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Abstract

The magnitude of aerosol effective radiative forcing is the dominant source of

uncertainty in net anthropogenic forcing over the industrial period. Aerosol ef-

fective radiative forcing is also one of the largest sources of uncertainty in recent

decadal and near-future anthropogenic forcing. Knowledge about the main sources

of aerosol forcing uncertainty can be used to guide the development of models and

ultimately reduce forcing uncertainty. The research in this thesis identifies im-

portant parametric sources of aerosol radiative forcing uncertainty in global models

using perturbed parameter ensembles, statistical emulation and variance-based sen-

sitivity analyses.

Industrial and recent decadal anthropogenic emission periods are used to quan-

tify the sources of aerosol forcing uncertainty over different timescales. Natural

aerosol parameters dominate the uncertainty in aerosol forcing over the century-

scale industrial period. However, anthropogenic and model process parameters are

dominant over recent decades. In each case specific parameters have been iden-

tified as priorities for model development that targets aerosol forcing uncertainty

reduction.

At the regional scale changes in climatic effects over recent decades may be

partly attributable to anthropogenic aerosol forcing. The credible ranges of aerosol

radiative forcing, quantified in 11 climatically important regions, support some

hypotheses about the role of aerosols in regional climate forcing and call others into

question. Reducing uncertainty in the identified parameters would further clarify

the role of anthropogenic aerosols in influencing large-scale climate effects.

Physical atmosphere model parameters are found to be far more important than

aerosol parameters as sources of top-of-the-atmosphere radiative flux uncertainty.

However, aerosols are the dominant source of uncertainty in how the radiative flux

changes in response to aerosol emissions (the aerosol radiative forcing). Obser-

vations of present-day radiative fluxes provide only a weak constraint of aerosol

radiative forcing.

These results provide insight into, and motivation for, model development that

focusses on uncertainty reduction rather than quantification.
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Chapter 1

Motivation and background

“An approximate answer to the right problem

is worth a good deal more than an exact answer

to an approximate problem.”

John Tukey

1.1 Motivation

The magnitude of aerosol effective radiative forcing (ERF) (Myhre et al., 2013) is the

dominant source of uncertainty in surface warming (Rotstayn et al., 2015; Shindell et al.,

2015) and total ERF since the pre-industrial (PI) period (Skeie et al., 2011; Stocker et al.,

2013b). Substantial uncertainty in the simulation of historical climates reduces the con-

fidence in future climate projections necessary to consolidate agreement on strategies for

mitigating the effects of anthropogenic climate change. Although scientific knowledge

about aerosol-cloud-radiation interactions has increased considerably in recent years, un-

certainty in aerosol ERF has remained the largest source of total ERF uncertainty in con-

secutive Intergovenmental Panel on Climate Change (IPCC) assessment reports (Schimel

et al., 1996; Penner et al., 1996; Forster et al., 2007; Stocker et al., 2013a), with a credible

range of aerosol ERF of the same order of magnitude as the forcing known to be caused

by anthropogenic CO2 emissions.
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2 CHAPTER 1. MOTIVATION AND BACKGROUND

Aerosols affect the Earth’s climate by absorbing and scattering solar and terrestrial

radiation. Aerosol ERF (Myhre et al., 2013) conflates aerosol-radiation interaction (ARI)

forcing; the effect of aerosol absorption and re-emission of energy on atmospheric tempera-

tures, with aerosol-cloud interaction (ACI) forcing; the effect of aerosols on cloud radiative

properties and distributions (Twomey, 1977; Boucher et al., 2013). ACI forcing, being the

larger component of aerosol ERF, is also the most uncertain, although sources of ARI

forcing uncertainty are often neglected (Bond et al., 2013).

There are numerous structural differences in global climate models (GCMs) that lead

to a wide range of simulated PI to present-day (PD) aerosol ERF values, including pre-

scribed anthropogenic emissions (Pan et al., 1998; Granier et al., 2011), representations

of complex sub-grid processes, such as clouds (Mitchell et al., 1989; Golaz et al., 2013;

Neubauer et al., 2014), precipitation (Michibata & Takemura, 2015), aerosols (Storelvmo

et al., 2009; Croft et al., 2012), radiation calculations (Steir et al., 2012; Wilcox et al.,

2015) and subsequent feedbacks on model dynamics.

Many uncertain aerosol parameters have the potential to influence aerosol ERF, yet

sensitivity to these parameters has never before been comprehensively quantified. Per-

turbed parameter ensembles (PPE) (Lee et al., 2012) provide a suitable method for ex-

ploring the uncertainty in aerosol ERF because multiple uncertain parameters are per-

turbed simultaneously producing an ensemble of credible model variants. Knowledge of

the causes of uncertainty in aerosol ERF is currently limited, with PPEs at best quan-

tifying uncertainty in associated quantities such as cloud active aerosol concentrations

(Lee et al., 2011, 2012, 2013), precipitation (Qian et al., 2015) and top-of-the-atmosphere

(ToA) radiative flux (Shiogama et al., 2012). These studies, although informative, only

explore the changes to the current state of the atmosphere. Sensitivity of the atmospheric

state and the change-of-state both need to be quantified, because one does not necessarily

inform the other (Lee et al., 2016). Aerosol parameters known to significantly influence

cloud active aerosol concentrations (Lee et al., 2013) have been neglected in PPEs used

to quantify change-of-state sensitivities (eg Harris et al. 2013). There is a need to develop

existing knowledge about the sources of uncertainty in aerosol ERF, particularly the im-

portance of uncertain aerosol parameters and their interactions with other model processes.

Discussion of total ERF from historical simulations and climate projections typically

focus on global annual mean values (Chalmers et al., 2012; Lambert et al., 2012 and

Carslaw et al., 2013 for example). Because aerosols have an atmospheric lifetime of order
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days and are heterogeneously emitted, their influence on aerosol ERF is highly regional

(Shindell et al., 2013). The magnitude and sources of cloud-active aerosol concentration

uncertainty vary spatially (Lee et al., 2011, 2012, 2013). Cloud-active aerosol concentra-

tion sensitivity to parameter perturbations is also seasonally dependent because emissions

of many aerosol species vary throughout the year (Lee et al., 2013). The spatial and sea-

sonal dependence of cloud-active aerosol concentration sensitivity to uncertain parameters

suggests that aerosol ERF uncertainty will also vary spatially and temporally.

Over the industrial period anthropogenic emissions have increased globally predom-

inantly in the Northern Hemisphere. However, global anthropogenic sulphate emissions

peaked in 1978, (Lamarque et al., 2010) then decreased in Europe and North America as

a result of clean air legislation, whilst increasing significantly in Asia (Smith et al., 2011).

Current satellite observations reveal a persistence of these regional trends in anthropogenic

emissions (Mao et al., 2014) and peak aerosol forcing from Asian anthropogenic emissions

relative to the PI period may not be reached for several decades (Li et al., 2014). The

magnitude of large-scale climatic responses, such as global mean surface temperature, are

sensitive to the spatial position of regional forcings (Chalmers et al., 2012; Shindell et al.,

2013), making it important to identify the sources of regional aerosol ERF uncertainty.

Climate uncertainty in the near-future is dominated by parametric uncertainty how-

ever on larger timescales the magnitude of greenhouse gas emission uncertainty dominates

(Hawkins & Sutton, 2009). In order to improve near-future climate projections a compre-

hensive analysis of the sensitivity of aerosol ERF in different periods, regions and seasons

is required in order to establish a more complete set of priorities for model development

that targets the reduction of aerosol ERF uncertainty. The principle aim of this research is

to quantify the major parametric sources of uncertainty in aerosol ERF, in recent decades

and over the industrial period, on the global mean scale and in climatically important

regions. Through a series of PPE experiments and sensitivity analysis of contributions to

variance in aerosol ERF or its components at the global and regional scales the key para-

metric sources of uncertainty will be identified. Furthermore the relative importance of

aerosol and atmospheric parameters as sources of aerosol ERF uncertainty will be quanti-

fied over different periods. Identifying the the key sources of aerosol ERF uncertainty will

inform the model development process so that aerosol ERF uncertainty can be reduced

and confidence in climate projections improved.
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1.2 Quantifying and analysing uncertainty

Complex physical processes are represented within models using parametrisations, in the

form of mathematical equations. Specific values for the parameters in these equations are

set by experts, however for some parameters there is limited theory with which to deter-

mine an exact value. The resulting parametric uncertainty requires experts to subjectively

select combinations of what they deem to be their best estimates for such parameters.

In quantifying the contributions of uncertain parameters to variation in model output,

the historical approach in environmental sciences has been to apply a series of one-at-

a-time (OAT) tests. In OAT tests a single model parameter value, or structural choice,

is perturbed from its default setting and the difference in output between the perturbed

and unperturbed cases is used as the measure of sensitivity. OAT tests are a relatively

fast method of obtaining insight into the importance of individual model parameter val-

ues and structural choices, however they have important limitations. With OAT tests

interactions between parameters are impossible to quantify as all sensitivity information

is fixed at a single point in parameter space. By perturbing parameters or structures

in isolation, OAT tests only investigate a minute part of the multi-dimensional response

surface (Saltelli & Annoni, 2010) and as pointed out by Carslaw et al. (2013) they do not

provide information on model equifinality (Beven & Freer, 2001), where various combina-

tions of parameters or model structures produce equally plausible model output. GCMs

that compare favourably with observations may be doing so through a series of compen-

sating errors (Tebaldi & Knutti, 2007; Golaz et al., 2013). The OAT approach produces

useful information about model performance, yet is at best a first order indication of the

contributions to model output variance.

Because GCMs typically contain multiple structural differences, one method for quan-

tifying uncertainty is to use inter-model comparisons, such as the Coupled Model Intercom-

parison Project (CMIP) and Atmospheric Chemistry and Climate Model Intercomparison

Project (ACCMIP). Inter-model comparisons are typically ensembles of opportunity, with

entry criteria relaxed enough to obtain a reasonable ensemble size. The lack of design in

this opportunistic sampling approach means that output ranges from inter-model com-

parisons represent a mixture of uncertainty from structural choices in the members and

from parameter values, rather than a systematic quantification of uncertainty from either

source (Sexton et al., 2012). In inter-model comparisons, each ensemble member is created

using default parameter values, potentially tuned to achieve a desirable representation of
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the present-day atmosphere, and is therefore a single realisation of the underlying para-

metric uncertainty in the host model. The subtle structural similarities between many

GCMs causes the added value of new ensemble members to diminish in proportion to the

number of models already in the ensemble (Pennell & Reichler, 2010) and suggests that

the inter-model diversity is not sufficiently representative of the true uncertainty range.

Another widely used alternative to OAT tests is Bayesian Monte Carlo sampling. The

Monte Carlo method repeatedly samples a multi-dimensional parameter space to pro-

duce an extremely large sample, a PPE, from which numerical results can be obtained.

The application of Monte Carlo sampling to GCM output is limited because the required

number of ensemble members, which grows exponentially with the number of parameters

to be perturbed, is computationally expensive. Gaussian process emulators (Oakley &

O’Hagan, 2004) can be used to circumnavigate much of the computational expense with

direct Monte Carlo sampling. A Gaussian Process emulator is a statistical approximation

of some aspect of a model. Once an emulator has been constructed using some few hun-

dred simulations, a Monte Carlo sample of tens or hundreds of thousands of data points

can be created in a fraction of the time required to produce a single model simulation. The

Gaussian Process (GP) emulation technique, described more fully later in this Chapter,

is used in all results Chapters 2-5.

The range of credible values sampled from a single-model PPE can be as broad as the

range of output from inter-model comparisons (Collins et al., 2010; Klocke et al., 2011).

PPEs and inter-model comparisons both inform uncertainty quantification, however PPEs

are by design more suited to conducting sensitivity analysis. The GP emulation approach

has been used to great effect in the series of sensitivity analyses conducted by Lee et al.

(2011, 2012, 2013) to quantify parametric contributions to uncertainty in cloud condensa-

tion nuclei (CCN) concentrations. The analysis in Lee et al. (2011) was restricted to two

regions being distinct in the amount of anthropogenic pollution present. The contributions

to uncertainty in CCN from the perturbation of eight parameters and their interactions

were quantified. Parameter interactions were determined to contribute significantly to

variation in CCN concentration in remote marine regions and gain importance with in-

creasing altitude. These findings were confirmed by Lee et al. (2012), where the analysis

was repeated over the entire globe. Lee et al. (2013) created a PPE using the twenty-eight

parameters determined by experts to be the most likely sources of CCN concentration

variance. Increasing the number of parameters from eight to twenty-eight has the effect

of reducing to near-zero the substantial contributions of parameter interactions to CCN
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concentration variance detected by Lee et al. (2011, 2012).

The breadth of credible aerosol ERF values produced from a single-model PPE is de-

pendent on the number of parameters perturbed, the range of values those parameters take

and the probability density functions used in parameter sampling. Distinct PPEs created

using GCMs with significant structural differences can produce credible output ranges that

do not overlap (Yokohata et al., 2010). This suggests that some of the structural choices

in one or both of the models are inherently unreliable. It is essential therefore to ensure

model output is thoroughly compared to historical observations. The sensitivity results of

Chapters 2-4 are theoretical only however the PPE used in Chapter 5 is compared to ToA

radiative flux observations. Furthermore, this PPE has a partner ensemble designed to be

compared to a broad range of observational data as part of the Global Aerosol Synthesis

and Science Project (GASSP) (GASSP, 2016). Rigorous testing of the GLObal Model of

Aerosol Processes (GLOMAP) (Spracklen et al., 2005; Mann et al., 2010, 2012) used in

this research is summarised in Appendix 4.

GLOMAP is the aerosol component of the United Kingdom Chemistry and Aerosols

(UKCA) model, which is nested inside HadGEM3, the most recent version of UK Met

Office’s HadGEM suite of models (Collins et al., 2008; HadGEM3, 2016). The HadGEM

models and their components are subject to rigorous testing in a variety of conditions be-

fore release and have been compared widely to other GCMs (e.g. Taylor et al. 2009; Mann

et al. 2012; Wilcox et al. 2013, 2015). Furthermore successive versions of the HadGEM

model have contributed to IPCC assessment reports (Schimel et al., 1996; Penner et al.,

1996; Forster et al., 2007; Stocker et al., 2013a).

1.3 Methods

1.3.1 Gaussian Process emulation

Gaussian Process emulation (O’Hagan, 2006) is

GCMs typically have computational costs so great that even with the use of world

class supercomputers they take days to simulate several months of climate. Choices must

be made as to how to approximate a complex computer model within the functional lim-

itations of modern systems. One approach would be to simplify the model (eg Stevens

(2015)) and this can often be appropriate where certain model complexities contribute
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marginally to the outcomes. However, model complexity often leads to enhanced agree-

ment with observations (Jones et al., 2013). An alternative to model simplification is to

use a statistical approach to limit the number of simulations required to produce insight

into parameter influences on model output (y = f(x)). For deterministic models, where an

input vector x, always produces an identical output vector y, the GP emulation technique

is one such statistical approach.

GP emulators use multivariate probability theory to produce a probability distribu-

tion of some aspect(s) of a complex model conditioned on data from a relatively small

set of ‘training’ simulations. A GP emulator provides information about model output

using conditional information about neighbouring values within the parameter space be-

ing investigated. A statistical relationship between all values in the parameter space is

established using the training data, thus is constructed through Bayesian principles.

1.3.1.1 Bayes’ theorem

In order to understand the GP emulator approach, it is important to be familiar with

some statistical concepts, in particular the use and application of Bayes’ theorem (Bayes,

1958; Berkson, 1930),

P (Jn | E)P (E) = P (Jn)P (E | Jn), (1.1)

where, so long as P (E) 6= 0,

P (Jn | E) ∝ P (Jn)P (E | Jn). (1.2)

Here Jn represents a series of n exclusive and exhaustive events and E is some arbitrary

event.

Bayes’ theorem can also be used to express conditional probabilities of continuous

random variables X and Y as

p(Y | X) ∝ p(Y )p(X | Y ), (1.3)

where the constant of proportionality is

1

p(X)
=

1∫
p(Y )p(X | Y )dY

. (1.4)

A similar result is attainable for discrete random variables (Lee, 2004). The richness of

equation 1.3 is that it allows for probabilities of outcomes to be revised in the context of

new evidence; in this case the data from the training simulations.
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1.3.1.2 Expert elicitation of prior distributions

Complex processes are parametrised in models using mathematical equations. Parameters

are typically set to values believed by experts to be most likely, however uncertainty exists

around many parameter settings. Through the process of expert elicitation (Cooke, 1991;

Gosling et al., 2007; Oakley & O’Hagan, 2007; Johnson et al., 2010; Flores et al., 2011),

prior probability distributions of uncertain parameters can be generated. Care must be

taken to ensure the process is as objective as possible, with detectable sources of bias

eliminated from the line of enquiry.

Parametric uncertainty in climate model parameters, derived through expert elicita-

tion, has previously been described using Gaussian (Lee et al., 2011, 2012; Sexton et al.,

2012; Harris et al., 2013) and beta (Lee et al., 2013) distributions. In Chapters 2-4 beta

distributions are used to describe parameter uncertainty, following (Lee et al., 2013). For

PPEs constructed via emulation any shape of distribution chosen by experts is accept-

able. However, the joint probability distribution determines the frequency of sampling

across the parameter space during the sensitivity analysis described in section 1.3.1.8. Us-

ing Gaussian and/or beta distributions to describe parameter uncertainty and sampling

from the joint probability density function can overly-centralise the sample for individ-

ual parameters compared to expert beliefs. Hence, the expert elicitation conducted for

Chapter 5 used trapezoidal distributions to represent parameter uncertainty. The use of

trapezoidal distributions avoided having an overly-centralised Monte-Carlo sample of the

multi-dimensional parameter space. Furthermore, experts converged on agreement about

parameter uncertainty using trapezoidal distributions faster than they did when attempt-

ing to use other types of distribution.

The parameter distributions used in Chapter 2 follow those used in Lee et al. (2013).

This parameter set was updated and extended for Chapters 3-4 by re-eliciting the dis-

tributions for some parameters and eliciting distributions for new parameters. The same

set of experts contributed to the elicitation as in Lee et al. (2013) and the methods, in-

cluding the literature review and analysis of the model sensitivity to individual parameter

perturbations (outlined in Appendix 7), were as similar to Lee et al. (2013) as possible.

For Chapter 5 the elicitation of physical atmosphere parameters was conducted by Sexton

et al. (In prep.). The sensitivity of the model output to these parameters was investi-

gated prior to inclusion in the ensemble (Appendix 7). Many of the aerosol parameters

perturbed in Chapter 5 are the same as those perturbed in Chapters 2-4. However, in all

cases distributions were re-elicited to ensure distributions accurately reflected the current
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state of knowledge uncertainty.

1.3.1.3 Mean, covariance and correlation

Once appropriate training data has been gathered and prior distributions about uncer-

tain parameters obtained from experts, as described in section 1.3.1.2, an emulator can

be constructed (Conti & O’Hagan, 2010). It is important to note that the emulator does

not just provide an output, y, for the model, given some input, x, but provides an entire

probability distribution for y = f(x), which is not restricted to being normally distributed

(O’Hagan, 2006). Using a Gaussian Process for the prior probability distribution allows

the distribution to be completely specified using mean and covariance functions.

It is presumed that uncertainty about the computer model output at a set of data

points, x0, . . . ,xn, can be represented as a multivariate normal distribution (Oakley &

O’Hagan, 2002), with mean and covariance functions

E{f(x | β)} = h(x)Tβ (1.5)

and

cov(f(x), f(x′) | σ2) = σ2c(x,x′) (1.6)

respectively, where c(x,x′) is the assumed correlation between pairs of parameter combi-

nations and is dependent on the multivariate distance between points, and β and σ2 are

hyperparameters; parameters of the assumed prior distribution, not of the model. These

hyperparameters are initially given weak prior distributions and treated as variables in the

emulator construction and hence values for them are obtained using Maximum Likelihood

convergence. Here f(x)andf(x′) are distinct data points.

The predefined regression functions h(.) can be combined into a matrixH = [h(x1, . . . ,xn)]T .

The matrix A is defined to be the nxn matrix whose (i, j)th element is the correlation

between xi and xj , c(xi, xj), which can take various forms, such as

c(xi, xj) = exp(−b(xi − xj)2). (1.7)

It is essential that c(xi, xi) = 1 and that the strength of correlation is proportional to

|xi − xj |. Here b is a parameter quantifying the smoothness of f(x) for the input variable

in question. There will be a unique b for each input variable.
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1.3.1.4 Training an emulator

The creation of a GP emulator relies upon a training data set, xT1 , . . . , xTn , that spans

the parameter space, being used to obtain objective information, f(xT ). This objective

information is then combined with the subjective information derived from the emulator,

f̂(x|β, σ2), to provide estimates of all other output, y = f(x), within the domain (Haylock

& O’Hagan, 1996; Saltelli et al., 2000).

The choice of training data is important, since the full model will be run on each input

vector x. It has already been established that the model in question is assumed to be

computationally expensive, otherwise there would be no need for implementing GP emu-

lator technology, thus what is needed is a suitably small set of data that spans the domain

of interest and can be assumed to have no systematic uncertainty (O’Hagan, 2006). The

PPEs used in this research were all created using maximin latin hypercubes, where each

new training point is calculated so as to maximise the minimum distance between training

points.

Extra information becomes available with each training run of the model, since for x

and x′, two neighbouring data points, the value of f(x′) will give us information about

the value of f(x) (Oakley & O’Hagan, 2002). By selecting a set of training data which

broadly covers the domain, it can be expected that the emulator will provide a reason-

able estimation of uncertainty, for any new input value within the domain, so long as

the response surface is relatively smooth (Conti & O’Hagan, 2010). Emulator uncertainty

increases rapidly for input outside the domain of the training data (O’Hagan, 2006), an

example of the Rûnge phenomena (Atkinson, 1989), hence, the training data are selected

so that no extrapolation is required.

Having obtained a vector of output values directly from the model for the training data,

(yT ), it is assumed that the joint distribution between this training output and model

output, f(x), for any new data, x, is multivariate normal. This assumption allows for the

use of standard conditioning techniques on a multivariate normal distribution. Conditional

estimates of hyperparameters may be obtained through the use of Bayes’ theorem, (1.3).

Following Haylock & O’Hagan (1996) and Saltelli et al. (2000) and drawing upon (1.5) to

(1.7), the posterior GP of the computer model is

f(x)|β, σ2,yT ∼ N(m∗(x), σ2c∗(x,x′)), (1.8)
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where

m∗(x) = hT (x)β + t(x)TA−1(yT −Hβ), (1.9)

t(x) = [c(x,x1), . . . , c(x,xn)]T (1.10)

and

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′), (1.11)

for any input vectors x and x′.

Given a large enough training sample, the value of f(x) can be calculated with high

confidence (O’Hagan, 2006).

1.3.1.5 Hyperparameters

As stated in section 1.3.1.5 hyperparameters are typically prescribed starting values using

available information and beliefs. During emulator construction, it becomes possible to

treat these hyperparameters as variables, using (1.1), to obtain their conditional distribu-

tions

β|σ2,yT ∼ N(β̂, σ2(HTA−1H)−1) (1.12)

and

σ̂2 ≡ σ2|yT ∼
yT
T (A−1 −A−1H(HTA−1H)−1HTA−1)yT

n− q − 2
, (1.13)

where q is the rank of H and

β̂ = (HTA−1H)−1HTA−1yT , (1.14)

as per Haylock & O’Hagan (1996). Integrating the product of f(.)|yT , β, σ
2 and β|σ2,yT

with respect to β and then integrating the product of f(.)|σ2,yT and σ2|yT eradicates

the conditional dependence of f(x) on β and σ2. The result is a t distribution from which

mean and variance of f(x)|yT can be obtained.

Finally, following the method described by Bastos & O’Hagan (2009), the newly con-

structed GP emulator is obtained, as

f̂(.) ≡ f(.)|yT ∼ Student t(n− q,m(.), V (., .)) (1.15)

where

m(x) = h(x)T β̂ + t(x)TA−1(yT −Hβ̂) (1.16)
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and

V (x,x′) = σ̂2[c(x,x′)− t(x)TA−1t(x′) + (h(x)− t(x)TA−1H)

(HTA−1H)−1(h(x′)− t(x′)TA−1H)T ].
(1.17)

1.3.1.6 The smoothness parameter

Assuming that the model function, f(.), is smooth allows the correlation to take the form

seen in (1.7) and (1.11), where correlation between two data points decreases with the dis-

tance between them. Smoothness is a measure of how rapidly the function output changes

gradient, across the domain of input values, for a particular variable. It is the inclusion of

a smoothness parameter, b, in equation (1.7) that allows for the use of a maximum likeli-

hood procedure to obtain improved estimates of σ2 and β. Once suitable hyperparameters

have been identified, the smoothness parameter is recalculated to provide the best possi-

ble representation of model output behaviour. If reliable initial estimates of smoothness

parameters are not available, then a larger sample of training data can compensate, since

the output uncertainty increases with distance from out training data points (O’Hagan,

2006). In this research estimates of the response surface were unobtainable in advance,

hence sufficiently large ensembles were created.

1.3.1.7 Emulator Validation

Before uncertainty analysis is performed, it is important to validate the efficacy of the

emulator in approximating the model output at points in parameter space distinct from

the training dataset (Bastos & O’Hagan, 2009). All emulators used in this research were

formally validated against samples of simulations designed to span the parameter space

using the ‘augmentLHS’ R function (R. Carnell, 2016). Parameter combinations far away

from training data points provide the most new information and therefore the greatest

test of the emulator’s ability to accurately reproduce model output. Validation points

close to training points in the multi-dimensional parameter space test the sensitivity of

the emulator hyperparameters. The ‘augmentLHS’ function provides a suitable valida-

tion set for the emulators created in this thesis. In each case a new sample of input,

x∗, was used to obtain model output, y∗, for comparison with output from the emulator,

f̂(x∗), as conditioned by the training data. For all analyses new emulators were created

post-validation using both the original design and validation points, which enhances the

emulator performance under the assumption that the new emulators validate as well or

better than those created with less data.
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1.3.1.8 Sensitivity analysis

Sensitivity analysis is a powerful approach which can highlight those aspects of model func-

tionality which most require improvement in order to reduce model uncertainty (Saltelli

et al., 2000; Oakley & O’Hagan, 2004). The method used to calculate the percentage

contributions to variance referred to in Chapters 2-5 are described here.

Given the distribution of X, the contributions to output variance made by realisations

of individual input data, Xi, can be quantified as

Vi = var{E(Y |Xi)}. (1.18)

This is the expectation of the amount by which uncertainty in Y will be reduced by know-

ing the true value of the individual input Xi.

The uncertainty that remains after we have realised all values except Xi is

VTi = var(Y )− var{E(Y |X−i)}, (1.19)

where X−i is the vector of input with the variable Xi omitted. Upon scaling these values

by var(Y ), the measures become scale invariant and can be compared directly to assess

the relative contributions to uncertainty.

It is often critical in practice to compare first order interaction effects between vari-

ables, not just their individual contributions (Lee et al., 2011). This is made possible,

following the methodology introduced in Satelli et al. (2000), by using the input of two

variables, Xi,j , to calculate

Vi,j = var{E(Y |Xi,j)} = var{zi(Xi) + zj(Xj) + zi,j(Xi,j)}, (1.20)

where

zk(xk) = E(Y |xk)− E(Y ) (1.21)

and

zi,j(xi,j) = E(Y |xi,j)− zj(xj)− E(Y ) (1.22)

are the main effects and first order interaction effects respectively. Interactions between

parameters do not play a large role in this research because a broad range of uncertain pa-

rameters have been perturbed, leading to a reduction of the interaction terms (Lee et al.,

2013).
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1.3.2 Newtonian relaxation

One of the aims of this research is to determine the relative importance of uncertain aerosol

and atmospheric parameters as sources of aerosol ERF forcing variance over different pe-

riods. The relative importance of these sources of uncertainty can be used to inform field

campaigns and target model development. The largest source of uncertainty in aerosol

ERF comes from the ToA shortwave (SW) component (Yokohata et al., 2010) associated

with lower tropospheric clouds (Webb et al., 2006; Shiogama et al., 2012). The magnitude

of ToA outgoing radiation is dependent on the composition and cloudiness of the atmo-

sphere, particularly the cloud albedo, the spatial position and vertical extent of clouds all

of which can be affected by aerosols. Complex aerosol, cloud and dynamical feedbacks are

represented in modern GCMs although there is substantial uncertainty about the magni-

tude of these feedbacks in different and regimes (Seifert et al., 2012; Boucher et al., 2013;

Rosenfeld et al., 2014; Johnson et al., 2015).

In order to more fully quantify the relative contributions of aerosol and atmospheric

parameters to aerosol ERF variance, the effect of parametric perturbations must be al-

lowed to feedback onto model dynamics. No dynamical feedbacks are included in the

model configurations used in Chapters 2-4, where cloud are prescribed using International

Satellite Cloud Climatology Project (ISCCP) D2 data and meteorological fields, such as

horizontal winds and temperatures, are ‘nudged’ towards European Center for Medium-

Range Weather Forecasting (ECMWF) ERA-Interim reanalysis data using Newtonian

relaxation. Controlling atmospheric conditions with nudging allows the effect of aerosols

on radiative forcing to be quantified in the absence of significant internal model variability

that results from dynamical feedbacks, because pairs of simulations have near-identical

atmospheric states.

Nudging of GCMs is typically applied by relaxing model values towards horizontal

winds and temperature simultaneously (Telford et al., 2008). Nudging to horizontal winds

and not temperature can produce ToA radiative fluxes in better agreement with those

from free-running simulations (Zhang et al., 2014). Nudging to horizontal winds and not

temperatures increases the number of degrees of freedom with which the model can dis-

perse inconsistencies in atmospheric states during the relaxation process. Phase III of the

AeroCom model intercomparison will be conducted using simulations nudged to horizontal

winds only.

In Chapter 5 clouds and meteorological values are calculated within the model, with



CHAPTER 1. MOTIVATION AND BACKGROUND 15

the exception of horizontal winds above 2.2km which are nudged towards ECMWF ERA-

Interim reanalysis data. Using this minimal nudging approach keeps synoptic-scale dynam-

ical features consistent across the ensemble, but allows aerosol and atmospheric parameter

perturbations to influence the state of the lower atmosphere, allowing for rapid adjust-

ments to be captured. Without nudging ToA radiative fluxes need to be averaged over

many decades in order to produce signals stronger than the noise resulting from internal

variability (Kooperman et al., 2012). The inclusion of rapid adjustments to cloud prop-

erties, such as lifetime and precipitation efficiency, in the aerosol ERF calculation gives

a more complete picture of energy budget change (Boucher et al., 2013) and is especially

important for quantifying the climatic effects of anthropogenic aerosols (Wang et al., 2013).

1.4 Aerosol-cloud-radiation dynamical feedbacks

Aerosol and atmospheric parameters are usually perturbed in isolated groups in GCMs

because of the computational cost required to include multiple extra parameters in PPEs.

Sensitivity analyses conducted using PPEs containing only aerosol or atmospheric parame-

ter perturbations have been used to inform the parameter screening process used to create

the PPEs analysed in Chapters 2-5 (described in detail in Appendix 7).

Parameters affecting clouds, such as the rate of entrainment of dry air and the convec-

tive mass flux, can significantly influence aerosol ERF (Haerter et al., 2009), by affecting

the vertical extent of tropical clouds, atmospheric stability (Tost et al., 2010; Persad et al.,

2012) and therefore the poleward transportation of aerosols (Storelvmo, 2012). The ver-

tical distribution of aerosols is also affected by convection in sub-tropical shallow cumulus

clouds (Wonaschuetz et al., 2012) affecting the dispersal of aerosols from source regions

(Storelvmo, 2012).

Aerosols have the potential to significantly alter precipitation rates, clouds and at-

mospheric dynamics. Surface air temperature cooling induced by aerosols can reduce

convective precipitation (Guo et al., 2013) and increasing within-cloud aerosol concentra-

tions can enhance (Storer & Der Heever, 2013) or suppress (Kim et al., 2007; Planche

et al., 2010; Koren et al., 2010) precipitation depending on the cloud regime (Storer &

Der Heever, 2013; Johnson et al., 2015). Changing aerosol concentrations can also cause

changes in cloud regime (Croft et al., 2012; Jenkins et al., 2013). The aerosol size distribu-

tion can also influence the effect of increasing aerosol concentrations on precipitation and



16 CHAPTER 1. MOTIVATION AND BACKGROUND

convection (Ekman et al., 2011; Blyth et al., 2013; Johnson et al., 2015). The absorption

and re-emission of shortwave energy by carbonaceous aerosols can induce localised heating

and cloud evaporation (Guo et al., 2013).

By comprehensively quantifying the sensitivity of aerosol ERF to a broad range of

aerosol and atmospheric parameters using a PPE where all parameters are perturbed si-

multaneously, the research in Chapter 5 is designed to determine if the representation of

aerosols or the atmosphere has the greatest influence on ToA radiative fluxes and aerosol

ERF. Influence on the state of the atmosphere and the change in state are analysed sep-

arately in Chapter 5 because sensitivities in state do not necessarily imply sensitivities in

change-of-state (Lee et al., 2016).

1.5 Thesis aims and structure

This thesis will quantify parametric contributions to variance in components of aerosol

ERF both globally and regionally over a variety of time periods. In doing so priorities for

model development will be identified and the climatic importance of uncertain parameters

determined. The thesis will begin by investigating the relative contributions to variance

in global mean aerosol cloud-albedo effect (CAE) forcing from natural and anthropogenic

aerosol emissions and aerosol process parameters in Chapter 2. The aerosol CAE forc-

ing, often referred to as the first aerosol indirect effect, is the approximation to ACI

forcing obtained without accounting for aerosol induced rapid atmospheric adjustments.

