplementary file 6). Applying an exponential model to ash cloud 

data results in a 20% chance of an ash cloud in any 10 year period. There have been a 

total of 36 eruptions with a VEI ≥ 4 recorded in Iceland during the last 1000 years, of 

which 26 have not produced cryptotephra layers which have been identified in the 

geological record and 21 have been neither observed nor identified in the geological 



~ 226 ~ 

 

 

 

record. From this we conclude that only ~ 42% of Icelandic eruptions with a VEI ≥ 4 

resulted in the transport of ash over northern Europe in the last 1000 years.  

The majority (n = 18) of the VEI ≥ 4 eruptions which have not been identified in 

northern European records have been eruptions of mafic magma (SiO2 < 63 wt %). 

Despite the dominance of mafic volcanism on Iceland, the majority of cryptotephras are 

silicic. The dominance of silicic tephras in distal records in northern Europe has been 

well documented and possible reasons for the relative lack of mafic cryptotephra layers 

when compared to silicic cryptotephra layers in northern Europe are still debated 

(Davies et al., 2010; Lawson et al., 2012; Wastegård and Davies, 2009). Our analysis 

suggests that even explosive (VEI ≥ 4) mafic eruptions that are favourable to having 

developed high plume heights are actually rare in European records. There is no 

relationship between the eruption VEI and the total number of sites at which a 

cryptotephra is found in northern Europe (p = 0.965). The eruption with the highest VEI 

rating in the last 1000 years is the Veiðivötn 1477 eruption which has a VEI = 6, 

indicating an ‘ultra Plinian’ type (Newhall and Self, 1982). However, cryptotephra from 

the basaltic Veiðivötn 1477 eruption has been identified at only two sites in northern 

Europe, in Ireland (Chambers et al., 2004) and in central Sweden (Davies et al., 2007). 

Conversely, silicic cryptotephra from the less explosive Hekla 1104 eruption (VEI = 5) 

has been recorded at 27 sites. The mafic composition of the Veiðivötn 1477 eruption 

might explain its identification at only two sites when compared to tephras of less 

explosive silicic compositions. Tephra shards of mafic composition are generally less 

vesicular and more dense than tephras of silicic composition, therefore basaltic tephra 

shards may be transported over shorter distances. However, differences in distribution 

by wind and spatial sampling bias cannot be discounted as reasons for the small number 

of distal tephra records identified.   

Icelandic eruptions with a silicic geochemistry and a VEI ≥ 4 occur less frequently than 

all Icelandic eruptions of a mafic geochemistry. However, given an Icelandic eruption 

VEI ≥ 4 of silicic composition there is a 73% chance that ash will be deposited over 

northern Europe. In the last 1000 years only three Icelandic eruptions of silicic 
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composition have not been identified as cryptotephra layers in northern Europe, the 

eruptions of Hekla in 1766, 1597 and 1300.  

There are many reasons for the apparent absence of these events in the European 

geological record. For instance, the wind direction may have transported volcanic ash 

away from northern Europe, or toward a part of northern Europe which has not been 

sampled for cryptotephra layers. Larsen et al. (1999) present maps of the main axis of 

distribution of tephra from historical age silicic eruptions, based on isopach mapping of 

tephra layers on Iceland. During the eruptions of Hekla 1300 and 1766 the main axis of 

transport was toward the Northern Iceland, i.e. ash from these eruptions may have been 

carried away from northern Europe. However, predicting the transport direction of distal 

ash based on isopach maps can be misleading due to differences in wind direction with 

height. Wind shear can result in tephra from higher in the plume being transported in a 

different direction to tephra released lower in the plume. Tephra released higher in the 

plume is more likely to be transported over long distances and therefore proximal 

isopachs and distal cryptotephra deposition may appear contradictory.  

Another important consideration is erupted volume. There is a significant difference in 

the median erupted volumes of historical silicic eruptions of Icelandic volcanoes 

(Larsen et al., 1999) which have, and have not reached sites in northern Europe (Mann 

Whitney test, p = 0.039). Median erupted volume values for eruptions which have and 

have not been identified in northern Europe are 0.33 km3 and 0.18 km3 respectively 

(Figure 6). The eruption of Hekla 1104 had a larger erupted volume (~2.0 km3) when 

compared to the events of Hekla 1300 and 1766 (0.5 and 0.4 km3 respectively). The 

identification of cryptotephra from the Hekla 1104 eruption in Ireland suggests that, 

contrary to Icelandic tephra records which suggest a dominant transport direction to the 

north, southerly transport of ash occurred. The transport of ash toward the south was 

perhaps favoured by the large volume of tephra erupted increasing the chances of a 

small amount of tephra being transported toward northern Europe. Conversely, 

eruptions with low tephra volumes, but favourable wind conditions can also be 

identified in northern Europe. For example, cryptotephra from the eruption of Hekla in 

1947 which had relatively small erupted volume (0.18 km3), but during which the 
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dominant transport direction was toward the south, has been identified at 22 sites in 

northern Europe, albeit in a constrained spatial region (Dugmore et al., 1996; Lawson et 

al., 2012). 

Indeed, where available, Icelandic isopach maps of the majority of tephra layers 

identified in northern European records over the last 1000 years suggest a dominant 

wind direction toward the south or east rather than the north or west (n = 5 and 3 

respectively). We suggest that wind direction, combined with a low erupted volume < 1 

km3 (Hekla 1300 = 0.50 km3, Hekla 1766 = 0.40 km3: (Larsen et al., 1999)) may 

explain the apparent absence of cryptotephra from the silicic eruptions of Hekla in 1300 

and 1766 in northern Europe.  

 

Figure 6. Boxplots (with overlain jitter plot) showing the total erupted volumes (km3) for the historic 

silicic eruptions of Icelandic volcanoes (Hekla (light blue), Askja (red), Öræfajökull (orange), 

Eyjafjallajökull (green) and Torfajökull (dark blue)) n = 21, volume data compiled by Larsen et al. 

(1999). Data are grouped into eruptions which resulted in evidence for the distribution of ash over 

northern Europe, and those for which there is no evidence of ash distribution over northern Europe. 

Boxplot convention is as follows: boxes indicate the interquartile range; the central line through each box 

indicates the median. The far extent of the upper and lower lines from each quartile indicate the 

maximum and minimum.  
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However, neither wind direction nor eruptive volume can easily explain the lack of 

1597 tephra in northern European records as isopach maps suggest the dominant axis of 

distribution was South east, toward northern Europe, and the erupted volume (0.3 km3) 

exceeded that of the Hekla 1947 eruption, which has been identified in Europe. Despite 

the (geologically) short interval between the eruptions of Hekla 1510 and 1597 eruption, 

which resulted in the deposition of tephra at multiple sites in Ireland, it is unlikely that 

the Hekla 1597 tephra has been miss-correlated to the eruption of Hekla 1510, as the 

geochemistry of Hekla 1597 is distinct (Dugmore and Newton, 2012). Therefore, it 

remains unclear why the Hekla 1597 tephra has not been identified in any European 

sites.  

Given that the majority of Icelandic eruptions with a VEI ≥ 4 and a silicic composition 

have resulted in deposition of ash over northern Europe, we calculated the probability of 

an eruption satisfying these criteria. According to available data, the average repose 

interval of a VEI ≥ 4 Icelandic eruption with a silicic composition is 91 years; applying 

the Weibull model, this equates to <1% chance of this type of eruption in any 10 year 

interval. Given that the newly computed average return interval for ash clouds in 

northern Europe is 44 years, it stands to reason that silicic eruptions VEI ≥ 4 have not 

been the only source of ash clouds over northern Europe. However, from geological and 

observational records it would appear that the biggest risk of widespread ash clouds 

over northern Europe is posed by eruptions with a VEI ≥ 4 and a silicic magma 

composition.  

Alongside the distal European tephra layers which have been assigned to a specific 

Icelandic eruption there are nine cryptotephra layers which contain glass shards with a 

geochemistry consistent with an Icelandic origin but which have not been assigned to an 

eruption and therefore could not be traced to an eruptive source and VEI rating (Figure 

7). All of these unassigned tephra layers have been identified at fewer than four sites; 

five have been identified at only one site. By comparison, the majority (seven out of 

ten) of the tephras which have been assigned to an eruption have been identified at four 

or more sites. Furthermore, many of the unassigned tephra layers have been identified 

only in one region; for example the Loch Portain B tephra has not been identified 
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outside of Scotland and the Outer Hebrides (Dugmore et al., 1995), and the MOR-T4 

tephra, although identified at four sites, appears to have a fallout region confined to 

Ireland and Wales (Chambers et al., 2004; Watson et al., 2016). The limited spatial 

distribution of many of these unassigned tephra layers, and the lack of assignment to a 

major eruptive event, might suggest they were deposited during smaller eruptions 

producing distal ash over a smaller area during short explosive phases. The proximal 

geochemistry for smaller magnitude, less explosive eruptions may not have been so well 

characterised, making correlations between European and Icelandic tephra layers more 

difficult. The geochemistry of eruptives from some rhyolite Icelandic volcanoes, such as 

Torfajøkull and Snaefellsnes, has not been well characterised and therefore there is lack 

of proximal Icelandic data for comparison with the geochemistry of European 

cryptotephra layers (Haflidason et al., 2000). Cryptotephra layers in northern Europe 

may even represent a record of Icelandic volcanism which has been eroded from the 

Icelandic record by subsequent eruptions. It is possible that some eruptions with a VEI 

= 3 did produce ash over Europe, with only limited spatial distribution. The average 

recurrence rate of VEI ≥ 3 eruptions of silicic composition is 50 years, which equates to 

a chance of 8% of an eruption of this type in a 10 year period (Table 1).  

Although stochastic estimates of reoccurence can provide a basis for estimating future 

hazard posed by volcanoes and volanic ash clouds they must be interpreted with 

caution. According to the exponential model applied to records of past northern 

European ash clouds the probability of two ash clouds over northern Europe in a 10 year 

period is <1%. However, the eruption of Eyjafjallajӧkull in 2010, was followed the next 

year, by the eruption of Grímsvötn, both eruptions produced ash clouds over northern 

Europe, highlighting the fact that statistical models of reoccurrence based on past 

records must be interpreted with caution.  
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Figure 7. Tephras not linked to a source volcano, but which have a major element glass geochemistry 

consistent with possible Icelandic origin (grey shaded region). Icelandic geochemical envelope based on 

tephra data from Tephrabase (Newton et al., 2007). The QUB 384 tephra contains glass shards in three 

distinct geochemical groups (G1, G3 and G4). Tephra data from Chambers et al. (2004); Dugmore et al. 

(1995); Hall and Pilcher (2002); Langdon and Barber (2001); Pilcher et al. (2005).  

8.5 Conclusions 

In this paper we have examined spatial gaps identified in cryptotephra records across 

northern Europe. The discovery of Icelandic cryptotephras in these regions and others 

with few cryptotephra studies (e.g. Germany), by this study and other recent work 

(Wulf et al., 2016) suggests that spatial gaps in northern European cryptotephra layers 
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are an artefact of research intensity and do not represent the margins of ash clouds over 

northern Europe. However, sparse numbers of shards indicate that glass shards from 

some eruptions are approaching the margins of their detectable range. Future research 

focused on identifying new cryptotephras in northern Europe should focus on regions 

which appear to represent gaps in current records. 

We have utilised new data, alongside newly published data, to recalculate an up to date 

version of the return interval for European ash cloud events. Our new estimate decreases 

the return interval from 56 ± 9 years to 44 ± 7 years, suggesting that ash clouds are 

indeed more common over northern Europe than previously proposed (Swindles et al., 

2011). Applying an exponential model, our new database suggests a 20% chance of an 

ash cloud over northern Europe in a 10 year period. Our model still represents a 

minimum estimate for the reoccurrence rate of European ash clouds, but increased 

spatial coverage of sites within Europe means the new estimate is less likely to be 

confounded by sampling bias than previous modelling efforts.  

We conduct a comprehensive examination of the erupted volumes, VEI rating and the 

dominant tephra transport pathways of Icelandic volcanoes which have resulted in distal 

ash deposition in northern Europe over the last 1000 years. All cryptotephras and 

observed tephras which can be linked to a source eruption in Iceland are from eruptions 

with a VEI ≥ 4, corresponding to Plinian eruptions. A ‘maximum’ estimate for the 

frequency of recurrence of ash clouds over northern Europe is provided by the average 

return interval of VEI ≥ 4 events (26 years). However, not all VEI ≥ 4 eruptions result 

in distal ash deposition and mafic compositions are under-represented in the distal 

record. 73% of Icelandic eruptions VEI ≥ 4 of silicic composition have deposited ash 

over northern Europe. The average return interval for eruptions of this type is 91 years. 

It is possible that some events with a VEI = 3 produced ash fall over Europe, with only 

limited spatial distribution, perhaps corresponding to tephra layers identified in northern 

Europe at few sites which are of an “unknown source”, but which contain glass shards 

which fit well the geochemical envelope for Icelandic volcanoes.  
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Chapter 9: Discussion and conclusion  

In this chapter I aim to summarise and critically examine the results and discussions 

previously reported in Chapters 3 to 8. I outline the main findings of the research 

presented in this thesis with reference to the overall aim and objectives outlined in 

Chapter 1; explain the significance to the wider scientific community; and describe 

directions for future work. The aim of this thesis was: to evaluate the use of 

cryptotephra layers for providing information on the timing, characteristics and spatial 

extent of past volcanic ash clouds. In order to achieve this aim two research 

compartments were identified, these are briefly discussed in Section 9.1.  

In addition to the objectives which fit into the two research compartments, two 

overarching objectives were outlined. These objectives focussed on conducting new 

field campaigns in order to fill spatial gaps in existing cryptotephra records through the 

development of new, high quality tephrostratigraphies (Thesis Objective 8 and Thesis 

Objective 9). These objectives have been achieved through the addition of new sites to 

the existing cryptotephra database compiled by Swindles et al. (2011). I examined 

tephra layers from 13 new sites and contributed toward filling spatial gaps in northern 

European tephra records in northern Sweden, Poland, Wales and Southern England. At 

least one tephra layer was identified at every site, suggesting that the spatial gaps in the 

distribution of northern European cryptotephra layers are an artefact of research 

intensity and do not represent the margins of Icelandic volcanic ash distribution over 

northern Europe. Future research with a focus on identifying new cryptotephra in 

northern Europe should concentrate on regions which appear to represent remaining 

large gaps in current the records. 

My research has extended the known spatial distribution patterns of well-established 

cryptotephra layers such as Hekla 4 and Hekla 1104, which have each been identified at 

five additional sites. Furthermore, the identification of less well established 

cryptotephras, such as Hekla 1158 (previously identified at only one distal site (Pilcher 

et al., 2005)), at three new sites, indicates that these cryptotephra layers may form 

important regional isochrones. Two new northern European tephra layers have been 
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identified as part of this study: a basaltic tephra, CLA-L1 which, based on geochemistry 

and stratigraphy, is most likely derived from an eruption of the Iceland’s Grímsvötn 

volcano after AD 1000 and SN-1, a cryptotephra from the Icelandic Snæfellsjökull 

volcano, which contains glass shards of a trachydacitic composition - identified for the 

first time in mainland Europe (Chapter 5). The age for SN-1 is further constrained to 

1183-1147 cal yr BP based on new radiocarbon dates (Chapter 5). The SN-1 tephra, 

which is identified at three sites in northern Sweden, may provide an important regional 

isochron for dating palaeoclimatological research in the Arctic region. Finally, the 

discovery of the Hekla 1845 tephra in 14 cores from Fallahogy peatland, Northern 

Ireland (Chapter 3) indicates that even in regions which have previously been subject to 

intensive cryptotephra research at multiple sites, sparse tephra layers may remain 

undetected.  

Beyond northern Europe, the identification of two tephra layers in Aucayacu peatland, 

Peru (Chapter 4) indicates that tephra shards can be successfully geochemically 

analysed by electron microprobe (EPMA), even after being exposed to the aggressive 

environment of a tropical peatland. The AUC-1 cryptotephra, tentatively attributed to a 

segment of the Andean volcanic arc chain in Ecuador, is the first cryptotephra to be 

identified inside the Amazon basin. These exciting results highlight the opportunities 

for extending tephrochronology into tropical regions elsewhere in the world. However, 

the sparse number of proximal as well as distal tephra samples which have been 

analysed by EPMA from volcanic systems in Peru and Ecuador present challenges as 

well as opportunities for future cryptotephra research in this region.  

9.1 Research synthesis 

9.1.1 Research compartment 1: The limits of tephrochronology  

This research compartment focused on assessing the ‘robustness’ of tephrochronology, 

specifically cryptotephra layers in lakes and peatlands and how this might impact on 

their utility for understanding past volcanic ash distribution. This study critically 
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examines the influence of deposition, redistribution and reworking processes on tephra 

records in peatlands and lakes.  

A multiple core study was conducted at Fallahogy bog, an ombrotrophic peatland in 

northern Ireland. Fifteen replicate cores were taken at distances of tens to hundreds of 

metres from each other across the peatland surface. Contrary to previous research, 

which has suggested that tephra layers can be discontinuous even within one peatland 

(Bergman et al., 2004), three tephra layers (Hekla 1947, Hekla 1845 and Hekla 1510) 

were identified in 14 out of 15 cores from Fallahogy peatland (Chapter 3, Thesis 

Objective 1). Where three district tephra layers were not identified (n = 1) there is 

evidence that the core location had been subject to anthropogenic disturbance. The 

replicability of the tephrostratigraphy in the top 50 cm of peat across Fallahogy peatland 

suggests that in mid-latitude peatlands the extraction of one core is sufficient to 

determine the presence or absence of a given tephra layer. However, differences were 

identified in tephra shard counts (per unit area) which vary by an order of magnitude 

between cores. Several cores are required to reliably estimate the median shard 

concentrations at a given site. The differences in total shard concentrations that were 

identified within different cores from the same peatland indicate that studies which infer 

differences in regional ash cloud fallout based on the concentration of shards in one core 

from a site may be misleading due to the choice of coring location within each site (cf. 

Rea et al., 2012).  

A multiple core study of this type is unprecedented in tephrochronological research and 

the results will have a major impact on future palaeo-environmental studies involving 

tephra horizons. Variations in the total number of tephra shards and spheroidal 

carbonaceous particles (SCPs) in different cores from the same peatland provide 

evidence that particles, in this instance tephra and SCPs, but most likely also other 

proxies (e.g. pollen) move around on the peatland surface prior to incorporation into the 

peat profile. Unlike other paleo-environmental proxies, tephra shards are deposited 

during one event and provide an ideal natural ‘tracer’ with which to conduct research 

into the impact of microtopography on particle distribution on peatlands. In this project, 

for the first time, tephra layers are used successfully to provide a robust chronological 
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framework, within which to evaluate peat accumulation rates at an intra-site (fine/small) 

scale (Chapter 3).  

Tephra deposited on to peatlands and into lakes is subject to different conditions for 

preservation and processes of reworking. This could result in a bias in European 

records, which are based predominantly on tephra layers identified in peatlands 

(Swindles et al., 2011). This thesis included the first study of the tephrostratigraphies 

recorded by peatland and lake sites in close proximity to one another (<10 km distant). 

Given the results reported in Chapter 3, which indicate that one core from a peatland is 

sufficient to identify all ash fallout events over that site, this study was based on one 

core from each peatland and one from each lake. The study, which includes four lake 

and peatland pairs, indicates that neither lakes nor peatlands provide complete records 

of volcanic ash deposition (Chapter 5, Thesis Objective 3). Generally more tephra layers 

were present in peatlands than in lakes, which is contrary to suggestions that lakes 

would be expected to contain more tephra layers due to the delivery of tephra from the 

wider catchment (Bertrand et al., 2014; Bramham-Law et al., 2013). One possible 

explanation for the absence of some tephra layers which are present in adjacent 

peatlands, from lake sediment records, is the impact of within-basin redistribution and 

the preferential deposition of tephra shards near to inlets which can act to concentrate 

tephra shards into certain areas of the lake basin (Pyne-O'Donnell, 2011). One limitation 

of this research is the retrieval of only one core from each lake which was necessary due 

to time constraints and financial restrictions on laboratory analysis and EPMA time. 

Future studies should examine multiple cores in a lake and compare the 

tephrostratigraphy to nearby peatland sites.  

In addition to examining the number of tephra layers identified in peatland and lake 

sites in close proximity, this thesis evaluated the hypothesis that tephra layers 

containing glass shards of different geochemical compositions are preserved differently 

in lakes and peatlands (Chapter 5, Thesis Objective 3). Basaltic tephra layers are rare in 

the Holocene cryptotephra record of northern Europe and the majority have been 

identified in lakes rather than in peatlands, leading to speculations that acidic peatlands 

provide poor environments for the preservation of glass shards of basaltic composition 
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(Lawson et al., 2012). The results presented in this thesis show no evidence for the 

chemical alteration of tephra shards which were analysed by EPMA in either lakes or 

peatlands, over the timescale of this study (mid- to late- Holocene). Instead, the reason 

for the identification of more basaltic tephra layers in lakes, as opposed to peatlands, is 

most likely due the concentration of basaltic tephra shards from the catchment and 

within the lake basin itself. Sparse glass shard concentrations which fell onto the 

catchment, might be concentrated into the lake and brought above the level of detection 

in the lake sediments.  

Only one basaltic cryptotephra layer (CLA-L1) is identified in this study. CLA-L1 was 

present in Claraghmore lake, whilst absent from the adjacent peatland. This prevented a 

comparison of the major element glass chemistry of basaltic tephra shards subject to 

storage in different environments (e.g. acidic peatlands and neutral lakes). For this 

reason, in Chapter 5 an examination of wider literature is used to supplement 

observations from this study. However, the identification of only one basaltic tephra 

layer is a major limitation of this research. Future work should focus on lakes where a 

basaltic tephra has already been identified and examine a nearby peatland site to 

confirm the presence/absence and geochemical deterioration (if any) of basaltic tephra 

shards subject to storage in different environments.  

According to experimental observations the process of chemical attack on glass in 

acidic (low pH) environments is accelerated by elevated temperatures (Wolff-Boenisch 

et al., 2004). Until recently, the majority of cryptotephra research has been conducted in 

regions where temperatures are lower than in the tropics. However, to what extent might 

the deterioration of tephra glass shard chemistry confound efforts to utilise 

cryptotephras as records of past volcanic activity in regions where tephra has been 

subject to hostile preservation conditions (low pH, high temperatures). In Chapter 4 I 

report the tephrostratigraphy of a high acidity (pH ~4) and high temperature (average ~ 

26ºC and daytime temperatures reaching 30ºC) peatland site in the Peruvian Amazon 

(Swindles et al., 2014) (Chapter 4, Thesis Objective 2). The sequence, which is only the 

top 1 m of a 7 m core, contains two cryptotephra layers, one of which contains 

sufficient shards for geochemical analysis. EPMA analysis of glass shards from the 
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AUC-1 cryptotephra layer suggest that fine ashes can be preserved in acidic tropical 

peatlands, with no indication of chemical alteration (visual or evidenced by 

SEM/EPMA analysis), for at least several hundreds of years. The AUC-1 tephra layer, 

which is tentatively linked to a series of rhyolite calderas in Ecuador, represents the first 

discovery of a historic microscopic tephra (cryptotephra) from Amazonia and presents 

an opportunity for further research into the tephrochronology of this region. Further 

examination of the Aucayacu core (7 m length, only top 1m examined) may identify the 

presence of additional cryptotephra layers.  

In this research compartment I have critically examined the reworking, redistribution 

and preservation of cryptotephra layers in a variety of lake and peatland environments. 

The results suggest that the northern European tephra record is most likely not 

significantly biased by the inclusion of only one core from each peatland site. In 

undisturbed, mid-latitude peatlands, the presence or absence of tephra from a given 

eruption can be determined, with a high degree of certainty, by analysing a single core. 

The results of the analysis of the tephrostratigraphies of lake and peatland sites in close 

proximity are less clear. There are differences in the tephrostratigraphy recorded in 

lakes and peatlands which would have been expected to receive the same primary air 

fall tephras. Peatlands generally contain more tephra layers than lakes. However, 

tephras are identified in lakes which are not present in nearby peatlands. This indicates 

that a bias toward peatland records in the current northern European tephra database 

(peatland and lakes sites n =100 and 200, respectively) could result in ash clouds not 

being identified as cryptotephra deposits. There is no evidence for the geochemical 

alteration of shards in either peatlands (Chapters 4 and 5) or lakes (Chapter 5).  

The spatial patchiness of cryptotephra layers on a regional scale is well established 

(Langdon and Barber, 2004). This study suggests that on one hand, cryptotephras can be 

less spatially patchy than previously thought, at least in some peatland sites on an intra-

site scale. However, differences in the tephrostratigraphies recorded by peatlands and 

lakes in close proximity to one another, suggests that multiple sites (lakes and 

peatlands) are required to obtain a representative regional tephrostratigraphy. When 

using tephra layers as a record of eruption frequency, the more complete the geological 
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record on which the model is based, the better. The spatial patchiness of cryptotephras 

even over small scales (<10 km) highlights the need for the examination of as many 

sites as possible. The current recurrence model may also be biased due to the low 

number of lake sites, which appear to preserve more tephras of mafic composition when 

compared with peatlands.  

