
Constraint-Based Local Search for Container

Rail Scheduling

By

Nakorn Indra-Payoong

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

THE UNIVERSITY OF LEEDS

SCHOOL OF COMPUTING

February 2005

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where references have been made to the work of others

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement

 i

Acknowledgements

I owe a great debt of gratitude to my supervisors, Dr. Raymond R.S. Kwan and Dr. Les Proll

for their constant guidance and supervision as well as greatly assisting in various other ways.

I would like to thank all my friends in Leeds for their various kinds of help.

Finally, I will never forget to thank my wife, Kanchana, who has given me infinite love and

always cheered me up during the research, and thanks very much to all members of my

family in my homeland which have transmitted their encouragement across continents.

 ii

Abstract

A traditional container rail service is based on regular timetables. This causes a risk that

some customers may turn away if their preferred itinerary is not attainable and the take-up of

some services in a fixed schedule may be low and therefore not profitable. To increase

railway’s profitability and competitiveness, a demand responsive schedule would be

advantageous. The decision support model and algorithms for producing a schedule in

advance of the weekly operation is the main subject of this thesis.

The container rail scheduling problem is modelled as a constraint satisfaction problem in

which the rail business criteria and operational constraints are represented as soft and hard

constraints respectively. A constraint-based local search algorithm is developed to solve

problems of realistic size. The algorithm includes strategies for accepting non-improving

moves and randomised selection of violated constraints and variables to explore. These

strategies aim to achieve diversified exploration of the search space. Different measures of

the constraint violation are also used to drive the search to promising solution regions.

A predictive choice model is introduced for search intensification to improve further the

quality of solutions for the problem. With sufficient trial history, the model will predict a

good choice of value for a variable. The variable will be fixed at its predicted value for a

dynamically determined number of trials. At this point, the propagation of consistency

between the variables is enforced, leading to intensified exploration of the search space.

Experimental results, based on real data from the Royal State Railway of Thailand, have

shown good computational performance of the approach and suggested benefits can be

achieved for both the rail carrier and its customers.

Finally, the proposed algorithm for rail scheduling has been adapted to solve the generalised

assignment problem, a well-known hard combinatorial optimisation problem. The

experimental results have shown that the proposed method can obtain high quality solutions

that are as good as or close to the solutions obtained from the existing methods, but with

using significantly less computational time. This suggests that generalising the method may

be a promising approach for other combinatorial problems in which all decision variables in

the model are binary and where quick and high quality solutions are desirable.

 iii

Declarations

Some parts of the work presented in this thesis have been published or will appear in the

following articles:

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. “Rail container service planning: a

constraint-based approach,” (to appear in) Journal of Scheduling.

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. (2004) “An adaptively relaxed

constraint satisfaction approach for a demand responsive freight rail timetabling problem,”

(presented at) The 5th International Conference on Practice and Theory of Automated

Timetabling, August 18-20, Pittsburgh, USA.

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. (2004) “Demand responsive scheduling

of rail container traffic,” Proceedings of the 10th World Conference on Transport Research.

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. (2003) “A randomised algorithm with

prediction of rail container service planning” (invited talk at) Scheduling Workshop on

Application of Constraint Programming, 9 -10 September, University of Huddersfield.

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. (2003) “Constraint-based local search

for rail container service planning,” in: Kendall G, Burke E & Petrovic S (Eds), Proceedings

of the 1st Multidisciplinary International Conference on Scheduling: Theory and

Applications, vol. 2, pp. 660 - 677.

Indra-Payoong, N., Kwan, R.S.K. and Proll, L.G. (2002) “Strategic scheduling of

containerised rail freight using constraint programming,” (presented at) ORS Local Search

Workshop, 16-17 April, London.

 iv

Contents

Acknowledgements i

Abstract ii

Declarations iii

Contents iv

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Problem background 1

 1.1.1 Overview of freight rail planning process 2

 1.1.2 Container rail scheduling problem 5

1.2 Research proposal 7

1.3 Thesis outline 8

2 Literature review 10

2.1 Introduction 10

2.2 Frameworks for combinatorial optimisation 11

2.2.1 Integer programming 12

2.2.2 Constraint programming 13

2.2.3 Local search 15

2.3 Solution methods for railway scheduling 16

2.3.1 Heuristic methods 17

 2.3.2 Mathematical programming methods 18

 2.3.3 Meta-heuristic methods 20

2.3.3.1 Simulated annealing 21

2.3.3.2 Genetic algorithm 22

2.3.3.3 Tabu search 23

 v

2.4 Local search for constraint satisfaction problems 24

2.4.1 Min-conflict heuristic 26

2.4.2 GSAT 27

2.4.3 WSAT 29

2.4.4 Complex neighbourhoods 30

2.4.5 Meta-heuristics for MAX-SAT 31

2.5 Move strategies for local search 32

2.5.1 Diversification 32

2.5.2 Intensification 34

2.5.3 Move acceptance criteria 35

2.5.4 Adaptive control 36

2.6 Conclusions 37

3 Modelling the container rail scheduling problem 39

3.1 Introduction 39

3.2 Problem description and assumptions 40

3.3 Customer satisfaction 45

3.3.1 Rail schedule factor 46

3.3.2 Satisfaction 48

3.4 Problem formulation 54

3.4.1 Integer programming formulation 55

3.4.2 Constraint-based modelling 60

3.4.2.1 Soft constraints 63

3.4.2.2 Hard constraints 67

3.4.2.3 Implied constraint 67

3.5 Conclusions 68

4 Constraint-based local search for the container rail scheduling problem 70

4.1 Introduction 70

4.2 A constraint-based local search algorithm 71

4.2.1 The main loop 71

4.2.2 Violated constraint selection 75

4.2.3 Variable selection 76

4.3 Violation strategy 77

 vi

4.3.1 Hard violation 78

4.3.2 Artificial soft violation 81

4.3.2.1 Violation cost tN 83

4.3.2.2 Violation cost tQ 85

4.3.2.3 Violation cost tE 87

4.4 Minimum train loading 90

4.5 Computational results 94

 4.5.1 Experiment I (Refined improvement) 99

 4.5.2 Experiment II (Violation penalty) 101

 4.5.3 Experiment III (Penalty for overcapacity train) 102

 4.5.4 Experiment IV (Violation parameter) 104

 4.5.5 Experiment V (SA) 105

4.6 Conclusions 108

5 Search intensification using the predictive choice model 110

5.1 Introduction 110

5.2 Motivation for the predictive choice model 111

5.3 Predictive choice model 112

5.3.1 Choice decision 112

5.3.2 Proportional method 115

5.3.3 Logit method 117

5.3.3.1 Utility function 123

5.3.3.2 Likelihood estimation 121

5.3.3.3 Aggregate prediction 128

5.3.3.4 Simplified estimation 130

5.3.3.5 Related work 134

5.4 CLS incorporating the predictive choice model 136

 5.4.1 Timeslot enforcing 138

 5.4.2 Customer’s bookings enforcing 142

 5.4.2.1 Local fix 143

 5.4.2.2 Global fix 144

 vii

5.5 Computational results 146

5.5.1 Decision parameter D 149

5.5.2 Prediction error parameter E 150

5.2.3 Flip trial parameter N 151

5.2.4 Fixing iterations parameter F 152

5.6 Conclusions 154

6 Constraint-based local search for the generalised assignment problem 155

6.1 Introduction 155

6.2 Generalised assignment problem 157

6.2.1 Related work 157

6.2.2 Problem formulation 160

6.2.2.1 Soft constraint 161

6.2.2.2 Hard constraints 161

6.2.2.3 Violation strategy 162

6.3 Constraint-based local search 163

6.3.1 Initial experiment 164

6.3.2 Variable selection scheme 168

6.3.3 Refined improvement 172

6.3.4 Candidate agent list 176

6.4 Search intensification technique 185

6.4.1 Violation history 185

6.4.2 Variable fixing 185

6.5 Computational results 186

6.6 Conclusions 197

7 Conclusions 199

7.1 Summary 199

7.2 Achievements in this research 200

7.3 Future work 202

 viii

Bibliography 205

Appendix A 216

Appendix B 222

List of Tables

3.1 An example of potential departure time range for customer 44

3.2 The outline of the survey interview 47

3.3 Average modal cost for each transport mode 49

3.4 Customer satisfaction 53

3.5 The input data and the calculation of the upper bound Ω 64

3.6 The input data and the calculation of the upper bound)(δλ + 66

4.1 An example for the calculation of violation cost tN 84

4.2 An example for the calculation of violation cost tQ 86

4.3 An example for the calculation of violation cost tE 88

4.4 An example – customer’s booking data 92

4.5 Problem instances 95

4.6 Problem size 96

4.7 The schedules obtained by CLS 98

4.8 Operating cost comparison: SRT vs CLS 98

4.9 CLS without the refined improvement procedure 100

4.10 Different measures of the violation penalties 101

4.11 Parameter mh given by given by an amount of overcapacity 103

4.12 Sensitivity analysis of the timeslot violation parameter 104

4.13 Control parameters for SA 106

4.14 Computational results – CLS +SA 107

5.1 Violation history 114

5.2 Value choice prediction by proportional method 116

5.3 The K-S test for probability distribution 122

 ix

5.4 The input data for maximum likelihood estimation 125

5.5 Probabilities of a value choice selection in flip trials 127

5.6 Value choice prediction by logit method 129

5.7 Value choice prediction by simplified estimation for logit method 133

5.8 Results obtained by CLS and PCM 148

5.9 Sensitivity analysis of the parameter D 149

5.10 Sensitivity analysis of the parameter E 151

5.11 Sensitivity analysis of the parameter N 152

5.12 Sensitivity analysis of the parameter F 153

6.1 Results – CLS alone 168

6.2 Results – CLS with two-alternative variable selection scheme 171

6.3 Results – CLS with the refined improvement 175

6.4 An example of demand matrix 178

6.5 The relative demand index 178

6.6 An example of profit matrix 179

6.7 The relative profit index 180

6.8 The demand-profit index 180

6.9 The candidate agent list for each job 181

6.10 Results - CLS with candidate agent list 184

6.11 Results for maximisation problems 1S 189

6.12 Average percentage deviation from optimal solution for 1S 190

6.13 Results for minimisation problems 2S 192

6.14 Results for 1S - stopping criterion = 10000 195

6.15 Results for 2S - stopping criterion parameter = 30000 196

A.1 Total shipping cost for cargo type I 216

A.2 Total shipping cost for cargo type II 218

A.3 Total shipping cost for cargo type III 220

A.4 Total shipping cost for cargo type IV 221

B.1 Prediction no.1 222

 x

B.2 Prediction no.2 223

B.3 Prediction no.3 224

B.4 Prediction no.4 225

B.5 Prediction no.5 226

List of Figures

1.1 Freight rail planning process 2

1.2 An example of path formulation 3

1.3 A typical container transport 6

2.1 Pseudo code for GSAT procedure 28

3.1 A typical container terminal network 41

3.2 A short-term advance booking scheme 43

3.3 Customer satisfaction function of cargo type I 50

3.4 Customer satisfaction function of cargo type II 50

3.5 Customer satisfaction function for cargo type III 51

3.6 Customer satisfaction function of cargo type IV 51

4.1 The basic CLS procedure 73

4.2 The modified CLS procedure 89

5.1 Probability density trace 119

5.2 Histograms and possible probability distributions 120

6.1 The interchange assignment 173

 1

Chapter One

Introduction

1.1 Problem background

In Thailand, ports are linked with inland by state-owned rail, which is mainly single-tracked

and used by both passengers and freight. We consider the problem of the eastern-line

container rail service in Thailand which serves container traffic between Bangkok and the

eastern region. In 2000, it was roughly estimated that more than a million containers a year

were moved between these areas, of which 30 percent was carried by rail transport (National

Economic and Social Development Board, 2000). In a later year, because of traffic

congestion and environmental concerns in Bangkok, the capital city of the country, the Thai

government decided to limit the number of containers via Bangkok port to one million

containers per year. As a result, Laem Chabang port, located in the eastern region, will have

to serve increasing container flow between that region and Bangkok.

How to maintain and increase profitability is a major concern for the eastern rail line in order

to stay competitive with the growing number of trucking companies as providing container

transport service becomes a lucrative business. In general, the rail carrier can increase

 2

profitability in two ways: 1) the railway could generate the same or similar amount of

revenue with lower operating costs, 2) the railway may satisfy more customer demand in

order to maintain the current level of revenue or receive additional profit. The question may

then be how to run the rail business as effectively as possible.

1.1.1 Overview of freight rail planning process

The transportation of rail freight is a complex domain, with several processes and levels of

decision, where investments are capital-intensive and usually require long-term strategic

plans. In addition, the transportation of rail freight has to adapt to rapidly changing political,

social, and economic environments. In general, freight rail planning involves five main

processes: path formulation, fleet assignment, schedule production, crew scheduling and

fleet repositioning. Figure 1.1 presents the freight rail planning process.

Figure 1.1: Freight rail planning process

Path formulation

Fleet assignment

Schedule production

Fleet repositioning

Crew scheduling

 3

Path formulation. The first step in the planning process is path formulation, as shown in

Figure 1.2. The formulation process computes container flows in the network using the

shortest path or minimum generalised cost, based on the historical demand data. The path

formulation is generally not changed frequently, and this step hardly occurs in practice. Note

that in case the railway is privatised, routes are usually fixed by contract and therefore this

step is performed only at the strategic level and not at the operational level.

Figure 1.2: An example of path formulation

Fleet assignment. The second step in the planning process is fleet assignment. The goal of

this step is to allocate the available fleet (locomotives and wagons) to service pairs so that

the capacity matches the average transport demand at both ends. For instance, at a terminal,

the fleet cycle starts when customers request services and then compatible locomotive and

wagons are grouped and moved to a loading point. Once the containers have been loaded, the

train formation will then be adjusted to the requirements at the destination. At this point, the

fleet is available with more or less the same capacity for a new shipment in the reverse

T1 T2

Passing points

Terminals (T)

T3 T4 T5

T6 T7 T8 T9 T10

T11 T12
 Path formulated

 4

direction and the cycle may repeat. Fleet assignment involves huge capital investment, which

is done infrequently. If the rail carrier assigns a fleet to a particular origin-destination (OD)

pair it wants to serve, the commitment is relatively long term. Therefore, most of the time,

the remaining steps in the planning process use a fixed given fleet. Note that in contrast to

road and air transportation, a rail carrier uses fixed tracks. Changes to the service network

cannot be done easily because they require huge capital investment and involve a number of

operational constraints, such as track availability, handling equipment, customs procedures

and so forth.

Schedule production. Schedule production typically starts several months before a schedule

goes into operation. In this process, significant amounts of time and resources are used to

produce a profitable schedule. In general, the scheduling process begins with an existing

schedule, which will then be developed or changed, based on historical transport demand

data. The aim of this step is to determine, under operational constraints, the appropriate

service frequency throughout the month or several months. This step is the most difficult. If

the services are too frequent, the rail carrier bears high operational costs. If the services are

too infrequent, some potential customers may turn away, resulting in lost revenue.

Crew scheduling. Crew scheduling is concerned with the development of duty schedules for

crews, in order to cover a given train schedule. This step involves the short-term (typically

one day or one week) tactical scheduling of crew, with the aim of developing a set of duties

that will be performed by each crew to cover adequately the train schedule. The objective is

to find the minimum cost assignment of crews and attendants to service lines, subject to

some restrictions. For instance, train drivers are qualified for certain locomotive classes and

service lines; the schedules must satisfy restrictions on maximum working hours and so on.

 5

Fleet repositioning. The last step of rail planning process is fleet repositioning. The

imbalance between demand and supply is reflected in the fact that at any point in time there

are terminals with a surplus of locomotives and wagons of a certain type, whilst some other

terminals show a shortage. Moving empty locomotives and wagons does not directly

contribute to the profit of rail carrier but it is essential to its continuing operations.

Nowadays, the rail industry has a pooling agreement to consolidate its resources. Under this

agreement, the rail carriers agree to pool the locomotives and wagons of each type, so that

the empty locomotives and wagons would be redirected to other destinations, rather than

being sent back to the point of origin. The operation faced by each rail carrier in the pool is

to determine the fleet size it needs to acquire for any given period, and to determine the

apportionment of responsibility for the capital investment amongst the participating rail

carriers.

In this research we address an issue in schedule production, that of constructing profitable

schedules for the rail service.

1.1.2 Container rail scheduling problem

Typically the transportation of rail containers involves an international context. Freight

forwarders or multimodal transport operators, who act on behalf of their customers, regularly

book those services in advance to make sure that the shipment is delivered to their customers

within expected time.

In general, shipping lines cannot provide frequent sailing services. They often provide a

weekly service or more. This is because container ships are big (greater than 8,000 twenty-

 6

equivalent unit (TEU) container) in order to achieve economy of scale; thereby significant

cost reduction can be obtained. Once containers arrive at the seaport, there is a need to move

them to their final customers, which can basically be done either by rail, via intermediate

terminals, or by truck direct to the final destinations (see Figure 1.3). Shippers would like to

minimise the lead-time of the transport chain.

Figure 1.3: A typical container transport

At present, the eastern line container rail carrier provides a weekly fixed schedule, in which a

certain number of train services are provided in fixed departure timeslots. This creates a risk

that take-up of some services in a fixed schedule may be low and not profitable, and some

customers may turn away if their requirements are not satisfied. In order to create a

profitable schedule, a container rail carrier needs to engage in a decision-making process

with multiple business criteria and numerous constraints, which is challenging. Further

descriptions of the problem are given in Chapter 3.

 7

1.2 Research proposal

Generating a good schedule is of utmost importance to a container rail business because

rail’s profitability is heavily influenced by its service offerings. The container rail scheduling

problem has attracted much research interest over several decades; from the view points of

both problem modelling and solution techniques. Although a great deal of effort has been

made in this area, there are still many aspects that need to be further investigated and

improved. A model that incorporates challenging practical situations and advanced solution

techniques is significant. The research proposal may be divided into two principal areas:

Application domain. A rail carrier’s profitability is influenced by the railway’s ability to

construct schedules for which supply matches customer demands. The need for responsive

flexible schedules is obvious not only because there is a risk that some potential customers

may turn away if a desirable schedule is not available, but also because the take-up of some

services in a fixed schedule may be low and not profitable. We propose an optimisation

model that quantifies customer satisfaction, which is maximised as one of the rail business

criteria. This framework is a necessary tool for supporting decision-makers, through which a

rail carrier can measure how well their customers are satisfied and the implications of

satisfying these customers in terms of cost.

Solution approach. The container rail scheduling problem is complex and large and we

need a method that can solve the problem effectively. Two goals in designing a solution

method are:

 8

1. It provides good quality of solution within reasonable time.

2. It is simple to implement and convenient to use.

We attempt to achieve these goals by investigating and extending existing methods and

developing several new techniques to improve their performance. We propose a constraint-

based local search algorithm incorporating a predictive choice model for solving the

container rail scheduling problem. The solution algorithm is simple and convenient to use,

whilst providing good quality of solution.

1.3 Thesis outline

Following this introductory chapter, Chapter 2 outlines frameworks for combinatorial

optimisation. Chapter 3 describes the container rail scheduling model. Chapter 4 and 5

present the research on the investigation and construction of an efficient solution method for

the container rail scheduling problem. Chapter 6 adapts this method for another

combinatorial optimisation problem, the generalised assignment problem. Conclusions

drawn from the research are given in Chapter 7.

In Chapter 3, the container rail scheduling problem is modelled as a constraint satisfaction

problem. The rail business criteria and operational requirements are considered as soft and

hard constraints respectively. A demand responsive scheduling model is proposed in which

service supply matches or responds to customer demands and optimises on booking

preference whilst satisfying railway operations.

Chapter 4 describes the constraint-based local search algorithm for solving the container rail

scheduling problem. The constraint-based local search starts with random initial assignments

 9

and uses a simple variable flip as a structure of local move. When all variables in the model

are assigned a value, the total hard violation is calculated; a quantified measure of the

violation is used to evaluate local moves. Different measures of the violation are also used in

order to drive the search to the promising regions of the search space.

Chapter 5 develops a novel predictive choice model to improve the solution obtained by

constraint-based local search alone. The predictive choice model is based on discrete choice

theory and the random utility concept. Learning from search history, the model will predict a

good choice of value for a variable. The variable will be fixed at its preferred value for a

number of iterations determined by the magnitude of the preference measure. At this point,

the propagation of consistency between variables is enforced, leading to intensified

exploration of the search space.

Chapter 6 demonstrates the application of the proposed algorithm to the generalised

assignment problem (GAP). A set of diversified feasible solutions to GAP is obtained by the

constraint-based local search. The predictive choice model learns from the search history and

predicts good assignments of jobs to agents. The search focuses more intensively on regions

which promise to find better solutions. The performance of the algorithm is evaluated with

two different benchmark problem sets.

Finally, Chapter 7 gives the conclusions, discusses the achievement of this research and

suggests some future work.

 10

Chapter Two

Literature review

2.1 Introduction

This chapter outlines the basic principles of the optimisation frameworks which could be

applied to our container rail scheduling problem. Further discussion on related work will also

be given in later chapters as appropriate. The optimisation frameworks discussed in this

chapter are: integer programming, finite domain constraint programming, and local search.

Integer and constraint programming can be considered as general-purpose optimisation

methods, whereas local search may be viewed as an approach that can be tailored to many

different combinatorial optimisation problems by adapting its simple conceptual components

to the respective problem context.

The local search method is attractive, and often used, when proven optimal solutions may

take too long to find. The effective performance of local search mainly depends on two

strategies: diversification and intensification. Diversification drives the search to explore

new regions so that the search space is fully covered, intensification focuses the search more

 11

intensively on regions previously found to be good or promising to find an optimal solution.

Good interplay between the diversification and intensification strategies is the critical issue

in the design of local search methods.

This chapter is organised as follows: Section 2.2 outlines the frameworks for combinatorial

optimisation. Section 2.3 reviews solution methods for rail scheduling. Section 2.4 reviews

local search methods for constraint satisfaction problems, especially for those that lead to the

development of our proposed method, which will be used in later chapters. Section 2.5

describes move strategies for local search and introduces concepts for the adaptive control

used in local search. Finally conclusions are given in Section 2.6.

2.2 Frameworks for combinatorial optimisation

Many problems arising from diverse areas can be considered as combinatorial optimisation

problems. Combinatorial optimisation problems are concerned with the efficient use or

allocation of limited resources to meet desired criteria. In this section, we outline the

frameworks for combinatorial optimisation problems which are related and applied to our

rail scheduling problem (Chapter 3) as well as the generalised assignment problem which

will be described in Chapter 6. Three optimisation frameworks will be discussed: integer

programming (IP), constraint programming (CP), and local search. These frameworks are

well established, comprising a variety of techniques, and many successful applications have

been reported.

 12

2.2.1 Integer programming

Combinatorial optimisation problems are considered as integer programming problems when

the decision variables in the model are required to be integers. IP is used in practice for

solving many industrial problems, for example in transportation and manufacturing: airline

crew scheduling, vehicle routing, production planning, etc (Nemhauser and Wolsey, 1988).

IP branch-and-bound is concerned with finding optimal solutions to the IP problem. A

general integer linear programming formulation is defined as:

 { }SxcxzIP ∈= :min (2.1)

where: { }0: ≥≥= xbAxS , and Integer∈x

In branch-and-bound method, the original problem is divided into sub-problems, and sub-

problems are created by restricting the range of the integer variables. For binary variables,

there are only two possible restrictions, i.e. setting the variable to 0 or 1. Lower bounds are

provided by the linear-programming relaxation to the problem, i.e. keep the objective

function and all constraints, but relax the integrality restrictions to derive a linear

programme. If the optimal solution to a relaxed sub-problem is integral, it is a feasible

solution to the problem; and the optimal value can be used to terminate searches of sub-

problems whose lower bound is higher. Many issues need to be considered to develop

efficient branch-and-bound methods, such as the selection of branching variables and the

node to develop next. In other words, strategies to explore the search tree need to be defined.

Efficient branch-and-bound implementations may further add valid inequalities (cuts), which

 13

are inferred from specific classes of constraints implicitly present in the original constraints

(Mitchell, 2000). Using these components, in addition to efficient algorithms for solving and

re-solving LP relaxations, IP branch-and-bound provides a general and efficient technique

for many combinatorial optimisation problems. A variety of efficient commercial branch-

and-bound solvers are available on the market, e.g. CPLEX, LINDO, XPRESSMP, MINTO

(Nemhauser and Wolsey, 1988).

2.2.2 Constraint programming

Constraint programming or finite domain constraint programming (CP) has attracted much

attention amongst researchers from many areas because of its potential for solving hard

combinatorial optimisation problems. Real-life problems tend to have a large number of

constraints, which may be hard or soft. Hard constraints require that any solution will never

violate the constraints, whereas soft constraints are more flexible, constraint violation is

tolerated but attracts a penalty. Naturally, combinatorial optimisation problems can be

thought of as constraint satisfaction problems (CSP). A CSP is typically defined in terms of

(1) a set of variables, each ranging over a finite discrete domain of values, (2) a set of

constraints, which are relations over subsets of the variable domains. The problem is to

assign values to all variables from their domains, subject to the constraints (Tsang, 1993).

When combinatorial problems are solved by CP, the constraint store stores information on

the constrained variables in the form of the set of possible values that a variable can take.

This set is called the current domain of the variable. Computation starts with an initial

domain for each variable as given in the CSP-model. Some constraints can be directly

entered in the constraint store by strengthening the constraint on a variable, e.g. the

 14

constraint yx ≠ can be expressed in the constraint store by removing the current value of y

from the domain of x .

Another component in CP is called propagators. Each propagator observes the variables

given by the corresponding constraint in the problem. Whenever possible, it strengthens the

constraint store with respect to the variables by excluding values from their domains

according to the corresponding constraint, e.g. a propagator of constraint yx ≤ observes the

upper bound and lower bounds of the domains of x and y . A possible strengthening

consists of removing all values from the domain of x that are greater than the upper bound

of the domain of y . The process of propagation continues until no propagator can further

strengthen the constraint store, i.e. the constraint store is said to be stable. However,

variables in many CSP problems typically cannot be reduced to a singleton domain.

Therefore, the constraint store does not represent a solution and search becomes necessary.

Search for CSP solutions is implemented by choice points. A choice point generates a

branching constraint c . From the current stable constraint store cs , two new constraint

stores are created by adding c and c¬ to cs respectively. Typically, the new constraint

stores are not stable, and c and c¬ trigger some propagators in their respective new stores.

After stability is reached again, the branching process is continued recursively on both sides

until the resulting store is either consistent or represents a solution to the problem. CP is best

considered as a software framework for combining software components to achieve

problem-specific tree search solvers. These components can be organised into three parts

(Marriott and Stuckey, 1998):

 15

1. Propagation: implements individual constraints by describing how the constraints can

be employed to strengthen the constraint store.

2. Branching: selects branching constraints at each node of the search tree after all

propagation has been done. Branching strategies define the size and shape of the

search tree.

3. Exploration: describes which part of a given search tree is explored and in which

order.

CP has seen much success in a variety of application domains, e.g. planning and scheduling.

Various techniques have been integrated into constraint programming, propagators and

branching strategies to make the solving algorithm powerful (Prosser, 1993; Jussien and

Lhomme, 2002). Example of general CP solvers are Oz, CHIP, ECLiPSe, and ILOG

(Marriott and Stuckey, 1998).

2.2.3 Local search

Many combinatorial optimisation problems are NP -hard, i.e. may not be solved within

polynomial computation time (Nemhauser and Wolsey, 1988). This implies that proven

optimal solutions may take too long to find, at least for large instances. However, sub-

optimal solutions are sometimes easy to find. Therefore, there is much interest in local

search that can find good solutions with reasonable times. Local search methods have

successfully been applied to many combinatorial optimisation problems. Local search can be

described in terms of several basic components: a cost function of a solution to the problem,

a neighbourhood function that defines the possible moves in the search space, and a control

strategy according to which the moves are performed.

 16

- Cost function: a combinatorial problem is defined by the set of feasible solutions and

a cost (fitness) function that maps each solution to a quantified cost. The search

algorithm is to find an optimal feasible solution, i.e. a feasible solution that optimises

the cost function.

- Neighbourhood function: local search proceeds by making moves from one solution

point to another. The set of points includes feasible solutions, but may also include

infeasible solutions. Given a combinatorial problem, the neighbourhood function is

defined by mapping from the set of points to its neighbours, i.e. the subsets of the set

of points. A solution is locally optimal with respect to a neighbourhood function if its

cost is not worse than the cost of each of its neighbours.

- Control strategy: defines how the search space is explored. For instance, a basic

control strategy of local search is iterative improvement, i.e. one starts with an initial

solution and searches its neighbourhood for a solution of lower cost. If such a

solution is found, the current solution is replaced and the search continues.

Otherwise, the algorithm returns the current solution, which is locally optimal.

A main problem of local search is local optima, i.e. points in the search space where no

neighbour improves over the current point, but which may be far from the global optima.

Many strategies have been proposed to overcome this problem. In many cases, non-

improving local moves are accepted based on a probabilistic rule or based on the history of

the search (Aarts et al, 1997).

2.3 Solution methods for railway scheduling

The solution methods for railway scheduling may be classified into three groups: heuristic

 17

methods, mathematical programming methods, and meta-heuristic methods.

2.3.1 Heuristic methods

The early age of solving railway scheduling problems only relied on heuristic methods. Most

heuristics at that time were similar to the methods used by manual schedulers. The

refinement of the service plan (schedule) was made complementarily between a planner and

a computer.

Crainic et al. (1984) proposed a tactical model for rail service planning. They decomposed

the planning model into routing and scheduling models. A local search heuristic was used to

solve each two sub-models of the problem in succession and to obtain a good feasible

solution offering a rough framework for producing a rail schedule. Haghani (1989) used a

heuristic decomposition technique for railway scheduling. The heuristic based on a special

structure was used to solve the problem within a small network. However, his approach

failed to solve larger problem instances.

Gualda and Murgel (2000) considered the train formation problem. The objectives are to

maximise revenue from the transport of cargoes, to safeguard the relative priorities of

cargoes, and supply the services with the minimum total operating cost under operational

constraints. The heuristic begins with the formulation of direct trains that travel loaded from

origin to destination and come back empty. This solution is then submitted to a refinement

procedure to combine trains and minimise the movement of empty wagons, and the

algorithm seeks a better use of the rolling stock. The heuristic incorporates a shortest path

algorithm and a strategy based on the knapsack problem.

 18

The heuristics used for railway scheduling were heavily problem-specific. A heuristic which

works for one problem cannot be used to solve a different one, or cannot easily be adapted to

new problem conditions. Purely heuristic methods for railway scheduling rarely appear

nowadays. Often they are now used to gear up mathematical programming methods into a

more flexible and general problem solvers.

2.3.2 Mathematical programming methods

Mathematical programming (MP) has been well known and developed in the operations

research society for several decades. Most railway scheduling problems have been modelled

based on mathematical formulations.

Keaton (1989) and Keaton (1992) used the Lagrangian relaxation method to simplify the rail

routing and scheduling problem. He incorporated the train capacity, travel time and demand

flow constraints into the objective function with Lagrangian multipliers. Relaxing the

constraints allows him to decompose the problem into separable train demand flow

problems. By relaxing the train capacity constraint, the demand flow problem can be viewed

as a collection of shortest-path problems, one for each origin - destination pair. Using a dual

adjustment approach, he arrived at an infeasible lower bound to the problems. Afterwards, he

used a simple heuristic to obtain a feasible solution.

Schrijver (1993) considered the problem of minimising the number of train units of different

types for an hourly train line in the Netherlands, given that the passenger’s seat demand and

train capacity constraint must be satisfied. The restriction on the transition between two

compositions on two consecutive trips is that the required train units must be available at the

 19

right time and the right station. Coupling and uncoupling restrictions related to the feasibility

of shunting movements are ignored. He proposed an algorithm based on graph theory and

integer programming. The algorithm concerns the circulation of different type of train units,

which can be linked more together. It can be described as a multicommodity flow problem,

and is solved using ideas from polyhedral combinatorics.

Newton et al (1998) considered the freight rail blocking plan problem. The objective is to

choose the blocks to be built at each cargo yard and to assign sequences of blocks to deliver

each shipment to minimise total mileage, handling cost, and delay costs. They developed a

column generation approach in which attractive paths for each shipment are generated by

solving a shortest path problem. They also disaggregated some of the constraints in the

model to provide a tighter lower bound.

Newman and Yano (2000) considered the trains and containers scheduling problem. The

objective is to minimise total operating costs, whilst meeting on-time delivery requirements.

They formulated the problem as an integer programme. A decomposition procedure to find

near-optimal solutions and a method to provide relatively tight bounds on the objective

function values were proposed. Yano and Newman (2001) considered the container rail

scheduling problem with due dates and dynamic arrivals. The objective is to minimise the

sum of transportation and holding costs. They introduced a definition of a regeneration state,

which derived from a strong characterisation of the shipment schedule within the

regeneration interval properties of an optimal solution. The optimal assignment of customer

orders to trains can then be found by solving a linear programme.

 20

Kraft (2002) considered the shipment routing problem. He formulated the problem as a

multi-commodity network flow problem, where each shipment is treated as a separate

commodity. A Lagrangian heuristic was used to obtain a primal feasible solution by ranking

all flows based on priority. Then the algorithm sequentially assigns flows on a shortest path

based on adjusted link costs. A primal feasible solution was used to validate the quality of

the dual prices by establishing their prices leading to a tight upper bound on the objective

function.

MP incorporating heuristics is often used for many practical railway scheduling. Heuristics

are used to enhance MP to obtain the optimal solution or near-optimal solution in a viable

time. Most of MP relies on bound strategies, e.g. linear relaxation, linear duality, and

Lagrangian relaxation. A good bound helps limit the size of the search. However, the

heuristics and bound strategies depend on the presence of special structures in the model; the

adaptation of which for new practical aspects might be non-trivial.

2.3.3 Meta-heuristic methods

Meta-heuristics are widely used to solve important practical combinatorial optimisation

problems. Basically, a meta-heuristic is a top-level strategy that guides an underlying

heuristic solving a given problem. That is, a meta-heuristic is an iterative master process that

guides and modifies the operations of subordinate heuristics to efficiently produce high-

quality solutions. It may manipulate iteratively a complete (or incomplete) single solution or

a collection of solutions. The subordinate heuristics are e.g. high- (or low-) level procedures,

simple local search, or just a construction method. Meta-heuristics may use learning

 21

strategies to structure information in order to find optimal or near-optimal solution

effectively (Osman and Kelly, 1996; Glover and Laguna, 1997).

2.3.3.1 Simulated annealing

Simulated annealing is a meta-heuristic technique for combinatorial optimisation problems

which is designed as a simple and robust algorithm (Kirkpatrick, 1984). The term simulated

annealing derives from the physical process of heating and cooling a substance to obtain a

strong crystalline structure. A simulated annealing algorithm repeats an iterative procedure

that looks for better solutions, whilst offering the possibility of accepting, in a controlled

manner, worse solutions. This second feature allows the algorithm to escape from the local

optima.

Huntley et al (1995) used simulated annealing to solve a railway scheduling problem at the

CSX transportation company. They used a perturbation move operator that inserts or deletes

a stop from the route and adjusts the departure times of the trains. The computational results

showed that the algorithm was useful for analysing a variety of scenarios, and producing

train schedules having similar properties to those of solutions in use by the CTX company,

but with a smaller cost.

Brucker et al. (1999) used simulated annealing for freight rail routing. They defined

neighbourhoods using the ideas from the network simplex method for min-cost flow

problems. Afterwards, they proposed a two-phase local search method based on simulated

annealing which executes a series of local search applications to single commodity problems.

In the first phase, the algorithm tries to cover a large part of the search space and to identify

 22

a good solution. In the second phase, the algorithm starts with the best solution found in the

first phase and tries to improve this solution. They applied the two phases several times

(multiple restarts).

2.3.3.2 Genetic algorithm

A genetic algorithm is a heuristic search algorithm premised on the evolutionary ideas of

natural selection and genetics (Holland, 1975). The algorithm starts with a set, called a

population, of solutions (represented by chromosomes). Solutions from one generation are

taken and used to form a new population. Solutions which are then selected to form new

solutions (offspring) are selected according to their fitness; the more suitable they are the

more chances they have to reproduce.

Salim and Cai (1997) used a genetic algorithm to schedule rail freight transportation. The

algorithm begins with randomly generating the initial population, and then finds the arrival

time and departure time of each train at every loop by using stopping and starting matrix

schedules and evaluates the cost of the population. Afterwards, the algorithm performs a

crossover operation on the randomly chosen individuals to yield two new strings and replace

the duplicates in the population with the newly formed individuals. The algorithm terminates

if the best individual in the population has not changed for a predefined number of

iterations.