The time-dependence of CAE sensitivity to parameter perturbations will be established in

Chapter 3 by quantifying contributions to CAE forcing variance over the different anthro-

pogenically influenced periods 1850-2008, 1978-2008 and 1998-2008. Analysing sources of

CAE forcing variance during periods with fundamentally different anthropogenic emission

trends will allow for the broadest possible exploration of forcing period dependence. The

period dependence of contributions to variance is analysed using the groupings of aerosol

processes and natural and anthropogenic emissions employed in Chapter 2. Quantifying

the magnitude of CAE forcing uncertainty in the recent periods will make an analysis

of the role of CAE forcing in near-term historical climate change possible. Specifically

the hypothesis that aerosol forcing is no longer relevant for present and future climate

uncertainty (Stevens, 2013) can be tested.

Regional patterns of aerosol radiative forcing, important for understanding climate
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change on decadal timescales (Shindell et al., 2013), will be examined in Chapter 4. Con-

tributions to CAE forcing variance over the 1978-2008 period will be quantified during

months where surface temperatures are thought to influence large-scale climate effects.

Physically-based arguments for temporal and spatial changes in the magnitude of con-

tributions to CAE forcing variance will be provided. The research in Chapter 4 will aid

interpretation of the climatic importance of aerosol forcing uncertainty in recent decades.

The effect of cancellation of contributions to global mean CAE forcing variance in regions

of positive and negative forcing will be quantified and the effect cancellation has on inter-

pretation of model development priorities determined.

The results from Chapters 2-4 will inform the construction of the PPE used in Chapter

5, which will be used to compare contributions to variance in ToA radiative fluxes and

aerosol ERF over the 1850-2008 and 1978-2008 periods. Only if the sources of variance are

similar will it be possible to effectively use observed ToA fluxes to constrain aerosol ERF.

The reduced capacity for ToA fluxes to be used as a constraint on aerosol ERF, because

of model equifinality, will be explicitly tested. Chapter 5 benefits from having a minimal

nudging configuration and includes perturbations to both aerosol and atmospheric param-

eters, allowing for the relative contributions to aerosol ERF variance from these sources

to be quantified. Chapter 5 provides the first comprehensive assessment of the extent to

which uncertainty in representations of aerosols and the atmosphere influence aerosol ERF.

Supporting information for Chapters 2, 3 and 5 are provided in Appendices 1-3 re-

spectively. The development and recent refinement of GLOMAP model is reviewed in

Appendix 4, providing insight into the level of scrutiny the model has been subject to.

Testing of anthropogenic emission inventories for potential use in producing the ensem-

bles in this research is summarised in Appendix 5 and tests of structural changes to the

GLOMAP model, implemented during the model development period between producing

Chapters 2 and 3, are included in Appendix 6. Results from parameter screening tests

that informed the inclusion of parameters in the GLOMAP and HadGEM3 PPEs used in

chapters 2-4 and 5 respectively are summarised in Appendix 7. Finally an analysis of the

parameter combinations that produce the most extreme PI-PD aerosol ERF values in the

HadGEM3 PPE used in Chapter 5 is provided in Appendix 8. The analysis in Appendix 8

informed development of the release version of the United Kingdom Earth System Model

(UKESM-1).

The research presented in this thesis has the potential to significantly advance scientific
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understanding of the relative importance of parametrisations from various components of

the earth system in their contributions to uncertainty in aerosol ERF and its components.

The combined results within this thesis help address the question of why although scientific

knowledge about aerosol-cloud-radiation interactions has increased significantly in recent

decades, uncertainty in aerosol ERF remains the largest source of forcing uncertainty,

which was the the focus of the 2015 Sackler Colloquium ‘Improving Our Fundamental

Understanding of the Role of Aerosol-Cloud Interactions in the Climate System’ (Seinfeld

et al., 2015). A summary of new knowledge arising from this research and proposed future

research directions are presented in Chapter 6.
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Myhre, G., Shindell, D., Bréon, F. M., Collins, W., Fuglestvedt, J., Huang, J., Koch,

D., Lamarque, J. F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G.,

Takemura, T., & Zhang, H. 2013. Anthropogenic and Natural Radiative Forcing. In:

Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels,

A., Xia, Y., Bex, V., & Midgley, P. M. (eds), Climate Change 2013: The Physical

Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New

York, NY, USA: Cambridge University Press.

Neubauer, D., Lohmann, U., Hoose, C., & Frontoso, M/ G. 2014. Impact of the repre-

sentation of marine stratocumulus clouds on the anthropogenic aerosol effect. Atmos.

Chem. Phys., 14, 11997–12022.

Oakley, J. E., & O’Hagan, A. 2002. Bayesian inference for the uncertainty distribution of

computer model outputs. Biometrika, 89, 769–784.

Oakley, J. E., & O’Hagan, A. 2004. Probabilistic sensitivity analysis of complex models:

a Bayesian approach. Jrssb, 66, 751–769.

Oakley, J. E., & O’Hagan, A. 2007. Uncertainty in prior elicitations: a nonparametric

approach. Biometrika, 94, 427–441.

O’Hagan, A. 2006. Bayesian analysis of computer code outputs - A tutorial. Reliability

engineering and system safety, 91, 1290–1300.

Pan, W., Tatang, M. A., McRae, G. J., & Prinn, R. G. 1998. Uncertainty analysis of

indirect radiative forciny by anthropogenic sulphate aerosols. J. Geo. Res., 103, 3815–

3823.

Pennell, C., & Reichler, T. 2010. On the effective number of climate models. J. Cli., 24,

2358–2367.

Penner, J. E., Andreae, M., Annegarn, H., Barrie, L., Feichter, J., Hegg, D., Jayaraman,

A., Leaitch, R., Murphy, D., Nganga, J., & Pitari, G. 1996. Aerosols, their Direct and

Indirect Effects. In: Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der



REFERENCES - CHAPTER 1 25

Linden, P. J., Dai, X., Maskell, K., & Johnson, C. A. (eds), Climate Change 2001:

The Scientific Basis. Contribution of Working Group I to the Third Assessment Report

of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and

New York, NY, U.S.A.: Cambridge University Press.

Persad, G., Ming, Y., & Ramaswamy, V. 2012. Tropical topospheric-only responses to

absorbing aerosols. J. Cli., 25, 2471–2480.

Planche, C., Wobrock, W., Flossmann, A. I., Tridon, F., van Baelen, J., Pointin, Y., &

Hagen, M. 2010. The influence of aerosol particle number and hygroscopicity on the

evolution of convective cloud systems and their precipitation: a numerical study based

on the COPS observations on 12 August 2007. Atmos. Res., 98, 40–56.

Qian, Y., Yan, H., Zhangshuan, H., Gardar, J., Klein, S., Lucas, D., Neale, R., Rasch, P.,

Swiller, L., Tannahill, J., Wang, H., Wang, M., & Zhao, C. 2015. Parametric sensitivity

analysis of precipitation at global and local scales in the Comunity Atmosphere Model

CAM5. J. Adv. Model. Earth Syst., 7, 382–411.

R. Carnell. 2016. Package ‘lhs‘. http://lhs.r-forge.r-project.org.

Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn,

R., Kinne, S., Kivekäs, N., Kulmala, M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T.,

Wild, M., & Quaas, J. 2014. Global observations of aerosol-cloud-precipitation climate

interactions. Rev. Geophys., 52, 750–808.

Rotstayn, L. D., Collier, M., Shindell, D. T., & Boucher, O. 2015. Why does aerosol

forcing control historical global-mean surface temperature change in CMIP5 models?

J. Climate., 28, 6608–6625.

Saltelli, A., & Annoni, P. 2010. How to avoid a perfunctory sensitivity analysis. Environ.

Mod. Soft., 25, 1508–1517.

Saltelli, A., Chan, K., & Scott, E. M. 2000. Sensitivity Analysis. Oxford, U.K.: Wiley.

Satelli, A., Tarantola, S., & Campolongo, F. 2000. Sensitivity analysis as an ingredient of

modelling. Stat. Sci., 15, 377–395.

Schimel, D., Alves, D., Enting, I., Heimann, M., Joos, F., Raynaud, D., Wigley, T.,

Prather, M., Derwent, R., Ehhalt, D., Fraser, P., Sanhueza, E., Zhou, X., Jonas, P.,

Charlson, R., Rodhe, H., Sadasivan, S., Shine, K. P., Fouquart, Y., Ramaswamy, V.,

Solomon, S., Srinivasan, J., Albritton, D., Derwent, R., Lal, I. Isaksen M., & Wubebbles,



26 REFERENCES - CHAPTER 1

D. 1996. Radiative Forcing of Climate Change. In: Houghton, J. T., Meira Filho, L. G.,

Callander, B. A., Harris, N., Kattenberg, A., & Maskell, K. (eds), Climate Change 1996:

Contribution of Working Group I to the 2nd Assessment Report of the Intergovenmental

Panel on Climate Change. Cambridge, United Kingdom and New York, NY, U.S.A.:

Cambridge University Press.
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Large contribution of natural aerosols to
uncertainty in indirect forcing
K. S. Carslaw1, L. A. Lee1, C. L. Reddington1, K. J. Pringle1, A. Rap1, P. M. Forster1, G. W. Mann1,2, D. V. Spracklen1,
M. T. Woodhouse1{, L. A. Regayre1 & J. R. Pierce3

The effect of anthropogenic aerosols on cloud droplet concentrations and radiative properties is the source of one of the
largest uncertainties in the radiative forcing of climate over the industrial period. This uncertainty affects our ability to
estimate how sensitive the climate is to greenhouse gas emissions. Here we perform a sensitivity analysis on a global
model to quantify the uncertainty in cloud radiative forcing over the industrial period caused by uncertainties in aerosol
emissions and processes. Our results show that 45 per cent of the variance of aerosol forcing since about 1750 arises from
uncertainties in natural emissions of volcanic sulphur dioxide, marine dimethylsulphide, biogenic volatile organic carbon,
biomass burning and sea spray. Only 34 per cent of the variance is associated with anthropogenic emissions. The results
point to the importance of understanding pristine pre-industrial-like environments, with natural aerosols only, and
suggest that improved measurements and evaluation of simulated aerosols in polluted present-day conditions will not
necessarily result in commensurate reductions in the uncertainty of forcing estimates.

The impact of aerosol changes on cloud albedo (called the aerosol first
indirect forcing)1 is estimated2 to exert a global mean radiative forc-
ing of climate over the industrial period between 20.4 W m22 and
21.8 W m22. Other aerosol–cloud interaction effects, involving rapid
adjustments, may be of comparable magnitude3 but their radiative
effects are even less well understood on a global scale3,4. The uncer-
tainty in the aerosol forcing is much larger than the uncertainty in the
well-constrained positive forcing of 1.7 6 0.2 W m22 that is due to
carbon dioxide change. The aerosol indirect forcing therefore has a
highly uncertain influence on climate change and has the potential to
mask a significant portion of greenhouse gas warming5.

The magnitude of the forcing caused by aerosol–cloud interactions
depends on several poorly modelled aspects of the climate, but is broadly
understood to stem from different treatments of aerosols, clouds and
radiation3,6–8. Nevertheless, the fundamental driver is the change in
aerosols from the pre-industrial period to the present day, which
controls the change in cloud droplet concentrations. It is recognized
that quantification of aerosol indirect forcing requires an understand-
ing of both the pre-industrial aerosol state9–12 and the effect of the
substantial anthropogenic perturbation. However, because of the
complexity of processes that determine cloud-forming aerosol con-
centrations10 and the computational expense of global aerosol models
which explicitly simulate their production and loss processes13–16, a
comprehensive assessment of the magnitude and leading causes of
uncertainty in indirect forcing has not been attempted.

Perturbed parameter simulations
Here we carry out a variance-based sensitivity analysis of a global aerosol
model to attribute the uncertainty in the aerosol first indirect forcing to
uncertainties in the emissions and processes that control changes in
aerosol over the industrial period. We perform an ensemble of perturbed
parameter global aerosol microphysical model simulations using present-
day (PD) and pre-industrial (PI) emissions (PD is defined as the year
2000 and PI is defined17 as 1750, with additional PI simulations to test
the effect of using alternative reference years of 1850 or 1900). The 168

1-year model simulations in the PI and PD periods cover the full
expert-elicited uncertainty space of 28 parameters describing natural
and anthropogenic aerosol emissions, aerosol precursor gas emissions,
microphysical processes and structures of the aerosol model (see Methods).
To characterize fully the magnitude and causes of model uncertainty
we use Bayesian emulators conditioned on the ensemble data to gene-
rate continuous model output across the parameter space18,19. This
approach enables a Monte Carlo sampling of the model uncertainty
space20 so that a full variance-based sensitivity analysis of the model
outputs can be performed.

Radiative forcing uncertainty
Figure 1 shows the annual mean first indirect radiative forcing and the
associated 1s uncertainty when assuming the 1750 reference state.
The global annual mean indirect forcing is 21.16 W m22 (s 5 0.22 W m22,
95% confidence interval 20.7 W m22 to 21.6 W m22), compared to the
multi-model range reported in ref. 2 of 20.4 W m22 to 21.8 W m22

(best estimate, 20.7 W m22) and an estimate (20.6 6 0.4 W m22) based
on assimilated PD aerosol optical depth21. Our estimated 95% confid-
ence interval is slightly narrower than the multi-model ensemble
range, most probably because the latter includes structural differences
in the host model aerosol, cloud and radiation schemes2,3,6. Nevertheless,
improved understanding of the aerosol processes and emissions would
clearly help to reduce uncertainty in model forcing calculations.

The seasonal variation of global mean forcing and the contribu-
tions of different parameters to the uncertainty are shown in Fig. 2a
and b (see the Methods and Extended Data Table 3 for the definition
and elicited range of each parameter). The eight most important para-
meters account for 92% of the forcing variance: volcanic SO2 emissions,
anthropogenic SO2 emissions, dimethyl sulphide (DMS) emissions from
marine biota, the width of the accumulation mode, dry deposition of
accumulation mode aerosol, sub-grid sulphate particle formation, the
width of the Aitken mode, and the diameter of emitted fossil fuel com-
bustion particles. Several parameters that have a large effect on uncer-
tainties in PD concentrations of cloud condensation nuclei (CCN)18

1School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK. 2National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK. 3Department of Atmospheric Science,
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have a small effect on forcing uncertainty, which is related to the way
they perturb PI and PD CCN, as we discuss below.

A striking aspect of the results is the large contribution to the global
mean forcing uncertainty from emissions of natural aerosol and pre-
cursor gases. Together, emissions of volcanic SO2, marine DMS, biogenic
volatile organic carbon (forming secondary organic aerosol), biomass
burning and sea spray account for 45% of the global annual mean
forcing variance (Fig. 2b). This compares with 34% of the annual mean
forcing variance that is due to the eight parameters associated with
anthropogenic fossil fuel, biofuel, SO2 and sulphate particle emissions.
The biomass burning emissions were perturbed as a single parameter
and not separated into natural wildfires and anthropogenic biomass
burning. However, the annual mean 2% contribution of biomass burn-
ing to the forcing variance means that the natural–anthropogenic split
is not important to our overall conclusions. Moreover, the seasonality
of the uncertainty caused by biomass burning suggests that it can be
attributed mostly to northern mid-latitude emissions associated with
natural fires (see Methods).

The relative contribution of different parameters to the uncertainty
depends on the sampled range in the ensemble (Extended Data Table 3).
The range for DMS (250%/1100%) is consistent with assessments of
multiple emission parameterizations22 and the same range for volcanic
SO2 is plausible given the uncertainty in sources23. However, our assumed
range of 240%/150% for the main anthropogenic aerosol uncertainty
(SO2 emissions) is high compared to the most recent inventories. Thus,
it is likely that our estimate of the natural aerosol effect on forcing uncer-
tainty is an underestimate.

It is important to note that most of the natural emissions do not,
by themselves, cause a forcing over the industrial period because the
emission source strengths were defined to be the same in the PI and
PD simulations (except for biomass burning); that is, a high setting of
the emissions in the PI simulation was paired with the same high set-
ting in the PD. However, natural emissions affect the uncertainty in
the aerosol first indirect forcing because they affect the background
aerosol state upon which the forcing is calculated (see below).

Because our variance-based approach considers parameter inter-
actions, we are able to establish that the large contribution of natural
aerosol emissions to forcing uncertainty is not strongly dependent on
the magnitude of the other parameters. This is important information
because, for example, the large sensitivity of forcing to natural sulphur
emissions could be overemphasized if particle formation rates due to
sulphuric-acid-driven nucleation were too high in the model. However,
such parameter interactions can be quantified as the difference between
the sum of the main effect variances (coloured bars in Fig. 2b) and the
total variance (100% in Fig. 2b); see the Methods. Interactions generally
account for less than 10% of the total forcing variance, demonstrating
that the ranked uncertainty results are robust to uncertainties in the
model set-up.

The effect of some parameters on forcing uncertainty could be under-
estimated if the parameter varied in an unknown way between the PI and
PD eras, which we have not accounted for here. For example, if DMS or
volcanic emissions were at the low end of the uncertainty range in the
PI and at the higher end in the PD then the resulting increase in sulphate
aerosol over this period would constitute an additional uncertainty in
the forcing23. It is plausible that natural emissions change over time,
implying that the uncertainty attributable to these parameters could be
underestimated. Whether other parameters behave in this way depends
on the extent to which the model processes represent an absolute
understanding or whether they have been inadvertently tuned to con-
ditions in the PD atmosphere.

Alternative reference years
The contribution of natural emissions to the forcing uncertainty will
depend on the reference year that is used. The 1750 reference, used
here, is commonly assumed to represent a pristine PI state, whereas
early industrial decades from the 1850s onwards have also been used24.
To test the effect of using alternative years for forcing, we repeated our
calculations for the periods 1850–2000, 1850–1980 and 1900–2000
(limited to June to reduce computational cost). For the alternative refe-
rence years we used the same natural emissions as in 1750, but different
anthropogenic emissions (see Methods). As expected, the indirect for-
cing is lower when a slightly polluted reference year is used (a June
mean of 21.30 W m22 for 1850 and 20.96 W m22 for 1900, versus
21.42 W m22 for 1750). The uncertainty analysis shows that the
standard deviation of forcing is slightly larger when the reference year
is 1850 (s 5 21% of mean) than for 1750 (s 5 19% of mean); see
Extended Data Table 4. However, the uncertainties in 1850 emissions
are likely to be larger than for the year 2000, which we have not
attempted to account for, so we expect our estimate of 1850–2000 for-
cing uncertainty to be an underestimate. The contribution of anthro-
pogenic emissions to the forcing uncertainty is also greater using an
1850 reference (46% of variance, versus 38% using 1750). This change
compared to 1750 is mainly caused by the increased contribution from
fossil fuel and sulphate particle emissions. These results show that
natural emissions remain a substantial part of the forcing uncertainty
even when slightly polluted reference years are used. They also confirm
that the uncertainty in forcing is strongly sensitive to the assumed PI
emissions, whether natural or anthropogenic: the large absolute change
in anthropogenic emissions between 1980 and 2000 causes hardly any
change in the contribution of anthropogenic emissions to the uncer-
tainty in forcing referenced to 1850 (47% versus 46% of variance; see
Extended Data Table 4), but the small absolute change in emissions
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Figure 1 | The global distribution of annual mean aerosol first indirect
forcing and associated uncertainty. a, First indirect forcing; b, standard
deviation s of forcing. The maps were computed from a Monte Carlo sampling
of an emulator of forcing in each grid cell of the model.
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between 1750 and 1850 causes a large change in the anthropogenic
contribution (38% to 46%).

Although not a focus of this work, our results also suggest that most
of the aerosol–cloud forcing has probably been realized by 1980 and
has changed little between 1980 and 2000 (comparing 1850–1980 and
1850–2000 time periods; see Extended Data Table 4). This, combined
with the uncertainty analysis, indicates that it may be possible to place
a relatively tight constraint on the aerosol forcing over recent decades
(compared to the PI-to-PD period), which would help determine the
forcing contribution to the reduction in warming trend.

Importance of natural aerosols
The large contribution of natural aerosol emissions to forcing uncer-
tainty is caused by three factors (Fig. 3a–d). First, the 1s response of
CCN to changing DMS emissions is 44% higher in the PI period than
in the PD period (s 5 12.9 cm23 versus 9.0 cm23) between 60u S and
60uN in July, caused by the more efficient nucleation of new particles
in the cleaner PI atmosphere. Second, cloud droplet number concen-
trations increase more steeply with CCN when concentrations are low
in the PI era. This effect occurs because high droplet concentrations
limit the in-cloud supersaturation. Third, cloud albedo sensitivity to
changes in cloud droplet concentrations (the susceptibility1) is higher
in the PI era because the dependence of albedo A on droplet number N
is approximately dA/dN 5 A(1 2 A)/3N. The combined effect of these
three factors means that the forcing uncertainty is more strongly affected
by natural aerosol (which affects PI cloud albedo in a near-linear way)
than PD anthropogenic aerosol (which affects PD albedo in a sub-linear
way). For the region of high forcing off the coast of Chile, CCN con-
centrations rise in our model by a factor of 6.6 (75 cm23 in the PI period
to 500 cm23 in the PD). Under these conditions, and with a cloud albedo
of 0.5, the sensitivity of albedo to CCN is about 15 times higher in the PI
period than in the PD.

Although natural aerosol emissions cause only a small uncertainty
in PI and PD CCN, they can have a disproportionate effect on forcing
uncertainty compared to some process parameters, which we illustrate
for typical conditions in Fig. 3e. For example, aerosol deposition processes
were identified as a major uncertainty in PD CCN18. However, uncer-
tainty in such a process causes an uncertainty in CCN that is in propor-
tion to the aerosol abundance (so the absolute error in CCN will be higher
in the PD than in the PI). In contrast, the uncertainty in DMS emissions
causes approximately the same absolute error in CCN in the PI and PD.
As shown in Fig. 3e, the relationship between CCN, cloud droplet con-
centrations and albedo means that there is some degree of cancellation of
errors in the case where the CCN error is proportional to the amount of
aerosol. For the illustrative conditions used in Fig. 3e, when PD CCN
concentrations are about double the PI levels, the uncertainty in forcing is
a factor of ten higher in the absolute case than in the proportional case.

Implications
Our study provides the first assessment of how aerosol processes and
emissions affect the uncertainty in indirect forcing between the PI and
PD periods and provides quantitative support for previous studies
that have highlighted the importance of understanding PI aerosol9–12.
There are several implications. First, it will prove difficult to constrain
the sources of forcing uncertainty by making observations in the PD
atmosphere11,21, because the low sensitivity of PD clouds to these
emissions18,22 is unrepresentative of the PI atmosphere. We would
need to understand the effects of natural emissions on PI-like aerosol.
The nearest equivalent we have to PI conditions in the PD atmosphere
is in very clean environments9, but the spread of perturbed particle
concentrations10,25 may make it difficult to observe sufficiently pristine
environments, except over very remote marine locations26. Second,
because the magnitude of the PI emissions themselves (notably volcanic
and DMS) are now unmeasurable, some of the forcing uncertainty in

VOLC_SO2

BIO_SOA

DMS_FLUX

SEASPRAY

NUC_SCAV_DIAM

NUC_SCAV_ICE

DRYDEP_AIT

DRYDEP_ACC

BL_NUC

FT_NUC

AGEING

ACC_WIDTH

AIT_WIDTH

NUC-AIT_SEP

AIT-ACC_SEP

ACT_DIAM

SO2O3_CLEAN

SO2O3_POLL

FF_EMS

BF_EMS

FF_DIAM

BF_DIAM

PRIM_SO4_FRAC

PRIM_SO4_DIAM

ANTH_SO2

ANTH_SOA

Natural emissions

Anthropogenic emissions

Aerosol processes

–0.9 –1.0 –1.1 –1.2 –1.3

Forcing (W m–2)c

BB_EMS

BB_DIAM

All natural

All anthropogenic

All processes

0

–0.5

–1.0

–1.5

–2.0

–2.5

F
o

rc
in

g
 (
W

 m
–
2
)

Month

a

b

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month

P
e
r 

c
e
n

t 
o

f 
v
a
ri
a
n

c
e

0

40

60

80

20

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
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indirect forcing. a, Global mean forcing and two-standard-deviation
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pink, anthropogenic emissions; blue, aerosol processes). The difference
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climate simulations may be irreducible27. Therefore, empirical esti-
mates of PI-to-PD forcing based on observations of aerosol and aero-
sol–cloud relations under PD conditions21,28 may not be accurate.
Third, efforts to constrain the magnitude of equilibrium climate sensi-
tivity based on net forcing and ocean heat content relative to a PI
reference24 will always be hampered by our limited ability to constrain
the natural aerosol state. Although it makes sense to define the forcing
relative to a PI reference period when the forcing was zero and the
Earth was approximately in energy balance, this does not imply zero
error contribution from the reference state. We have shown that the
uncertainties in PI-to-PD forcing are strongly affected by the PI aerosol.
Other reference periods could be considered, but equilibrium climate
sensitivity studies would need to account for uncertainties in ocean
heat content. A final implication is that the major sources of uncer-
tainty will depend on the period over which forcing is calculated, so
future aerosol indirect forcing may be sensitive to a different set of
parameters. Therefore, accurate simulation of past forcing, if this could
be achieved, may not guarantee accurate future estimates. Furthermore,
other aerosol–cloud interaction effects not considered here3,4 may also

depend nonlinearly on aerosol between the PI period and the PD, and
the uncertainties could be dominated by a different set of parameters.

Future efforts to reduce the uncertainty in simulated aerosol forc-
ing need to combine measurements and models in ways that target
sources of uncertainty, rather than relying on good model–observation
agreement of PD aerosol as a measure of model fidelity. This means
that models need to be based on sound microphysical processes and
must not be reliant on tuning to PD aerosol levels. It is also essential for
climate models and other models used for long-term simulations to
include accurate representations of all natural aerosols, even if they
have a small effect on PD aerosol levels in polluted environments. Even
as future simulations of aerosol–cloud interaction become increasingly
spatially resolved and able to capture more aerosol–cloud interaction
processes and associated uncertainties, the uncertainty introduced
from a poorly constrained pristine aerosol state will remain.

METHODS SUMMARY
The GLObal Model of Aerosol Processes (GLOMAP)15,16 calculates the time-
dependent global distribution of size-resolved aerosol particles, including the
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Figure 3 | Schematic explaining the importance of natural emissions for
forcing uncertainty. a, CCN concentrations are more sensitive to emissions of
sulphur precursor gases in the PI era because the condensation sink of the
nucleating sulphuric acid vapour onto existing aerosol is lower. b, Cloud
droplet concentrations are more sensitive to changes in CCN when droplet
concentrations are low because higher droplet concentrations suppress
in-cloud supersaturation and limit the activation of additional aerosol particles.
c, Cloud albedo is more susceptible to changes in cloud droplet concentration
when concentrations are low1. d, All three effects in a–c lead to a much
higher sensitivity of albedo to precursor gas emissions in the PI era.
e, Calculated effect of how the uncertainty in modelled aerosol affects the
uncertainty in forcing. In this example, it is assumed that the CCN
concentration scales in direct proportion with anthropogenic emissions
(horizontal axis), as occurs approximately in the model. Uncertainties are then
applied to CCN (6DCCN). The green lines shows the uncertainty in forcing
whenDCCN is proportional to the CCN concentration and the blue lines shows
a case where DCCN is constant and independent of the anthropogenic
emissions. The initial PI CCN concentration is 50 cm23, rising to a maximum
of 750 cm23 in the PD. The cloud droplet number concentration (CDNC) is

calculated as CDNC 5 375 3 (1 2 exp(20.0025 3 CCN)) (ref. 28). The albedo
A of the baseline cloud is assumed to be 0.5 and the albedo versus CDNC is
dA/dln(CDNC) 5 A(1 2 A)/3A (ref 1). The forcing is calculated according to
{F0T2

a DA, where DA is the change in albedo from the PI value (0.5),
Ta is the transmission of the atmosphere (assumed to be 0.75) and F0 is the
radiative flux, assumed to be 340 W m22. The black line shows the calculated
forcing assuming the baseline aerosol number concentration. The green line
shows the calculated forcing assuming 630% uncertainty in CCN (35–65 cm23

in the PI era to 525–975 cm23 maximum in the PD). This calculation represents
an uncertainty in aerosol concentrations due to a process that affects PI and
polluted aerosol concentrations by the same factor, such as dry deposition.
The blue line shows the calculated forcing assuming 615 cm23 uncertainty in
CCN (35–65 cm23 in the PI era, as in the scaled calculation, to a maximum
polluted concentration of 735–765 cm23). This calculation represents an
uncertainty in aerosol concentrations due to a process or emission that affects
PI and polluted aerosol by approximately the same absolute amount,
such as caused by uncertainty in DMS or volcanic SO2 emissions. The small
absolute change in aerosol has a much larger effect on forcing uncertainty than
the scaled aerosol change.
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microphysical processes of particle nucleation, growth, coagulation, cloud cycling
and deposition. The model transport is prescribed in terms of three-dimensional
gridded wind speed, temperature and humidity fields from the European Centre
for Medium-Range Weather Forecasts analyses. Anthropogenic emissions (from
fossil fuel, biofuel and biomass burning) were set to their 1750 (plus alternative 1850
and 1900) values in the PI era and year 2000 values for the PD and were perturbed
by a given factor (see Extended Data Tables 1 and 2). The uncertainty range for each
parameter was chosen on the basis of expert elicitation18. The model was run for
168 combinations of parameter settings from among 28 parameters representing
aerosol and precursor gas emissions, microphysical processes and aerosol model
structures (see Extended Data Table 3).

The radiative forcing between the PI era and the PD was calculated using a radia-
tive transfer model29 and a monthly and geographically varying data set of cloud
optical depth30. The diurnal cycle of incoming solar radiation was accounted for,
but no diurnal cycle of cloud cover was assumed. Cloud droplet concentrations
were calculated from the aerosol size distribution assuming a characteristic updraft
speed of 0.15 m s21 over ocean and 0.3 m s21 over land. The albedo change in each
grid cell was then calculated in terms of the change in cloud droplet effective radius
at constant liquid water path31. Global mean forcings were calculated for 1750–
2000, 1850–2000, 1900–2000 and 1850–1980 (see Extended Data Table 4).

A Gaussian process emulator was built to describe the monthly and global mean
PI-to-PD change in top-of-the-atmosphere radiation across the space of the 28
uncertain parameters18, and then a Monte Carlo sampling of the emulator was used
to generate a probability distribution of global mean forcing. Variance decomposi-
tion was used to quantify the fraction of variance attributable to the uncertain
parameters. The forcing and uncertainty maps (Fig. 1) were generated by perform-
ing a similar analysis on separate emulators for each model grid cell.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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Uncertainty in the magnitude of aerosol-cloud
radiative forcing over recent decades
L. A. Regayre1, K. J. Pringle1, B. B. B. Booth2, L. A. Lee1, G. W. Mann1,3, J. Browse1, M. T. Woodhouse4,
A. Rap1, C. L. Reddington1, and K. S. Carslaw1

1School of Earth and Environment, University of Leeds, Leeds, UK, 2UK Hadley Centre Met Office, Exeter, UK,
3National Centre for Atmospheric Science, University of Leeds, Leeds, UK, 4CSIRO Oceans and Atmosphere, Aspendale,
Victoria, Australia

Abstract Aerosols and their effect on the radiative properties of clouds are one of the largest sources of
uncertainty in calculations of the Earth’s energy budget. Here the sensitivity of aerosol-cloud albedo effect
forcing to 31 aerosol parameters is quantified. Sensitivities are compared over three periods; 1850–2008,
1978–2008, and 1998–2008. Despite declining global anthropogenic SO2 emissions during 1978–2008, a
cancelation of regional positive and negative forcings leads to a near-zero global mean cloud albedo effect
forcing. In contrast to existing negative estimates, our results suggest that the aerosol-cloud albedo effect
was likely positive (0.006 to 0.028 W m−2) in the recent decade, making it harder to explain the temperature
hiatus as a forced response. Proportional contributions to forcing variance from aerosol processes and
natural and anthropogenic emissions are found to be period dependent. To better constrain forcing
estimates, the processes that dominate uncertainty on the timescale of interest must be better understood.

1. Introduction

Aerosols directly reflect sunlight and affect cloud properties such as albedo [Twomey, 1977]. Other rapid
adjustments to cloud properties in response to changes in aerosol concentrations can also occur, yet these
remain poorly understood and poorly represented in global climate models (GCMs) [Boucher et al., 2013].
Uncertainty in the magnitude of aerosol-cloud interaction (ACI) forcing in response to changing anthro-
pogenic emissions is the dominant source of uncertainty in net aerosol radiative forcing within current
GCMs [Skeie et al., 2011; Stocker et al., 2013]. The cloud albedo effect (CAE) [Boucher et al., 2013], an effect
characterized by a decrease in cloud drop effective radius that results from an increase in cloud droplet
number concentration for a fixed amount of liquid water [Twomey, 1977], remains the largest component of
the ACI.

The greatest source of uncertainty in global CAE forcing between the preindustrial and the present-day is
the state of the preindustrial atmosphere [Carslaw et al., 2013a]. This arises because cloud albedo responds,
to a first-order approximation, logarithmically to increasing aerosol concentrations, so a large proportion
of the uncertainty in cloud radiative change over the industrial period is associated with low aerosol
concentrations in the preindustrial [Schmidt et al., 2012; Carslaw et al., 2013a; Ghan et al., 2013]. Carslaw et al.
[2013a] found that 45% of CAE forcing variance, calculated between 1750 and 2000, was attributable to
uncertain and potentially unconstrainable natural aerosol emissions, suggesting a substantial component
of climate model forcing uncertainty may be irreducible.