9.1.2 Research compartment 2: The application of tephra layers as records of 

volcanic ash  

This research compartment focussed on identifying opportunities for the application of 

cryptotephra layers as records of volcanic ash deposition. Having conducted field work 

to address spatial gaps in the cryptotephra record of northern Europe, I updated the 

database of Swindles et al. (2011) to include new tephra layers identified in this study 

(Chapter 8, Thesis Objectives 8 and 9), and those from work published since the 

completion of the Swindles et al. (2011) data compilation (Chapter 8, Thesis objective 

7). The new database was then utilised, together with new knowledge of the limitations 

and bias in the datasets from Compartment 1, in order to answer research questions 

around the frequency and nature of volcanic eruptions.  

This study included the first routine analysis of tephra particle size and morphology 

across multiple sites (n = 13) and the comparison of observations to probabilistic model 

estimates (Chapter 6, Thesis Objective 4). Large shards (up to 250 µm) were identified 

at sites 1000s of km from the volcanic source. Surprisingly, there was only a weak 

correlation between tephra shard size and distance of the fallout site from Iceland. This 

is most likely to be because the major controls on tephra fallout are weather conditions 

which vary between and even during eruptions, and the dynamics not only of each 

eruption, but of individual eruptive phases, during which major controls on tephra 

production and transport (e.g. plume height, vent diameter, magma volatile composition 

and the extent of tephra fragmentation) vary. Further evidence for the varying nature of 

ash shard deposition during different eruptive phases is provided by differences in the 

chemistry of tephra deposited from a single eruption of Hekla volcano (Hekla 4) in 
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different regions. This study represents an important ‘first attempt’ at linking the 

cryptotephra shard size and morphology with the source eruption parameters. However, 

detailed analysis of shard size relies on identifying and measuring tephra from the same 

eruption at multiple sites across a range of distances from the source volcano. The 

current database of shard sizes is limited to a small number of sites, an even smaller 

number contain tephra from the same eruptions and therefore it is difficult to form well-

founded conclusions on the utility of these records for palaeo-hazard research. The 

range of distances at which sites in northern Europe are located from Iceland will 

always be restricted by the fallout of a large amount of tephra from Icelandic eruptions 

into the North Atlantic, Norwegian Sea and North Sea. Routine analysis of shard size is 

required, certainly for the most widespread tephras 

Manual measuring of shard size using an eye piece graticule is time consuming. Particle 

size analysis conducted during this study provides evidence that the shard size of tephra 

in the sample of peak tephra concentration is likely to reflect the shard size of the entire 

vertical spread of tephra, suggesting that laboratory time can be saved by analysing 

shard size in only a subset of most abundant shards within a given tephra layer. 

Furthermore, I estimate that assessing the size of 100 shards is sufficient to estimate the 

median shard size for a tephra layer at a given site (Chapter 6). These methodological 

alterations are similar to the modern approach used in characterizing proximal tephra 

deposits using a subset of scoria/pumice size fractions and are important as they reduce 

the time required to process each shard size sample and may encourage routine 

reporting of tephra shard size. However, future work should focus on an automated 

approach to estimating the shard size of cryptotephra samples. Automated imaging 

(perhaps even in 3 dimensions) of small shards present in only sparse concentrations, 

would allow for the quantification of morphological characteristics (e.g. vesicularity), 

which in this thesis were recorded qualitatively. As atmospheric models of volcanic ash 

increase in complexity, understanding the precise morphology and size characteristics 

of distal volcanic ash will become increasingly important.  

In Chapters 7 and 8, for the first time, proximal records of Icelandic volcanism are 

compared with the distal cryptotephra record over the last 7000 years (Chapters 7 and 8, 
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Thesis Objective 6). Examining past trends in the frequency of volcanism using 

proximal records (e.g. tephra layers and lava flows) is often complicated by issues of 

reworking or the burial of evidence by younger eruptions. The novel approach of using 

distal cryptotephra records to compliment the proximal geological record offers an 

additional line of evidence, supporting the idea that changes in the frequency of 

volcanism over time are not due to preservation bias in the proximal geological record. 

The frequency of both Icelandic volcanism and European ash clouds has varied over the 

last 7000 years. Variation in the frequency of Icelandic volcanism over time can be 

explained by periodic changes in the spreading rate of the mid ocean rift zone splitting   

Iceland and the influence of surface loading (glacier extent) on rates of volcanism 

(Larsen et al., 1998; Schmidt et al., 2013). In addition to being sensitive to changes in 

the rate of Icelandic volcanism, the frequency of distal ash accumulations over northern 

Europe is affected by wind direction, wind speed and rainfall, all of which affect the 

probability and trajectory of long range ash particle transport (Davies et al., 2010) 

(Chapter 8 Thesis objective 7). 

There is a positive correlation between the frequency of Icelandic volcanism and the 

record of distal ash clouds reaching N. Europe throughout the Holocene. Furthermore, 

synchronous periods of quiescence occur at least twice during the last 7000 years in 

records of Icelandic volcanic eruptions and ash clouds over northern Europe (5.5-4.5 

and 2.6-1.6 ka BP) (Chapter 7, Thesis objective 6). These periods are not easily 

explained by changes in the rate of rifting or mantle plume dynamics, as such plate-

scale (or large scale) parameter fluctuations necessitate much longer timescales. Instead, 

following an analysis of global and regional climate data I propose that climate 

(modulated by glacial loading and unloading) has exerted control on the frequency of 

volcanism in Iceland over the Holocene. Evidence for this hypothesis is provided in the 

form of a significant correlation between a deepening of the Icelandic Low (a control on 

glacier extent), and periods of less frequent volcanic eruptions with a lag of 400-1500 

years. This research provides the first empirical evidence to support numerical 

modelling efforts which suggest that moderately small changes in ice volume, such as 

those which have occurred during the Holocene in Iceland, can have an impact on the 
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frequency of volcanism (Schmidt et al., 2013). However, more research is required into 

the magnitude of changes in past glacial extent on Iceland and the impacts of moderate 

changes in surface loading on melt production rates in the mantle under Iceland. 

Advancing our understanding of the links between climate, glaciology and the 

frequency of volcanic activity will become increasingly important as ice caps and 

glaciers retreat under anthropogenic-driven warming.  

In order to estimate the future probability of an ash cloud over northern Europe (Thesis 

objective 7) I examined both the new European ash cloud database, and Icelandic 

eruption records. Given the changes in the frequency of Icelandic eruptions evidenced 

by both proximal records and records of ash deposition over the last 7000 years 

(Chapters 7 and 8), I examined the period for which the rate of both ash clouds and 

Icelandic eruptions has been the most stationary (with only minor fluctuation) - the last 

1000 years. A comparison of Icelandic and European tephra records over the last 1000 

years revealed that all ash clouds in northern European geological record have been 

produced by highly explosive Plinian eruptions with a VEI ≥ 4 (Chapter 8, Thesis 

Objectives 6 and 7). According to the geological record, Icelandic eruptions with a VEI 

≥ 4 and a silicic magma composition present the most risk of producing an ash cloud 

over northern Europe. A number of cryptotephra layers in the geological record do not 

have a known source, and are found in fewer distal sites. These cryptotephra layers 

might represent ash clouds which were produced by eruptions with a lower VEI. These 

cryptotephra layers have a major element glass geochemical composition consistent 

with a source eruption in Iceland, but have not been traced to a specific vent 

site/volcanic centre. Future research should concentrate on trying to identify a source 

volcano for these tephra layers. This might involve work on proximal deposits in 

Iceland, to characterise the geochemistry of tephra derived from eruptions of a smaller 

magnitude or lesser studied volcanic regions (Haflidason et al., 2000). Cryptotephra 

layers in northern Europe may even represent a record of Icelandic volcanism which has 

been eroded from the Icelandic record by subsequent eruptions. The average return 

interval of a volcanic ash cloud over northern Europe based on the new database is 44 ± 
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7 years, suggesting that ash clouds are more common over northern Europe than 

previously proposed (56 ± 9 years; Swindles et al. (2011)). 

During thesis compartment 2 I have explored a range of ways in which cryptotephra 

layers can be used as a record of past volcanic eruptions. I have studied the use of tephra 

particle size measurements to examine the fallout of ash across sites in northern Europe, 

tephra shard size, which is not currently routinely reported, offers some promise for 

understanding the nature of eruptions (e.g. plume height) from which the shards are 

derived. However, there are limitations to the application of shard size and morphology 

data as weather conditions, a major control on tephra dispersal, are often unknown for 

ancient eruptions. The examination of proximal records of Icelandic eruption frequency 

and European ash fall records has, for the first time, provided empirical evidence that 

small changes in ice mass, driven by climate, can impact on the frequency of volcanism. 

These results add weight to previous studies relying on numerical modelling and have 

major implications for the frequency of volcanic eruptions under glacial unloading 

caused by anthropogenic climate change. Comparisons of Icelandic eruption records 

and cryptotephra records have also indicated the type of volcanic eruption (VEI ≥ 4 and 

a with silicic magma composition) which are most likely to produce ash clouds over 

northern Europe. Finally, by combining information on the new tephra layers identified 

in Chapters (3, 4, 5 and 6) a new estimate for the recurrence of ash clouds over northern 

Europe has been calculated (44 ± 7 years). Although this still represents a minimum 

estimate for volcanic ash clouds reaching northern Europe in the past, it is less likely to 

be confounded by spatial and temporal sampling bias than the previous estimate of 

Swindles et al. (2011).  

9.2 Research implications  

Cryptotephra layers are widely used in the dating and correlation of paleoenvironmental 

research. Furthermore, cryptotephras represent the only evidence of pre-historic ash 

clouds and are an important record of past volcanism. During this research project three 

new distal tephra layers (AUC-1, CLA-L1 and SN-1) have been identified, 

geochemically analysed and reported. Furthermore, a large number of high quality 
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EPMA glass geochemical analyses, conducted with the use of secondary standards, on 

glass shards from both well-established and less well-established cryptotephra layers 

have been collected. These data provide an important resource for future studies of 

northern European and Peruvian tephra layers and will be uploaded onto community 

databases e.g. Tephrabase (Newton et al., 2007) following completion of this project.  

Understanding the reworking, redistribution and preservation of cryptotephra layers is 

crucial both when using them as records of ash clouds and when utilising them as a 

chronological tool. In this study, a number of methodological advances are presented, 

which are important for the design of future tephra studies. These advances in methods 

will be of importance to scientists in the field of tephrochronology, but also to those 

working in atmospheric science and paleoecology. Beyond methodological advances, 

this study demonstrates how cryptotephra records can be utilised in new ways to 

compliment proximal records of volcanism and to present a new recurrence estimate for 

the frequency of ash cloud events over northern Europe. Our new findings are of direct 

relevance to insurance and aviation industries, governments and the general public. A 

number of important methodological advances and novel approaches from this thesis 

are listed below.  

 9.2.1 Advances in methods  

 Three tephra layers that correlate to the Hekla eruptions of 1510, 1845 and 1947 

were detected in 14 cores from the same peatland, suggesting that in small, largely 

undisturbed, mid-latitude peatlands, the presence or absence of tephra from a given 

eruption can be determined, with a high degree of certainty, by analysing a single 

core (Chapter 3).  

 There is evidence of incomplete tephra records in both peatlands and lakes. A 

combination of records from both lakes and peatlands must be used to establish the 

most comprehensive and complete regional tephrostratigraphies (Chapter 5).  

 The analyses of glass shards by EPMA during this study do not indicate any 

significant chemical alteration of glass shards extracted by different extraction 
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processes (density separation vs. acid extraction). Acid digestion is a suitable 

extraction method for glass shards of rhyolitic and trachydacitic composition from 

ombrotrophic peatlands and does not result in a significant degree of geochemical 

alteration. (Chapters 4 and 5). 

 Shard size does not vary significantly with depth within a cryptotephra layer and 

therefore the median shard size for a given tephra can be estimated by measuring 

100 shards in the vertical sample of peak tephra shard concentration (Chapter 6).  

9.2.2 Novel approaches  

 Cryptotephra layers can be used to supplement proximal records of volcanism to 

further understanding of climate volcano interactions (Chapters 7 and 8).  

 Tephra shard size and geochemistry can be used to understand more about the 

eruption from which the tephra is derived, although usefulness is limited by a lack 

of records of weather conditions during ancient eruptions (Chapter 6).  

 A new model of volcanic ash over northern Europe suggests ash clouds occurred 

more frequently in the last 1000 years than previously thought (Chapter 8).  

9.3 Prospects for future research  

The results presented in this thesis open up a number of avenues for future work around 

the themes of tephrochronology and the use of cryptotephra layers as records of past ash 

clouds. I present evidence that tephra can be preserved in tropical environments. Further 

research into the tephrochronology of tropical regions may inform our understanding of 

the volcanic history of these regions, many of which have poorly preserved, or 

understudied proximal records of volcanic activity.    

I have demonstrated how distal cryptotephra records can be used to complement records 

of volcanic activity from proximal geological records. Expanding on this work, to look 

in more detail at specific time periods, or into new volcanic regions may offer the 

opportunity to identify trends which might be missing or unapparent from the analysis 

of proximal records of volcanic activity alone. The use of European cryptotephra layers 
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to supplement proximal records of Icelandic volcanism has allowed for the detection of 

periods of volcanic quiescence which are apparent in both datasets. The periods of 

volcanic quiescence are connected to periods of ice expansion on Iceland. 

Understanding the impact of small magnitude changes in surface loading (on 

interglacial timescales) may have implications for the impact of future climate warming 

on rates of volcanic activity. However, a number of questions remain, such as, what is 

the threshold at which ice loading, or unloading results in changes in volcanic eruption 

frequency?  

Finally, more work could be conducted toward assessing the true margins of volcanic 

ash distribution of detectable shards suitable for geochemical analysis (>30 µm), by 

seeking sparse concentrations of tephra shards in sites further from their volcanic 

source. Modelling (Chapter 6) indicates that a 30 µm shard from an Icelandic eruption 

with a plume height of 35 km can travel up to 23, 000 km. So we may be far from 

identifying the true margins of ash cloud distribution from Icelandic volcanoes.  
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Supplementary files  

Chapter 3: Spatial variability of tephra and carbon accumulation in a Holocene 

peatland 

(Overleaf)
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Chapter 3. Fig. S1. Cluster dendrogram based on major element geochemistry of FAL_1 (red), FAL_2 (blue) and FAL_3 (purple) tephras. Approximately Unbiased 

(AU) and Bootstrap probability (BP) values (%) are illustrated for major clusters. Rectangles highlight clusters with AU values >95%. Analysis conducted in 

PVCLUST package in R version 3.1.1 (Suzuki and Shimodaira, 2006). Analysis was conducted on raw data (not normalised) with oxide totals >95% (n=21, 22 and 20 

for FAL_1, FAL_2, FAL_3 respectively).
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Chapter 3. Fig. S2. Bivariate plot showing principal component scores on component 1 and 2 of (a) raw 

and (b) additive log ratio transformed data. Analysis was conducted on raw data (not normalised) with 

oxide totals >95% (n=21, 22 and 20 for FAL_1, FAL_2, FAL_3 respectively). One shard was removed 

following log ratio transformation due to a negative measured value for MgO therefore for (b) n = 21, 21, 

20 for FAL_1, FAL_2, FAL_3 respectively. Eigenvalues were (a) raw, axis 1 = 7.3086, axis 2 = 1.2560 

(b) log ratio transformed, axis 1 = 6.4620, axis 2 = 0.9918.  
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Chapter 3. Fig. S3. Tephra geochemistry bi-plots for FAL_2 (Fallahogy core A) and type data from 

northern European cryptotephras dated between 1510 and 1947 AD (excluding Hekla 1845). Data from 

Tephrabase (Newton et al., 2007). 

 

Chapter 3. Fig. S4. Tephra geochemistry bi-plots for (a-b) full range of FeOt(%), TiO2(%), CaO(%), 

MgO(%) values for the FAL_3 tephra from core K plotted against type data for the Hekla eruptions of 

1510, 1845 and 1947 from the Tephrabase (Newton et al., 2007).  
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Chapter 3. Table S1. Major oxide concentration data (wt %) for tephra shards identified in core A and 

core K at Fallahogy. Core A: FAL_1 = 8-9 cm, FAL_2 = 14-15 cm, FAL_3= 24-25 cm. Core K: FAL_3 

= 43-45 cm. Tephra analysis was conducted using a Cameca SX100 electron probe microanalyser at 

Tephra Analytical Unit (TAU), School of Geosciences, University of Edinburgh. All analyses were 

conducted with a beam diameter of 5 μm, 15kV and beam currents of 2 nA (Na, Mg, Al, Si, K, Ca, Fe) 

and 80 nA (P, Ti, Mn) (Hayward, 2012). Analyses with low total oxide values (less than 95%) were 

excluded. Secondary glass standards (basalt (BCR-2G) and rhyolite (Lipari)), were analysed before and 

after unknown tephra samples. Analyses on secondary standards are italicised.  

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

Lipari 74.93 0.08 13.31 1.49 0.07 0.07 0.63 4.00 5.16 0.01 99.75 

Lipari 73.79 0.08 12.98 1.54 0.08 0.04 0.71 3.98 5.08 0.00 98.28 

BCR-2G 54.25 2.26 13.43 12.19 0.19 3.64 7.19 3.18 1.88 0.34 98.54 

BCR-2G 54.71 2.25 13.43 12.55 0.20 3.80 7.15 3.21 1.85 0.37 99.52 
                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

FAL_2 73.72 0.10 12.44 0.28 0.02 0.00 0.59 3.74 4.96 0.01 95.88 

FAL_2 72.63 1.07 12.00 1.72 0.00 0.02 0.32 4.19 3.94 0.24 96.14 

FAL_2 72.62 0.18 14.06 3.04 0.11 0.11 2.10 4.50 2.50 0.04 99.25 

FAL_2 72.50 0.10 12.38 1.38 0.05 0.03 0.78 2.67 5.90 0.01 95.80 

FAL_2 72.08 0.82 12.73 0.99 0.02 0.00 0.45 3.84 4.40 0.19 95.51 

FAL_2 71.64 0.10 12.55 1.92 0.05 0.04 0.82 2.80 5.99 0.03 95.94 

FAL_2 67.51 0.80 15.79 0.67 0.01 0.03 2.45 5.05 2.80 0.09 95.19 

FAL_2 62.41 0.99 14.69 8.42 0.24 1.40 4.96 4.29 1.85 0.34 99.58 

FAL_2 62.03 0.89 14.81 7.99 0.22 1.27 4.51 4.45 1.72 0.31 98.21 

FAL_2 61.88 0.97 15.10 7.93 0.21 1.40 4.77 4.57 1.73 0.35 98.91 

FAL_2 61.52 0.97 14.76 8.51 0.20 1.49 5.22 4.10 1.61 0.37 98.74 

FAL_2 61.20 1.12 15.32 9.11 0.24 1.65 5.22 4.45 1.63 0.45 100.39 

FAL_2 61.03 1.02 14.73 7.88 0.21 1.34 4.80 4.34 1.76 0.38 97.50 

FAL_2 60.70 1.12 14.79 8.62 0.22 1.64 5.14 4.50 1.65 0.47 98.85 

FAL_2 60.64 1.13 15.18 8.37 0.26 1.66 5.00 4.04 1.55 0.47 98.29 

FAL_2 60.60 1.08 15.02 8.34 0.22 1.57 5.01 4.47 1.79 0.42 98.53 

FAL_2 60.48 1.10 14.77 9.13 0.20 1.63 5.08 4.00 1.58 0.43 98.40 

FAL_2 60.41 1.13 14.92 8.83 0.24 1.92 5.03 4.13 1.62 0.47 98.70 

FAL_2 60.02 1.09 14.41 8.38 0.22 1.44 4.49 3.96 1.69 0.43 96.13 

FAL_2 59.97 1.11 15.04 8.91 0.23 1.56 5.17 4.34 1.55 0.43 98.32 

FAL_2 59.58 1.12 14.94 8.89 0.25 1.75 5.23 4.32 1.57 0.47 98.14 

FAL_2 58.63 1.23 14.53 9.48 0.22 1.77 4.85 4.30 1.55 0.45 97.00 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

Lipari 75.55 0.08 12.89 1.58 0.05 0.01 0.74 4.18 5.28 0.00 100.36 

Lipari 75.06 0.08 13.04 1.61 0.07 0.02 0.74 4.15 5.13 0.00 99.91 

Lipari 74.75 0.07 13.08 1.54 0.05 0.03 0.74 4.01 5.14 0.00 99.41 

Lipari 75.08 0.09 13.00 1.52 0.06 0.04 0.76 4.17 5.26 0.01 100.00 

Lipari 74.00 0.08 13.00 1.55 0.07 0.05 0.76 3.98 5.22 0.00 98.71 

Lipari 73.94 0.07 12.84 1.37 0.04 0.04 0.80 3.94 5.04 0.01 98.09 

BCR-2G 55.17 2.25 13.86 12.45 0.17 3.75 7.20 3.20 1.81 0.32 100.18 
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BCR-2G 55.66 2.25 13.37 12.10 0.20 3.67 7.16 3.07 1.79 0.32 99.60 

BCR-2G 55.63 2.26 13.30 12.26 0.19 3.66 7.35 3.23 1.73 0.32 99.94 

BCR-2G 55.63 2.26 13.29 12.43 0.18 3.61 7.43 3.12 1.85 0.32 100.13 

BCR-2G 55.48 2.27 13.75 12.15 0.19 3.72 7.46 3.18 1.87 0.33 100.40 

BCR-2G 55.78 2.26 13.68 12.13 0.18 3.71 7.20 3.08 1.83 0.33 100.18 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

Lipari 74.30 0.08 12.92 1.59 0.08 0.03 0.82 4.04 5.30 0.00 99.15 

Lipari 74.23 0.08 13.07 1.66 0.05 0.04 0.78 3.85 5.25 0.01 99.02 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

FAL_3 76.23 0.32 11.99 3.57 0.12 0.10 1.70 4.09 2.26 0.03 100.42 

FAL_3 73.84 0.23 13.39 3.19 0.12 0.01 1.05 5.23 3.61 0.01 100.69 

FAL_3 73.65 0.19 13.19 1.30 0.03 0.22 1.50 4.63 2.27 0.06 97.05 

FAL_3 63.00 0.83 15.67 8.03 0.20 1.23 4.92 4.85 1.67 0.28 100.67 

FAL_3 62.72 0.45 16.37 3.50 0.27 0.26 0.67 7.47 5.46 0.04 97.21 

FAL_3 62.71 0.93 15.25 7.72 0.21 1.32 4.70 4.53 1.85 0.32 99.53 

FAL_3 62.67 0.92 15.29 7.81 0.21 1.27 4.54 4.76 1.81 0.31 99.60 

FAL_3 62.39 0.91 15.16 8.08 0.20 1.22 4.73 4.42 1.70 0.29 99.10 

FAL_3 62.35 0.90 15.58 7.84 0.21 1.24 4.64 4.57 1.76 0.32 99.40 

FAL_3 62.33 0.94 14.77 7.83 0.21 1.21 4.40 4.39 1.94 0.33 98.34 

FAL_3 62.31 0.86 15.56 6.85 0.19 1.02 4.59 4.59 1.76 0.30 98.02 

FAL_3 62.31 0.92 15.25 8.05 0.21 1.32 4.75 4.46 1.66 0.34 99.26 

FAL_3 62.29 0.92 14.98 7.76 0.21 1.28 4.63 4.61 1.72 0.31 98.70 

FAL_3 62.14 0.91 14.78 7.60 0.17 1.27 4.60 4.60 1.85 0.30 98.23 

FAL_3 62.08 0.95 14.63 8.44 0.25 1.41 4.64 4.53 1.74 0.31 98.97 

FAL_3 61.77 0.98 16.42 6.60 0.22 0.97 5.30 5.12 1.73 0.49 99.59 

FAL_3 61.62 0.97 14.87 8.09 0.22 1.35 4.71 4.39 1.75 0.35 98.32 

FAL_3 61.53 0.65 17.44 6.65 0.18 1.03 5.75 5.01 1.35 0.23 99.82 

FAL_3 61.38 0.65 18.06 5.53 0.16 0.97 6.07 5.39 1.17 0.24 99.60 

FAL_3 60.94 0.90 14.68 8.20 0.24 1.32 4.65 4.43 1.68 0.30 97.33 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