Arshad et al (1998) used a genetic algorithm combined with constraint programming for

container transport chain scheduling. The objective function is to minimise the empty

containers between terminals, depots, and clients under operational constraints. Constraint

 23

programming was used to compute feasible solutions on a subset of search space. A genetic

algorithm was used to explore the space formed by solutions provided by CP, and to perform

optimisation. The feasibility of the solutions was defined intrinsic to the chosen

representation and integrated within the creation of the chromosomes in the different steps

(initialisation, crossover, and mutation), and within the fitness.

2.3.3.3 Tabu search

Tabu search is a heuristic method proposed by Glover (1986) for solving combinatorial

optimisation problems. Tabu search allows acceptance of non-improved solutions in order to

avoid being trapped in local optima. To prevent going back to recently visited solutions, a

memory scheme is used to record the moves made in the recent past of the search. This

recorded search history is usually represented by a tabu list of moves, which are forbidden

for a certain number of iterations.

Marin and Salmeron (1996) used tabu search to plan freight rail services. The algorithm was

based on the decomposition of the planning model in two problems; routing for the freight

cars and grouping of cars in the trains. Heuristic routing and sequential loading algorithms

were proposed. In tabu search, recency-based memory with frequency was used to prevent

the search going back to recently visited solutions. They also compared tabu search with

simulated annealing and descent methods. The comparison amongst these methods was

made with the help of statistical analysis. They assumed the hypothesis that the distribution

of local minima can be represented by the Weilbull distribution in order to obtain an

approach to the global minimum and a confidence interval. The global minimum estimation

was used to compare the heuristic methods.

 24

A combination of genetic algorithm and tabu search was used by Gorman (1998) to solve the

rail scheduling problem. In GA, the population was formed by all possible train schedules.

Every time an individual schedule is generated, its fitness (total operating cost) is evaluated.

Mutations are obtained by either adding or deleting a train, or by shifting a train to an earlier

or a later time in the schedule. To improve the performance of the genetic algorithm, each

solution is cloned and modified with a tabu search algorithm, thus simulating the use of

knowledge based mutation operators. However, implementing random starting solutions and

simple tabu moves still suffers from misdirected search.

Much attention has been focused on meta-heuristic methods as conceptually simple, domain-

independent frameworks for solving railway scheduling problems. However, classical meta-

heuristics, applied totally independently of problem domain knowledge, rarely work well for

real industrial problems. Often meta-heuristics are enhanced by incorporating intensive

domain-knowledge, and good solutions may be obtained by fastidious tuning of various

parameters. The meta-heuristics then lose their appeal as general solution approaches and

quickly become algorithms highly specialised for the given problem. Meta-heuristics may be

hybridised to be more effective. However, the resulting algorithms would be complex, and

they often still have to exploit domain knowledge to be effective.

2.4 Local search for constraint satisfaction problems

The satisfiable problem in propositional logic (SAT) is to decide whether a given Boolean

formula is satisfiable and was the first problem proved to be NP -complete (Cook, 1971). To

explain the satisfiable problem, the following terms are given:

 25

- A literal is a propositional variable or its negation, e.g. x or x¬

- A clause is a disjunction of literals, e.g. ()zyx ∨∨¬

- A formula in conjunctive normal form (CNF) is a conjunction of disjunctions, e.g.

() () ...∧¬∨∨¬∧∨∨¬ cbazyx

The goal of the SAT problem is to find an assignment of values to variables, if one exists,

where all clauses are satisfied or to prove it is unsatisfiable if no valid assignment exists.

MAX-SAT and weighted MAX-SAT are the optimisation variants of SAT. Given a set of

clauses, MAX-SAT is the problem to find a variable assignment that maximises the number

of satisfied clauses. In weighted MAX-SAT, a weight is assigned to each clause and the goal

is to maximise the weight of the satisfied clauses. Alternatively the goal could be defined as

to minimise the weight of the unsatisfied clauses. In MAX-SAT and weighted MAX-SAT,

all clauses need not be satisfied and it may be considered as the unsatisfiable problem. Note

also that in case the weights are not specified, MAX-SAT can be called unweighted MAX-

SAT and therefore, when the term MAX-SAT is used in general, it refers to the general form

of the problem including clause weights.

The SAT problem can be viewed as a 0-1 integer constraint problem, i.e. a Boolean clause

(disjunction of literals) is translated into an arithmetic constraint. For instance, the clause

()yx ∨ would be translated to 1=+ yx . For a constraint satisfaction problem (CSP), if the

variable domain is Boolean and the constraints are expressed in conjunctive normal form,

then the CSP is equivalent to the SAT problem; in other words, CSP is a generalisation of

SAT in two aspects which are the domains of variables and the arithmetic constraints. There

are many local search methods for solving a constraint satisfaction problem. An overview of

these methods is given in Hoos and Stutzle (2004).

 26

Hill-climbing is the local search method introduced in the past decades for a hard

combinatorial problem (Nilsson, 1980). It starts from a randomly generated assignment of

variables. At each step, it changes the value of some variables in such a way that the

resulting assignment satisfies more constraints. If a strict local minimum is reached then the

algorithm restarts at another randomly generated point. The algorithm stops when all

constraints are satisfied, or the computational resource is exhausted. However, the hill-

climbing algorithm has to explore all neighbours of the current state in choosing the move.

To avoid this problem, heuristics are introduced as described next.

2.4.1 Min-conflict heuristic

The min-conflict heuristic has been introduced as a method for solving constraint satisfaction

problems (Minton et al, 1992). This heuristic chooses randomly a variable in a violated

constraint, and then picks a variable value which minimises the number of violated

constraints. If no such a value exists, it picks randomly one value that does not increase the

number of violated constraints (the current value of the variable is picked only if all the other

values increase the number of violated constraints). The min-conflict heuristic allows

sideway moves, i.e. the current solution is allowed to move to another solution with the same

solution cost. This lets the procedure traverse plateaus in the solution landscape. By doing

this, the search algorithm can find its way off the plateau and continue the gradient descent.

The min-conflict heuristic is briefly outlined as follows:

Given: a set of variables, a set of constraints, and an assignment of a value for each

variable; two variables conflict if they both occur in a constraint which is violated

at the current point.

 27

Procedure: select a variable that is in conflict, and assign it a value that minimises the

number of conflicts.

Empirical tests obtained from Minton et al (1992) using the min-conflict heuristic for hill

climbing showed that the heuristic obtained similar results to an existing neural network

method. The results also showed that the local search min-conflict heuristic works well on

some problems, e.g. the n-queens problem, graph colouring problem and the real world

problem of scheduling the Hubble space telescope. However, the min-conflict heuristic can

easily be trapped in local minima.

Since the min-conflict heuristic alone cannot overcome the problem of local minima, several

techniques have been introduced to solve this problem. These methods often diversify the

search and can be categorised into two types: 1) methods that add randomness, such as noise,

using random walks (Selman and Kautz, 1993), simulated annealing and 2) methods that

restructure the neighbourhood, that is the search is not allowed to move to some points for a

number of iterations, resulting in a smaller neighbourhood size, e.g. Tabu search (Glover and

Laguna, 1997).

2.4.2 GSAT

Local search for the SAT problem became popular when Selman at al (1992) introduced

GSAT. The procedure of classical GSAT is shown in Figure 2.1.

From Figure 2.1, GSAT searches for a satisfying variable assignment A for a set of clauses

C . Local moves are flips of variables which are chosen by select-variable according to a

 28

randomised greedy strategy, i.e. choosing a variable that leads to the largest increase in the

total number of satisfied clauses. The parameter Maxflips is used to determine the

frequency of restarts that helps GSAT overcome local minima. The process continues until

the parameter Maxtries is reached. Most local search algorithms for SAT (and also MAX-

SAT) follow the procedure below and thus have a simple structure of the algorithm.

proc GSAT

 Input clauses C , Maxflips , and Maxtries

 Output a satisfying total assignment of C , if found

 for i := 1 to Maxtries do

 A := random truth assignment

 for j := 1 to Maxflips do

 if A satisfies C then return A

 P := select-variable ()AC,

 A := A with P flipped

 end

 end

 return “No satisfying assignment found”

end

Figure 2.1: Pseudo code for GSAT procedure (Selman et al, 1992)

Although the parameter Maxflips helps GSAT overcome local minima, it does not

completely eliminate this problem; because the algorithm can still become stuck on a plateau

(a set of neighbouring states each with an equal number of unsatified clauses). Therefore, it

is useful to employ mechanisms that escape from local minima or plateaus by making uphill

 29

moves (flips that increase the number of unsatified clauses). The mechanism is for example

GSAT with walk (Selman et al, 1994). The principle of GSAT with walk is outlined as:

Given a random number r (10 ≤≤ r) and a fixed probability p . With probability p

(pr ≤), the algorithm randomly picks a variable appearing in some unsatisfied clauses and

flips its truth assignment. With probability 1- p (pr >), the algorithm randomly picks a

variable from the list of variables that gives the largest decrease in the total number of

unsatisfied clauses.

2.4.3 WSAT

WSAT (or Walk SAT) is based on ideas first published by Selman et al (1994) and it was

later formally defined as a local search for SAT by McAllester et al (1997). WSAT makes

flips by first randomly picking a clause that is not satisfied by the current assignment, and

then picking (either at random or according to a greedy heuristic) a variable within that

clause to flip. Therefore, whilst GSAT with walk can be viewed as adding “walk” to a

greedy algorithm, WSAT can be viewed as adding greediness as a heuristic to random walk.

There is a subtle difference between GSAT with walk and WSAT in the probability that a

variable is chosen to be flipped. GSAT with walk maintains a list (without duplicates) of the

variables that appear in unsatisfied clauses, and randomly picks a variable from that list;

thus, every variable that appears in an unsatisfied clause is chosen with equal probability.

WSAT employs the two-step random process described above (first randomly picking an

unsatisfied clause, and then picking a variable) that favours variables that appear in many

unsatisfied clauses.

 30

The main difference between local search algorithms for SAT and MAX-SAT is the strategy

to select the variable to be flipped. This strategy is a key feature of SAT local search

algorithms and is of critical importance for their performance.

2.4.4 Complex neighbourhoods

Most local search algorithms for SAT and MAX-SAT rely on the 1-flip neighbourhood. One

exception is the 2 and 3-flip neighbourhood local search algorithm for MAX-SAT proposed

by Yagiura and Ibaraki (1999). Since the computational time to examine the effects of 2 and

3-flips is high, they use a special data structure to speed-up as much as possible the

neighbourhood evaluation. In addition, they propose restrictions to both neighbourhoods that

allow pruning non-improving moves from the neighbourhood.

A different extension is the multi-flip approach by Strohmaier (1998) for SAT, where several

independent flips, that is, only variables are flipped that do not occur in the same clause, are

executed in parallel. The advantage of the approach is that the effect of independent flips is

the sum of the single flips. The independent set of flips is determined by a neural network

type architecture. In a similar idea, Roli (2001), and Roli and Blum (2001) proposed to

perform flips in parallel without taking into account possible interactions amongst the

variables. They divided the variables into k subsets of equal cardinality and, for each of the

k sets, flip the variable having the highest score in the set; the evaluation of a variable flip is

done as if all the other variables did not change.

 31

2.4.5 Meta-heuristics for MAX-SAT

In this section, we review the meta-heuristics that are intended to solve the MAX-SAT

problem. The following meta-heuristics use a 1-flip neighbourhood.

Battiti and Protasi (1997) proposed a history-based heuristic (reactive search) for MAX-

SAT. The main idea is to have a two-phase approach consisting of a simple GSAT and a

tabu search phase. The tabu search phase is run for a specified number of iterations. After the

tabu search stops, GSAT is executed until the search is trapped in a local optimum and then

the Hamming distance to the starting point is measured. Based on the resulting distance, the

tabu tenure is adjusted and again the tabu phase is initiated.

Resende et al (1997) applied a greedy randomised adaptive search procedure (GRASP) to

solve MAX-SAT problems. GRASP consists of two phases: construction and local search.

The construction phase builds good feasible solutions (a set of satisfied clauses), whose

neighbourhood is investigated until a local optimum is found during the local phase. The best

total weight of satisfied clauses is kept as the result. Pardalos et al (1996) proposed a parallel

GRASP for MAX-SAT problems. Each GRASP iteration is regarded as a search in some

region of the feasible space and a number of processors perform searching in parallel. When

the specified number of iterations has been reached, each processor gives the best solution

found. The best solution amongst all processors is then identified and used as the solution of

the problem.

Mills and Tsang (2000) proposed guided local search (GLS) for solving SAT and MAX-SAT

problems. GLS uses a cost function including a set of penalty terms to guide the local search.

 32

Each time local search gets trapped in a local optimum, the penalties are updated and local

search is called again to maximise the modified cost function.

Variable neighbourhood search (VNS) was recently applied to the MAX-SAT problem

(Hansen et al, 2000). VNS combines local search with systematic changes of neighbourhood

in the descent and escapes from local optimum phases. The search explores increasingly far

neighbourhoods of the current solution, and allows the exchange of the current best solution

for a new one if and only if a better one has been found. Therefore, the favourable

characteristics of the current solution are kept and used to obtain a promising

neighbourhood, from which a further local search is performed.

2.5 Move strategies for local search

The fundamental principle of local search is to exploit the interplay between the

diversification and intensification strategies, where diversification drives the search to

explore new regions, and the intensification focuses more intensively on regions previously

found to be good or promising to find an optimal solution.

2.5.1 Diversification

One of the main problems of all methods based on local search approaches is that there tend

to be numerous local points in the search space, i.e. the local search algorithms tend to spend

most, if not all, of their time in a restricted portion of the search space. The negative result of

this fact is that, although good solutions may be obtained, one may fail to explore the most

 33

promising regions of the search space and thus end up with solutions that are still pretty far

from optimal.

Diversification is one of the strategies that try to reduce this problem. This can be done by

forcing the search into previously unexplored areas of the search space. Search

diversification may be based on history of the search, e.g. frequency- based memory in tabu

search (Glover and Laguna, 1997) in which the algorithm records the total number of

iterations since the beginning of the search for which various solution components have been

present in the current solution or have been involved in the chosen moves. In cases where it

is possible to identify promising regions of the search space, the search history can be

refined to track the number of iterations spent in different regions.

Diversification techniques may be classified into three groups. The first, called restart

diversification, involves assigning all variable values or forcing a few rarely used

components in the current solution or the best known solution and restarting the search from

this point. This technique is used, for example, in multi-restarts in GRASP (Feo and

Resende, 1995). The second technique integrates the diversification procedure directly into

the regular searching process. This is achieved by perturbing or biasing the evaluation of

possible moves by adding to the objective a small term related to a component of search

history. Examples of this technique are long-term memory in tabu search (Glover and

Laguna, 1997), perturbation and bias sampling in iterated local search (Lourenco et al,

2002). The last diversification techniques are heuristic methods that use multi-

neighbourhood structures. For a given combinatorial optimisation problem, several

neighbourhood structures may be used to diversify the search space and enable a

 34

convergence of the search space. A decision on which neighbourhood is to be chosen in what

sequence during the search is an important strategy.

The diversification strategy in SAT local search is often achieved by some noise strategies,

e.g. the random walk (Selman and Kautz, 1993; Selman et al, 1994), that randomly picks a

value of some variables.

Ensuring proper search diversification is a critical issue in the design of local search

methods. It should be addressed with care fairly early in the design phase and revised if the

results obtained do not reach expectations.

2.5.2 Intensification

The purpose of the intensification strategy is to focus the search on promising regions of the

search space in order to make sure that the best solutions in these regions are found.

However, intensive investigation on the search space is computationally expensive; very

often the local search algorithm would stop the normal searching process to perform an

intensification phase from time to time.

Search intensification is used in many local search implementations, but it is not always

necessary (Gendreau, 2002). This is because there are many cases where the search

performed by the normal searching process is thorough (good) enough. Therefore, there is no

need to spend time exploring more intensively the portions of the search space so that the

computational effort is spent more effectively. For example, in tabu search, intensification

can be carried out by giving a high priority to the solutions which have common features

 35

with the current solution. This can be done with the introduction of an additional term in the

objective function; this term will penalise solutions distant from the present one. This is done

during a few iterations and after this it may be useful to explore another region so that the

diversification strategy will be used next.

The intensification strategy in local search for CSP has rarely been addressed. The

intensification is carried out by consistency techniques but mostly embedded in systematic

tree search algorithms, e.g. backtracking algorithm (Kondrak and Beek, 1997). At each tree

node, consistency is enforced with respect to the current variable assignments. As further

assignments are made, the problem is divided into sub-problems since more of the original

variables have fixed assignments within which consistency is enforced. Backtracking is

called when any variable domain becomes empty as a result of consistency enforcing based

on the current assignments, i.e. the sub-problem is inconsistent given these assignments. As

consistency enforcing is also computationally costly, there is always a debate on the trade-

off between how much consistency is maintained during the search and the quality of the

solution.

2.5.3 Move acceptance criteria

In many combinatorial optimisation problems, constraints often restrict the searching process

too much and can lead to low quality of solutions. This occurs, for example, in our rail

scheduling problem and many other problems where the resource capacity is too tight to

allow assigning demands (resource consumed) effectively between resources. In such cases,

allowing non-improving moves (or relaxing constraints) is an attractive strategy. This is

 36

because it creates a larger search space that can be explored with simple structures of local

move.

Move acceptance can be carried out by several strategies. The simplest strategy is to always

allow improving and non-improving moves. The second simple one can be implemented by

dropping selected constraints from the search space definition and adding to the objective

weighted penalties for constraint violations. However, this raises the issue of finding correct

weights. An interesting way of tackling this problem may use self-adjusting penalties (Frank,

1997), i.e. penalty weights are adjusted dynamically on the basis of the recent history of the

search: weights are increased if only infeasible solutions were encountered in the last few

iterations, and decreased if all recent solutions were feasible. Penalty weights can also be

modified systematically to drive the search to cross the feasibility boundary of the search

space and thus induce diversification.

Another strategy is probabilistic move acceptance as used, for example, in simulated

annealing. At the beginning of the search, a high probability of accepting any local moves is

used whether the algorithm improves the solution or not. At some later iterations, the process

is done with respect to a probabilistic acceptance function based on parameter called a

temperature. The temperature is decremented until it is small and therefore only few non-

improving moves are accepted. The way temperature is controlled is referred to as the

cooling schedule.

2.5.4 Adaptive control

An adaptive mechanism is always an attractive feature for a better control of a local search

algorithm. For example algorithms using adaptive mechanisms are: adaptive tabu search

 37

(Glover and Laguna, 1997), adaptive simulated annealing (Lester, 1996), variable

neighbourhood search (Hansen and Mladenovi, 2001), adaptive noise for SAT local search

(Hoos, 2002), etc. Adaptive techniques may range from a simple automated tuning

parameter to a complex learning mechanism. The formulation and application of the adaptive

techniques are also very different, depending on where the techniques are used and the state

of the search.

These adaptive algorithms do not depend on specific designs of heuristics and do not need

many tuning parameters. Instead they learn from the history of the search in order to control

the search adaptively. For example, Horvitz et al (2002) proposed a Bayesian learning

technique for solving hard CSP and SAT problems. The algorithm explicitly learns from the

search history and predicts the runtime for restarting policies in randomised search.

In our research a predictive choice learning model is proposed in order to inform the

algorithm when the search space needs to be explored intensively and in which regions.

Further discussion on this technique is given in Section 5.2.4 of Chapter 5.

2.6 Conclusions

This chapter outlines some frameworks for combinatorial optimisation, which can be mainly

categorised into three groups: integer programming, finite domain constraint programming,

and local search. Integer and constraint programming can be considered as general-purpose

optimisation methods, whereas local search may be viewed as an approach that can be

tailored to many different combinatorial optimisation problems by adapting its simple

conceptual components to the respective problem context.For large-scale combinatorial

 38

optimisation problems, local search may be used to find good solutions in reasonable time.

Local search can be described in terms of basic components: a cost function of a solution to

the problem, a neighbourhood function that defines the possible moves in the search space,

and control strategy according to which the local moves are performed. The fundamental

principle of local search is to exploit the interplay between diversification and

intensification. Move acceptance criteria are also of importance for the performance of local

search, in particular when simple structures of local move are used.

The research presented in this thesis proposes an effective solving algorithm for the

container rail scheduling problem based on ideas discussed in this chapter, primarily those of

local search. The container rail scheduling problem is formulated in Chapter 3 as a CSP. The

solution method and its extension will be discussed in Chapter 4 and Chapter 5.

 39

Chapter Three

Modelling the container rail scheduling

problem

3.1 Introduction

There are many frameworks to represent and describe a container rail scheduling problem

(Crainic and Laporte, 1997; Cordeau et al, 1998). However, what we are interested in is not

only the framework for the representation of the problem but also an effective way to solve

the problem. As the container rail scheduling problem is typically complex and large, a

potential computational difficulty arises in solving such a problem. Therefore, research in

this area needs to consider both how to model and to solve the problem.

Many real life problems could naturally be represented by constraints and the satisfaction of

these constraints provides a solution for the presented problem. In our container rail

scheduling problem, train capacity, service restrictions, and some customer requirements are

modelled by hard constraints, whilst the objectives: minimum number of trains, maximum

customer satisfaction, and minimum timeslot operating costs are modelled by soft

 40

constraints. We can therefore formulate the container rail scheduling problem as a constraint

satisfaction problem. Then, we present a constraint-based local search algorithm to solve this

class of constraint satisfaction problem (described in Chapter 4).

This Chapter is organised as follows: Section 3.2 describes the problem’s characteristics and

assumptions. Section 3.3 describes the techniques to quantify the customer satisfaction on a

rail schedule. Section 3.4 presents a formulation of the container rail scheduling problem. A

generalised cost function is presented in Section 3.5, and finally conclusions are given in

Section 3.6.

3.2 Problem description and assumptions

In the past, the transportation of rail freight was considered not to be an efficient mode of

transport, particularly in terms of physical accessibility and cargo handling. Since the advent

of containerisation in the mid 1940s, rail carriers have gained higher profitability by tailoring

containerised freight and have become more competitive with other inland transport

providers.

Container rail service differs from conventional freight rail in several important aspects.

Because of the high costs of container handling equipment, container rail networks have

relatively few and widely spaced terminals. Networks with around ten terminals are common

and the network flows are relatively simple, as illustrated in Figure 3.1. A typical container

makes few or no stops and may be transferred between trains only up to a few times on its

journey. In addition, small lot sizes of shipment, frequent shipment, and demand for flexible

service are important characteristics in the transportation of rail containers.

 41

Figure 3.1: A typical container terminal network

It is also noted that container rail services are independent of one another in the sense that

demands for a container movement in a specific route do not interact with the demands in

any other routes (services). In addition, complex networks are not practical for customs

procedures as containerised cargoes, in general, are moved within an international context.

Even though container traffic has increased, the increase in market share of rail transport,

particularly in short-haul and medium-haul, has not been successfully achieved. Therefore,

there have been efforts to investigate the factors influencing modal choice. The results have

shown that the frequency and reliability of service are the main factors influencing shippers’

decisions on the choice of transport mode (Indra-Payoong et al, 1998).

A rail carrier’s profitability is heavily influenced by the railway’s ability to construct

schedules for which supply matches customer demands. For the transportation of

containerised freight, shippers (customers) can often choose between rail and truck. A need

Depot

Depot

Seaport

Seaport

Main seaport

Main terminal

Trucking services

Rail links

Terminal

Main terminal

Ferry links

 42

for responsive flexible schedules may become obvious not only because there is a risk that

some potential customers may turn away if the customer’s preferred itinerary is not

attainable, but also because the take-up of some services in a fixed schedule may be low and

therefore not profitable. In order to construct a demand responsive schedule, a rail carrier

needs to engage in a decision-making process with multiple business criteria and a number

of operational constraints, which is very challenging. There is a large body of literature on

freight rail scheduling, using diverse modelling structures. A recent survey by Cordeau et al

(1998) suggests most of them cater for fixed schedules. However, our proposed model

incorporates challenging practical situations which involve:

1. Non-uniform arrivals with distinct target times, i.e. not all containers are available

at the beginning of the planning time horizon and must be treated as distinct

customer bookings.

2. A demand responsive service providing the flexible schedules

3. A probabilistic decrease in customer satisfaction with deviation from target time

A few attempts have been made to generate flexible train schedules, which may be

categorised into two types according to how the overall demand is met. Huntley et al. (1995),

Gorman (1998), and Arshad et al. (2000) aggregate customer demands with minimum

operating costs through flexible scheduling. They do not propose to meet individual

demands. Newman and Yano (2000), Yano and Newman (2001), and Kraft (2002) share the

same spirit of our study by being responsive to individual demand. Their models satisfy the

operational constraints fully for each customer. In contrast, our framework models customer

satisfaction, computed from preferred and alternative booking time ranges, which is

considered as one of the rail business criteria. Therefore, some customers might not be given

 43

their most preferred booking time range. This framework is a natural one for supporting

decisions as a rail carrier can measure how well their customers are satisfied and the

implications of satisfying these customers in terms of cost.

We consider the container rail service from a container seaport to an inland container depot

(ICD) in which the weekly schedule is provided and revised every week. Once containers

arrive at the seaport, they can be transported to their final destinations by rail or truck via an

inland container depot, or directly by truck. This study assumes an advance booking scheme

as illustrated in Figure 3.2. It also assumes that all containers are homogeneous in terms of

their physical dimensions, and they will be loaded on trains ready for any scheduled

departure times. Note that we consider a standard container, which is measured in Twenty-

Equivalent Unit (TEU).

Figure 3.2: A short-term advance booking scheme

The day is divided into hourly slots for booking and scheduling. Customers are requested to

state a preferred booking time range (or an earliest booking time range) in advance. A

number of alternative booking time ranges for each shipment may be specified, which might

be judged from experience or estimated by the customer’s delay time functions. These

alternatives not only help a rail carrier consolidate customer demands to a particular train

Advance booking Week of operation

Tentative schedule Slack time

Fixed schedule

Confirm
booking Time horizon

 44

service with minimum total costs, but also provide flexible departure times for the

customer’s transport planning strategy.

A preferred departure time range and each alternative booking time range may cover a few

hours, which is illustrated in Table 3.1. This happens in practice because the service time

needed to move containers from the loading point of a containership to the train container

platform may vary. In addition, customers may have to allow more time for unexpected

delays.

Departure Shipping companies (customers)

Timeslot Evergreen Mearsk P&O Nedlloyd … Mitsui OSK

. P

Sat: 0900 P 1A

Sat: 1000 P P 1A

Sun: 1500
1A 2A P

Sun: 1600
1A 1A 2A P

. . . . … .

Wed: 1100
3A

1A

Wed: 1200
2A

3A
1A

Wed: 1300
2A

1A

Table 3.1: An example of potential departure time ranges for customer

In Table 3.1, P is a preferred departure time range, 1A is the first alternative departure time

range, 2A and 3A are the second and the third alternative departure time range respectively.

 45

Amongst these alternative departure time ranges, a customer has a more satisfaction with a

departure time in 1A than in 2A and with a departure in 2A than in 3A . That is, if one

customer’s alternative departure time range is not possible, the next alternative departure

time range is accepted but with less satisfaction. Blanks “ ” denote infeasible departure

times for the customer as container handling services may not be available either at the

terminal of departure or destination terminal, or at both ends.

It is noted that there may be some customers that book the container rail service close to the

end of a week; therefore their alternative booking time range may fall into the following

week. The proposed model only takes the booking time ranges for those customers which

fall within the schedulable week and the other alternatives are not considered directly.

3.3 Customer satisfaction

In a highly competitive market, assessing customer satisfaction with the transport service is

of great importance to a container rail carrier. A rail carrier could take advantage of a

knowledge of customer satisfaction to improve its service and to strengthen its competitive

position with respect to the other transport services. A rail carrier could increase the quality

of service and market share by tailoring a service that satisfies individual customers. The rail

schedule may be just one of the mode-choice decision factors including cost, travel time,

reliability, safety, and so forth. As customers have different demands, it is hard to find a

single definition of what a good quality of service is. For example, some customers may be

willing to tolerate a delayed service in return for sufficiently low total shipping costs.

 46

3.3.1 Rail schedule factor

We investigate customer satisfaction with respect to the rail schedule factor. To acquire the

customer satisfaction data, face-to-face interviews were carried out by the author. The

outline of the interview is tabulated in Table 3.2.

This survey includes 184 customers currently using both rail and trucking services or using

only rail but with the potential to switch their shipment to truck in the future. The

containerised cargo is classified into four categories as follows:

1. Cargo type I (perishable consumer goods): food and beverages, dairy products,

fruits and vegetables (24 customers)

2. Cargo type II (durable consumer goods): household products, and furniture (52

customers)

3. Cargo type III (intermediate products and raw materials): textile fibres, tobacco

leaves, paper and paperboard, chemicals (67 customers)

4. Cargo type IV (capital goods and others): iron and steel, metal manufacture,

non-electrical machinery and parts, construction materials (41 customers)

 47

Shipping information

 Type of company (shipping line, freight forwarder, MTO, .etc)

 Type of container and commodity value per ton

 Container density measured

 Shelf life of the commodity in days

 Annual container volume shipped

 Period of advance booking regularly used.

Modal characteristics* (shipping time)

 Arrival time at container port

 Discharging time at container port

 Waiting time at the discharging point

 Haulage time from the discharging point to the main terminal

 Waiting time at port terminal

 Loading time at train/truck terminal

 Travel time

Modal characteristics* (shipping cost)

 Freight rate (TEU-ton-km) and commodity rate factor

 Terminal storage cost at port terminal/shipside (TEU-ton/day)

(day = a consecutive 24-hour period)

 Free time storage period at port terminal (days)

 Reduction rate if containers are moved from terminal/shipside within (day-

percent)

 Terminal handling charge per TEU-ton

 Overhead cost for waiting time at port terminal/shipside (TEU-ton/day)

Bookings

 Preferred train departure time range

 Alternative departure time range I

 Alternative departure time range II

 Others
* Rail and truck are the two modes surveyed

Table 3.2: The outline of the survey interview

 48

3.3.2 Satisfaction

Understanding and quantifying customer satisfaction benefits a rail carrier. The customer

satisfaction is linked to the probability that a customer will select rail or truck for a mode of

transport. If customer satisfaction with the rail service decreases, the probability of customer

choosing rail will also decrease and this will reduce the demand for the rail transport in the

future.

To quantify customer satisfaction, customer satisfaction functions are developed. These use

customer characteristics, shipping information and modal characteristics as primary input

data. Total shipping costs associated with movement by modes are expressed as a percentage

of commodity market price or value of containerised cargo, expressed in price per ton.

Average relative shipping costs of the containerised cargo from survey data (see Appendix

A) and the market price are summarised in Table 3.3. The market price for each cargo type is

estimated by the Department of Business Economics, Ministry of Commerce, Thailand

(Ministry of Commerce, 2002).

We assume that all customers know a full set of shipping costs and can justify the modal

preferences on a basis of accurately measured and understood costs. The freight rate may be

adjusted by the relative costs that a customer may be willing to pay to receive superior

service. For example, some customers may have higher satisfaction using a trucking service

even if the explicit freight rate is higher; speed and reliability of the service may be

particularly important if the containerised cargo has a short shelf life.

 49

Cargo types/cost Cost /unit price Market Modal cost (%)

(×103 Baht /ton) Truck Rail price Truck Rail C∆

TC RC TC - RC

Freight rate

Type I 2.21 1.55 25.00 8.84 6.20 2.64

Type II 6.71 2.96 68.00 9.87 4.35 5.52

Type III 10.45 7.56 87.20 11.98 8.67 3.31

Type IV 0.95 0.21 13.00 7.30 1.62 5.68

Terminal handling charge

Type I 0.28 0.51 25.00 1.12 2.04 -0.92

Type II 0.57 1.04 68.00 0.84 1.53 -0.69

Type III 1.18 2.06 87.20 1.35 2.36 -1.01

Type IV 0.03 0.08 13.00 0.23 0.61 -0.38

Terminal storage charges

(Within free time storage) 0 0 0 0 0

Overhead cost

(Within free time storage) 0 0 0 0 0

Total shipping costs

Type I 2.49 2.06 25.00 9.96 8.24 1.72

Type II 7.28 4.00 68.00 10.70 5.88 4.82

Type III 11.63 9.62 87.20 13.34 11.03 2.31

Type IV 0.98 0.29 13.00 7.54 2.23 5.31

Table 3.3: Average modal cost for each transport mode

 50

To determine customer satisfaction between modes, we assume that the difference between

modal cost percentages, i.e. C∆ = TC - RC , follows a normal distribution. The customer

satisfaction is then derived from cumulative probability density functions (Appendix A). The

customer satisfaction functions for the containerised cargoes are shown in Figure 3.3 - 3.6.

Figure 3.3: Customer satisfaction function of cargo type I

Figure 3.4: Customer satisfaction function of cargo type II

C∆

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
Modal cost percentage

Sa
tis

fa
ct

io
n

on
 ra

il

C∆

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25

Modal cost percentage

Sa
tis

fa
ct

io
n

on
 ra

il

C∆

 51

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50

Modal cost percentage

Sa
tis

fa
ct

io
n

on
 ra

il

C∆

Figure 3.5: Customer satisfaction function for cargo type III

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25
Modal cost percentage

Sa
tis

fa
ct

io
n

on
 ra

il

C∆

Figure 3.6: Customer satisfaction function of cargo type IV

From Figure 3.3 - 3.6, if there is no difference between the modal cost percentages, i.e. C∆

= 0, customers tend to state their satisfaction on the service between rail and truck equally. A

cargo that has a low value of C∆ has a high sensitivity in the total shipping costs. For

instance, an arithmetic mean of C∆ = 1.72 for customers shipping cargo I (see Appendix A);

 52

when the transport of containers are delayed by rail, it will result in an increase in the total

shipping costs. For customers shipping this type of cargo even a small cost increase can

lower their satisfaction using the container rail service quite substantially. This is due to a

high sensitivity in the total shipping costs. A probability of 0.5 in the customer satisfaction

function indicates the lowest satisfaction level for the container rail service. If the

satisfaction is below this level, customers may turn to use a trucking service instead;

otherwise, they would tolerate the rail service. Nowadays, a rail carrier would try to keep the

customer satisfaction above this level.

Once the satisfaction function has been developed, a customer’s satisfaction measure can be

obtained from the modal satisfaction probability. This probability could also be used to

predict the market share between transport modes and to test the modal sensitivity when the

rail schedule is changed.

The customer satisfaction measure is a probability of choosing the rail service and all

customers have a satisfaction ranging from 0 to 1. Note that all customers currently using

container rail service may already hold a certain level of satisfaction regardless of taking the

quality of the rail schedule into account. Once the rail carrier has been chosen as a choice of

transport mode and later the schedule is delayed, customers incur additional total shipping

costs, i.e. terminal storage and overhead costs involved at the seaport. This would result in a

decrease in customer satisfaction. An example of the calculation of customer satisfaction is

shown in Table 3.4.

 53

Shipping data Unit Value

Cargo type Type IV

Ship arrival time Day: Time Mon: 0900

Discharging time Hour 4

Free time storage allowance Day 3

Reduction rate on terminal handling charges

- Scheme I Day - % 1 - 25%

- Scheme II Day - % 2 - 20%

- Scheme III Day - % 3 - 10%

Bookings Day: Time

- Preferred time range (P) Mon: 1500-1700

- Alternative I (1A) Tue: 0900-1600

- Alternative II (2A) Wed: 0900-1600

- Alternative III (3A) Thu: 1600-2200

Modal cost (%) P 1A 2A 3A

- Truck (TC) 9.51 9.51 9.51 9.51

- Rail (RC) 3.78 3.84 4.09 4.33

- C∆ 5.73 5.67 5.42 5.18

Satisfaction (w) 0.86 0.75 0.60 0.37

Table 3.4: Customer satisfaction

From Table 3.4, the customer has the modal cost percentages for truck TC and rail RC at the

preferred booking time range equal to 9.51 and 3.78 (the first reduction rate on terminal

handling charges is applied). Since the trucking service is always available, we use the same

TC for 1A , 2A , and 3A for a comparison with RC . RC for 1A and 2A takes the reduction

 54

rate 20% and 10% respectively. For 3A no reduction is applied and the terminal storage

charge is imposed. After getting the difference between modal cost percentages C∆ = TC -

RC , we can obtain the customer satisfaction by applying the value of C∆ into the customer

satisfaction function (Figure 3.6), e.g. C∆ = 5.73, we get the satisfaction w = 0.86.