CO2 concentrations are the main source of uncertainty in radiative forcing of future climate, when
calculated to 2100, because CO2 is a long-lived greenhouse gas for which emissions vary substantially
in emission scenarios [van Vuuren et al., 2011]. By the end of the century, aerosol forcing is likely to be
negligible compared to CO2 forcing [Smith and Bond, 2014]. On decadal timescales however, uncertainty in
the change in aerosol forcing due to the representation of aerosol processes and emissions is comparable
to the change in CO2 forcing and can strongly influence radiative forcing calculations [Hawkins and Sutton,
2009; Kirtman et al., 2013].

It is important to know the sign and magnitude of changes in CAE forcing in recent decades because
changes in near-term historical forcing will inform the interpretation of near-future climate changes. Reduc-
ing forcing uncertainty in near-future projections is critical, yet the sources of CAE forcing uncertainty within
global models are unknown, which limits individual model development and hinders the interpretation of
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model intercomparison studies. Here we quantify uncertainty in CAE forcing attributable to 31 uncertain
aerosol parameters, within a single global model for the periods 1850–2008, 1978–2008, and 1998–2008.
This statistical analysis allows for areas of research to be prioritized for further model development, so that
uncertainty in near-term climate projections may be reduced and makes an analysis of the role of CAE
forcing in near-term historical climate change possible.

2. Methods
2.1. Time Periods
The three periods 1850–2008, 1978–2008, and 1998–2008 were chosen to provide the greatest contrast in
changing anthropogenic aerosol emissions. By considering CAE forcing sensitivities across the three
periods simultaneously, it is assumed that all parameters with the potential to strongly influence near-future
climates will be identified.

Historical radiative forcing is usually calculated from preindustrial to present day, where an overall increase
in global emissions of anthropogenic aerosols occurs. The period 1850–2008 is therefore included in this
study for consistency. Global SO2 emissions peaked in the late 1970s at approximately 120 Tg per year in
1978 [Lamarque et al., 2010], then experienced several periods of decline, with Asian emissions causing
further increases in the early part of this century [Smith et al., 2011] resulting in approximately 103 Tg being
emitted in 2008 [Lamarque et al., 2010]. The overall decline in global anthropogenic emissions since the late
1970s coincides with a period of relatively rapid warming of surface temperatures [Hartmann et al., 2013].
The period 1978–2008 can therefore be considered as distinct from 1850 to 2008, with the potential to
produce CAE forcing values that are influenced by a unique set of parameters.

The 10 year period 1998–2008 can also be considered as a distinct period of anthropogenic emissions. In
1998, approximately 108 Tg of SO2 was emitted globally [Lamarque et al., 2010] hence between 1998 and
2008 global SO2 emissions declined more gradually than in previous decades [Granier et al., 2011]. The
multidecadal trend in declining SO2 emissions eased in Europe, yet became stronger in North America,
during the 1998–2008 period. Asian emissions increased more rapidly than in the 1978–2008 period. The
1998–2008 period is also of interest because of the hiatus in global surface temperature rise which has been
noted in the observational record since the late 1990s [Brohan et al., 2006]. Identifying the sign and
magnitude of CAE forcing, along with the associated variance, will shed light on the role of CAE forcing
during the hiatus period.

The choice of 2008 as the end point for each period is based on an interest in evaluating decadal forcings
and is thus constrained by our choice to use 1978 and 1998 as the start of the most recent periods. The
experimental design outlined in section 2.2 is such that the choice of end year is largely arbitrary and is not
expected to affect the results or conclusions.

2.2. Perturbed Parameter Ensemble
Thirty-one parameters related to aerosol processes as well as natural and anthropogenic aerosol emissions
were identified and perturbed simultaneously within the GLObal Model of Aerosol Processes (GLOMAP)
[Spracklen et al., 2005; Mann et al., 2010, 2012], at a horizontal resolution of 2.8◦ × 2.8◦ with 31 vertical
levels between the surface and 10 h Pa. GLOMAP is an extension to the TOMCAT three dimensional chemical
transport model [Stockwell and Chipperfield, 1999]. Maximin Latin Hypercube sampling was used to create a
parameter combination design, of 187 points, that spans the uncertain parameter space.

The parameters perturbed in this ensemble are similar to those used in Lee et al. [2013] and Carslaw et al.
[2013a] with some new or adjusted parametrisations that relate to uncertain aspects of a newer version
of the model. Particle formation within the continental boundary layer now uses a parametrisation that is
enhanced in the presence of organic material [Metzger et al., 2010]. Parametrisations for the dry
deposition of SO2, the emission flux of dust aerosol and two parameters relating to the wet removal of
aerosols in low-level drizzling clouds have been included. The probability distributions for the uncertain
parameters were identified through expert elicitation updated from Lee et al. [2013].

In this version of the model, three-dimensional meteorological fields and distribution of clouds obtained
from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis for 2008
are used for all years. Low-level stratiform clouds are prescribed from the International Satellite Cloud
Climatology Project (ISCCP) D2 data [Rossow and Schiffer, 1999]. Modeled aerosols do not affect the
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meteorology, transport, and presence of cloud, although the aerosols themselves are affected by cloud
processing and precipitation. Changes in simulated CAE forcing across the ensemble, for each period, can
therefore be attributed solely to the parameter perturbations.

Emission scenarios prepared for the Atmospheric Chemistry and Climate Model Intercomparison Project
(ACCMIP) [Lamarque et al., 2010] and prescribed in some of the Coupled Model Intercomparison Project
Phase 5 (CMIP5) experiments [Taylor et al., 2012] were used here to prescribe anthropogenic aerosol
emissions for the years 1850, 1978, 1998, and 2008.

Pairs of simulations were used in the calculation of radiative forcing. Identical model configurations were
used for each pair with the exception of anthropogenic aerosol emissions which were prescribed according
to the years at either end of the periods examined. CAE forcing is defined here to be the difference in top
of atmosphere net radiative fluxes between years and was quantified by modifying the cloud drop effective
radius (re) for low- and middle-level clouds up to 6 × 102 h Pa, within the offline version of the Edwards
and Slingo radiative transfer model [Edwards and Slingo, 1996]. This is the same approach used to calculate
forcing in Carslaw et al. [2013a]. Surface albedo and cloud optical depths from ISCCP D2 for the year 2000
were used, and therefore, re was modified relative to values derived for that year, denoted here using the
“ref” superscript:

re = rref
e ×

(
CDNCref

CDNC

)1∕3

, (1)

where CDNC is the monthly mean cloud drop number concentration within each model grid box. A fixed
value of rref

e = 10 μm was used to ensure consistency with the ISCCP retrievals, and CAE forcing over a given
period was taken as the difference between forcings for each year relative to the year 2000. The net cloud
radiative effect from our year 2000 reference simulation is −25.7 W m−2. Calisto et al. [2014] use 10 years of
satellite retrievals to calculate an average cloud radiative effect of −18.8 W m−2. While our reference cloud
radiative effect is higher than determined from satellite retrievals, it is in agreement with CMIP5 models
[Calisto et al., 2014].

A cloud droplet activation parametrisation [Fountoukis and Nenes, 2005; Barahona et al., 2010] was used
to calculate CDNCs using the monthly mean aerosol distribution and composition in each grid box.
Global, annual averages of CAE forcing for the 187 ensemble members were used to construct a statistical
approximation to the model output and perform a sensitivity analysis.

2.3. Sensitivity Analysis
A variance-based sensitivity analysis [Saltelli et al., 2000] of CAE forcing is made possible using validated
Bayesian emulators [Oakley and O’Hagan, 2002] that are conditioned on the 187 member ensemble for each
period to provide a statistical approximation of model output at any point in the 31-dimensional
parameter space. The Bayesian emulation approach has been successfully applied to GLOMAP model output
by Lee et al. [2011, 2012, 2013] and Carslaw et al. [2013a, 2013b].

The generation of a complete parametric response surface allows for contributions to variance, from each
parameter and interactions between parameters, to be quantified explicitly across the entire surface.
Nonlinear variations within the response surface are accounted for automatically and can be examined as
required. These advantages cannot be obtained using one-at-a-time parameter perturbations, as is standard
practice in climate model development. The results of the CAE forcing sensitivity analyses are provided
in section 3.2. Sensitivity analyses were conducted using probability distributions of forcing that were
obtained using the extended-FAST sampling method [Saltelli et al., 1999], with 104 emulator sample points
per parameter. These samples were also used to calculate 90% credible intervals of CAE forcing that account
for variation across the parameter space.

3. Results
3.1. Ensemble Mean Aerosol-Cloud Radiative Forcing
Figure 1 shows the mean CAE forcing of the 187 member ensemble, for each period, within each model grid
box. In Figure 1a, the well-documented negative anthropogenic aerosol forcing between the early-industrial
to present-day period can be seen. The CAE forcing is strongest in the Northern Hemisphere where
anthropogenic aerosol emissions increased significantly since 1850. The majority of the atmosphere
changes from clean to polluted during this period.
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Figure 1. Average CAE radiative forcing for (a) 1850–2008, (b) 1978–2008,
and (c) 1998–2008 in W m−2. Forcing values for all ensemble members
are averaged within individual grid boxes. The global means are
calculated using 104 values sampled from the emulator for each period.

In recent decades, the effect of the
regional changes in emissions outlined
in section 1 become evident. There
are regions of strong positive forcing
where the CAE is smaller in 2008
than in 1978 in response to declining
anthropogenic aerosol emissions. The
patterns of regional forcing in the
1978–2008 period closely resemble
those detected by Andrews [2013],
in aerosol effective radiative forcing
and changes in aerosol optical depth,
over a similar period using a GCM
with dynamic meteorology. Regional
CAE forcings of opposite sign cancel
out when calculating the global mean
forcing. In the 1978–2008 period,
ensemble mean CAE forcings in indi-
vidual model grid boxes range from
−1.8 to 3.0 W m−2 and from −0.8
to 1.1 W m−2 in the 1998–2008 period.

The spatial pattern of CAE forcing
is similar between 1978–2008 and
1998–2008 (Figures 1b and 1c). The
regions of positive and negative
forcing are considerably smaller in the
most recent decade, which is to be
expected since the 1998–2008 period
is much shorter and also because the
rates of change in SO2 emissions in
these regions during this period are
generally smaller than in previous
decades. Differences in the spatial
patterns of ensemble mean CAE forcing
confirm that the magnitude and sign
of changes in anthropogenic emissions
lead to distinct cloud albedo responses
in the three periods.

3.2. Sensitivity Analysis of
Each Period
3.2.1. Magnitude and Diversity of
CAE Forcing Estimates
Effective radiative forcing due to
aerosol-cloud interactions for the
1750–2011 period is calculated by
Myhre et al. [2013], using a multimodel
ensemble, to be −0.45 W m−2 with a
credible interval of (−1.2 to 0.0 W m−2).
Our mean emulated global CAE forcing

for 1850–2008 is −1.01 W m−2 with a credible interval of (−1.235 W m−2
,−0.782 W m−2). Individual ensem-

ble members produce values ranging from −1.817 to − 0.461 W m−2. The breadth of CAE forcing values is
sufficient to provide a useful framework for exploring parametric sources of uncertainty.

The strong negative global mean forcing in the 1850–2008 period is not present in 1978–2008 where the
mean emulated CAE forcing is zero with a credible interval of (−0.035 W m−2

, 0.033 W m−2). The global
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Figure 2. Contributions to globally averaged CAE forcing variance from
aerosol process parameters and natural and anthropogenic emissions, for
the three periods 1850–2008, 1978–2008, and 1998–2008. Percentages
are obtained by Monte Carlo sampling from independent emulators of
forcing for each period. Note that the total variance changes substantially
between periods.

mean CAE forcing magnitude and
credible range for the 1978–2008 period
are both small compared to a CO2

forcing of 0.7 W m−2 over the same
period [Myhre et al., 2013], resulting
from compensating positive and
negative regional forcings of up
to 3 W m−2. The relatively small
uncertainty around zero that we
calculate does not alter the conclusion
that increasing concentrations of CO2

and other well-mixed greenhouse
gases produced the observed rapid
warming of global mean surface
temperature, which started in the late
1970s [Hartmann et al., 2013].

The small credible forcing range
calculated here suggests a confidence
in the zero 1978–2008 emulated
mean CAE forcing which is in contrast
with other studies. Skeie et al. [2011]
calculate a CAE forcing during the

1978–2008 period of approximately −0.093 W m−2 and Shindell et al. [2013] use three CMIP5 GCMs to
calculate combined CAE and rapid adjustment forcings of approximately −0.04, −0.15, and −0.67 W m−2

between 1980 and 2000. The magnitude of global CAE forcing diversity between models is the same order
of magnitude as the CO2 forcing over recent decades [Myhre et al., 2013]. Our results isolate the uncertainty
attributable to aerosol parameters and emissions within a global model and suggest that these factors
are a smaller source of CAE forcing uncertainty than the uncertainty arising from the representation
of atmospheric physics within models and the structural choices of aerosol and atmospheric physics
parametrisations, at least for the globally averaged CAE forcing. Our small global mean CAE forcing
uncertainty for the 1978–2008 period is the result of compensating uncertainties in positive and negative
regional forcings. A large part of the difference between our small parametric uncertainty and model
diversity in global CAE forcing over recent decades may be caused by differences in the extent to which
regional forcings truly cancel within models.

In the 1998–2008 period, there is an overall positive forcing of 0.018 W m−2 with a credible interval of
(0.006 W m−2

, 0.028 W m−2). The continued decline in global anthropogenic emissions during this period,
although smaller per decade than the period 1978–2008, produces a positive CAE forcing. The small, likely
positive CAE forcing suggests that CAE forcing is unlikely to be the cause of the hiatus in global surface
temperature rise, which would require a forcing of the order of −0.35 W m−2 [Solomon et al., 2007]. The
positive global CAE forcing calculated here contrasts with the −0.06 W m−2 potential contribution of
CAE forcing to recent changes in surface temperatures calculated by Schmidt et al. [2014]. The positive
1998–2008 global CAE forcing is a small but nonnegligible 2–11% of the 0.25 W m−2 CO2 forcing over the
same period [Myhre et al., 2013]. When CAE forcing and its parametric sensitivities are accounted for the
magnitude of forcing per decade that would need to be explained by other external forcings increases.
Approximately half of current GCMs exclude the CAE [Wilcox et al., 2013] and are therefore unable to account
for this important process and its inherent uncertainty when calculating forcing over recent decades.
3.2.2. Changes in the Sources of Uncertainty
Uncertainty in global mean CAE forcing can be decomposed into uncertainty arising from aerosol process
parameters and from natural and anthropogenic emissions, using a variance-based sensitivity analysis
[Saltelli et al., 2000]. Proportional reductions in total variance that can be expected if all parameters within a
group were known precisely, are presented for each period in Figure 2. The CAE forcing variance is smaller
in the two most recent periods than in the 1850–2008 period, and the contributions to variance should
be interpreted in this context. Because the emulators produce results in a fraction of the time required for
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Figure 3. Box-and-whisker plots of CAE radiative forcing for individual
parameters and groups of parameters during the periods (a) 1850–2008,
(b) 1978–2008, and (c) 1998–2008. The probability density of each
parameter is obtained by Monte Carlo sampling from the emulators for
each period. The 25th, 50th, and 75th percentiles are used to create each
box, and the whiskers extend to the most extreme sample point within
1.5 times the interquartile range. All box-and-whisker plots are centered
on the mean emulated forcing value for that period. The range of
emulated CAE forcing changes within each period.

the global model, sufficiently large
samples can be taken from the
multidimensional response surface
to produce meaningful statistical
summaries, such as those provided in
Figure 2.

Each of the anthropogenic aerosol
emission periods produces a distinct
mix of contributions to variance, with
substantial changes in the influence
of parametric uncertainties on global
CAE forcing variance between periods.
Natural aerosol contributions to
forcing variance decline from 34.4%
in 1850–2008 to only 6.8% and 1.9%
in 1978–2008 and 1998–2008,
respectively. This decline was predicted
by Carslaw et al. [2013a], who showed
that using a relatively polluted
baseline in the forcing calculation
reduces the importance of uncertainty
in natural aerosol emissions. Note
that the parametric contributions
presented here differ from those
in Carslaw et al. [2013a] because a
different early-industrial period start
year was used and furthermore model
results are influenced by the structural
changes implemented in this version of
the model, as described in section 2.2.

Uncertainties in anthropogenic
emissions dominate forcing uncertainty
during the 1978–2008 period,
contributing 49.8% of the global CAE
forcing variance, compared to a 30.2%
contribution from aerosol process
parameters. Anthropogenic emission
uncertainties determine both the
magnitude and the sign of CAE forcing
during the 1978–2008 period. Strong
regional forcings of opposite sign have
the potential to be canceled out, and
the anthropogenic emission
uncertainties control the relative
importance of regional contributions to
the global CAE forcing.

Aerosol process parameters dominate
the 1998–2008 forcing uncertainty,
contributing 46.4% of the global CAE
forcing variance, with anthropogenic
emissions accounting for only 18.5%.
Global CAE forcing during this period
is controlled by those regions
experiencing a decline in anthropogenic
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emissions, leading to an overall positive forcing. Aerosol process parameter uncertainties take on a larger
role in controlling global CAE forcing during this period, because uncertainties in parameters controlling the
growth and removal of aerosol are more important than the uncertainties in the emissions themselves when
changes in emissions are small. The uncertainties in aerosol process parameters contribute to the forcing
variance in each period, although their influence is strongest in the absence of large changes in
anthropogenic aerosol emissions. The dominance of aerosol process parameters as a source of global mean
CAE forcing variance in the near-term suggests that aerosol model structural uncertainty is likely to make an
important contribution to near-future climate projection uncertainty.

The changing proportional contributions to global CAE forcing variance from the three sources of
parametric uncertainty suggest that the periods examined here are diverse enough to enable the
identification of those uncertain aerosol parameters which may influence future CAE forcing uncertainty.
Changes in the contributions from individual parameters are discussed further in section 3.2.3.
3.2.3. Changes in Contributions From Individual Parameters
Individual aerosol parameter contributions to CAE forcing variance over the three periods are summarized
using box-and-whisker plots in Figure 3. Each box and whisker plot is generated by sampling from
the emulator 104 times with the parameter in question allowed to vary across the parameter space
and all other parameters held fixed at their median values, making these plots comparable to those in
Carslaw et al. [2013a].

Some parameters such as the drizzle rate (Drizz_ rate), defined as the precipitation rate in low-level
stratocumulus clouds within a 6 h period [Browse et al., 2012], contribute to CAE forcing variance regardless
of emission period. Other parameters make small contributions to variance in some periods and
substantial contributions in others. For some parameters, such as the magnitude of anthropogenic SO2

emissions (Anth_ SO2) and global fossil fuel and global biofuel emission fluxes (FF_ Ems and BF_ Ems), the
parametric contributions to forcing variance are correlated with the magnitude of emissions. Anthropogenic
emission fluxes change less dramatically in 1998–2008 than in the other periods [Bond et al., 2007; Lamarque
et al., 2010], and as such the associated parameters make smaller contributions to forcing variance.

The period dependence of individual parametric contributions to CAE forcing variance suggests that studies
that are designed to quantify aerosol model uncertainty from a single time period, such as the preindustrial
to present-day, may not be informative of model sensitivities in near-future climates of interest.

4. Conclusions

The most striking result of our study is that the parametric uncertainty of global mean CAE forcing over
recent decades is much smaller than the range predicted by other climate models. Regional positive and
negative forcings of up to 3 W m−2 cancel each other in calculations of global CAE forcing over recent
decades. Our analysis suggests that uncertainties in aerosol processes and emissions in a single global
model (if spatially and temporally correlated as we assume) are less important than structural differences
between models over recent decades. In contrast, over the 1850–2008 period, the forcing is almost
everywhere negative, and aerosol parameters and emissions account for a substantial fraction of the
multimodel range [Carslaw et al., 2013a]. Thus, in historical or future periods in which regional patterns of
forcing of opposite sign can occur, the true uncertainty in global mean forcing may be largely determined
by the extent to which regional forcing cancelation occurs. That is, an understanding of regional patterns of
forcing across multiple models becomes paramount.

The small global mean CAE uncertainty attributable to aerosol parameters and emissions over recent
decades hides much larger regional forcing uncertainties. Causes of regional forcing uncertainty are likely
to be highly variable, and an analysis of them may provide insight into the cause of model diversity. One
method for understanding the sources of multimodel diversity in global and regional CAE forcing over
recent decades would be to incorporate a perturbed parameter framework into multimodel
intercomparison projects. The design of such experiments would benefit from being informed by the results
here, which highlight those aerosol processes and emissions that are likely to influence multimodel global
CAE forcing diversity on different timescales.

Despite the small calculated uncertainties in global mean CAE forcing, our analysis clearly shows that the
causes of uncertainty in forcing over recent decades are very different to those associated with forcing
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referenced to the preindustrial state [Carslaw et al., 2013a]. Natural emission uncertainty was shown by
Carslaw et al. [2013a] to substantially influence CAE forcing uncertainty since the preindustrial era. Here
natural emission uncertainty has been shown to play only a minor role in controlling global CAE forcing
variance in recent decades, where the atmosphere at both the start and end of the forcing period can be
considered polluted relative to the preindustrial atmosphere. In order to identify parameters that have the
potential to influence the near-future climate forcing, it is essential to perform sensitivity analyses using
a range of diverse anthropogenic aerosol emission periods. Reducing uncertainty in these parameters
will likely lead to improved near-future climate projections. The implication of the period dependence of
CAE forcing sensitivity to uncertain aerosol parameters and emissions is that multimodel intercomparison
projects may benefit from a design structure that utilizes historic periods over which anthropogenic
emissions most closely resemble those used in the near-future climates they are to inform.

If the historical period under consideration contains relatively large regional and global changes in
anthropogenic aerosol emissions, such as the 1978–2008 period, then uncertainties in these emissions
contribute most to global CAE forcing uncertainty. Addressing the causes of anthropogenic emission
inventory diversity during the 1978–2008 period is shown here to be a priority for reducing uncertainty in
CAE forcing calculations over recent decades and therefore warrants further research.

Aerosol process parameters influence global CAE forcing variance much more strongly in periods where
the forcing is controlled by relatively small changes in anthropogenic aerosol emissions, as is the case
in the 1998–2008 period. This decade contrasts with the 1978–2008 period when there were relatively
large regional increases and decreases in anthropogenic emissions. The CAE forcing uncertainty for the
1998–2008 period can be viewed as the lower limit that could be expected in near-future climates because
first, the anthropogenic aerosol emission changes during the most recent decade are so small, and second,
our results highlight the importance of aerosol process parameters over recent decades suggesting that
uncertainties in the structural representation of aerosols between models may also have the greatest impact
on uncertainty during these periods. Furthermore, we assume that anthropogenic aerosol emission fluxes
are perfectly correlated, both temporally and spatially, so that anthropogenic emissions are systematically
scaled high/low and regional positive and negative forcings can cancel in the calculation of the global mean
forcing. If anthropogenic aerosol emissions were underestimated at one end of a period and overestimated
at the other, for example, then anthropogenic emission uncertainty would be a larger source of CAE forcing
variance during that period which would inflate the credible ranges of CAE forcing.

Here we show that the credible range of CAE forcing during the 1998–2008 period is (0.006 W m−2
,

0.028 W m−2), indicating that a positive CAE forcing is likely during the 1998–2008 period. In contrast
to existing negative estimates of aerosol indirect forcing, our results suggest that the aerosol-cloud
albedo effect was likely positive during the last decade, indicating that the hiatus in surface warming
cannot be attributed to CAE forcing. A likely positive CAE forcing during this period reframes the role of CAE
forcing in explaining model overestimation of recent warming using external forcings. The attribution of the
present pause in surface warming as a forced response [Kaufmann et al., 2011; Estrada et al., 2013; Haywood
et al., 2013; Kosaka and Xie, 2013; Santer et al., 2014] is more difficult given the present results. The existing
role of aerosols in explaining the hiatus therefore needs to be reevaluated.
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Skeie, R. B., T. K. Bernsten, G. Myhre, K. Tanaka, M. M. Kvalevȧg, and C. R. Hoyle (2011), Anthropogenic radiative forcing time series from

pre-industrial times until 2010, Atmos. Chem. Phys., 11, 11,827–11,857, doi:10.5194/acp-11-11827-2011.
Smith, S. J., and T. C. Bond (2014), Two hundred fifty years of aerosols and climate: The end of the age of aerosols, Atmos. Chem. Phys.,

14, 537–549, doi:10.5194/acp-14-537-2014.
Smith, S. J., J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias (2011), Anthropogenic sulfur dioxide emissions: 1850 to

2005, Atmos. Chem. Phys., 11, 1101–1116, doi:10.5194/acp-11-1101-2011.
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller (Eds.) (2007), IPCC, 2007: The Physical Science

Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge
Univ. Press, Cambridge, U. K., and New York.

Spracklen, D. V., K. J. Pringle, K. S. Carslaw, M. P. Chipperfield, and G. W. Mann (2005), A global off-line model of size-resolved aerosol
microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227–2252.

REGAYRE ET AL. ©2014. The Authors. 9048

http://dx.doi.org/10.1038/nature12674
http://dx.doi.org/10.1039/C3FD00043E
http://dx.doi.org/10.1256/smsqj.53106
http://dx.doi.org/10.1038/ngeo1999
http://dx.doi.org/10.1029/2004JD005591
http://dx.doi.org/10.1002/jgrd.50567
http://dx.doi.org/10.1007/s10584-011-0154-1
http://dx.doi.org/10.1175/2009BAMS2607.1
http://dx.doi.org/10.1002/asl2.471
http://dx.doi.org/10.1073/pnas.1102467108
http://dx.doi.org/10.1038/nature12534
http://dx.doi.org/10.5194/acp-10-7017-2010
http://dx.doi.org/10.5194/acp-11-12253-2011
http://dx.doi.org/10.5194/acp-12-9739-2012
http://dx.doi.org/10.5194/acp-13-8879-2013
http://dx.doi.org/10.5194/gmd-3-519-2010
http://dx.doi.org/10.5194/acp-12-4449-2012
http://dx.doi.org/10.1073/pnas.0911330107
http://dx.doi.org/10.1093/biomet/89.4.769
http://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2
http://dx.doi.org/10.2307/1270993
http://dx.doi.org/10.1038/ngeo2098
http://dx.doi.org/10.5194/acp-12-7321-2012
http://dx.doi.org/10.1038/ngeo2105
http://dx.doi.org/10.5194/acp-13-2939-2013
http://dx.doi.org/10.5194/acp-11-11827-2011
http://dx.doi.org/10.5194/acp-14-537-2014
http://dx.doi.org/10.5194/acp-11-1101-2011
mm11lr
Text Box
49




Geophysical Research Letters 10.1002/2014GL062029

Stocker, T. F., D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (2013), Summary for
policymakers, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 13–14, Cambridge Univ. Press, Cambridge, U. K.,
and New York.

Stockwell, D. Z., and M. P. Chipperfield (1999), A tropospheric chemical-transport model: Development and validation of the model
transport schemes, Q. J. R. Meteorol. Soc., 125, 1747–1783, doi:10.1256/smsqj.55713.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the experiment design, Bull. Am. Meteorol. Soc., 93, 485–498,
doi:10.1175/BAMS-D-11-00094.1.

Twomey, S. (1977), Influence of pollution on shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152.
van Vuuren, D. P., et al. (2011), The representative concentration pathways: An overview, Clim. Change, 109, 5–31,

doi:10.1007/s10584-011-0148-z.
Wilcox, L. J., E. J. Highwood, and N. J. Dunstone (2013), The influence of anthropogenic aerosol on multi-decadal variations of historical

global climate, Environ. Res. Lett., 8, 024033, doi:10.1088/1748-9326/8/2/024033.

REGAYRE ET AL. ©2014. The Authors. 9049

http://dx.doi.org/10.1256/smsqj.55713
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1007/s10584-011-0148-z
http://dx.doi.org/10.1088/1748-9326/8/2/024033
mm11lr
Text Box
50




Chapter 4

The climatic importance of

uncertainties in regional

aerosol-cloud radiative

forcing over recent decades

51



52

CHAPTER 4. THE CLIMATIC IMPORTANCE OF UNCERTAINTIES IN
REGIONAL AEROSOL-CLOUD RADIATIVE FORCING OVER RECENT

DECADES



The Climatic Importance of Uncertainties in Regional Aerosol–Cloud Radiative
Forcings over Recent Decades

LEIGHTON A. REGAYRE, KIRSTY J. PRINGLE, LINDSAY A. LEE, ALEXANDRU RAP, JO BROWSE,
GRAHAM W. MANN,* CARLY L. REDDINGTON, AND KEN S. CARSLAW

Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds,

Leeds, United Kingdom

BEN B. B. BOOTH

Met Office Hadley Centre for Climate Change, Exeter, United Kingdom

MATTHEW T. WOODHOUSE

CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

(Manuscript received 10 February 2015, in final form 1 May 2015)

ABSTRACT

Regional patterns of aerosol radiative forcing are important for understanding climate change on decadal time

scales. Uncertainty in aerosol forcing is likely to vary regionally and seasonally because of the short aerosol lifetime

and heterogeneous emissions.Here the sensitivity of regional aerosol cloud albedo effect (CAE) forcing to 31 aerosol

process parameters and emission fluxes is quantified between 1978 and 2008. The effects of parametric uncertainties

on calculations of the balance of incoming andoutgoing radiation are found to be spatially and temporally dependent.

Regional uncertainty contributions of opposite sign cancel in global-mean forcing calculations, masking the regional

importance of some parameters. Parameters that contribute little to uncertainty in Earth’s global energy balance

during recent decades make significant contributions to regional forcing variance. Aerosol forcing sensitivities are

quantified within 11 climatically important regions, where surface temperatures are thought to influence large-scale

climate effects. Substantial simulated uncertainty inCAE forcing in the eastern Pacific leaves open the possibility that

apparent shifts in themeanENSO state may result from a forced aerosol signal onmultidecadal time scales. A likely

negative aerosol CAE forcing in the tropical North Atlantic calls into question the relationship between Northern

Hemisphere aerosol emission reductions andCAE forcing of sea surface temperatures in themainAtlantic hurricane

development region on decadal time scales. Simulated CAE forcing uncertainty is large in the North Pacific, sug-

gesting that the role of the CAE in altering Pacific tropical storm frequency and intensity is also highly uncertain.

1. Introduction

Aerosols affect Earth’s climate by absorbing and scat-

tering solar and terrestrial radiation (Twomey 1977;

Boucher et al. 2013). The cloud albedo effect (CAE)

(Boucher et al. 2013), characterized by a decrease in cloud

drop effective radius that results from an increase in cloud

droplet number concentration for a given amount of

liquid water (Twomey 1977), is the largest component

of the aerosol–cloud interaction. Uncertainty in the

magnitude of CAE forcing remains the dominant

source of uncertainty in net aerosol radiative forcing

within current global climate models (Skeie et al. 2011;

IPCC 2013).

Anthropogenic aerosol emission fluxes and aerosol

process parameters were identified by Regayre et al.

(2014) as the largest sources of simulated global-mean
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CAE forcing variance in recent decades; however,

credible ranges of global-mean CAE forcing were found

to be small compared to the magnitude of forcing re-

sulting from changes in atmospheric CO2 concentra-

tions. Regayre et al. (2014) hypothesized that a large

component of multimodel CAE forcing diversity during

recent decades is determined by the extent to which

regional positive and negative forcings cancel in in-

dividual models when calculating global-mean CAE

forcing.

The magnitude of large-scale climatic responses, such

as global-mean surface temperature, are sensitive to the

spatial position of regional forcings (Shindell et al.

2013), making it important to understand CAE forcing

at the regional scale. In this paper we aim to identify the

aerosol process parameters and emission fluxes, here-

after referred to as parameters, which are the largest

sources of regional-meanCAE forcing variance and also

have potential to be influential on global-mean forcing

in near-future climates.

We compare the Regayre et al. (2014) global-mean

CAE forcing results with an analysis that accounts for

cancellation of positive and negative regional forcings.

The CAE forcing sensitivity to the 31 aerosol parame-

ters is quantified within 11 regions where CAE forcing

potentially influences large-scale climate effects such as

monsoon intensity, tropical storm development, and

precipitation. The statistical analyses conducted here

highlight aspects of aerosol research and model de-

velopment that should be prioritized in order to reduce

the impact of uncertainty in regional CAE forcings on

near-term climate projections.

2. Methods

a. Perturbed parameter ensemble

The Global Model of Aerosol Processes (GLOMAP)

(Spracklen et al. 2005; Mann et al. 2010, 2012) was used

by Regayre et al. (2014) to create the perturbed pa-

rameter ensemble used in this research. Each ensemble

member has a horizontal resolution of 2.88 3 2.88
with 31 vertical levels between the surface and 10 hPa.

GLOMAP is an extension of the TOMCAT chemical

transport model (Stockwell and Chipperfield 1999). To

create each ensemble member, 31 aerosol process pa-

rameters and emission fluxes were perturbed simulta-

neously.Maximin Latin hypercube sampling was used to

create a parameter combination design, of 186 points,

that spans the 31-dimensional uncertain parameter

space. The probability distributions for the uncertain

parameters used in Regayre et al. (2014) were identified

through expert elicitation updated from Lee et al. (2013).