FAL_1 72.40 0.10 12.38 1.60 0.04 0.04 0.97 3.21 5.66 0.02 96.43 

FAL_1 64.60 0.91 15.30 7.62 0.22 1.19 4.50 4.32 1.83 0.30 100.80 

FAL_1 64.26 0.91 15.21 7.67 0.22 1.22 4.13 4.34 1.88 0.31 100.16 

FAL_1 63.62 0.91 14.76 7.88 0.19 1.24 4.34 4.41 1.87 0.30 99.52 

FAL_1 63.58 0.89 15.02 7.34 0.18 1.13 4.50 4.21 1.71 0.30 98.86 

FAL_1 63.34 0.90 14.86 7.76 0.19 1.20 4.63 4.38 1.81 0.31 99.40 

FAL_1 63.14 0.91 15.12 7.90 0.22 1.25 4.49 4.67 1.85 0.27 99.82 

FAL_1 63.12 0.88 14.79 7.55 0.23 0.91 3.79 4.30 1.98 0.29 97.84 

FAL_1 62.98 0.91 15.44 7.88 0.19 1.15 4.65 4.96 1.87 0.29 100.34 

FAL_1 62.97 0.84 15.50 7.86 0.19 1.21 4.88 4.57 1.70 0.26 99.99 

FAL_1 62.76 0.94 15.33 7.70 0.22 1.20 4.52 4.46 1.87 0.30 99.31 

FAL_1 62.67 0.91 15.53 8.22 0.23 1.26 4.46 4.43 1.79 0.31 99.81 

FAL_1 62.64 0.94 14.94 7.71 0.24 1.11 4.47 4.79 1.85 0.30 98.99 

FAL_1 62.63 0.91 14.91 7.78 0.23 1.27 4.65 4.38 1.70 0.29 98.75 

FAL_1 61.69 0.91 15.06 8.38 0.24 1.31 4.75 4.60 1.65 0.29 98.86 

FAL_1 61.59 0.87 14.21 7.80 0.21 1.38 4.81 4.43 1.58 0.29 97.17 

FAL_1 61.42 0.90 14.75 7.31 0.20 1.22 4.64 4.52 1.82 0.27 97.05 

FAL_1 61.33 1.09 14.83 8.51 0.22 1.54 4.92 4.17 1.70 0.39 98.69 
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FAL_1 61.31 1.04 14.81 8.64 0.23 1.52 5.02 4.52 1.69 0.42 99.20 

FAL_1 61.04 1.07 14.94 8.58 0.22 1.61 5.09 4.19 1.64 0.37 98.74 

FAL_1 60.40 0.85 14.65 7.60 0.19 1.20 4.19 4.28 1.71 0.30 95.37 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

Lipari 73.04 0.07 12.84 1.51 0.06 0.00 0.71 4.04 5.06 0.01 97.34 

Lipari 73.43 0.07 12.64 1.50 0.04 0.04 0.76 4.00 5.14 0.01 97.62 

Lipari 73.30 0.08 12.77 1.77 0.08 0.05 0.76 3.98 5.30 0.01 98.10 

Lipari 72.86 0.08 12.80 1.25 0.06 0.00 0.73 4.12 5.30 0.01 97.20 

Lipari 72.94 0.08 12.61 1.69 0.04 0.06 0.74 3.93 5.13 0.00 97.22 

Lipari 72.96 0.08 12.91 1.62 0.05 0.04 0.72 3.94 5.18 0.00 97.50 

BCR-2G 54.38 2.25 13.50 11.88 0.18 3.64 7.03 3.11 1.85 0.34 98.16 

BCR-2G 54.61 2.25 13.14 12.46 0.16 3.68 7.07 3.29 1.90 0.35 98.91 

BCR-2G 54.57 2.25 13.42 12.31 0.20 3.71 7.33 3.22 1.86 0.33 99.22 

BCR-2G 54.07 2.26 13.18 12.18 0.19 3.54 7.23 3.14 1.87 0.33 97.99 

BCR-2G 54.24 2.26 13.19 13.06 0.19 3.60 7.33 3.16 1.89 0.32 99.23 

BCR-2G 53.37 2.25 13.50 12.77 0.19 3.77 7.17 3.26 1.85 0.35 98.47 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

FAL_3_CORE_K 73.19 0.22 12.75 3.07 0.09 0.01 0.95 5.27 3.59 0.00 99.12 

FAL_3_CORE_K 71.01 0.20 12.44 3.32 0.13 0.07 1.02 4.67 3.95 0.03 96.83 

FAL_3_CORE_K 69.30 0.28 12.87 3.61 0.14 0.18 1.37 5.36 3.40 0.04 96.55 

FAL_3_CORE_K 67.97 0.73 13.84 5.57 0.17 0.51 2.45 4.75 2.91 0.14 99.05 

FAL_3_CORE_K 63.89 0.93 15.03 7.70 0.22 1.23 4.54 4.73 1.69 0.30 100.27 

FAL_3_CORE_K 63.74 0.83 15.19 7.83 0.20 1.36 4.55 4.70 1.77 0.36 100.53 

FAL_3_CORE_K 63.72 0.93 15.40 7.65 0.23 1.33 4.58 4.74 1.72 0.30 100.61 

FAL_3_CORE_K 63.64 0.82 15.06 8.43 0.20 1.31 4.82 4.64 1.74 0.36 101.03 

FAL_3_CORE_K 63.54 0.93 15.15 7.64 0.23 1.29 4.44 4.44 1.69 0.32 99.65 

FAL_3_CORE_K 63.51 0.86 14.34 8.50 0.24 1.33 4.24 4.65 1.76 0.30 99.73 

FAL_3_CORE_K 63.43 0.98 15.24 8.30 0.20 1.34 4.46 4.76 1.71 0.35 100.77 

FAL_3_CORE_K 63.32 0.93 15.18 7.74 0.21 1.23 4.52 4.75 1.73 0.29 99.92 

FAL_3_CORE_K 62.97 0.95 14.69 7.98 0.23 1.30 4.39 4.80 1.80 0.31 99.43 

FAL_3_CORE_K 60.77 0.89 14.41 7.90 0.22 1.28 4.61 4.41 1.67 0.27 96.45 

FAL_3_CORE_K 60.70 0.91 14.36 7.70 0.20 1.27 4.48 4.18 1.75 0.31 95.86 

                        

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR-2G 54.84 2.26 13.48 12.46 0.19 3.67 7.14 3.15 1.77 0.35 99.30 

BCR-2G 54.54 2.27 13.38 12.24 0.20 3.80 7.04 3.20 1.79 0.35 98.80 

BCR-2G 55.57 2.25 13.57 12.42 0.18 3.74 7.31 3.44 1.78 0.35 100.62 

BCR-2G 55.26 2.26 13.59 12.32 0.20 3.81 7.17 3.19 1.85 0.36 100.00 

BCR-2G 54.35 2.26 13.37 12.78 0.20 3.74 7.08 3.41 1.81 0.35 99.36 

BCR-2G 55.27 2.28 13.31 12.74 0.19 3.79 7.16 3.20 1.76 0.33 100.03 

Lipari 73.81 0.08 12.69 1.76 0.05 0.04 0.74 4.20 5.28 0.00 98.66 

Lipari 74.29 0.08 12.74 1.60 0.06 0.04 0.76 4.07 5.20 0.01 98.86 

Lipari 73.96 0.08 13.03 1.62 0.08 0.03 0.72 4.16 5.35 0.01 99.04 

Lipari 74.76 0.08 12.89 1.60 0.06 0.02 0.79 4.15 5.19 0.00 99.55 

Lipari 75.23 0.07 13.30 1.63 0.06 0.04 0.66 4.25 5.21 0.01 100.46 

Lipari 73.16 0.08 12.51 1.65 0.07 0.06 0.72 4.32 5.43 0.00 98.00 
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Variable 1 Variable 2 p value Test statistic value 

Elevation of core 

location 

Total number of shards 1510 0.887 r = 0.04 

Total number of shards 1845 0.758 r = -0.09 

Total number of shards 1947 0.552 r = 0.18 

Apparent total carbon 

accumulation 

0.108 r = 0.45 

Distance from the 

edge of the peatland 

Total number of shards 1510 0.988 r = 0.004 

Total number of shards 1845 0.661 r = -0.13 

Total number of shards 1947 0.016 r = 0.65 

Apparent total carbon 

accumulation 

0.358 r = 0.27 

Chapter 3. Table S2. p values and test statistics for Spearman’s Rank Correlation Analysis in sections 

4.4.1. and 4.7.1. All analysis conducted in Minitab 17. The significant p value is highlighted in bold. A 

normality test was conducted on each variable prior to analysis. The result suggested that the majority of 

the variables were not normally distributed and therefore a non-parametric test was selected. 

Chapter 4: First discovery of Holocene cryptotephra in Amazonia  

Chapter 4. Supplementary Table 1: AUC1 Tephra geochemistry and standard data from EPMA 

Tephra  SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total  

AUC10 cm Population 1  76.33 0.12 12.79 0.93 0.03 0.27 1.34 4.23 2.77 0.04 98.86 

AUC10 cm Population 1  76.03 0.16 12.38 0.75 0.02 0.18 0.86 3.75 3.97 0.03 98.14 

AUC10 cm Population 1 75.29 0.16 11.59 0.74 0.01 0.17 0.89 3.85 3.30 0.02 96.02 

AUC10 cm Population 1 74.59 0.07 12.69 0.83 0.07 0.14 0.98 4.11 3.08 0.05 96.61 

AUC10 cm Population 1 74.73 0.10 12.27 0.78 0.02 0.25 1.18 4.24 2.71 0.04 96.32 

AUC10 cm Population 1 74.15 0.05 12.66 0.81 0.06 0.19 1.09 4.09 3.18 0.06 96.35 

AUC10 cm Population 1 75.71 0.15 11.56 0.73 0.03 0.17 0.83 3.56 3.53 0.03 96.32 

AUC10 cm Population 1 78.78 0.18 11.70 0.66 0.02 0.11 0.64 3.50 4.02 0.03 99.64 

AUC10 cm Population 1 77.00 0.10 12.49 0.82 0.03 0.24 1.02 4.27 2.81 0.04 98.83 

AUC10 cm Population 1 75.99 0.16 11.85 0.93 0.03 0.18 0.99 3.90 3.34 0.02 97.40 

AUC10 cm Population 1 73.41 0.06 12.98 0.79 0.07 0.16 1.04 4.13 3.18 0.05 95.87 

AUC10 cm Population 1 75.10 0.16 11.21 0.79 0.03 0.19 0.87 3.76 3.59 0.03 95.74 

AUC10 cm Population 1 73.73 0.06 12.52 0.65 0.06 0.16 0.94 4.10 3.12 0.05 95.40 

AUC10 cm Population 1 74.29 0.06 12.80 0.79 0.06 0.15 0.94 4.04 3.08 0.05 96.26 

AUC10 cm Population 1 77.14 0.17 12.32 1.00 0.03 0.22 0.99 3.87 3.99 0.04 99.76 

AUC10 cm Population 1 77.43 0.16 12.59 0.72 0.03 0.18 0.89 3.64 4.29 0.03 99.96 

AUC10 cm Population 1 74.79 0.35 12.77 1.82 0.06 0.40 1.47 4.16 3.17 0.06 99.05 

AUC10 cm Population 1 73.46 0.06 12.58 0.80 0.06 0.17 1.06 4.09 3.20 0.05 95.53 

AUC10 cm Population 1 75.31 0.24 12.97 1.03 0.02 0.26 1.42 4.09 3.33 0.04 98.71 

AUC10 cm Population 1 75.64 0.17 12.55 0.95 0.03 0.18 0.89 3.69 3.86 0.03 97.98 

AUC10 cm Population 1 76.56 0.17 12.00 0.84 0.02 0.15 0.96 3.66 3.81 0.04 98.21 
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AUC10 cm Population 1 73.54 0.12 12.34 0.91 0.03 0.31 1.40 4.36 2.60 0.04 95.66 

            

Min  73.41 0.05 11.21 0.65 0.01 0.11 0.64 3.50 2.60 0.02 95.40 

Max 78.78 0.35 12.98 1.82 0.07 0.40 1.47 4.36 4.29 0.06 99.96 

Mean 75.41 0.14 12.35 0.87 0.04 0.20 1.03 3.96 3.36 0.04 97.39 

Stdev  1.42 0.07 0.49 0.24 0.02 0.07 0.21 0.25 0.47 0.01 1.55 

            

Standard  SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total  

BCR2g (before unknowns) 54.72 2.25 13.29 12.26 0.20 3.66 7.15 3.11 1.76 0.36 98.76 

BCR2g (before unknowns) 55.57 2.28 13.55 12.72 0.21 3.65 6.98 3.31 1.84 0.35 100.47 

BCR2g (before unknowns) 54.63 2.27 13.71 12.43 0.20 3.81 7.19 3.23 1.83 0.35 99.65 

Lipari (before unknowns) 74.60 0.07 13.27 1.58 0.06 0.06 0.75 4.24 5.22 0.01 99.86 

Lipari (before unknowns) 73.69 0.08 12.80 1.51 0.07 0.03 0.74 4.08 5.13 0.00 98.14 

Lipari (before unknowns) 75.67 0.08 12.86 1.50 0.08 0.05 0.74 4.45 5.27 0.00 100.70 

            

BCR2g (after unknowns) 53.76 2.24 13.29 12.43 0.20 3.69 7.24 3.24 1.80 0.36 98.27 

BCR2g (after unknowns) 53.77 2.23 13.07 12.33 0.19 3.75 7.28 3.38 1.78 0.36 98.15 

BCR2g (after unknowns) 53.96 2.27 13.41 12.45 0.20 3.72 7.15 3.40 1.76 0.39 98.71 

BCR2g (after unknowns) 53.52 2.23 13.56 12.27 0.19 3.73 7.25 3.31 1.75 0.36 98.16 

BCR2g (after unknowns) 54.04 2.24 13.47 12.89 0.21 3.64 7.29 3.22 1.76 0.35 99.11 

BCR2g (after unknowns) 54.15 2.24 13.08 12.39 0.20 3.70 7.31 3.31 1.87 0.35 98.60 

Lipari (after unknowns) 74.90 0.09 12.79 1.67 0.06 0.03 0.75 4.32 5.25 0.00 99.87 

Lipari (after unknowns) 74.42 0.07 13.01 1.51 0.06 0.05 0.77 4.20 5.23 0.01 99.34 

Lipari (after unknowns) 73.94 0.08 12.83 1.41 0.06 0.06 0.74 4.11 5.27 0.01 98.50 

Lipari (after unknowns) 74.14 0.07 12.91 1.59 0.06 0.05 0.74 4.25 5.17 0.00 98.99 

Lipari (after unknowns) 74.44 0.07 12.85 1.55 0.07 0.05 0.77 4.35 5.11 0.01 99.27 

Lipari (after unknowns) 74.82 0.07 13.02 1.71 0.07 0.05 0.69 4.22 4.99 0.00 99.64 
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Chapter 5: Do peatlands or lakes provide the most comprehensive distal tephra 

records? 

Chapter 5. Supplementary file 1: Photographs of lakes and peatlands mentioned in the text. Photos 

courtesy of authors: EJW, ITL, GTS 
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Chapter 5. Supplementary Table 1. Raw geochemical data. The majority of tephra geochemical analysis 

was conducted using a Cameca SX100 electron probe microanalyser at Tephra Analytical Unit (TAU), 

School of Geosciences, University of Edinburgh. All analyses were conducted with a beam diameter of 5 

μm, 15kV and beam currents of 2 nA (Na, Mg, Al, Si, K, Ca, Fe) and 80 nA (P, Ti, Mn) (Hayward, 

2012). Secondary glass standards (basalt (BCR-2G) and rhyolite (Lipari)), were analysed before and after 

unknown tephra samples. Samples marked with a (*) were analysed at the University of Leeds using 15 

kV, 10μm beam diameter and a beam current of 10 nA. Analyses with low total oxide values (less than 

95%) were excluded. 

CLA-B1 = Öræfajökull 1362, Hekla 1510? Standard data = Group 1 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B1 72.24 0.21 13.08 2.93 0.09 0.02 1.05 4.42 3.72 0.02 97.77 

CLA-B1 72.14 0.22 13.10 3.31 0.10 0.02 1.03 5.05 3.62 0.02 98.62 

CLA-B1 71.41 0.14 16.16 1.64 0.05 0.02 3.01 5.86 2.08 0.06 100.44 

CLA-B1 68.61 0.89 14.10 4.58 0.11 0.35 2.29 4.74 3.35 0.17 99.18 

CLA-B1 68.24 0.82 13.51 4.21 0.16 0.73 2.21 5.01 3.29 0.18 98.37 

CLA-B1 63.49 0.84 15.50 7.80 0.22 1.31 4.75 4.68 1.76 0.33 100.69 

CLA-B1 50.06 2.62 13.54 12.52 0.20 5.73 10.02 2.70 0.48 0.29 98.15 

            

CLA-B2 = Unknown #4, mix? Standard data = Group 2 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B2 74.97 0.34 12.71 2.23 0.12 0.12 0.50 4.69 4.14 0.02 99.83 

CLA-B2 74.16 0.34 12.60 2.48 0.09 0.11 0.44 5.48 4.06 0.02 99.78 

CLA-B2 73.39 0.29 11.59 2.74 0.08 0.03 0.48 4.06 4.61 0.05 97.33 

CLA-B2 72.11 0.34 12.66 3.04 0.16 0.23 1.17 4.94 3.97 0.07 98.69 

CLA-B2 70.82 0.25 14.02 2.23 0.08 0.23 0.91 5.03 4.79 0.04 98.40 

CLA-B2 70.76 0.42 13.50 5.09 0.12 0.28 2.48 4.60 2.75 0.08 100.06 

CLA-B2 69.35 0.28 12.77 3.62 0.14 0.16 1.34 4.17 3.46 0.04 95.33 

CLA-B2 69.05 0.26 13.87 2.31 0.06 0.20 0.93 4.77 4.35 0.03 95.83 

CLA-B2 68.77 0.57 15.55 5.56 0.17 0.52 3.93 1.56 2.16 0.33 99.12 

CLA-B2 68.54 0.26 12.56 3.33 0.12 0.20 1.35 5.00 3.50 0.05 94.90 

CLA-B2 68.12 0.25 12.26 3.61 0.14 0.22 1.41 5.05 3.45 0.06 94.57 

CLA-B2 67.83 0.57 12.76 5.93 0.20 0.51 2.64 4.53 2.55 0.12 97.63 

CLA-B2 67.76 0.72 13.40 4.86 0.13 0.55 2.07 5.18 3.09 0.13 97.90 

CLA-B2 67.66 0.48 13.79 5.61 0.16 0.46 3.22 4.31 2.29 0.09 98.07 

CLA-B2 66.95 0.80 15.46 4.12 0.06 1.43 3.56 5.06 2.08 0.27 99.78 

CLA-B2 66.54 0.59 12.68 6.77 0.20 0.62 4.01 4.47 2.54 0.49 98.90 

CLA-B2 61.83 1.17 14.31 8.74 0.23 1.20 4.84 4.32 1.75 0.50 98.90 

CLA-B2 61.52 0.85 14.51 6.60 0.21 0.65 4.79 4.57 2.08 0.56 96.34 

CLA-B2 60.97 1.12 14.65 7.88 0.23 1.23 4.96 4.41 1.69 0.48 97.63 

CLA-B2 60.68 1.19 14.55 8.56 0.19 1.27 4.97 4.48 1.61 0.54 98.04 
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CLA-B2A = Hekla 1104 Standard data = Group 3 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B2A 72.14 0.21 13.79 2.88 0.10 0.12 1.87 4.17 2.76 0.02 98.00 

CLA-B2A 71.19 0.20 12.96 3.27 0.13 0.09 1.94 1.86 2.56 0.03 94.00 

CLA-B2A 70.55 0.19 12.36 3.08 0.12 0.12 1.92 4.52 2.74 0.02 96.00 

CLA-B2A 69.33 0.36 13.14 2.05 0.04 0.39 1.59 2.50 4.21 0.08 94.00 

            

CLA-B3 = MOR-T4 Standard data = Group 4 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B3 75.98 0.07 12.87 1.77 0.04 0.06 1.42 2.06 3.37 0.03 97.67 

CLA-B3 75.23 0.09 12.80 1.84 0.08 0.06 1.41 3.89 3.12 0.01 98.52 

CLA-B3 71.86 0.18 11.82 2.61 0.08 0.02 0.35 4.53 5.59 0.01 97.05 

CLA-B3 70.72 0.79 14.64 3.22 0.06 0.95 2.88 4.78 3.32 0.19 101.55 

CLA-B3 69.98 0.74 14.20 3.15 0.04 0.93 2.65 4.55 3.18 0.18 99.61 

CLA-B3 69.78 0.18 13.65 2.83 0.10 0.14 1.92 4.23 2.71 0.03 95.57 

CLA-B3 69.77 0.70 14.70 3.00 0.04 0.88 2.54 4.56 3.36 0.17 99.72 

CLA-B3 69.64 0.81 14.78 3.38 0.06 1.04 3.10 4.48 3.19 0.19 100.66 

CLA-B3 68.83 0.77 14.95 3.12 0.05 1.03 2.92 4.78 3.22 0.20 99.88 

CLA-B3 68.83 0.76 15.52 3.21 0.06 1.07 2.96 4.98 3.12 0.20 100.70 

CLA-B3 68.65 0.69 14.83 2.98 0.06 0.89 2.60 4.11 3.42 0.18 98.42 

CLA-B3 68.53 0.81 14.97 3.18 0.05 1.13 2.95 4.78 3.06 0.21 99.67 

CLA-B3 68.20 0.72 14.85 3.06 0.04 1.14 3.08 4.50 3.17 0.20 98.95 

CLA-B3 68.09 0.79 15.09 3.25 0.05 1.08 2.90 3.67 3.17 0.20 98.31 

CLA-B3 67.72 0.74 14.73 3.24 0.06 1.11 3.02 4.76 3.23 0.19 98.78 

CLA-B3 67.31 0.78 14.48 3.08 0.05 0.99 2.96 4.55 3.07 0.20 97.46 

CLA-B3 67.21 0.65 14.90 3.21 0.05 1.07 3.39 4.43 3.11 0.17 98.19 

CLA-B3 67.06 0.80 15.18 3.32 0.05 1.11 3.14 4.62 3.20 0.22 98.70 

CLA-B3 65.55 0.79 14.33 3.15 0.04 1.03 2.96 4.45 3.29 0.20 95.79 

CLA-B3 65.38 0.72 14.52 3.25 0.03 1.00 2.69 4.29 3.24 0.19 95.31 

            

CLA-B4 = AD 860 B Standard data = Group 2 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B4 73.98 0.22 14.43 1.62 0.05 0.39 1.93 2.05 2.94 0.05 97.67 

CLA-B4 73.70 0.20 14.72 1.47 0.05 0.41 1.99 4.07 3.04 0.06 99.71 

CLA-B4 73.11 0.21 14.21 1.49 0.03 0.42 2.09 4.14 3.13 0.05 98.88 

CLA-B4 73.08 0.20 14.22 1.65 0.03 0.41 1.96 4.28 3.14 0.06 99.03 

CLA-B4 72.88 0.20 14.17 1.55 0.04 0.39 2.10 4.25 3.19 0.06 98.82 

CLA-B4 72.83 0.21 14.10 1.44 0.05 0.42 1.93 4.34 3.04 0.05 98.40 

CLA-B4 72.63 0.21 14.33 1.58 0.04 0.34 1.96 4.27 3.01 0.05 98.41 

CLA-B4 72.55 0.19 14.14 1.58 0.04 0.39 1.90 4.24 3.15 0.07 98.23 

CLA-B4 72.47 0.20 13.87 1.60 0.04 0.41 1.93 4.08 2.99 0.05 97.65 

CLA-B4 72.40 0.21 13.76 1.39 0.05 0.39 1.92 3.74 3.04 0.06 96.97 

CLA-B4 72.00 0.20 13.35 1.54 0.05 0.41 1.98 3.90 3.08 0.06 96.56 

CLA-B4 71.03 0.16 15.00 1.21 0.04 0.28 2.35 4.52 2.59 0.05 97.23 
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CLA-B5 = Microlite GB4-150 Standard data = Group 4  

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B5 74.95 0.12 12.39 1.26 0.03 0.08 0.83 4.29 3.74 0.01 97.70 