Alternatively, the satisfaction w can be obtained by the following function:

 ()
2

2
1

2
1 






 −

−

= σ
µ

πσ

x

exf (3.1)

 ()∫
∆

∞−

=
C

dxxfw (3.2)

where: ()xf is the normal probability density function that C∆ takes the value x , µ and

σ are the mean and standard deviation of the total C∆ (Appendix A).

3.4 Problem formulation

There are often different ways of representing the same combinatorial optimisation problem

and this should provide some advantages in developing solution procedures for such a

problem. Since obtaining an optimal solution to a large-scale combinatorial optimisation

problem in a reasonable amount of computer time may well depend on the way the problem

is modelled, we need to consider both how to model and to solve the problem.

 55

3.4.1 Integer programming formulation

Many combinatorial optimisation problems can be formulated as the problems in integer

programming in which all decision variables are required to take integral values. We first

model the demand-responsive container rail scheduling problem as an integer programme.

We consider the day divided into hourly slots for weekly booking and scheduling. The

following notation will be used:

Sets:

T : set of schedulable timeslots t

M : set of customers j

jS : set of potential booking timeslots for customer j

tC : set of potential customers for departure timeslot t

R : set of service restrictions for departure timeslots

Decision variables:

tx : 1, if a train departs in timeslot t , 0 otherwise

tjy : 1, if customer j is served by the train departing in timeslot t , 0 otherwise

Parameters:

FC is a fixed cost of running a train

tjw : customer j satisfaction in departure timeslot t

jN : demand of customer j (number of containers)

 56

tr : train congestion cost in departure timeslot t

tg : staff cost in departure timeslot t

1P : minimum train loading (number of containers)

2P : capacity of a train (number of containers)

The IP formulation of the container rail scheduling problem is:

 Minimise ()∑∑ ∑∑
∈∈ ∈∈

++









+

Tt
ttt

Tt Cj
tjjtj

Tt
t xgryNwxFC

t

 (3.3)

 Subject to ∑
∈

∈∀=
jSt

tj Mjy ;1 (3.4)

TtPyN
Mj

tjj ∈∀≥∑
∈

;1 (3.5)

TtPyN
Mj

tjj ∈∀≤∑
∈

;2 (3.6)

TtCjyx ttjt ∈∀∈∀≥ ,; (3.7)

Rtxt ∈∀= ;0 (3.8)

{ } MjTtyx tjt ∈∀∈∀= ,;1,0, (3.9)

The objective is to minimise the generalised cost representing the operating costs and the

virtual loss of future revenue. The first term in the objective function aims to minimise the

number of trains on a weekly basis. The fewer trains, the greater reduction on operating costs

a rail carrier can expect. The second term is to maximise the total customer satisfaction using

values from a customer satisfaction functions (Figure 3.3 - 3.6). Each customer holds the

 57

highest satisfaction at a preferred booking time range, the satisfaction then decreases

probabilistically to the lowest satisfaction at the last alternative booking time range, i.e.

departure later than the preferred booking time range would cause a decrease in the future

demand, and the rail carrier is expected to take a loss in future revenue. For the evaluation of

a schedule, the probability of customer satisfaction is then multiplied by demand jN . The

last term in the objective function aims to minimise the timeslot-operating cost. A rail carrier

is likely to incur additional costs in operating a demand responsive schedule, in which

departure times may vary from week to week. This may include train congestion cost and

staff cost. The train congestion cost reflects an incremental delay resulting from interference

between trains in a traffic stream. The rail carrier calculates the marginal delay caused by an

additional train entering a particular set of departure timeslots, taking into account the speed-

flow relationship of each track segment. The over-time cost for crew and ground staff would

also be paid when evening and night trains are requested.

Constraints (3.4) ensure that no customer will be left uncovered and each customer can only

be served by one train. These hard constraints are crucial for a rail carrier. This is because it

does not make good business sense in a competitive market to offer a demand responsive

service, requiring customers to state both their preferred, and a set of alternative, time ranges

regarding their practical container operations (either at the terminal of departure or

destination terminal, or at both ends) and business strategies and then to decline their

business. In addition, customers’ shipment cannot be split in multiple trains. This is because

the destination terminal (inland container depot: ICD) located in the heart of the capital city

is relatively small and all arrival containers must be stacked in the designated area.

Expensive equipment is required to move the containers from the train to the ICD and later

onto transport to the final destination. Multiple shipments are likely to result in container

 58

stacks having to be “shuffled” to assemble a particular customer’s load; thereby imposing

substantial container handling cost.

Constraints (3.5) ensure that the demand assigned to a departure time slot must not be less

than the minimum train loading 1P . Setting a minimum train loading ensures satisfactory

revenue for a rail carrier and spreads out the capacity utilisation on train services. The carrier

may want to set the minimum train loading as high as possible, ideally equal to the capacity

of a train. Section 4.4 explains how sensible values for 1P can be determined.

Constraints (3.6) ensure that the demand assigned to a departure time slot must not exceed

the capacity of a train. These are hard operational constraints; if load exceeds the capacity,

running the train can damage the locomotive engine and railway infrastructure, e.g. tracks.

Note that in case of a single customer’s demand being more than the capacity of a train, we

allow splitting this demand over multiple trains and treat the demand as different sub-

customers; however, this particular case rarely occurs in practice.

Constraints (3.7) ensure that if timeslot t is selected for customer j , a train does depart at

that timeslot. On the other hand, if departure timeslot t is not selected for customer j , a

train may or may not run at that time.

Constraints (3.8) are a set of banned departure times. The restrictions may be pre-specified

so that a railway planner schedules trains to achieve a desirable headway or to avoid

congestion at the container terminal.

Constraints (3.9) require that all decision variables in the model are binary.

 59

The container rail scheduling problem was initially solved by an integer programming

branch and bound method (CPLEX Solver, ILOG 2002). We failed to find an optimal

solution within the time limit 12 hours, particularly when the minimum train loading 1P is

close to the capacity of a train. Since all decision variables in our container rail scheduling

model are binary (constraints 3.9) and fractional solutions to linear relaxations are

meaningless, tight bounds on the objective function value cannot be obtained and used to

reduce the size of the search space.

Note that the matrix of coefficients in (3.4) consists of only zeroes and ones and that the

constraints are equations. Thus there is a relaxation of the container rail scheduling problem

to a set partitioning problem (SPP). Formally, the SPP is the problem of partitioning the rows

i (Mi ,...,1=) of a zero-one matrix (ija) by distinct subsets of the columns j (Nj ,,1K=)

at minimal cost. Defining jx = 1 if column j (with cost 0>jc) is in the solution and jx =

0 otherwise. The SPP is

 Minimise ∑
=

N

j
jj xc

1

 (3.10)

 Subject to Mixa
N

j
jij ...,,3,2,1;1

1

==∑
=

 (3.11)

 { } Njx j ...,,3,2,1;1,0 =∈ (3.12)

Constraints (3.11) ensure that each row is covered (served) by exactly one column and (3.12)

are the integrality constraints. The SPP is known to be NP-hard (Balas and Padberg, 1976);

hence the container rail scheduling problem is NP-hard. In addition, the container rail

scheduling problem incorporates other constraints that require the consistency between

 60

different sets of decision variables which will make it more complex than SPP. Many current

approaches for NP-hard problems focus on finding good solutions within a reasonable time

using various local search heuristic methods.

3.4.2 Constraint-based modelling

Since the container rail scheduling problem is NP-hard, this implies that proven optimal

solutions may take too long to find, at least for large instances. This leads us to the design of

a local search that can find good solutions within reasonable run-time on a standard personal

computer. As discussed earlier, what we are interested in is not only the framework for the

representation of the problem but also an effective way to solve the problem. Therefore, we

need to consider both how to model and to solve the problem. We model the container rail

scheduling problem as a constraint satisfaction problem (CSP) and then introduce a

constraint-based local search method for solving it (described in Chapter 4).

The principal difference between branch and bound based IP and CSP approaches to solving

combinatorial optimisation problems is that:

• in IP, the integrality restrictions on the variables are relaxed, the search space is the

continuous feasible region and the search is guided primarily by the objective

function;

• in CSP, some or all of the constraints are relaxed but the integrality restrictions are

enforced, the search space is simply defined by the domains of the variables and the

search is guided by the need to gain feasibility.

 61

Both approaches have met with success in a variety of applications, neither of the

approaches being able to claim general superiority over the other. It is known that branch

and bound searches can be very lengthy if integer feasibility is hard to achieve or if the

optimal solution to the continuous relaxation is not a good guide to good quality

solutions of the IP (Darby-Dowman and Little, 1998; Brailsford et al,1999). As noted in

Section 3.4.1, this appears to be the case for the container rail scheduling problem.

A further important difference is that in IP, all constraints are global constraints, i.e. are

always enforced, whereas constraint-based approaches can handle constraints locally, i.e. can

decide which constraints to impose at various stages of the search. This allows different

constraints to be given different ‘priorities’, which allows problem-specific knowledge to be

exploited to guide the search. Constraints can also be represented more compactly in

constraint-based approaches as there is no need to make them linear. Regarding the container

rail scheduling problem, a constraint-based local method allows the search to move between

feasible and infeasible regions of the search space in a simple and flexible way. In addition,

each term in the objective function can be treated separately. This reduces the complexity in

the design and evaluation of local moves.

Any local search method can be applied to CSP and is then sometimes called “a constraint-

based local search method”. In Chapter 2, we reviewed some local search methods (heuristic

and meta-heuristic methods) for the railway scheduling problem and CSP. Many local search

methods are conceptually simple, domain-independent frameworks; however these methods,

applied totally independently of problem specific knowledge, rarely work well for real

industrial problems. They are often enhanced by incorporating intensive domain-knowledge

 62

and use complex local moves. Thus, they lose their appeal as simple and general solution

methods and quickly become algorithms highly specialised for the given problem.

Our constraint-based local search (CLS) for the container rail scheduling problem is inspired

by local search for the satisfiability (SAT) problem. An attractive framework of SAT local

search is that the structure of the local move is simple and this may be appropriate for our

problem. The development of CLS is described in detail through Chapters 4 and 5.

In a CSP, operational requirements are represented as hard constraints whilst optimisation

criteria are handled by transforming them into soft constraints. This is achieved by

expressing each criterion as an inequality against a bound on its ideal optimal value. As a

result, such soft constraints are rarely satisfied.

A feasible solution for a CSP representation of the problem is an assignment to all decision

variables in the model that satisfies all hard constraints, whereas an optimal solution is a

feasible solution with the minimum total soft constraint violation (Winston, 1994; Walser

1999; Henz et al, 2000; Lau et al, 2001). For simplicity, we assume that the violation iv of

constraint i is linear and is defined as follows:

 







−=⇒≤ ∑∑

∈∈ Nj
ijijii

Nj
jij bxabxa ,0maxν (3.10)

where ija are coefficients, ib is a bound, jx are constrained variables. Note that violations

for other types of linear and non-linear constraints can be defined in an analogous way.

Further, other ways of defining iv are possible.

 63

In this study, (3.10) is only used for soft constraints, it is later modified for hard constraints

as described in Section 4.3.

3.4.2.1 Soft constraints

In the container rail scheduling model, the soft constraints are minimum number of trains,

maximum customer satisfaction, minimum timeslot-operating cost.

Number of trains. This constraint aims to minimise the number of trains. The number of

trains constraint is defined as:

 ∑
∈

≤
Tt

tx θ (3.10)

where: θ is a lower bound on the number of trains, i.e.











∑
∈Mj

j PN 2/)(.

The violation of the number of trains constraint 1s is

 







−= ∑

∈Tt
txs θ,0max1 (3.11)

Customer satisfaction. This constraint aims to maximise the total customer satisfaction. The

customer satisfaction constraint is defined as:

Ω≥







∑ ∑
∈ ∈Tt Cj

tjjtj
t

yNw (3.12)

 64

where: Ω is an upper bound on customer satisfaction, i.e.∑
∈ tCj

jj NW ; jW is the maximum

satisfaction on a preferred booking time range for customer j .

The calculation of upper bound on customer satisfaction Ω is illustrated in Table 3.5.

Timeslot Customer satisfaction Sum

(t)
1C 2C 3C 4C 5C 6C 7C (Ω)

1 0.90 0.70

2 0.95 0.90 0.76 0.85 0.70 0.84

3 0.90 0.76 0.85

4 0.95 0.70 0.63

5 0.70 0.60 0.63

6 0.70 0.60 0.60 0.50 0.63 0.91

7 0.90 0.60 0.50 0.91

jN 10 20 15 8 5 25 16

jW 0.95 0.90 0.76 0.85 0.70 0.84 0.91

jj NW × 9.50 18.00 11.40 6.80 3.50 21.00 14.56 84.76

Table 3.5: The input data and the calculation of the upper bound Ω

The violation of the customer satisfaction constraint 2s is

 

















−Ω= ∑ ∑

∈ ∈Tt Cj
tjjtj

t

yNws ,0max2 (3.13)

 65

Timeslot-operating cost. This constraint aims to minimise the timeslot-operating cost. The

timeslot-operating cost constraint is defined as:

() ()δλ +≤+∑
∈

t
Tt

tt xgr (3.14)

where:)(δλ + is a lower bound on the timeslot-operating cost, ∑
∈

=
aTt

trλ ; Ta is the set of θ

least train congestion costs, ∑
∈

=
bTt

tgδ ; Tb is the set of θ least staff costs, θ is a lower

bound on the number of trains.

The calculation of the upper bound on the timeslot-operating cost)(δλ + is illustrated in

Table 3.6. In this example, the lower bound on the number of trains θ = 3, the unit cost

310× Baht.

 66

Timeslot Congestion cost Staff cost Timeslot cost Sum

(t))(tr)(tg)(tt gr +)(δλ +

1 0.28 3.51 3.79

2 0.28 3.51 3.79

3 0.76 1.95 2.71

4 0.76 1.95 2.71

5 1.34 3.12 4.46

6 1.34 3.12 4.46

7 1.34 3.12 4.46

Σ θ least cost 1.32 7.02 8.34

Table 3.6: The input data and the calculation of the upper bound)(δλ +

The violation of the timeslot-operating cost constraint 3s is

 () ()







+−+= ∑

∈

δλt
Tt

tt xgrs ,0max3 (3.15)

Given soft constraint violations for the number of trains, customer satisfaction and timeslot-

operating cost, the generalised cost for a rail carrier GC can be obtained as:

)()(321 sFRssFCGC +++++= δλθ (3.16)

 67

where: FC is a fixed cost of running a train, FR is a freight rate per demand unit (ton-

container), λ , δ are defined in Section 3.4.2.1; 1s , 2s , and 3s are soft constraint violations

for (3.11), (3.13), and (3.15) respectively.

3.4.2.2 Hard constraints

In the container rail scheduling model, hard constraints are coverage constraint, train

capacity constraint, consistency constraint, covering constraint, and service restriction

constraint. These constraints are sometimes called operational or required constraints and

must be satisfied to ensure safety of service and practical operations. These constraints have

been discussed in Section 3.4.1; however, some of these will be modified for a more efficient

solving algorithm (described in Section 4.3.1).

3.4.2.3 Implied constraints

The soft and hard constraints completely reflect the requisite relationships between all the

variables in the model, i.e. the operational requirements and business criteria. Implied

constraints, derivable from the above constraints, may be added to the model. Whilst implied

constraints do not affect the set of feasible solutions to the model, they may have

computational advantage in the solution algorithm as they reduce the size of the search space

(Proll and Smith, 1998; Smith et al, 2000). The covering constraint is one such constraint,

being implied by (3.4).

Covering constraint. A covering constraint can be thought of as a set covering problem in

which the constraint is satisfied if there is at least one departure timeslot tx serving customer

 68

j . This constraint favours a combination of selected departure timeslots that covers all

customers. The covering constraint is defined as:

 ∑
∈

∀≥
jSt

t jx ;1 (3.14)

3.5 Conclusions

In this Chapter, the container rail scheduling problem is modelled as a constraint satisfaction

problem. We have presented a demand responsive scheduling model, in which service

supply matches or responds to customer demands and optimises on booking preference

whilst satisfying hard constraints. The advance booking scheme is assumed in order to help a

rail carrier consolidate the demands with minimum total costs and provide flexible bookings

for the customer’s transport planning strategy.

A constraint-based modelling framework is used in which rail business criteria and

operational requirements are formulated as soft and hard constraints respectively. The

criteria are handled by transforming them into soft constraints, which is achieved by

expressing each criterion as an inequality against a bound on its ideal optimal value.

The customer satisfaction with a rail schedule is quantified. It is computed from preferred

and alternative departure time ranges in which the satisfaction decreases with deviation from

target time in a probabilistic scale. The customer satisfaction is then maximised as one of the

rail business criteria. Hence some customers might not be given their most preferred time

ranges’ bookings. This framework is to support decision-makers in which a rail carrier can

 69

measure how well their customers are satisfied and the implications of satisfying these

customers in terms of cost.

In Chapter 4, a constraint-based local search method is presented to solve the container rail

scheduling problem.

 70

Chapter Four

Constraint-based local search for the

container rail scheduling problem

4.1 Introduction

As discussed in Chapter 3, the container rail scheduling problem has been modelled as a

constraint satisfaction problem. A feasible solution for a CSP is an assignment to all

constrained variables in the model that satisfies all hard constraints, and an optimal solution

is a feasible solution with the minimum total soft constraint violation.

As the container rail scheduling problem is NP-hard, a potential computational difficulty

arises in solving such a problem. In this chapter, we present a constraint-based local search

algorithm to find a good solution within reasonable computational time. The algorithm uses

a simple variable flip as a structure of local move. When all variables in the model are

assigned a value, the total hard violation is calculated; a quantified measure of the violation

 71

is used to evaluate local moves. A measure of constraint violation is used to drive the search

to the promising regions of the search space.

This chapter is organised as follows. Section 4.2 describes procedure of the constraint-based

local search algorithm. Section 4.3 describes how a constraint violation scheme is used to

improve the quality of the container rail schedule. Section 4.4 describes the minimum train

loading as an adaptive lower bound strategy. Computational results are shown in Section 4.5

and finally conclusions are given in section 4.6.

4.2 A constraint-based local search algorithm

The constraint-based local search algorithm (CLS) is inspired by local search for the

satisfiability (SAT) problem. An attractive framework of SAT local search is that the

structure of the local move is simple. There are some similarities between the ideas used in

CLS and SAT local search. Both methods use a simple variable flip as a structure of local

move and employ a randomised strategy for the selection of constraints and variables to

explore. However, many aspects of CLS are different from SAT local search. These are

described in the following sections.

4.2.1 The main loop

For the container rail scheduling problem, we first apply a simple pre-processing procedure

to get rid of the model variables tx and tjy if there is no customer demand on timeslot t , the

total demand on timeslot t is less than the minimum train loading 1P , or there is a service

restriction banning tx . After pre-processing constraints (3.8) can be removed as well.

 72

Points in the search space correspond to a complete assignment of 0 or 1 to all decision

variables. The search space is explored by a sequence of simple randomised moves which

are influenced by the violated constraints at the current point.

CLS starts with an initial random assignment, in which some hard constraints in the model

can be violated. In the iteration loop, the algorithm always selects a violated hard constraint

at random, e.g. an assigned train timeslot for which the demands exceed train capacity or an

assigned timeslot that is not consistent with a customer’s booking preferences.

Having selected a violated hard constraint, the algorithm randomly selects one variable in

that constraint and another variable, either from the violated hard constraint or from the

search space. Then two flip trials are performed in which the current value of the variable is

changed to its complementary binary value. Suppose that iV takes the value iv at the start of

the iteration so that the current solution ()hvvvA m |,...,, 21= , where m is the total number

of variables and h is the total violation of all hard constraints. Suppose further that 1V , 2V

are chosen and that their flipped values are 21 , vv respectively. We then look at the

assignments ()1211 |...,,, hvvvA m= , ()2212 |...,,, hvvvA m= and select the alternative with

the smaller total hard violation. This alternative becomes the new current point. It is noted

that CLS selects the best alternative (1A or 2A) for a new current solution even if it is worse

than A . The aim is to allow diversity in the search so that the search space may be fully

explored. CLS terminates when a feasible solution A is found or when no improvement to

the best total hard constraint violation found has been achieved for a specified number of

iterations Z . The procedure of the basic CLS is outlined in Figure 4.1.

 73

proc CLS

 A ← initial random assignment

 h ← initial hard constraint violation

 if h = 0 then output A , exit CLS

terminate ← false

try ← 0

while not terminate do

C := select-violated-hard-constraint ()A

P := select-two-variables ()AC,

 1A , 2A := flip ()PA,

 try ← try +1

 if ()21 hh < then ()1AA ←

 if hh <1 then h ← 1h

 try ← 0

else ()2AA ←

 if hh <2 then h ← 2h

 try ← 0

end if

 if h = 0 then output A , terminate ← true

 if try = Z then terminate ← true

end while

end proc

Figure 4.1: The basic CLS procedure

From Figure 4.1, in select-violated-hard-constraint, CLS randomly selects a constraint that

is not satisfied by the current assignment, and then in select-two-variables, CLS randomly

 74

selects one variable in that constraint and another variable, either from the violated hard

constraint or from the search space to flip.

The principal goal of CLS is to find a complete assignment of values to variables which is

consistent with all the hard constraints. This task is eased if partial consistency is maintained

throughout the search. The approach taken in applying CLS to the container rail scheduling

problem is to decompose it into a series of similar subproblems, each with the number, but

not timing, of trains fixed in relation to the minimum train loading parameter 1P and

maintaining the coverage constraints (3.4). Thus consistency is maintained within each set of

variables but enforced across different sets.

When CLS finds a feasible solution A , the refined-improvement procedure is called in an

attempt to reduce the soft violation for the customer satisfaction constraint 2s ((3.13) in

Section 3.4.2.1). The main concept of the refined-improvement procedure is to search more

intensively on A by fixing the number and timing of trains. This is because it is expensive to

maintain the consistency between the timeslot variables tx and the customer’s booking

variables tjy if the train timetable is not fixed. In this procedure only feasible improving

moves are allowed. Here, the refined-improvement does not try to reduce the soft violation

for the timeslot-operating cost constraint 3s ((3.15) in Section 3.4.2.1) for the same reason as

above; in addition, the variation in timeslot-operating cost is small. However, in Section

4.3.2, the artificial soft violation *S is introduced in an attempt to reduce the total soft

violation whilst all hard constraints are still to be fully satisfied by CLS.

The refined-improvement procedure is:

 75

Step 1 Record the soft violation 2s for A .

For each customer:

Step 2 Order the alternative, active timeslots for this customer in increasing order of

satisfaction cost for this customer.

For each possible timeslot:

Step 3 Swap this customer with a customer currently served in this timeslot.

Step 4 If the new assignment is feasible and reduces the soft violation 2s , replace

A , 2s . Repeat step 2 for the next customer, if any exist. If the new

assignment is not feasible or is feasible but does not reduce 2s , repeat step 3

with the next customer if any exist served in this timeslot.

After the refined improvement is performed, the algorithm reduces the soft violation cost 1s

((3.11) in Section 3.4.2.1) by removing one train out of the current feasible solution. As a

result, the problem is more constrained and the current solution becomes infeasible. The

value of stopping criterion parameter Z is refreshed and CLS is called again to find a new

feasible solution for the problem.

4.2.2 Violated constraint selection

From the procedure of CLS in Figure 4.1, the remaining degrees of freedom in designing the

search strategy are how to select a violated constraint and which variables to flip. In CLS, it

is hard to find good strategies for the selection of a violated hard constraint and of variables

 76

which have a strong impact on performance of the algorithm. Different selections of a

violated hard constraint have been investigated for SAT local search (McAllester, 1997 and

Walser, 1999). For instance, choosing the violated constraint with maximum or minimum

constraint violation; however none have been shown to improve over random selection.

Therefore, the question remaining is how to select good variables to flip.

4.2.3 Variable selection

Once a violated hard constraint has been chosen, CLS selects two variables in order to

perform trial flips. This is different from GSAT in which only one variable is chosen to flip

in favour of less computation. Random selection is used to achieve a diversified exploration

of the search space.

CLS could also choose only one variable to flip in order to reduce the computational cost of

each iteration. On the other hand, it could select more than two variables to improve the

performance of the local move. However, iterations become more computationally expensive

as the number of variables selected increases. Therefore a compromise of selecting two

variables is made. In addition, the two-variables selection scheme is theoretically and

computationally suitable for the predictive choice model (described in Chapter 5) which

involves building a joint probability distribution of the non-deterministic interaction between

two variables in the combinatorial optimisation model in order to predict a good choice of

value for a variable.

For the container rail scheduling model, there are two sets of binary variables: a timeslot

variable tx represents whether to operate a train service or not in each potential timeslot, and

 77

customer’s booking variable tjy represents whether a customer is served in each potential

timeslot. In this case, by randomly choosing one variable from the violated constraint and

another from the search space, diversified exploration of the search space may not be

achieved because the number of tjy variables is much greater than the tx variables.

Therefore, alternative selection schemes are introduced as follows:

- Scheme 1: Randomly select any two variables in the violated constraint.

- Scheme 2: Randomly select one variable from the tjy set and one tx variable

from the violated constraint.

- Scheme 3: Randomly select one tjy variable from the violated constraint and

another variable (tx or tjy) from the search space.

- Scheme 4: Randomly select one tx variable from the violated constraint and one

tx variable from the search space

CLS selects one of these schemes at random so that a wide exploration of the search space

can be achieved. It is noted also that not all these variable selection schemes are applicable at

all times during the search process because of maintaining consistency within each set of

variables, or across the two sets of variables (described in Chapter 5).

4.3 Violation strategy

In SAT local search and its variants, the number of violated constraints (unsatisfied clauses)

is used to evaluate local moves without accounting for how severely individual constraints

are violated. In CLS, a quantified measure of the constraint violation is used to evaluate local

 78

moves. In this case, the violated constraints may be assigned different degrees of constraint

violation. This leads to a framework to improve the performance of the solving algorithm.

The constraints can be weighted according to their relative importance in order to allow the

search to give priority to satisfying some subsets of the constraints.

For container rail scheduling, soft and hard constraints in the model are treated separately.

The hard constraints play the major role in guiding the search. When all hard constraints are

satisfied, the soft constraint violations are calculated and used as a measure of the quality of

the solution. Nevertheless, whilst the hard constraints have not yet been fully satisfied, our

scheme incorporates an artificial constraint, and its weighted violation measure is designed

to exert some influence over the search process based on an estimation of the soft constraint

violation (discussed in Section 4.3.2).

4.3.1 Hard violation

The principal goal of CLS is to find a feasible solution to the problem, i.e. solution points at

which the total violation of the hard constraints is zero. To improve the performance of the

solving algorithm using a violation strategy, two basic questions arise:

1. If the same measure of the constraint violation should be used within each set of hard

constraints.

2. If the same measure of the constraint violation should be used across all sets of hard

constraints

 79

Using different measures of the violation affects the performance of the algorithm because

the algorithm gives priority to satisfying some subsets of constraints. For our container rail

scheduling model, all sets of hard constraints use measures of violation weighted according

to some heuristic rules.

For the train capacity constraints, any number of containers in a potential timeslot exceeding

a train capacity is penalised with the same violation mh . Here, the violation penalty for

exceeding a train capacity does not depend on the amount of overcapacity. The violation for

overcapacity timeslots represents the number of violated capacity constraints (or the number

of over-loaded trains) and CLS tries to eliminate this violation. However, this penalty

measure will be tested when the computational experiments are given in Section 4.5. The

violation penalty for a set of capacity constraints is defined as:

 t
hP

P
yNx

m
Mj

tjjt ∀








=>

=≤









∑
∈

;
violation,

0violation,

2

2

 (4.1)

where: mh is a violation penalty for a capacity constraint, 2P is the capacity of a train.

It is noted that the variable tx is introduced into the capacity constraint. This is because for

CLS, a measure of hard constraint violation should be quantified so that it can be used to

sensibly evaluate local moves. For instance, in (4.1) if tx is excluded, an over-loaded train

(overcapacity timeslot) will be penalised with the amount of violation even if a train does not

depart at timeslot t , which is non-meaningful. Penalties for assigning customers for

timeslots without an assigned train are added via the consistency constraint (3.7). To do so

 80

via (3.6) as well would effectively double count this violation. In addition, with the presence

of tx the algorithm needs not calculate train capacity usage when tx = 0, reducing

computational time.

For the consistency constraints, the algorithm assigns the violation penalty ch if a train does

not depart at the timeslot but there are some customers assigned to that timeslot. The

violation penalty for a set of consistency constraints is defined as:

t
hx

Cx
y

tCj
ct

tt

tj ∀








=>

=≤

∑
∈

;
violation,C

0violation,

t

 (4.2)

where: ch is a violation penalty for a consistency constraint, tC is number of potential

customers for timeslot t .

For the covering constraints, the algorithm allocates a penalty if the assigned trains do not

serve all customer demands. In other words, the covering constraints favour a combination of

selected timeslots that covers all customers’ bookings. The violation penalty within a set of

covering constraints uses the same quantification, which is defined as:

 ∑
∈

∀








==

=≥

jSt
s

t j
h

x ,
violation,0

0violation,1
 (4.3)

where: sh is a violation penalty for a covering constraint.

 81

Covering constraints do not affect the operational requirements for a rail carrier, and their

removal does not change a feasible solution. However, their presence may improve the

performance of the algorithm as it guides the search to the feasible solutions. A quantified

measure of the violation sh should be set higher than those of mh and ch so that the search

gives priority to satisfying a set of covering constraints.

Therefore, the total hard violation is the sum of the violation penalties for train capacity,

timeslot consistency, and covering constraints, which can be written as:

scm HHHh ++= (4.4)

where: h is the total hard violation; mH , cH , and sH are the total hard violations for

train capacity, timeslot consistency, and covering constraints respectively.

4.3.2 Artificial soft violation

The artificial soft violation *S has been introduced so that the search considers an

estimation of total soft constraint violation, while some hard constraints are still to be fully

satisfied. The artificial soft violation is regarded as if it were a hard violation until the

capacity, consistency, and covering constraints have all been satisfied, then the artificial

violation is set to zero. The algorithm assigns a violation penalty *
ts if a timeslot t is

selected as a train departure time. This can be written as:

 82

 t
s

x
t

t ∀








==

==
,

0 violation ,0

violation,1 *

 (4.5)

Note that, *S is the sum of these violations.

In contrast to (4.1) – (4.3) which imply a fixed violation penalty for each member of the

associated set of constraints, a violation penalty for the artificial soft violation *
ts varies

from timeslot to timeslot. The artificial soft violation penalty depends on the possibility of

assigning a particular timeslot on a train schedule with a minimum generalised cost.

An attempt to derive the artificial soft violation in monetary units by trading off between the

business criteria is not possible. This is because a train schedule is not a single timeslot, but

is a set of the timeslots. Therefore, considering only a single timeslot separately from the

others cannot represent a total cost for the rail carrier. However, as in practice, some

business criteria play more an important role than others, the relative weights for the criteria

could be applied.

A rail carrier may assign a relative weight to the violation costs of number of trains tN ,

customer satisfaction tQ , and timeslot-operating cost tE constraints in a selected timeslot

t . With equal violation costs for tN , tQ , and tE the violation cost with the lower weight

will give a smaller artificial soft violation *
ts .

 83

In practice, given the relative weights 0.2, 0.5 and 0.3 by the Royal State Railway of

Thailand, *
ts is therefore obtained as:

 tEQNs tttt ∀++= ;3.05.02.0* (4.6)

where: *
ts is the artificial soft violation if timeslot t is chosen (i.e. tx = 1).

4.3.2.1 The violation cost tN

We first assume that the higher the number of potential customers in timeslot t , the more

likely it is that assigning a train to that timeslot would lead to the minimum number of trains

used. However, it is also necessary to consider the distribution of customer shipment size.

Although there are a large number of potential customers in a timeslot, each customer

shipment may be large. Therefore, such a timeslot could allow only a few customers to be

served on a train so giving a high violation cost (or a priority) to this timeslot is no longer

reasonable. tN is defined by:

 t
C

a
t

tt
t ∀

+
= ;

σµ
 (4.7)

 t
a

a
n T

t t

t
t ∀=
∑ =

;
1

 (4.8)

 t
n

n
N t

t ∀×= ;100
(max)

 (4.9)

 84

where: ()),...,3,2,1:max{max Ttnn t == , tµ is the mean of customer shipment size in

timeslot t , tσ is the standard deviation of the customer shipment size in timeslot t , tC is

the number of customers in timeslot t .

The rationale of the formula for tN is that it aims to tackle the variation of customer

shipment size in the potential booking timeslot and then to provide the estimated chance for

that timeslot to be used. The variation of customer shipment size is simply handled using the

sum of tµ and tσ (4.7) as a demand threshold for the shipment size. The remaining

concepts are just to reflect that the higher the number of potential customers in timeslot t ,

the more likely it is that assigning a train to that timeslot would lead to the minimum number

of trains used. The calculation of tN is illustrated as in Table 4.1.

Timeslot Customer shipment size (containers) Mean STD
ta tn tN

(t)
1C 2C 3C 4C 5C tµ tσ

1 20 5 12.50 10.61 11.55 0.24 100

2 10 20 15 8 5 11.60 5.94 3.51 0.07 30

3 20 15 8 14.33 6.03 6.79 0.14 59

4 10 5 7.50 3.54 5.52 0.12 48

5 20 15 17.50 3.54 10.52 0.22 91

6 20 15 8 5 12.00 6.78 4.70 0.10 41

7 10 15 5 10.00 5.00 5.00 0.11 43

Sum 47.58

Table 4.1: An example for the calculation of violation cost tN

 85

Table 4.1 shows that when timeslot 1 is selected (1x = 1), the algorithm assigns the highest

violation cost for that timeslot = 100. The more customers in a timeslot, the lower the

violation cost in general. When timeslots serve an equal number of customers (e.g. timeslot 3

and 7). the lower violation cost is assigned to the timeslot with a more even spread of

demand, here timeslot 7.

4.3.2.2 The violation cost tQ

Although the virtual loss of future revenue in the generalised cost function could represent

customer satisfaction in terms of cost, it is an indirect cost. In practice, the indirect cost is not

obvious for rail expenditure as it affects the long-term financial plan. Therefore, in a

competitive transport market, a direct cost that affects the short-term cash flow is regarded as

more important. The satisfaction of customer j in timeslot t is tjw (10 ≤≤ tjw), and

(100×tjw) is the satisfaction score. tW is a total customer satisfaction score in timeslot t ,

i.e. ()∑
∈

×=
tCj

tjt wW 100 . The higher the value of tW , the more likely it is that the timeslot t

would be used. The violation cost tQ is defined as:

 t
W

W
b

t

T

t t
t ∀= ∑ = ;1 (4.10)

 t
b

b
q T

t t

t
t ∀=
∑ =

;
1

 (4.11)

 86

()

t
q

q
Q t

t ∀×= ;100
max

 (4.12)

where: ()),...,3,2,1:max{max Ttqq t == . The calculation of tQ is illustrated as follows:

From Table 4.2, tQ is not only affected by the customer satisfaction score but also is

implicitly dependent on the number of potential customers using the timeslot, i.e. the more

customers in the timeslot, the lower would be the violation cost tQ . When timeslots have the

same number of customers (e.g. timeslot 3 and 7), the algorithm assigns a lower violation

cost to timeslot 3 because it has a higher value of tW .

Timeslot Satisfaction score
tW tb tq tQ

(t)
1C 2C 3C 4C 5C

1 90 70 160 9.76 0.18 81

2 95 90 76 85 70 416 3.75 0.07 31

3 90 76 85 251 6.22 0.11 52

4 95 70 165 9.47 0.17 79

5 70 60 130 12.02 0.22 100

6 70 60 60 50 240 6.51 0.12 54

7 90 60 50 200 7.81 0.14 65

Sum 1562 55.54

Table 4.2: An example for the calculation of violation cost tQ

 87

4.3.2.3 The violation cost tE

A rail carrier may have different operating costs for different timeslots. The operating costs

comprise train congestion cost and staff cost. Although a train schedule is a set of timeslots,

we could consider tE for the operating costs of each timeslot directly. This is because the

operating cost is a cost unit and does not affect the number of timeslots in the optimal train

schedule. tE is defined by:

 t
U

U
e T

t t

t
t ∀=
∑ =

;
1

 (4.13)

 t
e

e
E t

t ∀×= ;100
(max)

 (4.14)

where: ()),...,3,2,1:max{max Ttee t == , tE is a violation cost for the operating costs in

timeslot t , tU is the operating cost in timeslot t (tU includes train congestion cost and

staff cost).