A further simulation with all parameters set to their

median values was included in the ensemble to ensure

coverage of what experts believed to be an important

region of parameter space.

In the version of the GLOMAP model used to create

the ensemble, three-dimensional meteorological fields

and cloud distributions for all years were obtained from

the European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim)

for 2008. Low-level stratiform clouds were prescribed

from the International Satellite Cloud Climatology

Project (ISCCP) D2 data (Rossow and Schiffer 1999).

Modeled aerosols are affected by cloud processing and

precipitation, although changes in modeled aerosols do

not affect the meteorology, transport, or presence of

cloud. Emission scenarios prepared for theAtmospheric

Chemistry and Climate Model Intercomparison Project

(ACCMIP) (Lamarque et al. 2010) and prescribed in

some of the experiments from phase 5 of the Coupled

Model Intercomparison Project (CMIP5) (Taylor et al.

2012) were used to prescribe anthropogenic aerosol

emissions in these simulations. The experimental de-

sign is such that parameter perturbations are the sole

cause of changes in simulated CAE forcing for each

ensemble member.

Pairs of 1-yr simulations were used to calculate

monthly and annual-mean CAE forcing. Identical

model configurations were used for each pair of simu-

lations with the exception of anthropogenic aerosol

emissions, which were prescribed distinctly for each

year. The definition of CAE forcing used here is iden-

tical to that of Carslaw et al. (2013) and Regayre et al.

(2014), where it is regarded as the difference in top-of-

atmosphere net radiative fluxes between years. CAE

forcing values are calculated by modifying the cloud

drop effective radius re for low- and midlevel clouds up

to 63 102 hPa, within the offline version of the Edwards

and Slingo (1996) radiative transfer model. Because

year-2000 values of surface albedo and cloud optical

depths from ISCCP D2 were used, re was modified rel-

ative to values derived for that year, denoted here using

the superscript ref:

re5 rrefe

�
CDNCref

CDNC

�1/3

, (1)

where CDNC is the monthly mean cloud drop number

concentration within each model grid box. A cloud

droplet activation parameterization (Fountoukis and

Nenes 2005; Barahona et al. 2010) was used to calculate

CDNC for each ensemble member in each model grid

box using the monthly mean aerosol distribution and

composition. A fixed value of rrefe 5 10mm was used to
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ensure consistency with the ISCCP retrievals. CAE

forcing over the 1978–2008 period was taken as the

difference between forcings for each year relative to the

year 2000. Regayre et al. (2014) show that the net cloud

radiative effect from the year-2000 reference simulation

is in agreement with CMIP model output (Calisto

et al. 2014).

b. Sensitivity analysis

A sensitivity analysis (Saltelli et al. 2000; Lee et al.

2013) of CAE forcing in each model grid box is made

possible using validated Bayesian emulators (O’Hagan

2006) that are conditioned on output from the 187 per-

turbed parameter simulations. The emulator of each

model grid box provides a statistical approximation of

CAE forcing at any point in the 31-dimensional pa-

rameter space. A further emulator is constructed using

global-mean absolute CAE forcing, where the absolute

value of CAE forcing for each model grid box is used in

the calculation of the global mean to remove the effect

of canceling regional forcings of opposing sign. This

approach allows us to use a single global value to

quantify the importance of individual parameters, even

if changes in the parameter cause positive and negative

forcings that cancel in the global-mean calculation.

The Bayesian emulation approach has been success-

fully applied to GLOMAP model output by Lee et al.

(2011, 2012, 2013), Carslaw et al. (2013), Hamilton et al.

(2014), and Regayre et al. (2014). Contributions to vari-

ance from each parameter and statistical interactions

between parameters can be explicitly quantified across

the multidimensional response surface. This is made

possible because the emulators produce output in a

fraction of the time required to produce a simulation.

Large samples of output can therefore be obtained and

used to produce probability distributions. The extended

Fourier amplitude sensitivity test (FAST) sampling

method (Saltelli et al. 1999), with 104 emulator sample

points, was used here to obtain the data for each Monte

Carlo–style sensitivity analysis.

The results of the global-mean absolute CAE forcing

sensitivity analyses are contrasted with the results of the

global CAE forcing sensitivity analysis of Regayre et al.

(2014) in section 3a. Regional sensitivity analysis results

and their climatic importance are discussed in section

3b. Here the sensitivity analysis is conducted using

monthly, rather than annual, mean CAE forcing to

avoid cancellation of forcings of opposite sign in dif-

ferent months or seasons. The statistic considered most

in the discussion of these results is the percentage re-

duction in monthly mean CAE forcing variance that

could be expected if the parameter in question were

known exactly. Mean regional contributions to forcing

are obtained for each month by weighting contributions

to CAE forcing variance within each model grid box by

the proportion of total regional forcing evident within

that grid box. The CAE forcing uncertainty within re-

gions is quantified using mean 90% credible intervals

(CIs) of CAE forcing. The means of the 5th and 95th

percentiles within each model grid box are used to cal-

culate mean CIs. Regional-mean forcings and CIs are

calculated using only themonths whereCAE forcing has

been identified as climatically important, as summarized

in section 2d.

c. Time period

The ensemble of 187 paired perturbed parameter

simulations for the period 1978–2008 used by Regayre

et al. (2014) to analyze global CAE forcing uncertainty

is used here to analyze regional CAE forcing un-

certainty. The 1978–2008 period produces distinct re-

gions of positive and negative CAE forcing that result

from spatial heterogeneity in the long-term trends of

anthropogenic emissions. In 1978, global anthropogenic

sulfate emissions peaked (Lamarque et al. 2010) then

decreased in Europe and North America while in-

creasing significantly in Asia (Smith et al. 2011). Current

satellite observations reveal a persistence of these re-

gional trends in anthropogenic emissions (Mao et al.

2014), and simulations suggest that peak regional aero-

sol forcing from Asian anthropogenic emissions relative

to the preindustrial era may not be reached for several

decades (Li et al. 2014), indicating that a sensitivity

analysis of 1978–2008 CAE forcing will be informative

about near-future climate uncertainties. A time series of

global CAE forcing relative to the year 1850, con-

structed using simulations where all parameters were set

to their median values, is presented in Fig. 1. The global-

mean CAE forcing trend plateaus in the 1980s, making

the change in forcing relative to 1850 near neutral during

the 1978–2008 period.

d. Large-scale climate effects

Global models initialized with prescribed SSTs based

on observations show enhanced interannual pre-

dictability of regional temperatures and precipitation

(Hermanson and Sutton 2010; Robson et al. 2013).

Confident prediction of large-scale climate effects relies

on well-simulated SST, which in turn requires the reli-

able simulation of the CAE. Changing anthropogenic

aerosol emissions have the potential to induce aerosol-

specific changes in regional atmospheric circulation and

precipitation (Kirtman et al. 2013).

Large regional uncertainties in CAE forcing will

strongly influence SST and thus hinder the accurate

simulation of climate effects, which affect much of
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Earth’s population. Table 1 and Fig. 2 indicate the lo-

cation of the 11 regions (R1–R11) used in the regional

component of this research. Regions were chosen based

on the potential for changes in SST and/or surface air

temperature (SAT) to influence large-scale climatic ef-

fects. The regional CAE forcing sensitivity analyses

presented in section 3b are individually restricted to

either marine or continental land environments. External

forcings in tropical regions are more likely to induce a

global temperature response than polar forcings (Roe

et al. 2015). However, it is assumed that reducing un-

certainty in the simulation of the climate effects outlined

in this section, by reducing uncertainty in CAE forcing,

will improve near-future climate projections.

1) INTERTROPICAL CONVERGENCE ZONE AND

SAHEL PRECIPITATION

Ascending air near the equator is advected poleward

and descends in the subtropical dry zones forming the

Hadley cell. The structure of the Hadley cell determines

the position of subtropical dry zones, which are impor-

tant for Earth’s hydrological cycle and energy balance

(Seidel et al. 2008). Observational evidence suggests

that the Hadley cell has widened in recent decades

(Allen et al. 2012; Choi et al. 2014), which cannot be

explained by greenhouse gas–induced warming (Lu

et al. 2007). The width and position of the ITCZ, within

which the ascending air that contributes to the Hadley

cell resides, plays an important role in determining the

structure of the Hadley cell (Kang and Lu 2012).

FIG. 1. Global-mean CAE forcing relative to 1850 (Wm22).

Simulations with all parameters in the Regayre et al. (2014) design

set to their median values were used to calculate the global-mean

CAE forcing values.

TABLE 1. Latitude and longitude ranges used to define regions where CAE forcing is known to influence SST and therefore has the

potential to indirectly influence climate effects. The months indicate when SST has the greatest influence on climatic effects.

Key Location Lat range Lon range Climate effect Relevant months

R1 Extratropical 258–608N 78–758W North Atlantic tropical storms Apr–Oct

North Atlantic Sahel precipitation All year

R2 Tropical North Atlantic 58–258N 08–808W North Atlantic tropical storms Apr–Oct

Atlantic ITCZ and Sahel precipitation All year

R3 Tropical South Atlantic 58–358S 608W–208E Atlantic ITCZ and Sahel precipitation All year

R4 East China 208–358N 107.58–1258E Asian summer monsoon Jun–Sep

R5 Southeast Asia 7.58–22.58N 908–107.58E Asian summer monsoon Jun–Sep

R6 Indian subcontinent 58–27.58N 658–87.58E Asian summer monsoon Jun–Sep

R7 Western Pacific 208S–258N 107.58–1608E Asian summer monsoon Jun–Sep

R8 Tropical eastern Pacific 158S–158N 1608–808W ENSO Oct–Feb

R9 Northwestern Pacific 258–508N 1208E–1708W Pacific tropical storms Jan–Jul

R10 Indian Ocean 408S–208N 408–1008E Asian summer monsoon Jun–Sep

R11 Arctic 608–908N All lon Arctic warming May–Sep

FIG. 2. Regions of climatic importance, as summarized in Table 1,

overlaid onto annual-mean CAE forcing for the 1978–2008 period,

taken from the simulation where all aerosol process parameters and

emission fluxes are set to their median elicited values.
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The gradient in interhemispheric tropical SSTs de-

termines the position and width of the Atlantic ITCZ

(Chang et al. 2011; Cvijanovic and Chiang 2013), which

affects precipitation patterns in neighboring regions

(Zhang et al. 2007; Hwang et al. 2013). Anomalously

cold North Atlantic SSTs relative to SSTs in the South

Atlantic are correlated with a southward shift in ITCZ

position and with periods of drought in the Sahel over

the last century (Folland et al. 1986; Mulitza et al. 2008;

Shanahan et al. 2009). A strong contrast between trop-

ical and extratropical North Atlantic SSTs is found by

Liu et al. (2014) to be an integral component of the

teleconnection that allows SSTs to influence precipitation

in neighboring regions. Anthropogenic aerosol emissions

have prevented North Atlantic SST from warming as

rapidly as South Atlantic SST in response to increasing

greenhouse gas concentrations over the last century

(Rotstayn andLohmann 2002), yet since the late 1970s the

gradient between Atlantic Ocean basins has declined as a

result of anthropogenic aerosol emission reduction strat-

egies in the Northern Hemisphere (Chang et al. 2011;

Chiang et al. 2013; Friedman et al. 2013).

Booth et al. (2012) argue that aerosol forcing may

decouple North Atlantic SSTs from Atlantic meridional

overturning circulation (AMOC)-driven changes, sug-

gesting that changing aerosol concentrations since the

preindustrial period may be the dominant influence on

SSTs. The relative importance of anthropogenic aero-

sols and the AMOC in determining North Atlantic SSTs

remains unknown (Zhang et al. 2013); however,

Dunstone et al. (2013, Fig. S8 in their supplementary

information) revealed a correlation between the mag-

nitude of CAE forcing in models and the degree to

which CAE forcing determines Atlantic SSTs. Explor-

ing the sources of uncertainty in CAE forcing in the

Atlantic will therefore inform the possible sources of

multimodel SST diversity.

2) TROPICAL STORM DEVELOPMENT REGIONS

Tropical storms have the potential to cause consid-

erable socioeconomic damage (Pielke et al. 2008), and

thus there is value in reducing uncertainty in the simu-

lation of near-future events. Climate model simulations

that make use of observed North Atlantic SSTs are ca-

pable of reproducing tropical storm frequency variance

(Trenberth and Shea 2006; Zhao and Held 2012), and

anthropogenic aerosols have been implicated as causing

decadal changes in North Atlantic SSTs (Mann and

Emanuel 2006; Evan et al. 2009; Dunstone et al. 2013).

Evidence suggests that uncertainty in near-future trop-

ical storm frequency can be reduced by improving the

representation of aerosol radiative forcing within

models (Villarini and Vecchi 2013).

Tropical storm development in the North Atlantic is

influenced by SSTs in regions that also influence ITCZ

position and Sahel precipitation as described in section

2d(1), compounding the importance of quantifying CAE

forcing uncertainty in these regions. Pacific Ocean SSTs

are also affected by changes in anthropogenic aerosol

emissions (Boo et al. 2015), particularly from Asia (Yeh

et al. 2013). The metrics used to determine the phase of

the Pacific decadal oscillation and the width of the

tropical storm belt contain large uncertainties that are

associated with anthropogenic aerosol forcing (Allen

et al. 2014). Changing atmospheric temperatures

and SSTs in the northwestern Pacific in response to

increasing Asian anthropogenic aerosol emissions

are a likely cause of increased Pacific tropical storm

frequency and intensity in recent decades, according to

Wang et al. (2014a,b).

3) ASIAN SUMMER MONSOON

The Asian summer monsoon (ASM) is character-

ized by heavy rainfall across much of the Asian con-

tinent, providing as much as 70% of the annual rainfall

to someAsian regions over the summer months (Gong

and Ho 2003). The intensity of contrast between SST

and continental SAT is correlated with the strength of

the ASM (Webster 1987), and in recent decades a

weakening of the land–sea contrast, largely attribut-

able to anthropogenic aerosol emissions, has to a large

extent counteracted the intensification of the ASM ex-

pected to result from the positive forcing associated with

increasing atmospheric greenhouse gas (GHG) concen-

trations (Wang et al. 2013; Guo et al. 2013; Salzmann

et al. 2014). Observational evidence suggests that a

greater proportion of ASM precipitation occurs over

southern China than in the north as a result of a weaker

ASM (Ding et al. 2008; Ye et al. 2013), with flood

risks and increased air pollution likely outcomes (Li

et al. 2011).

Substantial anthropogenic sulfate aerosol concentra-

tions are transported from Asian continents over the

Indian Ocean during the early part of each year (Verma

et al. 2013), and Fadnavis et al. (2013) established that

ASM precipitation over India declines in response to

anthropogenic emissions. The CAE significantly affects

SST in the Indian Ocean (Yun et al. 2014), largely

countering the positive CO2 forcing in this region since

the early industrial period (Dong and Zhou 2014). CAE

forcing is therefore partially responsible for the early

onset of the ASM resulting in heavy precipitation over

the Indian subcontinent at the start of the monsoon

season and reduced precipitation during the remainder

of the Northern Hemisphere summer (Bollasina et al.

2013; Henriksson et al. 2014).
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4) EL NIÑO–SOUTHERN OSCILLATION

Aside from the seasonal cycle, the El Niño–Southern
Oscillation (ENSO) is the largest mode of climate var-

iability (Diaz et al. 2001; McPhaden et al. 2006). The

El Niño phase of the ENSO results in anomalously

warm SSTs in the eastern equatorial Pacific accompa-

nying a reversal of trade winds and a slowing down of

circulation within the Pacific basin (Rasmusson and

Carpenter 1982).

The magnitude of aerosol forcing and its uncertainty

in the region where the dominant ENSO signal mani-

fests are considered in this paper because, although

there are no established links between CAE forcing and

ENSO variability, aerosols appear to project strongly

onto SSTs on multidecadal time scales (Shindell et al.

2013; Regayre et al. 2014). Changes in mean SSTs in-

terpreted as a shift toward a more El Niño or La Niña
state may in fact reflect changes due to local forcing.

Quantifying the uncertainty in CAE forcing in these

regions will establish the potential for shifts in the

ENSO mean state on decadal time scales to be a result

of a forced aerosol signal.

5) ARCTIC

The Arctic region has experienced anomalous

warming compared to the rest of Earth’s surface over

recent decades (Serreze et al. 2009). Much of the

warming in the Arctic is attributable to the ice–albedo

feedback (Screen and Simmonds 2010), where melt

pools reduce the albedo of the surface, allowing for

greater warming. Gillett et al. (2008) identify anthro-

pogenic emissions as playing an essential role in

warming the Arctic in recent decades. Decreasing an-

thropogenic aerosol concentrations transported to the

Arctic from North America and Europe generate a

positive CAE forcing, which has been shown to be a

major cause of the observed warming (Shindell and

Faluvegi 2009; Chylek et al. 2014).

e. Regional aerosol radiative forcing

The effect of each parameter perturbation on the

1978–2008 CAE forcing at each location depends on the

relative changes in aerosol distributions (and hence

CDNCs) in the two years. CAE forcing depends non-

linearly on CDNC changes and is more sensitive when

CDNCs are low (Carslaw et al. 2013). Furthermore, the

effect of aerosol parameter perturbations on forcing

must be interpreted in the context of the sign of regional

CAE forcing.

Six representative scenarios (S1–S6) are depicted in

Fig. 3 to assist with interpreting the effect of changing

CDNCs through aerosol parameter perturbations on

FIG. 3. Theoretical effects of perturbing parameters on

(a) declining CDNC (positive CAE forcing), (b) increasing CDNC

(negative CAE forcing), and (c) albedo between 1978 and 2008.

Black lines represent the baseline case with no parameter pertur-

bations. Six scenarios representing perturbed parameter cases are

labeled S1–S6. Purple indicates an amplification and green in-

dicates a suppression of CAE forcing regardless of the sign of the

underlying forcing within an individual model grid box.
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CAE forcing. Amplification of positive and negative

CAE forcing (steeper gradient) occurs in scenarios S1

and S4, respectively, as a result of changing a parameter.

In S1 the change in CDNC is largest in 1978, thereby

strengthening the positive CAE forcing between 1978

and 2008 (caused by a larger net decrease in CDNC than

in the baseline case). In S4 the change in CDNC is

largest in 2008, thereby strengthening the negative

forcing. In scenarios S2 and S3 the relative changes in

CDNCs in 1978 and 2008 are identical to the changes in

S1 and S4, respectively; however, the sign of forcing is

reversed, and therefore in these cases the parameter

perturbation causes a suppression of the CAE forcing

(making the slope of the line in the perturbed case

shallower than the line in the baseline case).

Absolute changes in CDNCs within a given model

grid box, resulting from a parameter perturbation, may

be the same in the two simulated years, but because of

the nonlinear relationship between aerosol concentra-

tion and albedo (Fig. 3c) a forcing will still occur. The

importance of the baseline aerosol concentration in ra-

diative forcing calculations is discussed in Carslaw et al.

(2013). A more polluted baseline is associated with a

smaller temporal change in albedo; hence, scenario S5

represents a decrease in CAE forcing (relative to the

baseline case) resulting from an increase in aerosol

concentrations in both years. Scenario S6 represents the

case where a parameter perturbation causes CDNCs in

both years to decrease (relative to the baseline case),

leading to a greater difference in albedo between the

two years and therefore stronger CAE forcing.

Scenarios S1–S4 are all based on the assumption that

CDNC increases in a region in both years as a result of

the parameter perturbation. Mirror images of scenarios

S1–S4 where CDNCs decrease are not shown, nor are

more extreme cases where CDNCs increase in one year

and decrease in the other; however, scenarios S1–S4

provide a suitable framework for examining the can-

cellation of regional contributions to global-mean CAE

forcing variance.

3. Results

a. Global forcing sensitivities

Because contributions of opposing signs cancel, pa-

rameter perturbations that act to enhance CAE forcing

in regions of both positive and negative forcing could

make significant contributions to regional CAE forcing

variance that are not detected in a sensitivity analysis of

global-mean CAE forcing variance. Regions of sub-

stantial positive and negative forcing are evident in each

of themaps in Fig. 4. Similarly, a parameter perturbation

that acts to suppress CAE forcing (as described by sce-

narios S2 and S3) will make contributions to both posi-

tive and negative regional forcing that cancel in a global

forcing calculation, whereas a parameter perturbation

that acts to amplify positive regional forcings (S1) and

conversely suppress negative regional forcings (S2) will

not have its contribution to global-mean CAE forcing

variance affected by regional forcing cancellation.

The percentage contributions to global-mean CAE

forcing and global-mean absolute CAE forcing, calcu-

lated between 1978 and 2008 as described in section 2b,

are compared in Fig. 5. There is no correlation evident

between the global-mean forcing and global-mean ab-

solute forcing measures. No parameter contributes

more than 10% of the CAE forcing variance in both

cases, suggesting that substantial cancellation of im-

portant regional contributions to global-mean CAE

forcing occurs.

Contributions to CAE forcing in individual model

grid boxes are presented in Fig. 6 for two parameters

that contribute a substantial percentage of variance in

either global-mean CAE forcing or global-mean abso-

lute CAE forcing. The spatial pattern of CAE forcing

sensitivities to parameter perturbations varies tempo-

rally, and the months displayed in Fig. 6 are represen-

tative of months where the parameters in question

contribute substantially to CAE forcing variance. Only

percentage contributions to variance in model grid

boxes where the absolute ensemble-mean CAE forcing

is greater than 0.1Wm22 have been plotted (shaded

purple where an increase in the value of the parameter

acts to amplify CAE forcing and shaded green where

forcing is suppressed, matching the shading used in

Fig. 3). The spatial patterns of contributions to variance

need to be analyzed in the context of the underlying

spatial pattern of CAE forcing represented in Fig. 4 in

order to understand the global-mean effect of

perturbing a parameter.

The emission flux of organic carbon and black carbon

aerosols from fossil fuel sources (FF_Ems) and the di-

ameter of emitted particles (FF_Diam) are the largest

sources of global-mean CAE forcing uncertainty

(Fig. 5). Contributions to CAE forcing variance from

FF_Ems for May are presented in Fig. 6a. Increasing

FF_Ems typically amplifies negative CAE forcing in

regions where CDNCs have increased between 1978 and

2008 (S4) yet suppresses positive CAE forcing in regions

where CDNCs have declined (S3). Fossil fuel emissions

are a large component of the increase in Asian CDNC,

and positively perturbing FF_Ems amplifies the nega-

tive CAE forcing in this region (S4). In contrast, the

positive forcing is suppressed (S3) in regions where

the decrease in CDNC is not driven by carbonaceous
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aerosol emissions from fossil fuel sources (Lamarque

et al. 2010; Granier et al. 2011), such as North America,

because the relatively low 2008 CDNCs are more sen-

sitive to positive FF_Ems perturbations than the higher

1978 CDNCs (S5).

Perturbing FF_Ems produces a shift in CAE forcing in

the same direction for both positive and negative forcing

regions. Therefore, when forcing is amplified (suppressed)

in a positive forcing region, it is suppressed (amplified)

in a region of negative forcing. Increasing FF_Diam pro-

duces an inverse pattern of forcing response to increasing

FF_Ems because increases in the size of emitted particles

reduce their number concentration (for a fixed value of

FF_Ems). The globally consistent sign of forcing response

to parameter perturbations makes fossil fuel emission

parameters the dominant sources of global-mean CAE

forcing variance, despite making relatively small per-

centage contributions to regional forcing variance. The

decline in importance of fossil fuel emission parameters as

sources of global-mean CAE forcing uncertainty when

adjusted for the cancellation of positive and negative re-

gional forcings (Fig. 5), suggests that other parameters

make far larger regionally important contributions to

uncertainty in CAE forcing.

The pattern of contributions to variance for the emis-

sion flux of SO2 aerosols from continuously degassing

and sporadically erupting volcanoes (Volc_SO2; Fig. 6b)

contrasts with the FF_Diam pattern. IncreasingVolc_SO2

in regions where it contributes to CAE forcing variance

suppresses the magnitude of both positive and negative

forcing, simply because the volcanic aerosol raises the

natural background CDNC against which anthropogenic

forcing is defined (S5). Volc_SO2 makes its largest con-

tribution to variance in regions of relatively low aerosol

concentrations (Schmidt et al. 2012); however, in some

regions aerosol concentrations are lowest in 1978 and in

other regions in 2008. The cancellation of positive and

negative regional forcings in global CAE forcing calcula-

tions masks the importance of Volc_SO2 as a source of

aerosol forcing uncertainty. The lower importance of this

natural emission parameter to the uncertainty in recent

decadal forcing (Regayre et al. 2014) versus forcing since

the preindustrial era (Carslaw et al. 2013) is mostly related

to regional cancellation in the Regayre et al. (2014) study.

FIG. 4. Ensemble-mean CAE forcing within individual model grid boxes for (a) November–January, (b) February–April, (c) May–July,

and (d) August–October during the 1978–2008 period.
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b. Regional forcing sensitivities

A sensitivity analysis that quantifies contributions to

CAE forcing variance from aerosol parameters is con-

ducted here for each of the regions identified as being

influential on the climate effects outlined in section 2d.

Figures 7–9 summarize the mean regional percentage

contributions to variance during the 1978–2008 period.

Regional-mean forcings and mean 90% CIs (calculated

as outlined in section 2b for months where SSTs are

FIG. 5. Global-mean CAE forcing and global-mean absolute CAE forcing percentage contributions to variance for

each aerosol parameter. The dashed diagonal line is the 1:1 line.

FIG. 6. Percentage contributions to CAE forcing variance for (a) fossil fuel emission flux in May and (b) continuously degassing and spo-

radically erupting volcanic SO2 emission flux in June. Purple shading is used to indicate that increasing the parameter amplifies CAE forcing

(positive or negative) within individual model grid boxes, and green shading indicates that increasing the parameter suppresses CAE forcing.

1 SEPTEMBER 2015 REGAYRE ET AL . 6597

mm11lr
Text Box
61




climatically important) are summarized in Table 2.

While the global-mean simulated CAE forcing is a small

fraction of the forcing caused by changes in anthropo-

genic CO2 emissions (Regayre et al. 2014), Fig. 10 il-

lustrates that in many climatically important regions the

uncertainty in CAE forcing, arising from uncertainty in

aerosol emissions and process parameters, is at least as

important as forcing arising from changing CO2 emis-

sions during this period. Very similar spatial response

patterns result when the Myhre et al. (2013) global-

mean value of 0.7Wm22 is used to represent the forcing

caused by changes in anthropogenic CO2 emissions in

the ratio calculation.

1) INTERTROPICAL CONVERGENCE ZONE AND

SAHEL PRECIPITATION

A negative mean CAE forcing in the tropical North

Atlantic (R2) of 20.05Wm22 contrasts with the posi-

tive forcing of 0.25Wm22 in the tropical South Atlantic

(R3). On their own these results suggest that CAE

forcing has exacerbated the interhemispheric differ-

ences in SSTs in recent decades. The mean CAE forcing

in the extratropical North Atlantic (R1) is 0.51Wm22,

which is the largest annual-mean forcing of the regions

examined here. Sources of CAE forcing uncertainty are

examined in each Atlantic region (R1–R3) with regard

to their potential influence on uncertainty in ITCZ po-

sition and Sahel precipitation.

Uncertainty in CAE forcing is of a similar magnitude

in all three regions with credible values ranging from

0.37 to 0.65Wm22 in the extratropical North Atlantic,

from20.21 to 0.11Wm22 in the tropical North Atlantic

and from 0.06 to 0.41Wm22 in the tropical South At-

lantic. The sign of CAE forcing is uncertain in the

tropical North Atlantic because negative forcing in the

eastern part of this region competes with positive forcing

in the west. Positive CAE forcing in the extratropical

North Atlantic and negative CAE forcing in the tropical

North Atlantic suggest that there may be less hemi-

spheric consensus in the sign of the forcing resulting

from reductions in anthropogenic aerosol emissions

than previously appreciated.

In each of the regions where CAE forcing is thought

to have an influence on the position of the ITCZ (R2 and

R3) and Sahel precipitation (R1–R3), CAE forcing

variance is determined by a distinct combination of pa-

rameters; however, anthropogenic emission fluxes and

aerosol process parameters account for the majority of

the variance in each case. In the tropical North Atlantic

(R2) the largest CAE forcing uncertainty sources in the

Northern Hemisphere summer months (when the mean

forcing is negative) are the rate of dry deposition of

aerosols in the accumulation mode (Dry_Dep_Acc) and

FF_Diam. The rate of dry deposition of SO2 (Dry_Dep_

SO2), anthropogenic SO2 emissions (Anth_SO2), and the

formation of secondary organic aerosols (SOA) from

anthropogenic volatile organic compounds (VOCs)

(AVOC_SOA) are important sources of CAE forcing

uncertainty in the tropical North Atlantic during the

monthswhere forcing is negative. These sameparameters

contribute substantially to CAE forcing variance in the

extratropical North Atlantic (R1) for much of the year,

suggesting that, during the Northern Hemisphere winter,

uncertainty in North American anthropogenic emissions

is influential on SST in the tropical North Atlantic.

Contributions to CAE forcing variance in the tropical

South Atlantic (R3) are diverse; however, the majority

are accounted for by the emitted particle diameter of

aerosols from biomass burning sources (BB_Diam), the

rate of precipitation scavenging in warm low-level stra-

tocumulus clouds (Drizz_Rate), and Anth_SO2. Un-

certainty sources in the tropical South Atlantic are so

varied that constraining all aerosol parameters that

contribute to CAE forcing variance on decadal time

scales is unrealistic. Instead, representations of ITCZ

position could bemore readily improved by reducing the

uncertainty in Drizz_Rate, which is the largest source of

uncertainty in October when the mean regional forcing

is largest.

2) NORTH ATLANTIC TROPICAL STORM

DEVELOPMENT

Contributions to CAE forcing uncertainty in the

extratropical and tropical North Atlantic (R1 and R2)

are examined here, as in section 3b(1). Analysis is re-

stricted to the warmest Northern Hemisphere months

when tropical storms predominate.

The tropical North Atlantic (R2) has a smaller

absolute-mean regional CAE forcing and uncertainty

range, between April and October, than the extra-

tropical North Atlantic (R1). Credible values range

from20.33 to 0.02Wm22 in the tropical North Atlantic

and range from 0.54 to 0.95Wm22 in the extratropical

North Atlantic. The mean simulated CAE forcing in the

tropical North Atlantic (R2) is negative (20.14Wm22).

The positive CAE forcing in the wider North Atlantic

(e.g., 0.75Wm22 in R1) supports the hypothesis that

reductions in Northern Hemispheric aerosol emissions

have warmed SSTs and acted as one of the drivers of

recent decadal increases in Atlantic tropical storms

(Booth et al. 2012). However, the simulated CAE forc-

ing in the tropical North Atlantic (20.14Wm22), which

roughly aligns with the main Atlantic hurricane de-

velopment region, is of the opposite sign from that

suggested by Dunstone et al. (2013) as being consistent

with an aerosol driver of tropical storm changes. The
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credible range of simulated tropical North Atlantic

CAE forcing includes positive values. However, unless

physical grounds are found for ruling out parameter

combinations that lead to mean CAE forcing values in

the lower part of this range, these results call into

question the relationship between Northern Hemi-

sphere aerosol emission reductions and CAE forcing of

SSTs in themainAtlantic hurricane development region

on decadal time scales.

In the tropical North Atlantic (R2) Dry_Dep_Acc

and FF_Diam contribute most to forcing variance in

months relevant to tropical storm development, while

Anth_SO2 and Dry_Dep_SO2 contribute most to vari-

ance in the extratropical North Atlantic (R1). Un-

certainty in tropical storm development in the Atlantic

Ocean in recent decades, insofar as it is affected by CAE

forcing on SST, is largely determined by uncertainties in

aerosol deposition process parameters and anthropo-

genic emission fluxes.

3) PACIFIC TROPICAL STORM DEVELOPMENT

The northwestern Pacific Ocean (R9) has a

simulated-mean CAE forcing of 20.20Wm22 with

credible values ranging from 20.33 to 20.06Wm22,

making the magnitude of its role in Pacific tropical

storm development in recent decades highly uncertain.

Figure 9a shows that the magnitude and uncertainty in

CAE forcing are largest in the Northern Hemisphere

summer months when a negative forcing will reduce

SSTs and therefore potentially suppress tropical storm

development. During January and February when an-

thropogenic aerosol emissions may alter the Pacific

FIG. 7. Regional-mean percentage contributions to CAE forcing variance for R1–R4. Contributions of less than 4% of the CAE forcing

variance are omitted. A reminder of climatically important effects is provided using shaded text under the appropriate months. Where

increasing a parameter leads to an amplification of positive or negativeCAE forcing (S1, S4, and S6 in Fig. 3), the percentage contributions

are above the x axis. If a parameter increase leads to suppression of CAE forcing in the region (S2, S3, and S5), then the contributions are

below the x axis. A time series of average forcing values is included in a panel at the top of each plot with mean regional 90% CIs shaded

gray. CAE forcing in the model grid box where absolute CAE forcing is strongest is presented above the bar for each month.
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storm track (Wang et al. 2014a), the magnitude of CAE

forcing is near zero with relatively little uncertainty,

suggesting that, if anthropogenic aerosol emissions do

affect the Pacific storm track, it is through aerosol feed-

backs on clouds and meteorology not modeled here.

The sources of CAE forcing uncertainty in the

northwestern Pacific (R9) are numerous and temporally

dependent. Dry_Dep_SO2 makes the largest contribu-

tion to CAE forcing variance during the early months of

the year, relevant to the potential influence of aerosols

on the Pacific storm track. The sources of CAE forcing

uncertainty are diverse during other months, indicating

that reducing uncertainty in the role of CAE forcing in

Pacific tropical storm development will require a com-

bination of developments in the representation of

aerosol emission fluxes and aerosol process parameters.