CLA-B5 74.93 0.12 12.11 1.20 0.03 0.07 0.67 3.07 4.44 0.02 96.67 

CLA-B5 74.43 0.16 12.45 1.38 0.04 0.09 0.83 4.20 4.29 0.02 97.88 

CLA-B5 74.14 0.16 12.57 1.55 0.04 0.12 1.00 3.33 4.27 0.02 97.21 

CLA-B5 72.82 0.15 12.50 1.72 0.05 0.10 0.90 3.90 4.21 0.02 96.38 

CLA-B5 72.05 0.69 12.74 3.43 0.12 0.42 0.77 3.68 3.36 0.09 97.36 

CLA-B5 70.55 0.75 12.80 3.44 0.13 0.44 1.55 4.57 3.29 0.11 97.64 

CLA-B5 68.31 0.74 12.60 3.29 0.14 0.53 1.56 4.32 3.88 0.11 95.48 

CLA-B5 65.99 1.36 13.98 5.60 0.19 1.34 3.80 4.58 2.47 0.34 99.67 

CLA-B5 65.93 1.36 14.03 5.66 0.19 1.27 3.43 4.79 2.80 0.34 99.78 

CLA-B5 65.86 1.35 13.69 6.24 0.19 1.47 3.94 4.94 2.48 0.34 100.50 

CLA-B5 65.54 1.32 13.57 6.30 0.21 1.34 3.63 4.52 2.55 0.35 99.33 

CLA-B5 65.44 1.35 13.89 5.98 0.19 1.38 3.47 4.93 2.60 0.33 99.55 

CLA-B5 65.30 1.35 13.61 6.09 0.19 1.39 3.47 4.94 2.57 0.35 99.26 

CLA-B5 65.12 1.27 13.80 6.16 0.19 1.52 3.87 4.47 2.45 0.31 99.17 

CLA-B5 65.06 1.35 13.53 5.63 0.20 1.36 3.44 4.85 2.53 0.34 98.30 

CLA-B5 65.04 1.32 13.56 6.48 0.21 1.54 3.62 4.37 2.52 0.36 99.02 

            

CLA-B6-B7 Hekla 4 + SILK N2 Standard data = Group 2 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B6-7 74.56 0.09 12.69 1.81 0.08 0.03 1.30 4.58 2.76 0.02 97.91 

CLA-B6-7 74.00 0.09 12.40 1.67 0.08 0.00 1.30 4.74 2.89 0.01 97.17 

CLA-B6-7 73.68 0.07 12.23 1.78 0.07 0.01 1.24 3.98 2.66 0.01 95.73 

CLA-B6-7 73.65 0.07 12.34 1.70 0.07 0.01 1.19 3.77 2.70 0.01 95.53 

CLA-B6-7 73.63 0.09 12.60 2.00 0.08 0.03 1.34 4.57 2.79 0.02 97.14 

CLA-B6-7 73.58 0.07 12.09 1.81 0.06 0.04 1.31 4.04 2.70 0.01 95.71 

CLA-B6-7 73.50 0.08 12.08 1.81 0.07 0.03 1.36 4.68 2.82 0.07 96.50 

CLA-B6-7 73.35 0.09 12.07 1.87 0.08 0.00 1.43 4.56 2.87 0.01 96.32 

CLA-B6-7 73.34 0.09 12.54 1.77 0.06 0.01 1.25 4.34 2.73 0.01 96.13 

CLA-B6-7 73.15 0.08 12.59 1.83 0.07 0.02 1.41 4.03 2.70 0.01 95.91 

CLA-B6-7 73.15 0.07 11.66 1.87 0.07 0.04 1.39 4.35 2.62 0.02 95.24 

CLA-B6-7 72.75 0.17 13.37 3.00 0.11 0.02 1.98 5.20 2.44 0.03 99.06 

CLA-B6-7 72.75 0.09 12.67 1.99 0.07 0.00 1.27 4.30 2.77 0.03 95.94 

CLA-B6-7 72.65 0.09 12.58 1.83 0.08 0.01 1.34 4.37 2.82 0.02 95.78 

CLA-B6-7 71.53 0.14 12.61 2.04 0.09 0.07 1.43 4.47 2.70 0.02 95.08 

CLA-B6-7 71.02 0.68 13.70 3.29 0.14 0.53 1.42 5.10 3.36 0.09 99.35 

CLA-B6-7 70.11 0.16 13.20 3.02 0.13 0.05 1.85 4.84 2.45 0.02 95.85 

CLA-B6-7 68.14 0.32 13.89 5.96 0.19 0.19 3.26 5.03 2.11 0.08 99.17 

CLA-B6-7 67.80 0.34 13.55 5.31 0.19 0.21 3.01 4.85 2.06 0.08 97.40 

CLA-B6-7 66.76 0.44 13.95 6.63 0.24 0.26 3.58 4.90 2.01 0.10 98.87 

CLA-B6-7 65.96 1.44 14.03 6.10 0.18 1.41 3.67 4.74 2.60 0.42 100.57 

CLA-B6-7 64.92 1.43 13.47 6.23 0.18 1.36 3.40 4.66 2.56 0.37 98.56 

CLA-B6-7 64.76 1.43 13.60 5.81 0.18 1.29 3.43 4.47 2.65 0.35 97.98 

CLA-B6-7 64.75 1.44 13.83 5.87 0.17 1.35 3.58 4.58 2.73 0.34 98.63 

CLA-B6-7 64.63 1.43 13.14 5.86 0.17 1.29 3.48 4.64 2.76 0.33 97.74 
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CLA-B6-7 64.57 1.43 13.66 5.70 0.18 1.39 3.40 4.43 2.67 0.34 97.77 

CLA-B6-7 64.25 1.50 13.37 5.65 0.20 1.45 3.64 4.39 2.72 0.37 97.56 

CLA-B6-7 63.41 1.41 13.46 6.02 0.14 1.44 3.56 4.36 2.63 0.34 96.78 

CLA-B6-7 49.96 3.24 12.32 14.43 0.22 4.81 9.32 2.69 0.54 0.36 97.88 

            

CLA-B8 = Lairg A Standard data = Group 3 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-B8 73.13 0.17 11.76 1.56 0.03 0.14 0.93 3.90 3.71 0.04 95.37 

CLA-B8 73.04 0.08 12.02 1.57 0.07 0.00 1.26 3.50 2.83 0.02 94.38 

CLA-B8 60.60 1.16 14.81 8.94 0.27 1.82 5.16 4.30 1.55 0.43 99.03 

CLA-B8 50.46 2.67 13.15 12.20 0.20 5.80 10.11 2.84 0.48 0.31 98.22 

            

CLA-L1 = Unknown #3 Grímsvötn basaltic tephra Standard data = Group 5 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L1 67.30 1.30 14.25 5.50 0.18 1.21 3.12 4.99 2.81 0.30 100.96 

CLA-L1 63.78 0.92 14.96 7.42 0.18 1.24 4.46 4.53 1.87 0.33 99.70 

CLA-L1 50.71 2.34 14.85 11.70 0.19 5.54 10.92 3.02 0.38 0.28 99.92 

CLA-L1 50.70 2.54 13.76 11.39 0.19 6.73 11.59 2.51 0.45 0.25 100.10 

CLA-L1 50.69 2.52 13.12 12.83 0.20 6.18 10.66 2.68 0.41 0.27 99.56 

CLA-L1 50.54 2.65 13.69 13.29 0.22 5.86 10.33 2.81 0.40 0.28 100.08 

CLA-L1 50.53 2.53 13.26 13.36 0.19 5.80 10.67 2.66 0.37 0.29 99.67 

CLA-L1 50.48 2.52 13.68 12.26 0.21 6.07 10.85 2.68 0.38 0.26 99.41 

CLA-L1 50.46 2.56 13.72 13.02 0.20 6.06 10.79 2.60 0.36 0.29 100.06 

CLA-L1 50.37 2.49 13.37 12.81 0.19 6.23 10.73 2.73 0.39 0.25 99.56 

CLA-L1 50.34 2.58 13.50 11.59 0.18 6.89 11.75 2.65 0.38 0.29 100.15 

CLA-L1 50.29 2.49 13.63 13.07 0.20 6.18 10.80 2.57 0.35 0.28 99.87 

CLA-L1 50.16 2.63 13.47 13.65 0.24 5.52 10.32 2.72 0.38 0.29 99.37 

CLA-L1 49.89 2.57 13.44 11.70 0.20 6.57 11.76 3.10 0.38 0.27 99.88 

CLA-L1 49.85 2.87 12.92 13.36 0.20 5.52 10.06 2.70 0.48 0.32 98.29 

CLA-L1 49.63 2.52 13.18 12.50 0.19 6.18 10.53 2.57 0.38 0.28 97.96 

CLA-L1 49.21 2.50 13.44 13.25 0.21 6.35 10.66 2.55 0.41 0.26 98.83 

CLA-L1 49.18 2.55 13.26 12.47 0.17 6.45 10.95 2.76 0.46 0.28 98.52 

CLA-L1 49.07 2.53 13.01 12.98 0.21 6.26 10.91 2.90 0.39 0.29 98.55 

            

CLA-L2 = MOR T4 Standard data = Group 6 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L2 70.38 0.79 14.87 3.12 0.05 0.87 2.55 4.28 3.23 0.19 100.34 

CLA-L2 68.33 0.78 16.06 3.55 0.05 1.03 3.24 4.48 3.23 0.21 100.96 

            

CLA-L3 = Hekla 4 Standard data = Group 6 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L3 72.77 0.20 11.47 3.57 0.10 -0.01 1.38 3.77 3.23 0.02 96.52 
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CLA-L4 = Lairg B Standard data = Group 5 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L4 71.56 0.29 14.61 2.18 0.06 0.24 1.04 5.15 4.62 0.04 99.78 

CLA-L4 71.13 0.24 14.25 2.32 0.05 0.17 0.91 5.07 4.77 0.04 98.97 

CLA-L4 71.04 0.19 13.90 2.22 0.04 0.14 0.73 5.27 4.73 0.03 98.29 

CLA-L4 70.30 0.19 13.38 2.27 0.05 0.15 0.74 5.27 4.51 0.03 96.90 

CLA-L4 70.27 0.20 13.68 2.23 0.06 0.14 0.76 5.20 4.56 0.02 97.10 

CLA-L4 70.07 0.20 13.80 2.25 0.06 0.11 0.71 5.06 4.65 0.02 96.93 

CLA-L4 69.99 0.39 13.85 2.86 0.07 0.29 1.15 5.07 4.30 0.05 98.02 

CLA-L4 69.91 0.26 13.92 2.70 0.08 0.26 1.09 5.21 4.17 0.03 97.64 

CLA-L4 69.89 0.20 13.65 2.19 0.08 0.18 0.65 5.40 4.47 0.02 96.73 

CLA-L4 69.87 0.19 13.00 2.24 0.06 0.14 0.72 5.38 4.58 0.02 96.19 

CLA-L4 69.86 0.21 13.55 1.99 0.04 0.15 0.78 5.10 4.51 0.02 96.22 

CLA-L4 69.66 0.19 13.53 2.18 0.08 0.13 0.74 5.35 4.57 0.02 96.46 

CLA-L4 69.64 0.21 13.73 1.97 0.08 0.17 0.70 5.23 4.58 0.01 96.31 

CLA-L4 69.56 0.19 13.39 2.04 0.05 0.12 0.66 5.22 4.60 0.03 95.86 

CLA-L4 69.52 0.31 14.23 2.67 0.05 0.27 1.21 5.15 4.55 0.04 97.99 

CLA-L4 69.49 0.34 14.36 2.95 0.09 0.37 1.35 5.24 4.26 0.05 98.49 

CLA-L4 69.30 0.50 14.32 3.43 0.09 0.43 1.34 5.01 4.27 0.10 98.79 

CLA-L4 69.03 0.22 13.94 2.26 0.07 0.19 0.92 5.27 4.48 0.03 96.42 

CLA-L4 68.98 0.32 14.10 3.27 0.09 0.65 1.61 4.96 4.23 0.07 98.28 

CLA-L4 68.84 0.42 14.86 3.44 0.05 0.45 1.45 5.24 4.20 0.08 99.01 

CLA-L4 68.04 0.23 13.64 2.40 0.06 0.18 0.84 5.25 4.41 0.03 95.08 

            

CLA-L5 = Lairg A Standard data = Group 5 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

CLA-L5 75.97 0.09 12.69 1.82 0.06 0.05 1.23 4.60 2.71 0.03 99.24 

CLA-L5 75.71 0.08 12.64 1.59 0.08 0.04 1.37 4.43 2.80 0.01 98.74 

CLA-L5 75.35 0.07 12.04 1.70 0.03 0.04 1.32 4.26 2.85 0.01 97.68 

CLA-L5 74.94 0.08 12.06 1.65 0.07 0.04 1.34 4.49 2.68 0.01 97.38 

CLA-L5 74.74 0.07 12.10 1.78 0.06 0.02 1.31 4.11 2.81 0.01 97.01 

CLA-L5 74.53 0.08 12.08 1.74 0.07 0.01 1.27 4.14 2.67 0.01 96.59 

CLA-L5 74.53 0.07 11.87 1.61 0.05 0.07 1.28 4.25 2.72 0.01 96.47 

CLA-L5 74.47 0.09 12.36 1.71 0.07 0.03 1.36 4.24 2.68 0.02 97.02 

CLA-L5 74.38 0.06 13.60 1.53 0.06 0.02 1.63 4.61 2.52 0.01 98.43 

CLA-L5 74.35 0.07 12.19 1.51 0.08 0.04 1.32 4.07 2.76 0.01 96.40 

CLA-L5 74.09 0.08 12.59 1.74 0.07 0.01 1.39 4.24 2.74 0.01 96.94 

CLA-L5 74.02 0.08 12.24 1.64 0.06 0.03 1.16 4.44 2.78 0.01 96.47 

CLA-L5 73.83 0.07 12.46 1.62 0.04 0.04 1.27 4.05 2.84 0.03 96.24 

CLA-L5 73.65 0.08 12.32 1.73 0.07 0.03 1.27 4.31 2.63 0.01 96.11 

CLA-L5 73.56 0.08 12.43 1.63 0.05 0.05 1.27 4.31 2.79 0.02 96.19 

CLA-L5 73.47 0.09 12.29 1.51 0.05 0.04 1.24 4.19 2.70 0.02 95.61 

CLA-L5 73.45 0.08 12.13 1.46 0.05 0.02 1.34 4.40 2.72 0.04 95.69 

CLA-L5 73.44 0.07 12.25 1.61 0.07 0.03 1.27 4.09 2.58 0.03 95.45 

CLA-L5 73.18 0.08 12.20 1.46 0.05 0.04 1.28 4.20 2.72 0.01 95.22 

CLA-L5 73.14 0.09 11.99 1.54 0.05 0.03 1.32 4.21 2.76 0.02 95.14 
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SV-B1 = Askja 1875 Standard data = Group 4 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B1 75.20 0.68 11.52 2.99 0.08 0.49 2.00 3.27 2.54 0.10 98.89 

SV-B1 74.49 0.75 12.03 3.11 0.10 0.58 2.28 4.11 2.50 0.13 100.08 

SV-B1 74.32 0.80 12.53 3.37 0.11 0.65 2.49 3.77 2.44 0.15 100.62 

SV-B1 74.15 0.76 12.38 3.13 0.09 0.63 2.34 4.06 2.52 0.13 100.17 

SV-B1 74.12 0.79 12.52 3.59 0.10 0.69 2.51 3.97 2.39 0.15 100.82 

SV-B1 73.94 0.82 12.26 3.44 0.10 0.71 2.64 4.14 2.42 0.16 100.63 

SV-B1 73.71 0.80 12.07 3.57 0.10 0.72 2.57 3.77 2.41 0.14 99.88 

SV-B1 73.58 0.80 12.55 3.56 0.10 0.79 2.51 3.99 2.38 0.17 100.43 

SV-B1 73.53 0.79 12.30 3.52 0.11 0.70 2.35 3.90 2.52 0.14 99.88 

SV-B1 73.46 0.81 12.27 3.33 0.09 0.72 2.46 4.06 2.37 0.16 99.75 

SV-B1 72.92 0.81 12.27 3.65 0.10 0.70 2.54 3.84 2.35 0.18 99.37 

SV-B1 72.78 0.82 12.15 3.39 0.10 0.76 2.56 2.99 2.44 0.17 98.17 

SV-B1 72.51 0.80 12.52 3.47 0.11 0.78 2.52 3.67 2.42 0.19 98.98 

SV-B1 72.38 0.80 12.17 3.27 0.10 0.69 2.40 3.70 2.51 0.16 98.17 

SV-B1 72.26 0.80 12.25 3.60 0.11 0.73 2.54 4.05 2.35 0.18 98.89 

SV-B1 71.65 0.67 12.07 3.31 0.10 0.58 2.39 3.66 2.33 0.15 96.91 

            

SV-B2 = Hekla1158 + Hekla 1104 Standard data = Group 3 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B2 71.11 0.20 13.75 3.35 0.10 0.11 1.93 4.62 2.74 0.03 97.94 

SV-B2 68.20 0.47 14.16 5.53 0.18 0.46 2.99 4.79 2.28 0.11 99.16 

SV-B2 68.15 0.51 12.79 6.80 0.22 0.46 2.66 4.41 2.61 0.10 98.69 

SV-B2 67.93 0.48 14.06 5.58 0.19 0.43 3.04 4.58 2.27 0.11 98.67 

SV-B2 67.90 0.44 14.37 4.95 0.16 0.33 3.29 5.09 2.13 0.11 98.77 

SV-B2 67.70 0.47 13.98 5.53 0.18 0.37 3.07 4.83 2.35 0.09 98.59 

SV-B2 67.57 0.46 14.46 5.71 0.17 0.42 3.10 4.70 2.26 0.11 98.97 

SV-B2 67.39 0.47 13.88 5.11 0.18 0.45 3.09 5.12 2.35 0.10 98.15 

SV-B2 67.38 0.43 14.93 5.36 0.15 0.41 3.18 4.62 2.18 0.09 98.73 

SV-B2 67.34 0.47 13.65 5.37 0.18 0.36 2.89 4.39 2.43 0.10 97.19 

SV-B2 67.34 0.46 14.23 5.58 0.17 0.41 3.02 4.59 2.38 0.10 98.28 

SV-B2 67.14 0.47 13.88 5.90 0.18 0.42 2.79 4.36 2.59 0.10 97.82 

SV-B2 67.10 0.47 14.71 5.56 0.19 0.41 2.90 4.55 2.25 0.10 98.22 

SV-B2 67.02 0.46 13.83 5.76 0.19 0.44 3.02 4.76 2.22 0.10 97.80 

SV-B2 66.74 0.44 16.14 4.77 0.17 0.34 3.56 5.29 1.98 0.09 99.53 

            

SV-B3 = Hekla 3 Standard data = Group 1 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B3 74.59 0.09 12.77 1.94 0.08 0.02 1.33 4.46 3.00 0.02 98.30 

SV-B3 74.55 0.22 12.94 1.15 0.05 0.33 1.38 3.38 2.98 0.04 97.00 

SV-B3 73.69 0.09 12.51 1.78 0.08 0.02 1.40 3.80 2.99 0.03 96.39 

SV-B3 73.62 0.18 14.18 3.16 0.09 0.13 2.03 4.01 2.62 0.04 100.06 

SV-B3 73.43 0.09 12.43 1.92 0.08 0.00 1.37 4.57 2.91 0.01 96.80 
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SV-B3 72.84 0.18 13.83 2.96 0.10 0.12 2.00 5.00 2.52 0.02 99.56 

SV-B3 72.77 0.19 13.92 3.10 0.10 0.11 1.90 4.84 2.52 0.02 99.48 

SV-B3 72.67 0.18 13.98 3.02 0.10 0.14 2.14 5.04 2.54 0.03 99.85 

SV-B3 72.46 0.18 13.72 2.91 0.10 0.09 2.06 4.70 2.45 0.02 98.69 

SV-B3 72.17 0.18 13.45 3.20 0.11 0.12 2.04 4.80 2.56 0.03 98.65 

SV-B3 72.15 0.18 14.16 2.79 0.10 0.15 2.00 5.00 2.65 0.04 99.22 

SV-B3 71.94 0.18 13.47 2.80 0.09 0.11 1.97 4.52 2.61 0.03 97.72 

SV-B3 71.61 0.87 12.15 3.83 0.12 0.75 2.95 3.87 2.42 0.21 98.80 

SV-B3 71.13 0.18 13.63 3.01 0.10 0.09 2.01 3.77 2.63 0.03 96.57 

SV-B3 70.66 0.23 13.96 3.51 0.12 0.13 2.38 4.80 2.43 0.04 98.27 

SV-B3 69.96 0.14 13.27 2.71 0.09 0.10 1.99 4.02 2.63 0.05 94.96 

SV-B3 69.48 0.35 13.00 4.77 0.22 0.08 0.50 6.70 4.93 0.04 100.06 

SV-B3 69.32 0.23 14.01 3.65 0.14 0.13 2.37 4.74 2.46 0.05 97.11 

SV-B3 68.59 0.35 12.54 4.84 0.21 0.09 0.51 6.49 4.55 0.03 98.20 

SV-B3 68.42 0.37 14.92 5.34 0.17 0.37 3.18 4.42 2.15 0.10 99.45 

SV-B3 67.13 0.42 14.28 5.65 0.19 0.45 3.31 5.09 2.09 0.11 98.72 

            

SV-B4 = Hekla-S/Kebister Standard data = Group 6 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B4 70.72 0.47 14.59 2.28 0.15 0.54 1.89 5.00 3.01 0.09 98.74 

SV-B4 70.54 0.17 12.96 3.01 0.09 0.11 1.85 4.38 2.67 0.04 95.83 

SV-B4 70.50 0.18 13.25 3.04 0.09 0.09 1.94 4.03 2.56 0.04 95.73 

SV-B4 68.35 0.74 14.18 4.52 0.15 0.49 2.03 4.52 3.27 0.14 98.40 

SV-B4 66.66 0.42 14.32 5.56 0.15 0.45 3.28 4.29 2.07 0.16 97.37 

            

SV-B5 = Hekla 4 Standard data = Group 6 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B5 76.70 0.09 12.62 1.28 0.06 0.03 1.05 4.15 2.94 0.02 98.94 

SV-B5 75.28 0.36 11.09 2.33 0.10 0.09 0.38 3.92 4.23 0.01 97.79 

SV-B5 75.10 0.07 12.21 1.73 0.07 0.02 1.37 3.99 2.74 0.00 97.30 

SV-B5 75.08 0.10 12.28 1.68 0.09 0.03 1.24 4.53 2.90 0.01 97.94 

SV-B5 74.47 0.09 12.96 2.06 0.08 0.01 1.33 4.69 2.82 0.01 98.54 

SV-B5 74.38 0.20 11.81 2.37 0.08 0.01 0.43 4.57 3.93 0.01 97.77 

SV-B5 73.88 0.10 13.53 1.90 0.08 0.02 1.36 4.11 2.89 0.06 97.93 

SV-B5 73.70 0.09 12.63 1.82 0.09 0.01 1.27 4.25 2.81 0.01 96.69 

SV-B5 73.60 0.10 12.71 1.96 0.08 0.03 1.28 4.45 2.74 0.01 96.95 

SV-B5 73.41 0.09 12.39 1.90 0.08 0.01 1.33 4.08 2.89 0.01 96.19 

SV-B5 73.33 0.10 12.38 1.99 0.06 0.00 1.28 4.65 2.88 0.03 96.70 

SV-B5 73.29 0.09 12.71 1.81 0.09 0.02 1.34 4.07 2.77 0.01 96.19 

SV-B5 73.28 0.08 12.53 1.84 0.07 0.02 1.33 4.29 2.88 0.06 96.39 

SV-B5 73.24 0.09 13.21 2.12 0.08 0.02 1.35 4.52 2.83 0.01 97.48 

SV-B5 72.86 0.10 12.12 1.79 0.09 0.03 1.25 4.22 2.78 0.02 95.25 

SV-B5 69.74 0.33 12.08 3.66 0.13 0.22 1.71 3.78 2.56 0.26 94.47 

            

SV-B6 = Lairg A Standard data = Group 1 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-B6 76.08 0.07 12.37 1.75 0.06 0.01 1.25 4.39 2.66 0.00 98.64 
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SV-B6 75.78 0.07 12.10 1.73 0.05 0.03 1.24 4.38 2.71 0.01 98.12 

SV-B6 75.69 0.07 12.67 1.65 0.07 0.06 1.29 4.58 2.76 0.01 98.85 

SV-B6 75.66 0.07 12.36 1.81 0.06 0.04 1.34 4.55 2.69 0.01 98.59 

SV-B6 75.45 0.07 12.58 1.46 0.06 0.03 1.30 4.31 2.61 0.03 97.90 

SV-B6 75.45 0.07 12.55 1.63 0.07 0.04 1.28 4.62 2.55 0.01 98.27 

SV-B6 75.40 0.07 12.33 1.51 0.06 0.02 1.34 4.53 2.65 0.02 97.92 

SV-B6 75.39 0.08 12.09 1.70 0.06 0.01 1.25 4.28 2.66 0.02 97.53 

SV-B6 75.36 0.08 12.42 1.68 0.07 0.04 1.31 4.42 2.73 0.01 98.11 

SV-B6 75.35 0.08 12.81 1.55 0.06 0.03 1.36 4.31 2.74 0.01 98.29 

SV-B6 75.34 0.09 12.31 1.67 0.06 0.04 1.27 4.48 2.61 0.01 97.88 

SV-B6 75.32 0.07 12.39 1.82 0.06 0.04 1.29 4.57 2.95 0.02 98.54 

SV-B6 75.30 0.08 12.46 1.67 0.06 0.02 1.34 4.32 2.73 0.02 97.98 

SV-B6 75.12 0.09 12.41 1.57 0.06 0.06 1.24 4.56 2.66 0.01 97.78 

SV-B6 74.90 0.08 12.57 1.63 0.06 0.04 1.33 4.46 2.70 0.01 97.78 

SV-B6 74.88 0.08 12.34 1.66 0.07 0.00 1.34 4.35 2.66 0.01 97.38 

SV-B6 74.86 0.08 12.64 1.62 0.07 0.05 1.35 4.59 2.84 0.02 98.13 

SV-B6 74.85 0.08 12.30 1.64 0.07 0.04 1.28 4.37 2.60 0.00 97.22 

SV-B6 74.84 0.07 12.38 1.62 0.07 0.04 1.25 4.23 2.78 0.02 97.30 

SV-B6 74.73 0.08 12.16 1.76 0.06 0.04 1.32 4.48 2.75 0.02 97.40 

SV-B6 74.68 0.07 12.52 1.62 0.07 0.04 1.30 4.66 2.70 0.02 97.69 

SV-B6 74.23 0.07 12.27 1.69 0.06 0.03 1.39 4.73 2.64 0.02 97.11 

SV-B6 73.92 0.07 13.47 1.47 0.06 0.04 1.51 5.04 2.33 0.01 97.92 

            