In (4.13), te is derived from the proportion of the operating costs in timeslot t to the total

timeslot operating cost. tE in (4.14) reflects that the lower the operating costs for the

timeslot, the higher the estimated chance that the timeslot would lead to a schedule with the

minimum generalised cost, and the value of tE is shown in a percentage scale. The

calculation of the violation cost tE is illustrated as follows:

 88

Timeslot
tU te tE

(t) (310× Baht)

1 4.46 0.16 92

2 2.71 0.10 56

3 2.71 0.10 56

4 3.36 0.12 69

5 4.85 0.17 100

6 4.85 0.17 100

7 4.85 0.17 100

Sum 27.79

Table 4.3: An example for the calculation of the violation cost tE

Table 4.3 shows that a rail carrier incurs operating costs that vary from timeslot to timeslot.

Choosing a timeslot that has high operating costs would be penalised with high violation tE .

From (4.4) and (4.5), the total constraint violation h is the sum of total hard violation (mH ,

cH , sH) and the weighted total artificial soft violation *S :

 () ()α×+++= *SHHHh scm (4.15)

The parameter α represents the violation penalty of one unit of artificial soft violation. This

parameter can be adjusted empirically in order to balance the trade-off between the artificial

 89

soft violation *S and the hard violations (mH , cH , sH), i.e. when α is increased, the

search algorithm treats *S more importantly relative to mH , cH , and sH .

Now, CLS uses this total constraint violation h to evaluate local moves. The modified

procedure of CLS for the container rail scheduling problem is given as:

proc CLS

 A ← initial random assignment

 h ← initial total constraint violation

 if (mH , cH , sH) = 0 then *S ← 0, output A , exit CLS

terminate ← false

try ← 0

while not terminate do








 the same as the basic CLS in Figure 4.1

 if (mH , cH , sH) = 0 then *S ← 0, output A , terminate ← true

 if try = Z then terminate ← true

end while

end proc

Figure 4.2: The modified CLS procedure

 90

There are two differences between the basic CLS (Figure 4.1) and the modified CLS for the

container rail scheduling problem (Figure 4.2): the quantified measure of local moves and

the stopping criterion. In Figure 4.2, h is the sum of (mH , cH , sH) and *S ; the algorithm

stops when (mH + cH + sH) = 0 (i.e. a feasible solution A is found) or when no

improvement to the best total constraint violation found has been achieved for Z iterations.

At this time, *S is discarded and is no longer used. The algorithm continues with the same

procedure as described in Section 4.2.1.

4.4 Minimum train loading

The constraint-based local search assigns a fixed number of trains according to the number

of trains expected, which is derived from the minimum train loading. In other words, a fixed

number of timeslots used is maintained during the search process, which can be written as:

∑
∈

=
Tt

t Tx exp (4.16)

where: expT is the number of trains expected.

Setting a minimum train loading ensures satisfactory revenue for a rail carrier and spreads

out the capacity utilisation on train services. The carrier may want to set the minimum train

loading as high as possible, ideally equal to the capacity of a train. Note that the minimum

train loading is directly related to expT , which is defined as:

 91









= ∑

∈Mj
j PNT 1exp / (4.17)

where: jN is the demand of customer j , 1P is the minimum train loading used (3.5).

Apart from ensuring satisfactory revenue, minimum train loading is a key factor in the

performance of the search algorithm. The higher the minimum train loading, the more

constrained the problem is and hence the number of feasible solutions decreases. Using a

high minimum train loading allows the algorithm to focus on satisfying the hard constraints

more than the soft constraints. In addition, it increases the usefulness of the predictive choice

model, i.e. the variables in the container rail scheduling model would take more consistent

values in all the feasible solutions during the search (described in Chapter 5).

However, it would be very hard to prove whether there exists a feasible solution to the

problem constrained by a high minimum train loading. If we could prove the existence of a

feasible solution for the highest possible minimum train loading, it implies that the solution

is approximately optimal. A good setting of the minimum train loading helps limit the size of

the search space. Although a few techniques for proving the existence of feasibility have

been proposed (Hansen, 1992; Wolfe, 1994; Kearfott, 1998), implementations of these

techniques for practical problems have not yet been achieved. In this research, the minimum

train loading is derived from some heuristic rules.

Suppose that the customer’s booking data is given as in Table 4.4.

 92

Day Customers Containers Shipment size

 Mean Std.

MON 15 228 15.20 8.06

TUE 18 295 16.39 4.30

WED 27 389 14.41 5.60

THU 32 554 17.31 7.04

FRI 18 329 18.28 5.09

SAT 11 243 22.09 7.50

SUN 23 430 18.70 7.09

 gµ = 17.48 gσ = 6.38

Table 4.4: An example – customer’s booking data

From Table 4.4 each schedulable day has an average customer demand (containers) and its

standard deviation (e.g. Mon: Mean = 15.20 and Std. = 8.06). Note that in Table 4.4, the total

demand ∑
∈Mj

jN is not the sum of the demand in all days (i.e. 228+295+389+…+430). This

is because a customer demand is assigned to a set of the preferred and alternative booking

timeslots in which a train schedule has not yet been provided.

However, we need the average size of customer demand in a scheduling week, here gµ =

17.48, in order to estimate roughly how many customers (demand units) can be served by

one train (note that a customer demand cannot be split in multiple trains as described in

Section 3.4.1), and therefore how many trains are required to serve all customer demands.

 93

We also take the customer demand variation into account. By assuming customer demand is

normally distributed, we could say that in most cases customer demand is less than the

demand threshold (gµ + gσ). If we use this threshold as the average customer demand, we

could obtain a number of trains needed to serve all customer demands and, from (4.17), a

feasible minimum train loading can be derived. An initial value of 1P is defined as follows:

gg

PT
σµ +

= 2* (4.18)
















=
∑
∈

*1 /TM

N
P Mj

j

 (4.19)

where: 2P is the capacity of a train, jN is the demand of customer j , M is the total

number of customers.

In (4.18), *T is used to express the proportion of the train capacity to the demand threshold

(gµ + gσ). In (4.19), the proportion of the total demand to the estimated number of trains

(M / *T) gives the initial minimum train loading 1P . The calculation of 1P is illustrated as

follows: From Table 4.4, suppose that M = 70, total demands ∑
∈Mj

jN = 1370, a train

capacity 2P = 68, we will obtain the minimum train loading 1P = 56, and by substituting 1P

into (4.17), we can obtain the initial number of trains expected expT = 25. However, we note

that this is a very rough estimate used simply to set the initial value for the number of trains.

 94

Whenever all hard constraints are satisfied (a feasible train schedule is obtained), the

minimum train loading is increased by removing one train from the current state of the

feasible solution, i.e. expT = expT – 1, and CLS attempts to find a new feasible schedule.

However if no feasible solution is found, expT is increased by 1.

4.5 Computational results

The container rail scheduling model is tested on two sets of four successive weeks data from

the eastern-line container service, the Royal State Railway of Thailand (SRT), involving 184

shipping companies. Each train has a capacity of 68 standard containers. The problem

instances are summarised in Table 4.5. In this table, θ denotes a lower bound on number of

trains. Note that a customer may require several different container rail services per week

and we consider these demands as arising from different customers.

 95

Test Customers Containers θ SRT’s schedules Supply - Demand

case Trains Capacity Capacity Trains

W1 134 2907 43 57 3876 969 14

W2 116 2316 35 42 2856 540 7

W3 84 1370 21 28 1907 537 7

W4 109 2625 37 50 3400 775 13

W5 225 4115 61 73 4964 816 12

W6 198 3350 50 59 4012 612 9

W7 126 2542 38 49 3332 748 11

W8 286 4731 70 86 5848 1088 16

Table 4.5: Problem instances

From the constraint model’s point of view, Table 4.6 shows the size of the problem instances

in terms of the number of the constrained variables (timeslot variable tx and customer’s

booking variable tjy) and operational constraints (train capacity, coverage, and timeslot

consistency constraints). Note that those tx without any demands and tjy corresponding to

timeslots that customer j does not prefer are discarded and not counted.

 96

Test Model variables Constraints

case
tx tjy

W1 152 1588 438

W2 168 1270 452

W3 125 967 334

W4 131 1362 371

W5 168 1415 561

W6 149 1970 496

W7 132 1197 390

W8 168 2534 622

Table 4.6: Problem size

From Table 4.6, all test cases have a large number of binary decision variables. This shows

that in the worst case, there would be n2 possible solutions; where n is the number of the

model variables. Good short cuts may be obtained to drive the search to the good solutions,

or to reduce the size of the search space. However, for the container rail scheduling problem,

the size of the search space cannot be reduced easily because the consistency and capacity

constraints are enforced (Section 3.4.2).

In this section, we present the computational results of the implemented framework of the

constraint-based local search algorithm (CLS), and compare results between the demand

responsive scheduling model we propose and current practice. Each test case is run ten times

on a PC-Pentium 2.4 GHz using different random number seeds at the beginning of each run.

 97

Now, we want to find a good value of the stopping criterion parameter. The concept is that

the algorithm should not spend more computational time than necessary; in contrast, more

time should be given if solution tends to be improved further. We varied this parameter value

from 500 to 5000 and observed that the value = 2000 is a reasonable setting as solutions do

not tend to be improved after this value.

We set violation penalties for capacity, consistency, and covering constraints (mh , ch , sh) =

1, 1, 100 respectively, and the violation parameter α is set to 0.15. The sensitivity for these

parameters will be tested when the computational results are given.

In SRT’s schedules, the rail business criteria are represented by the operating costs OC .

However, in CLS’s schedules, the criteria are expressed in terms of the generalised cost.

Although the criteria for the CLS ’s schedules are converted into a single generalised cost for

more evaluation, each component of the generalised cost can be shown explicitly. Tables 4.7

- 4.8 compare the model results with current practice. In these tables, GC is the generalised

cost, NC is the number of trains cost, TC is the timeslot-operating cost, VC is the virtual

loss of future revenue, and the operating costs OC = NC +TC . All costs are shown in a

unit of (× 106) Baht.

 98

Test SRT CLS

case Trains OC Trains GC Time

 Min Avg. Std. Avg. Std. (Sec)

W1 57 5.17 49 50.87 1.39 5.47 0.42 387

W2 42 3.74 37 38.68 1.40 3.95 0.21 168

W3 28 2.19 24 24.74 0.81 2.06 0.18 89

W4 50 4.48 41 42.21 1.55 4.48 0.26 169

W5 73 6.49 68 69.44 1.57 7.01 0.18 930

W6 59 5.25 56 58.80 2.06 6.18 0.75 655

W7 49 4.66 44 45.11 1.19 4.85 0.39 297

W8 86 7.65 79 80.64 1.71 8.06 0.37 1980

Table 4.7: The schedules obtained by CLS

Test SRT CLS OC

case OC GC NC TC VC Reduction (%)

W1 5.17 5.47 4.34 0.17 0.97 12.86

W2 3.74 3.95 3.49 0.11 0.36 3.88

W3 2.19 2.06 1.79 0.07 0.29 15.30

W4 4.48 4.48 3.61 0.14 0.72 16.24

W5 6.49 7.01 5.61 0.23 1.17 10.02

W6 5.25 6.18 4.76 0.20 1.22 5.52

W7 4.66 4.85 4.17 0.15 0.53 7.40

W8 7.65 8.06 6.29 0.22 1.55 14.90

Table 4.8: Operating cost comparison: SRT vs CLS

 99

Tables 4.7 and 4.8 show, in all test cases, there are some reductions in the number of trains

and operating costs. In some test cases the reductions in operating cost are not considerable;

this is because in practice the SRT’s schedule is not fixed at the same service level everyday.

The rail carrier may cut down the number of train services with short notice if the train

supply is a lot higher than the customer demand. This is done by delaying some customer’s

departure times according to its demand consolidation strategy.

However, the proposed model maximises customer satisfaction, in other words, minimises

the virtual loss of future revenue within a generalised cost framework. Therefore, the

schedule obtained by CLS could reflect a high degree of customer satisfaction with the

minimum rail operating costs through a demand responsive schedule.

From a computational viewpoint, we perform further experiments to test the performance of

CLS using different search strategies and to test the sensitivity of parameters in the

algorithm.

4.5.1 Experiment I

We first test the performance of CLS without the refined improvement procedure. When a

feasible solution is found by CLS, the algorithm continues to reduce the soft violation for the

number of trains constraint by removing one train from the current state of the feasible

solution. In addition, with the artificial soft constraint violation *S in (4.15), the algorithm

reduces the soft constraint violation, whilst some hard constraints are still to be fully

satisfied. Therefore, it seems that CLS without the refined improvement may be good

enough and if so we could use the simpler algorithm and reduce computational effort. In this

 100

experiment, each test case is run ten times, the parameters in CLS are the same as in the

previous experiment. The computational results are shown in Table 4.9.

Test Trains Cost Time

Case Min Avg. GC NC TC VC (Sec)

W1 49 51.20 5.63 4.34 0.23 1.06 256

W2 37 38.90 4.19 3.49 0.15 0.55 121

W3 24 24.60 2.24 1.79 0.11 0.34 62

W4 41 42.90 4.75 3.61 0.24 0.90 115

W5 68 69.70 7.71 5.61 0.27 2.18 739

W6 56 59.20 6.48 4.76 0.28 1.44 428

W7 44 45.90 5.05 4.17 0.24 0.64 205

W8 80 81.70 9.02 6.36 0.34 2.32 1320

Table 4.9: CLS without the refined improvement procedure

From Table 4.9, not surprisingly we can obtain the number of trains as good as the one in

Table 4.7 and the computational time is better in all test cases. However, in Table 4.9 the

generalised cost GC and its components (NC ,TC , and VC) are worse than the results

obtained from CLS with the refined improvement. On average, GC is 7.16% more than

GC in Table 4.8. Although the fact that the difference is not substantial, it could benefit the

rail carrier in the long run. In addition, given a fixed number of trains, the rail carrier can

assess how well their customers are satisfied in terms of VC ; the schedule with more trains

but smaller VC may sometimes be chosen depending upon the railway’s strategies.

 101

4.5.2 Experiment II

In this experiment, we test the sensitivity of the violation penalty parameters (mh , ch , sh)

for capacity, consistency, and covering constraints (described in Section 4.3). Each test case

is run five times, mh , ch , sh are varied whilst the remaining parameters in the algorithm are

fixed. The results are shown in Table 4.10, in which “ - ” denotes that CLS failed to find a

feasible solution.

Test CLS schedule ’s cost (GC)

case (1,1,0) (1,10,0) (10,10,0) (100,1,0) (1,1,10) (1,1,100) (1,1,200) (1,1,500)

W1 5.53 5.68 5.60 5.87 5.29 5.22 5.33 5.91

W2 4.76 4.92 4.76 5.23 4.31 3.99 4.23 5.41

W3 2.47 2.66 2.54 3.05 2.13 2.18 2.22 2.77

W4 4.66 4.80 4.62 5.10 4.60 4.41 4.62 -

W5 7.80 7.92 7.64 - 7.84 7.23 7.64 7.58

W6 6.79 6.66 6.29 6.94 6.57 6.24 6.25 6.87

W7 4.86 5.07 4.98 5.01 4.77 4.71 4.75 5.24

W8 8.79 9.23 9.23 - 8.84 8.38 8.52 -

Table 4.10: Different measures of the violation penalties

From Table 4.10, using the same value of the capacity and consistency violations (mh , ch =

1) produces better quality schedules than does using different values. This indicates that mh

and ch are not sensitive and shows the robustness of the algorithm, which does not require

 102

special tuning of parameters for mh and ch . The violation strategy with covering violation

(sh > 0) shows superior quality of schedules. The values of sh have a computational

advantage as it may influence the search for the feasible schedules. However, choosing too

large a value for sh can decrease its solution quality. The experiments indicate that sh = 100

is a reasonable setting.

4.5.3 Experiment III

Another experiment, which is closely related to the experiment in Section 4.5.2, is carried

out. We test the sensitivity of the violation penalty parameter mh but, in this experiment, the

violation penalty for exceeding train capacity is given by the amount of overcapacity mh′ , i.e.

from (4.1), 2PyNh
Mj

tjjm −







=′ ∑

∈

. In this experiment, each test case is run ten times; the

violation penalties are ch = 1 and sh = 100 and the remaining parameters in the algorithm

are fixed. The results are shown in Table 4.11.

 103

Test Trains GC

case Min Avg. Std. Avg. Std.

W1 50 52.26 1.58 5.62 0.48

W2 39 41.12 1.67 4.80 0.25

W3 24 25.95 1.13 2.66 0.25

W4 42 44.38 1.75 4.71 0.29

W5 70 72.58 1.81 7.63 0.21

W6 58 60.75 1.76 6.49 0.64

W7 44 45.58 1.39 4.90 0.46

W8 82 83.54 1.41 8.85 0.31

Table 4.11: Parameter mh′ given by an amount of overcapacity

From Table 4.11, the results obtained by CLS using mh′ are worse than the results in Table

4.7 in which the violation penalty for exceeding the train capacity is set equally, i.e. mh = 1.

This may be because, given a fixed number of trains, it may be better if CLS tries to reduce

the number of over-capacity trains, focusing on satisfying the constraint, rather than

considering the number of over-capacity containers on an assigned train. For instance, the

larger violation penalty may account for a smaller number of over-loaded trains

because a customer shipment is considered as one unit and cannot be split over multiple

trains. However, in CLS, different measures of violation penalty across sets of hard

constraints are used so that the algorithm gives priority to satisfying some subsets of

constraints.

 104

4.5.4 Experiment IV

This experiment is to test the sensitivity of the violation parameter α . This parameter

controls the trade-off between the hard violations mH , cH , sH and the artificial soft

violation *S in (4.15). The sensitivity test of α is shown in Table 4.12. In this experiment,

each test case is run five times by varying α . The violation parameters mh , ch , sh are fixed

at 1, 1, 100 respectively.

Test CLS schedule s’ cost (GC)

case α = 0 0.05 0.15 0.25 0.35 0.50 0.75

W1 5.30 5.30 5.19 5.32 5.22 5.40 5.77

W2 4.33 4.23 4.02 4.31 4.22 4.42 5.16

W3 2.22 2.20 2.22 2.04 2.20 2.47 2.92

W4 4.70 4.50 4.41 4.13 4.80 4.75 5.10

W5 7.68 7.69 7.28 7.84 7.68 7.80 8.14

W6 6.36 6.45 6.04 6.11 6.04 6.54 6.90

W7 5.04 4.94 4.74 4.92 4.71 5.14 5.34

W8 9.12 8.92 8.75 8.68 8.78 8.74 9.06

Table 4.12: Sensitivity analysis of the timeslot violation parameter

Table 4.12 shows the effect of introducing the artificial soft violation *S . With the existence

of *S , i.e. α > 0, we tend to obtain a slightly better quality of solution in terms of the

 105

generalised cost and α = 0.15 seems to be the best choice in general. The results also show

that a high value of α provides a low quality solution as the search is most likely dominated

by the artificial soft violation *S whilst the hard violations mH , cH , sH have not been

eliminated.

It is noted that if the artificial soft violation *S does not bring a significant improvement in

the schedule, it may not be worthwhile to use it. However, the ideas of how *S is obtained

and used could be adapted and applied to other combinatorial optimisation problems,

especially problems that have many feasible solutions and for which an effective bound on

the objective function could not be achieved. In Chapter 6, we apply this idea to the

generalised assignment problem.

4.5.5 Experiment V

We carry out an experiment to test the performance of CLS using different acceptance

strategies of local moves. CLS always accepts both improving and non-improving moves,

and CLS incorporating a simple simulated annealing method (CLS+SA) always accepts an

improving move and accepts a non-improving move only with probability saP (Kirkpatrick,

1984):

T
Psa

∆−
= exp (4.20)

where: ∆ is the change in an non-improving move, and T is the temperature

 106

A simple form of simulated annealing (SA) was used in this experiment composing of four

components: initial temperature 0T , temperature length, cooling schedule and stopping

criterion. To ensure a fair comparison between CLS and CLS + SA, we use approximately

the same number of iterations for CLS + SA as CLS for each problem. A simple geometric

cooling schedule was used, with the temperature being multiplied by a constant factor (or

cooling rate) α at every iteration n , i.e. nn TT α=+1 . Some experiments were carried out for

each problem in order to find good values of initial temperature 0T and final temperature fT

and then the cooling rate α can be calculated directly from 0T and fT . The values of

parameters 0T , fT , and the number of iterations selected are shown in Table 4.13.

Test Control parameters

Case
0T α

fT Iteration

W1 5 0.9999870 1 118742

W2 8 0.9999740 1 78588

W3 9 0.9999300 1 30827

W4 8 0.9999650 1 58530

W5 5 0.9999956 1.2 322115

W6 5 0.9999930 1 226866

W7 6 0.9999830 1 102869

W8 5 0.9999981 1.5 634790

Table 4.13: Control parameters for SA

 107

To perform the experiment using CLS+SA, each test case is run ten times, the parameters in

CLS are fixed. The computational results are shown in Table 4.14.

Test Trains GC

Case Min Avg. Std. Avg. Std.

W1 50 51.23 1.87 5.41 0.48

W2 39 41.20 2.18 4.37 0.63

W3 25 26.43 0.72 2.36 0.14

W4 42 43.10 0.93 4.57 0.36

W5 70 72.14 2.03 7.51 0.85

W6 58 60.25 1.94 6.45 0.75

W7 45 46.50 1.84 4.80 0.66

W8 81 82.10 1.66 8.55 0.90

Table 4.14: Computational results CLS+SA

Table 4.9 shows that the results obtained from CLS+SA are relatively good; however they

are worse than the results obtained from CLS alone (Table 4.7). This may be because in

CLS+SA, the search may get trapped in poor quality states, in particular when the

temperature is small. Assuming convergence to the optimal solution in infinite time; SA may

cause problems because it uses approximately the same number of iterations as CLS; this

could also imply that SA needs to be run a lot longer. In CLS the search is more diversified

as improving and non-improving moves are always accepted.

 108

4.6 Conclusions

The constraint-based local search algorithm, CLS, is presented in this chapter. The algorithm

is inspired by SAT local search and is applied to the container rail scheduling problem. The

ability to find a good operational train schedule along with satisfying customer demand leads

to some reductions in the operating costs, and also enhances the level of customer service

through the demand responsive planning model.

CLS starts with random initial assignments and uses a simple variable flip as a structure of

local move. The algorithm is easy to implement and convenient to use. A violation strategy

is introduced in order to drive the search to the promising regions of the search space,

different measures of constraint violation allow the search to give priority to satisfying some

subsets of the constraints. The artificial soft violation is introduced so that the algorithm

evaluates the quality of the soft violations implicitly whilst satisfying the hard constraints;

thereby it helps to reduce significantly computational effort. In CLS, diversified exploration

of the search space is achieved by three features:

1. Acceptance criterion of local moves: CLS always accepts both improving and

non-improving moves to gain a diversified exploration of the search space and to

overcome local minima.

2. Randomised selection: a violated constraint and the variables to flip are selected

in diversified sequences, which carries little computational cost.

3. Consistency enforcement: consistency is only maintained within each set of

variables in the model independently (Sections 3.4.2.1 and 4.4). At some later

 109

iterations, the consistency will be enforced by the predictive choice model

(described in Chapter 5).

In the next chapter, we will present the construction and use of the predictive choice model

as the search intensification strategy. CLS will be incorporated with the predictive choice

model so that the algorithm can move around the solution space more effectively, leading to

better quality solutions.

 110

Chapter Five

Search intensification using the

predictive choice model

5.1 Introduction

As discussed in Chapter 4, the constraint-based local search uses a simple variable flip as the

local move. When all variables in the model are assigned a value, the total constraint

violation is calculated. A quantified measure of the violation is used to evaluate local moves.

Using different measures of the constraint violation, the algorithm gives priority to satisfying

some subsets of constraints and thereby it guides the search to promising solution regions. In

this Chapter a predictive choice model is developed to improve further the solutions to the

problem of container rail scheduling. The predictive model is based on discrete choice theory

and the random utility concept. When sufficient trial history has been collected for a

variable, it is analysed to infer a good value for the variable. The variable is then fixed at this

value for a number of iterations, determined in a probabilistic manner. At this point,

consistency between variables is enforced, leading to intensified exploration of the search

space.

 111

This chapter is organised as follows. Section 5.2 describes the motivation for using the

predictive choice model. Section 5.3 describes the development of the predictive choice

model. Section 5.4 describes how the predictive choice model is used to improve the

solutions of the container rail scheduling problem. The computational results obtained by

constraint-based local search incorporating the predictive choice model are shown in Section

5.5. Finally conclusions are given in Section 5.6.

5.2 Motivation for the predictive choice model

For the purpose of search intensification, local search algorithms may try to fix a value for

some variables for a certain number of iterations, depending on the search history. To do this

we need a quantified assessment of each variable, called its “preference measure”, with

regard to its likely value in an optimal solution. The preference measure may also help in

deciding how long a variable should remain fixed. Fixing may be done either

deterministically or non-deterministically, using some heuristic rules. The simplest way

would be, at some predetermined iteration, to observe which value (0 or 1) was chosen more

often for a particular variable in the search so far. The preference measure for this value

would be the proportion of time the variable was chosen to have that value. Then we could

fix that variable at its preferred value for a number of iterations proportional to the

preference measure.

If the proportion of time a binary variable was chosen to have one of its values is much

higher the proportion of time the other value was chosen, we could have some confidence in

the value at which we fix the variable, Conversely, if the proportions are close in value, we

then lose some confidence in which value is to be chosen. Therefore, it may be helpful to

 112

incorporate the amount by which one value is preferable to the other into the preference

measure. This preference measure could be analysed by statistical methods so as to increase

the confidence in choosing a value for a variable; in this research, we propose such an

approach, the predictive choice model.

5. 3 Predictive choice model

The first development of choice models was in the area of psychology (Luce and Suppes,

1965). The development of these models arose from the need to explain the inconsistencies

of human choice behaviour, in particular consumer choice in marketing research and mode

choice in transportation research. If it were possible to specify the causes of these

inconsistencies, a deterministic choice model could be easily developed.

These causes, however, are usually unknown or known but very hard to measure. In general,

these inconsistencies are taken into account as non-deterministic or random behaviour.

Therefore, the choice behaviour could only be modelled in a probabilistic way because of an

inability to understand fully and to measure all the relevant factors that affect the choice

decision.

5.3.1 Choice decision

Deciding on a choice of value for a variable is not obviously similar to the consumer choice

decision. However, we could set up the search algorithm to behave like the consumer

behaviour in choice selection. That is, we consider the behavioural inconsistencies of the

algorithm in making a choice of good value for a variable.

 113

For general combinatorial problems, a particular variable may take several different values

across the set of feasible solutions. Thus it is hard to predict a consistently good value for the

variable during the search. However, when the problem is severely constrained and has few

feasible solutions, it may well be that some variables would take a more consistent value in

all the feasible solutions during the search. For the container rail scheduling problem, the

problem is more severely constrained by setting a high value of minimum train loading (as

described in Chapter 4).

Once a variable has been selected, the algorithm has to choose a value for it. The concept is

to choose a good value for a variable, e.g. the one that is likely to lead to a smaller total

constraint violation in a complete assignment. In our constraint-based search algorithm, two

variables are considered at each flip trial. The first variable is randomly chosen from those

appearing in a violated constraint and considered as a variable of interest, the second variable

is randomly selected either from that violated constraint or from the search space and is to

provide a basis for comparison with the variable of interest.

Clearly, the interdependency of the variables implies that the effect of the variable value

chosen for any particular variable in isolation is uncertain. Flipping the first variable might

result in a reduction in total constraint violation. However, it might be that flipping the

second variable would result in even more reduction in the violation. In this case, the flipped

value of the first variable is not accepted.

In Table 5.1, the variable of interest is 1X and the compared variable is jX , the two

variables are trial flipped in their values; the violations associated with their possible values

are recorded and compared. In this Table, h is the total violation (in 4.15), *
1X is the value

 114

of 1X chosen in the flip trial. Note that only 1h , 1h′ , and *
1X are recorded for the violation

history of 1X .

Flip Variable of interest 1X Compared variable jX

trial Current Flipped j Current Flipped *
1X

 Val 1h Val 1h′ Val 2h Val 2h′

1 1 26 0 22 15 1 26 0 36 0

2 1 20 0 12 9 0 20 1 6 1

3 0 5 1 2 2 0 5 1 7 1

4 1 15 0 14 30 0 15 1 10 1

.

N 0 46 1 53 8 0 46 1 31 0

Table 5.1: Violation history

In flip trial 1 the selected variables are 1X (current value 1) and, separately, 15X (current

value 1). The current assignment has violation = 26. Flipping 1X , with 15X fixed at 1, gives

violation = 22; flipping 15X , with 1X fixed at 1, gives violation = 36. Hence in this trial the

algorithm records 1X = 0 as the better value. At some later iteration the algorithm chooses

to flip 1X again, this time (flip trial 2) with compared variable 9X . Flipping 1X , with 9X

fixed at 0, gives violation = 12; flipping 9X , with 1X fixed at 1, gives violation = 6.

Although flipping 1X to 0 gives a better violation than the current assignment, in this flip

trial the algorithm records 1X = 1 as the better value as there is an assignment with 1X = 1

which gives an even better violation. If we view the results of these flip trials as a random

 115

sample of the set of all assignments, we can build up a predictive model to capture the

inconsistency in the choice selection and to predict what would be a ‘good’ value for 1X .

5.3.2 Proportional method

The proportional method is based on a probabilistic mechanism in the sense that the

algorithm may select the current value of a variable even though flipping that variable to the

other value gives a lower violation.

The proportional method is straightforward. The choice selection is only affected by the

number of occurrences of choice values in *X , i.e. the constraint violation is not considered.

The proportional method is defined as:

N

P
*
0

0
ℵ

= (5.1)

where: 0P is a probability for the algorithm choosing value 0, *
0ℵ is the number of

occurrences in *X choosing value 0, N is the number of flip trials.

To investigate the accuracy of forecast of the proportional method, the container rail

scheduling problem is scaled down. The optimal solution and their assigned values are

known by running an integer programming branch and bound search to completion (ILOG,

2002). Then, we run the CLS to collect the violation history with flip trials N = 20. The

experimental results are given in Table 5.2, in which 0h and 1h are the average total

violations when a variable is assigned a value 0 and 1 respectively, *ℵ is the number of

 116

occurrences of choice values in *X , *X is the value of variable X chosen in flip trial, Φ is

the value of the corresponding variable in a known optimal solution.

Var Violation *ℵ Probability Φ

no.
0h 1h

0 1
0P 1P

1 25.10 28.05 7 13 0.35 0.65 0

2 22.45 27.55 17 3 0.85 0.15 0

3 32.30 27.70 11 9 0.55 0.45 1

4 24.35 20.40 4 16 0.20 0.80 1

5 24.80 23.55 11 9 0.55 0.45 0

6 20.65 18.35 5 15 0.25 0.75 1

7 21.60 19.25 13 7 0.65 0.35 1

8 26.20 22.60 12 8 0.60 0.40 1

9 21.85 20.30 11 9 0.55 0.45 0

10 24.90 20.95 12 8 0.60 0.40 0

11 25.00 20.25 1 19 0.05 0.95 1

12 29.15 23.85 13 7 0.65 0.35 1

13 20.35 26.25 18 2 0.90 0.10 0

14 25.25 23.65 11 9 0.55 0.45 1

15 23.65 25.40 6 14 0.30 0.70 0

16 26.90 21.45 2 18 0.10 0.90 1

17 28.70 27.10 3 17 0.25 0.85 1

18 26.15 27.65 13 7 0.65 0.35 0

19 23.20 18.55 4 16 0.20 0.80 1

20 24.70 23.95 14 6 0.70 0.30 1

Table 5.2: Value choice prediction by proportional method

 117

Table 5.2 shows that the proportional method predicts a wrong optimal value for 8 of the 20

variables. We observe that, in these cases, although the number of occurrences of the choice

values favours a particular value, the average violation, h , does not. It would seem that a

more complex predictor that accounts for both factors would be useful. Note that where there

is a substantially higher number of choices of a particular value, the choice value is generally

associated with a lower value of of h , e.g. variables 2, 4, 11, 16, 19. There are also cases,

e.g. variable 9, for which both the number of occurrences and h indicate the wrong choice

of value. We introduce an additional method, the logit method, which might be more

satisfactory in considering both factors. The selection of whether the proportional method or

the logit method is to be applied is controlled by a decision parameter D (%). For example,

if D is set to 70, the logit method is called when the proportion of any one value in *X is

less than 70%; otherwise, the proportional method is called instead.

5.3.3 Logit method

The logit method is based on the random utility concept (Ben-Akiva and Lerman, 1985).

Choosing a good value for a variable in each flip trial is considered as a non-deterministic

task of the search algorithm. In this research, the algorithm is designed to select a choice of

value for a variable that has a maximum utility (or minimum disutility).

However, the utility is not known by the algorithm with certainty and is defined as 0U and

1U ; where 0U and 1U are utilities for the algorithm choosing value 0 and 1 respectively.

 118

For each flip trial, the algorithm selects value 0 when flipping a variable to 0 is preferred to

1. This can be written as follows.

1010 UU >⇒f (5.2)

From this point, the probability for the algorithm choosing value 0 is equal to the probability

that the utility of choosing value 0, 0U , is greater than the utility of choosing value 1, 1U .

This can be written as follows:

][Prob 100 UUP >= (5.3)

where: 0P is a probability for the algorithm choosing value 0.

When an occurrence of any choice value *X is not obviously dominating, the logit method

is used. The logit method is the predictive choice model with an assumed probability

distribution of the random utility. The search algorithm selects a value 0 when the utility 0U

> 1U , and selects a value 1 otherwise.

To derive a logit model, we require an assumption about the joint probability distribution of

the utilities 1U and 0U . In this research, the difference between the utilities, i.e.

01 UUU −=′ , is used. We consider U ′ as a random sample of the set of all assignments

for a variable. From the central limit theorem “whenever a random sample of size n is taken

from any distribution with mean µ and variance σ2, the sample would be approximately

normally distributed” (Trotter, 1959). We observe a real distribution of U ′ by running the

 119

constraint-based local search algorithm to collect the violation history with 50 flip trials

(samples). The total constraint violation h is used as a measure of the utilities. To make a

fair assumption whether U ′ fits any specific probability distribution, we first take a look at

the histogram and probability density trace, which is illustrated in Figure 5.1 and 5.2 for a

typical case.

Figure 5.1: Probability density trace

Violation history

D
en

si
ty

-15 -11 -7 -3 1 5 9
0

0.01

0.02

0.03

0.04

0.05

0.06

 120

 Uniform distribution Student’s t distribution

 Logistic distribution Normal distribution

Figure 5.2: Histograms and possible probability distributions

From Figure 5.1 and 5.2, it appears that the logistic and normal distributions are the most

likely candidates to represent the probability distribution of U ′ . Since the choice function

assuming the normal distribution is expressed in terms of an integral (Ben-Akiva and

Lerman, 1985), it requires a significant computational effort to calculate the probabilities in

the choice function. Therefore, the choice model based on a logistic distribution is

considered because the logistic distribution is an approximation of the normal law

(Kallenberg, 1997). As shown in Figure 5.2, there is not a substantial difference between the

normal and logistic distribution.

Violation history

D
en

si
ty

-17 -12 -7 -2 3 8 13
0

2

4

6

8

10

12

Violation history

D
en

si
ty

-17 -12 -7 -2 3 8 13
0

20

40

60

80

Violation history

D
en

si
ty

-17 -12 -7 -2 3 8 13
0

4

8

12

16

Violation history

D
en

si
ty

-17 -12 -7 -2 3 8 13
0

3

6

9

12

15

 121

The Kolmogorov-Smirnov (K-S) test (Chakravart et al, 1967) is carried out to test whether

U ′ comes from a population with a logistic distribution. The test statistic D measures the

largest absolute difference between a theoretical logistic distribution and the observed

U ′ distribution. The test statistic D is defined as:

 ()
N
ixF

Ni
D i −

≤≤
=

1
max

 (5.4)

where: F(ix) is the theoretical cumulative distribution of the logistic distribution, ix is

ordered U ′ from smallest to largest, and N is the number of flip trials.

The null hypothesis 0H is defined as follows:

0H : There is no difference between the distribution of U ′ and a theoretical

logistic distribution

0H is rejected if the test statistic D is greater than the K-S critical value (for example, from

the statistic table with sample size n = 50 and significance level α = 0.05 based on a logistic

distribution, the K- S critical value = 0.1250). Table 5.3 illustrates the Kolmogorov-Smirnov

test for probability distribution of U ′ for typical cases. The statistical software, SAS, was

used to obtain the statistic value D (SAS, 2002).