4) ASIAN SUMMER MONSOON

The gradient in land–sea surface temperatures influences

ASM development; hence, the relative magnitudes of

CAE forcing in neighboring regions are considered here.

Mean CAE forcing between June and September is

negative in all regions examined here, and the contrast in

forcing is largest between the Chinese continental and

marine regions (R4 and R7). The continental CAE

forcing is20.67Wm22 compared to only20.33Wm22 in

the neighboring marine region, suggesting that CAE

forcing plays an important role in reducing the land–sea

thermal contrast. The negative CAE forcing is also

stronger in continental Southeast Asia (R5) and India

(R6) than in the neighboring IndianOcean (R10), having

respective values of 20.47, 20.51, and 20.18Wm22. In

each of the regions relevant toASMprediction, the land–

sea surface temperature contrast is weakened as a result

of CAE forcing, implying CAE forcing contributed to the

weakened ASM observed in these regions in recent de-

cades, as outlined in section 2d(3).

Contributions to CAE forcing variance are consid-

ered simultaneously for neighboring continental and

marine regions in China (R4 and R7), Southeast Asia

FIG. 8. Regional-mean percentage contributions to CAE forcing variance for R5–R8. Features are identical to Fig. 7.
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(R5 and R10), and India (R6 and R10). In continental

China (R4) CAE forcing uncertainty is largely de-

termined by biofuel emission flux (BF_Ems) and emit-

ted particle diameter (BF_Diam), and to a lesser extent

by SOA formation from biogenic VOCs (BVOC_SOA).

In the western Pacific bordering China (R7) FF_Diam,

Volc_SO2, and Anth_SO2 make substantial contribu-

tions to CAE forcing variance. BVOC_SOA is the only

parameter to contribute substantially to uncertainty in

CAE forcing in the marine and continental regions.

In Southeast Asia (R5) the largest sources of CAE

forcing uncertainty are the emission flux of dimethyl

sulfide (DMS), BF_Diam, Anth_SO2, and BVOC_

SOA. Many of the important uncertainty sources in

Southeast Asia (R5) also contribute to CAE forcing

variance in the Indian Ocean (R10). The aerosol re-

moval process parameters Dry_Dep_Acc and Drizz_

Rate are the largest sources of CAE forcing uncertainty

over the Indian Ocean. Dry_Dep_Acc also makes the

largest contribution to CAE forcing variance over the

Indian continent (R6), with smaller contributions com-

ing fromDMS, BF_Ems, BF_Diam, and the diameter at

which aerosols are considered large enough to have the

potential to act as cloud condensation nuclei (CCN)

(Act_Diam).

The importance of biofuel carbonaceous aerosol pa-

rameters BF_Ems and BF_Diam as sources of CAE

forcing uncertainty is largely restricted to the conti-

nental regions where they are produced. Uncertainty in

the magnitude of CAE forcing in the Indian Ocean and

Indian continent can be reduced by improving the rep-

resentation of Dry_Dep_Acc. Anth_SO2 also plays an

important role in both continental and marine regions,

confirming the results of Verma et al. (2013). Neigh-

boring land and marine regions in Southeast Asia and

China are sensitive to noticeably different combinations

of aerosol parameters. Wang et al. (2014) show that

CMIP5 models typically underestimate CAE forcing in

the western Pacific and over China. The aerosol emis-

sion fluxes andmodel processes identified here provide a

foundation for examining the cause of CAE forcing

underestimation and for reducing the effect of un-

certainty in CAE forcing on ASM prediction.

5) EL NINÕ–SOUTHERN OSCILLATION

Changes in SSTs in the tropical eastern Pacific Ocean

(R8), where anomalously warm or cold SSTs in the Pa-

cific Ocean typically initially develop, are used to de-

termine changes to the mean state of the ENSO

(Rasmusson and Carpenter 1982). The sign of forcing is

likely positive in the tropical eastern Pacific with mean

CAE forcing of 0.24Wm22 and simulated credible

values ranging from 20.08 to 0.53Wm22. The upper

FIG. 9. Regional-mean percentage contributions to CAE forcing

variance for R9–R11. Features are identical to Fig. 7.
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credible CAE forcing value indicates that there may

have been as much as 131011 J of energy entering the

tropical eastern Pacific between 1978 and 2008 as a re-

sult of positive CAE forcing. The positive CAE forcing

in the eastern Pacific is consistent with the shift toward

conditions more suitable for El Niño events that oc-

curred at the end of the twentieth century (Trenberth

and Hoar 1996). This raises the possibility that past aero-

sol changes may have influenced the mean ENSO state.

The likely positive CAE forcing simulated here suggests

that it may be possible that apparentmultidecadal shifts in

the mean ENSO state in the tropical eastern Pacific, re-

sulting from changing SSTs, are the result of a forced

aerosol signal.

The dominant sources of uncertainty in the tropical

eastern Pacific (R8) are Drizz_Rate, which contributes

most to CAE forcing variance in November when mean

forcing is largest, and AVOC_SOA, which contributes

in the early months of the year when CAE forcing un-

certainty is relatively large. Act_Diam and FF_Diam are

also important sources of CAE forcing uncertainty.

Improving the representation of these aerosol process

FIG. 10. Regional uncertainty in CAE forcing. (a) Ratio of the annual-mean absolute 90% credible range of CAE forcing to the forcing

caused by changes in anthropogenic CO2 emissions, calculated within individual model grid boxes. The contours indicate locations where

the regional CAE forcing credible range and global-mean CO2 change forcing are equal. Ratios are calculated independently within

individual model grid boxes and credible ranges have been multiplied by 21 where global-mean CAE forcing is negative. (b) Ratio of

annual-mean CAE forcing to simulated CO2 induced forcing.

TABLE 2. Regional-mean CAE forcings and mean 90% CIs for months where CAE forcing influences climatic effects. The largest

absolute individual model gridbox mean CAE forcings within each region are provided for the months of interest (indicated in Table 1).

Ratios of mean regional CAE forcing 90% credible interval range to the forcing caused by changes in anthropogenic CO2 emissions, using

the months of interest, provide context for the relative importance of regional CAE forcing uncertainties.

Key Location Climate effect

Mean

forcing

(Wm22)

Mean

90% CI

(Wm22)

Largest

absolute-mean

forcing (Wm22)

Ratio of

mean forcings

(CAE:CO2)

R1 Extratropical North Atlantic North Atlantic tropical storms 0.75 (0.54, 0.95) 2.88 0.59

R1 Extratropical North Atlantic Sahel precipitation 0.51 (0.37, 0.66) 2.09 0.41

R2 Tropical North Atlantic North Atlantic tropical storms 20.14 (20.33, 0.02) 20.96 0.32

R2 Tropical North Atlantic Atlantic ITCZ and Sahel

precipitation

20.05 (20.21, 0.11) 20.63 0.44

R3 Tropical South Atlantic Atlantic ITCZ and Sahel

precipitation

0.25 (0.06, 0.41) 2.20 0.50

R4 East China Asian summer monsoon 20.66 (20.77, 20.54) 21.86 0.33

R5 Southeast Asia Asian summer monsoon 20.47 (20.57, 20.43) 22.74 0.20

R6 Indian subcontinent Asian summer monsoon 20.51 (20.63, 20.40) 22.22 0.32

R7 Western Pacific Asian summer monsoon 20.33 (20.43, 20.24) 21.46 0.27

R8 Tropical eastern Pacific ENSO development 0.24 (20.08, 0.53) 2.60 0.88

R9 Northwestern Pacific Pacific tropical storms 20.20 (20.33, 20.06) 20.94 0.38

R10 Indian Ocean Asian summer monsoon 20.18 (20.27, 20.10) 21.93 0.25

R11 Arctic Arctic warming 0.20 (0.04, 0.36) 2.80 0.57
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and emission flux parameters will reduce uncertainty in

the magnitude of the CAE forcing in recent decades,

allowing further research into the potential for an

aerosol-forced signal to influence the mean ENSO state

on multidecadal time scales conducted with better con-

strained CAE forcing values.

6) ARCTIC

The sign of CAE forcing in the Arctic (R11) is likely

positive with credible values ranging from 0.04 to

0.36Wm22. A positive CAE forcing in the Arctic agrees

with the results of Shindell and Faluvegi (2009) and

Chylek et al. (2014), which suggest that decreasing North

American and European anthropogenic emissions in re-

cent decades have contributed to Arctic warming.

The pH of water within clouds in relatively clean

(Cloud_pH_Clean) and polluted (Cloud_pH_Poll) at-

mospheric environments affects the rate of secondary

sulfate formation, and both parameters are important

sources of CAE forcing uncertainty in the Arctic, where

anthropogenic emissions have often been transported

relatively long distances from Northern Hemisphere

continental regions (Law et al. 2014). Cloud_pH_Poll

contributes more to CAE forcing variance than Cloud_

pH_Clean in the Northern Hemisphere summer months

when the forcing is strongest.

The important contributions of aerosol process pa-

rameters to CAE forcing in the Arctic is indicative that

the uncertainties are related to the processing of aero-

sols during transport into this region. Furthermore, the

dominance of aerosol process parameters in this region

suggests that multimodel CAE forcing diversity in the

Arctic is likely to be larger than in other regions.

4. Conclusions

During the 1978–2008 period, changes in anthropo-

genic CO2 emissions cause a global-mean forcing of

0.7Wm22 (Myhre et al. 2013). Regayre et al. (2014)

calculated a near-zero global-mean CAE forcing with

high confidence during the 1978–2008 period. However,

it is shown here that substantial regional aerosol CAE

forcing uncertainties of climatic importance exist. The

disparity between the magnitudes and degree of un-

certainty in global and regional mean CAE forcings is

explained by the cancellation of positive and negative

regional forcings.

Performing a sensitivity analysis on global-mean ab-

solute CAE forcing has revealed a number of parametric

contributions to CAE forcing variance that were not

identified in the sensitivity analysis of global CAE

forcing conducted by Regayre et al. (2014). Continu-

ously degassing and sporadically erupting volcanic SO2

emissions, the rate of dry deposition of aerosols in the

accumulation mode, and the diameter of carbonaceous

aerosols emitted from biomass burning sources all con-

tributed very little to global-mean CAE forcing un-

certainty, yet here it is shown that across the globe these

parameters are the main sources of uncertainty on the

regional scale. The drizzle rate within low-level strato-

cumulus clouds is an important source of uncertainty for

global-mean CAE forcing with and without the cancel-

lation of positive and negative regional forcings. The

emission flux and diameter of organic carbon and black

carbon aerosols from fossil fuel sources cause most of

the uncertainty in global-mean CAE forcing, yet they

are relatively small sources of uncertainty in global-

mean absolute CAE forcing, each explaining less than

5% of the variance. The large contributions of fossil fuel

parameters to global-mean CAE forcing arise because

other parameters experience a greater degree of regional

forcing cancellation in the global-mean calculation.

Aerosol parameter contributions to regional CAE

forcing variance have been analyzed in 11 regions where

CAE forcing is believed to influence large-scale climate

effects. Within the climatically important regions ex-

amined, anthropogenic aerosol emission fluxes and

aerosol process parameters are typically the largest

sources of CAE forcing uncertainty. However, in many

regions there is at least one natural aerosol emission flux

that plays an important role. When attempting to con-

strain regional CAE forcing over recent decades, un-

certainties in natural emission fluxes cannot be ignored.

In particular the emission flux of SO2 from continuously

degassing and sporadically erupting volcanoes and the

formation of SOA from biogenic VOCs contribute a

small percentage of CAE forcing variance in almost all

regions.

Quantifying the magnitude and uncertainty in re-

gional CAE forcing provides insight into the potential

for CAE forcing to influence large-scale climate effects.

Our calculated uncertainty ranges leave open the pos-

sibility that CAE forcing may act against, rather than

drive, the observed reduction in interhemispheric SST

gradient in theAtlantic since the late 1970s. Considering

the broader North Atlantic, the strong positive CAE

forcing in the extratropical North Atlantic may in-

fluence ITCZ position and width. A negative CAE

forcing in the tropical North Atlantic during recent de-

cades calls into question whether further reductions in

Northern Hemisphere anthropogenic aerosol emissions

will lead to further increases in Atlantic storminess.

CAE forcing is unlikely to be the cause of recent

changes in the Pacific storm track although it has the

potential to affect SSTs and therefore storm frequency

in summer months. Our results support the hypothesis
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that the observed changes in the ASM in recent decades

are in part driven by CAE forcing that weakens the

SAT/SST gradient in China, Southeast Asia, and India.

CAE forcing in the eastern Pacific and uncertainty in the

forcing are shown here to be substantial, allowing us to

speculate that apparent shifts in the mean ENSO state,

determined using changes in SST, may result from a

forced aerosol signal on multidecadal time scales. Our

results also support the hypothesis that CAE forcing was

positive in the Arctic in recent decades. Uncertainty in

simulated CAE forcing is substantial in the Arctic and

therefore so is its role in the observed rapid warming of

Arctic surface temperatures.

In the atmosphere, aerosols feed back onto meteo-

rology and clouds; however, our experiment was

designed to quantify the effect of uncertain aerosol

emission fluxes and process parameters on CAE forcing

in isolation. The additional uncertainty arising from the

representation of atmospheric physics within global

models has the potential to affect regional and global

CAE forcing calculations. Fasullo and Trenberth (2012)

provide clear evidence that teleconnections and feed-

backs must be adequately modeled in order to reduce

uncertainty in the simulation of climate effects. Fur-

thermore, using a dynamic ocean, rather than pre-

scribing SSTs, in global climate models can produce

markedly different climatic responses to external forc-

ings (Ocko et al. 2014; Andrews et al. 2015). Research

into the relative importance of uncertainties in aerosol

and atmospheric physics parameterizations as sources of

CAE forcing uncertainty using global climate models

that include representations of aerosol–cloud meteo-

rology and atmosphere–ocean feedbacks is essential.

The sources of aerosol parametric uncertainty identified

as globally and regionally important here can be used to

inform future research where the reduction of CAE

forcing variance is a priority.
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Changes in aerosols cause a change in net top-of-the-atmosphere (ToA)
short-wave and long-wave radiative fluxes and rapid adjustments in clouds,
water vapour and temperature, causing an effective radiative forcing (ERF)
of the planetary energy budget. Aerosol ERF has persisted as the largest
uncertain component of net anthropogenic forcing over the industrial period
(Boucher et al., 2013). The diverse sources of uncertainty and the
computational cost of running climate models make it difficult to isolate the
main causes of aerosol ERF uncertainty and to understand how observations
can be used to constrain it. Here we use model emulation and sensitivity
analyses to show that while most of the uncertainty in present-day radiative
flux is caused by uncertainty in the physical atmosphere model, particularly
parameters related to clouds, most of the uncertainty in aerosol ERF is
caused by the representation of aerosols. Although ToA fluxes and aerosol
ERF share some common sources of uncertainty, tight observational
constraint of present-day ToA fluxes has almost no effect on the uncertainty
in aerosol ERF over the industrial period or over recent decades.

Reduction of uncertainty in aerosol ERF is important, not least because it would
improve estimates of climate sensitivity (Collins et al., 2013; Tett et al., 2013), but
remains challenging for two reasons: First, ERF is usually quantified with reference to a
period pre-dating the satellite era (usually referenced to 1850 or 1750) meaning it is not
a directly observable quantity. Second, aerosol ERF depends on many poorly understood
interactions of aerosols with components of the physical climate system. Important
sources of uncertainty are known to be aerosol emission fluxes (Granier et al., 2011),
representations of complex sub-grid processes such as clouds (Haerter et al., 2009;
Lohmann & Ferrachat, 2010; Golaz et al., 2013; Neubauer et al., 2014), precipitation
responses (Tost et al., 2010; Croft et al., 2012; Michibata & Takemura, 2015), aerosol
processes (Textor et al., 2006, 2007; Storelvmo et al., 2009; Croft et al., 2012), radiation
calculations (Steir et al., 2012; Wilcox et al., 2015) and subsequent feedbacks on
atmospheric dynamics. Although a credible lower limit to the global mean aerosol ERF
can be found using a ‘top-down’ approach and historical temperature trends (Stevens,
2015), model structural choices affect the resulting inferences made about the climate
system (Knutti et al., 2008). Furthermore, such methods do not provide a model with
which to make improved climate projections and neglect important sources of
uncertainty in the specified model components.

Ultimately, although the total impact of changes in aerosol emissions combine many
complex processes, the net effect (aerosol ERF) is manifested as a change in planetary
radiation balance. Some of the ERF uncertainty may be irreducible because it depends
on the unobservable state of aerosols in the pre-industrial (PI) era (Carslaw et al., 2013).
But a large fraction of the uncertainty is known to be caused by aerosol and cloud
physics processes that also determine the radiative state of the present-day (PD)
atmosphere (Haerter et al., 2009; Lohmann & Ferrachat, 2010). There are grounds,
therefore, to expect that confronting the full range of potential climate simulations with
observations of the present-day radiation balance will help reduce uncertainty in
historical aerosol forcing. In fact, a previous study (Lohmann & Ferrachat, 2010) showed
that tuning combinations of four cloud physics parameters to obtain observed radiation
balance resulted in a 56% reduction in the range of aerosol ERF values. However, there
are many more important sources of uncertainty in radiation balance and aerosol ERF
than were simulated in this study. Other attempts to quantify the uncertainty in the
ToA radiative flux caused by aerosols (Tett et al., 2013; Shiogama et al., 2012) explored
only the current state of the atmosphere, not how it changes over time.

Here we create a perturbed parameter ensemble (PPE) of a variant of the HadGEM3
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model and use model emulation (Lee et al., 2013; Sexton et al., 2012) to enable the
combined effects of uncertainties in aerosol, cloud and other atmospheric processes to be
quantified. HadGEM3 capably represents changes in cloud regime (Nam et al., 2012);
one of the requirements for simulating rapid adjustments to aerosol perturbations
(Stevens & Feingold, 2009; Zhang et al., 2015). We perturb parameters in the physical
atmosphere model known to influence the properties and distribution of clouds and
humidity (atmospheric parameters) (Sexton et al., In prep.) in combination with aerosol
emission, deposition and process parameters (aerosol parameters) (Lee et al., 2013;
Regayre et al., 2014) (SI Extended Data Tables 1 and 2). By combining PPEs with
statistical emulation and Monte Carlo sampling we are able to perform a sensitivity
analysis that fully samples output across multi-dimensional parameter space (Lee et al.,
2013), which enables the variance to be decomposed into individual components.

Fig. 1 summarises the causes of variance in present-day global annual mean reflected
shortwave radiation (RSR), outgoing longwave radiation (OLR), as well as the clear and
cloudy sky components of RSR. Uncertainty in the 27 aerosol and atmospheric
parameters results in a present-day RSR uncertainty of around ±10 W m−2 (Extended
Data Fig 2.) and OLR uncertainty of about ±5 W m−2. Observable ToA radiative flux
variances are largely determined by parameters affecting atmospheric cloudiness and
humidity. The majority of the RSR variance is determined by just four parameters
(Rad Mcica Sigma, Sea Spray, Sig W and Ent Fac Dp). Rad Mcica Sigma and
Ent Fac Dp are also significant sources of OLR variance. The sources of RSR and OLR
variance are not dependent on the time period examined (Extended Data Fig. 3 and 4).

By far the largest source of variance in both RSR and OLR is Rad Mcica Sigma. This
parameter affects the homogeneity of simulated clouds, altering, amongst other things,
cloud fraction and tropospheric temperature profiles. Nevertheless, when we neglect
uncertainty in this parameter the variances are still dominated by atmospheric
parameters related to cloud processes (Extended Data Table 3). The dominant role of a
cloud radiative parameter in determining ToA flux variance suggests that constraining
this parameter to a very narrow range should constrain radiative fluxes and
consequentially aerosol ERF (Haerter et al., 2009; Lohmann & Ferrachat, 2010).

Contributions to variance in PI (here 1850) to PD aerosol ERF and the separate
components due to changes in aerosol-radiation interaction (ARI) and aerosol-cloud
interaction (ACI) are summarised in Fig. 2. Natural aerosol emissions (here, sea spray
and dimethylsulphide, DMS) persist as important sources of 1850-PD ACI forcing
variance (Fig. 2b), as in previous studies of several climate models (Wilcox et al., 2015)
and the aerosol-only component of a global model (Carslaw et al., 2013). However, these
results suggest that natural emissions are insignificant for direct aerosol (ARI) forcing
uncertainty (Fig. 2c) because this forcing component responds linearly to changes in
aerosol concentration.

Fig. 2d summarises the relative contributions of atmospheric and aerosol parameters to
RSR, OLR and aerosol ERFs over the periods 1978-PD and 1850-PD. Atmospheric
parameters cause the majority (79%) of the variance in present-day ToA RSR, but only
36% of the variance in 1850-PD aerosol ERF, and less than 10% of the 1978-PD aerosol
ERF variance (Extended Data Fig. 5) with the rest of the uncertainty attributable to
the aerosol model. This analysis shows that uncertainties in aerosol parameters are of
secondary importance for determining present-day ToA radiative flux, but they are the
dominant source of uncertainty in the change in atmospheric radiative balance on
multi-century and multi-decadal timescales. The contributions to variance in aerosol
ERF depend on how parameters influence the atmospheres response to the change in
anthropogenic emissions, while ToA RSR variance depends on how they influence the
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state of the atmosphere.

We now explore the extent to which present-day measurements of global mean ToA
radiative flux can help constrain the change in flux between two time periods, which
defines the ERF. What can be expected based on the common causes of uncertainty in
ToA RSR and aerosol ERF? First, although the variance in ToA RSR is mostly caused
by uncertainty in the physical atmosphere model and the variance in aerosol ERF by
uncertainty in the aerosol model, there is actually substantial overlap in the
combinations of parameters causing uncertainty. About 40% of the aerosol ERF variance
is determined by parameters that also account for about 70% of the RSR variance
(Rad Mcica Sigma, Sea Spray and Sig W.) It might therefore be expected that tight
constraint of present-day RSR will have some effect on the range of modelled aerosol
ERF. Second, although atmospheric parameters cause the majority of present-day RSR
uncertainty, the aerosol parameters alone produce a 95% ToA RSR credible interval of
97.7 - 106.1 W m−2 (around 40% of the original credible range). This large contribution
of aerosols to the uncertainty in present-day RSR makes it reasonable to assume that
observations of RSR will provide at least some constraint on aerosol ERF by reducing
the component of RSR variance attributable to aerosols.

Fig. 3 shows the effect of constraining the modelled present-day RSR to within
±0.25W m−2 and ±0.5 W m−2 of 98.3 W m−2, the multi-year average of the Clouds and
the Earth’s Radiant Energy System (CERES) observations (Loeb et al., 2009). The
±0.25 W m−2 provides a very tight constraint on the model: it represents just 2% of the
modelled RSR range and includes only around 5% of the 270000 emulator-sampled
model variants used to generate the full RSR probability density function.
Consequentially, the smaller set of observationally constrained model variants also
predicts reasonably constrained 1978 and 1850 RSR ranges. However, Fig. 3 shows that
the 1978-PD and 1850-PD aerosol ERFs are essentially unconstrained when the
near-CERES RSR variants are used compared to using the full sample of credible model
variants. Very negative 1850-PD forcings (lower than around -2.2 W m−2) can be ruled
out, but this represents only (∼10%) of the credible aerosol ERF range.

Very dense sampling of multi-dimensional parameter space produces many model
variants with very similar present-day ToA RSR values but vastly different aerosol ERF
values. This diversity of credible model variants would be overlooked had we perturbed
parameters individually. Constraining the parameter space to match observations
significantly reduces the likelihood of low Rad Mcica Sigma values (Extended Data Fig.
7), suggesting that the lack of constraint of aerosol ERF despite tight RSR constraint is
partly due to model equifinality (Beven & Freer, 2001; Lee et al., 2016), where numerous
parameter combinations in a complex model produce equally plausible output because of
error compensation. To try to overcome the multi-dimensionality of the problem, we
restricted the near-CERES sample further by limiting the allowed range of the dominant
source of uncertainty for both RSR and aerosol ERF (Rad Mcica Sigma).
Observationally constraining the largest source of variance in present-day state of the
atmosphere (RSR in this case) is expected to provide a constraint on the change in state
(Lee et al., 2016). However, restricting Rad Mcica Sigma to within 2% of its original
range and constraining the parameter space with CERES observations has no
appreciable effect on the aerosol ERF uncertainty range (Extended Data Table 3).

Our results give an insight into the difficulty of reducing multi-model diversity in aerosol
ERF and in reaching a consensus on the extent to which aerosols have contributed to
historical changes in the planetary energy balance. The ToA radiative flux is the global
measurement most closely related to ERF, and these two model quantities share
common sources of uncertainty. Nevertheless, observational constraint of ToA flux
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representing just 2% of the model’s prior range has very little impact on the models
ability to calculate aerosol ERF. Climate models are routinely evaluated against
present-day radiative fluxes so as to ensure accurate characterisation of the present-day
state of the atmosphere. By highlighting how different parameters and processes control
the change in planetary radiative balance in one state-of-the-art model our results point
to one reason why uncertainty in aerosol ERF has persisted through the various
generations of climate model development. Our results, combined with those of other
studies that have comprehensively sampled model uncertainties (Calisto et al., 2014; Lee
et al., 2016; Ghan et al., 2016), suggest that multi-decadal aerosol ERF uncertainty may
only be reduced by simultaneously applying a large number of observational constraints
(Sexton et al., 2012; Sanderson, 2010; Collins et al., 2012) covering pristine and polluted
environments, targeting the specific processes identified here. Although PD RSR
observations are not important for constraining multi-decadal , multi-century aerosol
ERF they may be important for constraining other parts of the climate system.
Equifinality limits the effect of each individual observed variable on model spread, and
the challenge now is to find optimum combinations of constraints that overcome this
problem. Reducing the uncertainty in multi-decadal aerosol ERF will require extensive
collaboration between modelling and observational groups and a focus on uncertainty
reduction, rather than quantification.

5.1 Methods

Methods and associated references are available in the online version of this letter.
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Fig. 1. Percentage contributions to variance in PD global, monthly and annual mean ToA a) RSR, b) Clear-sky RSR c) Cloudy-sky RSR and d) OLR. Each bar contains only those parametric contributions larger than 2%. The monthly and annual medians and 95% credible intervals from the Monte Carlo samples are displayed in the top panels of a)-d). The monthly median values are connected using bold lines and the credible intervals are shaded grey.
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Chapter 6

Overview and Discussion

Parametric contributions to uncertainty in aerosol ERF and its components have been
quantified within the size resolving global aerosol model GLOMAP and the global
climate model HadGEM3. This study is the first to assess the regional, seasonal and
temporal dependence of parametric sources of aerosol forcing uncertainty. Furthermore,
priorities for model development targeting the reduction of aerosol ERF uncertainty have
been identified, many of which are applicable to other models. Sources of aerosol forcing
uncertainty in climatically important regions have been identified and interpreted in the
context of recent changes to regional climates. Finally, a comprehensive analysis of the
relative importance of aerosol and physical atmosphere (atmospheric) parameters on the
atmospheric state and change-of-state has been conducted revealing that improved
understanding of both aerosol and atmospheric parameters is required but will reduce
uncertainty in different aspects of climate modelling.

6.1 Summary of major results

The following is a summary of the major results of this thesis in the context of the aims
outlined in Chapter 1.

1. The forcing period dependence of parametric contributions to aerosol
forcing variance have been quantified using four periods with distinct
anthropogenic aerosol emissions: 1750-PD, 1850-PD, 1978-PD and
1998-PD.

a) Natural aerosol emission parameters are the largest source of forcing
uncertainty over the industrial period causing 45% of the global annual mean
CAE forcing variance since 1750. The role of natural aerosol emission
uncertainty in causing forcing variance arises because of the non-linear
relationship between cloud albedo and aerosol concentrations. Natural
aerosols are predominant in the relatively clean pre-industrial atmosphere,
hence uncertainty in this source of aerosols significantly affects the forcing
calculation (Chapter 2).

b) Natural aerosols are a weaker source of forcing uncertainty when 1850, rather
than 1750, is used to define the start of the industrial period because the
baseline atmospheric state is relatively polluted reducing the effect of
uncertainty in the natural emissions on the forcing calculation. In the 1850
case natural aerosols cause between 34% and 37% of the CAE forcing
variance compared to 45% in the 1750 case (Chapters 2 and 3).
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c) Uncertain anthropogenic aerosol emission parameter contributions to CAE
forcing variance increase from 34% to 46% when changing the start of the
industrial era from 1750 to the relatively polluted 1850 (Chapter 2).
Anthropogenic aerosol emissions play a far greater role in determining CAE
forcing in the 1978-2008 period contributing nearly 50% of the variance.
During the 1978-2008 period substantial regional changes in emissions
compensate to produce a near-zero global annual mean forcing, reducing the
importance of the baseline aerosol state in the forcing calculation and hence
the contribution to forcing variance from natural aerosols. (Chapter 3). The
importance of anthropogenic aerosol emission uncertainty relative to natural
aerosol emission uncertainty in recent decades is greatly reduced when the
cancellation of positive and negative regional forcings is accounted for
(Chapter 4).

d) Aerosol process parameters are the largest source of CAE forcing uncertainty
in the most recent decade. Over the ten year forcing period 1998-2008
changes in regional and global anthropogenic emissions are relatively small.
Therefore anthropogenic emission parameter uncertainty is of reduced
importance for forcing than in the 1978-2008 period. In the absence of
important anthropogenic and natural emission uncertainties the most
uncertain process-based aspects of the GLOMAP model become apparent.
(Chapter 3).

e) The period dependence of parametric contributions to CAE forcing variance
suggests that the similarity of the forcing period to be simulated and the
periods analysed here can inform the choice of model development priorities.
For near-term climate projections uncertainty in anthropogenic emission and
model process parameters need to be reduced. However for longer-term
climate projections into atmospheres relatively clear of anthropogenic
aerosols, the reduction of natural emission uncertainty will be priority
(Chapters 2, 3 and 5).

2. The key parametric sources of aerosol forcing uncertainty have been
identified by statistically analysing contributions to variance attained
through sampling from statistical emulators created using PPEs. PPEs
have been created for aerosol ERF and its components using
increasingly sophisticated versions of the GLOMAP model and finally
in the HadGEM3 model. In all model versions, specific parameters
have been identified as priorities for model development that targets
the reduction of aerosol forcing uncertainty.

a) The emission flux of SO2 from continuously degassing and sporadically
erupting volcanoes and dimethyl sulphide emissions are the largest
parametric sources of aerosol forcing uncertainty over the industrial period
(Chapters 2 and 3). Sea spray emissions contribute more to industrial period
ACI forcing variance than volcanic emissions in the HadGEM3 model
(Chapter 5). However, volcanic SO2 emissions are by far the largest source of
the compensation-corrected forcing uncertainty in the 1978-2008 period
accounting for more than 25% of the variance (Chapter 4).

b) Of the anthropogenic aerosol emission parameters anthropogenic SO2

emission uncertainty is most important over the industrial period. However,
carbonaceous aerosol emissions are the main source of anthropogenic
emission uncertainty in recent decades.(Chapters 2, 3 and 4).

c) In the 1998-2008 period when aerosol process parameter uncertainties are the
dominant cause of aerosol forcing variance, the removal of aerosols from the
atmosphere through wet deposition and the pH dependent production of
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aerosol sulphate from the oxidation of sulphur dioxide by ozone are key
sources of CAE forcing uncertainty (Chapter 3). The Sig W parameter,
which controls the distribution of sub-grid vertical velocities used to calculate
aerosol activation into cloud droplets, directly affects cloud droplet formation
in the HadGEM3 model and is therefore an important source of ACI forcing
uncertainty regardless of the forcing period. Dry deposition velocities of
aerosols in the Accumulation mode and SO2 are also significant contributors
to ACI forcing variance in recent decades (Chapter 5 and Appendix 3).

3. The magnitude of aerosol forcing uncertainty in climatically important
regions over the 1978-2008 period have been quantified and the
potential for aerosols to influence large-scale climate effects in recent
decades analysed.

a) A likely negative forcing in the tropical North Atlantic and positive forcing in
the tropical South Atlantic indicate that CAE forcing may have exacerbated
the inter-hemispheric difference in sea surface temperatures in recent
decades, affecting the position of the regional inter-tropical convergence zone
and precipitation in the Sahel. The sign of forcing in the tropical North
Atlantic is uncertain with dry deposition rates and the size of carbonaceous
aerosol emissions largely determining the values. Tropical South Atlantic
CAE forcing in Southern Hemispheric Summer months is also affected by
deposition rates, though wet deposition parameters control the variance in
that region (Chapter 4).

b) Uncertainty in the extent to which aerosols may influence North Atlantic
tropical storm development via CAE forcing on sea surface temperatures is
largely determined by anthropogenic emission and aerosol process
parameters. Therefore positive emulated CAE forcing in the extra-tropical
North Atlantic (0.51 W m−2) is consistent with the theory that reductions in
Northern Hemispheric anthropogenic aerosol emissions have warmed sea
surface temperatures. However, the negative CAE forcing (-0.14 W m−2) over
the main hurricane development region during months relevant for hurricane
development calls into question the role of Northern Hemispheric aerosol
reductions in forcing tropical sea surface temperatures and influencing
hurricane development and frequency on decadal time scales (Chapter 4).

c) CAE forcing in response to changing Asian anthropogenic aerosol emissions
has been ruled out as an influence on the position of the Pacific topical storm
track. However competing parametric sources of CAE forcing variance, in
particular carbonaceous aerosol emission parameters, make the broader
extent of CAE forcing influence on tropical Pacific storms less certain
(Chapter 4).

d) The contrast between continental and marine CAE forcing in Asian regions
suggests that aerosols play an important role in suppressing development of
the East-Asian and Indian Monsoons by reducing the land-sea thermal
contrast during early monsoon development. CAE forcing in continental and
marine regions are subject to distinct sources of parametric uncertainty,
providing insight into the potential causes of the multi-model CAE forcing
positive bias in the region (Chapter 4).

e) The largest annual mean CAE forcing in recent decades is in the region where
observed sea surface temperatures are used to predict changes in the El Niño
Southern Oscillation. In this region CAE forcing uncertainty is up to 5 times
larger than the known forcing resulting from anthropogenic CO2 emissions.
The regional mean CAE forcing (0.24 W m−2) is consistent with observed
end-of-century change towards conditions more suited to El Ninõ events,
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suggesting that an aerosol forced signal may influence the mean ENSO state
on multi-decadal time scales (Chapter 4).

f) An entirely positive credible interval of Arctic CAE forcing (0.04, 0.36
W m−2) supports the hypothesis that Northern Hemispheric anthropogenic
aerosol emission reductions have caused warming in the Arctic in recent
decades. Aerosol process parameters are the dominant source of Arctic CAE
forcing uncertainty, suggesting that multi-model CAE forcing diversity is
likely to be larger than in other regions (Chapter 4).