SV-L1 = Hekla 1104 + Hekla 1158 Standard data = Group 7 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-L1 74.69 0.16 13.09 1.83 0.04 0.10 0.92 4.78 3.70 0.01 99.30 

SV-L1 73.62 0.21 15.26 1.47 0.04 0.37 1.94 4.99 3.25 0.06 101.21 

SV-L1 73.02 0.20 14.17 1.64 0.02 0.44 2.04 5.27 3.24 0.05 100.10 

SV-L1 72.55 0.20 13.65 3.16 0.12 0.14 2.01 5.51 2.83 0.02 100.18 

SV-L1 72.45 0.20 14.98 3.41 0.10 0.13 1.92 5.65 2.80 0.02 101.66 

SV-L1 72.34 0.22 14.72 3.17 0.11 0.11 2.07 5.34 2.82 0.02 100.93 

SV-L1 71.91 0.20 14.07 3.28 0.12 0.16 2.00 5.33 2.79 0.03 99.89 

SV-L1 71.75 0.20 14.59 3.12 0.11 0.13 2.02 5.49 2.73 0.03 100.15 

SV-L1 70.07 0.56 12.74 6.24 0.22 0.42 2.34 4.97 2.90 0.11 100.58 

SV-L1 69.90 0.20 14.71 3.19 0.10 0.08 1.85 5.18 2.63 0.02 97.87 

SV-L1 68.91 0.47 14.51 5.83 0.15 0.46 3.04 5.48 2.36 0.09 101.29 

SV-L1 68.67 0.46 15.22 5.79 0.16 0.47 3.15 5.26 2.36 0.08 101.64 

SV-L1 68.50 0.48 14.77 5.49 0.16 0.46 3.17 5.54 2.29 0.10 100.95 

SV-L1 68.28 0.48 15.33 5.67 0.18 0.42 3.12 5.48 2.36 0.10 101.42 

SV-L1 67.91 0.46 14.26 5.74 0.18 0.49 3.12 5.12 2.39 0.09 99.77 

SV-L1 67.77 0.47 14.95 5.80 0.18 0.44 3.08 4.83 2.38 0.08 99.99 

SV-L1 67.62 0.47 15.79 5.43 0.15 0.42 3.14 5.15 2.28 0.09 100.54 

SV-L1 67.48 0.47 14.71 5.62 0.18 0.46 3.00 5.43 2.28 0.10 99.72 

SV-L1 66.94 0.29 18.25 3.22 0.09 0.24 4.46 6.63 1.44 0.06 101.63 

SV-L1 50.48 1.93 14.12 13.07 0.21 6.43 11.17 2.66 0.21 0.17 100.47 

SV-L1 49.94 1.90 14.09 12.79 0.22 6.70 11.39 2.70 0.29 0.19 100.22 
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SV-L2 = QUB 570 Group 2 (c. AD 650)?(Unknown #2) Standard data = Group 8 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-L2 64.66 0.95 16.50 6.54 0.18 1.45 4.65 4.83 1.59 0.33 101.68 

SV-L2 64.43 0.93 16.39 6.33 0.14 1.36 4.50 4.67 1.52 0.30 100.58 

SV-L2 64.15 0.95 15.54 6.82 0.14 1.35 4.60 4.68 1.57 0.35 100.15 

SV-L2 63.93 0.99 15.27 7.06 0.19 1.56 5.01 4.59 1.56 0.34 100.50 

SV-L2 63.85 0.94 16.19 6.79 0.17 1.44 4.76 4.97 1.59 0.31 101.00 

SV-L2 63.76 0.96 15.59 6.92 0.16 1.40 4.75 5.02 1.64 0.31 100.49 

SV-L2 63.49 0.89 18.66 5.05 0.18 1.06 5.57 5.45 1.16 0.31 101.83 

SV-L2 63.41 1.03 15.97 7.58 0.18 1.53 4.58 4.71 1.68 0.34 101.01 

SV-L2 63.33 1.00 15.92 7.07 0.19 1.52 4.85 5.32 1.56 0.34 101.11 

SV-L2 63.13 0.96 15.98 7.26 0.21 1.54 4.94 5.11 1.50 0.33 100.97 

SV-L2 63.06 0.99 16.06 7.17 0.17 1.48 5.25 5.19 1.54 0.36 101.27 

SV-L2 62.96 1.00 15.52 7.54 0.18 1.49 4.90 5.28 1.53 0.35 100.76 

SV-L2 62.72 0.98 15.95 7.23 0.16 1.58 4.87 4.94 1.53 0.34 100.31 

SV-L2 62.67 0.98 15.93 6.73 0.19 1.57 4.57 4.83 1.57 0.33 99.36 

SV-L2 62.51 0.91 15.42 7.26 0.17 1.52 5.37 5.27 1.41 0.34 100.20 

SV-L2 62.34 1.00 16.08 6.98 0.19 1.59 4.84 4.90 1.48 0.35 99.75 

SV-L2 62.23 0.83 18.18 5.98 0.17 1.20 5.70 4.81 1.35 0.29 100.74 

SV-L2 62.14 0.98 15.40 6.82 0.17 1.59 4.67 5.00 1.50 0.37 98.64 

SV-L2 62.06 1.00 16.30 7.10 0.17 1.55 4.78 5.18 1.46 0.38 99.96 

SV-L2 60.96 0.98 15.21 6.68 0.18 1.49 4.60 4.91 1.58 0.37 96.95 

            

SV-L3 = Hekla 4 Standard data = Group 7 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-L3 76.25 0.08 13.55 1.79 0.09 0.02 1.38 4.78 2.95 0.02 100.92 

SV-L3 75.52 0.10 14.18 2.09 0.08 0.04 1.38 5.43 2.77 0.02 101.59 

SV-L3 73.96 0.35 12.96 2.24 0.10 0.12 0.48 5.03 4.00 0.03 99.28 

SV-L3 73.94 0.07 13.38 1.55 0.04 0.05 1.23 4.99 2.64 0.01 97.90 

SV-L3 73.85 0.10 13.17 1.85 0.08 0.03 1.21 5.10 3.00 0.02 98.40 

SV-L3 73.61 0.10 13.32 1.75 0.08 0.03 1.38 5.20 2.90 0.01 98.38 

SV-L3 72.99 0.09 13.40 2.04 0.10 0.02 1.34 5.07 2.80 0.01 97.87 

SV-L3 72.73 0.10 13.99 1.96 0.09 0.01 1.26 5.01 2.88 0.00 98.03 

SV-L3 72.73 0.10 13.03 1.95 0.10 0.04 1.31 4.87 2.82 0.02 96.98 

SV-L3 72.72 0.09 13.66 1.82 0.05 0.02 1.37 4.93 2.84 0.01 97.50 

SV-L3 72.37 0.25 15.78 3.40 0.09 0.14 2.42 5.76 2.35 0.03 102.60 

SV-L3 69.99 0.36 14.00 4.33 0.13 0.19 1.58 5.23 3.71 0.08 99.58 

SV-L3 67.88 0.23 14.30 3.85 0.13 0.11 2.28 5.17 2.44 0.03 96.43 

SV-L3 63.77 0.83 14.91 8.40 0.26 1.05 4.43 5.44 1.83 0.27 101.19 

SV-L3 62.62 0.86 16.27 8.57 0.23 1.06 4.54 5.23 1.66 0.32 101.37 

SV-L3 62.20 0.90 16.13 8.88 0.27 1.17 4.50 5.05 1.73 0.37 101.19 

SV-L3 62.18 0.90 16.42 8.10 0.24 1.12 4.56 4.94 1.56 0.34 100.35 

SV-L3 61.58 0.88 15.91 8.56 0.26 1.25 4.98 5.48 1.43 0.29 100.62 

SV-L3 61.53 0.91 15.22 8.94 0.28 1.11 4.74 4.82 1.67 0.34 99.56 

SV-L3 61.46 0.93 15.29 9.37 0.28 1.10 4.71 5.02 1.66 0.37 100.19 

SV-L3 59.68 0.90 15.25 9.19 0.27 1.13 4.46 5.00 1.58 0.33 97.79 
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SV-L4 = Unknown #5 Standard data = Group 3 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-L4 72.05 0.10 13.00 1.73 0.05 -0.01 1.67 5.08 2.65 0.02 96.00 

SV-L4 69.58 0.29 13.06 4.67 0.16 0.19 2.53 4.64 2.25 0.07 97.00 

SV-L4 68.72 0.32 13.48 5.02 0.19 0.27 2.93 4.24 2.17 0.08 97.00 

SV-L4 68.54 0.40 13.36 6.29 0.22 0.38 3.40 4.03 1.98 0.13 99.00 

SV-L4 68.43 0.34 14.54 5.13 0.19 0.30 3.00 4.32 2.19 0.09 99.00 

SV-L4 68.32 0.40 13.62 6.04 0.20 0.41 3.19 4.25 2.11 0.12 99.00 

SV-L4 66.83 0.43 13.28 6.18 0.22 0.41 3.37 4.05 1.93 0.13 97.00 

            

SV-L5 = Lairg A? Standard data = Group 3 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SV-L5 73.47 0.08 12.09 1.50 0.07 0.02 1.28 4.18 2.61 0.01 95.00 

SV-L5 73.04 0.08 11.92 1.61 0.06 0.01 1.17 3.94 2.66 0.01 95.00 

SV-L5 71.67 0.86 13.08 2.87 0.05 0.52 1.91 4.00 3.40 0.43 98.79 

SV-L5 70.87 1.04 13.52 3.86 0.06 0.72 2.40 4.27 3.12 0.21 100.00 

SV-L5 70.01 0.73 12.78 3.62 0.06 0.65 2.41 4.19 3.41 0.14 98.01 

SV-L5 69.13 1.09 12.68 3.66 0.07 0.83 2.71 4.10 3.00 0.22 97.00 

SV-L5 68.52 1.11 13.09 4.44 0.08 1.11 2.87 4.12 3.11 0.26 98.70 

SV-L5 67.77 0.92 12.47 3.96 0.06 0.90 2.68 4.24 2.89 0.20 96.00 

SV-L5 65.63 0.85 15.75 3.07 0.05 0.77 3.68 4.43 2.73 0.18 97.16 

SV-L5 60.40 0.75 19.53 2.16 0.04 0.45 7.50 5.10 1.42 0.87 98.00 

            

MT-1 Glen Garry Standard data = Group 9 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

MT-1 73.97 0.51 12.22 3.75 0.09 0.45 2.27 4.14 2.06 0.08 99.53 

MT-1 73.68 0.51 12.58 3.91 0.09 0.42 2.36 4.13 2.15 0.09 99.92 

MT-1 73.60 0.51 12.58 4.02 0.09 0.41 2.29 4.08 2.01 0.10 99.69 

MT-1 73.55 0.51 12.61 3.65 0.08 0.41 2.33 4.04 1.94 0.09 99.21 

MT-1 73.43 0.51 12.40 3.91 0.07 0.43 2.37 4.19 2.06 0.07 99.44 

MT-1 73.02 0.58 12.55 4.35 0.10 0.47 2.55 4.39 1.97 0.10 100.08 

MT-1 72.66 0.51 12.21 3.64 0.09 0.44 2.27 4.36 2.08 0.09 98.36 

MT-1 72.30 0.52 12.22 3.74 0.07 0.41 2.31 3.97 2.01 0.08 97.63 

MT-1 72.03 0.51 12.04 3.79 0.09 0.38 2.34 4.15 2.03 0.09 97.47 

MT-1 71.76 0.51 12.20 3.99 0.07 0.38 2.41 4.10 1.99 0.08 97.49 

MT-1 71.71 0.67 12.85 4.33 0.10 0.63 2.86 4.17 1.84 0.14 99.31 

MT-1 71.57 0.66 12.75 4.81 0.09 0.61 2.82 4.24 1.86 0.14 99.55 

MT-1 71.37 0.66 13.17 4.59 0.11 0.61 2.96 4.14 1.85 0.14 99.59 

MT-1 70.94 0.77 12.80 5.16 0.10 0.69 3.22 3.99 1.79 0.16 99.62 

MT-1 70.84 0.72 12.94 4.90 0.13 0.67 3.01 4.05 1.77 0.15 99.17 

            

MM-1 = Glen Garry * 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

MM-1 69.98 0.76 12.36 4.95 0.14 0.69 3.12 3.72 1.83 - 97.56 

MM-1 70.64 0.69 12.48 4.65 0.08 0.65 2.88 3.78 1.94 - 97.79 

MM-1 73.76 0.50 10.42 3.90 0.11 0.40 2.35 3.01 2.04 - 96.49 
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MM-1 73.10 0.53 11.91 3.80 0.14 0.40 2.42 3.41 2.01 - 97.72 

MM-1 71.89 0.61 12.21 3.99 0.09 0.42 2.45 3.69 1.99 - 97.35 

MM-1 71.02 0.67 13.48 4.64 0.18 0.64 2.72 4.26 1.90 - 99.51 

MM-1 71.75 0.59 12.31 3.54 0.13 0.30 2.12 2.70 2.23 - 95.66 

MM-1 70.85 0.71 12.72 4.38 0.06 0.62 2.84 3.62 1.86 - 97.66 

MM-1 74.07 0.45 13.06 4.00 0.15 0.41 2.25 3.08 2.13 - 99.60 

MM-1 73.16 0.48 12.93 4.14 0.07 0.40 2.28 4.21 2.03 - 99.70 

MM-1 72.28 0.58 12.71 3.52 0.11 0.41 2.29 4.52 2.10 - 98.52 

MM-1 70.96 0.78 11.34 4.96 0.21 0.76 3.00 4.31 1.80 - 98.11 

            

MM-2 = Hekla 4 * 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

MM-2 72.38 0.10 12.62 1.87 0.07 0.04 1.19 4.40 2.67 - 95.34 

MM-2 72.58 0.14 12.54 1.75 0.10 0.02 1.30 4.18 2.79 - 95.39 

MM-2 72.41 0.12 12.57 1.97 0.05 0.03 1.26 4.38 2.75 - 95.53 

MM-2 72.86 0.13 12.46 1.93 0.09 0.02 1.30 4.17 2.83 - 95.79 

MM-2 72.81 0.10 12.56 1.95 0.05 0.00 1.33 4.64 2.70 - 96.15 

MM-2 73.23 0.09 12.57 1.99 0.03 0.02 1.34 4.56 2.84 - 96.68 

MM-2 73.11 0.07 12.95 2.09 0.07 0.04 1.28 4.37 2.87 - 96.85 

MM-2 72.53 0.15 12.38 1.97 0.13 0.00 1.28 4.40 2.83 - 95.67 

MM-2 72.01 0.10 12.57 1.87 0.05 0.05 1.26 4.38 2.75 - 95.03 

MM-2 72.76 0.12 12.64 1.90 0.08 0.05 1.34 4.53 2.76 - 96.17 

            

MM-3 = Lairg B * 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

MM-3 70.77 0.19 13.87 2.15 0.12 0.13 0.71 4.93 4.51 - 97.38 

MM-3 69.43 0.17 13.45 2.14 0.03 0.17 0.64 4.68 4.41 - 95.13 

MM-3 68.84 0.24 14.53 2.39 0.05 0.25 0.92 4.83 4.23 - 96.28 

MM-3 70.72 0.20 13.45 2.14 0.04 0.18 0.72 4.61 4.40 - 96.45 

            

MM-4 = Lairg A * 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

MM-4 73.58 0.12 11.77 1.57 0.07 0.04 1.30 3.85 2.74 - 95.04 

MM-4 74.71 0.11 11.68 1.67 0.02 0.01 1.29 3.01 2.85 - 95.35 

MM-4 74.85 0.49 12.55 3.74 0.20 0.37 2.21 4.25 2.18 - 100.84 

MM-4 73.16 0.59 12.78 3.33 0.23 0.38 2.63 4.12 2.05 - 99.28 

MM-4 72.84 0.51 12.69 3.71 0.11 0.37 2.26 4.06 2.16 - 98.71 

MM-4 74.84 0.00 11.86 1.56 0.11 0.01 1.27 4.65 3.02 - 97.31 

MM-4 73.81 0.09 11.97 1.67 0.06 0.08 1.29 3.54 2.68 - 95.19 

MM-4 74.69 0.20 12.48 1.78 0.00 0.02 1.21 4.06 2.75 - 97.19 

MM-4 75.51 0.08 11.90 1.57 0.09 0.00 1.20 3.02 2.74 - 96.11 

MM-4 73.07 0.10 12.74 1.54 0.06 0.05 1.32 4.43 2.70 - 96.01 

            

SB-1 = Hekla 1104 Standard data = Group 7 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SB-1 73.00 0.21 14.22 3.37 0.10 0.11 1.99 5.01 2.78 0.02 100.81 
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SB-1 72.72 0.21 14.32 3.13 0.10 0.14 2.08 5.54 2.78 0.03 101.04 

SB-1 72.43 0.21 14.80 3.12 0.12 0.13 1.91 5.57 2.73 0.03 101.04 

SB-1 72.30 0.19 14.56 3.80 0.09 0.12 1.94 4.90 2.62 0.04 99.93 

SB-1 72.16 0.21 14.40 2.94 0.09 0.12 1.95 5.48 2.73 0.02 100.11 

SB-1 71.99 0.21 15.09 3.27 0.10 0.14 1.99 5.13 2.73 0.03 100.67 

SB-1 71.98 0.20 15.40 3.15 0.12 0.09 1.94 5.22 2.71 0.02 100.84 

SB-1 71.97 0.20 13.91 3.10 0.09 0.11 1.89 5.48 2.72 0.03 99.51 

SB-1 71.71 0.21 14.82 3.00 0.08 0.06 1.92 5.61 2.78 0.02 100.20 

SB-1 71.71 0.20 14.42 3.05 0.09 0.11 2.01 5.15 2.79 0.04 99.56 

SB-1 71.70 0.19 15.13 3.15 0.10 0.09 2.08 4.95 2.69 0.03 100.10 

SB-1 71.63 0.20 14.58 3.04 0.11 0.11 2.08 5.36 2.74 0.01 99.85 

SB-1 71.51 0.21 14.14 3.16 0.11 0.12 1.97 5.26 2.73 0.02 99.22 

SB-1 71.10 0.21 14.10 2.83 0.11 0.10 2.00 5.58 2.74 0.02 98.79 

SB-1 70.76 0.20 15.03 2.88 0.10 0.11 2.00 5.37 2.62 0.02 99.09 

SB-1 70.19 0.19 14.77 3.11 0.12 0.14 1.94 4.98 2.68 0.01 98.15 

SB-1 69.50 0.19 13.15 3.12 0.11 0.12 1.97 4.84 2.64 0.02 95.66 

SB-1 69.43 0.19 13.93 3.08 0.11 0.12 1.84 5.19 2.60 0.03 96.52 

SB-1 67.58 0.47 15.17 5.65 0.18 0.45 3.11 4.99 2.35 0.10 100.07 

SB-1 67.45 0.47 15.39 5.64 0.18 0.44 3.21 5.36 2.29 0.10 100.54 

            

SB-2 = SN-1 Standard data = Group 10 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SB-2 70.59 0.20 15.20 2.98 0.14 0.11 1.04 5.60 4.86 0.02 100.75 

SB-2 67.75 0.38 15.75 4.46 0.16 0.27 1.81 6.16 4.19 0.07 100.98 

SB-2 67.39 0.40 16.60 4.21 0.19 0.33 1.87 6.43 4.18 0.06 101.65 

SB-2 67.16 0.47 16.04 4.55 0.18 0.41 2.22 6.25 3.90 0.09 101.27 

SB-2 66.92 0.41 16.03 4.15 0.19 0.35 1.95 5.98 4.04 0.07 100.10 

SB-2 66.69 0.43 16.74 4.34 0.20 0.33 2.12 6.45 4.00 0.07 101.37 

SB-2 66.44 0.45 16.46 4.40 0.19 0.34 2.03 6.18 4.08 0.81 100.64 

SB-2 66.39 0.40 16.44 4.13 0.18 0.33 1.90 5.99 4.06 0.07 99.90 

SB-2 66.34 0.43 16.81 4.29 0.17 0.34 2.12 6.06 3.98 0.07 100.60 

SB-2 66.32 0.45 16.66 4.67 0.17 0.34 2.03 6.08 4.06 0.07 100.84 

SB-2 66.15 0.64 15.85 5.63 0.21 0.57 2.01 5.79 4.41 0.14 101.40 

SB-2 65.65 0.57 17.25 5.17 0.20 0.55 2.52 6.06 3.73 0.12 101.82 

SB-2 65.58 0.45 18.12 4.18 0.15 0.36 3.00 6.85 3.19 0.09 101.97 

SB-2 65.52 0.42 16.02 4.46 0.16 0.28 1.90 6.06 4.04 0.05 98.92 

SB-2 65.15 0.58 16.46 5.28 0.17 0.51 2.64 6.00 3.63 0.14 100.58 

SB-2 65.14 0.59 16.68 5.28 0.21 0.58 2.77 6.26 3.63 0.13 101.26 

SB-2 65.11 0.57 17.10 5.37 0.17 0.53 2.55 6.30 3.72 0.12 101.58 

SB-2 64.82 0.62 16.17 5.72 0.19 0.61 2.55 5.78 3.83 0.13 100.42 

SB-2 64.70 0.58 16.57 5.03 0.21 0.61 2.48 6.05 3.73 0.14 100.10 

SB-2 64.44 0.58 16.52 5.28 0.22 0.55 2.71 5.80 3.63 0.11 99.86 

SB-2 64.44 0.60 16.10 5.46 0.21 0.52 2.56 6.14 3.72 0.15 99.89 

SB-2 64.42 0.58 16.44 5.42 0.21 0.55 2.52 6.56 3.92 0.11 100.71 

SB-2 64.28 0.60 16.62 5.08 0.21 0.63 2.59 6.16 3.66 0.13 99.97 

SB-2 64.22 0.60 16.56 5.27 0.23 0.56 2.50 6.28 3.74 0.11 100.06 

SB-2 63.86 0.60 16.64 5.35 0.22 0.61 2.61 5.91 3.79 0.13 99.72 

SB-2 63.54 0.56 15.98 5.28 0.21 0.60 2.52 6.11 3.80 0.11 98.72 
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SL-1 = Hekla 1104 Standard data = Group 11 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SL-1 72.91 0.19 13.68 2.91 0.09 0.12 1.87 4.84 2.68 0.02 99.31 

SL-1 72.16 0.20 13.55 3.27 0.11 0.14 2.00 4.80 2.73 0.02 98.97 

SL-1 72.15 0.20 13.50 2.93 0.11 0.15 1.95 4.88 2.78 0.02 98.66 

SL-1 72.08 0.20 13.85 3.11 0.11 0.12 2.00 4.71 2.69 0.02 98.89 

SL-1 71.75 0.19 13.86 3.08 0.11 0.11 1.94 4.74 2.64 0.02 98.45 

SL-1 71.68 0.20 13.44 3.00 0.10 0.15 1.94 4.94 2.70 0.02 98.16 

SL-1 71.52 0.18 13.43 2.84 0.10 0.12 1.95 4.57 2.67 0.03 97.40 

SL-1 70.56 0.19 13.71 3.03 0.09 0.10 2.03 4.93 2.70 0.03 97.37 

            

SL-2 = SN-1 Standard data = Group 11 

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SL-2 70.21 0.17 14.71 2.85 0.12 0.07 1.19 5.61 4.73 0.01 99.69 