 122

Var no. 1 2 3 4 5 6 7 8 9 10

D 0.107 0.112 0.120 0.094 0.042 0.167 0.085 0.148 0.018 0.099

Var no. 11 12 13 14 15 16 17 18 19 20

D 0.069 0.094 0.083 0.091 0.073 0.110 0.073 0.081 0.098 0.180

Var no. 21 22 23 24 25 26 27 28 29 30

D 0.067 0.123 0.080 0.177 0.069 0.074 0.083 0.073 0.128 0.126

Table 5.3: The K-S test for probability distribution of U ′

The results from Table 5.3 show that in general, the distribution of U ′ appears to be logistic

because the test statistic D of a large majority of the variables is less than the K- S critical

value 0.1250. Therefore, it may be reasonable to assume that U ′ is logistically distributed

and to derive the predictive choice model from a logistic probability density function. The

choice model assuming a logistic distribution is obtained as follows (Ben-Akiva and Lerman,

1985):

10

0

0 UU

U

ee
eP
+

= (5.5)

where: 0P is a probability for the algorithm choosing value 0

 123

5.3.3.1 Utility function

For any flip trial, the utility U may be characterised by many factors. In this research, the

utility is only determined by the total constraint violation h. This is because it can easily be

measured by the algorithm and gives a reasonable hypothesis to the choice selection. In other

words, we would like to use a function of utility for which it is computationally easy to

estimate the unknown parameters.

We define a function that is linear in parameters. A choice specific parameter is introduced

so that one alternative is preferred to the other when the total violation is not given, i.e. the

choice decision may be explained by other factors. The utility functions for 0U and 1U are

defined as:

 0210 hU ββ += (5.6)

 121 hU β= (5.7)

where: 1β is a choice specific parameter, 2β is a constraint violation parameter, 0h and 1h

are the total violations when a binary variable is assigned a value 0 and 1 respectively.

5.3.3.2 Likelihood estimation

The parameters 1β and 2β can be estimated by several multivariate methods, such as

maximum likelihood method, discriminant analysis, least square estimation, etc. (Johnson

and Wichern, 1996). Among these methods, the maximum likelihood method is most

popular. The aim of maximum likelihood method is to estimate the parameter values that

 124

make the observed data a good fit to the likelihood function. The likelihood function over the

N flip trials is a product of individual likelihoods, which is written as:

 () ∏
=

=
N

n

y
n

y
n

nn PPL
1

,1,021
,1,0,ββ (5.8)

where: L is a likelihood function, nP ,0 and nP ,1 are probabilities for the algorithm choosing

value 0 and 1 in flip trial n, ny ,0 = 1 if the algorithm selects a value 0 in flip trial n; otherwise

= 0, and ny ,1 = 1 if the algorithm selects a value 1 in flip trail n ; otherwise = 0.

We simplify and transform the likelihood function L to *L

 []∑
=

+=
N

n
nnnn PyPyL

1
,1,1,0,021

* loglog),(ββ (5.9)

We then solve for the maximum of the log likelihood function *L by differentiating it with

respect to the parameters 1β and 2β , and setting the partial derivatives equal to zero:

 0
//

1 ,1

,1
,1

,0

,0
,0

*

=










 ∂∂

+
∂∂

=
∂
∂ ∑

=

N

n n

kn
n

n

kn
n

k P
P

y
P

P
yL ββ

β
 (5.10)

where: k = 1, 2

 125

The maximum likelihood estimation for utility’s parameter values in the predictive choice

model is illustrated as follows. In Table 5.4, h is the total constraint violation, *X is the

value of variable X chosen in the flip trial.

Flip Variable of interest (X)

trial Current Flipped *X

 Value h Value h′

1 1 26 0 22 0

2 1 20 0 12 1

3 0 5 1 2 1

4 1 15 0 14 1

Table 5.4: The input data for maximum likelihood estimation

From (5.9), we get

() { } (){ } (){ } (){ }4,03,02,01,0
* 1log1log1loglog PPPPL k −+−+−+=β

From the logit model assuming the logistic distribution:

()





















+
−+









+
= ××+

×+

××+

×+

2,122,021

2,021

1,121,021

1,021

)(

)(

)(

)(
* 1loglog hh

h

hh

h

k ee
e

ee
eL βββ

ββ

βββ

ββ

β






















+
−+






















+
−+ ××+

×+

××+

×+

4,124,021

4,021

3,123,021

3,021

)(

)(

)(

)(

1log1log hh

h

hh

h

ee
e

ee
e

βββ

ββ

βββ

ββ

 126

where: nh ,0 and nh ,1 are the total violations when a decision variable is assigned a value 0

and 1 in flip trial n.

Substituting nh ,0 and nh ,1 from the Table 5.4

()
















+

−+








+
= +

+

+

+

221

21

221

21

2012

12

2622

22
* 1loglog βββ

ββ

βββ

ββ

β
ee

e
ee

eL k

















+

−+
















+

−+ +

+

+

+

221

21

221

21

1514

14

25

5

1log1log βββ

ββ

βββ

ββ

ee
e

ee
e

Then we obtain the values for kβ which maximise ()kL β* via:

()
0

*

=
∂

∂

k

kL
β
β

To find the maximum likelihood estimate, we have to solve a system of two non-linear

equations in two unknowns. The parameter values can be obtained by using non-linear

unconstrained optimisation methods, such as Newton-Raphson method (Kallenberg, 1997).

An example of using the logit model for predicting a value of variable X with flip trials N =

20 is shown in Table 5.5 in which 0h and 1h are the total violations when a variable is

assigned a value 0 and 1 respectively, *X is the value of variable X chosen in the flip trial.

To find the estimates of the parameter that best fits the observed violation history data, the

statistical package SAS (SAS, 2002) based on the Newton-Raphson method is used. For this

data set, the maximum likelihood method gives the choice specific parameter 1β = 0.035

and the violation parameter 2β = - 0.361.

 127

Flip Violation *X Utility Probability

trial
0h 1h

0U 1U 0P 1P

1 20 18 1 -7.185 -6.498 0.33 0.67

2 13 8 1 -4.658 -2.888 0.15 0.85

3 16 15 0 -5.415 -5.741 0.58 0.42

4 13 8 1 -4.658 -2.888 0.15 0.85

5 11 12 0 -3.936 -4.332 0.60 0.40

6 9 11 1 -3.971 -3.214 0.32 0.68

7 19 18 1 -6.824 -6.498 0.42 0.58

8 13 16 1 -4.658 -5.776 0.75 0.25

9 33 29 1 -11.878 -10.469 0.20 0.80

10 15 8 1 -5.380 -2.888 0.08 0.92

11 20 18 0 -7.185 -6.498 0.33 0.67

12 13 8 1 -4.658 -2.888 0.15 0.85

13 15 16 1 -5.380 -5.776 0.60 0.40

14 13 8 1 -4.658 -2.888 0.15 0.85

15 11 12 0 -3.936 -4.332 0.60 0.40

16 9 11 0 -3.971 -3.214 0.32 0.68

17 19 18 1 -6.824 -6.498 0.42 0.58

18 13 16 1 -4.658 -5.776 0.75 0.25

19 33 29 1 -11.878 -10.469 0.20 0.80

20 15 8 1 -5.380 -2.888 0.08 0.92

Table 5.5: Probabilities of a value choice selection in flip trials

 128

5.3.3.3 Aggregate prediction

Up to this point, we have focused on a model that predicts a choice of values for a variable in

each flip trial n. However, the predictions for an individual flip trial may not reliably help the

algorithm make a decision on what a good value for a variable would be. Instead, we are

interested in an aggregate quantity, i.e. a prediction for the value choice based on a set of

trials. We use the arithmetic mean of the total violation to represent the aggregate violation

of N flip trials, which can be written as:

 ∑
=

=
N

n

n

N
h

h
1

,0
0 , and ∑

=

=
N

n

n

N
h

h
1

,1
1 (5.11)

where: 0h and 1h are the average total violations when a variable is assigned a value 0 and 1

respectively.

To investigate the accuracy of forecast of the logit method, the container rail scheduling

problem is scaled down. The optimal solution and their assigned values are known by

running an integer programming branch and bound search to completion (ILOG, 2002).

Then, we run CLS to collect the violation history with flip trials N = 20. The experimental

results are given in Table 5.6, *ℵ is the number of occurrences of choice values in *X , *X

is the value of variable X chosen in flip trial, Φ is the value of the corresponding variable

in a known optimal solution. 0P is calculated via (5.5) – (5.7).

 129

Var Violation *ℵ Probability Φ

no.
0h 1h

0 1
0P 1P

1 28.45 19.65 3 17 0.15 0.85 1

2 24.60 23.90 9 11 0.51 0.49 0

3 23.30 26.25 15 5 0.75 0.25 0

4 23.45 24.50 11 9 0.52 0.48 1

5 23.05 25.60 18 2 0.90 0.10 0

6 12.30 18.50 18 2 1.00 0.00 0

7 9.95 21.00 12 8 0.71 0.29 0

8 11.70 13.70 8 12 0.46 0.54 1

9 24.10 18.85 14 6 0.30 0.70 0

10 21.95 25.05 14 6 0.70 0.30 0

11 26.70 20.55 6 14 0.30 0.70 1

12 26.80 27.15 15 5 0.75 0.25 0

13 10.55 18.25 20 0 1.00 0.00 0

14 15.50 14.45 11 9 0.56 0.44 1

15 10.15 17.40 20 0 1.00 0.00 0

16 21.85 16.30 3 17 0.15 0.85 1

17 20.95 24.90 14 6 0.70 0.30 0

18 20.25 25.00 18 2 0.90 0.20 0

19 25.15 24.85 12 8 0.51 0.49 1

20 26.75 26.60 14 6 0.61 0.39 0

Table 5.6: Value choice prediction by logit method

 130

The percent correctly predicted for a set of variables, PC , is calculated as follows:

 100×=
T
t

PC c (5.12)

where: ct is the number of variables correctly predicted, T is total number of predicted

variables.

Table 5.6 shows that our predicted value for each binary variable is relatively close to its

known optimal value with PC = 85%. For variables 4, 9, and 19, the choice model predicts

a wrong optimal value. However, PC is sufficiently high to allow us to have some

confidence in the logit method.

5.3.3.4 Simplified estimation

Until now, the parameters 1β and 2β have been estimated by the maximum likelihood

method. Unfortunately, this method requires a significant computational effort and needs to

be applied many times during the search.

In this section, we introduce a simplified estimation of the utility’s parameter values. Since

the number of occurrences of choice values in *X will be treated separately by the

proportional method, the logit method only accounts for the total constraint violation.

However, in the logit method, we may have to set the choice specific parameter 1β to a

small value, e.g. 1β = 0.05, so that the utility of one alternative is preferred to the other. This

 131

is because an equal utility lies outside the assumption of the choice theory (Ben-Akiva and

Lerman, 1985).

Instead of considering 0h and 1h separately, the absolute difference between 0h and 1h ,

h∆ is used in order to characterise the value choice selection. h∆ is defined as follows:

10

10

hh
hh

h
+
−

=∆ (5.13)

where: 0h and 1h are the average total violations when a variable is trial flipped or assigned

a value 0 and 1 respectively.

From (5.13), when the value of h∆ is large, the probabilities of two alternatives (value 0

and 1) would be significantly different, and when h∆ = 0, the probabilities of the two

alternatives would tend to be equal. h∆ is shown in a proportional scale so that the

formulation could be generalised for the problem in which the total violation and the number

of flip trials can be varied. Then we present a simplified estimation of the violation

parameter 2β as follows:

 h∆−=2β (5.14)

Now finding the utility’s parameter values only requires a very little computational effort. It

is noted that in this study 1β could either be set to any small positive or negative value,

 132

whilst 2β is always set to be negative because the constraint violation represents disutility,

i.e. value 0 is preferred to 1 when 0h is less than 1h .

Table 5.7 show the results obtained by the predictive choice model using the simplified

estimation for logit method. The experiment uses the same test data as shown in Table 5.6.

For all test variables, the number of flip trials N = 20, the choice specific parameter 1β is

set to 0.05, and the decision parameter D is set to 70 (more experimental results are shown

in Appendix B)

Table 5.7 shows that the predicted value for the test variable is close to its known optimal

value with PC = 75%. This PC value is sufficiently high to allow us to have some

confidence in the predictive choice model, and indicates that the result obtained by the

simplified estimation for logit method serves almost as well as the result from the more

complicated mathematical one used in Table 5.6.

In Tables 5.6 – 5.7 (and Appendix B), we observe that the predictions when 0P is between

0.45 – 0.55 are not very accurate. Therefore, the predictive choice model discards those

predictions in order to increase the accuracy of forecast for all variables.

 133

Var Violation *ℵ Probability Φ

no.
0h 1h

0 1
0P 1P

1 14.35 16.15 7 13 0.54 0.46 1

2 11.80 22.25 17 3 0.85 0.15 0

3 10.75 21.00 9 11 0.97 0.03 0

4 19.85 16.75 17 3 0.85 0.15 0

5 12.60 19.35 15 5 0.75 0.25 0

6 12.30 18.50 18 2 0.90 0.10 0

7 9.95 21.00 12 8 0.98 0.02 0

8 11.70 13.70 8 12 0.55 0.45 1

9 8.25 19.00 11 9 0.99 0.01 0

10 9.90 20.65 12 8 0.98 0.02 0

11 9.60 15.50 19 1 0.95 0.05 0

12 14.70 13.05 8 12 0.49 0.51 1

13 10.55 18.25 20 0 1.00 0.00 0

14 15.50 14.45 11 9 0.50 0.50 1

15 10.15 17.40 20 0 1.00 0.00 0

16 15.20 12.25 2 18 0.10 0.90 1

17 14.30 12.41 12 8 0.48 0.52 0

18 12.20 12.10 14 6 0.70 0.30 0

19 13.40 11.50 6 14 0.30 0.70 1

20 12.98 14.40 11 9 0.53 0.47 1

Table 5.7: Value choice prediction by the simplified estimation for logit method.

As an outcome of the predictive choice model is a probability of choosing value for a

variable, the variable will be fixed at its predicted value for a number of iterations

 134

determined by the magnitude of the probability. During these iterations other variables may

become fixed. When the fixing iteration for a variable is reached, it is freed and its violation

history is refreshed. Before we describe how the predictive choice model is used to improve

the container rail schedule obtained by CLS, related work on the construction and use of

probabilistic models in the search algorithm will be discussed.

5. 3.3.5 Related work

The predictive choice model has some general similarities with both adaptive techniques

used in local search and population-based search techniques. For example, algorithms based

on these techniques are: adaptive Tabu search (Glover and Laguna, 1997), variable

neighbourhood search (Hansen and Mladenovic, 2001), ant colony optimisation (Blum et al,

2001), estimation of distribution algorithms (EDAs) (Pelikan et al, 1999), etc. These

algorithms do not rely on problem specific designs of heuristics and do not need many tuning

parameters. Instead they build probabilistic models to keep fixed some variables during the

search or to predict the movements of populations in a probabilistic way. Such probabilistic

models attempt to draw inferences specific to the complex combinatorial problem being

solved and therefore may be regarded as adaptive processes that learn domain knowledge

implicitly.

In most local search algorithms based on probabilistic models, the problem specific

interactions amongst the decision variables in the combinatorial optimisation model are kept

in mind implicitly, whereas in our predictive choice learning algorithm, as well as EDAs, the

interactions are treated explicitly through the probability distribution associated with the

variables selected at each sample. In EDAs, often incorporated in genetic algorithm

 135

(Goldberg, 1989), a probabilistic model for selecting promising solutions is constructed,

based on the observed probability distribution. The new solutions are generated by the

probabilistic model. The observed distributions of the interactions amongst variables are

estimated and are often displayed as complex chains or networks.

We consider the deterministic and non-deterministic (random) interactions amongst the

variables separately. The logistic probability distribution of the non-deterministic behaviour

in choosing a good value for a variable is assumed in order to derive a specific probabilistic

model; thereby it makes our model easy to develop and convenient to use. The model learns

from the search history, the outcome in terms of a probability is used to influence the search.

In general, the probability distribution in EDAs is categorised into three types according to

the interactions amongst the variables (Larraaga and Lozano, 2002). These are: no

interactions, pairwise interactions, and multivariate interactions. No interactions assumes

that all variables in a problem are independent, i.e. the search algorithm only looks at the

values of each variable regardless of the remaining variables. The second type assumes that

the variables in the combinatorial optimisation model are largely independent except for

some pairwise interactions. In this type, the joint probability distribution of the interactions

between pairwise variables is constructed. The last is the most complex and requires

significant computational effort, but in return for a potentially better result. It assumes

multivariate interactions amongst the variables. The variables may be divided into a number

of independent clusters, and the conditional probabilities are estimated within each cluster.

As the search history for our predictive choice model is based on a two-variables selection

scheme, it is closely related to the pairwise interactions of EDAs. In our model, the joint

 136

probability distribution of the interaction between variables is estimated by observing the

constraint violations resulting from assigning values for two variables.

In addition, the application of our predictive choice model and EDAs is different. In EDAs,

the model is used to predict the movements of the solution (populations) in the search space.

For instance, when applied to genetic algorithms (Pelikan et al, 1999), EDA generates new

solutions by sampling the constructed probability distribution of the promising solutions (i.e.

EDAs do not use crossover and mutation). In our application, the probabilistic model is used

to predict a choice of good value for an individual binary variable. With sufficient trial

history, the model predicts likely optimal values for variables.

The next section describes how the predictive choice model is used to improve the solution

of the container rail scheduling problem.

5.4 CLS incorporating the predictive choice model

In our algorithm, the predictive choice model is used as the search intensification strategy in

order to improve on solutions using CLS alone. As discussed in Section 5.3.1, after some

iterations, the search history is analysed, some variables may appear to have high preference

measure of having certain good values, and they will be fixed for a number of iterations. At

that point, consistency between variables is enforced. When the fixing iteration limit is

reached, the variable is freed, together with those other variables which were fixed by

consistency enforcing. The procedure of CLS incorporating the predictive choice model is

outlined as follows:

 137

Step 1: The algorithm starts using CLS (as in Chapter 4) to perform the normal

searching process and to collect the violation history.

Step 2: For each variable separately: when it has been flip-tested N times, the

algorithm calculates the preferred value and proportional preference measure

P ; where P =),max(10 PP . If P is greater than or equal to the decision

parameter D , it uses this measure, otherwise it recalculates P using the

logit method. Now if P is less than the prediction error parameter E , there

is no preferred value and no fixing is done. Otherwise the variable is fixed at

its preferred value for a number of iterations equal to FP× ; where F is a

predetermined number of fixing iterations. However, if the number of fixed

variables becomes greater than the limit on the maximum number of fixing

variables, then a variable may become unfixed before this number of

iterations. In this case the variable chosen to be unfixed early is the one

which has been fixed for the longest. This limit controls how many variables

can be fixed and is necessary to allow some flexibility in the search.

Step 3: Fixing a variable may imply that other variables should be fixed. At this

point the algorithm enforces the consistency between variables. See the cases

in Sections 5.4.1 – 5.4.2 for how this should be done.

Step 4: When a variable becomes unfixed, it stays unfixed until it has been flip-

tested a further N times and the process above is repeated using these N

observations. Other variables which were fixed at the same time as this

 138

variable in order to maintain consistency are also unfixed at the same time as

this variable.

Step 4: The algorithm stops when the iteration limit Z is reached.

In the container rail scheduling model, the timeslot and customer’s booking variables (tx

and tjy) are chosen for flip trials, but propagation of consistency may not be carried out

fully all the time. At the beginning, the propagation of consistency is only maintained within

each of the set tx and tjy , but not across the two sets of variables, in order to promote wider

exploration of the search space. However, after a specified number of iterations, the trial

history is analysed. As a result, some variables will be fixed at the preferred value given by

the predictive choice model for a number of iterations. At this point, consistency between

timeslots and customer’s booking variables is enforced, leading to intensified exploration of

the neighbouring search space.

5.4.1 Timeslot enforcing

When the trial history is analysed and the timeslot variable tx is predicted to have a

particular value, the variable will be fixed at that value for the number of iterations

determined by the magnitude of the preference measure. In this case, all customers’ booking

variables tjy associated with timeslot tx are assigned values consistent with the preferred

value of tx . For example, if a preferred value of tx = 0 (timeslot t is not selected), no

customer’s booking will be assigned to that timeslot, i.e. tjy = 0 for all potential customers

 139

in that timeslot. On the other hand, if the preferred value of tx = 1 (timeslot t is selected),

any customer’s booking may or may not be assigned to that timeslot.

As the timeslot variable tx may take a current value 0 or 1 and its preferred value can either

be 0 or 1 during the search processes, we categorise the timeslot consistency enforcing into

four cases. To simplify our discussion, the following will be used.

States of variables:

fN : number of iterations to be fixed (for each variable)

 (fN = probability P × number of fixing iterations F)

xN : number of fixing tx variables

0N : number of tjy variables fixed at 0

1N : number of tjy variables fixed at 1

Parameters:

F : number of fixing iterations

nbFixX : limit on the max. length of the fixing list, X , for tx variables

0nbFixY : limit on the max. length of the fixing list, 0Y , for tjy variables fixed at 0

1nbFixY : limit on the max. length of the fixing list, 1Y , for tjy variables fixed at 1

The steps of propagation of consistency for tx are given as follows:

 140

Let jK be the timeslot chosen for customer j .

jU be the set of alternative timeslots for customer j not used, i.e. jU = { }jj KS / ;

 where jS is the set of potential booking timeslots for customer j

Case 1: current value of tx = 0, preferred value for tx = 0

Step 1 If xN ≤ nbFixX , fix tx at 0 for fN iterations, add tx to the end of the

fixing list X , xN ← xN + 1.

Otherwise release the first x variable in X , xN ← xN - 1, reorder X and

repeat step 1.

Step 2 For all j : if t = jK , flip tjy to 0, select randomly t ′ ∈ jU ,

 jU ← { }() { }ttU j ∪′\ , jty ′ ← 1,

fix pjy at 0; jUp∈∀ for fN iterations, 0N ← 0N + jU .

 Step 3 If total hard violation = 0, exit with a feasible solution.

Step 4 Release any x variable in X if its fixing iteration limit has been reached

and reorder X .

 141

Case 2: current value of tx = 0, preferred value for tx = 1

Step 1 If xN ≤ nbFixX , flip tx to 1, select randomly an assigned timeslot t ′ ,

tt ≠′ , tx ′ ← 0,

 fix tx at 1 for fN iterations, add tx to the end of X , xN ← xN + 1.

Otherwise release the first x variable in X , xN ← xN - 1, reorder X and

repeat step 1.

Step 2 If total hard violation = 0, exit with a feasible solution.

Step 3 Release any x variable in X if its fixing iteration limit has been reached

and reorder X .

Case 3: current value of tx = 1, preferred value for tx = 0

Step 1 If xN ≤ nbFixX , flip tx to 0, select randomly an unassigned timeslot t ′ ,

tt ≠′ , tx ′ ← 1,

 fix tx at 0 for fN iterations, add tx to the end of X , xN ← xN + 1.

Otherwise release the first x variable in X , xN ← xN - 1, reorder X and

repeat step 1.

Step 2 For all j : if t = jK , flip tjy to 0, select randomly t ′ ∈ jU , tt ≠′

 jU ← { }() { }ttU j ∪′\ , jty ′ ← 1,

fix pjy = 0 jUp∈∀ for fN iterations, 0N ← 0N + jU .

 142

 Step 3 If total hard violation = 0, exit with a feasible solution.

Step 4 Release any x variable in X if its fixing iteration limit has been reached and

reorder X .

Case 4: current value of tx = 1, preferred value for tx = 1

Step 1 If xN ≤ nbFixX , fix tx at 1 for fN iterations, add tx to the end of X ,

xN ← xN + 1.

Otherwise release the first x variable in X , xN ← xN - 1, reorder X and

repeat step 1.

Step 2 Release any x variable in X if its fixing iteration limit has been reached

and reorder X .

5.4.2 Customer’s bookings enforcing

For the customer’s bookings enforcing, the booking variable tjy may also take a current

value 0 or 1 and its preferred value can either be 0 or 1 during the search. It is noted that

consistency within tjy is maintained during the search by the coverage constraint, i.e. a

customer’s booking can only be assigned into one timeslot. However, it may or may not be

consistent with a set of selected timeslot variables. To better control the customer’s booking

enforcing, we categorise it into two groups: local and global fix.

 143

5.4.2.1 Local fix

The local fix is a process of preventing the algorithm selecting a customer’s booking in

timeslot t that may not lead to a feasible solution, i.e. fixing tjy at 0 for a number of

iterations. Although locally fixing tjy at 0 will not enforce the consistency between tx and

tjy , the number of potential booking timeslots for each customer is reduced quickly. The

local fix is categorised into two cases:

Case 1: current value of tjy = 0, preferred value for tjy = 0

Step 1 If 0N ≤ 0nbFixY , fix tjy at 0 for fN iterations; add tjy to the end of the

fixing list 0Y , 0N ← 0N + 1.

Otherwise release the first y variable in 0Y , 0N ← 0N - 1, reorder 0Y and

repeat step 1.

Step 2 Release any y variable in 0Y if its fixing iteration limit has been reached

and reorder 0Y .

Case 2: current value of tjy = 1, preferred value for tjy = 0

Step 1 If 0N ≤ 0nbFixY , flip tjy to 0, select randomly t ′ ∈ jU , tt ≠′ ,

 jU ← { }() { }ttU j ∪′\ , jty ′ ← 1,

 144

 fix tjy at 0 for fN iterations, add tjy to the end of 0Y , 0N ← 0N + 1.

Otherwise release the first y variable in 0Y , 0N ← 0N - 1, reorder 0Y and

repeat step 1.

 Step 2 If total hard violation = 0, exit with a feasible solution.

Step 3 Release any y variable in 0Y if its fixing iteration limit has been reached

and reorder 0Y .

5.4.2.2 Global fix

The global fix provides a strong propagation of consistency between customer’s booking and

timeslot variables. When the global fix is called (i.e. a preferred value of tjy = 1), one

potential timeslot t is assigned to customer j . A train will run at that time in order to serve

the demand for customer j, this prevents the algorithm selecting the remaining potential

timeslots for that customer. The global fix is also categorised into two cases:

 145

Case 1: current value of tjy = 0, preferred value for tjy = 1

Step 1 If 1N ≤ 1nbFixY , flip tjy to 1,

jty ′ ← 0; t ′ = jK ,

 fix tjy at 1 for fN iterations, add tjy to the end of 1Y ,

1N ← 1N + 1.

Otherwise release the first y variable in 1Y , 1N ← 1N - 1, reorder 1Y and

repeat step 1.

Step 2 If tx = 1, fix tx at 1 for fN iterations, add tx to the end of X ,

xN ← xN + 1.

 Otherwise flip tx to 1, select randomly an assigned timeslot t ′ , tt ≠′ ,

tx ′ ← 0, fix tx at 1 for fN iterations, add tx to the end of X ,

xN ← xN + 1.

 Step 3 If total hard violation = 0, exit with a feasible solution.

Step 4 Release any y variable in 1Y if its fixing iteration limit has been reached

and reorder 1Y .

 146

Case 2: current value of tjy = 1, preferred value for tjy = 1

Step 1 If 1N ≤ 1nbFixY , fix tjy at 1 for fN iterations, add tjy to the end of 1Y ,

1N ← 1N + 1.

Otherwise release the first y variable in 1Y , 1N ← 1N - 1, reorder 1Y and

repeat step 1.

Step 2 If tx = 1, fix tx at 1 for fN iterations, add tx to the end of X ,

xN ← xN + 1.

 Otherwise flip tx to 1, select randomly an assigned timeslot t ′ , tt ≠′ ,

tx ′ ← 0, fix tx at 1 for fN iterations, add tx to the end of X ,

xN ← xN + 1.

 Step 3 If total hard violation = 0, exit with a feasible solution.

Step 4 Release any y variable in 1Y if its fixing iteration limit has been reached,

and reorder 1Y .

5.5 Computational results

In this section, we demonstrate the performance of the constraint-based local search

incorporating the predictive choice model (PCM), and compare the results with constraint-

based local search (CLS) alone. The results are shown in terms of number of trains, and the

 147

generalised cost. The generalised cost includes the operating costs and the virtual revenue

loss representing customer satisfaction on the given schedules.

Eight weeks data from a case study are run on the same PC-Pentium 2.4 GHz. Each test case

is run ten times using different random numbers at the beginning of each run. Before running

computational experiments, we need to find good values for parameters here. After some

initial experimentation, the values of the parameters were chosen to be: the number of flip

trials N = 20, decision parameter D = 75, the prediction error parameter E = 55%,

number of fixing iterations F = 100, and the limits on the number of fixed variables,

nbFixX , 1nbFixY , 0nbFixY = 50, 50, 200 respectively.

The parameters nbFixX , 1nbFixY , 0nbFixY govern the maximum number of variables

which are allowed to be fixed in the search and are necessary to allow some flexibility in the

search. These parameters are closely related to F ; if F is not too large, the limit parameters

may never be reached and thus they become unnecessary. Otherwise, the limit parameters

could help the algorithm spread out the number of fixed variables to different sets of

variables so that the diversified intensification of the search space may be achieved. In this

experiment, we set nbFixX , 1nbFixY , 0nbFixY = 50, 50, and 200. For nbFixX and

1nbFixY the values are estimated by 1/3 to 1/4 of the schedulable timeslots tx and

customers M respectively, and 0nbFixY is about 1/5 to 1/10 of tjy . Once the values of

these parameters have been chosen, we may then only need a good value of F .

We tried different values of the stopping criterion parameter Z , ranging from 500 to 5000

iterations for all test cases, and observed that Z = 2000 iterations is large enough as

 148

solutions do not tend to be improved after this limit. Note that we do not claim here that

these values of the parameters above are the best values, but some care was taken. In

addition, we will test the sensitivity of the parameters D , E , N and F after the

computational results are given. The results for the test cases are shown in Table 5.8. The

cost is a generalised cost (× 106 Baht).

Test CLS PCM

case Trains GC Time Trains GC Time

 Min Avg. Avg. (Sec) Min Avg. Std. Avg. Std. (Sec)

W1 49 50.87 5.47 387 47 48.15 1.82 4.66 0.53 257

W2 37 38.68 3.95 168 36 37.18 1.17 3.37 0.24 178

W3 24 24.74 2.06 89 23 23.75 0.56 1.86 0.10 144

W4 41 42.21 4.48 169 39 41.66 1.72 4.04 0.62 219

W5 68 69.44 7.01 930 64 66.09 2.25 6.55 0.98 837

W6 56 58.80 6.18 655 53 54.93 1.06 5.39 0.49 506

W7 44 45.11 4.85 297 43 43.51 0.70 4.35 0.29 236

W8 79 80.64 8.06 1980 75 77.94 1.75 7.87 0.91 1080

Table 5.8: Results obtained by CLS and PCM

Table 5.8 shows that the results of PCM are better than those of CLS in terms of the number

of trains and the generalised cost GC . Although the PCM learning from the search history

implies a computational overhead over CLS, it is offset against a lower run-time required to

find good schedules, in particular for large test cases.

 149

To test the sensitivity of parameters in the algorithm, four additional experiments are carried

out as follows.

5.5.1 Decision parameter D

We first test different values for the decision parameter D . This parameter is especially

important since the algorithm is switching between the proportional and logit methods. We

need to examine whether switching is of value. Although the results in Table 5.2 showed the

proportional method alone predicts a wrong optimal value for many variables and suggests

the use of logit method, we may also want to find a good setting of D. In this experiment,

each test case is run five times, D is varied and the remaining parameters in the algorithm

are fixed. The results are shown in Table 5.9.

Test Trains (Avg.) Cost (Avg.)

Case D =55 70 85 100 D =55 70 85 100

W1 53 49 51 51 6.01 5.02 5.65 5.68

W2 42 38 40 41 4.46 3.74 4.15 4.21

W3 26 24 24 25 2.88 2.51 2.34 2.69

W4 45 42 43 43 5.11 4.30 4.49 4.49

W5 73 68 67 71 7.42 7.47 6.71 6.92

W6 61 54 56 59 6.19 5.74 5.87 5.95

W7 46 44 43 44 4.71 4.33 4.19 4.51

W8 84 79 81 82 8.43 7.71 7.90 8.26

Table 5.9: Sensitivity analysis of the parameter D

 150

Table 5.9 shows that in the extreme cases D = 55 (always use proportional method) and D

= 100 (always use logit method) the algorithm finds lower quality results. When both cases

are compared, the logit method provides better results than the proportional method and in

some of the test cases it is as good as the results obtained from the combination of the two

methods (i.e. when D = 70 and D = 85). This may be because logit method considers the

amount by which one value is preferable to the other in the preference measure which tends

to be a main factor in value choice selection, but when an occurrence of any choice value

*X is obviously dominating, the logit method becomes less effective as the measure of

preferred value tends to be compensated with the measure of the other value in a choice

function. The results suggest that choosing D between 70 – 85 is reasonable as the

algorithm performs well in all test cases.

5.5.2 Prediction error parameter E

This experiment is to test the prediction error parameter E . As in our experiments (in Tables

5.6-5.7 and Appendix B) the predictions when 0P is between 0.45-0.55 are not very

accurate. In such cases, if 0P < E % there is no preferred value and no fixing is done. The

parameter E = 50% means that there is always a preferred value for a variable to be fixed.

In this experiment, each test case is run five times, E is varied and the remaining parameters

in the algorithm are fixed. The results are shown in Table 5.10.

 151

Test Trains (Avg.) Cost (Avg.)

Case E =50 55 60 65 E =50 55 60 65

W1 51 50 50 51 5.16 4.95 5.05 5.23

W2 37 37 38 39 3.97 3.76 4.02 4.25

W3 25 24 25 26 2.50 2.42 2.61 2.72

W4 42 42 42 43 4.19 4.24 4.35 4.41

W5 67 67 69 69 6.76 6.63 7.31 7.84

W6 57 58 59 60 6.08 6.15 6.42 6.53

W7 44 44 44 45 4.46 4.55 4.60 5.02

W8 79 78 80 81 7.62 7.53 8.07 9.19

Table 5.10: Sensitivity analysis of the parameter E

Table 5.10 shows that setting E greater than 60 gives a relatively low quality of results, but

it still gets slightly better results compared with the results obtained by using CLS alone,

where no variable fixing is done. The smaller values of E (E = 50 and E = 55) show some

improvement of solutions and choosing E = 55 is slightly better than E = 50. However, no

clear difference is observed and the initially chosen value appears satisfactory.

5.5.3 Flip trial parameter N

This experiment is to test the number of flip trials parameter N . In this experiment, each

test case is run five times, N is varied and the remaining parameters in the algorithm are

fixed. The results are shown in Table 5.11.

 152

Test Trains (Avg.) Cost (Avg.)

Case N =10 20 30 50 N =10 20 30 50

W1 49 47 48 51 5.08 4.97 5.00 5.25

W2 39 39 40 42 4.11 3.66 4.06 4.25

W3 24 24 24 25 2.06 1.97 2.01 2.15

W4 42 41 41 43 4.32 3.98 3.95 4.70

W5 71 67 68 73 7.50 6.62 6.88 7.77

W6 58 54 53 59 5.93 5.79 5.56 6.18

W7 44 43 43 46 4.79 4.34 4.62 4.95

W8 80 78 79 84 8.39 7.83 8.28 9.02

Table 5.11: Sensitivity analysis of the parameter N

Table 5.11 shows that choosing N between 10 and 30, the algorithm performs well in most

cases. In general, we get slightly better results when N is set to 20. It is noted that a high

value of N = 50 provides low quality results, both in terms of the number of trains and the

generalised cost. This may be because a large number of flip trials must be collected in the

search history before the predictive choice model can be used; as a result it is seldom used.

5.5.4 Fixing iterations parameter F

The other experiment is to test sensitivity of the number of fixing iterations parameter F .

This parameter is designed to guard against inaccurate forecasts by the predictive choice

model. When F is not too large, and the model predicts a wrong value for a variable, that

variable will be refreshed after a small number of iterations; note also that the limits on the

 153

number of fixing variables nbFixX , 1nbFixY , and 0nbFixY may not be reached in this

case. The sensitivity test of F is shown in Table 5.12. In this experiment, each test case is

run five times, F is varied and the remaining parameters in the algorithm are fixed.