4. The relative importance of aerosol emission, deposition and process
parameters and atmospheric parameters that affect the properties and
distribution of clouds and humidity, as sources of aerosol ERF
uncertainty in the HadGEM3 model have been quantified.

a) Atmospheric parameters control ToA radiative fluxes in 1850, 1978 and
present-day atmospheres accounting for nearly 80% of the ToA RSR
variance. The majority of the variance in each year is caused by uncertainty
in Rad Mcica Sigma the parameter controlling the shape of sub-grid clouds,
and therefore the amount of cloud passed to the radiation code. Atmospheric
parameters still cause around 50% of the ToA RSR variance when
uncertainty in Rad Mcica Sigma is neglected. (Chapter 5 and Appendix 3).

b) Aerosol parameter uncertainty is an important source of ToA RSR variance
but less so than uncertainty in atmospheric parameters. The 95% credible
interval of ToA RSR calculated by neglecting uncertainty in all atmospheric
parameters is (97, 106 W m−2); almost 40% of the credible range (93, 115
W m−2) from perturbing both aerosol and atmospheric parameters (Chapter
5 and Appendix 3).

c) Aerosol parameters are the dominant source of aerosol ERF uncertainty over
the industrial period and in recent decades. Atmospheric parameters
contribute only 36% and around 5% of the variance in 1850-PD and 1978-PD
aerosol ERF respectively. Aerosol and atmospheric parameters are both
important sources of model uncertainty. However, reducing aerosol ERF
uncertainty requires an improved understanding of the processes causing
aerosol parameter uncertainty.

5. The extent to which present-day observations of ToA radiative fluxes
can be used to constrain aerosol ERF over the industrial period and in
recent decades has been quantified.

a) Observations of present-day ToA RSR, with assumed observational
uncertainty at the lower end of published values, are able to constrain ToA
RSR in the 1850 and 1978 atmospheres. The range of credible ToA RSR
values is broader in the 1850 and 1978 cases by several W m−2 because
atmospheric responses to parameter perturbations differ between
environments with different aerosol concentrations and compositions. The
credible interval range from each constrained sample is at most 18% of the
credible interval range in the unconstrained case, significantly narrowing the
emulated ToA RSR range in historical atmospheres (Chapter 5).

b) Observations of present-day ToA RSR provide almost no constraint on
aerosol ERF over the industrial period or in recent decades. In the best case
scenario RSR observations reduce 1850-PD aerosol RSR by at most around
10%, ruling out only the most extreme forcings. These results suggest that
aerosol ERF forcing uncertainty may only be reduced by applying optimum
combinations of multiple observational constraints (Chapter 5).
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6.2 Necessary simplifications

This section explores the impact of this research given the simplifications that were
necessary due to computational restrictions. The statistical methods outlined in Chapter
1 reduce the computational expense required to perform comprehensive sensitivity
analyses, reducing the required number of simulations from tens of thousands to just a
few hundred per anthropogenic emission period. Even so more than 1300 full year
simulations were needed to create the GLOMAP and HadGEM3 PPEs. The research
conducted in this thesis has utilised substantial super-computing resource for conducting
and analysing the large ensembles of simulations (e.g. Regayre et al. 2016).

The GLOMAP PPEs used in Chapters 2, 3 and 4 were relaxed towards ECMWF
climatological values and ISCCP clouds prescribed so as to isolate the aerosol forced
signal from other sources of uncertainty, as described in Chapter 1. The HadGEM3 PPE
simulations created for Chapter 5 were relaxed towards horizontal winds above around
2km only, as described in Appendix 3, to retain synoptic-scale dynamical features whilst
ensuring aerosol forced signals could be detected. The use of prescribed meteorological
values in the PPE creation means that no information has been captured regarding the
dependence of aerosol forcing parametric sensitivity on meteorological conditions. The
vertical extent of convection varies significantly between meteorological years, as does
the fraction of natural aerosols in the global distribution (Feng et al., 2011), with
potentially large implications for forcing (Liu et al., 2007). Furthermore feedbacks
between components of the HadGEM3 model may be underestimated using the ‘nudging’
approach (Chrastansky & Rotstayn, 2012). Ideally the PPEs would have been created
using multi-year averages to calculate forcing values. However even with century-long
simulations forced signals can not be isolated as readily as they can from ‘nudged’
simulations (Kooperman et al., 2012). The PPEs would also have benefited from
including a dynamic ocean, rather than prescribing sea surface temperatures (Ocko
et al., 2014; Andrews et al., 2015), which would allow the regional climatic effects of
aerosol ERF to be directly quantified. Because the analyses conducted in this thesis are
either of global annual mean values or are in regions with established relationships
between aerosol forcing and climatic responses, the results can be generalised to other
meteorological years without significant risk of their being misinterpreted.

All perturbations applied in this research have been to global parameter values. These is
no reason to believe that uncertainty in parameters such as anthropogenic SO2 and
carbonaceous emissions should scale globally, rather than regionally as is the case with
attribution studies (for example Jones et al., 2013). Anthropogenic influences on
uncertainty in emissions (for example Mahowald et al. 2010) are also neglected in our
experiments. The inclusion of spatially and temporally dependent parameter
perturbations was considered during expert elicitation exercises but rejected in favour of
perturbing a broader range of uncertain parameters relating to different model processes.

6.3 Future research directions

The breadth of model output produced by the large PPEs used in this thesis gives rise to
applications beyond their designed use. The present-day component of the GLOMAP
PPE analysed in Chapters 3 and 4 has been used to develop an aerosol climatology for
running the HadGEM3 model uncoupled from the GLOMAP model. The results from
Chapters 2, 3 and 4, as well as the elicitation exercise and model configuration tests
conducted for Chapter 5, informed the Global Aerosol Synthesis and Science Project
(GASSP) (GASSP, 2016) experimental design. In the GASSP project output from the
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HadGEM and other PPEs will be challenged using a broad range of observational
datasets. Chapter 2-5 results have also been used to inform the design of the U.K.
Hadley Center Met Office ensemble prediction system currently under development
(Sexton et al., In prep.) as part of the Climate Science for Service Partnership (CSSP) -
China project (CSSP, 2016).

The HadGEM3 PPE created for Chapter 5 has additional benefits over those from
earlier Chapters in that rapid atmospheric adjustments to aerosol and atmospheric
parameters have been captured. Preliminary investigations of regional changes in cloud
fraction and precipitation in response to parameter perturbations suggest that this PPE
has significant potential for use in testing hypotheses about dynamical responses to
aerosols. The aerosol forcing of climate effects at the regional level, explored using
established relationships in Chapter 4, could be investigated in far greater detail using
the HadGEM3 PPE. The ensemble is eminently suitable for informing investigations into
recent decadal changes in North Atlantic atmospheric composition (ACSIS, 2016) and
the role of aerosols in causing observed surges and temporary slowdowns in global mean
surface temperatures (SMURPHS, 2016) for example. The PPE could be used to
identify specific observations that could help reduce uncertainty in climatic responses to
aerosol forcing over Africa (CLARIFY, 2016). Furthermore, the range of global annual
mean aerosol ERF values produced by the ensemble suggests it could be used to
investigate the causes of common GCM biases such as Southern Ocean shortwave
radiation bias (Nam et al., 2012).

In Chapter 5 ToA RSR observations were shown to be a poor constraint of aerosol ERF
over multiple decades. Trends in regional anthropogenic emissions do not change greatly
during the 1998-2008 period suggesting that there may be value in investigating the use
of recent decadal aerosol ERF observations as a constraint on aerosol ERF in other
periods. This is one strategy for reducing uncertainty in multi-decadal aerosol ERF but
in practice, as indicated in the concluding paragraph in Chapter 5, this task will require
extensive collaboration between modelling and observational groups and a shift in focus
from uncertainty quantification to uncertainty reduction.
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METHODS
Model description. The GLObal Model of Aerosol Processes (GLOMAP-mode)15,16

is a three-dimensional global aerosol microphysics model that simulates the evolution
of the particle size distribution and size-resolved chemical composition of aerosol
particles on a global three-dimensional grid. The model has previously been evalu-
ated against observations16 and improved by comparing aerosol simulations against
a more detailed version of the model that treats the aerosol size distribution using a
sectional approach32. The GLOMAP models have been widely used and evaluated
against global measurements of particle number concentrations33,34, CCN35,36, aerosol
chemical components37–39, and cloud droplets40. The aerosol module is run within
the TOMCAT global three-dimensional offline chemistry transport model41. The
aerosol and chemical species are transported by three-dimensional meteorological
fields read in from the European Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-Interim reanalyses for 2008. Aerosol transport is advanced every
30 min by interpolating between the analyses, which are updated every 6 h and the
aerosol microphysical/chemical processes are calculated on a range of shorter time-
steps of less than 30 min. Uncoupling the aerosol from the model transport and
meteorology in the chemistry transport model (so that aerosol does not affect mete-
orology) is equivalent to the commonly used ‘‘double-call’’ approach in a climate
model42 in which the aerosol radiative effects are decoupled from the model physics
so that particular radiative forcings can be diagnosed using pairs of model runs. The
model was run at a horizontal resolution of 2.8u3 2.8uwith 31 vertical levels between
the surface and 10 hPa.

The aerosol size distribution is defined by seven log-normal modes: one nuclea-
tion mode and soluble and insoluble modes covering the Aitken, accumulation and
coarse size ranges. The aerosol chemical components are sulphate, sea salt, black
carbon, particulate organic matter and dust. Secondary organic aerosol is produced
from the first stage oxidation products of biogenic monoterpenes and anthro-
pogenic volatile-organic-carbon compounds, and is assumed to have zero vapour
pressure. It is combined with the particulate-organic-matter component after
kinetic condensation on the aerosol. The model includes dust emissions, but we
do not perturb them because we focus on the effect on CCN concentrations, which
we have previously shown are not strongly affected by dust particles even in intense
dust storms43.

The microphysical model resolves the main processes that shape the particle
size distribution on a global scale: new particle formation, coagulation, gas-to-
particle transfer, cloud processing, and dry and wet deposition. Wet deposition of
particles occurs by two processes. In-cloud nucleation scavenging in which acti-
vated particles form cloud droplets and are removed in precipitation and below-
cloud impaction scavenging by falling raindrops. ECMWF meteorological fields
are used to diagnose large-scale frontal precipitation and sub-grid convective preci-
pitation is assumed to occur in 30% of the affected grid box area. Low-level strati-
form clouds are read in separately from International Satellite Cloud Climatology
Project (ISCCP) D2 data30. In these clouds we assume that aerosol particles are
activated and subsequently undergo ‘cloud processing’ in which sulphate mass is
added to activated aerosol owing to the aqueous-phase oxidation of sulphur dioxide.

Concentrations of the oxidants OH, O3, H2O2 and NO3 and HO2 were specified
on the three-dimensional grid using six-hourly monthly mean concentrations
from a TOMCAT simulation with detailed tropospheric chemistry44. Concentra-
tions of H2O2 are depleted through the aqueous-phase reaction with SO2 and
replenished through the reaction HO2 1 HO2 (ref. 15). A spin-up period of six
months was performed (three months of which had parameters set at their median
value and formed the basis of a further three-month spin for each of the runs with
the changed parameter settings).
Emissions. The emission fluxes were perturbed by scaling baseline values, which
are specified in Extended Data Table 1 for the 1750–2000 simulations, and in Extended
Data Table 2 for the 1850–2000, 1900–2000 and 1850–1980 simulations. The Aerosol
Comparisons between Observations and Models (AeroCom) emissions scenarios
used for 1750 and 2000 are not available for the intermediate years. For the three
additional time periods we therefore used the emissions prepared for the Atmos-
pheric Chemistry and Climate Model Intercomparison Project (ACCMIP45) for
1850, 1900, 1980 and 2000. For the sensitivity runs, we show results for June after
two months of spin-up after the perturbations were applied.
Cloud droplet number concentrations. CDNCs were calculated as a post-processing
step using an activation parameterization46 and the modelled monthly mean aerosol
size distribution and composition in each grid cell for each perturbed parameter
run. These calculations account for the coupling between the uncertain aerosol
particle size distribution (and composition) and the number of particles activated
into cloud droplets.

An updraught speed of 0.15 m s21 was used over marine regions and 0.3 m s21

over land, which is typical of cloud-base speeds in low-level stratus and stratocu-
mulus clouds. Because updraft is highly variable in clouds it is normal to report
updraft measurements as the standard deviation s of a probability density function

of updrafts (normally centred on zero). However, it is possible to calculate CDNC
using a single characteristic updraft speed (w*) that gives comparable results to
using a probability density function of updrafts47. The characteristic speed is given
by w* 5 Bs, where B is a conversion factor constrained through closure studies to
be in the range 0.65–0.8 (refs 47, 48). Here, we use w* 5 0.15 m s21 over marine
regions, which equates to s 5 0.19–0.23 m s21, and w*5 0.3 m s21 over land, which
equates to s 5 0.38–0.46 m s21. The updrafts used to calculate CDNC should be
representative of cloud base, where activation primarily occurs. Updrafts at cloud
base are typically smaller than in-cloud updrafts as the latent heat released by conden-
sation onto cloud droplets fuels higher in-cloud updrafts49,50. For example, in measure-
ments during the Marine Stratus/Stratocumulus Experiment (MASE) experiment51

the standard deviation rises from 0.3 m s21 at cloud base to 0.6 m s21 at cloud top.
Thus, we consider our updraft velocities to be appropriate for cloud base.

To test the effect of higher updraft speeds, we recalculated CDNC for July using
w* 5 0.25 m s21 over oceans and 0.4 m s21 over land. We then built a new emu-
lator for global annual mean forcing. The global mean forcing changes negligibly
at the higher speeds. The fractional contributions to variance change from low to
high updraft speed as follows: natural aerosol changes from 45% to 42%, anthro-
pogenic emissions decrease from 34% to 33% and processes rise from 19% to 21%.
Radiative forcing. The forcing was calculated as the difference of top-of-the-
atmosphere net short-wave plus long-wave radiative fluxes between the PD and the
PI periods. The PD and PI runs were performed using identical meteorological
analyses. Each parameter perturbation run in the PI period was paired with its equi-
valent setting in the PD period. The PI and PD simulations are therefore identical in
every respect except for the anthropogenic emissions. The modelled aerosol proper-
ties were then used to calculate the CDNC values in the PI and PD periods, from
which the forcing was calculated for each two-dimensional grid point of the model.

We used the off-line version of the Edwards and Slingo radiative transfer model29

with six bands in the short-wave and nine bands in the long-wave, with a delta-
Eddington two-stream scattering solver at all wavelengths. We used a monthly
mean climatology for water vapour, temperature and ozone based on ECMWF
reanalysis data, together with surface albedo and cloud optical depth fields from
the International Satellite Cloud Climatology Project (ISCCP-D2)30 for the year
2000. The diurnal cycle of incoming solar radiation was accounted for, but no
diurnal cycle of cloud cover was assumed. The sensitivity of our forcing estimates
to the cloud climatology is very small31, according to an extra set of calculations
performed using the 1983–2008 multi-annual ISCCP cloud climatology.

The cloud albedo forcing between the PI and PD experiments is quantified by
modifying the cloud droplet effective radius re for low- and mid-level water clouds
up to 600 hPa:

rPI
e ~rPD

e |
CDNCPD

CDNCPI

� �1=3

where CDNC is the monthly mean cloud droplet number concentration in each
grid cell. A fixed value for rPD

e 5 10 mm is used in order to ensure consistency with
the ISCCP cloud retrievals. This overestimates the strength of the forcing because
clouds with more droplets tend, on average, to have less water for reasons that are
physically understood52. However, our conclusions about the relative sources of
uncertainty are not affected.
Perturbed parameters. The ensemble of model runs was designed to enable an
emulator to be built. The ensemble consists of 168 combinations of parameter
settings from 28 parameters representing aerosol and precursor gas emissions,
microphysical processes and aerosol model structures. The uncertainty range for
each parameter was chosen based on expert elicitation18 (see Extended Data Table
3 for a complete list). Parameter combinations within the uncertainty range were
defined by a maximin Latin Hypercube sampling of the parameter space. Paired
simulations were run for one year for 1750 and 2000 using the AeroCom emis-
sions (336 runs in total) and for one month for 1850, 1900, 1980 and 2000 using
the ACCMIP emissions. Each parameter setting in the PI era was paired with the
same parameter setting in the PD. Anthropogenic emissions (from fossil fuel,
biofuel and biomass burning) were set to their 1750, 1850 or 1900 values in the PI
era and the year 1980 and 2000 values for the PD and were perturbed by the same
factor.

Parameters 1 to 14 define aerosol microphysical processes and the definition of
the size distribution modal parameters, whereas parameters 15 to 28 define the
emission of aerosols and precursor gases. Full details about the parameter ranges
and the process of expert elicitation are provided in ref. 18. Here we summarize
the main aspects of the perturbed parameters.

The boundary-layer nucleation parameterization (P1) assumes a rate j 5 A[H2SO4(g)],
with A (in units of s21) being the perturbed parameter. Throughout the atmos-
phere (but important only in the free troposphere) we use a binary homogeneous
H2SO4–H2O nucleation rate model scaled by an uncertain factor (P2).
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Ageing is the process by which freshly emitted carbonaceous particles (for
example, from biomass burning) can become increasingly water soluble as they
accumulate water-soluble compounds during transport. The controlling para-
meter, as used in many global models53, is the number of monolayers of soluble
material required to convert the particles into water-soluble particles, which can
then act as CCN. The lower limit of our assumed ageing means that initially
insoluble particles become soluble on the timescale of hours in polluted regions.
This process affects the number of aerosol particles able to form cloud droplets in
the forcing calculation, and also affects the cloud processing of aerosol during run
time of the model.

The activation diameter (P4) defines the dry-equivalent diameter at which par-
ticles are able to activate to cloud droplets during run time of the model. A single
value of activation diameter is used globally in a given run. The activation dia-
meter controls the formation of cloud droplets in all low-level clouds, and thereby
controls which particles undergo cloud processing (sulphate production on the
particles due to oxidation of sulphur dioxide) and removal in precipitation, and
therefore shapes the particle size distribution. Cloud droplet concentrations from
run-time of the model are not used in the forcing calculations (they are only used
as a physical process that shapes the particle size distribution). For the forcing (see
previous section) cloud droplet concentrations are quantified as a post-processing
step based on the uncertain particle size distributions and an assumed updraft speed.
In reality, the activation diameter in a given cloud updraft is controlled by the particle
size distribution, solubility and updraft speed. The updraft speed was not included as
a perturbed parameter because the chemical transport model does not have a para-
meterization of updrafts in different cloud types and environments. Perturbation
of the activation diameter accounts approximately for the uncertainty in updraft
speed, but by prescribing a value in each simulation it ignores the way that the
diameter is coupled to the properties of the aerosol size distribution in a given grid
cell. This approach is likely to overestimate the uncertainty because it allows a larger
variation in the number of aerosol particles that can be cloud processed, which
would otherwise be damped by the coupling of particle number and activation
diameter. Nevertheless, activation diameter makes a small contribution to global
forcing uncertainty (Fig. 2c).

The parameters SO2O3_CLEAN and SO2O3_POLL (P5 and P6) control the
cloud droplet pH, which affects the production rate of aerosol sulphate from oxi-
dation of sulphur dioxide by ozone. The pH is the perturbed parameter and can
cause a change in rate by a factor of 105 for pH between 3 and 6. One parameter is
used for clean (lower acidity) environments (sulphur dioxide less than 0.5 parts
per billion) and one for polluted environments.

The in-cloud scavenging diameter offset (P7) controls the diameter of aerosols
that can be removed by in-cloud nucleation scavenging. This allows some parti-
cles to be activated but not scavenged, assuming that the largest droplets initiate
precipitation. The lower limit of P7 (zero nanometres) assumes all activated parti-
cles are subject to removal during precipitation.

The scavenging efficiency in ice-containing clouds (P8) controls the fraction of
particles accessible to nucleation scavenging when air is below 210 uC. Our previous
work has shown this parameter to be important in controlling aerosol transport to
the Arctic38. Dry deposition of Aitken and accumulation mode particles (P9 and
P10) is scaled for each particle size by a given factor. GLOMAP calculates the wind
speed and size-dependent deposition velocity due to Brownian diffusion, impac-
tion and interception. The accumulation and Aitken mode width parameters (P11
and P12) define prescribed, globally constant geometric standard deviations of the
log-normal size distribution modes. The mode separation diameters (P13 and P14)
define the ranges over which the geometric mean radius can vary while staying in a
particular mode.

Fossil fuel, biofuel and biomass burning particle emission flux parameters (P15,
P16 and P17) scale the mass emission fluxes in the PI based on the 1750, 1850 or
1900 emissions and in the PD based on the year 2000 emissions. The spatial
distribution of emissions is different in the PI and PD. Our perturbation accounts
for uncertainty in the monthly mean flux but does not account for uncertainty in
the spatial pattern or temporal variability in the emissions. Thus, for wildfires we
are not able to separate the effects of more intense fires versus more frequent fires,
which might have different effects on forcing uncertainty. The biomass burning
from open fires was not separated into natural and anthropogenic emissions, so we
cannot apportion the uncertainty. Examination of the variation of uncertainty due
to these parameters shows a clear seasonal cycle, with a peak contribution to global
mean variance of 5% in July and August, which can be attributed to northern mid-
latitude wildfires, versus generally less than 1% at other times. The tropical fires are
important for CCN18 but the uncertainty in forcing is limited by the low sensitivity
of cloud albedo at very high CCN concentrations. Because most of the northern
mid-latitude emissions can be associated with natural fires54, we have associated
the biomass burning uncertainties with the natural emissions.

Fossil fuel, biofuel and biomass burning particle emission sizes (P18, P19 and
P20) directly control the number of emitted particles for a given mass flux, and
therefore directly influence the CCN population. The sub-grid scale sulphate
particle production parameters (P21 and P22) define the formation of particles
in sub-grid scale power plant plumes55,56. P21 defines the fraction of the emitted
sulphur dioxide mass that enters the model grid square as new sulphate particles
and P22 defines the dry size of these particles (and hence their number concen-
tration for fixed mass) when emitted into the global grid box.

The sea spray particle mass flux (P23) is scaled by a factor. GLOMAP-mode
simulates sea spray particles between 35 nm and 20 mm dry diameter. This para-
meter conflates multiple sources of uncertainty associated with the wind-speed
dependence of the flux such as processes not unaccounted for in the parameteri-
zations (for example, fetch), the wind speed, and the limited spatial resolution of
the wind fields in the model.

Anthropogenic sulphur dioxide emissions (P24) are scaled by a factor based on
the emissions in 1750, 1850, 1900 and 2000, as described above. Continuously degass-
ing volcanic sulphur dioxide emissions (P25) are scaled based on a global inventory
widely used in global models57. Time-averaged sporadic emissions are also included.
Volcanic emissions are assumed to be the same in the PI and PD simulations.

DMS emissions (P26) are controlled by the sea-water concentration of DMS58

and the wind-driven transfer velocity parameterization59. We conflate these
uncertainties by perturbing the calculated sea-air transfer flux by a given factor.
This leads to identical absolute perturbations to the DMS flux in the PI era and the
PD. We do not account for uncertainty in the spatial pattern of DMS seawater
concentration, which is likely to be an important factor in the overall uncertainty60.

The biogenic secondary-organic-aerosol production parameter (P27) conflates
the uncertainty in the emissions of the precursor gases (biogenic volatile organic
carbons) and the uncertainty in the yield of secondary-organic-aerosol material
following oxidation reactions into a single parameter. P27 scales the volatile organic
carbon emissions (with fixed chemical yield) such that global annual secondary-
organic-aerosol production lies between the values given in the table. There are also
uncertainties in the volatility of different compounds that we do not account for
here. The range of emissions used here has been shown to span the range of global
in situ measurements of organic aerosol37.

Anthropogenic secondary organic aerosol production (P28) is treated in a
similar way to biogenic secondary organic aerosol, by conflating the uncertainty
in emissions and yield into a single emission uncertainty. We used the same approach
as in ref. 37 by scaling gridded carbon monoxide emissions over a range known to
span the range of observed organic aerosol in the PD atmosphere. The range is then
scaled further to account for the changes in carbon monoxide emissions in 1850,
1900 and 1980.
Model emulation. Gaussian process emulation18–20 was used to estimate model
predictions at untried points throughout the space of the uncertain model para-
meters. An emulator was built for the monthly mean first indirect radiative
forcing for every two-dimensional grid point (to produce Fig. 1 in the main text)
and for the global annual mean and monthly mean forcings to generate Fig. 2 in
the main text. The emulator was validated in each case using 84 additional model
runs (Extended Data Fig. 1) to ensure that the emulator uncertainty around its
mean is low compared to the parametric uncertainty. Twenty-eight of the valida-
tion runs were designed to lie near the training points and 64 were defined using a
separate Latin Hypercube design61. The coefficient of determination (r2) of the
global annual mean emulator forcing versus simulated forcing is 0.94.
Variance-based sensitivity analysis. Variance-based sensitivity analysis is used
to decompose the uncertainty in the model predictions to the uncertainty in the
model parameters. The total variance of the forcing was calculated by sampling
from the emulator mean function using the extended-FAST method20. We sampled
5,000 points per parameter (140,000 in total) from the emulator to obtain a proba-
bility distribution of forcing. Two measures of sensitivity were calculated: the main
effect index measures by how much the variance will be reduced if the parameter
can be learnt precisely, and the total effect index measures both the individual effect
and the interaction effect of each parameter with all others. The two sensitivity
measures are compared to assess the sensitivity of the model output to interactions.
Figure 2b (see main text) shows that parameter interactions account for generally less
than 10% of the monthly global mean forcing variance (shown as the residual white
space above each coloured bar). We note that a nonlinear response of the model output
to a parameter across the specified range is accounted for in the main effect variance.
Uncertainty results using different reference periods. Extended Data Table 4
presents results for the additional simulations in which alternative reference years
were used for the calculation of forcing (1850 and 1900 instead of 1750), as well as
for the period 1850–1980.
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Extended Data Figure 1 | Validation of the global annual mean forcing
emulator. The error bars show the emulator 95% uncertainty range around the
mean prediction. The 1:1 line is shown.
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Extended Data Table 1 | Emissions of aerosols and precursor gases used in the 1750–2000 simulations

*The DMS emission flux is a global annual value but emissions are calculated at each time step based on the seawater DMS concentration field58 and a sea–air transfer velocity59. These baseline emissions were
perturbed according to the factors given in Extended Data Table 3, except for the volatile organic carbon emissions, which were perturbed over the absolute range indicated in this table and in Extended Data Table 3.
BC, black carbon; POM, particulate organic matter; VOC, volatile organic carbon.
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Extended Data Table 2 | Emissions of aerosols and precursor gases used in the 1850–2000, 1900–2000 and 1850–1980 simulations.
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Extended Data Table 3 | Parameters and their maximum ranges used in the model simulations.

The Latin Hypercube sampling of parameter combinations was designed to lie within these ranges. In the ‘effect’ column, for the scaled parameters the magnitude of the parameter was multiplied by a factor lying
between the maximum and minimum given in the ‘uncertainty range’ column and for absolute adjustments, the parameter was set to a value within the range of absolute values in the ‘uncertainty range’ column.
BCOC, black carbon/organic carbon; SOA, secondary organic aerosol. *The values given refer to the mass of POM produced, although the perturbations were actually applied to the emitted VOCs. The POM range
refers to year 2000. For other years see Extended Data Table 2. The baseline emissions are given in Extended Data Tables 1 and 2.

RESEARCH ARTICLE

Macmillan Publishers Limited. All rights reserved©2013

mm11lr
Text Box
106




Extended Data Table 4 | Results for the different periods.

All numbers refer to global means. The last three columns refer to percentage of variance.
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Introduction

The auxiliary information is comprised of three tables and three figures.
Table “ts01.pdf” provides a summary of the uncertain aerosol process and
emission parameters used to construct the perturbed parameter ensemble
that informs the results. Table “ts02.pdf” contains a summary of ensemble
mean cloud drop number concentration differences and cloud-albedo effect
forcings for all periods. Table “ts03.pdf” compares global annual LW, SW
and Net cloud radiative effects for our reference simulation with ten year
average Clouds and the Earth’s Radiant Energy System (CERES) and
Coupled Model Intercomparison Project Phase 5 (CMIP5) values. Figures
“fs01.eps” and “fs02.eps” provide detail on the validation of the Gaussian
Process emulators for the 1978-2008 and the 1850-2008 and 1998-2008
periods respectively. Figure “fs03.eps” shows average ensemble cloud drop
number concentration differences for all periods and corresponds to Figure
1.

1 ts01.pdf Summary of uncertain aerosol process and emission parameters
used to create the perturbed parameter ensemble. Parameters are grouped
according to their source type and are ordered to match Figure 3.
Parameters in bold font replace or are additional to those used in Lee et al.
[2013] and Carslaw et al. [2013]. Expert elicitation was used to identify
parameter ranges updated from Lee et al. [2013], where descriptions of
parameter functionality within GLOMAP are also described. The
parameters “T Ice” and “Drizz Rate” are described in Browse et al. [2012].

1
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1.1 Column “Parameter key”, abbreviated parameter labels used in Figure
3.

1.2 Column “Group”, uncertainty source groupings used to color Figures 2
and 3.

1.3 Column “Parameter description”, concise parameter descriptions.

1.4 Column “Lower Bound”, lower limit used in the ensemble design,
below which experts agreed the optimal parameter value was very unlikely
to occur.

1.5 Column “Median Value”, median value from the elicited parameter
range.

1.6 Column “Upper Bound”, upper limit used in the ensemble design,
above which experts agreed the optimal parameter value was very unlikely
to occur.

2 ts02.pdf Ensemble mean cloud drop number concentration (CDNC)

differences (m−3) and cloud-albedo effect (CAE) forcings (Wm−2) for all
periods. All values are means of the 187 ensemble members. By design the
ensemble contains a disproportionately high concentration of extreme
perturbed parameter combinations that allows the emulators to interpolate
rather than extrapolate parameter influence on CAE forcing. The values in
this table are representative of the ensemble used to create the emulators
and are not expected to represent typical model behaviour. Vertical column
CDNC totals within each model grid box are annually averaged. For each
ensemble member annual mean CDNC values for the period start year are
subtracted from the corresponding value for 2008 within each model grid
box, then CDNC global, Hemisphere and surface type area weighted means
are calculated. Absolute CDNC differences are provided for the periods
1978-2008 and 1998-2008. Absolute differences are calculated within each
model grid box prior to calculating the area weighted means.

2.1 Column “Quantity”, description of the quantity under consideration,
being CDNC differences and CAE forcing for each period, with absolute
values also provided for the periods 1978-2008 and 1998-2008.

2
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2.2 Column “Global”, globally, annually averaged values.

2.3 Column “Southern Hemisphere” annually averaged values for the
Southern Hemisphere only.

2.4 Column “Northern Hemisphere” annually averaged values for the
Northern Hemisphere only.

2.5 Column “Land” annually averaged values for model gridboxes where
50% or more of the surface is represented as land within the model.

2.6 Column “Marine” annually averaged values for model gridboxes less
than 50% of the surface is represented as land within the model.

3 ts03.pdf Global annual LW, SW and Net cloud radiative effects (Wm−2)
for our reference simulation. Clouds for the year 2000 were sourced from
the International Satellite Cloud Climatology Project (ISCCP) D2 data
[Rossow and Schiffer, 1999] and the effective radius was fixed at re = 10µm
for this simulation. Ten year averages of Clouds and the Earth’s Radiant
Energy System (CERES) and Coupled Model Intercomparison Project
Phase 5 (CMIP5) values are taken from Calisto et al. [2014].

3.1 Column “Source”, The source from which values in the table are
derived.

3.2 Column “LW”, Long Wave (LW) cloud radiative effect (Wm−2).

3.3 Column “SW”, Short Wave (SW) cloud radiative effect (Wm−2).

3.4 Column “Net”, Net cloud radiative effect (Wm−2).

4 fs01.eps Validation of the emulator of CAE forcing for the 1978-2008
period. Ninety-three values from extra full-year paired simulations, with
identical perturbed parameter settings chosen randomly from across the
multi-dimensional parameter space, are compared to output from the
emulator constructed using the ensemble of 187 paired simulations for each
year. Emulator predictions and GLOMAP simulated values for the 93 new
simulations are represented by points in the scatterplot. The 95%
confidence intervals around each emulator mean give an indication of the

3
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emulator’s ability to reproduce globally, annually averaged CAE forcing
values with sufficient precision. Of the 93 new simulations only seven,
coloured red, have confidence intervals that do not cross the 1:1 line. For
reference purposes output from the simulation where all parameter values
are set to their medians is represented using a blue triangle.