SL-2 66.44 0.40 15.08 4.26 0.17 0.33 1.88 5.57 4.04 0.06 98.22 

SL-2 66.31 0.47 15.38 4.55 0.19 0.39 2.15 5.45 3.87 0.09 98.86 

SL-2 66.12 0.42 15.12 4.53 0.17 0.32 1.99 5.63 4.00 0.06 98.36 

SL-2 65.87 0.56 15.80 5.12 0.21 0.55 2.49 5.45 3.72 0.12 99.90 

SL-2 65.81 0.57 16.15 5.45 0.21 0.56 2.62 5.67 3.52 0.13 100.69 

SL-2 65.61 0.58 15.69 5.06 0.19 0.58 2.61 5.47 3.97 0.12 99.88 

SL-2 65.54 0.59 15.68 5.54 0.22 0.63 2.48 5.38 3.86 0.14 100.06 

SL-2 65.47 0.57 15.90 5.42 0.20 0.62 2.47 5.64 3.72 0.11 100.13 

SL-2 65.43 0.59 15.77 5.29 0.23 0.61 2.61 5.40 3.68 0.13 99.73 

SL-2 65.25 0.45 15.68 4.61 0.16 0.46 2.80 5.81 3.44 0.11 98.78 

SL-2 65.18 0.54 15.92 5.18 0.21 0.53 2.63 5.47 3.80 0.12 99.57 

SL-2 65.15 0.60 15.33 5.16 0.21 0.62 2.53 5.46 3.86 0.13 99.05 

SL-2 65.10 0.55 15.98 5.35 0.22 0.58 2.62 5.73 3.85 0.12 100.11 

SL-2 64.95 0.57 15.84 5.18 0.20 0.57 2.62 5.65 3.78 0.13 99.49 

SL-2 64.89 0.57 15.78 5.40 0.22 0.52 2.42 5.51 3.89 0.12 99.32 

SL-2 64.24 0.60 15.26 5.22 0.20 0.64 2.58 5.28 3.71 0.14 97.87 

SL-2 63.73 0.50 15.30 4.98 0.19 0.60 2.38 5.49 3.55 0.10 96.83 

SL-2 61.97 0.56 15.20 5.08 0.21 0.57 2.55 5.61 3.61 0.14 95.50 

            

SL-3 = Hekla 4 Standard data = Group 10  

            

 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

SL-3 77.14 0.07 13.36 1.45 0.08 0.03 1.03 4.63 2.79 0.01 100.58 

SL-3 76.89 0.08 12.58 1.80 0.05 0.04 1.46 4.31 2.84 0.02 100.02 

SL-3 75.80 0.08 12.77 1.80 0.08 0.05 1.28 5.07 3.04 0.02 99.97 

SL-3 74.85 0.10 13.58 1.97 0.09 0.00 1.27 5.52 2.77 0.01 100.14 

SL-3 74.55 0.09 12.88 1.60 0.05 0.05 1.27 4.85 2.58 0.01 97.93 

SL-3 74.17 0.06 12.14 1.71 0.08 0.05 1.20 5.17 3.01 0.01 97.61 

SL-3 74.17 0.08 12.88 1.83 0.07 0.03 1.30 4.57 2.54 0.02 97.49 

SL-3 73.56 0.09 12.91 1.96 0.08 0.01 1.29 4.97 2.87 0.01 97.75 

SL-3 73.53 0.10 13.59 1.86 0.05 0.04 1.33 5.25 2.85 0.02 98.63 

SL-3 73.32 0.08 12.92 1.76 0.09 0.00 1.36 4.76 2.79 0.01 97.08 

SL-3 72.91 0.36 11.67 2.05 0.11 0.11 0.38 4.67 4.40 0.03 96.69 

SL-3 72.63 0.09 12.79 1.75 0.08 0.02 1.32 5.01 2.95 0.02 96.66 
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SL-3 72.59 0.10 13.48 1.76 0.08 0.04 1.35 5.01 2.85 0.02 97.27 

SL-3 72.56 0.10 13.13 1.92 0.08 0.00 1.36 5.24 2.78 0.02 97.19 

SL-3 72.49 0.09 13.61 1.90 0.09 0.02 1.21 5.03 2.90 0.01 97.35 

SL-3 72.32 0.09 13.00 1.86 0.08 0.00 1.43 5.26 2.71 0.01 96.77 

SL-3 72.24 0.19 14.36 3.90 0.13 0.14 2.18 4.91 3.02 0.04 101.11 

SL-3 72.22 0.09 13.10 1.76 0.07 0.05 1.33 5.19 2.81 0.01 96.64 

SL-3 71.72 0.11 13.80 1.88 0.07 0.04 1.31 4.68 2.78 0.01 96.39 

SL-3 71.50 0.09 12.99 1.85 0.06 0.02 1.29 4.87 2.80 0.02 95.48 

SL-3 71.12 0.10 13.51 1.78 0.07 0.01 1.25 5.08 2.82 0.01 95.75 

SL-3 70.56 0.26 14.87 4.86 0.17 0.19 2.43 5.20 2.43 0.06 101.03 

SL-3 70.28 0.15 16.37 1.52 0.05 0.07 2.07 5.63 2.49 0.03 98.66 

SL-3 68.04 0.20 16.27 1.85 0.07 0.08 2.96 5.54 2.08 0.04 97.13 

SL-3 66.23 0.14 18.53 1.30 0.05 0.11 4.65 6.49 1.60 0.16 99.25 

SL-3 63.57 0.80 16.41 7.83 0.25 1.07 4.34 5.20 1.80 0.25 101.51 

SL-3 63.31 0.89 14.59 8.71 0.24 1.00 4.21 5.00 1.84 0.32 100.11 

SL-3 62.59 0.83 15.65 8.22 0.20 1.01 4.73 5.86 1.21 0.30 100.59 

SL-3 62.13 0.89 14.85 9.12 0.22 1.19 4.47 5.08 1.65 0.34 99.94 

SL-3 61.92 0.82 14.78 7.85 0.24 0.86 4.53 5.26 1.49 0.31 98.06 

SL-3 61.74 0.89 15.56 8.88 0.24 1.13 4.78 4.97 1.65 0.36 100.19 

SL-3 61.19 0.88 15.67 8.76 0.23 1.11 4.81 5.02 1.49 0.33 99.50 

SL-3 60.81 0.92 15.03 8.76 0.24 1.06 4.64 5.10 1.41 0.36 98.33 

SL-3 60.03 0.88 15.47 9.57 0.27 1.58 5.05 4.64 1.59 0.33 99.40 

SL-3 57.91 0.89 14.59 9.51 0.27 1.16 4.84 4.35 1.53 0.44 95.49 

 

Group 1  

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.99 2.27 13.09 12.27 0.19 3.85 7.00 3.48 1.86 0.37 99.36 

BCR2g 54.01 2.29 13.43 12.32 0.19 3.68 7.07 3.30 1.76 0.37 98.41 

BCR2g 54.69 2.27 13.44 12.40 0.20 3.60 7.19 3.22 1.76 0.35 99.14 

BCR2g 53.99 2.26 13.65 12.09 0.20 3.66 7.21 3.37 1.82 0.36 98.61 

BCR2g 53.59 2.27 13.39 12.16 0.20 3.67 7.16 3.42 1.83 0.36 98.03 

BCR2g 54.49 2.26 13.53 12.30 0.20 3.59 7.18 3.38 1.74 0.35 99.01 

BCR2g 54.31 2.26 13.31 12.11 0.21 3.56 7.11 3.26 1.80 0.36 98.29 

BCR2g 54.39 2.26 13.57 12.57 0.19 3.60 7.09 3.19 1.79 0.37 99.03 

BCR2g 54.84 2.26 13.48 12.46 0.19 3.67 7.14 3.15 1.77 0.35 99.30 

BCR2g 54.54 2.27 13.38 12.24 0.20 3.80 7.04 3.20 1.79 0.35 98.80 

BCR2g 55.57 2.25 13.57 12.42 0.18 3.74 7.31 3.44 1.78 0.35 100.62 

BCR2g 55.26 2.26 13.59 12.32 0.20 3.81 7.17 3.19 1.85 0.36 100.00 

BCR2g 54.35 2.26 13.37 12.78 0.20 3.74 7.08 3.41 1.81 0.35 99.36 

BCR2g 55.27 2.28 13.31 12.74 0.19 3.79 7.16 3.20 1.76 0.33 100.03 

Lipari 73.81 0.08 12.69 1.76 0.05 0.04 0.74 4.20 5.28 0.00 98.66 

Lipari 74.29 0.08 12.74 1.60 0.06 0.04 0.76 4.07 5.20 0.01 98.86 

Lipari 73.96 0.08 13.03 1.62 0.08 0.03 0.72 4.16 5.35 0.01 99.04 

Lipari 74.76 0.08 12.89 1.60 0.06 0.02 0.79 4.15 5.19 0.00 99.55 

Lipari 75.23 0.07 13.30 1.63 0.06 0.04 0.66 4.25 5.21 0.01 100.46 

Lipari 73.16 0.08 12.51 1.65 0.07 0.06 0.72 4.32 5.43 0.00 98.00 

Lipari 74.00 0.08 12.58 1.57 0.06 0.07 0.79 4.31 5.23 0.00 98.70 

Lipari 74.50 0.08 12.73 1.62 0.07 0.05 0.80 4.27 5.24 0.00 99.36 
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Lipari 75.00 0.08 12.94 1.55 0.06 0.05 0.73 4.23 5.14 0.01 99.78 

Lipari 74.43 0.07 12.66 1.46 0.07 0.02 0.81 4.18 5.34 0.01 99.05 

            

Group 2 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.25 2.26 13.43 12.19 0.19 3.64 7.19 3.18 1.88 0.34 98.54 

BCR2g 54.71 2.25 13.43 12.55 0.20 3.80 7.15 3.21 1.85 0.37 99.52 

BCR2g 55.17 2.25 13.86 12.45 0.17 3.75 7.20 3.20 1.81 0.32 100.18 

BCR2g 55.66 2.25 13.37 12.10 0.20 3.67 7.16 3.07 1.79 0.32 99.60 

BCR2g 55.63 2.26 13.30 12.26 0.19 3.66 7.35 3.23 1.73 0.32 99.94 

BCR2g 55.63 2.26 13.29 12.43 0.18 3.61 7.43 3.12 1.85 0.32 100.13 

BCR2g 55.48 2.27 13.75 12.15 0.19 3.72 7.46 3.18 1.87 0.33 100.40 

BCR2g 55.78 2.26 13.68 12.13 0.18 3.71 7.20 3.08 1.83 0.33 100.18 

Lipari 75.55 0.08 12.89 1.58 0.05 0.01 0.74 4.18 5.28 0.00 100.36 

Lipari 75.06 0.08 13.04 1.61 0.07 0.02 0.74 4.15 5.13 0.00 99.91 

Lipari 74.75 0.07 13.08 1.54 0.05 0.03 0.74 4.01 5.14 0.00 99.41 

Lipari 75.08 0.09 13.00 1.52 0.06 0.04 0.76 4.17 5.26 0.01 100.00 

Lipari 74.00 0.08 13.00 1.55 0.07 0.05 0.76 3.98 5.22 0.00 98.71 

Lipari 73.94 0.07 12.84 1.37 0.04 0.04 0.80 3.94 5.04 0.01 98.09 

Lipari 74.93 0.08 13.31 1.49 0.07 0.07 0.63 4.00 5.16 0.01 99.75 

Lipari 73.79 0.08 12.98 1.54 0.08 0.04 0.71 3.98 5.08 0.00 98.28 

            

Group 3  

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.49 2.28 13.62 12.16 0.20 3.61 7.09 3.32 1.77 0.36 98.89 

BCR2g 53.91 2.28 13.33 12.70 0.19 3.58 7.06 3.17 1.81 0.36 98.40 

BCR2g 54.72 2.27 13.37 12.33 0.21 3.71 7.23 3.18 1.86 0.36 99.23 

BCR2g 54.73 2.26 13.45 12.79 0.19 3.68 7.00 3.09 1.81 0.37 99.36 

BCR2g 54.33 2.28 13.09 12.91 0.20 3.67 7.18 3.18 1.87 0.36 99.09 

Lipari 73.96 0.08 12.69 1.52 0.07 0.00 0.69 4.06 5.11 0.00 98.18 

Lipari 74.17 0.08 13.17 1.56 0.07 0.03 0.76 3.94 5.10 0.00 98.88 

Lipari 73.74 0.08 13.09 1.69 0.07 0.01 0.76 4.13 5.19 0.01 98.77 

Lipari 73.83 0.07 12.99 1.56 0.07 0.06 0.76 4.16 5.09 0.01 98.62 

Lipari 74.29 0.08 12.57 1.48 0.07 0.04 0.73 4.01 5.34 0.01 98.62 

Lipari 75.10 0.07 12.91 1.44 0.06 0.04 0.72 4.09 5.06 0.00 99.50 

Lipari 75.16 0.07 12.63 1.47 0.06 0.04 0.81 4.06 5.09 0.00 99.39 

Lipari 75.06 0.07 12.96 1.47 0.07 0.04 0.74 3.88 5.10 0.02 99.41 

Lipari 74.15 0.07 12.48 1.69 0.07 0.04 0.77 3.77 5.26 0.00 98.29 

Lipari 73.76 0.08 13.16 1.56 0.07 0.04 0.74 4.01 5.25 0.00 98.68 

            

Group 4 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.72 2.25 13.29 12.26 0.20 3.66 7.15 3.11 1.76 0.36 98.76 

BCR2g 55.57 2.28 13.55 12.72 0.21 3.65 6.98 3.31 1.84 0.35 100.47 

BCR2g 54.63 2.27 13.71 12.43 0.20 3.81 7.19 3.23 1.83 0.35 99.65 

BCR2g 53.76 2.24 13.29 12.43 0.20 3.69 7.24 3.24 1.80 0.36 98.27 

BCR2g 53.77 2.23 13.07 12.33 0.19 3.75 7.28 3.38 1.78 0.36 98.15 

BCR2g 53.96 2.27 13.41 12.45 0.20 3.72 7.15 3.40 1.76 0.39 98.71 

BCR2g 53.52 2.23 13.56 12.27 0.19 3.73 7.25 3.31 1.75 0.36 98.16 

BCR2g 54.04 2.24 13.47 12.89 0.21 3.64 7.29 3.22 1.76 0.35 99.11 
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BCR2g 54.15 2.24 13.08 12.39 0.20 3.70 7.31 3.31 1.87 0.35 98.60 

Lipari 74.60 0.07 13.27 1.58 0.06 0.06 0.75 4.24 5.22 0.01 99.86 

Lipari 73.69 0.08 12.80 1.51 0.07 0.03 0.74 4.08 5.13 0.00 98.14 

Lipari 75.67 0.08 12.86 1.50 0.08 0.05 0.74 4.45 5.27 0.00 100.70 

Lipari 74.90 0.09 12.79 1.67 0.06 0.03 0.75 4.32 5.25 0.00 99.87 

Lipari 74.42 0.07 13.01 1.51 0.06 0.05 0.77 4.20 5.23 0.01 99.34 

Lipari 73.94 0.08 12.83 1.41 0.06 0.06 0.74 4.11 5.27 0.01 98.50 

Lipari 74.14 0.07 12.91 1.59 0.06 0.05 0.74 4.25 5.17 0.00 98.99 

Lipari 74.44 0.07 12.85 1.55 0.07 0.05 0.77 4.35 5.11 0.01 99.27 

Lipari 74.82 0.07 13.02 1.71 0.07 0.05 0.69 4.22 4.99 0.00 99.64 

            

Group 5 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 55.16 2.23 13.17 12.69 0.17 3.58 7.24 3.20 1.79 0.33 99.58 

BCR2g 53.15 2.22 13.34 12.05 0.20 3.60 7.24 3.16 1.83 0.35 97.15 

BCR2g 53.91 2.22 13.09 12.17 0.19 3.81 7.07 3.18 1.79 0.33 97.75 

BCR2g 54.11 2.21 13.25 12.19 0.17 3.76 7.40 3.18 1.79 0.34 98.40 

BCR2g 55.03 2.26 13.51 12.26 0.19 3.67 7.36 3.13 1.80 0.35 99.55 

BCR2g 54.76 2.28 13.14 12.34 0.21 3.65 7.31 3.07 1.85 0.36 98.97 

BCR2g 55.13 2.26 13.47 12.85 0.20 3.68 7.19 3.22 1.79 0.36 100.15 

BCR2g 54.57 2.23 13.66 12.83 0.19 3.72 7.10 3.13 1.73 0.35 99.51 

BCR2g 54.48 2.26 13.23 12.43 0.18 3.59 7.26 3.03 1.85 0.36 98.67 

BCR2g 54.91 2.28 13.46 12.27 0.18 3.66 7.19 3.14 1.75 0.37 99.21 

BCR2g 55.14 2.26 13.59 12.33 0.17 3.70 7.14 3.08 1.72 0.37 99.50 

BCR2g 54.82 2.22 13.48 12.55 0.17 3.80 7.26 3.13 1.72 0.35 99.49 

BCR2g 54.83 2.22 13.46 12.26 0.15 3.75 7.24 3.25 1.79 0.36 99.30 

BCR2g 54.63 2.25 13.77 12.65 0.18 3.69 7.25 3.24 1.73 0.36 99.76 

Lipari 74.03 0.08 12.78 1.46 0.06 0.04 0.77 3.79 5.07 0.00 98.09 

Lipari 74.30 0.07 13.00 1.38 0.08 0.05 0.75 4.23 5.37 0.01 99.22 

Lipari 74.63 0.09 13.23 1.53 0.05 0.04 0.70 3.87 5.19 0.01 99.35 

Lipari 74.22 0.08 12.88 1.47 0.05 0.05 0.76 3.87 5.32 0.00 98.71 

Lipari 75.35 0.07 13.10 1.36 0.07 0.02 0.76 4.05 5.22 0.00 100.01 

Lipari 74.89 0.08 12.98 1.65 0.06 0.03 0.69 3.97 5.18 0.00 99.53 

Lipari 75.13 0.08 12.88 1.66 0.08 0.05 0.75 3.95 5.30 0.00 99.87 

Lipari 74.18 0.08 13.04 1.60 0.04 0.02 0.69 4.10 5.37 0.01 99.12 

Lipari 74.23 0.08 12.83 1.74 0.06 0.02 0.77 3.97 5.30 0.00 99.01 

Lipari 73.43 0.08 12.65 1.59 0.07 0.05 0.76 4.04 5.29 0.01 97.96 

Lipari 74.17 0.07 12.75 1.61 0.06 0.04 0.73 3.85 5.30 0.00 98.59 

Lipari 74.78 0.08 12.89 1.66 0.06 0.05 0.75 4.15 5.40 0.00 99.83 

Lipari 73.39 0.08 12.91 1.50 0.08 0.05 0.79 3.95 5.30 0.01 98.06 

Lipari 73.78 0.07 12.80 1.40 0.07 0.00 0.81 3.97 5.23 0.01 98.14 

Lipari 74.83 0.08 13.02 1.51 0.05 0.03 0.81 4.18 5.12 0.01 99.64 

Lipari 73.14 0.08 13.09 1.63 0.06 0.03 0.77 3.88 5.19 0.00 97.88 

Lipari 73.85 0.07 12.96 1.55 0.05 0.07 0.76 3.96 5.27 0.01 98.56 

            

Group 6 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.73 2.26 13.45 12.79 0.19 3.68 7.00 3.09 1.81 0.37 99.36 

BCR2g 54.33 2.28 13.09 12.91 0.20 3.67 7.18 3.18 1.87 0.36 99.09 

BCR2g 54.46 2.27 13.40 12.44 0.20 3.65 7.31 2.60 1.66 0.36 98.36 
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BCR2g 54.82 2.23 13.54 12.35 0.20 3.68 7.11 2.83 1.87 0.35 98.99 

BCR2g 54.87 2.26 13.45 12.29 0.19 3.73 7.12 2.26 1.77 0.36 98.30 

BCR2g 54.68 2.26 13.23 12.93 0.19 3.62 7.04 3.01 1.81 0.38 99.13 

BCR2g 54.49 2.24 13.44 12.47 0.21 3.70 7.18 2.04 1.92 0.38 98.08 

BCR2g 54.49 2.26 13.50 12.39 0.21 3.64 7.03 3.13 1.83 0.38 98.86 

Lipari 74.71 0.07 12.76 1.60 0.07 0.04 0.67 3.75 5.17 0.00 98.84 

Lipari 74.89 0.07 12.75 1.43 0.06 0.04 0.75 3.78 5.22 0.01 99.00 

Lipari 74.82 0.07 13.07 1.49 0.06 0.03 0.77 3.94 5.29 0.00 99.53 

Lipari 74.21 0.08 12.82 1.84 0.06 0.01 0.66 3.94 5.27 0.01 98.90 

Lipari 74.96 0.07 12.68 1.57 0.08 0.04 0.75 3.83 5.17 0.01 99.16 

Lipari 74.31 0.08 13.29 1.47 0.06 0.03 0.81 3.79 5.22 0.00 99.06 

Lipari 75.16 0.07 12.63 1.47 0.06 0.04 0.81 4.06 5.09 0.00 99.39 

Lipari 75.06 0.07 12.96 1.47 0.07 0.04 0.74 3.88 5.10 0.02 99.41 

Lipari 74.15 0.07 12.48 1.69 0.07 0.04 0.77 3.77 5.26 0.00 98.29 

Lipari 73.76 0.08 13.16 1.56 0.07 0.04 0.74 4.01 5.25 0.00 98.68 

            

Group 7 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 53.91 2.26 13.70 12.56 0.19 3.82 7.26 3.20 1.79 0.34 99.03 

BCR2g 54.59 2.28 13.63 12.29 0.19 3.65 7.06 3.48 1.84 0.35 99.35 

BCR2g 54.83 2.27 13.42 11.95 0.20 3.71 7.04 3.49 1.79 0.35 99.04 

BCR2g 54.19 2.27 14.20 12.76 0.19 3.76 6.95 3.45 1.77 0.30 99.83 

BCR2g 54.34 2.26 14.77 12.82 0.20 3.74 7.07 3.81 1.82 0.34 101.16 

BCR2g 54.90 2.28 13.60 12.46 0.19 3.77 7.25 3.20 1.84 0.32 99.81 

BCR2g 54.93 2.28 13.75 12.93 0.20 3.65 7.10 3.45 2.00 0.33 100.60 

BCR2g 55.03 2.28 13.35 12.50 0.18 3.83 7.03 3.60 1.80 0.33 99.92 

BCR2g 55.18 2.28 14.59 12.69 0.22 3.69 7.17 3.59 1.90 0.35 101.65 

Lipari 73.83 0.08 12.99 1.62 0.06 0.04 0.65 3.98 5.02 0.01 98.29 

Lipari 74.44 0.08 12.98 1.62 0.07 0.04 0.66 4.12 5.29 0.01 99.31 

Lipari 74.61 0.07 12.95 1.54 0.09 0.05 0.67 4.16 5.19 0.01 99.33 

Lipari 75.02 0.07 13.30 1.65 0.09 0.04 0.76 4.24 5.22 0.01 100.39 

Lipari 74.80 0.08 13.82 1.69 0.09 0.06 0.70 4.63 5.09 0.01 100.97 

Lipari 74.76 0.08 13.40 1.63 0.07 0.05 0.76 4.49 5.17 0.01 100.40 

Lipari 74.94 0.07 13.15 1.57 0.06 0.04 0.79 4.55 5.27 0.00 100.44 

Lipari 75.09 0.08 13.81 1.52 0.06 0.04 0.77 4.45 5.25 0.01 101.08 

Lipari 74.66 0.07 13.44 1.61 0.08 0.05 0.68 4.20 5.04 0.02 99.86 

Lipari 75.19 0.09 12.79 1.75 0.08 0.02 0.73 4.48 5.13 0.00 100.27 

            

Group 8 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 55.20 2.30 13.56 12.15 0.20 3.60 6.93 3.21 1.79 0.36 99.29 

BCR2g 54.41 2.26 13.38 12.48 0.17 3.72 7.13 3.28 1.74 0.38 98.96 

BCR2g 54.54 2.26 13.16 12.58 0.21 3.75 6.91 3.32 1.88 0.39 99.00 

BCR2g 53.96 2.26 13.23 12.38 0.20 3.77 7.03 3.52 1.79 0.38 98.51 

BCR2g 54.11 2.26 13.23 12.50 0.18 3.69 6.99 3.21 1.86 0.36 98.40 

BCR2g 54.70 2.27 13.33 12.72 0.20 3.76 7.09 3.42 1.76 0.36 99.60 

BCR2g 54.92 2.26 13.41 12.62 0.19 3.66 7.11 3.42 1.81 0.38 99.77 

BCR2g 54.22 2.28 13.08 11.70 0.20 3.80 7.00 3.25 1.86 0.35 97.74 

BCR2g 54.50 2.27 13.13 12.34 0.20 3.85 7.31 3.41 1.74 0.34 99.08 

BCR2g 54.24 2.28 13.50 12.54 0.20 3.70 7.00 3.30 1.78 0.36 98.89 
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BCR2g 54.57 2.25 13.56 12.45 0.19 3.72 7.19 3.31 1.80 0.36 99.40 