Test Trains (Avg.) Cost (Avg.)

case F =50 100 200 300 F =50 100 200 300

W1 48 48 49 50 5.00 4.88 5.04 5.13

W2 41 39 40 41 4.08 4.03 4.07 4.46

W3 24 24 24 25 2.01 1.97 2.03 2.12

W4 42 41 43 43 4.37 3.91 4.57 4.50

W5 72 71 68 74 7.50 7.40 6.80 7.64

W6 53 54 59 61 5.67 5.65 6.14 6.21

W7 44 43 44 45 4.52 4.39 4.47 4.75

W8 79 77 80 85 8.19 7.70 8.50 8.64

Table 5.12: Sensitivity analysis of the parameter F

Table 5.12 shows that the number of fixing iterations F affects the quality of schedule, both

positively and negatively. Choosing F = 50, the results are relatively good, but when F is

increased to 100, the results tend to be improved slightly. However, setting large a value for

F between 200 and 300 decreases the effectiveness of the algorithm in most cases. This

may be because an incorrect forecast by the predictive choice model for some variables

prevents the search finding feasible solutions for the number of fixing iterations.

 154

5.6 Conclusions

The construction and use of the predictive choice model is presented in this chapter. The

predictive choice model is based on discrete choice theory and the random utility concept.

The model explicitly considers the inconsistencies of the algorithm in choosing a good value

for binary variable in a probabilistic way. We have shown that the constraint-based local

search algorithm incorporating the predictive choice model is able to improve the container

rail schedules obtained by constraint-based local search alone.

With sufficient trial history, the predictive choice model will predict a good choice of value

for a variable. The variable will be fixed at its predicted value for a number of iterations

determined by the magnitude of an associated probability. At this point, the propagation of

consistency between the variables is enforced, leading to intensified exploration of the search

space.

This intensification technique is novel because it is the first time that the predictive choice

model has been tailored for a local search method (in this case, the constraint-based local

search algorithm) and applied to a combinatorial optimisation problem. Experiments based

on real life data demonstrate the strengths and usefulness of the proposed technique.

Even though the constraint-based local search incorporating the predictive choice model has

been developed to solve a specific container rail scheduling problem, it can be adapted to

other combinatorial optimisation problems. In Chapter 6, the application of this approach to

the generalised assignment problem is described.

 155

Chapter Six

Constraint-based local search for the

generalised assignment problem

6.1 Introduction

The computational results presented in Chapter 5 demonstrate that the incorporation of the

predictive choice model in constraint-based local search leads to an effective algorithm for

the container rail scheduling problem. However, the solution approach, especially the

predictive choice model, is not strongly dependent on problem-specific knowledge. It seems

appropriate to investigate whether this approach can be successfully applied to other

combinatorial optimisation problems. In this chapter we apply the approach to one such

problem, the generalised assignment problem (GAP).

GAP is a difficult combinatorial optimisation problem, which is known to be NP-hard (Sahni

and Gonzalez, 1976). GAP considers the minimum cost assignment of n jobs to m agents

such that each job is given to one and only one agent subject to resource capacity constraints

on the agents. GAP has several applications in industry such as computer and

 156

communication networks, facility location, vehicle routing, manufacturing systems, resource

scheduling, etc (Chu and Beasley, 1997).

The container rail scheduling problem (described in Chapter 3) has some similarities to GAP

in that the demand (resource consumed) assigned to a departure timeslot must not exceed the

capacity of a train (resource capacity) and each demand can only be served by one train (job

is processed by only one agent). However, the container rail scheduling problem has

identical train capacity constraint for all timeslots, whilst in GAP, the capacity of the agents

are different. In addition, in the container rail scheduling problem, timeslot consistency has

to be maintained, i.e. if a timeslot is selected for a customer, a train has to depart at that

timeslot. Each customer has a number of potential booking time ranges sparsely distributed

through the available departure timeslots and a rail carrier attempts to find the minimum

number of timeslots to serve all the demand, in contrast to GAP in which all agents are

available to process jobs.

Data sets publicly available in OR-library (reproduced by Chu and Beasley, 1997) are used

to test our constraint-based local search algorithm (CLS) for GAP.

This chapter is organised as follows: Section 6.2 describes GAP and reviews some solution

methods. A formulation of the problem is given in this section. Section 6.3 describes the

procedure of CLS for GAP. Section 6.4 illustrates the search intensification technique using

the predictive choice model. Computational experiments with constraint-based local search

incorporating the predictive choice model are given in Section 6.5 and compared with other

solution methods. Finally conclusions are given.

 157

6.2 Generalised assignment problem

GAP is a problem of assigning jobs to agents with minimum total cost such that

- each job must be assigned to exactly one agent

- each agent requires a known amount of a single resource and incurs a known cost to

perform each job

- the cost and resource requirements of agent, job pairs may be different

- each agent has a limited amount of the resource

This problem is well-known and proved to be NP-hard. Finding a feasible solution for GAP

is also NP-hard (Sahni and Gonzalez, 1976; Narciso and Lorena, 1999). In this research, we

consider GAP as a maximisation problem, i.e. jobs are processed by agents with maximum

total profit.

6.2.1 Related work

In this section, we present a review of solution methods found in the literature for GAP. The

solution methods can be categorised into two groups: exact and heuristic methods. An

extensive survey on previous solution methods was done by Chu (1997). However, exact

methods have a computational disadvantage in solving large-size problems. We focus on

heuristic methods that can find good quality solutions within a reasonable computational

time.

 158

Osman (1995) proposed a hybrid algorithm, SA/TS, which combines simulated annealing

and tabu search. The algorithm uses a λ - generation mechanism which describes how a

solution can be altered to generate neighbour solutions. In SA/TS, the non-monotonic

cooling scheme of simulated annealing and the oscillation strategy of tabu search are used,

which are considered as a hybrid strategy. Osman also proposed a tabu search alone for

GAP. Both the SA/TS and TS use a frequency-based memory that records information used

for diversification purposes.

Chu and Beasley (1997) proposed a GA-based heuristic for solving GAP. The heuristic

incorporates a problem-specific encoding of a solution structure. Fitness-unfitness pair

evaluations are used to handle both feasible and infeasible solutions. Apart from using

mutation and crossover operators, a two-phase heuristic improvement operation is used. In

the first phase, the operator tries to recover feasibility by reducing the unfitness score. The

second phase is to improve the cost of the solution without further violating the capacity

constraints.

Yagiura et al (1999) proposed a variable depth search algorithm for GAP. The algorithm

incorporates an adaptive use of modified shift and swap neighbourhoods where some moves

are tabu in order to overcome local minima. The method also allows the search to visit

infeasible solutions, modifying the objective function to penalise the overloaded capacity of

the agents. Yagiura et al (2004) also proposed a tabu search with an ejection chain for GAP.

The ejection chain approach is embedded in a neighbourhood construction in order to create

more complex and powerful local moves. The ejection chains are constructed by using the

information from a Lagrangian relaxation of the problem. The sorted cost for each job is also

maintained and used in a variable selection process in order to make a move more

 159

efficiently. In addition, the algorithm incorporates an automatic mechanism for adjusting

search parameters to maintain a balance between visits to feasible and infeasible regions.

Diaz and Fernandez (2001) proposed a tabu search heuristic for GAP. They presented a

relaxed formulation of GAP that allows the search to cross the capacity-infeasibility

boundary using a penalty term. A candidate move strategy is also used in which the move

with lowest cost is selected and performed. A strategic oscillation scheme is then used to

permit alternating between feasible and infeasible solutions. Search diversification and

intensification strategies are implemented by means of frequency-based memory.

Lourenco and Serra (2002) proposed hybrid meta-heuristic search techniques for GAP. The

algorithm is based on a greedy randomised adaptive heuristic and a MAX-MIN ant system

that takes into consideration the search information gathered in earlier iterations of the

algorithm in order to construct a good initial solution. In this phase, a relative resource

consumed probability is used by considering the ratio of resource to agent capacity. The

agent that has the highest probability is chosen for an initial solution. Then, a descendent

local search and tabu search are used to improve the search. Several neighbourhoods are

studied and used, including one based on ejection chains that can produce good moves.

Feltl and Raidl (2004) proposed an improved hybrid genetic algorithm for GAP. The

algorithm is based on the hybrid genetic algorithm proposed by Chu and Beasley (1997). The

algorithm includes two initialisation heuristics; constraint-ratio and linear programming

heuristics to create more promising solutions, which are mostly feasible. In addition, a

modified selection and replacement strategy in GA is used, which assigns infeasible

 160

solutions a fitness value depending only on the relative capacity excess and always ranks

them worse than any feasible solution.

6.2.2 Problem formulation

We model GAP as a constraint satisfaction problem (CSP) in order to introduce a constraint-

based local search (CLS) to solve this class of CSP. The following notation will be used.

Sets:

 I : set of agents, = {1,2,3,…, m }

 J : set of jobs, = {1,2,3,…, n }

 Parameters:

ijp : assignment profit of job j to agent i

ija : resource required for processing job j by agent i

 ib : capacity of agent i

 Decision variable:

 ijx : 1, if job j is assigned by agent i , 0 otherwise

In a CSP, optimisation criteria and operational constraints are represented as soft and hard

constraints respectively. A feasible solution for a CSP is an assignment to all constrained

variables in the model that satisfies all hard constraints, whereas an optimal solution is a

feasible solution with the minimum total soft constraint violation. In GAP, the soft constraint

is the maximum total profit of assigning jobs to agents. The hard constraints are capacity

constraints and coverage constraints.

 161

6.2.2.1 Soft constraint

Maximum total profit - this constraint aims to maximise total profit of assigning jobs to

agents, which is defined as:

 ∑∑
∈ ∈

≥
Ii Jj

ijij xp θ (6.1)

where: θ is an upper bound on total profit, e.g. { }∑
∈

∈=
Jj

ij Iip :maxθ .

6.2.2.2 Hard constraints

Coverage constraint - this constraint ensures that each job is assigned to exactly one agent,

which is defined as:

∑
∈

∈∀=
Ii

ij Jjx ;1 (6.2)

In CLS, the coverage constraints are maintained during the search; as a result, these

constraints are never violated.

Resource capacity - this constraint ensures that the demand must not exceed the capacity of

an agent, which is defined as:

 ∑
∈

∈∀≤
Jj

iijij Iibxa ; (6.3)

 162

6.2.2.3 Violation strategy

For GAP, the violation of resource capacity constraints is used to evaluate local moves. Any

amount of resource required in an agent exceeding its capacity is penalised with the same

violation ch . The violation penalty for resource capacity constraint ch is defined as:

 Ii
hb

b
xa

Jj
ci

i

ijij ∈∀








=>

=≤

∑
∈

,
violation,

0violation,
 (6.4)

The objective of the problem is transformed into the soft constraint (6.1) which will never be

satisfied. The soft violation for the maximum total profit constraint is defined as:

∑∑
∈ ∈ 








=<

=≥

Ii
s

Jj
ijij

h
xp

violation,

0violation,

θ

θ
 (6.5)

where: sh is a soft violation penalty for maximum total profit constraint,

∑∑
∈ ∈

−=
Ii Jj

ijijs xph θ , and θ is an upper bound on total profit.

When the search visits the infeasible region (i.e. ch >0), we evaluate the solutions by the

total constraint violation, which can be written as:

()α×+= cs HHh (6.6)

 163

where: h is the total constraint violation, sH is the violation for the total profit constraint,

cH is the violation for the capacity constraints, and α is a feasibility parameter.

The parameter α represents the violation penalty of using one unit of overloaded agent

capacity. The parameter can be adjusted empirically in order to balance the trade-off

between hard and soft violations, i.e. as α is increased the search algorithm treats hard

constraints as more important relative to the soft constraint.

6.3 Constraint-based local search

The constraint-based local search algorithm (CLS) was originally designed to solve the

container rail scheduling problem (Chapter 4). As conceptually simple and convenient, CLS

could be adapted and applied to GAP.

CLS starts with an initial random assignment, in which the capacity constraint for each agent

can be violated. (Note that CLS maintains coverage constraints (6.2) during the search;

therefore these constraints are never violated). In the iteration loop, the algorithm randomly

selects a violated constraint, i.e. an assigned agent for which the demand exceeds its resource

capacity. Having selected a violated constraint, the algorithm randomly selects two variables

in that constraint. For GAP, we categorise the flip trial procedure into two cases:

- Case 1: current value of ijx = 0 (agent i does not process job j)

- Case 2: current value of ijx = 1 (agent i processes job j)

 164

For case 1, when either the first or second selected variable holds a current value of 0, the

algorithm changes the current value of the variable to its complementary binary value, i.e.

flipping ijx to 1. At this point, the agent previously processing that job is released in order to

satisfy the coverage constraint (6.2). For case 2, when the selected variable has a current

value of 1, there are a number of potential agents available to process job j (there are many

alternative agents k for flipping jikx ,≠ to 1). In this case, for each selected variable, two flip

sub-trials are performed for two randomly selected agents ik ≠ to process job j . The sub-

trial with the smaller total hard violation is chosen for comparison with the other flip trial.

Between the two flip trials corresponding to the two selected variables, the algorithm selects

the alternative with the smaller total hard violation. This alternative becomes the new current

solution. Whenever the hard constraint violation cH is zero, a feasible solution is found.

The algorithm stops when no improvement to the best feasible solution found has been

achieved for a specified number of iterations (the procedure of CLS is described in Chapter

4 in detail).

6.3.1 Initial experiment

A standard set of GAP problem instances were used to test the CLS. These problems are

maximisation problems 1S , publicly available in Beasley’s OR-library

(http://mscmga.ms.ic.ac.uk /jeb/orlib/gapinfo.html). These problems were used to test the set

partitioning heuristic of Cattrysse et al. (1994) as well as the hybrid simulated annealing/

tabu search heuristic, and tabu search alone, proposed by Osman (1995). The test problems

have the following characteristics:

 165

1. The number of agents m is set to 5, 8 and 10.

2. The ratio nmr /= is set to 3, 4, 5 and 6 to determine the number of jobs n .

3. ija values are integers generated from a uniform distribution ()25,5U .

4. ijp values are integers generated from a uniform distribution ()25,15U .

5. The ib values are set to () 







×∑

∈Jj
ijam/8.0 .

The test problems 1S are divided into 12 groups, gap1 to gap12, according to the size of the

test problems. Each group contains five problems.

The experiments were performed on a PC-Pentium 2.4 GHz. The algorithm is coded in

Visual Basic 6. For each of the test problems 10 runs are performed using different random

number seeds at the beginning of each run. The feasibility parameter α is set manually. For

all test problems, we initially performed a few runs in order to determine good values of the

parameter. Conceptually, we tried to set the parameter relatively low so that the search

targets more on the quality of solutions than on feasibility. If no feasible solution was found,

we then increased the value of the parameter. In addition, after the value of feasibility

parameter has been chosen, we then want to find a good value of the stopping criterion

parameter. The concept is that the algorithm should not spend more computational time than

necessary; in contrast, more computational time should be given if the solution could be

improved further. We varied this stopping criterion parameter from 500 to 3000 iterations for

each test problem, and observed that the parameter value = 1000 iterations is a reasonable

setting as in many cases, solutions do not tend to be improved after this limit. Note that this

stopping criterion parameter will also be tested and discussed in more detail in Section 6.5.

 166

Table 6.1 shows the results obtained from CLS for the test problems. The results are shown

in terms of the average percentage deviation from optimal solution values and average

computational time for each problem. The average percentage deviation is defined as:

 ∑
=

×
×
−

=
N

i

i

SN
SS

1
*

*

100σ (6.7)

where: σ is the average percentage deviation from *S , *S is the optimal solution value, iS

is the solution value of the i -th run, and N is the number of runs.

 167

Problem m n Optimal Best σ Avg. time
gap1-1 5 15 336 316 6.01 0.4
gap1-2 5 15 327 307 6.18 0.3
gap1-3 5 15 339 323 4.79 0.7
gap1-4 5 15 341 325 4.74 0.6
gap1-5 5 15 326 304 6.85 0.4
gap2-1 5 20 434 418 3.71 0.6
gap2-2 5 20 436 416 4.61 1.4
gap2-3 5 20 420 409 2.66 2.0
gap2-4 5 20 419 393 6.24 1.1
gap2-5 5 20 428 402 6.14 1.4
gap3-1 5 25 580 552 4.84 0.7
gap3-2 5 25 564 541 4.12 1.1
gap3-3 5 25 573 554 3.33 0.6
gap3-4 5 25 570 553 3.01 1.3
gap3-5 5 25 564 547 3.04 1.7
gap4-1 5 30 656 634 3.36 4.0
gap4-2 5 30 644 629 2.36 4.3
gap4-3 5 30 673 638 5.28 4.2
gap4-4 5 30 647 626 3.28 6.3
gap4-5 5 30 664 638 3.94 8.3
gap5-1 8 24 563 545 3.25 5.0
gap5-2 8 24 558 539 3.46 9.1
gap5-3 8 24 564 537 4.80 11.4
gap5-4 8 24 568 529 6.89 5.7
gap5-5 8 24 559 524 6.30 5.7
gap6-1 8 32 761 735 3.47 13.2
gap6-2 8 32 759 727 4.23 11.1
gap6-3 8 32 758 724 4.53 8.9
gap6-4 8 32 752 720 4.32 9.0
gap6-5 8 32 747 712 4.76 10.8
gap7-1 8 40 942 895 5.06 11.9
gap7-2 8 40 949 926 2.45 15.4
gap7-3 8 40 968 922 4.80 15.1
gap7-4 8 40 945 902 4.60 13.0
gap7-5 8 40 951 907 4.67 12.9
gap8-1 8 48 1133 1095 3.37 23.2
gap8-2 8 48 1134 1093 3.64 21.7
gap8-3 8 48 1141 1105 3.16 18.1
gap8-4 8 48 1117 1078 3.51 19.9
gap8-5 8 48 1127 1097 2.69 22.1

 168

Problem m n Optimal Best σ Avg. time
gap9-1 10 30 709 688 2.99 37.2
gap9-2 10 30 717 696 2.96 42.4
gap9-3 10 30 712 684 3.96 37.2
gap9-4 10 30 123 114 7.39 39.1
gap9-5 10 30 706 677 4.15 48.9
gap10-1 10 40 958 911 4.98 54.2
gap10-2 10 40 963 921 3.58 49.0
gap10-3 10 40 960 935 2.62 67.9
gap10-4 10 40 947 913 3.60 58.1
gap10-5 10 40 947 911 2.47 57.8
gap11-1 10 50 1139 1093 4.10 75.7
gap11-2 10 50 1178 1139 3.34 66.1
gap11-3 10 50 1195 1144 4.29 70.1
gap11-4 10 50 1171 1138 2.83 86.6
gap11-5 10 50 1171 1123 4.14 63.5
gap12-1 10 60 1451 1403 3.32 92.1
gap12-2 10 60 1449 1316 9.32 94.0
gap12-3 10 60 1433 1386 3.29 78.3
gap12-4 10 60 1447 1405 2.57 81.1
gap12-5 10 60 1446 1390 3.90 85.6

Table 6.1: Results – CLS alone

Table 6.1 shows that CLS can find feasible solutions for all problems. This indicates that

CLS is a general solving method as it can readily apply to GAP without any modifications.

However, solutions obtained by CLS can be far from the optimal solution and special

features to enhance the performance of CLS are necessary.

6.3.2 Variable selection scheme

In CLS, once a violated constraint has been chosen, the algorithm randomly selects two

variables in that constraint in order to perform trial flips. For GAP there is only one set of

 169

binary decision variables, i.e. a variable ijx represents whether job j is processed by agent

i or not. By randomly choosing variables from the violated constraint, diversified

exploration of the search space may not be achieved because the number of assigned agents

to jobs (ijx = 1) is significantly less than the number of unassigned agents to jobs (ijx = 0).

Therefore for GAP, two alternative variable selection schemes are introduced as follows:

- Scheme 1: Randomly select two assigned jobs (ijx = 1) in the violated constraint.

- Scheme 2: Randomly select any two jobs in the violated constraint (ijx = 0) or

(ijx = 1).

The algorithm selects one of the schemes at random so that a wide exploration of the search

space may be achieved. To test the effect of the two-alternative variable selection schemes,

we carried out computational experiments with the same data set and parameters as used in

the initial experiment (Section 6.3.1). The results are shown in Table 6.2.

 170

Problem m n Optimal Best σ Avg. time
gap1-1 5 15 336 324 3.59 0.3
gap1-2 5 15 327 321 1.85 0.3
gap1-3 5 15 339 333 1.78 0.4
gap1-4 5 15 341 333 2.38 0.5
gap1-5 5 15 326 318 2.49 0.3
gap2-1 5 20 434 428 1.40 0.6
gap2-2 5 20 436 423 3.00 0.9
gap2-3 5 20 420 414 1.44 1.4
gap2-4 5 20 419 413 1.45 0.8
gap2-5 5 20 428 421 1.64 1.0
gap3-1 5 25 580 563 2.96 0.5
gap3-2 5 25 564 552 2.13 0.7
gap3-3 5 25 573 566 1.24 0.5
gap3-4 5 25 570 562 1.41 0.9
gap3-5 5 25 564 551 2.34 1.2
gap4-1 5 30 656 649 1.08 3.0
gap4-2 5 30 644 636 1.25 3.7
gap4-3 5 30 673 654 2.85 3.1
gap4-4 5 30 647 640 1.09 4.8
gap4-5 5 30 664 649 2.28 5.9
gap5-1 8 24 563 552 1.96 3.7
gap5-2 8 24 558 550 1.44 6.5
gap5-3 8 24 564 548 2.88 7.1
gap5-4 8 24 568 558 1.78 4.5
gap5-5 8 24 559 547 2.18 4.0
gap6-1 8 32 761 743 2.39 9.4
gap6-2 8 32 759 746 1.73 7.6
gap6-3 8 32 758 745 1.73 6.7
gap6-4 8 32 752 733 2.53 6.4
gap6-5 8 32 747 729 2.42 7.1
gap7-1 8 40 942 928 1.51 12.1
gap7-2 8 40 949 932 1.38 11.8
gap7-3 8 40 968 950 1.87 10.5
gap7-4 8 40 945 935 1.06 12.3
gap7-5 8 40 951 940 1.16 10.5
gap8-1 8 48 1133 1107 2.32 16.0
gap8-2 8 48 1134 1106 2.48 16.9
gap8-3 8 48 1141 1113 2.49 14.6
gap8-4 8 48 1117 1087 2.71 16.6
gap8-5 8 48 1127 1105 1.96 15.8

 171

Problem m n Optimal Best σ Avg. time
gap9-1 10 30 709 691 2.55 32.8
gap9-2 10 30 717 704 1.83 32.3
gap9-3 10 30 712 696 2.27 24.2
gap9-4 10 30 123 121 1.64 28.4
gap9-5 10 30 706 689 2.01 30.4
gap10-1 10 40 958 933 2.63 45.0
gap10-2 10 40 963 930 1.90 32.6
gap10-3 10 40 960 942 1.46 49.0
gap10-4 10 40 947 929 1.93 45.3
gap10-5 10 40 947 925 1.48 40.0
gap11-1 10 50 1139 1109 2.67 56.3
gap11-2 10 50 1178 1162 1.37 44.3
gap11-3 10 50 1195 1162 2.80 66.3
gap11-4 10 50 1171 1158 1.12 62.5
gap11-5 10 50 1171 1135 3.08 45.6
gap12-1 10 60 1451 1407 3.08 69.8
gap12-2 10 60 1449 1429 1.39 76.3
gap12-3 10 60 1433 1399 2.39 62.0
gap12-4 10 60 1447 1417 2.09 71.7
gap12-5 10 60 1446 1405 2.86 69.0

Table 6.2: Results – CLS with two-alternative variable selection scheme

Table 6.2 shows that CLS with the two-alternative variable selection schemes performs

better than without it. We obtain better results in terms of average percentage deviation from

optimal solution for all test problems and, in almost all cases, in terms of average

computational time. In addition, we observe that the average computational time tends to

decrease quite significantly for the larger-sized problems and when the number of jobs

increases.

 172

6.3.3 Refined improvement

From previous experiments, although CLS can find feasible solutions for all problems, it

lacks a feature that enables a move from a current feasible solution to a better feasible

solution. This decreases the performance of CLS for GAP and most likely for other

optimisation problems in which there are many feasible solutions. Therefore, a refined-

improvement procedure is introduced to improve a feasible solution found by CLS. The

main concept is to allow only feasible improving moves and to search more intensively on a

feasible solution. When CLS finds a feasible solution, the refined-improvement procedure is

called. The procedure of the refined improvement is outlined as follows:

Step 1 Record the total profit for a feasible solution A .

For each job:

Step 2 Order the agents for this job in decreasing order of profit value ijp for this

job.

For each agent not processing this job:

Step 3 Swap this job with a job currently processed by this agent. This is illustrated

in Figure 6.1 below:

 173

Agent/Job 1 2 3 4 5 n

1

2

3

4

m

Figure 6.1: Interchange assignment

Step 3 If the new assignment is feasible and increases the total profit, replace A ,

total profit. Repeat step 2 for next job, if any exist. If the new assignment is

not feasible or feasible but does not increase total profit, repeat step 3 with

the next job, if any exist processed by this agent.

At first glance, the refined improvement procedure seems to be computationally costly.

However, the refined improvement does not perform a complete assignment to all decision

variables, i.e. only the few variables associated with the interchange assignment are

considered for checking feasibility and solution quality. This reduces the computational

effort spent by the refined improvement process significantly.

To test the performance of CLS with the refined improvement procedure, we performed the

experiments with the same data set and parameters as used in the previous experiments. The

results are shown in Table 6.3.

 174

Problem m n Optimal Best σ Avg. time
gap1-1 5 15 336 336 0.12 0.3
gap1-2 5 15 327 326 0.18 0.2
gap1-3 5 15 339 337 0.12 0.5
gap1-4 5 15 341 336 0.10 0.5
gap1-5 5 15 326 326 0.12 0.3
gap2-1 5 20 434 431 0.14 0.6
gap2-2 5 20 436 433 0.23 0.9
gap2-3 5 20 420 417 0.24 1.5
gap2-4 5 20 419 417 0.19 0.8
gap2-5 5 20 428 425 0.14 1.1
gap3-1 5 25 580 573 0.30 0.5
gap3-2 5 25 564 561 0.13 0.9
gap3-3 5 25 573 565 0.35 0.5
gap3-4 5 25 570 565 0.22 1.1
gap3-5 5 25 564 556 0.36 1.5
gap4-1 5 30 656 654 0.16 3.4
gap4-2 5 30 644 642 0.36 4.3
gap4-3 5 30 673 666 0.26 3.5
gap4-4 5 30 647 645 0.28 6.5
gap4-5 5 30 664 662 0.34 6.4
gap5-1 8 24 563 555 0.36 3.3
gap5-2 8 24 558 552 0.27 7.2
gap5-3 8 24 564 556 0.36 9
gap5-4 8 24 568 565 0.13 4.6
gap5-5 8 24 559 556 0.14 4.4
gap6-1 8 32 761 754 0.23 12.9
gap6-2 8 32 759 748 0.37 7.4
gap6-3 8 32 758 751 0.23 7.3
gap6-4 8 32 752 746 0.20 7.1
gap6-5 8 32 747 739 0.27 9.5
gap7-1 8 40 942 937 0.27 12.6
gap7-2 8 40 949 945 0.34 12.4
gap7-3 8 40 968 960 0.21 12.6
gap7-4 8 40 945 933 0.32 10.3
gap7-5 8 40 951 942 0.24 9.7
gap8-1 8 48 1133 1128 0.21 25.7
gap8-2 8 48 1134 1125 0.35 19.8
gap8-3 8 48 1141 1135 0.18 20.6
gap8-4 8 48 1117 1110 0.39 22.1
gap8-5 8 48 1127 1118 0.30 18.4

 175

Problem m n Optimal Best σ Avg. time
gap9-1 10 30 709 702 0.47 45.6
gap9-2 10 30 717 715 0.43 39.6
gap9-3 10 30 712 705 0.88 33.2
gap9-4 10 30 123 122 0.37 30.4
gap9-5 10 30 706 703 0.73 37.7
gap10-1 10 40 958 950 0.38 57.6
gap10-2 10 40 963 955 0.69 40
gap10-3 10 40 960 951 0.35 66.5
gap10-4 10 40 947 940 0.47 56.6
gap10-5 10 40 947 939 0.50 62.8
gap11-1 10 50 1139 1128 0.47 80.1
gap11-2 10 50 1178 1170 0.57 74.6
gap11-3 10 50 1195 1183 0.68 68.6
gap11-4 10 50 1171 1168 0.58 82.6
gap11-5 10 50 1171 1165 0.45 56.7
gap12-1 10 60 1451 1441 0.68 91.6
gap12-2 10 60 1449 1435 0.51 110.8
gap12-3 10 60 1433 1426 0.47 92.7
gap12-4 10 60 1447 1432 0.40 92.3
gap12-5 10 60 1446 1438 0.51 84.3

Table 6.3: Results – CLS with refined improvement

Table 6.3 shows that the quality of solutions is improved by the refined improvement

procedure at the expense of some increase in computation time. For small-sized problems, in

many cases CLS finds optimal solutions or relatively close to optimal. The average

percentage deviation from the best solution is decreased substantially compared to those in

Tables 6.1 and 6.2. This may be because the solutions are improved by the deterministic

process of the refined improvement procedure and the search intensively investigates

feasible regions recently found to be good. In contrast, in CLS without the refined

improvement procedure, finding good feasible solutions depends on the randomising

strategy.

 176

6.3.4 Candidate agent list

The candidate agent list is another feature for CLS to solve GAP. From the problem data

sets, we observe that resource consumed by a job for some agents may have a very high

value. In this case, when that demand is processed, it is very likely to exceed the capacity of

an agent. In contrast, a job processed by some agents may have a very low profit compared

with the other agents for that job. In this case assigning that agent to the job is very unlikely

to lead to the maximum total profit. We aim to exploit this information to get rid of the

unpromising agents at the beginning of the search. This helps increase the efficiency of CLS

in two ways: 1) CLS starts with a good initial solution and 2) it limits the size of the search

space within promising regions.

Since the trade-off between getting high total profit and using low demand is a major

problem, to obtain a good candidate agent list we first calculate a relative demand index and

a relative profit index for all assignments of job j to agent i . Then these two indices are

combined into a demand-profit index. To make use of this strategy, a candidate agent list for

all jobs is sorted in descending order of the demand-profit index. This index is used to

restrict the number of potential agents for each job and guide the search in choosing good

moves.

A relative demand index represents an estimated chance of assigning the demand of job j to

agent i in an optimal solution. The index is weighted both by the agent capacity and by the

other agents’ demand in each job. A large demand consumed in each job tends to violate the

agent capacity; therefore it is unlikely to be selected by the algorithm. To obtain a relative

 177

demand index, the mean and standard deviation of the demand are used. The relative demand

index ijU is calculated by the following steps:

To simplify our discussion, let iju be the proportion of agent capacity i to demand j , i.e.

ijiij abu /= ; ujµ and ujσ be the mean and standard deviation of iju over all agents; ujL be

a variation limit for iju , i.e. ujujujL σµ −= .

Step 1 If iju is greater than ujL , ujijij Luu −=∆ , otherwise 0=∆ iju .

Step 2 Calculate the relative demand index ∑∆∆=
i

ijijij uuU / for all i , j

The variation limit ujL handles the demand variation of agents in each job. iju greater than

this variation limit means that the demand placed on agent i by job j is small, and the

assignment tends to be chosen by the algorithm. The smaller iju is the less likely it is that

agent i would process job j . The difference between iju and the variation limit (i.e.

ujijij Luu −=∆) is used to measure how much iju varies from the variation limit. Suppose

that a demand required to process job j by agent i , ija is given in Table 6.4.

 178

ija 1 2 3 4 5 6 7
ib

1 14 23 8 16 8 25 25 36

2 23 22 11 11 12 10 7 34

3 6 22 24 10 24 9 11 38

4 8 14 9 5 6 19 6 27

5 13 13 10 20 25 16 10 33

Table 6.4: An example of the demand matrix

Table 6.5 gives the corresponding values of the relative demand index ijU obtained by the

above procedure.

ijU 1 2 3 4 5 6 7

1 0.13 0.06 0.43 0.06 0.40 0.03 0.00

2 0.01 0.05 0.18 0.18 0.18 0.34 0.36

3 0.53 0.13 0.00 0.27 0.02 0.47 0.17

4 0.21 0.23 0.17 0.49 0.40 0.03 0.31

5 0.12 0.53 0.22 0.00 0.00 0.13 0.15

Table 6.5: The relative demand index

A relative profit index represents an estimated possibility of the profit of job j processed by

agent i contributing to the maximum total profit. The index is weighted both by the

maximum profit for agent i and by the other agents’ associated profit for that job. The mean

 179

and standard deviation of profit are used to handle profit variation. The relative profit index

ijV can be obtained similar to the relative demand index:

Let ijv be the proportion of profit i to the maximum profit for agent i ,

{ }njppv ijijij ,...,3,2,1:max/ == ; vjµ and vjσ be the mean and standard deviation of ijv

over all agents; vjL be a variation limit for ijv , i.e. vjvjvjL σµ −= .

Step 1 If ijv is greater than vjL , vjijij Lvv −=∆ , otherwise 0=∆ ijv .

Step 2 Calculate the relative profit index ∑∆∆=
i

ijijij vvV / for all i , j .

Suppose that the profit of job j processed by agent i , ijp is given in Table 6.6.

ijp 1 2 3 4 5 6 7
(max)ip

1 22 18 24 15 20 18 16 24

2 21 16 17 16 19 25 17 25

3 16 25 24 16 17 19 20 25

4 22 22 20 16 19 17 25 25

5 15 15 21 25 16 16 22 25

Table 6.6: An example of the profit matrix

Table 6.7 shows the relative profit index is obtained from the above procedure.

 180

ijV 1 2 3 4 5 6 7

1 0.38 0.17 0.40 0.10 0.44 0.18 0.00

2 0.28 0.04 0.00 0.12 0.25 0.53 0.02

3 0.01 0.47 0.37 0.12 0.05 0.19 0.19

4 0.33 0.32 0.10 0.12 0.25 0.08 0.48

5 0.00 0.00 0.16 0.56 0.00 0.02 0.31

Table 6.7: The relative profit index

Now, the demand-profit index ijW can be obtained, i.e. () 2/ijijij VUW += . A high value of

ijW indicates a high estimated chance of assigning job j to agent i with maximum feasible

total profit. The demand-profit index is shown in Table 6.8.

ijW 1 2 3 4 5 6 7

1 0.25 0.11 0.41 0.08 0.42 0.10 0.00

2 0.14 0.04 0.09 0.15 0.22 0.44 0.19

3 0.27 0.30 0.17 0.19 0.04 0.33 0.18

4 0.27 0.28 0.14 0.30 0.33 0.05 0.40

5 0.06 0.27 0.19 0.28 0.00 0.07 0.23

Table 6.8: The demand-profit index

Then, the candidate agent list for each job is sorted in descending order of the demand-profit

index ijW , which is shown in Table 6.9.

 181

Candidate list 1 2 3 4 5 6 7

1 3 3 1 4 1 2 4

2 4 4 5 5 4 3 5

3 1 5 3 3 2 1 2

4 2 1 4 2 3 5 3

5 5 2 2 1 5 4 1

Table 6.9: The candidate agent list for each job

The candidate list parameter C is introduced to let us limit the number of candidate agents

empirically at the beginning of the search and the algorithm starts with an initial random

assignment within the number of candidate agents specified by the parameter C . Then the

search algorithm only evaluates a job assigned to the limited number of promising agents.

This helps reduce the computational effort significantly and targets the search for an optimal

solution. For example, in Table 6.9, setting C = 3, agent 3, 4, and 1 are only considered for

job 1.

For GAP, it is the first time that the variations of demand and profit are considered, and the

trade-off between them is handled by the relative demand-profit index. The design of this

technique is similar to that of timeslot violation discussed in Section 4.3.2. The use of the

candidate agent list is fruitful because practitioners with little computer background can

easily modify the relative demand-cost index in order to improve the performance of the

solving algorithm. To test the performance of CLS with the candidate agent list, we

performed the experiments with the same data set and parameters as used in the previous

experiments. The candidate list parameter C is set manually. For all test problems, we

 182

initially performed a few runs in order to determine good values of the parameter. Firstly, the

parameter was roughly set to 50-60% of the number of agents for each test problem. We then

slightly increased the value of the parameter whether it resulted in any improvement on the

quality of solutions. The results are shown in Table 6.10.