5 fs02.eps Retrospective validation of the emulators of CAE forcing for
the periods a) 1850-2008 and b) 1998-2008. For each period a randomly
selected subset of 163 of the original 187 ensemble members were used to
create a new emulator and the remaining 24 used to validate the emulator
in a retrospective fashion. Using fewer ensemble members in the creation of
the emulator is expected to produce highly similar results since in each
period there are several parameters that contribute insignificantly to CAE
forcing variance, reducing the number of simulations required to achieve a
suitably dense space-filling design. Emulator predictions and GLOMAP
simulated values for the 24 new simulations are represented by points in the
scatterplots. The 95% confidence intervals around each emulator mean
gives an indication of the emulator’s ability to reproduce globally, annually
averaged CAE forcing values with sufficient precision. Of the 24 new
simulations only three, coloured red, have confidence intervals that do not
cross the 1:1 line in the 1850-2008 period and only two do not cross in the
1998-2008 period. For reference purposes output from the simulations
where all parameter values are set to their medians are represented using
blue triangles.

6 fs03.eps (Figure 1) Ensemble mean cloud drop number concentration

(CDNC) differences (m−3) between 2008 and a) 1850, b) 1978 and c) 1998.
All values are means of annually averaged vertical column totals in each
model gridbox for the 187 ensemble members. By design the ensemble
contains a disproportionately high concentration of extreme perturbed
parameter combinations that allows the emulators to interpolate rather
than extrapolate parameter influence on CAE forcing. The values in this
figure are representative of the ensemble used to create the emulator in
each period and are not expected to represent typical model behaviour.

References

• Browse, J., K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher
(2012), The scavenging processes controlling the seasonal cycle in
Arctic sulphate and black carbon aerosol, Atmos. Chem. Phys., 12,
6775-6798, doi:10.5194/acp-12-6775-2012.

4

mm11lr
Text Box
113




• Calisto, M., D. Folini, M. Wild, and L. Bengtsson (2014), Cloud
radiative forcing intercomparison between fully coupled CMIP5
models and CERES satellite data, Ann. Geophys., 32, 793-807,
doi:10.5194/angeo-32-793-2014.

• Carslaw, K. S., L. A. Lee, C. L. Reddington, K. J. Pringle, A. Rap, P.
M. Forster, G. W. Mann, D. V. Spracklen, M. Woodhouse, L.
Regayre, and J. R. Pierce (2013), Large contribution of natural
aerosols to uncertainty in indirect forcing, Nat., 503, 67-71,
doi:10.1038/nature12674.

• Lee, L. A., K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V.
Spracklen (2011), Emulation of a complex global aerosol model to
quantify sensitivity to uncertain parameters, Atmos. Chem. Phys.,
11, 12,253-12,273, doi:10.5194/acp-11-12253-2011.

• Rossow, W. B., and R. A. Schiffer (1999), Advances in understanding
clouds from ISCCP, B. Am. Meteorol. Soc., 80, 2261-2288,
doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

5

mm11lr
Text Box
114




Parameter
key

Group Parameter description Lower
bound

Median
value

Upper
bound

Volc SO2 Natural Volcanic SO2 emission flux scale factor 0.5 1 2

BVOC SOA Natural Production of secondary organic aerosols (SOA) from
biogenic volatile organic compounds (VOC) scale factor

0.27 2.7 20

DMS Natural Dimethyl-sulfide emission flux scale factor 0.5 1 2

Sea Spray Natural Sea spray emission flux scale factor 0.2 1 5

Dust Natural Dust emission flux scale factor 0.387 0.774 1.548

BB Ems Natural Black carbon (BC) and organic carbon (OC) from
biomass burning (BB) sources emission flux scale factor

0.25 1 4

BB Diam Natural BB aerosol diameter at emission (nm) 50 110 200

FF Ems Anthropogenic BC and OC from fossil fuel (FF) sources emission flux
scale factor

0.5 1 2

BF Ems Anthropogenic BC and OC from biofuel (BF) sources emission flux
scale factor

0.25 1 4

FF Diam Anthropogenic FF aerosol diameter at emission (nm) 30 56 80

BF Diam Anthropogenic BF aerosol diameter at emission (nm) 50 110 200

Prim SO4 Frac Anthropogenic Fraction of SO2 emitted as particulate SO4 0 1.2x10−3 0.01

Prim SO4 Diam Anthropogenic Diameter of SO4 particles at emission (nm) 20 40 100

Anth SO2 Anthropogenic Anthropogenic SO2 emission flux scale factor 0.6 1 1.5

AVOC SOA Anthropogenic Production of SOA from anthropogenic VOC scale fac-
tor

0 0.8 1.6

BL Nuc Process Continental boundary layer nucleation rate scale
factor

0.01 1 10

FT Nuc Process Free troposphere nucleation rate scale factor 0.01 1 10

Ageing Process Number of insoluble monolayers that must be ‘aged’ for
an aerosol to become soluble

0.3 1 5

Acc Width Process Accumulation mode width (nm) 1.2 1.5 1.8

Ait Width Process Aitken mode width (nm) 1.2 1.5 1.8

Nuc Ait Sep Process Nucleation and Aitken mode separation diameter (nm) 9x10−9 1x10−8 1.8x10−8

Ait Acc Sep Process Aitken and accumulation mode separation diameter
scale factor

0.9 1.5 2

Act Diam Process Cloud drop activation diameter (nm) 50 75 100

Cloud pH Clean Process pH of cloud drops in ‘clean’ environments 4 5 6.5

Cloud pH Poll Process pH of cloud drops in ‘polluted’ environments 3.5 4 5

Nuc Scav Diam Process Off set diameter to be added to cloud drops before nu-
cleation scavenging is initiated (nm)

0 25 50

T Ice Process Temperature threshold for the suppression of
scavenging of insoluble and soluble particles in
mixed-phase clouds (K0)

253 258 268

Drizz Rate Process Precipitation rate in low-level stratocumulus
clouds scale factor

0 0.5 1

Dry Dep Ait Process Dry deposition velocity Aitken mode aerosol scale fac-
tor

0.5 1 2

Dry Dep Acc Process Dry deposition velocity of accumulation mode aerosol
scale factor

0.1 1 10

Dry Dep SO2 Process Dry deposition velocity of SO2 scale factor 0.1 1 10

1
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Quantity Global Southern
Hemi-
sphere

Northern
Hemi-
sphere

Land Marine

2008-1850 CDNC (m−3) 698 258 1069 537 774

2008-1978 CDNC (m−3) -23.1 15.9 -50.6 -94.3 10.7

2008-1978 absolute
CDNC (m−3)

212.4 54.9 341.4 172.2 231.5

2008-1998 CDNC (m−3) -31.0 -0.5 -55.7 -45.0 -24.3

2008-1998 absolute
CDNC (m−3)

82.3 23.3 130.8 71.9 87.2

2008-1850 CAE forcing
(Wm−2)

-0.671 -0.124 -0.566 -0.516 -0.743

2008-1978 CAE forcing
(Wm−2)

-0.012 0.000 0.063 0.037 -0.034

2008-1978 absolute CAE
forcing (Wm−2)

0.138 0.016 0.138 0.091 0.160

2008-1998 CAE forcing
(Wm−2)

0.013 0.006 0.036 0.022 0.008

2008-1998 absolute CAE
forcing (Wm−2)

0.056 0.009 0.059 0.042 0.063

1
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Source LW SW Net

This study (year 2000) 23.8 -49.5 -25.7

CERES 10-yr average (2000-2010) 29.5 -47.5 -18.8

CMIP5 range 10-yr average (1995-2005) (20.7,30.7) (-40.8,-54.7) (-19.9,-28.9)
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Supporting Information

Model description

The UK Hadley Centre Met Office Unified Model (HadGEM3) (HadGEM3, 2016) is a

three-dimensional global atmosphere model. HadGEM3 simulations can make use of the

UK Chemistry and Aerosol (UKCA) model, within which the evolution of particle size

distribution and size-resolved chemical composition of aerosols are calculated using the

GLObal Model of Aerosol Processes (GLOMAP) (Spracklen et al., 2005a; Mann et al.,

2010, 2012). The simulations that form the ensemble members used here make use of

release version 8.4 of UKCA, run using 1.25◦x1.875◦ horizontal resolution and 85 vertical

hybrid pressure levels. Successive versions of the GLOMAP model have been widely

evaluated against global measurements of particle number concentration (Spracklen

et al., 2010; Reddington et al., 2011), chemical compositions (Spracklen et al., 2011a;

Browse et al., 2012; Schmidt et al., 2011) and cloud active aerosol concentrations

(Korhonen et al., 2008; Spracklen et al., 2011b; Pringle et al., 2012). The HadGEM

models are subject to constant monitoring for their use in numerical weather prediction

and have informed successive Coupled Model Inter-comparison Project (CMIP)

experiments (Taylor et al., 2012).

The aerosol size distribution is defined by seven log-normal modes: one soluble

nucleation mode and both soluble and insoluble Aitken, accumulation and coarse modes.

The aerosol chemical components are sulphate, sea salt, black carbon, particulate

organic carbon and dust. Secondary organic carbon is produced from the first stage

oxidation products of biogenic monoterpenes under the assumption of zero vapour

pressure. Secondary organic carbon is combined with particulate organic matter after

kinetic condensation on the aerosol.

The GLOMAP model resolves new particle formation, coagulation, gas-to-particle

transfer, cloud processing and deposition of gasses and aerosols. The activation of

aerosols into cloud droplets is calculated using distributions of sub-grid vertical velocities

(West et al., 2014) and the removal of cloud droplets is calculated by the host model.

Aerosols are also removed by impaction scavenging of falling raindrops according to the

parametrisation of clouds and precipitation collocation (Lebsock et al., 2013; Boutle

et al., 2014). Aerosol water uptake efficiency is determined by ‘Köhler theory’ (Köhler et

al., 2006) using size and composition dependent hygroscopicity factors (κ) (Petters &

Kreidenweis, 2007).
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Anthropogenic emission scenarios prepared for the Atmospheric Chemistry and Climate

Model Inter-comparison Project (ACCMIP) (Lamarque et al., 2010) and prescribed in

some of the CMIP Phase 5 experiments (Taylor et al., 2012) are prescribed here.

Carbonaceous aerosol emissions were prescribed using a ten year average of 2002 to 2011

monthly mean data from the Global Fire and Emissions Database (GFED3) (der Werf

et al., 2010).

Top-of-the-atmosphere (ToA) clear-sky reflected shortwave radiation (RSR) calculations

account for above-cloud scattering and absorption of aerosol (Ghan, 2013). Biases in

clear- and cloudy-sky RSR calculations resulting from the horizontal collocation of

aerosols and clouds at different altitudes were removed using diagnostics from a

“double-call” configuration where aerosols and radiation are decoupled in the second call

to the radiation code.

Each simulation was subject to a seven month spin-up period, with parameters set to

their median values for the first four months before perturbations were applied to

individual ensemble members. The output analysed in this research comprises the full

year of data for each simulation following the spin-up period. All results discussed in the

main article all for global, annual mean values. Results for monthly mean values are

provided to indicate the temporal dependence of aerosol and atmospheric parameter

influence on seasonally varying model output.

Nudging

Newtonian relaxation was used in these simulations to ‘nudge’ calculated model

horizontal winds towards European Centre for Medium-Range Weather Forecasts

(ECMWF) ERA-Interim reanalysis values for 2006 between model vertical levels 17-80

(approximately 2.15 to 60 km) using a six hour relaxation timescale. Nudging of

atmospheric states is used primarily to validate output from global models (Jeuken

et al., 1996; Telford et al., 2008) or to ensure that pairs of simulations have near-identical

atmospheric states, so that aerosol and/or chemistry perturbations can be applied and

their effects quantified using single realisations of each simulation (van Aalst et al., 2004;

Spracklen et al., 2005b). Without nudging radiative fluxes need to be averaged over

many decades in order to produce signals stronger than the noise resulting from internal

variability (Kooperman et al., 2012).

Nudging towards horizontal winds from ECMWF reanalyses allows low-level cloud
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responses to parametric perturbations to be captured, whilst removing much of the

spatial heterogeneity in ‘free-running’ simulations. By nudging to horizontal winds above

2km, synoptic-scale dynamical features are consistent across the ensemble.

Nudging in GCMs is typically applied to horizontal winds and temperature

simultaneously (Telford et al., 2008). Nudging to horizontal winds and not temperature

can produce ToA radiative fluxes that are in better agreement with those from

free-running simulations (Zhang et al., 2014). Phase III of the AeroCom model

intercomparison is scheduled to be conducted using simulations nudged to horizontal

winds only. By adopting this nudging configuration liquid water path and atmospheric

humidity can respond to aerosol-induced changes in temperature in our simulations,

allowing more of the rapid responses of clouds and radiation to aerosol perturbations to

be captured. Furthermore nudging to horizontal winds and not temperature increases

the number of degrees of freedom with which the model can disperse inconsistencies in

atmospheric states during the relaxation process.

Parameter perturbations

The 27 parameters perturbed in the ensembles analysed here are presented in Extended

Data Tables 1 and 2. Parameters are categorized as either aerosol or atmospheric

according to their role in the model.

The atmospheric parameters perturbed in this research were identified as being those

with the potential to contribute to uncertainty in a broad range of observational metrics

(Sexton et al., In prep.). A number of parameters elicited but not previously tested in a

sensitivity analysis framework are included here because they significantly influence

clouds and/or precipitation in one-at-a-time perturbation screening experiments, where

parameters are individually perturbed to their maximum or minimum value and the

output compared to that from the simulation with median parameter values. The role of

all parameters in the model are briefly described in Extended Data Tables 1 and 2.

Aerosol parameters included in the ensemble either contribute significantly to

uncertainty in cloud drop number concentrations (Lee et al., 2013) and/or aerosol

cloud-albedo effect forcing (the ACI without accounting for rapid adjustments) at the

global (Regayre et al., 2014) or regional scale (Regayre et al., 2015). Some parameters

have been included in the ensemble because they represent structural advances in the

model about which there is sufficient uncertainty. An example of this is the refractive
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indicies of carbonaceous aerosols which are important for ARI forcing and atmospheric

temperatures (Bond et al., 2013).

The probability density functions used here to represent expert beliefs about parameter

uncertainty are predominantly trapezoidal distributions. Using trapezoidal distributions

to represent parameter uncertainty avoids having an overly-centralised Monte-Carlo

sample of the multi-dimensional parameter space. Furthermore, experts converged on

agreement about parameter uncertainty using trapezoidal distributions faster than they

did when attempting to use other types of distribution. Where elicited distributions were

not suitable for computationally efficient sampling using the extended-FAST sensitivity

analysis approach (Saltelli et al., 1999), they were closely approximated using

trapezoidal distributions.

The trapezoidal distributions (Hetzel, 2012) in Extended Data Tables 1 and 2 are

specified using six or seven values. The first four represent the minimum, left vertex,

right vertex and maximum parameter values. The next two values represent the slope of

the left and right side of the trapezoid, determining it’s concave or convex nature. A

value of two produces a straight-sided trapezoid. Where a seventh value is present it

represents the gradient of the top of the trapezoid.

Perturbed parameter ensemble

Eighteen aerosol emission, deposition and process parameters and nine atmospheric

parameters were perturbed simultaneously in pairs of simulations. Global annual mean

radiative forcings were calculated as the difference in ToA radiative flux for each pair of

simulations, with identical perturbed parameter values but different emission inventories.

Maximin Latin Hypercube sampling was used to create a parameter combination design,

of 162 points, that spans the 27-dimensional parameter uncertainty space. A simulation

with all parameters set to their median values was included in the ensemble to ensure

coverage of what experts believed to be an important region of parameter space. A

further set of 54 simulations, with parameter combinations that augment the original

design, was created to test the validity of the statistical approach (Bastos & O’Hagan,

2009). The extended-FAST sampling method (Saltelli et al., 1999), with 104 sample

points per parameter drawn from the statistical emulator for the model, was used to

obtain data for conducting sensitivity analysis.
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In total 217 perturbed parameter simulations were created for each anthropogenic

emission period. Twenty-five simulations did not complete an annual cycle in at least

one of the ensembles (with 1850, 1978 and PD emissions) because the combinations of

parameters produced values that exceeded model performance thresholds. The ensemble

of simulations for each period was made up of the remaining 191 simulations.

Preliminary parameter combination tests revealed that combinations of Entrain Amp

larger than 1.8 and Mix Detrain larger than 8.0 caused problems with model evolution,

with no detectable dependence on the value of other parameter values. The corner of

this 2D plane within the 27-dimensional parameter space was removed from the

ensemble design and analysis. Combinations of these two parameters were chosen that

provided a denser design in the remaining 2D space. The extended-FAST sampling

method was adapted to reject samples from parameter space that was not included in

the design. Rejected combinations of these parameters were resampled from the

restricted 2D parameter space without affecting the sampling frequency across the

remaining 25-dimensional parameter space. The majority of incomplete simulations in

the design had combinations of Entrain Amp and Mix Detrain near to the border of this

rejected area of parameter space.

Sensitivity Analysis

Sensitivity analysis (Saltelli et al., 2000; Lee et al., 2013) of global annual mean ERF,

ACI and ARI was conducted using 270000 member Monte Carlo samples from Bayesian

statistical emulators (O’Hagan, 2006). Each emulator was conditioned on output from

the 191 perturbed parameter simulations. Emulators provide a statistical representation

of model output for all points within the multi-dimensional parameter space and have

been widely used to analyse climate model output (Murphy et al., 2007; Sexton &

Murphy, 2012; Lee et al., 2013; Carslaw et al., 2013; Harris et al., 2013; Tett et al., 2013;

Regayre et al., 2014; Hamilton et al., 2014; Johnson et al., 2015; Regayre et al., 2015).

Here each emulator was validated using the simulations created specifically for the

purpose. In each case the extra simulations were combined with the original set of

simulations to build new emulators with better space-filling properties. It is assumed

that the emulators created using a denser parameter space better represent the

multi-dimensional response surface. Histograms of the 270000 member 1850-PD aerosol

ERF and PD ToA RSR samples of the emulators are presented in Extended Data Fig 1

and 2 respectively.
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The emulator makes the dense sampling of the model output across the full parameter

uncertainty space possible. Hence, we can then use variance-based sensitivity analysis

techniques with the emulator to quantify parameter contributions to uncertainty. The

statistic considered most in the discussion of these results is the percentage reduction in

output variance that could be expected if the parameter, or group of parameters, were

known exactly. Interactions between parameters can also be quantified and this informs

the interpretation of results.

Reduced dimensionality analysis

The effect of ignoring the uncertainty in the parameter Rad Mcica Sigma, which

dominates the variance in PD ToA fluxes is summarised in Extended Data Table 4.

Contributions to variance from uncertain parameters can be ignored by fixing the

parameter in question to some prescribed value, effectively reducing the dimensionality

of the parameter space. Removing the Rad Mcica Sigma uncertainty from the sensitivity

analysis alters the proportions of variance caused by aerosol and the remaining

atmospheric parameters. However atmospheric parameters remain the largest source of

ToA radiative flux uncertainty.

The dimensionality of the parameter space was reduced in a similar fashion to obtain the

credible range of aerosol ERF values in response to aerosol perturbations alone. In this

case all atmospheric parameters were set to their median values during sampling.

Reducing the dimensionality of parameter space provides a first-order approximation of

the aerosol ERF credible interval. Sampled values from the aerosol parameter

combinations and the resulting credible interval depend on the atmospheric parameter

values prescribed. The representativeness of the reduced dimensionality credible interval

depends on the shape of the multi-dimensional response surface in the collapsed

dimensions. Median values were used as they combine to provide the region of greatest

expert confidence in atmospheric parameter values.

Sensitivity results for other periods

Contributions to variance in ToA radiative fluxes for 1978 and 1850 are provided in

Extended Data Fig 3 and 4 respectively. The results are very similar to those in Fig. 1.

Contributions to variance in 1978-2008 aerosol ERF, ACI and ARI are presented in

Extended Data Fig. 5. The sources and percentage contributions to variance in 1978-PD

are different from those in the 1850-PD period (Fig. 2). Sources of changing global mean

low cloud fraction variance over the industrial period are presented in Extended Data
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Fig. 6. Natural aerosol emission parameters contribute significantly to variance in

changing cloud fraction suggesting that, in this model, the strength of the cloud lifetime

response to aerosols is highly uncertain in the PI.

Present-day RSR constraints

The ±0.5 W m−2 constraint used to produce Fig. 3 represents the observational

uncertainty caused by instrument calibration (Loeb et al., 2009) and the ±0.25 W m−2

constraint represents within-CERES observational uncertainty (Loeb et al., 2012),

assuming no systematic biases. The observational uncertainty ranges used here are made

intentionally narrow by neglecting multiple sources of significant satellite observational

uncertainty (Hartmann et al., 2013). We assume the model simulates RSR with no error

to avoid inflating the RSR range. In practice using a single observational constraint and

disregarding the discrepancy between simulated and real world values can lead to

over-constraint of model output (Murphy et al., 2007; Sexton et al., 2012; Stephenson

et al., 2012).

Credible intervals of RSR and aerosol ERF using different present-day RSR constraints

with ±0.25 W m−2 observational uncertainty are provided in Extended Data Table 3.

The RSR value from the simulation with all parameter values set to their median was

chosen as the center of the first theoretical sample as it represents the region of

parameter space with highest expert confidence in individual parameter values. Other

samples were chosen such that values were towards the ends of the simulated RSR range.

Choosing samples near the ends of the RSR range provides a broader test of the capacity

for present-day RSR to constrain aerosol ERF, yet produces much smaller samples than

those used in Fig 3. A further constraint was placed on Rad Mcica Sigma the parameter

causing most of the variance in PD RSR and PI-PD aerosol ERF. This parameter was

restricted to within 2% of its original range, centred on the modal Rad Mcica Sigma

value from the ±0.25 W m−2 sample. This significantly reduces the sample size but, as in

all other cases, the aerosol ERF is poorly constrained by the very tight present-day RSR

constraint.
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Table 1: Descriptions of the perturbed parameters 1-15 used to create the ensemble and
the probability density functions used in the sampling process.

Index Name Source Description PDF
1 Rad Mcica Sigma Atm Fractional standard Trapezoid

deviation of sub-grid (0.1,0.4,1.5,2.2,2,2)

condensate seen

by radiation

2 C R Correl Atm Cloud and rain Trapezoid

sub-grid horizontal (0.0,0.6,0.9,1.0,1.8,1.1,1.5)

spatial correlation

3 Niter Bs Atm Number of Uniform

microphysics (5,20)

iteration sub-steps

4 Ent Fac Dp Atm Entrainment Trapezoid

amplitude (0,0.5,2,4,2,2)

5 Amdet Fac Atm Mixing detrainment Trapezoid

rate (0,0.5,10.0,15.0,2,2)

6 Dbsdtbs Turb 0 Atm Cloud erosion Trapezoid

rate (0,1e-04,5e-04,1e-03,2,2)

7 Mparwtr Atm Maximum value Trapezoid

of function controlling (1e-3,1e-3,1.5e-3,2e-3,2,2)

convective parcel

maximum condensate

8 Dec Thres Cld Atm Threshold for Trapezoid

cloudy boundary (0.01,0.011,0.1,0.8,2,4,4)

layer decoupling

9 Fac Qsat Atm Rate of change in Uniform

convective parcel (0.25,1)

maximum condensate

10 Ageing Aer Ageing of hygrophobic Trapezoid

aerosols (no of (0.3,1,5,10,2,2)

monolayers of

organic material)

11 Cloud pH Aer pH of cloud Trapezoid

droplets (4.6,5.3,6.3,7,4,2)

12 Carb BB Ems Aer Carbonaceous biomass Trapezoid

burning emissions (0.25,0.8,2.2,4,2,2)

scale factor

13 Carb BB Diam Aer Carbonaceous biomass Trapezoid

burning emission (90,160,240,300,2,2)

diameter (nm)

14 Sea Spray Aer Sea spray aerosol Trapezoid

scale factor (0.125,0.6,3,8,4,3)

15 Anth SO2 Aer Anthropogenic Trapezoid

SO2 emission (0.6,0.81,1.09,1.5,2,2)

scale factor
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Table 2: Descriptions of the perturbed parameters 16-27 used to create the ensemble and
the probability density functions used in the sampling process.

Index Name Source Description PDF
16 Volc SO2 Aer Volcanic Trapezoid

SO2 emission (0.71,0.99,1.7,2.38,4,1.1)

scale factor

17 BVOC SOA Aer Biogenic secondary Trapezoid

aerosol formation from (0.81,1.08,3.5,5.4,3,3)

volatile organic compounds

scale factor

18 DMS Aer Di-methyl-Sulphide Trapezoid

surface ocean (0.5,1.26,1.82,2,2,3)

SO2 concentration

scale factor

19 Dry Dep Acc Aer Accumulation mode Trapezoid

dry deposition velocity (0.1,0.32,3.16,10,2,2)

scale factor

20 Dry Dep SO2 Aer SO2 dry Trapezoid

deposition velocity (0.2,0.56,1.78,5,2,2)

scale factor

21 Kappa OC Aer Köhler coefficient Trapezoid

of organic carbon (0.1,0.14,0.25,0.6,4,4)

22 Sig W Aer Updraft vertical Trapezoid

velocity standard (0.1,0.36,0.44,0.7,2,2)

deviation

23 Dust Aer Dust emission Trapezoid

scale factor (0.5,0.7,1.4,2,2,2)

24 Rain Frac Aer Fraction of cloud Trapezoid

cloud covered area (0.3,0.31,0.55,0.7,2,3)

in large-scale clouds

where scavenging occurs

25 Cloud Ice Thresh Aer Threshold of Trapezoid

cloud ice fraction (0.1,0.105,0.35,0.5,2,3)

above which nucleation

scavenging is suppressed

26 BC RI Aer Imaginary part of Trapezoid

black carbon (0.2,0.352,0.616,0.8,4,2)

refractive index

27 OC RI Imaginary part of Trapezoid

organic carbon (0,0,0.05,0.1,2,6)

refractive index
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Table 3: PD RSR constraints and the resulting 95% credible intervals of 1978 and 1850
RSR as well as 1978-PD and 1850-PD aerosol ERF. Median, High and Low columns contain
output from the theoretical constraints centred on the ensemble median and selected
extreme PD RSR values. The final column contains output from the near-CERES sample
with Rad Mcica Sigma restricted to within 2% of its original range.

Constraint Median High Low Near-CERES
with restricted

Rad Mcica Sigma
PD RSR 102.6, 103.1 128.1, 128.6 88.6, 89.1 98.1, 98.5
1978 RSR 102.6, 103.1 128.2, 128.6 88.6, 89.1 98.0, 98.5
1850 RSR 100.3,101.9 125.0, 126.2 86.7, 88.1 95.8, 97.3

1978-PD ERF -0.07, 0.07 -0.09, 0.05 0.01, 0.09 -0.09, 0.07
1850-PD ERF -2.27, -1.00 -1.87, -0.72 -2.41, -1.51 -2.19, -0.97
1850-PD ERF 1.27 1.15 0.9 1.22
credible range

Table 4: Percentage contributions to variance in ToA radiative fluxes from atmospheric
and aerosol parameters with and without consideration of uncertainty in the parameter
Rad Mcica Sigma.

Output RSR Cloudy-sky RSR Clear-sky RSR Cloudy-sky OLR

Atmospheric parameters 79 82 4 91
unrestricted

Aerosol parameters 19 8 88 3
unrestricted

Atmospheric parameters 50 59 1 80
with Rad Mcica Sigma

uncertainty neglected

Aerosol parameters 44 27 91 7
with Rad Mcica Sigma

uncertainty neglected
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Extended Data Fig. 1. Histogram of the 270000 member Monte Carlo sample of 1850-PD annual global mean aerosol ERF, sampled across the 27-dimensional parameter space.
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Extended Data Fig. 2. Histogram of the 270000 member Monte Carlo sample of PD annual global mean RSR, sampled across the 27-dimensional parameter space.
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Extended Data Fig. 3. Percentage contributions to variance in PI global, monthly and annual mean ToA a) RSR, b) Clear-sky RSR c) Cloudy-sky RSR and d) OLR. Graphical features are identical to Fig. 1 in the main article.
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Extended Data Fig. 4. Percentage contributions to variance in 1978 global, monthly and annual mean ToA a) RSR, b) Clear-sky RSR c) Cloudy-sky RSR and d) OLR. Graphical features are identical to Fig. 1 in the main article.
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Extended Data Fig. 5. Percentage contributions to variance in 1978-PD a) aerosol ERF, b) ARI and c) ACI. Graphical features are identical to Fig. 1 in the main article.
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Extended Data Fig. 6. Percentage contributions to variance in 1850-PD low cloud fraction. Graphical features are identical to Fig. 1 in the main article.
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Appendix 4 - The GLOMAP model

The evolution of the The GLObal Model of Aerosol Processes (GLOMAP) (Spracklen
et al., 2005; Mann et al., 2010, 2012) is described here in order to indicate the
thoroughness with which its capacity to simulate aerosol distributions has been tested,
thereby establishing the suitability of GLOMAP for creating single model PPEs (Collins
et al., 2010).

The GLOMAP model when used as a component of the TOMCAT chemical transport
model (Chipperfield, 2006), as is the case in Chapters 2-4, uses prescribed, off-line
meteorology and clouds; typically meteorological fields from the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis and clouds from
International Satellite Cloud Climatology Project (ISCCP) D2 data (Rossow & Schiffer,
1999). Anthropogenic, volcanic and dust emissions are prescribed, as are DMS emissions
in the ocean. However, sea spray and DMS emission fluxes into the atmosphere are
calculated within the model using wind speed dependent parametrisations. GLOMAP
can be coupled to the latest versions of HadGEM3, as described in Chapter 5 and
Appendix 3 and can be used in a ‘nudged’ configuration with prescribed meteorological
fields or a ‘free-running’ configuration with meteorological fields calculated internally.

The earliest version of the model (Spracklen et al., 2005) predicted Cloud Condensation
Nuclei (CCN) concentrations without distinction between aerosol chemical species. The
current model version is capable of distinguishing between sulphate, organic carbon
(OC), black carbon (BC), sea spray and dust, and thus allows for distinct aerosol
evolution depending on the size and hydrophilic nature of the species (Mann et al., 2012).

The average aerosol size distribution in a GLOMAP model grid box can be used to
calculate Cloud Drop Number Concentration (CDNC). Cloud drops are defined to be
those aerosols large enough to activate and form cloud droplets, for a given updraught
speed at a fixed pressure level, using a mechanistic scheme (Abdul-Razzak & Ghan,
2000; Nenes & Seinfeld, 2003) essential for realistic CDNC simulation (Pringle et al.,
2009). Empirical schemes that relate CDNC to aerosol number or mass, but not both,
are shown to create systematic regional differences in CDNC. In such simplified schemes
an increase in mass typically leads to an increase in CDNC, with no regard for potential
growth of individual CCN through condensation or collision and coalescence. Empirical
schemes lead to maximum ACI uncertainty in regions of persistent stratocumulus cloud,
the Arctic and Southern oceans (Pringle et al., 2009). These regions are inherently
sensitive to changes in aerosol due to the small background CDNC, as discussed in
Chapter 2. The use of empirical schemes is an important source of uncertainty in RF
that is avoided when using GLOMAP. The default fixed updraft speed in the GLOMAP
model is 0.15m s−1 over all continental regions and 0.3m s−1 over marine regions. In
Chapter 5 where GLOMAP is coupled to HadGEM3, samples of updraft speeds are used
so as to include sub-grid variation in the droplet activation calculations and the standard
deviation of the updraft speed probability density function (Sig W) is perturbed.

A sectional two-moment scheme is used to represent the global aerosol size distribution
(Spracklen et al., 2005). The two-moment scheme utilises both aerosol mass and number,
making it superior to single-moment schemes used in all but the most recent GCMs as it
is produce physically explicable regional variance in CDNC (Bellouin et al., 2012).

The ‘modal’ version of GLOMAP used in this research is a simplification of the ‘bin’
version, designed to be computationally efficient and therefore making it suitable for
inclusion in GCMs (Mann et al., 2010). The major simplification of the model version
used by (Spracklen et al., 2005) is the representation of the aerosol size distribution,
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where seven modes are used to represent the aerosol distribution; four soluble modes for
nucleation, Aitken, accumulation and coarse aerosols, as well as three insoluble modes
spanning Aitken to coarse aerosols. Each mode remains dynamic in the representation of
number and mass, yet is restricted to having a log-normal shape. Furthermore process
rates for each mode are determined by mode average rather than full mode size range
integration. Using modal averages particularly affects particle growth and nucleation
scavenging rates potentially simulating excess mass in the free troposphere. However, the
‘modal’ aerosol representation produces comparable results to the computationally
expensive ‘bin’ version of GLOMAP, so long as the mode widths and inter-modal
separation sizes are well tuned (Mann et al., 2012). The widths of the Aitken and
Accumulation modes are sources of parametric uncertainty and their roles as sources of
aerosol ERF uncertainty are examined in Chapters 2-5.