Lipari 74.43 0.07 12.70 1.76 0.07 0.04 0.81 4.18 5.23 0.00 99.30 

Lipari 74.04 0.08 12.68 1.63 0.07 0.04 0.71 4.16 4.96 0.01 98.36 

Lipari 74.78 0.07 12.99 1.59 0.07 0.06 0.72 4.27 5.21 0.00 99.76 

Lipari 74.50 0.07 12.80 1.65 0.07 0.02 0.79 4.01 5.24 0.00 99.15 

            

Group 9 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.38 2.25 13.50 11.88 0.18 3.64 7.03 3.11 1.85 0.34 98.16 

BCR2g 54.61 2.25 13.14 12.46 0.16 3.68 7.07 3.29 1.90 0.35 98.91 

BCR2g 54.57 2.25 13.42 12.31 0.20 3.71 7.33 3.22 1.86 0.33 99.22 

BCR2g 54.07 2.26 13.18 12.18 0.19 3.54 7.23 3.14 1.87 0.33 97.99 

BCR2g 54.24 2.26 13.19 13.06 0.19 3.60 7.33 3.16 1.89 0.32 99.23 

BCR2g 53.37 2.25 13.50 12.77 0.19 3.77 7.17 3.26 1.85 0.35 98.47 

Lipari 74.30 0.08 12.92 1.59 0.08 0.03 0.82 4.04 5.30 0.00 99.15 

Lipari 74.23 0.08 13.07 1.66 0.05 0.04 0.78 3.85 5.25 0.01 99.02 

Lipari 73.04 0.07 12.84 1.51 0.06 0.00 0.71 4.04 5.06 0.01 97.34 

Lipari 73.43 0.07 12.64 1.50 0.04 0.04 0.76 4.00 5.14 0.01 97.62 

Lipari 73.30 0.08 12.77 1.77 0.08 0.05 0.76 3.98 5.30 0.01 98.10 

Lipari 72.86 0.08 12.80 1.25 0.06 0.00 0.73 4.12 5.30 0.01 97.20 

Lipari 72.94 0.08 12.61 1.69 0.04 0.06 0.74 3.93 5.13 0.00 97.22 

Lipari 72.96 0.08 12.91 1.62 0.05 0.04 0.72 3.94 5.18 0.00 97.50 

            

Group 10 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.50 2.27 13.13 12.34 0.20 3.85 7.31 3.41 1.74 0.34 99.08 

BCR2g 54.24 2.28 13.50 12.54 0.20 3.70 7.00 3.30 1.78 0.36 98.89 

BCR2g 54.57 2.25 13.56 12.45 0.19 3.72 7.19 3.31 1.80 0.36 99.40 

BCR2g 53.91 2.26 13.70 12.56 0.19 3.82 7.26 3.20 1.79 0.34 99.03 

BCR2g 54.59 2.28 13.63 12.29 0.19 3.65 7.06 3.48 1.84 0.35 99.35 

BCR2g 54.83 2.27 13.42 11.95 0.20 3.71 7.04 3.49 1.79 0.35 99.04 

Lipari 73.83 0.08 12.99 1.62 0.06 0.04 0.65 3.98 5.02 0.01 98.29 

Lipari 74.44 0.08 12.98 1.62 0.07 0.04 0.66 4.12 5.29 0.01 99.31 

Lipari 74.61 0.07 12.95 1.54 0.09 0.05 0.67 4.16 5.19 0.01 99.33 

Lipari 75.02 0.07 13.30 1.65 0.09 0.04 0.76 4.24 5.22 0.01 100.39 

            

Group 11 

Standard SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Total 

BCR2g 54.79 2.25 13.49 12.64 0.19 3.78 7.18 3.24 1.74 0.36 99.66 

BCR2g 55.21 2.28 13.39 12.08 0.21 3.63 7.11 3.24 1.90 0.35 99.39 

BCR2g 55.23 2.26 13.51 12.95 0.22 3.68 7.14 2.27 1.83 0.38 99.48 

BCR2g 54.69 2.26 13.27 12.65 0.19 3.68 6.89 3.45 1.82 0.37 99.25 

BCR2g 54.71 2.26 13.81 12.38 0.20 3.64 7.11 3.19 1.70 0.38 99.38 

BCR2g 54.43 2.26 13.44 12.39 0.21 3.82 7.12 3.35 1.88 0.36 99.26 

BCR2g 54.72 2.26 13.77 12.85 0.18 3.76 7.23 3.29 1.78 0.38 100.22 

BCR2g 54.12 2.25 13.50 12.71 0.20 3.74 7.20 3.40 1.84 0.37 99.31 

Lipari 74.79 0.08 13.05 1.54 0.06 0.04 0.70 4.27 5.22 0.01 99.76 

Lipari 75.18 0.08 13.23 1.45 0.06 0.03 0.82 4.02 5.25 0.00 100.13 

Lipari 74.45 0.08 13.12 1.70 0.07 0.03 0.72 4.43 5.08 0.00 99.68 

Lipari 74.72 0.08 13.12 1.44 0.07 0.06 0.81 4.42 5.20 0.00 99.91 
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Chapter 6: The transport of Icelandic volcanic ash: insights from European tephra 

records  

Model description and testing 

The physical model calculates the terminal fall velocity of a particle using the ‘Ganser 

scheme’ described by (Stevenson et al., 2015), which accounts for the non-spherical 

shape of particles (Ganser, 1993). Particle density varies exponentially with particle 

size; larger particles (2000 µm, 440 kg m-3) being less dense than smaller particles (8 

µm, 2300 kg m-3) (due to a larger proportion of vesicles (Bonadonna and Phillips, 2003; 

Connor et al., 2013). The tephra glass density for calculations is based on the density of 

rhyolitic (SiO2>69 wt %) glass (2.3 g cm-2), the most commonly identified cryptotephra 

composition. Particles fall through an atmosphere with layers of 100 m vertical 

thickness. Wind speed and air viscosity are constant with height, however atmospheric 

density decreases with height (Connor et al., 2013).  

In order to assess our model, we compare the model output to geological distal tephra 

dispersion for an eruption which has relatively well described input parameters (plume 

height and wind speed) and well mapped distal tephra deposits: the May 1980 eruption 

of Mount St Helens. Wind speed for the event is estimated at an average of 28 ms-1 and 

plume height between 15-20 km (Carey and Sigurdsson, 1982). As sphericity is not well 

defined for tephra from this eruption, values are sampled from the standard input 

probability density function.  

Our results are generally in good agreement with the empirical observations (Carey and 

Sigurdsson, 1982) especially for shards ≥ 200 µm (Max A) (Fig. S4). However, our 

model overestimates the transport distance of smaller shards (100 µm). There is 

evidence that aggregation resulted in the early fallout of small shards (<100 µm) 

(Durant et al., 2009). As our model does not account for aggregation, small shards do 

not fall as early as the denser aggregates and travel further. This is most likely the 



~ 281 ~ 

 

 

 

reason that the empirical data and our model output do not show complete alignment for 

shards of ~100 µm size. There is no empirical data for shard sizes (Max A) <100 µm.  
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Chapter 6. Figure S1. The results of bootstrap resampling on a selection of the tephra layers identified in 

this study. Red lines indicate 0.025 and 0.975 error bounds. 
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Chapter 6. Figure S2. Flowchart outline of the tephra fallout model applied in this paper. 
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Chapter 6. Figure S3. Plots showing the values sampled from probability distribution functions for a) 

wind speed, b) sphericity c) plume height and d) an example of the range of output distances during a 

model run with a particle diameter of 30 µm. 
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Chapter 6. Figure S4. Model fallout distances plotted against empirical data for the Mount St Helens 1980 

eruption. Tephra data and eruption input parameters all from Carey and Sigurdsson (1982) plotted in 

black. No observed data is available for shard sizes <100 µm. Data from model outputs: point = median 

output value; horizontal bars indicate maximum and minimum values from model outputs. Plume height 

estimates for the eruption vary between 15km and 20km therefore two separate model simulations were 

run (red and blue lines respectively). 
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Chapter 6. Figure S5. Geochemical data for the Hekla 4 tephra plotted by region, including data from 

sites in this study. All data has been normalised to 100% for comparison. Colours correspond to regions 

as follows: Sweden (Orange); N. Ireland (Sky blue); Faroes/Shetland (Dark grey); Scotland (light grey); 

Ireland (Dark Blue); Norway (Red). A-B) Data from Tephrabase: England (Pilcher et al., 1996); Faroe 

Islands (Dugmore et al., 1996, Wastegård et al., 2001); Iceland (Dugmore et al., 1992, Boygle, 1995); 

Ireland (Pilcher et al., 1996); Northern Ireland (Pilcher et al., 1996, Pilcher et al., 1995, Swindles, 2006); 

Norway (North)(Pilcher et al., 2005); Scotland (Dugmore et al., 1992, Dugmore and Newton, 1992, 

Dugmore et al., 1995); Central Sweden (Zillen et al., 2002). C-D) Hekla 4 type data (blue shaded region) 

plotted against Hekla 4 tephra layers from sites in this study. A small number of shards at Claraghmore 

bog with a TiO2 content of ~1.5% are from an eruption of Katla which occurred at approximately the 

same time as the Hekla 4 eruption and have been removed from these plots for clarity (Silk N2 (Plunkett 

et al., 2004)) . The errors associated with the analytical work (EPMA) are smaller than the size of the 

symbols used. 
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Chapter 6. Figure S6. Combinations of sampled input parameters which result in transport distances 

which lie between the UQ and LQ range (the range which appears to match our geological samples). 

Darker colours represent input parameter combinations which were stochastically sampled more often. 

  



~ 288 ~ 

 

 

 

Tephra layer 
Lake  

(median shard size) 

Peatland 

(median shard size) 
p value 

Glen Garry 
Malham tarn  

(50 µm) 

Malham tarn moss 

(50 µm) 
0.07 

Hekla 1104 
Sammakovuoma lake 

(45 µm) 

Sammakovuoma peatland 

(40 µm) 
0.03 

SN-1 
Sammakovuoma lake 

(45 µm) 

Sammakovuoma peatland 

(35 µm) 
0.00 

Hekla 1104, Hekla 

1158 (one mixed 

layer) 

Lake Svartkälsjärn 

(45 µm) 

Degerö Stormyr 

(40 µm) 
0.05 

Hekla 4 
Lake Svartkälsjärn 

(40 µm) 

Degerö Stormyr 

(45 µm) 
0.04 

Chapter 6. Table S1. Table indicating the outcome of Mann Whitney statistical tests comparing the 

maximum tephra grain length of tephra layers recorded in peatlands and lakes in close proximity. 

Statistically significant p values (indicating a significant difference in the median shard size in the lake 

and peatland at 95% confidence interval) are highlighted in bold. 
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Tephra layer Site type 
Site (and core if 

applicable) 

Median tephra 

size in sample of 

peak tephra 

concentration 

(Max A) 

Overall 

median 

tephra size 

(Max A) 

p value 

Hekla 1510 
Peatland 

Fallahogy (1) 40 
40 

0.85 

Hekla 1510 Peatland Fallahogy (2) 50 60 0.14 

Hekla 1510 
Peatland 

Fallahogy (3) 50 
50 

0.73 

Hekla 1510 
Peatland 

Fallahogy (4) 50 
50  

0.61 

Hekla 1510 
Peatland 

Fallahogy (6) 40 
40 

0.39 

Hekla 1510 
Peatland 

Fallahogy (7) 50 
50 

0.91 

Hekla 1510  
Peatland 

Fallahogy (8) 40 
45 

0.09 

Hekla 1510 
Peatland 

Fallahogy (9) 50 
45 

0.94 

Hekla 1510  
Peatland 

Fallahogy (10) 45 
45 

0.82 

Hekla 1510 
Peatland 

Fallahogy (11) 50 
50 

0.32 

Hekla 4 
Peatland Claraghmore 

peatland  
30 

35 
0.48 

Hekla 4 
Peatland 

Malham Moss 45 
40 

0.45 

Hekla 4 
Peatland 

Dëgro Stormyr 45 
45 

0.95 

CLA-L1 
Lake 

Claraghmore Lake 65 
65 

0.65 

Hekla 1104 
Lake 

Sammakovuoma lake 40 
45 

0.62 

SN-1 
Lake 

Sammakovuoma lake 45 
45 

0.32 

Glen Garry 
Lake 

Malham Tarn 50 
50 

0.56 

Hekla 4  
Lake 

Lake Svartkälsjärn 40 
40 

0.17 

Chapter 6. Table S2. Table indicating the outcome of Mann Whitney statistical tests comparing the 

median tephra shard size (Max A) in the sample of peak concentration with the overall median tephra 

shard size (Max A) for a tephra layer. There are no statistically significant p values (indicating a 

significant difference in the median shard size in the lake and peatland at 95% confidence interval) 

suggesting that shards of different sizes (Max A) are not being reworked vertically through peatlands or 

lakes significantly differently. 

Chapter 6 Supplementary file 2. A spreadsheet containing raw data on shard size, morphology and colour 

for each shard in this study. Due to space constraints in this thesis and the large number of rows in this 

table (9500) this file is not included in the thesis.  
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Chapter 7: Climatic control on Icelandic volcanic activity during the Holocene 

 

Figure S1. Plots indicating a) the frequency of Icelandic eruptions (explosive and effusive) and ash cloud 

events, b) the results of running correlation analysis on Icelandic eruption and ash cloud event data (width 

10), c) the frequency of Icelandic eruptions and volume of lava erupted from Iceland, d) the results of 

running correlation analysis on Icelandic eruption frequency and lava volume (width 10). Owing to dating 

uncertainties on data all data are binned into 200 year bins. Dashed vertical grey lines indicate periods of 

reduced frequency of explosive volcanic eruptions and ash clouds in the periods between 5.5-4.5 ka BP 

and 2.6-1.6 ka BP  
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Figure S2. Plots showing the results of cross correlation analysis between a) GISP2 Na+ and Icelandic 

eruption frequency, b) GISP2 Na+ and ash cloud frequency over the last 7000 years. Icelandic eruption 

frequency and ash cloud frequency in 100 year bins, GISP2 Na+ values averaged across 100 years. Blue 

lines indicate 95% confidence intervals. Strongest correlations: Icelandic eruptions -0.33 at a lag of 600 

years; European ash clouds -0.35 at a lag of 700 years. 
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Chapter 8: Estimating the frequency of volcanic ash clouds over northern Europe  

Chapter 8. Supplementary File 1 Table indicating the new tephra layers identified in northern Europe 

since the original database by Swindles 2011 was compiled. Maps showing the new tephra layers in 

reference to the spatial gaps identified by Lawson et al., 2012 are provided in Supplementary File 3. New 

sites extend the existing distribution of some previously identified tephra layers such as Hekla 1158. New, 

additional tephra layers which do not match the geochemistry or timing of previously identified tephra 

layers in northern Europe have also been discovered (highlighted in bold). Tephra layers which may 

represent new previously unrecognised horizons, but which have too few geochemical analyses or show a 

large range of different geochemistry and therefore are not completely confirmed as new tephra layers are 

highlighted in bold italics.  
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Tephra 
Type of 
record 

Age/ mid-age 
Estimate 

Source region Source volcano 
Geochemical 
composition 

Site, Region 
Location 

(decimal degrees) 
Reference 

Grímsvötn 2011 Observed AD 2011 Iceland Grímsvötn Basaltic Multiple n/a Stevenson et al., (2013) 

Hekla 1947 Cryptotephra 3 BP Iceland Hekla Dacitic-Andesitic 
Cors Fochno, Wales 52.504°N, 4.012°W This study  

Roman Lode, England  51.129°N, 3.783°W Matthews et al. (2008) 

Askja 1875 Cryptotephra 75 BP Iceland Askja Rhyolitic 

Degerö Stormyr, Sweden 64.181°N, 19.564°E Watson et al., (in press) 

Linje, Poland 53.187°N, 18.309°E This Study 

Lake Czechowskie, Poland 53.874°N, 18.238°E 
Wulf et al, (2016) 

Lake Tiefer See, Germany 53.593°N, 12.529°E 

Hekla 1845 Cryptotephra 105 BP Iceland Hekla Dacitic-Andesitic 
Cors Fochno, Wales 52.504°N, 4.012°W This study 

Fallahogy, N. Ireland 54.911°N, 6.557°W Watson et al., (2015) 

BRACSH-1 Cryptotephra 146 BP Iceland Grímsvötn? Basaltic Brackloon, Ireland 53.753°N, 9.560°W Reilly et al., (2015) 

QUB 384_G3_G4 Cryptotephra 250 BP Unknown Unknown Dacitic Cors Fochno, Wales 52.504°N, 4.012°W This study 

Hekla 1693 

Cryptotephra 

257 BP Iceland Hekla Intermediate 

Lough Naman, N. Ireland 54.439°N, 7.885°W 
Rea et al., (2011) 

Cryptotephra Moneygal, N. Ireland 54.742°N, 7.631°W 

Observed n/a n/a Thorarinsson, (1981) 

Hekla 1510 Cryptotephra 440 BP Iceland Hekla Dacitic-Andesitic 

Camillan, Ireland 52.017°N, 9.533°W Reilly et al., (2015) 

Ricksy Ball, England 51.128°N, 3.843°W Fyfe et al., (2014) 

Roman Lode, England 51.129°N, 3.783°W Matthews et al., (2008) 

Öræfajökull 1362 Cryptotephra 588 BP Iceland Öræfajökull Rhyolitic Claraghmore Bog, N. Ireland 54.633°N, 7.454°W Watson et al., (in press) 

Unknown Cryptotephra 778 BP Unknown Unknown Andesitic-Dacitic Cors Fochno, Wales 52.504°N, 4.012°W This study  

Hekla 1158 Cryptotephra 792 BP Iceland Hekla Dacitic 

Degerö Stormyr, Sweden 64.181°N, 19.564°E 
Watson et al., (in press) 

Lake Svartkälsjärn, Sweden 64.264°N, 19.552°E 

Stordalen, Sweden 68.356°N, 19.044°E Swindles et al., (2015) 

Hekla 1104 Cryptotephra 846 BP Iceland Hekla Rhyolitic 

Camillan, Ireland 52.017°N, 9.533°W Reilly et al., (2015) 

Claraghmore Bog, N. Ireland 54.633°N, 7.454°W 

Watson et al., 2016 in press 

Degerö Stormyr, Sweden 64.181°N, 19.564°E 

Lake Svartkälsjärn, Sweden 64.264°N, 19.552°E 

Sammakovuoma bog, Sweden 66.995°N, 21.457°E 

Lake Sammakovuoma, Sweden 66.992°N, 21.500°E 

CLA-L1 Cryptotephra 
Younger then 

MOR-T4 = 
950 BP 

Iceland Grímsvötn Basaltic Claraghmore lake , N. Ireland 54.631°N, 7.450°W Watson et al., (in press) 

MOR-T4 Cryptotephra 950 BP Iceland Unknown Rhyolitic-Dacitic 

Cors Fochno, Wales 52.504°N, 4.012°W This study 

Claraghmore Bog, N. Ireland 54.633°N, 7.454°W 
Watson et al., (2016) 

Claraghmore lake , N. Ireland 54.631°N, 7.450°W 
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Unknown  
Grímsvötn 

Cryptotephra 1077 BP Iceland Grímsvötn Basaltic Lake Tiefer See, Germany 53.593°N, 12.529°E Wulf et al., (2016) 

AD 860 B Cryptotephra 1103 BP Alaska 
Bona-Churchill 

massif 
Rhyolitic Rough Tor, England? 

50.589°N, 4.625°W 
This study 

 

AD 860 A Cryptotephra 1117 BP Iceland? Grímsvötn? Rhyolitic 
Rough Tor, England? 50.589°N, 4.625°W This study 

Ricksy Ball, England 51.128°N, 3.843°W Fyfe et al., (2014) 

SN-1 Cryptotephra 1165 BP Iceland Snæfellsjökull Trachydacite 
Sammakovuoma bog, Sweden 66.995°N, 21.457°E 

Watson et al., (in press) 
Lake Sammakovuoma, Sweden 66.992°N, 21.500°E 

Unknown Icelandic 
= DOM 4? 

Cryptotephra 
1890 BP and 

1960 BP 
Iceland? Unknown Rhyolitic Lake Czechowskie, Poland 53.874°N, 18.238°E Wulf et al., (2016) 

Glen Garry Cryptotephra 2176 BP Iceland? Unknown Dacitic-Rhyolitic 

Malham Tarn Moss, England 54.097°N, 2.173°W 
Watson et al., (in press) 

Malham Tarn, England 54.096°N, 2.165°W 

Lake Tiefer See, Germany 53.593°N, 12.529°E Wulf et al., (2016) 

SV-L2 - QUB 570 
Group 2 (c. AD 

650)? 
Cryptotephra 2250 BP ? Unknown Dacitic-Andesitic Lake Svartkälsjärn, Sweden 64.264°N, 19.552°E Watson et al., (in press) 

DCSH-2 Cryptotephra 2365 BP Azores? 
Furnas 

volcano? 
Trachydacite Derrycunihy, Ireland 51.970°N, 9.600°W Reilly et al., (2015) 

BMR-190 Cryptotephra 2595 BP Iceland Hekla Dacitic Camillan, Ireland 52.017°N, 9.533°W Reilly et al., (2015) 

OMH-185 
Population 2 

Cryptotephra 2668 BP ? Unknown Rhyolitic-Dacitic Ricksy Ball, England 51.128°N, 3.843°W Fyfe et al., (2014) 

Microlite Cryptotephra 2668 BP Iceland Snaefellsjökull Rhyolitic Roman Lode, England 51.129°N, 3.783°W Matthews et al. (2008) 

Hekla 3 Cryptotephra 2996 BP Iceland Hekla Dacitic-Rhyolitic Degerö Stormyr, Sweden 64.181°N, 19.564°E Watson et al., (in press) 

Hekla-S/Kebister Cryptotephra 3725 BP Iceland Hekla Dacitic-Rhyolitic Degerö Stormyr, Sweden 64.181°N, 19.564°E Watson et al., (in press) 

Silk-N2 Cryptotephra 4287 BP Iceland Katla 
Dacitic-

Trachydacitic 
Claraghmore Bog, N. Ireland 54.633°N, 7.454°W Watson et al., (in press) 

Hekla 4 Cryptotephra 4287 BP Iceland Hekla Rhyolitic-Dacitic 

Degerö Stormyr, Sweden 64.181°N, 19.564°E 

Watson et al., (in press) 

Lake Svartkälsjärn, Sweden 64.264°N, 19.552°E 

Lake Sammakovuoma, Sweden 66.992°N, 21.500°E 

Malham Tarn Moss, England 54.097°N, 2.173°W 

Claraghmore lake , N. Ireland 54.631°N, 7.450°W 

Fallahogy, N. Ireland 54.911°N, 6.557°W Roland et al., (2014) 

Lake Tiefer See, Germany 53.593°N, 12.529°E Wulf et al., (2016) 

Unknown #5 Cryptotephra 5500 BP ? ? Rhyolitic-Dacitic Lake Svartkälsjärn, Sweden 64.264°N, 19.552°E Watson et al., (in press) 

Lairg B Cryptotephra 6676 BP Iceland Torfajökull Rhyolitic 

Claraghmore lake , N. Ireland 54.631°N, 7.450°W 
Watson et al., (in press) 

Malham Tarn Moss, England 54.097°N, 2.173°W 

Ricksy Ball, England 51.128°N, 3.843°W Fyfe et al., (2014) 



~ 295 ~ 

 

 

 

Lake Tiefer See, Germany 53.593°N, 12.529°E Wulf et al., (2016) 

Lairg A Cryptotephra 6900 BP Iceland Hekla Rhyolitic 

Claraghmore lake, N. Ireland 54.631°N, 7.450°W 

Watson et al., (in press) 
Claraghmore Bog, N. Ireland 54.633°N, 7.454°W 

Malham Tarn Moss, England 54.097°N, 2.173°W 

Degerö Stormyr, Sweden 64.181°N, 19.564°E 

Ricksy Ball, England 51.128°N, 3.843°W Fyfe et al., (2014) 
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Chapter 8. Supplementary File 2. New tephras in Southern England, Wales and Poland. 

Bodmin Moor (Rough Tor South)  

Bodmin Moor is an area of moorland in the South of England. Rough Tor South is a 

topogenous valley mire located to the northwest of Bodmin Moor (50.59°N, 4.63°W), 

the mire has accumulated around a spring and has been subject to previous stratigraphic 

and paleoecological study (Gearey et al., 2000; Hopla and Gearey, 2009). Previous 

research has identified a record spanning ~3 meters of peat at Rough Tor South (Gearey 

and Charman, 1996). 