 183

Problem m n Optimal Best σ Avg. time
gap1-1 5 15 336 336 0.10 0.1
gap1-2 5 15 327 327 0.16 0.2
gap1-3 5 15 339 336 0.13 0.3
gap1-4 5 15 341 340 0.11 0.2
gap1-5 5 15 326 326 0.10 0.2
gap2-1 5 20 434 433 0.15 0.3
gap2-2 5 20 436 431 0.26 0.8
gap2-3 5 20 420 419 0.25 1.1
gap2-4 5 20 419 419 0.17 0.5
gap2-5 5 20 428 428 0.12 0.7
gap3-1 5 25 580 578 0.34 0.4
gap3-2 5 25 564 563 0.15 0.7
gap3-3 5 25 573 570 0.39 0.4
gap3-4 5 25 570 568 0.24 0.5
gap3-5 5 25 564 564 0.37 1
gap4-1 5 30 656 651 0.17 2.7
gap4-2 5 30 644 640 0.39 1.8
gap4-3 5 30 673 673 0.29 2.7
gap4-4 5 30 647 642 0.31 2.8
gap4-5 5 30 664 658 0.38 3.5
gap5-1 8 24 563 563 0.36 2.8
gap5-2 8 24 558 557 0.28 4.2
gap5-3 8 24 564 561 0.40 4.3
gap5-4 8 24 568 568 0.13 2.7
gap5-5 8 24 559 558 0.15 3.4
gap6-1 8 32 761 757 0.23 7.3
gap6-2 8 32 759 758 0.38 5.5
gap6-3 8 32 758 757 0.23 5.4
gap6-4 8 32 752 751 0.21 6.1
gap6-5 8 32 747 746 0.26 6
gap7-1 8 40 942 935 0.29 6.7
gap7-2 8 40 949 945 0.33 6.2
gap7-3 8 40 968 967 0.20 7.4
gap7-4 8 40 945 944 0.33 7.5
gap7-5 8 40 951 951 0.21 7.1
gap8-1 8 48 1133 1126 0.25 15.4
gap8-2 8 48 1134 1122 0.42 13.3
gap8-3 8 48 1141 1135 0.21 13.9
gap8-4 8 48 1117 1104 0.47 13.4
gap8-5 8 48 1127 1117 0.36 13.8

 184

Problem m n Optimal Best σ Avg. time
gap9-1 10 30 709 699 0.57 29.1
gap9-2 10 30 717 712 0.52 28.5
gap9-3 10 30 712 706 1.06 23.4
gap9-4 10 30 123 122 0.44 18.6
gap9-5 10 30 706 690 0.88 30.7
gap10-1 10 40 958 942 0.46 28.3
gap10-2 10 40 963 949 0.83 26.2
gap10-3 10 40 960 950 0.42 45.3
gap10-4 10 40 947 932 0.56 37.1
gap10-5 10 40 947 925 0.60 31
gap11-1 10 50 1139 1113 0.56 39.1
gap11-2 10 50 1178 1172 0.68 36.5
gap11-3 10 50 1195 1178 0.82 55.8
gap11-4 10 50 1171 1164 0.70 42.2
gap11-5 10 50 1171 1158 0.54 33.4
gap12-1 10 60 1451 1430 0.82 66.4
gap12-2 10 60 1449 1438 0.61 65.7
gap12-3 10 60 1433 1413 0.57 61.6
gap12-4 10 60 1447 1425 0.48 64.4
gap12-5 10 60 1446 1424 0.61 50.6

Table 6.10: Results – CLS with candidate agent list

From Table 6.10, we observe that CLS with candidate agent list performs very well. For

small-sized problems, in many cases, it finds optimal solutions or very near optimal solutions

within little computational time. However, the candidate agent list strategy becomes less

powerful when the number of agents and jobs increases. This may be because the trade-off

between total profit and infeasibility becomes less clear and the search space cannot further

be limited and intensified using the candidate agent list strategy.

Note that from our experiments, all three extensions (two-variables selection, refined

improvement, and candidate agent list) improve on the results of CLS alone and do not

 185

significantly increase run time. This indicates the usefulness of using CLS with all these

extensions.

6.4 Search intensification technique

We adapt the predictive choice model in discussed chapter 5 for GAP. The model learns

from the search history and extracts problem specific knowledge automatically. After a

specified number of iterations, the search history is analysed. The model predicts good

assignments of jobs to agents. These assignments will be fixed for a number of iterations

determined in a probabilistic way, leading to intensified exploration of the search space.

6.4.1 Violation history

In CLS, after choosing a violated constraint, a two-variable selection strategy is used in each

flip trial. The first variable is randomly chosen from those appearing in a violated constraint

(i.e. an overloaded agent) as the variable of interest, the second variable is randomly selected

from that violated constraint, and provides a basis for comparison with the variable of

interest. The procedure of the collection of violation history is described in Section 5.3.1.1.

6.4.2 Variable fixing

After a specified number of iterations, the trial history is analysed. Some variables may have

high probability of a particular value given by the predictive choice model. These variables

will be fixed at their predicted value for a number of iterations determined by the magnitude

of the probability. The search space would be intensified and the algorithm targets an

 186

optimal solution. The decision variable ijx may hold a current value 0 or 1 and its predicted

value can either be 0 or 1 during the search, which we categorise into two groups: local fix

and global fix respectively.

Local fix. The local fix is a process of preventing the algorithm assigning a job to an agent

that may not lead to an optimal solution, i.e. fixing ijx = 0 for the number of iterations.

Although locally fixing ijx at 0 is not very effective as in a complete assignment there are

many unassigned agents to jobs (i.e. ijx that hold a current value 0), the number of potential

agents to process a job is reduced quickly.

Global fix. The global fix provides a strong propagation of consistency within each job for

the potential number of agents. When the global fix is called (i.e. a predicted value of ijx =

1), exactly one agent processes the job, thereby preventing the algorithm selecting the

remaining potential agents for that job.

6.5 Computational experiments

Apart from the first set of test problems 1S , we test a second set of problems 2S , which

contains 24 large-sized minimisation problems. These problems were used to test the GA

proposed by Chu and Beasley (1997), the variable depth search proposed by Yagiura et al

(1999a), and tabu search with ejection chain proposed by Yagiura et al (1999b). The

problems in 2S are divided into four classes according to the way they were generated.

 187

1. Type A. ija are integers generated from a uniform distribution ()25,5U , ijc are

integers generated from a uniform distribution ()50,10U , and

() Rmnbi 4.015/6.0 +××= , where ∑
=∈

=
iIJj
iji

j

aR
,

max , and

{ }IkcciI kjijj ∈∀≤= ,|min

2. Type B. ija and ijc generated as in Type A and ib is set to 70% of the value given

for Type A.

3. Type C. ija and ijc generated as in Type A and ∑
∈

=
Jj

iji mab /8.0 .

4. Type D. ija are integers generated from a uniform distribution ()100,1U ,

eac ijij +−= 111 , where e are integers generated from a uniform distribution

()10,10−U and ∑
∈

=
Jj

iji mab /8.0 .

Types B and C problems are more difficult than Type A because the resource capacity

constraints are tighter. Type D problems are most difficult to solve because ija and ijc are

inversely correlated.

Computational experiments, using CLS incorporating the predictive choice model with two-

alternative selection scheme, refined improvement procedure and candidate agent list are

performed. For each of the test problems 10 runs are performed using different random

number seeds at the beginning of each run. For problems in 1S , we use the same data set

and parameters as used in the previous experiments. The stopping criterion is set to 3000

iterations for problems 2S . For the predictive choice model, we set the number of flip trials

N = 10, decision parameter D = 75, the number of fixing iterations F ranges from 50 to

 188

100, the number of fixing unassigned agents in each job (ijx = 0) ranges from 1 to 3, the

number of fixing assigned agent (ijx = 1) ranges from 5 to 30. Note that the concepts of

how to set good values for these parameters and their sensitivity tests are given in Chapter 5.

We do not claim here that these are the best parameter values, but some care was taken. The

results for test problems 1S are shown in Table 6.11 – 6.12.

Problem m n Optimal Best σ Avg. Time (s)
gap1-1 5 15 336 336 0.00 0.1
gap1-2 5 15 327 327 0.00 0.1
gap1-3 5 15 339 339 0.00 0.2
gap1-4 5 15 341 341 0.00 0.2
gap1-5 5 15 326 326 0.00 0.1
gap2-1 5 20 434 434 0.00 0.2
gap2-2 5 20 436 436 0.00 0.4
gap2-3 5 20 420 420 0.00 0.6
gap2-4 5 20 419 419 0.00 0.3
gap2-5 5 20 428 428 0.00 0.4
gap3-1 5 25 580 580 0.00 0.2
gap3-2 5 25 564 564 0.00 0.3
gap3-3 5 25 573 573 0.00 0.2
gap3-4 5 25 570 570 0.00 0.4
gap3-5 5 25 564 564 0.00 0.5
gap4-1 5 30 656 656 0.02 1.2
gap4-2 5 30 644 644 0.07 1.4
gap4-3 5 30 673 673 0.05 1.2
gap4-4 5 30 647 647 0.08 2.0
gap4-5 5 30 664 664 0.09 2.2
gap5-1 8 24 563 563 0.09 1.5
gap5-2 8 24 558 558 0.14 2.7
gap5-3 8 24 564 564 0.10 3.2
gap5-4 8 24 568 568 0.05 2.0
gap5-5 8 24 559 559 0.18 1.8
gap6-1 8 32 761 761 0.20 4.5
gap6-2 8 32 759 759 0.12 3.2
gap6-3 8 32 758 758 0.19 3.0
gap6-4 8 32 752 752 0.08 3.0
gap6-5 8 32 747 747 0.14 3.4

 189

Problem m n Optimal Best σ Avg. Time (s)
gap7-1 8 40 942 941 0.18 4.1
gap7-2 8 40 949 949 0.22 4.5
gap7-3 8 40 968 968 0.20 4.3
gap7-4 8 40 945 945 0.17 4.0
gap7-5 8 40 951 951 0.25 4.0
gap8-1 8 48 1133 1133 0.12 7.4
gap8-2 8 48 1134 1133 0.20 6.2
gap8-3 8 48 1141 1141 0.15 6.0
gap8-4 8 48 1117 1117 0.18 7.0
gap8-5 8 48 1127 1127 0.22 6.0
gap9-1 10 30 709 709 0.18 13.1
gap9-2 10 30 717 717 0.36 13.0
gap9-3 10 30 712 712 0.80 10.5
gap9-4 10 30 123 123 0.25 11.0
gap9-5 10 30 706 706 0.60 13.5
gap10-1 10 40 958 958 0.20 18.0
gap10-2 10 40 963 961 0.52 15.0
gap10-3 10 40 960 960 0.32 18.5
gap10-4 10 40 947 946 0.30 16.0
gap10-5 10 40 947 947 0.20 18.0
gap11-1 10 50 1139 1139 0.20 23.2
gap11-2 10 50 1178 1178 0.35 21.0
gap11-3 10 50 1195 1193 0.50 23.0
gap11-4 10 50 1171 1171 0.41 24.0
gap11-5 10 50 1171 1169 0.36 19.0
gap12-1 10 60 1451 1449 0.52 30.0
gap12-2 10 60 1449 1449 0.44 32.2
gap12-3 10 60 1433 1431 0.35 27.1
gap12-4 10 60 1447 1447 0.46 28.5
gap12-5 10 60 1446 1445 0.31 28.0

Table 6.11: Results for maximisation problems 1S

From Table 6.11, we observe that CLS performs very well and almost finds the optimal

solution for all problems. However, for those problems in which CLS fails to reach the

optimal solution, all solutions are very close to optimality. The results also demonstrate that

CLS is capable of producing good quality solutions in little time.

 190

Prob. Set SA/TS TS GA TSH ASH CLS
gap1 0.00 0.00 0.00 0.00 - 0.00
gap2 0.00 0.10 0.00 0.00 - 0.00
gap3 0.00 0.00 0.00 0.00 - 0.00
gap4 0.00 0.03 0.00 0.00 - 0.06
gap5 0.00 0.00 0.00 0.00 - 0.11
gap6 0.05 0.03 0.01 0.01 - 0.14
gap7 0.02 0.00 0.00 0.00 0.00 0.20
gap8 0.10 0.09 0.05 0.01 0.04 0.18
gap9 0.08 0.06 0.00 0.00 0.00 0.29
gap10 0.14 0.08 0.04 0.03 0.01 0.31
gap11 0.05 0.02 0.00 0.00 0.00 0.36
gap12 0.11 0.04 0.01 0.00 0.00 0.41

SA/TS: Osman (1995), simulated annealing + tabu search

TS: Osman (1995), tabu search

GA: Chu and Beasley (1996), GA with heuristic operator

TSH: Diaz and Fernandez (2001), tabu search heuristic

ASH: Lourenco and Serra (2002), adaptive search heuristics, ant + descendent local search +

tabu with restricted ejection chain

Table 6.12: Average percentage deviation from optimal solution for 1S

Table 6.12 shows the results compared with some existing methods in terms of the average

percentage deviation σ from optimal value for each problem. It can be seen that the

deviation from optimal values obtained by CLS are as good as or close to the values obtained

by the compared methods. In cases when CLS is outperformed by other methods, the gap is

small, i.e. σ is less than 1%.

In addition, we note that for CLS the computational times are very good, even though it is

implemented using a relatively less powerful programming language (Visual Basic: VB).

The principal reason for using VB is that, although it is less powerful than several other

 191

programming languages, e.g. Fortran, C++, VB is still a full language and offers much

shorter development times. This was expected to be significant as many algorithmic variants

were to be investigated.

Next, we perform experiments on large-sized minimisation problems 2S . We compare our

results to the best known solution (φ) for these problems. For some problems in this set, the

optimal solution values were obtained by a branch-and-bound algorithm proposed by Nauss

(2003); these are marked with an asterisk.

Table 6.13 shows the best values (Best), and the average percentage deviation (σ) from the

best values obtained from different solution methods. The results show that our method

performs well particularly in problem types A and B, in which the solution values are close

to the best known solution values. For problem types C and D, CLS is outperformed by the

existing methods in general. However, the gap of the solution values is not too high and

computational time is very good.

 192

Prob m n φ GA TSEC TSH HGA CLS
 Best σ Best σ Best σ Best SD Best σ Time

A 5 100 1698* 1698 0.00 - - - - - 0.00 1700 0.09 38.2
 5 200 3235* 3235 0.00 - - - - - 0.00 3237 0.04 63.0
 10 100 1360* 1360 0.00 - - - - - 0.00 1361 0.22 50.3
 10 200 2623* 2623 0.00 - - - - - 0.00 2625 0.10 105.0
 20 100 1158* 1158 0.00 - - - - - 0.00 1160 0.12 94.1
 20 200 2339* 2339 0.00 - - - - - 0.00 2342 0.15 153.0

B 5 100 1843 1843 0.35 - - 1843 0.00 - 0.08 1845 0.32 40.7
 5 200 3552 3553 0.30 - - 3552 0.01 - 0.05 3574 0.20 89.0
 10 100 1407 1407 0.07 - - 1407 0.00 - 0.00 1410 0.11 37.0
 10 200 2828 2831 0.31 - - 2828 0.05 - 0.14 2839 0.32 160.8
 20 100 1166 1166 0.07 - - 1166 0.10 - 0.21 1170 0.41 125.0
 20 200 2340 2340 0.06 - - 2340 0.11 - 0.08 2345 0.30 246.6

C 5 100 1931* 1931 0.38 1931 0.00 1931 0.00 - 0.18 1936 0.22 53.0
 5 200 3456* 3458 0.23 3456 0.00 3457 0.04 - 0.03 3460 0.35 108.7
 10 100 1402* 1403 0.29 1402 0.00 1402 0.04 - 0.09 1414 0.28 94.0
 10 200 2806* 2814 0.48 2806 0.01 2807 0.11 - 0.16 2815 0.51 171.7
 20 100 1243* 1244 0.52 1243 0.00 1243 0.28 - 0.13 1248 0.40 215.0
 20 200 2391 2397 0.62 2391 0.03 2391 0.12 - 0.18 2405 0.31 280.5

D 5 100 6353* 6373 0.66 6354 0.04 6357 0.16 - 0.06 6465 0.71 75.0
 5 200 12743 12796 0.65 12744 0.02 12747 0.09 - 0.16 12826 0.60 271.5
 10 100 6349 6379 1.24 6356 0.17 6355 0.51 - 0.22 6380 0.82 210.2
 10 200 12436 12601 1.54 12445 0.08 12457 0.28 - 0.18 12541 1.15 630.0
 20 100 6196 6269 1.65 6215 0.39 6220 0.91 - 0.31 6280 0.73 615.4
 20 200 12264 12452 1.98 12277 0.17 12351 0.89 - 0.33 12380 1.54 920.5

GA: Chu and Beasley (1996), GA with heuristic operator

EC: Yagiura et al (2004), tabu search with ejection chain

TSH: Diaz and Fernandez (2001), tabu search heuristic

HGA: Feltl and Raidl (2004), improved hybrid GA, SD is the standard deviation of the

optimal value of the LP-relaxation after the CPLEX solver was terminated due to the running

time or memory limits.

Table 6.13: Results for minimisation problems 2S

 193

The results from the two data sets indicate that CLS is a promising approach for GAP. We

are able to obtain solutions of good quality that are as good as or close to the best known

solutions in little computational time. Although the existing solution approaches outperform

CLS in terms of the optimal solution values, we believe that the simplicity and

computational advantage of our approach is a pay-off for the solving algorithm.

Since CLS takes little computational time even with a programming language, which is

relatively slow, we are keen to run it for longer and expect to see better results. We set the

stopping criterion parameter to 10000 for problems 1S and 30000 for problems 2S . For each

of the test problems 10 runs are performed using different random number seeds at the

beginning of each run and the remaining parameters in the algorithm are fixed. The results

are shown in Table 6.14 - 6.15.

 194

Problem m n Optimal Best σ Avg. Time (s)
gap1-1 5 15 336 336 0.00 0.3
gap1-2 5 15 327 327 0.00 0.2
gap1-3 5 15 339 339 0.00 0.4
gap1-4 5 15 341 341 0.00 0.5
gap1-5 5 15 326 326 0.00 0.2
gap2-1 5 20 434 434 0.00 0.4
gap2-2 5 20 436 436 0.00 0.9
gap2-3 5 20 420 420 0.00 0.3
gap2-4 5 20 419 419 0.00 0.8
gap2-5 5 20 428 428 0.00 1.0
gap3-1 5 25 580 580 0.00 0.5
gap3-2 5 25 564 564 0.00 0.8
gap3-3 5 25 573 573 0.00 0.5
gap3-4 5 25 570 570 0.00 1.6
gap3-5 5 25 564 564 0.00 1.4
gap4-1 5 30 656 656 0.00 3.2
gap4-2 5 30 644 644 0.00 3.1
gap4-3 5 30 673 673 0.00 3.3
gap4-4 5 30 647 647 0.00 5.4
gap4-5 5 30 664 664 0.00 5.9
gap5-1 8 24 563 563 0.00 4.7
gap5-2 8 24 558 558 0.02 8.4
gap5-3 8 24 564 564 0.00 9.9
gap5-4 8 24 568 568 0.00 6.2
gap5-5 8 24 559 559 0.00 5.6
gap6-1 8 32 761 761 0.01 13.4
gap6-2 8 32 759 759 0.02 8.6
gap6-3 8 32 758 758 0.00 9.3
gap6-4 8 32 752 752 0.00 9.3
gap6-5 8 32 747 747 0.03 10.5
gap7-1 8 40 942 942 0.00 12.7
gap7-2 8 40 949 949 0.00 12.0
gap7-3 8 40 968 968 0.00 13.3
gap7-4 8 40 945 945 0.00 12.4
gap7-5 8 40 951 951 0.00 12.4
gap8-1 8 48 1133 1133 0.03 22.9
gap8-2 8 48 1134 1134 0.00 17.2
gap8-3 8 48 1141 1141 0.00 18.6
gap8-4 8 48 1117 1117 0.02 17.1
gap8-5 8 48 1127 1127 0.00 19.1

 195

Problem m n Optimal Best σ Avg. Time (s)
gap9-1 10 30 709 709 0.05 51.1
gap9-2 10 30 717 717 0.00 50.7
gap9-3 10 30 712 712 0.02 41.0
gap9-4 10 30 123 123 0.00 42.9
gap9-5 10 30 706 706 0.00 52.7
gap10-1 10 40 958 958 0.00 64.8
gap10-2 10 40 963 963 0.00 58.5
gap10-3 10 40 960 960 0.00 72.2
gap10-4 10 40 947 946 0.05 62.4
gap10-5 10 40 947 947 0.00 70.2
gap11-1 10 50 1139 1139 0.00 89.2
gap11-2 10 50 1178 1178 0.00 94.5
gap11-3 10 50 1195 1194 0.04 103.5
gap11-4 10 50 1171 1171 0.02 108.0
gap11-5 10 50 1171 1171 0.00 85.5
gap12-1 10 60 1451 1451 0.00 129.0
gap12-2 10 60 1449 1449 0.00 132.5
gap12-3 10 60 1433 1431 0.05 122.0
gap12-4 10 60 1447 1447 0.02 118.3
gap12-5 10 60 1446 1446 0.03 126.0

Table 6.14: Results for 1S - stopping criterion parameter = 10000

Table 6.14 shows that CLS can find optimal solutions for all test problems except two cases,

gap11-3 and gap12-3. The results in terms of best solutions found are only marginally better

than those in Table 6.11 despite a ten-fold increase in the stopping criterion parameter

which naturally carries additional computational cost. However, from Table 6.14, we obtain

much better average percentage deviation from optimal values than in Table 6.11. These are

as good as or very close to the values obtained by the existing methods.

 196

Prob m n φ GA TSEC TSH HGA CLS
 Best σ Best σ Best σ Best SD Best σ

A 5 100 1698* 1698 0.00 - - - - - 0.00 1698 0.02
 5 200 3235* 3235 0.00 - - - - - 0.00 3236 0.04
 10 100 1360* 1360 0.00 - - - - - 0.00 1360 0.00
 10 200 2623* 2623 0.00 - - - - - 0.00 2623 0.00
 20 100 1158* 1158 0.00 - - - - - 0.00 1159 0.03
 20 200 2339* 2339 0.00 - - - - - 0.00 2342 0.08

B 5 100 1843 1843 0.35 - - 1843 0.00 - 0.08 1843 0.12
 5 200 3552 3553 0.30 - - 3552 0.01 - 0.05 3554 0.07
 10 100 1407 1407 0.07 - - 1407 0.00 - 0.00 1410 0.05
 10 200 2828 2831 0.31 - - 2828 0.05 - 0.14 2831 0.08
 20 100 1166 1166 0.07 - - 1166 0.10 - 0.21 1166 0.11
 20 200 2340 2340 0.06 - - 2340 0.11 - 0.08 2342 0.15

C 5 100 1931* 1931 0.38 1931 0.00 1931 0.00 - 0.18 1932 0.05
 5 200 3456* 3458 0.23 3456 0.00 3457 0.04 - 0.03 3458 0.13
 10 100 1402* 1403 0.29 1402 0.00 1402 0.04 - 0.09 1407 0.21
 10 200 2806* 2814 0.48 2806 0.01 2807 0.11 - 0.16 2815 0.32
 20 100 1243* 1244 0.52 1243 0.00 1243 0.28 - 0.13 1245 0.22
 20 200 2391 2397 0.62 2391 0.03 2391 0.12 - 0.18 2395 0.29

D 5 100 6353* 6373 0.66 6354 0.04 6357 0.16 - 0.06 6457 0.24
 5 200 12743 12796 0.65 12744 0.02 12747 0.09 - 0.16 12761 0.38
 10 100 6349 6379 1.24 6356 0.17 6355 0.51 - 0.22 6372 0.61
 10 200 12436 12601 1.54 12445 0.08 12457 0.28 - 0.18 12492 0.89
 20 100 6196 6269 1.65 6215 0.39 6220 0.91 - 0.31 6243 0.52
 20 200 12264 12452 1.98 12277 0.17 12351 0.89 - 0.33 12369 0.91

Table 6.15: Results for 2S - stopping criterion parameter = 30000

Table 6.15 shows that we obtain better results in terms of the best solutions found and the

average percentage deviation from optimal values than in Table 6.13. For problem types A,

B and C, the results are as good as or close to the results obtained by the existing methods.

For problem type D, the best solutions found by CLS (and also GA and TSH) are still

relatively far from the best known solutions φ, but the average percentage deviation has

decreased.

 197

We note that the stopping criterion parameter may not be of critical importance to the

performance of our algorithm. Since this parameter mainly serves the purpose of search

diversification, when the search is sufficiently diversified within a high-enough number of

iterations, solutions may not be improved further by diversification and good intensification

is required to improve the solutions from this point.

6.6 Conclusions

The application of constraint-based local search incorporating with the predictive choice

model (CLS) to GAP is presented in this Chapter. The performance of the algorithm is

evaluated with two different benchmark problem sets, and compared with other existing

solution methods. The results obtained with CLS are very promising. In general we obtain

high quality solutions that are as good as, or close to, the solutions obtained from the existing

methods. CLS employs a random strategy to achieve a diversified exploration of the search

space and incorporates a self-learning feature that learns from the search history and

implicitly extracts problem knowledge. During the run, the search history is analysed and

CLS predicts good assignments of jobs to agents. These assignments will be fixed in a

probabilistic manner, leading to intensified exploration of the search space.

It is the first time that CLS has been applied to the solution of GAP. Although CLS cannot

outperform the existing methods especially in terms of the solution values, the solutions

obtained by CLS are as good as or very close to the solutions from the existing methods. We

believe that the simplicity and computational advantage of our method is a pay-off for the

solving algorithm. The solutions for GAP tailored by CLS may be improved if CLS is coded

in a more powerful programming language e.g. C or Fortran, or using more sophisticated

 198

heuristics to explore complex local moves, i.e. maintaining a promising sorted candidate list

during the search or incorporating dynamic bound strategies derived from LP solutions as

used in most existing methods for GAP.

Our proposed method may also be promising for other assignment type problems which are

computationally more demanding than GAP, such as the quadratic assignment problem

(Rardin, 1998), the multilevel generalised assignment problem (Laguna et al, 1995) and the

blockmodel problem (Jessop, 2003). This is because the predictive choice model would be

able to capture the complex interactions amongst the variables in the model and to predict

the movements of the solution in the search space.

 199

Chapter Seven

Conclusions

7.1 Summary

In this research, the container rail scheduling problem has been presented and an

optimisation framework for its solution has been proposed. The container rail scheduling

problem is modelled as a constraint satisfaction problem in which a demand responsive

scheduling service is considered in order to improve the service offered to customers and to

reduce operating costs for the rail carrier.

A constraint-based local search algorithm is developed and applied to the container rail

scheduling problem. The algorithm uses a simple variable flip as a structure of local move.

When all variables in the model are assigned a value, the total hard violation is calculated; a

quantified measure of the violation is then used to evaluate local moves. Different measures

of the violation are also used to drive the search to the promising regions of the search space.

 200

In addition, the constraint-based local search algorithm incorporates a predictive choice

model. The results using real-life data sets show some reductions in total operating costs, and

enhance the level of service through demand responsive schedules.

The research also demonstrates the application of the proposed algorithmic approach to the

generalised assignment problem. The constraint-based local search algorithm mainly

employs a randomised strategy to achieve a diversified exploration of the search space and

the predictive choice model predicts good assignment of jobs to agents. The performance of

the algorithm has been assessed with benchmark problem sets.

7.2 Achievements of this research

Generating a profitable schedule is crucial to a container rail business because rail’s

profitability is influenced by its service offerings. Optimisation models to improve its

operations and advanced solution techniques are significant. In this research, the major

contributions are divided into two areas as follows:

From the application point of view, the demand responsive scheduling model incorporates

the following new features that are more complex and not considered in previous work.

1. Non-uniform arrivals with distinct target times, i.e. not all containers are available at

the beginning of the scheduling time horizon and must be treated as distinct customer

bookings.

2. A demand responsive container rail service providing flexible schedules

 201

3. A probabilistic decrease in customer satisfaction with deviation from target time

From the computational viewpoint, the proposed method contributes to the scheduling

research in the following aspects:

1. Local search for constraint satisfaction problems has been investigated. A

constraint-based local search algorithm is developed to solve combinatorial

optimisation problems. The constraint-based local search plays a key role in

diversifying the search. It incorporates the predictive choice model for search

intensification. Good interplay between the diversification and intensification

strategies is the main feature of the proposed algorithm.

2. A novel learning mechanism, the predictive choice model, has been developed. We

propose a theoretical discrete choice learning model and then make it applicable to

combinatorial optimisation problems, the container rail scheduling problem and the

generalised assignment problem. Although the predictive choice model needs to

maintain and analyse the search history and hence imposes a computational cost,

this is offset against a lower run-time required to find good solutions.

Computational results demonstrate the robustness and usefulness of the proposed

technique.

3. The predictive choice model is not dependent on domain-specific knowledge; it

does not depend on the nature of the objective function or constraints, whether

linear or non-linear. This suggests that the proposed algorithm would be applicable

 202

to other combinatorial optimisation problems in which all variables in the model

are binary.

7.3 Future work

The following points provide some of the issues that could be investigated as the future work

of this research.

1. With the demand responsive schedule, there might be some customers that book the

rail service close to the end of a schedulable week. This may cause the train schedule

to be not profitable because the proposed model always insists on satisfying all

customer demand within the week. In this case, the automatic scheduling system may

be required to re-consolidate the customer shipments and to compare the effect if

those customers are dropped and considered in the following week. The modest

computational demands of the algorithm described in Chapters 4 and 5 make this

approach viable. This needs more investigation on railway practices and survey data.

2. With respect to the algorithm proposed, there are always possible ways to improve

the performance of the algorithm. For example, some parameters in the algorithm are

determined empirically, e.g. the feasibility parameter α that balances the trade-off

between hard and soft violations. They might be tuned effectively by adaptive

mechanisms based on statistical methods.

3. The predictive choice model may be extended to multiple value choice decisions, i.e.

the predictive model may be based on multinomial discrete choice theory that can

predict a good value for an integer variable. However, in general discrete

 203

optimisation problems, the variable domain can be large. Therefore, predicting every

single value for a variable would be computationally expensive and is not reasonable.

In this case the variable domain may be partitioned into multiple groups, and the

predictive choice model used to strengthen the variable domain.

4. The intensification strategy used by the predictive choice model is soundly based on a

statistical method; the consistency between variables is enforced in a probabilistic

way, leading to intensified exploration of the search space. However, the

diversification for the constraint-based local search is achieved by the randomised

selection of variables to explore and by not insisting on complete consistency at some

stages of the search. Although random selection and variable selection schemes are

used, how well the diversification is achieved is kept in mind implicitly. In addition,

it has to exploit domain knowledge to construct effective variable selection schemes.

Therefore, a variable selection strategy based on some statistical methods may be

incorporated. For instance, using the cluster sampling technique, the entire set of

variables could be divided into clusters and a random sample of these clusters is

selected. This would make the constraint-based local search a more general solving

method and a quantified measure of diversification can be done. The number of

clusters to be used or the size of clusters is a key factor for the performance of

diversification.

5. The constraint-based local search incorporating the predictive choice model has been

applied to GAP. The results demonstrate that the method performs well and can

obtain high quality solutions. Therefore, the method may be promising for other

combinatorial optimisation problems, particularly those for which it is possible to

 204

maintain the consistency of a subset of the constraints throughout the search. The

method is simple and convenient to use; it does not depend on the nature of the

objective function or constraints, whether linear or non-linear. As non-linear

optimisation problems are generally more computationally intensive than linear ones,

it may be fruitful to apply our CLS approach in this area, e.g. the blockmodel

problem (Jessop, 2003) which has assignment-type constraints but for which the

remainder of the constraints and the objective function take a quadratic form. The

principal difficulty in solving this problem is that its continuous relaxation has a non-

convex feasible region. Although this problem can be transformed into an integer

linear programme, its size expands rapidly and it has been shown to be difficult to

solve (Proll, 2004). The predictive choice model may be applied as the utility

function of having a certain value for a variable is not affected by the nature of the

constraints and the objective function. This would allow the original size of the

problem to be retained.

In addition, it may be promising for problems when the constraints in the model keep

changing over time, e.g. dynamic vehicle routing problems where vehicles on the pre-

route assignment encounter unexpected obstruction and cannot visit their designated

customers on time, and therefore vehicles have to be dynamically re-routed. Our CLS

approach allows additional constraints and can handle constraints locally. To make use

of the predictive choice model, the search history may be defined into two parts: the

first part describes the global information guiding the search for quality solutions and

the second is the local-update information trying to recover the violated constraints.

 205

Bibliography

Aardal, K. (1998) “Capacitated facility location: separation algorithm and computational

experience,” Mathematical Programming, vol. 81, pp. 149 - 175.

Aarts, E.H.L, Lenstra, J.K. and Aarts, E.L. (1997) “Local search in combinatorial

optimisation, ” John Wiley & Sons.

Anderson, P.S., Palma, A. and Thisse, J. (1992) “Discrete choice theory of product

differentiation,” The MIT Press.

Arshad, F., EL-Rhalibi, A. and Kelleher, G. (2000) “Information management within

intermodal transport chain scheduling,” European Project PISCES Report, Liverpool John

Moores University, UK.

Ausiello, G., Crescenzi, P. and Protasi, M. (1995) “Approximate solution of NP optimisation

problems,” Theoretical Computer Science, vol. 150, pp. 1 - 55.

Balas, E. and Padberg, M. (1976) “Set partitioning: a survey,” SIAM Review, vol. 18, pp.

710 - 760.

Battiti, R. and Protasi, M. (1997) “Reactive search, a history-based heuristic for MAX-

SAT,” ACM Journal of Experimental Algorithmics, vol. 2, pp. 1 - 31.

Beasley, J.E. (1988) “An algorithm for solving large capacitated warehouse location

problems,” European Journal of Operational Research, vol. 33, pp. 314 - 325.

Ben-Akiva, M. and Lerman, S.R. (1985) “Discrete choice analysis: theory and application to

predict travel demand,” MIT Press.

Blum, C., Roli, A. and Dorigo, M. (2001) “HC-ACO: The hyper-cube framework for ant

colony optimisation,” In: Proceedings of the Metaheuristics International Conference, MIC

2001, Porto, Portugal, vol. 2, pp. 399 - 403.

 206

Boffey, T.B. (1989) “Location problems arising in computer networks,” Journal of the

Operational Research Society, vol.40, pp. 347 - 354.

Brannlund, U., Lindberg, P.O., Nou, A. and Nilsson, J.E. (1998) “Railway timetabling using

Lagrangian relaxation,” Transportation Science, vol. 32, pp. 358 - 369.

Brucker, P., Hurink, J.L. and Rolfes, T. (2003) “Routing of railway carriages,” Journal of

Global Optimization, vol. 25, pp. 313 - 332.

Chu, P.C. (1997) “A genetic algorithm approach for combinatorial optimization problems,”

PhD thesis, Imperial College, London.

Chu, P.C. and Beasley, J.E. (1997) “A genetic algorithm for the generalised assignment

problem,” Computers & Operations Research, vol. 24, 17 - 23.

Cook, S.A. (1971) “The complexity of theorem proving procedures,” In Proceedings of the

3rd Annual ACM Symposium on the Theory of Computing, ACM, New York, pp. 151 - 158.

Cordeau, J., Toth, P. and Vigo, D. (1998) “A survey of optimisation models for train routing

and scheduling,” Transportation Science, vol. 32, pp. 380 - 404.

Crainic, T., Ferland, J.A. and Rousseau, J.M. (1984) “A tactical planning model for rail

freight transportation,” Transportation Science, vol. 18, 165 - 184.

Crainic, T.G. and Laporte, G. (1997) “Planning models for freight transportation,” European

Journal of Operational Research, vol. 97, pp. 409 - 438.

Davis, M. and Putnam, H. (1960) “A computing procedure for quantification theory,”

Journal of the Association for Computing Machinery, vol. 7, pp. 201 - 215.

Diaz, J.A. and Fernandez, E. (2001) “A tabu search heuristic for the generalised assignment

problem, ” European Journal of Operational Research, vol. 132, pp. 22 - 38.

 207

Feltl, H. and Raidl. G.R. (2004) “An improved hybrid genetic algorithm for the generalized

assignment,” In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 990

- 995.

Feo, T.A. and Resende, M.G.C. (1995) “Greedy randomized adaptative search procedures,”

Journal of Global Optimization, vol. 6, pp. 109 - 133.