A comparison of a version of the HadGEM model coupled to GLOMAP, with a version
using the simpler mass-based ‘CLASSIC’ scheme (Bellouin et al., 2012), reveals that
GLOMAP, with its capacity to simulate regional changes in CDNC, leads to a doubling
of ARI forcing and a global average decrease in simulated ACI forcing by approximately
20%. The ACI forcing is weaker because by simulating particle formation and retaining
number and mass in the nucleation mode, GLOMAP produces a larger background
CDNC and the relationship between cloud albedo and CDNC is strongly non-linear
(Twomey, 1974; Taylor & McHaffie, 1994) as emphasised in Chapter 2.

It has been shown in this Appendix that the GLOMAP model is sophisticated in its
treatment of aerosol and performs to a standard acceptable for inclusion in GCMs used
to produce climate projections for policy development, establishing GLOMAP and
HadGEM3 coupled to GLOMAP as suitable models for use in the sensitivity analyses
conducted within this thesis.

Appendix 5 - Identifying a suitable anthropogenic emission
inventory

In Chapter 2 emission fluxes were prescribed using the ‘AeroCom’ emission inventory
(Dentener et al., 2006). The ‘AeroCom’ dataset is only available for the years 1750 and
2000, being designed for a specific set of AeroCom experiments. In order to explore the
temporal dependence of the sensitivity analysis results in Chapter 2 an alternative
emission inventory was required. Furthermore, the experimental design for Chapter 3
required emission inventories for the years 1850, 1978, 1998 and 2008. Alternative
emission inventory configurations are explored here and critiqued according to their
ability to maximise comparability with the broader Chapter 2 experimental design.

The three alternatives considered for representing anthropogenic emissions were:

• Option 1: Use the AeroCom emission inventory for the years where it is available
and the MACCity emission dataset, a linear interpolation of the ACCMIP dataset
(Lamarque et al., 2010), for all remaining years. The year 1998 could potentially
be exchanged for the year 2000 in the experimental design.

• Option 2: Use changes in the MACCity emission inventory to scale AeroCom
emissions between 1750 and 2000 and extrapolate to 2008, thus only directly using
AeroCom emissions.

• Option 3: Rely solely on the MACCity emission dataset for all years, without
reference to the AeroCom emission inventory.

Fig. A7.12 shows the aerosol distribution produced by GLOMAP simulations for each
emission inventory for the year 2000 and how they compare to North Atlantic marine BL
observations (Raes et al., 2000). This region contains persistent stratocumulus clouds
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Figure 7.12: Aerosol distributions produced by GLOMAP for the year 2000 us-
ing AeroCom (bold) and MACCity (dashed) emissions. Observed North Atlantic
marine BL aerosol concentrations at a range of radii are shown using stars for
comparison.

and hence is an important region for ACI forcing calculations. The differences in regional
aerosol distributions in this region are typical for these two emission inventories. The
nucleation and Aitken mode aerosol concentrations differ slightly because the MACCity
inventory includes updated shipping sector emissions. The differences between regional
aerosol distributions from using the two inventories is far smaller than the difference
between model output and the observations.

Because contributions to ACI variance are calculated within each model grid box, the
spatial representation of emission fluxes is crucially important. Fig. A7.13 shows the
differences in BC and OC emission fluxes between the AeroCom and MACCity emission
inventories for the year 2000. The spatial representation of regional emissions clearly
differs substantially between inventories. MACCity was developed using predominantly
the same inventories as AeroCom (Dentener et al., 2006; Lamarque et al., 2010), yet in
most cases, these inventories have been updated to incorporate technological advances
and historical observations, thus its spatial representation is more reliable.

Budgets for the two datasets for the year 2000 are summarised in Table A.7.12.
Differences in SO2 emissions are partly caused by the method of categorising emissions
into sectors, however the higher emissions in BC, OC and CO result from insights into
historical emissions incorporated into the MACCity emission inventory.

The magnitude of emission flux differences in some model grid boxes has the potential to
generate artificially large aerosol ERF estimates, making option one unsuitable. The
AeroCom inventory is far sparser than MACCity for most emission sectors and has peak
regional emissions in different model grid boxes. Differences in the spatial
representations of carbonaceous aerosol emissions from the shipping sector have high
potential to generate spurious ACI forcing values if differences in CDNC and effective
radius between the two inventories were used calculate aerosol forcing.
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Figure 7.13: Carbonaceous emission flux differences between the MACCity and
AeroCom datasets for the year 2000. All fluxes are shown in kg m−2 s−1 on a
logarithmic scale. a) and b) contain values for BC and c) and d) contains values
for OC. a) and c) are from the biofuel sector. c) and d) are from the fossil fuel
sector. In each case the AeroCom values were subtracted from MACCity values
within each model grid box.

Emission sector AeroCom MACCity Ratio
MACCity/AeroCom

Domestic SO2 1.21E+10 1.05E+10 0.87
Industry SO2 5.01E+10 3.54E+10 0.71
Shipping SO2 9.43E+09 1.44E+10 1.52
Power plant SO2 6.00E+10 6.68E+10 1.11
Road transport SO2 2.60E+09 5.99E+09 2.30
Total SO2 1.36E+11 1.33E+11 0.98

BC biofuel 2.30E+09 2.90E+09 1.26
BC fossil fuel 3.87E+09 3.94E+09 1.02
Total BC 6.17E+09 6.84E+09 1.11
OC biofuel 1.27E+10 1.61E+10 1.27
OC fossil fuel 4.16E+09 8.00E+09 1.92
Total OC 1.69E+10 2.41E+10 1.43
CO 4.86E+16 6.34E+16 1.30

Table 7.12: Year 2000 emission flux totals in kg m−2 s−1 for the AeroCom and
MACCity emission inventories and the ratio of inventory totals.
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Figure 7.14: Differences in the spatial reprentation of SO2 emissions from power-
plants between the AeroCom and MACCity inventories. Grid boxes shaded dark
blue represent locations where the MACCity emission inventory for the year 2000
has SO2 emissions from the powerplant sector, yet the AeroCom emission inventory
does not.

The differences in spatial representation of emission fluxes also limits the practical
application of option two. Scaling of AeroCom was attempted using the average
MACCity emission flux trend, for each sector, in a halo of 5 grid boxes; the central grid
box and the nearest grid box in the latitudinal and longitudinal directions. Scaling in
this manner can be used to produce emission datasets for the years 1978, 1998 and 2008
for most sectors, however in a small number of sectors the spatial differences in emission
fluxes were too great for the halo of grid boxes to capture. Fig. A7.14 shows the
locations where year 2000 emissions of SO2 from powerplants exist in the MACCity
inventory, but not in AeroCom. The lack of spatial consistency between the emission
inventories rules out the temporal scaling of emissions via option two.

The AeroCom and MACCity anthropogenic emission inventories are too disparate for
the application of either option one or two, thus the MACCity was used independently
(Option 3) for alternative reference years in Chapter 2 and all simulations in Chapters
3-5. Choosing to use the MACCity anthropogenic emission inventory constitutes a
structural change in the experimental design of Lee et al. (2013) and the main part of
Chapter 2. Further structural changes that have the potential to improve the relevance
of the sensitivity analyses implemented and analysed in Chapters 3 and 4 are considered
in the following Appendix.

Appendix 6 - Structural changes to the GLOMAP model

Structural uncertainty in the GLOMAP model is explored in this Appendix by testing
two alternative microphysical process parametrisations. The sensitivity analyses of Lee
et al. (2013) and Chapter 2 revealed inadequacies in the model (Carslaw et al., 2013)
prompting the improvement of some process parametrisations. Firstly, the rate of
removal of aerosol via wet deposition within low-level stratocumulus clouds is tested .
This is a new parametrisation designed to improve aerosol concentration representations
in regions of persistent stratocumulus cloud (Browse et al., 2012) important for ACI
forcing. Secondly, the particle formation parametrisation within the continental
boundary layer is altered so that it is enhanced in the presence of organic material



152 CHAPTER 7. APPENDICES

Figure 7.15: Accumulation mode aerosol concentrations (cm−3) for January where
a) no drizzle parametrisation is implemented and b) the drizzle parametrisation is
implemented.

(Metzger et al., 2010). This change brings the model in line with theoretical
developments regarding particle formation.

Each structural change is implemented in isolation and after a 3 month spin-up period,
using year 2008 anthropogenic emissions and meteorology. The resulting monthly
average aerosol concentrations for January are compared to those from a control
simulation where the default scheme is used. These tests therefore provide a first order
assessment of the influence of each scheme on aerosol concentrations within GLOMAP.
These two structural changes are examined here in the context of including them and
their associated parameter perturbations in the experimental design of the PPEs created
for Chapters 3-5.

Drizzle in low level stratocumulus clouds
The drizzle parametrisation for low-level stratocumulus clouds (Browse et al., 2012) is
implemented here, with the parameter set to its median value as elicited by experts for
Chapters 3 and 4. Fig. A7.15 shows Accumulation mode aerosol concentrations before
and after implementing the drizzle parametrisation. Fig A7.16 shows the proportion of
Accumulation mode aerosol from the control case remaining when the drizzle
parametrisation is implemented. Low-level stratocumulus cloud fields occur
predominantly off the Western coast of continents, in regions known to be important for
ACI forcing. It is in the regions of persistent Stratocumulus cloud and the Summer pole
that the drizzle parametrisation has the greatest influence as intended.

Structural uncertainty represented by including the drizzle parametrisation is large
enough to warrant including the parametrisation in the version of the model used to
generate the PPE used in Chapters 3 and 4 and to perturb parameters related to the
drizzle parametrisation. However, in regions where the drizzle parametrisation
significantly reduces aerosol concentrations, particle formation occurs more prolifically,
as shown in Fig. A7.17. GLOMAP marine boundary layer aerosol concentrations are
known to be positively biased (Spracklen et al., 2010) and applying the drizzle scheme in
isolation exacerbates the bias. This issue is addressed in the following section.

Particle formation in the boundary layer with organics

In Lee et al. (2013) and Chapter 2 the nucleation of aerosol particles from precursor gas
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Figure 7.16: The proportion of January average Accumulation mode aerosol from
the control simulation remaining when the drizzle parametrisation is implemented.

Figure 7.17: The proportional change in average January nucleation mode aerosol
concentrations when the drizzle scheme is implemented.
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Figure 7.18: Average January nucleation mode aerosol concentrations (cm−3) where
a) the default ‘Activation’ particle formation scheme is used and b) the ‘Metzger’
particle formation scheme is implemented.

species is parametrised using the ‘Activation’ scheme (Kulmala et al., 2004, 2006) which
generates new particles in the boundary layer in proportion to available sulphuric acid.
Introducing this scheme alleviated a low model bias in continental boundary layer
aerosol concentrations (Spracklen et al., 2010), yet introduced a positive nucleation mode
aerosol bias in the Northern Hemisphere marine boundary layer evident in Fig. A7.12.

Lab-based experiments reveal that the rate of particle formation and the hygroscopicity
of newly formed particles are higher than can be explained by formation from SO2 alone
(Metzger et al., 2010). In theory the presence of organic material helps to stabilise the
H2SO4 clusters which explains observed particle formation rates and hygroscopicities.
This theory is supported by the direct measurements of the hygroscopicity of newly
formed particles in the presence of biogenic volatile organic compounds (BVOC)
(Keskinen et al., 2013), using the CERN CLOUD chamber (Kirkby, 2013).

An implementation of the ‘Metzger’ particle formation scheme, where particles nucleate
in proportion to available H2SO4 and organic mass derived from BVOC, reduces the
spurious nucleation mode aerosol concentrations produced by other particle formation
schemes (Metzger et al., 2010) and also generates an improved representation of the
seasonal cycle in CCN concentrations as compared to observations in regions of high
BVOC flux (Scott et al., 2013). Fig. A7.18 shows the desired effect of implementing the
Metzger scheme on nucleation mode aerosol concentrations is replicated with the
GLOMAP model.

BVOCs are believed to be the predominant source of organic matter in the atmosphere
(Andreae & Rosenfeld, 2008), however including a representation of anthropogenic
volatile organic compounds (AVOC) in the GLOMAP model, in concentrations
proportional to anthropogenic CO emissions, the simulated OC mass concentrations
better match observations over North America, Europe and Asia (Spracklen et al., 2011).
The same observed OC mass concentrations for North America (Bahadur et al., 2009)
are compared, in Fig. A7.19, to simulated concentrations where the Metzger scheme is
active and either BVOCs are the sole source of OC or where both OC sources are used.
The AVOC contribution clearly improves the agreement between simulated and observed
OC mass in this region.

Although representing AVOC emissions within the model enhances OC mass
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Figure 7.19: Average January OC mass concentrations, in µgm−3, over North
America for a) the Metzger particle formation scheme where BVOC contribute
to aerosol nucleation and b) the Metzger scheme where both BVOC and AVOC
contribute to particle formation. Observations are represented by colored circles.
Simulated concentrations are represented by the underlying background shading.

concentration comparisons to observations, it has the detrimental effect of generating
excessive nucleation mode aerosol concentrations in the marine boundary layer, as shown
in Fig. A7.20, similar to the ‘Activation’ scheme. Nucleation mode aerosol
concentrations in the marine boundary layer are far higher when AVOC contribute to
the particle formation process. This is a result of the relatively long lifetimes of
anthropogenic compared to biogenic volatile organic compounds, which allows AVOCs to
be advected substantial distances before particle formation occurs.

In order to restrict excessive new particle formation over marine regions, the ‘Metzger’
scheme is limited to acting in the continental boundary layer only for the ensemble
created for Chapters 3 and 4. Nucleation and Aitken mode concentrations showing the
effect of this restriction are presented in Fig. A7.21. Continental nucleation mode
concentrations are very similar in the two nucleation configurations although marine
concentrations are greatly reduced. Nucleated aerosol can be advected over marine
regions as can be seen for example off the South African coast in Fig. A7.21c. The
aerosol distribution over the North Atlantic with the spatially restricted particle
formation scheme compare favourably with observations (Dingenen et al., 1995), as
shown in Fig. A7.22.

Because the spatially restricted version of the Metzger particle formation
parametrisation produces a significant improvement in model-observation comparisons it
was implemented in the model configuration used to create the PPE for Chapters 3 and
4. The spatial restriction was not applied when creating the PPE for Chapter 5 because
that model configuration had no available representation of AVOCs.

Appendix 7 - Parameter screening tests

In this Appendix the effects of parameter perturbations are tested in isolation using
OAT tests. Each series of tests serves as a screening mechanism to inform the inclusion
of parameters in the PPEs. Furthermore, analysis of OAT tests provides insight into the
process-based, physical responses of aerosol distributions and TOA fluxes to extreme
parameter perturbations. The screening tests provide an opportunity to assess the effect
of each parameter on model output without needing to account for interactions between
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Figure 7.20: Average annual nucleation mode aerosol concentrations (cm−3) at
the surface for a) the Metzger particle formation scheme where BVOC contribute
to aerosol nucleation and b) the Metzger scheme where both BVOC and AVOC
contribute to particle formation.

Figure 7.21: Average January boundary layer aerosol concentrations (cm−3) for a)
and b) the nucleation mode, c) and d) the Aitken mode. Metzger particle formation
ocurrs throughout the atmosphere in a) and c), but is restricted to the continental
boundary layer in b) and d).
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Figure 7.22: Aerosol distributions for January 2008 where Metzger particle forma-
tion ocurrs throughout the atmosphere (bold) and is restricted to the continental
boundary layer (dashed). Observed North Atlantic aerosol concentrations at a
range of radii are shown using stars for comparison.

parameter perturbations.

GLOMAP screening tests

GLOMAP simulations with each of the 31 aerosol parameters used to create the PPE of
Chapters 3 and 4 are individually perturbed to the upper and lower limits of their ranges
to provide a first order assessment of the influence of uncertain aerosol parameters on
aerosol concentrations. One month simulations (after two months of spin-up from an
arbitrary simulation) were created for each test, using anthropogenic emissions for the
years 1978 and 2008. A further pair of simulations was created with all parameters set to
their median values. Restricting the simulations to a single analysis month significantly
reduces the computational cost of performing screening tests, but also introduces a risk
that parameters which contribute to variance seasonally may have their influence on
model output overlooked. The seasonality of parametric influence on aerosols as
identified by (Lee et al., 2013) was therefore considered in the interpretation of these
results.

In Fig. A7.23 the proportional changes to the median simulated monthly mean surface
CCN concentration, from the sixty-two OAT tests for each emission year, are provided
for a) the global mean, b) the model grid box containing Cape Grim, c) the Southern
Ocean regional mean and d) the North Atlantic main hurricane development regional
mean, as characterised by Booth et al. (2012). These regions were chosen because of the
presence of observational data or for their perceived climatological importance. Table
A.7.13 matches the index in Fig. A7.23 with the parameter names. In the median
simulations the 2008 global mean CCN concentration is 1.33% larger than the 1978
average. Those parameters which generate the largest changes in globally averaged CCN
concentrations in one year but not the other have the greatest potential to affect ACI
forcing over the 1978-2008 period. Conversely, since forcing is calculated using the ratio
of CDNCs, parameters that systematically influence CCN concentrations in both periods
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Table 7.13: Parameter names and the index used for Fig. A7.23.

Index Parameter key Index Parameter key Index Parameter key

1 BL Nuc 11 FF Ems 21 Volc SO2

2 FT Nuc 12 BB Ems 22 BVOC SOA

3 Ageing 13 BF Ems 23 AVOC SOA

4 Acc Width 14 FF Diam 24 DMS

5 Ait Width 15 BB Diam 25 Nuc Scav Diam

6 Nuc Ait Sep 16 BF Diam 26 T Ice

7 Ait Acc Sep 17 Prim SO4 Frac 27 Drizz Rate

8 Act Diam 18 Prim SO4 Diam 28 Dry Dep Ait

9 Cloud pH Clean 19 Sea Spray 29 Dry Dep Acc

10 Cloud pH Poll 20 Anth SO2 30 Dry Dep SO2

31 Dust

will likely have limited influence on globally averaged forcing uncertainty as described in
Chapter 5.

Dry Dep Acc produces by far the strongest response in globally averaged CCN
concentration, in agreement with Lee et al. (2013), although here it can be seen that the
response to this parameter is largely at its upper extreme. During the elicitation exercise
probability density functions were elicited for each parameter and the distribution for
Dry Dep Acc has a long upper tail, indicating that the upper extreme is highly unlikely
and will be sampled infrequently in the sensitivity analysis. The likelihood of extreme
parameter values is easily overlooked in OAT tests, where the model response at the
extreme edges of the multi-dimensional parameter space are being examined, rather than
the output variance across the multi-dimensional response surface. As such the screening
tests are not sufficient for quantifying parametric uncertainty.

The parameters which stand out regionally in the version of the model used by Lee et al.
(2013) also generate substantial changes in CCN concentrations in these screening tests,
despite the structural changes described in Appendices 5 and 6. In the Southern Ocean,
for example, the three parameters making the greatest contributions to CCN
concentration variance in Lee et al. (2013); Act Diam, Ait Width and Dry Dep Acc,
generate some of the largest OAT proportional changes.

The proportional changes to global mean CCN concentrations resulting from OAT
perturbations are generally consistent between years. In a few cases such as
Dry Dep SO2, AVOC SOA and Anth SO2 the proportional CCN responses vary
between years especially at the lower extremes. This is the result of spatial changes in
the anthropogenic emissions and suggests that these parameters may contribute
substantially to ACI forcing variance over the 1978-2008 period. There are relatively
large changes in CCN concentration proportional responses to some parameters in the
model grid box containing Cape Grim. The parameters in question are anthropogenic in
nature; Prim SO4 Frac and Prim SO4 Diam. CCN concentrations are affected by these
parameters because anthropogenic emissions are entering a relatively clean atmosphere
at Cape Grim. Although SO4 parameters have little influence globally, they have
significant influence on local aerosol concentrations. The highly localised influence of the
SO4 parameters are highlighted in Fig. A7.24, which shows the ratio of Aitken aerosol
mode concentrations for the perturbed and median simulations for January 2008. Not
only do the parameters have highly localised effects, their effects also cancel. Perturbing
Prim SO4 Frac to its upper extreme and Prim SO4 Diam to its lower extreme produce



CHAPTER 7. APPENDICES 159

Figure 7.23: Percentage changes to globally averaged January CCN concentrations
(cm−3) resulting from perturbations to individual parameters for a) Global average,
b) the model grid box containing Cape Grim, c) The southern ocean average and d)
the MHDR average. The simulations with all parameters set to their median values,
for 1978 and 2008, serve as the baseline CCN concentrations. All parameters have
been perturbed to the upper and lower extremes of the ranges used in Chapters 3
and 4. A legend is provided here in Table A.7.13.
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Figure 7.24: Percentage changes to median January 2008 Aitken mode aerosol
concentrations (cm−3) for a) parameter 17, the fraction of SO2 emitted as sulphate
particles, perturbed to its upper limit and b) parameter 18, the diameter of those
particles, perturbed to its lower limit.

Figure 7.25: Latitudinal means of January 2008 BC concentrations (cm−3),
throughout the atmosphere for a) the median simulation and b) the simulation
where the BB Ems is perturbed to its lowest limit.

very similar Aitken mode aerosol responses, hence their relative importance is best
determined using a sensitivity analysis where parameters are perturbed simultaneously.

Aerosol ERF in the main hurricane development region is likely to be influenced by
uncertainty in BB Ems and BB Diam, given the differences in magnitude of CCN
concentration changes in Fig. A7.23d. These carbonaceous aerosol parameters have a
strong influence on CCN concentrations in equatorial regions where they are produced in
the Southern Hemisphere Summer being analysed. However, this effect may be limited
to a single season and may not be replicated in periods of high carbonaceous aerosol
emissions in other regions. The equatorial carbonaceous aerosols analysed in the OAT
test are lofted in the tropics and advected poleward into the Northern Hemisphere, as
can be seen by the comparison of BC concentrations in Fig. A7.25.

Of the parameters introduced in Chapter 3 as structural advances to those used in Lee
et al. (2013) and Chapter 2, the ‘Metzger’ particle formation rate, BL Nuc, has the
largest influence on CCN concentrations, exerting influence in most regions.
Dry Dep SO2 makes a substantial contribution to CCN concentrations in some regions,
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Figure 7.26: Average January 2008 accumulation mode concentrations (cm−3) from
a) the median run and b) the run where parameter 27, Drizz Rate, is perturbed to
its lowest limit.

although this parameter has a skewed distribution making the likelihood of sampling at
the upper extreme very low. The effect of T Ice and Drizz Rate OAT perturbations on
global mean CCN concentrations are relatively small, although Drizz Rate influences
CCN concentrations in climatically important regions of persistent stratocumulus cloud,
as seen in Fig. A7.26.

The influence of a number of OAT perturbations on CCN concentrations increases with
altitude for a number of parameters. In the case of Volc SO2, the emission flux varies
with altitude, so the influence of the OAT perturbations on surface CCN concentrations
in limited. Similarly FT Nuc is designed to act at cold temperatures, hence
perturbations to this parameter have a larger influence on CCN at high altitudes.

The OAT test results in this section confirm that the GLOMAP model and parameter
perturbations are performing as expected. The analysis of parametric behaviour
emphasises the importance of separating spatial and temporal parametric contributions
to aerosol ERF variance. The OAT tests were performed for January 1978 and 2008,
whereas the sensitivity analyses in this thesis are performed using monthly and annual
means from full year simulations. Although the screening tests are informative
parameters are perturbed to extreme values only, which are the most unlikely values for
the parameters to take. A variance-based sensitivity analysis accounts for the probability
density functions assigned to each uncertain parameter and thus provides a much fuller
examination of the parametric influences on aerosol distributions and ACI forcing.

HadGEM screening tests

The version of the HadGEM3 model coupled to GLOMAP in Chapter 5 has never before
been subject to multiple extreme parameter perturbations, as are required to produce an
emulator, multi-dimensional response surface and subsequent variance-based sensitivity
analysis. The OAT screening tests conducted here informed the inclusion of parameters
in the Chapter 5 PPE; designed to include a broad range of aerosol and atmospheric
parameters, many of which had not been previously perturbed to their extreme values in
this model configuration.

As in the GLOMAP parameter screening tests the HadGEM3 tests required several
months of spin-up before producing data to be analysed. In order to reduce
computational costs each parameter was perturbed to its maximum value only and data
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produced for a single month using year 2008 anthropogenic emissions. Output from
individual perturbations was compared to output from the median simulation, where all
parameters were set to their median values. Global plots of column total aerosol
concentrations for all species and size modes were produced, along with vertical profiles
of global distributions and the proportional changes from the median simulation. Ratios
of TOA fluxes, precipitation, cloud fraction and atmospheric humidity were also plotted
globally and analysed.

A small number of atmospheric parameters elicited by Sexton et al. (In prep.) for
inclusion in a perturbed parameter framework, produced responses in the aerosol and
atmospheric states indiscernible from that generated by internal variability in the
‘nudged’ configuration used in Chapter 5 (described in Appendix 3). This subset of
parameters was consequentially removed from the HadGEM3 PPE design. The removal
of these parameters does not imply they are not important components of the model
because the role of parametrisations in producing plausible model output is unrelated to
its contribution to output variance, where that contribution is small (Carslaw et al.,
2013). The size of the HadGEM3 PPE was limited by available computing resources,
hence the removal of least important parameters at the screening stage allowed for the
inclusion of parameters which produce important regional, not global responses.
Furthermore, the density of simulations across the multi-dimensional parameter space
was increased as a result of the reduction in parameter numbers, improving the resulting
emulator performance.

Appendix 8 - Analysis of extreme ensemble members

Parameter combinations that result in the ten smallest and ten largest global annual
mean 1850-PD aerosol ERF values in the PPE used in Chapter 5 are analysed here in
greater detail. These 20 ensemble members make up just over 10% of the simulations
used to create and validate the model emulator. The 1850-PD aerosol ERF, ACI and
ARI values for each simulation are presented in Table A.7.14.

The ensemble design requires in remote corners of multi-dimensional parameter space so
that statistical interpolation between design points is possible. The parameter
combinations resulting in extreme model output are likely to be the product of multiple
extreme parameter combinations and as such are not intended to be representative of the
default model response. Aerosol ERF values range from -3.41 to -2.74 W m−2 for the
smallest ERF ensemble subset, all of which were ruled out by the present-day observed
RSR constraint applied in Chapter 5. For the largest aerosol ERF ensemble subset,
values range from -0.93 to -0.42 W m−2. All values are at the edge or outside of the 95%
credible range of the 270000 member sample of the emulator used to perform sensitivity
analysis in Chapter 5. The parameter perturbations included in the extreme aerosol
ERF simulations are within the expert elicited limits of each individual parameter, but
the likelihood of sampling these combinations from an emulator, using the combined
parameter probability density functions, is small.

Parameter values for each of the extreme aerosol ERF simulations are presented in Fig.
A7.27. In each figure there are 27 horizontal lines, one for each parameter, containing 10
points coloured individually for the 10 ensemble members in each case. The points are
the cumulative probabilities for each PPE member, calculated as the probability of
sampling a value equal to or less than the actual value from the appropriate probability
density function for each parameter. Examining Fig. A7.27 line by line reveals which
parameters have a tendency to be high or low in each subset of the ensemble. A
summary of the tendencies is provided for low aerosol ERF values in Table A.7.15 and
for high values in Table A.7.16.
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Parameter index aerosol ERF ACI forcing ARI forcing
Smallest

aerosol ERF
136 -3.407 -3.246 -0.161
129 -3.251 -3.114 -0.137
101 -3.163 -3.327 0.164
118 -3.036 -3.123 0.087
187 -2.980 -2.911 -0.068
191 -2.848 -2.726 -0.121
121 -2.821 -3.041 0.220
75 -2.770 -2.824 0.054
88 -2.747 -2.771 0.024
63 -2.735 -2.724 -0.012

Largest
aerosol ERF

102 -0.416 -0.523 0.107
81 -0.511 -0.434 -0.077
105 -0.723 -0.635 -0.088
43 -0.775 -0.838 0.063
30 -0.786 -0.910 0.124
47 -0.860 -0.933 0.073
183 -0.864 -0.812 -0.052
148 -0.894 -1.104 0.210
126 -0.927 -0.978 0.051
90 -0.930 -0.783 -0.147

Table 7.14: The ten smallest and ten largest 1850-PD aerosol ERF values from the
Chapter 5 PPE, with associated ACI and ARI forcing values.
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Figure 7.27: Parameter values for each parameter in the ensemble members pro-
ducing the a) ten smallest and b) ten largest aerosol ERF values.

Combined high anthropogenic emissions with low natural emissions produces the
strongest negative forcing in agreement with the discussion in Chapter 2 about the
importance of PI natural aerosol emission uncertainty for ACI forcing. Interpretation of
the effects of other parameters is informed by the OAT screening tests described in
Appendix 7 and further analysis of output from individual ensemble members. Low
values of Rad Mcica Sigma in most of these simulations causes clouds to be represented
more homogeneously, producing stronger radiative effects. Rad Mcica Sigma is an
important source of uncertainty in both TOA RSR and aerosol ERF, as shown in
Chapter 5. Large Rain Frac values cause cloud to form in a larger fraction of model grid
boxes, hence a greater fraction of cloud drops and moisture are removed from the
atmosphere within a model timestep. Therefore high Rain Frac values further amplify
the high anthropogenic emission, low natural aerosol forced response. High
Dec Thres Cld values cause greater mixing in the atmospheric boundary layer,
increasing the stratocumulus cloud fraction and thus the magnitude of aerosol ERF.

There are exceptions to the general pattern. Ensemble member 121 (grey dots in Fig.
A.7.27) has very low anthropogenic emissions and a relatively high Rad Mcica Sigma
value, hence this simulation is an exception to the general pattern detected in other low
aerosol ERF ensemble members. The relatively low Dry Dep SO2 value mitigates the
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Parameter Tendency Evidence
Dec Thres Cld Large All values larger than 0.6

Rad Mcica Sigma Small All values lower than 0.6
Rain Frac Large 9/10 values larger than 0.8

DMS Small All values lower than 0.4
Volc SO2 Small All values lower than 0.6
Anth SO2 Large 9/10 values larger than 0.4
Sea Spray Small All values lower than 0.4

Table 7.15: The parametric tendencies within ensemble members producing the ten
smallest 1850-PD aerosol ERF values from the Chapter 5 PPE. The direction of
the parametric tendency towards large or small values in the sample is provided
along with evidence of for classifying the parametric tendencies.

Parameter Tendency Evidence
BC RI Large 9/10 values larger than 0.4

Amdet Fac Small 9/10 values lower than 0.6
Rad Mcica Sigma Large 9/10 values larger than 0.6

Anth SO2 Small 9/10 values lower than 0.4
Sea Spray Large 8/10 values larger than 0.6

Table 7.16: The parametric tendencies within ensemble members producing the
ten largest 1850-PD aerosol ERF values from the Chapter 5 PPE. The format is
identical to Table A.7.15.

impact of the small Anth SO2 value on aerosol ERF. A low Mparwtr value partially
explains why the high Rad Mcica Sigma value is unimportant for aerosol ERF
calculation in this case. By increasing precipitation efficiency and making the
atmosphere drier the low Mparwtr effectively removes cloud from the atmosphere,
reducing the impact of Rad Mcica Sigma in the radiation calculation. Large BC RI
values act to increase ARI and decrease ACI forcing, with competing influences on
aerosol ERF. Ensemble member 121 has the largest ARI forcing value (0.22 W m−2) of
the small aerosol ERF ensemble subset.

Another interesting exception to the general small aerosol ERF pattern is simulation 118
(shaded brown in Fig. A7.27a)) which has the lowest Rain Frac value and a moderate
Anth SO2 value. Aerosol ERF in this simulation is likely determined by several
parameters near the end of their individual ranges (OC RI, Mparwtr, Amdet Fac,
Carb BB Ems, Cloud pH and Ageing) which may be influencing aerosol ERF in
combination.

At the other end of the simulated aerosol ERF scale the sample of ten largest values
generally have inverse parameter combinations (Table A.7.16) to those in the small
aerosol ERF sample; low anthropogenic and high natural aerosol emissions and high
Rad Mcica Sigma. Furthermore, generally small Amdet Fac values increase precipitation
and reduce atmospheric humidity, significantly altering aerosol size distributions near
source regions. High values of BC RI increase the efficiency with which carbonaceous
aerosols are scavenged, removing a significant component of anthropogenic aerosol
forcing from the present-day atmosphere.
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Simulation 102 (grey dots in Fig. 7.27b)) has a very low Rad Mcica Sigma value which
contrasts with the general pattern. However this simulation also has numerous
parameters (BC RI, Dbsdtbs Turb 0, c r correl, Cloud Ice Thresh, Sig W, Kappa OC,
Dry Dep SO2, Anth SO2, Sea Spray and Carb BB Diam) with values near the limit of
their ranges. This simulation shows that although a high Rad Mcicia Sigma value can
increase aerosol ERF, it is not essential for producing exceptionally high values.

There are 2 simulations, 126 and 90, that produce very similar aerosol ERF values,
-0.927 and -0.930 W m−2 respectively, but have distinct regional ARI and ACI forced
responses. Simulation 126 is shaded pink in Fig. A7.27b) and simulation 90 is shaded
brown. Both simulations have low BC RI values, with very high Carb BB Ems and low
Carb BB Diam values. However, ARI forcing is strongly positive over China and the
Pacific in simulation 126, but not 90. Ent Fac Dp and Sig W are relatively low in
simulation 90 and high in simulation 126.

The fact that there are several distinct combinations of parameter values that cause
extremely small global annual mean aerosol ERF provides further support for the claim
made in Chapter 5 that tuning of GCMs should be done cautiously because of model
equifinality.
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