Despite extensive investigation of the area, the deepest peat identified during this study 

was 140 cm in depth. The bottom of the core contains increasing amounts of mineral 

material, as evidenced by loss-on-ignition values (% loss-on-ignition < 5%), suggesting 

that the peat-mineral soil interface was sampled. We identified two tephra layers in the 

Rough Tor South core at depths of 30-31 cm (BD 30) and 36-37 cm (BD 36). The major 

element glass geochemistry of shards from these two tephra layers suggests a 

correlation to the AD 860 layers (B and A respectively). Radiocarbon dates from 

previous paleoenvironmental studies at Rough Tor South indicate an age of 1675 cal yr 

BP for peat at a depth of 115 cm (Gearey et al., 2000). Based on linear interpolation, 

peat at ~30cm depth would have an age of 395 cal yr BP, much more recent than the 

age of the AD 860 tephra layers (1090 cal yr BP). However, areas of peat on Bodmin 

Moor have been subject to anthropogenic disturbance, through peat cutting, artificial 

drainage and tin steaming (Gearey et al., 2000). Rough Tor has a high density of 

archaeological remains and paleoenvironmental investigations indicate that humans 

have been in the area since the Neolithic (Hopla and Gearey, 2009). We therefore 

suggest that the top of the core obtained from Rough Tor South for this study was lost 

due to peat cutting or anthropogenic disturbance in the past. Our conclusion is 

supported by the short length of the core recovered when compared to those retrieved by 

previous studies; our core of 1.4 m was shorter than the 2.8 m cores retrieved by 

(Gearey et al., 2000; Hopla and Gearey, 2009). Secondly, we conducted a scan in the 

top section of the core for spheroidal carbonaceous particles (SCPs); microscopic soot 
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particles which are indicators of post industrial revolution air pollution (Rose and 

Harlock, 1998). SCPs have been identified in the surface sediments of lakes in Cornwall 

(Rose and Harlock, 1998). However, no SCPs were identified in the top of the core 

from Rough Tor South, adding weight to our hypothesis that the top of the core at 

Rough Tor South was lost due to anthropogenic disturbance and supporting our 

correlation of the tephras identified to the AD 860 A (BD 36) and AD 860 B (BD 30) 

tephra layers.  

The AD 860 layers (1090 cal yr BP) were originally discovered in Sluggan bog, Ireland, 

apparent in the peat as one tephra layer but containing glass shards of two different 

geochemical compositions (Pilcher et al., 1995). The AD 860 B tephra has been 

identified at 20 sites in Ireland, Great Britain, Scandinavia and Germany (Langdon and 

Barber, 2004; Pilcher et al., 2005; Pilcher et al., 1995; Van Den Bogaard and 

Schmincke, 2002) The BD 30 tephra at Rough Tor South represents the first 

identification of the AD 860 B in the south of England, despite other 

tephrochronological studies in the region (Fyfe et al., 2014; Matthews, 2008). The AD 

860 B tephra was recently linked to a source eruption in Alaska (Jensen et al., 2014) 

and has been precisely dated in the NGRIP ice core to AD 846-848 (1103 cal yr BP) 

(Coulter et al., 2012). The AD 860 A tephra has been tentatively linked to an eruption 

of the Grímsvötn volcanic system, Iceland (Wastegård et al., 2003). AD 860 A has a 

more confined spatial distribution when compared to the AD 860 B tephra layer and has 

been identified at 7 sites, the majority (n = 6) in Great Britain and Ireland (Chambers et 

al., 2004; Langdon and Barber, 2004; Swindles, 2006). BD 36 represents the second 

finding of the AD 860 A tephra in Southern England, where it has recently been 

identified on Exmoor (Fyfe et al., 2014).    
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Chapter 8. Supplementary file 2. Figure 1- Geochemical bi-plots of major elements of glass from the two 

tephra layers detected at Bodmin moor (Rough Tor South) plotted against the glass geochemistry of 

known tephras based on type data from Hall and Pilcher (2002); Pilcher et al. (1995); Swindles (2006) 

Wales (Cors Fochno) 

Cors Fochno (Borth Bog) is a raised bog in Ceredigion, West Wales (52.50°N, 4.01°W). 

Previous paleoenvironmental research on the site indicates a peat age of 6910–7170 cal 

yr BP at a depth of ~6.9 meters (Hughes and Schulz, 2001). A core of 7.2 meters of well 

humified peat was sampled from the peatland for this study. Continuous analysis of the 

core identified five cryptotephra layers, all found in the top 130 cm of peat. Samples of 

the core below 130 cm occasionally contain one or two glass shards resembling 

cryptotephra, but glass shard concentrations are too sparse to be suitable for 

geochemical analysis.  

The top 24 cm of peat at Cors Fochno contains two cryptotephra layers of similar major 

element glass geochemistry, CF-1 (13-15 cm) and CF-2 (23-24 cm). Both CF-1 and CF-

2 are comprised of a sparse concentration of small brown glass shards. Geochemical 

analysis suggests that both tephra layers have a dacitic-andesitic glass shard 

geochemistry similar to the composition of glass shards from historic eruptions of the 

Hekla volcano (Figure 2a-b). Over the last 500 years multiple tephra layers with highly 

similar major element geochemistry have been deposited over northern Europe during 
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eruptions of the Hekla volcano in: AD 1510, 1845 and 1947 (Dugmore et al., 1996; Rea 

et al., 2012; Watson et al., 2015).  

Spheroidal carbonaceous particles (SCPs) are a marker produced by the burning of 

fossil fuels, SCPs first appear in records during the industrial revolution and gradually 

increase in abundance before reaching a peak in concentration in samples dating to c. 

1970 in the UK (Rose and Harlock, 1998). SCPs were detected in large numbers in 

samples containing the CF-1 tephra, whereas, only a small number of SCPs were 

present in samples containing the CF-2 tephra. The presence of SCPS alongside glass 

shards from both the CF-1 and CF-2 tephras layers suggests that these tephras were 

deposited too recently to be from the Hekla eruption of AD 1510 because this eruption 

predates the industrial revolution, the point at which SCPs appear in the geological 

record (Swindles and Roe, 2006). Given the overall stratigraphy and SCP 

concentrations we assign CF-1 and CF-2 to the eruptions of Hekla in 1947 and 1845, 

respectively. The Hekla 1947 tephra has been identified at 21 sites, the majority (n = 19) 

in Ireland. The Hekla 1947 tephra has also recently been identified at sites in Scotland 

(Housley et al., 2010) and southern England (Matthews, 2008). The Hekla 1845 tephra 

has only recently been identified at sites in Ireland (Rea, 2011; Watson et al., 2015). 

Our discovery represents the first record of these cryptotephra layers in Wales, and the 

first of the Hekla 1845 tephra outside of Ireland.  
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Chapter 8. Supplementary file 2. Figure 2- Geochemical bi-plots of major elements of glass from the five 

tephra layers detected at Cors Fochno, Wales, plotted against the glass geochemistry of known tephras 

based on type data from Dugmore et al. (1995); Hall and Pilcher (2002); Larsen et al. (1999); Pilcher et 

al. (2005); Pilcher et al. (1996); Swindles (2006); Wastegård (2002); Watson et al. (2015).  
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A third tephra layer, CF-3 (31-34 cm) contains clear glass shards with a pink tinge. The 

major element geochemistry of glass shards from this tephra layer suggests CF-3 

contains shards from two geochemical compositions (Figure 2c-d). The best 

geochemical match for this tephra appears to be with glass shards from the QUB 384 

tephra population groups 3 and 4. The QUB 384 tephra groups 3 and 4 were also 

identified as a single peak in tephra shard concentration on the Lofoten Islands, northern 

Norway (Pilcher et al., 2005). Assignment to the QUB 384 group 3 and 4 tephras (200-

300 cal yr BP) is supported by the age of the CF-3 tephra layer, which is bracketed by 

the tephra layers of CF-2 (=Hekla 1845, 23 cm) and CF-5 (=MOR-T4, 96 cm) to an age 

of between 105-950 cal yr BP. CF-3 represents the second discovery of the QUB 384 

group 3 and 4 tephra layers and greatly extends the known fallout region of these tephra 

layers.  

The tephra layer CF-4 (95-97 cm) consists mainly of brown glass shards. We were able 

to obtain only 7 successful geochemical analyses on glass shards from the CF-4 tephra 

layer (Figure 4e-f). These analyses indicate a wide range of geochemistry and very little 

similarity between the geochemistry of tephra shards from this layer. CF-4 is above CF-

5 which is geochemically correlated to the MOR-T4 tephra and gives a maximum age 

for CF-4 of after ~1000 AD. We could not identify a geochemical match between the 

geochemistry of glass shards from CF-4 and the geochemistry of any cryptotephra 

layers identified in northern Europe which are younger than CF-5 (= MOR-T4 ~AD 

1000). Some of the analyses indicate a geochemical match to the Hekla 1510 tephra, 

which has previously been identified at sites in the South of England (Fyfe et al., 2014; 

Matthews, 2008). CF-4 may represent a new tephra layer, however due to a lack of 

successful geochemical analyses and the range of geochemistry in analyses of different 

glass shards more information is required before CF-4 is described as a new tephra 

rather than a mix of tephras from previously identified cryptotephras.  

CF-5 (115-118 cm) is correlated based on analyses of glass shard geochemistry to the 

MOR-T4 tephra previously identified in Ireland (Chambers et al., 2004; Watson, 2016 

in Press) (Figure 4g-h). The discovery of the MOR-T4 tephra at Cors Fochno is the first 

identification of this tephra outside of Ireland. The source eruption for the MOR-T4 
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tephra is unknown but the tephra is thought to be of Icelandic origin (Chambers et al., 

2004).   

Poland (Linje) 

Linje mire is located in northern Poland (53.18°N, 18.30°E) the peatland vegetation is 

indicative of a poor fen, but areas of ombrotrophic vegetation are present (Słowińska et 

al., 2010). A 70 cm long core was extracted from Linje mire. The core contained only 

one tephra layer (Linje-1) at a depth of 56-60 cm. The Linje-1 tephra layer consists of 

large clear glass shards of vesicular morphology. The major element geochemistry of 

glass shards from Linje-1 is a match to glass shards from the Askja 1875 tephra (Figure 

3). The assignment of Linje-1 to the eruption of Askja 1875 is further supported by a 

14C age-depth model from another core from the same peatland, which suggests that the 

age of peat at the depth of the Linje-1 tephra (56-60 cm) is ~1800-1900 AD 

(Lamentowicz, personal comm.). Tephra from the eruption of Askja 1875 was dispersed 

widely over Scandinavia (Wastegård, 2005), is found at two sites in Germany, (Van 

Den Bogaard and Schmincke, 2002; Wulf et al., 2016) and has recently been identified 

in the sediment of Lake Czechowskie in Poland (Wulf et al., 2016).  

  

 

Chapter 8. Supplementary file 2. Figure 3- Geochemical bi-plots of major elements of glass from the 

tephra layer detected at Linje Mire, Poland, plotted against the glass geochemistry of the Askja 1875 

tephra layer based on type data from Larsen et al. (1999); Oldfield et al. (1997); Pilcher et al. (2005). 
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Poland (Kusowskie Bagno) 

Kusowskie Bagno is a Baltic bog in northern Poland (53.82°N, 16.59°E). A core of 8 

meters, spanning the entire depth of peat at the site was extracted (Lamentowicz et al., 

2008). Only one tephra layer was identified (Kusowskie-1). Glass shards were detected 

at a depth of 4-4.5 meters and the analysis of major elements of these shards indicate 

geochemical similarity to glass shards from the AD 860 B tephra (Figure 4), recently 

correlated to an eruption in Alaska (Jensen et al., 2014). However, the depth at which 

the Kusowskie Bagno tephra was identified would require an exceptional rate of peat 

accumulation since AD 860. We therefore suggest that the tephra identified at 

Kusowskie Bagno is derived from an unknown eruption, most likely in Alaska.  

 

 

Chapter 8. Supplementary file 2. Figure 4- Geochemical bi-plots of major elements of glass from the 

tephra layer detected at Kusowskie Bagno Peatland, Poland, plotted against the glass geochemistry of the 

AD 860 B tephra layer based on type data from Hall and Pilcher (2002); Pilcher et al. (2005); Swindles 

(2006) 

Arctic Sweden (Stordalen)  

Stordalen peatland is located near to Abisko, northern Sweden (68.36°N, 19.04°E). Two 

tephra layers have been identified in the peatland at Storadalen, a tephra layer at 22-24 

cm (SD4) was identified and correlated to the Hekla 1158 eruption by Swindles et al. 
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(2015). A second tephra layer in the same core at 36-38 cm (SD5) contains glass shards 

of a similar geochemistry to those from the SN-1 tephra (1183-1147 cal yr BP) which 

has recently been identified in two other sites in Northern Sweden (Watson, 2016 in 

Press) (Figure 5).  

 

Chapter 8. Supplementary file 2. Figure 5- Geochemical bi-plots of major elements of glass from the 

tephra layer detected at Stordalen peatland, Sweden, plotted against the glass geochemistry of the SN-1 

tephra layer based on type data from Holmes et al. (2016); Larsen et al. (2002).  

References 

 

Chambers, F.M., Daniell, J.R.G., Hunt, J.B., Molloy, K., O'Connell, M., 2004. 

Tephrostratigraphy of An Loch Mor, Inis Oirr, western Ireland: implications for 

Holocene tephrochronology in the northeastern Atlantic region. Holocene 14, 703-720. 

Coulter, S.E., Pilcher, J.R., Plunkett, G., Baillie, M., Hall, V.A., Steffensen, J.P., 

Vinther, B.M., Clausen, H.B., Johnsen, S.J., 2012. Holocene tephras highlight 

complexity of volcanic signals in Greenland ice cores. Journal of Geophysical 

Research-Atmospheres 117. 

Dugmore, A.J., Larsen, G., Newton, A.J., 1995. 7 Tephra isochrones in Scotland. 

Holocene 5, 257-266. 

Dugmore, A.J., Newton, A.J., Edwards, K.J., Larsen, G., Blackford, J.J., Cook, G.T., 

1996. Long-distance marker horizons from small-scale eruptions: British tephra 

deposits from the AD 1510 eruption of Hekla, Iceland. Journal of Quaternary Science 

11, 511-516. 

Fyfe, R., Anderson, P., Barnett, R., Blake, W., Daley, T., Head, K., MacLeod, A., 

Matthews, I., Smith, D., 2014. Vegetation and climate change on Exmoor over the last 



~ 305 ~ 

 

 

 

millennium: detailed analysis of Ricksy Ball. 

http://www.southwestwater.co.uk/media/pdf/5/5/Vegetation_and_climate_change_on_E

xmoor_Fyfe_et_al_2014.pdf 

Gearey, B., Charman, D., 1996. Rough Tor, Bodmin Moor: testing some archaeological 

hypotheses with landscape palaeoecology. Devon and East Cornwall field guide, 

Quaternary Research Association, London, 101-119. 

Gearey, B., Charman, D., Kent, M., 2000. Palaeoecological evidence for the prehistoric 

settlement of Bodmin Moor, Cornwall, Southwest England. Part I: the status of 

woodland and early human impacts. Journal of archaeological science 27, 423-438. 

Hall, V.A., Pilcher, J.R., 2002. Late-Quaternary Icelandic tephras in Ireland and Great 

Britain: detection, characterization and usefulness. Holocene 12, 223-230. 

Holmes, N., Langdon, P.G., Caseldine, C.J., Wastegård, S., Leng, M.J., Croudace, I.W., 

Davies, S.M., 2016. Climatic variability during the last millennium in Western Iceland 

from lake sediment records. The Holocene, doi:10.1177/0959683615618260. 

Hopla, E., Gearey, B., 2009. Mesolithic-Neolithic anthropogenic impacts on the upland 

environment of Bodmin Moor, south-west England: a re-investigation of the pollen 

record from Rough Tor South. Cornish Archaeology 48-49, 253-264. 

Housley, R.A., Blockley, S.P.E., Matthews, I.P., MacLeod, A., Lowe, J.J., Ramsay, S., 

Miller, J.J., Campbell, E.N., 2010. Late Holocene vegetation and palaeoenvironmental 

history of the Dunadd area, Argyll, Scotland: chronology of events. Journal of 

Archaeological Science 37, 577-593. 

Hughes, P.D.M., Schulz, J., 2001. The development of the Borth Bog (Cors Fochno) 

mire system and the submerged forst beds at Ynyslas, in: Walker, M.J.C.a.M., D. (Ed.), 

The Quaternary of West Wales field guide. Quaternary Research Association, pp. 104-

112. 

Jensen, B.J.L., Pyne-O’Donnell, S., Plunkett, G., Froese, D.G., Hughes, P.D.M., Sigl, 

M., McConnell, J.R., Amesbury, M.J., Blackwell, P.G., van den Bogaard, C., Buck, 

C.E., Charman, D.J., Clague, J.J., Hall, V.A., Koch, J., Mackay, H., Mallon, G., 

McColl, L., Pilcher, J.R., 2014. Transatlantic distribution of the Alaskan White River 

Ash. Geology 42, 875-878. 

Lamentowicz, M., Cedro, A., Gałka, M., Goslar, T., Miotk-Szpiganowicz, G., Mitchell, 

E.A.D., Pawlyta, J., 2008. Last millennium palaeoenvironmental changes from a Baltic 

bog (Poland) inferred from stable isotopes, pollen, plant macrofossils and testate 

amoebae. Palaeogeography, Palaeoclimatology, Palaeoecology 265, 93-106. 

Langdon, P.G., Barber, K.E., 2004. Snapshots in time: precise correlations of peat-

based proxy climate records in Scotland using mid-Holocene tephras. Holocene 14, 21-

33. 

Larsen, G., Dugmore, A., Newton, A., 1999. Geochemistry of historical-age silicic 

tephras in Iceland. Holocene 9, 463-471. 



~ 306 ~ 

 

 

 

Larsen, G., Eiríksson, J., Knudsen, K.L., Heinemeier, J., 2002. Correlation of late 

Holocene terrestrial and marine tephra markers, north Iceland: implications for reservoir 

age changes. Polar Research 21, 283-290. 

Matthews, I.P., 2008. Roman Lode, Exmoor, Devon: Tephrochronology, Research 

Department Report Series. English Heritage. 

Oldfield, F., Thompson, R., Crooks, P.R.J., Gedye, S.J., Hall, V.A., Harkness, D.D., 

Housley, R.A., McCormac, F.G., Newton, A.J., Pilcher, J.R., Renberg, I., Richardson, 

N., 1997. Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, 

northern Sweden. Holocene 7, 283-290. 

Pilcher, J., Bradley, R.S., Francus, P., Anderson, L., 2005. A Holocene tephra record 

from the Lofoten Islands, Arctic Norway. Boreas 34, 136-156. 

Pilcher, J.R., Hall, V.A., McCormac, F.G., 1995. Dates of Holocene Icelandic volcanic 

eruptions from tephra layers in Irish peats. Holocene 5, 103-110. 

Pilcher, J.R., Hall, V.A., McCormac, F.G., 1996. An outline tephrochronology for the 

Holocene of the north of Ireland. Journal of Quaternary Science 11, 485-494. 

Rea, H.A., 2011. Peatland records of recent (last c.250 years) climate change in the 

North of Ireland, Faculty of Engineering and Physical Sciences. Queens University 

Belfast  

Rea, H.A., Swindles, G.T., Roe, H.M., 2012. The Hekla 1947 tephra in the north of 

Ireland: regional distribution, concentration and geochemistry. Journal of Quaternary 

Science 27, 425-431. 

Rose, N.L., Harlock, S., 1998. The Spatial Distribution of Characterised Fly-Ash 

Particles and Trace Metals in Lake Sediments and Catchment Mosses in the United 

Kingdom. Water, Air, and Soil Pollution 106, 287-308. 

Słowińska, S., Słowiński, M., Lamentowicz, M., 2010. Relationships between local 

climate and hydrology in Sphagnum mire: Implications for palaeohydrological studies 

and ecosystem management. Polish Journal of Environmental Studies 19, 779-787. 

Swindles, G.T., 2006. Reconstruction of Holocene climate change from peatlands in the 

north of Ireland. PhD Thesis. Queens University Belfast. 

Swindles, G.T., Morris, P.J., Mullan, D., Watson, E.J., Turner, T.E., Roland, T.P., 

Amesbury, M.J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D.J., 

Sanderson, N., Garneau, M., Carrivick, J.L., Woulds, C., Holden, J., Parry, L., 

Galloway, J.M., 2015. The long-term fate of permafrost peatlands under rapid climate 

warming. Sci Rep 5, 17951. 

Swindles, G.T., Roe, H.M., 2006. Constraining the age of spheroidal carbonaceous 

particle (SCP) stratigraphies in peats using tephrochronology. Quaternary Newsletter 

110, 2-9. 

Van Den Bogaard, C., Schmincke, H.U., 2002. Linking the North Atlantic to central 

Europe: a high-resolution Holocene tephrochronological record from northern 

Germany. Journal of Quaternary Science 17, 3-20. 



~ 307 ~ 

 

 

 

Wastegård, S., 2002. Early to middle Holocene silicic tephra horizons from the Katla 

volcanic system, Iceland: new results from the Faroe Islands. Journal of Quaternary 

Science 17, 723-730. 

Wastegård, S., 2005. Late Quaternary tephrochronology of Sweden: a review. 

Quaternary International 130, 49-62. 

Wastegård, S., Hall, V.A., Hannon, G.E., van den Bogaard, C., Pilcher, J.R., 

Sigurgeirsson, M.Á., Hermanns-Auoardóttir, M., 2003. Rhyolitic tephra horizons in 

northwestern Europe and Iceland from the AD 700s–800s: a potential alternative for 

dating first human impact. The Holocene 13, 277-283. 

Watson, E.J., Swindles, G.T., Lawson, I.T., Savov, I.P., 2016. Do peatlands or lakes 

provide the most comprehensive distal tephra records? Quaternary Science Reviews 

139, 110-128. 

Watson, E.J., Swindles, G.T., Lawson, I.T., Savov, I.P., 2015. Spatial variability of 

tephra and carbon accumulation in a Holocene peatland. Quaternary Science Reviews 

124, 248-264. 

Wulf, S., Dräger, N., Ott, F., Serb, J., Appelt, O., Guðmundsdóttir, E., van den Bogaard, 

C., Słowiński, M., Błaszkiewicz, M., Brauer, A., 2016. Holocene tephrostratigraphy of 

varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N 

Poland). Quaternary Science Reviews 132, 1-14. 

 

  



~ 308 ~ 

 

 

 

Chapter 8. Supplementary File 3. Maps indicating new sites at which cryptotephras have been identified. 

Black circles indicate sites in the database complied by Swindles et al., (2011). Grey circle indicate new 

sites from published literature (references in supplementary file 2). White stars indicate new sites from 

this project.  
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Shape parameter Scale parameter 

log (likelihood) 

KS-
Test    

p 

value 

AIC 
Value  Std.err. Value Std.err. 

All Icelandic eruptions  n = 213             

Exponential 0.221 0.015 0.000 0.000 -534.6 0.000 1071.2 

Weibull  0.351 0.022 2.319 0.466 -324.2 0.000 652.5 

Log-logistic 0.378 0.024 0.960 0.294 -377.3 0.000 758.6 

European ash clouds n = 23             

Exponential 0.023 0.005 0.000 0.000 -110.0 0.913 222.0 

Weibull  0.750 0.140 39.996 11.384 -108.7 0.473 221.3 

Log-logistic 0.855 0.160 27.716 10.894 -114.4 0.350 232.7 

Icelandic Eruptions VEI ≥4 n = 35             

Exponential 0.039 0.007 0.000 0.000 -148.9 0.698 299.8 

Weibull  1.404 0.193 28.265 3.564 -146.3 0.957 296.6 

Log-logistic 1.887 0.273 20.875 3.183 -150.4 0.895 304.7 

Icelandic Eruptions VEI ≥4 Silicic n = 10             

Exponential 0.011 0.003 0.000 0.000 -55.1 0.418 112.1 

Weibull  3.129 0.741 101.430 10.888 -48.3 0.995 100.7 

Log-logistic 5.220 1.360 84.250 9.030 -47.7 0.995 99.5 

Icelandic Eruptions VEI ≥3 Silicic n = 18              

Exponential 0.020 0.005 0.000 0.000 -88.5 0.943 179.1 

Weibull  1.459 0.279 55.597 9.463 -86.9 0.996 177.7 

Log-logistic 1.950 0.374 39.376 8.497 -88.4 0.996 180.9 

Supplementary File 4 – Table summarising the goodness of fit of Exponential, Weibull and Log-Logistic 

distribution to datasets described in the text. The selected distribution of best fit is highlighted in green.  
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Supplementary file 5 – The cumulative frequency of European ash clouds and Icelandic Eruptions over 

the last 1000 years. The Kolmogorov-Smirnov test indicates that European ash clouds have not been 

significantly different from the steady state model over the last 1000 years (p < 0.05); Icelandic eruptions 

show some minor deviations from a steady state. The dense dashed line indicates the steady state model; 

finely dashed lines indicate 95% confidence interval. 
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Supplementary file 6 – Histograms showing the range of repose intervals for all Icelandic eruptions, 

Icelandic eruptions VEI ≥4 and European ash clouds 
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