Frank, J. (1997) “Learning short-term clause weights for GSAT,” In: Proceedings of the 15th

International Joint Conference on Artificial Intelligence (IJCAI-97), Morgan Kaufmann

Publishers, pp. 384 - 389.

Gendreau, M. (2002), “Recent advances in Tabu search,” in Essays and Surveys in

Metaheuristics, C.C. Ribeiro and P. Hansen (eds.), Kluwer Academic Publishers, pp. 369 -

377.

Glover, F. (1986) “Future paths for integer programming and links with artificial

intelligence,” Computers and Operations Research, vol. 13, pp. 533 - 549.

Glover, F. and Laguna, M. (1997) “Tabu search,” Kluwer Academic Publishers.

Goldberg, D.E. (1989) “Genetic algorithms in search, optimisation, and machine learning,”

Addison-Wesley, Reading, Mass.

Gomes, C.P., Selman, B. and Kautz, H. (1998) “Boosting combinatorial search through

randomisation,” In: Proceedings of the 15th International Conference on Artificial

Intelligence (AAAI-98), AAAI Press, pp. 431 - 437.

Gorman, M.F. (1998) “An application of genetic and tabu searches to the freight railroad

operating plan problem,” Annals of Operations Research, vol. 78, pp. 51 - 69.

Gu, J., Purdom, P.W., Franco, J. and Wah, B.W. (1997) “Algorithms for satisfiability (SAT)

problem, a survey,” In: Du, J. Gu, and P.M. Pardalos editors, Satisfiability Problem: Theory

and Applications DIMACS Series on Discrete Mathematics and Theoretical Computer

Science, vol. 35, pp. 19 - 151.

 208

Gualda, N.F. and Murgel, L.F. (2000) “A model for the train formulation problem,” Third

International Meeting for Research in Logistics, Trois-Rivieres, May 9-10, pp. 365 - 378.

Haghani, A.E. (1989) “Formulation and solution of combined train routing and makeup, and

empty car distribution model,” Transportation Research, vol. 23B, pp. 433 - 452.

Hansen, E.R (1992) “Global optimisation using interval analysis,” Marcel Dekker, Inc., New

York.

Hansen, P. and Jaumard, B. (1990) “Algorithms for the maximum satisfiability problem,”

Computing, vol. 44, pp. 279 - 303.

Hansen, P., Jaumard, B., Mladenovic, N. and Parreira, A.D. (2000) “Variable neighbourhood

search for maximum weighted satisfiability problem,” Technical Report G-2000-62, Les

Cahiers du GERAD, Group for Research in Decision Analysis.

Hansen, P. and Mladenovic, N. (2001) “Variable neighbourhood search: principles and

applications,” European Journal of Operational Research, vol. 130, pp. 449 - 467.

Henz, M., Lim, Y.F., Lua, S.C., Shi, X.P., Walser, J.P. and Yap, R. (2000) “Solving

hierarchical constraints over finite domains,” In: Proceedings of the 6th International

Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, pp. 283 -

298.

Hoos, H.H. (2002) “An adaptive noise mechanism for WalkSAT,” In: Proceedings of the

18th International Conference on Artificial Intelligence (AAAI02), AAAI Press, pp. 655 -

660.

Hoos, H.H. and Stutzle, T. (2004) “Stochastic local search: foundations and applications,”

Morgan Kaufmann Press.

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B. and Chickering, M. (2001) “ A

Bayesian approach to tackling hard combinatorial problems,” In: Proceedings of the 17th

Conference on Uncertainty in Artificial Intelligence (UAI01), pp. 235 - 244.

 209

Huntley, C.L., Brown, D.E., Sappington, D.E. and Markowicz, B.P. (1995) “Freight routing

and scheduling at CSX Transportation,” Interfaces, vol. 25, pp. 58 - 71.

ILOG (2002) “ILOG OPL studio version 3.5.1: reference manual,” ILOG Inc.

Indra-Payoong, N., Srisurapanon, V. and Laosirihongthong, T. (1998) “Factors influencing

modal choice for freight transportation,” In: Proceedings of the Civil and Environmental

Engineering Conference, New Frontiers and Challenges, 8-12 November, Bangkok, Thailand

vol. 4, pp. 19 - 26.

Jampel, M., Freuder, E. and Maher, M. (1996) “Over-constrained systems,” Lecture Notes in

Computer Science, Springer-Verlag, vol. 1106, pp. 1 - 22.

Jessop, A. (2003) “Blockmodels with maximum concentration,” European Journal of

Operational Research, vol.148, pp.56 - 64.

Jiang, Y., Kautz, H. and Selman, B. (1995) “Solving problems with hard and soft constraints

using a stochastic algorithm for MAX-SAT,” The 1st International Joint Workshop on

Artificial Intelligence and Operations Research, pp. 35 - 50.

Johnson, R. and Wichern, D. (1996) “Applied multivariate statistical analysis,” Cambridge

University Press.

Joy, S., Mitchell, J. and Borchers, B. (1997) “A branch and cut algorithm for MAX-SAT and

weighted MAX-SAT,” In D. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability Problem:

Theory and Applications, DIMACS Series on Discrete Mathematics and Theoretical

Computer Science, vol. 35, pp. 519 - 536.

Jussien, N. and Lhomme, O. (2002) “Local search with constraint propagation and conflict-

based heuristics,” Artificial Intelligence, vol. 139, pp. 21 - 45.

Kallenberg, O. (1997) “Foundations of modern probability,” New York, Springer-Verlag.

Kearfott, R.B. (1998) “On proving existence of feasible points in equality constrained

optimisation problems,” Mathematical Programming, vol. 83, pp. 89 - 100.

 210

Keaton, M.H. (1989) “Designing railroad operating plans: Lagrangain relaxation and

heuristic approach,” Transportation Research, vol. 23B, pp. 415 - 431.

Keaton, M.H. (1992) “Designing railroad operating plans: a dual adjustment method for

implementing Lagrangian relaxation,” Transportation Science, vol. 26, pp. 263 - 274.

Kirkpatrick, S. (1984). “Optimization by simulated annealing: quantitative studies” Journal

of Statistical Physics, vol. 34, pp. 976 - 986.

Kochmann, G.A. and McCallum, C.J. (1981) “Facility location models for planning a

transatlantic communications network,” European Journal of Operational Research, vol. 6,

pp. 205 - 211.

Kondrak, G. and Beek, P.V. (1997) “A theoretical evaluation of selected backtracking

algorithms,” Artificial Intelligence, vol. 89, pp. 365 - 387.

Kraft, E.R. (2002) “Scheduling railway freight delivery appointments using a bid price

approach,” Transportation Research, vol. 36A, pp. 145 - 165.

Laguna, M., Kelly, J.P., Gonzalez-Verarde, J.L. and Glover, F. (1995) “Tabu search for the

multilevel generalised assignment problem,” European Journal of Operational Research, vol.

82, pp.176 - 189.

Larraaga, P. and Lozano, J.A. (2002) “Estimation of distribution algorithms: a new tool for

evolutionary computation,” Kluwer Academic Publishers.

Lau H.C., Lim, Y.F. and Liu, Q. (2001) “Diversification of neighbourhood via constraint-

based local search and its application to VRPTW,” In: Proceedings of Conference on

Integration of Artificial Intelligence and Operations Research Techniques in Constraint

Programming for Combinatorial Optimization Problems (CP-AI-OR01), pp. 152 - 166.

Lawler, E.W. and Wood, D.E. (1966) “Branch and bound method: a survey, ” Operations

Research, vol. 14, pp. 699 - 719.

 211

Lester, I. (1996) “Adaptive simulated annealing (ASA): lessons learned,” Control and

Cybernetics, vol. 25, 33 - 54.

Lourenco, H. and Serra, D. (2002) “Adaptive search heuristics for the generalized

assignment problem,” Mathware and Soft Computing, vol. 9, pp. 209 - 234.

Lourenco, H.R, Martin, O.C. and Stutzle, T. (2002) “Iterated local search,” Handbook of

Metaheuristics, Ed. F. Glover and G. Kochenberger, Kluwer, vol. 57, pp. 321 - 353.

Marin, A. and Sameron, J. (1996) “Tactical design of rail freight networks: part II: local

search methods with statistical analysis,” European Journal of Operational Research, vol. 94,

pp. 43 - 53.

Marriott, K. and Stuckey, P.J. (1998) “ Programming with constraints: an introduction” MIT

press.

Mazure, B., Sais, L. and Gregoire, E. (1997) “ Tabu search for SAT,” In: Proceedings of the

14th National Conference on Artificial Intelligence (AAAI-97), pp. 281 - 285.

McAllester, D., Selman, B. and Kautz, H. (1997) “Evidence for invariants in local search,”

In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI-97), pp.

321 - 326.

Mills, P. and Tsang, E. (2000) “Guided local search for solving SAT and Weighted MAX-

SAT Problems,” Journal of Automated Reasoning, vol. 24, pp. 205 - 223.

Ministry of Commerce. (2002) “Thai commodity market price,” Department of Business

Economics, Ministry of Commerce, Thailand.

Minton, S., Johnston, M., Philips, A. and Laird, P. (1992) “Minimizing conflicts: a heuristic

method for constraint satisfaction and scheduling problems,” Artificial Intelligence, vol. 58,

pp. 161 - 205.

 212

Mitchell, J.E. (2000) “Branch and cut algorithms for combinatorial optimisation problems,”

Handbook of Applied Optimisation, Oxford University Press.

Narciso, M.G. and Lorena, L.A.N. (1999) “Lagrangean/surrogate relaxation for generalised

assignment problems,” European Journal of Operational Research, vol. 114, pp. 165 – 177.

National Economic and Social Development Board, Transport Statistics, 2000.

Nauss, R.M. (2003) “Solving the generalized assignment problem: an optimizing and

heuristic approach, ” INFORMS Journal of Computing, vol. 15, pp. 249 – 266.

Nemhauser, G.L. and Wolsey, L.A. (1988) “Integer and combinatorial optimisation,” John

Wiley & Sons.

Newman, A.M. and Yano, C.A. (2000) “Scheduling direct and indirect trains and containers

in an intermodal setting,” Transportation Science, vol. 34, 256 - 270.

Newton, H.N., Barnhart, C., Vance, P.H. (1998) “Constructing railroad blocking plans to

minimise handling costs,” Transportation Science, vol. 32, pp. 330 - 342.

Osman, I.H. (1995) “Heuristics for the generalised assignment problem: simulated annealing

and tabu search approaches,” OR Spectrum, vol. 17, pp. 211 - 225.

Osman, I.H. and Kelly, J.P. (1996) “Meta-heuristics: an overview,” In: Osman, I.H., Kelly,

J.P. (Eds), Metaheuristics: Theory & Applications, Kluwer, Boston, Chapter 1, pp. 1 - 21.

Sahni, S. and Gonzalez, T. (1976) “P-complete approximation problems,” Journal of ACM,

vol. 23, pp. 555 - 565.

Pardalos, P.M., Pitsoulis, L.S. and Resende, M.G.C. (1996) “A parallel GRASP for MAX-

SAT problems,” In: Jerzy Wasniewski, Jack Dongarra, Kaj Madsen, Dorte Olesen (Eds.):

Applied Parallel Computing, Industrial Computation and Optimization, Third International

Workshop, PARA 96 Lecture Notes in Computer Science, vol. 1184, Springer pp. 575-585.

 213

Pearson, A.V. and Hartley, H.O. (1972) “Biometrica tables for statisticians,” vol 2,

Cambridge, England, Cambridge University Press.

Pelikan, M., Goldberg, D.E., Cant-Paz, E. (1999) “BOA: the Bayesian optimization

algorithm,” In: Proceedings of the Genetic and Evolutionary Computation Conference

GECCO-99, vol. I, pp. 525-532.

Pochet, Y. and Wolsey, L.A. (1988) “Lot-size models with backlogging: strong

reformulations and cutting planes,” Mathematical Programming, vol. 40, pp. 317 - 335.

Proll, L. (2004) “ILP approaches to the blockmodel problem,” University of Leeds School of

Computing Research Report 2004.05.

Proll, L. and Smith, B. (1998) “ILP and constraint programming approaches to a template

design problem,” INFORMS Journal of Computing, vol. 10, pp. 265 - 277.

Prosser, P. (1993) “Hybrid algorithms for the constraint satisfaction problem,”

Computational Intelligence, vol. 9, pp. 268 – 299.

Rardin, R. (1998) “Optimization in operations research,” Prentice Hall.

Resende, M.G.C., Pitsoulis, L.S. and Pardalos, P.M. (1997) “Approximate solution of

weighted MAX-SAT problems using GRASP,” In: Du, J. Gu, and P.M. Pardalos editors,

Satisfiability Problem: Theory and Applications DIMACS Series on Discrete Mathematics

and Theoretical Computer Science, vol. 35, pp. 393 - 405.

Roli, A. (2001) “Criticality and parallelism in GSAT,” Electronic Notes in Discrete

Mathematics, vol. 9, pp. 1-8.

Roli, A. and Blum, C. (2001) “Critical parallelisation of local search for MAX-SAT, ” In:

Proceedings of AI, 7th Congress of the Italian Association of Artificial Intelligence, vol.

2175, pp. 147 - 158.

 214

Salim, V. and Cai, X. (1997) “A genetic algorithm for railway scheduling with

environmental considerations,” Environmental Modelling and Software, vol. 12, pp. 301 -

309.

SAS (2002) “SAS/STAT software,” SAS Inc.

Schrijver, A. (1993) “Minimum circulation of railway stock,” CWI Quarterly, vol. 6, pp. 205

- 217.

Selman, B. and Kautz, H. (1993) “Domain-independent extensions to GSAT: Solving large

structured satisfiability problems,” In: Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI-93), pp. 290-295.

Selman, B., Levesque, H. and Mitchell, D. (1992) “A new method for solving hard

satisfiability problems,” In: Proceedings of the 10th National Conference on Artificial

Intelligence (AAAI-92), pp. 440-446.

Selman, B. Kautz, H.A. and Cohen, B. (1994) “Noise strategies for improving local search,”

In: Proceedings of the 12th National Conference on Artificial Intelligence (AAAI-94), pp.

337 - 343.

Shapiro, S.S. and Wilk, M.B. (1965) “An analysis of variance test for normality (complete

samples),” Biometrika, vol. 52, pp. 591 - 611.

Smith, B., Stergiou, K. and Walsh, T. (2000) “Using auxiliary variables and implied

constraints to model non-binary problems,” In: Proceedings of AAAI-2000, Austin, Texas.

Steinmann, O., Strohmaier, A. and Stutzle, T. (1997) “Tabu search vs. random walk,” In:

Proceedings of the 21st Annual German Conference on Artificial Intelligence: Advances in

Artificial Intelligence, Lecture Notes in Computer Science, vol. 1303, pp. 337 – 348.

Strohmaier, A. (1998) “Multi-flip networks for SAT,” In: Proceedings of the 22nd Annual

German Conference on Artificial Intelligence: Advances in Artificial Intelligence, Lecture

Notes in Computer Science, vol. 1305, pp. 349 - 360.

 215

Trotter, H.F. (1959) “An elementary proof of the central limit theorem,” Archiv der

Mathematik, vol. 10, pp. 226 - 234.

Tsang, E.P.K. (1993) “Foundations of constraint satisfaction,” Academic Press.

Walser, J.P. (1999) “Integer optimisation by local search: a domain-independent approach,”

Lecture Notes in Artificial Intelligence 1637, Springer-Verlag.

Winston, W.L. (1994) “Operations research – applications and algorithms,” Duxbury Press.

Wolfe, M.A. (1994) “An interval algorithm for constrained global optimisation,” Journal of

Computational and Applied Mathematics, vol. 50, pp. 605 - 612.

Yagiura, M. and Ibaraki, T. (1999) “Analyses on the 2 and 3-flip neighbourhoods for the

MAX SAT,” Journal of Combinatorial Optimisation, vol. 3, no. 1, pp. 95 - 114.

Yagiura, M. Ibaraki, T. and Glover, F. (2004) “An ejection chain approach for the

generalised assignment problem,” INFORMS Journal of Computing, vol. 16, pp. 133 - 151.

Yagiura, M. Yamaguchi, T. and Ibaraki, T. (1999a) “A variable depth search algorithm for

the generalised assignment problem, ” In: Voss, S. Martello, S. Osman, I.H. and Roucariol,

C. (Eds.), Meta-Heuristics: Advances and Trends in Local Search Paradigms for

Optimisation, Kluwer Academic Publishers, pp. 459 - 471.

Yano, C.A. and Newman, A.M. (2001) “Scheduling trains and containers with due dates and

dynamic arrivals,” Transportation Science, vol. 35, pp. 181 - 191.

 216

Appendix A

Total shipping cost for containerised cargoes as a percentage of commodity market prices. In

all tables, C∆ is the difference between total shipping cost of truck and rail, i.e. C∆ = TC -

RC , Z is a standardised score of C∆ , and CDF is a cumulative probability density function

of C∆ .

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
1 8.64 6.42 2.22 1 1.04 -1.66 0.05
2 14.11 12.29 1.82 2 1.07 -1.59 0.06
3 9.65 8.01 1.64 3 1.11 -1.49 0.07
4 8.32 6.75 1.57 4 1.27 -1.10 0.14
5 12.12 11.01 1.11 5 1.35 -0.90 0.18
6 9.00 7.65 1.35 6 1.40 -0.78 0.22
7 13.55 11.46 2.09 7 1.40 -0.77 0.22
8 15.07 12.98 2.09 8 1.47 -0.61 0.27
9 11.78 9.87 1.91 9 1.52 -0.49 0.31

10 12.09 9.87 2.22 10 1.56 -0.39 0.35
11 9.75 8.19 1.56 11 1.57 -0.37 0.36
12 14.18 13.14 1.04 12 1.64 -0.20 0.42
13 9.14 6.98 2.16 13 1.77 0.12 0.55
14 15.21 13.12 2.09 14 1.82 0.24 0.60
15 8.50 6.98 1.52 15 1.91 0.46 0.68
16 10.08 8.68 1.40 16 1.97 0.61 0.73
17 8.08 7.01 1.07 17 2.09 0.90 0.82
18 13.01 11.24 1.77 18 2.09 0.90 0.82
19 10.52 9.12 1.40 19 2.09 0.90 0.82
20 16.17 14.01 2.16 20 2.16 1.07 0.86
21 11.11 8.65 2.46 21 2.16 1.07 0.86
22 13.27 12.00 1.27 22 2.22 1.22 0.89
23 16.05 14.58 1.47 23 2.22 1.22 0.89
24 15.07 13.10 1.97 24 2.46 1.80 0.96

 µ =1.72
 σ =0.41

Table A.1: Total shipping cost for cargo type I

 217

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
1 10.66 5.62 5.04 1 3.89 -2.45 0.01
2 15.04 10.66 4.38 2 4.07 -1.97 0.02
3 14.84 9.78 5.06 3 4.14 -1.79 0.04
4 13.89 8.97 4.92 4 4.23 -1.55 0.06
5 10.71 5.95 4.76 5 4.37 -1.18 0.12
6 16.05 10.11 5.94 6 4.38 -1.16 0.12
7 10.80 5.78 5.02 7 4.38 -1.16 0.12
8 10.05 5.67 4.38 8 4.45 -0.97 0.17
9 11.25 6.62 4.63 9 4.47 -0.92 0.18

10 15.11 10.21 4.90 10 4.47 -0.92 0.18
11 10.10 6.21 3.89 11 4.53 -0.76 0.22
12 9.04 3.90 5.14 12 4.54 -0.74 0.23
13 10.75 5.70 5.05 13 4.56 -0.68 0.25
14 16.01 11.54 4.47 14 4.61 -0.55 0.29
15 10.65 5.97 4.68 15 4.61 -0.55 0.29
16 8.11 3.15 4.96 16 4.63 -0.50 0.31
17 16.45 11.53 4.92 17 4.68 -0.37 0.36
18 9.98 5.04 4.94 18 4.70 -0.32 0.38
19 18.15 13.54 4.61 19 4.75 -0.18 0.43
20 10.85 5.88 4.97 20 4.75 -0.18 0.43
21 10.85 5.70 5.15 21 4.76 -0.16 0.44
22 10.70 5.81 4.89 22 4.77 -0.13 0.45
23 10.11 5.21 4.90 23 4.78 -0.11 0.46
24 11.08 6.54 4.54 24 4.80 -0.05 0.48
25 18.01 13.21 4.80 25 4.83 0.03 0.51
26 10.87 5.52 5.35 26 4.89 0.18 0.57
27 19.01 14.10 4.91 27 4.90 0.21 0.58
28 16.07 11.11 4.96 28 4.90 0.21 0.58
29 17.24 13.01 4.23 29 4.90 0.21 0.58
30 10.11 5.50 4.61 30 4.91 0.24 0.59
31 9.15 5.01 4.14 31 4.92 0.26 0.60
32 14.20 9.50 4.70 32 4.92 0.26 0.60
33 16.11 12.04 4.07 33 4.92 0.26 0.60
34 12.04 6.80 5.24 34 4.94 0.32 0.62
35 15.89 10.87 5.02 35 4.96 0.37 0.64
36 12.82 8.07 4.75 36 4.96 0.37 0.64
37 10.60 5.77 4.83 37 4.97 0.39 0.65
38 13.54 9.01 4.53 38 4.97 0.39 0.65
39 9.02 4.25 4.77 39 5.02 0.53 0.70
40 16.07 11.10 4.97 40 5.02 0.53 0.70
41 11.80 6.44 5.36 41 5.04 0.58 0.72
42 15.32 9.57 5.75 42 5.04 0.58 0.72
43

11.11 6.64 4.47
43

5.05 0.61 0.73

 218

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
44 9.05 4.30 4.75 44 5.06 0.63 0.74
45 12.99 8.21 4.78 45 5.11 0.76 0.78
46 9.04 4.00 5.04 46 5.14 0.84 0.80
47 11.47 6.55 4.92 47 5.15 0.87 0.81
48 16.24 11.87 4.37 48 5.24 1.11 0.87
49 12.77 8.32 4.45 49 5.35 1.39 0.92
50 10.54 5.98 4.56 50 5.36 1.42 0.92
51 18.11 13.00 5.11 51 5.75 2.45 0.99
52 10.10 5.20 4.90 52 5.94 2.95 0.99

 µ = 4.82
 σ = 0.38

Table A.2: Total shipping cost for cargo type II

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
1 13.34 11.03 2.31 1 1.50 -2.45 0.01
2 14.85 12.56 2.29 2 1.52 -2.39 0.01
3 14.28 12.29 1.99 3 1.60 -2.15 0.02
4 10.35 8.01 2.34 4 1.60 -2.15 0.02
5 12.87 10.75 2.12 5 1.65 -2.00 0.02
6 12.53 11.01 1.52 6 1.77 -1.64 0.05
7 9.30 7.65 1.65 7 1.85 -1.39 0.08
8 14.00 11.46 2.54 8 1.89 -1.27 0.10
9 15.32 12.98 2.34 9 1.98 -1.00 0.16

10 11.86 9.87 1.99 10 1.99 -0.97 0.17
11 11.72 9.87 1.85 11 1.99 -0.97 0.17
12 10.44 8.19 2.25 12 2.00 -0.94 0.17
13 15.68 13.14 2.54 13 2.09 -0.67 0.25
14 12.48 9.98 2.50 14 2.10 -0.64 0.26
15 15.64 13.12 2.52 15 2.10 -0.64 0.26
16 9.72 6.98 2.74 16 2.11 -0.61 0.27
17 10.78 8.68 2.10 17 2.11 -0.61 0.27
18 8.99 7.01 1.98 18 2.12 -0.58 0.28
19 19.53 17.02 2.51 19 2.22 -0.27 0.39
20 10.72 9.12 1.60 20 2.25 -0.18 0.43
21 16.46 14.01 2.45 21 2.29 -0.06 0.48
22 11.19 8.65 2.54 22 2.29 -0.06 0.48
23 14.64 12.00 2.64 23 2.30 -0.03 0.49

 219

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
24 17.02 14.58 2.44 24 2.30 -0.03 0.49
25 15.40 13.10 2.30 25 2.30 -0.03 0.49
26 10.98 8.68 2.30 26 2.30 -0.03 0.49
27 11.19 8.71 2.48 27 2.30 -0.03 0.49
28 9.65 7.01 2.64 28 2.30 -0.03 0.49
29 16.48 13.24 3.24 29 2.30 -0.03 0.49
30 11.46 9.12 2.34 30 2.31 0.00 0.50
31 16.55 14.01 2.54 31 2.31 0.00 0.50
32 11.29 8.65 2.64 32 2.32 0.03 0.51
33 14.74 12.00 2.74 33 2.33 0.06 0.52
34 16.98 14.58 2.40 34 2.34 0.09 0.54
35 15.54 13.10 2.44 35 2.34 0.09 0.54
36 17.75 15.64 2.11 36 2.34 0.09 0.54
37 13.87 11.78 2.09 37 2.40 0.27 0.61
38 14.39 12.09 2.30 38 2.40 0.27 0.61
39 12.08 9.75 2.33 39 2.40 0.27 0.61
40 16.28 14.18 2.10 40 2.41 0.30 0.62
41 11.44 9.14 2.30 41 2.42 0.33 0.63
42 17.61 15.21 2.40 42 2.43 0.36 0.64
43 10.81 8.50 2.31 43 2.44 0.39 0.65
44 12.08 10.08 2.00 44 2.44 0.39 0.65
45 10.66 8.08 2.58 45 2.44 0.39 0.65
46 15.31 13.02 2.29 46 2.45 0.42 0.66
47 13.26 10.52 2.74 47 2.46 0.45 0.68
48 17.67 16.17 1.50 48 2.48 0.52 0.70
49 13.00 11.11 1.89 49 2.50 0.58 0.72
50 15.59 13.27 2.32 50 2.51 0.61 0.73
51 18.48 16.05 2.43 51 2.52 0.64 0.74
52 16.84 15.07 1.77 52 2.54 0.70 0.76
53 20.57 18.03 2.54 53 2.54 0.70 0.76
54 14.17 11.62 2.55 54 2.54 0.70 0.76
55 14.73 12.29 2.44 55 2.54 0.70 0.76
56 10.31 8.01 2.30 56 2.54 0.70 0.76
57 15.42 12.75 2.67 57 2.55 0.73 0.77
58 20.21 17.11 3.10 58 2.58 0.82 0.79
59 12.07 9.65 2.42 59 2.64 1.00 0.84
60 13.92 11.46 2.46 60 2.64 1.00 0.84
61 15.54 13.24 2.30 61 2.64 1.00 0.84
62 12.93 10.52 2.41 62 2.67 1.09 0.86
63 20.05 18.45 1.60 63 2.74 1.30 0.90
64 13.22 11.11 2.11 67 2.74 1.30 0.90
65 15.67 13.27 2.40 65 2.74 1.30 0.90
66 18.27 16.05 2.22 66 3.10 2.39 0.99

 220

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
67 17.42 15.12 2.30 67 3.24 2.82 0.99

 µ = 2.31
 σ = 0.33

Table A.3: Total shipping cost for cargo type III

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
1 9.94 4.63 5.31 1 4.22 -2.95 0.01
2 10.54 4.90 5.64 2 4.52 -2.14 0.02
3 8.66 3.89 4.77 3 4.64 -1.81 0.04
4 10.49 5.14 5.35 4 4.64 -1.81 0.04
5 9.86 4.05 5.81 5 4.77 -1.46 0.07
6 9.48 4.47 5.01 6 4.89 -1.14 0.13
7 11.73 6.35 5.38 7 4.96 -0.95 0.17
8 10.56 4.96 5.60 8 5.01 -0.81 0.21
9 17.28 11.92 5.36 9 5.12 -0.52 0.30

10 10.62 4.94 5.68 10 5.12 -0.51 0.30
11 12.91 7.61 5.30 11 5.20 -0.30 0.38
12 10.69 4.97 5.72 12 5.21 -0.27 0.39
13 10.47 5.15 5.32 13 5.22 -0.24 0.40
14 10.11 4.89 5.22 14 5.22 -0.24 0.40
15 15.54 9.90 5.64 15 5.30 -0.02 0.49
16 9.76 4.54 5.22 16 5.30 -0.02 0.49
17 10.32 4.80 5.52 17 5.31 0.00 0.50
18 10.81 5.35 5.46 18 5.32 0.03 0.51
19 10.56 4.91 5.65 19 5.32 0.03 0.51
20 14.53 8.93 5.60 20 5.35 0.11 0.54
21 9.19 4.23 4.96 21 5.36 0.14 0.55
22 15.91 10.61 5.30 22 5.38 0.19 0.58
23 8.78 4.14 4.64 23 5.41 0.26 0.60
24 12.11 6.70 5.41 24 5.46 0.41 0.66
25 13.16 8.64 4.52 25 5.46 0.41 0.66
26 10.74 5.24 5.50 26 5.46 0.41 0.66
27 10.79 5.02 5.77 27 5.46 0.41 0.66
28 9.21 3.75 5.46 28 5.49 0.47 0.68
29 10.38 4.83 5.55 29 5.50 0.51 0.70
30 14.74 9.53 5.21 30 5.52 0.57 0.71
31 9.26 3.77 5.49 31 5.55 0.66 0.75

 221

Customer Modal cost (%) Sort
no. Truck, TC Rail, RC C∆ No. C∆ Z CDF
32 10.09 4.97 5.12 32 5.60 0.78 0.78
33 11.42 5.36 6.06 33 5.60 0.78 0.78
34 11.07 5.75 5.32 34 5.64 0.88 0.81
35 11.11 6.47 4.64 35 5.64 0.88 0.81
36 10.21 4.75 5.46 36 5.65 0.91 0.82
37 8.34 3.45 4.89 37 5.68 1.00 0.84
38 10.24 5.04 5.20 38 5.72 1.10 0.86
39 9.38 3.92 5.46 39 5.77 1.25 0.89
40 11.45 7.23 4.22 40 5.81 1.34 0.91
41 9.57 4.45 5.12 41 6.06 2.03 0.98

 µ = 5.31
 σ = 0.37

Table A.4: Total shipping cost for cargo type IV

 222

Appendix B

Tables B.1 – B.5 show the accuracy of the predictive choice model. The same variables are

tested in each table with different prediction no.

Var Violation *ℵ Probability Φ

no.
0h 1h 0 1

0P 1P

1 25.55 26.50 17 3 0.85 0.15 0

2 23.25 21.90 14 6 0.70 0.30 1

3 15.30 23.55 9 11 0.86 0.14 0

4 25.45 22.70 11 9 0.47 0.53 0

5 30.05 24.40 4 16 0.20 0.80 1

6 28.10 25.65 10 10 0.48 0.52 0

7 27.45 31.45 16 4 0.80 0.20 0

8 23.90 19.20 13 7 0.36 0.64 1

9 20.70 23.30 17 3 0.85 0.15 0

10 25.75 23.85 17 3 0.85 0.15 0

11 28.05 22.20 8 12 0.35 0.65 1

12 24.20 26.00 13 7 0.53 0.47 0

13 25.60 29.65 8 12 0.59 0.41 0

14 25.55 27.00 16 4 0.80 0.20 0

15 25.35 28.10 15 5 75 25 0

16 29.65 23.60 5 15 25 75 1

17 24.05 25.80 14 6 70 30 0

18 24.20 26.00 7 13 0.53 0.47 0

19 26.00 20.50 6 14 30 70 1

20 23.05 24.90 15 5 75 25 0

=PC 85%

Table B.1: Prediction no. 1

 223

Var Violation *ℵ Probability Φ

no.
0h 1h 0 1

0P 1P

1 22.45 27.55 6 14 0.67 0.33 0

2 25.80 25.40 13 7 0.49 0.51 1

3 22.85 20.30 13 7 0.53 0.47 1

4 25.70 29.25 10 10 0.57 0.43 0

5 24.70 19.05 5 15 0.25 0.75 1

6 28.05 25.80 12 8 0.49 0.51 0

7 22.45 28.55 6 14 0.72 0.28 0

8 32.30 27.70 7 13 0.42 0.58 1

9 20.40 24.35 18 2 0.90 0.10 0

10 20.40 24.35 14 6 0.73 0.27 0

11 31.10 24.95 10 10 0.35 0.65 1

12 25.70 28.45 17 3 0.85 0.25 0

13 29.25 27.55 8 12 0.61 0.39 0

14 22.45 27.55 14 6 0.76 0.24 0

15 25.10 30.50 17 3 0.85 0.25 0

16 32.60 24.35 3 17 0.25 0.85 1

17 28.65 26.75 13 7 0.46 0.54 0

18 25.70 28.45 17 3 0.85 0.25 0

19 32.40 26.00 7 13 0.70 0.30 1

20 20.40 27.55 15 5 0.75 0.25 0

=PC 80%

Table B.2: Prediction no. 2

 224

Var Violation *ℵ Probability Φ

no.
0h 1h 0 1

0P 1P

1 19.70 25.00 19 1 0.95 0.05 0

2 20.65 17.35 13 7 0.48 0.52 1

3 21.60 19.25 11 9 0.48 0.52 1

4 22.60 26.20 15 5 0.75 0.25 0

5 21.85 16.30 3 17 0.15 0.85 1

6 20.95 24.90 14 6 0.74 0.26 0

7 20.25 25.00 18 2 0.90 0.20 0

8 25.15 24.85 12 8 0.51 0.49 1

9 21.65 26.60 6 14 0.67 0.33 0

10 19.70 25.00 19 1 0.95 0.05 0

11 26.90 19.70 6 14 0.31 0.69 1

12 26.85 26.25 11 9 0.49 0.51 0

13 22.90 24.20 14 6 0.73 0.27 0

14 19.70 26.60 17 3 0.85 0.15 0

15 22.90 20.95 13 7 0.38 0.62 0

16 29.75 22.15 14 6 0.24 0.76 1

17 25.50 30.95 17 3 0.85 0.15 0

18 26.85 26.25 9 11 0.49 0.51 0

19 23.05 16.05 4 16 0.20 0.80 1

20 19.70 24.65 18 2 0.90 0.10 0

=PC 80%

Table B.3: Prediction no. 3

 225

Var Violation *ℵ Probability Φ

no.
0h 1h 0 1

0P 1P

1 26.25 26.90 15 5 0.75 0.25 0

2 26.20 21.45 11 9 0.40 0.60 1

3 19.15 21.95 13 7 0.56 0.44 1

4 27.85 27.15 13 7 0.51 0.49 0

5 25.85 18.80 3 17 0.15 0.85 1

6 27.80 27.90 11 9 0.51 0.49 1

7 20.35 26.25 16 4 0.80 0.20 0

8 25.25 23.65 14 6 0.42 0.58 0

9 23.65 25.40 14 6 0.68 0.32 0

10 21.45 26.90 17 3 0.85 0.15 0

11 27.10 18.70 4 16 0.20 0.80 1

12 21.15 27.65 4 16 0.66 0.33 0

13 24.70 23.95 12 8 0.48 0.52 0

14 19.65 24.20 7 13 0.80 0.20 0

15 22.20 27.15 15 5 0.75 0.25 0

16 26.35 17.90 4 16 0.19 0.81 1

17 26.80 23.55 10 10 0.46 0.54 0

18 26.15 27.65 16 4 0.80 0.20 0

19 16.30 24.60 4 16 0.20 0.80 0

20 18.55 23.20 13 7 0.67 0.33 0

=PC 70%

Table B.4: Prediction no. 4

 226

Var Violation *ℵ Probability Φ

no.
0h 1h 0 1

0P 1P

1 24.35 27.50 6 14 0.73 0.27 0

2 20.05 21.60 11 9 0.54 0.46 1

3 23.35 21.95 14 6 0.61 0.39 1

4 19.65 22.20 13 7 0.55 0.45 0

5 28.45 19.65 3 17 0.15 0.85 1

6 24.60 23.90 9 11 0.51 0.49 0

7 23.30 26.25 15 5 0.75 0.25 0

8 24.50 23.45 9 11 0.52 0.48 1

9 23.05 25.60 18 2 0.90 0.10 0

10 21.20 26.15 17 3 0.85 0.15 0

11 26.50 22.60 11 9 0.44 0.56 1

12 22.55 25.75 15 5 0.75 0.25 0

13 23.85 21.90 8 12 0.49 0.51 0

14 21.85 26.10 6 14 0.67 0.23 0

15 23.95 25.05 14 6 0.72 0.28 0

16 26.70 20.55 12 8 0.26 0.64 1

17 26.80 27.15 15 5 0.75 0.25 0

18 22.55 25.75 15 5 0.75 0.25 0

19 30.35 22.35 12 8 0.29 0.71 1

20 22.30 24.10 7 13 0.58 0.42 0

=PC 80%

Table B.5: Prediction no. 5

